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Abstract

Nowadays computer vision algorithms can be found abundantly in applications related
to video surveillance, 3D reconstruction, autonomous vehicles, medical imaging etc. Im-
age/object matching and detection forms an integral step in many of these algorithms.
The most common methods for Image/object matching and detection are based on lo-
cal image descriptors, where interest points in the image are initially detected, followed
by extracting the image features from the neighbourhood of the interest point and fi-
nally, constructing the image descriptor. In this thesis, contributions to the field of the
image feature matching using rotating half filters are presented. Here we follow three
approaches: first, by presenting a new low bit-rate descriptor and a cascade matching
strategy which are integrated on a video platform. Secondly, we construct a new local
image patch descriptor by embedding the response of rotating half filters in the Histogram
of Oriented gradient (HoG) framework and finally by proposing a new approach for de-
scriptor construction by using second order image statistics. All the three approaches
provide interesting and promising results by outperforming the state of art descriptors.

Keywords : Rotating half filters, local image descriptor, image matching, Histogram
of Orientated Gradients (HoG), Difference of Gaussian (DoG).
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Résumé

De nos jours les algorithmes de vision par ordinateur abondent dans les applications de
vidéo-surveillance, de reconstruction 3D, de véhicules autonomes, d’imagerie médicale,
etc. . . La détection et la mise en correspondance d’objets dans les images constitue une
étape clé dans ces algorithmes.

Les méthodes les plus communes pour la mise en correspondance d’objets ou d’images
sont basées sur des descripteurs locaux, avec tout d’abord la détection de points d’intérêt,
puis l’extraction de caractéristiques de voisinages des points d’intérêt, et enfin la con-
struction des descripteurs d’image.

Dans cette thèse, nous présentons des contributions au domaine de la mise en cor-
respondance d’images par l’utilisation de demi filtres tournants. Nous suivons ici trois
approches : la première présente un nouveau descripteur à faible débit et une stratégie de
mise en correspondance intégrés à une plateforme vidéo. Deuxièmement, nous constru-
isons un nouveau descripteur local en intégrant la réponse de demi filtres tournant dans
un histogramme de gradient orienté (HoG) ; enfin nous proposons une nouvelle approche
pour la construction d’un descripteur utilisant des statistiques du second ordre. Toutes
ces trois approches apportent des résultats intéressants et prometteurs.

Mots-clés : Demi filtres tournants, descripteur local d’image, mise en correspondance,
histogramme de gradient orienté (HoG), Différence de gaussiennes (DoG).
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Introduction

Feature point matching is the basic step used in most of the computer vision applications
such as image matching, 3D reconstruction, object recognition, virtual reality, motion
analysis and panorama generation. This method allows for the retrieval of both the
position and the intensity of feature points in general. All real objects must obey the
geometric and radiometric constrains imposed by the laws of physics, thus every time a
new correspondence is found for a point, the derived constraint can be used to improve
the information about its position in the real world [Bel11].

Given two images of the same scene/object captured under different geometric and
photometric variations, the problem of image matching is to find points in an image that
can be identified as same points in another image. Since, image matching based on an
overall description (global methods) are sensitive to changes in backgrounds, to occlusions
and to the main image transformations. Most of the matching methods typically make
use of neighbouring local features(local methods) associated with those key-points.

A local image feature can be defined as a local image pattern that varies from its
local neighbourhood. They find prominence in computer vision as they can provide well
localized and individually identifiable key-points. The information provided by the key-
points is not of much importance as long as they can be located accurately and stably
over time. In multiple view geometry, more importance is given to their location (center)
as they are used for estimating the model of a scene. But for other applications, local
features and their descriptors can be used as a robust image representation that allows
to match images, recognize objects and scenes without the need for segmentation. Here,
they do not have to be localised accurately, since their statistics is more important for
the analysis [TM07].

Image descriptor generation forms the crucial step in an image matching algorithm.
Initially, local image features are detected and these features are used to represent an
image by a well defined and informative local geometric structures extracted from the
neighbourhood. The obtained informative geometrical structures are then used to form
a descriptor. The task in hand is for the need of an image descriptor that is robust to
geometric and photometric variations. So, image matching using local image descriptors
forms the basis for this thesis.

Many local image descriptors have been proposed in the literature. They can be
broadly classified into descriptors based on 1st order image statistics (SIFT, GLOH,
DAISY, MROGH etc), descriptors based on filter response (SURF, local jets, Gabor filter
etc), descriptors based on 2nd order image statistics, intensity based descriptors(CSLBP,
LIOP) and binary descriptors(BRIEF,FREAK). In this thesis, we concentrate on image
descriptors based on filter responses. In particular, we concentrate on anisotropic half
filters. To the best of our knowledge, image descriptors based on any anisotropic filters
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INTRODUCTION

or any half filter has not been fully explored in the computer vision literature.
Most of the filter based descriptors typically make use of well designed filters to con-

struct the descriptor. Here, the descriptor is constructed by pooling the response of the
filters only at the interest points and as a result, they vaguely capture the geometry of
the region around the key-point. So, they fail to outperform descriptors based on image
gradients (SIFT, DAISY, GLOH). Even if they manage to outperform the gradient based
descriptors by using the multi scale approach, they exhibit high dimensionality. In this
thesis, the aim is to overcome this problem by proposing descriptors based on anisotropic
half filters which not only outperforms the state of the art descriptors but also maintains
similar dimension to that of the state of the art descriptors.

This thesis was Proposed by I2ML in partnership with LGI2P at Ecole des mines
d’ales. I2ML is an institute oriented towards helping old and disabled people. The scope
of the partnership is to bring positive changes in the day to day activities of old and the
disabled people by providing them with smart homes. Many computer vision techniques
such as object detection, image matching and gesture recognition can be used to improve
the quality of tools/equipments used in smart homes. This work is the primary step in
partnership between I2ML and LGI2P. In the future we would like to extend the methods
presented in the thesis on applications related to object detection and gesture recognition,
which we believe would bring a positive change in the day to day life of old and disabled
people in smart homes.

Thesis Organization

The remainder of the thesis is organized as follows: Chapter.1 presents the literature re-
view, where we discuss about the image matching pipeline and its various stages. Chap-
ter.2 is dedicated to an overview of different isotropic and anisotropic filters. We also
explore the family of anisotropic half filters. Chapter.3 introduces to the low bit-rate im-
age descriptor and a new image matching strategy both of which are embedded in a video
loop. Chapter.4 describes the new image patch descriptor RSD-HoG that exhibit a higher
performance when compared with previous low bit rate and state of the art descriptors.
Chapter.5 proposes an image descriptor RSD-DoG that is based on the second order im-
age statistics. The descriptor is constructed by considering the image as a 3D surface
with intensity being the third dimension. Chapter.6 concludes this thesis by highlighting
the important contributions of this thesis and proposes new directions for the future.

INTRODUCTION vii
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Résumé en français

Cette thèse a été proposée par le Laboratoire de Génie Informatique et Ingénierie de
Production (LGI2P) de l’Ecole des Mines d’Alès, dans le cadre d’un partenariat avec
l’Institut Méditerranéen des Métiers de la Longévité (I2ML), institut orienté vers le main-
tien à domicile des personnes âgées. Le but de ce partenariat est d’améliorer les condi-
tions d’activités quotidiennes des personnes âgées grâce à des "logements intelligents"
(smart homes). De nombreuses techniques de vision par ordinateur telles que la détection
d’objets, la mise en correspondance d’images ou la reconnaissance de gestes peuvent être
utilisées pour améliorer la qualité des outils et équipements de ces logements intelligents.
Le travail présenté ici est une première étape dans le partenariat I2ML-LGI2P. Dans le
futur nous voudrions étendre nos méthodes à des applications de détection d’objets et
de reconnaissance de gestes, qui apporteront de réelles innovations pour le maintien des
personnes âgées à domicile.

La mise en correspondance de points d’intérêt constitue l’élément de base dans des
applications telles que la mise en correspondance d’images, la reconstruction 3D, la re-
connaissance d’objets, la réalité virtuelle, l’analyse de mouvements et la génération de
panoramas. Cette méthode permet de retrouver à la fois la position d’un point d’intérêt
et l’intensité de ses caractéristiques en général. Tous les objets réels obéissant à des
contraintes géométriques et radiométriques imposées par les lois de la physique, à chaque
nouvelle correspondance trouvée pour un point d’intérêt, les contraintes associées peuvent
être utilisées pour améliorer l’information sur sa position dans le monde réel.

Etant données deux images de la même scène/objet capturées selon différentes condi-
tions de géométrie et de photométrie, le problème de la mise en correspondance d’images
est de trouver un ensemble de points dans une image qui puisse être identifié comme le
même ensemble de points dans l’autre image. Les méthodes de mise en correspondance
font généralement usage de caractéristiques de voisinage locales (méthodes locales) as-
sociées à ces points. Les méthodes de mise en correspondance basées sur une description
d’ensemble (méthodes globales) sont sensibles aux variations d’arrière-plans, aux occlu-
sions et aux transformations d’images.

Une zone d’intérêt locale (ou caractéristique visuelle) dans une image peut être définie
comme une structure qui varie selon son voisinage local. En vision par ordinateur, les
zones d’intérêt locales sont importantes en ce qu’elles fournissent des points d’intérêt bien
localisés et identifiables individuellement. L’information fournie par les points d’intérêt a
peu d’importance du moment que ceux-ci peuvent être localisés avec précision et stabilité
au cours du temps. Dans une géométrie à vues multiples, l’accent est mis sur la localisation
précise(centre) des points étant donné qu’ils servent à estimer le modèle de la scène.
Pour d’autres applications, les zones d’intérêt locales et leurs descripteurs sont utilisés
comme une représentation robuste d’une image, ce qui permet d’apparier des images, de
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RÉSUMÉ EN FRANÇAIS

reconnâıtre des objets ou des scènes sans passer par une étape de segmentation. Dans ce
cas, les zones d’intérêt n’ont pas besoin d’être localisées de façon précise, leurs statistiques
étant suffisantes pour l’analyse.

La construction d’un descripteur d’image forme une étape cruciale dans un algo-
rithme de mise en correspondance. Tout d’abord, les zones d’intérêt (points, régions)
sont détectées et utilisées pour représenter une image par des structures locales bien
définies et contenant des caractéristiques locales extraites du voisinage. Ces structures
géométriques sont ensuite utilisées pour former un descripteur. Il apparâıt ici le besoin
d’un descripteur d’image robuste aux variations géométriques et photométriques. Ainsi,
la mise en correspondance utilisant des descripteurs d’images locaux constitue la base de
notre thèse.

De nombreux descripteurs d’image locaux ont été proposés dans la littérature. De
façon large, on peut les classer en descripteurs basés sur les statistiques du 1er ordre (SIFT,
GLOH, DAISY, MROGH, ...), descripteurs basés sur la réponse de filtres (SURF, local
jets, filtre de Gabor, ...), descripteurs basés sur des statistiques du second ordre, descrip-
teurs basés sur l’intensité (CSLBP, LIOP), et descripteurs binaires (BRIEF, FREAK).
Dans notre thèse, nous nous concentrons sur les descripteurs basés sur la réponse de fil-
tres, et en particulier, sur la réponse de demi-filtres anisotropes. A notre connaissance, les
descripteurs d’image basés soit sur des filtres anisotropes, soit sur des demi-filtres n’ont
pas été explorés dans la littérature.

La plupart des descripteurs basés sur des filtres font usage de filtres spécialement
conçus. Ici, le descripteur est construit en rassemblant la réponse du filtre uniquement
pour des points d’intérêt, et il en résulte qu’il ne capture que vaguement la géométrie de
la région entourant le point d’intérêt. Par conséquent, il ne se montre pas plus performant
que les descripteurs basés sur des gradients d’image (SIFT, DAISY, GLOH). Même s’il
parvient à dépasser les descripteurs basés sur les gradients en utilisant une approche
multi-échelle, il possède alors une grande dimension. Dans cette thèse nous cherchons à
surmonter ce problème en proposant des descripteurs basés sur des demi filtres anisotropes
qui non seulement dépassent les descripteurs connus, mais aussi restent de dimension
similaire à celle de ces descripteurs.

Ce mémoire de thèse est organisé comme suit : le chapitre .1 présente l’état de l’art,
nous y discutons du processus de mise en correspondance d’images et de ses différentes
étapes. Le chapitre .2 est dédié à une présentation des différents filtres isotropes et
anisotropes. Nous explorons aussi la famille des demi filtres anisotropes. Le chapitre .3
introduit le descripteur d’image à faible débit et une nouvelle stratégie de mise en corre-
spondance, le tout étant intégré dans une boucle vidéo. Le chapitre .4 décrit le nouveau
descripteur de fragments d’image RSD-HoG qui montre des performances supérieures à
celles du descripteur faible débit précédent et aux descripteurs issus de l’état de l’art.
Le chapitre .5 propose un descripteur RSD-DoG basé sur des statistiques du second or-
dre. Le descripteur est construit en considérant l’image comme une surface 3D, l’intensité
étant la troisième dimension. Le chapitre .6 conclut cette thèse en mettant en avant les
contributions importantes de cette thèse et propose de nouvelles directions pour le futur.

2 RÉSUMÉ EN FRANÇAIS
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Introduction

Dans le domaine de la vision par ordinateur, la détection de zones d’intérêt ou car-
actéristiques d’images et leur mise en correspondance sont devenues la base d’un grand
nombre d’applications. L’enjeu pour de nombreux chercheurs du domaine est d’étudier
la méthode la plus efficace pour capturer les zones d’intérêt idéales dans une image, d’en
exhiber les propriétés intrinsèques. Une zone d’intérêt peut être définie comme un élément
d’information permettant de résoudre la tâche de calcul dans une application particulière.
Etant donnée l’abondance de la littérature sur les zones d’intérêt ou caractéristiques
d’images, il est impossible de détailler chaque contribution.

D’une façon large, on peut classer les zones d’intérêt dans une image en zones d’intérêt
ou caractéristiques globales ou locales. Les zones d’intérêt ou caractéristiques globales
tentent de représenter l’image entière dans un unique vecteur. Elles parviennent à ex-
traire la structure d’ensemble d’une image, une version grossière des principaux con-
tours et textures de l’image. La plupart des représentations de contours, des descrip-
teurs de formes, des histogrammes couleur et des caractéristiques de textures peuvent
être inclus dans la catégorie des caractéristiques globales [LMB+05]. Ces caractéristiques
globales trouvent leur intérêt dans des zones nécessitant une segmentation grossière des
objets, comme dans le cas d’une reconnaissance de scène et sa classification. Les au-
teurs de [OT06, MWW12, RO09] les utilisent pour la reconnaissance de scènes, et ceux
de [TP91, MN95] pour la reconnaissance d’objets. Ils appliquent ici l’Analyse en Com-
posantes Principales (ACP ou PCA) sur un ensemble d’images modèles et utilisent les
premières composantes principales comme descripteurs. Cependant, comme la méthode
est basée sur des caractéristiques globales, les problèmes de confusion et d’occultation sub-
sistent. Les caractéristiques globales seules n’offrent pas une description complète et dis-
criminante d’une image. C’est pourquoi les auteurs de [LMB+05,MTEF06] en améliorent
les performances par une combinaison de caractéristiques locales et globales pour la de-
scription d’images, la classification et la représentation de scènes, etc.

Dans une image donnée, on trouve des zones d’intérêt ou caractéristiques locales en
abondance, par centaines ou par milliers. Les zones d’intérêt étant extraites de différents
endroits d’une image, elles collectent les principaux contours et textures de l’image en
détail. De plus, étant locales à l’image, elles exploitent différentes caractérisations dans
des différentes situations, montrant ainsi une robustesse aux occlusions et aux confu-
sions. Les coins [HS88], les contours edges [VMDM15c], les gradients [Low04], les courbu-
res [VMDM15c], les jonctions [HZWC14], les crêtes/vallées [HZWC14] et aussi les petits
fragments d’images figurent parmi les zones d’intérêt locales les plus utilisées en vision
par ordinateur. Ces zones d’intérêt locales possèdent la plupart des propriétés discutées
précédemment, elles présentent ainsi de l’importance dans des applications de recon-
naissance/appariement d’objets [VMDM15c,Low04], de suivi de mouvements [VSMM14],
d’indexation et la recherche d’images par le contenu. Les caractéristiques globales et les
caractéristiques locales fournissent une information différente d’une même image, puisque
les régions sur laquelle ces caractéristiques sont calculées varient.
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Processus de mise en correspondance

Notre travail portant sur la mise en correspondance, cette section se focalise sur les
différentes étapes qui forment le processus de mise en correspondance. La mise en corre-
spondance se compose de 4 étapes importantes. Dans la première étape, les détecteurs de
zones d’intérêt sélectionnent des points ou des régions d’intérêt. Puis vient l’échantillonnage
des zones d’intérêt et la construction d’un descripteur. Dans la troisième étape, le de-
scripteur subit différentes opérations de post-processing, et enfin, dans l’étape de mise en
correspondance, différentes mesures de distance et stratégies d’appariement sont utilisées
pour trouver des correspondances robustes. Les différentes étapes sont détaillées ci-après.

Détecteurs de zones d’intérêt

Pour atteindre les meilleures performances en correspondance d’images, recherche d’images
et autres applications, nous utilisons des points d’intérêt localisés à la fois spatialement et
en échelle. D’après [MS04], les paramètres importants qui caractérisent une zone d’intérêt
sont :

1. Le nombre moyen de points de correspondance détectés dans une image selon
différentes transformations géométriques et photométriques.

2. La précision sur la localisation et l’estimation de la région, et

3. Le caractère distinctif de la zone d’intérêt, qui est aussi fonction du descripteur
utilisé.

Le détecteur de coins de Harris [HS88] et le détecteur Hessien sont parmi les détecteurs
de points d’intérêt les plus utilisés. Le détecteur de coins de Harris s’appuie sur la fonc-
tion d’auto-corrélation locale d’un signal, la fonction d’auto-corrélation mesurant les vari-
ations locales du signal sur des fragments d’image, translatés de petits déplacements dans
différentes directions. Une extension du détecteur de Harris aux images couleurs a été
proposée par [MGD98]. Le détecteur Hessien est basé sur une matrice de dérivées secon-
des. Le détecteur recherche des points dans l’image qui possèdent des dérivées importantes
dans deux directions orthogonales. Les détecteurs de Harris et Hessien montrent tous deux
une forte invariance à des variations en rotation, en luminosité et en présence de bruit.
Pour détecter des structures de coin, tous deux utilisent des dérivées gaussiennes calculées
à une certaine échelle, et ne peuvent supporter que de relativement faibles changements
d’échelle. SUSAN [SB97] est un autre détecteur de coin très utilisé dans la littérature. On
peut trouver dans [SMB00] une évaluation des principaux détecteurs de points d’intérêt.

La faiblesse du détecteur de coins de Harris lors de changements d’échelle ou de point
de vue a motivé la communauté de vision par ordinateur à prendre en compte l’approche
espace-échelle pour la détection des zones d’intérêt. Parmi les détecteurs multi-échelle et
affine-invariants importants, on trouve le détecteur Harris-Laplace [MS01,MS04], Laplace
Hessien [MS04], Laplacien de Gaussienne (LoG) [Lin98], différence de gaussiennes (DoG)
[Low04], Harris-Affine [MS04] et Hessien-Affine [MS04], Maximally Stable Extremal Re-
gions (régions extrêmales maximalement stables, MSER) [MCUP02], Intensity Based Re-
gions (régions basées intensité, IBR) [TG04], et Edge Based Regions (régions basées con-
tours, EBR) [TG04]. Tous les détecteurs multi-échelle et affine-invariants utilisent un
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espace échelle linaire gaussien. L’introduction d’un flou gaussien empêche de respecter les
limites naturelles des objets dans les images, et lisse à la fois les détails et le bruit, réduisant
ainsi la précision sur la localisation et le caractère distinctif des zones d’intérêt. Contraire-
ment à cette approche, les auteurs dans [ABD12] utilisent un espace échelle non linéaire
au moyen d’une diffusion par filtrage non linéaire pour la détection des points/régions
d’intérêt.

Pour des applications temps réel, les détecteurs de zones d’intérêt à haute vitesse
deviennent une nécessité. Les détecteurs tels que DoG, Harris, SUSAN et autres ont des
caractéristiques de grande qualité, mais aussi des coûts de calcul importants. Plusieurs
détecteurs de zone d’intérêt sont présents dans la littérature, avec FAST (Features from
Accelerated Segment Test) [RPD10], SURF (Speeded-Up Robust Features) [BTG06] et
CenSurE [AKB08].

Descripteurs de zones d’intérêt

Une fois les points/régions d’intérêt obtenus, l’étape suivante dans le processus de mise en
correspondance est d’extraire les caractéristiques des régions autour des points d’intérêt.
Ces caractéristiques sont encodées pour former un identifiant unique ou une signature, que
l’on peut ensuite utiliser pour une correspondance avec des points d’intérêt dans d’autres
images. Ces identifiants ou signatures utilisés dans un but de mise en correspondance sont
appelés des descripteurs d’image. La construction d’un descripteur demande de saisir les
caractéristiques visuelles des pixels dans une région support autour d’un point d’intérêt.
Les caractéristiques peuvent provenir de valeurs en niveaux de gris ou en couleurs de la
région, texture ou géométrie de la région support. Le but est de représenter ces car-
actéristiques d’une façon compacte et discriminante, pour pouvoir utiliser le descripteur
dans des applications variées.

Un grand nombre d’algorithmes de description d’images a été proposé dans la littérature.
De façon large, on peut classer les descripteurs en 5 catégories : 1. les descripteurs basés
gradient, 2. les descripteurs basés réponse de filtre, 3. les descripteurs basés sur des struc-
tures locales d’intensité, 4. les descripteurs basés sur des statistiques du second ordre et
5. les descripteurs binaires.

Les descripteurs basés gradient sont obtenus en extrayant le gradient en chaque pixel
de l’image. Parmi les descripteurs basés gradient connus, citons Histogram of Oriented
Gradient(HoG) [DT05] et ses variantes Pyramid HoG [BZM07], Histogram Of Flow (HOF)
[LMSR08] qui fait usage de l’information de mouvement, HOG3D [KMS08] utilisé pour
les données volumétriques, et Compressed HoG (CHOG) [CTC+12]. Un autre descripteur
très utilisé est le descripteur Scale Invariant Feature Transform (SIFT) [Low04, Low99]
et ses dérivés GLOH [MS03], DAISY [TLF10], PCA-SIFT [KS04], Mirror and Inversion
invariant generalization for SIFT descriptor (MI-SIFT) [MCS10], 3D-SIFT [SAS07a], Op-
ponentSIFT [vdSGS08] et d’autres encore.

Dans le domaine de la vision par ordinateur, la réponse d’un filtre ou une banque
de filtre a été utilisée abondamment. Les filtres de Gabor, les filtres orientables (steer-
able filters), les ondelettes de Haar ont pris de l’importance dans la mise en correspon-
dance d’images et dans la recherche d’images par le contenu. Le très connu descripteur
SURF [BTG06] et ses extensions utilise des ondelettes de Haar à la base. Parmi les
descripteurs basés sur la réponse de filtres, on trouve SURF et ses variantes Upright
SURF (U-SURF) [AKB08], Affine invariant SURF (ASURF) [PLYP12], N dimension
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SURF (NSURF) [FZA+11], Gauge SURF (GSURF) [ABD13], Global SURF [CLB10],
Top-SURF [TBL10] et d’autres.

