
HAL Id: tel-02101430
https://theses.hal.science/tel-02101430

Submitted on 16 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for Optimization Problems with Fractional
Resources

Marco Casazza

To cite this version:
Marco Casazza. Algorithms for Optimization Problems with Fractional Resources. Data Structures
and Algorithms [cs.DS]. Université Sorbonne Paris Cité; Università degli studi (Milan, Italie), 2016.
English. �NNT : 2016USPCD048�. �tel-02101430�

https://theses.hal.science/tel-02101430
https://hal.archives-ouvertes.fr

UNIVERSITÀ DEGLI STUDI DI MILANO
Dipartimento di Informatica

UNIVERSITÉ PARIS 13
Laboratoire d’Informatique Paris Nord

Ph.D. Thesis:

ALGORITHMS FOR OPTIMIZATION
PROBLEMS WITH FRACTIONAL

RESOURCES

Candidate:

MARCO CASAZZA

Tutors:

DR. ALBERTO CESELLI

PROF. ROBERTO WOLFLER CALVO

Coordinator:

PROF. ERNESTO DAMIANI

Thesis defended on 26 February 2016

Examination committee

members:

Claudio Ferretti

Lucas Létocart

Referees:

Andrea Lodi

Dominique Feillet

Manuel Iori

Stefan Irnich

XXVIII cycle

A.A. 2014/2015

A B S T R A C T

In this thesis we consider a class of optimization problems having a

distinctive feature: both discrete and continuous decisions need to be

taken simultaneously. These problems arise in many practical appli-

cations, for example broadband telecommunications and green trans-

portation problems, where resources are available, that can be frac-

tionally consumed or assigned. These problems are proven of being

harder than their purely discrete counterpart. We propose effective

methodologies to tackle them. Our approach is to consider variants

of classical combinatorial optimization problems belonging to three

domains: packing, routing, and integrated routing / packing. Our re-

sults suggest that indeed effective approaches exist, reducing the com-

putational effort required for solving the problem. Mostly, they are

based on exploiting the structure of optimal solutions to reduce the

search space.

R I A S S U N T O

In questa tesi affrontiamo una classe di problemi di ottimizzazione con

una caratteristica in comune: sia le decisioni discrete che quelle con-

tinue devono essere prese simultaneamente. Questi problemi emer-

gono in molti campi, come ad esempio le nelle telecomunicazioni a

banda larga e in problemi di trasporto ecologico, dove le risorse di-

sponibili possono essere consumate o assegnate in modo frazionario.

Questi problemi sono generalmente più difficili da risolvere rispetto

alla loro controparte puramente combinatoria. Noi proponiamo meto-

dologie efficaci per affrontarli. Con il nostro approccio consideriamo

varianti di problemi classici nel campo dell’ottimizzazione combina-

toria che appartengono a tre domini: impaccamento, instradamento e

instradamento / impaccamento integrati. I nostri risultati suggerisco-

no l’esistenza di approcci efficienti che riducono lo sforzo computazio-

nale necessario per risolvere questi problemi. Nella maggior parte dei

casi, tali approcci sono basati sullo sfruttamento di particolari proprie-

tà della struttura delle soluzioni ottime in modo da ridurre lo spazio

di ricerca.

iii

R É S U M É C O U R T

Dans cette thèse nous considérons une classe de problèmes d’optimi-

sation ayant une particularité : des décisions à la fois discrètes et conti-

nues doivent être prises simultanément. Ces problèmes se posent dans

de nombreuses applications pratiques, comme par exemple dans les

réseaux de télécommunications à large bande passante et dans les pro-

blèmes de transport écologique, où les ressources disponibles peuvent

être très légèrement consommées ou réparties. Ces problèmes se sont

avérés être plus difficiles à résoudre que leurs homologues purement

discrets. Des méthodes efficaces pour la résolution de ces problèmes

sont proposées dans cette thèse. Notre approche est de prendre en

compte des variantes de problèmes classiques d’optimisation combi-

natoire appartenant à trois domaines : packing, routage et routage

/ packing intégré. Les résultats obtenus suggèrent l’existence de mé-

thodes efficaces, réduisant l’effort de calcul nécessaire pour résoudre

ce type de problème. La plupart du temps, ces méthodes sont basées

sur l’exploitation de la structure des solutions optimales pour réduire

l’espace de recherche.

iv

C O N T E N T S

1 I N T R O D U C T I O N 1

i PA C K I N G P R O B L E M S 5

2 B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N 7

3 F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F 13

3.1 Problem definition . 13

3.1.1 Structure of a solution 14

3.2 Modeling . 19

3.3 Algorithms . 21

3.3.1 Initialization . 22

3.3.2 Pricing problem 22

3.3.3 Branch and bound 25

3.3.4 Feasibility check 28

3.4 Improvement Techniques 29

3.4.1 Reduction . 29

3.4.2 Heuristics . 32

3.5 Computational results 34

3.5.1 Root lower bound 35

3.5.2 Root upper bound 37

3.5.3 Solving time . 37

3.6 Conclusions . 39

4 I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N 43

4.1 Properties extension and reformulation 43

4.1.1 Extended formulation 45

4.2 Algorithms . 48

4.2.1 Initialization . 48

4.2.2 Pricing problem 49

4.2.3 Branch and bound 51

4.3 Tackling the Size Increasing variant 53

4.4 Experimental results . 54

4.4.1 Dataset generation 55

4.4.2 Solving the Size-Increasing variant 57

4.5 Conclusions . 58

5 B I N M I N I M I Z AT I O N B P P I F 61

5.1 Problem definition . 61

5.1.1 Extended formulation 64

v

Contents

5.2 Algorithms . 64

5.2.1 Initialization . 65

5.2.2 Pricing problem 67

5.2.3 Primal Heuristics 68

5.3 Tackling Size Increasing variant 68

5.4 Experimental results . 69

5.4.1 Root lower bound 69

5.4.2 Root upper bound 70

5.4.3 Solving bm-BPPSPF to proven optimality 72

5.4.4 Solving Size-Increasing variants 72

5.5 Conclusions . 76

6 F R A G M E N T E D I T E M M I N I M I Z AT I O N B P P I F 77

6.1 Mathematical formulation 77

6.2 Problem reduction . 79

6.3 Experimental analysis 80

6.4 Conclusion . 81

ii R O U T I N G P R O B L E M S W I T H PA C K I N G I S S U E S 83

7 S P L I T P I C K U P A N D S P L I T D E L I V E RY V E H I C L E R O U T-

I N G P R O B L E M 85

7.1 Problem formalization and notation 89

7.2 Groups formulation and properties 91

7.2.1 Routes and groups 91

7.2.2 Routes, groups and loading patterns. 93

7.2.3 A formulation based on groups 95

7.2.4 Extended formulation 99

7.3 Algorithms . 103

7.3.1 Initialization . 104

7.3.2 Pricing problem 104

7.3.3 Branching rules 112

7.3.4 Branching implementation. 113

7.3.5 Additional inequalities 114

7.3.6 Infeasibility detection 116

7.4 Experimental analysis 117

7.4.1 Column generation profiling 119

7.4.2 Root lower bound 119

7.4.3 Upper bound . 123

7.4.4 Solving instances to proven optimality 123

7.5 Conclusions . 126

8 C O N C L U S I O N S 127

vi

Contents

iii A P P E N D I X 129

A N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E R -

V I C E D E L I V E R Y 131

A.1 Models and methods . 132

A.1.1 Service scheduling model 132

A.1.2 Quality measures 134

A.2 Defining and computing negotiation policies 135

A.2.1 Fixed . 135

A.2.2 Shift policy . 136

A.2.3 Enlarge policy . 137

A.2.4 Bucket policy . 138

A.2.5 Implementation 139

A.3 Results and discussion 142

A.3.1 Evaluation of L
a measure. 143

A.3.2 Evaluation of L
s and L

e measures. 145

A.3.3 Comparison of policies and strategies. 145

A.4 Conclusions . 146

B I B L I O G R A P H Y 151

vii

1
I N T R O D U C T I O N

Logistics has always been a benchmark for combinatorial optimiza-

tion methodologies, as practitioners are traditionally familiar with the

competitive advantage granted by optimized systems. As an example,

the Vehicle Routing Problem (VRP) [29], where a fleet of vehicles must

deliver goods to customers in a network, is popular since decades for

operational planning. Indeed, as more problems are understood from

a computational point of view, more details can be included in state-

of-the art models to improve their representation of reality, driving

research for new solution methods in a virtuous cycle.

With this perspective, in the last decade many studies such as [73]

and [6], have proved that problems having both combinatorial and

continuous decisions are a new frontier in optimization. For instance,

let us consider the Split Delivery Vehicle Routing Problem (SDVRP),

that is a relaxation of the VRP in which splits are allowed. In such

a problem, each customer may be visited more than once and its de-

mand can be fractionally assigned to different vehicles. In [6], the au-

thors proved that cost savings by allowing splits may reach 50%.

From a methodological point of view, there is currently a strong con-

cern in tackling optimization problems in which combinatorial and

continuous decisions must be taken at the same time. It is the case, for

instance, of the Green Vehicle Routing Problem (GVRP)[66], where it

is required to route a fleet of electric vehicles on a network in order to

serve customer demands. Indeed the limited battery capacity of these

vehicles requires to visit recharging station during delivery tour, and

therefore a recharge planning is required to avoid running out of bat-

tery. However, charging an electric vehicle requires a certain amount

of time that is not negligible. Therefore, when driving time constraints

or time windows are imposed, partial charging must be considered as

an option into the problem, allowing a vehicle to recharge a fraction

of its capacity, trading battery for time.

Still concerning vehicles with alternative fuels, the increasing of ve-

hicles running on hybrid technologies cause to reconsider well-known

problems like the Shortest Path Problem (SPP). In fact, in addition to

the choice of a path, considering fuels with different properties im-

1

I N T R O D U C T I O N

poses to choose the fractions of each fuel used to cover a given dis-

tance.

Unfortunately, state-of-the-art methodologies and general purpose

solvers still fail to solve efficiently the class of problems described

above.

The aim of my thesis is to investigate common approaches to solve

efficiently different categories of optimization problems with fractio-

nal resources. To achieve such a goal we devise new methods exploit-

ing properties on the structure of solutions, reducing the search space,

and improving the computational performances of ad-hoc algorithms.

In particular, we focused on decomposition methods and column gen-

eration techniques as these allow to embed structural properties of the

solutions into simpler and more manageable sub-problems.

We focus on variants with fractional resources of well-known pro-

blems in literature, such as packing problems and routing problems.

These are well-suited for decomposition methods, as evidenced for

example in [77] and [19], and are therefore a good starting point for

our research.

In the first part, we tackle the fractional variant of the Bin Pack-

ing Problem (BPP), where a set of items must be packed into a set

of bins. In such variant splits are allowed at a cost, and depending

on the practical application, multiple versions of such a problem have

been discussed in the literature. In Chapter 3 we propose an exact ap-

proach, discussing properties on the structure of the optimal solutions

and devising new mathematical programming models. We also ex-

ploit decomposition methods to obtain an extended formulation, and

column generation techniques to implement a branch-and-price algo-

rithm performing substantially better than general purpose solvers. In

Chapter 4 we then extend properties to restrict the problem to its pure

combinatorial core, embedding the split component into the structure

of the solutions, and devise a new algorithm still based on branch-

and-price. Such approach is both flexible and efficient: in fact, in

Chapter 5 we extend the underlying theory to different variants of the

problem, obtaining a framework that is able to solve instances of an

order of magnitude bigger, in computational time of orders of magni-

tude smaller than the previous ones. In Chapter 6 we introduce a new

variant of the problem and show a reduction method to a well-known

problem.

In the second part, we tackle a generalization of the Split Delivery

Routing Problem that arises in bike sharing systems, where bikes are

2

I N T R O D U C T I O N

taken from public stations at a cost, and used for a limited amount of

time until they are taken back to another possibly different station. In

Chapter 7 we propose an exact algorithm based on branch-and-price,

that exploits properties on the structure of the solutions to simplify

the resolution of the pricing problem. This approach allows to obtain

optimal solution orders of magnitude faster than competitors.

Depending on the nature of the problem at hand and the kind of

resources, diverse techniques may be needed. In Appendix A we in-

clude as a representative example an additional selected contribution

in which we propose methodologies to solve a last mile home deliv-

ery problem. In such a problem, a store has to schedule deliveries of

products to its customers, defining a feasible time window for each

delivery or rejecting the request if none is available. Indeed it is not

possible to know all the requests a priori, and therefore, whenever a

new customer arrives, all the decisions must be taken evaluating only

the partial schedule. To obtain an high quality of service, the store

needs to satisfy the highest number of demands, eventually suggest-

ing small variations to the time windows proposed by the customer.

Indeed, because of the online nature of the problem it was inappropri-

ate to design offline deterministic optimization procedures. Instead,

we propose new policies to define variations of the time windows of

customers, with different measurements of quality. In that case, time

is a resource that needs to be fractionally assigned to customers.

In summary, we can draw a coherent conclusion that general pur-

pose solvers are still not suitable to solve such problems, and specific

techniques are needed to tackle problems with fractional resources.

L I S T O F P U B L I C AT I O N S . Contents extracted from this thesis have

already been published in international journals or presented to inter-

national conferences.

Publications in international journal or conferences with peer-re-

viewed published proceedings:

• M. Casazza and A. Ceselli. Mathematical Programming Algo-

rithms for Bin Packing Problems with Item Fragmentation. Com-

puters & Operations Research, 2014

• M. Casazza, A. Ceselli and L. Létocart. Optimizing time slot al-

location in single operator home delivery problems. GOR 2014 –

Operations Research Proceedings, 2014

Publications in international conferences and workshops:

3

I N T R O D U C T I O N

• M. Casazza and A. Ceselli. Improved algorithms for Bin Packing

Problems with Item Fragmentation. EURO 2013

• M. Casazza. Optimization algorithms for packing problems with

fragmentation. ELA Doctorate Workshop

• M. Casazza and A. Ceselli. An exact algorithm for bin packing

problems with item fragmentation. ODYSSEUS 2012

Papers under review and technical reports:

• M. Casazza and A. Ceselli. Exactly solving packing problems

with fragmentation. Submitted to Computers & Operations Re-

search, technical report available on Optimization Online

4

Part I

PA C K I N G P R O B L E M S

2
B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N

Packing problems represent one of the most fundamental, and still

lively, research fields in combinatorial optimization.

In the classical Bin Packing Problem (BPP), a set of bins of limited

capacity and a set of items of known weight are given. The task is to

pack items into the minimum number of bins without exceeding their

capacity. One of the key feature of the problem is that items cannot be

split, and each one must be fully assigned to a single bin.

Packing problems are of particular relevance in terms of direct ap-

plicability in real life problem: in logistics, items often correspond to

transportation requests placed by customers, while bins correspond to

vehicles trailers. A BPP arises whenever a tactical fleet sizing problem

has to be faced [29]. BPPs also find direct application in telecommu-

nication planning problems, where items correspond to data transfer

requests, bins correspond to transmission channels, and network di-

mensioning must be carried out [70].

From a methodological point of view, BPP is well-known and some

exact approaches exist [33] that solve instances with up to hundreds

of items in few minutes. In particular, branch-and-price approaches

are well-suited to tackle such problem: BPP is usually modelled as

a set partitioning like problem in which a set of bin patterns is given,

with the objective of minimize the number of patterns selected [57]. In-

deed, the set of patterns grows exponentially in the number of items

and column generation techniques are required to solve the continu-

ous relaxation of the model. The bound given by this relaxation is

usually very tight. In [75] the author proposes an arc-flow formulation

that is solved by means of branch-and-price-and-cut. In such formula-

tion, flow paths corresponding to bin patterns are generated, and the

branching strategy requires less modifications to the structure of the

pricing problem. A different approach is studied in [13], where cut-

ting planes are added to the model without considering the eventual

destruction of the structure of the pricing problem, which is solved by

means of a branch-and-bound method. Furthermore, dual cuts were

proposed in [78], [14], and [26] to accelerate the column generation

process.

7

B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N

Of course, stronger market competition and new technologies push

for more elaborated methods, asking for more sophisticated models

that may be able to capture more application details and provide more

optimization power. This is the case, for instance, of Split Delivery Ve-

hicle Routing Problems (SDVRP) in transportation [4], where multiple

visits are allowed to each customer, in order to split its transporta-

tion request between multiple vehicles; however, multiple visits are

known to reduce the level of service perceived by the customer.

Another example is the Fully Optical Network Planning Problem

(FONPP)[68]. Such problem arises on fully optical Petaweb networks,

that are high rate transmission networks in which communication be-

tween edge nodes is granted by optical switch called core nodes. An

example of Petaweb network is pictured in Figure 1. To perform a

Edge

Node

Core

Node

Figure 1: Example of PetaWeb network with 6 edge nodes and 3 core nodes.

transmission it is required to select a communication channel, that is

a triple of physical channel, frequency of the signal, and time slot. In

order to route all the transmissions, the problem can be formulated as

a packing problem in which transmissions must be assigned to differ-

ent communication channels without exceeding their capacity. Indeed,

communications can be split among different channels, but each split

induce a cost due to the electrical energy required to split the optical

signal.

The BPP with Item Fragmentation (BPPIF) has actually been intro-

duced in the literature to suit these needs, allowing items to be split at

a price. The BPPIF is known to be NP-hard and was first introduced

in [56].

8

B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N

Although there is a vast literature on the BPP, the same does not

go for the BPPIF. In [56] the authors present a worst case analysis of

the problem and two approximation algorithms: the Next-Fit with Item

Fragmentation and the Best-Fit with Item Fragmentation. Both algorithms

are adapted for the BPPIF by extending well-known approximation al-

gorithm for the BPP. In [69] the authors present dual asymptotic fully

polynomial time approximation schemes that represent the state-of-

the-art in approximately solving BPPIFs. Furthermore, they introduce

the concept of primitive structure, and show that for a certain variant

of the BPPIF it always exists an optimal solution that is primitive. the

authors studied its computational complexity and discussed the ap-

proximation properties of traditional BPP heuristics. Similar models

have been introduced in the context of memory allocation problems

by [25] and considered in [40]: BPPs are presented in which items can

be split, but each bin can contain at most k item fragments; the the-

oretical complexity is discussed for different values of k, and simple

approximation algorithms are given. Such results have been refined

in [41], where the authors provide efficient polynomial-time approx-

imation schemes, and consider also dual approximation schemes. A

two-dimensional packing problem in which items can be split is ad-

dressed in [54], where the authors study its computational complexity

and propose efficient heuristics.

Many BPPIF variants have been discussed in the literature. In fact,

for what concerns capacity consumption, two versions of the BPPIF

can be found: the simpler BPPIF with Size Preserving Fragmentation

(BPPSPF) in which the sum of weights of fragments of an item is con-

stant, and the BPP with Size Increasing Fragmentation (BPPSIF), in

which an overhead is attached to each fragment whenever it is packed.

Instead, for what concerns the objective of the optimization, the BPPIF

arises in the literature in both fragmentation-minimization form as in

[68], or in bin-minimization form as in [69]. In the former, a finite

set of bins is given and the task is to minimize the overall number

of fragmentations. In the latter, an upper limit on the total number of

fragmentations is imposed, that is the available budget, and a solution

minimizing the number of used bins is required. However, to the best

of our knowledge, no exact approach has been proposed so far for any

of the variants.

In this thesis we investigate on BPPIF properties and devise differ-

ent models and methods to solve such problems. These yield compact

models that avoid the use of fractional variables. Exploiting our new

9

B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N

tools, we also present a computational comparison on BPPIF mod-

els, assessing the impact of overhead handling on solution values and

computing hardness.

We also introduce the fragmented-item-minimization variant of the

BPPIF. This variant arises as an operative problem in Split Delivery

VRP, in which a limited number of vehicles is provided and the task is

to minimize the number of customers visited multiple times. We pro-

pose a reduction of the Size Preserving variant to a pure combinatorial

problem, solving approximatively 80% of the instances to optimality.

In Chapter 3 we describe the fragmentation-minimization BPPIF,

formalize the problem by means of a compact mathematical program-

ming model, and present our resolution method. We then devise a

different resolution approach in Chapter 4, by exploiting an improved

formulation. We then extend such formulation and the underlying

theory to the bin-minimization variant in Chapter 5. In Chapter 6 we

introduce the new fragmented-item-minimization variant and show

our reduction method. For all variants we also report results of the

computational analysis to prove the effectiveness of the methods. For

the sake of readability, we summarize the content of the chapters on

the BPPIF as follows:

fragmentation
minimization

bin
minimization

fragmented item
minimization

Size
Preserving

fm-BPPSPF
Chapter 3 and 4

bm-BPPSPF
Chapter 5

fim-BPPSPF
Chapter 6

Size
Increasing

fm-BPPSIF
Chapter 4

bm-BPPSIF
Chapter 5

-

M A I N N O V E L C O N T R I B U T I O N S . In this part of the thesis we ad-

dress a different version of the BPPIF, contributing to the state of the

art on the methodologies to solve problems with fractional resources

to optimality. We remark that no exact approach was studied in litera-

ture, and therefore our algorithms are already a novelty. In particular:

(a) we introduce new variants of the BPPIF that have not been ad-

dressed in literature yet;

(b) we study theoretical properties that hold for some variants of BP-

PIF;

(c) we exploit such properties to present new mathematical program-

ming models to both describe and solve BPPIFs;

10

B I N PA C K I N G W I T H I T E M F R A G M E N TAT I O N

(d) we exploit decomposition methods to obtain extended formula-

tions and we make use of column generation techniques to solve

their continuous relaxations;

(e) we devise feasible dual cuts to improve column generation stabi-

lization;

(f) we develop branch-and-price frameworks to solve BPPIFs, includ-

ing new branching strategies, primal heuristics, and feasibility de-

tection procedures;

(g) we reduce a variant of the BPPIF to a well-known pure combina-

torial problem;

(h) we study the performances of our algorithms by means of an ex-

tensive experimental campaign.

11

3
F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

We begin by formalizing the problem and by presenting some struc-

tural properties of the fm-BPPSPF. The key result is that the search for

optimal solutions can be pursued, without loss of optimization power,

by considering only primitive solutions, that are solutions having a par-

ticular structure, and thereby reducing the search space.

3.1 P R O B L E M D E F I N I T I O N

It is given a set of items I and a set of bins B. Let wi be the weight

of each item i ∈ I and let C be the capacity of each bin j ∈ B. The

fm-BPPSPF can be stated as the problem of packing all the items in I

into the bins of B. Each item can be split into fragments and fraction-

ally assigned to different bins. The aim is to perform the packing in

such a way that the sum of the weights of the (fragments of) items

packed into a single bin does not exceed the capacity C, minimizing

the overall number of fragmentations.

Definition 3.1.1. Formally, a solution to the fm-BPPSPF is a function φ :

I×B→ [0, 1] indicating the fraction of each item i packed into each bin j.

Let us define asWj the amount of space used in bin j, that is

Wj =
∑

i∈I

wi ·φ(i, j)

and as W̄j the residual space

W̄j = C−Wj

Figure 2: Instance with |I| = 7 and |B| = 4. The fragmented items are 2 and 3

13

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

A solution φ is feasible if

(a) W̄j > 0 for each j ∈ B,

(b)
∑

j∈Bφ(i, j) = 1 for each i ∈ I.

Definition 3.1.2. The cost of a packing φ, is its total number F of fragmen-

tations, can be stated as follows:

F = |{(i, j) ∈ I×B : φ(i, j) > 0}|− |I| (3.1.1)

Indeed, to find how many times each item i ∈ I is fragmented in a

solution φ, we count how many fragments are contained in the solu-

tion and subtract one

|{j ∈ B : φ(i, j) > 0}|− 1;

to obtain the total number of fragmentations we sum over all items

∑

i∈I

|{j ∈ B : φ(i, j) > 0}|−
∑

i∈I

1

obtaining expression (3.1.1). It also follows

Observation 3.1.1. Each fm-BPPSPF solution minimizing the overall num-

ber of fragmentations minimizes the overall number of fragments as well.

In fact, |I| is a constant that does not affect the optimization process.

A sample instance, and solution in which two items are fragmented,

is depicted in Figure 2.

3.1.1 Structure of a solution

In principle, fm-BPPSPF solutions have a large degree of freedom, po-

tentially leading to symmetry problems during search. However, we

show that representatives of optimal solutions exist, having particular

structure. We first observe the following.

Observation 3.1.2. If an item i ∈ I has weight wi > C, then an optimal

fm-BPPSPF solution can always be obtained by assigning a fragment C/wi

to a single bin, completely filling its capacity, and by considering a residual

instance having |B|− 1 bins, and in which wi is reduced by C.

Proof. Suppose to have a solution in which such an item i is frag-

mented among a set of bins B̃, without completely filling any of them.

14

3.1 P R O B L E M D E F I N I T I O N

Now, consider the bins in B̃ in random order k1, k2 Keep bin k1 as

an accumulator, and starting from j = 2, check the following terminat-

ing condition: C−wi ·φ(i, k1) 6 wi ·φ(i, kj).

(a) If this condition holds, then swap each item fragment placed in

bin k1, besides that of item i, with a portion of the fragment of

i placed in bin kj having same overall size: this operation keeps

the overall number of fragmentations unchanged, and completely

fills the capacity of the bin k1 with a unique fragment of i.

(b) Otherwise, select a subset of fragments in bin k1 whose overall

size equals wi ·φ(i, kj), without including fragments of i, maybe

fragmenting a single additional item. Swap this subset with the

fragment of i in bin kj. As before, this operation does not increase

the overall number of fragmentations; at the same time, the capac-

ity of the bin k1 used by a fragment of i increases.

It is easy to check that the terminating condition necessarily becomes

true as j reaches |B̃|, and that performing operation (a) yields our claim.

Therefore, w.l.o.g. we assume wi < C for all i ∈ I, as otherwise the

instance can be simplified by preprocessing. We then introduce the

following two particular cases of packings.

Definition 3.1.3. We define as minimal w.r.t. a given number of frag-

mentation F, a packing performing at most F fragmentations and minimiz-

ing the number of bins used.

Definition 3.1.4. We define as minimal a packing using a minimum num-

ber F of fragmentations and that is minimal w.r.t. F.

Definition 3.1.5 ([69]). A packing is primitive if (a) it is feasible (b) each

bin contains at most two fragmented items, (c) each item is fragmented at

most once.

An example of primitive packing is depicted in Figure 4.

The notion of primitive packings can be easily represented through

the construction of a Bin Packing Graph (BPG), having one vertex for

each bin and one edge between each pair of bins sharing a fragmented

item (see Figure 3); in a primitive packing, the BPG is a collection of

paths or cycles (see Figure 4). We also observe the following:

Observation 3.1.3. Each primitive packing whose corresponding BPG con-

tains cycles can be transformed into a primitive packing whose corresponding

BPG is composed by paths only.

15

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

Figure 3: Example of BPG of the non-primitive solution in Figure 2. An edge
connects each pair of bins sharing a fragmented item. Item 3 is
shared between bins 1, 3, and 4 inducing a cycle in the BPG.

Figure 4: Example of primitive packing

Proof. In order to remove a cycle p corresponding to the set of bins Kp,

it is enough to remove all items from the bins of the cycle, and greedily

pack them back into the bins using the Next-Fit with Item Fragmentation

(NFf) algorithm described in [56], as follows:

(a) open an empty bin;

(b) choose an item i ∈ I and fully pack it without fragmentations into

the current bin;

(c) if no item i ∈ I fits into the current bin, split it in two fragments.

Pack the first one filling the residual capacity, and close the current

bin. Open a new bin and pack the second fragment;

(d) remove the selected item from I and go to (b) until I is empty.

Figure 5: Example of BPG of the primitive solution in Figure 4.

16

3.1 P R O B L E M D E F I N I T I O N

NFf algorithm is described also in Pseudocode 3.1.1. As proved in

[56], NFf produces a solution with at most |Kp| − 1 fragmentations,

that is a path in the BPG.

function NFF(I, B,w,C)
S← ∅
Cresidual ← C

b← 1

for all i ∈ I do
if Cresidual > wi then
S← {(i, b, 1)}

Cresidual ← Cresidual −wi

else if b < |B| then
S← {(i, b, Cresidual/wi), (i, b+1, (wi−Cresidual)/wi)}

Cresidual ← C− (wi −Cresidual)

b← b+ 1

end if
end for
return S

end function

Pseudocode 3.1.1: Pseudocode of the Next-Fit with Item Fragmentation algo-
rithm.

Definition 3.1.6. A chain is a sequence of bins corresponding to a path of

the BPG.

From now on, we assume that each primitive solution is a collection

of chains. We say that an item belongs to a chain or that it is packed

into a chain, if it is packed into a bin of such chain.

Different properties of primitive solutions are discussed in the liter-

ature; in particular [69]:

Remark 3.1.1. In the bm-BPPSPF, there always exists an optimal solution

which is primitive.

Now, still w.l.o.g., we can restrict the search for optimal fm-BPPSPF

solutions to the following subset of feasible solutions.

Theorem 3.1.1. For each instance of fm-BPPSPF it always exists an optimal

packing which is both minimal and primitive.

Proof. Let φ∗ be an optimal fm-BPPSPF packing, and let F∗ be the

number of fragmentations in φ∗; let β∗ be an optimal solution of a bm-

BPPSPF on the same instance, in which the upper bound on the total

number of fragmentations is set to F∗. According to Remark 3.1.1, we

17

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

can assume β∗ to be primitive; we also observe that the number of

fragmentations in β∗ must be exactly F∗, as otherwise φ∗ would not

be optimal for fm-BPPSPF. Now, the packing φ∗ is feasible for bm-

BPPSPF as well, and therefore the number of bins used in β∗ is less

than or equal to those used in φ∗. At the same time β∗ (a) is feasible

for fm-BPPSPF, as it is using at most the same number of bins (b) it is

optimal, since it contains F∗ fragmentations (c) it is primitive and (d)

it is minimal according to definition 3.1.3.

As a side effect, the constructive proof of Theorem 3.1.1 is able to

build the primitive counterpart of any fm-BPPSPF solution, and there-

fore

Corollary 3.1.2. For each instance of fm-BPPSPF there always exists an

optimal packing which is primitive.

We now focus on the inner structure of chains in the BPG. Let Kp

be a set of bins corresponding to vertices in the same chain p in the

BPG. Let Ip be the set of items packed into bins in Kp. We recall that

following the definition of BPG, no item can be packed into bins corre-

sponding to different chains.

Theorem 3.1.3. Let Ĩp be a set containing the |Kp|− 1 items of Ip having

maximum weight. It is always possible to pack all the items in Ip into the

bins of Kp by fragmenting only items in Ĩp.

Proof. Such a packing can be obtained with the following variant of

NFf:

(a) open an empty bin;

(b) iteratively, choose an item i ∈ Ip \ Ĩp, pack it without fragmenta-

tions into the current bin, and remove it from Ip;

(c) if no item i ∈ Ip \ Ĩp fits into the current bin, choose one of the

items in Ĩp, split it in two fragments, the first one filling the resid-

ual capacity of the current bin; remove such an item from Ĩp; close

the current bin and open a new one, packing the second fragment;

(d) go to (b) until there are no items left in Ip \ Ĩp;

(e) pack the remaining items in Ĩp sequentially using the original ver-

sion of NFf.

It is easy to check that (1) the packing produced by the procedure

above is feasible, as the capacity of each bin is never exceeded, and

18

3.2 M O D E L I N G

no bin is opened until the previous one is completely full, (2) at most

|Kp|− 1 items are fragmented (those in Ĩp).

Our variant of NFf can be seen as a way of finding a proper sorting

of items during the packing process, and indeed our result confirms

that reported in [56], where the authors prove that NFf produces a

feasible packing with at most |Kp|− 1 fragmentations for any sorting

of the items in Ip.

Summarizing, we can state the following

Theorem 3.1.4. In optimizing the fm-BPPSPF, we can restrict the search

to solutions being both minimal and primitive, and in which the fragmented

items are the largest in each chain, without losing optimization potential.

Proof. The result can be directly drawn from theorems 3.1.1 and 3.1.3.

3.2 M O D E L I N G

We now focus on methods for obtaining good lower bounds. Hence,

we introduce the following mixed integer linear programming formu-

lation for the fm-BPPSPF:

min
∑

i∈I
j∈B

zij (3.2.1)

s. t.
∑

j∈B

xij = 1 ∀i∈I (3.2.2)

∑

i∈I

wi · xij 6 C ∀j∈B (3.2.3)

xij 6 zij
∀i∈I
∀j∈B (3.2.4)

0 6 xij 6 1
∀i∈I
∀j∈B (3.2.5)

zij ∈ {0, 1} ∀i∈I
∀j∈B (3.2.6)

where each continuous variable xij represents the fraction of item i

packed into bin j, and each binary variable zij is 1 if any fragment of

item i is packed into bin j, 0 otherwise.

Constraints (3.2.2) impose that each item is fully assigned to bins,

while constraints (3.2.3) ensure that the capacity of each bin is not ex-

ceeded. Constraints (3.2.4) enforce consistency between variables, that

is no fragment of each item i is inserted into bin j unless zij is set to

19

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

1. According to definition 3.1.2, the objective function (3.2.1) equiv-

alently minimizes both the number of fragments and the number of

fragmentations.

It is easy to check that the lower bound given by the continuous re-

laxation of the previous model is not significant, as an optimal fractio-

nal solution of value 0 can always be found by setting zij = xij = 1/|B|

for each i ∈ I, j ∈ B. Therefore, we propose a reformulation of the

problem obtained through Dantzig-Wolfe decomposition [30].

In particular, let xj =
(

x1k, . . . , x|I|j
)

, zj =
(

z1k, . . . , z|I|j
)

and w =
(

w1, . . . , w|I|

)

. Let, for each j in B,

Ωj =
{

(xj, zj) ∈ R
|I|
+ ×B

|I| | wTxj 6 C∧ zj − xj > 0
}

be the set of feasible integer points with respect to constraints (3.2.3)

– (3.2.6); we relax integrality conditions, but replace each Ωj with the

convex hull of its Lj extreme integer points

Γj =
{

(x̄1j , z̄
1
j), . . . , (x̄

Lj

j , z̄
Lj

j)
}

;

that is we impose

(xj, zj) =
∑

l∈Γj

(x̄lj, z̄
l
j) · y

l
j (3.2.7)

with ylj > 0 for each j ∈ B and l ∈ Γj, and
∑

l∈Γj
ylj = 1 for each j ∈ B.

