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Directrice de recherche, Unité mixte de Physique CNRS/Thales Directrice de thèse
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S U M M A RY

Title: Brain-inspired computing leveraging the transient non-linear
dynamics of magnetic nano-oscillators

Keywords: Spintronics, Neural networks (computer science)

This thesis studies experimentally the transient dynamics of mag-
netic nano-oscillators for brain-inspired computing. For pattern recog-
nition tasks such as speech or visual recognition, the brain is much
more energy efficient than classical computers. Developing brain-
inspired chips opens the path to overcome the limitations of present
processors and to win several orders of magnitude in the energy con-
sumption of data processing. The efficiency of the brain originates from
its architecture particularly well adapted for pattern recognition. The
building blocks of this architecture are the biological neurons, which
can be seen as interacting non-linear oscillators generating spatial
chain reactions of activations. Nevertheless, the brain has one hundred
billion neurons and a brain-inspired chip would require extremely small
dimension oscillators. The spin-transfer torque oscillators (STNO)
have nanometric size, they are fast (nanosecond time-scales), highly
non-linear and their spin-torque dependent response is easily tunable
(for instance by applying an external magnetic field or a d.c. cur-
rent). They work at room temperature, they have a low thermal noise
and they are compatible with CMOS technologies. Because of these
features, they are excellent candidates for building hardware neural
networks, which are compatible with the standard computers. In this
thesis, we used a single STNO to emulate the behavior of a whole
neural network. In this time multiplexed approach, the oscillator em-
ulates sequentially each neuron and a temporal chain reaction replace
the spatial chain reaction of a biological neural network. In particular,
we used the relaxation and the non-linear dependence of the oscil-
lation amplitude with the applied current to perform neuromorphic
computing. One of the main results of this thesis is the demonstration
of speech recognition (digits said by different speakers) with a state-
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of-the-art recognition rate of 99.6%. We show that the recognition
performance is highly dependent on the physical properties of the
STNO, such as the linewidth, the emission power or the frequency.
We thus optimized the experimental bias conditions (external applied
magnetic field, d.c. current and rate of the input) in order to lever-
age adequately the physical properties of the STNO for recognition.
Voice waveforms require a time-to-frequency transformation before
being processed, and this step is performed numerically before the
experiment. We studied the influence of different time-to-frequency
transformations on the final recognition rate, shading light on the
critical role of their non-linear behavior. Finally, in order to solve
problems requiring memory, such as temporal sequence analysis, we
measured the intrinsic memory of a STNO, which comes from the
relaxation of the oscillation amplitude. We also increased this memory,
using a delayed feedback loop. This feedback improved the range
of memory from a few hundreds of nanoseconds to more than ten
microseconds. This feedback memory allows suppressing up to 99% of
the errors on a temporal pattern recognition task (discrimination of
sine and square waveforms).
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R É S U M É

Titre: Calcul bio-inspiré utilisant la dynamique non-linéaire transi-
toire d’oscillateurs magnétiques nanométriques

Mots clés: Électronique de spin, Réseaux neuronaux (informa-
tique)

L’objectif de cette thèse est la réalisation expérimentale de calcul
bio-inspiré en utilisant la dynamique transitoire d’oscillateurs magné-
tique nanométriques. Pour bien des tâches telle que la reconnaissance
vocale, le cerveau fonctionne bien plus efficacement en terme d’énergie
qu’un ordinateur classique. Le développement de puces neuro-inspirées
offre donc la perspective de surmonter les limitations des processeurs
actuels et de gagner plusieurs ordres de grandeurs sur la consomma-
tion énergétique du traitement de données. L’efficacité du cerveau à
traiter des données est due à son architecture, qui est particulièrement
adaptée à la reconnaissance de motifs. Les briques de base de cette
architecture sont les neurones biologiques. Ceux-ci peuvent être vus
comme des oscillateurs non linéaires qui interagissent et génèrent des
cascades spatiales d’activations en réponse à une excitation. Cependant
le cerveau comprend cent milliards de neurones et le développement
d’une puce neuro-inspiré requerrait des oscillateurs de très petite
dimension. Les oscillateurs à transfert de spin (STNO) sont de taille
nanométrique, ont une réponse rapide (de l’ordre de la nanoseconde),
sont fortement non-linéaires et leur réponse dépendante du couple de
transfert de spin est aisément ajustable (par exemple par l’application
d’un courant continu ou d’un champ magnétique). Ils fonctionnent
à température ambiante, ont un très faible bruit thermique, et sont
compatible avec les technologies CMOS. Ces caractéristiques en font
d’excellents candidats pour la réalisation de réseaux artificiels de
neurones compatibles avec un ordinateur classique. Dans cette thèse,
nous avons utilisé un unique STNO pour générer le comportement
d’un réseau de neurones. Ainsi l’oscillateur joue à tour de rôle chaque
neurone. Une cascade temporelle remplace donc la cascade spatiale
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d’un réseau de neurones biologiques. En particulier nous avons utilisé
la relaxation et la dépendance non-linéaire de l’amplitude des oscil-
lations afin de réaliser du calcul neuromorphique. L’un des résultats
principaux de cette thèse est la réalisation de reconnaissance vocale
(reconnaissance de chiffres dits par 5 locuteurs différents) en obtenant
un taux de reconnaissance à l’état de l’art de 99.6%. Nous avons pu
montrer que les performances de la reconnaissance sont étroitement
dépendantes des propriétés physiques du STNO tel que l’évolution de
la largeur de raie, la puissance d’émission, ou la fréquence d’émission.
Nous avons donc optimisé les conditions expérimentales (champs mag-
nétiques et courant continu appliqués, fréquence du signal à traiter)
afin de pouvoir utiliser au mieux les propriétés physiques du STNO
pour la reconnaissance. Les signaux vocaux requièrent d’être transfor-
més du domaine temporel au domaine fréquentiel, avant de pouvoir
être traités, et cette étape est réalisée numériquement en amont de
l’expérience. Nous avons étudié l’influence de différents prétraitements
sur la reconnaissance et mis en évidence le rôle majeur de la non-
linéarité de ces derniers. Enfin, afin de pouvoir traiter des problèmes
requérant de la mémoire, tel que par exemple des signaux sous forme
de séquences temporelles, nous avons mesuré la mémoire que possède
intrinsèquement un STNO, du fait de sa relaxation. Nous avons aussi
augmenté cette mémoire à l’aide d’une boucle à retard. Ce dispositif
a permis d’accroître la plage de mémoire de quelques centaines de
nanosecondes à plus d’une dizaine de microsecondes. L’ajout de cette
mémoire extrinsèque a permis de supprimer jusqu’à 99% des erreurs
sur une tâche de reconnaissance de motifs temporels (reconnaissance
de signaux sinusoïdaux et carrés).
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S Y N T H È S E E N F R A N Ç A I S ( S U M M A RY I N
F R E N C H )

introduction

Récemment, l’intelligence artificielle s’est rapidement développée
car ces algorithmes offrent la possibilité pour des ordinateurs de dé-
passer les performances humaines dans des tâches cognitives telles
que la reconnaissance d’image ou la reconnaissance vocale. À l’ère
de la donnée, l’intelligence artificielle devient indispensable dans de
nombreux secteurs industriels afin d’analyser automatiquement des
situations ambigües. Les algorithmes à la base de ces progrès sont les
réseaux de neurones artificiels qui sont inspirés de la non-linéarité et
de la plasticité des réseaux de neurones biologiques. Ils apparaissaient
dans les années 50, où le premier algorithme permettant à une ma-
chine de d’apprendre des représentations abstraites fut développé [1].
Cependant ce n’est que récemment que ces algorithmes connurent un
essor grâce notamment à l’amélioration des microprocesseurs. En effet
pour résoudre des tâches pratiques telles que de la reconnaissance
d’image, il est souvent nécessaire de calculer la réponse de millions de
neurones à l’aide de centaines de millions de paramètres. Même si ces
algorithmes sont loin de la complexité du cerveau humain qui compte
100 milliards de neurones, leur exécution sur un ordinateur classique
est extrêmement coûteuse en énergie.

Les ordinateurs actuels sont fondés sur l’approche de Von Neuman
où l’unité de calcul est physiquement séparée de l’unité de mémoire
et où les données doivent être déplacées séquentiellement d’une unité
à l’autre au travers d’un bus commun. Ce type d’architecture n’est
pas adapté pour émuler des réseaux massivement parallèles et si un
algorithme de réseau de neurones permet d’atteindre des résultats
similaires aux performances humaines pour quelques tâches partic-
ulières, l’énergie dépensée lors de son exécution sur un ordinateur
est trois à quatre ordres de grandeurs supérieure à la consommation
énergétique du cerveau humain. L’efficacité énergétique du cerveau est
due à son architecture massivement parallèle, où les neurones qui trait-
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ent l’information sont densément interconnectés par des synapses qui
portent en elles de la mémoire. Cette constatation motive le développe-
ment de puces inspirées du cerveau, intégrant des composants dont
la physique imite le comportement des neurones. Les neurones bi-
ologiques encodent l’information dans les impulsions électriques qu’ils
génèrent. Tout un pan des neurosciences et de la physique les modèle
comme des oscillateurs non-linéaires. Dès lors, le cerveau peut être vu
comme une assemblée d’oscillateurs non-linéaires qui calculent grâce
à leur dynamique complexe. Une puce inspirée du cerveau basée sur
ce principe devrait intégrer des millions d’oscillateurs non-linéaires
sur une surface aussi faible qu’un centimètre carré ce qui requière
des composants de taille nanométrique. Ainsi des nano-oscillateurs
non-linéaires sont nécessaires pour construire des neurones matériels.
Malgré de nombreuses propositions incluant des neurones mem-

risitifs et des neurones à base de jonctions Josephson, il n’y a pas
eu jusqu’à présent de démonstration de calcul neuromorphique util-
isant un neurone artificiel nanométrique. En effet les composants
nanométriques sont généralement bruités et peu fiables, ce qui limite
leur emploi pour le calcul. Dans cette thèse nous utilisons la dynamique
non-linéaire d’un nano-oscillateur à transfert de spin car malgré leur
taille nanométrique, ces composants magnétiques ont un long cycle
de vie et un fort rapport signal sur bruit.

Cette thèse est la première démonstration expérimentale de calcul
neuromorphique utilisant un neurone nanométrique. Pour cette dé-
monstration, nous avons utilisé la dynamique non-linéaire transitoire
d’un oscillateur à transfert de spin et nous avons obtenu des résultats
à l’état de l’art pour une tâche de reconnaissance de chiffres parlés [2].

calcul neuromorphique

Le cerveau humain peut associer très rapidement des situations
similaires mais non identiques tel qu’une personne sur différentes
photos.

Les capacités du cerveau sont dues à son architecture qui est encore
un vaste sujet de recherche. Le cerveau est composé de neurones inter-
connectés par des synapses. Les synapses en changeant la connexion
entre deux neurones permettent l’apprentissage. Les neurones, qui
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sont le centre d’intérêt de cette thèse sont des auto-oscillateurs qui
possèdent mémoire et non-linéarité.
Les algorithmes de réseaux de neurones artificiels s’inspirent de la

non-linéarité des neurones biologiques et de la plasticité des synapses.
Ces algorithmes appartiennent à la classe de l’apprentissage supervisé
où durant une phase d’apprentissage les paramètres de l’algorithme
sont réglés (ici il s’agit des pondérations des synapses) et d’une phase
d’inférence où les paramètres restent fixe.

Exécuter ces algorithmes sur un ordinateur classique est énergivore,
car les données font de nombreux allers-retours entre la mémoire et
le processeur. Une perspective de recherche prometteuse est donc
d’implémenter des puces dont l’architecture s’inspire elle aussi du
cerveau.

état de l’art des neurones matériels pour le calcul
neuromorphique

Le CMOS est une technologie établie ce qui explique que les sys-
tèmes neuromorphiques les plus avancés ont été développés avec cette
approche. Mais émuler les fonctionnalités d’un neurone requière des
circuits de transistors complexes qui occupent une surface trop im-
portante pour créer la densité de neurones nécessaire à une puce
neuromorphique.

Il y a donc un besoin de nouveaux composants nanométriques pour
émuler les propriétés d’un neurone. La première approche présentée
est le neurone memristif. Même si les memristors peuvent être de
taille nanométrique, ils doivent être intégrés avec d’autres composants
de plus grande taille (notamment des condensateurs) pour émuler
un neurone. De plus, la principale faiblesse des memristors à l’heure
actuelle est leur cycle de vie relativement réduit. Enfin, les travaux
pour résoudre des tâches de reconnaissance avec de tels composants
sont encore préliminaires. Des neurones à base de jonctions Joseph-
son ont aussi été proposés. Ces composants ont la possibilité d’être
nanométriques, même si la démonstration actuelle est bien plus grande.
Ils fonctionnent rapidement et à faible énergie. En revanche ils né-
cessitent une température basse pour fonctionner et aucune tâche
de reconnaissance n’a été démontrée. Finalement, les oscillateurs
électromécaniques. Ces oscillateurs électromécaniques fonctionnent à
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basse énergie et peuvent être couplés. Cette approche est très récente
(2017). Des premiers résultats de reconnaissance de motifs ont été
obtenues en 2018 mais avec un dispositif micrométrique.

phénomènes physiques impliqués dans le fonction-
nement des oscillateurs à transfert de spin

Les oscillateurs à transfert de spin utilisent pour leur fonctionnement
une association des phénomènes de magnétorésistance et de couple
de transfert de spin. Dans un matériau ferromagnétique, la diffusion
des électrons dépend de leur spin par rapport à l’aimantation du
matériaux. Il en résulte que la résistance d’un empilement composée
de deux couches ferromagnétiques séparées par un matériau non
magnétique dépend de l’angle relatif entre les deux aimantations des
couches magnétiques.
À l’inverse, lorsqu’une couche ferromagnétique reçoit un courant

polarisé en spin, ce dernier applique un couple sur l’aimantation de la
couche ferromagnétique appelé couple de transfert de spin. Pour des
couples suffisamment importants, l’aimantation est déstabilisé et peu
se renverser ou précesser autour de sa position d’équilibre.

principe des oscillateurs à transfert de spin et
avantage pour le neuromorphique

Un oscillateur à transfert de spin est constitué de deux couches
ferromagnétiques séparées par une couche non-magnétique. Lorsqu’un
courant continu suffisant est injecté, l’aimantation de la couche supérieure,
appelée couche libre, précesse autour de sa position d’équillibre. Il
en résulte l’émission d’une tension oscillante. Ces oscillateurs qui
émergent au début des années 2000 ont été optimisés au cours des
années et possèdent désormais un comportement stable et peu bruité.
Ces composants sont intrinsèquement non-linéaires et sont soumis
à un phénomène de relaxation puisque l’aimantation de la couche
libre nécessite un temps fini pour changer sa trajectoire. Ils ont été
initialement développés pour servir d’émetteur et de détecteur de
signaux radio-fréquence. Cependant en temps qu’auto-oscillateurs
non-linéaires, ils pourraient émuler le comportement d’un neurone.
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"reservoir computing" avec un unique composant
non-linéaire

Le "reservoir computing" est un type de réseau de neurones artificiel.
Une entrée est injectée dans un réseau de neurones récurent dont les
connexions sont fixes et arbitraires. Ce réseau est appelé réservoir. Le
réservoir projette non-linéairement l’entrée initiale dans un espace de
plus grande dimension où chaque nouvelle coordonnée est donnée par
l’état d’un neurone du réservoir. Si le réservoir possède les propriétés
d’approximation, de séparation et de mémoire requise, une fois projeté
en plus grande dimension, le problème peut être résolu linéairement.
Cette projection non-linéaire peut être obtenue en utilisant un unique
composant non-linéaire ce qui simplifie les implémentations expéri-
mentales. L’entrée doit être multiplexée temporellement, et l’unique
composant non-linéaire joue le rôle de plusieurs neurones temporels.
En connaissant le multiplexage temporel, la projection non-linéaire
du réservoir peut être extraite de la réponse temporelle de l’unique
composant non-linéaire. Cette approche a été utilisée notamment en
optique où des tâches de reconnaissance tel que la reconnaissance
de mots ont été éffectuées. Nous utiliserons cette approche par la
suite pour réaliser des tâches de reconnaissance avec un oscillateur à
transfert de spin.

implémentation spintronique de "reservoir comput-
ing"

Le composant que nous utilisons est un oscillateur à transfert de spin
dont la couche libre est un vortex et dont la couche non-magnétique
est un isolant. Cet oscillateur a été choisi pour sa stabilité et sa
forte puissance. Dans le circuit expérimental, l’oscillateur est connecté
à une source arbitraire de tension qui envoie l’entrée multiplexée
temporellement. Un électroaimant et une source de courant continu
fixent le point de fonctionnement de l’oscillateur. La réponse tem-
porelle de l’oscillateur est mesurée grâce à un oscilloscope. Réaliser
du reservoir computing requière de la non-linéarité et de la mémoire.
La dépendance de l’amplitude des oscillations de tension émises avec
le courant d’entrée sert de non linéarité. La relaxation de l’amplitude
des oscillations fait office de mémoire.
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résultats de classification

Deux tâches ont été utilisées pour évaluer les performances du reser-
voir computing spintronique: la classification de signaux sinusoïdaux
et carrés ainsi que la reconnaissance de chiffres parlés. La classification
de signaux sinusoïdaux et carrés est une tâche plus simple mais qui
permet de tester la non-linéarité et la mémoire du réservoir. En util-
isant 24 neurones temporels, nous avons pu parfaitement reconnaître
les signaux sinusoïdaux et carrés. Cependant ces résultats sont obtenus
dans des conditions optimales de point de fonctionnement.

La reconnaissance de chiffres parlés requière une étape de transfor-
mation acoustique avant que l’entrée ne soit multiplexée temporelle-
ment. Nous avons utilisé deux méthodes qui sont la décomposition
cochléaire et un spectrogramme. Dans le cas du spectrogramme,
l’utilisation de l’oscillateur ajoute 70% au taux de reconnaissance final
qui est de de 80%, ce qui montre bien le rôle crucial de l’oscillateur.
En utilisant la décomposition cochléaire comme transformation acous-
tique, nous obtenons un taux de reconnaissance de 99.6% ce qui est
à l’état de l’art à la fois pour les approches logicielles et matérielles.
Cependant la décomposition cochléaire sépare déjà de façon impor-
tante les entrée et utilisée seule, elle permet déjà de reconnaître
correctement 96% des chiffres parlés.

optimisation des paramètres expérimentaux et traite-
ment de données pour l’amélioration de la classifi-
cation

Le temps d’échantillonnage de l’entrée multiplexée temporellement
θ doit être suffisamment court pour assurer à la fois la mémoire du
réservoir et la connexion entre neurones temporelles sans pour autant
dégrader de façon trop importante le rapport signal sur bruit. Le
meilleur compromis trouvé est un temps égal à la moitié du temps
de relaxation de l’oscillateur (θ = Trelax/2). En ajoutant numérique-
ment un décalage temporel, on supprime le besoin de mémoire et les
résultats dépendent essentiellement de la non-linéarité et du rapport
signal sur bruit. Le point de fonctionnement joue un rôle important
pour optimiser ces propriétés. Tout d’abord, le champ magnétique
appliqué doit avoir une valeur intermédiaire (entre 300 mT et 500 mT)

14



pour que la variation de l’amplitude des oscillations ne soit ni trop
abrupte ni trop douce. Le courant continu quant à lui doit être choisi
pour obtenir de grandes variations d’amplitude des oscillations. Plus
généralement, le point de fonctionnement doit être choisi dans un
régime intermédiaire de bruit et de non-linéarité.

le rôle de la non-linéarité dans les transforma-
tions acoustiques pour la reconnaissance vocale

Différentes transformations acoustiques, à savoir le MFCC, la dé-
composition cochléaire et le spectrogramme, ont été étudiées comme
descripteur de l’information. En apliquant une régression linéaire et
une fonction maximum, le MFCC et la décomposition cochléaire don-
nent des taux de reconnaissance de chiffre parlé élevées, à l’inverse
du spectrogramme qui ne sépare pas les différentes classes de mot.
En ajoutant de la non-linéarité au spectrogramme avec un exposant
puissance, nous avons montré que l’on pouvait obtenir des taux de
reconnaissance aussi élevés que pour les deux autres méthodes, ce qui
souligne que c’est le caractère non-linéaire de la transformation qui
permet la reconnaissance mais que le type de non-linéarité importe
dans une bien moindre mesure.
Dans un second temps, nous avons évalué quel gain de taux de

reconnaissance conférait l’utilisation d’un oscillateur à transfert de
spin. Ces résultats sont à la fois le fruit de simulations et d’expériences.
Pour le MFCC et la décomposition cochléaire, le gain est modéré
malgré un taux de reconnaissance proche de 100% car la transforma-
tion acoustique seule permet déjà un taux de reconnaissance élevé,
ne laissant que peu de marge d’amélioration. En revanche pour le
spectrogramme le gain particulièrement élevé même si le taux de
reconnaissance final est aux alentours de 70-80%. Le taux de recon-
naissance finale doit donc être interprété avec précaution selon la
transformation acoustique choisie.
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implémentation expérimentale et preuve d’une mé-
moire à court terme

Nous avons dans un premier temps mesuré le temps de relaxation
de l’oscillateur qui donne une évaluation de la plage de sa mémoire
intrinsèque. Ce temps a été mesuré entre 100 ns et 300 ns selon le
point de fonctionnement. Dans un second temps la plage de mémoire
a été augmentée par l’ajout d’une boucle de rétroaction dans le circuit.
Quand l’oscillateur reçoit un signal d’entrée, de multiples échos de
cette perturbation sont observés sur des plages de temps jusqu’à 69 µs.
Finalement la capacité de mémoire de l’oscillateur avec boucle de
rétroaction a été évaluée à environ 3, ce qui signifie que des entrées
jusqu’à trois pas de temps dans le passé peuvent être retrouvées.

amélioration de la séparation des données pour des
cas requérant de la mémoire

La classification de signaux sinusoïdaux et carrés permet de tester
la mémoire dans un contexte où de la non-linéarité est aussi requise.
Le pas de temps θ a été volontairement choisi plus grand afin d’effacer
les effets de mémoire dûs à la relaxation. L’ajout de la boucle de
rétroaction modifie les traces temporelles de l’amplitude d’oscillation.
En particulier des valeurs d’entrée identiques dans les sinus et carré
génèrent des traces temporelles différentes. Finalement nous avons
créé une méthode de visualisation des données qui permet de voir à
la fois la séparation entre sinus et carrés et les différents groupements
naturels qui apparaissent dans les projections effectuées par le réservoir.
Cette méthode confirme sans ambiguïté la présence d’une mémoire
qui permet de séparer les différentes entrées. L’ajout d’une boucle de
rétroaction réduit le taux d’erreur de 10.8% à 0.14%, ce qui prouve
que la mémoire apportée par la boucle de rétroaction peut être utilisée
pour le calcul.
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influence du point de fonctionnement sur l’efficacité
de la boucle de rétroaction

La boucle de rétroaction a un effet différent selon le point de
fonctionnement. Si dans la majorité des cas elle apporte de la mémoire,
elle peut être aussi source de nouvelles erreurs qui peuvent compenser
la plus value de la mémoire. En général la rétroaction est d’un moindre
intérêt lorsque les erreurs initialement ne sont pas dues a un manque
de mémoire, ce qui le cas pour les points de fonctionnement où le
temps de relaxation est particulièrement élevé ainsi que ceux pour
lequel le niveau de bruit est élevé. Au contraire la rétroaction est
particulièrement bénéfique dans des régimes de fort rapport signal sur
bruit et de faible temps de relaxation.

conclusion

Cette thèse constitue la première démonstration de calcul neu-
romorphique utilisant un neurone matériel de taille nanométrique.
Nous avons utilisé un unique composant dans l’approche du reser-
voir computing. Pour cette démonstration nous avons tiré parti de la
non-linéarité de l’amplitude des oscillations et de la mémoire conférée
par la relaxation de l’aimantation de la couche libre. Grace à cela
nous avons classifié parfaitement des signaux sinusoïdaux et carrés
et reconnu des chiffres dits par différentes personnes et ce avec un
succès à l’état de l’art de 99.6%. Pour obtenir ces résultats, nous avons
optimisé les paramètres expérimentaux tels que le pas de temps de
l’entrée multiplexée temporellement et le point de fonctionnement de
l’oscillateur. Nous avons aussi étudié en détail l’effet de différentes
transformations acoustiques pour la reconnaissance des chiffres parlés.
Finalement nous avons augmenté la plage de mémoire de l’oscillateur
en ajoutant une boucle de rétroaction. Nous avons démontré l’efficacité
de cette rétroaction en supprimant les erreurs dues à un manque de
mémoire pour la classification de signaux sinusoïdaux et carrés.

Durant cette thèse nous avons utilisé un unique oscillateur avec une
approche de multiplexage temporel, ce qui nous a permis de réaliser
cette première démonstration. Pour des applications réelles, cette ap-
proche présente des limites, puisqu’elle contraint à pré-traiter l’entrée,
elle ne permet que certaines architecture de réseaux de neurones et
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pour de large réseaux de neurones le temps de réponse est trop long.
Pour remédier à ces limitations, une perspective prometteuse est de
construire de large réseaux d’oscillateurs à transfert de spin intercon-
nectés. Ceci demande d’étudier le moyen de couplage le plus approprié.
Pour réduire l’énergie que consommeraient de tels réseaux, on peut
envisager l’usage d’oscillateurs à transfert de spin de taille plus réduite.
Enfin pour bâtir une puce parfaitement autonome, celle-ci devrait
être capable de réaliser de l’apprentissage, ce qui peut être obtenu par
exemple en utilisant des connections réglables entre les oscillateurs.
Dans cette optique, les memristors spintroniques pourraient réaliser
de telles fonctions. Enfin les méthodes d’apprentissage utilisées dans
les algorithmes de réseaux de neurones sont difficilement transposables
aux architectures matérielles. Il serait donc intéressant d’étudier de
nouvelles méthodes d’apprentissage tirant partie de la physique des
composants.
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I N T R O D U C T I O N

In recent years, artificial intelligence attracted much interest be-
cause using these algorithms offers the possibility for machines to
outperform humans at cognitive tasks such as image recognition or
speech recognition. In a data driven society, artificial intelligence
should become more and more essential for many industries in order
to analyze automatically ambiguous situations. The algorithms at
the base of this progress are artificial neural networks, which take
inspiration from the plasticity and non-linearity of biological neural
networks. They originate in the fifties, where the first algorithm al-
lowing a machine to learn abstract representations was developed
[1]. However it is only recently that artificial neural networks were
popularized, because the improvement of microprocessor computation
capabilities enabled to run these complex algorithms. Indeed, solving
useful tasks such as image recognition requires computing the response
of millions of formal neurons and tuning tens of millions of parameters.
Even though these algorithms are still far from the complexity of the
human brain, which has one hundred billion neurons, running them
on classical computer architectures is already energy costly.
Indeed the computers we use are based on the Von Neuman ar-

chitecture where the processing unit is separated from the memory
and data has to move sequentially back and forth between these two
units through a shared bus. This particular architecture is not well
adapted to emulate densely parallel networks, and if running an ar-
tificial neural network algorithm can lead to the same performance
as humans for some particular tasks, the energy spent by a classical
computer architecture is three to four orders of magnitude larger than
the energy consumption of the human brain. The energy efficiency of
the brain comes from its massively parallel architecture, where biolog-
ical neurons which process the information are densely interconnected
by synapses which hold the memory. This observation motivated
building brain-inspired chips, with analog components whose physics
mimics the behavior of the neurons. Biological neurons encode their
information in the spikes they emit. A whole branch of neuroscience
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and physics models them as non-linear auto-oscillators and the brain
can be seen as large assembly of interconnected non-linear oscillators
which computes through its complex dynamics. A brain-inspired chip
based on these principles would thus require integrating millions of
non-linear oscillators in an area as small as one centimeter square,
which requires nanoscale devices. Therefore non-linear nano-oscillator
components are needed to build such hardware neurons.

Beside multiple proposals including memristive neurons and Joseph-
son junction neurons, there was no experimental demonstration of
neuromorphic computing using a nanoscale neuron. Indeed nanoscale
components generally tend to be noisy and unreliable, limiting their
use for computation. In this thesis the non-linear behavior of a spin-
torque nano-oscillator is leveraged because beside their nanometric
size, these magnetic components have a long lifetime and a high signal
to noise ratio.

This thesis presents the first experimental demonstration of neuro-
morphic computing with a nanoscale neuron. For this demonstration
the transient non-linear dynamics of a spin-torque oscillator was used,
and spoken digit recognition was achieved with state of the art results
[2]. The following manuscript is organized in five parts.
In part i, we motivate the need for hardware brain-inspired com-

puting. In chapter 1, we highlight that the computational power of
the brain is due to its architecture. It is shown that neurons can be
seen as non-linear oscillators. The software computing methods taking
inspiration of the brain reach high performance but running them
on classical computers is energy costly, which motivates the need for
computers with a brain-inspired hardware architecture. In chapter 2,
we show that the CMOS based neuromorphic approaches encounter
scalability issues, and despite multiple proposal using alternative nano
components, brain-inspired computing with a nanoscale hardware
neuron remains yet to demonstrated.

In part ii, spin-torque oscillators which are the non-linear oscillators
used in this thesis are presented. In chapter 3, the magnetoresistance
and spin-torque phenomena which are at the basis of spin-torque
oscillators are presented. In chapter 4, we show how by leveraging
both phenomena, spin-torque oscillators emit oscillating voltages. The
increase of their performance in terms of power emission and noise
made them suitable for practical applications. Using the different
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theoretical models predicting their dynamics, we highlight the non-
linear behavior and the relaxation of the emitted voltage amplitude
with the input current. Finally the potential applications of spin-torque
oscillators are listed.

Part iii presents the first demonstration of brain inspired computing
leveraging the non-linear dynamics of the oscillating voltage amplitude
emitted by a spin-torque oscillator. In chapter 5 we explain how to
perform reservoir computing with a single non-linear node through
time-multiplexing. The previous experimental implementations of
reservoir computing generally use this method, and classification tasks
were successfully solved. However most of these implementations,
done with optics, use large components and they are difficult to scale
down. In chapter 6, we present the experimental implementation of
spintronic reservoir computing used in this thesis, highlighting the
physical properties which are used for computation. In chapter 7 we
present the classification results obtained on two different tasks which
are the sine/square classification and spoken digit recognition, showing
in particular a 99.6 % recognition rate for spoken digit recognition.
In part iv, different methods to optimize the spintronic reservoir

computing experiment are presented. In chapter 8, we show how to in-
crease the recognition rate by optimizing the experimental parameters
such as the rate and amplitude of the input and the applied d.c. cur-
rent and magnetic field. In chapter 9 we study in the case of the spoken
digit recognition, the influence of the time-to-frequency transformation
which is performed before using the data in the reservoir experiment.
In particular we highlight the critical role that non-linearity plays in
such transformations.

In part v we increase the memory of the reservoir using a delayed-
feedback oscillator. Chapter 10 evaluates the intrinsic memory of
the oscillator through the relaxation and shows that the feedback
improves massively the range of the memory. The effect of feedback
is closely linked to the operating point. Evidence of a feedback fading
memory are obtained by analyzing the response of the delayed-feedback
oscillator to a single spike. The memory capacity of this oscillator
is also evaluated. These studies are performed varying the operating
point of the oscillator. In chapter 11 we study how the feedback
memory improves the recognition on sine/square classification on
the operating point condition were the classification benefit of the
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feedback is highest. We explain this benefit studying how the feedback
modifies the emitted oscillating voltage amplitude, which separates
the different input cases in the reservoir state. Finally in chapter 12 we
show that this benefit depends on the relaxation time of the oscillator
and the signal over noise ratio.
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Part I

N E U R O M O R P H I C C O M P U T I N G





1
W H Y D O W E N E E D N E U R O M O R P H I C
H A R D WA R E ?

1.1 computational power of the brain

1.1.1 Learning ambiguous situations

Humans continuously solve pattern recognition problems. For in-
stance, in a fraction of second, one can recognize the same person in
different pictures (Figure 1), even though it is nearly impossible to
write an explicit criteria for this task. Indeed, each of these pictures
is a new situation, similar to the other ones, but not identical. For
example, the hair cut, the facial expression, the light, the clothes or
the point of view may vary. Somehow, the brain can build a repre-
sentation of the images, where the same person in different contexts
induced the same response. Moreover, this representation is built
without supervision, since nobody indicates that it is the same subject
in every picture.
In the later example of image recognition, the pattern to identify

was spatial (it is for a picture the different colored areas), but the
brain can recognize temporal patterns from sensory activity, such
as in speech recognition. In that case the temporal position of the
phonemes in time is important to understand correctly a word or a
sentence. For example, when hearing "mother", the phoneme "mo"
should be remembered so when the brain identifies the phoneme "ther",
it understands the word "mother" and not for instance "father". The
brain can thus process sequences of information (in the later case, the
sequence is the temporal signal coming from the ear), due to some
memory mechanism.
The example of speech recognition is also interesting because it high-
lights the necessity of supervised learning. One can understand the
signification of a word only if it was told to him. And then, when an
other person says the same word, it can identify the same temporal
pattern of the word and associate it to the same concept. So after this
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ROCs comparing human andmachine performance are presented in
Fig. 5. For humans, performance on the Good partition is superior to the
challenging and very challenging partitions, see Fig. 5(a). The difference
in human performance on the challenging and very challenging parti-
tions is not statistically significant (cf. O'Toole et al. [4]). For all three
partitions, performance on the fusion algorithm is superior to humans,
see Fig. 5(b, c, d).

To gain better understanding of the relative strengths of human
performance, Rice et al. [8] examined human performance when algo-
rithms completely fail. From the very-challenging partition in the GBU,
50 same-identity face pairs and 50 different-identity face pairs were se-
lected so that the similarity score for all same-identity pairs was lower
than all different-identity pairs. A higher similarity score implies a
greater likelihood that the face pairs consist of two images of the same
face. Thus, performance of the FRVT 2006 fusion algorithmwas 100% in-
correct. Thus, we refer to these as extremely-difficult face pairs.

To understand the reason for algorithm failure, Rice et al. [8] mea-
sured the contribution of face and body, face only, and body only to rec-
ognition by humans. To measure the contribution of these three
conditions, three versions of the face images were created, see Fig. 6.
In the first experiment, human observers were presented with the orig-
inal images, see Fig. 6(a). In the second experiment, humans were pre-
sented with images where the face was masked, see Fig. 6(b). In the
third experiment, the images consisted of only the face, see Fig. 6(c).
The ROCs for all three human viewing conditions and the fusion algo-
rithm are shown in Fig. 7.

Performance between the body only and original images was indis-
tinguishable. Performance on the face only images was remarkably in-
accurate, but greater than chance. The results indicate that the body,
rather than the face, accounts for human accuracy at identifying people
in the original unedited images.

2.3. Video challenge

In our daily lives, faces are recognized as we interact with people.
This allows the incorporation of motion and non-face identity cues

into the recognition process. The equivalentmodel for algorithms is rec-
ognition from video.

O'Toole et al. [7] extensively studied human performance on video
sequences. The data set in the study consisted of two categories of
video sequence [18]. The videos were captured in standard-definition
progressive-scan format by a digital video camera. In the first, a person
walked towards the camera; in the second, a person was engaged in a
conversation, see Fig. 8. O'Toole et al. [7] measured effect of face, body,
and motion on performance. The analysis in this paper is restricted to
two key cases. The first was recognition from the entire video sequence.
The secondwas recognitionwhen only the head and facewere visible in
the video sequence; the background and the person's body were
masked, see Fig. 8(c). The original video sequence case reports perfor-
mance when information about the head, face, body, and motion is
available. The videoswith only the head and facewere designed tomea-
sure the performance when information about the body was not
present.

The video sequences in the above study were included in the Video
Challenge of the Face andOcular Challenge Series (FOCS).2,3 The current
paradigm in automated video recognition is to first detect frontal faces
and then feed the frontal faces into a recognition algorithm. In video al-
gorithms, a key challenge is recognizing people in sequences that do not
contain frontal faces. In the Video Challenge, this challenge is represent-
ed by the conversation sequences. The video dictionary algorithm of
Chen et al. [20] reports performance on the conversation video se-
quences in Video Challenge. The video dictionary algorithm extracts
the face from each frame. The extracted faces are then grouped by
pose. From each group a dictionary is learned. Non-frontal faces are rec-
ognized by comparing similar pose groups. Since features are only ex-
tracted from the face, the video dictionary algorithm does not
incorporate body information in the recognition process.

2 Information on obtaining the FOCS can be found at http://face.nist.gov.
3 The video challenge was originally included in the Multiple Biometrics Grand Chal-

lenge (MBGC) [19].

Fig. 4. Examples of face pairs of the same person from each of the GBU partitions: (a) good, (b) challenging, and (c) very challenging.
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Figure 1: Images extracted from the GBU face recognition challenge. Repro-
duced from P. J. Phillips, A.J. O’Tool 2014 [3].

learning under supervision, this association between a voice signal
and a concept can be generalized to new voice signals.
Achieving such pattern recognition with classical algorithms and per-
formance similar to the brain is not possible. For image recognition
on the imageNet challenge [4], the best algorithm with explicit rules
gave at best 74% [5] recognition rate, when human performance is
over 95% [6]. Not only the brain can achieve very complex recognition
tasks, but it achieves these tasks rapidly [7] and at very low energy. In
average, the human brain works at 25 watts [8]. The brain possesses an
architecture specially designed for learning and recognizing patterns
at low energy.