Les descripteurs basés intensité utilisent les valeurs d’intensité autour d’un point
d’intérêt pour générer le descripteur. Une des méthodes les plus simples et les plus
connues est la méthode Local Binary Pattern (LBP), introduite par Ojala et al. [OPH96,
OPM02a,OPM01] comme opérateur de texture. LBP génère un descripteur à partir d’un
d’un ensemble d’histogrammes d’intensités d’un voisinage local autour de chaque pixel.
Initialement, 8 pixels voisins sont choisis autour d’un pixel. Puis la différence d’intensité
entre le pixel central et chacun des 8 voisins est calculée, et selon un test binaire, la valeur
1 est assignée au pixel voisin si la différence d’intensité est positive, la valeur 0 sinon. Les
descripteurs basés sur LBP sont simples mais efficaces. Pour cette raison ils parviennent
à supplanter SIFT, SURF et leurs variantes. De nombreuses variantes de LBP ont été
proposées, Center Symmetric Local Binary Pattern (CSLBP) [HPS06], Multi-block LBP
descriptor [ZCX+07], Three-Patch LBP descriptor (TPLBP) [WHT08], Four-Patch LBP
descriptor (FPLBP) [WHT08], volume LBP (VLBP) [ZP07], Fuzzy Local Binary Pattern
(FLBP) [IKM08], opponent color LBP (OCLBP) [MP04a] pour en citer quelques-uns.

Les facteurs externes tels que les variations temporelles de luminosité, de luminosité
dépendant du point de vue, les ombres, les variations des paramètres de caméras, la
réponse non linéaire des caméras, etc. provoquent des variations lumineuses complexes.
Des descripteurs comme SIFT, SURF, DAISY qui sont invariants à un saut d’intensité
ou à des changements de luminosité affines ne parviennent pas à traiter des variations
lumineuses complexes. Pour pallier à cela, certains auteurs utilisent un ordre relatif des
intensités plutôt que les intensités originales. Les descripteurs basés sur ce concept les plus
connus sont Ordinal Spatial Intensity Distribution (OSID) [TLCT09], MROGH (Multi-
Support Region Order-Based Gradient Histogram) [FWH12], MRRID (Multi-Support Re-
gion Rotation and Intensity Monotonic Invariant Descriptor) [FWH12] et Local Intensity
Order Pattern (LIOP) [WFW11].

En vision par ordinateur, il existe des travaux conséquents sur la prise en compte de
la courbure dans les tâches de reconnaissance d’objets, de recherche d’images, de mise
en correspondance, etc. On peut trouver de tels descripteurs utilisant l’information du
second ordre dans [MEO11,FB14,Zit10a,HZWC14,RBS09].

Avec l’augmentation de la taille des bases de données d’images et l’avènement d’appareils
mobiles dotés de caméras, une nouvelle branche de la vision par ordinateur est apparue,
équipant les appareils mobiles tels que smartphones et tablettes, ou portables tels que
Google Glass, Microsoft Hololens, qui requièrent des systèmes de vision précis et effi-
caces en calcul. Les applications utilisant des algorithmes sur des plateformes mobiles
de réalité augmentée sont confrontées à des mémoires limitées et de faibles capacités de
calcul. C’est là où les descripteurs binaires deviennent une alternative aux descripteurs
en nombres réels.

L’idée principale est que chaque bit est indépendant et que la distance de Hamming
peut servir de mesure de similarité. Généralement, les descripteurs binaires sont construits
en trois étapes. La première étape consiste à choisir un modèle d’échantillonnage. Ce
modèle montre exactement où échantillonner les points dans une région autour du point
considéré. Vient ensuite l’étape où une orientation est assignée au point d’intérêt, afin
d’obtenir une invariance à la rotation. Dans la dernière étape, des paires d’échantillons
sont choisies pour construire le descripteur final. Parmi les descripteurs binaires les plus
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utilisés, on trouve BRIEF [CLSF10], ORB [RRKB11], BRISK [LCS11], FREAK [AOV12],
LDB [YC12].

Post-processing

Le post-processing est une étape limitée mais importante du processus de mise en corre-
spondance. Dans certains cas, cette étape décide de la dimension finale des descripteurs.
L’un des inconvénients majeurs des descripteurs à valeurs fractionnaires réside dans leur
grande dimension. Ceci limite les performances des techniques de mise en correspon-
dance en termes de vitesse et d’extensibilité. Des méthodes telles que l’Analyse en Com-
posantes Principales (PCA), la transformation de Walsh-Hadamard et d’autres, ont été
proposées pour réduire la dimensionnalité. Des schémas de compression ont également
été proposés pour réduire le débit des descripteurs en virgule flottante. Chandrashekar
et al. [CTC+12] ont proposé un descripteur faible débit appelé Compressed Histogram of
Gradient (CHoG).

La mise en correspondance et la reconnaissance d’objets dans des environnements non
contrôlés, tels que ceux où la luminosité varie, est l’un des verrous pour les systèmes
pratiques de vision par ordinateur. Certains algorithmes de vision tentent de surmonter
le problème en normalisant le vecteur descripteur. Dans la phase finale de construction du
descripteur SIFT, le vecteur est modifié pour réduire les effets de variations de luminosité.
Au départ le vecteur est normalisé à la longueur unité, et les variations de contraste font
que chaque valeur de pixel est multipliée par une constante. En conséquence, le gradient
est lui aussi multiplié par la même constante. La normalisation annule ce changement
de contraste. On réduit encore l’influence des grandes valeurs du gradient en seuillant
les valeurs dans le vecteur unitaire à la valeur maximale de 0,2 et en renormalisant à
l’unité. Presque tous les descripteurs mentionnés précédemment suivent cette procédure
de normalisation avec ou sans seuillage.

Mise en correspondance de descripteurs

Le vecteur-descripteur une fois obtenu, l’étape suivante consiste à l’utiliser pour la mise
en correspondance ou la recherche d’images dans une base de données. En général, les dis-
tances utilisées en vision par ordinateur sont des fonctions mathématiques connues. Dans
le cas de la mise en correspondance, la distance est une mesure qui classifie un appariement
correct ou non. Suivant l’application et les capacités de calcul, une métrique appropriée
est choisie. Les plus courantes sont la distance euclidienne [Low04], la distance de Haus-
dorff [DJ94], la distance de Jaccard [Zit10b], la distance de Mahalanobis [VSMM14].
Parmi les autres mesures de distance, citons la distance de Chebyshev, la distance de
Hellinger, la distance de Manhattan, la norme L1, la distance de Canberra, la distance de
Bray Curtis et la distance de Kullback Leibler.

Demi filtres

Notre travail se consacrant principalement à la description d’images au moyen de réponses
de filtres, nous commençons par présenter les filtres isotropes et anisotropes en général,
avant de discuter des demi filtres anisotropes utilisés dans cette thèse.
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Le filtre gaussien isotrope connu aussi comme l’opérateur de lissage gaussien est un
opérateur de convolution 2-D. La première application du filtre gaussien est de flouter
les images et de supprimer le bruit. La plupart des méthodes de mise en correspondance
lissent la région autour du point d’intérêt avant de construire le descripteur. Un des autres
opérateurs basés sur une gaussienne est le laplacien de gaussienne (LoG). Ce filtre a été
initialement proposé par [MH80] pour détecter les contours à une échelle particulière.
Pour cela, l’image subit un lissage à l’aide d’une gaussienne G, puis un filtrage laplacien.
Ces deux étapes forment l’opérateur laplacien de gaussienne (LoG).

Bien que l’opérateur LoG soit précis, il est très coûteux en calculs. Une approxima-
tion de l’opérateur LoG appelée différence de gaussiennes (DoG) est proposée dans la
littérature. De façon similaire au LoG, l’image est lissée par une convolution avec un
noyau gaussien Gσ1(x, y) de largeur σ1 et d’autre part avec un noyau gaussien Gσ2(x, y)
of width σ2. Le DoG est défini comme la différence des deux images filtrées par des
gaussiennes. Shen et Castan ont proposé un opérateur basé sur les critères de Canny
incluant la détection et la localisation. En pratique, les deux filtres sont basés sur des
filtres exponentiels, et ont des comportements similaires.

Un inconvénient des filtres isotropes est leur perte de précision en matière de descrip-
tion de zones d’intérêt, de filtrage d’images, de détection de contours et d’autres structures
géométriques. D’un autre côté, les méthodes de détection de contours utilisant des ban-
ques de filtres orientés donnent des résultats précis. Par leurs multiples orientations, ces
filtres sont capables de détecter des caractéristiques visuelles telles que les arêtes, les con-
tours, etc. Les approches par filtres de Gabor et filtres orientables (steerable filters) sont
les plus utilisées. Les filtres de convolution anisotropes trouvent des applications en fil-
trage adaptatif en les alignant sur des structures d’image locales. On les utilise également
pour la détection de structures en même temps que d’autres types de filtres.

Dans les méthodes qui emploient le filtrage anisotrope, la robustesse au bruit dépend
fortement de deux paramètres, les deux écarts-types de la fonction Gaussienne à 2 di-
mensions. Augmenter les valeurs de ces paramètres rend la détection moins sensible au
bruit, mais alors les petites structures d’image seront considérées comme du bruit et donc
ignorées. Par conséquent, la précision des points détectés décrôıt fortement au niveau du
pixel de coin et pour des objets ayant des contours non linéaires. Ce défaut peut être levé
par l’utilisation de demi filtres anisotropes.

Pour résoudre les problèmes rencontrés avec le filtre anisotrope gaussien, la solution
que nous proposons est de couper un filtre directionnel gaussien en deux parties et ensuite
d’appliquer à l’image les filtres selon différentes orientations. Ces demi filtres ont été
introduits par [MMD11a,MMD11b,MM10,MMP10,MMD11c]. Par construction, le demi
filtre de lissage gaussien n’est pas symétrique dans la direction de son élongation maximale.
Nous nous référons à ce filtre comme demi filtre/noyau anisotrope de lissage gaussien
(Anisotropic Half Gaussian Smoothing Kernel, AHGSK). Le second filtre étudié est obtenu
par différence de deux demi filtres AHGSK et est appelé différence de demi filtres de
lissage (Difference of Half Smoothing Filters, DHSF). Il peut être utilisé pour l’extraction
de statistiques du second ordre, et la détection de crêtes, vallées, jonctions, etc...

La non-symétrie du demi filtre de lissage rend difficile le calcul du gradient via un
tenseur d’orientation. Nous utilisons pour cela un filtre dérivateur dans la direction du plus
petit écart-type de manière à lisser dans une direction et à dériver dans la direction per-
pendiculaire. Ce filtre est appelé demi filtre anisotrope dérivateur gaussien (Anisotropic
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Half Gaussian Derivative Filter, AHGDK). Le filtre de Shen Castan (première partie de ce
chapitre) est modifié pour approximer le filtre AHGDK, il est appelé demi filtre anisotrope
dérivateur exponentiel (Anisotropic Half Exponential Derivative Kernel AHEDK). Le fil-
tre AHEDK affiche des caractéristiques et donne des résultats similaires au filtre AHGDK.
Nous utilisons l’implémentation récursive du noyau exponentiel, qui est d’ordre 1 et est
environ 5 fois plus rapide que l’implémentation récursive du noyau gaussien. Par con-
struction, AHEDK a des caractéristiques de dérivation dans la direction X et de lissage
dans la direction Y.

Mise en correspondance d’images vidéo à l’aide de filtre

tournants

Nous utilisons le demi filtre anisotrope de lissage gaussien (AHGSK) expliqué précédemment
afin d’obtenir une description autour d’un point d’intérêt. Ce filtre est utilisé comme un
descripteur bas débit appelé descripteur de signal tournant (RSD), et est utilisé pour la
mise en correspondance d’images vidéo. Ceci constitue notre première contribution de
thèse.

Dans cette méthode, nous utilisons tout d’abord le détecteur Harris couleur pour trou-
ver les points d’intérêt dans une image. Puis le filtre AHGSK fait un balayage autour de
chaque point d’intérêt pour extraire les caractéristiques couleur sous la forme d’un sig-
nal signature. Nous appelons ce signal signature RSD (Rotating Signal Descriptor). Par
construction, RSD ne présente pas d’invariance euclidienne. Pour cela, nous calculons la
corrélation entre deux signatures par FFT. Une déformation modérée est prise en compte
par une méthode de Dynamic Time Warping (DTW), puis par une vérification en cascade
nous améliorons la robustesse de la mise en correspondance. Au final, notre méthode se
montre invariante aux changements de luminosité, à la rotation, aux petites déformations
et partiellement aux changements d’échelle. De plus, il est possible de contrôler la di-
mension de RSD en jouant sur le pas angulaire du filtre tournant. Notre descripteur avec
une dimension limitée à 12 peut ainsi donner de bons résultats en correspondance. La
faible dimension du descripteur est la principale motivation pour étendre le processus à
des images vidéo. Bien que différente et nouvelle, la méthode possède des inconvénients :

• La méthode de Dynamic Time Warping modifie les signaux signatures. Si la fonction
de contrainte est mal choisie, une correspondance correcte peut être identifiée comme
non correcte et vice-versa. Pour définir une fonction de contrainte globale, il sera
nécessaire d’introduire une phase d’apprentissage.

• La méthode proposée avec la DTW montre une invariance à des déformations affines
modérées.

• La méthode proposée n’est pas invariante aux changements d’échelle.

• RSD étant obtenue par une scrutation angulaire du filtre AHGSK autour du point
d’intérêt (un coin de Harris couleur), l’information extraite est pauvre. RSD utilisé
seul ne peut décrire la géométrie de la région autour du point d’intérêt. Evalué
sur la base d’images standard (en niveaux de gris), le descripteur RSD donne des
résultats médiocres comparés à ceux obtenus avec le descripteur SIFT.
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RSD-HoG

La plupart des descripteurs basés sur des réponses de filtres donnent de mauvais résultats
en comparaison avec les descripteurs basés gradient. Etant obtenus à des points d’intérêts
isolés, ces descripteurs ne capturent pas la géométrie de la région autour du point d’intérêt.
Dans ce chapitre nous nous efforçons d’obtenir un descripteur d’image robuste à l’aide de
demi filtres anisotropes. Notre descripteur peut être considéré comme une combinaison
des descripteurs basés sur le gradient, la courbure et les réponses de filtres. Nous intégrons
la réponse du demi filtre gaussien (RSD) dans un histogramme de gradients orientés, d’où
le nom RSD-HoG. Dans ce descripteur :

• Tout d’abord nous normalisons la région autour du point d’intérêt pour obtenir un
fragment d’image (patch) de taille 41× 41. La normalisation apporte l’invariance à
la rotation et l’invariance affine.

• Le fragment d’image est convolué avec AHGDK ou AHEDK et pour chaque pixel
nous obtenons une signature RSD.

• De ce RSD, nous extrayons les angles pour lesquels le maximum et le minimum sont
obtenus. Nous extrayons la réponse du filtre à ces valeurs d’angle. Cette procédure
est appliquée à tous les pixels du fragment d’image.

• Enfin, comme pour HoG, nous calculons l’histogramme de ces angles pour former
le descripteur RSD-HoG.

• Nous utilisons différentes combinaisons d’angles et construisons différentes variantes
de RSD-HoG.

• Nous utilisons la base d’images standard et le protocole standard du groupe de
recherche d’Oxford 1.

• Nous utilisons la courbe (1-précision, rappel) [MS03] pour évaluer notre méthode.

Les résultats représentés dans les Fig.4.10, Fig.4.11, Fig.4.12, Fig.4.14 and Fig.4.13
illustrent les bonnes performances de notre descripteur comparé aux descripteurs de l’état
de l’art. Ces courbes montrent aussi l’avantage à utiliser des demi filtres plutôt que des
filtres entiers.

RSD-DoG

En vision par ordinateur, la littérature montre que les statistiques du second ordre ap-
portent une information importante sur l’image. En contribution finale à la thèse, nous
proposons un autre nouveau descripteur basé sur des dérivées du second ordre et appelé
RSD-DoG. Ici, nous traitons chaque fragment d’image comme une surface 3-D, l’intensité
constituant la 3ème dimension. La surface 3-D considérée possède un riche ensemble
de caractéristiques visuelles/statistiques du second ordre telles que les crêtes, les vallées,
les falaises, etc... Ces statistiques du second ordre peuvent être captées aisément par la

1http://www.robots.ox.ac.uk/~vgg/research/affine/
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différence de demi filtres gaussiens tournants. L’originalité de notre méthode réside dans
la combinaison de réponse des filtres directionnels avec l’approche différence de gaussi-
ennes (DoG). La méthodologie mise en oeuvre dans la construction du descripteur est la
suivante :

• Tout d’abord, comme pour RSD-HoG nous normalisons la région autour du point
d’intérêt pour former un patch (fragment) de 41× 41.

• Le patch normalisé est considéré comme un fragment 3-D avec l’intensité comme
3ème dimension.

• Le patch est convolué avec DHSF pour obtenir les signatures à chaque pixel.

• De chaque signature, nous extrayons 2 maxima et 2 minima.

• Nous déterminons les moyennes des maxima et des minima et formons l’histogramme
des angles moyens pour construire le descripteur RSD-DoG.

• Nous utilisons la base d’image standard et le protocole standard du groupe de
recherche d’Oxford2.

• Nous utilisons la courbe (1-précision, rappel) [MS03] pour évaluer notre méthode.

• Par construction notre descripteur montre de bonnes performances lors de variations
de luminosité. Pour illustrer cette propriété, nous l’évaluons sur l’ensemble d’images
2.

Les résultats présentés Fig.5.8, Fig.5.9, Fig.5.10, Fig.5.11, Fig.5.12, Fig.5.13, Fig.5.14
and Fig.5.15 montrent l’avantage de notre méthode en comparaison des descripteurs de
l’état de l’art. Ces courbes illustrent aussi l’avantage à prendre en compte dans les de-
scripteurs les changements de luminosité.

Conclusion

A notre connaissance, les descripteurs d’image basés sur des filtres ou demi filtres anisotropes
n’ont pas été entièrement explorés dans le domaine de la vision par ordinateur. Dans cette
thèse, nous avons présenté de nouveaux descripteurs d’image basés sur une famille de demi
filtres anisotropes qui dépassent en performance de nombreux descripteurs de l’état de
l’art basés sur des statistiques du 1er ordre et des réponses à des filtres. Ce travail peut
être utilisé dans de nombreuses application de vision par ordinateur. Dans cette thèse
trois contributions nouvelles sont proposées.

Dans la première contribution, un nouveau descripteur bas débit appelé RSD a été
discuté. La corrélation par FFT et la méthode DTW permettent d’obtenir l’invariance
à la rotation et une invariance partielle aux déformations et transformations affines.
Ce mécanisme a été étendu à la vidéo. Plusieurs défauts de la méthode ont été mis
en évidence. En seconde contribution, nous avons proposé un nouveau descripteur ap-
pelé RSD-HoG, dont les performances s’avèrent supérieures à la plupart des descripteurs

2http://www.robots.ox.ac.uk/~vgg/research/affine/
2http://zhwang.me/publication/liop/
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courants. Enfin, nous avons introduit un nouveau descripteur basé sur des statistiques
d’image du second ordre. Par construction, ce descripteur se montre invariant à des
changements de luminosité. Il dépasse en performance les descripteurs courants.

Dans le futur, nous aimerions utiliser les descripteurs présentés ici dans des applications
de recherche d’images et de vidéos par le contenu. Par manque de temps, les descripteurs
proposés n’ont pas été utilisés dans des applications telles que la détection d’objets ou la
reconnaissance de gestes qui pourraient aider les personnes âgées dans leur domicile. Dans
un futur proche, nous aimerions utiliser notre travail dans des applications domotiques
telles que les smart homes.

12 RÉSUMÉ EN FRANÇAIS



Chapter 1

Literature Review

1.1 Image Features

In the field of computer vision, feature detection and matching has become the basis
for many of its application. The challenge for many of the researchers within this field
has been to study the most effective method that could capture the ideal features of
an image, exhibiting its intrinsic properties. In this field, a feature can be defined as a
piece of information required to solve the computational task belonging to a particular
application. As the literature on Image features is vast, it is impossible to address every
contribution in detail. Hence, we will discuss in short an overview to the image features.
As in [TM07], properties of a good feature is as follows:

1. Repeatability: When we consider two images from the same scene obtained from
different viewing conditions, the features detected under different viewing conditions
should be present in both the images upto a greater extent.

2. Locality: The detected features should be local, so as to reduce the chances of
occlusion and to allow simple model approximations of the geometric and photo-
metric deformations between the two images taken under different viewing condi-
tions [TM07].

3. Informativeness: The region around the detected features should exhibit a greater
variation such that the features can be distinguished and matched easily.

4. Quantity: The quantity of features detected should be large, such that a good
number of features are detected even if the object under consideration is small.

5. Accuracy: The detected features should be localized accurately in space, scale and
shape.

6. Efficiency: It is preferable that the feature detection process is real-time in nature.

1.1.1 Global Features

Features can be broadly classified as global features and local features. Global features
tries to represent the entire image in a single vector. These features succeed in extract-
ing the overall structure of the image, thus exhibiting a poor and coarse version of the

13
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principal contours and textures of the image. Most of the contour representations, shape
descriptors, color histograms and texture features can be included under global features
category [LMB+05]. These features find prominence in areas where a rough segmentation
of an object of interest is involved, as in the case of scene recognition and classification.
Authors of [OT06,MWW12,RO09] use them for scene recognition and [TP91,MN95] use
global features for object recognition. Here, they apply Principal Component Analysis
(PCA) on a set of model images and use the first few principal components as descrip-
tors. However, as this method is based on global features, issues related to clutter and
occlusion continue to exist. Global features alone fail to offer a complete and discrim-
inative description of an image. So, the authors of [LMB+05, MTEF06] enhance the
performance by combining local and global features for image description, scene classifi-
cation/representation and so on.

1.1.2 Local Features

In a given image, local features are found in abundance, ranging from hundreds to thou-
sands. As local features are extracted from different locations in an image, they capture
the principal contours and textures of the image in detail. Additionally, as these features
are local to an image, they exploit different types of features under different situations,
thus exhibiting robustness to occlusion and clutter. Corners [HS88], edges [VMDM15c],
gradients [Low04], curvatures [VMDM15c], junctions [HZWC14], ridges/valleys [HZWC14]
and also tiny image patches are some of the popular local features used in the computer
vision literature. As these features exhibit most of the properties that were discussed
in our previous section, they find importance in applications related to object recog-
nition/matching [VMDM15c, Low04], motion tracking [VSMM14], indexing and content
based image retrieval. Global features and local features provide different information
about the same image as the support region over which these features are computed,
varies. Since our work is related to image matching, this chapter mainly concentrates on
the different stages of an image matching pipeline where, local features play a crucial role.

1.2 Image Matching Pipeline

Image matching pipeline has a series of 4 important stages. In the first stage, key-points
or regions are selected using the feature detectors, followed by the feature sampling and
descriptor construction. In the third stage, the constructed descriptor undergoes various
post-processing operations and finally, in the matching stage, different distance measures
and matching strategies are used for finding the robust matches. In the rest of the chapter
different stages are explained in detail.

1.2.1 Feature Detectors

To achieve better performance in image matching, image retrieval and other applications,
we need feature points that can be localized in both location and scale. According to
[MS04], important parameters that characterize the feature detector are:

1. The average number of corresponding points detected in an image under different
geometric and photometric transformations.