The model obtained by replacing in the continuous relaxations of

formulation (3.2.1) – (3.2.6) the vectors (xj, zj) as indicated in (3.2.7),

and by making explicit the vector indices is

min
∑

j∈B

∑

l∈Γj

∑

i∈I

z̄li,j · y
l
j

s. t.
∑

j∈B

∑

l∈Γj

x̄li,j · y
l
j = 1 ∀i∈I (3.2.8)

∑

l∈Γj

ylj = 1 ∀j∈B (3.2.9)

ylj > 0
∀j∈B
∀l∈Γj

(3.2.10)

We also observe that since bins are identical, so are the sets Γj. There-

fore, we consider a single representative Γ =
⋃

j∈B Γj, and aggregate

constraints (3.2.9) as

∑

l∈Γ

yl 6 |B|. (3.2.11)

20

3.3 A L G O R I T H M S

Furthermore, exploiting Theorem 3.1.1, for each item i ∈ I we can

add an additional constraint

∑

l∈Γ

z̄li · y
l
6 2

which limits the number of fragments for each item, obtaining a Mas-

ter Problem (MP), that in canonical form reads as follows:

min
∑

l∈Γ
i∈I

z̄li · y
l (3.2.12)

s. t.
∑

l∈Γ

x̄li · y
l
> 1 ∀i∈I (3.2.13)

−
∑

l∈Γ

z̄li · y
l
> −2 ∀i∈I (3.2.14)

−
∑

l∈Γ

yl > −|B| (3.2.15)

yl > 0 ∀l∈Γ (3.2.16)

Observation 3.2.1. The lower bound provided by the MP is at least as tight

as that given by the continuous relaxation of the original model.

The observation directly follows from the Dantzig-Wolfe decompo-

sition principle. As discussed in Section 3.5, we found such a lower

bound to be good also from an experimental point of view.

3.3 A L G O R I T H M S

Straightly solving the MP would be impractical, as it would require to

consider a tableau with |Γ | columns; therefore, we recur to column gen-

eration techniques: we start with a Restricted Master Problem (RMP)

involving a small subset of columns (see Subsection 3.3.1), we solve

it to optimality and we use dual information to search for variables

having negative reduced cost (see Subsection 3.3.2). If any such a vari-

able is found, it is added to the RMP and the column generation pro-

cess is repeated, otherwise the optimal RMP solution is optimal for

the MP as well, and therefore the corresponding value is retained as

a valid lower bound for the fm-BPPSPF. If the final RMP solution is

integer, then it is also optimal for the fm-BPPSPF; otherwise, in order

to find a proven global optimum, we enter a search tree by performing

21

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

branching operations (see Subsection 3.3.3) and feasibility checks (see

Subsection 3.3.4).

3.3.1 Initialization

In order to ensure feasibility, we initially populate the RMP with |I|

dummy columns of very high cost, having coefficient one correspond-

ing to constraints (3.2.13) and coefficient zero elsewhere; we also in-

clude a set of columns generated by two heuristics described in Sec-

tion 3.4.2. Furthermore, in each inner node of the search tree, we

keep in the RMP all the columns generated so far that are compatible

with the branching decisions. In our experiments this simple strategy

turned out to be enough to avoid heading-in effects [80].

3.3.2 Pricing problem

Let λ, µ and η be the vectors of non negative dual variables corre-

sponding to constraints (3.2.13), (3.2.14) and (3.2.15); the reduced cost

of each variable yl is

∑

i∈I

z̄li −
∑

i∈I

λix̄
l
i +

∑

i∈I

µiz̄
l
i + η

The pricing problem, that is the problem of finding a most negative

reduced cost column, can be stated as follows:

min −
∑

i∈I

λi · x̄
l
i +

∑

i∈I

(µi + 1) · z̄
l
i + η (3.3.1)

s. t.
∑

i∈I

wi · x̄
l
i 6 C (3.3.2)

x̄li 6 z̄
l
i ∀i∈I (3.3.3)

0 6 x̄li ∀i∈I (3.3.4)

z̄li ∈ B ∀i∈I (3.3.5)

Let us state the objective function of the pricing problem (3.3.1) in

maximization form

max
∑

i∈I

λi · x̄
l
i −

∑

i∈I

(µi + 1) · z̄
l
i − η. (3.3.6)

Since η is a constant, it does not affect the optimization process; in-

stead we can consider λi to be the prize obtained by fully packing the

22

3.3 A L G O R I T H M S

item i, and µi + 1 to be the penalty for including any fragment of item

i in the current column. Intuitively, the pricing problem aims at find-

ing a set of fragments of maximum value, that does not exceed the

capacity of a bin; the value of a set of fragments is computed as the

difference between the collected prizes and the corresponding penal-

ties. We indicate such a variant of the 0− 1 Knapsack Problem (KP)

[55], formulated as (3.3.6), (3.3.2) – (3.3.5), as Fractional KP with Penal-

ties (FKPP). We observe that the FKPP cannot be solved to optimal-

ity by means of the Dantzig algorithm for the continuous KP [31]. In

fact, let us consider an instance with two items p and q, with weights

wp = wq = 1, profits λp = 10 and λq = 5, and penalties µp = 9 and

µq = 0. Given a knapsack with capacity C = 1, the Dantzig algorithm

would start fully packing item p, obtaining a solution with value 0,

because of the high penalty µp. Instead, packing q first would lead to

a solution with value 4, which is optimal.

However, we prove that optimal FKPP solutions exist, having par-

ticular structure:

Theorem 3.3.1. An optimal FKPP solution always exists, in which at most

one item is fractionally selected.

Proof. Let λi/wi be the efficiency of item i, that is the relative profit

for each packed unit. Assume to have a bin in which a set of items is

fully packed, leaving a residual free space r; assume by contradiction

that in an optimal solution it is convenient to complete the packing of

the bin with two item fragments p and q, that is

x̄lp > 0∧ x̄
l
q > 0.

Their contribution to the objective value (3.3.6) is λpx̄lp+ λqx̄
l
q−(µp+

µq+2). Let us assume now, w.l.o.g., that item p is more efficient, that is
λp

wp
>

λq

wq
; in this case a better contribution to (3.3.1) would be obtained

by using all the residual space r for the fragment of p: x̄lp = r
wp

∧ x̄lq =

0 that would violate the initial assumption that fixing x̄lp > 0∧ x̄
l
q > 0

is optimal. The argument iteratively extends to solutions in which the

number of fragments is higher than two.

It immediately follows:

Corollary 3.3.2. An optimal MP solution always exists, in which each se-

lected column contains at most one fragmented item.

23

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

Proof. Each MP column can always be found, by solving a pricing

problem, as an optimal solution of a FKPP; a fragmented item is one

fractionally selected in the FKPP.

We remark that even if the columns of an optimal MP solutions

have at most one fragmented item, a solution for the fm-BPPSPF may

have more than one fragmented item per bin. For instance, any linear

combination of two columns which are identical, except for the frag-

mented item, encodes a bin containing their common elements and

both fragmented items.

To solve the FKPP we developed the following ad-hoc pseudo-poly-

nomial time algorithm. It elaborates on the well-known dynamic pro-

gramming approach for the 0− 1 KP [48]: let M(Ī, c) be the cost of an

optimal FKPP solution in which only items in Ī ⊆ I are considered to

be fully packed into the bin, and at most c units of capacity are con-

sumed; the valuesM(Ī, c) can be recursively computed as follows:

M(Ī∪{i},c) =






M(Ī,c), if wi > c

max{M(Ī,c);M(Ī,c−wi)
+ λi − µi − 1}, otherwise

where M∅,c = −η for each c 6 C. It is easy to keep track of the sub-

set of items forming an optimal solution by storing which arguments

yield maxima in the above expression.

According to Theorem 3.3.1, an optimal FKPP solution can be found

by considering |I|+ 1 independent cases:

• for each i ∈ I, i is the only fractionally selected item; in this case,

the optimal solution value σ∗i can be found by considering all

possible ways of assigning ŵ units of capacity to the fraction of

i, and the residual space C− ŵ to fully selected items, that is

σ∗i = max
16ŵ6wi

{M(I\{i},C−ŵ) + ŵ ·
λi

wi
− µi − 1.}

• no item is fractionally selected; in this case the optimal solution

value can be found as

σ∗ = max
06ŵ6C

{M(I,ŵ)}.

The FKPP optimal solution value can finally be computed as

max
{

σ∗; max
i∈I

σ∗i

}

.

24

3.3 A L G O R I T H M S

The complexity of the overall procedure is O(C · |I|2). We also re-

mark that the above procedure is suitable for multiple pricing, as each

run produces a potentially different FKPP solution for each choice of

the unique fractional item.

3.3.3 Branch and bound

Whenever a fractional optimal MP solution is found, whose value

does not match that of a known integer fm-BPPSPF solution, we ex-

plore a search tree enforcing integrality through three branching rules.

Let ỹl be the value of each yl variable in a fractional MP solution for

a certain node of the search tree.

In the first branching rule, we fix which items are fragmented and

which are not. In particular, we search for an item î that is most frac-

tionally selected to be fragmented in the MP solution, that is

î ∈ argmin
i∈I






∣

∣

∣

∣

∣

∣

∑

γ∈Γ

z̄
γ
i ỹ

γ −
3

2

∣

∣

∣

∣

∣

∣





.

If such an item î has either
∑

γ∈Γ z̄
γ

î
ỹγ = 1 or

∑
γ∈Γ z̄

γ

î
ỹγ = 2, then

the solution is integer with respect to the first branching rule, and we

skip to the second one. Otherwise we create two children:

• in the first one we enforce î to be fragmented, by removing all

RMP columns fully containing î and by generating no more co-

lumns of this kind; this is accomplished in our FKPP algorithm

by removing item î from the set of available items I during the

computation of the value σ∗ and each value σ∗i with i 6= î;

• in the second one we enforce î not to be fragmented, by remov-

ing all RMP columns in which î is fragmented and by generating

no more columns of this kind; that is, in our FKPP algorithm we

skip the computation of σ∗
î
, and fix it in advance to −∞.

We remark that, in both children, no substantial modification in the

FKPP algorithm is required after branching.

Given a certain node of the search tree, let J̄ be the set of items that

were fixed to be fragmented by applying the first branching rule; in

the second branching rule, we fix which pairs of items in J̄ are as-

signed to the same bin and which are not. Indeed each fragmented

item is assigned to more than one bin, and therefore it may be packed

25

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

together with more than one fragmented item. Let coefficient ψl
ij indi-

cate whether two items i and j appear together in column l or not:

ψl
ij =






1, if z̄li + z̄
l
j = 2

0, otherwise

If
∑

l∈Γ ψ
l
ij · y

l is integer for each pair of fragmented items i and j

in J̄, then we move to the third branching rule. Otherwise, we select a

pair of fragmented items

(î, ĵ) ∈ argmin
i∈J̄,j∈J̄

{∣
∣

∣

∣

∣

∑

l∈Γ

ψl
ijy

l − 0.5

∣

∣

∣

∣

∣

}

and we create two children.

• In the first child we forbid î and ĵ to be assigned to the same bin.

Besides removing from the RMP all columns not complying with

this condition, such a constraint can be efficiently managed in

the FKPP algorithm by removing item î from the set of available

items I during the computation of the value σ∗
ĵ

and vice versa.

Therefore, in such columns the value of ψl
îĵ

is always 0.

• In the second child we enforce î and ĵ to be packed together into

at least one bin. It is still possible to handle such a condition

without increasing the FKPP algorithm complexity as follows:

let us suppose w.l.o.g. that one item has a better relative profit,

that is λî/wî > λĵ/wĵ. We skip the computation of σ∗
î

and σ∗
ĵ

values, fixing them in advance to −∞, and we compute instead

a single σ∗
îĵ

value, defined as

σ∗
îĵ
= max

16w6wî+wĵ−2
{M(I\{î,ĵ},C−w)

− µî − µĵ − 2

+ min{w,wî − 1} ·
λî
wî

+ (w− min{w,wî − 1}) ·
λĵ

wĵ

},

in which we consider all possible ways of packing î and ĵ, forcing

that at least one unit of the less profitable item ĵ is always packed,

and therefore fixing ψl
îĵ
= 1.

26

3.3 A L G O R I T H M S

We remark that, according to Theorem 3.1.1, each item can be frag-

mented in at most two bins, and therefore may be paired to at most

two other fragmented items. Hence the number of σ∗
îĵ

values is lin-

ear in the number of items, and their introduction does not affect the

computational complexity of the FKPP algorithm.

Each pair of fragmented items packed together defines a bin in the

integer solution. Therefore, by fixing which fragmented items are as-

signed to the same bin, we are implicitly and incrementally defining

the chains in the BPG corresponding to a fm-BPPSPF integer solution.

In each leaf of the second branching level the complete BPG is fixed.

In the third branching rule we assign unfragmented items to BPG

chains. Let P be the set of chains in the BPG graph, and J̄p be the set

of fragmented items representing edges in chain p ∈ P. We define the

following coefficient for each column l ∈ Γ , each item i ∈ I \ J̄ and

each chain p ∈ P:

ρlip =






1 if ∃j ∈ J̄p : zli = 1∧ z
l
j = 1

0 otherwise;

therefore, whenever

0 <
∑

l∈Γ

ρlipy
l < 1

item i is fractionally assigned to multiple chains. If none of these val-

ues is fractional, then we stop branching and proceed to a final fea-

sibility check, as described in Subsection 3.3.4. Otherwise we select

the pair (î, p̂) having highest
∑

l∈Γ ρ
l
ipy

l value, among those being

fractional, and we create two children:

• in the first child we forbid î to be assigned to chain p̂, by remov-

ing from the RMP all columns in which i is assigned to a bin

whose fragmented items are in p, and in the FKPP algorithm by

removing item î from the set of available items during the com-

putation of each σ∗j and σ∗j ′j ′′ value having either j, j ′ or j ′′ in

J̄p;

• in the second child we impose î to be assigned to chain p̂; this is

done by equivalently forbidding to assign î to any chain p 6= p̂

and by excluding i from the computation of value σ∗.

Still, the computational complexity of the FKPP pricing algorithm

does not increase after branching.

27

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

The branching tree is explored with a best-bound-first order. We

perform branching when column generation is over, using the first

applicable branching rule. This policy gave best results in a set of

preliminary experiments.

If no fractionality can be detected in a particular node of the search

tree, triggering one of the branching rules described in the previous

section, then the corresponding partial solution might either yield a

feasible final fm-BPPSPF solution or not. In fact, through our branch-

ing strategy we impose the integrality constraints for what concerns

the assignment of items to chains containing fragmented items. How-

ever, the assignment of items to bins with no fragmented items may

still violate integrality constraints. Therefore we perform a final feasi-

bility check: if such a test succeeds, then the corresponding fm-BPPSPF

solution is also improving with respect to the current incumbent. Oth-

erwise, the partial solution is discarded by skipping the search tree

node.

3.3.4 Feasibility check

Let us suppose that a partial fm-BPPSPF solution is found through

branching. It includes a BPG composed by a set P of chains, each

defined by a set Jp of fragmented items, together with a partition

I0, I1, . . . , I|P| of I, where I0 represents the set of items to be packed

into bins containing no fragmented items, and each subsequent Ip rep-

resent the set of items to be packed into the set of bins belonging to the

same chain p ∈ P. Then, the feasibility of such a fm-BPPSPF partial

solution can be computed as follows.

(a) for each p ∈ P, apply NFf to Ip; let len(p) be the number of bins

used by NFf on Ip: if len(p) > |Jp|+ 1, then the partial fm-BPPSPF

solution cannot be completed in any feasible way;

(b) otherwise, build a traditional BPP instance containing all items in

I0 and having |B|−
∑

p∈P len(p) available bins of capacity C.

(c) solve a BPP feasibility problem on such an instance: if a BPP infea-

sibility is detected, then the partial fm-BPPSPF solution cannot be

completed in any feasible way.

In fact, in step (a) NFf always produces on a single chain primitive

solutions using the minimum number of bins, and therefore requir-

ing the minimum number of fragmented items: if it is larger than the

28

3.4 I M P R O V E M E N T T E C H N I Q U E S

number of fragmented items defining the chain, then no feasible ac-

commodation of the items into the chain is possible. At the same time,

in step (c), no fragmentation is allowed on the items in I0: since they

cannot belong to the chains, each of them must be inserted into one

of the remaining bins with no fragmentations; thus, the subproblem

turns out to be a traditional BPP.

3.4 I M P R O V E M E N T T E C H N I Q U E S

In order to enhance the performances of our algorithms, in Subsection

3.4.1 we introduce problem reduction techniques, to be applied during

branching, focusing also on symmetry reduction. In Subsection 3.4.2

we describe upper bounding heuristics that, being able to quickly pro-

vide good fm-BPPSPF solutions, help to perform early pruning. Both

techniques proved to enhance significantly the overall performance of

the method.

3.4.1 Reduction

VA R I A B L E F I X I N G . Exploiting Theorem 3.1.1, as soon as |B| − 1

items are forced to be fragmented by the first branching rule, we mark

the remaining ones as unfragmented, restricting our search to primi-

tive solutions only. Similarly, still according to Theorem 3.1.1, as soon

as a fragment of an item i is forced to appear together with two differ-

ent item fragments by the second branching rule, to keep only primi-

tive solutions we forbid any other item fragment to appear with i.

C H E C K I N G O N C A PA C I T Y C O N S T R A I N T S . After branching by

the second or third rule, we perform the following test based on the so-

lution of Subset-Sum Problems (SSP) [55]. First, suppose a BPG chain

p is given, corresponding to a set Bp of bins, together with the size of

each fragmented item to be assigned to each bin; let Cj be the residual

capacity of each bin j ∈ Bp after item fragments are accommodated.

Furthermore, let J̄ be the set of items fixed to be fragmented through

branching.

Observation 3.4.1. The problem of maximizing the overall usage of capacity

of bins in Bp is a Multiple Knapsack Problem (MKP) [48].

29

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

In fact, such a problem can be stated as:

max
∑

i∈I\J̄
j∈Bp

wi · xij (3.4.1)

s. t.
∑

i∈I\J̄

wi · xij 6 Cj ∀j ∈ Bp (3.4.2)

∑

j∈Bp

xij 6 1 ∀i ∈ I \ J̄ (3.4.3)

xij ∈ {0, 1} ∀i ∈ I \ J̄, ∀j ∈ Bp (3.4.4)

where xij = 1 is item i is assigned to bin j, 0 otherwise.

Observation 3.4.2. Let S∗MK be an optimal solution value of problem (3.4.1)

– (3.4.4). If the capacity on remaining bins is less than the weight of unse-

lected items, that is

s
∑

i∈I\J̄

wi − S
∗
MK > |B \Bp| ·C (3.4.5)

then no feasible fm-BPPSPF solution can be obtained by completing the par-

tial one.

Such an observation cannot be straightly applied in our framework

since (a) the size of each fragment is not fixed by branching and (b)

solving MKPs is computationally too demanding. Therefore, we re-

strict to the following sufficient condition.

Theorem 3.4.1. Let P be the set of chains in the BPG of a partial solution,

in which each chain p corresponds to a set Bp of bins; let Īp be the set of

items forced to be assigned to bins in Bp without fragmentations and let J̄p

the set of fragmented items defining chain p. For a particular p ∈ P, let

S∗SSP be the optimal solution value of a SSP in which a single bin of capacity

|Bp| ·C−
∑

i∈Īp∪J̄p
wi must be filled with items in I \

⋃

p∈P Īp ∪ J̄p. Then

if the capacity of bins that do not belong to chain p is less than the weight of

unselected items, that is

∑

i∈I\Īp∪J̄p

wi − S
∗
ss > |B \Bp| ·C (3.4.6)

then no feasible fm-BPPSPF solution can be obtained by completing the par-

tial one.

Proof. The result follows directly from observations 3.4.1 and 3.4.2,

and by observing that S∗SSP can be obtained by surrogating constraints

30

3.4 I M P R O V E M E N T T E C H N I Q U E S

(3.4.2) in (3.4.1) – (3.4.4), and is therefore an upper bound on S∗MK: con-

dition (3.4.6) implies condition (3.4.5).

The result holds, as a special case, if a bin is fixed during branching

to contain no fragmented items. This situation occurs when less than

|B| items are fixed to be fragmented, and the remaining ones are fixed

not to be fragmented through branching; in this case each singleton in

the BPG represents a bin containing no fragmented items.

Therefore, after applying the second or third branching rule, we run

the feasibility check algorithm described in Pseudocode 3.4.1, where

we assume SS(I,w,C) to be a function returning an optimal solution

value for a SSP instance involving a single bin of capacity C, a set I of

items and a weight vector w.

function ISNODEFEASIBLE(I, B,w,C, P)
for all p ∈ P do
Cp ← (|Bp|− 1) · (C−

∑
i∈Īp∪J̄p

wi)

ISS ← SS(I \
⋃

p∈P Īp ∪ J̄p, w,Cp)
if
∑

i/∈ISS∪Īp∪J̄p
wi > (|B|− |Bp|) ·C then

return False
end if

end for
return True

end function

Pseudocode 3.4.1: Algorithm that verifies the feasibility of a node

After applying the third branching rule, before running algorithm

3.4.1, in order to avoid useless SSP computations we perform the fol-

lowing quick preliminary check:

Remark 3.4.1. Let p be a BPG chain in a partial solution, and let Ĩp be the

set of items whose assignment to bins of chain p is forbidden by branching

decisions. If the sum of the weights of the items in Ĩp is more than the residual

space, that is

∑

i∈Ĩp

wi > (|B|− |Bp|) ·C (3.4.7)

then no feasible fm-BPPSPF solution can be obtained by completing such a

partial solution.

If either test fails, the node is pruned.

S Y M M E T RY R E D U C T I O N . To reduce symmetries, we explore only

branching nodes with particular features. Let p be a chain in a partial

31

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

BPG, obtained in first and second branching levels, and let w be the

minimum weight of a fragmented item forming p: we never generate

columns in which an item i having wi > w is assigned to one of the

bins of p. In fact, according to Theorem 3.1.3, an optimal fm-BPPSPF

solution always exists, in which the fragmented items are the largest

ones in each chain. We enforce this condition directly in the FKPP al-

gorithm, by excluding from the set I during the computation of each

σ∗i and σ∗ij value, each item having weight larger than that of a frag-

mented item in the corresponding partial BPG chain. Beside reducing

symmetries, this removal helps to reduce the computational effort in

solving the FKPP subproblems.

3.4.2 Heuristics

In order to obtain a good upper bound to the problem, we experi-

mented with different primal heuristics, including two drawn from

the literature.

G R E E D Y A L G O R I T H M S . We first considered the Next-Fit item frag-

mentation (NFf) proposed in [56], reported also in Pseudocode 3.1.1.

Then, we experimented also a Best-Fit-Decreasing item fragmentation

(BFDf) method [56]: we sort the items in non-increasing weight or-

der, and we pack them without fragmentations using a Best-Fit BPP

heuristic, until the sum of residual capacity in the bins is at least equal

to the sum of the weights of unpacked items; then we complete the

solution by exploiting the residual capacity with a NFf policy.

S U B S E T- S U M H E U R I S T I C (S S H) . Then we designed an algorithm

that is based on the iterative resolution of SSPs. The idea behind this

approach is the following: items that are packed with fragmentations

into a BPG chain p of |Bp|− 1 bins, can also be packed without frag-

mentations into a single bin of capacity |Bp| ·C.

Let us assume, as in the previous Subsection, to have a procedure

SS(I,w,C) receiving as input a SSP instance, that is a set I of items, a

vector w of weights and a capacity C, and giving as output a set ISS,

corresponding to an optimal SSP solution. Our SSP Heuristic (SSH)

iteratively tries to create short chains first: the shorter are the chains in

a fm-BPPSPF solution, the better is the solution value, but the higher

is the chance of leaving unused capacity in the bins of the chain. If an

infeasibility is detected, by comparing the weight of unassigned items

32

3.4 I M P R O V E M E N T T E C H N I Q U E S

with the capacity of unused bins, then the tentative chain length is

increased. A formal description is reported in Pseudocode 3.4.2.

function SSH(I, B,w,C)
P ← ∅
n← |B|

m← 1

while I 6= ∅ do
ISS ← SS(I,w,C ·m)
if
∑

i∈I\ISS
wi > (n−m) ·C then

m← m+ 1

else
use NFf on ISS to produce a chain p
P ← P ∪ {p}
n← n−m

I← I \ ISS
end if

end while
return P

end function

Pseudocode 3.4.2: SSH algorithm

R O U N D I N G . We designed also a rounding procedure, that is exe-

cuted at the end of the column generation process of each node of the

search tree. We first fix as fragmented those items i having

∑

γ∈Γ

z̄
γ
i · ỹ

γ > 3/2,

and form chains from pairs of fragmented items (i, j) having

∑

l∈Γ

ψl
ij · y

l > 1/2;

in this way the BPG, and therefore the value of the corresponding fm-

BPPSPF solution, are completely defined. Then, if such a BPG could

improve the incumbent, two different heuristic feasibility checks are

performed, trying to fit into the chains all unfragmented, and there-

fore unassigned, items. First, each unassigned item is inserted into a

chain where its assignment is maximum in the fractional solution: if

capacity constraints can be respected in this way, then an improving

incumbent is found. Otherwise, we consider the BPG chains in an ar-

bitrary order: we solve for each of them a SSP on the set of unassigned

items, and remove from the set of unassigned items those selected in

an optimal SSP solution. If after considering all the chains some items

33

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

are still unassigned, then the rounding procedure fails in finding any

improving solution.

After preliminary experiments, we found it useful to run the greedy

and SSH algorithms once, before solving the root node relaxation, and

to run the rounding heuristic once at each node of the branching tree,

when column generation is over. Heuristics NFf and SSH were used

also to initialize the RMP, while BFf was not, being unable to guaran-

tee that primitive solutions are generated.

3.5 C O M P U TAT I O N A L R E S U LT S

We implemented our algorithms in C++, using the framework SCIP

[1] version 2.1.1 keeping the default options.

The simplex algorithm implemented in CPLEX 12.4 is used to solve

the LP subproblems: the solver automatically switches between pri-

mal and dual methods. At each column generation iteration we in-

clude columns with negative reduced cost only, corresponding (a) to

value σ∗ (b) to the minimum σ∗i value, and (c) to the minimum σ∗ij

value. These encode, at each iteration, the best columns containing

zero, one or two fragmented items, respectively. This policy produced

better results than more aggressive multiple pricing methods. The

SSPs are solved by a C++ implementation of a dynamic programming

algorithm similar to the one described in section 3.3, while the feasibil-

ity BPPs are solved using the Constraint Programming Optimizer of

CPLEX 12.4.

Since there are no specific fm-BPPSPF instances described in the

literature, we produced a randomly generated benchmark, consider-

ing different instance sizes, distribution of the weights and amount of

residual capacity in the bins.

In particular, we considered instances including 10, 15 or 20 items

as, surprisingly, these problems are already out of reach for a state-

of-the-art general purpose solver. Then we considered three types of

weight distribution:

L A R G E : weights are uniformly drawn to be integers between 50%

and 90% of the capacity of the bins;

S M A L L : weights are uniformly drawn to be integers between 10%

and 50% of the capacity of the bins;

F R E E : weights are uniformly drawn to be integers between 10% and

90% of the capacity of the bins;

34

3.5 C O M P U TAT I O N A L R E S U LT S

Finally, with respect to residual capacity, we consider two types of

instances:

T I G H T : no residual space, that isW =
∑

i∈Iwi = C · |B|

L O O S E : 10% of residual space, that isW =
∑

i∈Iwi = 0.9 ·C · |B|

In order, to generate such instances we first fixed the number of

items, the number of bins and their capacity. Let w and w̄ be respec-

tively the weights lower bound and upper bound. We created a set R

containing values 0,W −w · |I| and |I|− 1 additional values randomly

drawn from a uniform distribution in the range [0,W −w · |I|]. We

sorted its elements in non decreasing order. For each pair of elements

ri, ri+1 sequentially chosen from R, we set the weight of item i to be

wi = ri+1 − ri +w. This procedure was repeated until no item i was

found to have wi > w̄.

We created an instance class for each combination of instance size,

weight distribution and residual capacity, and generated ten instances

for each class, obtaining a dataset of 180 instances. We also performed

preliminary tests on instances having W =
∑

i∈Iwi = 0.8 · C · |B| or

less, finding them easier to be solved. Indeed, when capacities are not

tight, the fragmentation models are of no particular interest, as they

basically behave as traditional BPPs.

As a benchmark we considered the state-of-the-art solver IBM ILOG

CPLEX [36] version 12.4, using the mathematical programming model

described in Section 3.2, and keeping default settings.

All the tests have been performed on a PC equipped with an Intel(R)

Core2 Duo CPU E6850 at 3.00GHz and 4GB of memory.

3.5.1 Root lower bound

In a first round of experiments we compared the performances for ob-

taining a lower bound of both our Column Generation algorithm (CG)

and CPLEX (CPX). In Table 1 we report, for each instance class and

for both methods, the time spent at the root node, and the average

gap (F∗−LB)/F∗ between the corresponding lower bound LB and the

best known fm-BPPSPF solution F∗. The results show that the execu-

tion time of both methods is very similar. Instead, in terms of bound

quality CG is better than CPX in all but three classes; in these three

classes the average gap is the same, and in two of them both methods

are able to fully close the gap at the root node.

35

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

Class CPX CG

|I| w. cap. t (s) Gap (%) t (s) Gap (%)

10 big tight 0.08 69.67 0.08 23.33

10 big loose 0.03 100.00 0.06 53.33

10 free tight 0.02 100.00 0.06 69.17

10 free loose 0.02 20.00 0.04 0.00

10 small tight 0.01 100.00 0.07 35.00

10 small loose 0.00 0.00 0.02 0.00

15 big tight 0.20 56.11 0.10 19.31

15 big loose 0.06 100.00 0.09 45.00

15 free tight 0.04 100.00 0.11 70.00

15 free loose 0.04 10.00 0.05 0.00

15 small tight 0.05 100.00 0.13 55.00

15 small loose 0.02 0.00 0.03 0.00

20 big tight 0.52 69.55 0.13 19.84

20 big loose 0.12 100.00 0.14 50.00

20 free tight 0.07 100.00 0.23 76.00

20 free loose 0.06 0.00 0.10 0.00

20 small tight 0.07 100.00 0.27 50.00

20 small loose 0.03 0.00 0.06 0.00

Table 1: Lower bound at the root node

36

3.5 C O M P U TAT I O N A L R E S U LT S

3.5.2 Root upper bound

In the second round of experiments we compared the quality of the

primal bound obtained at the root node by both CPLEX (CPX), our

Column Generation algorithm (CG), and each of the heuristics de-

scribed in Section 3.4.2.

In Table 2 we report for each instance class and for each method, the

average gap (UB− F∗)/(UB) between the corresponding best primal

bound UB and the best known fm-BPPSPF solution F∗. The UB value

is computed picking the best solution between the results given by

NFf, BFDf, SSH and the rounding heuristic executed after computing

the lower bound of the root node. For each instance class we report

also the maximum gap given by heuristics NFf, BFDf and SSH. Fur-

thermore, for CPX and CG we report also the computing time: that of

CG includes the running time of all heuristics.

The results show that, while execution time is very similar, the pri-

mal bound obtained with our heuristics is always better than CPX. In

fact, they obtain the fm-BPPSPF best known solution in more that 90%

of the instances.

SSH outperforms other heuristics, except for classes with loose ca-

pacity and free weights, where BFDf seems to perform better.

3.5.3 Solving time

In the last round of experiments we compared the performances of

CPLEX (CPX) and our full Branch and Price algorithm (BP) in solving

fm-BPPSPF instances to proven optimality. A time limit of two hours

was given to each run. Our results are reported in Table 3.

It consists of four blocks. The first one indicates the instance class de-

tails. The second and third ones report the performances of CPX and

BP, respectively. The last one contains details about the BP solution

process. In particular, the second and third blocks are composed by

three columns each, reporting in turn the number of instances solved

to proven optimality within the time limit, the average computing

time on them and the average duality gap on the remaining ones; the

latter is computed as (UB − LB)/UB, where UB and LB are the best

lower and upper bounds found by the algorithm within the time limit.

In the last block we report the average number of times BP runs each

branching rule for each class of instances.

37

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

C
lass

C
P

L
E

X
C

G
A

verage
G

ap
M

axim
u

m
G

ap

N
Ff

B
FD

f
S

S
H

N
Ff

B
FD

f
S

S
H

|I|
w

.
cap

.
t(s)

G
ap

(%
)

t(s)
G

ap
(%

)
G

ap
(%

)
G

ap
(%

)
G

ap
(%

)
G

ap
(%

)
G

ap
(%

)
G

ap
(%

)

10
big

tight
0.08

11.67
0.08

0.00
11.67

11.67
0.00

33.33
33.33

0.00

10
big

loose
0.03

2.50
0.06

0.00
50.00

40.00
0.00

50.00
40.00

0.00

10
free

tight
0.02

10.00
0.06

0.00
17.50

17.50
0.00

25.00
25.00

0.00

10
free

loose
0.02

80.00
0.04

0.00
95.00

6.67
30.00

100.00
66.67

100.00

10
sm

all
tight

0.01
10.00

0.07
0.00

15.00
15.00

0.00
50.00

50.00
0.00

10
sm

all
loose

0.00
30.00

0.02
0.00

100.00
0.00

0.00
100.00

0.00
0.00

15
big

tight
0.20

10.33
0.10

0.00
13.00

13.00
0.00

20.00
20.00

0.00

15
big

loose
0.06

2.00
0.09

0.00
55.56

48.57
0.00

55.56
50.00

0.00

15
free

tight
0.04

21.67
0.11

1.67
22.86

22.86
1.67

28.57
28.57

16.67

15
free

loose
0.04

95.00
0.05

0.00
98.57

7.50
20.00

100.00
75.00

100.00

15
sm

all
tight

0.05
38.33

0.13
0.00

42.50
42.50

0.00
50.00

50.00
0.00

15
sm

all
loose

0.02
60.00

0.03
0.00

100.00
0.00

0.00
100.00

0.00
0.00

20
big

tight
0.52

13.27
0.13

0.00
23.08

22.44
0.00

30.77
30.77

0.00

20
big

loose
0.12

4.29
0.14

0.00
50.00

40.00
0.00

50.00
40.00

0.00

20
free

tight
0.07

28.19
0.23

1.67
35.56

35.56
1.67

44.44
44.44

16.67

20
free

loose
0.06

100.00
0.10

0.00
100.00

0.00
70.00

100.00
0.00

100.00

20
sm

all
tight

0.07
55.00

0.27
10.00

60.00
59.00

10.00
60.00

60.00
33.33

20
sm

all
loose

0.03
30.00

0.06
0.00

100.00
0.00

0.00
100.00

0.00
0.00

Table
2:U

p
p

er
bou

nd
atthe

rootnod
e

38

3.6 C O N C L U S I O N S

We first observe that item weights and capacity type affect the per-

formances of both methods more than the instance size: the larger the

items are, and the tighter the capacity is, the harder it is to solve an

instance. The experiment shows also that, for CPX, instances having

|I| = 15 are on the edge between solvable and unsolvable in two hours,

and those having |I| = 20 are out of reach, except for classes with free

or small weights and loose capacity. Our algorithm solves about 39%

more instances and shows a much more stable behavior; furthermore,

on the unsolved instances, the duality gap left by BP is always smaller.