1.1.2 The brain architecture

If the brain is a subject of interest since prehistory (evidences of
ritual trepanations were found on prehistoric skulls), it is relatively
recently, in the XIXth century, that it was clearly set as the center of
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perception, motion control and cognition. The description of the brain
architecture begins in the end of the XIXth century and beginning
of the XXth century, notably with the pioneer works of Golgy and
Ramon y Cajal, who for the first time visualize the cellular structure
of the brain.

 

Neuron

Synapse

Figure 2: Schematic of of neurons and synapses connections.

The brain is made of long interconnected nervous cells, called
neurons, connected through synapses (Figure 2). Synapses are tunable
connections and are responsible for the plasticity of the brain, which
allow learning. Their mechanism and notably the way they adapt is
still not well understood. In this manuscript, we will focus more on
the neuron, which can be seen as the "computation" unit of the brain.
Neuron cells are able to emit spikes consequently to external stimulus.
The architecture of a neuron is shown in Figure 3a. The neuron
receives the incoming stimulus which are spike trains in the dendrite
(Figure 3b). These stimulus are integrated in the cell body, because
they charge the membrane potential of the cell body (Figure 3c).
Importantly, this integration occurs with leakage. Once the membrane
potential reaches a threshold, the neuron fires a voltage spike in the
axon (Figure 3d) called action potential.
The first model describing the integration of a neuron was done

in the beginning of the XXth century [9] and it is in the fifties that
the first model that describe the mechanism underlying the firing of
action potential was proposed by Hodgkin and Huxley [10].
Hudgkin and Huxley describe the action potential of a neuron,

modeling the behavior of the permeable membrane of a neuron. This
phenomena comes from electro-chemical mechanisms that occur at
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Figure 3: a. Schematic of a neuron. b. Incoming signals from the dendrite c.
Leaky integration in the cell body. d. Firing of action potential in
the axon.

the membrane of the axon. As described in Figure 4 a, the inside of
the neuron is filled in majority with potassium ions, while the outside
medium is in majority filled with sodium ions. It thus exists two
chemical gradients which should lead to equal the concentrations of
ions inside and outside of the neurons. The membrane of the neuron
(yellow) is porous, and some ion leak channels (in green for potassium
and in red for sodium) allows ionic exchanges. Ion pumps (orange)
tend to bring back the potassium ions inside the neuron and expel
the sodium ions outside of the neuron.
Because the leakage and the pumping is not the same for sodium

and potassium (potassium leaks more than sodium and sodium is more
pumped than potassium), there are more positive charges outside
the neuron than inside and the membrane has a negative potential
(typically -70 mV). When the membrane potential (Figure 5a) in-
creases, due to external stimulus, it can reach a first threshold at
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Figure 4: a. Schematic of the axon membrane: the inside of the neuron cell
is in majority filled with potassium ions (K+) while the outside
medium is in majority filled with sodium ions (Na+). The ions
migrate through leak and gated channels, while an ion pump
maintains the higher potassium concentration inside the neuron.
b. Hodgkin-Huxley model: a capacitance models the membrane,
the ion leak channels are modeled by a resistance and a generator,
each gated channel for potassium and sodium ions is modeled by
a gated resistance and a generator. Adapted from [10].

-55 mV. At that moment, the ion gated channels for sodium open
(Figure 5b), and sodium ions enter massively inside the neuron (due
both to chemical and electrical gradient). It is the depolarization
phase. The potential on the membrane increases until it reaches a
second threshold around 35 mV. At that moment the sodium gated
channels close and the potassium gated channels open (Figure 5c).
The potassium ions go massively outside of the cell and the mem-
brane potential decreases. This phase is called repolarization. Finally
in a last phase, the gated channels close, and the ion pumps bring
the ion concentrations to their initial level (Figure 5d). During this
phase called the refractory phase, the neuron cannot spike. In order
to describe this spiking phenomena, Hudgkin and Huxley propose
an equivalent electrical circuit (Figure 4b). The membrane is mod-
eled by a capacitance CM , the ion leak channels and ion pumps are
modeled by a generator EL and a resistance RL. The gated channels
are modeled by a generator and a gated resistance EK , RK and ENa,
RNa respectively for potassium and sodium. The current I represents
the external stimulus, which charges the capacitance CM , until its
voltage E reaches the first threshold. The set of equations governing
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Figure 5: a. Schematic of the membrane potential evolution in time during
the firing of an action potential. b. Depolarization phase: the
sodium (Na+) gated channel opens c. Repolarization phase: the
sodium gated channel close and the potassium (K+) gated channels
open. d. Refractory time: both gated channels for potassium and
sodium are closed. The ion pump brings the membrane potential
back to its initial level.

the membrane potential can be found in [10]. RNa and RK depend
on respectively the concentration of sodium nNa and potassium nK
and the variation of these concentrations depends on E.
Importantly in this model, in first approximation, once the membrane
potential reaches a threshold (-55 mV), the neuron spikes [11]. So the
model of the neuron can be simplified, considering that the neurons
integrate with leakage the incoming signal from other neurons in the
cell body and once the membrane potential reaches a certain threshold,
a spike is emitted in the axon. This model, called leaky-integrate and
fire model [9], does not explain explicitly the origin of the spike, nor
the refractory period. In comparison with the Hodgkin-Huxley model,
it is much easier to compute. The equivalent electrical circuit would be
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similar to Figure 4b, but suppressing the two branches with tunable
resistances. The membrane potential is described as follows:

CM
E(t)

dt
= I(t) + IL(t) (1)

where CM is the capacitance of the neuron membrane, E(t) is the
membrane potential, I(t) is the current due to external stimuli and
IL(t) is the leakage current expressed as follows:

IL(t) = −
1
RL

(E(t)−EL). (2)

In this case, the membrane potential leaks with a time constant
τM = RLCM . Once the membrane potential reaches a threshold Vth,
the axon emits a spike, which takes the shape of a Dirac function. The
membrane goes back to EL and stops evolving during the refractory
period. The response of the leaky integrate and fire (LIF) neuron to
constant inputs is illustrated in Figure 6. The neuron receives two steps
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Figure 6: a. External input current I(t) vs time b. Membrane potential E(t)
versus time c. Output spike train. Adapted from [12].

of input current with different amplitudes (Figure 6a). The first step
is too small for the membrane potential to reach the voltage threshold
Vth (Figure 6b) and thus during the time of the first current step, no
spike is emitted (Figure 6b). After the end of the first input current
step, the membrane potential leaks and goes back to its initial level
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EL. The amplitude of the second current step is higher (Figure 6a)
and E(t) reaches Vth (Figure 6b). Once this threshold is reached, the
axon emits a spike (Figure 6c). Immediately after reaching Vth, the
membrane potential goes back to its initial level EL and stops evolving
during the refractory period, that we will call τref . If we consider a
constant input I, if I < (Vth −EL)/RL, the neuron does not spike.
Otherwise, the neuron spikes periodically, with a frequency f given
by:

f =
1

τref + τM log
[

RLI
RLI+EL−Vth

] (3)
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Figure 7: Firing rate of a LIF neuron as a function of the input current. For
this plot, τref = 5 ms, τM = 10 ms, EL = −70 mV and RL = 10
kΩ.

Given this simple LIF neuron model, the neuron can be thought as
a non-linear auto-oscillator, which, after the input reaches a threshold
I = (Vth −EL)/RL, oscillates at a frequency f , which depends non-
linearly of the input value. From a simple point of view, the brain can
be seen as an assembly of non-linear oscillators (the neurons), which
are interconnected together by tunable connections (the synapses).
The key properties of a neuron are its non-linearity, and its memory,
which comes from the integration phenomena. In conclusion the brain
can achieve complex recognition tasks, because of the memory and non-
linearity of neurons and because of the non-volatility and plasticity of
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synapses. The first attempts of imitation of the brain were algorithmic.
They were motivated by solving tasks such as image and speech
recognition that are hard to perform with explicit rule algorithms.

1.2 artificial neural network algorithms

1.2.1 Supervised learning

The first developments of "neuromorphic computing" were purely
algorithmic. The main examples of these "neuromorphic algorithms"
are artificial neural networks. The goal of these algorithms was to
take inspiration from the brain to solve problems where it is not
possible to write explicitly a discrimination rule. They are part of
a larger algorithm field denominated as "machine learning". These
methods allows to learn, from the structure of the data, an implicit
rule for solving a problem. Machine learning algorithms possess inner
parameters, and by tuning them appropriately, depending of the data
structure, can find an implicit rule for solving the problem.

Two main classes of algorithms can be distinguished: unsupervised
and supervised learning. The first one refers to the algorithms which
solve problems by detecting automatically regularities in the structure
of the input data, without having other knowledge a priori on the
data. An example of unsupervised learning is for instance clustering,
where the algorithm detects inputs that are similar.

In this thesis, we will use supervised learning, which encounters
recently an important success with the development of deep learning
[13]. In this case, the algorithm is divided in two distinct phases: learn-
ing and inference. During the learning phase, examples are presented
to the algorithm, associated with the correct output. For example,
for image recognition, algorithms are fed with images and the correct
label of the image (i.e. what represents the image). The knowledge of
the correct output on these examples is specific to supervised learning.
At the end of the learning phase, the tunable inner parameters are
fixed, and during the inference new examples, without the label, are
presented to the algorithm. During inference, the algorithm applies
what was learned during training.

Supervised learning originates from the fifties with the perceptron
algorithm which allows to learn the parameters of linear combinations
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[1]. After the development of computational power, it encountered
new successes after the eighties. Supervised learning includes notably
support vector machine (SVM), kernel methods, and artificial neural
networks. This last class will be used in this thesis. The algorithm re-

 

    

  

  

  

  

 
 

 
  

  

  
  

Figure 8: Schematic of a formal neuron: the different inputs xi are multiplied
by a connection weight wi in the synapse. The formal neuron sums
the inputs and applies a non-linear function to the result of this
sum.

produces the response of a network of non-linear units, called neurons,
interconnected together with tunable connections called synapses. Im-
portantly these neurons are much more simple than biological neurons.
The formal neuron achieves the summation of the inputs and applies
to this sum a non-linear function called activation function. This
activation function is in a way analog to the firing rate of the neuron
seen in the previous section. Classical activation functions used are for
instance arctan, sigmoid or rectified linear units (ReLu) (Figure 9).

 

a b c

Figure 9: Classical activation functions: a. Arctangent b. Sigmoid c. Rectified
linear unit (ReLu).

In the case of artificial neural networks, the algorithm learns to solve
a problem by adjusting the connection weights during the learning
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phase. During the inference phase, the weights are fixed, and the input
encounters a series of non-linear transformations, which has been
learned. Artificial neural networks can be classified in two categories
that are the feed-forward and recurrent networks.

1.2.2 Feedforward neural network

Feed forward neural networks refer to networks made of several
layers of neurons which are connected one after the other. This ar-
chitecture was popularized in the 2000’s and achieve state of the art
performance in web advertizing or image recognition. The interest of
feedforward networks is that it is possible, even with a large number of
neurons and connections, to train a model. The algorithm widely used
for this training is backpropagation, introduced in the eighties [14].
The main examples of feedforward neural networks are fully connected
networks, and convolutionnal networks. In fully connected network,
each neuron of a layer is connected to all the neurons of the next layer
(Figure 10). These networks are complex to train when the layers have

X

Neuron
Synapse

Y

Figure 10: Schematic of a fully connected network. The circles represent the
formal neurons which compute a summation and a non-linear
activation. The arrows represents the synaptic weights that are
tuned for computation.

numerous neurons. Indeed the number of connections (ie parameters
to train) evolves typically like the square of the number of neurons per
layer. In practice, when the data to process has already a large dimen-
sion, like for example images, the fully connected approach requires
too many parameters to train. For image recognition, the actual state
of the art networks are convolutional neural networks [15]. The trans-
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formation from one layer to another one is done by convolution with
a filter forming a feature map (Figure 11). Importantly, the filter has
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Figure 11: Architecture of the convolutional network "LeNet-5". Each plane
is a feature map, i.e. the results of a convolution with a filter.
Extracted from Lecun et al [15].

a small dimension and only the parameters of the filter are tuned for
learning. This approach reduces drastically the number of parameters
to tune, when compared with the fully connected approach, and is
well suited for translation-invariant problems such as image recog-
nition. Training is also performed with back-propagation algorithm.
State of the art performance were achieved with such approach on
image classification. For instance the inception network achieved a
97% recognition rate on imageNet challenge [16], which is better than
human performance for this task. Nevertheless, this algorithm can be
quite computational costly. In the case of the inception network, the
network counts 35 million parameters that need to be trained and one
single inference requires 19 billions operations [17]. If feed-forward
networks give impressive results for image recognition, they are not
well suited to process sequences, such as speech recognition, because
they do not account for the order. Dealing with such problems requires
recurrence in the network.

1.2.3 Recurrent neural networks

When it comes to process sequence data like words in a sentence,
or the trajectory of an object, the most suited neural network archi-
tectures are recurrent neural networks.

In recurrent neural networks, the connections between neurons form
inner loops in the network, where the information cycle and thus is
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Figure 12: Schematic of a general recurrent neural network.

selectively stored (Figure 12). Such networks hold in their architecture
a memory and are well suited to process sequence information where
the order of the elements is important (such as sentences in speech
recognition for example).

Two particular architectures, long short term memory (LSTM) [18]
and bidirectional recurrent neural network (BRRN) [19], achieved state
of the art results to process sequence data such as speech recognition
[20, 21]. As an example, human performance for word transcription [22]
were achieved, using a mixture of convolutional and LSTM networks.

But in the general case, it is extremely difficult to train recurrent
neural network, and the training algorithm may not converge even
after an infinite time of computation [23, 24]. Even for LSTM and
BRRN the training algorithm used, which is back-propagation through
time [25], is generally very greedy in term of computational power and
time. Reservoir computing [26, 27] is a recurrent network much easier
to use, because it does not require to train the recurrent connections.
This particular recurrent network, that we will use experimentally in
the manuscript, will be described in much more details in chapter 5.
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1.3 limit of classical computers for machine learn-
ing

Artificial neural networks are extremely powerful tools, and, running
such algorithms, human performance were reached and even overcome
on image recognition and speech recognition tasks. Nowadays these
algorithms are massively used for big data analytics such as on-
line advertisement, finance and banking, health care, autonomous
driving, technology. Such technologies are believed to spread soon
to other economical sectors, and notably in the growing sector of
the internet of things [28]. They are brain-inspired because they take
inspiration from the general brain architecture, keeping the plasticity
of synapses and the non-linearity of neurons. But these algorithms
require many computation operations (typically few tens of giga-
operations for only the inference on [17]) and they are run on classical
architecture computers. The Von-Neuman architecture is at the basis
of the computers we use, where the computational unit (CPU) is
explicitly separated from the memory part [29] (Figure 13).

 

processing

CPU

memory

data

Figure 13: Schematic of the Von Neuman architecture.

To perform a task, a computer follows a sequence of instructions,
which involves generally to retrieve data in the memory, perform a
computation and store the result in the memory. This architecture is
sequential, data is processed and stored one by one. This sharing of
the bus between memory and processing unit is called "Von Neumann
bottleneck" [30]. So at each computation step, the data makes a round
trip between memory and processor. This bottleneck limits the speed
of the computation, because the time to retrieve an information in the
memory is much longer than the time of an operation. Importantly, the
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cost of storing and retrieving data in the memory consumes much more
energy than the operation itself [31], so the "Von Neumann bottleneck"
is also an issue in term of energy. Neural networks have a massively
parallel architecture, and they are modeled with many parameters
(typically tens to hundreds of millions [17]) which need to be retrieved.
It represents huge flows of data which need to be moved back and forth
from memory to processing. For neural network algorithms, the Von
Neumann architecture is especially not well suited. First improvements
were done using parallel computation, with multi-cores (so multiple
Von-Neuman architectures) and graphical processing units (GPU),
which speed up the computation enabling for instance complex image
recognition [32]. The field programmable gate arrays (FPGA) allow
in some cases better energy consumption with comparable results on
some tasks [33]. Finally companies are now developing chips specialized
for machine learning operations, such as the TPU from Google, the
A11 bionic neural engine from Apple, the Holographic Processing Unit
from Microsoft or the NPU from Nvidia.
Despite orders of magnitude gains in term of energy consumption

when compared with a single CPU unit, the energy consumption is
still orders of magnitude higher than the one of the brain. Indeed the
brain performs well because the processing due to neurons is entangled
with the memory hold by synapses. In the end, the information does
not need to travel long distances. A promising research perspective
is thus to take inspiration of the brain, not only for the algorithms
to compute but also for the physical hardware which performs the
computation.
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2
S TAT E O F T H E A RT O F H A R D WA R E
N E U R O N S F O R N E U R O M O R P H I C
C O M P U T I N G

As it has been seen in the first chapter, artificial neural network
algorithms are very powerful, and are becoming more and more es-
sential in many industrial fields. However, since these algorithms
require computing the response of millions of neurons, running them
on classical computers is energy costly, even with multi-core CPUs
and GPUs approach. Dedicated hardwares, which emulate synapses
and neurons are thus required. To build chips with a reasonable size
would typically require a neuron density superior to 106 − 108 cm−2.
In practice such requirement for a fully analog chip would require
components which are smaller than 1 µm.

In this chapter I review the main attempts to build scalable neurons
for brain-inspired chips. As neurons can be considered as non-linear
oscillators (see chapter 1), thus oscillators based on nano-components
are also presented. A special focus is done on spiking neurons. We do
not review in details the attempts for building hardware synapses. It is
a very large field, which is outside of the perimeter of this manuscript.

2.1 complementary metal oxide semiconductor hard-
ware

The first attempts to build brain-inspired hardware architectures
were conducted in the complementary metal oxide semiconductor
(CMOS) community.

The term "neuromorphic" itself was introduced by Mead et al in the
field of very large scale integration (VLSI) in the late eighties [34, 35].
In neuromorphic computing, there are two main motivations for build-
ing hardware artificial neurons: for a fundamental understanding of
the human brain [36, 37] or for computing at low energy [38, 39]. In
our case it is more the last approach which is our interest. Also, we
will limit this state of the art to oscillators and spiking neurons. For
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emulating spiking neurons, different technical solutions have been
chosen: analog implementation [40, 41], mixed analog numerical im-
plementation [37], processor driven [36], digital approach [38, 39]. We
also present in a first subsection the CMOS oscillator, which could
emulate neurons as non-linear oscillator, even if they were not always
initially designed for this purpose.

2.1.1 CMOS ring oscillators

CMOS ring oscillators are not initially designed to be used for
neuromorphic computing, but since they are non-linear oscillators,
they could be potentially used for this purpose. Ring oscillators are
made of an odd number of "not" logic gates (Figure 14). Because
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Figure 14: Schematic of a CMOS ring oscillator. Extracted from Yan et al
[42].

of parasitic capacitive effects [42], the not gates switch with a delay
time. The odd number of not gates combined with the switching delay
induces self sustained voltage oscillations with a frequency f = 1/Nτ ,
where N is the number of not gates and τ is the switching delay.
Interestingly, τ can be tuned changing Ictrl the current crossing the not
gates (Figure 14) [42]. With additional circuits, the range of frequency
of such oscillator can be increased [43, 42, 44, 45] and high frequencies
can be reached [46]. This class of oscillators can operate in a large range
of frequency: 40Hz-380 MHz [42], 660MHz-1.27GHz [43], 100MHz-
3.5GHz [47], 1.5 GHz [48], 8-16 GHz [49]. In particular, a single
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oscillator can have a wide range of tunability [42, 43, 49]. The power
consumption and the energy spent per oscillation also depends on the
range of frequency. Finally, the footprint of these oscillators depends on
the design but is typically 10 µm2 [48] to 105 µm2 [49]. For the moment,
even if synchronization of ring oscillators was demonstrated [49], no
demonstration of computation was performed with such oscillators.

2.1.2 Spiking neurons

The first solution for analog neurons consists in building dedicated
circuits for all the neuron functionalities which are the leaky integra-
tion due to the conductance dynamics, the spiking, the reset refractory
period and the frequency adaptation [41, 50]. In particular, the con-
ductance dynamics of a neuron can be described by a first order
equation and therefore, it can be emulated by first order filter CMOS
circuits [40, 41].
The first CMOS analog neuron was built in the early nineties by

Mahowald and Douglas [40]. This circuit reproduces the behavior of
a Hodgkin-Huxley neuron. Other conductance based silicon neurons
were proposed later on [51, 52, 53, 54]. But these circuits are complex
and thus require a significant number of transistors and bias voltages
or currents [50].
Therefore, simpler circuits emulating LIF neuron model were de-

veloped. The most simple approach is to use a capacitor for the
integration of the neuron and when the capacitance voltage reaches a
certain threshold, it activates a simple spiking circuit [55]. A classical
circuit for the spiking threshold is for instance the Axon-Hillock circuit
[34]. However this implementation dissipates a non negligible amount
of power [55]. More power efficient LIF neuron circuits have been
developed in [56, 57, 58, 55, 59].

Finally, intermediate complexity models of neurons (such as Izhike-
vich model [60], adaptive integrate and fire model [61], Morris-Lecar
model [62]) have been emulated in CMOS for instance in [63, 64, 65,
66, 67].

Such analog CMOS neurons can reach satisfying energy consumption
(50 pJ/spike [63], 8.5 pJ/spike [59]) and power consumption (1.5
nW in [59]). Most of these silicon analog neurons are developed for
real time modeling of biological neurons so their frequency is generally
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of the order of tens to hundreds of Hz (frequency of a biological
neuron). In [59], the neuron was accelerated to 1 MHz. The main
draw-back of silicon neurons is the surface they use with at best 7
µm of lateral size [63].

2.1.3 Neuromorphic chips

Several chips were built in order to emulate the behavior of large
neural networks in energy efficient fashion. The SpiNNaker chip [36],
the HICANN chip [68, 69] and Neurogrid [37] were designed for
more fundamental applications. The goal is to emulate the behavior
of biological neurons in order to understand the brain activity. In
particular in [36], two different models of neurons can be implemented
[9, 60]. These approaches can be seen as "energy efficient" when
compared with brute force simulation of neurons on super computers,
but they remain much more energy intensive than a real biological
brain. The spiNNaker computer is based on custom micro-processor
approach, using ARM processors. Figure 15 shows the platform for
500 000 cores, showing that even though it performs better in terms
of energy than super computers, it is far away from the dimensions or
the energy efficiency of the brain.  on November 12, 2018http://rsfs.royalsocietypublishing.org/Downloaded from 

Figure 15: The 500 000 cores SpinNNaker Human Brain platform. Extracted
from [70].

On the other hand the Neurogrid and the HICANN chips use a mixed
digital-analog implementation, with analog neurons. Typically the size
of the neuron is 50× 50 µm2 [37] for Neurogrid, and it emulates simple
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sub-threshold LIF neurons. For HICANN chip the analog neuron is
150× 10 µm2 and it emulates an accelerated adaptive exponential
neuron. Industrial actors also developed neuromorphic chips, but more
for artificial intelligence tasks such as object detection. The "True
North" chip [38] was unveiled by IBM in 2015. This chip is fully digital
and uses time-multiplexed neurons. Each neuron block is typically 10
µm per 100 µm large (Figure 16) and emulates in time the response
of 256 neurons. Thus with time multiplexing and approximatively
4000 neuron blocks, the chip emulates the behavior of one million
neurons. The chip can perform successfully image detection, with
176 000 less energy than a regular processor approach (but it is the
energy consumed by a processor running the exact same spiking neural
network, it does not correspond to the energy cost of running object
detection with the standard convolutional networks seen in the chapter
1), and 769 less energy than with a SpiNNaker approach [38]. However

Figure 16: The physical layout of True North core in 28-nm CMOS fits in a
240 µm-by-390 µm footprint. A memory (static random-access
memory) stores all the data for each neuron, a time-multiplexed
neuron circuit updates neuron membrane potentials, a scheduler
buffers incoming spike events to implement axonal delays, a router
relays spike events, and an event-driven controller orchestrates
the core’s operation. Extracted from [38].

a main draw back of this chip is that it can only perform inference and
not learning. In 2018, Intel unveiled its fully digital chip "Loihi" [39],
which, when compared with the True North chip, can perform learning.
The chip possesses 128 neuromorphic cores on a 60 mm2 chip, with
each core emulating in time 1024 neurons. So in total the chip only
emulates 130 000 neurons. This chip could solve LASSO optimization
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problem, winning three orders of magnitude in energy-delay product,
when compared with conventional approaches. The size of the neuron
block is not mentionned in [39], but the neuron density of the Loihi
chip is worse than the one of True North even if each neuromorphic
core emulates in time more neurons than the True North chip (1024
neurons for Loihli and 256 neuron for True North). Both of these
digital neuromorphic chips emulate LIF neurons. In conclusion, with
CMOS technology, analog non-linear oscillators and analog neurons
can be built. Large chips using mixed-analog-digital and fully digital
technologies were developed. But CMOS technology encounters a
scalability problem, with components with a lateral size which is few
µm (for the most simple CMOS ring oscillators [48]) to few hundreds
of µm (for the digital neuromorphic cores [38]). This observation
motivates trying to replace parts of CMOS circuits by nano-devices,
for which the physics implements important functionalities of the
neuron.

2.2 resistive switching devices

As seen in the previous chapter 1, neurons can be modeled by
electronic circuits with switching resistance (Hodgkin-Huxley model)
or by a more simple circuit which integrates the signal and resets each
time a threshold is reached (LIF model). These equivalent circuits
can be built in hardware using resistive switching devices. Resistive
switching devices can be nanometric components and thus a single
component can replace a whole CMOS circuit to implement some
functionalities of a neuron. This resistance switching devices belong
to the class of memristors [71].

2.2.1 Different types of resistive switching

The mechanisms underlying the resistance switch can be classified
in 4 categories: phase change, red/ox reaction, charge effects and
purely electronic effects.

Even though it is not the main subject of this thesis, it is important
to mention that memristors are extensively studied to implement
hardware synapses in neural network. Indeed, naturally memristors,
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which are analog valves for currents, behave like synapses. Many
different kind of memristive synapses have been studied so far including
ferroelectric [72, 73], spintronic [74, 75], red/ox [76, 77] and phase
change [78, 79].
More recently, analog neurons were built using certain kinds of

memristors. These resistive switching devices used purely electronic
effects (Mott transition [80, 81, 82, 83, 84]) and red/ox reactions
[85, 86, 87].

For neuron applications, memristors must have different properties
than for building synapses. Indeed it should exhibit a negative resis-
tance differential and a resistance switch behavior [88]. So when the
voltage at the electrodes of the memristor increases, the resistance of
the device should decrease (after a threshold value) and when the bias
voltage is removed, the low resistance state should disappear. This
last property is different from the requirement for a synapse which
should keep the resistance information even when the bias voltage is
removed.

In the case of [80], the resistance switch comes from a voltage-favored
transition from Mott insulator to metal phase in NbO2 materials
[89, 88]. Interestingly, the metal phase is metastable and disappears
when the bias voltage is removed. Figure 17 shows a schematic of
the energy diagram for the stable Mott insulator (MI) state and the
meta-stable conductive metal (CM) state.
In [81, 82, 83], V O2 material is used. The reason of the resistance

switch is still not exactly well understood: it could be either a Mott
to metal phase transition or an electron-phonon interaction [81].

In [85, 86, 87], for red/ox memristor, the resistance switch is due to
atomic migration. In particular for [85] in TiOx and TaOx materials
are used and for [86] in WOx, the resistance switch is explained
by migrations of oxygen vacancies which induce the formation of
a conductive filament. In [87], SiOxNyAg material is used and the
resistance switch comes from the migration of Ag atoms. Figure 18
illustrates the migration of oxygen vacancies that occurs in some types
of red/ox memristors.
Importantly, the choice of the resistive switch material changes

the range of resistance, the switching time, the energy required to
switch and the endurance of the device. Typically, a red/ox switch can
achieve 106 cycles with 10 fJ per switch and takes 50 µs to go back
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Figure 17: Schematic of the energy diagram of the conductive metal (CM)
and Mott insulator (MI) states and the energy barrier. Adapted
from [90].

Figure 18: Schematic of a silicon oxide memristor. The change in resistance
is due to the motion of oxygen vacancies. Extracted from [91].

to its stable state [87] and a Mott insulator can achieve 109 cycles
with 100 fJ per switch and 2.3 ns to go back in the stable state [88].

2.2.2 Memristors for spiking neurons

The most natural idea to build a hardware neuron with resistive
switch devices is the Hodgkin-Huxley model which explicitly represents
the resistance switch in the equivalent circuit (see Figure 4b). Such
devices have been built in hardware by Pickett et al [80]. In such
approach, a single device can replace a whole circuit of a conductance
based silicon neuron (i.e. first order filter mentioned in 2.1.2). It is
not exactly the Hodgkin Huxley model equivalent circuit, because

48



Figure 19: Circuit diagram of the lumped neuristor. The channels consist
of Mott memristors (M1 and M2), each with a characteristic
parallel capacitance (C1 and C2, respectively) and are biased with
opposite polarity d.c. voltage sources. Extracted from Pickett et
al [80].

the two memristors M1 and M2 are identical, on the contrary of the
variable impedances RNa and RK in Figure 4. This circuit is called a
"neuristor", as a reference to the work of Crane et al [92], and captures
the main features of the action potential: threshold-driven spiking,
lossless spike propagation at a constant velocity with uniform spike
shape and a refractory period. The demonstration was done with Mott
memristors which switch rapidly with low energy consumption [88].
The spiking frequency depends on the input current value but also
on the capacitance values C1 and C2. The spiking frequency of such
circuit is typically of the order of few tens of kilohertz. Very recently,
a similar approach was chosen in [84], with V O2 memristor to emulate
an Hodgkin-Huxley neuron.
Other research teams achieved more simple circuits closer to a LIF
neuron [82, 83, 81, 85]. For such circuits, the building block allowing
the sustained oscillations when a d.c. current is applied is represented
in Figure 20a.
Initially, the resistive switching device M is in a high resistance

state Roff (off state) (Figure 20c). When a constant current is applied,
the capacitance C charges with a characteristic time RoffC until M
reaches its voltage threshold (Figure 20b). Then the resistance of M
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Figure 20: a. Memristive auto-oscillator: a capacitance C is in parallel with
resistive switching device M . A load resistance R is connected in
series. b. Schematic of the voltage vs time c. Schematic of the
current voltage curve for M .

drops to a lower state Ron (on state), and for adequate values of R, the
capacitance discharges more rapidly (with a characteristic time RonC)
and the resistance switching device M goes back to it initial higher
resistance state (off state). The behavior of such oscillator is similar
to the membrane potential of LIF neuron (see Figure 6b) but without
refractory period. The emission frequency of such devices reported
in [81, 85] are typically of the order of tens to hundreds of kilohertz.
Sharma et al [85] proposed also a similar device but ballasted with
a transistor. In that case higher frequency can be reached (up to
hundreds of megahertz).
Several attempts to solve classification tasks with memristive neurons
were performed recently [86, 87]. All these approaches did not use
auto-oscillators as neurons. The approach of Du et al [86] uses the
non-linear dependence of the memristor resistance with voltage, as an
equivalent to the activation function of the software artificial neural
networks (Figure 9). They used a mixed spatial and time-multiplexed
approach with 88 memristors and tested their device on the classical
MNIST image recognition task. They obtained 88.1% success rate
with 88 "non-linear nodes", which constitutes a moderate success rate
on this database. Indeed a simple logistic regression gives 90 % success
rate and a convolutional network gives 99.8 % error rate [93]. Finally
Wang et al [87] use memristors in parallel with a capacitor to have
integration and relaxation. These analog neurons are submitted to
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series of square-shaped voltage inputs. The neuron output considered
is the current flowing through the memristor. They could implement
ReLu activation functions with such devices (Figure 9). They built a
8 input channels-3 output channels chip, using memristors to emulate
neurons and synapses and recognized simple patterns. This chip
emulates a simple convolutional layer. They tested learning on simple
patterns "U", "M","A" and "S" encoded on 4× 4 pixels. This task is
quite simple and the success rate is not indicated.
Several examples of analog neurons have been built with resistive

switching devices. Some of them are non-linear oscillators [88, 81, 85,
84], some others just emulate activation functions [86] or perform inte-
gration and fire behavior if they receive spiking inputs [87]. There were
some recent attempts to perform classification tasks with memristive
neurons [86, 87], but the performance is still far from the state of the
art. Moreover a major drawback for the use of resistance switching
devices for computing is their limited number of cycles, which is in
average 109 for Mott-metal transition switch and 106 for the red/ox
switch.

2.3 josephson junctions

Josephson junctions are made of two superconductors separated
by a thin non-superconductive material barrier [94]. The electrons of
each superconductor are described by wave functions with specific
phases. Interestingly, if the barrier is thin enough, the wave functions
overlap, and a super-current which depends on the phase difference
appears in the barrier. If a bias voltage is applied to the junction, the
super-current oscillates with a frequency which depends on the bias
voltage value. Thus Josephson junctions have been extensively studied
as non-linear tunable oscillators [95, 96, 97, 98, 99, 100, 101, 102]. Such
oscillators can reach very large frequency ranges. Indeed a frequency
range from 100 kHz to 1 THz was reported in [98]. In order to improve
the power of the emission and reduce the bandwidth, oscillators are
generally built with coupled Josephson junctions [96, 99, 101, 100].

More recently, an analog artificial neuron designed using Josephson
junctions was first simulated in [103] and then built experimentally
in [104].
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Figure 21: a. Circuit diagram of the Josephson neuron. Two Josephson
junctions are connected in a loop. The neuron is biased by two
currents Iin and INB . b. Optical microscope picture of the neuron
and synapse combination circuit. Extracted from [104].

The Josephson neuron is made of two Josephson junctions connected
in a superconducting loop (Figure 21a). Even though the size of the
neuron demonstrated in [104] is tens of µm large (Figure 21b), the
circuit may probably be scaled down, since much higher densities
of Josephson junctions have been demonstrated with a million of
junctions per squared centimeter [105]. Moreover these neurons spike
rapidly (typically 25-50 GHz) with very low energy (10−17 J). In [104],
the coupling and synchronization of two neurons was demonstrated.
The main drawback of Josephson junctions is that they do not work at
room temperature. For high critical temperature (Tc) superconductor,
Tc = 90 K and a nitrogen cooling system is still required. The
Josephson neuron demonstrated in [104] works at T = 4 K, with a
helium based cooling system. Moreover, the efficiency of such neuron to
solve cognitive tasks remains yet to be demonstrated experimentally.

2.4 electromechanical oscillators

Finally, electro-mechanical oscillators are another class of potential
non-linear oscillators that could emulate hardware neurons. These
devices incorporate a mechanical cantilever that can be scaled down
to 20 nm height and width [106]. The vibration of the cantilever is

52



read using piezo-electric materials. In order to obtain self-sustained
oscillations, a delayed-feedback loop can be added to the system [107].
Resonant frequencies over 1 GHz were reported in [108], and tunable
resonant frequency in a typical range of 50-150 MHz is reported in
[109]. Such oscillators can couple and synchronize [110, 111]. These
oscillators have been used notably for sensing [112, 113] and high-
frequency processing [114, 113]. More recently, [115] proposed to use
coupled electro-mechanical oscillators for computation and in [116],
an experimental demonstration of reservoir computing with a single
electro-mechanical oscillator was performed, solving benchmark tasks
such as spoken digit recognition. Also for this demonstration, the
mechanical oscillator used was micrometer-scale.

2.5 conclusion

CMOS is a mature technology, which explains that the most ad-
vanced neuromorphic devices in terms of task solving were developed
with this technology. In particular the True North chip could solve
complex tasks such as object detection, with much less energy than
standard approaches. But emulating the functionalities of a neuron
requires complex or energy intensive transistor circuits which limits
the analog approach. Indeed the smallest CMOS neurons have still
a 7 µm lateral size. To meet the neuron density requirements, the
True North chip uses neuromorphic cores which emulate in time 254
neurons each.

There is thus a need for alternative nano-components which could
emulate the functionalities of a neuron. The first approach presented
are the resistive switch memristors. Even though these components
can be scaled down to nanometric dimensions, they are generally
used in a circuit with additional larger components. For instance
they are generally used in parallel of capacitance to have an auto-
oscillator behavior. Moreover the main draw-back until now is the
limited lifetime of such devices, which for now hardly exceed 109

cycles in average, which would limit the lifetime of such neurons to
few hours. If the energy efficiency of these devices to emit a spike is
satisfying, the power dissipation may be too high for dense integration.
Moreover, the attempt to solve cognitive tasks are still preliminary.
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Josephson junction based neurons have also been proposed. If such
device downscales under a micrometer, the actual demonstration is
still 50 µm large. Compared with other approaches they work fast
(100 GHz), with low energy (10−14 J/spike), but require cooling.
Moreover the latest demonstration only showed synchronization and
no cognitive tasks were solved yet.