14 1.2. IMAGE MATCHING PIPELINE
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2. The accuracy of localization and region estimation and

3. The distinctiveness of the feature, which is also a function of the descriptor used.

Harris corner detector [HS88] and Hessian detector [Bea78] are some of the popular interest
point detectors. The Harris detector is based on the local auto-correlation function of
a signal, where the auto-correlation function measures the local changes of the signal
in patches, shifted by a small amount in different directions. An extension to Harris
detector for corner detection in color images is proposed by [MGD98]. The Hessian
detector is based on a matrix of second derivatives. The detector searches for image
locations that exhibits strong derivatives in two orthogonal directions. Both Harris and
Hessian detectors show strong invariance to variations in rotation, illumination and image
noise. For detecting the corner structures, both these detectors use Gaussian derivatives
computed at a fixed scale and hence, can be repeated only up to a relatively small scale
changes. SUSAN is another popular corner detector that we come across in the literature
and more information on the same can be found in [SB97]. Evaluation of some of the
interest point detectors can also be found in [SMB00].

Scale Invariant Region Detectors

The failure of Harris corner detector to cope up with the changes in scale had prompted
the computer vision community to consider the scale-space approach for feature detection.
This was first introduced by [Wit83] for representing one dimensional signal at multiple
scales. Scale space representation for an image is constructed by smoothing the image
with different sized Gaussian kernels. This representation provides a smooth transition
between different scales. But, for a coarser scale value, lot of redundant information can be
found. Fig.1.1, illustrates the scale-space representation. Authors of [CP84] and [BEA83]
used a multi-scale representation based on pyramids. The pyramids were constructed
by successively sub-sampling the finer scale images, followed by a smoothing operation.
The smoothing operation was performed to prevent the aliasing effect on the coarser scale
images. In the pyramid approach, the reduced image resolution resulted in fast processing.
But, matching the image structures in pyramids across different scale S was difficult.
Fig.1.1(b) illustrates the pyramid representation. Recently [LB03] took advantage of both
the approaches by fusing them to form a hybrid scale-space representation. Fig.1.1(c)
shows an oversampled pyramid representation.

Lindeberg [Lin98] proposed a new approach for feature detection along with automatic
scale selection. Automatic scale selection allows to detect interest points in an image, each
with their own characteristic scale. Based on the concept of scale-space and automatic
scale selection, Lindeberg further proposed the use of Laplacian-of-Gaussian (LoG) [Lin98]
and several other derivative based operators for interest point detection. By construction,
the LoG detector is circularly symmetric and detects blob-like structures by searching
for a scale space extremum of a scale-normalized Laplacian-of-Gaussian. One of the
disadvantages of LoG detector is the computational complexity. David Lowe [Low04] came
up with an approximation for LoG by combining the difference-of-Gaussian DoG approach
with that of the hybrid scale-space representation and called it the SIFT detector. In
his approach, the input image is successively smoothed with Gaussian kernels and is
sampled. Later, he subtracts the two successive smoothed images to obtain the difference-
of-Gaussian representation. Thus, the DoG approach is fast and often preferred over LoG.

1.2. IMAGE MATCHING PIPELINE 15
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Figure 1.1: (a) Scale-space representation (b) Pyramid representation (c) hybrid scale-
space representation

(a)Original image (b) Harris Laplace regions (c)Hessian Laplace regions .

Figure 1.2: Image showing the regions extracted using Harris Laplace and Hessian Laplace
region detectors.

In both DoG and LoG detectors, scale coordinates are sampled only at discrete levels and
hence, the accuracy of the detected key-points is not satisfactory. The accuracy of the
detected key-points can be enhanced by interpolating the response at neighbouring scales.

Mikolajczyk et al. [MS01,MS04], combined the Harris operator with the scale-space
mechanism of [Lin98] to form the Harris-Laplace detector. This method constructs two
separate scale spaces for the Harris function as well as the Laplacian. It then uses the Har-
ris function to localize the candidate points at each scale level and captures the points for
which the Laplacian simultaneously attains an extremum over scales. Thus, the detected
points are robust to variations in scale, rotation, illumination and camera noise [MS03].
This approach utilizes strict criterion for interest point detection. As a result, the num-
ber of detected points is very less when compared to that of DoG or LoG. For practical
applications related to object recognition, lesser number of interest points reduces the
robustness to partial occlusion. [MS04], circumvent this by relaxing the strict criterion.
In [MS04], the authors use the same method by replacing the Harris operator with that of
the Hessian operator to obtain the Hessian-Laplace detector. Both Hessian Laplace and
Harris Laplace are also called as blob detectors. Fig.1.2 shows the key-regions detected
using both Harris and Hessian Laplace detectors.

16 1.2. IMAGE MATCHING PIPELINE
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(a)Hessian Affine (b) Harris Affine (c)MSER regions (d) EBR regions.

Figure 1.3: Image showing the regions extracted using Hessian affine, Harris affine, MSER
and EBR region detectors.

Affine Covariant Region Detectors

The above mentioned methods can only extract local features exhibiting invariance to
changes in scale. In reality, we also have to consider changes in view point (projective
transform). Some researchers used perspective correction to achieve affine invariance.
They worked on the assumption that, the scene under consideration is locally planar
and affine invariance is achieved by estimating and correcting for the perspective distor-
tion that a local image patch undergoes when viewed from a different viewpoint. This
procedure is highly cumbersome and produces inaccurate results. Recently, many re-
searchers [MCUP02, SZ02,TG00] have shown that this process can be replaced by local
affine approximation.

Harris-Laplace and Hessian-Laplace detectors can be extended to extract affine re-
gions [MS04]. The extensions makes use of an iterative scheme and is initialized with a
circular region returned by the original Harris-Laplace or Hessian-Laplace detector. In
each of the iteration, the region’s second-moment matrix is updated and the eigenvalue
of this matrix is computed. This gives an elliptical shape that corresponds to local affine
deformation. Finally, the image neighbourhood is transformed in such a way that, the
ellipse is transformed into a circle and, the location and scale estimate is updated in the
transformed image. This procedure is repeated until the eigenvalues of the second-moment
matrix are approximately equal. Finally, the iterative scheme produces elliptical regions
adapted to the local intensity patterns, so that the same object structures are covered
despite the deformations caused by viewpoint changes. Fig.1.3 (a) and (b) illustrates the
affine regions extracted using both Hessian and Harris detectors.

Matas et.al [MCUP02] approaches the problem of affine feature/region detection from
a segmentation perspective. They use watershed segmentation algorithm and extract
homogeneous intensity regions that are stable over a large range of thresholds. Thus,
ending up with Maximally Stable Extremal Regions (MSER). These MSER are sta-
ble under different imaging conditions and can be captured under different viewpoints.
In [RM03,MREM04], super-pixels obtained using normalised cuts are used as regions for
feature extraction and since all the super-pixels extracted from an image have similar
scales, this method is not scale invariant. Some of the other affine feature/region detec-
tors present in the literature are Intensity Based Regions (IBR) [TG04] and Edge Based
Regions (EBR) [TG04]. Authors of [KB01] proposed salient regions detector which was
extended to affine covariant extraction by [KZB04].

All of the above mentioned scale and affine invariant detector use linear Gaussian scale

1.2. IMAGE MATCHING PIPELINE 17
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space for feature detection. Gaussian blurring fails to respect the natural boundaries of
objects and smooths the details and noise to the same extent, reducing localization accu-
racy and distinctiveness. Contrary to this approach, authors in [ABD12] use non-linear
scale space by means of non-linear diffusion filtering. By doing so, they make blurring
locally adaptive to the image data by reducing noise and retaining the object boundaries
as well as obtaining superior localization accuracy and distinctiveness. They accelerate
the non-linear scale-space construction process by using efficient Additive Operator Split-
ting (AOS) techniques and variable conductance diffusion. Binaries for some of the above
discussed detectors can be found in 1.

Real Time Feature Detectors

For real time applications, high speed feature detectors have become a necessity. Feature
detectors such as DOG, Harris detector, SUSAN and others yield high quality features.
However, they are computationally very expensive. Authors of [RPD10] use machine
learning approach for corner detection and call this detector as FAST (Features from
Accelerated Segment Test ), as it uses accelerated segment test for feature detection. This
detector exhibits real time tendencies along with high levels of repeatability. However, it
is not robust to high noise levels and is dependent on a threshold. Authors of [MHB+10]
enhanced the Accelerated Segment Test used in the FAST detector by making it more
generic while increasing its performance. This was achieved by finding the optimal decision
tree in an extended configuration space and demonstrating how specialized trees can be
combined to yield an adaptive and generic accelerated segment test. The resulting method
provides high performance for arbitrary environments.

Authors of [BTG06] proposed a new detector-descriptor combination called the SURF
(Speeded-Up Robust Features). This detector is based on the Hessian matrix, but uses
very basic approximations. It makes use of integral images to reduce the computational
time and is called as Fast-Hessian detector. Fig.1.4 illustrates the key-regions obtained
using FAST detector. Agrawal et al. proposed a simple but fast and efficient feature detec-
tor called CenSurE [AKB08]. CenSurE uses a simple approximation of bi-level Laplacian
of Gaussian (BLoG) and exhibit better repeatability property than that of SIFT. They
make use of Difference of Boxes (DoB) and Difference of Octagons (DoO) to get a better
approximation of BLoG. Additionally, these filters can be implemented very efficiently
using integral images. They show that their approach is 3 times faster than the SURF
detector. Since filter response are computed for all pixels and at all scales, they argue
that, at larger scales CenSurE is more accurate than SIFT and SURF. Fig.1.4 illustrates
the key-regions obtained using SURF detector.

Performance Evaluation

Over the last few decades, many approaches have been proposed for interest point de-
tection. To evaluate these detectors, various performance evaluation criteria and test
data has been proposed. Some of the initial comparison methods can be found in
[DN81, KR82, OAZ]. Among the recently proposed evaluation methodologies, the re-
peatability criterion as proposed by Schmid et al. [SMB00] stands out. The repeatability
score for a given image pair is calculated as the ratio between the number of point-to-point

1https://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html
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(a)SURF regions (b) FAST features .

Figure 1.4: Image showing the regions extracted using Hessian affine, Harris affine and
MSER region detectors.

correspondences to the minimum number of points detected in the images. While calcu-
lating the repeatability score, only the points located in the portion of the scene present
in both images are considered. Some of the above mentioned detectors are evaluated
and explained in detail in [MS04, SLMS05]. From the comparison between the existing
detectors [MS04,MS03] it is seen that Hessian based detectors exhibit improved stability
and repeatability over their Harris-based counterparts. The determinant of the Hessian
matrix has an advantage over the trace of the Hessian matrix, as it detects less elongated
and ill-localised structures. Also, approximations like the DoG, DoB, Fast-Hessian etc.
may increase the speed but reduces the detection accuracy. Features and properties of
some of the above mentioned detectors are tabulated in Table.1.1.

1.2.2 Feature Descriptors

Once we have obtained the interest points/regions, the next stage in the image matching
pipeline is to extract the features from the support regions around the interest points.
These extracted features are encoded to form an unique identifier or a signature, which
can be used to match the interest points in other images. These identifiers or signatures
used for the purpose of image matching are called as image descriptors. The descriptor
construction requires capturing the image characteristics of the pixels in the support
region around an interest point. These characteristics could be in grey-scale or color
values of the region, texture or geometry of the pooling region. The purpose of the
constructed descriptor is to represent these characteristics in a compact and discriminative
way, so that it can be used for various applications related to image matching [Low04],
image stitching or panorama generation [BL03] , wide baseline matching [Bau00], object
recognition [Low04], image indexing [SM97a], texture classification [LSP05a] and many
more.

The way the image descriptor handles different geometric and photometric transfor-
mation, determines its robustness. An ideal image descriptor should be constructed in
such a way that it is invariant to change in image scale and image rotation. Invariance
to changes in viewpoint can be introduced whenever and wherever affine invariance is
desired. On the photometric aspect, the image descriptor should exhibit invariance to

1.2. IMAGE MATCHING PIPELINE 19
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Corner Blob Region Rotation
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Scale in-

variant

Affine

invari-

ant

Repeatability Localization

accuracy

Robustness Efficiency

Harris X X +++ +++ +++ ++

Hessian X X ++ ++ ++ +

SUSAN X X ++ ++ ++ +++

Harris-Laplace X (X) X X +++ +++ ++ +

Hessian-

Laplace

(X) X X X +++ +++ +++ +

DoG (X) X X X ++ ++ ++ ++

SURF (X) X X X ++ ++ ++ +++

Harris-Affine X (X) X X X +++ +++ ++ ++

Hessain-Affine (X) X X X X +++ +++ +++ ++

Salient

Regions

(X) X X X (X) + + ++ +

Edge-based X X X X +++ +++ + +

MSER X X X X +++ +++ ++ +++

Intensity-

based

X X X X ++ ++ ++ ++

Superpixels X X (X) (X) + + + +

Table 1.1: Properties of some of the well known interest point detectors [MS04].
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changes in linear as well as non-linear illumination. Additionally, the descriptor should
be robust to errors in feature localization and should be able to handle partial occlu-
sion. When all these transformations are taken into account, the effect of variations in
lightening conditions and camera parameters on the image descriptor becomes negligible.

A vast number of image description algorithms has been proposed in the literature.
Here, we mainly focus in detail on the image descriptors that has been introduced to
characterize scale and affine invariant features. In this context, the image descriptors
can be classified into floating point descriptors and binary descriptors. In the following
section, we discuss some of the popular floating point and binary descriptors.

Floating-point descriptors

Floating point descriptors can be further grouped as

1. Gradient based descriptors(HoG, SIFT and its variants, DAISY, GLOH, MROGH,.....)

2. Descriptors based on filter response (SURF and its variants, RSD-HoG, Gabor filter
Based Local Image Descriptors....... )

3. Descriptors based on local intensity pattern(LBP and its variants, LIOP, OSID,.....)

4. Descriptors based on second order statistic such as curvature, ridges, valleys (HSOG,
Curvature histograms,...)

Gradient based descriptors

HoG

Histogram of Oriented Gradients (HoG) [DT05] was first introduced by Dalal and Triggs
in the year 2005. HoG is based on a simple concept of binning the orientation of the
pixel gradients over a dense grid of overlapping blocks. This was initially introduced for
pedestrian detection. HoG is designed mainly to operate on the raw image data without
introducing filtering artefacts that removes fine details. For the application of pedestrian
detection, they use Raw RGB image with no color correction or noise filtering. There, the
algorithm is based on the sliding window concept and they prefer to use a 64x128 sliding
detector window. Within this detector window, a total of 8x16 or 8x8 pixel block regions
are defined for computation of gradients. For each 8x8 pixel block, using the [−1, 0, 1]
mask in the x and y direction, 64 local gradient magnitudes and directions are computed.
Separate gradients are calculated for each color channel. Local gradient magnitudes are
binned into a 9-bin histogram of gradient orientations, quantizing dimensionality from 64
to 9, using bilinear interpolation. Finally, a normalized unit length value obtained from
the gradient magnitude histogram is used to form the final HoG descriptor.

Many extensions of HoG has been proposed and amongst them is the well known
SIFT descriptor. The SIFT descriptor construction process [Low04] is similar to that of
HoG. Bosch et al [BZM07], combined both the image pyramid representation proposed
by Lazebnik et al [LSP06] and the HoG representation proposed by Dalal et al [DT05] to
form the PHoG descriptor. In their work, the local shape of the image patch is captured
by the distribution over edge orientations within a region and spatial layout by tiling the
image into regions at multiple resolutions. The descriptor is constructed by capturing the
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histogram of orientation gradients over each image subregion at each resolution level and
is used for image classification.

Laptev et al [LMSR08] bins the motion features obtained from optical flow to form
a 90 dimension descriptor called Histogram Of Flow (HOF). Here, the authors define a
3D grid of size 3x3x2 along x,y and z(t) directions respectively, around the encompassing
space-time area and compute for each cell of the grid a 5-bins histogram of optical flow.
This method is used for action recognition in videos. In the same work [LMSR08], they
combine the HOF with HoG to obtain an improved performance for action recognition in
videos.

Klaser et al [KMS08] extended the HoG to 3D where in they proposed a new descriptor
based on histograms of oriented 3D spatio-temporal gradients called HoG3D. In the initial
stage, the support region around a key-point is divided into a grid of gradient orientation
histograms. Each histogram is computed over a grid of mean gradients following which,
each gradient orientation is quantized using regular polyhedrons and each mean gradient
is computed using integral videos. These mean gradients from different regions around a
key point are then concatenated to form the final HoG3D descriptor. This descriptor is
used for action recognition in video sequences. There are different variants of HoG that
have been proposed such as; authors of [CTC+12] compressed the HoG using different
schemes to form compressed histogram of oriented gradients (CHoG) descriptor. Authors
of [WHY09] combined HoG with that of local binary patterns(LBP) for human detection.
Fischer et al [FB14], embed the curvature in the HoG frame work and used it for object
detection and matching. However, their approach gives weak results for image matching.
In our work [VMDM15c,VMDM15b] HoG is used in the descriptor construction stage.

SIFT and its variants

Scale Invariant Feature Transform (SIFT) is one of the widely used image descriptor in
the field of computer vision. It was first introduced by David Lowe in [Low04,Low99] as a
detector and descriptor pair that encodes the image information in a localized Histogram
of Oriented Gradient (HoG) framework. Authors of [MS05] have confirmed that the
SIFT descriptor can also be extracted from other region detectors as explained and have
obtained good performance.

SIFT consists of 5 major stages: (1) Scale-space extrema detection; (2) feature point
localization; (3) orientation assignment; (4) feature point descriptor and (5) Normaliza-
tion. In the first stage, potential feature points are extracted by searching over all scales
and image locations by using the above described DoG operation. The DoG is a close
approximation to the scale normalized LoG, which is essential for true scale invariance.
Thus, the obtained locations corresponds to the most stable features with respect to scale
variances. In the second stage, candidate features are refined by eliminating the features
that have low contrast and that are poorly localized along the edge. Final feature points
are then selected based on the stability measures and are eliminated if unstable. In the
third stage, a dominant orientation is assigned to each feature point based on local image
gradient direction, where histogram of gradient orientations from the feature point neigh-
bourhood is used to determine the dominant orientation. In the fourth stage, a regular
sampling grid of 16x16 located around the key-point is used for sampling. This regular
grid is split into blocks of 4x4 and the information in each block is encoded in the HoG of
8 bins as shown in Fig.1.5. Thus, each block contributes 8 dimensions to the final feature
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(a) (b) (c) (d).

Figure 1.5: (a)SIFT sampling grid (b)Sampling used in FIND (c)RIFT sampling pattern
(d)Circular sampling used in GLOH .

vector. Then, the entries from all the blocks are concatenated to form a feature vector
of dimension 4x4x8= 128 dimensions/length. In the final stage, the 128 dimension vector
is normalized to unit length, thus adjusting for the changes in image contrast. Later,
the complete vector is clamped to a maximum value of 0.2 and is again normalised to
unit length, removing the non-linear illumination changes. Thus, the constructed SIFT
descriptor is invariant to scale, rotation, illumination and partially invariant to affine
changes.

Many variants and extensions are proposed to improve on the existing SIFT descriptor
and one such extension is, the Affine invariant SIFT (ASIFT) [MY09]. Affine invariant
extension of SIFT exhibits complete affine invariance. While, MSER, Harris-affine, and
Hessian-affine normalizes all the six affine parameters, ASIFT simulates three parameters
and normalizes the rest. The scale and the changes of the camera axis orientation are the
three simulated parameters and the other three, rotation and translation parameters are
normalized. More specifically, ASIFT simulates the two camera axis parameters and then
applies SIFT, which further simulates the scale and normalizes the rotation and the trans-
lation. The authors introduce a parameter called transition tilt. This parameter measures
the degree of change in viewpoint from one view to another. Yang et al. [YCWQ14] pre-
sented a new affine-invariant descriptor called the Low-rank SIFT. This is an extension
to the original SIFT descriptor. Unlike ASIFT, this descriptor achieves complete affine
invariance without the need for simulation over affine parameter space. Low-rank SIFT
is based on the observation that, local tilts that are caused by the change in camera axis
orientation, could be normalized by converting local patches to standard low rank forms.
Further, they achieve scale, rotation and translation invariance similar to that of the SIFT
descriptor. This method is mainly applicable only on objects with regular structures.

Flip or flip-like transforms are commonly observed in real world applications due to
artificial flipping or symmetric pattern of an object. In that case, SIFT results in poor
matching performance. Mirror and inversion invariant generalization for SIFT descrip-
tor (MI-SIFT) [MCS10] tries to tackle this problem by operating directly on the SIFT
descriptor and transforming it into a new descriptor that is flip invariant. This can be
achieved by explicitly identifying a group of feature components that are disorderly placed
as a result of flip operation. They label 32 such groups and represent each group with four
moments that are flip invariant. But, this descriptor is not discriminative. Additionally,
from their experiments it is clear that, the MI-SIFT results in more than 10% performance
degradation when compared to SIFT, its for non- flip transformations.
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Figure 1.6: (a)SPIN image sampling pattern (b)DAISY pooling strategy .

Authors of [ZN13] introduce a new descriptor called F-SIFT that preserves the orig-
inal properties of SIFT, while exhibiting flip invariant properties. Initially, the F-SIFT
algorithm estimates the dominant curl of a local image patch and then geometrically
normalizes this image patch by flipping, before computing the SIFT descriptor. They
demonstrate the superiority of this descriptor on applications related to large-scale video
copy detection, object recognition, and detection. FIND [GC10] is another descriptor
that uses overlap partitioning and scans the 8-directional gradient histograms by follow-
ing a predefined order as seen in Fig.1.5. In this method, the descriptors produced before
and after a flip operation are also a mirror of one another. In other words, a descriptor
generated as a result of flip can be recovered by scanning the histograms in reverse order.
Some of the other flip invariant descriptors are found in the literature [XTZ14,GC12].

SIFT descriptor was initially introduced for 2D images and later, the authors of
[SAS07a] have extended this to 3D, in order to address 3D images(volumetric images)
and videos such as MRI data. They call this descriptor 3D-SIFT. Initially, they compute
the overall orientation of the neighbourhood around the key-point. Later, they compute
the sub-histogram which will encode the final 3D SIFT descriptor. Cheung et al. [CH07]
extends the SIFT technique to scalar images of arbitrary dimensions. This process in-
volves using hyper-spherical coordinates for gradients and multidimensional histograms
to create the feature vectors. This is used to determine accurate point correspondence
between pairs of medical images (3D) and dynamic volumetric data (3D+time).

SIFT can find matches between images that have unique local neighbourhoods. But, it
fails to deal with the images that have multiple similar regions. The reason for such a fail-
ure is that it doesn’t take into account, the global information around the key-point. The
authors of Global SIFT [MDS05] augment the SIFT descriptor with global context vec-
tor that contains curvilinear shape information from a much larger neighbourhood. This
increases the robustness to deal with 2D non-rigid transformations, since the points are
more effectively matched individually at a global scale rather than constraining multiple
matched points that is to be mapped via a planar homography [MDS05] .