A similar observation can be made for computing times: BP is in gen-

eral much faster than CPX, disregarding instance class.

In a preliminary round of experiments we also evaluated the perfor-

mance of CPX with different inequalities derived from the definition

of primitive packing, like

∑

j∈B

zij 6 2, ∀i ∈ I,

without obtaining substantial improvements. Such behaviour is due

to the weakness of the original formulation, which never provide a

tight bound. In fact CPX finds easily a good solution to the problem,

and most of its computing time is spent exploring the search tree to

prove the optimality.

In terms of number of nodes generated during the computation, BP

spends most of the time in fixing the pairs of fragmented items to be

packed together, except for classes with big items and loose capacity,

where it is harder to fix which items are to be fragmented.

3.6 C O N C L U S I O N S

In this chapter we tackled a variant of the Bin Packing Problem in

which each item can be fractionally assigned to different bins at a

price. We performed a theoretical investigation, designed both exact

and heuristic methods and performed an experimental campaign.

As a main theoretical result, we could prove that optimal solutions

exist, having very particular structure, and being representative of a

combinatorial number of equivalent solutions. By using these theo-

retical properties and Dantzig-Wolfe decomposition, we were able to

design both a mathematical programming algorithm, and fast and ac-

curate heuristics.

39

F R A G M E N TAT I O N M I N I M I Z AT I O N B P P S P F

C
lass

C
P

L
E

X
B

P

R
esu

lts
B

ran
ch

in
g

|I|
w

.
cap

.
S

t(s)
G

ap
(%

)
S

t(s)
G

ap
(%

)
1
s
t

2
n
d

3
r
d

10
big

tight
6

427.18
8.33

10
137.39

0
27

807
91

10
big

loose
10

140.4
0

10
0.25

0
23

0
0

10
free

tight
10

36.33
0

10
0.4

0
11

14
4

10
free

loose
10

0.03
0

10
0.03

0
0

0
0

10
sm

all
tight

10
0.76

0
10

0.09
0

1
0

0

10
sm

all
loose

10
0.01

0
10

0.02
0

0
0

0

15
big

tight
0

-
17.36

1
0.33

17.08
151

5364
291

15
big

loose
0

-
65

10
5.02

0
180

0
0

15
free

tight
0

-
56.67

6
5.97

6.67
92

1515
199

15
free

loose
10

0.09
0

10
0.05

0
0

0
0

15
sm

all
tight

7
1090.17

16.67
10

0.5
0

7
1

4

15
sm

all
loose

10
0.02

0
10

0.03
0

0
0

0

20
big

tight
0

-
29.88

0
-

18.84
462

2793
209

20
big

loose
0

-
93.33

3
1822.92

11.67
5406

1
0

20
free

tight
0

-
82.29

3
124.65

11.67
347

966
980

20
free

loose
10

0.1
0

10
0.1

0
0

0
0

20
sm

all
tight

0
-

86.67
10

2.25
0

8
2

11

20
sm

all
loose

10
0.03

0
10

0.05
0

0
0

0

Table
3:R

esu
lts

obtained
w

ithin
a

tim
e

lim
itofone

hou
r

p
er

instance

40

3.6 C O N C L U S I O N S

Our experimental study revealed that a state-of-the-art general pur-

pose solver like CPLEX using a compact formulation fails in optimiz-

ing even instances of very limited size, being outperformed by our

algorithms in terms of both solutions quality and computing time.

One of our heuristics showed to be far more effective than those

proposed in the literature, reaching global optima in about 90% of the

instances, and requiring negligible computing time.

Through our experiments, we also found out that the distribution of

item weights and tightness of capacity constraints seem to contribute

more than the number of items in making an instance challenging.

41

4
I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

We now discuss how to improve the previous algorithm by further

exploiting properties on the structure of the solutions. We devise a

new formulation that (a) is more flexible, as can be applied to different

variants of BPPIF described above, including size increasing variants

and (b) is more effective, solving instances of one order of magnitude

larger in orders of magnitude faster.

For the ease of exposition, in Section 4.1 we present useful theo-

retical properties on the structure of optimal solutions that lead to

a pure combinatorial new mathematical programming model of the

problem. We then present its extended formulation obtained by ap-

plying Dantzig-Wolfe decomposition method [30]. In Section 4.2 we

detail our new exact algorithm to solve it. Then, in Section 4.3 we dis-

cuss on how to extend it in order to tackle the size increasing variant.

In Section 4.4 we present our experimental analysis. Finally, in Section

4.5 we summarize our results and collect some brief conclusions.

4.1 P R O P E R T I E S E X T E N S I O N A N D R E F O R M U L AT I O N

Following the definition of primitive solution in Subsection 3.1.1, it

is easy to prove that such a structure directly influences the cost of a

packing by representing a primitive solution through the construction

of a Bin Packing Graph (BPG).

It is easy to observe:

Theorem 4.1.1. The cost of a primitive solution is the sum of the length of

all the chains in its BPG minus the number of chains.

Proof. In fact, let lk be the length of a chain k in the BPG. The cost of

a single chain is the number of its edges, that is lk − 1. The overall

number of fragmentation is the sum of all edges of a BPG, that is

∑

k∈BPG

(lk − 1) =
∑

k∈BPG

lk −
∑

k∈BPG

1.

Furthermore, because Theorem 3.1.3, the following holds:

43

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

Proposition 4.1.1. Let a partitioning of the set of items be given, in which

each class corresponds to the subset of items packed into bins of the same

chain. Then, a feasible primitive solution can be obtained using the Next-Fit

with Item Fragmentation (NFf) on each class independently.

This method does not affect the cost of the solution, since the length

of each chain is fixed and thus the overall number of fragmentations

does not change.

By exploiting these properties, we can model the fm-BPPSPF as the

problem of optimally packing items into chains instead of single bins

(Figure 6).

(a) (b)

Figure 6: A primitive solution (a) with its corresponding chain representation
(b).

Let K be the index set of the chains. Let lk be a variable representing

the length of each k ∈ K; that is, each k ∈ K includes a set of lk bins,

involves lk − 1 item splits and provides an overall capacity of lk · C.

Model (3.2.1)–(3.2.6) can be reformulated as follows:

44

4.1 P R O P E R T I E S E X T E N S I O N A N D R E F O R M U L AT I O N

min
∑

k∈K

lk − vk (4.1.1)

s. t.
∑

k∈K

zik = 1 ∀i∈I (4.1.2)

∑

k∈K

lk 6 |B| (4.1.3)

∑

i∈I

wi · zik 6 C · lk ∀k∈K (4.1.4)

vk 6 lk ∀k∈K (4.1.5)

zik ∈ B
∀i∈I
∀k∈K (4.1.6)

lk ∈N ∀k∈K (4.1.7)

vk ∈ B ∀k∈K (4.1.8)

where each binary variable zik is set to 1 if item i is packed into chain

k, and each binary variable vk is set to 1 if chain k contains at least one

item.

The objective function (4.1.1) minimizes the number of fragmenta-

tions. Each item can be split among bins in the same chain, but no frac-

tional assignment of items to different chains is allowed: constraints

(4.1.2) impose that each item is fully packed in a single chain. Con-

straints (4.1.4) ensure that the capacity of each chain is not exceeded,

and constraint (4.1.3) guarantees that at most |B| bins are used. Con-

straints (4.1.5) enforce consistency between variables, so that a chain

is used only if its length is at least one.

We remark that a solution of (4.1.1) – (4.1.8) encodes no informa-

tion on which items are split, nor on which items are packed into the

same bin of each chain. In fact, due to Proposition 4.1.1, it is possible

to obtain a feasible solution of fm-BPPSPF starting from any feasible

solution of (4.1.1) – (4.1.8) with post processing, by applying the NFf
algorithm on each chain independently.

4.1.1 Extended formulation

From a continuous relaxation point of view, neither formulation (3.2.1)

– (3.2.6) nor (4.1.1) – (4.1.8) offer a significant lower bound: in the first

model, it is possible to iteratively pack all the items and then fix zi =

xi for each item. This provide a feasible solution for the continuous

relaxation with objective function equal to 0. Likewise in the chain

45

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

model it is possible to fix lk = vk = 1 for each chain k, and then

pack all the items assigning a fractional value to zik. Unfortunately

also additional contraints zik 6 vk would not improve the continuous

relaxation, because variables vk are always greater than variables zik.

Therefore, we propose a reformulation obtained through Dantzig-

Wolfe decomposition [30]. Let

zk = (z1k, z2k, . . . , z|I|k)

and

w = (w1, w2, . . . , w|I|).

Let, for each k in K,

Ωk =
{

(zk, vk, lk) ∈ B
|I| ×B×N | wT · zk 6 C · lk ∧ vk 6 lk

}

be the set of feasible integer points with respect to constraints (4.1.4) –

(4.1.8). We relax integrality conditions, but replace each Ωk with the

convex hull of its Pk extreme integer points

Γk =
{

(z̄1k, v̄
1
k, l̄

1
k), . . . , (z̄

Pk

k , v̄
Pk

k , l̄
Pk

k)
}

and then we impose

(zk, uk, lk) =
∑

p∈Pk

(z̄
p
k, v̄

p
k, l̄

p
k) · y

p
k (4.1.9)

with ypk > 0 for each k ∈ K, p ∈ Γk, and
∑

p∈Γk
y
p
k = 1 for each k ∈ K.

That is, each point is represented as a linear convex combination of

points in Γk, and variables y represent coefficients in such a combina-

tion.

The model obtained by replacing in the continuous relaxations of

model (4.1.1) – (4.1.8) the vectors (zk, uk, lk) as indicated in (4.1.9),

and by making explicit the vector indices via Γk is

46

4.1 P R O P E R T I E S E X T E N S I O N A N D R E F O R M U L AT I O N

min
∑

k∈K

∑

p∈Γk

(l̄
p
k − v̄

p
k) · y

p
k (4.1.10)

s. t.
∑

k∈K

∑

p∈Γk

z̄
p
ik · y

p
k = 1 ∀i∈I (4.1.11)

∑

k∈K

∑

p∈Γk

l̄
p
k · y

p
k 6 |B| (4.1.12)

∑

p∈Γk

y
p
k = 1 ∀k∈K (4.1.13)

y
p
k > 0 ∀k∈K

∀p∈Γk
(4.1.14)

Constraints (4.1.11) can be relaxed in > form, as an optimal solution al-

ways exists in which no item is assigned to bins more than once. Con-

straints (4.1.13) can be relaxed in 6 form by observing that an empty

pattern with l̄pk = 0, v̄pk = 0 and z̄pik = 0 always exists for each k ∈ K;

in fact selecting such a pattern is equivalent to setting all the corre-

sponding ypk variables to 0. From this relaxation we also observe that

objective function (4.1.10) can be rewritten as

∑

k∈K

∑

p∈Γk

(l̄
p
k − 1) · ypk

since any chain that is not empty must have v̄pk = 1.

We also observe that since bins are identical, so are the sets Γk. There-

fore, we consider a single representative Γ =
⋃

k∈K Γk, and aggregate

constraints (4.1.13) as

∑

p∈Γ

yp 6 |K|. (4.1.15)

Furthermore, constraints (4.1.15) can be removed from the model since

it is redundant due to constraint (4.1.12). After a rewriting in canonical

form, we obtain the following Master Problem (MP):

min
∑

p∈Γ

(l̄p − 1) · yp (4.1.16)

s. t.
∑

p∈Γ

z̄
p
i · y

p
> 1 ∀i ∈ I (4.1.17)

−
∑

p∈Γ

l̄p · yp > −|B| (4.1.18)

yp > 0 ∀p ∈ Γ (4.1.19)

47

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

Observation 4.1.1. The lower bound provided by the MP is at least as tight

as that given by the continuous relaxation of model (4.1.1) – (4.1.8).

The observation directly follows from the Dantzig-Wolfe decompo-

sition principle. We further observe that, although the continuous re-

laxations of models (3.2.1) – (3.2.6) and (4.1.1) – (4.1.8) are equivalent,

their Dantzig-Wolfe decompositions are not. In particular:

Proposition 4.1.2. The lower bound provided by the MP is at least as tight

as that given by the extended formulation (3.2.12) – (3.2.16).

In fact the latter consists of an extended formulation with one col-

umn for each feasible assignment pattern of items to bins. Intuitively,

given an optimal MP solution ỹp, we can run NFf on each pattern

p ∈ Γ of length lp, build lp assignment patterns of items to bins, cor-

responding to the lp bins in the NFf solution, and select each of them

for a value ỹp. This solution is feasible for the extended formulation

(3.2.12) – (3.2.16). Indeed, we experimentally observed it to be often

suboptimal, thereby providing weaker bounds.

4.2 A L G O R I T H M S

Our framework remains the same as the one described in Section 3.2:

due to the exponential number of columns in the set Γ , we recur to

column generation techniques to solve the MP. We initialize the RMP

with a small subset of columns as described in Subsection 4.2.1, and

solve the RMP to optimality. We search for variables having negative

reduced cost by solving a particular variant of the 0-1 Knapsack Prob-

lem (KP) (see Subsection 4.2.2). We add such variables to the RMP

and repeat the column generation process until no negative reduce

cost variable is found, meaning that the current RMP solution is op-

timal also for the MP; the corresponding value is retained as a valid

lower bound for the fm-BPPSPF. If the integrality constraints of the

integer problem are satisfied, then the solution is also optimal for the

fm-BPPSPF, otherwisewe enter a search tree by performing branching

operations as described in Subsection 4.2.3.

4.2.1 Initialization

In order to reduce heading-in effects, we populate the RMP with a set

of columns that ensure the starting RMP to be feasible.

48

4.2 A L G O R I T H M S

Our heuristic initialization approach is based on the iterative gener-

ation of columns obtained by solving subset-sum problems: the algo-

rithm (see Pseudocode 4.2.1) generates at each iteration a set of chains

having the same length, and packs the items by minimizing the resid-

ual capacity of each chain. The starting length of the chains is set to

one, while the maximum allowed length is set to |B|.

The packing relies on a Subset-Sum (SS) Procedure that takes in in-

put a set of items J, their weights w and a capacity Q, and returns the

set of items J̄ ⊆ J of largest overall weight not exceeding Q.

function INITRMP(I,w, B,C)
for k = 1 . . . |B| do
J← I

do
J̄←SS(J,w, k ·C)
add J̄ to RMP as a new column
J← J \ J̄

while J 6= ∅
end for

end function

Pseudocode 4.2.1: RMP initialization algorithm

In our algorithm, the SS Procedure exploits a simple dynamic pro-

gramming recursion, as described in [55]. It is easy to observe that this

approach always produces a set of columns forming a feasible RMP

solution. In particular, during iteration k = |B|, the initialization algo-

rithm packs all the items a single chain of |B| bins, thereby creating a

BPPSPF solution with a number of fragmentations equal to |B|− 1.

4.2.2 Pricing problem

For each p ∈ Γ , the reduced cost of variable yp is computed as

πp = (̄lp − 1) −
∑

i∈I

λi · z̄
p
i + µ · l̄p.

49

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

The pricing problem, that is the problem of finding the most nega-

tive reduced cost column, can be stated as follows:

π∗ = min
p∈Γ

l̄p −
∑

i∈I

λi · z̄
p
i + µ · l̄p − 1 (4.2.1)

s. t.
∑

i∈I

wi · z̄
p
i 6 C · l̄p

0 6 l̄p 6 |B|

z̄
p
i ∈ B ∀i ∈ I

l̄p ∈N

Let us state the objective function of the pricing problem (4.2.1) in

maximization form, and collect the coefficients of terms zpi and lp

π∗ = −

(

max
p∈Γ

∑

i∈I

λi · z̄
p
i − (µ+ 1) · l̄p + 1

)

.

That is, λi and (µ+ 1) represent the prize for packing item i and the

cost for using each bin in the current chain, respectively. Therefore, the

pricing problem is a variant of the 0-1 Knapsack Problem (KP) [55]. It

aims to find an optimal tradeoff between the cost of using bins and

the profit of including items, respecting a single aggregated capacity

constraint and an upper bound on the available capacity. We indicate

such a variant as the Variable Size KP (VSKP).

To solve the VSKP we develop the following ad-hoc pseudo-poly-

nomial time algorithm based on the well-known dynamic program-

ming approach for the 0-1 KP [55]: letM(Ī, c) be the cost of an optimal

VSKP solution in which only items Ī ⊆ I are allowed to be selected,

and exactly c units of capacity are consumed. The values M(Ī, c) can

be recursively computed as follows:

M(Ī∪ {i}, c) =− (µ+ 1) · ⌈c/C⌉

+






M(Ī, c), if wi > c

max
{
M(Ī, c);M(Ī, c−wi) + λi

}
, otherwise

where M(∅, c) = +1 for each 0 6 c 6 |B| ·C. Thus, the final cost of an

optimal VSKP is

π∗ = max
06c6|B|·C

{M(I, c)}

50

4.2 A L G O R I T H M S

It is easy to keep track of the subset of items forming an optimal so-

lution by storing which arguments yield maxima in the above expres-

sion. The complexity of the overall procedure is O(|B| ·C · |I|).

As multiple pricing strategy, we add |K| columns at each column

generation iteration, corresponding to the values M(I, k · C) for k =

1 . . . |K|.

4.2.3 Branch and bound

When the optimal MP solution is fractional, and upper and lower

bounds do not match, we check which integrality constraints are not

satisfied w.r.t. the integer formulation, and we explore a search tree by

means of branching.

In our case, branching is particularly involved, as the MP is prone

to symmetries. We devised the following binary branching rule, in

which chains are progressively defined and an integer solution is en-

forced through the assignment of items to the chains.

Let us suppose that a particular head item is defined for each chain,

and that at a certain node of the branching tree, items in a set H ⊆ I

are selected to be head items of |H| chains. At the root node, H = ∅;

then, recursively, a branching item is either selected to be assigned to

one of the chains identified by an item in H, or becomes a new head

item, thereby identifying an additional chain.

P H A S E 1 - I T E M A S S I G N M E N T. If H = ∅, we directly skip to

Phase 2. Otherwise, let ỹp be the values of each variable yp in a frac-

tional MP solution and, for each i ∈ I and h ∈ H

tih =
∑

p∈Γ

z̄
p
i · z̄

p
h · ỹ

p

be a coefficient that indicates how much item i is packed with head

item h in the fractional solution. We search for an item î and a head

item ĥ corresponding to the most fractional assignment in the current

fractional solution, that is

(ĥ, î) ∈ argmin
h∈H,i∈I

{∣
∣

∣

∣

tih −
1

2

∣

∣

∣

∣

}

.

If tîĥ is fractional, then we perform binary branching: we enforce

î to be always packed with ĥ in one branch, while we forbid î to be

51

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

packed with ĥ in the other. If instead tîĥ is integer, we proceed to

Phase 2.

P H A S E 2 - C H A I N S E L E C T I O N . If no fractional assignment of

items to chains defined by H can be found, then it also holds that no

column in the MP having a fixed head item is fractionally selected. In

fact, if it were, such fractionally selected columns should be identical,

but in our MP it is never profitable to generate the same column twice.

However, it is still possible that fractional solutions arise due to split-

ting in additional chains for which no head item is fixed.

We check this condition as follows. We search for the most fraction-

ally selected MP variable, that is we identify

p̂ ∈ argmin
p∈Γ

{∣
∣

∣

∣

ỹp −
1

2

∣

∣

∣

∣

}

.

If ỹp̂ is integer, then a full integer solution is found: the incumbent

is possibly updated and the branching node is fathomed.

Otherwise, an arbitrary item î is selected, such that z̃p̂
î
= 1 and î 6∈

H. Then we add î to the set H, we initialize Iî = {î}, and we restart

branching from Phase 1.

P R I C I N G I M P L E M E N TAT I O N . Our branching strategy alters the

nature of the pricing problem. Let Ih be the set of items forced to be

packed with head item h, letWh =
∑

i∈Ih
wi be their sum of weights,

and let Īh be the set of items whose packing with h is forbidden. Let

I0 be the set of items which are not forced to be packed to any head

item, such that

I0 = I \
⋃

h∈H

Ih.

We deal with additional constraints introduced in both branching

phases by solving |H|+ 1 VSKPs. The first VSKP aims at finding the

chain without head item yielding the most negative reduced cost:

π0 = − max
06c6|B|·C

{M(I0, c)}.

Then, we solve a VSKP for each h ∈ H, each searching for the chain

with head item h yielding the most negative reduced cost:

πh = −
∑

i∈Ih

λi − max
06c6|B|·C−Wh

{M(I0 \ Īh, c)}.

52

4.3 TA C K L I N G T H E S I Z E I N C R E A S I N G VA R I A N T

that is, we solve a VSKP where the available capacity is decreased by

the weights of the items fixed in Ih, forbidding the selection of items

in Īh and decreasing the final reduced cost by the sum of the prizes of

the items in Ih.

We experimentally observed that, although the number of VSKP

subproblems increases as the depth of the branching tree increases,

the overall number of chains remains limited. Additionally, the solu-

tions of the |H|+ 1 VSKPs yield well diversified columns, that are in

turn useful to perform more effective multiple pricing, thus speeding

up the column generation process.

In particular, after preliminary experiments, we set a different mul-

tiple pricing strategy in the inner nodes of the branching tree. That

is, at each iteration of column generation we add to the RMP (a) one

column, corresponding to the packing defining the value of π0 and

(b) |H| columns, each corresponding to the packing defining the value

of iπh for each h ∈ H, provided they have negative reduced cost.

4.3 TA C K L I N G T H E S I Z E I N C R E A S I N G VA R I A N T

Several BPPIF variants arise in the literature and in practical applica-

tions. One of the main features changing among them is the possibility

of handling overhead in item weights after each split.

First, still owing to practical applications, packing an item may in-

troduce an overhead in its weight. This is the typical case of trans-

missions over packed-switching networks, in which data are split into

packets that need additional headers (and trailers) to be delivered, as

stated in [69].

Let ǫ be a constant representing an amount of overhead, that we

suppose to satisfy ǫ 6 mini∈Iwi. The BPPIF with size-increasing

fragmentation (BPPSIF) is the variant of BPPIF in which a weight ǫ is

attached to all fragments packed into bins, including those fragments

corresponding to unfragmented items. We first observe that

Proposition 4.3.1. an optimal solution to fm-BPPSIF always exists, that is

primitive.

The proof is similar to that of Theorem 3.1.1, additionally observ-

ing that a non-primitive optimal solution would just introduce more

overhead than a corresponding primitive one.

53

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

Thus we adapt the chain-based BPPIF model (4.1.1) – (4.1.8), by

changing constraint (4.1.4) into

∑

i∈I

(wi + ǫ) · zik + ǫ · (lk − 1) 6 C · lk ∀k ∈ K, (4.3.1)

where the term ǫ · (lk − 1) is the overhead given by the chain fragmen-

tations.

A corresponding extended formulation can also be obtained, by per-

forming the reformulation steps described on (4.1.16) – (4.1.19), and

changing only the definition of sets Γk. Indeed, our BPPSPF models

can be obtained as a special case of BPPSIF ones by setting ǫ = 0.

We remark that other overhead policies may be pertinent depending

on the practical application, as in [56]. The methodology may still be

valid depending on the existence of a primitive optimal solution.

Overhead handling nicely fits in our framework. In fact, Constraint

(4.3.1) can be easily transposed into the pricing problem and solved as

a variant of VSKP in which bins capacity is Ĉ = C− ǫ, and a capacity

of ǫ is set as consumed since the beginning. Due to Constraint (4.3.1)

the weight of each item i is then ŵi = wi + ǫ. Once again, when ǫ = 0,

the pricing algorithm is exactly the one described in Section 4.2.2.

We remark that also model (3.2.1) – (3.2.6) can be adapted to solve

the size-increasing variant by changing constraint (3.2.3) into

∑

i∈I

(wi · xij + ǫ · zij) 6 C ∀j ∈ B. (4.3.2)

However, from preliminary results we decided to implement the size-

increasing variant only into the chain formulation.

4.4 E X P E R I M E N TA L R E S U LT S

We implemented our algorithms in C++, using the framework SCIP

[1] version 3.0.2, keeping the default options but forcing single thread

execution. In particular, that includes a full suite of general purpose

primal heuristics. We also include SSH procedure of Section 3.4.2 as

primal heuristic. The LP subproblems were solved using the simplex

algorithm implemented in CPLEX 12.4 [36]: the framework automat-

ically switches between primal and dual methods. We refer to our

exact branch-and-price algorithm as BPCA in the remainder.

As a benchmark we considered the branch-and-cut implemented in

CPLEX 12.4, using the mathematical programming models described

54

4.4 E X P E R I M E N TA L R E S U LT S

in Section 3.2 and Section 4.1, and keeping again default settings be-

sides forcing single thread execution. All the tests have been per-

formed on a PC equipped with an Intel(R) Core2 Duo CPU E6850 at

3.00 GHz and 4 GB of memory.

We tested our BPCA on the dataset for the fm-BPPSPF described

in Section 3.5. We included three benchmark algorithms: CPLEX us-

ing the compact model, CPLEX using the chain-based model, and the

branch-and-price algorithm described in Chapter 3. A time limit of

one hour was given to each run.

In Table 4 we report for each solution the number of instances solved

to proven optimality within the time limit (S), the average duality gap

on the remaining ones computed as (UB−LB)/UB (Gap) and the aver-

age computing time (t). Our BPCA outperforms the three benchmark

algorithms by far, solving all the instances in fractions of second. It

is also interesting to observe that chain-based models allow to obtain

always better results when CPLEX is employed: on a few classes of

instances, CPLEX using the chain-based models performs better than

the BP algorithm.

4.4.1 Dataset generation

Indeed, the design of a dataset being challenging, statistically signif-

icant and fair at the same time turned out to be an issue on its own.

First, the results obtained in Section 3.5 indicate that the ratio between

item weights and capacity, and the amount of residual capacity are

the features influencing most the computational behavior of both gen-

eral purpose solvers and ad-hoc algorithms. Second, the behavior of

general purpose solvers is strongly influenced by the number of avail-

able bins |B|. On the contrary, our pricing algorithms have a pseudo-

polynomial time complexity in the capacity value C, and therefore

such a parameter can influence the performance of BPCA. Therefore a

full control on all these parameters is needed to detect regularities.

Hence, we created a new dataset as follows. We considered in-

stances including |I| = 20, 50 or 100 items. The capacity C of each bin

was always fixed to 1000. Then we considered three types of weight

distributions: let w̄ andw be respectively upper and lower ends of the

range of possible weight values

L A R G E : draw integers from a uniform distribution betweenw = 0.5 ·

C and w̄ = 0.9 ·C

55

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

C
lass

C
P

L
E

X
C

P
L

E
X

ch
ain

m
od

el
B

P
B

P
C

A

|
I|

w
.

cap
.

S
G

ap
(%

)
t(s)

S
G

ap
(%

)
t(s)

S
G

ap
(%

)
t(s)

S
G

ap
(%

)
t(s)

10
big

tight
6

2
0.8

4
2
7.2

1
0

0.0
0.2

1
0

0.0
1
3
7.4

1
0

0.0
0.0

10
free

tight
1
0

0.0
3
6.3

1
0

0.0
0.0

1
0

0.0
0.4

1
0

0.0
0.0

10
sm

all
tight

1
0

0.0
0.8

1
0

0.0
0.0

1
0

0.0
0.1

1
0

0.0
0.0

10
big

loose
1
0

0.0
1
4
0.4

1
0

0.0
0.4

1
0

0.0
0.2

1
0

0.0
0.0

10
free

loose
1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

10
sm

all
loose

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

15
big

tight
0

1
7.4

-
1
0

0.0
6
2.0

1
1
2.5

0.3
1
0

0.0
0.1

15
free

tight
0

5
6.7

-
1
0

0.0
8.4

6
1
6.7

6.0
1
0

0.0
0.1

15
sm

all
tight

7
5
5.6

1
,0
9
0.2

1
0

0.0
1.3

1
0

0.0
0.5

1
0

0.0
0.0

15
big

loose
0

6
5.0

-
8

3
7.5

1
,2
3
1.1

1
0

0.0
5.0

1
0

0.0
0.1

15
free

loose
1
0

0.0
0.1

1
0

0.0
0.0

1
0

0.0
0.1

1
0

0.0
0.0

15
sm

all
loose

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.0

20
big

tight
0

2
9.9

-
2

2
9.2

2
,5
2
5.0

0
1
2.5

-
1
0

0.0
0.2

20
free

tight
0

8
2.3

-
1

5
7.4

2
,8
9
1.4

3
1
6.7

1
2
4.7

1
0

0.0
0.1

20
sm

all
tight

0
8
6.7

-
1
0

0.0
9
7.8

1
0

0.0
2.3

1
0

0.0
0.1

20
big

loose
0

9
3.3

-
0

6
3.3

-
3

1
6.7

1
,8
2
2.9

1
0

0.0
0.1

20
free

loose
1
0

0.0
0.1

1
0

0.0
0.1

1
0

0.0
0.1

1
0

0.0
0.1

20
sm

all
loose

1
0

0.0
0.0

1
0

0.0
0.0

1
0

0.0
0.1

1
0

0.0
0.0

Table
4:Solving

fm
-B

P
P

SP
F

to
p

roven
op

tim
ality.

56

4.4 E X P E R I M E N TA L R E S U LT S

S M A L L : draw integers from a uniform distribution betweenw = 0.1 ·

C and w̄ = 0.5 ·C

F R E E : draw integers from a uniform distribution betweenw = 0.1 ·C

and w̄ = 0.9 ·C

We initially considered fragmentations-minimization. With respect to

the residual capacity, we considered two types of instances by chang-

ing the number of available bins:

T I G H T : |B| = ⌈w+w̄
2 · |I|⌉, that is the minimum expected number of

bins needed to fractionally pack all the items,

L O O S E : 10% of expected residual space, that is |B| = ⌈1.0
0.9 ·

w+w̄
2 · |I|⌉.

Finally, the weights of tight instances were generated as follows. For

the first |I|− 1 items we set the weights to be a random integer value

chosen between w and w̄, while the last item weight was given by

the difference between C · |B| and the sum of the previously gener-

ated weights. The generation was repeated until the last weight was

betweenw and w̄. The weights of loose instances were generated sim-

ilarly, but setting the weight of the last item to the difference between
1.0
0.9 ·C · |B| and the sum of the previously generated weights.

We created an instance class for each combination of instance size,

weight distribution and residual capacity, and generated ten instances

for each class, obtaining a dataset of 180 instances. In this way, each

class contains instances having homogeneous |I|, |B|, and C values.

4.4.2 Solving the Size-Increasing variant

In our experiments we assessed the impact of size-increasing features

both on the computational behavior of our algorithms and on the final

solution costs. The analysis has been performed using BPCA. No time

limit was given to these test, in order to always obtain a global opti-

mal solution. Nevertheless, no test exceeded one hour of computation.

The overhead ǫwas set to be 1% of the bin capacity.

When setting large overhead (ǫ = 0.1 ·C), the fraction of infeasible

instances was too large to provide any meaningful result, since for

most instances the sum of the items weight plus the overhead of each

item was already greater than the available capacity. Therefore, we

test instances with small overhead (ǫ = 0.01 · C) only. In Table 5 we

report the computing time required to solve to optimality both size-

preserving and size-increasing instances. For the latter we also report

57

I N T R O D U C I N G A C H A I N B A S E D F O R M U L AT I O N

the average gap between the optimal solutions values obtained with

the size-preserving model (SP) and the ones obtained with the size-

increasing variant (SI), computed as (SI− SP)/SP.

All instances having tight capacity resulted infeasible by design: it

is however interesting to note that infeasibility is detected quickly by

our algorithms. In the remaining instances, the penalties are in a few

cases very high. The computing time showed to be not an issue: all

instances were solved within five minutes, even if by introducing over-

head the required CPU time slightly increased.

Class Size Preserving Size Increasing

|I| w. cap. t (s) Gap (%) t (s)

20 big tight 0.2 - 0.1

20 free tight 0.1 - 0.1

20 small tight 0.1 - 0.0

20 big loose 0.1 5.0 0.1

20 free loose 0.1 40.0 0.1

20 small loose 0.0 0.0 0.0

50 big tight 8.4 - 0.9

50 free tight 4.3 - 0.5

50 small tight 1.5 - 0.3

50 big loose 0.8 0.0 2.5

50 free loose 0.7 15.0 1.2

50 small loose 0.2 0.0 0.2

100 big tight 235.7 - 6.1

100 free tight 252.6 - 3.4

100 small tight 35.6 - 1.4

100 big loose 5.0 0.0 15.0

100 free loose 5.5 0.0 10.5

100 small loose 0.8 0.0 0.8

Table 5: Solving fm-BPPSIF with small overhead. Rows with a − symbol in
the Gap column refer to infeasible instances.

4.5 C O N C L U S I O N S

In this chapter we proposed a new approach to solve the fm-BPPIF:

after collecting and deriving some properties of BPPIF solutions, we

proposed a new mathematical programming model that avoid the use

of fractional variables. Then, by means of Dantzig-Wolfe decomposi-

tion we also introduced an extended formulation. We exploited col-

umn generation techniques with ad-hoc pricing algorithms, heuristics

58

4.5 C O N C L U S I O N S

and implicit enumeration to design a new exact branch-and-price al-

gorithm.

Such algorithm proved to be first of all flexible, as minor or no mod-

ifications are needed to adapt it to size preserving or size increasing

overhead management policies.

Our experimental campaign revealed that state-of-art general pur-

pose solvers like CPLEX find it beneficial to use our new models, but

still fail in optimizing even instances of very small size. Instead, our

algorithms proved to be very effective, being able to solve to proven

optimality all the instances in our datasets in minutes of computation

for any BPPIF variant, thus outperforming both CPLEX and previous

approaches.