Finally electro-mechanical oscillators can be scaled-down under the
micrometer. Such oscillators can interact with each other and they
work at low energy. It is only very recently (2017) that they were
investigated for brain-inspired computing. The first attempt to solve
a task experimentally is made in 2018, but these results are obtained
with a device which is larger than a micrometer.

In this manuscript we propose to use spin-torque oscillators as
potential hardware neurons. In order to meet the component density
required for developing a brain-inspired chip, such device should
be smaller than a micrometer and emulate by itself the important
functionalities of a neuron. It means it should behave as an auto-
oscillator, which has memory and non-linearity. Moreover they should
be able to couple with each other, they should work at low energy and
they should have a long lifetime. Finally the viability of such device
should be demonstrated by solving a cognitive task.
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Part II

S P I N - T O R Q U E O S C I L L AT O R S F O R
B U I L D I N G H A R D WA R E N E U R O N S





3
P H Y S I C A L P H E N O M E N A I N V O LV E D I N
S P I N - T O R Q U E O S C I L L AT O R S

In this chapter, we present the physical phenomena underlying
the working principle of a spin-torque oscillator, which are namely
magneto-resistive effect and spin-torque effect.

3.1 electron transport in ferromagnets

Spin-torque oscillators (STO) belong to the class of spintronic
devices. Spintronics leverages the electron spin information instead
of the charge information in classical electronic. Therefore, transition
metals are extensively used in this area because in these materials,
the transport of electrons depends on their spin.
Electronic transport properties of ferromagnetic materials were

described by Mott in 1936 [117]. Ferromagnetic materials have a spon-
taneous magnetization because a majority of the electron spins in
this material are pointing in the same direction. The alignment of
the spins comes from the atomic-like exchange interaction between
spins in the material [118]. Rare earth 4f materials and 3d transition
metals such as iron, cobalt or nickel and their alloys exhibit ferro-
magnetic properties at room temperature. In rare earth materials,
the hybridization between atoms is weak so it does not overcome
the exchange interaction. But the conduction electrons are localized
and the resistance is high, which limits their application for spintron-
ics. So these materials are more used as permanent magnets [119].
The 3d transition metals have both strong exchange interaction and
strong inter-atomic coupling. They also exhibit ferromagnetism and
have lower resistance. Interestingly, ferromagnetism comes from the
localized 3d electrons and influences the transport of 4s conduction
electrons.
The electronic band structure of transition metals is schemed in

Figure 22a. In this simplified model the 4s electrons are responsible for
the conduction while the 3d electrons are localized and responsible for
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Figure 22: a. Schematic of the spin dependent band structure of 4s and
3d electrons of transition metal such as cobalt. b. Equivalent
simplified two-channels model. Adapted from [120].

magnetic properties of the material. The exchange interaction between
electrons induces a splitting of the 3d electron band, depending of
the spin. By convention the majority spins will be designed ↑ and the
minority ↓. The exchange interaction is favorable for 3d↑ electrons
and thus their band is lower in energy when compared with 3d↓
electrons. The 4s conduction electrons are not affected by the exchange
interaction and thus their band structure is symmetrical. Because of
the spin dependent splitting of the 3d band, the overlap between 3d
and 4s at the Fermi level is more important for the electrons ↓ than ↑.
It results that the probability for 4s↓ to be scattered by 3d↓ is

higher than the probability for 4s↑ to be scattered by 3d↑, and thus
the 4s↑ are better diffused through the ferromagnet than the 4s↓.
This spin dependent current was first modeled by Fert and Campbell
as if the electron, depending of their spin, were propagating in the
material in separated conductive channels with different resistances
r↑ for electrons ↑ and r↓ for electrons ↓ (Figure 22b), with r↑ < r↓.
This model is generally referred as "two-currents model" and predicts
that the resistance of the ferromagnet is expressed as:

R =
r↑r↓
r↑ + r↓

(4)
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The two-currents model supposes that the spin of an electron is
always conserved during the conduction in the ferromagnet and thus
does not account for the spin flips that can appear due to thermal
fluctuations, or defects in the material. In order to account for this
spin-flips, leakage channel with a resistance r↑↓ can be added to link
the two spin channels. The two-currents model does not account
for all the physical phenomena that occur during the diffusion of
electrons in a ferromagnet, but gives a satisfying intuitive explanation
for magneto-resistive effects.

3.2 magneto-resistive effects

Magneto-resistive effects are observed in magnetic junctions, where
two ferromagnetic layers are separated by a non magnetic spacer. In
these junctions, the current can flow in the plane of the junction:
"current in-plane" (CIP). It can also flow perpendicularly to the plane
of the junction: current perpendicular to the plane (CPP). The spacer
can be metallic, and in the case of these "metallic spin valves", the
effect is called "giant magnetoresistance", or it can be a thin insulating
layer and in this case of "magnetic tunnel junctions" the effect is
named "tunnel magneto resistance".

3.2.1 Giant magneto-resistance

Large magneto-resistive effects were first observed in CIP metallic
junctions, leading to the discovery of the "giant magneto-resistance" by
Fert and Grünberg [121, 122]. In this structure, the relative orientation
of the two magnetizations of the ferromagnetic structure implies
different resistances. Two extreme configurations can be considered,
namely the parallel configuration where the magnetization (Figure 23a)
of the two ferromagnetic layers are aligned and the anti-parallel
configuration where the magnetizations are in opposite direction
(Figure 23b). In the case of the parallel configuration, the electrons that
are majority electrons for the first ferromagnetic layer stay majority
electrons for the second ferromagnetic layer and respectively, the other
electrons are scattered passing through the two ferromagnetic layers.
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Figure 23: a. Parallel configuration: the electrons scattered at the first ferro-
magnet are scattered at the second one. b. Anti-parallel config-
uration: half of the electrons are scattered passing through the
first ferromagnet. The other half is scattered passing through the
second magnet. c. Equivalent circuit for the parallel configuration.
d. Equivalent circuit for the anti-parallel configuration.

Following the two-currents model (Figure 23c), RP , the resistance of
the metallic spin valve in this configuration is given by:

RP =
2r↑r↓
r↑ + r↓

(5)

In the case of the anti-parallel configuration (Figure 23b), the electrons
that are scattered at the first ferromagnet layer are diffused at the
second. The others are diffused at the first ferromagnetic layer and
scattered at the second. The equivalent circuit in the two-currents
model is represented in Figure 23d. RAP , the resistance of the metallic
spin valve in the anti-parallel configuration is thus:

RAP =
r↑ + r↓

2 (6)

The resistance of the anti-parallel configuration is larger than the
resistance of the parallel configuration (RAP > RP ) and the relative
difference between these two different configurations resistance is
computed with the GMR ratio:

GMR =
RAP −RP

RP
=

(r↓ − r↑)2

4r↓r↑
(7)
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In an intermediate case, when the relative magnetization is in between
these two extreme configurations, the resistance of the spin valve
depends on the relative angle θ between the magnetization of the two
ferromagnetic layers and can be expressed as follows [123, 124]:

R = RP (1 +
GMR

2 (1− cos(θ))) (8)

Interestingly, measuring the resistance of a spin valve allows ac-
cessing the relative angle between the two magnetizations. Thus, the
GMR effect has been used in many sensor applications, the most
famous and important one being hard-drive reading heads [125]. If the
two-currents model gives a good qualitative description of magneto
resistive effects, it does not consider the effect of thermal fluctuations
or defects in the material. Moreover in a multilayer structure where
the current is sent perpendicular to the layers plane (CPP), it does not
describe well the physics at the interfaces, where spin accumulation
arises. A more predictive model, describing the spin accumulation
at interfaces has been developed by Valet and Fert [126]. The first
measurements in [121, 122] reported GMR ratio of the order of 1.5%
at room temperature. Typically, GMR at room temperature ranges
from 1% to 10% [127, 128, 129]. A higher magnetoresistance ratio can
be obtained by replacing the metallic spacer with a thin insulating
layer, giving rise to the tunnel magnetoresistance.

3.2.2 Tunnel magneto-resistance

Tunnel magnetoresistance is known since the seventies [130], but
did not attract much interest initially because, due to the fabrication
process and chosen materials, the measured magnetoresistance was
quite modest even at low temperature. The first high tunnel magne-
toresistances were measured in the mid nineties [131, 132]. A more
detailed review on tunnel magnetoresistance can be found in [133].
This effect appears in magnetic tunnel junctions, where the spacer
is an insulator and thus electrons pass through the barrier due to
the tunnel effect. Magneto-resistive effects come in this case from
spin-dependent probabilities of tunneling. The first model describing
the electronic transport in a magnetic tunnel junction was proposed
by Jullière [130]. This model supposes that the spin is conserved
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during the tunneling process and that the tunneling probability is
proportional to the product of the electron state densities at the Fermi
level for the two ferromagnetic layers D1 and D2. Thus the conduction
of the barrier is also proportional to D1 and D2 (G α D1D2). This
last assumption comes from the previous work of Bardeen [134]. The
transport of electrons happens through two different conductance
channels depending on the direction of the electron spins.

Figure 24: Schematic of principle of the tunneling process in two different
configurations: parallel and antiparallel. This schematic illus-
trates the Jullière model. Larger width arrow signifies a higher
probability to tunnel. Figure extracted from [135].

Figure 24 illustrates the two different conduction channels, de-
pending on the magnetic configuration of the barrier. In the parallel
configuration, the majority (respectively minority) electrons tunnel
to majority state (respectively minority). Thus the conductance GP
of the magnetic tunnel junction is proportional to:

GP α D1
↑D

2
↑ +D1

↓D
2
↓ (9)

Where D1
↑ and D1

↓ (respectively D2
↑ and D2

↓) are the densities of
state for majority and minority electrons for the first ferromagnetic
layer (respectively second ferromagnetic layer). In the anti-parallel
configuration, the majority electrons (respectively minority electrons)
in the first layer tunnel to minority states (respectively majority
states). In that case the conductance of the junction is defined as:

GAP α D1
↑D

2
↓ +D1

↓D
2
↑ (10)

As for the two-currents model, the difference of resistance comes from a
difference of state densities at the Fermi level (D↑(EF ) 6= D↓(EF )). To
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simplify the expression of the tunnel magneto resistance ratio (TMR),
which is the normalized difference of resistance between anti-parallel
and parallel configuration, Jullière introduces a spin polarization Pi
at each layer i = 1, 2.

Pi =
Di
↑ −Di

↓
Di
↑ +Di

↓
(11)

Using the spin polarization of each layer, the TMR is expressed as:

TMR =
RAP −RP

RP
=

2P1P2
1− P1P2

(12)

Using this expression, Jullière estimates to few tens of percent the
TMR of a Fe/Ge/Co junction [130]. The Jullière model does not
account for the properties of the barrier. In 1989, Slonczewski intro-
duced a more precise model [136], modeling the insulating layer as a
potential barrier. In this model the two electrodes are supposed to be
identical with only the angle between the electrode magnetizations
which varies. The conductance of the barrier for each spin is com-
puted solving the Schroedinger equations. In this approach, the spin
polarization depends on the wave vectors k↑i and k↓i for the majority
and minority electrons in each ferromagnetic layer i, and interestingly,
it depends also on the evanescent propagation of the wave function
α e−κx in the barrier. The spin polarization of the ferromagnet and
insulator couple is expressed as:

Pi =

(
ki↑ − ki↓
ki↑ + ki↓

)(
κ2 − ki↑ki↓
κ2 + ki↑k

i
↓

)
(13)

The expression of the TMR stays the same as in equation 12 by
substituting Pi by its new expression. In the case of two magnetizations
with relative angle θ, the global conductance of the MTJ can be
expressed as:

G = G0(1 + P1P2 cos(θ)) (14)

Experimentally, the first TMR ratio measured at room temperature
with amorphous aluminum oxide barrier were around 70% [131, 132,
137]. The Slonczewski model is more precise than the Jullière model,
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but still fails to describe the influence of the crystallography of the
barrier. Using more advanced ab initio simulations, Butler et al [138]
predict extremely high TMR ratio (1600 %) for Fe electrodes sputtered
on MgO tunnel barriers. In such structures, the Bloch states of the
ferromagnetic material hybridize with the evanescent states of the
MgO tunnel barrier having the same symmetry. This effect allows
filtering spins and increase the spin polarization. This work motivated
to fabricate crystalline MgO tunnel barriers, where TMR over 100%
were reported [139, 140]. As for GMR, TMR effect is used for sensing
and is also intensively studied to read the information stored in new
MRAM memories.

3.3 spin transfer torque

The second physical effect important for the understanding of
the STO is the spin transfer torque. This effect drives the auto-
oscillation of spin-torque oscillator. The spin torque effect was first
predicted by Berger in 1978. Following its prediction, first spin torque
observations were made in [141, 142] to move domain walls, but the
intensity required, in the large films they used, was over tens of
ampers, limiting the applications. This effect requires indeed high
current density and thus the development of nano-technology induced
a regain of interest. Spin-transfer torque was relaunched in the late
nineties when Berger [143] and Slonczewski [144] predicted that this
effect could be strong enough to reorientate the magnetization of a
ferromagnetic layer. A more detailed review on spin-transfer torque
can be found in [118, 145]. This effect comes from the conservation of
the spin momentum. As it has been seen in the previous section, when
a current passes through a ferromagnet, the current aligns its spins
with the local magnetization (spin polarization). If a spin polarized
current is sent to another ferromagnetic layer, it aligns its spins with
this magnetization (Figure 25a), so it loses its component which is
transverse to the local magnetization (Figure 25b). By conservation of
the spin momentum, this component is transfered to the magnetization.
This transfer of spin momentum can be interpreted as a torque which is
applied to the local magnetization. For high enough current densities,
this torque can change the magnetization direction, and thus this
effect can be used to manipulate magnetizations.
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Figure 25: a) Principle of spin-transfer torque in a spin-valve multi-layer
structure. b) The transverse component of the spin-polarized
current is transferred to the local magnetization of the second
ferromagnet. Figure extracted from Lebrun thesis [120].

From the simple representation of Figure 25, the spin torque ~Γ is
expected to be in the opposite direction of the transverse component
~p⊥: ~Γ α ~p⊥ = ~M2 × ( ~M2 × ~M1). In reality, due to spin quantum
rotation effects, non-colinear components to ~p⊥ arise (field like torque).
In order to describe the different components of the spin torque, the
effects at the interface between the non-magnetic material and the
ferromagnet should be considered [146, 147].

Let’s consider an interface between a non-magnetic material (NM)
and a ferromagnet, with an incident spin current ~Iinc (Figure 26a).
The ferromagnet has a magnetization direction ~m and the incident
spin current has a polarization direction ~p. At the interface, part of
this spin current is transmitted (~Itrans) and part is reflected (~Iref ).
The spin torque comes from the fact that the spin current is not
conserved at the interface (~Iinc + ~Iref 6= ~Itrans) and thus this missing
part ~Γ = ~Iinc + ~Iref − ~Itrans is fully transmitted as a torque on the
magnetization of the ferromagnetic layer. This assumption neglects
other dissipations of the spin such as excitation of short-wavelength
magnons or transfer to the atomic lattice [118].
Since the component of ~Γ parallel to the ferromagnet magnetiza-

tion has no effect on this last one, we only consider the transverse
component of the torque ~Γ⊥ = ~I⊥inc + ~I⊥ref − ~I⊥trans. The component
~I⊥inc correspond to ~p⊥ seen earlier. Passing through the interface, the
spin of the electrons precesses around the local magnetization (spin
precession phenomena) with a period 1

k↑+k↓
(Figure 26). Since the
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Figure 26: a) Principle of reflection and transmission phenomena of an inci-
dent spin-polarized current at an NM/M interface. b) Schematic
of mechanisms occurring at the interface. In the lower left corner,
the incident spin polarized current is represented with electrons
having the same spin state which is transverse to the direction
of the magnetization of the ferromagnetic layer. These electrons
come with different random incident directions (here represented
as having three different incident directions). In the top left cor-
ner, the reflected spins are distributed over many directions. In
the right corner, the transmitted electron spins are precessing as
a function of their distance from the interface. Figure extracted
from Stiles and Miltat [145].

electrons in the ferromagnet follow different paths, their precessions
are quickly decorrelated (typically after 1 nm in transition metal [148])
and thus we can consider that in average < ~I⊥trans >= 0 and neglect
this contribution.
The reflected electrons are submitted to spin rotation which is a

quantum phenomena. Depending on the incident angle of the electron
and on the spin-dependent amplitude of reflection, its spin rotates of
a certain angle ( Figure 26b for more details see [145]). In a metallic
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spacer, the electrons have no favored incident angle and thus the
component due to spin rotation is zero in average. For the case of the
tunnel barrier, the electrons that have the higher probability to tunnel
are the ones that have an incident angle orthogonal to the barrier,
because they have the shortest path through the barrier. Since the
incident electrons propagate in the barrier with the same incident
angle, and the same spin direction, when they are reflected, their spin
rotates from the same angle and thus < ~I⊥ref >6= 0. In particular,
< ~I⊥ref > can give rise to a component orthogonal to ~M2 and ~p⊥.

In the case of a tunnel barrier, the spin torque can be expressed as:

< ~Γ >≈< ~I⊥inc > + < ~I⊥ref > (15)

This torque can be separated in two contributions: one which is parallel
to ~p⊥, named Slonczewski torque ~Γslonc and one orthogonal to ~p⊥
named field-like torque ~Γfl.

~Γslonc = γslonc ~m× (~m× ~p) ~Γfl = γfl(~m× ~p) (16)

The two spin-torques depend on the applied voltage [149, 150] and of
the nature of the junction [151], and at low bias voltage, in asymmetric
junctions, we can approximate they have a linear dependency with
the applied current J and the magnetization at saturation MS of the
ferromagnet [152, 153].

γslonc = ajJMS γfl = bjJMS (17)

In this equation, aj and bj represent respectively the efficiency of the
Slonczewski torque and the field like torque, which can be expressed
as follows [152, 153].

aj =
|g|µB
2|e|

P

LMS
bj = rflaj (18)

In these equations, g is the Landé factor, µB the Bohr magneton, e the
elementary charge. The efficiency is directly proportional to the spin
polarization P and inversely proportional to the thickness L of the free
layer. The efficiency of the field-like torque is proportional to the one
of the Slonczewski torque with a factor rfl which is typically between
0.1 and 0.4 in magnetic tunnel junctions. An efficient spin torque
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requires thus high spin-polarization and thin free layer. This torque
can be sufficient to modify the magnetization of a ferromagnet. The
effect of the spin transfer torque on the magnetization of a ferromagnet
is presented in the next section.

3.4 magnetization dynamics

Classically, magnetization dynamics is described by the Landau
Litschitz Gilbert equation. The first equation was introduced by
Landau and Litshitz in 1933 [154], and Gilbert introduced a similar
equation in 1955 with a modified damping term, which is now called
the Landau Litschitz Gilbert (LLG) equation [155]:

d~m

dt
= −γ0 ~m× ~Heff + α~m× d~m

dt
(19)

Here ~m is the local magnetization, γ0 is the gyromagnetic ratio, ~Heff

is the effective field, α is the Gilbert damping factor. When the local
magnetization ~m of a material is away from equilibrium, it gyrates
around the effective field Heff (first term on the right of the equation).
The effective field is determined by the applied external field, by
the anisotropy field generated by the crystallographic nature of the
material and by the dipolar field generated by the magnetization
in other spatial positions. The magnetization gyration is damped
(second term of the equation) and ~m tends to align with ~Heff . The
damping factor α introduced by Gilbert is phenomenological. It can be
interpreted as a frictional factor, and its value varies from a material
to an other, but is generally of the order of 10−2 (αFeB ≈0.007-0.008,
αNiFe ≈ 0.01 [156]).

The spin torque contribution can be directly added as a supplemen-
tary term to the LLG equation:
d~m

dt
= −γ0 ~m× ~Heff +α~m× d~m

dt
− γslonc ~m× (~m× ~p)− γfl(~m× ~p)

(20)

The field like torque can be accounted as a new field contribution
~Hfl =

γfl
γ0
~p to the effective field ~Heff [157], simplifying the equation 20

as follows:
d~m

dt
= −γ0 ~m× ~Heff + α~m× d~m

dt
− γslonc ~m× (~m× ~p) (21)
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To illustrate the effect of the Slonczewski torque, we will suppose
that the spin-polarization is in the same direction as the effective field:
~p = 1
‖ ~Heff‖

~Heff . By replacing in equation 21 d~m
dt by the right side of

equation 21, and by neglecting the term proportional to α2 (which is
approximatively 10−4), equation 21 is rewritten [157]:

− 1
γ0

d~m

dt
= ~m× ~Heff + α̃~m× (~m× ~p) (22)

with α̃ defined as:

α̃ = α+
γslonc

γ0
∥∥∥ ~Heff

∥∥∥ = α+
ajMS

γ0
∥∥∥ ~Heff

∥∥∥J (23)

As can be seen in equation 23, the Slonczewski torque acts as an
additional damping term. For positive current J , it reinforces the
damping. Interestingly for negative current J , it acts as a negative
damping (see Figure 27) and for high enough current (typically 1011

A.m−3), it can compensate the damping. The different torques acting
on the magnetization are schemed in Figure 27. Depending on the

𝐻𝑒𝑓𝑓

𝑚

𝛼 𝑚 ×
𝑑𝑚

𝑑𝑡 𝑚 × 𝐻𝑒𝑓𝑓

ԦΓ𝑆𝑙𝑜𝑛𝑐ԦΓ𝑓𝑙

Figure 27: Schematic showing the torques acting on the local magnetization
in presence of an effective magnetic field. The red arrow represents
the damping which tries to bring back the magnetization along the
effective field. The blue arrow corresponds to the magnetization
precession around the effective field. The green and orange arrows
correspond respectively to the Slonczewski and field-like torques.

intensity of the current J and of the potential barrier, two scenarios
can happen for the magnetization. For strong enough current, the
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magnetization can reverse. This effect is used to write bits of informa-
tion in the last generation of MRAM. If the spin torque is big enough
to compensate the damping, but not enough to reverse the magne-
tization, it can give rise to sustained gyrations of the magnetization
which is the phenomenon leveraged to generate auto-oscillation in
spin-torque nano-oscillators.
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4
S P I N - T O R Q U E O S C I L L AT O R S P R I N C I P L E S
A N D B E N E F I T S F O R N E U R O N S

In this chapter, we explain the working principle of spin torque
oscillators, we do a brief state of the art of these oscillators and we
highlight why they are good candidates to build brain-inspired chips.

4.1 working principle

As mentioned in the previous chapter, spin-torque oscillators lever-
age both magneto resistive effects and spin-torque effects. Figure 28
illustrates the working principle of a spin torque oscillator.
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Figure 28: Principle of a spin torque oscillator.

These oscillators are made of two ferromagnetic layers FM1 and
FM2, with respectively magnetizations ~M and ~m, separated by a non
magnetic spacer NM. When a d.c. current is injected, the current is
spin polarized when passing through FM1 which is called the reference
layer. The spin polarized current passes through NM and then applies
a spin transfer torque on ~m, the magnetization of FM2 called the
free layer. For sufficiently high current density (typically 107 A.cm−2),
this torque can destabilize ~m, and induce sustained gyrations of the
magnetization. It results in a variation of the relative angle between
~M and ~m, and thus by magneto-resistive effects, the resistance of the
spin valve varies periodically. This results in an oscillating voltage
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across the junction. Interestingly these oscillators are non-linear and
can couple and synchronize together through different mechanisms
such as spin waves [158, 159], dipolar coupling [160] and electrical
coupling [161].
Since such phenomena require high current density, it is observed

only in small area devices (typically smaller than 100 nm in diam-
eter). The three main spin-torque oscillator geometries are namely
the nano-pillar, the nano-contact and hybrid geometries (Figure 29).
These three architectures ensure a sufficient current density in the
free layer to destabilize its magnetization. Depending on the geometry
chosen, different fabrication process are used. The nano-pillars (which
are typically 100-500 nm large) can be fabricated by electron beam
lithography and ion-milling [162] or electrodeposition [163] or other
techniques [164]. In nano-contacts, the contact can be a sharp mechan-
ical tip which can be downscaled to 10 nm [165], or it can be fabricated
using lithography techniques [166, 167]. In this last case, the contact is
larger (typically 100 nm). The first evidences of oscillations driven by

Figure 29: Different geometries for spin-torque oscillators: (a) Nano-pillar
(b) Nano-contact (c) Hybrid approach. Extracted from [168].

spin-torque were found by Tsoi in nano-contact geometry [165]. The
first direct experimental measurement of oscillations were performed
by Kiselev et al [169] in nano-pillar geometry and by Rippard et al
[170? ] in nano-point contact geometry. The important features of
the spin-torque oscillator that are being optimized are notably their
emission power P, their frequency f , their linewidth ∆f and their
quality factor Q = f/∆f . Thus the design of the spin-torque oscillator
through the dimensions and the choice of the material for the free
layers are crucial to optimize its performance.

It is important to note that the emission power of spin torque oscil-
lators is related to the magneto-resistance ratio and thus depending
on the type of junction whether it is a metallic spin valve or a mag-
netic tunnel junction, the range of emission power varies importantly.
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Indeed in metallic junctions, the GMR ratio is typically of 1%-10%.
Thus the emission power of such devices is of the order of 1 pW [171]
to 25 nW [172]. On the other hand, MgO magnetic tunnel junctions
can exhibit TMR superior to 100%, and with such device emission
powers over 10 µW were obtained [173].
As mentioned earlier, FM1 and FM2 play different roles and thus

their features are different. FM1 the reference layer ensures the spin-
polarization of the d.c. current. Thus for an efficient polarization,
its magnetization should be as stable as possible. The first approach
used for spin-torque oscillators was to use relatively thick layers, so
the torque in FM1 is sufficiently low to not disturb its magnetiza-
tion. More recently in nano-pillars, new approach used a synthetic
antiferromagnet (SAF) for the reference layer. FM1 is a stack anti-
ferromagnet/ferromagnet/non-magnetic metal/ferromagnet to obtain
a pinned magnetization of the last ferromagnetic layers of the SAF.
The first ferromagnet of the SAF couples with the anti-ferromagnet
through exchange bias interaction. The two ferromagnetic layers sep-
arated by the thin non magnetic metal couple together through the
RKKY (Ruderman-Kittel-Kasuya-Yosida [174]) interaction which is
chosen so that their magnetizations tend to point in opposite direc-
tions. It results that last ferromagnetic layer magnetization is strongly
pinned and that the global remanent field of the synthetic antiferro-
magnetic is weak. The STOs used in these thesis have such reference
layer based on a SAF.
The free layer FM2, in the contrary, should have a magnetization

which can be easily destabilized. Generally material with a low Gilbert
damping such as NiFe or FeB are used. Moreover this layer is generally
thin (typically few nm thick). The noise of the oscillator-emission is
directly related to the motion of the free layer magnetization. If the
free layer is too thin, it becomes more sensitive to thermal fluctuations
which is not desired for most applications. Thus a trade-off should
be made between a stable magnetization, and an easily destabilized
magnetization. Initially the first free layers were chosen to exhibit a
uniform magnetization. When they are excited by a spin-polarized
current, non uniform modes can appear such as edge modes and center
modes. The cohabitation of several modes [175, 176] is source of noise
because it induces jumps between modes [177, 178]. In order to create
an excitation mode well separated from higher order modes, a vortex
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configuration can be used. Using specific aspect ratio in the free layer
allows to have a stable vortex configuration, when no field is applied.
The vortex based spin-torque oscillator was proposed by Pufall et
al in 2007 [179] and Mistral et al [180]. Such configuration has been
shown to reduce the phase noise, and in particular linewidths between
0.07 and 1 MHz were obtained in [181]. But when compared with
uniform magnetization, these oscillators have a smaller frequency,
around hundreds of MHz to 2.2 GHz when uniform magnetization can
lead theoretically to 65 GHz [182]. Therefore, even though the vortex
oscillators have the smallest linewidth, the highest quality factors
were obtained for uniform magnetization [170]. A more detailed state
of the art and comparison of the different spin-torque oscillators
can be found in the following Table 1. Interestingly, since the first

Ref Type Size(nm2) P f(GHz) ∆f(MHz) Q MR/R
[183] NP(GMR) 9100 89 pW 5-10 - - 1%,8Ω

[184] NP(GMR) 1300 20pW 11-12 3.2 - 0.4%,13Ω

[185] NP(GMR) 5000 0.1nW 11-12 3.8 3150 1%,3Ω

[186] NP(GMR) 11700 5nW 10-11 10 1124 3%,9Ω

[187] NP(GMR) 6600 1nW 3.5-4 - 266 12%,8Ω

[188] NC(GMR) 1250 87pW 5-40 58 800 2%,4Ω

[170] NC(GMR) 1250 87pW 9.7-34.4 1.89 18000 1%,15Ω

[189] NC(GMR) 1250 70pW 10-46 4.5 7300 0.4%,6Ω

[172] NC(GMR) 15000 25nW 0.8-2 3 - 10%,10Ω

[171] V(GMR) 9500 0.8pW 0.9-2.2 0.3 4000 1%,19Ω

[190] NP(MTJ) 49000 20nW 4-7 21 238 48%,16Ω

[191] NP(MTJ) 5000 25nW 4-10 26 1000 100%,3kΩ

[192] NP(MTJ) 45000 142nW 3-12 20 - 70%,43Ω

[193] NP(MTJ) 13000 550nW 4-7 47 - 66%,143Ω

[194] NP(MTJ) 31000 200nW 2.6-2.8 80 35 88%,4kΩ

[195] NP(MTJ) 11000 500nW 2-6.3 46.6 135 66%,2kΩ

[196] NC(MTJ) 7500 2.4µW 2-5 12 350 46%,38Ω

[197] NC(MTJ) 7500 63nW 2.5-15 3.4 3200 38%,55Ω

[198] V(MTJ) 23000 5µW 0.4-0.9 1.1 718 14%,57Ω

[181] V(MTJ) 70000 1.4µW 0.5-0.5 0.07 6400 128%,35Ω

[173] V(MTJ) 82000 10.1µW 0.15-0.3 0.16 2000 190%,57Ω

Table 1: Comparison of the different spin-torque oscillators. Extracted from
the thesis of Philippe Talatchian [135].
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realization of a spin-torque nano-oscillator, the development of new
oscillators has been importantly driven by the improvement of the
emission power. Figure 30 shows the evolution of the emission power
of spin-torque oscillators versus time. One can notice an exponential

Figure 30: Evolution of spin-torque oscillator emitted power in time. Ex-
tracted from the thesis of Philippe Talatchian [135].

progression of the emitted-power in the time with approximatively
+3 dBm/year. A last point that should be mentioned is the role of
an applied external field. For many spin-torque oscillator designs, an
external magnetic field is applied in order to destabilize the free layer
magnetization and to ensure that the spin-torque integrated along the
whole magnetization trajectory is not zero. This field is generally of the
order of 100 mT which may be a drawback for practical applications.
Many efforts have been made to obtain oscillations in zero applied
magnetic field and different strategies where adopted, depending on
the free layer configuration. For uniform magnetization, "wavy shape"
of spin-torque [199] and nano-pillar with controlled remanent field
direction [200, 201, 202] demonstrate emission at zero external field.
For vortex oscillators, zero-field emission was reported for pinned
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layers presenting perpendicular magnetization [203, 153] and vortex
configuration [204, 205].
The oscillator we use in this thesis corresponds to the highest

emission power sample presented in [173]. This oscillator requires
an external magnetic field to function but this vortex based sample
exhibits high signal over noise ratio and also reduced linewidth (Ta-
ble 1), which are valuable features for experimental demonstration
purpose. In the following section, we present theoretically the behav-
ior of the spin-torque oscillators and the case of uniform and vortex
configurations.

4.2 spin torque oscillator non-linear theory

4.2.1 The non-linear auto-oscillator theory

Slavin et al describe the dynamics of uniform magnetization using a
general non-linear auto-oscillator model [157]. In this model, the whole
magnetization is described by a macrospin ~M =Mx ~ex+My ~ey+Mz ~ez.
The norm of ~M is constant

∥∥∥ ~M∥∥∥ = M0. Interestingly, the auto-
oscillator model extends to describe other types of oscillators, such as
Van der Pol oscillators for instance. The oscillator state is described
by the complex quantity c(t):

c(t) =
√
p(t)eiθ(t) (24)

where p(t) = |c|2 is the power of the oscillator, and θ(t) = arg(c) is
its phase. The dynamics of the oscillator is governed by the following
equation:

dc(t)

dt
+ iω(|c|2)c(t) + (Γ+(|c|2)− Γ−(|c|2))c(t) = f(t) (25)

Here ω(|c|2) is the resonant frequency of the oscillator, Γ+(|c|2) and
Γ−(|c|2) are respectively the positive and the negative damping of the
oscillator and f(t) is the driving force of the oscillator. In the case of
a spin torque oscillator, Γ+(|c|2) is the Gilbert damping and Γ−(|c|2)
comes from spin torque. The non-linearity of this model comes from
the dependency of the different parameters ω, Γ+ and Γ− with the
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power p = |c|2. To describe the dynamics of a macrospin, Slavin et al
use for c the quantity:

c =
Mx − iMy√

2M0(M0 +Mz)
(26)

and thus the magnetization can be retrieved from c:

~M =M0(1− 2|c|2)~ez +M0

√
1− |c|2 [(~ex + i~ey)c+ (~ex − i~ey)c∗)]

(27)

The different parameters are derived from the LLG equation with the
spin transfer torque term and are expressed as:

ω(|c|2) = ω0 + 2ωM |c|2 (28)

where ω0 = γH0 − 4πM0 is the ferromagnetic resonance frequency
(with H0 the external field and γ the gyromagnetic ratio), ωM =

4πγM0 is the coefficient of non-linear frequency shift keying. The
positive damping is expressed as:

Γ+(|c|2) = ΓG(1 +Q|c|2) (29)

with ΓG = αGω0 and Q = (2ωM/ω0)− 1.
The negative damping depending on the spin torque is expressed

as:

Γ− = σ0I(1− |c|2) (30)

Here σ0 = |g|µB
2|e|

P
LSM0

where S is the surface of the free layer and L
its thickness. Oscillations appears only for current I higher than the
critical current Ith:

Ith =
ΓG
σ0

(31)

ΓG depends of the applied magnetic field H0 and thus by chang-
ing the field, one changes the critical current. Introducing the non-
dimensional variable I/Ith, Slavin et al predict a non-linear behavior
of the emitted power with current in the steady state p0:

p0 =
(I/Ith)− 1
(I/Ith) +Q

(32)
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This formula is obtained using second order expansions with respect
with |c| of the parameters Γ+, Γ− and ω presented in the first equation.
More predictive models can be obtained, adding higher order terms
to the different parameters of the equation 25. In particular this first
approximation is less valid for high (I/Ith). Moreover Slavin et al
also developed terms taking into account the sensitivity to noise.
For small perturbations from steady state, the emitted power p

relaxes to its steady state p0 with a characteristic time Trelax:

Trelax =
1

ΓP
=

1
ΓG((I/Ith)− 1) (33)

Thus the Slavin model predicts a relaxation time which is inversely
proportional to the current and which becomes infinite for the critical
current. This model predicts the behavior of an oscillator with a
uniform magnetization. In our thesis, an oscillator with vortex mag-
netization is used. We will thus describe in the next subsection this
magnetic state, and the model which describes its dynamics. We will
link the vortex dynamics with the Slavin auto-oscillator model.

4.2.2 Non-linear theory in the case of vortex based spin torque oscil-
lators

The stable magnetic configuration of ferromagnets depends on the
dimensions and the shape of the ferromagnet. Indeed the global magne-
tization distribution results from the competition of the local exchange
interaction and the dipolar interaction. The stable magnetization at
remanence is the one which minimizes the energy associated to these
two interactions. The exchange interaction is acting on the exchange
length LE =

√
2A

µ0M2
S
with A the stiffness exchange constant and MS

the saturation magnetization of the material (LE(NiFe) ≈ 5.7 nm,
LE(FeB) ≈ 11.8 nm). The dipolar interaction is acting on distances
of typically up to 1 µm. Thus the dimensions of the ferromagnet can
favor one of these two contributions. The influence of the shape comes
from the symmetry it imposes to the magnetization. For example a
cylindric geometry ferromagnet favors a cylindrical geometry mag-
netization. The vortex configuration arises notably in thin cylinders
where both interactions are non negligible. Locally the spins should
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align and in a more distant range they should be opposite. The vortex
magnetization presents two regions (Figure 31): one large where the
magnetization is radial and contained in the plane of the cylinder and
another one much smaller where the magnetization is out of this plane
(vortex core). The size of the vortex core is typically 10 nm. This
configuration was predicted in the late nineties [206]. Depending on
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Figure 31: a. Cylinder exhibiting a vortex magnetization. The thickness of
the cylinder is called L and its radius R. The vortex magnetization
is in the plane of the cylinder except in the core area where the
magnetization is out of the plane. b. Schematic of the vortex
magnetization in the (x,y) plane. The local magnetization is
radial except in the vortex core and has always a fixed value.

the direction the core is pointing towards: ~ez or −~ez (polarity p = 1
and p = −1) direction and if the in plane magnetization is enrolled
in the trigonometric or anti-trigonometric direction (chirality c = +1
or c = −1), the vortex configuration possesses 4 stable degenerated
configurations.