The various SIFT extensions that are discussed in previous paragraphs, are designed
mainly for grey scale images while neglecting the color information of the objects. So,
when two objects of different color are matched they may be considered as same. How-
ever, by introducing color information as a feature, one would improve the matching and
object recognition tasks. To leverage the benefits offered by the color components, some
researchers have extended the SIFT descriptor to color images. Authors of [BZM08] com-
pute the SIFT descriptor over Hue (H), saturation (S) and Value (V) channels. This
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results in a descriptor of length 384 and 128 dimensions per channel. The properties of
the H and S channels such as, scale invariance and color shift invariance are incorporated
into this descriptor. However, invariance to light color changes are restricted to only the
V portion of the descriptor. But, the problem faced with this is that, hue is unstable at
low saturation. Van de Weijer et al. [vdWGB06] fuse the histogram of the hue channel
with the SIFT descriptor. By doing so, they are able to address the instability of the
hue around the grey axis. Thus, the obtained HueSIFT descriptor is scale-invariant and
invariant to shift color changes where the SIFT component of the descriptor is invariant
to illumination color changes. Authors of [vdSGS08] extract SIFT features from differ-
ent color spaces such as Opponent color space to form OpponentSIFT descriptor and
transformed color model to form the Transformed color SIFT descriptor.

Authors of [BL02] used a combination of SIFT along with the normalised RGB model,
which achieves partial illumination invariance in addition to its geometrical invariance.
But, the primitive color model used limits the color invariance property of the descriptor.
The authors of [AF06] propose an extension for SIFT descriptor in a color invariant space,
called ColoredSIFT. Thus, the obtained descriptor is more robust than the conventional
SIFT descriptor for color and photometrical variations which is achieved by using the color
invariance model proposed by Geusebroek et al. [GvdBSG01] and geometric invariance
by constructing the SIFT descriptor in the color invariant space. Brown et al. [BS11]
introduce multi-spectral information to the SIFT descriptor and use it for scene category
recognition.

Large computation complexity of the SIFT detector and descriptor pair has posed
great challenges for real time/embedded implementations. To deal with real time scenario,
Zhong et al [ZWY+13]. introduced a new SIFT architecture, by integrating it into FPGA
and DSP. Here, the FPGA architecture for the feature detection step in SIFT is optimized
and further they optimize the implementation of the description stage by using a high-
performance DSP. By doing this, they are able to achieve real time performance. Acharya
et al. [AB13] propose a parallel implementation of SIFT using GPU from which they
achieve a frame rate of 55 Frames Per Second, for an image of size 640 x 480. The
reason for such an increase in frame rate is, the introduction of a novel combined kernel
optimization stage. Another real time implementation of SIFT is VF-SIFT [ARG10].

SIFT and its variants have found importance in many applications such as scene
recognition [FBA+06,MP04b,RLD07,VvHR05,YC07,SAS07b,GL06], image registration
[ZCSS13, CSS09, GXXS13, GSSF13], image mosaic [ZR14], object recognition [Low99,
NPH+13,AWRG08,PWF09,PPC12], texture recognition, image retrieval [PPC12,YYQW11],
robot localization, video data mining, building panoramas, and object category recogni-
tion, face recognition and many more. As the original SIFT descriptor is closed source, a
few open source libraries like OpenSIFT 2 , VLFEAT 3, and an open implementation of
SIFT 4 are available on the web.

Unlike SIFT and its variants which use rectangular/square partition grid, RIFT [LSP05b]
uses a partitioning scheme by dividing a region along the log-polar direction, as shown in
Fig.1.5. As in SIFT, the 8-directional histograms are computed for each division and then
concatenated to form the RIFT descriptor. As the partition scheme is flip and rotation

2http://robwhess.github.io/opensift/
3http://www.vlfeat.org/
4http://web.eecs.umich.edu/~silvio/teaching/lectures/sift.html
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invariant, RIFT is not sensitive to order of scanning. The spatially loose representation of
features has resulted in a RIFT descriptor that is less distinctive than that of SIFT. The
authors of [LSP05b] improve on the RIFT by proposing SPIN descriptor as in Fig.1.6.
The SPIN preserves the flip invariant property while encoding more spatial information
from a region as a 2D histogram of pixel intensity and distance from the center of the
region [LSP05b].

To increase the robustness and distinctiveness of the SIFT descriptor, Mikolajczyk et
al. [MS03] propose an extension to SIFT and RIFT descriptor called GLOH (Gradient
location orientation histogram). Unlike the SIFT descriptor which uses the square grid
of 4x4, GLOH uses log-polar location grid with three bins in radial direction (the radius
set to 6, 11, and 15) and 8 in angular direction, which results in 17 location bins [MS03].
The GLOH sampling pattern is shown in Fig.1.5. Further, the gradient orientations are
quantized in 16 bins. This results in 272 bin descriptor. By using the PCA step, they
further reduce the descriptor size to 128.

Another popular descriptor which is an extension of SIFT, is the shape context de-
scriptor [BMP02]. Unlike SIFT, which is based on gradient orientation histogram, shape
context descriptor is based on the 3D histogram of the edge point location and orienta-
tions. Initially, Canny edge detector is used to extract the edges. The region around the
key-point is quantized into nine bins using a log-polar coordinate system as displayed, with
the radius set to 6, 11, and 15 and the orientation quantized into four bins (horizontal,
vertical, and two diagonals). This results in a 36 dimensional descriptor.

For dense matching, Tola et al. [TLF10] propose a variant of SIFT and GLOH descrip-
tor called DAISY. For wide-baseline applications, DAISY yields much better results than
the pixel and correlation-based algorithms that are commonly used in narrow baseline
stereo matching. Similar to SIFT, DAISY descriptor is a 3D histogram of gradient loca-
tions and orientations. Unlike SIFT, which uses weighted sums of gradient norms, DAISY
uses the convolutions of gradients in specific directions with several Gaussian filters. As
the histograms need to be computed only once per region and it can be reused for all
neighbouring pixels, this approach results in efficient computation of the DAISY descrip-
tor. While SIFT uses rectangular grid for sampling and GLOH uses circular grid, DAISY
combines the two sampling approach to form the DAISY sampling/binning strategy as
shown in the Fig.1.6.

Initially, for a given input image, a certain number of orientation maps, one for each
quantized direction, are computed. Each orientation map represents the image gradient
norms for that direction at all pixel locations. The orientation map is then convolved
several times with Gaussian kernels of different standard deviation values, to obtain the
convolved orientation maps. Since the Gaussian filters are separable, the convolutions
can be implemented very efficiently. Hence, the DAISY descriptor is very efficient. In
this method, the region around each pixel is divided into circles of different sizes, located
on a series of concentric rings as shown in Fig.1.6. The radius of each circle is in propor-
tion to its distance from the central pixel, and the standard deviation of Gaussian kernel
is in proportion to the size of the circle. For each circle, an intermediate descriptor is
constructed by gathering the values of all the convolved orientation maps with the corre-
sponding Gaussian smoothing. Finally, all the intermediate descriptors are concatenated
and normalized to unity, to form the final descriptor.
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Descriptors based on filter response

In the field of computer vision, response from a filter or a bank of filters has been used
in abundance. Gabor filters is one of the most popular filter used in applications related
to face recognition, image matching, texture retrieval, classification, medical imaging
and many more. Filters such as Haar filters/wavelets have found importance in image
matching and in content based image retrieval. The popular SURF descriptor and its
extensions, use Haar wavelets as its basis. Isotropic Gaussian, anisotropic Gaussian, half
Gaussian, Eigen-filters, wavelet transforms etc has been used in feature detection. But,
in this section, we mainly concentrate on image descriptors based on filter response.

SURF and its variants

Another popular floating point detector-descriptor combination was proposed by Bay et al.
[BTG06] called, the Speed Up Robust Features (SURF). Unlike SIFT, which exhibits high
complexity and dimensionality, SURF exhibits low complexity with a reduced dimension
of length 64. Like the SIFT algorithm, the SURF algorithm is a combination of detector
and descriptor stages. The detector stage is made of the Hessian matrix approximation
and an integral image which speeds up the feature detection process. The SURF detector
uses four steps.

1. To speed-up the feature detection process, the detector stage uses integral images.

2. To determine the interest points, it uses an approximation of the Hessian matrix.
Then, the maxima of the determinant is used for detecting the blob like structures.

3. To achieve scale-space representation, Gaussian approximated filters as shown in
Fig.1.7 are adapted at each level of the filter size in scale space.

4. In the feature localization step, feature detection is performed using non-maxima
suppression over three successive scales. The points that have the maxima of the
determinant of the Hessian matrix are considered as feature points.

In the SURF descriptor construction, initially an orientation is assigned to the feature
point. The orientation is computed by detecting, the dominant vector of the summation
of the Gaussian weighted Haar wavelet responses under the sliding window split circle
region by pi/3 [BTG06]. The final resulting descriptor is based on the sum of Haar
wavelet responses. The region around the key-point is then split into smaller 4x4 sub-
regions. From each sub-region, the horizontal Haar wavelet response dx and the vertical
Haar wavelet response dy are extracted at 5x5 regularly spaced sample points. Then a
final 64 length SURF vector D = (

∑

dx,
∑

dy, |
∑

dx |, |
∑

dy |) is formed. Applying
some restrictions, few extensions of the SURF descriptor such as SURF-36 and SURF-128
can be formed.

Like SIFT, SURF doesn’t exhibit affine invariance properties. Pang et.al [PLYP12]
propose an affine invariant version of the SURF descriptor called A-SURF. The concept
of A-SURF is similar to that of ASIFT where both algorithms simulate two camera axis
parameters. But, unlike A-SIFT, A-SURF algorithm uses a faster version of SURF. In
applications where the camera remains more or less horizontal, the rotation invariance
can be neglected. For such applications, Bay et al. [BTG06] propose a variant of SURF
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(a) (b) (c) (d) .

Figure 1.7: (a),(b) Discretized Gaussians (c), (d) Approximations used in SURF .

descriptor which is not rotation invariant and calls this as Upright SURF (U-SURF). U-
SURF can be considered as SURF with out rotation invariance. Since rotation invariance
is absent, U-SURF is faster than SURF. Agarwal et al. [AKB08] propose a modified
version of U-SURF called a modified Upright SURF (MU-SURF) descriptor. For each
detected feature at a scale S, MU-SURF uses Haar wavelet of size 2S, to accumulate the
responses in the horizontal and vertical direction for a 24S x 24S region. This region
is further divided into 9S x 9S subregions, with an overlap of 2S. The Haar wavelet
responses in each subregion is weighted with a Gaussian centred on the subregion center.
Then they follow the SURF approach for descriptor construction. Due to the overlap
of the subregions and Gaussian weighting, MU-SURF handles boundaries better than
U-SURF.

The original SURF descriptor is basically for 2-D images. For volumetric image data
in medical imaging applications, Feulner et al. [FZA+11] extend the SURF descriptor to
arbitrary number of dimensions called N-SURF. Initially, they generalize the concept of
Haar-filters and rectangle filters to N dimensions. As in SURF, the image is sampled
on a regular grid around an interest point. The samples are then split into b bins per
dimension, resulting in bn bins. For each sample, the gradient is approximated with N
Haar-filters that are weighted with an N dimension Gaussian, centred at the interest
point. From each bin, they extract a feature vector and concatenate the vector from all
bins to form the final descriptor. Thus, the final descriptor has a dimension of 2NbN .
The standard SURF approach for assigning canonical orientation to the interest point
cannot be directly generalized to more than two dimensions. To deal with this situation,
gradient approximations are extracted inside a spherical region of radius (r = 6s) around
a key-point, as in the original SURF. The final orientation is then determined using this
set of gradients.

Although the SURF descriptor has succeeded in representing the nature of some un-
derlying image patterns, it shows poor results while representing complex patterns. In
P-SURF [LYH11], the authors improve on this aspect of the original SURF descriptor by
introducing phase space to capture more structure information of local image patterns. In
phase space, a single region represents a kind of relationship that exists between intensity
changes. By building histograms on such regions, these relationships can be quantized. P-
SURF consists of two stages: the feature representation for independent intensity changes
and coupling description for these intensity changes. Now, they introduce phase space to
model the relationship between the intensity changes and propose several statistic metrics
for quantizing these relationships to meet practical demands [LYH11].
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SURF, basically being a local image descriptor, fails to recognise the repetitive pat-
terns. To help distinguish between the repetitive patterns in an image, Carmichael et
al. [CLB10] proposed a framework for augmenting a SURF descriptor with a global con-
text vector. They propose to compute the global context of a SURF feature-point with
a technique that is similar to the one used in Global SIFT [MDS05] as explained in our
previous section.

SURF descriptor is sensitive to rotation and viewpoint changes due to the gradi-
ent method used in the description stage of SURF. To overcome these limitations and
to enhance the matching accuracy of the SURF algorithm, Kang et al. [KCL15] pro-
pose a modified SURF algorithm called MDGHM-SURF. Their approach is based on the
Modified Discrete Gaussian–Hermite Moment (MDGHM), which uses a movable mask to
represent the local feature information of a non-square image. Unlike SURF which uses
first order derivative, MDGHM offers more feature information than SURF. In the initial
stage, as in SURF, they use the integral images. In the detector step, the Hessian matrix
is replaced with the MDGHM matrix that obtains more geometrical information from
neighbours to detect more distinctive features. Later, in the scale-space representation
step, they approximate the MDGHM matrix to reduce computation. The interest point
localization step is similar to that of the conventional SURF, excepting for a replacement
of the determinant of the Hessian matrix with the determinant of the MDGHM matrix.
In the descriptor generation stage during the orientation assignment, they replace Haar
wavelet response with MDGHM to represent the feature information more precisely. The
remaining stages of the MDGHM algorithm is similar to that of the original SURF ex-
cepting that they replace the gradient magnitude and orientation of the descriptor, with
the MDGHM-based magnitude and orientation.

Alcantarilla et al. [ABD13] propose a new family of multi-scale local feature descriptors
called Gauge SURF (GSURF). GSURF descriptors are based on second-order multi-scale
gauge derivatives and original SURF descriptor. To compute the multi-scale Gauge deriva-
tives, the authors initially compute the derivatives in the Cartesian coordinate frame (x,y),
and then compute the gradient direction for each pixel. After the computation, they ob-
tain invariant gauge derivatives up to any order and scale, with respect to the new gauge
coordinate frame [ABD13]. Similarly, they extract the first and second order Haar re-
sponses dx, dy, dxy, dyy from the region around the feature points. Using these responses,
they calculate the second order Gauge derivatives dww and dvv. Finally, they then calculate
the four dimensional descriptor vector of length DG = (

∑

dww,
∑

dvv,
∑

|dww|,
∑

|dvv|).
Thomee et al. [TBL10] proposed an image descriptor based on SURF, that combines inter-
est points with visual words. The resulting descriptor which they named as TOP-SURF
is compact, supports fast image matching, provides the flexibility to vary the descriptor
size and exhibits superior performance than that of the original SURF descriptor. FPGA
implementation of SURF is provided by svab et al. [SKFP09].

SURF, its variants and its extensions have found enormous applications in computer
vision domain such as tracking [TCGP09], object recognition [TCGP09,CHYC15,CT11,
SHK12], Image retrieval [JPG12], action recognition [JSFJ11], medical imaging [FZA+11]
, Face recognition [DSHN09,DSC09,LWZ11], Iris recognition [MSM13], robot localization
[VL07] and many more. Like SIFT, the original SURF is also a closed source. An open
source version of the SURF descriptor can be found in 5.

5https://code.google.com/p/opensurf1/
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Descriptors based on other Filters

SURF and its variants are based on Haar filter response. Many researchers have proposed
descriptors based on response of other filters like Gabor filter, steerable filter etc. Schmid
and Mohr [SM97b] use differential invariant responses to compute new local image de-
scriptors. Differential invariant responses are obtained from a combination of Gaussian
derivatives of different orders that are invariant to 2-dimensional rigid transformations.
Steerable filters proposed by [FA91], steer the derivatives in a particular direction, given
the components are of the local jet. Steering derivatives in the direction of the gradient,
makes them invariant to rotation [MS03]. Mikolajczyk et al. [MS03] use the steerable
filters to generate the image descriptors and use it for image matching. They compute
the steerable filter derivatives up to fourth order, that is, the descriptor has dimension
14. Further, they use Mahalanobis distance to find the similarity between the descriptors
obtained using the steerable filters. They compare the steerable filter to other low di-
mensional filters and conclude that the steerable filters provide the best low dimensional
descriptors. Complex filter bank as proposed by [SZ02] are used in [MS03] for the gener-
ation of image descriptors. The complex filter bank is made of 15 filters and the response
of these 15 filters is used as an image descriptor of size 15.

Osadchy et al. [OJL07] use oriented second derivative filters of Gaussians as an effective
feature for capturing isotropic as well as anisotropic surface characteristics of an image.
They restrict their method to filters of single scale. Zambanini et al. [ZK13] extends this
approach of [OJL07] towards the construction of illumination invariant descriptor. In
their method, they use real part of Gabor filters at multiple scales and spatial statistics
to describe local image patches in an illumination invariant manner. Palomares et al.
[PMD12] have come up with a local image descriptor issued from a filtering stage made
of oriented anisotropic half-Gaussian smoothing convolution kernels. Other descriptors
explained in chapter.3, chapter.4 and chapter.5 are also based on the same family of half
filters. These half filters are explained in detail in chapter.2.

Koenderink et al. [KvD87] formulates a methodology based on Gaussian function and
its derivatives, to capture the local geometry of the image. They achieve the rotation and
affine invariance in the matching stage. Larsen et al. [LDDP12] follows a new approach
for the construction of an image descriptor based on local k-jet, which uses filter bank
responses for feature description. Lategahn et al. [LBS14] propose a new illumination
robust image descriptor called the DIRD, based on the features obtained by using Haar
wavelets. In their approach, the Haar features are computed for individual pixels and are
normalized to L2 unit length. Thereafter, features are extracted from the pooling region.
The concatenation of several such features forms the basis DIRD vector. To achieve fast
matching, these features are then quantized to maximize entropy to form a binary version
of DIRD.

Intensity based descriptors

The local binary patterns (LBP) [OPH96,OPM02a,OPM01] were introduced by Ojala et
al. as a texture operator. LBP generates a descriptor using a set of histograms from the
local intensity neighbourhood present around each pixel. Initially, 8 neighbouring pixels
are chosen around each pixel. Then, the difference between the center pixel and each of
the eight neighbouring pixels are considered and finally, depending on the binary test, 1 is
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assigned to the neighbouring pixel if the intensity difference is greater than zero. Other-
wise, a zero is assigned. This can be seen in the Fig. 1.8. Thus, the obtained descriptors
based on LBP is simple but very effective. The LBP’s have therefore, succeeded in re-
placing SIFT, SURF and its variant. Over the years many variants of LBP descriptors
has been proposed. For our purpose, we concentrate only on some of the few important
and popular LBP descriptors and its variants.

(a) (b)

Figure 1.8: Summary of (a) LBP (b)CS-LBP.

Heikkila et al. [HPS06] proposes a new descriptor called a Center Symmetric Local
Binary Pattern (CSLBP), which combines the advantages of SIFT descriptor and the LBP
operator. CSLBP is constructed similarly to that of SIFT, but the gradient features used
in the SIFT descriptor is replaced with features extracted by a center symmetric local
binary pattern operator, the binary pattern being similar to LBP operator. Initially, they
enhance the region around the key-point with an edge-preserving adaptive noise-removal
filter. Later, a feature for each pixel in the region is extracted using a CSLBP operator.
Eight intensities around each pixel are chosen for the same. These intensities are then
spread evenly around the pixel at every 45◦. Each intensity is compared with the intensity
in the symmetric position to form a four bit feature vector. Unlike SIFT, they weigh the
features with a simple uniform weighting scheme. Finally, a 4x4 Cartesian grid is used
to build the descriptor and then, a CSLBP histogram is built for each cell. The final
descriptor is built by concatenating the descriptors from all the cells and normalizing it.
Thus, the obtained descriptor has a length of 256.

Authors of [ZCX+07] encode the rectangular regions by local binary pattern operator
to form the Multi-block LBP descriptor. They make use of integral images for descriptor
construction. Unlike LBP which uses intensity values in its computation, MBLBP uses
the mean intensity value of image blocks. Thus, the constructed descriptor captures more
information about the image structure than say a descriptor based on Haar like features.
They use this descriptor for face detection.

Wolf et al. [WHT08] proposed two novel patch based LBP descriptors to improve on
the performance of the original LBP descriptor and they are:

1. Three-Patch LBP descriptor (TPLBP): Here, for each pixel in the region around a
key-point, they consider a wxw patch centred on the pixel and S additional patches
distributed uniformly in a ring of radius r around it. Then, they consider a pair
of patches, α-patches apart along a circle and the obtained values are compared
with that of the central patch. The resulting code has S bits per pixel [WHT08].
This results in each pixel having S bits per pixel. Hence, the processes generates a
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descriptor similar to that of CSLBP. The feature computation process is shown in
the Fig.1.9.

2. Four-Patch LBP descriptor (FPLBP): For each pixel in the region around the key-
point they consider two circles of radii r1 and r2 with the same pixel as its centre.
As in TPLBP, they consider S patches of size wxw evenly placed on each ring. To
generate the features, they compare the two central symmetric patches in the inner
ring with the two central symmetric patches in the outer ring, positioned α patches
away along the circle [WHT08]. Thus, each pixel has a feature of length S. Then,
the same procedure as in TPLBP is used to construct the descriptor. The feature
computation process is shown in the Fig.1.9.

(a) (b)

Figure 1.9: Summary of (a) Three Patch LBP [WHT08] . (b) Four patch LBP [WHT08]

Although LBP captures the local structures effectively, it is not rotation invariant.
Many approaches have been used to achieve rotation invariant LBP descriptor. In one of
the approaches, the authors of [PHZA11] propose a new rotation invariant LBP descriptor
in which the local LBP is shifted bitwise circularly to obtain the minimum binary value.
This minimum value LBP is used as a rotation invariant descriptor and is captured in
the histogram. Thus, the obtained RILBP is computationally very efficient. In another
method, the authors of [AMHP09] combine LBP with Fourier features to obtain rota-
tion invariant LBP. Like SIFT and SURF, LBP is not a global descriptor. In order to
potentially use the local and global information in texture images, authors of [GZZ10]
propose a global rotation invariant matching with local variant LBP features. The au-
thors of [IKM08] extend the LBP approach by incorporating Fuzzy logic in the LBP
mechanism and call it, Fuzzy Local Binary Pattern (FLBP). Introducing the fuzzy logic
concepts in the descriptor construction, allows the FLBP to contribute more to the fea-
ture descriptor. To deal with volumetric data such as medical images, dynamic textures
etc, authors in [ZP07] have come up with a new descriptors called volume LBP (VLBP)
and TOP-LBP.

LBP and some of its variants were originally developed for gray scale images. Latter,
opponent color LBP (OCLBP) [MP04a] was introduced to deal with color and texture
jointly. In OCLBP, LBP is extracted for each independent channels and LBP features are
extracted for different channel pairs such that the center pixel is taken from one channel
and the neighbouring pixels from the other. In total, 3 pairs of channels are used and
the rest are ignored as they provide no information. Finally, a total of 6 histograms
are used which are concatenated to form the OCLBP descriptor whose dimension is six
times larger than the original LBP descriptor. For the application of visual object class
recognition, authors of [ZBC10] use multi-scale color LBP descriptor. For color constant
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image indexing, the authors of [CF06] use 3D histograms of LBP values computed from
LBP images of three channels.