59

5
B I N M I N I M I Z AT I O N B P P I F

We now discuss the bin-minimization variant of the BPPIF with size

preserving fragmentation (bm-BPPSPF). For the ease of exposition, in

Section 5.1 we describe the problem and present a few theoretical prop-

erties on the structure of the optimal solution that lead to a pure com-

binatorial mathematical programming model of the problem. As for

the fm-BPPSPF, we then present its extended formulation obtained by

applying Dantzig-Wolfe decomposition. In Section 5.2 we detail our

new exact algorithm to solve it. Then, in Section 5.3 we discuss on

how to extend it in order to tackle the size increasing variant. In Sec-

tion 5.4 we present our experimental analysis. Finally, in Section 5.5

we summarize our results and collect some brief conclusions.

5.1 P R O B L E M D E F I N I T I O N

We are given a set of items I and a set of bins B. Let wi be the weight

of each item i ∈ I, and let C be the capacity of each bin. Each item has

to be fully packed, but may be split into fragments and fractionally

assigned to different bins. The sum of the weights of the (fragments

of) items packed into a single bin must not exceed the capacity C.

The bm-BPPSPF can be stated as the problem of packing all the

items into the minimum number of bins by performing at most F frag-

mentations. It can be formalized as follows:

61

B I N M I N I M I Z AT I O N B P P I F

min
∑

j∈B

uj (5.1.1)

s. t.
∑

j∈B

xij = 1 ∀i∈I (5.1.2)

∑

i∈I

wi · xij 6 C · uj ∀j∈B (5.1.3)

∑

i∈I
j∈B

zij − |I| 6 F (5.1.4)

xij 6 zij
∀i∈I
∀j∈B (5.1.5)

0 6 xij 6 1
∀i∈I
∀j∈B (5.1.6)

zij ∈ {0, 1} ∀i∈I
∀j∈B (5.1.7)

uj ∈ {0, 1} ∀j∈B (5.1.8)

where each variable xij represents the fraction of item i packed into

bin j, each binary variable zij is 1 if any fragment of item i is packed

into bin j, and each binary variable uj is 1 if bin j is open.

The objective function (5.1.1) minimizes the number of open bins.

Constraints (5.1.2) ensure that each item is fully packed. Constraints

(5.1.3) have a double effect: they forbid the assignment of items to

bins that are not open and ensure that the capacity of each open bin is

not exceeded. Constraint (5.1.4) ensures that the packing is performed

with at most F fragmentations. Constraints (5.1.5) enforce consistency

between variables, so that no fragment xij of each item i is packed into

bin j unless zij is set to 1.

Observation 5.1.1. Given any BPPIF solution, the number of fragmenta-

tions is equal to the overall number of fragments minus the number of items.

According to the literature [[69]]:

Theorem 5.1.1. Any instance of bm-BPPSPF has an optimal solution which

is primitive.

It is easy to prove that such a structure directly influences the cost of

a packing by representing a primitive solution through the construc-

tion of its BPG.

Observation 5.1.2. The cost of a primitive solution is the sum of the length

of all the chains in its BPG.

In fact, the length of a chain is the number of bins in the correspond-

ing path of the BPG. Hence, the sum of all chain lengths is the overall

62

5.1 P R O B L E M D E F I N I T I O N

number of bins used in a certain solution, and thus the cost of the pack-

ing. Furthermore, similarly to Proposition 4.1.1, packing all item of a

chain by using NFf does not affect the cost of the solution, since the

length of each chain is fixed and thus the overall number of used bins

does not change.

By exploiting these properties, we can model the bm-BPPSPF as the

problem of optimally packing items into chains instead of bins.

Let K be a set of chains. Let lk be a variable representing the length

of each k ∈ K, that is, each k ∈ K includes a set of lk bins, involves

lk − 1 item splits and provides an overall capacity of lk · C. Model

(5.1.1) – (5.1.8) can be reformulated as follows:

min
∑

k∈K

lk (5.1.9)

s. t.
∑

k∈K

zik = 1 ∀i∈I (5.1.10)

∑

k∈K

lk − vk 6 F (5.1.11)

∑

i∈I

wi · zik 6 C · lk ∀k∈K (5.1.12)

vk 6 lk ∀k∈K (5.1.13)

zik ∈ B
∀i∈I
∀k∈K (5.1.14)

lk ∈N ∀k∈K (5.1.15)

vk ∈ B ∀k∈K (5.1.16)

Here, each binary variable zik is set to 1 if item i is packed into chain

k, and each binary variable vk is set to 1 if chain k contains at least one

item.

The objective function (5.1.9) minimizes the number of used bins.

Each item can be split among bins in the same chain, but no fractional

assignment of items to different chains is allowed: constraints (5.1.10)

impose that each item is fully packed in a single chain. Constraints

(5.1.12) ensure that the capacity of each chain is not exceeded, and

constraint (5.1.11) guarantees that at most F fragmentations are per-

formed. Constraints (5.1.13) enforce consistency between variables so

that a chain is used only if its length is at least one.

We remark that a solution of (5.1.9) – (5.1.16) encodes no informa-

tion on which items are split, nor on which items are packed into the

same bin of each chain. In fact, due to Proposition 4.1.1, it is possible

to obtain a feasible solution of bm-BPPSPF starting from any feasible

63

B I N M I N I M I Z AT I O N B P P I F

solution of (5.1.9)–(5.1.16) with post processing, by applying the NFf
algorithm on each chain independently.

From a continuous relaxation point of view, neither formulation

(5.1.1)–(5.1.8) nor formulation (5.1.9)–(5.1.16) offer a significant lower

bound: in the first model, it is possible to fix |B| = |I|, and pack each

item i into bin j = i fixing each ui = wi/C. The corresponding ob-

jective function value is
∑

j uj =
∑

iwi/C, yielding a trivial lower

bound. Likewise in the chain model, by fixing |K| = |I| and li = wi/C.

5.1.1 Extended formulation

To obtain a significat lower bound we reformulate the problem exploit-

ing Dantzig-Wolfe decomposition method [30]. The process of such a

reformulation is very similar to the process described in Section 4.1.1,

and thus we present the final Master Problem (MP), that is:

min
∑

p∈Γ

l̄p · yp (5.1.17)

s. t.
∑

p∈Γ

z̄
p
i · y

p
> 1 ∀i∈I (5.1.18)

−
∑

p∈Γ

(l̄p − 1) · yp > −F (5.1.19)

yp > 0 ∀p∈Γ (5.1.20)

Observation 5.1.3. The lower bound provided by the MP dominates that

given by the continuous relaxation of model (5.1.9) – (5.1.16).

The observation directly follows from the Dantzig-Wolfe decompo-

sition principle. We further observe that, although the continuous re-

laxations of models (5.1.1) – (5.1.8) and (5.1.9) – (5.1.16) are equivalent,

their Dantzig-Wolfe decompositions are not. In particular, as for fm-

BPPSPF:

Proposition 5.1.1. The lower bound provided by the MP dominates that

obtained through Dantzig-Wolfe decomposition of model (5.1.1)–(5.1.8);

5.2 A L G O R I T H M S

As for the algorithm described in Section 4.2, we solve the extended

formulation by means of column generation techniques. We initial-

ize the RMP with a small subset of columns including valid dual cuts

(see Subsection 5.2.1) and solve the RMP to optimality. We show in

64

5.2 A L G O R I T H M S

Subsection 5.2.2 that the pricing problem is still a variant of the 0-1

Knapsack Problem (KP) that we solve with the same algorithm de-

scribed in Subsection 4.2.2. After solving the MP to optimality, if the

solution violates integrality constraints of the integer problem, we en-

ter a search tree by performing the same branching operations used

for the fm-BPPSPF and described in Subsection 4.2.3.

5.2.1 Initialization

In order to reduce heading-in effects [80], we populate the RMP with

two sets of columns. The first one consists of chains of different length

that pack all the items as in Subsection 4.2.1. The second one is com-

posed by polynomial families of dual cuts; as a side effect, they help

to stabilize and to speedup the overall column generation process.

S U B S E T- S U M C O L U M N S . Our initialization approach is based on

the iterative generation of columns obtained by solving several Subset-

Sum problems: the algorithm (see Pseudocode 5.2.1) generates at each

iteration a set of chains having the same length, and packs the items

by minimizing the residual capacity of each chain. The starting length

of the chains is set to one, while the maximum allowed length is set to

F.

The packing relies on a Subset-Sum (SS) Procedure that takes in in-

put a set of items J, their weights w and a capacity Q, and returns the

set of items J̄ ⊆ J of largest overall weight not exceeding Q.

function INITRMP(I,w,F, C)
for k = 1 . . .F+ 1 do
J← I

do
J̄←SS(J,w, k ·C)
add J̄ to RMP as a new column
J← J \ J̄

while J 6= ∅
end for

end function

Pseudocode 5.2.1: RMP initialization algorithm

In our algorithm, the SS Procedure exploits a simple dynamic pro-

gramming recursion, as described in [55]. This approach always pro-

duces a set of columns forming a feasible RMP solution. In particular,

during iteration k = 1, the initialization algorithm packs all the items

65

B I N M I N I M I Z AT I O N B P P I F

in chains of single bins, thereby creating a BPPSPF solution with no

fragmentations.

D U A L C U T S F O R B P P S P F . Then we restrict the dual space of the

MP, in order to obtain optimal MP solutions faster. We exploit a vari-

ant of the family of dual cuts proposed in [76] for the Cutting-Stock

Problem. Let λ and µ be the vectors of non negative dual variables

corresponding to constraints (5.1.18) and (5.1.19), respectively. We for-

mulate the following proposition:

Proposition 5.2.1. For each pair of subsets S and T of I such that

∑

i∈S

wi 6
∑

i∈T

wi

no optimal dual solution violates the following inequalities:

∑

i∈S

λi 6
∑

i∈T

λi (5.2.1)

In fact, if any such inequality were violated, all basic columns of

the MP representing chains including T can be replaced by columns

where items in T are removed and replaced by items in S, as these still

encode feasible chains. The reduced cost of these new columns would

be negative, thus contradicting the optimality of the solution.

Intuitively, these inequalities encode the following condition: an op-

timal solution always exists, in which subsets of small weight yield

less dual contribution to the reduced costs. Moreover, the linear com-

bination of dual cuts (5.2.1) and columns in the RMP, gives origin to

new patterns that may avoid the generation of further columns.

From an implementation point of view, each dual cut is represented

by a column pwith yp > 0, in which zpi = 1 for each i ∈ S and zpi = −1

for each i ∈ T . However, the number of these valid dual cuts grows

exponentially with the number of items in I. Very recent contributions

show that in particular cases their dynamic generation is appealing

[45]. Instead, we found it useful to focus on sets S and T of small

cardinality, considering two cases in which |S| = |T | = 1, and |S| = 2

and |T | = 1, and we add the corresponding columns to the RMP before

the execution of the column generation process. Preliminary results

showed that such approach reduces by 50% the average number of

column generation iterations needed to compute a valid lower bound.

Also, computing times are reduced by 20%.

66

5.2 A L G O R I T H M S

5.2.2 Pricing problem

For each p ∈ Γ , the reduced cost of variable yp is computed as

πp = l̄p −
∑

i∈I

λi · z̄
p
i + µ · (l̄p − 1).

The pricing problem, that is the problem of finding the most nega-

tive reduced cost column, can be stated as follows:

π∗ = min
p∈Γ

l̄p −
∑

i∈I

λi · z̄
p
i + µ · (l̄p − 1) (5.2.2)

s. t.
∑

i∈I

wi · z̄
p
i 6 C · l̄p

0 6 l̄p − 1 6 F

z̄
p
i ∈ B ∀i ∈ I

l̄p ∈N

Let us state the objective function of the pricing problem (4.2.1) in

maximization form, and collect the coefficients of terms zpi and lp

π∗ = −max
p∈Γ

∑

i∈I

λi · z̄
p
i − (µ+ 1) · l̄p + µ.

That is, λi and (µ+ 1) represent the prize for packing item i and the

cost for using each bin in the current chain, respectively. Therefore,

the pricing problem is still a Variable Size KP (VSKP) introduced in

Subsection 4.2.2. The only difference to the previous algorithm is that

in this case we have a maximum capacity of F ·C, and that the cost of

the initial recursive function is M(∅, c) = −µ for each 0 6 c 6 F · C.

Thus, the final cost of an optimal VSKP is

π∗ = max
06c6F·C

{M(I, c)} .

It is easy to keep track of the subset of items forming an optimal so-

lution by storing which arguments yield maxima in the above expres-

sion. The complexity of the overall procedure is O(F ·C · |I|).

After preliminary experiments, we found beneficial to add |K| co-

lumns at each column generation iteration, corresponding to the val-

uesM(I, k ·C) for k = 1 . . . |K|.

67

B I N M I N I M I Z AT I O N B P P I F

5.2.3 Primal Heuristics

When the column generation process is over, the optimal MP solu-

tion can be fractional. In that case we run primal (upper bounding)

heuristics: if the upper and lower bounds match, global optimality

for the bm-BPPSPF is proved. In order to find good integer solutions

quickly, we developed the following Iterative Subset-Sum Heuristic

(ISSH), that is built on the SSH heuristic for fm-BPPSPF proposed in

Subsection 3.4.2. The idea is to iteratively fix the number of open bins

and pack all the items by solving a fm-BPPSPF, until a feasible solu-

tion is reached, that packs all items with a number of fragmentations

not exceeding F. The algorithm is detailed in Pseudocode 5.2.2.

function ISSH(I,w,F, C)
B← ⌈

∑
i∈I wi/C⌉

loop
P, F̃ ← SSH(I, B,w,C)

if F̃ 6 F then
return P, B

else
B← B+ 1

end if
end loop

end function

Pseudocode 5.2.2: ISSH heuristic

The ISSH makes use of the SSH procedure that takes as arguments

the set of items I, the number of bins B, the vector of weights w and

the capacity C, and returns a set of chains P and the number of frag-

mentations F̃. The algorithm always ends with a feasible solution for

the bm-BPPSPF, since it is always possible to find a feasible packing

that uses |I| bins.

Additionally, we apply several general purpose MILP heuristics to

be run on MP fractional solutions, that are included in the framework

we use in our implementation; more details are reported in Section

5.4.

5.3 TA C K L I N G S I Z E I N C R E A S I N G VA R I A N T

As for the fm-BPPIF, the bm-BPPIF with size-increasing fragmenta-

tion (bm-BPPSIF) is the variant of bm-BPPIF in which a weight ǫ is

68

5.4 E X P E R I M E N TA L R E S U LT S

attached to all fragments packed into bins, including those fragments

corresponding to unfragmented items. According to literature [69]:

Proposition 5.3.1. Each solution of bin-minimization BPPSIF has a primi-

tive solution.

Thus we adapt the chain-based BPPIF model (5.1.9) – (5.1.16), by

changing constraint (5.1.12) into constraint 4.3.1.

A corresponding extended formulation can also be obtained as for

the model (5.1.17) – (5.1.20), and changing only the definition of sets

Γk. Indeed, our BPPSPF models can be obtained as a special case of

BPPSIF ones by setting ǫ = 0.

5.4 E X P E R I M E N TA L R E S U LT S

As in Section 4.4, we implemented our algorithms in C++, using the

framework SCIP [1] version 3.0.2 with the same default parameters.

Instead of the SSH procedure, we used the ad-hoc ISSH procedure

described in Subsection 5.2.3. Still, the LP subproblems were solved

using the simplex algorithm of CPLEX 12.4 [36]. We refer to our exact

branch-and-price algorithm as BPA in the remainder.

As a benchmark we considered the branch-and-cut implemented in

CPLEX 12.4, using the mathematical programming models described

in Section 5.1, and keeping again default settings besides forcing sin-

gle thread execution. All tests have been performed on a PC equipped

with an Intel(R) Core2 Duo CPU E6850 at 3.00 GHz and 4 GB of mem-

ory.

We used the dataset described in Section 4.4 in which we fixed the

maximum number of allowed fragmentations to F = ⌊F∗/2⌋, where

F∗ is the optimal solution of the corresponding fragmentations-mini-

mization instance. In fact, we found out instances with higher values

of F to be trivial for our algorithms.

5.4.1 Root lower bound

In a first round of experiments we compared the efforts for obtaining

a lower bound for bm-BPPSPF problems, stopping at the root node

of the branching tree with either CPLEX using the compact model,

CPLEX using the chain-based model, and our branch-and-price al-

gorithm. In Table 6 we report, for each instance class and for each

method, the time spent at the root node, and the average gap (B∗ −

69

B I N M I N I M I Z AT I O N B P P I F

LB)/B∗ between the corresponding lower bound LB and the optimal

bm-BPPSPF solution value B∗. The results show that the chain-based

model is in general the fastest way to get a lower bound, but the BPA

always provides the best gap, which usually is also the value of B∗.

Class Compact model Chain model BPCA

|I| w. cap. Gap (%) t (s) Gap (%) t (s) Gap (%) t (s)

20 big tight 7.8 0.5 7.8 0.0 0.0 0.2

20 free tight 9.1 0.3 9.1 0.0 0.0 0.1

20 small tight 14.3 0.2 14.3 0.0 0.0 0.1

20 big loose 16.7 0.6 16.7 0.1 0.0 0.1

20 free loose 9.8 0.5 9.8 0.0 0.0 0.1

20 small loose 0.0 0.2 0.0 0.0 0.0 0.1

50 big tight 12.5 4.5 12.5 0.3 0.0 0.7

50 free tight 3.8 4.0 3.8 0.3 0.4 1.5

50 small tight 3.1 3.2 3.1 0.2 0.0 0.9

50 big loose 20.0 5.6 20.0 0.4 0.0 0.8

50 free loose 5.7 5.2 5.7 0.3 0.0 0.8

50 small loose 0.0 3.1 0.0 0.2 0.0 0.9

100 big tight 12.5 8.5 12.5 2.9 0.0 3.6

100 free tight 2.0 8.0 2.0 2.2 0.0 7.8

100 small tight 0.0 6.7 0.0 1.4 0.0 4.3

100 big loose 21.3 9.2 21.3 3.0 0.0 4.6

100 free loose 5.0 8.5 5.0 2.0 0.0 6.7

100 small loose 0.0 6.3 0.0 1.5 0.0 14.1

Table 6: Computing lower bounds at the root node

5.4.2 Root upper bound

In a second round of experiments we compared the quality of the up-

per bounds for bm-BPPSPF obtained at the root node of the branching

tree by CPLEX heuristics using either compact or chain-based models,

and by our branch-and-price algorithm. In Table 7 we report for each

instance class and for each method, the average gap (UB − B∗)/UB

between the corresponding best upper bound UB and the optimal bm-

BPPSPF solution value B∗. The results show that at root node, our

algorithm always provides a better upper bound, which is usually

already an optimal solution. For what concerns the use of CPLEX,

chain-based models clearly give better upper bounds than the com-

pact model. BPA always offers the most accurate results.

70

5.4 E X P E R I M E N TA L R E S U LT S

Class Compact model Chain model BPCA

|I| w. cap. Gap (%) t (s) Gap (%) t (s) Gap (%) t (s)

20 big tight 19.4 0.5 6.1 0.0 0.6 0.2

20 free tight 2.4 0.3 7.0 0.0 0.0 0.1

20 small tight 7.2 0.2 0.0 0.0 0.0 0.1

20 big loose 50.0 0.6 3.2 0.1 0.0 0.1

20 free loose 29.5 0.5 9.7 0.0 0.0 0.1

20 small loose 6.3 0.2 1.3 0.0 0.0 0.1

50 big tight 81.4 4.5 5.8 0.3 0.0 0.7

50 free tight 20.9 4.0 11.5 0.3 0.4 1.5

50 small tight 21.7 3.2 9.2 0.2 3.1 0.9

50 big loose 100.0 5.6 0.2 0.4 0.0 0.8

50 free loose 100.0 5.2 12.0 0.3 1.4 0.8

50 small loose 11.5 3.1 8.0 0.2 0.0 0.9

100 big tight 100.0 8.5 23.3 2.9 0.0 3.6

100 free tight 58.1 8.0 48.2 2.2 1.1 7.8

100 small tight 57.8 6.7 19.4 1.4 3.2 4.3

100 big loose 100.0 9.2 10.0 3.0 0.0 4.6

100 free loose 100.0 8.5 17.9 2.0 1.8 6.7

100 small loose 30.9 6.3 36.8 1.5 1.3 14.1

Table 7: Computing upper bounds at the root node

71

B I N M I N I M I Z AT I O N B P P I F

5.4.3 Solving bm-BPPSPF to proven optimality

Third, we ran a comparison between CPLEX on both compact models

and chain-based ones, and our BPA in solving bm-BPPSPF instances

to proven optimality. A time limit of one hour was given to each run.

In Table 8 we report for each method the number of instances solved

to proven optimality within the time limit (S), the average duality gap

on the remaining ones computed as (UB− LB)/UB (Gap), and the av-

erage computing time (t).

Our BPA solves all the 180 instances, while CPLEX solves only 21

and 29 of them, using the compact and the chain-based models, respec-

tively. This test confirms previous results on the hardness of BPPIF

for generic solvers. Chain-based models perform better than compact

ones, always yielding a smaller optimality gap.

5.4.4 Solving Size-Increasing variants

In the last round of experiments we assessed the impact of size-increas-

ing features both on the computational behavior of our algorithm and

on the final solution costs. The analysis has been performed using

BPA. No time limit was given to these test, in order to always obtain

a global optimal solution. Nevertheless, no test exceeded one hour of

computation. The overhead ǫwas set to be 1% of the bin capacity.

In Table 9 we report the average gap between the optimal solutions

values obtained on the bm-BPPIF with the size preserving model (SP)

and the ones obtained with the size-increasing variant (SI), computed

as (SI - SP)/SP.

From the results we observe that overhead mildly worsens the qual-

ity of the solutions, while the execution times are actually insensitive

of the overhead management policy.

As a computational stress test, we repeated the experiment by in-

creasing the overhead ǫ to 10% of the bin capacity, although in prac-

tical applications such a large overhead would not be meaningful. In

Table 10 we report our results.

Still, no optimization required more than one hour of computing

time. More aggressive overhead settings do not necessarily result

in more difficult problems from the computing time point of view.

The solutions quality, instead, is highly penalized by the large over-

head: solutions are in a few cases more than 30% worse than their

size-preserving counterpart. We also observed that the impact of high

72

5.4 E X P E R I M E N TA L R E S U LT S

C
la

ss
C

om
p

ac
tm

od
el

C
h

ai
n

m
od

el
B

P
C

A

|
I|

w
.

ca
p

.
S

G
ap

(%
)

t(
s)

S
G

ap
(%

)
t(

s)
S

G
ap

(%
)

t(
s)

20
bi

g
ti

gh
t

0
1
0

.2
-

1
8
.0

3
,4
4
8

.9
1
0

0
.0

0
.2

20
fr

ee
ti

gh
t

0
9

.1
-

0
9

.1
-

1
0

0
.0

0
.1

20
sm

al
l

ti
gh

t
1

1
4

.3
3
3
5
.9

0
1
4

.3
-

1
0

0
.0

0
.1

20
bi

g
lo

os
e

0
1
6

.7
-

0
1
6

.7
-

1
0

0
.0

0
.1

20
fr

ee
lo

os
e

0
9
.8

-
4

9
.0

0
.1

1
0

0
.0

0
.1

20
sm

al
l

lo
os

e
1
0

0
.0

0
.2

1
0

0
.0

0
.1

1
0

0
.0

0
.1

50
bi

g
ti

gh
t

0
2
4

.1
-

0
1
2

.5
-

1
0

0
.0

0
.7

50
fr

ee
ti

gh
t

0
6

.0
-

0
3

.8
-

1
0

0
.0

1
.6

50
sm

al
l

ti
gh

t
0

6
.3

-
0

6
.3

-
1
0

0
.0

0
.9

50
bi

g
lo

os
e

0
3
6

.0
-

0
2
0

.0
-

1
0

0
.0

0
.8

50
fr

ee
lo

os
e

0
7
.4

-
0

5
.7

-
1
0

0
.0

0
.8

50
sm

al
l

lo
os

e
1
0

0
.0

2
2

.2
1
0

0
.0

0
.3

1
0

0
.0

0
.9

10
0

bi
g

ti
gh

t
0

7
5

.6
-

0
1
2

.5
-

1
0

0
.0

3
.5

10
0

fr
ee

ti
gh

t
0

8
.4

-
0

2
.3

-
1
0

0
.0

1
1

.2

10
0

sm
al

l
ti

gh
t

0
5
.9

-
0

3
.2

-
1
0

0
.0

9
.4

10
0

bi
g

lo
os

e
0

1
0
0
.0

-
0

2
1

.3
-

1
0

0
.0

4
.6

10
0

fr
ee

lo
os

e
0

9
.2

-
0

5
.0

-
1
0

0
.0

7
.6

10
0

sm
al

l
lo

os
e

0
3

.8
-

4
3

.2
1
,3
2
1
.6

1
0

0
.0

5
3

.2

Ta
bl

e
8:

So
lv

in
g

bm
-B

P
P

SP
F

to
p

ro
ve

n
op

ti
m

al
it

y.

73

B I N M I N I M I Z AT I O N B P P I F

Class Size Preserving Size Increasing

|I| w. cap. t (s) Gap (%) t (s)

20 big tight 0.2 2.0 0.1

20 free tight 0.1 0.0 0.1

20 small tight 0.1 0.0 0.1

20 big loose 0.1 0.0 0.1

20 free loose 0.1 2.7 0.1

20 small loose 0.1 0.0 0.1

50 big tight 0.7 0.0 1.0

50 free tight 1.6 0.0 1.9

50 small tight 0.9 3.3 1.1

50 big loose 0.8 0.0 0.9

50 free loose 0.8 3.3 0.8

50 small loose 0.9 0.0 2.5

100 big tight 3.5 0.0 5.8

100 free tight 11.2 2.0 11.2

100 small tight 9.4 3.3 9.0

100 big loose 4.6 0.0 5.7

100 free loose 7.6 1.9 7.4

100 small loose 53.2 3.3 52.8

Table 9: Solving bm-BPPSIF with small overhead.

74

5.4 E X P E R I M E N TA L R E S U LT S

Class Size Preserving Size Increasing

|I| w. cap. t (s) Gap (%) t (s)

20 big tight 0.2 18.5 0.1

20 free tight 0.1 18.2 0.1

20 small tight 0.1 28.6 0.1

20 big loose 0.1 5.6 0.1

20 free loose 0.1 26.1 0.1

20 small loose 0.1 30.0 0.1

50 big tight 0.7 12.5 1.2

50 free tight 1.6 23.5 1.1

50 small tight 0.9 35.6 0.8

50 big loose 0.8 4.0 0.8

50 free loose 0.8 22.6 0.6

50 small loose 0.9 31.3 1.0

100 big tight 3.5 11.1 16.2

100 free tight 11.2 23.7 8.3

100 small tight 9.4 36.7 12.6

100 big loose 4.6 3.3 5.2

100 free loose 7.6 22.5 4.0

100 small loose 53.2 34.3 20.0

Table 10: Solving bm-BPPSIF with large overhead.

75

B I N M I N I M I Z AT I O N B P P I F

overhead increases as the average item size decrease. In fact, for small

items, an overhead of ǫ = 0.1 · C means an average growth of one

third of each item.

5.5 C O N C L U S I O N S

In this chapter we tackled the bin minimization variant of the BPPIF.

After extending properties from the fm-BPPIF, we proposed new

mathematical programming models that avoid the use of fractional

variables. We introduced an extended formulation obtained through a

Dantzig-Wolfe decomposition and exploited column generation tech-

niques with ad-hoc pricing algorithms, dual cuts, heuristics and im-

plicit enumeration to design an exact branch-and-price algorithm.

As for the fm-BPPIF, we proved that also for the bm-BPPIF we can

extend our approach to handle size increasing variants.

Our experimental study revealed that for the bm-BPPIF, state-of-art

general purpose solver CPLEX fails in optimizing instances of very

small size even with our new models. Instead, our branch-and-price

algorithm completely outperformed general purpose solvers, solving

to optimality all the instances in our dataset within seconds.

76

6
F R A G M E N T E D I T E M M I N I M I Z AT I O N B P P I F

We now introduce a new variant of the BPPIF, where a cost is paid

whenever an item is split, no matter how many times. Let us con-

sider a delivery problem in which customers demands may be split

among multiple vehicles. Indeed, customers may perceive multiple

visits as a lower quality of such delivery service and an operator may

want to minimize the number of unsatisfied customers. In such sce-

nario the fragmented item-minimization BPPIF (fim-BPPIF) may arise

as an operative problem to minimize the number of customers whose

demands are split.

In Section 6.1 we propose a formalization of the fim-BPPSPF by a

mathematical programming model, while in Section 6.2 we reduce

such a variant to a pure combinatorial optimization problem. In Sec-

tion 6.3 we report experimental results obtained with the two different

approaches. Finally, we conclude in Section 6.4.

6.1 M AT H E M AT I C A L F O R M U L AT I O N

We are given a set of items I and a set of bins B. Let wi be the weight

of each item i ∈ I and let C be the capacity of each bin. Each item has

to be fully packed, but it may be split into fragments and fractionally

assigned to different bins. The sum of the weights of the (fragments

of) items packed into a single bin must not exceed C.

77

F R A G M E N T E D I T E M M I N I M I Z AT I O N B P P I F

The fim-BPPSPF can be stated as the problem of packing all the

items minimizing the number of fragmented items, and can be for-

malized by the following mathematical programming model:

min
∑

i∈I

fi (6.1.1)

s. t.
∑

j∈B

xij = 1 ∀i∈I (6.1.2)

∑

i∈I

wi · xij 6 C ∀j∈B (6.1.3)

xij 6 zij
∀i∈I
∀j∈B (6.1.4)

zij + zik 6 1+ fi
∀i∈I

∀j,k∈B (6.1.5)

0 6 xij 6 1
∀i∈I
∀j∈B (6.1.6)

zij ∈ {0, 1} ∀i∈I
∀j∈B (6.1.7)

fi ∈ {0, 1} ∀i∈I (6.1.8)

where each variable xij represents the fraction of item i packed into

bin j, each binary variable zij is 1 if any fragment of item i is packed

into bin j, and each variable fi is 1 if item i is assigned to more than

one bin, and thus it is fragmented.

The objective function (6.1.1) minimizes the number of fragmented

items. Constraints (6.1.2) and (6.1.3) ensure respectively that each item

is fully packed and that the capacity of each bin is not exceeded. Con-

straints (6.1.4) enforce consistency between variables, so that no frag-

ment xij of each item i is packed into bin j unless zij is set to 1. Con-

straints (6.1.5) impose that if an item is packed in more than one bin,

the corresponding variable fi is set to 1.

Contrary to the previous variants, we know:

Observation 6.1.1. In the fim-BPPSPF it does not always exist an optimal

solution that is primitive.

In fact let me consider the following example: we are given an in-

stance with 6 items and 4 bins. The vector w of the items weights is

w = (2, 2, 4, 4, 4, 4), while the capacity of each bin is 5. Indeed, it is

never possible to pack all items without split, and a primitive optimal

solution is shown in Figure 7. In such solution we have two fragmen-

tations and two fragmented items, with items 1 and 2 that are split. In-

stead, we could achieve a better solution as depicted in Figure 8. Such

solution has only item 6 fragmented, an it is also an optimal solution.

Corollary 6.1.1. An optimal solution to fm-BPPSPF is not necessarily an

optimal solution to the fim-BPPSPF, and vice versa.

78

6.2 P R O B L E M R E D U C T I O N

3 4 5 6

1 1 2 2

Figure 7: Example of primitive solution with 2 fragmentations and 2 frag-
mented items.

3

6

4 5
1

2

6 6 6

Figure 8: Example of non primitive solution with 3 fragmentations and only
1 fragmented item.

6.2 P R O B L E M R E D U C T I O N

We now show how to reduce the fim-BPPSPF to a pure combinatorial

problem in order to avoid the fractional component and improve the

performance while solving it with a MIP solver.

Let suppose that an optimal solution to the fim-BPPSPF is given

with a mapping function χ : I×B→ {0, 1} indicating if an item i ∈ I if

fully packed into bin j ∈ B.

Observation 6.2.1. Given the function χ of an optimal packing, it is possible

to obtain the complete optimal solution in polynomial time.

In fact, considering a solution in which only non-fragmented items

are given, for each bin j we can compute the residual capacity as

rj = C−
∑

i∈I µ(i, j) ·wi. Then, the fragmented items can be packed

by using the NFf algorithm on a set of bins, each one with residual

capacity rj. The resulting packing is feasible, since no overhead is in-

troduced, and it is optimal, since no additional item is split.

Theorem 6.2.1. Given an instance of the fim-BPPSPF, it can be reduced to

a Multiple Knapsack Problem (MKP) [55] instance.

Proof. Let f̄i = 1− fi be the variable that is 1 if item i is not fragmented,

and 0 otherwise. The objective function (6.1.1) can be rewritten as

min
∑

i∈I

fi =
∑

i∈I

1− f̄i = |I|−
∑

i∈I

f̄i.

We rewrite it in maximization form as

|I|− max
∑

i∈I

f̄i

79

F R A G M E N T E D I T E M M I N I M I Z AT I O N B P P I F

that is the objective function that maximize the number of non-frag-

mented items.

Also, because Observation 6.2.1, we can solve the problem consider-

ing non-fragmented items only: xij variables can be substituted in the

model by variables zij because each item is always fully packed into

a single bin and Constraints (6.1.2) can be rewritten in 6 from, since

we allow some items to be excluded from the packing. The model

(6.1.1)–(6.1.8) can be rewritten as

max
∑

i∈I
j∈B

zij (6.2.1)

s. t.
∑

j∈B

zij 6 1 ∀i∈I (6.2.2)

∑

i∈I

wi · zij 6 C ∀j∈B (6.2.3)

zij ∈ {0, 1} ∀i∈I
∀j∈B (6.2.4)

that is a MKP where each item i has a prize pi = 1when packed.

Solving such a problem on an instance of the fim-BPPSPF leads to a

partial solution with non-fragmented items only. A complete solution

can be obtained by applying NFf algorithm as mentioned in Observa-

tion 6.2.1.

Le us remark that such approach does not stand for the size increas-

ing variant. In fact, when packing the fragmented items it may happen

that the available capacity is exceeded, due to the additional overhead.

However, if a feasible solution is found, then it is optimal.

6.3 E X P E R I M E N TA L A N A LY S I S

We tested the two approaches using CPLEX 12.4 to solve MIPs: we

kept default options but the number of threads was fixed to 1. All the

tests have been performed on a PC equipped with an Intel(R) Core

i7-2640M at 2.80 GHz and 8 GB of memory.