The vortex configuration is stable for particular dimensions (radius
R and thickness L) of the cylinder depending on the exchange length
LE of the material (Figure 33). Figure 33 only represents the stable
configurations for moderate values of R/LE and L/LE . Higher values
would lead to multi-domains configurations. Interestingly, spin torque
can move the vortex magnetization resulting in a non-zero mean
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Figure 32: Schematic of the four degenerated configurations of a vortex
magnetization. Extracted from Grimaldi [207].

II

Figure 33: Stability diagram of the three different configurations of the
magnetization distribution in a ferromagnetic cylinder having a
section radius R and height L. The diagram presents three dis-
tinct regions. I: magnetic vortex state, II: magnetized uniformly
inplane, III: magnetized uniformly out-of-plane. The dashed re-
gion corresponds to a metastable configuration between the three
different ground states. Extracted from Metlov et al [208].

magnetization in the plane of (x,y) defined by the cylinder. For
small displacements, the vortex can be seen as rigid and thus the
magnetization dynamics can be entirely described by the position
~X of the vortex core. Later we will define the vortex core position
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in polar (~er,~eθ) coordinates with its radius s and its angle θ. This
simplified model is used by Thiele to describe the dynamics of the
vortex.

~G× d ~X

dt
−D( ~X)

d ~X

dt
+ ~FSTT ( ~X)− ∂E

∂ ~X
= ~0 (34)

The different forces acting on the vortex core are schemed in Figure 34.

Figure 34: Schematic of the different forces acting on the vortex core. Ex-
tracted from Lebrun Thesis [120].

~G is the gyroforce.

~G = −p
(

2πLM
free
S

γ

)
(1− cos(θ0))~ez = −pG~ez (35)

Where θ0 = cos−1
(

H⊥
µ0MS

)
is the free layer magnetization angle,

Mfree
S is the saturation magnetization of the free layer, L is the free

layer thickness and p is the vortex polarity.

D = D0(1 + ξ

(
s

R

)2
) (36)

D0 is expressed as:

D0 = αG(2πL
MS

γ
)

(1
2 ln

(
R

2b

)
− 1

8

)
sin2(θ0) (37)
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b = 2LE = 2
√

2A
µ0M2

S
and the parameter ξ ≈ 0.6 in our case. The

confinement energy E can be expressed as:

E = Ems +Eoe (38)

where Ems is the magnetostatic energy:

Ems =
1
2κmss

2 +
1
4κ
′
ms

s4

R2 +O(s6) (39)

with κms =
(

10
9

)
µ0M

2
S
L2

R sin2(θ0) and κ′ms = 0.25κms. Eoe is the
energy associated to the Oersted field confinement:

Eoe =
1
2κoeCJs

2 +
1
4κ
′
oeCJ

s4

R2 +O(s6) (40)

Here C is the vortex chirality, J is the electrical current density
injected in the nanopillar. The coefficients are expressed as κoe =

0.85µ0MSLR sin(θ0) and κ′oe = −0.5κoe. The four coefficients for the
energy (κms, κ′ms, κoe and κ′oe) were calculated in [209, 210, 203].
And finally the value of the force exerted by the spin torque ~Fstt

can be expressed as:

FSTT = ajJ~eθ (41)

with aj expressed as:

aj = π
h̄P

2e
H⊥

µ0M
pol
S

sin2(θ0) (42)

where P is the spin polarization, h̄ is the Planck constant, e the
elementary charge and Mpol

S is the saturation magnetization of the
polarization layer. From these equations, and defining ζ = κ′

ms+κ
′
oeJ

κms+κoeJ

and κ = κms + CCoeκoeJ (Coe is the chirality of the Oersted field),
the radius and the phase of the oscillator dynamics are described by
the following equation system:


ds
dt +

(
Dκ
G2 [1 + (ζ + ξ)s2]− ajJp

G

)
s = 0

dθ
dt s− p

κ
G (1 + ζq)s = 0

(43)
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Interestingly, Grimaldi et al [153] show that with c(t) = s(t)eiθ(t),
equation 43 is equivalent to the auto-oscillator equation 25 with:


Γ+(s2) = Dκ

G2 [1 + (ζ + ξ)s2]

Γ−(s2) =
ajJ
G

ω(s2) = κ
G (1 + ζs2)

(44)

In this case, the critical current is expressed as:

Ith =
DκπR2

ajG
(45)

The power of the emission becomes for current over Ith:

p0 =
(I/Ith)− 1

ζ + ξ
(46)

So the vortex radius depending on input current evolves typically as:

s0 =

√
(I/Ith)− 1

ζ + ξ
(47)

with a square root dependency with the input current. Thus in the auto-
oscillation regime, the voltage emitted by the oscillator is expected to
be e0(t):

e0(t) = λs0 cos(ωt) (48)

with λ a parameter equal to:

λ =
I∆Rp−ap(I)

2 β

√√√√√
1−

(
H⊥

4πMpol
S

)2
1−

(
H⊥

4πMfree
S

)2
 (49)

where ∆Rp−ap(I) is the difference of resistance between the parallel
and the anti parallel state at a given I, Mfree

S is the free layer sat-
uration magnetization, and β is the conversion factor of the vortex
core displacement into magnetization change [209] which is β = 2

3
for s which is less than 60 % of the pillar radius R. Interestingly, the
amplitude of the oscillations Ṽ = λs0 evolves like the vortex core
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radius and thus depends non-linearly on the applied current I. For
vortex motion, the relaxation time of the oscillator should be:

Trelax =

[
−Dκms

G2 +

(
aj

GπR2 −
Dκoe
G2πR2

)
I

]−1
(50)

As for the model of Slavin et al [157] for uniform magnetization, a
dependency inversely proportional to the applied current I is expected.

4.3 potential applications of spin-torque oscilla-
tor

4.3.1 RF emitters

The first straight-forward potential application for spin-torque oscil-
lators is to use them as tunable radio-frequency emitters for instance
for telecommunication purpose. Spin torque oscillators are promis-
ing to replace the present electronic and CMOS voltage controlled
oscillators (VCO) that have a non-negligible size (see for instance
section 2.1.1 on CMOS ring oscillator), which is a draw back for
embedded systems such as cellphones. Spin-torque oscillators present
improvement because of their nanometric size and because they are re-
silient to radiation (which is particularly important for aeronautic and
spatial applications). Unfortunately present spin-torque oscillators do
not meet yet the requirements for such systems, because the emitted
power should be of the order of 1 mW (instead of 10 µW for the best
spin-torque oscillator) and the noise should be of -110 dBm/Hz when
best oscillators have a level of noise of -90 dBm/Hz [211]. In order to
decrease the level of noise, phase-locked-loop spin-torque oscillators
were proposed [212, 213]. In order to both improve the power and
decrease the noise, synchronized oscillators are also studied [214].
Spin-torque oscillators are also studied to transmit information

through the amplitude variation of the oscillation (similarly to the
strategy used for radio signals). This "amplitude shift keying" was
demonstrated with a rate of 200 kb/s but potentially it could be
improved to 1.5 Gb/s [215]. Encoding the information in the frequency
(frequency shift keying) instead of the phase demonstrated higher rates
of 400 Mbit/s [216, 217].
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Finally spin-torque oscillators are thought to be used in the magnetic
memory field. They are studied to read the information at a higher
rate [218]. The idea is to use a spin-torque oscillator instead of a GMR
or TMR sensor as reading head. The magnetic field that stores the
information quickly changes the emission frequency of the spin-torque
oscillator. The bit information is extracted from the changes in the
emitted frequency of the STO. This would allow reaching a reading
rate beyond 3 Gb/s. They are also studied as writing heads [219].
In that case a spin-torque oscillator emits an RF field which helps
reverse the magnetization of the memory cell.

4.3.2 RF detectors

Interestingly, when a spin-torque oscillator is excited by an RF
current, whose frequency is close to the eigen frequency of the STO,
the STO generates a d.c. voltage. This effect is called "spin diode"
[220]. This effect was proposed to detect the frequency of RF signals
[221]. The advantage, when compared with Schottky diodes which
are commonly used for frequency detection, is that STO have smaller
dimensions and a higher sensitivity [222].
In vortex based STO, the stimulation by a current or a field at

the resonance frequency can induce also an expulsion of the vortex
core. Interestingly this phenomena improves the signal measured
when compared with standard spin-diode, and it can be leveraged for
instantaneous frequency detection [221].

Another strategy to improve the spin-diode signal through injection
locking for frequency detection was reported in [223]. STOs are thus
promising for building compact frequency detectors for instantaneous
detection with high sensitivity and a large frequency range.
Spin diode effect can also be leveraged for energy harvesting. A

STO stimulated by a RF field can generate a d.c. voltage which
could potentially supply a device [224]. This could be particularly
promising for low power embedded devices, which cannot be easily
energy supplied as for instance medical implants.
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4.3.3 Potential for neuromorphic computing

As presented in chapter 1, neurons can be seen as non-linear os-
cillator that compute through their dynamical response and that
can couple and synchronize together. Conventional computers have a
Von-Neuman architecture which is not well suited for emulating neu-
ral network response. Building a brain-inspired architecture requires
components whose physics is close enough to neurons for allowing
computation. Moreover, solving complex cognitive tasks requires large
number of neurons, and thus nanoscale components are required. In
this context, STOs are promising candidates since they have nanomet-
ric size, and that a single STO is by itself a non-linear auto-oscillator.
It is a major difference, for instance when compared with memris-
tors, where auto-oscillations generally require at least an additional
capacitance. Similarly to neurons, STOs have a non-linear behavior.
In particular, they emit only for current inputs higher than threshold
value, which in the case of STOs is the critical current. Moreover the
amplitude of the oscillation depends non-linearly on the input current
value. Through the relaxation time, the STOs also exhibit a memory
which can be leveraged for neuromorphic computing. And for build-
ing large arrays, the STOs can couple and interact through different
mechanisms. Compared with other nanoscale devices, STOs work at
room temperature, and they have a long lifetime, with a relatively low
noise and a behavior which does not strongly drift in time. Finally,
these oscillators have the same structure as magnetic random access
memories, which suggests they could be densely integrated on chips
and that they can be interfaced with CMOS circuits.
These promising features motivate theoretical works on the use of

STO for brain-inspired computation [225]. At the beginning of this
work, there were no experimental demonstrations of brain inspired
computing with STOs. The brain computes both using synchronization
pattern and transient dynamics. In parallel to my work, brain-inspired
computing based on synchronization pattern was also demonstrated
using the synchronization of four coupled STOs [226]. This approach is
different and complementary to the one adopted in my work (for more
informations see [226, 135]). In the work presented in this manuscript,
brain-inspired computing is performed by leveraging the transient
dynamics of spin-torque oscillators.
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5
R E S E RV O I R C O M P U T I N G W I T H A S I N G L E
N O N - L I N E A R N O D E

In this chapter, the computing method called reservoir computing
with a single node is presented. This method will be used in chapter 7
to prove neuromorphic computing with spin torque oscillators. The
first section of this chapter presents the general principle of reservoir
computing. The second section shows how this computation can be
adapted to a single non-linear node system using a temporal complexity
instead of the more classical spatial complexity of a neural network.
Finally, the last section presents a state of the art for single node
reservoir computing with hardware systems, showing that this method
can be adapted to different hardware.

5.1 reservoir computing general principle

Reservoir computing is a kind of recurrent network developed in
machine learning to process sequence problems without encountering
the classically hard problem of training connections in a recurrent
network.

5.1.1 Reservoir computing architecture

Reservoir computing was introduced by Maass [27], Jaeger [26, 227]
and Steil [228]. Jaeger referred also to this system as "echo state net-
work", Maass as "liquid state machine" and Steil as "backpropagation
decorrelation". In all cases, the idea is still to leverage the non linear-
dynamics of recurrent neural networks for machine learning [229].
This approach was used successfully to perform recognition tasks. In
particular it was used for robot motion control [230, 231], channel equi-
librium [227], speech recognition [232, 233, 234, 235], forecasting [236].
This idea was successfully adapted to different hardware because the
main requirement is the use of a non linear dynamical system which
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can be built from many different materials. A reservoir computing

Figure 35: Reservoir computing schematic: the network is composed of three
parts. The input is connected with fixed connections to a recurrent
network called a reservoir. The connections of the reservoir are
also fixed. The reservoir is connected to the output with trained
connections. The output allows identifying the class of the input.

system is composed of three distinct parts (Figure 35) which are an
input layer, a recurrent network called reservoir and an output layer.
The connections between the input layer and the reservoir and inside
the reservoir are fixed. Only the connections between the reservoir and
the output layer represented in red in Figure 35 are tuned. The input
and the output can have various dimensions (for example both the
input and the output have a dimension 1 for sine square task, whereas
for spoken digit recognition task with cochlear decomposition, the
input has a dimension 78 and the output has a dimension 10). In the
case of classification problems, the output allows to associate an input
to different classes. For speech recognition the different classes could
be for instance the different words to identify, whereas the output is
a vector of numerical values. Let’s call x(k) the vector containing all
different neuron responses from the reservoir xi(k) at time k.

x(k) =


x1(k)

x2(k)
...

xn(k)

 (51)
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In practice the evolution of the reservoir network is described by the
following equation:

x(k) = fnl(W
res
in u(k) +W res

res x(k− 1)) (52)

Where W res
in is the matrix containing the connection weights between

the input u(k) and the reservoir (represented with blue arrows in
Figure 35) and W res

res is the matrix containing the connection weights
inside the reservoir (represented with black arrows in Figure 35). fnl
refers to the non linear transformation operated by the neurons of
the reservoir (each green circle in Figure 35 operates a non-linear
transformation). It is important to note that these three parameters
W res
in , W res

res and fnl are fixed. The response of the reservoir x(k)
depends on the input sequence it receives. Because of the recurrences
in the reservoir, x(k) depends of u(k), but also indirectly of previous
input values (through the x(k− 1) term).

Then the output y(k) is obtained by combining together the neuron
outputs xi(k). In practice this step is achieved by a linear combination:

y(k) = W out
res x(k) +Wbias (53)

W out
res is the matrix containing the connection weights between the

reservoir and the output (represented in red in Figure 35) andWbias is
a bias vector containing constants (acting like an offset). By defining
s and W such as:

s(k) =

 1
x(k)

 W =
(
Wbias W out

res

)
(54)

The equation for the output can be easily rewritten such as:

y(k) = Ws(k) (55)

This simplified notation will be used also in later sections because it
simplifies the way learning is written.
So in the end the computation performs well if a linear regression
on the responses of the reservoir neurons can approximate well the
correct output. The goal of the reservoir is not to solve directly the
problem but to turn the initial problem into a new one that is linearly
solvable. The next subsection presents the important properties that
the reservoir should have to fulfill this purpose.
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5.1.2 Reservoir key properties

As mentioned in the previous subsection, the goal of the reservoir
is not to solve directly the problem but to map the initial problem in
a space where it is easier to solve. The main idea is that projected
in higher dimensional state, the problem is more likely to become
linearly separable [237]. Thus after this projection, the problem can
be easily solved by the linear combination operated by the connection
layer between the reservoir and the output layer. To perform properly
this task, the reservoir must respect three key properties which are
the separability, the approximation and the fading memory [238, 239].

Figure 36: Illustration of separation property (extracted from Appeltant et
al [239]): here the separability is illustrated on a XOR task. In
two dimensions the two classes can not be separated by a single
hyperplane (a straight line). Projected in three dimensions the
problem can be separated by a hyperplane (a plane).

The separation property refers to the ability to return different reser-
voir responses when different inputs are sent. This property is impor-
tant to obtain a linearly separable problem. It can be achieved through
the high number of neurons in the reservoir and their interconnections.
The link between this property and a higher dimension mapping is
illustrated in Figure 36 in the case of a XOR task. As illustrated in this
simple case, the two classes of objects (red stars and yellow spheres)
cannot be separated by a unique hyperplane (in 2 dimensions, a line).
By adding a third dimension, the problem becomes linearly separable:
the two classes of objects can be separated by a plane (the hyperplane
in 3 dimensions). The higher dimensional state corresponding to an
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input u(k) is the vector x(k) containing the response to this input of
all the reservoir neurons xi(k). Therefore each response of a reservoir
neuron xi(k) can be seen as a coordinate of this reservoir state. In
order to perform well, the number of neurons in the reservoir is gen-
erally higher than the dimension of the input. Moreover to perform
the higher dimensional mapping, the neurons must have a non-linear
behavior, so the neuron responses are independant variables. Lever-
aging higher dimension mapping is used by other machine learning
algorithms such as support vector machine and kernel methods. The
particularity of reservoir computing is the interconnection between
non-linear nodes allowing successive non-linear transformations of the
input.
The approximation property is that similar inputs give similar re-
sponses. To fulfill this requirement, the reservoir should be resilient
to noise, because otherwise a same input with some small noise could
give very different responses and be classified differently. Thus the
behavior of the reservoir should not be chaotic. The approximation
property can be seen as limiting the separation property, because,
according to approximation property, inputs will not be separated if
the difference between them is too small. Thus some trade off should
be made between these two properties.
Finally the reservoir must have a fading memory, which is a short
range memory of recent events. This memory comes from the re-
currence in the reservoir (internal loops formed by the connexions
between neurons where information is stored) [240]. This property is
important to process sequences of data where memory is required.
The separation and fading memory requirements are task dependent.
Typically a more complex problem requires a reservoir with more
neurons and connections. Fading memory depends also how far in
the past the reservoir should remember in order to classify inputs.
When these requirement are met, the reservoir maps the input in a
higher dimensional state where the useful features for classification
appear. The connection between the reservoir and the output can be
interpreted as readout weights which select in the complex response
of the reservoir the useful features for recognition.
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5.1.3 Learning procedure

Reservoir computing belongs to the category of supervised learning
algorithms. The general principle is thus the same as other algorithms
(such as support vector machines, deep learning or long short term
memory). The neural network goes through two phases : first a training
phase (or learning) where the neural network " learns " to solve the
problem and a test phase (or inference) where the neural network
applied what was learned during the training phase to solve new
problems. The system has some internal parameters that are tuned
during the training phase (in the case of reservoir computing it is
the connection weights W out

res and the bias weights Wbias). During
training some examples are presented to the neural network. For
these examples the correct output is known. The learning procedure
consists in finding a set of parameters that minimize the error between
the correct output and the actual output of the neural network. A
classical error to minimize is the L2 norm of the difference between the
obtained output and the desired output. This error normalized by the
number of examples is called root mean square error [241]. Let’s call
Ỹ the correct output for all the training examples and Y the actual
output of the reservoir computing network. The root-mean-square
error for training examples is expressed as follows:

RMS =
1

Ntrain
‖Y − Ỹ ‖2 =

1
Ntrain

√∑
k∈training

(y(k)− ỹ(k))2

(56)

The optimal weights are found such as W out
res and Wbias minimize the

error for all the training examples. Using the simplified notation seen
in previous section, we must find W which minimizes the error. Let’s
define S the reservoir state (responses of the reservoir neurons plus a
1) for all the training examples.

S =
(
s(k)

)
k∈training

(57)

The optimal W for the training examples is found doing the following
operation:

W = Ỹ S†. (58)
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† represents the Moore-Penrose pseudo inverse [242]. After finding
the optimal W for training examples, the learned parameters are
tested on new examples (belonging to a test set). The performances
are also measured using the root-mean-square error. If the error is low
for the training examples and high for the test examples, it means
that the neural network "overfits" to the training examples.
Overfitting is common problem in machine learning. This problem
appears when the model (here the neural network with tuned connec-
tions) processes well the training examples, finding features in the
training examples which do not describe well examples during the test
(so it is not generalized). This bad generalization may be due to a bad
training set (the distribution in the training set is not the same as
for the test set) or due to a too complex model (here it would be too
many neurons in the reservoir compared to the number of training
examples). In this second case neural networks have enough parame-
ters to extract features from the noise of the data. This overfitting to
the training example will be translated to very large values of weights
W (the weights somehow amplify a small regularity in the noise of
the training examples). In order to avoid this problem, Tikhonov
regularization (also referred as ridge regression) is used [243]. With
this regularization, the error to minimize is defined as follows:

‖Y − Ỹ ‖2 + λ‖W‖2 (59)

Here λ is a small positive factor. The addition of a term λ‖W‖2
in the error penalizes the large values of W , so optimal weights
would be smaller avoiding to overfit by detecting features in the noise
of the training examples. Also it is important to note that λ is a
new hyperparameter that needs to be tuned. Another advantage of
Tikhonov regularization is that an optimal set of weights always exists
and is unique ensuring the convergence of the training algorithm.

5.2 single non-linear node reservoir computing

In this section we explain how a single node can emulate the behavior
of a reservoir. This method simplifies drastically the experimental
implementation of reservoir computing and will be used in the next
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chapters 6 and 7 to demonstrate neuromorphic computing with
spin-torque nano-oscillators.

5.2.1 General idea

The general idea of single node reservoir computing [239] is to
replace the spatio-temporal response of reservoir computing classical
networks by the purely temporal response of a single node. In the later
case, the different temporal states of the single node are equivalent
to the neuron outputs of a spatial network. Later we will call these
temporal states "temporal neuron outputs".
The single node plays the role of several neurons (we called them
"temporal neurons") that have varying responses in time. The initial
input needs to be preprocessed, so that the response of the single
node is analog to the whole neural network output.
The principle of single node reservoir computing is illustrated in
Figure 37. To emulate in time the connection between the input and
the reservoir, the sequence to process u(k) is preprocessed through
convolution by a mask thus forming a preprocessed input J(t) (this
point will be explained in section 5.2.2). This preprocessed input J(t)
induces variation of the single node temporal states. These temporal
states are combined to reconstruct the output.
The preprocessed input should be specially designed to generate

temporal states of the single node that are equivalent to neuron
responses. The next subsection explains how to build the preprocessed
input J(t).

5.2.2 Preprocessing of the input

To behave as a reservoir, the non-linear node needs to be driven by
the preprocessed input J(t) it receives. A single node response x(t)
should have a behavior similar to several neurons outputs xi. Thus
the preprocessed input should impose that the single node generates
sequentially the output of the different neurons responding at different
times. To achieve this time multiplexing of the problem, the input
needs to be discretized. The input to process becomes a discrete
sequence u(k) where the index k refers to the discrete time.
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Figure 37: Reservoir computing with a single non-linear node and time mul-
tiplexing: the input is sent on a single node after being convoluted
by a mask. The single node plays one after the other every θ

time step the different temporal neurons. The time it takes to
play all the temporal neurons one after the other is called τ . The
different temporal states of the single node, which correspond to
the temporal neuron outputs, are combined linearly to obtain the
output and identify the class of the input.

The preprocessing is illustrated in Figure 38 for a one dimensional
input u(k). Figure 38a shows the classical case of a discrete input sent
to several neurons of a network, which is the situation we want to
reproduce with one single node and time multiplexing. For simplicity,
the input u(k) is a sequence of three values and only three neurons are
represented. Each neuron receives the input rescaled by the connection
weight W res

in (i) (so the neuron i receives the input W res
in (i)u(k)) and

gives a response xi(k)).
To emulate the same behavior with a single node, the input u(k) is
preprocessed (Figure 38b). The preprocessed input J(t) (magenta
curve) takes sequentially the value of the different signals received
by the neurons, which are the values W res

in (i)u(k) (sequence of red,
cyan and green rectangles in Figure 38b). Every time θ, J(t) takes
the input value of an other neuron. In particular, in Figure 38b, J(t)
takes firstly the value W res

in (1)u(1) (red rectangle), which is the signal
received by the neuron 1 at time k = 1, and after a time θ, it takes
the value W res

in (2)u(1) (blue rectangle), which is the signal received
by the neuron 2. So J(t) takes the value of the input signals for all
the n neurons at a given time step k in the time interval τ = nθ

(in Figure 38, n = 3). After τ , J(t) takes the input value of the
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Figure 38: a. Schematic of the injection of an input in a spatial network.
The input u(k) is first multiplied by a weight wi (red, cyan and
green rectangles) before being injected in the neuron i which
produces an output xi(k). In this example the input u(k) is a
one dimensional sequence of three values and only three neurons
are represented. b. Time multiplexing of the problem: the input
u(k) is preprocessed forming a continuous input (represented in
magenta) J(t). J(t) takes sequentially the values of the different
neuron inputs wiu(k) (red, cyan and green rectangles). Every
time θ, J(t) takes the input value of an other neuron. Every time
τ , J(t) takes the input value of the same neuron but at another
time step k. This continuous input J(t) is injected in the single
node, which produces a continuous response x(t).

same neuron but at the next time step k+ 1 (in Figure 38b, the two
consecutive red rectangles are separated by a time τ). If the dimension
of the input u is 1, the value of the input J(t) is given by the following
equation:

J((k− 1)τ + iθ) = W res
in (i)u(k) (60)

This equation imposes the value of J(t) only at times t that are
multiples of θ. To have J(t) continuous in time, we connect the
values imposed by equation 60 with straight lines (as represented in
Figure 38b). In practice to obtain J(t), u(k) is convoluted with a
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sequence which takes the W res
in (i) values every θ. This sequence is

generally referred as a mask in the literature. If the dimension of the
input is greater than one, the previous equation 60 can be extended:

J((k− 1)τ + iθ) =
j=dim(u)∑

j=1
W res
in (i, j)u(k) (61)

The preprocessed input J(t) will impose the θ and τ time scales
and also the number of temporal neurons that will be emulated.
When the single node receives the preprocessed input J(t), it receives
sequentially the different incoming signals of the neurons it should
emulate. Its response x(t) is thus a sequence of the temporal neuron
responses.
The time trace x(t) is the equivalent of a neural network response. To
satisfy to reservoir computing this time trace should have separability,
approximation and fading memory. These properties will be given
by the physics of the single node. The next subsection presents the
different properties that the single node should have to perform
reservoir computing.

5.2.3 Key properties of the single node

In order to ensure approximation property, the node should not
have chaotic behavior and should not be too noisy.
The separation property in a spatial reservoir depends on the non
linearity of neurons, the interconnection between neurons and the
number of neurons. The number of neurons is not constrained in
general for the node (with a fixed θ, τ just becomes bigger when the
number n of temporal neurons increases). In order to ensure a non
linear projection, the node needs to have itself a non-linear behavior.
And finally to have interconnection between the temporal neurons,
the different temporal states of the node should be linked together.
In practice this is obtained by choosing a node with some memory
mechanism which ensures that the present temporal state is linked to
past temporal states. Two main memory mechanisms are classically
leveraged to create interconnections between temporal neurons. The
first one is to choose a node which has a relaxation in its response.
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While the node is in a transient regime, its state still depends on the
initial conditions. So the present state still depends on the past state.
If θ is chosen smaller than the relaxation time, at time t the temporal
state still depends on the response at time t− θ (so xi depends on
xi−1). So in that case the preprocessed input J(t) should be designed
to suit the properties of the single node. Another common way to add
memory is to use a feedback loop. The response of the node is stored
in the delay line and reinjected later, thus creating a feedback.
These two mechanisms are also used for the fading memory. So in
conclusion, the main ingredients for the node are the low noise, the non
linearity and the memory. It is important to note that the geometry of
the connections between the temporal states has always a ring shape
(because past inputs influence present inputs).

5.2.4 Equivalence between time and space

With two time scales θ and τ the input driven non-linear node
can emulate the behavior of a neural network but with a particular
topology (ring shape). The equivalence between spatial and temporal
networks is given by the following equation:

x(k) =



x1(k)

x2(k)
...

xi(k)
...

xn(k)


=



x((k− 1)τ + θ)

x((k− 1)τ + 2θ)
...

x((k− 1)τ + iθ)
...

x(kτ )


(62)

After measuring the dynamical response x(t) of the single non-linear
node, one can retrieve the equivalent response of the reservoir by
sampling values of the time trace x(t) every θ time, according to
equation 62. The rest of the process (training and inference) is then
the same as with a classical spatial reservoir seen in previous section.
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5.3 previous hardware implementations of single
node reservoir computing

The main requirement for reservoir computing is the non-linearity of
nodes. Moreover, the reservoir computing with a single non-linear node
simplifies drastically the experimental implementation. In this context,
many experimental demonstrations were performed [239, 244, 245, 246,
247, 248, 249, 250, 251, 252]. Most of these demonstrations were made
in optics and photonic, using a single non-linear node and a delayed
feedback loop [244, 245, 246, 247, 253, 254, 250, 251, 252]. Some
other works demonstrated reservoir computing with other systems,
such as bucket of water, soft-robotic arm [249] or cat cortical brain
[255], or VLSI [256], but the tasks solved were rather simple. Most of
the photonic implementations use a phase modulator as single non
linear node [244, 245, 246, 251, 247, 252, 254, 250]. In this system

Figure 39: Scheme of Mach-Zehnder modulator. One arm of the modulator
is modulated by 2 electrodes, an RF electrode and a DC electrode.
The former contains the input and the feedback signal, the latter
sets the offset phase of the nonlinearity. Extracted from Appeltant
et al [257].

(Figure 39), the output power depends non linearly on the input power
and the voltage imposed on the second arm of the modulator. The
output power can be rewritten as:

P (v(t)) = P0sin
2(πv(t)/(2Vπ) + φ) (63)

where P0 is the input power of the laser, v(t) is the control voltage
of the modulator, Vπ is the efficiency of the modulator and φ is an
arbitrary phase. In practice, the preprocessed input J(t) is converted
into an oscillation voltage V (t), and the Mach-Zehnder modulator
receives a control voltage v(t) = V (t) + V0, where V0 is a bias current.
The light power P , which is read using for instance a photodiode, is
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then a non-linear transformation of the preprocessed input J(t). The
memory mechanism comes from delay lines, which inject the signal
into various parts of the circuit: in the non-linear node [244, 246], after
it [245, 251, 247], in an other non linear node [254, 250], or in a passive
cavity [252]. Figure 40 is a picture of the implementation used in [246].

Figure 40: Picture of the opto-electronic reservoir computing set-up used in
[246]. Extracted from [257].

The key elements here are the non linear Mach-Zehnder modulator,
the delay loop made of the optical fiber, the amplifier and the low-pass
filter, and the read-out photodiode. The system is powered by a diode
laser. These experimental implementations could perform successfully
complex tasks such as time series prediction [245, 251, 247, 252, 254]
or speech recognition [244, 246, 251, 247, 252]. The strength of optics
is the speed of computation [251, 250] and delay information with
low loss in optical fibers. Moreover, this implementation uses only
standard photonic components from telecommunications which are
off-the-shelf and already well optimized. But such devices are hardly
scalable because components such as phase modulators are centimeters
big, kilometers of optical fibers are used and the use of lasers is quite
energy intensive (Figure 40). A photonic spatial reservoir has been
proposed [248], but the connection length on this 16 nodes chip was 2
cm, and it is predicted be downscaled only to 200 µm, which is still
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too large for a fully analog brain-inspired chip. Finally, theoretical
works propose to use skyrmions [258] and quantum systems [259] for
reservoir computing.

5.4 conclusion

In conclusion of this chapter, the principle of reservoir computing
is to leverage the response of a recurrent neural network to map the
initial problem in a higher dimension state where it is more likely to
become linearly separable. To achieve this task, the reservoir should
have separability, approximation and fading memory properties. Then
learning to solve the problem is a linear regression problem.
This neural network architecture can be implemented using the dy-
namics of a single non-linear node which has some memory mechanism.
It also requires preprocessing the input signal.
Complex tasks were performed experimentally using a single non-linear
node with different physical systems (notably optics and photonics).
But these systems are difficult to scale down and generally their power
consumption may be relatively high. In the following chapters we will
perform reservoir computing with a single spin-torque nano-oscillator
as non-linear node.
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6
S P I N T R O N I C I M P L E M E N TAT I O N O F
R E S E RV O I R C O M P U T I N G

6.1 experimental implementation

6.1.1 Samples

The samples used for this demonstration are fabricated by our
collaborators from National Advanced Institute for Science and Tech-
nology. As mentionned earlier in chapter 4, they are magnetic tunnel
junctions (MTJ) with a vortex magnetization in the free layer. These
samples were selected for their excellent signal over noise ratio prop-
erties [173]. A schematic of the sample is shown in Figure 41. The

Figure 41: Schematic of the sample stack (thickness are indicated in nanome-
ters).

pinned layer is made of a synthetic artificial antiferromagnet (SAF)
in order to obtain a large spin polarization (see chapter 4). The SAF
is PtMn(15)/Co71Fe29/Ru/Co71Fe20B20/Co70Fe30 stack, where
PtMn is an antiferromagnet, Co71Fe29 is the first ferromagnet pinned
through exchange bias interaction to the antiferromagnet. The sec-
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ond ferromagnet Co71Fe20B20/Co70Fe30 interacts with the first one
through RKKY interaction. The Ru layer thickness is designed so the
RKKY interaction forces the two ferromagnet to have magnetizations
in opposite direction. The MgO tunnel barrier and FeB free layer were
selected for high TMR ratio (135%) and low α (αFeB ≈ 0.07). The
magnetic tunnel junction (MTJ) films have a stacking structure of
buffer/PtMn(15)/Co71Fe29(2.5)/Ru(0.9)/Co71Fe20B20(1.6)/
Co70Fe30(0.8)/MgO(1)/Fe80B20(6)/MgO(1)/Ta(8)/Ru(7) (with
thicknesses given in parenthesis in nanometres) and were prepared
by ultrahigh vacuum (UHV) magnetron sputtering. After annealing
at 360 C for 1 h, the resistance-area products (RA) were approxi-
mately 3.6 Ω/µm2. Circular-shape MTJs with a diameter of approx-
imately 375 nm were patterned using Ar ion etching and e-beam
lithography. The resistance of the samples is close to 40 Ω and the
magneto-resistance ratio is about 135% at room temperature. For the
dimensions used here (length L=6 nm and radius R=188 nm), the
FeB layer has a remanent vortex magnetization. Under d.c. current
injection, the core of the vortex steadily gyrates around the center of
the dot with a frequency in the range 250-400 MHz for the oscillators
we consider here. Vortex dynamics driven by spin torque are well
understood (chapter 4), well controlled and have been shown to be
particularly stable ([181]).

6.1.2 Measurement set-up

Measurement set-up principle is shown in Figure 42. The experi-
mental pre-processed input signal Vin is generated by a high-frequency
arbitrary-waveform generator and injected as a current through the
magnetic nano-oscillator. The sampling rate of the source is set to 200
MHz (20 points per interval of time θ) for the spoken-digit recognition
task and 500 MHz (50 points per interval of time θ) for the classifica-
tion of sines and squares. The peak-to-peak voltage variation in the
input signal is 500 mV, which corresponds to peak-to-peak current
variations of 6 mA (part of the incoming signal is reflected owing to
impedance mismatch between the sample and the circuit). The bias
conditions of the oscillator are set by a d.c. current source and an
electromagnet that applies a field perpendicular to the plane of the
magnetic layers. These bias conditions impose the operating point of
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Figure 42: Principe of the measurement set-up: A magnetic field delivered
by an electromagnet (not represented) and DC source fix the
operating point of the oscillator. The signal to analyze is sent
by an arbitrary waveform generator. The spin-torque emits an
oscillating voltage. A diode allows extracting the amplitude of
the oscillations.

the oscillator. The oscillating voltage emitted by the nano-oscillator
is rectified by a planar tunnel microwave diode, with a bandwidth of
0.1-12.4 GHz and a response time of 5 ns. The input dynamic range
of the diode is between 1 µW and 3.15 mW, corresponding to a d.c.
output level of 0-400 mV. We use an amplifier to adjust the emitted
power of the nano-oscillator to the working range of the diode. The
output signal is then recorded by a real-time oscilloscope.
In practice, the spin-torque oscillator is connected in reflection configu-
ration. The actual circuit (see Figure 43) is slightly more complicated
than the previous schematic. Firstly, in order to decouple the d.c
source and the incoming alternating signal from the arbitrary wave-
form generator, the oscillator is connected to a bias tee. The same
capacity arm is used to send the input signal and receive the oscil-
lator response. The arbitrary waveform generator is thus connected
through a power splitter. At the power splitter interface, only half
of the input signal is sent to the oscillator. The remaining other half
of the input signal is then suppressed by a subtraction process: the
second channel of the arbitrary waveform generator send the opposite
of the undesired signal. The second channel of the arbitrary waveform
generator is also connected to the rest of the circuit through a power
divider. Subtraction is achieved by ensuring that these two signals
are in phase (delay is controlled by tuning the length of the cables).
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After subtraction, a circulator is placed. Its goal is to suppress the
residual signal due to an imperfect subtraction (due to a small phase
difference between the two signals). In practice, the circulator acts
like a band-pass filter, which suppresses the lower frequency noise
coming from a bad substraction. Finally after the circulator, only the
signal of the oscillator is measured (noise induced by a bad subtrac-
tion represents about only 1% of the final signal). Then as described
above, the signal is preamplified before passing through a diode which
rectifies it. At the end the oscilloscope measures the amplitude of the
oscillations which is the variable used for the computation.