LBP and its variants has been used in abundance, in applications related to face recog-
nition. To name a few LB variants, Local Gabor Binary Patterns (LGBP) [ZSG+05], Heat
Kernel Local Binary Pattern (HKLBP) [LHZW10], Elliptical Binary Patterns (EBP)
[LC07], Local Line Binary Patterns (LLBP) [AP09], Three-Patch Local Binary Pat-
terns(TPLBP) [WHT08], Four-Patch Local Binary Patterns (FPLBP) [WHT08], Im-
proved LBP (ILBP) [JLLT04], Local Ternary Patterns (LTP) [THL09], Probabilistic
LBP [TT07], Local Derivative Patterns (LDP) [ZGZL10] are some of the LBP and its
variants. In Medical image analysis, LBP variants such as Elongated Quinary Patterns
(EQP) [NLB10], Elongated Ternary Patterns (ELTP) [OP99] and volumetric LBP [ZP07]
has been used. LBP and its variants are the most sought after descriptors when it comes
to texture classification, analysis and retrieval. Some of the variants of LBP used for appli-
cations related to texture are Local Edge Patterns (LEP) [YC03], Median Binary Patterns
(MBP) [HSZ07], Fuzzy Local Binary Patterns [IKM08], Bayesian Local Binary Patterns
(BLBP) [HAP08], Adaptive LBP (ALBP) [GZZZ10], LBP variance (LBPV) [GZZ10] etc.

External factors such as temporal changes in illumination, viewpoint dependent illu-
mination, shadowing, variations in camera parameters, non-linear camera response etc
results in complex brightness changes. Descriptors such as SIFT, SURF, DAISY etc are
invariant to intensity shift or affine brightness changes and fail to handle the complex
brightness changes. To overcome this issue, some of the authors use relative ordering of
the pixel intensities rather than the original intensities. This is based on the observation
that, although the pixel intensities in the corresponding locations may vary due to the
variations in illumination or other camera parameters, the relative ordering of the pixel
intensities in the region remains unchanged if the brightness change function is monoton-
ically increasing [TLCT09].

Tang et al. [TLCT09] propose a new image descriptor called ordinal spatial intensity
distribution (OSID), which exhibits invariance to any monotonic increase in brightness
change. Unlike the above described descriptors, where the gradient orientations or filter
responses are compressed in a 2D histogram using the raster scan order, OSID is generated
based on intensity ordering and spacial subdivision spaces. Initially, they pre-process the
dxd patch around the key-point by smoothing it with a Gaussian filter. This is followed by
generating the ordinal distribution, where the pixels in the patch are grouped into N bins
where each bin has pixels with similar ordinal pixel intensities. For spacial distribution,
the pixels in the dxd patch are labelled based on npies spatial subdivisions. First, the
ordinal-spatial 2-D histogram is constructed and is followed by spacial 2-D histogram.
Finally, the two histograms are concatenated to form the final OSID descriptor.

Most of the patch based descriptor such as SIFT, GLOH etc use dominant orientation
to achieve rotation invariance. In some cases, the patch may have 2 or 3 dominant
orientation and ambiguity arises as to which is the correct orientation. So, the dominant
orientation introduces an error. Fan et al. [FWH12] tries to obtain a true rotation invariant
descriptor by generating gradients in a rotation invariant way and adaptively pooling these
gradients based on their intensity order to capture the spatial information. Further, they
use multiple support regions to enhance the discriminative ability of the descriptor. This
is approached in two ways: 1) By using gradient based local features to generate the
MROGH (Multi-Support Region Order-Based Gradient Histogram) descriptor and 2) By
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using intensity-based local features to generate MRRID (Multi-Support Region Rotation
and Intensity Monotonic Invariant Descriptor) descriptor.

Wang et.al [WFW11] propose a new method for feature description based on intensity
order called Local Intensity Order Pattern (LIOP). In their descriptor, they use ordinal
information in a novel way. Initially, they smooth the region around the key-point using
a Gaussian. Next, an overall intensity order is used to divide the local patch into its sub-
regions, called ordinal bins. Later, by considering the intensity relationship between the
neighbouring sample pixels, the local intensity order pattern for each pixel is calculated.
Additionally, in this step, they propose a permutation based encoding scheme, which
compresses the dimension of the LIOP of the pixel. The intermediate LIOP descriptor is
constructed by accumulating the LIOPs of pixels in each ordinal bin respectively. Finally,
the intermediate descriptors from all the ordinal bins are concatenated to form the final
LIOP descriptor.

Descriptors based on second order Image statistic such as curvature, ridges,
valleys

In the field of computer vision, there exists an extensive body of work on the importance
of curvature for the tasks related to object recognition, image retrieval, image matching
etc. Several methods have been proposed to estimate the curvature of a planar curve
in images. Lewiner et al. [LJLC04] propose a new method to estimate the curvature
based on weighted least square fitting and local arc length approximation. Mokhtarian
et al. [MM86] calculated the curvature of a planar curve by representing boundary as
a parametric function of an arc length. Later, they convolve the image with Gaussian
filters at different scales and detect the inflection points as stable zero-crossing points.
Han et al. [HP01] proposed a more stable method for calculating the discrete curvature
of planar digital boundaries by accumulating the distance from a point in the boundary
to a chord specified by moving end points. Depending on the boundary shape, positive
or negative distances are obtained and the values are then accumulated as the chord is
moved [HP01]. Only few authors have been successful in constructing a image descriptor
by directly using the curvature information.

Monroy et al. [MEO11] show that by integrating the curvature information would
substantially improve the detection results over descriptors that solely rely upon his-
tograms of orientated gradients. In their method, they directly encode curvature from
shape and use this information along with the orientation of gradients to perform im-
age matching and object detection. Initially, they extract edges using the Berkeley edge
detector [MFM04]. Then, they approximate the curvature for planar boundaries using
the chord-to-point distance accumulation [HP01] and later, this curvature information is
embedded in the histogram of orientation framework to form the final descriptor. Fischer
et al. [FB14] propose a way to capture the details described by the local curvature. They
extend the idea of orientation histogram to curvature and propose a descriptor made of
direction and magnitude of curvature. Instead of using the parametric curve segments
as in [MEO11], they compute the curvature using the per-pixel filter. Additionally, to
increase the matching performance, they include the sign of curvature which is different
from the sign of gradient.

Zitnick [Zit10a] proposes an image patch descriptor based on edge position, orienta-
tion and local linear length. He names this descriptor Binary Coherent Edge Descriptor
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(BiCE). It is based on the hypothesis that the presence and not the magnitude of edges
provides an informative measure of patch similarity that is robust not only to illumination
and pose changes but also to intra-category appearance variation [Zit10a]. BiCE bina-
rizes the edge histogram to encode the edge locations, orientations and lengths. Initially,
they locally normalizes the image patch gradients to remove relative gradient information.
This is followed by binning the normalized gradients using position, orientation and local
linear length of an edge. Finally, the normalized gradient histogram is binarized to encode
the presence of edges.

Ram et al [RBS09] propose a new method for detection and matching of vascular
landmarks in retinal images, using histograms of curvature. In this method, they use
Hessian filter for vessel enhancement. Based on the local curvature computed at multiple
scales, they are able to localize vessel junctions as landmarks. They extract a curvature
orientation histogram over a patch around every vessel point and further, the entropy
of this histogram is calculated which is used to determine vessel junctions. Another
advantage of this method is that, the curvature orientation histogram implicitly captures
the vessel branching information at a landmark point, including the angles between them.
In retinal images, this information remains invariant to rigid transformation [RBS09].
They use these informations to establish correspondence between sets of landmark points
obtained from images related by rigid transformations.

Recent studies in psychophysics and physiology on human vision have shown that
the first order gradient information is far from being sufficient and accurate in capturing
the perceived visual features of human beings. Additionally, some studies on human
vision further suggest that neural image is made of surface, consisting of second order
image properties such as cliffs, ridges, summits, valleys, or basins [HZWC14]. Huang et
al. [HZWC14] capture these information by local curvatures of differential geometry and
constructs a second order descriptor called histogram of second order gradients (HSOG).
Initially, they compute a set of first order gradient maps for each quantized direction. They
then use these oriented gradient maps to extract the histogram of second order gradients
and finally, the histogram from all the oriented gradient maps is concatenated to form the
HSOG descriptor. In addition to this, they explore the concept of scale space to further
reinforce the descriptive completeness of local shape changes and thereby, increasing the
discriminative power and performance. Thus, the obtained descriptor has a very high
dimension in the range of hundreds. They further use PCA to reduce the dimensionality
and resulting is a HSOG descriptor of length 256.

Local Binary Image Descriptors

With an increase in the image database size and the advent of camera enabled mobile
devise, a new branch of computer vision has come into existence that has enabled mo-
bile devices such as smartphones, tablets etc and wearable devices such as google glass,
Microsoft hololens etc, which requires vision systems that are accurate and computation-
ally very efficient. Feature point descriptors forms the basis for many computer vision
applications such as augmented reality, panorama stitching, 3D reconstruction, camera
localization and many more. Applications utilizing these algorithms on mobile and aug-
mented reality platforms have to deal with limited storage and poor computational capa-
bilities. This is where the binary descriptors becomes an alternative option for floating
point descriptors. The initial approach was to first compute a floating-point descriptor
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then binarize it. Since this approach is computationally expensive, the new approach is
focused on directly computing the binary descriptors from local image patches.

The main idea behind binary descriptor is that, each bit is independent and the
Hamming distance can be used as similarity measure. Generally, binary descriptors are
made of three stages. In the initial stage, a sampling pattern is chosen. The sampling
pattern shows where exactly to sample the points in a region around the descriptor.
This is followed by the orientation assignment stage, where the key-point is assigned to
an orientation, to achieve orientation invariance. In the final stage, sampling pairs are
chosen to construct the final descriptor. Some of the popular and widely used binary
descriptors are BRIEF [CLSF10], ORB [RRKB11], BRISK [LCS11], FREAK [AOV12],
LDB [YC12].

Calonder et al. [CLSF10] propose to use binary strings as an efficient feature point
descriptor called, the Binary Robust Independent Elementary Features (BRIEF). The
proposed descriptor is computed using simple intensity difference tests and exhibits high
discriminative property using fewer number of bits. Further, they use the Hamming dis-
tance to evaluate the descriptor similarity. Initially, the image patch or the region around
the key-point is smoothened by a Gaussian function and is followed by pooling/sampling
stage. As in some of the other binary descriptors, a fixed sampling pattern has not been
used. The sampling pairs are chosen randomly from the image patch. Some of the sam-
pling pairs are shown in the Fig.1.10. In the next stage, they perform the binary tests
on these sampling pairs to obtain the descriptor. This is followed by the matching stage
which uses the Hamming distance for fast matching. One of the disadvantage of BRIEF
is that, it is not rotation invariant.

(a) (b) (c) (d) (e)

Figure 1.10: Different sampling pattern used in the construction of BRIEF descriptor
[CLSF10]

Rublee et al. [RRKB11] propose a new binary descriptor based on FAST detector
[RPD10] and BRIEF descriptor [CLSF10] called Oriented FAST and Rotated BRIEF
(ORB). Unlike BRISK, ORB uses an orientation compensation mechanism to achieve
rotation invariance. ORB also learns the optimal sampling pairs is resistant to noise and
is two orders of magnitude faster than SIFT [RRKB11]. In the initial stage, ORB uses the
FAST detector to detect the key-points and is followed by assigning the orientation using
the intensity centroid. Ideally, the sampling pairs should have less correlation and exhibit
high variance. But, the sampling pairs will be uncorrelated such that each new pair will
bring new information to the descriptor, thus maximizing the amount of information the
descriptor carries. Lesser correlations of the sampling pairs is required so that, each new
pair will bring new information to the descriptor and maximizes the information carried
by the descriptor. Whereas, high variance makes the feature more discriminative. In the

36 1.2. IMAGE MATCHING PIPELINE



CHAPTER 1. LITERATURE REVIEW

next stage, the ORB uses a learning algorithm to learn the sampling pairs to make sure
that the sampling pairs exhibit these two properties. This learning stage produces a set
of 256 relatively uncorrelated sampling pairs with high variance. Binary intensity tests
are conducted on these sampling pairs to form the final ORB descriptor.

Leutenegger et al [LCS11] propose Binary Robust Invariant Scalable Key-points (BRISK)
which is a new method for key-point detection, description and matching. In the initial
stage, a new scale space key-point detection method is proposed. Here, points of interest
are identified across both the image and the scale using a saliency criterion. To further
enhance the efficiency, key-points are detected in octave layers of the image pyramid as
well as in-between the layers. For sampling the pixels, unlike the BRIEF and ORB,
BRISK uses a predefined sampling pattern. The sampling pattern is made of scaled con-
centric circles as shown in figure 1.11. This sampling pattern is then applied around the
key-point and the dominant orientation to the key-point is assigned. Finally, the oriented
BRISK sampling pattern is used to obtain pairwise brightness comparison results that
are assembled into the binary BRISK descriptor [LCS11].

(a) (b)

Figure 1.11: sampling pattern used in the construction of (a) BRISK (b) FREAK

Alahi et al. [AOV12] propose a new key-point descriptor called Fast Retina Key-point
(FREAK). It is based on the retina of the human visual system. Similar to BRISK,
FREAK uses a hand crafted sampling pattern that is, by using the circular retinal sam-
pling grid with the difference of having higher density of points near the center. By doing
so, the density of the points drops exponentially. The main difference between BRISK
sampling pattern and the FREAK sampling pattern is the exponential change in size and
overlapping receptive fields. Similar to ORB, FREAK uses machine learning technique to
learn the optimal set of sampling pairs. To achieve rotation invariance, FREAK measures
the orientation of the key-point and rotates the sampling pairs by the measured angle.
FREAK’s approach for orientation assignment is similar to that of BRISK. Another ad-
vantage of FREAK is that it is an open source software.

For augmented reality applications, Yang at al. [YC12] propose a highly efficient,
robust and distinctive binary descriptor called, the Local Difference Binary pattern (LDB).
LDB makes use of simple intensity and gradient difference tests on pairwise grids within
the patch to generate a binary string. Additionally, it uses a multi-level grid pattern to
capture the distinct patterns of the patch at different spatial granularities. Like many
floating point descriptors, above explained binary descriptors also suffer from orientation
estimation errors and limited description abilities.

To address these problems, Xu et al. [XTFZ14] proposed a new binary descriptor based
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on the ordinal and spatial information of regional invariants called OSRI. This descriptor is
generated over a rotation invariant sampling pattern. The OSRI descriptor is obtained by
performing difference tests of regional invariants over pairwise sampling-regions, instead
of difference tests of pixel intensities. This approach enhances the discriminative ability
of the descriptor. As in [WFW11], here also the pixels are re-ordered in accordance to
their intensities and gradient orientations to achieve rotation and illumination changes.
Additionally, OSRI uses a cascade stage to reduce the matching time. This cascade stage
rejects the non-matching descriptors at an early stage, by comparing just a small portion
of the whole descriptor.

Some of the other binary descriptors in the literature are MOBIL [BOZB14] a binary
descriptor based on moments, Ultra short binary descriptor (USB) [ZTH+14], Discrete
Robust INvariant Keypoints (DRINK) [GC14], EDGESIFT [ZTL+13] and many more.
Detailed evaluation of some of the binary descriptors is provided in [MM12,HDF12].

Learning Image descriptors

Almost all of the above discussed image descriptors rely on parameters that need to be
hand tuned. These parameters include Gaussian parameters, Number of orientation bins,
descriptor size and many more. Some of the authors in [Low04], [ZK13] have tried to
manually optimize the descriptor performance by varying the parameters. This approach
works only when there are limited number of parameters and it also proves to be tedious
and unrealistic in the presence of large number of parameters. To overcome this issue,
the authors of [WB07] tries to improve on the state of art in local descriptor matching by
learning optimal low-level image operations using a large and realistic training dataset.

To learn the descriptors, authors of [WB07] have generated their own data set. The
data set consists of 3 different set of images. Each set has more than 400,000 image patches
of size 64x64. The dataset is built using multiple images of a 3D scene, where the camera
matrices and 3D point correspondences are accurately recovered. As a result, the dataset
captures the 3D appearance variations around each key-point. Additionally, they have
come up with the ground truth dataset for testing and optimizing descriptor performance.
For this particular dataset, they have precise matching and non-matching information.
Here, they split up the descriptor extraction process into separate stages, and further they
test the descriptor extraction process by rearranging the stages in different combinations.
By doing so, they are able to test many untested combinations and examine each building
block in detail. Finally, they learn the most appropriate parameter values using Powell’s
multidimensional direction set method, to maximize the ROC area.

Unlike [WB07], which uses parametric models for descriptor learning. [BHW11] fol-
lows the same procedure as in [WB07] by using non-parametric dimensionality reduc-
tion techniques. They describe a set of building blocks for constructing descriptors
which can be combined together and jointly optimized, so as to minimize the error
of a nearest-neighbour classifier. They consider both linear and non-linear transforms
with dimensionality reduction, and make use of discriminant learning techniques such as
Linear Discriminant Analysis (LDA) and Powell minimization to solve for the parame-
ters [BHW11]. [HBW07] tries to learn the image descriptors using linear discriminative
embedding.

Ylioinas et al. [YKHP14] propose a novel framework for learning binary image de-
scriptors extracted by considering the local pixel neighbourhood. Here, the descriptors
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are constructed using binary decision trees which are learnt from a set of training im-
age patches. The proposed framework can utilize both labelled or unlabelled training
data and hence fits into both supervised and unsupervised learning scenarios. Trzcinski
et al. [TCFL13] propose a framework to learn an extremely compact binary descriptor
called BinBoost where the learnt descriptor used is robust to illumination and viewpoint
changes and each bit of this BinBoost is computed using a boosted binary hash function.
Trzcinski et al. [TL12] also propose a binary image descriptor, which depends on the
discriminative projections that is trained to be computed efficiently from a small set of
simple filters. They call this descriptor as Discriminative BRIEF (D-BRIEF).

1.2.3 Post-processing

Post-processing is one of the small, but important stage in the image matching pipeline.
In some cases, post-processing stage decides the final dimension of the descriptors. One
of the major disadvantage of the above proposed floating point descriptors is the high
dimensionality. This limits the performance of feature matching techniques in terms
of speed and scalability. Many methods such as Principal Component Analysis (PCA),
Walsh-Hadamard transform and many more, have been proposed to reduce dimensionality.
Here, we look into some of the important methods used in the computer vision literature.
PCA, was first used in computer vision for face representation by Sirovich et al. [SK87]. In
PCA, the basis of the subspace is obtained from the eigenvectors of the sample covariance
matrix of the input (facial images). When the eigenvectors corresponding to the largest
eigenvalues are used as a basis, the resulting projection simultaneously maximizes the
variance of the projected data or minimizes the average projection cost [BN07].

Ke et al. proposed to use PCA for dimensionality reduction of a SIFT descriptor and
named it as, PCA-SIFT [KS04]. PCA-SIFT, uses an alternative feature vector derived
using PCA based on normalized gradient patches rather than using the weighted and
smoothed histograms of gradient, that is used in the construction of the SIFT descriptor.
Additionally, SIFT-PCA can also have a dimension as small as 20 or 36 and this small
sized feature vector, results in faster matching speed. But, as per the descriptor evalu-
ation proposed by [MS03], PCA-SIFT performs slightly worse than the standard SIFT
descriptors. PCA-SIFT descriptor uses 3 main steps. In the first step, an eigenspace is
constructed based on the gradients obtained from the local 41x41 image patches, resulting
in a 3042 element vector. In the second step, the local image gradients are computed for
patches and finally generates the reduced-size feature vector from the eigenspace, using
PCA on the covariance matrix of each feature vector. Hua et al. (Hua-LDA) proposed a
dimensionality reduction scheme that uses Linear Discriminant Analysis (LDA). Winder
et al. [WB07] tries to reduce this dimensionality by combining PCA with that of the
optimization of gradient and spatial binning parameters as part of the training step.

Bo et al. [BRF10] propose kernel descriptors for visual recognition. In their work, they
highlight the kernel view of orientation histograms and propose a new method to design
and learn, low-level image feature. Their framework consists of three main stages. In the
initial stage, they design the match kernels using the pixel attributes. This is followed
by learning compact basis vectors using Kernel Principle Component Analysis (KPCA)
and finally, they construct the kernel descriptors by projecting the infinite-dimensional
feature vectors on to the learned basis vectors. They apply the same frame work on
color, gradient and shape attributes to generate three effective kernel descriptors. The
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dimensionality reduction techniques based on PCA, requires an off-line training stage to
estimate the covariance matrix that is used for PCA projection. Usually, in the off-line
stage, large and diverse collection of images are trained prior to its use. Thus reducing
the benefits obtained by using the dimensionality reduction [TWY08].

The authors of [TWY08] propose a new descriptor called the Compact Descriptor
through Invariant Kernel Projection (CDIKP), which completely bypasses the off-line
training stage. In the initial step, they use the DoG scale-space approach as described
in [Low04], to generate the key-points. In the second stage, they obtain the scale, view-
point and illumination normalized canonical square patch and finally, they construct the
descriptor by projecting the normalized kxk patch on to a k2 Walsh-Hadamard Kernel.
Thus, the obtained descriptor is highly compact, having a dimension of 20. However, one
of the disadvantage of CDIKP is that it only considers the first order derivatives of pixel
intensity along the horizontal and vertical directions and as in most cases, PCA-SIFT
outperforms CDIKP [ZCCY10]. Inspired by [TWY08], Zhao et al. [ZCCY10] propose a
new descriptor called Kernel Projection Based SIFT (KPB-SIFT). Like SIFT, KPB-SIFT
encodes the salient aspects of image information in the feature point’s neighbourhood.
However, instead of using SIFT’s smoothed weighted histograms, it uses Walsh-Hadamard
Kernel projection on orientation gradient patches, to obtain the descriptor of size 36.

Several compression schemes has been proposed to reduce the bit-rate of the floating
point descriptors. Chandrashekar et al. [CTC+12] proposed a low bit rate descriptor
called Compressed Histogram of Gradient (CHoG). In the initial step, they split the
image patch into soft log polar spatial bins using DAISY configurations [TLF10] and
latter, they capture the gradient histogram from each of the spatial bin directly into the
descriptor. Finally, CHoG retains the information in each spatial bin as a distribution.
In this approach, they make use of 9 to 13 spatial bins and 3 to 9 gradient bins, resulting
in 27 to 117 dimensional descriptors. For compressing the descriptor, CHoG quantize the
gradient histogram in each cell individually and maps it to an index. The fixed length or
entropy coding is used to encode the indices and the bit-stream is concatenated together
to form the final descriptor.

Yeo et al. [YAR08] propose the use of coarsely quantized random projections of de-
scriptors to build binary hashes and use the Hamming distance between binary hashes as
their matching criterion. Torralba et al. [TFW08] propose a new approach using machine
learning techniques to convert the GIST descriptor [OT01] into a compact binary code,
having a few hundred bits per image. In [CTC+09], the authors use transform coding to
efficiently store and transmit SIFT and SURF image descriptors. By using this approach,
the authors claim that the image and feature matching algorithms are robust towards
significant compressed features. But, Jegou et al. [JDS11] use vector quantization tech-
nique to compress the descriptor. In this approach, they decompose the SIFT descriptor
directly into smaller blocks and perform the vector quantization on each block. Many
hashing schemes such as Locality Sensitive Hashing (LSH), Similarity Sensitive Coding
(SSC) or Spectral Hashing(SH) has been proposed by many authors to compress the de-
scriptors. But according to [CTC+12], these hashing schemes do not perform well at low
bit-rates.