The dataset used for the tests is the same as the one used in Sec-

tion 4.4.

Table 11 reports the results obtained allowing one hour of maximum

computation: for both formulations we report the number of instances

solved to optimality, the average gap (UB− LB)/UB between the cor-

responding lower bound LB and the upper bound UB when the in-

stance reach the time limit, and the average computing time for in-

80

6.4 C O N C L U S I O N

stances solved to optimality. In our tests the MKP reformulation out-

performs the fm-BPPSPF formulation by solving more than double of

instances.

Class fim-BPPSPF MKP

|I| w. cap. S Gap (%) t (s) S Gap (%) t (s)

20 big tight 0 96.7 - 10 0.0 0.0

20 free tight 8 100.0 114.0 10 0.0 0.0

20 small tight 9 100.0 290.1 10 0.0 123.6

20 big loose 0 100.0 - 10 0.0 0.0

20 free loose 10 0.0 195.6 10 0.0 0.0

20 small loose 10 0.0 0.0 10 0.0 0.0

50 big tight 0 100.0 - 10 0.0 0.0

50 free tight 0 100.0 - 5 70.0 1.3

50 small tight 0 100.0 - 0 100.0 -

50 big loose 0 100.0 - 10 0.0 0.0

50 free loose 7 100.0 341.4 8 100.0 0.2

50 small loose 10 0.0 2.1 10 0.0 0.0

100 big tight 0 100.0 - 10 0.0 0.1

100 free tight 0 100.0 - 2 84.4 15.1

100 small tight 0 100.0 - 0 100.0 -

100 big loose 0 100.0 - 10 0.0 0.1

100 free loose 0 100.0 - 10 0.0 1.6

100 small loose 10 0.0 54.8 10 0.0 0.2

Table 11: Results obtained within a time limit of one hour per instance

6.4 C O N C L U S I O N

In this chapter we tackle a variant of the Bin Packing Problem with

Item Fragmentation in which a cost is paid for each item split. We per-

formed a theoretical investigation to devise a new approach to solve

the fim-BPPSPF, reducing such problem to a Multiple Knapsack Prob-

lem, a pure combinatorial problem well-studied in literature.

Our experimental campaign revealed that with our approach, the

state-of-the-art general purpose solver CPLEX is already able to solve

instances with up to 100 items, while considering the fractional com-

ponent lead to poor results. This is a further proof that problems with

fractional resources are still hard to handle and that just by removing

the fractional component, the problem comes easier to solve.

81

Part II

R O U T I N G P R O B L E M S W I T H PA C K I N G I S S U E S

7
S P L I T P I C K U P A N D S P L I T D E L I V E RY V E H I C L E

R O U T I N G P R O B L E M O N A B I K E - S H A R I N G S Y S T E M

Over the past decade an increasing number of cities around the world

have adopted bike-sharing systems. A bike-sharing system is a public

service in which bicycles are made available for shared use to individ-

uals on a short term basis. Typically, bikes are stored in rack stations.

People rent a bike at a cost to travel around the city, and drop it back

at either the same rack station or at a different one.

The Velib system in Paris, started in 2007, is a success story with

more than 50 millions trips in its first two years of service [34]; in 2014

more than 800 cities across the globe had similar bike-sharing systems.

One of the main issues of bike-sharing systems is ensuring the avail-

ability of the bikes. In fact, during peak hours, flows along particular

direction are registered, leading to high risk of empty racks in depar-

ture stations, and full racks at destination. Both represent a disservice,

and may even prevent people to use the system, since the users are

forced to spend time in searching for alternative stations in the neigh-

bourhood.

One of the solutions chosen by many operators is to iteratively rebal-

ance the system by means of a fleet of dedicated trucks: transportation

demand is forecast, and bikes are picked up from stations where con-

gestion is expected, and delivered to those expected to become empty.

Due to the high costs of running trucks in a urban environment, ef-

ficient rebalancing operations are a key factor for the success of the

whole system. Unfortunately, such operations require to solve very

hard optimization problems.

In this thesis we face a Split Pickup and Split Delivery Vehicle Rout-

ing Problem (SPSDVRP) arising on such a bike-sharing system. We

assume that it is given a homogeneous fleet of vehicles of limited ca-

pacity, a network of stations, the travel cost and time between them, a

forecast of transportation demand and a current status of the network,

expressed in terms of desired (resp. currently available) number of

bikes at each station.

The SPSDVRP requires therefore to find a route for each vehicle,

that is a pattern defining which stations need to be visited, the order

85

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

of visits, and the amount of bikes loaded or unloaded at each station.

Due to capacity restrictions, no bikes can be loaded into a full vehicle,

not unloaded from an empty one; similarly, no bike can be unloaded

to a full station, and no more bikes can be loaded from a station than

those actually available. Route length cannot exceed a given limit, rep-

resenting the operator shift duration. We assume that each vehicles

always starts and ends at a central depot with no bikes on board. We

also assume that loading and unloading times are negligible with re-

spect to travelling times. We finally assume that no station is used as a

temporary unloading location; that is, in each station bikes can be only

loaded or unloaded, and therefore during the balancing operations the

number of bikes in each station is monotone. From a logistics point of

view, without the latter assumption complex synchronization issues

would arise, that would be very difficult to be implemented in prac-

tice. As a consequence, each station is classified since the beginning as

either pickup, when more bikes are parked than the desired ones, or

delivery, when instead more bikes are expected to be needed than the

currently available ones.

A solution to the SPSDVRP consists of a set of routes respecting the

above conditions, and such that the desired target demand is achieved

for each station of the network. A solution is considered to be optimal

when minimizing the sum of the travelling costs of all vehicles.

From an application point of view, there is currently a lively re-

search trend in optimizing bike-sharing systems. In [52] the authors

adopt a statistical approach to discuss the performances of existing

systems. In [81], data from the Vienna bikes sharing system are gath-

ered and studied to give a model that could be used to further ex-

pand the network. In [53] it is described a model that gives a strategic

planning of a bike-sharing system by considering service level require-

ments. In [64] the authors propose several models and algorithms to

solve bike repositioning problems. Their objective is to find the best

repositioning that can be achieved by several vehicles within time lim-

its in a static case, that is they assume a negligible usage rate of the

system. The satisfaction function introduced in [63] is used to eval-

uate the quality of a repositioning. Both service level requirements

and bike repositioning are combined in [67]. In [28] the authors pro-

pose to solve a dynamic public bike-sharing balancing problem. They

introduce a time-discretized model of the system and use column gen-

eration techniques to obtain in short time instructions to be given to

the drivers, in order to minimize the number of uncovered users.

86

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

From a methodological point of view, our SPSDVRP is NP-Hard,

generalizing several problems in transportation. For instance, when

all stations have a target number of bikes that is higher than the ini-

tial one, except for a single depot station, the SPSDVRP becomes a

Split Delivery Vehicle Routing Problem (SDVRP) [5]. SDVRPs have been

first studied in [38]. The authors proved that the split feature of the

problem may lead to substantial savings, while increasing at the same

time the complexity of the problem [5]. In [7] a tabu search algorithm

to solve this problem is presented, while in [8] and [9] the authors

propose exact algorithms exploiting column generation and cutting

planes, respectively. In [35] a further degree of complexity is consid-

ered, forcing the deliveries to be satisfied within given time windows.

The author proposes a branch-and-price approach to solve the prob-

lem to optimality.

The SPSDVRP belongs to the wide class of Pickup and Delivery Ve-

hicle Routing Problems (PDVRPs), where a fleet of vehicles is used to

transport supplies from either a depot or some selected vertices of

the network, to either other vertices or back to the depot. For re-

cent surveys on PDVRPs we refer to [12], covering freight transporta-

tiont, and to [37] covering transportation of people. PDVRPs involv-

ing additional operational constraints have recently been addressed,

as LIFO constraints on the loading/unloading [15], time windows [44],

and both [24]. However, a substantial difference stands between a

standard PDVRP and the SPSDVRP: while in the former the requests

for each pair of pickup and delivery points are given, in the latter

the quantity of supply transported from each pickup to each delivery

point is a decision variable.

Finally, the SPSDVRP can be classified as a many-to-many (M-M) ve-

hicle routing problem, in which a request has multiple origins (in our

case pickup stations) and multiple destinations (in our case delivery

stations). These kind of transportation problems arise for instance in

maritime oil transportation [46].

The routing problem induced by balancing in bike-sharing systems

with a single vehicle is addressed in [23], where the authors succeed

in providing a strong lower bound and an effective heuristic. In [43]

the authors propose a first branch-and-cut exploiting Benders’ cuts.

In [42] a variant of the problem is tackled, where the rebalancing re-

quires to satisfy an interval demand; the authors exploit cutting planes

methods to design exact algorithms. In [32], the authors propose new

models and valid inequalities for the pure combinatorial version of

87

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

the problem, that is without considering the option of partially serv-

ing demands at each station.

A first mathematical programming algorithm for the SPSDVRP on

a bike-sharing system has been proposed in [22]. The author models

the problem by means of a set partitioning extended formulation in

which each variable represents a full vehicle route, that is including

its rebalancing pattern. First, the author obtains strong lower bounds

by solving the continuous relaxation of his extended formulation by

means of column generation techniques; to solve the pricing problem

the author adapts an ad-hoc algorithm for the VRP first described in

[11]. Secondly, he obtains tight upper bounds by means of a memetic

algorithm. Third, he generates all columns with a reduced cost smaller

than the gap between lower and upper bounds, following the tech-

nique of [11], and solves to integer optimality the resulting problem

by means of general purpose integer programming solver.

The method of [22] has two main drawbacks: first, it is not designed

to handle travelling times, that are instead approximated by a limit on

the number of visits in each route; second, it is designed to tackle only

instances with a very limited number of stations, due to the nature of

its third step, and of the pricing problem to be solved during column

generation.

We propose a new exact method for the SPSDVRP that overcomes

these two drawbacks.

In Section 7.1 we formalize the problem; in Section 7.2 we propose

a new mathematical programming model that makes use of combi-

nations of suitable combinatorial structures to reduce the complexity

of the problem. We then discuss about a few theoretical properties

of such a model, and we propose an extended formulation obtained

through Dantzig-Wolfe decomposition. In Section 7.3 we explain the

details of our algorithm, while in Section 7.4 we show our computa-

tional results. Brief conclusions follow in Section 7.5.

M A I N C O N T R I B U T I O N S . In this part of the thesis we address the

SPSDVRP on a bike-sharing system and improve the state of the art

on such problem. In particular:

(a) we introduce a new formulation of the SPSDVRP in which routes

are decomposed into simpler substructures, mitigating the combi-

natorial explosion of feasible solutions;

88

7.1 P R O B L E M F O R M A L I Z AT I O N A N D N O TAT I O N

(b) we exploit properties on the structure of the solutions to improve

the quality of the bound given by the continuous relaxation of our

model;

(c) we obtain an extended formulation by means of Dantzig-Wolfe

decomposition method and we make use of column generation

techniques to solve its continuous relaxations, designing an ad-

hoc algorithm for the pricing problem;

(d) we include the column generation procedure into a branch-and-

price framework with new branching strategies and feasibility de-

tection procedures;

(e) we study the performances of our algorithm by means of an exten-

sive experimental campaign.

7.1 P R O B L E M F O R M A L I Z AT I O N A N D N O TAT I O N

The SPSDVRP for a bike-sharing system can be formalized as follows:

a set of station nodesN = {1 . . . n} is given, each with an initial number

stocki and a target number targeti of bikes. When stocki > targeti,

i is defined as a pickup node, when stocki < targeti as a delivery node,

and when stocki = targeti as a balanced node. Let us define N+ =

{i ∈ N | stocki > targeti} and N− = {i ∈ N | stocki < targeti} as the

set of pickup nodes and the set of delivery nodes, respectively. The

demand of each node di = |stocki − targeti| is the quantity of bikes

to pickup from (resp. deliver to) that node.

Let G = (N0, A) be a directed graph in which N0 = N ∪ {0} is the

set of nodes including the depot 0, and A = {(i, j) | i, j ∈ N0} is the set

of arcs connecting them. Let cij be the travelling cost of arc (i, j) ∈ A.

W.l.o.g we assume that travelling costs satisfy the triangular inequality,

that is cij 6 cik + ckj for all i, j, k ∈ N0. Let tij be the travelling time

of arc (i, j) ∈ A; we assume that triangular inequalities hold also for

travelling times, that is tij 6 tik + tkj for all i, j, k ∈ N0.

An example of such an input of the SPSDVRP is shown in Figure 9;

for clarity only a few arcs are depicted. In such figure, each node has

two labels: one label that identifies the station i, and one attached label

that is its demand di. Also, each node is denoted by a + or by a − if it

is a pickup or a delivery node, respectively.

A homogeneous fleet of vehicles M = {1 . . .m} each with capacity

C is given to satisfy station node demands. Whenever a vehicle visits

a station node, it may pick up or deliver a certain amount of bikes,

89

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

c(8,9),t(8,9)

c(10,0),t(10,0)

c(10,0),t(10,0)

c(7,8),t(7,8)

c(2,1),t(2,1)

0

9+

5+

7+

4+

8-

6-

2-

10-

1+

3-

6

7

3

8

5

1
8

4

2

6

Figure 9: Example of instance with 10 station. Symbols + and − denote a
pickup or a delivery station, respectively. At each station is attached
a label reporting its demand.

depending on its current load. Since we assume that all vehicles begin

and end their route empty, the sum of pickup demands must be equal

to the sum of delivery demands, that is
∑

i∈N(stocki − targeti) = 0

Moreover, each vehicle has a resource T that represent the available

travelling time of such vehicle.

The SPSDVRP on a bike-sharing system is the problem of redis-

tributing bikes in the network at minimum travelling cost, satisfying

node demands while not exceeding neither vehicles capacity nor their

time resource. In Figure 10 we depict an example in which we assume

2 vehicles with capacity C = 10 each. Both vehicles start empty from

the depot and visit pickup node 5 splitting its demand. The load of

vehicles after each operation is reported as a label on the arcs of the

solutions. Also the demand of the delivery node 10 is split; then the

two vehicles end their routes empty.

As discussed in the introduction, the convergence to the target state

is required to be monotonous and drops are not allowed. It means that

bikes can only be loaded at pickup vertices and unloaded at delivery

vertices. As a consequence initially balanced vertices are not visited

by any vehicle and so from now on we assume them to be removed

from G. Instead, pickup and delivery vertices can be visited several

times, either by the same vehicle or by different ones.

90

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

0

9+

5+

7+

4+

8-

6-

2-

10-

1+

3-

6

7

3

8

5

1
8

4

2

6

9

3

4

0
0

4

0

6

8

3

0

0

5

2

Figure 10: Example of feasible solution for the graph depicted in Figure 9
assuming a capacity C = 10 and using 2 vehicles. Each arc has a
label reporting the load of the vehicle after visiting a node. Node
5 and node 10 are visited by both vehicles splitting their demands.

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

The approach to the SPSDVRP proposed in [22], that modelled the

problem as a set covering extended formulation in which each vari-

able is a specific route pattern, revealed that solving the continuous

relaxation of such formulation was very challenging due to the struc-

ture of the pricing problem. Indeed, we also performed preliminary

solution attempts and experiments in that modelling direction; these

however, confirmed the findings of [22].

That motivated us to elaborate on a different approach, identifying

particular regularities and properties of combinatorial substructures

of the routes, and trying to reduce the complexity of the pricing prob-

lem by exploiting these properties. Indeed, this kind of approach is

in nature similar to those proposed in [59] and [21], that proved to be

successful in similar contexts.

We first present some observations that led to our intuition (subsec-

tion 7.2.1), then we describe in detail our approach (subsections 7.2.1,

7.2.2, 7.2.3 and 7.2.4).

7.2.1 Routes and groups

We first observe that, due to triangular inequality:

91

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

Observation 7.2.1. There always exists an optimal solution in which no

node is visited without collecting at least one unit of its demand.

Furthermore, since vehicles always start and end the route empty at

the depot, we can observe that:

Observation 7.2.2. There always exists an optimal solution in which no

vehicle visits a delivery or a pickup station at the beginning or at the end of

its route, respectively.

These observations can be simply generalized as follows:

Observation 7.2.3. A route always starts with a sequence composed only by

pickup nodes, always ends with a sequence composed only by delivery nodes,

and in general always interleaves sequences in which a set of pickup nodes are

visited, without deliveries in between, followed by a set of visits to delivery

nodes, without pickups in between.

Our intuition is therefore that the structure of a route can be much

simplified by explicitly encoding such an interleaved behaviour. In-

deed, in the following we formalize such an intuition, and prove a

few key properties of such an encoding.

Definition 7.2.1. We denote as group a sequence of one or more pickup

nodes followed by a sequence of one or more delivery nodes.

Therefore, a route is itself a sequence of one or more groups linked

together, plus an additional stop at the depot at the begin and at the

end. An example of group structure in a route is depicted in Figure 11:

the first route is partitioned in two groups, one with four and one

with two nodes. The second route is partitioned in three groups with

two nodes each. All groups start with a pickup node and end with a

delivery node.

5+ 7+

4+

8-6-

2-

10-

1+3-

0 9+

10-5+0 0

0

Group 1 Group 2

Group 1 Group 2 Group 3

Figure 11: Group partitioning of routes in Figure 10

92

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

Definition 7.2.2. A group is feasible if both the sum of loaded bikes and the

sum of unloaded bikes do not exceed the capacity of the vehicle.

Definition 7.2.3. The cost of a group is given by the sum of the arcs connect-

ing the nodes of the inner pickup and delivery sequences.

Let g and g ′ be two consecutive groups of a route, and let i and j be

the last and first node of group g and g ′, respectively. Then groups g

and g ′ are connected in the route by an arc (i, j).

Definition 7.2.4. The cost of a route is the sum of the cost of its groups and

the cost of its connecting arcs.

We readily observe that:

Observation 7.2.4. There always exists an optimal solution in which no

node is visited more than once in the same group.

Proof. In fact, let us suppose by contradiction that such an optimal

solution exists and that i is a pickup node visited twice in a group. Let

q ′
i and q ′′

i be the two quantities loaded on the vehicle, and that d̃i is

the demand of i loaded, that is d̃i = q ′
i + q

′′
i . Since the visits occur in

the same group, we know that between the first and the second visit

there are only pickup nodes, and that loading d̃i units of demand does

not exceed vehicle capacity. Therefore, we can set q ′
i = d̃i and q ′′

i = 0,

avoiding the second visit due to Observation 7.2.1. The same holds if

i is a delivery node, visited more than once.

We remark that such a property does not hold outside the group

structure; that is, in general, visiting the same node twice may be both

needed for feasibility or simply be profitable.

We also observe that:

Observation 7.2.5. The number of bikes loaded in each node of a pickup

sequence is irrelevant to both the feasibility and the cost of a group, as long

as the total amount of loaded bikes remains constant. The same applies to the

number of bikes loaded in each node of a delivery sequence.

That is, each group can encode implicitly a potentially huge number

of equivalent solutions.

7.2.2 Routes, groups and loading patterns.

We now consider the particular SPSDVRP subproblem arising when

the nodes visiting sequence is assumed to be given, and only a suitable

93

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

1 4 5 7 9

2 3 6 8 10

s

t

5 7 9

6 8 10

5, 4 1

3, 2 10

10 10 10 10 10

4
5 8 7

1

6
2

3 6

8

fi
+

fj
-

pmg

dmg

Figure 12: Resulting flow graph of the routes in the solution of Figure 10 as-
suming vehicles with capacity C = 10. The labels on the arcs are
the capacities of each arc (infinite capacities are omitted).

loading/unloading plan needs to be found. Our main result is that

by exploiting the groups structure we are able to improve theoretical

findings from the literature.

Theorem 7.2.1. Given the sets of nodes visited in each group of each vehicle,

the problem of assigning the maximum quantity loaded (resp. unloaded) at

each station can be solved in polynomial time.

Proof. Let us build a graph in which we have a source node s and a

sink node t, a node f+i for each pickup node i and a node f−j for each

delivery node j, and two nodes pmg and dmg for each group g of each

vehiclem. Let us add arcs from s to f+i and from f−j to twith capacity

di and dj, respectively. For each pickup node i visited in a group g of

vehicle m, add an arc from f+i to pmg with infinite capacity. Similarly,

for each delivery node j visited in a group g of vehicle m, add an arc

from dmg to f−j still with infinite capacity. From each node pmg add

an arc to dmg with capacity C, and from each node dmg add an arc to

pmg+1 with infinite capacity. An example of the graph is reported in

Figure 12.

A maximum flow solution on such a graph ensures that at most
∑

i∈N+ di units can be loaded, and at most
∑

i∈N− di units unloaded.

For each station node, the units loaded (unloaded) are at most the

demand of the station itself because of the limited capacity of ingoing

94

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

arcs in f+i (outgoing arcs from f−j). Nodes pmg and dmg represent

the load of the vehicle after pickups and deliveries, respectively. No

vehicle is overloaded due to the limited capacity of arcs (pmg, dmg).

The quantities loaded and unloaded at nodes i and j of a group g

of vehiclem are given by the flow on the arc (f+i , p
mg) and (dmg, f−j),

respectively.

Corollary 7.2.2. If the flow reaching the depot t is less than the number of

demands of pickup (delivery) nodes, then the starting assignment of nodes to

groups does not represent a feasible solution.

This follows from the fact that some demands are not satisfied if the

flow is less then their sum.

Theorem 7.2.1 and Corollary 7.2.2 imply:

Observation 7.2.6. Given a set of routes without loading (unloading) infor-

mation, it is always possible to complete the solution with such quantities in

polynomial time, or prove that such solution is infeasible.

Our approach is indeed similar to the one presented in [22], where

given a set of routes without loading quantities, the authors use a flow

formulation to obtain such a missing information. Indeed the claim of

our theorem 7.2.1 matches the findings of [22].

However, our proof is different: from a theoretical point of view,

our approach allows to build smaller support graph, and may there-

fore yield a better computational behaviour. In details, the graph of

[22] has two nodes for each station of the problem, while our graph

has one node for each station, and two nodes for each group. There-

fore, our graph has always a smaller number of nodes, except in the

extreme scenario in which exactly one pickup and one delivery node

is visited in each group. In such scenario, the number of nodes of the

two graphs is identical. Furthermore, our approach requires less in-

formation about the order of the nodes in the route, and can be used

to early detect the infeasibility of a node in a branch-and-bound ap-

proach as described in Subsection 7.3.6.

7.2.3 A formulation based on groups

Then we exploit the features of groups to obtain a new formulation of

the SPSDVRP. To ease notation we assume that there exists a particular

additional group containing the depot only. LetG = {1 . . . g} be the set

95

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

of available groups for each vehicle, the SPSDVRP can be formulated

as follows:

min
∑

m∈M
g∈G

∑

i∈N−
0

j∈N+
0

cij · x
mg
ij +

∑

i,j∈N

cij · z
mg
ij (7.2.1)

s. t.
∑

m∈M
g∈G

w
mg
i > 1 ∀i∈N (7.2.2)

∑

m∈M
g∈G

q
mg
i = di ∀i∈N (7.2.3)

q
mg
i 6 di ·w

mg
i

∀m∈M
∀g∈G
∀i∈N

(7.2.4)

q
mg
i > w

mg
i

∀m∈M
∀g∈G
∀i∈N

(7.2.5)
∑

i∈N+

q
mg
i 6 C ∀m∈M

∀g∈G (7.2.6)

∑

i∈N−

q
mg
i 6 C ∀m∈M

∀g∈G (7.2.7)

fmg +
∑

i∈N+

q
mg+1
i −

∑

i∈N−

q
mg+1
i = fmg+1 ∀m∈M

∀g∈G (7.2.8)

fmg +
∑

i∈N+

q
mg+1
i 6 C · (1−wmg

0) ∀m∈M
∀g∈G (7.2.9)

∑

i∈N

w
mg
i 6 |N| · (1−wmg

0) ∀m∈M
∀g∈G (7.2.10)

∑

j∈N

z
mg
ij =

∑

j∈N+

z
mg
ji + s

mg
i = w

mg
i

∀m∈M
∀g∈G
∀i∈N+

(7.2.11)

∑

j∈N−

z
mg
ij + e

mg
i =

∑

j∈N

z
mg
ji = w

mg
i

∀m∈M
∀g∈G
∀i∈N−

(7.2.12)

1 >
∑

i∈N+

j∈N−

z
mg
ij > wmg

u

∀m∈M
∀g∈G
u∈N

(7.2.13)

∑

i∈N\S
j∈S

(z
mg
ij + z

mg
ji) > wmg

u

m∈M
g∈G
S⊂N
|S|>0
u∈S

(7.2.14)

∑

i∈N−
0

e
mg
i 6 1 ∀m∈M

∀g∈G (7.2.15)

∑

i∈N+
0

s
mg
i 6 1 ∀m∈M

∀g∈G (7.2.16)

w
mg
0 > e

mg
0 + s

mg
0

∀m∈M
∀g∈G (7.2.17)

e
mg
i 6

∑

j∈N+
0

x
mg
ij

∀m∈M
∀g∈G
i∈N−

0

(7.2.18)

96

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

s
mg+1
i 6

∑

j∈N−
0

x
mg
ji

∀m∈M
∀g∈G
i∈N+

0

(7.2.19)

em1
0 =

∑

g∈G
g>1

s
mg
0 = 1 ∀m∈M (7.2.20)

∑

i,j∈N

x
mg
ij 6

∑

i,j∈N0

x
mg−1
ij −

∑

i∈N

x
mg−1
i0

∀m∈M
∀g∈G (7.2.21)

∑

i∈N−
0

j∈N+
0

x
mg
ij 6 1 ∀m∈M

∀g∈G (7.2.22)

∑

i∈N−
0

j∈N+
0

tij · x
mg
ij +

∑

i,j∈N

tij · z
mg
ij 6 T ∀m∈M

∀g∈G (7.2.23)

x
mg
ij ∈ B

∀m∈M
∀g∈G
∀i∈N−

0

j∈N+
0

(7.2.24)

z
mg
ij ∈ B

∀m∈M
∀g∈G
∀i,j∈N

(7.2.25)

w
mg
i ∈ B

∀m∈M
∀g∈G
∀i∈N

(7.2.26)

0 6 fmg
6 C ∀m∈M

∀g∈G (7.2.27)

q
mg
i ∈N0

∀m∈M
∀g∈G
∀i∈N

(7.2.28)

s
mg
i ∈ B

∀m∈M
∀g∈G
∀i∈N0

(7.2.29)

e
mg
i ∈ B

∀m∈M
∀g∈G
∀i∈N0

(7.2.30)

Variables xmg
ij and zmg

ij correspond respectively to the linking arcs

between groups and the linking arcs inside a group; the former are set

to 1 if there is an arc between group g and group g+ 1 that connect

node i and j, while the latter are set to 1 if there is an arc between

node i and node j inside the group. Variables wmg
i are set to 1 if node

i is visited by vehicle m in group g. Variables smg
i and emg

i are set

to 1 if i is the starting node of the group g or if i is the ending node

respectively. Variable qmg
i is the quantity loaded (unloaded) at node i

by vehicle m in group g, while variable fmg is the load of the vehicle

m after visiting group g.

The objective function (7.2.1) minimizes the overall cost by mini-

mizing both group costs and linking arc costs. Constraints (7.2.2) and

(7.2.3) ensure respectively that each station is visited at least once and

its demand is satisfied. Constraints (7.2.4) avoid loading (unloading)

when a node is not visited, while constraints (7.2.5) impose that if

97

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

a node is visited, then at least one unit of demand is loaded. Con-

straints (7.2.6) and (7.2.7) ensure that vehicle capacity is not exceeded

for each group. Constraints (7.2.8) ensure consistency of the flow in

the route, while constraints (7.2.9) impose that the vehicle is empty

when visiting depot and therefore a vehicle starts and ends empty.

Constraints (7.2.10) impose that no station is visited in a group if the

depot is visited, too. Constraints (7.2.11) and (7.2.12) ensure respec-

tively that all pickup and delivery nodes visited have ingoing and

outgoing arcs. Constraints (7.2.13) ensure that in each group with a

pickup or delivery node, there is an arc going from pickup to delivery,

while constraints (7.2.14) ensure that there are no subtours in a group.

Constraints (7.2.15) and (7.2.16) impose that for each group there must

be at most one ending node and one starting node, while constraints

(7.2.17) impose that if a vehicle visits the depot, it is only to start or to

end a route. Constraints (7.2.18) and (7.2.19) impose the use of linking

arcs between each group, while constraints (7.2.20) has the double ef-

fect of ensure that each vehicle visits the depot twice, and that its route

starts from the depot. Constraints (7.2.21) ensure that no arcs are used

after the depot is visited and constraints (7.2.22) impose that at most

one linking arc is used for each group. Finally, constraints (7.2.23) im-

pose a limit on the time resource consumed by each vehicle.

A N U P P E R B O U N D O N T H E N U M B E R O F G R O U P S . In model

(7.2.1) – (7.2.30), the total number of groups is not known in advance.

However, since a maximal resource T is given, we observe that:

Observation 7.2.7. An upper bound nmax on the maximal number of

nodes visited in a route can be obtained by solving a 0-1 Knapsack Problem

(KP).

In fact, we can model the problem of finding the maximal number

of nodes visited in a single route as follows:

max
∑

i∈N0

wi (7.2.31)

s. t.
∑

i∈N

wi ·

(

min
j∈N0

tji

)

6 T (7.2.32)

w0 = 1 (7.2.33)

wi ∈ B ∀i∈N (7.2.34)

where wi is set to 1 if node i is visited.

98

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

The objective function (7.2.31) maximizes the number of nodes vis-

ited. Constraint (7.2.32) ensures that resource T is not exceeded. Con-

straint (7.2.33) imposes that the depot is always visited.

Problem (7.2.31) – (7.2.34) can be solved as a KP in which (a) the vec-

tor of prizes is (1 . . . 1), (b) each item weight is the minimum ingoing

(outgoing) arc, and (c) node 0 is always included, therefore decreas-

ing the resource T by minj∈N0
tj0. Such a problem can be solved in

polynomial time by packing items with smallest minj∈N0
tji first.

Furthermore, the maximum number of visited nodes directly influ-

ences the maximum number of groups of each vehicle:

Observation 7.2.8. For each route of a vehiclem, there are at most

gmmax =

⌊

nmax − 1

2

⌋

+ 2

groups.

Given a fixed number of nodes, maximizing the number of groups is

equivalent to minimize the number of nodes in each group. Therefore,

we obtain the maximal number of groups when there are at most two

nodes per group, one pickup node and one delivery node. Since the

depot is always visited twice, once at the being and once at the end of

the route, we need two additional groups.

7.2.4 Extended formulation

In order to obtain tight dual bounds to be used in search tree algo-

rithms, we built an extended formulation of the model (7.2.1) – (7.2.30)

exploiting Dantzig-Wolfe decomposition [30]. Let, for each vehicle

m ∈M and group g ∈ G,

Ωmg =
{

(z,w, q, s, e) ∈ B
|N|·|N| ×B

|N0| ×N
|N|

0 ×B
|N+

0 | ×B
|N−

0 |
}

99

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

be a set of feasible integer points, where each vector (z,w, q, s, e) sat-

isfies the constraints

qi 6 di ·wi ∀i∈N

qi > wi ∀i∈N

∑

i∈N+

qi 6 C

∑

i∈N−

qi 6 C

∑

i∈N

wi 6 |N| · (1−w0)

∑

j∈N

zij =
∑

j∈N+

zji + si = wi ∀i∈N+

∑

j∈N−

zij + ei =
∑

j∈N

zji = wi ∀i∈N−

1 >
∑

i∈N+

j∈N−

zij > wu u∈N

∑

i∈N\S
j∈S

(zij + zji) > wu

S⊂N
|S|>0
u∈S

∑

i∈N−
0

ei 6 1

∑

i∈N+
0

si 6 1

w0 > e0 + s0.

We relax integrality conditions, but replace eachΩmg with the convex

hull of its Lmg extreme integer points

Γmg =
{
(z̄1, w̄1, q̄1, s̄1, ē1), . . . , (z̄Lmg , w̄Lmg , q̄Lmg , s̄Lmg , ēLmg)

}

and we impose

(z,w, q, s, e) =
∑

k∈Γmg

(z̄k, w̄k, q̄k, s̄k, ēk) · yk (7.2.35)

with yk > 0 for each k ∈ Γmg, m ∈M, and g ∈ G, and
∑

k∈Γmg
yk = 1

for each m ∈ M and g ∈ G. That is, each point is represented as a

linear convex combination of points in Γmg.

100

7.2 G R O U P S F O R M U L AT I O N A N D P R O P E R T I E S

The model obtained by replacing in the continuous relaxations of

formulation (7.2.1) – (7.2.30) the vectors (z,w, q, s, e) as indicated in

(7.2.35), and by making explicit the vector indices is

min
∑

m∈M
g∈G

∑

i∈N−
0

j∈N+
0

cij · x
mg
ij +

∑

i,j∈N
k∈Γmg

cij · z̄
k
ij · y

k (7.2.36)

s. t.
∑

m∈M
g∈G

k∈Γmg

w̄k
i · y

k
> 1 ∀i∈N (7.2.37)

∑

m∈M
g∈G

k∈Γmg

q̄ki · y
k = di ∀i∈N (7.2.38)

fmg +
∑

i∈N+

k∈Γmg+1

q̄ki · y
k −

∑

i∈N−

k∈Γmg+1

q̄ki · y
k = fmg+1 ∀m∈M

∀g∈G (7.2.39)

fmg +
∑

i∈N+

k∈Γmg+1

q̄ki · y
k
6 C · (1−

∑

k∈Γmg

w̄k
0 · y

k) ∀m∈M
∀g∈G (7.2.40)

∑

k∈Γmg

ēki · y
k
6

∑

j∈N+
0

x
mg
ij

∀m∈M
∀g∈G
i∈N−

0

(7.2.41)

∑

k∈Γmg+1

s̄ki · y
k
6

∑

j∈N−
0

x
mg
ji

∀m∈M
∀g∈G
i∈N+

0

(7.2.42)

∑

k∈Γmg

ēm1
0 · yk =

∑

g∈G
g>1

k∈Γmg

s̄
mg
0 · yk = 1 ∀m∈M (7.2.43)

∑

i∈N−
0

j∈N+
0

tij · x
mg
ij +

∑

i,j∈N
k∈Γmg

tij · z̄
k
ij · y

k
6 T ∀m∈M

∀g∈G (7.2.44)

∑

i,j∈N

x
mg
ij 6

∑

i,j∈N0

x
mg−1
ij −

∑

i∈N

x
mg−1
i0

∀m∈M
∀g∈G (7.2.45)

∑

i∈N−
0

j∈N+
0

x
mg
ij 6 1 ∀m∈M

∀g∈G (7.2.46)

∑

k∈Γmg

yk = 1 ∀m∈M
∀g∈G (7.2.47)

yk > 0
∀m∈M
∀g∈G
k∈Γmg

(7.2.48)

0 6 x
mg
ij 6 1

∀m∈M
∀g∈G
∀i∈N−

0

j∈N+
0

(7.2.49)

0 6 fmg
6 C ∀m∈M

∀g∈G (7.2.50)

101

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

Constraints (7.2.47) may be first relaxed in 6 form, because a pattern

(0 . . . 0) always exists for each set Γmg, and then can be removed be-

cause constraints (7.2.46) already impose at most one linking arc and

therefore at most one selected group.