Figure 43: Detail of the measurement circuit: The oscillator is connected in
reflection mode. The d.c. source signal and arbitrary waveform
signal are decoupled by the bias-T. Injection of the arbitrary
waveform signal is achieved with a power divider. A second power
divider allows subtracting residual signal of the arbitrary wave-
form generator. A circulator is used as a band-pass filter. The
oscillator signal is pre-amplified before going through a tunnel
diode. An oscilloscope allows measuring the dynamical signal.

6.2 physical properties of the oscillator used for
computation

The two main properties of the spin-torque nano-oscillator used for
computation are the non linearity of the oscillation amplitude with
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the input dc current and the relaxation of the oscillation amplitude.
These two properties are necessary to ensure the separation property
and the fading memory when reservoir computing is performed.

6.2.1 Non-linearity of the oscillations amplitude

As it has been seen previously in chapter 5, a reservoir realizes a
non linear transformation of an input signal. This non-linearity allows
the reservoir to project the initial problem in a higher dimensional
state where different classes can be linearly separated (separation
property). The variable used for computation is the amplitude level

Figure 44: a, Measured a.c. voltage emitted by the oscillator as a function of
time, Vosc(t) = Ṽ (t)cos(ωt+ φ), for a steady current injection of
7 mA at an external magnetic field µ0H = 430 mT. The dotted
blue lines highlight the amplitude Ṽ . b, Voltage amplitude Ṽ as
a function of d.c. current I at µ0H = 430 mT (blue squares).
The purple shaded area highlights the typical excursion in the
voltage amplitude that results when an input signal of Vin = ±250
mV is injected (here for I = 6.5 mA (vertical dotted line) and
µ0H = 430 mT).

(Figure 44a). The non-linearity used in this demonstration is thus the
non-linearity of the amplitude level depending on the d.c. current.
Figure 44b shows this non-linearity for a magnetic field of 430 mT.
Below a threshold current (which is around 3 mA for this sample at this
magnetic field), the oscillator does not emit any signal because the spin
torque is not sufficient to compensate the pinning and thus the spin
polarized current does not move the vortex core. After this threshold
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current, the vortex core gyrates. The amplitude of the oscillation is
proportional to the radius of the vortex orbit s. The non-linearity
of the amplitude evolves approximatively like λ(I,H⊥)

√
I − Ith (see

chapter 4 section 4.2.2).
As mentioned in the previous section, the input signal delivered by
the arbitrary waveform generator has an amplitude of 500 mV peak to
peak which corresponds to a 6 mA variation of injected current. Thus
the input will induce variations on a limited part of the non linear
amplitude curve. This area is represented in magenta in the figure for
a d.c. current of 6 mA. The observation of Figure 44 illustrates the
effect of the bias current on oscillation amplitude response Ṽ to an
a.c. current. By changing the d.c. current, one would move the pink
area (which is centered on the bias d.c current value) and thus the
typical excursion in the voltage amplitude which is explored.
Influence of the magnetic field is also crucial because it changes the
shape of the non linear function itself. It changes the threshold current
(for smaller fields the threshold current is higher) and the amplitude
of the non linearity. Choice for an optimal d.c. current and an optimal
magnetic field will be discussed in chapter 8.

6.2.2 Relaxation of the oscillation amplitude

The second essential property for single node reservoir computing
is a form of memory. This memory is important both for ensuring the
connectivity between temporal neurons and to ensure a fading memory.
In this demonstration only the intrinsic memory of the oscillator which
is due to the relaxation of the amplitude is used. When the vortex
core quits its orbit, it does it progressively. Thus the orbit radius and
the proportional amplitude of the oscillation also vary progressively.
Figure 45 shows the variation of the oscillation amplitude when the
oscillator is subjected to a varying input signal. The response of the
oscillator is plotted in grey and the amplitude of the oscillation is
highlighted in blue. Transitions in the input signal are much more
abrupt than in the oscillation amplitude signal. The characteristic
time of these changes is the relaxation time of the oscillator which is
coarsely defined by the frequency and the damping factor (Trelax˜ 1

αf

see chapter 5 section 4.2.1). For our sample, the relaxation time is
around 200 ns, besides when the current is close to the threshold.
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Figure 45: Relaxation of the oscillation amplitude: a. Input signal sent by the
arbitrary waveform generator (magenta). b. Transient response of
the oscillator. The emitted oscillating voltage is plotted in grey.
The amplitude of the oscillation is figurated by dashed blue lines.

For the later regime, the relaxation time is larger but the emission
amplitude is low and very noisy. So it is difficult to exploit this regime
for computation. A detailed evaluation of the relaxation time will be
made in chapter 10 section 10.1.
The relaxation is important to determine which time θ is used to em-
ulate the response of a temporal neuron. In order to have connections
between the temporal neurons, we should choose θ < Trelax. In the
results in chapter 7, θ = 100 ns will be chosen. Discussion about this
choice will be made in chapter 8.

111





7
R E S U LT S O N C L A S S I F I C AT I O N TA S K S

In this chapter we present the classification results obtained using
a single vortex spin-torque nano-oscillator in the framework of single
node reservoir computing [2]. Two different tasks were studied. First,
sine versus square classification task was studied. The second task we
studied is spoken digit recognition.

7.1 results on sine/square recognition task

7.1.1 Task

 

Figure 46: Pattern to recognize: the sine and square periods are discretized
in 8 values called si1 to si8 (represented in warm colors) and sq1
to sq8 (represented in cool colors).

The sine and square waveform classification task has been already
used in other studies [244] to evaluate the performance of reservoir
computing based on a delayed feedback spin torque oscillator. The
goal is to classify each point of the input as part of a sine by returning
an output 0, or as part of a square by returning an output 1. Each
period of sine and square is discretized in 8 points and therefore we
have 16 cases to process (see Figure 46). We refer to the 8 points of the
sine as si1-8 represented in warm colors and the 8 points of the square
as sq1-8 represented in cold colors. Because of the symmetries the
inputs take 5 different values in a sine period and two different values
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in a square input. To return the same output value for 5 different
input values of a sine (or 2 in the case of the square), the reservoir
should have a non-linear behavior. In addition, in the sine period the
3rd and the 7th point (referred as si3 and si7 in Figure 46) have a
value +1 and -1 that corresponds to the values taken by the input in
the square. So in the absence of memory, when the input value is +1
or -1 it is impossible to know whether these points belong to a sine or
to a square. Therefore this temporal pattern recognition task is not
trivial because it needs both the non-linearity and the memory of a
neural network.

7.1.2 Protocol

The input u(k) is composed of 1280 points (160 randomly arranged
periods of sine or square). The first half of the points are used for
training (to find optimum output weights W ) and the second half for
testing. Different steps of the protocol are represented in Figures 47a-c.
Figure 47 shows how the oscillator is driven by the input signal. The
input u(k) (Figure 47a) is a sequence of discretized sine and square
periods. This discrete input is then preprocessed. The preprocessed
input J(t) for a sine and square period is represented in Figure 47b.
An input with only 12 temporal neurons is represented here in order
to clarify the figure. Here the mask contains only binary values +1
and -1 and a reservoir with 12 temporal neurons is emulated. In
the next subsection results for a 24 temporal neurons reservoir will
be presented. The time step θ is taken here to be equal to 100 ns
which was found to be optimal. These points will be developed in
chapter 8. When the oscillator receives this preprocessed input, it
emits a transient response. The amplitude of the emitted oscillation
measured experimentally is plotted in Figure 47c.
Figure 48a shows how to retrieve the higher dimensional mapping

operated by the single oscillator driven by the preprocessed input. This
step is done off line on a computer. Discrete points are sampled every
time step θ. The values of these points correspond to the response
of the temporal neurons. Once these value are selected, one obtains
the reservoir state. To sample properly the temporal traces of the
oscillation amplitude, they should be aligned with the preprocessed
input (misalignment can result in bad classification).The rest of the
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Figure 47: Sine square classification process: a. signal to classify composed
of periods of sine and squares. The points to identify as belonging
to sine or square are figurated in red. b. Preprocessed input signal
for a sine (dark blue) and square (light blue) period. In this case
a mask with 12 values is used. c. Oscillation amplitude transient
response to the oscillator signal.

process is a standard reservoir computing procedure. The neuron
responses are linearly combined to reconstruct the output. This step
is shown in Figure 48b. The coefficients of the linear combination
are obtained with the standard learning procedure seen in chapter 5.
At the end the single oscillator with time multiplexing emulates the
response of a ring shape recurrent neural network. This architecture is
represented in Figure 48c. Response of this equivalent neural network
is used to classify the sine and square inputs.
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Figure 48: Higher dimension mapping and reconstruction of the output: a.
Oscillator voltage amplitude Ṽ changes corresponding to a single
time segment τ : Here, 12 neurons (12 samples Ṽi separated by the
time step θ) are used to construct the output. b. Target for the
output reconstructed from the voltages Ṽi in each time segment
τ : output

∑N
i=1 wiṼi. c. The transient states of the oscillator give

rise to a chain reaction emulating the neural network with a ring
structure.

7.1.3 Set point dependent results

Figure 49 shows the reconstructed output obtained by experimen-
tally emulating a 24-neuron network. The root mean square (rms)
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Figure 49: Reconstructed output (red) and target (grey) in response to an
input waveform with 80 randomly arranged sines and squares.
The magnetic field is 447 mT, and the applied current 7.2 mA.
The results are based on 24 neurons separated by θ = 100 ns.

deviation between target and output is 11 %, which is small enough
to distinguish between sines and squares without any error (perfect
classification) for the chosen choice of parameters: d.c. current =
7.2 mA, magnetic field H= 447 mT, input amplitude Vin= 500 mV
(equivalent to 6 mA peak to peak). Indeed as it can be observed in
Figure 49, if we trace a threshold line (in blue) at 0.5, all the outputs
for square inputs are over this threshold and all the points for sine
inputs are under this threshold. This perfect classification of sine and
squares is obtained for an optimal operating point (imposed by the
values of the bias d.c. current and the bias magnetic field). As it can be
seen in Figure 50, the quality of pattern recognition, characterized by
the root-mean-square of deviations between the reconstructed output
and the target, varies from 10% to more than 30% depending on the
bias conditions. The interpretation of the optimal operating point
conditions will be made in chapter 8. After selecting this region of
magnetic field and d.c. current leading to high performance of the
oscillator for sine/square classification, we moved to the more complex
task of spoken digit recognition.
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Figure 50: Rootmean-square (r.m.s.) deviation of output-to-target deviations:
map as a function of d.c. current I and magnetic field µ0H. For
these results, Vin= 500 mV and θ= 100 ns.

7.2 results on spoken digit recognition

7.2.1 Task

Spoken digit recognition is a widely used benchmark task in the
hardware reservoir computing community (see section 5.3). The goal
of the task is to recognize digits from audio waveforms produced by
different speakers. For this task, the inputs are taken from the NIST
TI-46 data corpus. The input consists of isolated english spoken digits
said by five different female speakers. Each speaker pronounces each
digit ten times. The 500 audio waveforms are sampled at a rate of
12.5 kHz and have variable time lengths. Only female speakers are
chosen to benchmark with the literature. Adding male and children
would make the task more difficult to solve because it would add more
different tones of voices and thus increase the dispersion of the data
to classify.
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the voltage across the junction (Fig. 1b). Spin-torque nano-oscillators 
are therefore simple and ultra-compact: their lateral size can be scaled 
down to 10 nm and their power consumption reduced to 1 μ​W (ref. 13).  
Because they have the same structure as present-day magnetic mem-
ory cells, they are compatible with complementary metal–oxide– 
semiconductor (CMOS) technology, have high endurance, operate at 
room temperature and can be fabricated in large numbers (currently 
up to hundreds of millions) on a single chip14. Just as the frequency of 
a neuron is modified by the spikes received from other neurons, the 
frequencies of spin-torque nano-oscillators are highly sensitive to the 
magnetization dynamics of neighbouring oscillators to which they are 
coupled15,16. Together, these features of spin-torque nano-oscillators 
make them promising candidates for use in neuromorphic computing 
with large arrays of coupled oscillators17–21. However, they have yet to 
be used to perform an actual computing task.

Our idea is to exploit the amplitude dynamics of spin-torque 
nano-oscillators for neuromorphic computing. Their oscillation ampli-
tude ~V  (dotted blue line in Fig. 1b) is robust to noise, owing to the 
confinement that is provided by the counteracting torques exerted by 
the injected current and magnetic damping22. In addition, ~V  is highly 
nonlinear as a function of the injected current and depends intrinsically 
on past inputs15. Exploiting the amplitude dynamics of spin-torque 
nano-oscillators thus combines in one single nanodevice the two most 
crucial properties of neurons—nonlinearity and memory—the 

realization of which would otherwise require several electronics com-
ponents and a much larger on-chip area using conventional CMOS23. 
To compute, we encode neural inputs in the time-dependent current 
I(t) that is injected into the oscillator and use the amplitude response 
~V t( ) as the neural output.

Our nano-oscillators consist of circular magnetic tunnel junctions, 
with a 6-nm-thick free layer of FeB of 375-nm diameter, which have 
magnetic vortex ground states (see Methods). We measure the dynam-
ics of the signal amplitude ~V t( ) directly using a microwave diode. In 
Fig. 1c we show the nonlinear response of the amplitude ~V  to a d.c. 
current IDC: ∝ −~V I I( )DC th , where Ith is the current threshold for 
steady oscillations to occur15. Using an arbitrary waveform generator, 
we inject a varying current though the junctions in addition to the d.c. 
current, using the set-up schematized in Fig. 1d. The resulting voltage 
oscillations, recorded with an oscilloscope, are shown in Fig. 1e. The 
amplitude of the oscillator varies in response to the injected d.c. current, 
with a relaxation time that induces a few hundred nanoseconds  
memory of past inputs22.

Recent studies have revealed that time-multiplexing can enable a 
single oscillator to emulate a full neural network24–26. Here we use 
this approach—a form of “reservoir computing”4,5 (see Methods)—
to demonstrate the ability of spin-torque nano-oscillators to realize 
neuromorphic tasks. We perform a benchmark task of spoken-digit 
recognition. The input data, taken from the TI-46 database27, are 

200 202 204 206 208 210

–150

0

150

V
ol

ta
ge

 (m
V

)

Time (μs)

1 2 3 4 5 6
0.0

0.2

0.4

0.6

A
m

p
lit

ud
e 

(a
.u

.)

Time ( )

1 2 3 4 5 6 7 8 9
0

10
20
30
40
50
60
70
80
90

R
ec

og
ni

tio
n 

ra
te

 (%
)

Number of utterances, N

1 2 3 4 5 6 7 8 9
65

70

75

80

85

90

95

100

R
ec

og
ni

tio
n 

ra
te

 (%
)

Number of utterances, N

Cochlear �ltering

With oscillator

Without oscillator

f

Input:
audio �le

a

Filtering to
frequency
channels

(spectrogram
or cochlear model) 

Pre-processed
input 

b

c

Recorded
trace

Reconstruction of
the output

(by a computer) 

d

Without oscillator

Spectrogram �lteringe

200 202 204 206 208 210

6

9

12

V
ol

ta
ge

 (m
V

)

Time (μs)

20

78 or 65 frequency
channels

2,000 4,000 6,000
–0.1

0.0

0.1

A
m

p
lit

ud
e 

(a
.u

.)

Time (a.u.)
With oscillator

“1”

With or without
oscillator

Figure 2 | Spoken-digit recognition. a–d, Principle of the experiment.  
a, Audio waveform corresponding to the digit 1 pronounced by speaker 1. 
b, Filtering to frequency channels for acoustic feature extraction. The 
audio waveform is divided in intervals of duration τ. The cochlear model 
filters each interval into 78 frequency channels (65 for the spectrogram 
model), which are then concatenated as 78 (65) values for each interval, to 
form the filtered input. c, Pre-processed input (transformed from the 
purple shaded region in b). The filtered input is multiplied by a randomly 
filled binary matrix (masking process), resulting in 400 points separated 
by a time step θ of 100 ns in each interval of duration τ (τ =​ 400θ).  
d, Oscillator output. The envelope ~V t( ) of the emitted voltage amplitude of 
the experimental oscillator is shown (μ0H =​ 430 mT, IDC =​ 6 mA). The  
400 values of ~V t( ) per interval τ (~V ,i  sampled with a time step θ) emulate 
400 neurons. The reconstructed output ‘1’, corresponding to this digit, is 

obtained by linearly combining the 400 values of ~V ,i  sampled from each 
interval τ. e, f, Spoken-digit recognition rates in the testing set as a 
function of the number of utterances N used for training for the 
spectrogram filtering (e; μ0H =​ 430 mT, IDC =​ 6 mA) and for the cochlear 
filtering (f; μ0H =​ 448 mT, IDC =​ 7 mA). Because there are many ways  
to pick the N utterances, the recognition rate is an average over all  
10!/[(10 −​ N)!N!] combinations of N utterances out of the 10 in the dataset. 
The red curves are the experimental results using the magnetic oscillator. 
The black curves are control trials, in which the pre-processed inputs are 
used for reconstructing the output on a computer directly, as described in 
Methods, without going through the experimental set-up. The error bars 
correspond to the standard deviation of the recognition rate, based on 
training with all possible combinations.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Figure 51: Protocol for spoken digit recognition. a-d, Principle of the experi-
ment. a, Audio waveform corresponding to the digit 1 pronounced
by speaker 1. b, Filtering to the frequency channels for acoustic
feature extraction. The audio waveform is divided in intervals
of duration τ . The cochlear model filters each interval into 78
frequency channels (65 for the spectrogram model), which are
then concatenated as 78 (65) values for each interval, to form
the filtered input. c, Pre-processed input (transformed from the
purple shaded region in b). The filtered input is multiplied by a
randomly filled binary matrix (masking process), resulting in 400
points separated by a time step θ of 100 ns in each interval of
duration τ (τ = 400θ). d, Oscillator output. The envelope Ṽ (t)

of the emitted voltage amplitude of the experimental oscillator
is shown (H = 430 mT, I = 6 mA). The 400 values of Ṽ (t) per
interval τ (Ṽi, sampled with a time step θ) emulate 400 neurons.
The reconstructed output ’1’, corresponding to this digit, is ob-
tained by linearly combining the 400 values of Ṽi, sampled from
each interval τ .
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7.2.2 Protocol

The recognition of audio waveforms requires a time-domain to time-
frequency domain transformation, prior the reservoir. For this purpose
we used two different filtering methods: spectrogram and cochlear
models. Both filters break the word into several time intervals Nτ

of duration τ and analyze the frequency content in each interval τ
through either a Fourier transform (spectrogram model; 65 channels,
Nτ ∈ 24, ..., 67) or a more complicated nonlinear approach (cochlear
model; 78 channels, Nτ ∈ 14, ..., 41). A detailed comparison of these
two methods will be done in chapter 9. The input for each word
is composed of an amplitude for each of the Nf = 65 or Nf = 78
frequency channels times Nτ time intervals. This input is pre-processed
by multiplying the frequency content for each time interval by a mask
matrix containing Nf ×Nθ random binary values, giving a total of
Nτ ×Nθ values as input to the oscillator (Figure 51). Here, we are
modeling Nθ = 400 input neurons, each of which is connected to all
of the frequency channels for each time interval. Each preprocessed
input value is consecutively applied to the oscillator as a constant
current for a time interval of θ ≈ 100 ns. This time is short enough
to guarantee that the oscillator is maintained in its transient regime
so the emulated neurons are connected to each other, but is long
enough to let the oscillator respond to the input excitation. The
amplitude of the a.c. voltage across the oscillator is recorded for
offline post-processing (Figure 51d). As presented in chapter 5, the
post-processing of the output consists of two distinct steps (training
and testing). The goal of training is to determine a set of weights
wi,θ, where i indexes the desired digit. These weights are used to
multiply the output voltages Ṽθ to give 10Nτ output values, which
are then averaged over the Nτ time intervals to give 10 output values
yi, which should ideally be equal to the target values yi = 1.0 for
the appropriate digit and 0.0 for the rest. In the training process, a
fraction of the utterances are used to train these weights; the rest of
the utterances are used in the classification process to test the results.
The optimum weights are found by minimizing the difference between
ỹi and yi for all of the words used in the training. In practice, optimal
values are determined by using techniques for extracting meaningful
eigenvalues from singular matrices such as the linear Moore-Penrose
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pseudo-inverse operator (denoted by a dagger symbol † as seen in
chapter 5). If we consider the target matrix Ỹ , which contains the
targets ỹi for all of the time steps τ used for the training, and the
response matrix S, which contains all neuron responses for all of the
time steps τ used for the training, then the matrix W , which contains
the optimal weights, is given by W = Ỹ †. This step is performed on
a computer and takes several seconds. During the classification phase,
the ten reconstructed outputs corresponding to one digit are averaged
over all of the time steps τ of the signal, and the digit is identified by
taking the maximum value of the ten averaged reconstructed outputs.
The averaged reconstructed output that corresponds to the considered
digit should be close to 1 and the others should be close to 0. The
efficiency of the recognition is evaluated by the word success rate,
which is the rate of digits that are correctly identified. The training
can be done using more or fewer data (here "utterances"). We always
trained the system using the ten digits spoken by the five speakers.
The only parameter that we changed is the number of utterances used
for the training. If we use N utterances for training, then we use the
remaining 10−N utterances for testing. However, some utterances
are very well pronounced whereas others are hardly distinguishable.
As a consequence, the resulting recognition rate depends on which N
utterances are picked for training in the set of ten (for example, if
N = 2, then the utterances picked for training could be the first and
second, but also the second and third, or the sixth and tenth, or any
other of the 10!/(8!2!) combinations of 2 picked out of 10). To avoid
this bias, the recognition rates that we present here are the average of
the results over all possible combinations. The error bars correspond
to the standard deviation of the word recognition rate. In order to see
the contribution of the spin-torque oscillator in the recognition process
we compare the results obtained from the oscillator time traces with
a control trial. During the control trial, the pre-processed inputs are
used for reconstructing the output on a computer directly, without
going through the experimental set-up.

7.2.3 Preprocessing dependant results

The improvement shown in the experimental results over the control
results (see Figure 52a) indicates that the spin-torque nano-oscillator
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Figure 52: a,b, Spoken-digit recognition rates in the testing set as a function
of the number of utterances N used for training for the spectro-
gram filtering (a; H= 430 mT, I= 6 mA) and for the cochlear
filtering (b; H= 448 mT, I=7 mA). Because there are many ways
to pick the N utterances, the recognition rate is an average over all
10!/[(10−N)!N !] combinations of N utterances out of the 10 in
the dataset. The red curves are the experimental results using the
magnetic oscillator. The black curves are control trials, in which
the pre-processed inputs are used for reconstructing the output
on a computer directly, without going through the experimental
set-up. The error bars correspond to the standard deviation of the
recognition rate, based on training with all possible combinations.

greatly improves the quality of spoken-digit recognition, despite the
added noise that is concomitant to its nanometre-scale size. In this case,
the extraction of acoustic features, achieved by Fourier transforming
the audio waveform over finite time windows, plays a minimal part
in classification. Without the oscillator (black line), the recognition
rates are consistent with random choices; with the oscillator (red line),
the recognition rate is improved by 70%, reaching values of up to
80%. This example highlights the crucial role of the oscillator in the
recognition process. Using the cochlear filtering (Figure 52b), which
is the standard in reservoir computing and has been optimized on the
basis of the behavior of biological ears, we achieve recognition rates of
up to 99.6%, as high as the state-of-the-art. Compared to the control
trial, the oscillator reduces the error rate by a factor of up to 15. Our
results with a spin-torque nano-oscillator are therefore comparable
to the recognition rates obtained with more complicated electronic
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or optical systems (between 95.7% and 99.8% for the same task with
cochlear filtering).

7.3 conclusion

In this chapter, two tasks were used to evaluate the performance of
reservoir computing using the dynamic of a spin-torque nano-oscillator:
sine/square classification and spoken digit recognition. Sine/square
classification is a simpler task but allows to test the non-linear behavior
and the memory of the reservoir which are the key features to achieve
good classification on more complex tasks. Using 24 temporal neurons,
a systematic study of classification for different magnetic fields and
d.c. current bias conditions was led. In the best case a 10% root-mean-
square deviation between the reconstructed output and the target was
obtained, which allows perfect classification of sine and square inputs.
Best bias conditions were selected to move on to the more complex
task of spoken digit recognition. Spoken digit recognition requires
frequency filtering of audio file prior to sending the input to the
oscillator. Two filtering methods where studied: first a simple linear
spectrogram method and a more complex cochlear decomposition to
benchmark our result with the existing litterature. Using spectrogram
method, the oscillator improves the recognition up to 70% and the
overall success rate is 80% by training on 90% of the data. This result
stresses the critical role of the nano-oscillator for recognition. Using
a cochlear decomposition, 99.6% success rate was reached which is
state of the art results for both numerical and hardware methods.
Also it is important to note that training a linear classifier directly on
a cochleogram allows to reach a success rate of 96%. Thus cochlear
decomposition already separates a part of the input. The results
presented in this chapter are the first experimental demonstration
of neuromorphic computing performed with a nanoscale "neuron".
For this demonstration, experimental parameters such as the filtering
method, the temporal time scale θ and the operating point (d.c current
and field) were specially selected to achieve good classification results.
Next part will elucidate the influence of these different parameters
and give guidelines to choose them appropriately.
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Part IV

I N F L U E N C E O F T H E E X P E R I M E N TA L
P R O T O C O L O N T H E F I N A L
C L A S S I F I C AT I O N R E S U LT





8
O P T I M I Z I N G T H E E X P E R I M E N TA L
PA R A M E T E R S A N D D ATA P R O C E S S I N G F O R
I M P R O V E D C L A S S I F I C AT I O N

In this chapter, the different parameters that can be tuned to
optimize the recognition rate are presented. The performance are
evaluated on the sine and square classification task which is easier
to deal with. The first section presents the influence of the time step
θ. The second section shows how to bring memory with a numerical
shift. The third section analyzes the effect of the operating point.

8.1 theta dependence and input amplitude

As it was explained in chapter 7, the memory and connectivity
in single oscillator reservoir computing is obtained by driving the
oscillator with a fast varying preprocessed input. The rate of the
input variation is θ. In this part, we discuss how to optimize θ to
obtain the best classification performances. The results presented are
obtained for the operating point µ0H = 440 mT and I = 7.0 mA.
Figure 53 illustrates the dynamical response of the oscillation envelope
for different values of θ and different amplitudes of the input. The
upper left figure (Figure 53a) shows the input signal sent to the
oscillator by the arbitrary waveform generator (AWG). The amplitude
of the signal is here normalized but three different amplitude values
where tested (300 mV, 400 mV and 500 mV peak to peak). The
time is also normalized and given as numbers of θ. Other figures
represent the oscillation amplitude response for respectively θ = 25 ns
(Figure 53 b), θ = 100 ns (Figure 53c) and θ = 300 ns (Figure 53d).
For θ = 25 ns, the time rate of the input is much shorter than the
intrinsic relaxation time of the oscillator measured around 200 ns
(θ = Trelax/8) so the oscillator stays in the transient regime all the
time. The memory effect is in this case strong but the amplitude of
the emitted oscillation amplitude signal is quite small. Indeed the
oscillator does not have the time to reach higher values. Amplitude
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a b

c d

Figure 53: Effect of θ on the dynamics of oscillation amplitude: a, normalized
input signal to the oscillator (magenta curve). In order to be
general for all the following cases, the time scale is normalized
by θ and the voltage is normalized by the amplitude of the input.
b,c,d, Ṽ oscillation amplitude variation of the oscillator response
for three level of input 300 mV (black), 400 mV (red) and 500
mV (blue) in the case of time step θ = 25 ns (b), θ = 100 ns (c)
and θ = 300 ns (d). Measurements are made at µ0H = 440 mT
and I = 7.0 mA.

of the oscillation also depends of the input peak to peak amplitude
and for an input amplitude of 300 mV, the signal is particularly
small. At the other extreme for θ = 300 ns, superior to the oscillator
relaxation time (θ = 1.5Trelax), the measured amplitude response
reaches its saturation regime and the oscillator loses the memory of
what happened one θ in the past. But for such high θ, the amplitude
of the signal is much larger because the oscillator reaches it saturation
regime. Finally for an intermediate value θ = 100 ns (approximatively
Trelax/2), the oscillator still remains in a transient regime with a large
amplitude. Intuitively, we expect that the trade off will be to choose
θ allowing to have a decent amplitude (so a decent signal over noise
ratio) and still have memory. It is important to note that a higher
input amplitude for a fixed theta always improves the signal to noise
ratio. Next Figure 54 presents the experimental RMS error result as a
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function of θ. For 500 mV, increasing θ first decreases the RMS until

0 100 200 300 400 500

15

20

25

R
M

S
 (

%
)

θ (ns)

 300 mV
 400 mV
 500 mV

Figure 54: Classification performance depending of θ: Root mean square
of output-to-target deviations as a function of the time step
θ (separation between transient states of the oscillator Ṽi) for
different amplitudes of the input signal (300, 400 and 500) mV
when the target is in exact phase with the input.

an optimum after which the RMS increase again. This optimum seems
to be around 100 ns. In the first part the error decreases because the
signal to noise ratio increases but after Trelax/2 the error increases
again because of a loss of memory. So the causes of the error change
depending on θ. This evolution trend is verified for an input amplitude
of 400 mV. In that case, surprisingly the optimum seems to occur for
a smaller θ of 50 ns. However the general result is always worse than
for 500 mV input amplitude. Finally for an input amplitude of 300
mV, no clear trend is observed and the classification results are bad.
Both a satisfying memory and a satisfying signal over noise ratio do
not seem to be met for one of the θ conditions, for this particular
voltage amplitude input.
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8.2 improvement with a numerical shift

This part explains how to overcome the memory problem, bring-
ing artificially memory with a numerical shift. Since the output is
reconstructed off-line after recording the whole response to inputs, it
is possible to shift the target with respect to the input. In that case,
some of the samples used for reconstructing the output belong to the
previous segment. In other words, the current output is reconstructed
partly from the present value of the input and partly from the last
value of the input. This shift in the data selection is illustrated in
Figure 55.
In Figure 55a we observe the classical selection of data which was

already depicted in chapter 7. In this illustration we focus on the
reconstruction of the second point of the output. Classically, the virtual
neuron responses are selected in the time interval [τ , 2τ ] (orange area
in Figure 55a) to reconstruct the second point of the output (orange
area on the target). The virtual neuron responses are highlighted with
blue circles and they are combined linearly to obtain the output value
(red dashed line). The numerical shift is depicted in Figure 55b. In
Figure 55b we choose a shift value of τ/2, so the data selection area
(orange area) is shifted of τ/2 on the left compared with the target
(the interval is here [0.5τ , 1.5τ ]). Experimentally we observed the best
results for this value of shift when the number of samples is evenly
distributed between the past and current input value. In Figure 56,
we evaluate the effect of a τ/2 shift varying the θ value and the input
amplitude.
This Figure 56 can be compared with previous section results in

Figure 54 without numerical shift. At first glance it is noticeable that
the shift has a positive effect for all the input amplitude values. We
notice the change of scale for RMS compared with previous section.
Here RMS is in the range 5-20%, instead of 10-25% in previous section.
Much smaller RMS values are reached here. The shift improves the
RMS result of approximatively 5% at low θ (θ < 100 ns), where error
is dominated by the noise. Even in these parts, some errors are due
to memory since the shift improves the result. The effect of shift is
even more striking after 100 ns. In contrary to the case without shift,
the error does not increase again. For 400 mV and 500 mV input
amplitude it stabilizes and for 300 mV it still decreases. For 400 mV
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Figure 55: a. Classical selection of data for reconstruction of the output
when the target is in exact phase with the input. The amplitude
response between τ and τ + 1 (orange area) is used to reconstruct
the second output point (red dot in orange area) b. Selection of
data in the case of a shift of τ/2: the target is shifted by τ/2
with respect to the phase. The amplitude response between 1/2τ
and 3/2τ (orange area) is used to reconstruct the second output
point (red dot in orange area).
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Figure 56: Classification performance depending on θ using a shift between
the amplitude and the target of τ/2: Root mean square of output-
to-target deviations as a function of the time step θ (separation
between transient states of the oscillator Ṽi) for different ampli-
tudes of the input signal (300, 400 and 500) mV when the target
is shifted by τ/2 with respect to the amplitude.

and 500 mV, the oscillation amplitude response already reaches with a
θ of 100 ns a satisfying level to compute. For 300 mV input amplitude,
the θ should be greater to obtain a satisfying signal over noise ratio.
The fact that for all cases, the input does not increase again after
100 ns is in good agreement with the interpretation of the previous
section. Without shift, after 100 ns, the error is dominated by a lack
of memory. Adding a shift emancipate from memory problems so for
all θ values, the error is dominated by the signal over noise ratio which
increases and then stabilized increasing θ just like the error decreases
and stabilized.
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8.3 magnetic field and d.c. current dependence

8.3.1 Illustration of different performances for different dynamical
regimes

In this section we illustrate the different dynamical responses that
occur depending of the operating point choice.
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Figure 57: Root mean square of output-to-target deviations: map as a func-
tion of d.c. current I and magnetic field H. Here Vin = 300 mV
and θ = 100 ns is used. RMS map corresponds to the target
shifted by τ/2 with respect to the input. The dashed white line
corresponds to a field of 380 mT.

Figure 57 shows the RMS performances for sine/square classification.
Compared with Figure 50 in chapter 7, it is important to note two
major differences. First is that input signal amplitude sent by the AWG
is only 300 mV and not 500mV. This allows us to explore a larger range
of d.c. current without risking to deteriorate the oscillator. Second
point is that these results are given using the numerical shift. This
numerical shift allows us to consider the performance independently of
the oscillator memory since the memory is brought by the shift. The
memory effect will be treated in next part (part v) of this manuscript.
Compared with chapter 7, one can notice that the numerical shift
allows better RMS performances. But we obtain qualitatively similar
results with a best performance region between 300mT and 500mT
and for a d.c. current between 5mA and 7mA. To illustrate the
different dynamical regimes of the oscillator, we selected the magnetic
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field 380 mT where best performances are obtained. The different
oscillator amplitude transient responses to the input signal are plotted
in Figure 58 at this field and for respective d.c. currents of 3.0 mA,
4.5 mA, 6.5 mA and 9.0 mA.
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Figure 58: The oscillator voltage amplitude Ṽ curves (in red) in response to
the input waveform (in gray) are plotted for selected d.c. currents
(3, 4.5, 6.5 and 9) mA and magnetic field H = 380 mT. Here
Vin = 300 mV and θ = 100 ns is used.

These four values correspond to different RMS performances. 3.0
mA and 9.0 mA gives poor RMS results (over 20%). 4.5 mA give
intermediate results around 15% RMS. And finally 6.5mA gives the
best RMS results below 8%. Looking at the red time traces one can
notice that all the d.c. current lead to different regimes with various
amplitude (for example for 3 mA, the amplitude is very low, whereas
for 6.5mA it is very high), various non-linearity, which can be seen in
the assymetry of the response and various noise levels. Qualitatively,
different operating points induce different regimes and RMS deviations.
The oscillator performs well when it responds strongly to the time
varying preprocessed input, with large amplitude variations in both
positive and negative directions, Vup and Vdw, respectively (Figure 59a).
On the other hand, it performs poorly when the noise in the oscillator
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∆V (the standard deviation of the noise in the voltage amplitude) is
high (Figure 59b).
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Figure 59: a. Amplitude variations in both positive and negative directions,
Vup and Vdw b. Standard deviation of the noise in the voltage
amplitude ∆V .

8.3.2 Noise and amplitude ratio
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Figure 60: a. RMS deviation for Vin=500 mV as a function of the operating
point. b. VupVdw as a function of the operating point. c. 1/∆V
as a function of the operating point. The white line correspond
to the critical current Ith and the white rectangle corresponds to
the region of smallest RMS. d. VupVdw/∆V

As shown in Figure 59, we extract these parameters from the time
traces of the voltage emitted from the oscillator at each bias point,
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and plot VupVdw (Figure 60b) and 1/∆V (Figure 60d) as a function
of the d.c. current I and field H. The red regions of large oscillation
amplitudes in Figure 60b correspond to low magnetic fields, in which
the magnetization is weakly confined, and to high currents, for which
the spin torque on magnetization is maximal. The blue regions of high
noise in Figure 60c correspond to areas just above the threshold cur-
rent Ith for oscillation, in which the oscillation amplitude Ṽ is growing
rapidly as a function of current and is becoming sensitive to external
fluctuations. As can be seen by comparing Figure 60b and c, the range
of bias conditions highlighted by the dotted white boxes (currents of
6-7 mA and magnetic fields of 350-450 mT) features wide variations in
oscillation amplitudes and low noise. In this region, root-mean-square
deviations below 15% are achieved, and there are no classification
errors between sine and square waveforms. The similarity between
the map of VupVdw/∆V (Figure 60d) and that of the classification
performance (Figure 60a) confirms that the best conditions for clas-
sification correspond to regions of optimal compromise between low
noise and large amplitude variations. Importantly Figure 60a is the
RMS obtained for Vin=500 mV and no shift. The necessity of a high
signal-to-noise ratio for efficient neuromorphic computing, highlighted
here for magnetic oscillators, is a general guideline that applies to
any type of nanoscale oscillator. In the next section we explicit the
origin of the different symmetries of the amplitude depending of the
operating point.