Image matching and object recognition in uncontrolled environments such as varying
illumination is one of the most important bottlenecks for practical computer vision sys-
tems. Some vision algorithms try to overcome this problem by normalizing the descriptor
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vector. In SIFT descriptor construction [Low04], in the final stage, the feature vector is
modified to reduce the effects of illumination change. Initially the vector is normalized
to unit length and the variations in the image contrast results in each pixel values being
multiplied by a constant. As a result, the gradient is also multiplied by the same constant.
Normalization nullifies this change in contrast. They further reduce the influence of large
gradient magnitudes by thresholding the values in the unit feature vector to no larger
than 0.2 and later renormalizes it to unit length. Almost all of the descriptors explained
above follow this normalization procedure with or without clipping.

1.2.4 Descriptor Matching

Distance Measure

Once we have the feature descriptor/vector, the next step is to use the descriptor for image
matching or for retrieving images from the database. The comparison between a feature
vector v1 obtained from a key-point i belonging to an image I1 and another feature vector
v2 obtained form a point j from another image I2 is given by a distance function/metric
d. In general, distance metrics are well-known mathematical functions used for different
applications in computer vision. In the case of image matching application, distance met-
ric is a measure that classifies a good or a bad match. Depending on the computational
capability and application used for a specific vision task, an appropriate distance metric
is chosen. For applications related to image matching, Euclidean distance and Hamming
distance are better suited, whereas, for applications related to image retrieval other dis-
tance metrics are preferred. Many distance metric methods has been proposed in the
computer vision literature for applications related to image matching and retrieval. Some
of them are tabulated in Table1.3. In this section, we discuss briefly about some of the
well known distance measures.

Euclidean distance is one of the most widely used distance metric in applications
related to image matching. Euclidean distance, shows a good trade-off between com-
putational complexity and matching performance. The authors of SIFT [Low04], use
Euclidean distance for key-point matching where as, Mikolajczyk et al [MS03] propose a
frame work for evaluating the image descriptors. Their evaluation protocol use euclidean
distance as the performance metric. Most of the descriptors explained above use this per-
formance evaluation protocol. Earth Mover’s Distance, is another distance metric used for
descriptor matching [LSP05b] and fast contour matching [GD04]. Correlation, is widely
used as an effective similarity measure for image matching applications. Palomares et
al. [PMD12,WL08] uses correlation distance for image matching.

The Hausdorff distance, measures the extent to which each point on a model set lies
close to some points of an image set and vice versa. This can be used for object detection
and matching. Dubuisson et al. [DJ94], on the other hand, has used a modified version
of Hausdorff distance for object matching and Rotter et al. [AK09] has used Hausdorff
distance for word image matching. Jaccard distance (also known as Jaccard coefficient
(JC) or Tanimoto coefficient) is another similarity measure used for image matching where
a higher JC indicates a better correspondence between the images. A value of 1 indicates
complete correspondence and a value of 0 means that there is no correspondence at all.
Zitnick [Zit10b] uses Jaccard similarity for fast image patch matching and retrieval. Jain et
al. [JZ97] has used Jaccard distance for recognition of handwritten digits. Venkatrayappa

1.2. IMAGE MATCHING PIPELINE 41



CHAPTER 1. LITERATURE REVIEW

et al. [VSMM14] use Mahalanobis Distance as a metric for tracking with particle filters. Bo
et al. [BZlCl15] proposes an algorithm for Image Matching Based on Mahalanobis Distance
and Weighted KNN Graph. Most of the binary descriptors such as BRIEF [CLSF10],
BRISK [LCS11], FREAK [AOV12], ORB [RRKB11] uses hamming distance for fast image
matching. Some of the other distance metrics used in computer vision are Chebyshev
distance, Hellinger distance, Manhattan distance, L1 Norm, L2 Norm, Canberra distance,
Bray Curtis distance and Kullback Leibler distance.

Name Distance between #v1,i and #v2,j

Manhattan Distance :
n

∑

k=1

|vk1,i − vk2,j|

Euclidienne Distance :

√

√

√

√

n
∑

k=1

(

vk1,i − vk2,j
)2

Chebychev Distance: max
k=1,.,n

|vk1,i − vk2,j|

Kullback-Leibler Divergence:
n
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k=1

vk1,i log
vk1,i
vk2,j

Jeffrey Divergence:
n

∑

k=1

vk1,i log
vk1,i

vk1,i+vk2,j
2

+ vk2,j log
vk2,j

vk1,i+vk2,j
2

Quadratic Distance (A is a similarity matrix):
√

t(vk1,i − vk2,j).A.(v
k
1,i − vk2,j)

Mahalanobis Distance(C is a covariance matrix):
√

t(vk1,i − vk2,j).C
−1.(vk1,i − vk2,j)

Table 1.3: Example of distances calculation between feature vectors v1 and v2 of two
key-points i and j each taken from two different images.

Matching process

Descriptor Matching process involves computing the distance between all possible pairs of
detected features and selecting a matching pair for those features whose nearest-neighbour
is closer than some threshold. The number of matches found depends on the matching
strategy. For example, SIFT [Low04] algorithm achieves matching under realistic con-
ditions with the help of special data structures or approximate nearest-neighbour algo-
rithms. Some of the well-known matching strategies used in the literature are Distance
Threshold matching (DT), Nearest-Neighbour with Ratio Test matching (NNRT) and
Nearest-Neighbour with Distance Threshold matching (NNDT).
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In the distance threshold matching strategy (DT), two image features are said to be a
match if the distance between their descriptors lies below a fixed distance threshold Td.
This is one of the simplest matching strategies. In this strategy, each query descriptor
can match several descriptors in the database. In NNRT, a match is found if it satisfies
the nearest-neighbour ratio-test. Let A and B be two images, A1 be a descriptor in
image A, and B1 and B2 be first nearest and second nearest descriptors in image B. Let
D1 =‖ A1 − B1 ‖ and D2 =‖ A1 − B2 ‖ be the distance to the first and the second

nearest neighbours, respectively. Let Dr be a predefined threshold. If the ratio
D1

D2

< Dr,

then B1 is said to be a match of A1. NNDT can be considered as a fusion of DT and
NNRT methods. For A1 to be a match with B1, it must be its nearest neighbour and
also it must satisfy the distance threshold criterion, i.e, distance to nearest neighbour
D1 =‖ A1 − B1 ‖< Td.

The present day image matching and retrieval systems should be able to handle a large
database. When there are millions of such descriptors, the above mentioned methods
becomes very expensive even after dimensionality reduction. To overcome this limitation
to a certain extent, algorithms based on approximate nearest neighbour strategies can
be used. Arya et al. [AMN+98] propose an optimal algorithm for approximate nearest
neighbour searching in Fixed Dimensions. Beis et al. [BL97] propose a modified k-d tree
based approximate nearest neighbour algorithm for shape indexing. Anan et al. [SH08]
propose approximate nearest neighbour algorithm based on multiple randomized kd-trees
for indexing a large number of SIFT and other types of image descriptors. Similarly,
hierarchical k-means trees [FN75], spill trees [LMGY04], vantage-point trees [Yia93] and
others have been used to accelerate the approximate nearest neighbour strategy for image
matching.

Some researchers have chosen to speed up the nearest-neighbour search by, binariz-
ing the real-valued descriptors using techniques such as Boosting, hashing [AI08,KD09],
Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA) based meth-
ods [RL09,SBBF12] and quantization [GL11]. Binarization of real-valued descriptors leads
to binary vectors which can be speedily evaluated using Hamming distance. But, there
has been very little progress made on improving the performance of ANN algorithms on
binary descriptors. Some of the algorithms which involve PCA decomposition such as
spectral Hashing are not adaptable for binary descriptors. Other methods treat the bi-
nary vector as vectors of zeros and the ones encoded as floating-point numbers. But, this
approach results in weak performance and the encoding negates the advantages of binary
descriptors over floating point descriptors. There are few algorithms such as vantage-point
trees and HKM that can be modified to mainly deal with binary vectors and to use the
Hamming distance as a similarity measure.

1.3 Summary

This chapter mainly deals with the state of the art in image matching, wherein we give an
overview of the image matching pipeline. Since the literature on image matching/image
descriptors is abundant and research continues to be very active, we restrict ourselves to
methods that are most used or most promising.

In the initial stage of the image matching pipeline, we spoke about interest point/region
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detectors. Among these interest point detectors, Harris corner detector and its extensions
such as Harris-laplace and Harris-Affine are popular. Some of the other popular detectors
are SIFT detector, SURF detector and MSER. Each of the interest point detector has
its own advantage and Table 1.1 gives qualitative information about these detectors. In
the second stage of the pipeline, we saw different categories of image descriptor based on
gradient information, filter response, intensity patterns etc. Finally, we explained about
the different post-processing steps, distance measures and matching protocols used for
image matching. In the next chapter we concentrate on the filters and in particular about
the Anisotropic half rotating filters, which forms the basis of our work.
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Chapter 2

Half Filters

2.1 Introduction

In the chapter.1 we spoke about the global and local image features. This was followed by
the image matching pipeline where we explained in detail about different feature detectors,
feature descriptors, post processing steps and different matching methodologies involved.
Since our work mainly concentrates on the description of an image or image descriptor
using the filter responses, in the initial part of this chapter, we concentrate on the isotropic
and anisotropic filters in general. The later part is devoted to the anisotropic half filters
that is used in our work.

2.2 Gaussian isotropic filter

(a) Original Image (b) σ = 1 (c) σ = 2

Figure 2.1: Figure illustrating the effect of σ.

Gaussian isotropic filter also known as the Gaussian smoothing operator is a 2-D
convolution operator. The primary application of Gaussian filter is to blur the images
and to remove details and noise as illustrated in Fig.2.1. The Gaussian filter uses a kernel
that represents the shape of a bell. The Gaussian distribution in 1-D takes form as shown
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in Eq.2.1. In 2-D, an isotropic Gaussian is represented as in the Eq.2.2.

g0(x) =
1√
2πσ

e
−
(x2)

2σ2 (2.1)

G0(x, y) =
1

2πσ2
e
−
(x2 + y2)

2σ2 (2.2)

where x and y represents the pixel coordinates. σ represents the standard deviation or
smoothing factor. An ideal Gaussian distribution is non zero everywhere, but in practice
it is effectively zero for more than three standard deviations from the mean and hence we
can truncate the kernel at this point. Fig.2.2 illustrates the Gaussian distributions with
varying values of variance σ.
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Figure 2.2: Gaussian distribution with different values of variance σ.

Some of the important properties of Gaussian filters are:

1. Gaussian filtering an image, removes the noise from the image and blurs the edges.

2. Larger the σ is, the more details are removed.

3. Another advantage of Gaussian is that it is separable i,e. the Gaussian as shown
above can be separated into x and y components. Because of this separability
property, the 2-D convolution can be performed by first convolving with a 1-D
Gaussian in the x direction and then convolving with another 1-D Gaussian in the
y direction. Thus, increasing the speed at which the image is convolved with the
Gaussian.
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One of the popular application of Gaussian isotropic filters is for noise removal by im-
age smoothing. It is also used in the preprocessing step during the descriptor construction
as in [Low04,FWH12,KS04] as well as in scale space analysis [Lin98,Low04].

2.2.1 Gaussian Derivative Filters

When we take the spatial derivative of a Gaussian function repeatedly, we obtain a pattern
of a polynomial in increasing order multiplied with the original (normalized) Gaussian
function again. Some of the graphs of the Gaussian derivative functions are shown in the
Fig.2.3.

The first order derivative g1 of a 1D Gaussian filter g0 is given by the Eq.2.3. A first
order 2D Gaussian filter is obtained by the product of g1(x) and g0(y) as in Eq.2.4, where
C1 is the normalization constant.

g1(x) =
−x

2π · σ3
· x · e

−x2

2σ2 . (2.3)

G1(x, y) = g1(x) · g0(y) = C1 · x · e
−(x2+y2)

2σ2 (2.4)

For an image I, the gradient ||∇I|| is approximated by first calculating the image
derivatives Gx and Gy. Gx and Gy are obtained by convolving the image with the first
order gaussian Gx(x, y) = g0(x).g1(y)∗I(x, y) and Gy(x, y) = g0(y).g1(x)∗I(x, y). Finally,
the gradient ||∇I|| and the associated direction η are calculated as in equation 2.5 and
2.6 respectively. Some of the examples of gradient and orientations at different values of
σ are illustrated in the fig.2.5.

||∇I(x, y)|| =
√

G2
x(x, y) ∗ I(x, y) +G2

y(x, y) ∗ I(x, y) (2.5)

η(x, y) = arctan

(

Gy(x, y) ∗ I(x, y)
Gx(x, y) ∗ I(x, y)

)

(2.6)

Gaussian derivative filters find application in edge detection, image restoration and
many other applications.

Figure 2.3: Plots of the 1D Gaussian derivative function up to order 7.
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Figure 2.4: Gaussian derivative filters with different values of σ.

2.2.2 Laplacian of Gaussian (LoG)

Maar et al. [MH80] proposed an operator that can be tuned to detect edges at a particular
scale. For this purpose, they propose to initially smooth the image with a Gaussian G,
followed by the laplacian operation. These two steps form the Laplacian of Gaussian
(LoG) operator. Laplacian filters are basically second order derivative filters used to
find areas of an edge in the images. Since derivative filters are sensitive to noise, the
common procedure used is to smooth the image before applying the Laplacian filters.
The procedure to localize the edges is to detect the zero crossing of the lapalcian of an
image pre-filtered by a Gaussian. However, a larger value of σ degrades the image and
fails to detect the fine structure. Thus, creating false negatives. Conversely, if σ is very
low, the noise is insufficiently filtered and will be localized as contours, thus creating false
positive.

In 1D, Gσ(x) =
1√
2πσ2

e−
x2

2σ2 , for a data signal s, The LoG operation is :

∆(s ∗Gσ)(x) = (∆s) ∗Gσ(x) = s ∗ (∆Gσ(x)), (2.7)

OR

∆Gσ(x) =
∂2

∂2x
Gσ(x) =

x2 − σ2

√
2π · σ5

e
−x2

2σ2 .
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(a) Original Image (b) η with σ = 1 (c) η with σ = 4

(d) ||∇I|| with σ = 1, (e) Image Gx with σ = 1, (f) Image Gy with σ = 1,

(g) ||∇I|| with σ = 2, (h) Image Gx with σ = 2, (i) Image Gy with σ = 2,

(j) ||∇I|| with σ = 4, (k) Image Gx with σ = 4, (l) Image Gy with σ = 4.

Figure 2.5: Approximation of gradient ||∇I|| with different σ.
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Figure 2.6: Laplacian of gaussian.

(a) Input Image (b) σ = 1.6 (c) σ = 2.5

Figure 2.7: Edge detection using LoG.

In case of 2D, Gaussian Gσ(x, y) is represented as :

Gσ(x, y) =
1√
2πσ2

e−
x2+y2

2σ2 .

and the LoG operation is represented as :

∆Gσ(x, y) =
∂2

∂2x
Gσ(x, y) +

∂2

∂2y
Gσ(x, y) =

x2 + y2 − 2σ2

√
2π · σ5

e−
x2+y2

2·σ2 (2.8)

LoG can be used for scale selection in corner/region detection, blob detector, scale
invariant feature transform and in other image descriptors for image matching and object
recognition. The zero crossing of the LoG can be used to detect edge points.

2.2.3 Difference of Gaussian (DoG)

Though LoG is accurate, it is computationally very expensive. An approximation of the
LoG called Difference of Gaussian (DoG)is proposed in the literature. Similar to LoG,
the image is smoothed by convolving the image with Gaussian kernel Gσ1(x, y) of width
σ1 :

Gσ1(x, y) =
1√

2πσ1
2
e
−x2+y2

2σ1
2 (2.9)

to get:
g1(x, y) = Gσ1(x, y) ∗ f(x, y) (2.10)
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A second image is smoothed with Gaussian Gσ2(x, y) of width σ2 to obtain a second
smoothed image :

g2(x, y) = Gσ2(x, y) ∗ f(x, y) (2.11)

Now, DoG can be defined as the difference of these two Gaussian smoothed images :

g1(x, y)−g2(x, y) = Gσ1(x, y)∗f(x, y)−Gσ2(x, y)∗f(x, y) = (Gσ1−Gσ2)∗f(x, y) = DoG∗f(x, y)
(2.12)

Finally, DoG as an operator or convolution kernel is defined as:

DoG ! Gσ1 −Gσ2 =
1√
2π

(

1

σ1

e
−x2+y2

2σ1
2 − 1

σ2

e
−x2+y2

2σ2
2

)

(2.13)
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Figure 2.8: Distribution of DoG in 1D and 2D.

(a) Input Image (b) σ1 = 1 and σ2 = 1.6 (c) σ1 = 1 and σ2 = 2.5

Figure 2.9: Edge detection using DoG.

Difference of Gaussian (DoG) is used for blob detection in scale space [Low04]. It is
also used as a feature enhancement and image enhancement algorithm.

2.2.4 Shen Castan Filter

Shen and Castan proposed an operator based on the criteria similar to the one proposed
by Canny including detection and localization. In practice, both the filters are based on
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exponential filters and hence, the behaviour is similar to each other. The smoothing Shen
filter is given by :

F (x) = C0.e
−α|x| (2.14)

Where C0 is the normalization factor:

C0 =
1− e−α

1 + e−α
(2.15)

The associated derivative filter is given by:

F ′(x) =







C1 e
−αx if x > 0

0 if x = 0
−C1 e

αx if x < 0
(2.16)

C1 is chosen in a manner so as to obtain a normalized derivative filter F ′ :

+∞
∑

n=−∞

n · F ′(n) = 1 (2.17)

Where,

C1 =
(1− e−α)2

2 · e−α
.

The parameter α determines the filter width. As α approaches 0, more smoothing is
performed by the filter. This can be seen in the Fig.2.10. The Fig.2.11, illustrates the
gradient estimation of an image using different α parameters.

Shen Castan Filters are mainly used for edge detection.

2.3 Isotropic Orientation Filters

One of the disadvantage of isotropic filters is that they are less accurate in feature de-
scription, image filtering, detecting edges, contours and other geometrical structures in
the image. Whereas, edges or contour detection methods using orientation filter bank,
estimates the edges and contours accurately. Due to multiple orientations, these filters are
able to detect several image features such as edges, contours etc. One of the most popular
filter bank is, the Gabor filter bank [MM96], which is made of a set of Gabor filters at
different scale and orientations. Another example of orientation filter bank is the steerable
filters. As a solution to the above stated problem, Freeman et al. [FA91,JU04] introduced
steerable filters that can be directed at specific orientations using a linear combination of
isotropic filters.

Steerable filters are constructed by synthesizing steered or oriented linear combinations
of chosen basis functions such as quadrature pairs of Gaussian filters and oriented versions
of each function in a simple transform. According to [JU04,LM01a], many different types
of filter can be used as the basis for steerable filters. The construction of steerable filters
is shown in Fig.2.12. Initially, the filter transform is generated by combining the basis
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Figure 2.10: Shen casten derivative filter with different α values.

functions in a filter bank and is followed by gain selection for each function. Finally, all
filters in the bank are summed and adaptively applied to the image.

Similar techniques using Gaussian anisotropic filtering were introduced by Perona
[Per92] and implemented recursively by Geusebroek et al. [GSvdW02] and extended to
color Images by [KvdWHR06]. These methods are able to detect the linear structures
correctly.

According to Freeman et al [FA91], the general definition of a orientation filter or
steerable filter is :

f(x, y) ∗ hθ(x, y) =
N
∑

k=1

k
∑

i=0

bk,i(θ)f(x, y) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g(x, y)

)

, (2.18)

Where, h is a steerable filter with N number of angles, f(x, y) is an image or a 2D
function, bk,i(θ) is an interpolation function and g(x, y) is an isotropic window function
which can be a Gaussian.

In their work, Freeman et al [FA91] used 2 partial derivatives of 2D Gaussian Gσ with
variance σ in any direction θ. Let G0◦

1 (x, y) be the x derivative of the function Gσ and
G90◦

1 (x, y) be the derivative in the y direction :



















G0◦

1 (x, y) =
∂Gσ(x, y)

∂x

G90◦

1 (x, y) =
∂Gσ(x, y)

∂y
.

(2.19)

So, Gθ
1 is the derivative of the function Gσ in the direction θ :
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(a) Original Image (b) η with α = 1 (c) η with α = 2

(d) ||∇I|| with α = 0.5, (e) Image Gx with α = 0.5, (f) Image Gy with α = 0.5,

(g) ||∇I|| with α = 1, (h) Image Gx with α = 1, (i) Image Gy with α = 1,

(j) ||∇I|| with α = 2, (k) Image Gx with α = 2, (l) Image Gy with α = 2.

Figure 2.11: Shen gradient approximation with different values of α.
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Figure 2.12: (Left) Set of steerable filters in 8 different directions. (Right) Methadology
involved in image filtering using steerable filters. Figure obtained from [sj14]

(a) G0
1 , (b) G90

1 , (c) G30
1 .

Figure 2.13: Example of Gaussian oriented filters Gθ
1.

Gθ
1(x, y) =

∂GσRθ

∂x
,

Where, Rθ is the rotation matrix.
In [FA91], Freeman and Adelson have shown that the directional derivative Gθ

1 at
orientation θ can be generated by a linear combination of a rotation of the basic filters
G0◦

1 and G90◦

1 :

Gθ
1(x, y) = cos(θ)G0◦

1 (x, y) + sin(θ)G90◦

1 (x, y). (2.20)

Some of the isotropic oriented Gaussian kernels are shown in the Fig.2.13. The con-
volution of an image I by the isotropic oriented gaussian kernels is given by:

(

I ∗Gθ
1

)

(x, y) = cos(θ)
(

I ∗G0◦

1

)

(x, y) + sin(θ)
(

I ∗G90◦

1

)

(x, y). (2.21)

The magnitude of the gradient ‖∇I(x, y)‖ and the orientation Gθ
1 at each pixel in the

image is obtained by convolving the image I with the filters Gθ
1 and the one with the

maximum absolute value is selected as the gradient and angle as shown below:

‖∇I(x, y)‖ = max
θ∈[0,360[

∣

∣

(

I ∗Gθ
1

)

(x, y)
∣

∣ , (2.22)

θm = arg max
θ∈[0,360[

(∣

∣

(

I ∗Gθ
1

)

(x, y)
∣

∣

)

. (2.23)

Isotropic filter banks have been used for content based image retrieval [GSvdW02,
Sch01, LM01b]. Steerable filters have found application in the field of medical imaging
and biometrics.
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2.4 Anisotropic Orientation Filters

Anisotropic convolution filters have found applications in adaptive image smoothing by
aligning them to local image structures. They can also be used to detect image structures
where different types of filters can be used for the same. Here, we mainly concentrate on
Gaussian anisotropic orientation filters. The anisotropic Gaussian kernel Gσxσy

(x, y) is
given by :

Gσxσy
(x, y) =

1

2πσxσy

e
−x2

2σ2
x e

−y2

2σ2
y . (2.24)

To achieve more smoothing in the direction of the filter, Perona et al [Per95], in their

(a) Original image (b) θm with σ = 1 (c) θm with σ = 3

(d) G150
1 with σ = 1, (e) G150

1 with σ = 2, (f) G150
1 with σ = 3,

(g) ||∇I|| with σ = 1, (h) ||∇I|| with σ = 2, (i) ||∇I|| with σ = 3.