Observation 7.2.9. The lower bound provided by the (7.2.36) – (7.2.50) is

at least as tight as that given by the continuous relaxation of model (7.2.1) –

(7.2.30).

To strengthen the formulation and reduce symmetries we add for

each vehiclem ∈M and consecutive groups g and g+ 1 the inequality

∑

k∈Γmg+1

yk =
∑

k∈Γmg

yk −
∑

k∈Γmg

wk
0 · y

k, (7.2.51)

and for each consecutive vehicles m and m+ 1 and group g ∈ G, the

inequality

∑

i∈N−
0 ,j∈N+

0

x
mg
ij >

∑

i∈N−
0 ,j∈N+

0

x
m+1g
ij (7.2.52)

The model can then be rewritten as

min
∑

m∈M
g∈G

∑

i∈N−
0

j∈N+
0

cij · x
mg
ij +

∑

i,j∈N
k∈Γmg

cij · z̄
k
ij · y

k (7.2.53)

s. t.
∑

m∈M
g∈G

k∈Γmg

w̄k
i · y

k
> 1 ∀i∈N (7.2.54)

∑

m∈M
g∈G

k∈Γmg

q̄ki · y
k = di ∀i∈N (7.2.55)

fmg +
∑

i∈N+

k∈Γmg+1

q̄ki · y
k −

∑

i∈N−

k∈Γmg+1

q̄ki · y
k = fmg+1 ∀m∈M

∀g∈G (7.2.56)

fmg +
∑

i∈N+

k∈Γmg+1

q̄ki · y
k +C ·

∑

k∈Γmg

w̄k
0 · y

k
6 C ∀m∈M

∀g∈G (7.2.57)

∑

k∈Γmg

ēki · y
k −

∑

j∈N+
0

x
mg
ij 6 0

∀m∈M
∀g∈G
i∈N−

0

(7.2.58)

∑

k∈Γmg+1

s̄ki · y
k −

∑

j∈N−
0

x
mg
ji 6 0

∀m∈M
∀g∈G
i∈N+

0

(7.2.59)

102

7.3 A L G O R I T H M S

∑

k∈Γmg

ēm1
0 · yk −

∑

g∈G
g>1

k∈Γmg

s̄
mg
0 · yk = 0 ∀m∈M (7.2.60)

∑

k∈Γmg

ēm1
0 · yk = 1 ∀m∈M (7.2.61)

∑

i∈N−
0

j∈N+
0

tij · x
mg
ij +

∑

i,j∈N
k∈Γmg

tij · z̄
k
ij · y

k
6 T ∀m∈M

∀g∈G (7.2.62)

∑

i,j∈N

x
mg
ij −

∑

i,j∈N0

x
mg−1
ij +

∑

i∈N

x
mg−1
i0 6 0 ∀m∈M

∀g∈G (7.2.63)

∑

i∈N−
0

j∈N+
0

x
mg
ij 6 1 ∀m∈M

∀g∈G (7.2.64)

∑

k∈Γmg+1

yk −
∑

k∈Γmg

yk +
∑

k∈Γmg

wk
0 · y

k = 0 ∀m∈M
∀g∈G (7.2.65)

∑

i∈N−
0

j∈N+
0

x
mg
ij −

∑

i∈N−
0

j∈N+
0

x
m+1g
ij > 0 ∀m∈M

∀g∈G (7.2.66)

yk > 0
∀m∈M
∀g∈G
k∈Γmg

(7.2.67)

0 6 x
mg
ij 6 1

∀m∈M
∀g∈G
∀i∈N−

0

j∈N+
0

(7.2.68)

0 6 fmg
6 C ∀m∈M

∀g∈G (7.2.69)

7.3 A L G O R I T H M S

The size of the set Γ grows exponentially in the number of nodes

and the sum of demands; therefore, we solve the MP by means of

column generation techniques: we solve to optimality a Restricted

Master Problem (RMP) involving a small set of columns (see Subsec-

tion 7.3.1), and we iteratively search for negative reduced cost vari-

ables solving a pricing problem (see Subsection 7.3.2). If no negative

reduced cost variable is found, the optimal RMP solution is optimal

for the MP as well, and therefore the corresponding value is retained

as a valid lower bound for the SPSDVRP. If the final RMP solution is

integer, then it is also optimal for the SPSDVRP, otherwise we enter a

search tree by performing branching operations (see Subsection 7.3.3)

to find a proven global optimum.

103

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

7.3.1 Initialization

We initialize the RMP by generating the set of columns corresponding

to groups including the depot only. We remark that if a group contains

the depot, then it does not contain any station. Our aim is to both

simplify the pricing problem by removing a decision variable and to

populate the RMP with a set of columns that are always needed to

obtain a feasible solution. Therefore, for each vehicle we add an initial

depot in group 1, and an ending depot in all groups g > 1.

In model (7.2.53) – (7.2.69), constraints (7.2.63) impose that a vehicle

cannot visit a station after the ending depot. Indeed, if a vehicle m

visits the depot in group 2, that is

∑

k∈Γm2

w̄k
0 · y

k = 1,

then m visits the depot in both groups 1 and 2, and therefore it does

not visits any station.

For a few vehicles we can forbid such a redundant behaviour. Let us

consider for example vehicle 1: due to symmetry constraints (7.2.66),

if vehicle 1 visits the depot in group 2, then no other vehicle can leave

the depot nor visit any station.

Observation 7.3.1. Let gmin be the minimum number of groups required

to perform all the pickups and deliveries, that is

gmin =

⌈
∑

i∈N di

2

⌉

,

we avoid columns with depot only in group 2 of vehiclem if

(m− 1) · (gmmax − 2) < gmin.

In other words, a vehicle may be left unused only if the previous

ones are able to perform all the pickups and deliveries.

7.3.2 Pricing problem

Due to our initialization method, the pricer can neglect groups includ-

ing the depot.

Let π, λ, µ, ζ, ν+, ν−, η, and θ be respectively the dual variables of

constraints (7.2.54), (7.2.55), (7.2.56), (7.2.57), (7.2.58), (7.2.59), (7.2.62),

104

7.3 A L G O R I T H M S

and (7.2.65). Since ν+ and ν− are referred to the two sets of nodesN+

and N−, for each node i ∈ Nwe use instead

νi =






ν+i if i ∈ N+

ν−i if i ∈ N−
.

For each k ∈ Γmg, the reduced cost of variable yk is computed as

σk =
∑

i,j∈N

cij · z̄
k
ij −

∑

i,j∈N

ηmg · tij · z̄
k
ij −

∑

i∈N

πi · w̄
k
i

−
∑

i∈N

λi · q̄
k
i −

∑

i∈N+

µmg · q̄ki +
∑

i∈N−

µmg · q̄ki −
∑

i∈N+

ζmg · q̄ki

−
∑

i∈N+

ν
mg
i · s̄ki −

∑

i∈N−

ν
mg
i · ēki − θmg + θmg+1.

The component −θmg+ θmg+1 is a fixed prize (cost) gained (paid) for

any additional column and thus can be ignored during pricing prob-

lem optimization. After collecting the coefficients, the pricing objec-

tive function reads as follows:

σk =
∑

i,j∈N

(cij − η
mg · tij) · z̄

k
ij −

∑

i∈N

πi · w̄
k
i

−
∑

i∈N+

(λi + µ
mg + ζmg) · q̄ki −

∑

i∈N−

(λi − µ
mg) · q̄ki

−
∑

i∈N+

ν
mg
i · s̄ki −

∑

i∈N−

ν
mg
i · ēki

Let

• α
mg
ij = cij − η

mg · tij be the cost of travelling on arc (i, j);

• β
mg
i = λi+µ

mg+ζmg be the prize or cost of loading one unit in

node i ∈ N+ and βmg
i = λi−µ

mg be the prize or cost of loading

one unit of node i ∈ N−;

• γ
mg
i be the cost of starting the group visiting node i ∈ N+ and

γ
mg
i be the cost of ending the group visiting node i ∈ N−.

The objective function can be now stated as

σk =
∑

i,j∈N

α
mg
ij · z̄

k
ij −

∑

i∈N

πi · w̄
k
i −

∑

i∈N

β
mg
i · q̄ki

−
∑

i∈N+

γ
mg
i · s̄ki −

∑

i∈N−

γ
mg
i · ēki .

105

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

For each vehicle m ∈ M and group g ∈ G, we can formulate the

pricing problem as follows:

min
∑

i,j∈N

α
mg
ij · z̄

k
ij −

∑

i∈N

πi · w̄
k
i −

∑

i∈N

β
mg
i · q̄ki

−
∑

i∈N+

γ
mg
i · s̄ki −

∑

i∈N−

γ
mg
i · ēki (7.3.1)

s. t. q̄ki 6 di · w̄
k
i ∀i∈N (7.3.2)

q̄ki > wk
i ∀i∈N (7.3.3)

∑

i∈N+

q̄ki 6 C (7.3.4)

∑

i∈N−

q̄ki 6 C (7.3.5)

∑

j∈N

z̄kij =
∑

j∈N+

z̄kji + s̄
k
i = w̄k

i ∀i∈N+ (7.3.6)

∑

j∈N−

z̄kij + ē
k
i =

∑

j∈N

z̄kji = w̄
k
i ∀i∈N− (7.3.7)

1 >
∑

i∈N+

j∈N−

z̄kij > w̄
k
u u∈N (7.3.8)

∑

i∈N\S
j∈S

(z̄kij + z̄
k
ji) > w̄

k
u

S⊂N
|S|>0
u∈S

(7.3.9)

∑

i∈N−

ēki 6 1 (7.3.10)

∑

i∈N+

s̄ki 6 1 (7.3.11)

z̄kij ∈ B i,j∈N (7.3.12)

w̄k
i ∈ B i∈N (7.3.13)

s̄ki ∈ B i∈N+ (7.3.14)

ēki ∈ B i∈N− (7.3.15)

Except for the depots, in a feasible solution of the pricing problem

we may have three kinds of visited nodes: integer nodes, that are those

nodes with their demands fully collected, bridge nodes, that are those

with only one unit of demand collected, and fractional nodes, that are

those whose demands are fractionally collected.

It may happen that nodes are visited just to collect their πi prize,

and therefore we may have more than one node in a feasible solution

whose demand is not fully collected. However, we can observe that if

the sequence of nodes were given, our pricing problem would reduce

106

7.3 A L G O R I T H M S

to a 0-1 Knapsack Problem (KP). Therefore, as for the pricing problem

presented in Subsection 3.3.2, we can exploit properties on the KP to

prove that:

Theorem 7.3.1. There always exists an optimal solution of (7.3.1) – (7.3.15)

in which there is at most one fractional pickup node (resp. delivery node).

Proof. Assume by contradiction that there exists an optimal solution

in which, among the visited nodes, all demands are fully loaded on

the vehicle but those of nodes i and j, which have both fractional load-

ings q̄ki and q̄kj . Let r = q̄ki + q̄kj be the space in the vehicle occupied

by node i and node j loadings. Let us assume w.l.o.g. that node i is

more efficient than node j, that is βmg
i > β

mg
j . We can improve the

contribution to the objective value (7.3.1) by decreasing the space oc-

cupied by the less efficient node, and increasing the space of the most

efficient. The argument iteratively extends to solutions in which the

number of nodes is higher than two.

Observation 7.3.2. There always exists an optimal MP solution, in which

each selected column contains at most one fractional node with more than one

unit of demand collected.

In fact, each MP column can be found by solving the pricing prob-

lem, and thus by adding columns with at most one node with frag-

mented quantity.

Furthermore:

Observation 7.3.3. In any optimal solution of the pricing problem, the prize

βj of a fractional node j is less than or equal to the prize βi of any integer

node i, and it is greater than or equal to the prize βu of any bridge node u,

that is

βi > βj > βu.

The proof directly follows the proof of Theorem 7.3.1.

P R I C I N G A L G O R I T H M . The pricing problem is a variant of the

Resource Constrained Elementary Shortest Path Problem (RCESPP), that it

is known to be NP-Hard. However, a recent survey [62] reviews very

effective methods that solve the RCESPP by means of labelling algo-

rithms. In [8], the authors use a discretization approach to solve the

pricing problem for the SDVRP, solving an RCESPP on an extended

graph with di nodes for each station i. The drawback of such ap-

proach is that the size of the graph grows with both the number of

107

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

0+ 0-

4+

2-1+

3-

Figure 13: Example of auxiliary graph used to solve the pricing problem:
pickup nodes are unreachable from the time the vehicle visits the
first delivery node.

nodes and the magnitude of demand coefficients. Another approach

to solve the pricing problem consists of a nested column generation

[79], in which also the pricing problem is solved by branch-and-price.

In [47] the authors exploit such approach to solve the SPSDVRP on a

maritime crud oil transportation problem in which the first level pric-

ing problem is considered too complex to be solved efficiently by a

dynamic programming algorithm. Instead, in [35] the author solves

the pricing problem of a SDVRP with Time Windows by means of a

labelling algorithm. In such a problem, the routes generated have at

most one split demand, and the author devises an algorithm that gen-

erates three different labels at each visit, depending on the residual

capacity of the vehicle: one label when the node is visited but no unit

of demand is collected, one with a fractional loading, and one in which

the demand is fully collected. In fact, except for the handling of time

windows, the pricing problem of [35] is very similar to ours.

Therefore, inspired by [35], and adapting techniques from [65], we

propose a dynamic programming algorithm devised for our specific

case.

Let us consider a single vehicle with a limited capacity C and a par-

ticular graph G̃ = (Ñ, Ã), where Ñ = N ∪ {0+, 0−}. All nodes i ∈ Ñ

have a demand di but nodes 0+ and 0−. When a node i is visited, its

prize πi is collected, while a prize βmg
i is collected for each unit of

demand of node i loaded on the vehicle.

We denote as Ã the set of arcs of the graph, that is composed by

• arcs from 0+ to all nodes i ∈ Ñ+;

• arcs from nodes i ∈ Ñ+ to all nodes j ∈ Ñ;

• arcs from nodes i ∈ Ñ− to all nodes j ∈ Ñ− ∪ {0−}.

An example of the graph is depicted in Figure 13.

108

7.3 A L G O R I T H M S

For each arc (i, j) we have a cost

cij =






γ
mg
j , if i = 0+

γ
mg
i , if j = 0−

α
mg
ij , otherwise

Furthermore, capacity is always replenished when travelling from a

pickup node to a delivery node.

The objective of the problem is to find a minimum cost path that

goes from 0+ to 0−.

The pricing problem is a variant of RCESPP in which we have a

resource r indicating the residual space in the partial path, and a set

V indicating which stations have already been visited. We stress that

information on the amount of bikes loaded or unloaded on the truck

at each node are not needed, as we never pass through the same node

twice. Let us remark also that, because of the particular structure of

the graph, each path has two distinguishing features: first, it has at

least one pickup and one delivery node, and second, no pickup node

is visited after a delivery node.

Therefore our label is a tuple (i, c, r, V, f), where i is the ending node

of a partial path, c is the cost of such partial path, and f indicates that

a fractional node has been visited.

I N I T I A L I Z AT I O N . We initialize our algorithm with a label λ rep-

resenting a partial path starting from 0+ with no initial cost, full re-

sources, and no fractional node, that is

λ = (0+, 0, C, {0+}, 0).

L A B E L E X T E N S I O N . As a selection strategy, at each iteration we

select the most profitable label λ ′ = (i, c ′, r ′, V ′, f ′) with minimum

partial cost. We extend such label to all neighbours j of i such that

j /∈ V ′, in three different ways:

I N T E G E R : j is selected as an integer node, fully collecting its demand.

The resulting label λ ′′ = (j, c ′′, r ′′, V ′′, f ′) has a partial cost c ′′ =

c ′ + c̃ij −β
mg
j ·dj −πj, residual capacity r ′′ = r ′ −dj, and V ′′ =

V ′ ∪ {j};

B R I D G E : j is selected as a bridge node, collecting only one unit of its

demand. The resulting label λ ′′ = (j, c ′′, r ′′, V ′′, f ′) has a partial

109

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

cost c ′′ = c ′ + c̃ij −β
mg
j − πj, residual capacity r ′′ = r ′ − 1, and

V ′′ = V ′ ∪ {j};

F R A C T I O N A L : only if no fractional node is selected yet, j is selected

as a fractional node. It is not possible to determine a priori the

collected demand of j, and therefore the resulting label λ ′′ =

(j, c ′′, r ′, V ′′, j) has a partial cost c ′′ = c ′ + c̃ij − πj, V ′′ = V ′ ∪

{j}. The quantity loaded in j is determined only at the end of a

sequence of pickup (resp. delivery) nodes.

We also remark that if i and j are a pickup and a delivery node, re-

spectively, the residual capacity r is fully replenished before visiting

j.

D O M I N A N C E R U L E S . The drawback of our extension method is

that we cannot collect the prize of a fractional node until all pickup

(delivery) nodes are visited. Therefore, when checking the dominance

of a given label with a fractional node, we have to ensure that such

label is dominated for every value of fractional loading.

Let suppose that we are given two labels λ ′ = (i ′, c ′, r ′, V ′, f ′) and

λ ′′ = (i ′′, c ′′, r ′′, V ′′, f ′′), with i ′ = i ′′ and r ′ 6 r ′′. Indeed, we may

use some of the residual space of λ ′′ to load some units of f ′′, matching

the residual space of λ ′ and therefore reducing the cost of λ ′′. Let

us consider the two extreme cases in which we load 1 and maxf ′ =

min{r ′, df ′ − 1} units of f ′ demands. In the first case, we have to load

minf ′′ = min{r ′′ − r ′ + 1, df ′′ − 1} units of f ′′ demand to match the

residual space in λ ′, while in the second case maxf ′′ = min{r ′′ − r ′ +

maxf ′ , df ′′ − 1}. Then, we say that label λ ′ is dominated if it exists a

label λ ′′ such that





i ′ = i ′′

r ′ 6 r ′′

V ′′ ⊆ V ′

c ′ +βf ′ > c ′′ +βf ′′ ·minf ′′

c ′ +βf ′ ·maxf ′ > c ′′ +βf ′′ ·maxf ′′

and at least one of the inequalities is strict. Dominance rules ensure

that a label is dominated only if it exists another label of a partial path

ending in the same node, that has more residual capacity, has visited

less nodes, and costs less for each quantity of f ′ loaded.

110

7.3 A L G O R I T H M S

R E D U C T I O N A N D L O O K A H E A D D O M I N A N C E . During the pro-

cess we check several condition to reduce the number of extensions.

In fact, due to Observation 7.3.3 we know that an optimal solution

always exists, in which no fractional node has higher prize than an

integer node, nor smaller prize than a bridge node. Therefore, let us

suppose that λ is the label to extend, βj is the prize of the destination

node j, and βinteger, βfractional, and βbridge are respectively the

minimum prize among all integer nodes in λ, the prize of the fractio-

nal node in λ, and the maximum prize among all bridge nodes in λ.

• integer extension is forbidden when βj < βfractional or βj <

βbridge, and in general when βj 6 0;

• bridge extension is forbidden when βj > βfractional or βj >

βinteger;

• fractional extension is forbidden when βj > βinteger or βj <

βbridge, and in general when βj 6 0.

Furthermore, let suppose that we are given two labels λ ′ and λ ′′,

both identical but for two nodes i and j. Let us suppose that i is a

bridge node in λ ′ and a fractional node λ ′′, while vice versa, j is a frac-

tional node in λ ′ and a bridge node in λ ′′. Let us suppose w.l.o.g. that

βi > βj, then λ ′′ dominates λ ′. Therefore, we aggregate fractional and

bridge extension when we visit a node jwith a positive prize βj: given

a label with fractional node f, if βj > βf then a unit of f is collected,

cost and residual capacity of the label are updated, j becomes the new

fractional node of the label, and f becomes a bridge node. Otherwise

we perform a bridge extension.

P R I C E R E X E C U T I O N A N D I N S E R T I O N P O L I C Y. In a strict col-

umn generation approach, this procedure should be computed for

each pair of group g ∈ G and vehicle m ∈ M, in order to find the

column with minimum reduced cost. Instead, we found profitable

from a computational point of view, to perform partial pricing, and

stop the pricing procedure after we find the first pair g and m yield-

ing a negative reduced cost column. We then insert such a column in

all Γmg sets.

B I D I R E C T I O N A L A L G O R I T H M . In order to further improve the

performance of our pricing algorithm, we exploit bidirectional search.

Since each solution is composed of a sequence of pickup nodes, and

111

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

a sequence of delivery nodes that can be treated independently, we

run the algorithm on two different graphs, one composed by pickup

nodes only, and one by delivery nodes only. At the end, we obtain full

solutions by joining the best labels of each pair of pickup and delivery

nodes.

H E U R I S T I C P R I C I N G . To speed up the column generation pro-

cess, we also implemented two heuristic variants of the pricing algo-

rithm.

First we run the exact algorithm on a reduced graph, obtained by

removing for each node, the set of k arcs with highest travelling cost

c̃ij, with k fixed a-priori.

Second, if the first heuristic does not find any column with negative

reduced cost, we run the pricing algorithm considering columns with

integer loading only. In such a way, at each extension we generate

only one label in the destination node, reducing the overall number of

labels.

If none of the two heuristic algorithms generate a column with neg-

ative reduced cost, we run the exact pricing algorithm.

7.3.3 Branching rules

When the optimal MP solution is fractional, and upper and lower

bounds do not match, we check which integrality constraints in the

original formulation are not satisfied and enforce them by exploring a

search tree through branching rules. In our case, branching is particu-

larly involved, as the MP is prone to symmetries.

We devised the following binary branching rule in which nodes are

progressively fixed in vehicle groups. Let ỹk be the value of a variable

yk in the fractional solution of the MP, and let

w̃
mg
i =

∑

k∈Γmg

w̄k
i · ỹ

k

be the fractional assignment of each node i ∈ N0 to a group g ∈ G of

a vehicle m ∈ M. We search for a tuple (î, ĝ, m̂) that corresponds to

the maximum fractional assignment in the current fractional solution,

that is

(î, ĝ, m̂) ∈ argmin
ı∈N0
g∈G
m∈M

{∣
∣

∣

∣

w̃
mg
i −

1

2

∣

∣

∣

∣

}

.

112

7.3 A L G O R I T H M S

If w̃ĝm̂

î
is fractional, then we perform binary branching: in one

branch we enforce î to be always visited by vehicle m̂ in group ĝ. In

the other branch, we preclude the visit of î by vehicle m̂ in group ĝ.

Let us recall that forcing î to be visited by vehicle m̂ in group ĝ does

not preclude the visit of î by another vehicle or in different groups.

If no fractional w̃ĝm̂

î
is found, we can stop branching, as an integer

SDSPVRP solution can be directly found. In fact, the following holds.

Observation 7.3.4. When no assignment to groups is fractional, there is at

least one route for each vehicle that is integer.

Proof. Let us suppose that we are given an optimal solution of the MP

in a certain branching node. If no fractional w̃ĝm̂

î
is found, it means

that for each group of each vehicle, the (potentially fractional) selected

columns describe groups that are permutations of the same set of sta-

tions. Therefore, among all the permutations, only the best permuta-

tion can be selected, finding an equivalent, but integer, optimal MP

solution.

This means that for each vehicle we can arbitrary select one route

among all the fractionally selected ones for that vehicle, in order to

obtain a full SDSPVRP solution.

A solution obtained in such a way could still be non-integer due to

loading quantities in each node, but exploiting Observation 7.2.6 we

can then optimally assign such values in polynomial time, obtaining a

full feasible integer solution.

7.3.4 Branching implementation.

First, let us remark that depot 0, is not involved in the pricing problem,

and therefore if î = 0we branch by adding in the MP a constraint

∑

k∈Γĝm̂

w̄k
0 6 0 (7.3.16)

in one branch, excluding the depot from a group, and

∑

k∈Γĝm̂

w̄k
0 > 1 (7.3.17)

in the other branch, fixing it into the group.

Instead, if î is not 0, but a pickup or delivery node, we first exclude

in one branch all columns that contains node î in group ĝ of vehicle

113

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

m̂, and we modify the pricing graph by removing incoming arcs in

î. This ensures that no further column is generated including such a

node, and also improves the performances of the pricing algorithm.

In the other branch, we fix î into group ĝ of vehicle m̂ and, to ensure

that the MP selects columns with such a feature, we add the constraint

∑

k∈Γĝm̂

w̄k
î
> 1. (7.3.18)

This constraint, in turn, introduces a new dual variable that must be

considered in the pricing problem. Therefore, when we visit node

î during dynamic programming extension, we collect a prize corre-

sponding to that dual variable. Let us remark that such a detail does

not change the structure of the pricer.

7.3.5 Additional inequalities

According to literature [22]:

Theorem 7.3.2. For any optimal solution, given two pickup (or equiv. two

delivery) nodes i and j, the number of times arc (i, j) is used plus the number

of times arc (j, i) is used is less than or equal to 1.

We extend this theorem and prove the following:

Theorem 7.3.3. For any optimal solution, given two pickup (or equiv. two

delivery) nodes i and j, the number of times i and j are in the same group is

less than or equal to 1.

Proof. Let us consider w.l.o.g. an optimal solution in which two vehi-

cles visit nodes i and j in the same group. Let ai and aj be the number

of bikes loaded (unloaded) by the first vehicle on nodes i and j, and

let bi and bj be the number of bikes loaded (unloaded) by the second

vehicle. It may happen that:

• ai > bj: in this case we can set new loading values a ′
i = ai − bj,

a ′
j = aj + bj, b ′

j = 0 and b ′
i = bi + bj. The quantity previously

loaded from bj is then loaded from a ′
j, while the overall load of

each vehicle does not change since ai is decreased by bj and bi
is increased by bj;

• ai < bj: in this case a ′
i = 0, a ′

j = aj + ai, b ′
j = bj − ai and

b ′
i = bi + ai. The quantity previously loaded from ai is then

114

7.3 A L G O R I T H M S

loaded from b ′
i, while the overall load of each vehicle does not

change since bi is decreased by ai and aj is increased by ai.

In both cases one vehicle visits a node without any operation and

therefore the corresponding arc is removed.

We remark that the theorem holds also when nodes are visited by

the same vehicle.

Corollary 7.3.4. Let vmg
ij be the binary variable that is 1 if pickup (delivery)

node i is visited together with pickup (delivery) node j in group g of vehicle

m; then constraints

∑

m∈M
g∈G

v
mg
ij 6 1 (7.3.19)

are valid inequalities for model (7.2.1) – (7.2.30).

In the MP, Constraints (7.3.19) become

∑

m∈M
g∈G

k∈Γmg

v̄kij · y
k
6 1 (7.3.20)

and their corresponding dual variables must be taken into account

into the pricing problem. In fact, let ξij be the dual variables of Con-

straints (7.3.20), we first add the terms

∑

i,j∈N+

i<j

ξij · v̄
k
ij +

∑

i,j∈N−

i<j

ξij · v̄
k
ij

to the objective function (7.3.1). Then, we also add constraint

wi +wj 6 vij + 1

to the pricing problem for each pair of pickup (delivery) nodes such

that i < j.

For what concerns the implementation of the pricing algorithm, we

modify the extension in such a way that when we extend to a node j,

we add to the new label the sum of the costs associated to the node j,

that is

∑

i∈N+

i<j

ξij

115

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

if j is a pickup node, and

∑

i∈N−

i<j

ξij

if j is a delivery node.

Let us remark that such inequalities do not change the structure of

the pricing algorithm. In fact, a label can be dominated only by a label

that visited a subset of its nodes. Therefore, all the prices collected by

the latter, are also collected by the former.

7.3.6 Infeasibility detection

During the exploration of the branching tree, we may run into nodes

corresponding to infeasible partial solutions. Indeed, solving the MP

relaxation of such a node would reveal the infeasibility, but this may

require several iterations of column generation. Therefore we perform

a first feasibility check on the node, in order to detect its infeasibility

before computing its continuous relaxation. If the test succeeds, then

the current node may lead to a feasible solution, and therefore the

relaxation is computed. Otherwise, the node is simply discarded.

In details, let us suppose to have a partial solution obtained through

branching, and let suppose that for each group g ∈ G and vehicle

m ∈ M, we have a set Fmg of nodes that are fixed into such a group,

and a set Emg of nodes that are excluded. All nodes that do not belong

to any of the two sets are free nodes that may or may not be visited in

such a group.

We then build a graph similar to the one in Subsection 7.2.2, in

which we have a source node s, a depot node t, a node f+i for each

pickup node i, a node f−i for each delivery node i, and two nodes pmg

and dmg for each available group of each vehicle.

Now, let us define d̃i as the maximum quantity of demand of node

i that is not fixed into any group, that is if a node is fixed in one group

d̃i = di − 1, and in general

d̃i = di −
∑

g∈G
m∈M

|Fmg ∩ {i}|

We add arcs from s to f+i and from f−i to twith capacity d̃i. These arcs

limit the quantity of demand we are free to distribute for nodes that

have been fixed in groups.

116

7.4 E X P E R I M E N TA L A N A LY S I S

Then, for each pickup node i, group g and vehicle m add an arc

from f+i to pmg if i /∈ Emg, and respectively for each delivery node i,

group g and vehiclem add an arc from dmg to f−i if i /∈ Emg. Also, for

each pickup node i ∈ Fmg, add an arc with capacity 1 from s to node

pmg, and respectively for each delivery node i ∈ Fmg, add an arc

with capacity 1 from dmg to node t. These arcs impose that to cover

the demand of a station, some flow must pass through the groups in

which such station has been fixed.

Finally, from each node pmg add an arc to dmg with capacity C, and

from each node dmg add an arc to pmg+1, with infinite capacity.

An example of the graph is show in Figure 14, representing the par-

tial solution in which we have at most 2 groups for each vehicle, and

• node 1 is fixed in group 1 of vehicle 1;

• node 5 is fixed in group 2 of vehicle 2;

• node 2 is fixed in group 2 of vehicle 1;

• node 10 is fixed in group 2 of vehicle 2.

Furthermore, node 1 and 4 are excluded respectively from groups 1

and 2 of vehicle 2, while 7 and 9 can be visited only by vehicle 2. Node

2 can be visited only by vehicle 1, while node 3 and 10 care excluded

respectively from group 2 of vehicle 2 and group 2 of vehicle 1.

Observation 7.3.5. If the maximum flow going from s to t is less than the

overall pickup (delivery) demand, the partial solution of the branching node

is infeasible.

In fact, if the maximum flow is less than the overall demand, it

means that the demand of at least one node has not been satisfied.

The contrary does not necessarily hold: in fact, if a partial solution

is infeasible, it may still pass the feasibility check, because it is not

possible to ensure that for each vehicle it exists a route that does not

exceed resource T .

7.4 E X P E R I M E N TA L A N A LY S I S

We implemented our algorithms in C++, using the SCIP framework [1]

version 3.0.2. The LP subproblems were solved using the simplex algo-

rithm implemented in CPLEX 12.4 [36]: the framework automatically

switches between primal and dual methods. To obtain good upper

bounds we also included a generic rounding heuristic from SCIP.

117

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

1 4 5 7 9

2 3 6 8 10

s

t

g1m1 g2m1 g1m2 g2m2

g1m1 g2m1 g1m2 g2m2

10 10 10 10

3
5 7 7

1

5
2

3 6

7

1

1

1

1

Figure 14: Example of graph for feasibility check (infinite capacities are omit-
ted).

Unfortunately a real instance would consists of hundreds of sta-

tions, and would be out of reach for our methodology. Therefore,

as a benchmark we considered the set of instances used in [22] for

the SPSDVRP with 10 nodes. Each instance describes a randomly

generated network with nodes located in the two-dimensional space

[−500, 500]× [−500, 500], with the depot located at (0, 0). Travelling

costs cij are computed as the Euclidean distance between nodes i and

j. Each station has a demand randomly generated between [−10, 10],

where positive values define pickup nodes, and negative values de-

fine delivery nodes, and with the sum of the pickup demands is equal

to the sum of delivery demands. The vehicle capacity C is set to 10,

and the number of available vehicles is 5.

The time limit resource was undefined in the original instances. To

obtain a fair comparison with previous approaches from the literature

we set T = 10, and each tij = 1. This means that each vehicle can visit

at most 9 stations before going back to the depot.

We compared our results with the exact algorithm described in [22],

and sketched in the Introduction, that is able to find optimal solutions

for all instances with 10 nodes. We compiled the original C++ source

code with additional optimization flags, linking it to CPLEX version

118

7.4 E X P E R I M E N TA L A N A LY S I S

12.4 libraries instead of version 12.0. A few additional coding tweaks

were needed to ensure correct runs. Both algorithms have then been

executed on a machine with Intel(R) Core i7-2640M at 2.80 GHz and 8

GB of memory in single thread mode.

In the remainder we refer to our exact branch-and-price algorithm

as BPA, while we refer to the algorithm in [22] as MH.

7.4.1 Column generation profiling

In a first round of experiments we performed a profiling of our algo-

rithm in order to detail how the time is spent during the computation

of a lower bound.

In Table 12 we report the results obtained at root node. For each

instance we report the total time spent solving the LP during column

generation, and for each type of pricer we report the number of calls,

the number of generated variables, and the total running time. Re-

sults show that most of the time is spent in solving the LPs. Heuristic

pricers are effective, reducing the number of columns that must be

generated by the exact pricer.

In Table 13 we report the results obtained while solving the problem

to proven optimality. Still, solving the LP is usually the most time con-

suming operation. In the overall process, the heuristic pricing it is not

effective, while the heuristic integer pricing still manages to reduce

the number of calls to the exact pricer.