8.3.3 Amplitude level

By modifying the operating point, one modifies the oscillation
amplitude level. Figure 61 shows that the highest oscillation amplitude
level Ṽ is obtained for higher d.c. currents and magnetic fields between
300 mT and 500 mT and for d.c. currents between 7mA and 9mA.
these properties are directly linked to the sample properties. During
the reservoir computing experiments, we use the non-linearity of the
oscillation amplitude with the d.c. current to compute. In practice,
we fix the magnetic field and we vary the current that receives the
sample. The next figure represents this non linear dependency for 3
different magnetic fields.
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Figure 61: Amplitude Voltage Ṽ of the oscillator in the steady state: map
in the I-H plane.
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Figure 62: Amplitude Voltage Ṽ of the oscillator in the steady state as a
function of I for H = 273 mT (cyan), H = 379 mT (magenta)
and H = 537 mT (blue).

As it can be observed in Figure 62, the magnetic field modifies the
threshold current. For 297 mT this threshold current is around 5.9
mA and for 379 mT and 537 mT it is more around 4.0-4.4mA. This
observation can be also made on the 2D map. The threshold current
corresponds to the transition between dark blue (no emission) and
colored areas. Increasing the magnetic field decreases the threshold
current because less energy is required to compensate the damping
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(see part 2). On the 2D map we can observe that the threshold current
decreases rapidly from 200 mT to 400 mT and then much more slowly
from 400 mT to 600 mT. As it can be observed in the figure, besides
changing the threshold current, the magnetic field seems to change
the general shape of the non-linearity, it seems to "stretch" it on the
direction of d.c. current. The amplitude of the oscillation is directly
linked to the vortex orbit. We remind that the oscillation amplitude
is given theoretically by the following equation:

Ṽ (t) = λ(H⊥, I)s(t) (64)

Where s is the vortex radius and λ is a factor depending on the
perpendicular magnetic field H⊥ and the d.c. current. s is a function
of I/Ith (as seen in section 4.2.2 it evolves more or less like

√
((I/Ith−

1))). So the stretching effect is due to the fact that when Ith decreases,
the range of I/Ith increases. As seen in section 4.2.2, the critical
current decreases with the magnetic field. The fact that Ṽ > 0 before
I/Ith=1 for high magnetic field is due to the thermal fluctuations
[157]. The oscillation amplitude as a function of I/Ith is presented
in next Figure 63. At the end best performances are obtained for
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Figure 63: Amplitude Voltage Ṽ of the oscillator in the steady state as a
function of normalized current I/Ith for H = 273 mT (cyan),
H = 379 mT (magenta) and H = 537 mT (blue).

intermediate magnetic fields where the transition is not too brutal
(in contrary to low fields) nor too sharp. Now that influence of the
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magnetic field on the non-linearity used for computation is explained,
we focus on the role of the d.c. current to see how it influences the
amplitude and the asymmetry of the measured time traces. Figure 64
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Figure 64: Influence of the d.c. current on the oscillation amplitude variation:
a,c,e Ṽ as a function of I. The blue (green) shaded area highlights
the typical excursion in the voltage amplitude Vup (Vdw) that
results when an input signal of Vin = +150V (Vin = −150 mV)
is injected. b,d,f The oscillator voltage amplitude, curves (in red)
in response to the input waveform (in gray). Blue (green) shaded
area represents Vup (Vdw). Curves are plotted for H = 379 mT
and I = 9.0 mA (a,b), I = 6.5 mA (c,d) and I = 4.5 mA (e,f).

focuses on three of the different d.c. currents used in section 8.3.1
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which are 4.5 mA, 6.5 mA and 9.0mA. On the left part of the figure,
the non linear dependence of the oscillation amplitude with the current
is represented. The part of this non-linear dependence explored when
the input is sent is represented in colored area. An input of 300 mV
induces a typical variation of d.c. current of coarsely 4 mA. So when
the input is sent, the oscillator receives a current range of ±2mA
around the fix d.c. current. By changing the d.c. current, one explores
different windows of the non linear dependence of Ṽ with I which is
set by the magnetic field and the larger is the input amplitude, the
larger is the explored window. This exploration window is represented
by the vertical dashed lines. The central line is the d.c. current and
the left and right lines are the extreme current values received by the
oscillator. The level of the oscillation amplitude when no input signal
is sent is the intersection of the central vertical line and the magenta
curve Ṽ = f(I). The higher oscillation amplitude value reached is
the intersection of the right vertical line and the curve Ṽ = f(I). Vup
the difference between the highest amplitude reached by the oscillator
amplitude when input is sent and the oscillation amplitude level due to
the d.c. current is represented in blue. Similarly the lowest amplitude
reached when the input is sent is situated at the intersection between
the left vertical line and the Ṽ = f(I) curve. Vdw the difference
between the oscillation amplitude level due to the d.c. current and
the lowest amplitude reached by the oscillator amplitude when input
is sent is represented in green. On the right part of the figure, the
time traces corresponding to these different d.c. current conditions
are plotted (it is the same time traces as in Figure 58). Vup and Vdw
are also visualized on time traces with the blue and green areas. We
can see that the apparent asymmetry of the measured time traces and
the amplitude variation is completely determined by the portion of
the non-linearity Ṽ = f(I) which is explored. For 9.0 mA d.c. current
value, the signal has a rather small amplitude because the oscillation
amplitude evolves in a part of the non-linearity Ṽ = f(I) where
variations are small (for high current the growth of Ṽ with I slows
down). For 6.5 mA, the lowest current received by the oscillator is
close but still superior to the threshold current (the oscillator receives
currents between 4.5 mA and 8.5 mA approximatively). The region
close to the threshold current is a region of important variation. The
largest oscillation amplitude variations are thus obtained in such
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conditions. The overall amplitude of the time traces for 6.5 mA is
much larger than for 9.0 mA d.c. current value. Because the variation
of the oscillation amplitude is stronger close to the threshold current,
the Vdw (green) is much larger than the Vup (blue). Decreasing the d.c.
current to 4.5 mA the lowest d.c. current that receive the oscillator
is around 2.5 mA (under the threshold current at 4 mA). Saturation
occurs thus in the time traces (see green area) which is detrimental
for computation. All the current input values below the threshold
current give the same oscillation amplitude 0. So these inputs in later
computation can not be differentiated. In such cases the asymmetry
of the time traces is reversed with Vup which is larger than Vdw. As a
conclusion of this section, to have a satisfactory oscillation amplitude
variation, one should choose an intermediary magnetic field (typically
between 300 mT and 500 mT) so the variation of the Ṽ = f(I) non-
linearity is not too abrupt such as for low field (because of high Ith
value) nor too slow such as for high fields. Once the magnetic field is
fixed, in order to obtain large variations of the oscillation amplitude,
the d.c. current should be chosen such as when the oscillator receives
the AWG signal, the lowest current it receives is close to the threshold
current.

8.3.4 Noise and non-linearity trade-off

A good classification performance requires non-linearity in the
reservoir as it has been seen in chapter 5. Indeed the non-linearity will
allow the separation of the different inputs when the initial problem
is projected in higher dimension in the reservoir state. A good signal
to noise ratio is also important, because if it is not the case similar
inputs will result in very different reservoir states because of the noise
and thus the reservoir will fail in the approximation property. The
non-linearity and the voltage noise vary considerably with d.c. current
and magnetic field as it can be seen in Figures 65. To quantify the
non-linearity, we computed the second derivative of the voltage with
the current ∂2Ṽ /∂I2. As it can be observed in Figure 65a, the highest
non-linearities are close to the threshold current where the emission
of the oscillator varies strongly with the current. The noise level is
evaluated taking the standard deviation of the fluctuation due to the
noise (similarly to the noise evaluated in chapter 7 Figure 50). As it
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Figure 65: a. The non-linearity ∂2Ṽ /∂I2 of the oscillator: map in the I-H
plane. b. Amplitude noise ∆Ṽ of the oscillator in the steady state:
map in the I-H plane.

can be observed in Figure 65b, the noise also varies strongly close to
the threshold current.
Since spin-torque oscillators have a small magnetic volume, ther-

mal noise affects the magnetization dynamics. The resulting voltage
amplitude noise is large for large non-linearity, which quantifies the
sensitivity of the system to perturbations. The correlation between
voltage noise and non-linearity appears clearly in the comparison of
Figure 65a and b. Neuron non-linearity is a key ingredient for classifica-
tion as it allows the separation of input data. On the other hand, noise
in neuron response is detrimental for classification as it directly affects
the output. Figure 57 shows the classification performance as a func-
tion of d.c. current and field. We find good performance by choosing a
bias point with intermediate non-linearity and therefore intermediate
noise, and where the neuron output changes strongly in response to
the ac input. Such bias points allow enough non-linearity to classify
while keeping large enough signal to noise ratio to distinguish between
outputs.

8.4 conclusion

We have seen in this chapter that for experimental reservoir com-
puting with a spin-torque oscillator the θ time scale and the operating
point could be optimized. The θ time step plays both an important role
in the memory of the reservoir (particularly when intrinsic memory is
the only memory mechanism) and in the connectivity between the vir-
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tual neurons. A trade off should be found to have a θ short enough to
assure memory and connectivity and long enough to assure a satisfying
amplitude variation. Best trade-off is found for θ = Trelax/2 where
Trelax is the relaxation time of the oscillator. Adding a numerical
shift suppresses the need of memory and results are dominated by
the non-linearity and a satisfying signal to noise ratio. The operating
point plays an important role in order to optimize these properties.
First the magnetic field should be intermediary (between 300 mT and
500 mT) so the variation of the non-linearity Ṽ = f(I) is not too
abrupt nor too smooth. To obtain a large signal amplitude, at a given
field the d.c. current should be big enough to avoid the saturation
due to reaching the threshold current and low enough to avoid a
regime where Ṽ variation saturates. More generally, the operating
point should be chosen at intermediate non-linearity and noise regime
which mean not too close nor too far from the threshold current.
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9
C R I T I C A L R O L E O F T H E N O N - L I N E A R I T Y I N
T H E D ATA P R O C E S S I N G O N S P E E C H
R E C O G N I T I O N TA S K S

In this chapter, we investigate the effect of the time-to-frequency
filtering method used for spoken digit recognition, since the choice
of frequency filtering influences strongly the final recognition rate
(see section 7.2.3). The mel-frequency cepstral coefficients (MFCC)
and the Lyon’s cochlear model are the most common methods used
in speech recognition. Both methods mimic the time-to-frequency
transformation occurring in the biology [260, 261]. In the previous
chapter 7, a simpler filtering method called spectrogram was also used
for comparison. The first section will describe these three methods
and analyze the performance of such methods as stand-alone feature
extractors. The second section shades light on the critical role of non-
linearity in the filtering method. The last section analyzes the gain
obtained when a spin-torque oscillator is added to the computation.

9.1 mfcc and cochlear decomposition as stand alone
feature extractors

The cochlear decomposition was first used for recognizing digits with
reservoir systems in [234] and since then, it became frequently used to
benchmark reservoir computing approaches [229]. Notably it has been
widely employed for hardware reservoir computing studies [239, 244,
246, 245, 251, 247, 252, 2, 250, 248], while MFCC is commonly used
for speech recognition in software applications [262]. It is important
to note that both of these methods were developed before machine
learning became popular, and thus were designed to extract the useful
features of an audio signal, without any learning aspect.
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9.1.1 The Mel Frequency Cepstral Coefficient method (MFCC)

The MFCC method was developed in the eighties in order to obtain
a relevant parametric representation of acoustic signal for recognizing
monosyllabic words [261]. The goal is to compress the speech data by
eliminating non pertinent information for phonetic recognition and
enhancing the aspects relevant for phonetic distinction. The first step
is to perform a fast Fourier transform (FFT) of the signal to process.
The signal is sampled in our case at the rate of 12.5 kHz and windows
of 6.4 ms (80 samples) are used for the FFT. The Fourier spectra is
filtered through 20 different triangular functions, spaced following the
logarithmic mel scale (Figure 66) [263].DAVIS AND MERMELSTEIN: MONOSYLLABIC WORD RECOGNITION 359 
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Fig. 1. Filters for  generating  mel-frequency  cepstrum  coefficients. 

corresponding to the target words.  The  segmentation, as  well 
as the  subsequent analysis and  recognition, was performed on 
a  PDP-11/45  minicomputer  with the Interactive Laboratory 
System [ 121 . 

In  systems  employing  automatic  segmentation,  the  actual 
recognition rates can be  expected to be  lower  due to the gen- 
eration  of  templates  from  imperfectly  delimited  words  [13] . 
However, there is no reason to believe that segmentation 
errors would not  detract equally  from the recognition rates 
obtained  for  the  various  parametric representations. 

C. Parametric Representations 
The  parametric  representations  evaluated in this study  may 

be  divided into  two groups:  those  based on  the  Fourier spec- 
trum  and  those  based  on  the linear prediction  spectrum.  The 
first group  comprises the mel-frequency  cepstrum coefficients 
(MFCC) and  the linear frequency  cepstrum coefficients 
(LFCC). The  second  group  includes the linear prediction 
coefficients (LPC), the reflection coefficients (RC), and  the 
cepstrum coefficients derived from the linear prediction coef- 
ficients (LPCC). A Euclidean  distance  metric was  used for all 
cepstrum  parameters since cepstrum coefficients are  derived 
from an orthogonal basis. This  metric was also used for  the 
RC, in view of  the  lack  of  an  inherent  associated  distance 
metric.  The LPC were evaluated using the minimum predic- 
tion residual distance  metric [4]. 

Each  acoustic signal  was  low-pass filtered at 5 kHz and sam- 
pled at  10 kHz.  Fourier  spectra  or linear prediction  spectra 
were computed  for  sequential  frames 64 points (6.4  ms) or 
128  points  (12.8 ms) apart.  In  each case, a  256  point Ham- 
ming window was  used to select the  data  points to be 
analyzed. (A window size  of 128 points  produced  degraded 
results.) 

For  the MFCC computations,  20 triangular bandpass filters 
were simulated as shown in  Fig. 1. The MFCC were  com- 
puted as 

where M is the  number  of  cepstrum coefficients, and x,, k = 
1 ,2 ,  * * ,20, represents  the  log-energy output of  the kth filter. 

The LFCC were  computed  from  the  log-magnitude discrete 
Fourier  transform  (DFT) directly as 

where K is the  number of  DFT magnitude coefficients Yk. 
The LPC were obtained  from  a 10th order all-pole approxi- 

mation to  the spectrum  of the windowed  waveform.’  The 
autocorrelation  method  for  evaluation  of  the linear prediction 
coefficients was  used [14]. The RC were  obtained  by  a trans- 
formation  of  the LPC which is equivalent to matching the in- 
verse of  the LPC spectrum  with  a transfer function  spectrum 
that corresponds to an  acoustic tube consisting  of ten sections 
of variable cross-sectional area [ 151.  The reflection coeffi- 
cients determine  the  fraction  of  energy in  a traveling wave that 
is reflected at each  section  boundary. 

The LPCC were obtained  from  the LPC directly as [ 141 

k = l  ‘ 
(3) 

The  Itakura  metric  represents  the  distance  between  two 
spectral frames  with  optimal  (reference) LPC and  test LPC as 

A 

(4) 

where  is the  autocorrelation  matrix  (obtained  from  the  test 
sample)  corresponding to @. The  metric  measures  the 
residual error when  the  test  sample is filtered by  the  optimal 
LPC.  Because of  its  asymmetry,  the  Itakura  metric  requires 
specific identification of  the  reference coefficients (LPC) and 
the  test coefficients (a). For  computational efficiency, the 
denominator  of (4) will be unity if is expressed in unnormal- 
ized  form.  Then if ?(n) denotes  the  unnormalized  diagonal 
elements  of R ,  rLp(n) denotes  the  unnormalized  autocorrela- 
tion coefficients from  the LPC polynomial,  and  the  logarithm 
is eliminated, the distance  may  be  expressed as [16] 

10 
D [< rLP] = ?(O) rLp(0) + 2 ?(i) rLp(z>. 

111. GENERATION OF ACOUSTIC TEMPLATES 
The use of  templates to represent  the  acoustic  information 

in reference  tokens allows a significant computation  reduction 
compared to use of the reference  tokens themselves. The de- 
sign of  a  template  generation  process is  governed by  the goal 
of  finding  the  point in acoustic  space that simultaneously  min- 
imizes the  “distance” to all  given reference  items. Where the 
appropriate  distance is a linear function  of  the  acoustic vari- 
ables, this goal can  be realized by  the use of classic pattern 
recognition  techniques. However, phonetic features are not 
uniformly  distributed  across  the  acoustic  data,  and  therefore 
perceptually  motivated  distance  measures  are  nonlinear  func- 
tions of those  data.  To avoid the  computationally  exorbitant 
procedure  of  simultaneously  minimizing  the set of  nonlinear 
distances, templates are incrementally  generated by  introduc- 
ing additional  acoustic  information  from  each  reference token 
to the partial template  formed  from  the previous  used refer- 

Figure 66: Filters for generating mel-frequency cepstrum coefficients. Repro-
duced from Davis et al 1980 [261].

This psycho-acoustic scale mimics the human perception of pitches
[263]. Finally the MFCC are computed as:

MFCCi =
20∑
k=1

Ekcos

[
i

(
k− 1

2

)
π

20

]
(65)

In equation 65, Ek is the log-energy of the kth filter output and
i is the index of the cepstral coefficient. In our case, we use the
classical auditory toolbox from Slaney [264], where by default i =
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1, 2, ..., 13. During this filtering process, the signal undergoes non-
linear transformations, when computing Ek, the log-energy of the
filter output.

9.1.2 The cochlear decomposition method

The Lyon cochlea model was also developed in the early eighties
[260]. Compared to the MFCC method, this model is much closer
to the biology of the human cochlea. The human cochlea maps the
different frequencies of a signal to the spatial domain, because each
of its sections is more sensitive to a particular range of frequency.
Figure 67 represents the general principal of the Lyon cochlea model.
The sound pressure wave is first filtered, then the resulting band-
passed signals are detected through half wave rectifiers (HWR) and
compressed by interconnected automatic gain control (AGC). The

outer hair cells and finally would assume a continuous-time analog 
implementation.  This type of model is described in other works [Lyon88a 
and Lyon88b].

 2.2 - Overview

The cochlear model described by Lyon [Lyon82] combines a series of 
filters that model the traveling pressure waves with Half Wave 
Rectifiers (HWR) to detect the energy in the signal and several stages of 
Automatic Gain Control (AGC).  This structure is shown in the figure 
below.

Outer Ear

Middle Ear  Filter  Filter  Filter

   AGC    AGCAGC

HWR HWR HWR...

Filtering

Detection

Compression

Preemphasis

Sound that enters the outer and the middle ear is passed through the oval 
window into the cochlea.  Once in the cochlear duct the the pressure 
wave propagates down the basilar membrane.  The stiffness of the 
basilar membrane varies smoothly over its length and at any one point 
will resonate most strongly with a pressure wave of a particular 
frequency.  At each stage of the cochlea some of this motion is sensed by 
the hair cells.  It is these cells that convert the mechanical signals 
which in turn cause stimulation of the neurons which commicate with 
higher levels in the brain.

An important characteristic of the cochlea is that energy in the 
acoustitic wave is separated by frequency and each point in the cochlea 
will respond best to one frequency.  In a sense the cochlea maps the 
frequency content of the signal into the spatial domain.  The cochlea near 
its base (where the sound enters) is most sensitive to high frequency 

LyonsCochlea.mma 7

Figure 67: Structure of Lyon cochlea model: the pressure waves enter the
cochlea and undergo a series of filters. The filtered signals are
detected by half wave rectifiers (HWR). The rectified signals are
compressed by interconnected automatic gain controls (AGC).
Reproduced from Slaney et al 1988 [265].

traveling of pressure waves through a cochlea section is modeled by a
notch filter. The sensitivity of each section of the cochlea is modeled
by a resonator centered on a frequency specific to this section. The
combination of these two filters selects only a narrow band of frequency
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(Figure 68). These filters are the equivalent of the triangular filter in
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Fig. 2. Pole-zero plots and transfer functions
of filters used in the ifiterbank.

difierent places, but also by preséi-ving enough time
resolution to, for example, separate the responses to
separate pitch pulses. Thus, simultaneous voiced speech
sounds that differ in some formants and in pitch will be
separated into recognizably distinct patterns of activity at
the output.

Detection
The outputs of the filtering model are bandpass

functions of the original input waveform, and thus may be
thought of as zero-mean "carrier" signals. To convert them
to a more useful form, we need to "amplitude demodulate"
them by using some kind of a detection nonlinearity, such
as the diode in an AM radio. Although the exact nature of
the nonlinearity may not be critical, handling this stage
reasonably correctly does require some special attention to
low frequencies, and in the case of discrete-time
implementations, to very high frequencies.

We need to recognize that the neural representation of
signals, which the output of this model is trying to mimic,
has a 'bandwidth at least as high as the full range of voice
pitch, and probably exceeding 2 kHz. This allows us to
easily represent the time structure of formant-frequency
carriers which are AM modulated at the pitch rate. But it
also means that there will be a range of low-frequency
"carriers" that can be synchronously represented in the
output bandwidth; signals in this range are conveyed more
nearly as direct signals than as envelopes, thereby
preserving phase information. If we want to use the same
nonlinearity for these low frequencies as we use for higher
frequencies, and we want the apparent pitch of the result to
agree for a fundamental and for an AM modulated carrier,
then the nonlinearity has to be half-wave. A full-wave or
square-law nonlinearity would preserve the pitch of an AM
modulated signal, but double the pitch of a fundamental;
this would be unacceptable. There is also considerable
physiological evidence for a half-wave detection function in
the hair cells of the organ of Corti [ii]. The exact shape of
the half-wave nonlinearity is not obvious; proposals include
"soft" half-wave [8]. and exponential [9]. We propose to use
instead a simple "ideal" half-wave rectifier, which is very
easy to implement and to understand, and whose "gain" is
independent of the input signal amplitude.

In discrete-time implementations, the use of a
nonlinearity produces harmonics which may lie outside of
the Nyquist bandwidth. The non-bandlimited distorted
signal will alias back into the baseband. Most of the high-
frequency energy from hall-wave rectification is in the
second harmonic, and should be kept in-band by over-
sampling by at least a factor of two. Higher-order
distortion products are less important,

After the detection nonlinearity, we can lowpass to a
bandwidth consistent with the neural domain, and
decimate. If we are not doing binaural processing, 1 kHz is
probably an adequate bandwidth; for the benefit of
nonlinear processing that follows, it would be a good idea to
keep the signal oversampled by a factor of two.

Comession
Consider the problem of producing a high-quality printed

spectrogram, maintaining locally high contrast in the face
of tremendous variations in the average input power level
across time and frequency. This requires compression of a
large dynamic range signal into a halftone pattern; the
problem is very similar to that faced by the human
auditory system in converting sounds to neural firing
patterns. The output rates vary over only about two
decimal orders of magnitude as the input power varies over
twelve or more orders of magnitude from threshold of
hearing to threshold of pain.. What are the properties of
this compression, and what physiological mechanisms
achieve it? These are intriguing questions which presently
have only very sketchy answers.

The concept of an automatic gain control, which controls
the forward path gain of a system in an attempt to keep the
output level nearly constant, has been in use in electronic
systems for a long time. However, no AGC is able to handle
the kinds of signal ranges and achieve the degree of
compression that our ears can, without severely distorting
the signal quality. Another common compression technique
is to use a compressive nonlinearity, such as the logarithm,
to effectively reduce the instantaneous gain applied to
large signals, while increasing the gain applied to small
signals. Applying this to speech spectra gives the familiar
effect of rather flattened peaks and severely unstable or
noisy behavior in the valleys. In printed spectrograms,
peaks are so flattened that it is often difficult to localize
formant tracks more accurately than a few hundred hertz.
What is needed is an adaptation mechanism that can apply
a varying gain across time and frequency dimensions,
maintaining sharp peaks and clean valleys, emphasizing
onsets and offsets, and de-emphasizing overall spectral tilt
and gradual loudness changes.

There are actually a rather large. number of suspected
adaptive mechanisms in the human auditory system,
operating in different domains, at different rates, and
covering different parts of the entire 120 dB range of sound
levels. For example, the gain applied to very low level
signals (0 to 40 dB SPL) may be effectively enhanced by
active mechanisms in the organ of Corti; efferent signals
stimulate the outer hair cells, causing stereocilia to exert
forces, just like muscles, which might. be the source of the
"superregenerative" active mechanisms. At higher levels
the same mechanIsm, operating in a different phase, may
actually reduce the bending of the cochlear partition,
causing reduced sensitivity and lower frequency selectivity.
At very high levels, the stapedial reflex reduces the
mechanical coupling efficiency of the middle ear,.
protecting the cochlea from harmful levels of vibration.
Other mechanisms within the cochlea may include a
varying "DC bias" in the basilar membrane position, caused
by hair cell interactions, that affect the operating point on
their detection nonlinearity; and changes in. the
concentration of K.F ions in the endolymph in the cochlear
duct may change the sensitivity of the inner hair cells.

Perhaps the most important adaptation mechanism in
sensory systems is lateral inhibition. Sensory neurons with
a large response reduce their own gain as well as the gain of
others nearby, by way of lateral distribution of their
outputs to inhibitory synapses on neighboring sensory
neurons [12]. Of all senses, probably only hearing and
vision require mechanisms beyond lateral inhibition to
accommodate their large Input range; for a description of
the role of lateral inhibition in vision, see [13].

The closest model in the literature to the one we propose
is the transduction model of [8], which includes a single-
channel model of the adaptive response of a hair cell and
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Figure 68: Pole-zero plots and transfer function of the notch filters and

resonators, used in Lyon cochlea model. Reproduced from Lyon
et al 1982 [260].

the MFCC method. Then the bandpass signal is detected by a half
wave detector and compressed by an AGC, that model respectively
the behavior of the hair cells and the masking of the ear [266]. The
non-linearity occurs in these two last steps (Figure 69). The first non-

its associated primary auditory neuron. A collection of
single-channel AGC's of this sort has the same problem as
the logarithm: peaks are flattened as all channels force
their outputs to about the same level. If we simply take
that model, and add some kind of coupling between nearby
channels so that gains are somewhat interdependent, we
get a reasonably good model. The trouble is that the time
constant of this coupled AGe, like most AGC's, is strongly
dependent on signal level. For the range of signals we need
to deal with, this effect can be reduced enough by using a
controlled-gain element with a super-linear control
function; that is, the gain should be proportional to perhaps
the cube or the exponential of the control signal level.

Instead of a cube-law controlled gain we can use a
cascade of three stages of bilinear elements (simple
multipliers), with possibly separate control signals, time
constants, and degrees of coupling on each. If the slowest
variable-gain stage operates on a slow "syllabic" time scale
and with complete coupling, we can move it out to in front
of the filtering (like the stapedial reflex), reducing the
dynamic range required in the whole system without
introducing much distortion. The next two stages of gain
control can operate more locally and more quickly after
the filtering and detection, in just about any way we choose.
The only hard part is to pick the details. For example, we
still probably need to include a compressive nonlinearity
(limiter) somewhere in the system, so that an unbounded
input will produce a bounded output; a hard limiter may be
Just the thing; or, in Schroeder's model, adding a current-
limiting resistor is the simple solution.

We propose the following discrete-time algorithm as a
straw-man version of the coupled-AGC compression network
(see figure 3).

Oatput = Lirriit[Detect -'B,i Gainc,]
Exces; = Oatput—Target for

Gcsinc,1 Z1[( lec) '1''c,i c( Wtc,j 'Excess)]
= Z1[(1CB) Gain"B(WtB,t'Excess)]

= Z'1[(1—e4)Ghin4—e4(Wt4'Excess)]
Output is the final vector of signals that represent the

high-quality spectrogram, with place index i; Detect is the
vector of outputs of the detectIon model. Excess is a
vector for feedback in the AGC loop; and Target is
approximately the desired output level.

GhrnA is the gain control signal that adjusts the overall
signal level, independent of channel index; this gain can be
moved to before the filtering, with little effect. GamB and

are vectors of two levels of per-channel gains. Wt4
is a vector of weights from all channels to the overall gain;
most likely these weights are all equal. WtB, and Wt,. are
vectors of cross-coupling weights from all channe's to
channel i. The vector inner product function is designated
by dot, The slowest AGC filter time constant is Tie4, for
sampling interval 7'. The faster AGC filter time constants
are T/CB and T/eC.

Limit is the compressive nonlinearity that produces a
bounded output; its maximum output level should be at
least an order of magnitude higher than Target, the
desired average output. With this scheme, an average
output of 0.9Tai-gef is consistent with a steady-state gain
reduction of 1000 relative to the small-signal gain,
corresponding to a 60 dB accommodation of input level.
Another 60 dB of accommodation occurs as the average
output rises to 0.99Target. Peaks localized in time or
place can be very much higher than Target, especially at
onsets before the gain adapts.

Discussion and Conclusion
We have presented a simple and somewhat flexible

speech analysis algorithm based on cochlear models, which
is computationally attractive, If second-order sections are
implemented with five multiplies per sample, and we
sample the speech signal at 20 kHz, then the filtering

Fig. 3. Block diagram of one channel of the
detection and compression models.

complexity is 200K multiplies per second per channel. With
64 channels, the resulting 12.8M multiplies per second can
be handled with one or a few modern chips. The
corresponding data memory of 256 words (by 32 bits, say)
also fits on a chip. Similar numbers apply for the
compression network, depending on what sample rate
reduction is done, and how many nonzero coupling
coefficients are implemented. Only conventional time-
domain signal flow-graph kinds of computations are needed,
so these algorithms are suitable for almost any general-
purpose or special-purpose computing architecture.

The properties of this algorithm are only now being
evaluated, in the context of speech recognition and display.
We expect that the improved relation of frequency-domain
and time-domain information will lead to a more readable
spectrogram-type image of speech sounds, and, in
conjunction with further levels of neural processing, will
eventually achieve a radically better version of real-time
visible speech.

Obviously, this work is very preliminary. We hope by this
publication to interest other researchers in this exciting
new direction in sound analysis.
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H's are first-order AGC filters with input

Figure 69: Block diagram of one channel of the detection and compression
models. Extracted from Lyon et al 1982 [260].
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linearity comes from the half-wave rectifier. Then the AGC computes
gains, that multiply the rectified signal, so in the long term the
channel values converge toward a target value. This AGC reproduces
the masking of human ear. For a given channel, the different gains of
the AGC depends on the gain values from the neighboring channels.
For these reasons, the AGCs can be seen as interconnected non-linear
units. Moreover the gains are updated depending of their previous
values, and thus the AGCs introduce memory.

9.1.3 Spectrogram method

The spectrogram method consists in taking the real part of the fast
Fourier transform (FFT), applied to the audio signal. This prepro-
cessing was chosen in [2] to extract the frequency information from a
signal without introducing non-linearity. Indeed the Fourier transform
and the real part function are both linear operators. In practice, the
FFT is performed on Hamming windows [267] of 128 samples (10.2
ms), that are overlapping on 124 samples. Each FFT thus returns 65
complex coefficients and the real part of them is kept. The resulting
matrix of spectra is then decimated by 20 (we conserve only one
spectra in 20), in order to reduce the size of the matrices representing
the digits. Compared with previous methods, this transformation does
not involve non-linear transformations after the FFT.

9.1.4 The MFCC and the cochlear decomposition results on spoken
digit recognition

The MFCC and the cochlear decomposition can achieve by them-
selves very high recognition levels: just training a linear classifier
on their frequency channels allows reaching up to 95.8% and 77.2%
word success rate (WSR) (Figure 70). On the other hand, as ob-
served previously in chapter 7, the linear spectrogram leads to 10%
WSR, which is consistent with a random choice level. If training a
linear classifier on the channels leads to good classification results,
the speech recognition problem is already mainly linearly separable.
The MFCC and cochleagrams (matrices resulting from the Lyon’s
cochlea model) already hold in their frequency channels the features
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Figure 2. (Color online) Spoken digit recognition for filtering inputs. (a) Spoken digit recognition rates as a function
of the number of utterances N used for training of the filtered input (without neural network) corresponding to three different
methods: cochleogram, MFCC filter and linear spectrogram (α = 1). (b) Spoken digit recognition as a function of non-linear
coefficient for spectrogram methods (Inset: Word suscess rate for large non-linear coefficient values, α = 1000 − 1004)(Jacob:
I think the horizontal legend ”Non linearity α + 1000” is a little confuse...why not put directly the numbers in the horizontal
axis, just only the two extreme values 1000 and 1004?). The coloured region corresponds to the standard deviation of the
recognition rate, based on training with all possible combinations?.

are randomly selected and to reach high classification
rate 400 neurons were enough. Then a linear classifier
is trained on the neuron outputs. The contribution of
the reservoir is extracted from the results by subtracting
the success rate while using only the frequency filtering
methods.

In practice, the output signal is reconstructed from the
linear combination (linear classifier) of each neuron states
Vi (or each frequency channel fj) for each digit accord-
ing to Vout =

∑
wiVi (Vout =

∑
wjfj only for the filter

case), Fig. 1(d). This post-processing consists of two
distinct steps. The first is called the training (or learn-
ing) process and the second is called the classification (or
recognition) process. The goal of training is to determine
an optimal set of weights wi (wj) for each desired digit.
These weights are used to multiply the neurons states
Vi (each frequency channel fj), which are then averaged
over the Nτ time intervals to give an output value, Vout,
which should ideally be equal to the target value Ṽout:
1 for the correct digit and 0 for the rest. In the train-
ing process, a fraction of the utterances are used to train
these weights and in the classification process, the rest
of the utterances are used to test the performance of the
recognition. The optimum weights are found by mini-
mizing the quadratic error between Ṽout and Vout for all
the words used in the training. See more in details in ref.
[9].

ACOUSTIC FILTER: THE ROLE OF THE
NON-LINEARITY

First, we compute the digit recognition rate as a func-
tion of number of utterances used in training for the
cochleogram and the MFCC method as shown in Fig.
2(a). The recognition rate increases with the numbers of
trained utterances converging asymptotically to the sat-
uration for maximum numbers of utterances in the case
of the cochlear model while it remains almost constant
for MFCC model. We can observe that both filters al-
ready allow a high recognition rate. In particular, the
cochlear model is an excellent acoustic feature extractor
with recognition rates up to 95.8% (over 9 utterances
trained) while the MFCC filter is less powerful reaching
recognition rates up to 77.2%.

These filters used commonly in the literature for speech
recognition tasks, based on the behavior of biological
ears, imply very complex frequency decomposition with
a remarkable non-linear character. . . (Flavio: Here we
should introduce a paragraph explaining a little in de-
tails the type of non-linear transformation/functions in-
volved in these methods (cochleogram & MFCC filter))
We can thus intuit that the successful separation of the
data achieved by these filtering is mainly due to the
non-linear character of the transformation with a mod-
erate influence of the kind of non-linearity (similarly to
reservoir where neuron can have different kinds of non-
linearity that work). To validate this hypothesis concern-
ing the critical role of the non-linearity contained in the
filtering methods, we investigate in details the separation

Figure 70: Spoken digit recognition rates as a function of the number of
utterances N used for training of the filtered input (without neural
network) corresponding to three different methods: cochleogram,
MFCC filter and linear spectrogram. The shaded area corresponds
to the incertitude on the WSR due to the different possible choices
of training sets and test sets.

needed to recognize the different digits, whereas in the case of the
spectrogram, these features remain yet to be extracted. Indeed, in
the case of the MFCCs and cochleagram, frequency filtering already
achieves the goal of a reservoir network, because the initial problem
is non-linearly projected into a higher dimension state. The main
difference compared with a reservoir network is that these non-linear
projections are not random, but they are designed by hand to mimic
the biology or the human perception of sounds. Our hypothesis is that
the origin of the good recognition rate, observed earlier, would be
the presence of a non-linear transformation in the filtering and that
many kind of non-linearities, not necessarily inspired from the biology
of the ear, can achieve similar results. In order to investigate the
role of non-linearity for data separation, in the next section, we will
evaluate the effect of a simple non-linear exponent on the spectrogram
to separate the digits.
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9.2 spectrogram with various levels of non-linearity

9.2.1 Principle of the analysis

After the spectrogram filtering, each word, indexed by γ (with
γ ∈ [1, 500], because there are 500 words in the TI46 spoken digit data
base we use), is projected in several vectors of 65 frequency channels.
Let’s call Zγ the real part of the resulting matrix of dimension m× pγ ,
where m = 65 is the number of channels and pγ is the length of the
matrix associated to the digit γ. Before applying the non-linearity,
each Zγ matrix is normalized by the maximum of it absolute value,
giving the Ẑγ matrix.

Ẑγ =
Zγ

max(|Zγ |)
(66)

This normalization avoids having values that become too large
to be computed numerically. We normalized per word and not over
all the words in the data base, because in a real situation, the only
accessible information is the word to recognize. The following equation
summarizes how the non-linearity is applied.

Sγ = <((Ẑγ)α) (67)

Importantly, Sγ is designed such that the only non-linearity comes
from the α factor. The other operators (real part) are linear. For
α = 1, the filtering <(spectrogram) is retrieved.