Figure 2.14: Approximation of the gradient using isotropic oriented filters.
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work use the function Gσxσy
(x, y) with the ratio

σx

σy

= 3. Fig.2.15 illustrates the oriented

anisotropic Gaussian filter with
σx

σy

= 3. Further, the edges and contours are detected

by calculating the first derivative of the filter as in Eq. 2.25 and by rotating the filter in
different orientations and retaining the orientation which produces the maximum energy.

G′
σxσy

(x, y) =
∂Gσxσy

∂x
(x, y) =

−x

πσxσy

e
−x2

2σ2
x e

−y2

2σ2
y , (2.25)

!

"

(a) (b) (c)

Figure 2.15: Gσxσy
(x, y) and G′

σxσy
(x, y) kernels with σx/σy = 3. (a) Deformable kernel.

(b) original G′
σxσy

(x, y) (c) G′
σxσy

(x, y) oriented by 30o.

The anisotropic filters cannot be decomposed as a finite sum basic filters as demon-
strated by Freeman et al in the case of isotropic filters. Perona [Per92] followed the
technique similar to the one proposed by Freeman et al. [FA91] and replaced the Gaus-
sian isotropic filter with that of Gaussian anisotropic filter. In addition, the anisotropic
filters are computationally expensive. Guesebroek et al. [GSvdW02] proposed the recur-
sive implementation of Gaussian anisotropic filter which was extended to detect edges
in color Images by [KvdWHR06]. These filters are able to detect the linear structures
correctly. The Fig.2.16 illustrates the estimation of gradient with anisotropic Gaussian
filters.

It finds application in detecting long, discontinuous and blurred edges. As in the
isotropic case, anisotropic orientation filter can be used in content based image retrieval
[GSvdW02,Sch01,LM01b]. They are abundantly used in the field of medical imaging and
biometrics.

2.5 Anisotropic Half Filters

In most of the computer vision applications, edge detection forms the basis for geometric
feature extraction. Many of the successful edge detection methods depends on the amount
of smoothing applied. They also depend on the type of filter used for approximating the
gradient. The detected edges should be informative and should also have the least false
positive detection rate. Conventional edge detectors [Can86,SC92,Der87,Der93,SB97] and
the detectors based on the above explained filters doesn’t guarantee proper localization
of edges. Moreover, junctions and corners are not well identified and is poorly localized
by these methods.
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Smoothed and derivative image with orientation θ = 35◦ and gradient esti-
mation using the oriented Gaussian anisotropic parameters σx = 3, σy = 1 and ∆θ = 5◦.
(a) original Image. (b) Smoothed image at 35◦. (c) Gradient approximation at 35◦ with
the first order derivative anisotropic filter (Eq.2.25). (d) η image. (e) Estimated gradient
image. (f) Maxima in the direction of the gradient η. The images (c), (d), (e) and (f) are
normalized.

In methods that employ anisotropic filtering, robustness to noise strongly depends on
two filter parameters. These parameters correspond to the two standard deviations of
the Gaussian function in two dimensions. The increase in the value of these parameters
makes the detection less sensitive to noise, as small structures will be regarded as noise and
thus, are ignored. Therefore, the accuracy of the points detected decreases sharply at the
pixel corner and for objects having non-linear edges. Fig.2.17(a) presents the application
of anisotropic Gaussian filters on the outline of an object. The filter is applied at two
locations, one at the linear portion of the edge where the response of the anisotropic filter
is high and secondly, it is applied at the corner. Here, only a part of the filter takes
into account the information. Therefore, the filter response is greatly reduced where the
results are particularly affected by noise.

Oriented corners filters provide an improved accuracy at corners and junctions [SF96,
YDS01]. However, these filters are too flared or the central pixels have no effect. Also, as
the implementation of this filter is slow, they cannot be implemented recursively.

The filter discussed and presented in the following section is motivated by the need
to overcome the drawbacks of the above mentioned filters and also, the need for a good
filter for detecting the edges in general and minute edges in particular. In this section,
we present a new family of anisotropic filters capable of detecting minute edges and other
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(a) (b)

Figure 2.17: (a)Application of Anisotropic full Gaussian kernel at the contour of an object.
(b)Application of Anisotropic half Gaussian kernel at the contour of an object.

geometrical image properties such as junctions, corners etc. These filters were introduced
by [MMD11a,MMD11b,MM10,MMP10,MMD11c]. The following filters are basically an
elongated Anisotropic half Gaussian and exponential filters, cut in the middle to form a
half filter. The image features are detected by rotating this filter at a pixel or a key-point
in an image.

Anisotropic half filters have been used in the construction of local image descrip-
tors [VMD15, VMDM15c, VMDM15a]. It has also found applications in edge detec-
tion and preservation [MM10], texture removal [MMD11a, MMD11b], anisotropic dif-
fusion [MM14], image de-blurring and Regularization [MXM13] and in medical imaging
applications [MMD13].

2.5.1 Anisotropic Half Gaussian Smoothing Filter
/Kernel (AHGSK)

To address the problems with the anisotropic Gaussian filter as described above, the
proposed solution was to cut a directional Gaussian in two parts as presented in Fig.2.17(b)
and then to apply the filters at several orientations on the image. By construction, the half
Gaussian smoothing filter is not symmetrical in the direction of its maximum elongation
(towards the largest standard deviation ξ). The smoothing filter is given by the Eq.2.26:

g(σξ,ση)(x, y, θ) = C · Sy

(

Rθ

(

x

y

))

· e−( x y ) .Z (2.26)

on a considered pixel point at (x, y) with:

Z = R−1
θ

(

1/(2σ2
ξ ) 0

0 1/(2σ2
η)

)

.Rθ

(

x
y

)

,

where:
σξ and ση controls the size of the Gaussian along the two orthogonal directions, radial

and axial. Since, we are only interested in the causal part of the filter, we cut the filter in
the middle along Y axis using a sigmoid function Sy. Sigmoid function Sy can be replaced
by a Heavyside function Hy. Hy also performs the similar operation as that of Sy, but it
helps in the recursive implementation of the half Gaussian. C as normalization coefficient.
Rθ is a 2D rotation matrix given by:
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Rθ =

(

cos(θ) sin(θ)
− sin(θ) cos(θ)
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Figure 2.18: AHGSK with parameters µ and λ. (c) example of 3D AHGSK(d) example
of discrete AHGSK.

By convolving the image with these oriented kernels, we obtain a set of smoothed
images in different directions Iθ = I ∗G(µ,λ)(θ) as shown in Fig.2.19.

2.5.2 Difference of Half Smoothing Filters (DHSF)

As shown in Fig.5.2, we want to estimate at every pixel a smoothed second derivative of the
image along a curve passing through that pixel. In one dimension, the second derivative
of a signal can be estimated using the Difference of Gaussian operator (DoG). As shown
in Fig.2.21, by convolution with a DoG, the pulses of a 1D signal always appear as peaks
while carrier signals will be completely deformed with zero mean. When it comes to two
dimensions, we need to apply two half smoothing filters(AHGSK) having two different
lambda ( λ height) but with same width (µ mu) to get the directional derivatives. Then,
we calculate the difference of the response of these two filters to get second derivative
information of desired smoothness. We refer to this filter as DHSF and is illustrated in
Fig.5.2(a).

Let D(x, y, θ) be the response of the DHSF obtained at pixel P located at (x, y).
D(x, y, θ) is a function of the direction θ such that:

D(x, y, θ) = G(µ,λ1)(x, y, θ)−G(µ,λ2)(x, y, θ) (2.27)

µ, λ1 and λ2 correspond to the standard-deviations of the half Gaussians. Some of the
examples of the response of the DHSF on a synthetic image at different orientations are
shown in Fig.2.22.

2.5.3 Anisotropic Half Gaussian Derivative Filter
/Kernel (AHGDK)

The non-symmetry of the smoothing filter makes it difficult to calculate gradient via an
orientation tensor. Therefore, a derivative filter is used directly in the direction of the
lowest standard deviation η, such that we have a smoothing filter in the half ξ direction and
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(a) Original Image

(b) θ = 34◦ , µ = 10,λ = 1 (c) θ = 270◦ , µ = 10,λ = 1

(d) θ = 34◦ , µ = 10,λ = 1.5 (e) θ = 270◦ , µ = 10,λ = 1.5

Figure 2.19: Smoothed images at different orientations and different images.

a derivative filter in the direction perpendicular to η. This filter is called the Anisotropic
Half Gaussian Derivative Filter and is referred to as AHGDK in the rest of the chapters. It
is then possible to estimate an anisotropic gradient, simply by the differences in response
to the maximum and minimum directional filter. Mathematically, this filter is described
by the equation:

G(µ,λ)(x, y) = C1 ·H (−y) · x · e
−
(

x2

2λ2 +
y2

2µ2

)

(2.28)

Where:
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Figure 2.20: Description of DHSF. for (c) µ = 10, λ = 1 et λ = 1.5.
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Figure 2.21: Difference of Gaussian in one dimension obtained by convolution of 1D
signals. (a) Difference of Gaussians, σ1 = 1, σ2 = 1.5. (b) 1D signal with two pulses. (c)
convolution of (a) & (b). (d) Test signal with two edge. (e) convolution of (a) & (b).

C1 is the normalization factor. µ and λ controls the size of the Gaussian along the two
orthogonal directions, radial and axial. Here, we are only interested in the causal part of
the filter(As shown in Fig.2.23), and hence we cut the filter in the middle along the Y
axis using a heaviside function H. By convolving the image with these derivative oriented
kernels, we obtain a set of derivative images Iθ in different directions, θ ( Iθ = I ∗G(µ,λ)(θ)
) as shown in Fig.2.26.

(a) θ = 34◦ (b) θ = 270◦

Figure 2.22: Response of DHSF at different orientation θ with parameters : µ = 10,λ1 = 1
and λ2 = 1.5 .
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Figure 2.23: (a)An AHGDK (b) discreteized AHGDK. (c) AHGDK with orientation angle
∆θ. (d) AHGDK in 3D

(a) Originale (b) θ = 40◦ (c) θ = 90◦ (d) θ = 320◦

Figure 2.24: Image and its derivatives using AHGDK at different orientations θ, with
µ = 5 et λ = 1.

2.5.4 Anisotropic Half Exponential Derivative Filter
/Kernel (AHEDK)

The Shen Castan filter (shown in the first part of this chapter) is modified to imitate
the AHGDK and this modified filter is called as anisotropic half exponential derivative
kernel (AHEDK). AHEDK shows similar characteristics and produces similar results as
that of the above explained AHGDK. We use the recursive implementation of half expo-
nential kernel which is of order 1 and is approximately 5 times faster than the recursive
implementation of anisotropic half derivative kernel. By construction, AHEDK exhibits
derivative characteristics along the X direction and smoothing characteristics along the
Y direction as shown in Fig.2.25(a).

E(µ,λ)(x, y, θ) = C1 ·H (y) · e(−αµ·y) · sign(x) · e(−αλ·|x|) (2.29)

The AHEDK is given by the Eq.2.29. The derivative information of an image is
obtained by spinning the AHEDK around a pixel (x, y) as in Fig.2.25(c). In the Eq.2.29,
C1 is a normalization coefficient and (αµ,αλ) the height and width of the anisotropic
half exponential kernel (see Fig.2.25(a)). Similar to Eq.2.28, only the causal part of this
filter along the Y axis is used by cutting the kernel in the middle, in an operation that
corresponds to the Heaviside function H.
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Figure 2.25: (a) AHEDK (b) discrete AHEDK (c)AHGDK with orientation angle ∆θ.
(d) AHEDK in 3D.

(a) Originale (b) θ = 40◦ (c) θ = 90◦ (d) θ = 320◦

Figure 2.26: Image and its derivatives using AHEDK at different orientations θ, with
αµ = 1 et αλ = .2.

2.6 Summary

To summarize this chapter, here different isotropic and anisotropic filters were presented
and the applications and drawbacks of the full isotropic and anisotropic Gaussian were
discussed. The advantages of splitting the full Gaussian filter in to half were highlighted
and additionally, different half filters and its applications were presented. Here we have
also presented different combination of half kernels like Gaussian smoothing, Gaussian
derivative etc. In the rest of the chapter we refer to Anisotropic Half Gaussian Deriva-
tive Kernel as AHGDK, Anisotropic Half Exponential Derivative Kernel as AHEDK,
Anisotropic Half Gaussian Smoothing Kernel as AHGSK and Difference of Half Smooth-
ing Filters as DHSF.

64 2.6. SUMMARY



Chapter 3

Image matching in videos using

rotating filters

3.1 Introduction

This chapter presents a new image descriptor and matching methodology. We use the
anisotropic half gaussian smoothing filter (AHGSK) explained in the previous chapter to
obtain image description around a key-point. This is used as a low bit rate descriptor
called Rotating Signal descriptor (RSD) and is used for image matching in videos. Finally,
we also present the shortcomings of this method.

In this method, we initially use color Harris detector for finding the feature points
in the image and then the Anisotropic Half Gaussian Smoothing Filter (AHGSK)is spun
around the key-point to extract the color features in the form of signatures/signal. We
call this signatures/signal as the Rotating Signal Descriptor (RSD). By construction, RSD
is not euclidean invariant. Hence, we achieve euclidean invariance by FFT correlation be-
tween the two signatures. Moderate deformation invariance is achieved using Dynamic
Time Warping (DTW) and then, by using a cascade verification scheme we improve the
robustness of our matching method. Eventually, our method is illumination invariant,
rotation invariant, moderately deformation invariant and partially scale invariant. Fur-
ther, the dimension of RSD can be controlled by varying the angle of the rotating filter
by small steps. Our descriptor with a dimension as small as 12 can give a good matching
performance. The small dimension of the descriptor is the main motivation for extending
the matching process to videos.

3.2 Rotating signal Descriptor (RSD)

We obtain a signature similar to [PMD12]. In [PMD12], the authors use an anisotropic
half-Gaussian derivative filter/kernel (AHGDK) to obtain the signature around the key-
point. In our work, we have replaced this derivative filter with a anisotropic half-Gaussian
smoothing filter (AHGSK) Eq.2.26. The derivative filter has to be sampled at minute
angles (rotated in many small steps) to obtain a good description. By using a smoothing
filter, we can obtain good description by sparse sampling (rotating in large steps), thus
reducing the size of the descriptor. The switch from derivative to smoothing filter is
intended to reduce the size of the descriptor, thus increasing the speed of matching. As
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in Eq.2.26 the AHGSK is given by :

g(σξ,ση)(x, y, θ) = C · Sy

(

Rθ

(

x

y

))

· e−( x y ) .Z

on a considered pixel point at (x, y) with:

Z = R−1
θ

(

1/(2σ2
ξ ) 0

0 1/(2σ2
η)

)

.Rθ

(

x
y

)

where σξ and ση controls the size of the Gaussian along the two orthogonal directions,
radial and axial. In our experiments, we have fixed σξ = 10 and ση = 1 and Sy is a
sigmoid function (along the Y axis) used to "cut" smoothly the Gaussian kernel. Rθ is
a 2D rotation matrix and C a normalization coefficient. In our application for matching
in videos, the length/dimension of the descriptor is fixed at 12 for each channel (i,e we
rotate the filter at every 30◦) and since the descriptor is obtained by rotating the filters
around a key-point, its is called Rotating Signal Descriptor (RSD).

3.3 Illumination invariance

Convolution of a pixel in an image with all the kernels results in an intensity function,
which depends on the direction of the kernel. Illumination invariance as proposed by
diagonal illumination model [FFB95] is achieved by normalizing channel by channel:

(R2, G2, B2)
t = M . (R1, G1, B1)

t + (TR, TG, TB)
t , (3.1)

where: (R1, G1, B1)
t and (R2, G2, B2)

t are color inputs and outputs respectively. M is
a diagonal 3x3 matrix and (TR, TG, TB) represents a colour transition vector of the 3
channels. Our final descriptor is a concatenation of descriptors obtained from red, green
and blue channels. As shown in the Eq 3.2:

{

g
R2(σξ,ση)(x, y, θ), gG2(σξ,ση)(x, y, θ), gB2(σξ,ση)(x, y, θ)

}

(3.2)

3.4 Rotation invariance

The descriptor obtained from the previous step does not provide direct euclidean or de-
formation invariance. The common approach for achieving rotational invariance is by
determining the orientation of the image region around the key-point and rotating the
image region by that particular orientation. In our approach, the euclidean invariance is
achieved in a simpler way by computing correlation between the descriptor curves, de-
scribing the two key-points respectively. The phase between the two curves is defined by
the location of maxima of correlation.

RSD is a circular function. Clockwise rotation of RSD (in an image, where the Y axis
is oriented downwards) in the image plane will shift the RSD to the right. Under these
conditions, if we calculate the Euclidean distance between the two RSD’s s1 and s2, the
distance is affected by the rotation. It is therefore necessary to perform a reverse shift on
one of the two RSD’s, if we want to obtain a good result.

d(s1, s2) = min
θ′

∑

θ

(s1 (θ)− s2 (θ − θ′))
2

(3.3)
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This distance is related to the maxima of correlation between s1 and s2 and is given by:

c (θ) = s1 (θ) ∗ s2 (−θ) (3.4)

There are many ways to achieve correlation between 2 signals. One of the most efficient
and popular way to achieve this is by using FFT as proposed by [JF08]. Through this
approach, the minimum distance between s1 and s2 is achieved directly. We use the same
procedure to achieve correlation between s1 and s2 and additionally, the FFTW3 [FJ05]
has been used for faster implementation of FFT. Rotation invariance using correlation is
illustrated from Fig.3.1.

3.5 Affine invariance

Since angles are not preserved under deformation or projective transforms, correlation
alone is insufficient in ranking the match between a point in an image and the same
point when seen in the second image under a changed viewpoint. In such a situation,
curve deformation is needed to obtain affine invariant correlation scores. The simplest
way to transform a curve into another curve is by the use of the dynamic time warping
(DTW) algorithm. Additionally, since two signatures corresponding to the same point are
relatively close (after resetting by correlation), it seems that DTW approach is apt while
addressing the problem faced in our experiment. DTW is a popular similarity measure
between the two temporal signals. This method has been widely used, particularly in
speech recognition problems for locally deforming the time signals in order to compare
them. In [Lem09], the authors have used an improved DTW for time series retrieval in
pattern recognition applications.

Considering the two curves that may have approximately the same shape as in Fig.3.2
and by calculating the point to point distance between the curves(As in Fig.3.2(a)), the
deformation in the curves causes a false estimate of "resemblance" between the curves.
But in order to find the similarity between them, it is necessary to ”warp” the time axis.
If we know the transformation function between the two curves, then we can estimate the
"resemblance" between them in a more realistic way as shown in Fig.3.2(b). The DTW
algorithm provides this transformation function and calculates an optimal alignment be-
tween the samples of two time series that minimizes the cumulated distance.

3.5.1 Dynamic Time Warping (DTW)

The DTW method is based on a dynamic programming algorithm which constructs a
minimum cost matrix having possible offsets between the two curves. The minimum path
in the matrix is then found using an inverse path. Fig.3.2(c) illustrates the search path
in the matrix. Let s1 and s2 be the two curves that are approximately recalibrated by
correlation. Consider the matrix d[i][j] which is a point to point square of the difference
between the two curves.
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(a) (b)

(c)

(d)

Figure 3.1: Rotation invariance using correlation at point 1. a) Left Image, b) Right
Image. c) Initial RSD at point 1 in both the images (σξ = 10, ση = 1, ∆θ = 30◦). d)
RSD after correlation.
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(a) (b) (c)

Figure 3.2: Distance calculation between two curves/signature

d[i][j] =
(

s1[i]− s2[j])
2
)

=













(s1[1]− s2[1])
2 (s1[1]− s2[2])

2 · · · (s1[1]− s2[n])
2

(s1[2]− s2[1])
2 (s1[2]− s2[2])

2 · · · (s1[2]− s2[n])
2

· · · · · · · · · · · ·
· · · · · · · · · · · ·

(s1[n]− s2[1])
2 · · · · · · (s1[n]− s2[n])

2













The matrix D[i][j] is a sum of squares of distances along a minimum cost path and is
constructed as follows:

• D[1][1] = d[1][1]
• D[1][j] = d[1][j] +D[1][j − 1]
• D[i][1] = d[i][1] +D[i− 1][1]

and

• D[i][j] = d[i][j] + min {D[i− 1][j − 1], D[i− 1][j], D[i][j − 1]}

Finally, the transformation function of the curves s1 and s2 is given by the path matrix
D[i][j]. This path is obtained by traversing the matrix from the bottom-right to top-left
corner and choosing the minimum at every stage.

To avoid incompatible changes due to affine transformations, we want to constrain the
DTW, so as to give a path that is close to the diagonal of the matrix D[i][j]. For this
purpose, we add a penalty term to the matrix that is zero on the diagonal and increase
as one moves away from it. The penalty term is given by a function C(x) where x is
the distance in the diagonal of the matrix taken in an orthogonal direction. Here, we
need a function that remains close to zero in a certain band around the diagonal and
polynomial of degree higher than 2 have this property. This property is illustrated in
Fig.3.3. Our experiments have shown that a simple polynomial of degree 6 (Eq.3.5)gives
the best results (we tested functions of the second to the eighth degree):

C : [0, 1] −→ ℜ, C ( x ) = ǫ · x6 (3.5)

Where,: ǫ is a normalization factor.
The value of ǫ is chosen based on the position of d1 and d2 with respect to the diagonal.

3.5. AFFINE INVARIANCE 69



CHAPTER 3. IMAGE MATCHING IN VIDEOS USING ROTATING FILTERS

(a) (b)

Figure 3.3: Penalty deformation function. (a) The region around the diagonal where in
the deformation path is allowed. (b) Example of penalty deformation function of degree
2, 4, 6 and 8. In our work, we use the polynomial function of degree 6.

In our experiments, the lines d1 and d2 are positioned on the sub-diagonal of the matrix
D (on either side of the diagonal).

Fig.3.4 and Fig.3.5 illustrates the results of warping obtained on "point 1" in "Bust"
sequence. As shown in Fig.3.5(a) the original signatures were recalibrated using correla-
tion(rotation). By using constrained DTW, we are able to achieve a curve that is very
close to the original curve and is illustrated in Fig.3.5(b).

3.6 Matching by Cascade Verification Scheme

We improve the robustness of the matching method by using a cascade verification scheme
as shown in Fig.3.6. This scheme has 5 stages.

• In the first stage, we extract Rotating Signal Descriptors(RSD) for key-points(color
Harris corners) in Image1 and for key-points in Image2. In Fig.3.6. D1,D2,D3,...
and Z1,Z2,Z3,..... are the descriptors from Image1 and Image2 respectively.

• In the second stage, initially we consider the red channel part of the descriptor i,e
R2 as shown in eq.3.2. Then the FFT Correlation is performed between the descrip-
tors D1,D2,D3,... (red channel part R2) obtained from Image1 and the descriptors
Z1,Z2,..(red channel part R2) obtained from Image2, resulting in the correlation
score Sc and angle φ. The same score and angle obtained is used for the green
channel G2 and blue channel B2 part of the descriptor and the descriptors of Image
2 having an correlation score Sc < threshold T , is selected. Similarly, we perform
the FFT correlation between the descriptors Z1,Z2,Z3,... (red channel part R2) of
Image2 and all the descriptors of Image1.