7.4.2 Root lower bound

In the second round of experiments we compared both the quality of

the lower bound and the efforts required to obtain it.

In Table 14 we report for each instance the gap and the time needed

to MH to compute a lower bound, the lower bound given by BPA at

root node, and the lower bound and time needed to BPA to obtain the

same bound of MH. Technically speaking, after setting such a target, it

often happens that BPA even improves the bound of MH. The results

show that BPA computation times at the root node are orders of mag-

nitude smaller than the MH ones. However, the average lower bound

given by the BPA at the root node is worse than that of MH. However,

during the exploration of the branching tree, our algorithm provides

on average a better lower bound than MH four times faster.

119

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

In
stan

ce
R

M
P

H
eu

ristic
p

ricer
In

teger
p

ricer
E

xactp
ricer

grap
h

d
t(s)

calls
vars

t(s)
calls

vars
t(s)

calls
vars

t(s)

n10q10a
52

0.44
23

1028
0.03

18
1075

0.06
8

275
0.13

n10q10A
48

0.22
15

778
0.02

10
475

0.01
5

275
0.1

n10q10b
60

0.22
18

871
0.03

12
525

0.06
3

50
0.11

n10q10B
32

0.27
18

903
0.01

12
250

0
5

325
0.07

n10q10c
64

0.31
20

701
0.05

17
1475

0.06
8

975
0.27

n10q10C
44

0.14
8

778
0.02

6
250

0
5

525
0.08

n10q10d
54

0.36
22

725
0.01

19
1400

0.03
6

500
0.1

n10q10D
42

0.21
12

1228
0.02

10
525

0.02
4

75
0.21

n10q10e
58

0.26
14

928
0.01

10
575

0
5

625
0.07

n10q10E
58

0.35
17

728
0.02

14
450

0.02
6

550
0.1

n10q10f
50

0.19
12

1323
0.03

9
1400

0.1
3

50
0.19

n10q10F
36

0.28
16

1153
0.01

13
825

0.06
6

200
0.33

n10q10g
52

0.28
24

897
0.06

19
1075

0.05
3

50
0.12

n10q10G
34

0.19
12

1203
0.02

8
475

0.01
4

275
0.15

n10q10h
48

0.18
13

853
0

10
125

0.01
7

250
0.09

n10q10H
62

0.28
17

1303
0.03

14
1300

0.04
5

100
0.13

n10q10i
44

0.24
18

1253
0.03

15
425

0.02
4

125
0.37

n10q10I
60

0.19
13

776
0.02

10
425

0.01
2

25
0.04

n10q10j
56

0.41
29

900
0.04

23
950

0.04
7

525
0.07

n10q10J
42

0.24
17

1128
0.02

12
350

0.01
7

425
0.08

Table
12:Tim

e
sp

entd
u

ring
the

com
p

u
tation

ofa
low

er
bou

nd
atrootnod

e

120

7.4 E X P E R I M E N TA L A N A LY S I S

In
st

an
ce

M
P

H
eu

ri
st

ic
p

ri
ce

r
In

te
ge

r
p

ri
ce

r
E

xa
ct

p
ri

ce
r

gr
ap

h
d

t(
s)

ca
lls

va
rs

t(
s)

ca
lls

va
rs

t(
s)

ca
lls

va
rs

t(
s)

n1
0q

10
a

52
12

.0
1

45
4

16
28

0.
22

43
6

12
77

5
1.

61
29

6
55

50
4.

2

n1
0q

10
A

48
1.

6
91

87
8

0.
01

85
14

50
0.

13
61

28
75

0.
72

n1
0q

10
b

60
6.

35
28

6
12

46
0.

14
26

9
99

75
1.

2
14

0
13

75
1.

93

n1
0q

10
B

32
7.

42
28

4
15

03
0.

13
25

8
37

75
0.

48
20

6
97

75
2.

7

n1
0q

10
c

64
0.

87
49

82
6

0.
03

43
19

50
0.

11
27

16
00

0.
58

n1
0q

10
C

44
50

.9
8

12
26

22
78

0.
71

11
84

12
20

0
3.

19
99

4
20

35
0

13
.2

8

n1
0q

10
d

54
57

2.
42

19
88

18
50

0.
92

19
60

50
12

5
23

.4
6

13
37

41
27

5
38

.2
1

n1
0q

10
D

42
77

.5
9

24
69

20
03

1.
5

24
41

14
85

0
11

.7
6

21
49

10
80

0
78

.4
7

n1
0q

10
e

58
72

.6
9

16
99

18
53

0.
87

16
69

10
50

0
3.

62
14

73
25

62
5

17
.9

9

n1
0q

10
E

58
37

.5
6

10
63

18
53

0.
52

10
30

88
50

2.
13

87
6

21
20

0
10

.2
5

n1
0q

10
f

50
49

.2
7

11
08

19
73

0.
64

10
83

29
62

5
14

.2
2

68
3

85
00

30
.9

9

n1
0q

10
F

36
3.

89
13

4
14

28
0.

06
12

7
36

50
0.

2
87

26
00

2.
38

n1
0q

10
g

52
5.

3
30

4
14

47
0.

21
28

0
84

50
1.

12
15

1
15

00
2.

72

n1
0q

10
G

34
2.

51
13

5
14

28
0.

07
12

4
21

50
0.

37
91

37
00

3.
49

n1
0q

10
h

48
7.

51
41

0
17

53
0.

26
37

7
48

25
0.

78
30

6
40

75
4.

95

n1
0q

10
H

62
10

.9
6

60
7

17
78

0.
33

59
1

90
75

2.
1

44
1

67
25

12
.9

1

n1
0q

10
i

44
14

.0
4

67
8

19
28

0.
42

65
7

76
75

2.
1

53
3

11
20

0
23

.6
7

n1
0q

10
I

60
10

.3
7

50
6

16
26

0.
3

47
4

10
25

0
1.

51
31

6
47

75
4.

15

n1
0q

10
j

56
44

.4
3

12
53

17
75

0.
49

12
23

22
42

5
5.

62
89

1
14

55
0

11
.9

4

n1
0q

10
J

42
7.

24
41

7
16

03
0.

2
40

1
31

50
0.

39
35

0
60

75
3.

24

Ta
bl

e
13

:T
im

e
sp

en
td

u
ri

ng
co

lu
m

n
ge

ne
ra

ti
on

p
ro

ce
d

u
re

s

121

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

Instance MH BPA

root node gap limited

graph d Gap (%) t (s) Gap (%) t (s) Gap (%) t (s)

n10q10a 52 2.98 33.8 7.22 0.66 2.77 10.15

n10q10A 48 0.00 32.04 9.09 0.36 0.00 2.54

n10q10b 60 2.49 39.31 12.79 0.43 1.92 9.07

n10q10B 32 1.98 56.53 5.75 0.38 1.85 9.92

n10q10c 64 0.00 30.35 0.10 0.70 0.00 1.59

n10q10C 44 4.11 297.73 16.48 0.25 4.08 24.27

n10q10d 54 6.90 31.82 15.61 0.54 6.81 26.74

n10q10D 42 1.64 63.92 31.24 0.47 1.64 160.02

n10q10e 58 4.01 103.65 10.50 0.36 3.98 44.13

n10q10E 58 0.39 73.12 14.73 0.52 0.37 49.88

n10q10f 50 5.62 24.71 20.01 0.53 5.22 35.75

n10q10F 36 0.03 42.65 4.76 0.68 0.00 6.93

n10q10g 52 2.55 29.39 18.38 0.55 2.07 10.08

n10q10G 34 6.35 65.21 11.57 0.37 3.53 4.00

n10q10h 48 3.07 109.46 13.71 0.29 2.96 8.10

n10q10H 62 4.96 92.53 10.54 0.50 4.72 10.31

n10q10i 44 0.47 442.69 31.69 0.71 0.45 42.67

n10q10I 60 6.78 38.54 18.48 0.27 6.42 6.55

n10q10j 56 1.79 38.58 15.11 0.61 1.78 55.00

n10q10J 42 0.00 392.1 37.71 0.36 0.00 12.45

Average 2.81 101.91 15.27 0.48 2.53 26.51

Table 14: Lower bounds on instances with 10 stations and di 6 10

122

7.4 E X P E R I M E N TA L A N A LY S I S

7.4.3 Upper bound

Third, we compared the quality and the time needed to compute a

good upper bound for the problem. Let us remark that our algorithm

is not intended to be used as a heuristic, and in fact we did not im-

plement a specific heuristic for such a problem, but we rather used an

off-the-shelf generic rounding heuristic available in the SCIP frame-

work. Such a heuristic iteratively rounds fractional variables trying to

recover from infeasibility whenever a constraint is violated.

For what concern MH, the algorithm runs its meta-heuristic before

and after computing a lower bound to the problem. In our tests we

considered the solution given by the algorithm after finishing the first

meta-heuristic round. Instead, for what concern BPA we perform two

different analyses: first we stopped the algorithm when a first solu-

tion is found. Second, we ran the algorithm until the gap between the

upper bound and the known optimal solution is zero.

In Table 15 we report for each instance class and for each method,

the gap between the corresponding upper bound and the optimal so-

lution, and the time required for the computation. For what concern

the BPA we report the number of nodes analysed before reaching its

best UB, and the number of nodes and computation time needed to

find the optimal solution. The results show that a first solution is

found quickly, is usually good, and sometimes even optimal. Further-

more, the optimal solution is usually found in the early phases of the

branching tree exploration, when only few nodes have been analysed.

Indeed, BPA is able to retrieve an optimal solution within the same

amount of time required by MH when used as a heuristic.

7.4.4 Solving instances to proven optimality

Finally, we compared MH and BPA in solving instances of SPSDVRP

to proven optimality. In table 16 we report our results. For each in-

stance we report the sum of the demands d, the computation time for

both algorithms and the number of nodes explored by our BPA.

As we can see, BPA is on average much faster than MH. In fact it is

slower only for three instances, and requires more than 5 minutes of

computation only for one instance.

123

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

Instance BPA MH

optimal sol. first sol.

graph d nodes t (s) Gap (%) nodes t (s) Gap (%) t (s)

n10q10a 52 91 9.33 5.86 75 8.03 0.00 23.10

n10q10A 48 15 1.92 0.00 15 1.92 0.00 25.32

n10q10b 60 110 10.81 23.37 13 3.20 0.00 30.36

n10q10B 32 115 12.10 38.69 4 1.63 1.11 24.55

n10q10c 64 3 0.93 0.00 3 0.93 0.00 26.20

n10q10C 44 86 7.87 7.31 66 6.16 0.00 29.03

n10q10d 54 67 12.65 5.18 34 4.73 0.00 23.58

n10q10D 42 1465 144.00 1.88 107 13.37 2.31 23.26

n10q10e 58 531 51.81 12.90 101 14.07 0.60 24.37

n10q10E 58 227 28.85 22.25 40 6.86 0.92 24.95

n10q10f 50 307 52.64 10.61 34 7.71 0.00 19.37

n10q10F 36 20 3.92 0.00 20 3.92 1.05 23.33

n10q10g 52 115 10.16 21.03 63 6.74 0.00 23.45

n10q10G 34 40 6.41 8.41 12 2.55 4.48 23.10

n10q10h 48 127 9.90 1.42 27 2.36 0.00 24.72

n10q10H 62 272 25.45 3.54 60 7.75 0.00 28.27

n10q10i 44 374 42.57 14.93 13 3.96 0.00 27.37

n10q10I 60 217 18.15 9.46 51 5.80 1.59 24.69

n10q10j 56 426 51.65 24.76 90 14.77 0.00 28.17

n10q10J 42 42 2.70 0.00 42 2.70 0.00 20.04

Average 25.19 10.58 5.96 0.60 24.86

Table 15: Upper bounds on instances with 10 stations and di 6 10

124

7.4 E X P E R I M E N TA L A N A LY S I S

Instance MH BPA

graph d t (s) nodes t (s)

n10q10a 52 112.53 189 20.21

n10q10A 48 43.87 24 2.69

n10q10b 60 63.58 110 10.82

n10q10B 32 115.24 115 12.11

n10q10c 64 45.67 7 1.63

n10q10C 44 1214.69 652 79.39

n10q10d 54 141.70 724 711.49

n10q10D 42 583.03 1886 187.05

n10q10e 58 343.51 989 113.29

n10q10E 58 211.41 537 59.69

n10q10f 50 93.56 551 106.36

n10q10F 36 60.26 43 6.79

n10q10g 52 99.01 119 10.45

n10q10G 34 292.13 44 6.70

n10q10h 48 2732.18 201 14.77

n10q10H 62 909.23 313 29.09

n10q10i 44 3596.12 388 44.04

n10q10I 60 144.44 217 18.17

n10q10j 56 57.98 616 75.25

n10q10J 42 393.80 235 12.22

Average 562.70 76.11

Table 16: Results on the instances with 10 stations and di 6 10

125

S P L I T P I C K U P A N D S P L I T D E L I V E R Y V E H I C L E R O U T I N G P R O B L E M

7.5 C O N C L U S I O N S

In this chapter we proposed an exact method to tackle a SPSDVRP

arising on a bike-sharing system. That corresponds to the problem of

balancing bikes on a network using a fleet of homogeneous vehicles

that may split the demands of each customer on the network.

In order to reduce its complexity, we modelled the problem by de-

composing routes into substructures called groups. Such groups help

to discard sub-optimal configurations and to limit problem symme-

tries. They favour also a decomposition approach from an algorithmic

point of view.

To improve the lower bound given by our model, we produced

an extended formulation by using Dantzig-Wolfe decomposition. We

solved the linear relaxation of the extended formulation using column

generation techniques, and integrated such a procedure into a branch-

and-price framework. Our ad-hoc pricing algorithms, branching rules,

feasibility detection routines and additional cuts proved to be compu-

tationally useful. As an overall assessment, our approach turns out to

be faster and more flexible than competitors.

126

8
C O N C L U S I O N S

In this thesis we proposed new approaches to tackle optimization pro-

blems with fractional resources. We investigated different approaches

to efficiently solve variants of both packing and vehicle routing pro-

blems in which splits are allowed. We designed exact and heuristic

methods and performed experimental studies in order to evaluate the

performances of the algorithms.

For what concerns the Bin Packing Problem with Item Fragmenta-

tion, we proved that optimal solutions with primitive structure always

exist. We performed a theoretical investigation, exploited properties

on the structure of the solution, and applied Dantzig-Wolfe decompo-

sition method, to obtain both an exact algorithm and fast heuristics for

such problems. We also identified classes of instances that are compu-

tationally harder to solve.

We then further extended theoretical properties to devise new mod-

els that embed the split component. By using Dantzig-Wolfe decom-

position method and column generation techniques, we obtained al-

gorithms of orders of magnitude faster. Also, we proved that the un-

derlying theory can be extended to different variants of the problem,

obtaining a resolution framework for this category of problems.

We also addressed a new variant of the BPPIF, in which a fixed cost

is paid whenever an item is split, no matter how many times. Such a

variant is not included in the ones that can be solved with our frame-

work, but still, by exploiting properties on the structure of the optimal

solution, it is possible to reduce the problem to a pure combinatorial

one, improving the performances even when using a general purpose

solver.

For what concerns the Split Pickup Split Delivery Vehicle Routing

Problem on a bike-sharing system, we observed that the main issue

using column generation techniques in such problem, is the hardness

of the pricing procedure when the amount of demand to be served

is computed with the vehicle route. We devised a new mathemati-

cal programming model that exploits properties on substructures of

routes, called groups. Then, we applied Dantzig-Wolfe decomposi-

tion method to such a model in order to obtain an extended formula-

127

C O N C L U S I O N S

tion with a manageable pricing problem. Results obtained with such

approach seems proved that our methodology is promising and can

solve small instances faster than competitors.

We remark that not every optimization problem becomes harder

when resource splitting is allowed. For instance, in capacitated facility

location problems, allowing fractional assignments of clients to facili-

ties yields more tractable formulations. This is not therefore an intrin-

sic property of every MILP, but rather a feature of a class of combinato-

rial optimization problems. Indeed, in some cases it is needed to link

together continuous and integer variables via big-M like constraints,

or to search for similar modelling workarounds, which are known to

reduce the quality of continuous relaxations [27]. This is certainly the

case of the packing and routing problems addressed in this thesis, but

also of problems in statistics, like the minimization of the ℓ0 and ℓ1
norms [18, 83] in sparsity enhancement techniques, just to mention a

notable example. Our methods may therefore apply successfully to

many problems in this area.

We conclude that a successful approach in solving combinatorial

optimization problems with fractional resources, typically consists in

combining two ingredients: first, theoretical results on the structure

of the problem, allowing to defer fractional decisions at the end of

the optimization process; second, decomposition methods allowing to

limit the complexity of the problem by splitting into smaller and eas-

ier sub-problems. In particular, our approach of postponing fractional

decisions after the optimization process often yields easier pricing pro-

blems and reduces the number of branching decisions needed to reach

an integer solution. Such approach is far superior to a simpler one in

which a general purpose solver is used giving priority to branch on

certain sets of variables.

Future research may extend our approach to other problems with

fractional resources. Also, given a problem with fractional resources,

it is unknown (a) if it always exists a structure of the solutions that

allows a pure combinatorial version of the problem, (b) if such refor-

mulation can be obtained with an automatic methodology, and (c) if

the reformulation is always better than the original one. In fact, such

methodology could be eventually included in general purpose solvers,

to be activated only by need if special problem structures are detected,

improving their efficiency on a class of problems that is currently too

hard to be solved.

128

Part III

A P P E N D I X

A
D Y N A M I C A L LY N E G O T I AT I N G T I M E S L O T S I N

AT T E N D E D H O M E S E RV I C E D E L I V E RY

Home service optimization is becoming a key issue in many indus-

trial sectors [82]. For instance, it is common practice for large technol-

ogy stores in Europe to offer both the delivery of products at home af-

ter purchase, and additional professional services like installation and

setup, either for free or at a charge. On one hand, the customer must

wait at home for the service to be provided, and is therefore interested

in having very well defined, guaranteed, service time slots; he is also

interested in choosing as much as possible the placement of the slots

that best suits his needs. On the other hand, retailers that must pro-

vide such a service are interested in minimizing costs, that mainly con-

sist in limiting the number of operators involved in the home services.

Often, the number of operators employed is even fixed in advance by

the retailer, who is then interested in offering the best possible level of

service to the customer, taking into account the limited service possi-

bility of her operators. In turn, the skill of matching negotiated service

time windows is crucial for a store reputation, being one of the main

items in the score, and one of the most commented topics, given by

users in online recommendation systems [74].

In this context crucial decisions must be taken at different levels,

like the tactical definition of timeslots and the operational scheduling

of the operators; different strategies have been developed, typically

trying to trade time slot flexibility with price incentives and discounts

[17] or drawing similar methodologies from revenue management [3].

Any approach agree on a common principle: while a service time slot

may be negotiated with some degree of flexibility, missing a fixed ap-

pointment is perceived as a strong disservice by the customer.

Later, more focused investigations on the tactical definition of time

slots have appeared in the literature [2]. Recently, Desaulniers and

Spliet designed a system in which the customer set is known, but their

demand is not: they negotiate multiple time windows; routing is then

performed only when actual demand becomes known [72]. Such time

slot selection problems share some features also with Dynamic Vehicle

Routing Problems, in that the set of customers appears in an online

131

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

fashion; a recent review can be found in [60]. Finally, we mention the

analogies of negotiating service delivery time with that of accepting

transportations or not in dynamic dial-a-ride problems [51, 16].

None of the works in the literature, however, face at the same time

the problem of deciding the service time slots (a) at an operational

level of detail, that is explicitly producing hard time windows, to-

gether with a suitable scheduling for an operator to meet them, (b)

in an online fashion, that is answering to each customer at his arrival

time, without assuming any distribution on future customers, and

without the possibility of re-negotiating the slots at later time, and

(c) with realtime performances, that is with computational methods

yielding decision support options in small fractions of seconds.

Hence, in this thesis we formalize a time slot allocation problem and

we design decision support tools, relying on graph models and combi-

natorial optimization algorithms, that are able to cope with issues (a),

(b) and (c) simultaneously. We also introduce suitable indicators, high-

lighting key level of service factors in the form of quality measures.

Finally, we perform a detailed experimental campaign, trying to show

through computer simulations the trade-off that can be achieved be-

tween different level of service measures.

In Section A.1 we formalize the problem and introduce our math-

ematical notation; in Section A.1.2 we model the level of service by

three quality measures. In Section A.2 we discuss our online negotia-

tion policies. In Section A.3 we report on our experimental campaign.

Finally, in Section A.4 we briefly draw some conclusions.

A.1 M O D E L S A N D M E T H O D S

Our time slot allocation problem involves three actors: a set of cus-

tomers, that ask for a certain home service at a particular day and time,

an operator that performs such a service, and a service provider that acts

as an interface between customers and operators, by negotiating ser-

vice slots and by creating daily schedules.

A.1.1 Service scheduling model

From the point of view of the service provider, we model the service

scheduling as the following two-step process.

132

A.1 M O D E L S A N D M E T H O D S

T I M E S L O T N E G O T I AT I O N . Let I be a sequence of customers. Dur-

ing the day, each customer i ∈ I appears at the provider’s counter

in an online fashion, asking for the delivery of a service in a desired

time window [ai, bi] of a certain day. The provider can either directly

accept the customer’s request, negotiate an alternative service time

window [ci, di] on the same day, or negate service in the desired day,

and defer to alternative service days. Once an agreement is reached,

no change in the negotiated day and time window is allowed: it is

mandatory for the provider to meet the service slot they agreed.

R O U T I N G . Then, at the end of the day, a routing for a single oper-

ator is computed, in order to service the accepted customers in their

negotiated time windows. The scarce resource is time: the operator

has a limited working shift, that without loss of generality we indicate

as [0, T]. Moving from the location of a customer i to that of a customer

j takes Dij units of time, that is D represents the distance matrix be-

tween customers; once at destination, we consider the time needed to

perform service at i to be known, and we denote it as wi. Therefore,

computing a feasible routing amounts to find a feasible solution to a

Traveling Salesman Problem with Time Windows (TSPTW) [71], con-

sidering the operator as a vehicle leaving a depot at time 0, visiting

once each of the accepted customers within their negotiated time win-

dows, and going back to the depot before time T .

By design, the two service scheduling steps are of radically different

nature. The routing problem is an offline problem, that can be solved

by overnight computations once per day. A provider may assume the

traveling cost to be not an issue, as the operator is expected to move

in a rather small urban area, or may provide an additional suitable

cost function. In any case, once the set of customers and their service

time windows is fixed, the problem of finding an optimal schedule

turns out to be a traditional TSPTW, for which very efficient exact al-

gorithms are presented in the literature [10]. The time slot negotia-

tion, instead, is an online problem to be solved with realtime efficiency:

the sequence of customers is not known in advance, and every time

a new customer appears, the provider has to be able to give answers

in fractions of seconds. Since at this stage it is crucial not to miss a

fixed service, the provider needs a procedure σ() taking in input the

desired service day and time window of a new customer, and the set

of accepted customers for that day and their negotiated time window,

133

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

and producing as output either an alternative time window or a ‘null’

value, indicating that the new customer cannot be serviced in the de-

sired day; in the latter case we say for the sake of simplicity that the

customer is rejected, although the actual behavior of the provider is to

repeat the negotiation process on a different day. More formally, let Ī

be the set of accepted customers for the desired service day, [ci, di] be

the negotiated time window for each customer in Ī, and [a, b] be the

desired time window of the new customer j, a procedure

σ(Ī,
⋃

i∈Ī

[ci, di], D, j, [a, b])→ [c, d]

is needed in the decision making process, where [c, d] represents an

alternative service time window for the new customer, or encodes a

’reject’ value [−∞,+∞].

A.1.2 Quality measures

Of course, among all possible feasible time slot allocations, the service

provider may search for ones providing high level of service L. There

are many ways of defining good plans. In the following we describe

three possible measures.

A C C E P TA N C E R AT E . First, the provider may be interested in re-

jecting as few customers as possible, as changing the service delivery

day is usually perceived by a customer as the worst level of service.

We therefore define the rate of acceptance quality measure as follows:

L
a =

|Ī|

|I|
.

A M O U N T O F T I M E S H I F T. If alternative time windows are pro-

posed to a customer, a certain worsening in her perceived level of

service is introduced. The most intuitive way of measuring such a

worsening is by means of average amount of shift of the negotiated

time window with respect to the desired one, that is

L
s =

∑
i∈Ī |(ai + bi)/2− (ci + di)/2|

|Ī|
.

A M O U N T O F W I N D O W E N L A R G E M E N T. For services requiring

the customer to be at home, a widening of the time window is even

134

A.2 D E F I N I N G A N D C O M P U T I N G N E G O T I AT I O N P O L I C I E S

function σFIXED(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
if τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[a, b]}, D) then
return [a, b]

else
return [−∞,∞]

end if
end function

Algorithm A.2.1: Fixed policy

more problematic than a shift, as it forces the customer to take hours

off. We therefore define a third level of service measure as the average

amount of time window enlargement

L
e =

∑
i∈Ī(di − ci) − (bi − ai)

|Ī|
.

A.2 D E F I N I N G A N D C O M P U T I N G N E G O T I AT I O N P O L I C I E S

We propose online policies to support decisions of the provider during

the online task of negotiating time windows with the customers. For-

mally, to define such an online decision policy corresponds to provide

a definition for the σ() procedure introduced in the previous Section.

We experimented on four policies. Each of them is based on the

iterative checking of TSPTW feasibility problems: let τ() be a proce-

dure taking in input a set of customers Ī, their negotiated time win-

dows [ci, di], their pairwise distances Dij and their service time wi,

for each i ∈ Ī, and giving as output a Boolean ’true’ value if the re-

sulting TSPTW problem has a feasible solution, ’false’ otherwise, that

is

τ(Ī,
⋃

i∈Ī

[ci, di], D)→ {true, false}.

In the following subsections A.2.1, A.2.2, A.2.3 and A.2.4 we detail

our online policies, while in subsection A.2.5 we discuss some imple-

mentation details, including a graph model and a combinatorial algo-

rithm for the effective computation of function τ().

A.2.1 Fixed

We first formalize the most intuitive policy: as soon as a new customer

arrives, we check if it is possible to service her and all customers pre-

viously accepted in their desired time window. If so, the customer is

135

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

function σSHIFT(F)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
sf ← 0 ⊲ Forward shift
while not τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[a+ s
f · k, b+ sf · k]}, D) do

if b+ sf · k > T then
sf ← +∞

break
end if
sf ← sf + 1

end while
if sf < +∞ then ⊲ Fine strategy
S← {max{0, sf − 1} 6 s 6 sf}
sf ← min{s ∈ S : τ(Ī ∪ j,

⋃

i∈Ī[ci, di] ∪ {[a + s · k, b + s · k]}, D) =

true}

end if
if sf < +∞ then

return [a+ sf · k, b+ sf · k]
else

return [−∞,+∞]

end if
end function

Algorithm A.2.2: Shift policy with forward fine strategy.

accepted without any change in its desired time window. Otherwise,

the customer is rejected. A formal description of the ’Fixed’ policy is

reported in Pseudocode A.2.1.

A.2.2 Shift policy

Second, we consider a ’Shift’ policy, that aims to accept each new cus-

tomer, provided that a suitable shift in his desired time window can

be found, allowing the operator to visit him and all the previously ac-

cepted customers. No change in the time window width is performed.

We consider two strategies for performing the time shift: forward

and backward, in which a certain value s is added (resp. subtracted)

to both ai and bi, that makes feasible the TSPTW instance including

all accepted customers and the new one; if no such a value can be

found without exceeding the daily deadline T (resp. 0), the customer

is rejected. We also consider the bidirectional strategy in which both for-

ward and backward shifts are computed, and the one requiring mini-

mum shift is retained.

For what concerns the choice of value s, we take into account two

strategies: in the coarse strategy the value s is chosen as a multiple of

a base constant k, while in the fine strategy s can take any value.

A formal description of policy ’Shift’, with forward, backward and

bidirectional fine strategy, is reported in Pseudocode A.2.2, A.2.3 and

136

A.2 D E F I N I N G A N D C O M P U T I N G N E G O T I AT I O N P O L I C I E S

function σSHIFT(B)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
sb ← 0 ⊲ Backward shift
while not τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[a− s
b · k, b− sb · k]}, D) do

if a− sb · k 6 0 then
sb ← +∞

break
end if
sb ← sb + 1

end while
if sb < +∞ then ⊲ Fine strategy
S← {s : max{0, sb − 1} 6 s 6 sb}

sb ← min{s ∈ S : τ(Ī ∪ j,
⋃

i∈Ī[ci, di] ∪ {[a− s · k, b− s · k]}, D) =

true}

end if
if sb < +∞ then

return [a− sb · k, b− sb · k]
else

return [−∞,+∞]

end if
end function

Algorithm A.2.3: Shift policy with backward fine strategy.

function σSHIFT(FB)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
[cf, df]← σshift(f)(Ī,

⋃

i∈Ī[ci, di], D, j, [a, b])

[cb, db]← σshift(b)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])

if df+cf

2 − b+a
2 < b+a

2 − db+cb

2 then
return [cf, df]

else
return [cb, db]

end if
end function

Algorithm A.2.4: Shift policy with bidirectional strategy.

A.2.4, respectively. Pure coarse strategies are obtained by simply dis-

carding the blocks marked as ’Fine strategy’. From an algorithmic

point of view, we assume rational data, and we compute the minima

indicated in the fine strategy blocks by iterative dicotomic search.

A.2.3 Enlarge policy

Third, we devised an ’Enlarge’ policy, that aims to accept each new

customer by possibly enlarging its desired time window.

Also in this case we consider two strategies: forward and backward,

in which we add (resp. subtract) a certain value e to bi (resp. ai), that

makes feasible the TSPTW instance including all accepted customers

and the new one; if no such a value can be found without exceeding

the daily deadline T (resp. 0), the customer is rejected. As before, we

137

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

function σENLARGE(F)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
ef ← 0 ⊲ Forward enlargement
while not τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[a, b+ e
f · k]}, D) do

if b+ ef · k > T then
ef ← +∞

break
end if
ef ← ef + 1

end while
if ef < +∞ then ⊲ Fine strategy
E← {e : (a− b)/k 6 e 6 ef}

ef ← min{e ∈ E : τ(Ī∪ j,
⋃

i∈Ī[ci, di]∪ {[a, b+ e · k]}, D) = true}

end if
if ef < +∞ then

return [a, b+ ef · k]
else

return [−∞,+∞]

end if
end function

Algorithm A.2.5: Enlarge policy with forward fine strategy.

analyze a third bidirectional strategy, that computes both forward and

backward and retains the best.

Similarly to the ’Shift’ policy, we take into account two ways of

choosing e: in the coarse strategy the value e is chosen as a multiple

of a base constant k, while in the fine strategy e can take any value.

A formal description of policy ’Enlarge’ with forward, backward

and bidirectional strategy is reported in Pseudocode A.2.5, A.2.6 and

A.2.7, respectively; the minima indicated in the fine strategy blocks

are also computed by iterative dicotomic search.

A.2.4 Bucket policy

Finally, we simulated a policy which is often used by industrial home

service providers. We define q time buckets, that is a splitting of the

daily working time [0, T] in equal parts [ℓ · T/q, (ℓ + 1) · T/q] for ℓ =

0 . . . (q− 1). These may correspond, for instance, to worker shifts, or

to day fractions that are easy to visualize for the customers, like early-

morning, late-morning, early-afternoon, late-afternoon. Then we re-

place the desired time window of each customer with that of the best

fitting bucket that allows the operator to visit all the accepted cus-

tomers and the new one; if no such a bucket can be found, the new

customer is rejected. In our case, the regret of a bucket is computed as

the difference between the central instant of the bucket and the central

138

A.2 D E F I N I N G A N D C O M P U T I N G N E G O T I AT I O N P O L I C I E S

function σENLARGE(B)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
eb ← 0 ⊲ Backward enlargement
while not τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[a− e
b · k, b]}, D) do

if a− eb · k 6 0 then
eb ← +∞

break
end if
eb ← eb + 1

end while
if eb < +∞ then ⊲ Fine strategy
E← {e : (a− b)/k 6 e 6 eb}

eb ← min{e ∈ E : τ(Ī∪ j,
⋃

i∈Ī[ci, di]∪ {[a− e · k, b]}, D) = true}

end if
if ef < +∞ then

return [a− eb · k, b]
else

return [−∞,+∞]

end if
end function

Algorithm A.2.6: Enlarge policy with backward fine strategy.

function σENLARGE(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
[cf, df]← σenlarge(f)(Ī,

⋃

i∈Ī[ci, di], D, j, [a, b])

[cb, db]← σenlarge(b)(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])

if df − cf < db − cb then
return [cf, df]

else
return [cb, db]

end if
end function

Algorithm A.2.7: Enlarge policy with bidirectional strategy.

instant of the desired customer time window, being best those buck-

ets having minimum regret. A formal description of policy ’Bucket’ is

reported in Pseudocode A.2.8.

A.2.5 Implementation

Three main issues arise in the implementation of our policies.

The first one is efficiently computing the procedure τ() to solve

TSPTW feasibility problems. We embed a combinatorial algorithm

based on dynamic programming, that is adapted from [39], briefly

summarized in the following. We build a graph G(V ∪ {p}, E), where

V is a set of vertices including one element vi for each i ∈ I, p is an

additional ’depot’ vertex, and E is a set of edges, each having a weight

equal to the time Dij required to travel from customer i to customer j,

or weight 0 if either i or j is the depot.

139

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

function σBUCKET(Ī,
⋃

i∈Ī[ci, di], D, j, [a, b])
Q← {0 . . . q− 1}

do
if Q = ∅ then

return [−∞,+∞]

else
ℓb ← argminℓ∈Q{‖a−b

2 − (ℓ · Tq + T
2·q)‖}

Q← Q \ {ℓb}

end if
while τ(Ī∪ j,

⋃

i∈Ī[ci, di]∪ {[ℓ
b · T/q, (ℓb + 1) · T/q]}, D)

return [ℓb · T/q, (ℓb + 1) · T/q]
end function

Algorithm A.2.8: Bucket policy.

G R E E D Y C H E C K . First, we run a nearest neighbor heuristic: we

start from the depot at time 0 and iteratively move to the nearest unvis-

ited node, until either all nodes are visited, or no node can be reached

without exceeding the deadline T . If this simple check is enough to

produce a feasible TSPTW solution, then we immediately stop, return-

ing ’true’ as τ() value.