9.2.2 Results for various non-linearity levels

After computing Sγ for various α factors and for all the spoken
digits data base, a linear classifier is trained on the channels of Sγ
for 90% of the digits and tested on the remaining 10%. The resulting
word success rate (WSR) for testing as a function of the alpha factor
is shown in Figure 71. The shaded area represents the incertitude
coming from the different possible training sets. Two tendencies seems
to superpose. Generally when α increases, the WSR tends to decrease.
In addition, the WSR seems to drop in the vicinity of odd values of α.
For α = 1, the WSR of 10% corresponding to random classification is
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Figure 2. (Color online) Spoken digit recognition for filtering inputs. (a) Spoken digit recognition rates as a function
of the number of utterances N used for training of the filtered input (without neural network) corresponding to three di↵erent
methods: cochleogram, MFCC filter and linear spectrogram (↵ = 1). (b) Spoken digit recognition as a function of non-linear
coe�cient for spectrogram methods (Inset: Word suscess rate for large non-linear coe�cient values, ↵ = 1000 � 1004)(Jacob:
I think the horizontal legend ”Non linearity ↵ + 1000” is a little confuse...why not put directly the numbers in the horizontal
axis, just only the two extreme values 1000 and 1004?). The coloured region corresponds to the standard deviation of the
recognition rate, based on training with all possible combinations?.

are randomly selected and to reach high classification
rate 400 neurons were enough. Then a linear classifier
is trained on the neuron outputs. The contribution of
the reservoir is extracted from the results by subtracting
the success rate while using only the frequency filtering
methods.

In practice, the output signal is reconstructed from the
linear combination (linear classifier) of each neuron states
Vi (or each frequency channel fj) for each digit accord-
ing to Vout =

P
wiVi (Vout =

P
wjfj only for the filter

case), Fig. 1(d). This post-processing consists of two
distinct steps. The first is called the training (or learn-
ing) process and the second is called the classification (or
recognition) process. The goal of training is to determine
an optimal set of weights wi (wj) for each desired digit.
These weights are used to multiply the neurons states
Vi (each frequency channel fj), which are then averaged
over the N⌧ time intervals to give an output value, Vout,
which should ideally be equal to the target value Ṽout:
1 for the correct digit and 0 for the rest. In the train-
ing process, a fraction of the utterances are used to train
these weights and in the classification process, the rest
of the utterances are used to test the performance of the
recognition. The optimum weights are found by mini-
mizing the quadratic error between Ṽout and Vout for all
the words used in the training. See more in details in ref.
[9].

ACOUSTIC FILTER: THE ROLE OF THE
NON-LINEARITY

First, we compute the digit recognition rate as a func-
tion of number of utterances used in training for the
cochleogram and the MFCC method as shown in Fig.
2(a). The recognition rate increases with the numbers of
trained utterances converging asymptotically to the sat-
uration for maximum numbers of utterances in the case
of the cochlear model while it remains almost constant
for MFCC model. We can observe that both filters al-
ready allow a high recognition rate. In particular, the
cochlear model is an excellent acoustic feature extractor
with recognition rates up to 95.8% (over 9 utterances
trained) while the MFCC filter is less powerful reaching
recognition rates up to 77.2%.

These filters used commonly in the literature for speech
recognition tasks, based on the behavior of biological
ears, imply very complex frequency decomposition with
a remarkable non-linear character. . . (Flavio: Here we
should introduce a paragraph explaining a little in de-
tails the type of non-linear transformation/functions in-
volved in these methods (cochleogram & MFCC filter))
We can thus intuit that the successful separation of the
data achieved by these filtering is mainly due to the
non-linear character of the transformation with a mod-
erate influence of the kind of non-linearity (similarly to
reservoir where neuron can have di↵erent kinds of non-
linearity that work). To validate this hypothesis concern-
ing the critical role of the non-linearity contained in the
filtering methods, we investigate in details the separation

-

Figure 71: Word success rate (WSR) as a function of the non linear exponent
α of the spectrogram real part (Inset: WSR for large non-linearity
coefficient values, α = 1000− 1004). The colored region corre-
sponds to the standard deviation of the recognition rate, based
on training with all possible combinations.

retrieved. The case α = 0 is also trivial, because all the channel of the
Sγ are equal to 1, so digits cannot be classified. For 0 < α < 1, the
WSR can reach very high values: up to 88% for α = 0.2. This WSR is
higher than the one obtained for MFCC method. For 1000 < α < 1004,
the WSR shifts between a low values (12%) around odd values of α
and a higher value (25.8%) around even values of α.
Since <(spectrogram) is renormalized for each digit γ, all the values
of Sγ are between ]− 1, 1[ except for one value per digit which is either
equal to 1 or −1. When α becomes large, the values of Sγ become
smaller and smaller and differences between the different digits γ fade,
explaining the general decrease of the WSR when α increases. In the
extreme case of α → ∞ , all the values of Sγ are equal to 0, beside
one value per Sγ which is either equal to 1 or -1.
The apparent difference between odd and even valued numbers is
explained by the sign of the values of Sγ : if Sγ takes only positive values,
the WSR is better than if it takes both positive and negative values.
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Let’s call Ẑ−γ (i, j) and Ẑ+
γ (i, j) respectively the negative and positive

values of Ẑγ . Let’s decompose α = n+ ε, n ∈N and ε ∈]− 0.5, 0.5[.
The value S−γ (i, j) and S+

γ (i, j) corresponding to Ẑ−γ (i, j) and Ẑ+
γ (i, j)

are given by the equation:S
−
γ (i, j) = |Ẑ−γ (i, j)|n+ε(−1)ncos(πε)

S+
γ (i, j) = |Ẑ+

γ (i, j)|n+ε
(68)

When n is even, all the values of Sγ are positive, on the contrary when
n is odd, S−γ (i, j) are negative and S+

γ (i, j) are positive. Apparently
in the particular case of speech recognition, the sign of the real part of
the spectrogram Ẑγ is not a relevant information and suppressing the
negative sign helps recognition. For α→∞ and α ∈]2n−0.5, 2n+ 0.5[,
each digit possesses one value of Sγ which is not zero. Learning the
index (i, j) of this unique positive number allows identifying the correct
digits in 25.8% of the cases. On the contrary for α ∈]2n+ 0.5, 2n+ 1.5[,
the sign blurs the information of the unique non zero value and WSR
decreases to 12%.
To conclude, a simple spectrogram with a non-linearity exponent α
showed similar performances for 0 < α < 1 than the more complex
MFCC and cochlea decomposition method. These results stress the
crucial role of non-linearity. The chosen non-linearity should not be
completely random to give good performance, because it should lead
to positive values independently of the sign of the spectrogram real
part and should not compress too much the data (e.g., α → 0 or
α→∞).

9.2.3 Separation property of the different filters

In order to summarize the separation property of each filtering
method, we visualize how they map the different digits in a two
dimension map. Each filtering method represents each digit γ by a
matrix of frequency channels, that we call Sγ by analogy with the
previous section. To simplify the representation, we condense these
matrices into average vectors over the columns, called Rγ . The values
of Rγ are defined as follows:

Rγ(i) =
1
pγ

j=pγ∑
j=1

Sγ(i, j) (69)
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Each vector Rγ is an input to classify, with a dimension m× 1. m rep-
resents, as before, the number of frequency channels which is 13 for the
MFCC method, 78 for the cochlear decomposition method and 65 for
the spectrograms (with and without the non-linear factor). The t-SNE
transformation [268] is a non-linear projection from a n-dimensional
space to a 2-dimensional space, which conserves the probability for two
different points to be neighbor. A t-SNE transformation is performed
on the Rγ vectors, in order to visualize in 2D map if the Rγ vectors, for
each class of digit, are separated. Figure 72 plots the two components
of the t-SNE for the distribution of Rγ vectors. Each color represents

  

-20 0 20 40
1st t-SNE

-20

-10

0

10

20

2
n

d
 t

-S
N

E

cochleagram

Digit 0
Digit 1
Digit 2
Digit 3
Digit 4
Digit 5
Digit 6
Digit 7
Digit 8
Digit 9

-20 0 20 40
1st t-SNE

-30

-20

-10

0

10

2
n

d
 t

-S
N

E

MFCC filter

Digit 0
Digit 1
Digit 2
Digit 3
Digit 4
Digit 5
Digit 6
Digit 7
Digit 8
Digit 9

aa b

dc

Figure 72: 2D representation of the two t-SNE components for: a, the spec-
trogram with α = 1, b, the spectrogram with α = 0.2, c, the
cochleogram, and d, the MFCC filtering methods.

the Rγ for a given class of digit. For the spectrogram (Figure 72a),
the different Rγ vectors do not form separate clusters, depending on
the class of digit they belong to. This result, consistent with the fact
that the problem is not linearly separable, explains the poor word
success rate which was obtained. In Figure 72b, the best classification
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situation for spectrogram with α = 0.2 is plotted. In this case, the
depending on their class, the digits form separate clusters, which
supports that a linear classifier can distinguish correctly 88% of the
digits. In Figure 72c, for the cochleagram, the data is well separated
because neighboring R belong to same class. For the cochleagram, the
transformation is more complex than for the spectrogram with α=
0.2 and the R vectors from one class form several clusters. Finally in
Figure 72 d, for MFCC, the digits are well separated and the data
distribution visualized with the t-SNE method is similar to the case
in Figure 72b.

The t-SNE visualization illustrates well the separation that occurs
among the data, depending on the time-to-frequency transformation.
In particular, it shows that a spectrogram with a non-linear factor can
achieve similar separation to the more complex MFCCs and cochlear
decomposition.

9.3 gain in recognition rate brought by an oscil-
lator used in the framework of reservoir com-
puting

After testing the filtering as a stand alone feature extractor, we
add an oscillator to implement reservoir computing after the filter-
ing, similarly to section 7.2.2. We quantify the gain in word success
rate that an oscillator brings after each kind of filtering. Indeed, by
quantifying the gain in WSR, we quantify the net contribution of the
oscillator to the recognition. A hardware component is shown to be
promising for reservoir computing only if it provides a positive gain,
when compared with the filtering as a stand alone feature extractor.
We first simulate the behavior of a quite general non-linear node with
relaxation. We compare later these results with experimental results
using a spin-torque nano-oscillator.

9.3.1 Simple oscillator model

We have developed a simple model based on a non- linear spintronic
oscillator [157] taking into account the main ingredients for neuro-
morphic computing: non-linearity (root square dependence on the
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input current) and memory (relaxation time of the oscillator between
two different emitted voltage levels) [153, 2]. The dynamics of the
evolution of the oscillator’s emitted voltage amplitude Ṽi as a function
of the input voltage V in

i at time step i can be numerically solved as
follows:

Ṽi = Ṽ∞i−1e
−∆t/Trelax + Ṽ∞i (1− e−∆t/Trelax) (70)

where Trelax is the relaxation time towards the asymptotic value Ṽ∞i
given, similarly to section 4.2.2, by:

Ṽ∞i = C
√
IDC − (V in

i /R)− Ith) (71)

with C, a constant related to the initial bias condition, i.e. the initial
emitted voltage of oscillator, R the DC resistance of the oscillator
and Ith the threshold current above which auto-oscillations can occur.
In order to simulate the oscillator’s response to a time varying input
(V in
i ), equation 70 is numerically solved using the following parameters:

∆t = 5 ns, V i
in/R = ±3 mA, IDC = 4.9 mA, Trelax = 410 ns. Note

that these parameters are mainly extracted from experiments as
reported elsewhere [2]. This model is quite general and can be adapted
to other systems by changing Trelax and Ṽ∞i . Indeed Appeltant et al
used a similar model for Mackey-Glass and Ikeda non-linear nodes
[239, 257]. In this later case, the main point that differs is the type
of non-linearity introduced in the model. Compared with a real spin-
torque oscillator, one of the main limit of this model is that it does
not take into account the variation of the relaxation time with the
current (see section 4.2.1 and 4.2.2). Moreover it does not describe
well the behavior of Ṽ when its value is very far from Ṽ∞. In the next
section, this simple model is compared with experimental results, in
order to test its validity.

9.3.2 Gain for different methods of filtering

The gain of recognition rate induced by the emulated non-linear
oscillator is computed in Figure 73a. The recognition gain of the
emulated neural network is obtained by subtracting the contribution
from acoustic filters (previously calculated in Figure 70) to the to-
tal recognition rate. The gain provided by the non-linear oscillator
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is low for both non-linear filters: up to 4-9.4% (depending on the
number of utterances used for training) for the cochlear method and
22% for MFCC method. It is because these filters already perform
well as stand alone feature extractors, so there is not much room for
improvement with an additional neural network (here the oscillator
used as a reservoir computing network), even though the final WSR
is close to perfect. On the contrary, after the spectrogram, the neu-
ral network improves drastically the recognition gain up to 60.2%
(over 9 utterances trained). Finally, the simulations were compared

7

a b

Figure 4. (Color online) Spoken digit recognition for neural network. (a) Spoken digit recognition rates as a function of
the number of utterances N used during training for a non-linear oscillator modeled according to Eqs.(2-3) and (b) experimental
spin torque nano-oscillator driven by spin polarized current. The coloured region corresponds to the standard deviation of the
recognition rate, based on training with all possible combinations?.

depending on the number of utterances used during the
learning process. For some cases, the spin torque nano-
oscillator exhibits slightly higher recognition gain than
the simulations even if the latter does not consider the
intrinsic noise. It is mainly due to the higher complex-
ity in the dynamics of the spin torque nano-oscillators,
including not constant relaxation time with the current.
Such higher complexity further enhances the spoken digit
recognition performance.

CONCLUSION

The cochleogram and MFCC method exhibit practi-
cally perfect digit recognition although the contribution
introduced by the neural network is small compared to
the acoustic filter. And it is opposite for Spectrogram
method, the final recognition is not excellent (Mathieu:
It is not that bad neither) but it is mainly due to the neu-
ral network while the filter plays a residual role. (Math-
ieu: we should also say something about the study with
the alpha factor...)
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Figure 73: a. Gain of WSR as a function of the number of utterances N used
during training for a non-linear oscillator modeled according to
equation 70-71. b. Gain of WSR for the experimental reservoir
with a time-multiplexed spin torque nano-oscillator driven by
spin polarized current. The colored region corresponds to the
standard deviation of the recognition rate, based on training with
all possible combinations.

with an experimental non-linear oscillator. The gain on the spoken
digit recognition for the three different acoustic filters induced by
the experimental spin torque nano-oscillator is shown in Figure 73b.
Despite the simplicity of the model, a good agreement between the
experimental results and the simulations can be observed. The gain
varies between 4 and 27% for the cochleogram, 22 and 24% for the
MFCC filter, and between 55 and 70% for the linear spectrogram
depending on the number of utterances used during the learning pro-
cess. For some cases, notably the linear spectrogram, the experimental
spin-torque nano-oscillator exhibits slightly higher recognition gain
than the simulations even if the latter does not consider the intrinsic
noise. This is mainly due to the higher complexity in the dynamics
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of the spin-torque nano-oscillators compared to the model, including
current-dependent relaxation times [157, 153]. Such higher complexity
further enhances the spoken digit recognition performance. In order
to evaluate the net contribution of the oscillator in the recognition,
the gain of WSR when compared with the filtering as stand-alone
feature extractor should be computed. Both using simulations and
experimental spin-torque oscillator, we obtained high gain of 60%
in simulation and 70% experimentally for simple linear spectrogram
method and lower gain of 22% and 4% for MFCC and cochlear de-
composition. These results shows that the gain in WSR, as the final
WSR, depends strongly of the filtering method chosen. Therefore the
conclusions regarding the efficiency of a hardware for spoken digit
recognition should be drawn regarding to the filtering method used
and the gain in WSR the hardware provides.

9.4 conclusion

Different frequency filtering methods were tested as stand-alone
feature extractors. Training a linear classifier on the Sγ matrix for
the TI-46 spoken digit data base [269], for cochleagram and MFCC
gives high word success rate, which indicates that the different classes
of digits were mainly separated by the frequency filtering. On the
contrary, the real part of a spectrogram does not separate the inputs
depending on the digit class.
By adding a non-linearity to the spectrogram, we show that we can
reach similar results, which stresses that the reason of separation in
MFCC and cochlea decomposition is the presence of non-linearity, but
the type of non-linearity is not that important. Indeed we reached
similar performances just applying a power exponent to the spectro-
gram which is much simpler than the non-linearity occurring in the
cochlear decomposition or in the MFCC methods.
In a second part, a non-linear oscillator is added to process the filtering.
The gain in WSR brought by the non-linear oscillator is computed for
each filtering method. The non-linear oscillator was first simulated,
and these results were compared with experimental results, showing
good agreement. For the non-linear methods MFCC and cochleagram,
the gain of WSR is small, despite a nearly perfect WSR. On the
contrary with the linear spectrogram, the gain of WSR is much higher
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even though the final WSR is more around 70-80%.
The final WSR should thus be interpreted with caution, depending
on which time-to-frequency transformation is used. When such task
is performed to prove the efficiency of a type of hardware system for
computing, the demonstration is done only if the hardware provides a
gain of WSR. In order to test and compare hardware systems, using
a linear spectrogram eases the interpretation of the results, because it
does not introduce any separation of the word to recognize prior the
hardware system.
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Part V

I M P R O V E D R E C O G N I T I O N T H R O U G H
D E L AY E D F E E D B A C K M E M O RY





10
E X P E R I M E N TA L I M P L E M E N TAT I O N A N D
E V I D E N C E O F FA D I N G M E M O RY

The following chapter presents how extrinsic memory was exper-
imentally added to a spin torque oscillator. In the first section, we
measure the intrinsic memory of the oscillator in order to quantify
its extension. In the second section the experimental implementation
of the delay feedback is presented. In the third section, the range of
fading memory brought by the delayed feedback is evaluated.

10.1 evaluation of the intrinsic oscillator memory

10.1.1 Principe of the relaxation time measurement

In this section we explain how we extract the relaxation time
depending on the operating point. When a d.c. current and a magnetic
field are applied to an oscillator, the vortex core in the free layer
gyrates on a stable orbit. The idea of our measurement is to slightly
distort the trajectory of the vortex core by applying an electrical
pulse. The electrical pulse induces an additional spin-torque on the
vortex core, so it reaches another orbit. After the end of the electrical
pulse, the vortex core returns progressively to its initial stable orbit
imposed by the operating point. We evaluate the time the vortex core
takes to come back to its stable orbit, to measure how long the spin
torque oscillator keeps traces of the electrical pulse perturbation. This
time is evaluated when the perturbation increases the radius of the
vortex position (the spin torque induced by the electrical spike works
against the damping) and when the perturbation decreases the radius
of the vortex core position (the spin torque induced by the electrical
spikes reinforces the damping). To evaluate this time, we measure the
amplitude of the oscillating voltage emitted by the oscillator which
is directly proportional to the vortex core radius [153]. Interestingly,
because the measure of the relaxation time is achieved after the end of
the spike voltage spike, it does not suffer from errors due to parasitic
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capacitance in the circuit or due to relaxation time of the applied d.c.
current.

 

   

Figure 74: Measurement of the oscillation relaxation. Upper graph: signal
(magenta) sent by the arbitrary waveform generator. Lower graph
(black and blue): output signal after the diode (oscillation ampli-
tude Ṽ after amplification by 20 dB). After the end of the voltage
pulse, V̂ returns to it initial level Ṽ∞. This relaxation phase is
highlighted in the transparent blue area. The operating point is
H=300 mT and I=-5.5 mA.

In practice the measurement setup is the same as the one described
in Figures 42 and 43. The input generator sends a 0.4 µs pulse of ±40
mV which corresponds approximatively to a ±1 mA variation of the
d.c. current received by the oscillator (Figure 74 magenta in the case
of a positive spike). The oscillation amplitude Ṽ , after amplification,
is measured (Figure 74 black and blue curve). The relaxation time
Trelax is extracted from the relaxation using an exponential fit on a
part of the relaxation phase time trace (Figure 74 blue curve). In the
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auto-oscillator model [157] the dynamics of the oscillator amplitude
can be indeed described by the normalized amplitude u:

u(t) =
Ṽ (t)

Ṽ∞
(72)

where Ṽ is the oscillation amplitude and Ṽ∞ is the oscillation
amplitude in the steady state. u should evolve as [157]:

du

dt
= ΓP (1− f(u)) (73)

with ΓP the oscillator relaxation constant and f a non-linear function.
If Ṽ is close to Ṽ∞, f(u) ≈ f(1). In this case, the solution to equation
73 is an exponential with decay time:

Trelax ≈
1

ΓP (1− f(1))
(74)

Trelax quantifies how long the information is conserved. In order to stay
in a situation where u ≈ 1 and where an exponential fit of Ṽ is valid,
the values of Ṽ selected to be fitted should respect approximately
Ṽ∞/2 ≤ Ṽ ≤ Ṽ∞, when the perturbation of the electrical pulse
decreases the vortex radius. On the contrary, when the electrical
pulse decreases the vortex radius, we select values of Ṽ such as
Ṽ∞ ≤ Ṽ ≤ 2Ṽ∞ . These choices can be summarized by the following
criteria which is applied in any case to select the point for the fit:∣∣∣∣∣log

(
Ṽ

Ṽ∞

)∣∣∣∣∣ ≤ log(2) (75)

Figure 75 is a zoom on the relaxation phase of Figure 74. The points
used for the exponential fit are highlighted in green. The exponential
fit is plotted in red. The value of Trelax is extracted from this fit. The
portion of the curve in blue corresponds to values of V̂ which do not
respect the criteria of equation 75. Therefore, they are ignored for the
fit. In the criteria from equation 75, we choose for the fit values of Ṽ
that are at the most twice larger or twice smaller than Ṽ∞ to ensure
that variations of u are small. Choosing values larger than 2 in this
criteria, in order to reduce the variations of u, decreases the number
of points used for the fit but does not significantly change the value
of the extracted relaxation time. This measurement was repeated for
different operating points and the results will be presented in the next
section.
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Figure 75: Zoom on the relaxation phase of Ṽ , for the operating point H=300
mT and I=-5.5 mA. The portion of the time trace Ṽ (t) used
for evaluation of the relaxation time is highlighted in green. The
exponential fit is plotted in red. The portion of the curve in blue
is ignored for the fit because it differs too much from the steady
state value Ṽ∞.

10.1.2 Operating point dependent relaxation time

Trelax is measured for d.c. currents varied from 3.5 mA to 9.0 mA
and magnetic fields varied from 200 mT to 600 mT. Figures 76a and
76b show these results for, respectively, input spikes favoring and
against the damping. All the white areas on the maps correspond to
operating points where the relaxation time could not be evaluated
because there was no emission, the signal over noise ratio was too low
or the behavior of Ṽ could not be fitted by an exponential. The way
the error on the fit propagates on the evaluation of the relaxation time
is difficult to evaluate, because it requires numerous measurements
(repeating the measurement many time and analyzing the variation
of the measured noise on a significant amount of measurements) or
extensive computations (in order to generate artificially "repetition
of the same measurements" bootstrap algorithm [270] for instance
can be used). We did not perform such systematic measurements and
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thus we do not give a precise error bar on the measured relaxation
time. But in order to have relaxation time that can be trusted, we
only conserved relaxation time from measurements where the error
on the fit εfit is inferior to 1.5×10−3. We define εfit as:

εfit =
1
N

(
‖Yfitted − Yfit‖

max(Yfit)−min(Yfit)

)
(76)

where Yfitted is the vector of the measured data (here it is the measured
Ṽ ), Yfit is the vector of the values from the fit and N is the length of
Yfitted. The measured relaxation time typically evolves between 100

a b 

𝜇0 𝜇0 

Figure 76: Relaxation time as a function of the operating point obtained
for a. input spikes favoring the damping (positive voltage) and
b. input spikes against the damping direction (negative voltage).
White areas in the maps correspond to operating points where
the relaxation time could not be evaluated because there was no
emission, the signal over noise ratio was too low or the behavior
of Ṽ could not be fitted by an exponential.

ns and 300 ns (Figure 76).
Even though the measured Trelax is similar for spikes favoring the

damping (Figure 76a) or against the damping (Figure 76b), in some
operating points these relaxation times differ, notably at low field
(lower than 400 mT) and close to the critical current. For such case
Trelax measured for spikes against the damping is much shorter.

Surprisingly, Trelax does not monotonically decrease with current as
expected from theory [157, 153]. On the contrary we can observe that
it increases again after 6.0 mA (Figure 77 in the case of H=600 mT),
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which does not fit the expected 1/IDC dependency predicted by theory
(see for the theoretical expression of Trelax equation 33 in the uniform
case and equation 50 in the case of a vortex in chapter 4). For 600 mT
(Figure 77), the relaxation time increases drastically at 7 mA for spikes
favoring the damping (red curve). This sharp transition could be due
to a change in the magnetization mode. However this explanation
remains an assumption. At 7 mA, the difference of measured relaxation
time is particularly high (Trelax ≈ 250 ns for spike against the damping
and Trelax ≈ 580 ns for spike with the damping).
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Figure 77: Relaxation time as a function of the I for H=600 mT for input
spikes favoring the damping (red curve) and against the damping
(blue curve).

In conclusion, the relaxation time of the oscillator was measured
and varies typically between 100 ns and 300 ns. The dependence of the
relaxation time on the operating point presents a quite unexpected
behavior, since it does not decrease monotonically with current. Trelax
was evaluated by sending spikes favoring and against the damping. It
resulted in significantly different values of Trelax in some operating
point conditions (notably close to the critical current), that may
suggest an asymmetry in relaxation dynamical behavior depending if
the vortex core goes to the center of the dot or in the opposite direction.
These results are still preliminary and would require further studies, to
be better understood. Nevertheless, the range of the intrinsic memory
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of the oscillator, which corresponds to the typical relaxation time, was
quantified to be around 200 ns. It corresponds approximatively to the
expected order of magnitude of the relaxation time. Indeed in order of
magnitude Trelax ≈ 1

αω0
(see equation 33). With α ≈ 0.01 and ω0 ≈

300 MHz, a relaxation time around 300 ns was expected.

10.2 implementation of extrinsic memory through
delayed feedback loop

10.2.1 Experimental set up

In this section, we present the experimental circuit used for adding
memory to the reservoir through a delayed feedback (Figure 78). The
main difference with the circuit presented in chapter 6 (Figure 42)
is the addition of the delay loop, composed of an electronic delay
line with a delay τ = 4.3 µs and a total amplification of about 20
dB. The addition of the delayed signal to the input is made with a
power splitter. The reinjected signal is proportional to Ṽ (t− τ ) (the
signal emitted by the oscillator and delayed of τ) and therefore, its
level depends on the operating point. For the highest emitted voltage
(measured at low magnetic field), the injected signal amplitude can
reach approximately 50% of the amplitude of the input signal (250
mV peak to peak). Finally, the oscillation amplitude is recorded with
an oscilloscope.

10.2.2 Fading response to a single spike

In this section we show the influence of the delay loop on the
oscillation amplitude Ṽ (t) when a single spike is injected to the
oscillator. The intrinsic memory of the oscillator and the feedback
memory are illustrated in Figure 79. A 200 ns long current pulse is sent
to the oscillator (Figure 79a) and the voltage amplitude of the oscillator
Ṽ (t) is recorded by an oscilloscope (Figure 79b) during a much longer
time (20 µs), in order to observe the reinjection effects and the memory
induced by the delay line. Similarly to section 10.1, the input spike
modifies the orbit of the gyrotropic motion of the vortex core. This
changes the amplitude of the signal emitted by the oscillator Ṽ . After
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Figure 78: Experimental set up: The spin-torque oscillator receives a d.c.
current and a perpendicular magnetic field which set the oper-
ating point. It emits an oscillating voltage Vosc(t). The time-
varying input is generated by an arbitrary waveform generator.
A diode allows measuring directly the amplitude of oscillations
Ṽ (t), which is used for computation. The feedback loop consists
of an electronic delay line (τ = 4.3 µs) and an amplifier (the total
amplification in the line is +20 dB). The signals are added with
power splitters.

the spike, the vortex core returns to the orbit defined by the fixed
magnetic field and the d.c. current: the amplitude of the oscillations
Ṽ (t) returns progressively to its initial level. During this time, which
corresponds to the relaxation, the oscillator still remembers the input
because the oscillation amplitude has not returned to its initial level.
As seen in 10.1, the relaxation time of magnetization dynamics is
around 200 ns, except for low fields and low currents or for high
field (600 mT) after 6 mA. This intrinsic memory is highlighted in
blue in Figure 79b. The feedback is implemented by propagating the
perturbation of the oscillation amplitude in the delay line for τ = 4.3
µs and reinjecting it into the oscillator. This injection induces new
variations in the amplitude of the oscillator response Ṽ (t). Indeed,
echoes in the oscillator response are observed every τ after the end of
the input signal. These echoes are the manifestation of the external
memory provided by the delayed feedback. Since after each τ the
echo is more and more attenuated, the feedback memory is a fading
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memory. The fact that memory fades is important to process temporal
sequence for which only the recent history is important to ensure good
classification performance [239]. For a magnetic field of 600 mT and a
d.c. current of -6.5 mA, we observe variations in the oscillator output
even after 13 µs (approximately 60 relaxation times). The range of the
feedback memory depends on the delay in the line. Here we observe a
memory of 13 µs, which corresponds to three times the delay of the
line, but choosing a longer delay in the line would have resulted in
a longer range of memory. Moreover, the feedback memory is sparse,
that is, the information that the oscillator received as input in the
past is only accessible every time τ (4.3 µs in our case) in the areas
highlighted in orange in Figure 79b. In between, this information
cannot be extracted from the measured trace. If the input is discrete,
the time step of the input and the delay in the line are often chosen
to be equal, for the oscillator to remember the input at previous time
steps.

 

 

Intrinsic memory
Feedback memory

 

b

  
  

 
 
 

a

Figure 79: (a) Input spike (in magenta) sent by the arbitrary waveform
generator to the spin-torque oscillator. (b) Blue curve: variation
in the amplitude of the delayed feedback oscillator response Ṽ (t).
The shaded areas in blue and orange indicate respectively the
intrinsic memory and the feedback memory. The operating point
is 600 mT and -6.5 mA.
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In the particular case of Figure 79 three additional peaks were
observed, but depending on the operating point, the number of observ-
able peaks varies. Figure 80 shows the variation in the amplitude of

a b 

c d 

𝝁𝟎 

𝝁𝟎 𝝁𝟎 

𝝁𝟎 

Figure 80: Variation in the amplitude of the delayed feedback oscillator
response Ṽ (t) for a field of 250 mT and various d.c. currents: a,
5.5 mA b,6.0 c, 6.5 mA d, 7.0 mA.

the delayed feedback oscillator response Ṽ (t) for a field of 250 mT and
various d.c. currents. For the lowest current -5.5 mA (Figure 80a), the
oscillator is in a regime just above the oscillation threshold where it
is very sensitive to perturbations. Thus the variations in Ṽ (t) are not
correlated with the reinjection. By increasing the current to -6.0 mA
(Figure 80b), Ṽ (t) oscillates with maxima every time τ (highlighted
by a red cross), but the amplitude of these oscillations is not related to
the distance to the first initial peak. In this situation, it is not possible
to know when the delayed feedback oscillator received a perturbation,
just by observing one maximum amplitude. Therefore, if multiple
perturbations happen in the past, they can not be deduced from the
shape of the present Ṽ and even though multiple spikes are observed,
they cannot be used for tasks requiring memory such as the memory
task developped in the next section. This case illustrates the necessity
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for the memory to fade. For -6.5 mA (Figure 80c) a fading response is
observed with a large number of visible peaks (16 echoes of the initial
variation). Finally, increasing the d.c. current to -7 mA decreases the
sensitivity of the oscillator to perturbations and only two echoes are
observed. The number of observed echoes depending on the operating
point is summarized in the following map (Figure 81).

a b 

𝜇0 𝜇0 

Figure 81: Number of echoes in the amplitude variation Ṽ (t) after a per-
turbation favoring the damping (a) and against the damping
(b) as a function of the operating point. The white dashed line
rectangle correspond to the range of operating point were the
memory capacity was computed.

The number of observed echoes is evaluated in the case of a pertur-
bation in the damping direction (Figure 81a) and against the damping
(Figure 81b). The largest numbers of echoes are observed close to the
critical current, since in this region, the oscillator is more sensitive
to the external fluctuations. For a same operating point, the number
of observed echoes depends of the sign of the perturbation, because
the part of the Ṽ = f(I) function which is explored is not the same,
resulting in different amplitude variations. This observation is similar
to the asymmetry observed between Vup and Vdw in chapter 9 (see for
example Figure 64).
In conclusion, a delay loop brings an additional memory, because
echoes in the oscillation amplitude are observed after the end of the
perturbation. The periodicity of the echoes is the value of the delay
in the loop and the number of observed echoes gives an intuition of
the range of this memory. However it is not clear if the initial pertur-
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bation can be retrieved from the echoes. For instance, in Figure 80b,
the amplitude of the echoes does not provide an information on the
amplitude of the input.

10.3 evaluation of the memory capacity of an os-
cillator

In this section, we compute the memory capacity of a delayed
feedback spin-torque oscillator. It evaluates if a past input value can
be retrieved from the present response of a dynamical system.

10.3.1 Task

This task was introduced by Jaeger [240] to evaluate the memory of
a reservoir network. In this subsection, therefore, the delayed feedback
oscillator will be used with time multiplexing to perform reservoir
computing on the memory task.
The input stream u(k) to be processed is a random sequence of values
+1 and -1 (see Figure 82a). The goal of the task is to retrieve from
the reservoir state X(k) the value of u(k− l), where l represents how
far in the past is the input value to retrieve. We call yl the output
reconstructed from X(k). yl is the same sequence as u but shifted
of l time steps to the right. For l = 2, the output that should be
reconstructed is illustrated in Figure 82b.

The rest of the process is very similar to any other task of reservoir
computing. We determined W out

res (l) and Wbias(l) using training exam-
ples for each l value. They should minimize the error ‖W out

resX(k) +

Wbias − u(k − l)‖2. We define yl(k) = W out
res (l)X(k) +Wbias(l). The

memory performance m(l) on ntest examples to retrieve the input l
steps in the past is computed as the cross correlation between the
yl(k) values and the u(k− l) values:

m(l) =

∑ntest
1 (yl(k)− yl)(u(k− l)− u)√∑ntest

1 (yl(k)− yl)2∑ntest
1 (u(k− l)− u)2

(77)
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Figure 82: (a) Input u(k) (b) output yl in the case of l = 2.

10.3.2 Results

We performed this task using a delayed feedback spin torque os-
cillator as a reservoir. By comparison with the previous section, the
delay used during this experiment is shorter (1.7 µs). The reason for
this different delay time is only due to the planning of this work. The
experience for memory task was performed before the study of section
10.2. At that time, we did not have all the delay lines necessary to
build a longer delay of 4.3 µs. 24 temporal neurons are used for this
task. We use the constant τ = 1.7 µs for the preprocessed input (the
time scale of the input is equal to the delay in the feedback loop) and
θ = 72 ns (τ/24). The input is composed of 100 values, and half is
used for training and the other half for testing. This input is prepro-
cessed using 24 temporal neurons with the same mask used for the
sine/square classification. The memory capacity m(l) was computed
for l varied between 0 and 9. The memory was tested for 3 values of
the magnetic field 330 mT, 380 mT and 430 mT and for d.c currents
from 2.8 mA to 6.0 mA (see white dashed line rectangles in Figure 81).
The highest m(l) values were obtained for a field of 330 mT and a
d.c. current of 5.4 mA which is consistent with the map obtained in
Figure 81. Indeed, in a neighboring region at 300 mT and 5.5 mA, 16
echoes were counted in previous section 10.2. So in this region of the
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H-IDC plan, the oscillator has an optimal sensitivity to perturbations
for feedback memory. These memory capacity results are plotted in
Figure 83. As it can be observed, the correlation between the output

 

 

 

 

Figure 83: Experimental memory capacity m as a function of l. For this
measurement the operating point is 330 mT and 5.4 mA. The
delay of the delay line is 1.7 µs and 24 temporal neurons are used.

yl(k) and the past input u(k− l) is high for l ≤ 3. The information
from the delayed feedback oscillator allows to retrieve past inputs
up to three time steps in the past, but previous input values cannot
be retrieved. For the time constant chosen in this study, this means
it can retrieve an input value 5.2 µs in the past. This time is much
larger than the relaxation time (≈ 200 ns), so this memory effect is
entirely due to the feedback. We obtain, here, a smaller memory than
the maximum number of observed echoes. Also, this evaluation of
memory capacity was not performed for as many operating points as
the one presented in section 10.2. Moreover, this method to evaluate
the memory of the delayed feedback oscillator is more demanding
than counting the echoes, as done in the previous section. These two
points can explain the smaller range of the evaluated memory with
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memory capacity, when compared with previous section. Neverthe-
less, we demonstrate here that the delay feedback memory allows to
properly retrieve multiple informations in the past.