L A B E L S T R U C T U R E . Otherwise, we encode partial paths using la-

bels λ = (S, t, i), that store the set of visited vertices S ⊆ V , the overall

time spent 0 6 t 6 T , and the last visited node i ∈ V .

I N I T I A L I Z AT I O N . We create an initial label λ = (∅, 0, p), encoding

the status of the operator waiting at the depot at the beginning of the

day, and we mark it as open.

E X T E N S I O N . Iteratively, we select the open label λ ′ = (S ′, t ′, i ′)

having minimum t ′ value, and we extend it to all other vertices i ′′ ∈

V ∩ S ′ corresponding to the unvisited customers that can be reached

within their time windows, that is those for which the following in-

equality holds:

t ′ +Di ′i ′′ +wi ′′ 6 bi ′′ .

For each of them, we create a new label λ ′′ = (S ′ ∪ {i ′′},max{ai ′′ , t ′ +

Di ′i ′′}+wi ′′ , i
′′), that is marked as open. Label λ ′, instead, is marked

as closed.

D O M I N A N C E R U L E S . After the extension, if two distinct labels

λ ′ = (S ′, t ′, i) and λ ′′ = (S ′′, t ′′, i) are found, such that S ′ ⊆ S ′′ and

140

A.2 D E F I N I N G A N D C O M P U T I N G N E G O T I AT I O N P O L I C I E S

t ′ > t ′′, then label λ ′ is discarded, as any solution obtained by further

extending λ ′ can also be obtained by extending λ ′′, obtaining a par-

tial path visiting at least the same nodes and having at least the same

available time.

T E R M I N AT I N G C O N D I T I O N . The dynamic programming proce-

dure stops in two cases: if a label is found to have S = V , then a fea-

sible TSPTW solution has been found, and in this case the τ() result

is ’true’; on the contrary, if there is no further open label, we certify

that no feasible TSPTW solution can be found, and the τ() result is

’false’. If none of these conditions hold, we iterate the Extension and

Dominance phases.

H E U R I S T I C I M P R O V E M E N T. We point out that, due to the online

nature of the problem, it might be worth to skip a single customer,

whose service is particularly involved, even if a feasible solution in-

cluding her can be found, in order to be able to accept more customers

appearing later. We actually found out to be beneficial to stop the dy-

namic programming algorithm in any case after that a certain number

∆ of labels has been created, and to return a ’false’ τ() value when-

ever this limit is reached; this showed to both dramatically speed up

the computation and help in skipping those customers requiring long

detours for servicing.

We remark that, even if much more sophisticated methods are pro-

posed in the literature for the TSPTW [10], this simple algorithm is bet-

ter suited when only TSPTW feasibility is concerned, like in the search

for violated cuts in Vehicle Routing algorithms [49, 20].

The second implementation issue is the computation of minima for

s and e values in the ’Shift’ and ’Enlarge’ policies. Given the effective-

ness of the TSPTW feasibility dynamic programming algorithm, and

assuming rational data, we decided to simply resort to an iterative

dicotomic search. A range of possible feasible values is considered,

as indicated in the set definition, and a tentative value is set as the

mid-range of such possible feasible values. Then, the τ() function is

computed on the resulting instance: if such a function returns ’true’,

then the tentative value is an upper bound on possible feasible values;

otherwise, it is a lower bound. In any case the range of possible feasi-

ble values is halved. The dicotomic search stops as soon as lower and

141

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

upper bounds match.

The third implementation issue is choosing a suitable value for the

base constant k. In an effort for balancing accuracy with speed, after

a preliminary round of experiments we decided to set k to different

values during the computation of σ() for different customers. In par-

ticular, we obtained good results by setting it, for each customer, to

half of the width of the desired service time window.

We finally remark that all our negotiation policies have a straightfor-

ward human-like interpretation. The technical computing-intensive

details are hidden in the internal computation of function τ(), that is

on the other side what requires specialized combinatorial algorithms

to be employed.

A.3 R E S U LT S A N D D I S C U S S I O N

We implemented our algorithms in C, using gcc 4.7 as a compiler, and

running a set of experiments on a PC equipped with a 2.7 GHz CPU

and 2 GB of RAM, under linux operating system.

As a benchmark we considered the set of instances of Pesant et al.

[58], that were originally provided by Potvin and Bengio [61], and

drawn from Solomon’s dataset [71]. The benchmark consists of 30

feasible TSPTW instances involving up to 44 customers, that include

a single depot. Indeed, besides being used also in recent publications

[50], the size and feature of these instances well represent those of re-

alistic home service delivery problems.

In order to check the behavior of our policies as the requests of the

customers become more and more tight, we created three scenarii, in-

dicated as datasets A, B, and C in the following, obtained by reducing

each original time window [a ′
i, b

′
i] by 25%, 50% and 75%, that is by

setting

αi =
a ′
i + b

′
i

2

βi = b
′
i − a

′
i

ai = αi − r ·
βi

2

bi = αi + r ·
βi

2

142

A.3 R E S U LT S A N D D I S C U S S I O N

Figure 15: Average L
a values of acceptance policies as the desired service

time windows reduce.

for r equal to 0.75, 0.50 and 0.25, respectively. Therefore, our overall

testbed consists of 90 instances. Each service timewi was set to 15; the

availability time window of the depot has been left unchanged.

We report our results in Table 17, Table 18 and Table 19 for datasets

A, B and C, respectively. Each table contains one row for each combi-

nation of policies and computing strategy (as indicated in the first two

columns), and reports in turn the percentage of accepted customers

L
a (column ’Acc. cust.’), the amount of average shift L

s and enlarge

L
e values among accepted customer (columns ’Rel. shift’ and ’Rel. en-

large’), and the average CPU time required to negotiate each service

time window (column ’CPU time’), that is in a practical setting the av-

erage query time, in which a customer must wait between her request

and a confirmation, or an offer for an alternative service time window.

In a preliminary round of experiments we found that fixing a max-

imum number of labels ∆ = 2000 in the dynamic programming pro-

cedure, gave a good compromise between solution quality and CPU

time. Indeed, as can be observed by looking at the ’CPU time’ column

of the tables, the average query time is always less than a tenth of a

second, matching our proposal of producing a real-time tool.

A.3.1 Evaluation of L
a measure.

As a first test, we analyzed the number of customers that can be ac-

cepted in their desired day by employing different policies; that is, we

143

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

Figure 16: Average L
s (left) and L

e (right) values of acceptance policies as
the desired service time windows reduce.

compare our policies with respect to measure L
a. The results reported

in the ’Acc. cust.’ columns of tables 17, 18 and 19 are further aggre-

gated in Figure 15. It includes one line for each policy. The ’bucket’

policy performs best, yielding from 6.5% to almost 20% improvement

with respect to the ’fixed’ policy. Policies ’shift’ and ’enlarge’ perform

similarly: they offer a few percentage points improvement with re-

spect to ’fixed’ in dataset A, but such an improvement increases as the

desired time windows reduce, reaching more than 10% on dataset C.

144

A.3 R E S U LT S A N D D I S C U S S I O N

A.3.2 Evaluation of L
s and L

e measures.

Then we compared our acceptance policies with respect to the amount

of shift and enlargement they yield on accepted customers. As in

the previous section, we further aggregate the results reported in ’Rel.

shift’ and ’Rel. enlarge’ columns in tables 17, 18 and 19 in a single

Figure 16 for each policy, that reports time windows reduction values

on the horizontal axis and average L
s and L

e values on the vertical

axes, in order to highlight the quality measure trend as the customer

desired time windows reduce. Measures worsen mildly as the time

windows reduce. No policy eventually overtakes the others. While

’shift’ policy produces by construction solutions having zero L
e val-

ues, the ’enlargement’ policy is actually able to reduce shift amount

by introducing enlargement. By using ’buckets’ policy, in dataset A

and dataset B it is even possible to give to the customer a service time

window which is narrower than the desired one, at the expense of

higher shift values.

A.3.3 Comparison of policies and strategies.

Finally, we tried to perform an overall assessment on our acceptance

policies and strategies.

First, we compared how sensitive each policy is with respect to

changes in its computing strategy. By looking at the difference be-

tween the best and worst average result in the tables, for each dataset,

the less stable policy in terms of both measure L
a and L

s shows to

be ’shift’; ’bucket’ is in general the most stable, but ’enlarge’ offers

comparable results.

Then, in Figure 17 we present a scatter plot for instances in dataset

A (top), dataset B (middle) and dataset C (bottom). Each point in the

plots represents a single run of our experiments, that is the applica-

tion of a particular acceptance policy to a particular instance. Runs

performed by applying ’shift’, ’enlargement’ and ’bucket’ policies are

marked with squares, triangles and circles, respectively. Each plot re-

ports L
s values on the vertical axis and L

e values on the horizontal

one: the coordinates of each point represent the L
s and L

e values

obtained in the corresponding run; instead, the size of each point is

proportional to the L
a value obtained.

145

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

No dominance can be observed among the acceptance policies. The

’shift’ and ’enlarge’ policies tend to produce more clustered, and there-

fore predictable, results; ’bucket’ results are more spread.

For what concerns the strategy selection, by looking at tables 17, 18

and 19 two settings seem to be particularly appealing for both ’shift’

and ’enlarge’: bidirectional coarse and backward fine. In fact, the for-

mer strategy seems to consistently yield a higher fraction of accepted

customers L
a at the expense of higher L

s and L
e values; the latter

produces good solutions in terms of L
s and L

e measures by discard-

ing a few more customers. This behavior can be expected, as the for-

mer strategy follows a rationale of accommodating customers without

over-optimizing their negotiated time windows, while the latter tries

to provide tight negotiated time windows, that in turn put hard con-

straints on the operator schedule, and eventually prevents new cus-

tomers to be accepted. Backward strategy has some advantage over

forward strategy; indeed, using time later in the working day tends in

general to constrain more the schedule of the operator. For the ’bucket’

policy, the strategy using 8 slots seems to provide the best overall be-

havior, accepting more customers with a modest increase in L
s values

and a strong reduction in L
e values.

We therefore compared the average behavior of these policy-strat-

egy combination. A synthesis of this comparison is depicted in Fig-

ure 18. These charts have the same structure of those in figures 15 and

16, and contain one line for each of the following policy-strategy com-

bination: fixed, shift bidirectional coarse, shift backward fine, enlarge

bidirectional coarse, enlarge backward fine, bucket 8 slots.

A.4 C O N C L U S I O N S

We tackled a key slot allocation problem arising in home service deliv-

ery, modeling it as an online optimization problem to be solved in re-

altime, and proposing evaluation measures to assess the quality of the

solutions produced. We designed strategies to be applied by a service

provider that needs to match customer requests and operator’s time

availability; even if their computation require combinatorial optimiza-

tion algorithms to be run, their behavior is still of easy interpretation

for human operators. We performed extensive computational evalua-

tion of these policies. As a main result, we found out that the fraction

of accepted customers can be substantially increased by allowing for

reasonable changes in their desired time window. For what concerns

146

A.4 C O N C L U S I O N S

efficiency, our algorithmic tools prove to be suitable to be embedded

in a real-time decision support system.

Policy Parameters
Acc. cust.

L
a (%)

Rel. shift
L
s

Rel. enlarge
L
e

CPU
time (s)

fixed 65.26 0.00 0.00 0.004

shift bidirectional, coarse 69.73 23.81 0.00 0.004

bidirectional, fine 67.70 17.42 0.00 0.004

backward, coarse 67.04 8.54 0.00 0.004

backward, fine 65.45 8.31 0.00 0.004

forward, coarse 68.85 23.09 0.00 0.004

forward, fine 65.98 15.02 0.00 0.004

enl bidirectional, coarse 68.71 8.88 17.76 0.004

bidirectional, fine 67.15 7.61 15.26 0.004

backward, coarse 67.10 4.68 9.36 0.004

backward, fine 65.27 3.44 6.90 0.004

forward, coarse 67.34 7.90 15.80 0.004

forward, fine 66.05 6.63 13.28 0.004

bucket 4 73.06 32.20 2.69 0.004

6 71.52 38.14 -6.33 0.004

8 71.88 32.46 -10.84 0.004

Table 17: Results on Dataset A (25% size reduction).

147

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

Policy Parameters
Acc. cust.

L
a (%)

Rel. shift
L
s

Rel. enlarge
L
e

CPU
time (s)

fixed 58.83 0.00 0.00 0.002

shift bidirectional, coarse 65.88 34.00 0.00 0.002

bidirectional, fine 63.51 24.12 0.00 0.002

backward, coarse 61.54 18.33 0.00 0.002

backward, fine 60.09 17.04 0.00 0.002

forward, coarse 63.40 30.00 0.00 0.002

forward, fine 63.52 28.18 0.00 0.002

enl bidirectional, coarse 63.84 11.75 23.50 0.002

bidirectional, fine 62.27 9.44 18.95 0.002

backward, coarse 61.09 8.64 17.28 0.002

backward, fine 59.75 7.67 15.39 0.002

forward, coarse 62.51 12.88 25.76 0.002

forward, fine 62.45 12.29 24.63 0.002

bucket 4 68.28 35.53 14.08 0.002

6 69.01 39.93 2.62 0.002

8 69.22 41.62 -5.22 0.002

Table 18: Results on Dataset B (50% size reduction).

Policy Parameters
Acc. cust.

L
a (%)

Rel. shift
L
s

Rel. enlarge
L
e

CPU
time (s)

fixed 45.77 0.00 0.00 0.001

shift bidirectional, coarse 64.66 54.85 0.00 0.001

bidirectional, fine 57.95 31.69 0.00 0.001

backward, coarse 57.12 40.77 0.00 0.001

backward, fine 52.62 29.94 0.00 0.001

forward, coarse 58.66 63.30 0.00 0.001

forward, fine 53.07 39.95 0.00 0.001

enl bidirectional, coarse 61.67 23.43 46.86 0.001

bidirectional, fine 56.90 14.31 28.76 0.001

backward, coarse 56.32 18.91 37.82 0.001

backward, fine 52.05 14.59 29.31 0.001

forward, coarse 56.13 27.19 54.38 0.001

forward, fine 53.11 19.05 38.19 0.001

bucket 4 62.90 45.12 40.81 0.001

6 64.52 49.96 21.96 0.001

8 65.42 52.80 9.28 0.001

Table 19: Results on Dataset C (75% size reduction).

148

A.4 C O N C L U S I O N S

Figure 17: Comparison of level of service measures for acceptance policies on
dataset A (top) dataset B (middle) and dataset C (bottom)

149

N E G O T I AT I N G T I M E S L O T S I N AT T E N D E D H O M E S E RV I C E D E L I V E RY

Figure 18: Behavior of the best performing acceptance policies and strategies
as the desired service time windows reduce.

150

B I B L I O G R A P H Y

[1] T. Achterberg. Scip: solving constraint integer programs. Mathe-

matical Programming Computation, 1(1):1–41, 2009.

[2] N. Agatz, A. Campbell, M. Fleischmann, and M. Savelsbergh.

Time slot management in attended home delivery. Transportation

Science, 45(3):435–449, 2011.

[3] Niels Agatz, AnnMelissa Campbell, Moritz Fleischmann, and

Martin Savels. Challenges and opportunities in attended home

delivery. In Bruce Golden, S. Raghavan, and Edward Wasil, ed-

itors, The Vehicle Routing Problem: Latest Advances and New Chal-

lenges, volume 43 of Operations Research/Computer Science Inter-

faces, pages 379–396. Springer US, 2008.

[4] C. Archetti and M.G. Speranza. Vehicle routing problems with

split deliveries. International Transactions in Operational Research,

19(1–2):3–22, 2012.

[5] Claudia Archetti and Maria Grazia Speranza. An overview on the

split delivery vehicle routing problem. In Karl-Heinz Waldmann

and Ulrike M. Stocker, editors, Operations Research Proceedings

2006, Operations Research Proceedings, pages 123–127. Springer

Berlin Heidelberg, 2007.

[6] Claudia Archetti, Martin W. P. Savelsbergh, and M. Grazia Sper-

anza. Worst-case analysis for split delivery vehicle routing pro-

blems. Transportation Science, 40(2):pp. 226–234, 2006.

[7] Claudia Archetti, Maria Garzia Speranza, and Alain Hertz. A

Tabu Search Algorithm for the Split Delivery Vehicle Routing

Problem. Transportation Science, 40(1):64–73, February 2006.

[8] Claudia Archetti, Nicola Bianchessi Maria Garzia Speranza, and

Alain Hertz. A column generation approach for the split delivery

vehicle routing problem. NETWORKS, 2011.

[9] Claudia Archetti, Nicola Bianchessi, and M. Grazia Speranza.

Branch-and-cut algorithms for the split delivery vehicle routing

problem. European Journal of Operational Research, 238(3):685–698,

2014.

151

Bibliography

[10] R. Baldacci, A. Mingozzi, and R. Roberti. New state-space re-

laxations for solving the traveling salesman problem with time

windows. INFORMS Journal on Computing, 24(3):356–371, 2012.

[11] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An

exact algorithm for the vehicle routing problem based on the set

partitioning formulation with additional cuts. Mathematical Pro-

gramming, 115(2):351–385, 2008.

[12] Maria Battarra, Jean-François Cordeau, and Manuel Iori. Pickup

and delivery problems for goods transportation. In Paolo Toth

and Daniele Vigo, editors, Vehicle Routing: Problems, Methods, and

Applications, Second Edition, chapter 6, pages 161–191. SIAM, 2014.

[13] G. Belov and G. Scheithauer. A branch-and-cut-and-price algo-

rithm for one-dimensional stock cutting and two-dimensional

two-stage cutting. European Journal of Operational Research, 171

(1):85–106, 2006.

[14] Hatem Ben Amor, Jacques Desrosiers, and Jos Manuel Valrio de

Carvalho. Dual-optimal inequalities for stabilized column gener-

ation. Opereation Research, 54(3):454–463, May 2006.

[15] Enrique Benavent, Mercedes Landete, Enrique Mota, and Grego-

rio Tirado. The multiple vehicle pickup and delivery problem

with {LIFO} constraints. European Journal of Operational Research,

243(3):752–762, 2015.

[16] G. Berbeglia, J.-F. Cordeau, and G. Laporte. A hybrid tabu-search

and constraint programming algorithm for the dynamic dial-a-

ride problem. INFORMS Journal on Computing, 24:343–355, 2012.

[17] A.M. Campbell and M. Savelsbergh. Incentive schemes for at-

tended home delivery services. Transportation Science, 40(3):327–

341, 2006.

[18] Emmanuel J. Candès, Michael B. Wakin, and Stephen P. Boyd.

Enhancing sparsity by reweighted ℓ1 minimization. Journal of

Fourier Analysis and Applications, 14(5-6):877–905, 2008.

[19] Alberto Ceselli, Giovanni Righini, and Matteo Salani. A column

generation algorithm for a rich vehicle-routing problem. Trans-

portation Science, 43(1):56–69, 2009.

152

Bibliography

[20] Alberto Ceselli, Giovanni Righini, and Emanuele Tresoldi. Com-

bined location and routing problems for drug distribution. Dis-

crete Applied Mathematics, 165:130–145, 2014.

[21] Alberto Ceselli, Angel Felipe, M. Teresa Ortuño, Giovanni Righ-

ini, and Gregorio Tirado. A branch-and-cut-and-price algorithm

for the green vehicle routing problem with partial recharge and

multiple technologies. In ODYSSEUS 2015, 2015.

[22] D. Chemla. Algorithms for optimizing shared mobility systems. The-

ses, Université Paris-Est, October 2012. URL https://pastel.

archives-ouvertes.fr/pastel-00839521.

[23] Daniel Chemla, Frédéric Meunier, and Roberto Wolfler Calvo.

Bike sharing systems: Solving the static rebalancing problem. Dis-

crete Optimization, 10(2):120–146, 2013.

[24] Marilène Cherkesly, Guy Desaulniers, Stefan Irnich, and Gilbert

Laporte. Branch-price-and-cut algorithms for the pickup and de-

livery problem with time windows and multiple stacks. European

Journal of Operational Research, 2015.

[25] F. Chung, R. Graham, J. Mao, and G. Varghese. Parallelism ver-

sus memory allocation in pipelined router forwarding engines.

Theory of Computer Systems, 39(6):829–849, 2006.

[26] François Clautiaux, Cláudio Alves, José Valério de Carvalho, and

Jürgen Rietz. New stabilization procedures for the cutting stock

problem. INFORMS Journal on Computing, 23(4):530–545, 2011.

[27] Gianni Codato and Matteo Fischetti. Combinatorial benders’ cuts

for mixed-integer linear programming. Operations Research, 54(4):

756–766, 2006.

[28] Claudio Contardo, Catherine Morency, and Louis-Martin

Rousseau. Balancing a Dynamic Public Bike-Sharing System.

Technical report, March 2012.

[29] J.F. Cordeau, G. Laporte, M.W.P. Savelsbergh, and D. Vigo. Ve-

hicle Routing, volume 14 of Handbooks in Operations Research and

Management Science, pages 367–428. Elsevier, 2007.

[30] G.B. Dantzig and P. Wolfe. Decomposition principle for linear

programs. Operations research, 8:101–111, 1960.

153

https://pastel.archives-ouvertes.fr/pastel-00839521
https://pastel.archives-ouvertes.fr/pastel-00839521

Bibliography

[31] George B. Dantzig. Discrete-variable extremum problems. Oper-

ations Research, 5(2):266–288, 1957.

[32] Mauro Dell’Amico, Eleni Hadjicostantinou, Manuel Iori, and Ste-

fano Novellani. The bike sharing rebalancing problem: Mathe-

matical formulations and benchmark instances. Omega, 45:7–19,

2014.

[33] M. Delorme, M. Iori, and S. Martello. Bin packing and cut-

ting stock problems: Mathematical models and exact algorithms.

2014. URL http://or.dei.unibo.it/library/bpplib.

[34] P. DeMaio. Bike-sharing: History, impacts, models of provision,

and future. Journal of Public Transportation, 12(4):41–56, 2009.

[35] Guy Desaulniers. Branch-and-price-and-cut for the split-delivery

vehicle routing problem with time windows. Operations Research,

58(1):179–192, 2010.

[36] CPLEX development team. Ibm ilog cplex optimization studio:

Cplex user’s manual - version 12 release 4. Technical report, IBM

corp., 2011.

[37] Karl F. Doerner and Juan-José Salazar-González. Pickup-and-

delivery problems for people transportation. In Paolo Toth and

Daniele Vigo, editors, Vehicle Routing: Problems, Methods, and Ap-

plications, Second Edition, chapter 7, pages 193–212. SIAM, 2014.

[38] Moshe Dror and Pierre Trudeau. Split delivery routing. Naval

Research Logistics, 37:383–402, 1990.

[39] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An opti-

mal algorithm for the traveling salesman problem with time win-

dows. Operations Research, 43:367–371, 1995.

[40] L. Epstein and R. van Stee. Improved results for a memory allo-

cation problem. Theory of Computing Systems, 48(1):79–92, 2011.

[41] L. Epstein, A. Levin, and R. van Stee. Approximation schemes

for packing splittable items with cardinality constraints. Algorith-

mica, 62(1–2):102–129, 2012.

[42] Güneş Erdoğan, Gilbert Laporte, and Roberto Wolfler Calvo. The

static bicycle relocation problem with demand intervals. Euro-

pean Journal of Operational Research, 238(2):451–457, 2014.

154

http://or.dei.unibo.it/library/bpplib

Bibliography

[43] Güneş Erdoğan, Maria Battarra, and Roberto Wolfler Calvo. An

exact algorithm for the static rebalancing problem arising in bicy-

cle sharing systems. European Journal of Operational Research, 245

(3):667–679, 2015.

[44] L. Grandinetti, F. Guerriero, F. Pezzella, and O. Pisacane. The

multi-objective multi-vehicle pickup and delivery problem with

time windows. Procedia - Social and Behavioral Sciences, 111:203–

212, 2014. Transportation: Can we do more with less resources?

- 16th Meeting of the Euro Working Group on Transportation -

Porto 2013.

[45] T. Gschwind and S. Irnich. Dual inequalities for stabilized col-

umn generation revisited. Technical Report Working Paper n.

1407, Gutenberg School of Management and Economics, Mainz

Univ., 2014.

[46] F. Hennig, B. Nygreen, M. Christiansen, K. Fagerholt, K.C. Fur-

man, J. Song, G.R. Kocis, and P.H. Warrick. Maritime crude oil

transportation – a split pickup and split delivery problem. Euro-

pean Journal of Operational Research, 218(3):764–774, 2012.

[47] Frank Hennig, Bjørn Nygreen, and Marco E. Lübbecke. Nested

column generation applied to the crude oil tanker routing and

scheduling problem with split pickup and split delivery, 2012.

[48] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems.

Springer, 2004.

[49] N. Kohl, J. Desrosiers, O.B.G. Madsen, M. M. Solomon, and

F. Soumis. 2-path cuts for the vehicle routing problem with time

windows. Transportation Science, 33(1):101–116, 1999.

[50] M. Lòpez-Ibáñez, C. Blum, J. W. Ohlmann, and B. W. Thomas.

The travelling salesman problem with time windows: Adapting

algorithms from travel-time to makespan optimization. Applied

Soft Computing, 13(9):3806–3815, 2013.

[51] G. Laporte. Scheduling issues in vehicle routing. Annals of Oper-

ations Research, in press, 2013.

[52] Neal Lathia, Saniul Ahmad, and Licia Capra. Measuring the im-

pact of opening the london shared bicycle scheme to casual users.

Transportation Research Part C, 22:88–102, 2012.

155

Bibliography

[53] Jenn-Rong Lin and Ta-Hui Yang. Strategic design of public bicy-

cle sharing systems with service level constraints. Transportation

Research Part E: Logistics and Transportation Review, 47(2):284–294,

2011.

[54] Andrea Lodi, Silvano Martello, Michele Monaci, Claudio Cic-

conetti, Luciano Lenzini, Enzo Mingozzi, Carl Eklund, and Jani

Moilanen. Efficient two-dimensional packing algorithms for mo-

bile wimax. Management Science, 57(12):2130–2144, 2011.

[55] S. Martello and P. Toth. Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc., New York, NY, USA,

1990. ISBN 0-471-92420-2.

[56] N. Menakerman and R. Rom. Bin packing with item fragmenta-

tion. In Proceedings of the 7th International Workshop on Algorithms

and Data Structures, in: Lecture Notes in Computer Science, pages

313–324, 2001.

[57] Christoph Nitsche, Guntram Scheithauer, and Johannes Terno.

Tighter relaxations for the cutting stock problem. European Jour-

nal of Operational Research, 112(3):654–663, 1999.

[58] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. An

exact constraint logic programming algorithm for the traveling

salesman problem with time windows. Transportation Science, 32

(1):12–29, 1998.

[59] Bjørn Petersen and David Pisinger. Shortest Paths and Vehicle Rout-

ing. PhD thesis, 2011.

[60] V. Pillac, M. Gendreau, C. Guéret, and A.L. Medaglia. A review of

dynamic vehicle routing problems. European Journal of Operational

Research, 225(1):1–11, 2013.

[61] J.-Y. Potvin and S. Bengio. The vehicle routing problem with time

windows part ii: Genetic search. INFORMS Journal on Computing,

8:165–172, 1996.

[62] Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of

resource constrained shortest path problems: Exact solution ap-

proaches. Networks, 62(3):183–200, 2013.

[63] Tal Raviv and Ofer Kolka. Optimal inventory management of a

bike-sharing station. IEEE Transactions, to appear.

156

Bibliography

[64] Tal Raviv, Michal Tzur, and Iris A. Forma. Static repositioning in

a bike-sharing system: models and solution approaches. EURO

Journal on Transportation and Logistics, 2(3):187–229, 2013.

[65] Giovanni Righini and Matteo Salani. Symmetry helps: Bounded

bi-directional dynamic programming for the elementary shortest

path problem with resource constraints. Discrete Optimization, 3

(3):255–273, 2006.

[66] M. Schneider, A. Stenger, and D. Goeke. The electric vehicle-

routing problem with time windows and recharging stations.

Transportation Science, 48(4):500–520, 2014.

[67] Jasper Schuijbroek, Robert Hampshire, and Willem-Jan van Ho-

eve. Inventory rebalancing and vehicle routing in bike sharing

systems. Technical report, 2013.

[68] S. Secci, A. Ceselli, F. Malucelli, A. Pattavina, and B. Sansò. Direct

optimal design of a quasi-regular composite-star core network. In

IEEE Proc. of DRCN, pages 7–10, 2007.

[69] H. Shachnai, T. Tamir, and O. Yehezkely. Approximation schemes

for packing with item fragmentation. In Thomas Erlebach and

Giuseppe Persinao, editors, Approximation and Online Algorithms,

volume 3879 of Lecture Notes in Computer Science, pages 334–347.

Springer Berlin / Heidelberg, 2006.

[70] N. Skorin-Kapov. Routing and wavelength assignment in optical

networks using bin packing based algorithms. European Journal

of Operational Research, 177(2):1167–1179, 2007.

[71] M. M. Solomon. Algorithms for the vehicle routing and schedul-

ing problems with time windows. Operations Research, 35:254–

265, 1987.

[72] R. Spliet and G. Desaulniers. The discrete time window assign-

ment vehicle routing problem. Technical report, HEC, 2012.

[73] Magnus Stålhane, Henrik Andersson, Marielle Christiansen,

Jean-François Cordeau, and Guy Desaulniers. A branch-price-

and-cut method for a ship routing and scheduling problem with

split loads. Computers & Operations Research, 39(12):3361–3375,

2012.

157

Bibliography

[74] S. Utz, U. Matzat, and C. Snijders. On-line reputation systems:

The effects of feedback comments and reactions on building and

rebuilding trust in on-line auctions. International Journal of Elec-

tronic Commerce, 13(3):95–118, 2009.

[75] J.M. Valério de Carvalho. Exact solution of bin-packing problems

using column generation and branch-and-bound. Annals of Oper-

ations Research, 86(0):629–659, 1999.

[76] José M. Valério de Carvalho. Using extra dual cuts to accelerate

column generation. INFORMS Journal on Computing, 17(2):175–

182, 2005.

[77] J.M. Valério de Carvalho. Exact solution of bin-packing problems

using column generation and branch-and-bound. Annals of Oper-

ations Research, 86(0):629–659, 1999.

[78] José M. Valério de Carvalho. Using extra dual cuts to acceler-

ate column generation. INFORMS J. on Computing, 17(2):175–182,

April 2005.

[79] François Vanderbeck. A nested decomposition approach to a

three-stage, two-dimensional cutting-stock problem. Manage. Sci.,

47(6):864–879, June 2001.

[80] François Vanderbeck. Implementing mixed integer column gen-

eration. In Guy Desaulniers, Jacques Desrosiers, and MariusM.

Solomon, editors, Column Generation, pages 331–358. Springer US,

2005. ISBN 978-0-387-25485-2.

[81] Patrick Vogel and Dirk C. Mattfeld. Anticipating usage patterns

in the design of bike-sharing systems. In INFORMS 2011; Shared

Mobility Systems, 2011.

[82] Y. Xing, L. Li, Z. Bi, M. Wilamowska-Korsak, and L. Zhang. Op-

erations research (or) in service industries: A comprehensive re-

view. Systems Research and Behavioral Science, 30(3):300–353, 2013.

[83] Yun-Bin Zhao and Duan Li. Reweighted ℓ1-minimization for

sparse solutions to underdetermined linear systems. SIAM Jour-

nal on Optimization, 22(3):1065–1088, 2012.

158

	Titlepage
	Contents
	1 Introduction
	Packing problems
	2 Bin Packing with Item Fragmentation
	3 Fragmentation minimization BPPSPF
	3.1 Problem definition
	3.1.1 Structure of a solution

	3.2 Modeling
	3.3 Algorithms
	3.3.1 Initialization
	3.3.2 Pricing problem
	3.3.3 Branch and bound
	3.3.4 Feasibility check

	3.4 Improvement Techniques
	3.4.1 Reduction
	3.4.2 Heuristics

	3.5 Computational results
	3.5.1 Root lower bound
	3.5.2 Root upper bound
	3.5.3 Solving time

	3.6 Conclusions

	4 Introducing a chain based formulation
	4.1 Properties extension and reformulation
	4.1.1 Extended formulation

	4.2 Algorithms
	4.2.1 Initialization
	4.2.2 Pricing problem
	4.2.3 Branch and bound

	4.3 Tackling the Size Increasing variant
	4.4 Experimental results
	4.4.1 Dataset generation
	4.4.2 Solving the Size-Increasing variant

	4.5 Conclusions

	5 Bin Minimization BPPIF
	5.1 Problem definition
	5.1.1 Extended formulation

	5.2 Algorithms
	5.2.1 Initialization
	5.2.2 Pricing problem
	5.2.3 Primal Heuristics

	5.3 Tackling Size Increasing variant
	5.4 Experimental results
	5.4.1 Root lower bound
	5.4.2 Root upper bound
	5.4.3 Solving bm-BPPSPF to proven optimality
	5.4.4 Solving Size-Increasing variants

	5.5 Conclusions

	6 Fragmented item minimization BPPIF
	6.1 Mathematical formulation
	6.2 Problem reduction
	6.3 Experimental analysis
	6.4 Conclusion

	Routing problems with packing issues
	7 Split Pickup and Split Delivery Vehicle Routing Problem
	7.1 Problem formalization and notation
	7.2 Groups formulation and properties
	7.2.1 Routes and groups
	7.2.2 Routes, groups and loading patterns.
	7.2.3 A formulation based on groups
	7.2.4 Extended formulation

	7.3 Algorithms
	7.3.1 Initialization
	7.3.2 Pricing problem
	7.3.3 Branching rules
	7.3.4 Branching implementation.
	7.3.5 Additional inequalities
	7.3.6 Infeasibility detection

	7.4 Experimental analysis
	7.4.1 Column generation profiling
	7.4.2 Root lower bound
	7.4.3 Upper bound
	7.4.4 Solving instances to proven optimality

	7.5 Conclusions

	8 Conclusions

	Appendix
	A Negotiating time slots in attended home service delivery
	A.1 Models and methods
	A.1.1 Service scheduling model
	A.1.2 Quality measures

	A.2 Defining and computing negotiation policies
	A.2.1 Fixed
	A.2.2 Shift policy
	A.2.3 Enlarge policy
	A.2.4 Bucket policy
	A.2.5 Implementation

	A.3 Results and discussion
	A.3.1 Evaluation of La measure.
	A.3.2 Evaluation of Ls and Le measures.
	A.3.3 Comparison of policies and strategies.

	A.4 Conclusions

	Bibliography