10.4 conclusion

In the first section we measured the relaxation time of the spin-
torque oscillator, in order to evaluate the range of intrinsic memory.
Relaxation time was measured between 100 ns and 300 ns, with an
unexpected non-monotonic behavior, compared to theory, and with
some asymmetry of its value, depending whether the vortex core
relaxes towards a position closer or farther away from the center of
the dot.
In the second section, we proposed to add a delayed feedback to the
oscillator in order to build an extrinsic memory. When the oscillator
receives an input, multiple echoes of this perturbation, due to the
delayed feedback, are observed in the oscillation amplitude response.
A delay of 4.3 µs was chosen, allowing to observe marks of the pertur-
bation after a time much longer than the relaxation time (for example
69 µs for 300 mT and 5.5 mA). The number of observable echoes
depends on the operating point, because the more the oscillator is
sensitive to perturbations, the more echoes will be observed.
Finally we evaluate the memory capacity of a delayed feedback os-
cillator with a delay of 1.7 µs, in order to compute how well a past
input can be retrieved from the delayed feedback oscillator response.
This memory capacity is evaluated for input values that are older
and older. The range of operating points tested was not as large as
for the previous study. Nevertheless, we could evaluate a memory
capacity, which is approximatively 3. The delayed feedback oscillator
can retrieve input values at least three time steps in the past.
Also it is important to note, that the memory capacity demonstrates
if a system can retrieve inputs, but it does not show if a system can
perform recognition using past and present inputs. Indeed, the systems
that perform the best at the memory capacity task are linear systems
[240] that are unable to recognize complex patterns. The efficiency of
this memory for recognition tasks remains yet to be demonstrated.
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11
I M P R O V E D S E PA R AT I O N O F D ATA I N C A S E S
R E Q U I R I N G M E M O RY

In this part the feedback effect as a memory is tested on a sine/square
classification task. Firstly, we explain the interest of this task to test
the memory. Secondly, we show the effect of feedback on time traces.
Finally, we show the effect of feedback on the higher dimension reser-
voir state. The reservoir state will be visualized in two dimensions
using projection methods. An improvement in the data separation
will be observed due to this projection. The experimental data are
obtained for the bias conditions H=300 mT and I=-6.5 mA.

11.1 experimental parameters

In the previous chapter, the memory capacity of a spin-torque
oscillator was studied. The memory capacity evaluates how far in the
past the system can remember an input, but it does not show if this
memory is usable for computation. Indeed, systems that perform the
best at memory capacity task are linear systems [240], that cannot
separate inputs. More generally, it has been shown that there is a
trade-off between memory and non-linearity [271, 272, 273]. To test
the memory in the context of pattern recognition, we performed
the sine/square classification task, which requires both memory and
non-linearity.

11.1.1 Task

The sine/square classification task was presented in section 7.1.1
(Figure 46). As mentioned in section 7.1.1 this task requires both
non-linearity and memory. The input sequence to classify is made of
the same succession of discrete periods of sines and squares randomly
arranged as in chapter 7. The sine and square inputs take values
between -1 and 1. The different input cases are referred as si1-8 for
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the sine pattern and sq1-8 for the square pattern. These patterns
present degeneracies because different input cases take the same
value. In particular si3 and si7 take the values +1 and -1 just as
respectively sq1-4 and sq5-8. To classify correctly si3 and si7, the
reservoir should remember the previous input si2 and si4. In this
situation the information to store in the reservoir is not one value, but
a sequence of two consecutive values. For this task, it is not necessary
to remember more than one step in the past.

11.1.2 Preprocessing time constant

The sine square classification task is treated similarly as in sec-
tion 7.1.2. We use a single oscillator with a delayed feedback loop
which emulates a 24 temporal neurons reservoir. As in chapter 7, the
connection between the input and the reservoir is emulated by the
preprocessed input J(t). We choose to synchronize the delay feedback
loop with the input. The feedback delay is of 4.3 µs, so we generate
a preprocessed input J(t) with a long time scale τ = 4.3 µs. In this
case, at time t = (k − 1)τ + iθ, when the oscillator temporal state
represents xi(k) (the neuron response i to the input u(k)), it is fed
with J((k − 1)τ + iθ) = wini u(k) and x((k − 2)τ + iθ) = xi(k − 1).
So, in the end, the temporal neurons feedback themselves and remem-
ber their own previous response. The equivalent spatial topology is
represented in Figure 84, where, for simplicity, a reservoir with only
five temporal neurons (blue circles) was represented. The connections
between temporal neurons are represented by dashed blue arrows in
Figure 84, and are ensured by the transient dynamics of the oscillator
(with the time scale θ). The connections brought by the τ long delay
line are represented by solid line feedback arrows on the temporal neu-
rons. Then the output is computed off-line (similarly to the method
presented in chapter 7) by linear combination (red arrows). In the
present study, the time θ is 180 ns (τ/24), which is larger than the
one chosen in the previous chapters. It approaches the value of the
relaxation time (Trelax ≈ 200 ns), allowing to decrease the effect of the
intrinsic memory of the oscillator. Indeed, in chapter 7, the oscillator
could solve the sine/square classification task leveraging only the
intrinsic memory of the oscillator. In the present work, our goal is to
study the effect of feedback as a usable memory for computation. The

180



 

Fixed connections

  
  

Recurrent neural 
network 
    

Trained
connections

   

Input
  

Output 
    

 

 

Figure 84: Equivalent spatial reservoir: blue circles represent neurons, dashed
line arrows are the connections between consecutive neurons and
solid line arrows are feedbacks for the neurons.

intrinsic memory effect is here voluntarily attenuated so it does not
screen the effect of the feedback memory.

11.2 time traces

In this section, we present the experimental time traces obtained
for the different input cases. The operating point is, for this study,
µ0H = 300 mT and I = −6.5 mA, where the feedback effect has
a particularly positive effect on classification (for more details, see
chapter 12). A particular focus is made on the si3 and si7 input cases,
as they are the two cases requiring memory to be distinguished from
the square cases. Figure 85 shows the average time traces (colored
solid lines) and twice the standard deviation (shaded region) for
the oscillator amplitude response Ṽ when the input is the si7 case
(Figure 46), compared with the sq5-8 cases (blue-green color). This
curve is obtained by averaging all the time traces when the input is
a si7 (80 cases) and computing the standard deviation over all these
traces at each time step. For this first case (without feedback), we
can see that the trace for si7 is overlapping with sq6-8 (the overlap is
particularly important for sq7 and sq8). The sq5 case differs slightly
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Figure 85: Time traces without feedback.

at the beginning of the time trace where small effects of the relaxation
are still present (we chose θ ≈ Trelax and not θ >> Trelax for practical
reasons). For sq5, the previous value is -1 (sq4) so the transition is
more important. This difference disappears quickly after the first θ.
Figure 86 shows the same average time traces, in the case of a delayed
feedback. The time traces differ more from each other. In particular,
the si7 time trace distances from the sq5-8 time traces. Among the sq
time traces, sq5 becomes very different from sq6-8. Importantly, the
time traces do not need to be different at all times in order to lead to
separable reservoir states. Indeed the reservoir state is obtained by
sampling these curves at different times.

Figure 86: Time traces with feedback.
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The case of si3 presents similar features. Figure 87 shows the si3
case (orange) time traces with respect to sq1-4 case without feedback
(blue-green curves). The si3 case time trace completely overlaps with
sq1-4 cases. Compared with the previous ones, the dispersion of the
time traces (shaded area) is much lower because most of the time
trace is in a region of high emission (which was not the case before).
The oscillation amplitude Ṽ is here in the range -10,-15 mV. As seen
in chapter 8, in this region the function Ṽ = f(I) varies slowly which
means it is less sensitive to thermal fluctuations.

Figure 87: Time traces for si3 without feedback

When feedback is added to the oscillator (Figure 88), the si3 case
differs from the sq cases. Also, the differences are less important than
in Figure 86, once again because in most of the time traces Ṽ = f(I)

varies slowly, so the reinjected signal does not induce large variation
of the Ṽ . The largest differences between the curves are around 1.5 µs
where emission is lower (Ṽ ≈ −5 mV). The lower variation between
the average time traces is counterbalanced by the lower dispersion of
each input case time traces.

As seen in the previous chapters, these time traces represent in time
the higher dimension mapping of a reservoir. In our case, each time
trace represents a 24 dimensions reservoir state. In the next section,
we will study how the memory modifies the distribution of the input
cases in the reservoir state.
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Figure 88: Time traces for si3 with feedback.

11.3 expected distribution of the input cases in
the reservoir state depending on the memory

In this section we will detail which clusters are expected to form
in the reservoir higher dimension mapping, in the case the reservoir
possesses a memory or not.
In Figure 89, the pattern to recognize is plotted and the different

input cases that should form a same cluster without memory are
highlighted.
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Figure 89: 2 dimension projection of reservoir mapping without memory:
The input pattern takes five different values, so five groups of
input cases (a-e) are expected.
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The input pattern exhibits different input cases that are assigned
to the same value, thus, it possesses degeneracies. The input pattern
takes 5 different values (0, 0.7, 1, -0.7 and -1) so, with an ideal input,
without noise in the reservoir behavior, and in the absence of memory
each of the different values should induce a particular reservoir state.
Of course because of the noise in the input and in the response
of our spin-torque oscillator, the time trace for a same input case
fluctuates (as observed in the previous section). So we do not expect
to observe exactly a unique reservoir state but more point clusters
whose widths correspond to the dispersion of the time traces. In the
case of sine/square classification, the reservoir states cannot perfectly
separate the square cases and the sine cases in the absence of memory
because si3 (si7) induces the same reservoir state as sq1-4 (sq5-8).
Indeed as observed in the previous section, in the absence of intrinsic
memory for large thetas, the corresponding time traces completely
overlap.
If the reservoir can remember one time step in the past, when

the reservoir receives an input, its state is determined by the input
current value and the previous one. The number of different clusters
of possible reservoir states is then determined by the number of
different sequences of two consecutive input values present in the
input. For sine and square inputs (discretized in 8 points), 14 possible

 

1,2 3 4 5 6 7 8 9 10,11 12 13 14

Figure 90: Expected mapping with one time step memory: the input pattern
possesses 14 possible sequences of two consecutive values. So 14
groups of input cases (1-14) are expected.

different sequences appear in the input pattern. These sequences are
denominated with numbers from 1 to 14 in Figure 90 and not by
letters like in previous cases in order to not mix up the cases with
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memory and without memory. In particular, si1 and sq1 cases give rise
to different reservoir states 1,2 and 10,11. Indeed, for si1 depending
if the previous input in the signal is a sine or a square we have two
different sequences of values [-0.7,0] and [-1,0]. In a similar fashion,
for sq1 the possible sequences are [-0.7,1], if the previous period is a
sine, and [-1,1], if the previous period is a square. sq2-4 (sq6-8) should
still give similar reservoir states because they correspond to the same
sequence [1,1] ([-1,-1]).
If the reservoir remembers more time steps, the number of possible
clusters increases. For instance, for a two time steps memory, sequences
of three consecutive values should be considered and eighteen clusters
should be expected.
The memory allows separating sine and squares because, in the case
of a one time step memory, there is no overlap between the reservoir
states induced by sine input cases and by square input cases. It also
increases the number of different clusters of reservoir states induced
by the input pattern. In this section, no assumptions on the reservoir
were made besides its memory range. These predictions are thus
general. In the following sections we will confront these predictions
with our experimental results. In particular we will use a 2 dimension
visualization to observe these expected clusters.

11.4 2 dimension visualization of the reservoir map-
ping

In order to study changes in the reservoir state due to reinjection,
the 24 reservoir states are projected in two dimensions so they can
be visualized on a map. First, we explain the principle of the two
dimensional projection we use. Second, we will show in two dimensions
the reservoir state corresponding to the time traces we have seen in
previous section, which sheds light on the critical role of feedback for
separating the data, that are only discernible with memory.

11.4.1 2D projection method

Since one of the goals of the 2D projection is to visualize the linear
separation between the mapping of sine and square input, we chose
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linear projection methods (contrarily to the t-SNE method that we
used in chapter 9). The objective is thus to find two vectors to project
the data along and, to avoid distortion, we chose orthogonal vectors.
In addition, to show the separation between sine and square data, the
projection should conserve all the different clusters of points that are
formed. This last point is important, for instance, when separation
is not perfect, in order to identify which input cases from sine and
square are mixed up together. Each of the time traces presented in the
previous section will be represented by a point in the 2D projection.
The projection consists in computing the coordinate of these points.
The first step is to extract the temporal neuron outputs from the time
traces, by sampling points every θ. Each time trace in response to
u(k) is represented by a 24-values vector, which represents a reservoir
state X(k). Then, the first coordinate ν1 of the point is computed by
the linear combination:

ν1(k) = W out
resX(k) +Wbias (78)

where W out
res and Wbias are the weights determined during training

(see chapter 5 and 7). The first coordinate, ν1, shows the separation
between sine and square. The limit between sine and squares on the
map is visualized by the line of equation ν1 = 0.5. Geometrically, ν1
can be seen as a projection of X(k) along the vector W out

res . The bias
Wbias just ensures that along this projection, the linear separation
occurs at 0.5 (it can be seen as a change of origin). To ensure the
orthogonality of the projection base, the second projection vector
should be orthogonal to W out

res . We look for the second vector in the
space H, orthogonal toW out

res , and we now studyX⊥(k), the component
of the reservoir state in H.

X(k) = X⊥(k) + (ν1(k)−Wbias)W
out
res (79)

The goal of the second coordinate ν2 is to reveal the clusters in the
data distribution of the X(k) vectors. For this purpose, we take as
second coordinate, ν2, the first principal analysis (PCA) score on
X⊥(k). PCA is a standard method used to decrease the number of
variables in a problem. Let’s define M = [X⊥(k)]k∈[1,Ntau], the matrix
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containing all the X⊥(k). PCA finds a vector u in H such as the
variance of X⊥(k) projected allong u

var(Πu) = var(M .u) (80)

is maximal. The second coordinate, ν2, is thus given by the projection
along u.

ν2(k) = X(k)u (81)

It is important to note that, even if ν2 is designed to account for
the variability in the data of M, since it is obtained by a linear
projection, we lose some information. In the end we try to design
a linear projection that represents the separation and the different
clusters in the reservoir. Going from 24 dimensions to 2 dimensions
can induce a loss of information. In the following section, this linear
projection is used on the experimental data and it will be shown how
it allows to visualize the reservoir state.

11.4.2 Emergence of new clusters due to reinjection

The following maps, which will be described, are obtained with the
projection method described in the previous subsection, applied to
all the time traces used during the experiment (1280). We use, here,
the data both for training and testing to have more representative
points in the figure. The objective is to see the separation among
the data, operated by the reservoir, before any form of training, so
mixing training and testing data does not introduce a bias. In the
following Figures 91 and 92 each time trace, in response to an input
u(k), is represented by a point of coordinates (ν1, ν2). These points
are represented with the color associated with the input case of u(k).
For example, if u(k) is a si1 case, the reservoir state it induces is
represented by a dark purple point (the color associated to si1) on the
2D map. The separation between sine and square cases is represented
by the vertical line ν1 = 0.5. If the reservoir separates well the different
inputs u(k), all the points associated to sine inputs (represented in
warm color) should fall on the left of the vertical line and each point
associated to square inputs (represented in cool color) should fall on
the right of the vertical line. The first two dimensions map (Figure 91)
represents the reservoir states without any feedback.
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Figure 91: 2 dimension projection of reservoir mapping without feedback:
gray dashed ellipses highlight the clusters corresponding to the
different input value cases.

Figure 91 shows mainly five well separated clusters of data (high-
lighted with gray dashed ellipses) corresponding to the five different
input values (cluster a-e) as predicted in section 11.1.1 (Figure 89).
Also si4 and si8 seem to separate slightly due to the intrinsic memory
effect. Similarly, the sq5 and sq6 cases seem quite dissimilar. But these
differences remain small, when compared with the distances to other
input cases. These first results show that, besides small differences
observed in time traces, the effect of the intrinsic memory due to
relaxation is mainly negligible. As expected, the si3 (si7) cases cannot
be separated from the sq1-4 (sq5-8) cases. Two points of si8 cases are
not well classified, because of a lack of reproducibility (noise). All
the other 157 points that are not well separated come from a lack of
memory. For these cases, training on 50% of data and testing on the
remaining 50% lead to a 10.78% error rate on testing data (and a
12.66% error rate on training data).
Figure 92 represents the reservoir states when a feedback is added to
the oscillator. The feedback notably increases the number of clusters
in the data, showing that the feedback breaks the degeneracy of the
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Figure 92: 2 dimensional projection of reservoir mapping with feedback:
gray dashed ellipses highlight the clusters corresponding to the
different input 2 values sequences.

input pattern. In particular, the si3 (si7) cases form a cluster clearly
distinct from the sq1-4 (sq5-8) cases. Thirteen clusters are isolated
in total. These clusters are consistent with a one-time-step memory.
The thirteen clusters are associated with the cases seen in 11.1.1
(Figure 90). We associate the clusters observed experimentally with
groups (1-14) that are expected with a one time step memory. All
the expected groups are observed, besides groups 8 and 9 that are
merged in a single cluster. This might be due to the loss of information
that occurs during the projection. A linear separation can be drawn
between sine and square cases with very few errors (4 in total). This
higher dimension mapping of the data results in a high performance
classification with a 0.14% error rate on testing (and 0.44 % errors
on training). The feedback modifies the topology of the reservoir
states because it provides memory. Feedback suppresses most of the
degeneracies in the input pattern and creates new clusters among the
reservoir states. Finally, a linear separation of sine and square inputs
is achieved with a very low error rate.
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11.5 conclusion

Sine/square classification is an interesting task to evaluate the
memory, because it requires both memory and non linearity. Moreover,
the clusters of the reservoir states can be predicted, depending on the
amount of memory.
Time constants τ and θ of the preprocessed input were specially
designed to study only the memory brought by the feedback and not
the intrinsic memory effects.
We have seen, in the second section, how the feedback modifies the
time traces of Ṽ . In particular, the time traces in response to si3
and si7 inputs (cases that require memory to be classified) become
different from the square cases.
Finally, we designed a 2 dimension projection in order to visualize
the 24 dimensions reservoir states on a map. The two coordinates of
the map are constructed to visualize the separation between sine and
square cases and, the different clusters of reservoir states.
These 2 dimensions maps confirm, without ambiguity, the memory
effect of the feedback, because new clusters of data are formed in the
reservoir state. In the end, the separation between sine and square
goes from 10.8 % errors without feedback, to 0.14 % errors with
feedback. These results prove that feedback memory can be used for
computation.
The results presented in this chapter are obtained for an operating
point of H = 300 mT and I = −6.5 mA. In the next chapter, we will
see how the feedback memory is affected by the operating point.
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12
I N F L U E N C E O F O S C I L L AT O R P R O P E RT I E S
O N C L A S S I F I C AT I O N P E R F O R M A N C E

In this chapter, we study the influence of the operating point on
classification improvement brought by re-injection. In the first section,
we present classification results with and without feedback and analyze
which input cases these errors come. Then we link these errors with
the operating point dependent properties of the oscillator and give
general guidelines to choose well the regime of the oscillator when
feedback is added.

12.1 classification improvement

12.1.1 Global classification result

We have investigated the feedback effect in a large magnetic field
range, from 200 mT to 600 mT, and DC current range, from -2 mA to
-7 mA. Figures 93 and 94 show the error rate result depending on the
operating point, respectively without feedback and with feedback. The
situation without feedback (Figure 93) already presents disparities of
result depending on the operating point. The red colors correspond to
low error rates and the white color to high error rates. In particular,
as seen previously, for low field and low current, high error rates are
observed. For some operating points, such as 600 mT and -5.0 mA, on
the contrary, low error rates are observed (5 %). These good results
augur intrinsic memory effects even with the large value of theta that
we use here ie θ =180 ns. These situations will be seen in more detail
in the next section. When feedback is added (Figure 94) very low error
rates are observed for many different operating points (dark color).
Error rates inferior to 5 % (best error rate achieved without feedback)
are highlighted in gray (15 operating point conditions).

Both the magnetic field and the DC current change the non-linear
dependence of the voltage oscillation amplitude with the input current
(see chapter 9), with the DC current acting as an offset for the input
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Figure 93: Error rate without feedback.

current. The improvement of the classification, which corresponds to
the reduction of the error rate when feedback is added, depends on
the operating point fixed by these two parameters (d.c current I and
perpendicular magnetic field H). The normalized reduction of the
error rate ∆ε is computed as follows:

∆ε =
εNF − εF
εNF

(82)

where εNF is the error rate in a situation without feedback and εNF
is the error rate obtained in a situation with feedback. ∆ε is thus
positive when the feedback improves the classification and negative
otherwise.
The error reduction when feedback is added, depending on the

operating point, is summarized in Figure 95. Light colors correspond
to situations where the feedback improves the classification and dark
colors correspond to situations where the feedback degrades the clas-
sification. In particular white color corresponds to cases where the
feedback suppress 100 % of the error and black color correspond to
situations where the feedback increases the error by more than 100 %.
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Figure 94: Error rate with feedback.

The highest improvement, detailed in chapter 11, is obtained for
the operating point corresponding to 300 mT and -6.5 mA (Figure 95).
In this case 99 % of the errors are suppressed by the feedback. As it
has been seen this improvement is due to the suppression of the errors
on si3 and si7, which are ambiguous without memory. More generally,
as shown in Figure 95, the feedback reduces the error rate in 60% of
the cases during the test phase (∆ε > 0), it has no significant effect
in 10% (∆ε = 0) of the cases and it increases the error rate in 30 %
of the cases (∆ε < 0). In some cases, the feedback can have a very
detrimental effect (for instance for 400 mT and -5.5 mA, the error
increases by 159 % when feedback is added: ∆ε = −159 %).
The results in the testing phase depend on how the reservoir sep-

arates the data and how the separation learned during training is
generalized to new examples. In order to simplify the analysis, we
will focus on the separation part (as it is the heart of the reservoir
computing method). So in the following error reduction maps, only
the training data are used. Figure 96 shows ∆εtrain as a function of
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Figure 95: Normalized reduction of the error rate due to the feedback during
the testing phase ∆ε as a function of the operating point. Positive
∆ε values correspond to a classification improvement due to the
feedback.

the operating point. ∆εtrain is the same ratio of error reduction as ∆ε
(see Figure 95) but using training data instead of testing data.

The variation of ∆εtrain versus the operating point is plotted in
Figure 96. It can be observed in Figures 95 that the variation of
∆εtrain is similar to the variation of ∆ε (Figure 96) and in particular
for the training data the best improvement is also obtained for H=300
mT and I=6.5 mA. The final error rate is improved in only 66 %
of the operating points during the training phase (∆εtrain > 0), but
when the feedback is detrimental during the training phase, the error
rate degradation may be more pronounced during the testing phase:
∆εtrain < 0, ∆ε < 0 and |∆ε| > |∆εtrain|. For instance, at 400 mT
and 5.5 mA, the feedback increases by 50 % the error during training
(∆εtrain = −50 %) and by 159 % during testing (∆ε = −159 %).
In this case, the feedback degrades the separation, since the error
is higher during training (∆ε < 0). The feedback also degrades the
generalization because for the situation with feedback, the error rate
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Figure 96: Normalized reduction of the error rate due to the feedback during
the training phase ∆εtrain as a function of the operating point.

during testing phase is much higher than the error rate during training
phase, whereas without feedback the error rate during testing phase
and training phase are similar. This last effect explains why |∆ε| is
approximatively 3 times bigger than |∆εtrain|. Therefore it is easier to
analyze the situation of the training phase, because it focuses only
on the separation and thus it suppresses the large negative values of
∆ε which are due to a bad generalization and which are not easy to
interpret.
In general, when the feedback improves the classification, it is

related to the memory it brings because it allows classifying correctly
the si3 and si7 input cases (see section 7.1.2). In the following section,
we focus on the recognition of the si3 and si7 cases, in order to see if,
depending on the operating point, the feedback assures its function
as a memory for computation.
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12.1.2 Errors suppressed by the memory

For this study we still focus on training data and we verify if si3 and
si7 are well classified during training. If the reservoir states for the si3
and si7 cases are completely non discernible from those concerning the
sq1-4 and sq5-8 cases, then the optimal weight W will classify the si3
and si7 as square inputs. Indeed, it generates 4 times less errors than
classifying the sq1-4 and sq5-8 cases as sine, as such it is the optimal
solution to reduce the global error. As a consequence, the number
of misclassified si3 and si7 is a measure of the lack of memory. Here,
we will compare the error on si3 and si7 without and with feedback
(Figure 97). the feedback suppresses errors for si3 and si7 in 90 % of

 µ0

Figure 97: Reduction of error thanks to the feedback during training phase.

the cases during the training phase (Figure 97). But the final error
rate is improved in only 66 % of the operating points, during the
training phase (Figure 96), which means that feedback has a positive
effect on memory, but may also bring unwanted effects which scatter
the benefit of the memory in 24 % of cases. The memory can work
against the non-linearity in some particular bias points, leading to a
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worse classification. At this point, two main questions arise. The first
is why doesn’t feedback effect decrease evenly the error, for all the
operating points. The second question is why does the feedback bring
new errors in some cases. In the next section, we study the errors
without feedback, to see how the initial situation (without feedback)
affects the classification improvement engendered by the feedback.

12.2 influence of the memory in the error rate
without feedback

As seen in the previous chapters, the feedback brings memory and
allows separating si3 and si7 cases from sq cases. We chose to quantify
the relative reduction of the error when the feedback is added. The
initial situation, without feedback, influences the improvement that
can be expected. First, the proportion of the errors that are due to
misclassified si3 and si7 (Figure 98) should be quantified, because they
give the maximum of the error reduction that feedback can provide.
This proportion Pr1 is computed as:

Pr1 =
Etrainsi3 +Etrainsi7

Etraintot

(83)

where Etrainsi3 (respectively Etrainsi7 ) is the number of misclassified
si3 (respectively si7) case during training phase and Etraintot is the
total number of errors during training phase. As it can be observed,
misclassified si3 and si7 input cases always represent the majority
of the errors during training phase, but it varies significantly (from
Pr1 = 51% to Pr1 = 100% of the errors) depending on the operating
point. Notably for low field and low d.c. current this proportion is
between 51% and 78%. For the two particular operating points 600
mT, -4.5 mA and 600 mT, -5 mA, lack of memory is of less importance
in the error. It is important to distinguish if this lower proportion
denotes that the oscillator classifies correctly a part of si3 and si7 or if
other kind of errors arise. In order to answer this question, Figure 99
presents Pr2 the percentage of si3 and si7 inputs that are correctly
classified. This proportion Pr2 is computed as follows:

Pr2 =
Etrainsi3 +Etrainsi7
N train
si3 +N train

si7
(84)
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Figure 98: Proportion of misclassified si3 and si7 in the final error Pr1 versus
operating point.

where N train
si3 (respectively N train

si7 ) is the number of si3 (respectively
si7) cases among the training data. For low field and low d.c. current,
most of the si3 and si7 cases are misclassified (Pr2 > 70 %), which
means that their weaker proportion in the total error (Pr1 = 60− 75
%) is due to other kind of errors. These other errors come thus from
either a lack of separability or a lack of approximation in the reservoir
behavior.
For 600 mT, -4.5 mA and 600 mT, -5 mA most of the si3 and

si7 cases are well classified (Pr2 = 45 % for 600 mT, -4.5 mA and
Pr2 = 17 % for 600 mT, -5 mA ). This indicates that the reservoir
already possesses a fading memory. Interestingly, other cases present
lower error classifying the si3 and si7 (these cases were not suspected
because si3 and si7 still represented the most frequent error cases),
such as 400 mT, -5.0 mA or 500 mT, -5.5 mA. In these cases, one of the
two categories (si3 or si7) is well classified. As a conclusion, without
feedback, depending on the operating point, the error distribution is
not even. si3 and si7 are still the most common misclassified cases,
but for some bias conditions, almost half of the error comes from
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Figure 99: Proportion Pr2 of si3 and si7 not well classified versus operating
point.

other input cases, where lack of memory cannot explain the failure.
This lower proportion can either be explained by a larger reservoir
memory in some bias condition (such as 600 mT, -4.5 mA and 600
mT, -5 mA) or, by new errors arising, due to a lack of separability
or approximation (this is the case at low field and low current). For
these conditions, the reduction of the error, by an extrinsic memory, is
expected to be smaller. Interestingly, other cases, where the oscillator
without feedback exhibits memory, were detected.

12.3 operating point dependent improvement

In this section, we link the physical properties of the oscillator to
the observed disparities in the reduction of errors induced by the
feedback.
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12.4 normalized noise level

In this section, we analyze the influence of noise in the feedback.
Figure 100 plots in a color map the noise level as a function of the
bias condition. As in chapter 9, high noise values are observed at
low field (200 mT to 400 mT) and low current (-2 mA to -5 mA).
This high noise region corresponds also to the main region where

 µ0

Figure 100: Normalized noise level as a function of the operating point: the
magnetic field is swept from 200 mT to 600 mT and the DC
current is swept from -2 mA to -7 mA. At low field (200 mT to
400 mT) and low current (-2 mA to -5 mA) the noise level in
the oscillation amplitude response is high.

feedback increases the errors and the errors on si3 and si7 cases are
less preponderant in the total error. Indeed, in this region, the noise
induces errors because the reservoir state is less reproducible for the
same input (failure in approximation property). Also, by increasing
the relative size of the cluster of points, a linear separation is harder
to find (failure in separation property). In the case with feedback, the
number of clusters increases, making a linear separation even harder
to find. It results in a increase of the error.
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12.4.1 Relaxation time effect

As said previously, some cases exhibit lower error rates on si3 and
si7 most probably due to a "memory". This memory of the oscillator
without feedback comes from the relaxation, which itself depends on
the operating point. The experimentally measured relaxation time
was presented in chapter 10. As mentioned, for 600 mT, -4.5 mA and
600 mT, -5 mA, si3 and si7 are accurately classified without feedback
(only 17 % error on these cases). These particularly good results
despite a large θ of 180 ns can be explained by the high relaxation
time observed at 600 mT and 6.5 mA (see chapter 10). Indeed, as
presented in chapter 9, when the input is sent, it explores a large range
of the non-linear behavior of the sample (see for instance Figure 55).
Thus, at a d.c. current of -4.5 mA and -5 mA, the oscillator can both
benefit from the high relaxation time at -6.5 mA and close to the
threshold current. Figure 101 shows the time traces in response to si3
input, when compared with the sq cases. As it can be observed, for

Figure 101: si3 time traces for 600 mT and 5 mA.

the beginning of the curve (time < 0.5 µs), a clear separation between
si3 curve and sq cases appears, because at this level of emission Ṽ , the
relaxation time can reach up to 300 ns. This increase of the relaxation
time is only observed for 600 mT (it could be a sign of a magnetization
transition from vortex to another mode). This explains the particular
results for the 2 bias conditions -4.5 mA and -5.0 mA, observed at
600 mT.
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12.4.2 Conclusion

The feedback has a different effect depending on the operating
point. If in most of the cases it brings memory, it may also generate
new errors that overcome the benefits of memory. In general, the
feedback is of less interest when the errors without feedback are
not completely due to memory. These operating points correspond
either to high relaxation time regimes which provide a long intrinsic
memory to the oscillator without feedback, or it can correspond to
high noise regimes, where the lack of reproducibility degrades the
separability of the data. In general, the feedback acts thus better in
regimes of high signal over noise ratio and low relaxation time. Also
in this study the number of temporal neurons used was relatively
moderate (24 temporal neurons). Since the feedback may increase
the number of clusters of data (see Chapter 11), it may be easier to
find a separation in a higher dimensional state than a 24 dimensions
one. Thus a potential perspective would be to improve the number of
temporal neurons used in the time-multiplexed reservoir. To stay in a
situation where the delay of the line corresponds to the time step τ
of the preprocessed input, it would require changing the experimental
set-up, with a longer delay line.
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C O N C L U S I O N

In this thesis we present the first demonstration of neuromorphic
computing with a nanoscale hardware neuron. We use the non-linear
transient dynamics of a single nanoscale spin-torque oscillator to
emulate the response of a whole neural network, using the reservoir
computing approach. The main physical properties used for this
demonstration are the non linear dependency of the emitted voltage
amplitude with the applied current and the memory of the oscillator
through the relaxation of the oscillation amplitude. Using this non-
linear dynamics, we classified sine and square waveforms which requires
both memory and non-linearity and we recognized successfully digits
said by different speakers. For this last task we obtained a recognition
rate of 99.6 % using cochlear decomposition prior the oscillator. With a
spectrogram as time-to-frequency transformation, the final recognition
rate is smaller (80 %) but the oscillator provides a higher gain. The
final recognition rate depends on the d.c. current and the magnetic
field that is applied to the oscillator, because these bias conditions
modify the regime where the oscillator operates and notably the
signal to noise ratio as well as the non-linearity of the oscillator
response. The noise and the non-linearity are correlated for spin-
torque oscillators and optimal results are obtained for intermediate
level of noise and non-linearity. The rate and the amplitude of the
input which is sent to the oscillator also play an important role. The
amplitude of the input influences the amplitude of the signal emitted
by the oscillator and generally better results are obtained for larger
input signals. The rate should ensure that the oscillator stays in
a transient regime while keeping large amplitude variations of the
emitted signal. Optimal variation time for the input is found for half
of the oscillator relaxation time. Memory can be also added artificially
by shifting in time the input signal and the target signal. In the case of
spoken digit recognition, the audio waveform needs to be transformed
from time-to-frequency domain before being sent to the oscillator.
Several transformations were used such as mel frequency cepstral
coefficient (MFCC), cochlear decomposition or spectrogram, leading to
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different final success rates. Indeed these transformations have various
levels of non-linearity, and a high non-linearity transformation such
as cochlear decomposition already extracts the important features of
the waveforms and can lead to high recognition rates by itself. Adding
non-linearity to a spectrogram allows reaching similar success rates.
When using these transformations prior to a spin-torque oscillator,
higher non-linearity functions give a better final success rate but
the benefit of the oscillator is smaller. Thus the role of the time-to-
frequency transformations needs to be taken into account in order to
interpret the final recognition rate obtained. Finally, we have shown
that the memory of the reservoir can be improved by adding a delayed-
feedback to the oscillator. The feedback provides a fading memory.
The efficiency of this memory for computation was demonstrated on
sine/square classification task. Indeed for optimal operating points,
the feedback allows suppressing up to 99 % of the errors which were
due to a lack of memory. The positive effect of the feedback was
observed by visualizing the reservoir states in 2D. The benefit of the
feedback closely depends on the operating point and in particular on
the relaxation time and on the noise level. It is generally more efficient
in regimes of low relaxation times and low noise.

For the purpose of demonstration, we used a single oscillator with
time-multiplexing approach to perform recognition. This approach
simplified drastically the experimental set-up and allowed to achieve
recognition with state of the art results. However for more advanced
applications this strategy may suffer of some limitations. First the in-
put needs to be preprocessed in order to drive the non-linear transient
dynamics of the spin-torque oscillator. This preprocessing may be a
draw-back for real time processing. Moreover the time-multiplexed
approach emulates a network with fixed connexions and with neurons
connected in a ring shape. For tasks such as image recognition, this
architecture may not be the most suited. Finally with time multi-
plexing, a single oscillator emulates temporal neurons one after the
other. Emulating the response of very large neural networks with
tens of millions of neurons would required in our case more than a
second to provide the output value. Such delay may not be acceptable
for critical applications. A promising perspective to overcome these
three limitations and take full advantage of the nanoscale size of the
spin-torque oscillator is the development of large arrays of intercon-
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nected spin-torque oscillators, where each oscillator acts as a single
artificial neuron. This strategy also requires to address other issues.
Firstly the interconnections of the oscillators should be implemented.
Interestingly, spin-torque oscillators can be connected through several
mechanisms such as electrical coupling, spin waves or dipolar coupling
(see chapter 4), opening different perspectives for the interconnection.
For the purpose of recognition, these connections need to have different
value and ideally to be reconfigurable.

Diminishing the energy consumption associated to recognition tasks
is the motivation for neuromorphic chips. Beside the energy con-
sumption associated to the readout circuitry, the individual energy
consumption of each oscillator should also be taken into account.
A promising approach to diminish this energy consumption is the
use of 10-20 nm large spin-torque oscillators [274]. Indeed, with such
structures low currents generate sufficiently high current densities for
magnetization gyration.
Finally a fully autonomous chip would require the hardware to

perform learning, tuning automatically the coupling between hardware
artificial neurons. First experimental proof of learning, changing the
coupling between a frequency input and the oscillators was performed
in [226] with a small network of four coupled oscillators. Learning
could also be implemented using tunable physical connexions that
behave like biological synapses. Spintronic memristors are a promising
candidate for emulating such functionality [75].
Finally algorithms should be adapted for learning in networks of

hardware devices. Current algorithms used for learning in software
artificial neural network is the backpropagation which is difficult to
transfer to hardware devices, but learning methods using the physics of
devices were recently proposed theoretically [275] and may be adapted
to an experimental array of interconnected spin-torque oscillators.

This thesis was a first step demonstrating that a single spin-torque
oscillator can emulate a neuron at the nanoscale. Associated to these
perspectives, this work opens the path to building smart, fast and
energy efficient chips able to analyze ambiguous situations in embedded
systems.
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