• As in the second stage, initially we consider the red channel part of the descriptor i,e
R2 and CDTW is performed between descriptors of Image1 and all the descriptors
from Image2 that has passed the first stage. The descriptors from Image2 are rotated
by an angle φ (circularly shifted) before performing Constrained DTW (CDTW).
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Warping results obtained on the "point 1" in the "Burst" image sequence.
All the images are obtained from [PMD12]. (a) Image I1 indicating the "point 1" inside
a red square . (b) Image I2 indicating the corresponding "point 1" inside a red square.
(c) Matrix representing the sum of square distance between the two curves d[i][j]. (d)
Integrated cost deformation matrix D[i][j]. (e) integrated + constrained distance matrix
. (f) Path obtained with the constraints.
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(a)

(b)

Figure 3.5: Results (a) After correlation (b) After constrained DTW
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Figure 3.6: Flowchart of our cascade verification scheme

Thus, the obtained deformation score from the red channel is used for green and
blue channels. Similarly, we perform CDTW between Descriptors of Image2 and all
the descriptors from Image1.

• In the fourth stage, the ambiguities are removed by cross matching where the
matches are computed from Image 1 towards Image 2 and from Image 2 towards
Image 1 by eliminating the matches that do not correspond reciprocally. At this
point we do obtain a robust set of matches but chances for false matches may still
occur.

• In the Fifth stage, we consider the nearest neighbouring matches N for all the
matches in Image1 . The neighbours are chosen in such a way that they are present
inside a circle of radius Rneigh (50 pixels in our case). We do the same for all the
matches in Image2. We then check whether the key-point and all its neighbours
in Image1 corresponds to key-point and all its neighbours in Image2 and if they
correspond, this key-point pair is chosen as the final match as seen in the example
Fig.3.7. The red dots are the key-points and the green dots are the neighbours. The
euclidean distance is used to compute the nearest neighbours and the radius Rneigh

is set to 50 pixels. The number of neighbours N, is chosen from 1 to 4. In order to
have a good number of matches, the value of N=2 is chosen in all our experiments.
Fig.3.8 shows an image with a news anchor in a newsroom. There is a change in
view point. This figure illustrates the robustness achieved by using the cascade
verification scheme along with the matches obtained using different neighbouring
stages.

3.7 Experiments and Discussions

The algorithm was implemented on c/c++ platform where Intel core 2 duo processor with
2.8 GHZ has been used. The complete code is our own implementation and have come
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Figure 3.7: Nearest neighbour stage

up with a video framework that captures, buffers and displays the video frames in real
time. Since the filter coefficients are fixed in each direction, we only need to generate
the filter coefficients once and reuse them. A stack of rotating filters at different angles
varying in steps of ∆θ, has also been generated once outside the video loop. This video
implementation is for both gray level and color images. The image sequence used in our
work are all color image sequences. Further, to improve the speed the complete code is
multi-threaded.

This method has been tested on 2 video sequences and both are color image (RGB)
sequence. The first video which is the fish sequence from [JY09] is a small sequence with
132 frames and having a resolution of 320x240. The sequence is about a fish moving in
an aquarium. In the middle of the sequence, where the fish overlaps another big yellow
fish, the appearance is made indistinguishable due to lack of texture and low video quality
due to heavy compression. The second sequence, which is the bottle sequence, is our own
sequence generated by using a web-cam. In this sequence, we can see the bottle being
rotated, turned around and tilted sideways. The resolution of this sequence is 640x480
with 1892 frames. We compare our results with that of SIFT descriptor [Low04]. Since,
there is no algorithmic implementation of SIFT for matching in videos, we have extracted
significant frames from the video and applied SIFT on those individual frames. The SIFT
code is provided by [Low04]. For all the video sequences that we have used, the rotating
filter angle θ = 30◦ . This results in a descriptor with 12 dimension .

We first tested our method on the ’fish’ video sequence. From the Fig.3.9, we can
clearly see that our method performs similar to or better than SIFT. This is same for
almost all the frames in sequence. Results of this video in Fig.3.9 demonstrates that our
method can deal with low quality videos and images. In this case, the frame rate achieved
was around 10 frames per second on an average. The matching results in video can be
found in the link 1. The second video sequence is that of a ’bottle’ . From the Fig.3.10
we can clearly see that our method and SIFT gives almost similar results. Results of
this video demonstrates that this method can deal with rotation, deformation and small
changes in scale. In this case, the frame rate achieved was around 6 frames per second on
average. This video can be found in the link 2.

1https://www.youtube.com/watch?v=49MkqVc0OeM
2https://www.youtube.com/watch?v=N9GzV7bUzmU
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(a) original images (b) 0- neighbourhood

(c) 1- neighbourhood (d) 2- neighbourhood

(e) 3- neighbourhood (f) 4- neighbourhood

Figure 3.8: Robustness in matching with varying number of matches in the neighbourhood
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(a) 18 (b) 28 (c) 35 (d) 55 (e) 71 (f) 98

(a) 18 (b) 28 (c) 35 (d) 55 (e) 71 (f) 98

Figure 3.9: first six color images are output of matching using our method. last six gray
images are output of matching using SIFT. Numbers shown are the frame numbers used
in both SIFT and our method

We further experimented our RSD on the Oxford dataset 3. Details of this dataset
is given in the chapter.4.5.1. Here, the RSD is extracted from gray-scale image patches.
In this experiment, we exclude the matching process (correlation, DTW and nearest
neighbour) as explained above. The rotation and affine normalized gray-scale images
patches are extracted as in [MS04] and is explained in detail in the next methodology.
The results of RSD (dimensions 12, 36 and 72) is compared with that of SIFT and PCA
SIFT for variations in blur, scale, rotation, compression, viewpoint and brightness. The

3http://www.robots.ox.ac.uk/~vgg/research/affine/)

(a) 10 (b) 232 (c) 485 (d) 878 (e) 1565 (f) 1767

(a) 10 (b) 232 (c) 485 (d) 878 (e) 1565 (f) 1767

Figure 3.10: first six color images are output of matching using our method. last six
gray images are output of matching using SIFT. Frame numbers for both SIFT and our
method is indicated below the images.
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comparisons can be seen in Fig.3.11, Fig.3.12, Fig.3.13, Fig.3.14, Fig.3.15.
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Figure 3.11: Comparison of RSD with SIFT and PCA-SIFT for variations in blur.
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Figure 3.12: Comparison of RSD with SIFT and PCA-SIFT for variations in scale and
rotation.
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Figure 3.13: Comparison of RSD with SIFT and PCA-SIFT for variations in compression.

3.8 Summary

In this chapter a new method for image matching has been explained. Initially, the image
features (RSD) are extracted by spinning the AHGSK around a key-point and then the
cascade matching scheme is used to achieve rotation and affine invariance. Additionally,
we also achieved robust matches using the nearest neighbouring scheme. This method-
ology forms our first contribution and resulted in the publication [VMD15]. Though the
above explained method was different and new, it had the following drawbacks:
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Figure 3.14: Comparison of RSD with SIFT and PCA-SIFT for variations in viewpoint.
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Figure 3.15: Comparison of RSD with SIFT and PCA-SIFT for variations in brightness.

• Our assumption of using the same correlation and DTW score for the other two
channels (Green and Blue) may result in loosing some of the good matches. To
overcome this, we can apply correlation and DTW independently to the signatures
of three channels to the corresponding images. But this would result in different
“warpings” of the signatures for each key-point pair. Additionally, we should also
design a way to fuse the individual distances. One way to deal with this issue is to
use Multi Dimension Dynamic Time Warping (MDDTW) [tHRH07]. But, MDDTW
is very complicated and time consuming.

• Dynamic time warping modifies the curves. If the constraint function is not chosen
carefully, then a good match may end up as a bad match and vice-versa. To find
a global constraint function to overcome this issue, we need to introduce a learning
stage.

• The proposed method using DTW provides moderate deformation/affine invariance.

• The proposed method is not scale invariant.

• Since, RSD is obtained by spinning the AHGSK around the key-point( color Harris
corner), the information extracted by the RSD is very weak. RSD alone fails to
capture the geometry of the region around the key-point. As a result, when this
descriptor is evaluated for the standard dataset (Here only grey images were used in
the evaluation), it gives weak results when compared to that of the SIFT descriptor.
The results can be seen in the Fig.3.11, Fig.3.12, Fig.3.13, Fig.3.14, Fig.3.15. These
drawbacks can be negated by using RSD-HOG descriptor introduced in the next
section.
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Chapter 4

RSD-HoG

In the previous chapter we had proposed a new low bit-rate image descriptor called RSD
(Rotating Signal descriptor) and a new cascade image matching method based on corre-
lation and dynamic time warping. RSD was a weak descriptor and it failed to capture
the geometry of the region around the key-point. The cascade matching stage had many
drawbacks too. In this chapter, we tried to over come the drawbacks of the previous
image descriptor by proposing a new robust image patch descriptor called RSD-HoG.

4.1 Introduction

In the literature review, we spoke about image descriptors based on gradients, curvature
and filter responses. Most of the descriptors based on filter response were weak and as
a result failed to compete with the gradient based descriptors. Since these filter based
descriptors were obtained at individual key-points, they failed to capture the complete
geometry of the region around the key-point. Our descriptor can be considered as a
combination of the descriptors based on gradients, curvature and filter responses.

In our descriptor, we have embedded the response (RSD) of the half Gaussian filter
in the Histogram of oriented Gradient framework and hence, the name RSD-HoG. In this
descriptor:

• The response of a rotating Anisotropic Half Gaussian Derivative Kernel (AHGDK)
or Anisotropic Half Gaussian Exponential Kernel(AHEDK) around pixels is used to
construct signatures (RSD).

• RSD is constructed for each pixel in the region around the key-point i.e we follow a
dense approach.

• The orientation of the edges and the anisotropic gradient directions are extracted
from the RSD, thus capturing the geometry/curvature of the region around the
key-point.

• These orientations are binned separately in different ways as in HoG, to get different
variants of the descriptor.
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4.2 Filtering Stage

When compared to isotropic filters, anisotropic filters have an advantage in detecting large
linear structures. For anisotropic filters, the gradient magnitude at the corners decreases
as the edge information under the scope of the filter decreases (Fig.4.1(a)). Consequently,
robustness to noise when dealing with tiny geometric structures weakens. This drawback
can be nullified by using Half filters such as AHGDK or AHEDK. In addition to this, with
the use of elongated and oriented half kernels in our experiments, we are able to estimate
the two principal edge directions as in Fig.4.1(b).
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(a) (b)

Figure 4.1: (a) Anisotropic full Gaussian at a corner. (b) Edge directions and gradient
direction extraction using Anisotropic half Gaussian

In this work, we use Anisotropic Half Gaussian Derivative Kernel (AHGDK) for de-
scriptor generation and we also use Anisotropic Half Gaussian Exponential Kernel(AHEDK)
to obtain a faster variant of our descriptor. We then compare the two descriptors with
that of the descriptor obtained from Anisotropic Full Gaussian derivative kernel and show
the advantage of using Half kernel over Full kernels. These kernels has been explained in
detail in chapter.2.

At each pixel (x, y) in the region around the key-point, we spin the AHGDK at different
orientations θ to obtain the derivative information or signature (RSD) Q(x, y, θ) as in
Eq.4.2. Replacing the AHGDK with the AHEDK, we get the RSD E(x, y, θ) as in Eq.4.4.

Q(x, y, θ) = IRθ
∗ G(µ,λ)(x, y) (4.1)

= IRθ
∗ C1 ·H (−y) · x · e

−
(

x2

2λ2 +
y2

2µ2

)

(4.2)

E(x, y, θ) = IRθ
∗ E(µ,λ)(x, y) (4.3)

= IRθ
∗ C1 ·H (y) · e(−αµ·y) · sign(x) · e(−αλ·|x|) (4.4)

Examples of Q(x, y, θ) for a few selected points is shown in Fig.4.2. In the direction
of the edges, the filter responds with positive or negative peaks in the function Q(x, y, θ).
Point 1 belongs to a smooth/homogeneous region and as a result, the response of the
filter is almost 0 with no peaks. Since point 2 belongs to a textured region, the signal is
relatively stochastic with low amplitude. Points 3 and 4 belongs to horizontal and oblique
edges respectively. The two peaks in the signal Q(x, y, θ) indicates the orientation at which
the edges are present. It is the same for the points 5 and 6 at the corners where the peaks
indicate the direction of the edges.
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Figure 4.2: Point selection in the top image. Functions Q(x, y, θ) for each point with
∆θ = 5◦, µ = 5 et λ = 1. X axis represents the orientation of the filter, whereas y axis
represents the response of the filter.
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4.3 Anisotropic gradient magnitude and direction esti-

mation
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Figure 4.3: (a) AHGDK applied to a key-point xp, yp in the image patch to obtain
Q(x, y, θ). (b) An example of Q(x, y, θ).

We construct the signature Q(xp, yp, θ) by considering the response of the above de-
scribed rotating filter at a pixel location (xp, yp) as in Fig.4.3(a). Fig.4.3(b) shows a
sample signature obtained by applying the AHGDK at the the pixel location (xp, yp) in
steps of 2◦. Anisotropic gradient magnitude ‖∇I‖a and its associated direction η for the
key-point at location (xp, yp) are obtained by considering the global extrema Gmax and
Gmin of the function Q(xp, yp, θ) along with θ1 and θ2. The two angles θ1 and θ2 defines a
curve crossing the pixel (an incoming and outgoing direction) and thus, representing the
two edge directions. Both these global extrema are combined to maximize the gradient
‖∇I‖a, i.e:















Gmax = max
θ∈[0,360◦[

Q(xp, yp, θ) and θ1 = arg max
θ∈[0,360◦[

(Q(xp, yp, θ))

Gmin = min
θ∈[0,360◦[

Q(xp, yp, θ) and θ2 = arg min
θ∈[0,360◦[

(Q(xp, yp, θ))

‖∇I‖a = Gmax −Gmin

(4.5)

We calculate η (Fig.4.4) by taking the average of the two angles θ1 and θ2 :

η =
θ1 + θ2

2
(4.6)

The Fig.4.5, illustrates the calculation of different gradients ‖∇I‖ and angles (η, θ1, θ2)
having different parameters of λ and µ.

4.4 Methodology

In this section, we describe the various steps involved in the construction of the descriptor,
as shown in the Fig.4.6. Initially, we use the Harris affine feature detector to find the
affine regions in the image. The detected regions are of different elliptical sizes, which
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(a) (b)

Figure 4.4: Calculation of η(x, y) from θ1 and θ2. (a) θ1 and θ2 corresponds to the two
directions of an object edge at a pixel P . (b)Angle η is the bisector of the two angles θ1
and θ2.

depends on the detection scale. Once we have this detected region, the next step is to
affine normalize the region.

4.4.1 Normalization

We achieve normalization of the region as proposed by [MS03]. As there is a possibility to
change the size or shape of the detected region by scale or affine covariant construction,
we can modify the set of pixels that contribute to the descriptor computation [MS03].
Typically, larger regions contain more signal variations. Hessian-Affine detector mainly
detects blob-like structures for which the signal variations lies on the blob boundaries.
We make sure that these signal changes are included into the descriptor by considering
a measurement region that is three times larger than the detected region. Next, we map
all the detected regions to a circular region of a constant radius to obtain scale and affine
invariance. In order to represent the local structure at a sufficient resolution, the size of
the normalized region is chosen such that it is not too small. In our case, this size is
arbitrarily set to 41× 41 pixels. Authors in [KS04,MS03] have used a similar patch size.
If the detected region is larger than the normalized region, then the image of the detected
region can be smoothed by a Gaussian kernel before region normalization. The standard
derivation of Gaussian used for smoothing is given by the ratio of detected region to the
normalized region [MS03].

As in [FWH12], consider a detected region denoted by a symmetrical matrix M ∈ ℜ2×2.
For any point X in the region, it satisfies the condition:

XTMX ≤ 1 (4.7)

If M =
1

c2
E, where E is the identity matrix, then the region is a circular region and

c is its radius. Otherwise, it is an elliptical region. The aim of normalization step is to
warp the detected elliptical/circular region into a canonical circular region as shown in
Fig.4.7. The same point X ′ which belongs to a normalized region satisfies Eq.4.8, where
r is the radius of the normalized region,

X
′TX

′ ≤ r2 (4.8)
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(a) Original image (b) Image θ1, µ = 5, λ = 1 (c) Image θ2 , µ = 5, λ = 1

(d) ‖∇I‖, µ = 3, λ = 1 (e) Image η, µ = 3, λ = 1 (f) Local maxima of (d)

(g) ‖∇I‖, µ = 5, λ = 1 (h) Image η, µ = 5, λ = 1 (i) Local maxima of (g)

(j) ‖∇I‖, µ = 10, λ = 1 (k) Image η, µ = 10, λ = 1 (l) Local maxima of (j)

Figure 4.5: Estimation of gradient ‖∇I‖ and the angles θ1, θ2 and η with different pa-
rameters µ and λ. ∆θ = 5◦.
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Figure 4.6: Descriptor construction methodology

Figure 4.7: Region normalization

When both the above equations are combined, we have:

X =
1

r
M−.5X = T−1X ′ (4.9)

Therefore, for each sample point X ′ in the normalized region, we calculate its corre-
sponding point X in the detected region and take the intensity of X as the intensity of
X ′ in the normalized region, i,e I(X ′) = I(X). Since X is not exactly located at a grid
point, we use bilinear interpolation to obtain I(X).

Once we have achieved the affine invariance, the next step will be to achieve the
rotation invariance. This is done by rotating the normalized region by the dominant
gradient orientation, that is computed on a small neighbourhood of the region center.
We estimate the dominant gradient orientation as in [Low04] by building a histogram of
gradient angles weighted by the gradient magnitude and selecting the orientation that
corresponds to the largest histogram bin.
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4.4.2 Descriptor construction

Once we have the rotation and affine normalized image patch, the next step is to convolve
the image patch with AHGDK or AHEDK at different orientations and extract the RSD
for each pixel. As explained in the previous section, the RSD for each pixel is extracted,
where:

• Angle at the maxima, θ1 and the response Gmax at θ1.

• Angle at the minima, θ2 and the response ‖Gmin‖ at θ2.

• Anisotropic gradient angle η and its magnitude ‖∇I‖a.

By construction, this method detects curvature information with θ1 and θ2, by using only
1st order derivatives. Examples of the curvature captured by our method can be seen in
Fig.4.8. The angles (θ1, θ2&η) for the synthetic square were obtained using the AHGDK.
Whereas, the angles (θ1, θ2&η) for the synthetic quarter circle are captured using the
AHEDK. Once we have these informations, the next step is to form three intermediate
descriptors by constructing the Histogram of oriented gradient (HoG) having all the 3
angles separately. For the HoG construction, we follow the same approach as in [Low04],
and divide the patch into 4 × 4 blocks of equal size (blocks on the extreme right and
bottom contain 11× 11 pixels).

• Angle at the maxima, θ1 is binned by weighing with its response Gmax to form:
HoGθ1 = {θ1bin1

, θ1bin2
, θ1bin3

, θ1bin4
.....θ1bin128

}

• Angle at the minima, θ2 is binned by weighing with its response Gmin to form:
HoGθ2 = {θ2bin1

, θ2bin2
, θ2bin3

, θ2bin4
.....θ2bin128

}

• The anisotropic gradient, η is binned by weighing with its response ‖∇I‖a to form:
HoGη = {ηbin1, ηbin2, ηbin3, ηbin4.........ηbin128}

Finally, we combine the three intermediate descriptors in 4 different ways:

• DESCT1-theta1-eta : A 256 dimension(length) descriptor obtained by concate-
nating HoGθ1 and HoGη.

• DESCT2-theta2-eta : A 256 dimension descriptor obtained by concatenating
HoGθ2 and HoGη.

• DESCT3-theta1-theta2 : A 256 dimension descriptor obtained by concatenating
HoGθ1 and HoGθ2.

• DESCT4-theta1-theta2-eta : A 384 dimension descriptor obtained by concate-
nating HoGθ1 , HoGθ2 and HoGη.

We follow the same procedure to construct the descriptors using AHEDK and call them
EXP-DESCT1-theta1-eta, EXP-DESCT2-theta2-eta, EXP-DESCT3-theta1-theta2
and EXP-DESCT4-theta1-theta2-eta respectively.
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(a) θ1 (b) θ2

(c) η (d) θ1

(e)θ2 (f) η

Figure 4.8: Curvature captured by our method illustrated on synthetic square and quarter
circle.4.4. METHODOLOGY 87
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Dataset Image
Change

#
Im-
ages

# Key-
points

Resolution Harris
thresh-
old

BIKE blur 5 878,665,624, 1000x700 1000
482,384

BOAT rotation+zoom5 3023,2935,2379, 800x640 1000
1423,1199

GRAFF Viewpoint 5 1758,1973,2172, 800x640 1000
1976,2153

COMPRESSION Compression 5 1402,1425,1421 800x640 1000
1400,1540

LEUVEN illumination 5 902,723,615 921x614 1000
500,399

Table 4.1: Sequences and images used in the image matching experiments: 1st column
indicates the dataset name. 2nd column indicates the variation in the image. 3rd column
indicates the number of images in the sequence used in our experiments. 4th column
indicates the number of key-points in each of the 5 images starting from the 1st image
to the 5th image. 5th column indicates the resolution of the images in the sequence. 6th
Column indicates the threshold used in the Harris affine region detector

4.5 Experiments and results

In this section, we initially present the dataset that is used in our experiments and then
the details of the evaluation protocol used for image matching experiments. Later, we
give the implementation details and finally conclude this section with the results and
discussion.

4.5.1 Dataset

The descriptors used in our experiments are tested with the dataset provided by Mikola-
jczyk et al.1. where the standard dataset includes several image sequences. Each image
sequence generally contains 6 images. The image sequence have different geometric and
photometric transformations such as image blur, lighting, viewpoint, scale changes, zoom,
rotation and JPEG compression. Additionally, they have provided the ground truth homo-
graphies for every image transformation with respect to the first image of every sequence.
Some of the images in different sequences are shown in the Fig.4.9. The properties of the
image sequence in the dataset is tabulated in the Table.4.1.

4.5.2 Evaluation criteria

We use the recall vs 1 − precision plot as proposed by Mikolajczyk et al. in [MS03].
The criterion is based on the number of correct matches and the number of false matches

1http://www.robots.ox.ac.uk/~vgg/research/affine/
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure 4.9: Oxford dataset for image matching. The images in the first row are named
as BIKE dataset. It has variations in blur. The images in the 2nd row are called as the
BOAT dataset having rotation and zoom variations. The images in the 3rd row have
variations in compression and are named as COMPRESSION dataset. The images in the
4th row have variations in viewpoint and are named as GRAFF dataset. The images in
the final row belongs to the LEUVEN dataset and have variations in brightness.
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obtained for an image pair:

recall =
# correct matches

# correspondences
(4.10)

1-precision =
# false matches

# correct matches + # false matches
(4.11)

The number of correct matches and the correspondences is determined by the overlap
error. The two regions A and B are said to correspond to each other if the overlap error
is ε0, which is defined as an error in the image area covered by sufficiently small region,
as shown in Eq.4.12. For the evaluation, we have used the plugin/code (without any
modification) provided by 2.

ε0 = 1− A ∩HT · B ·H

A ∪HT · B ·H
(4.12)

4.5.3 Parameters

Our descriptor and its variants depends on 4 different parameters (Table.4.2): ∆θ, No−
of−bins, height and width (µ, λ for AHGDK and αµ, αλ for AHEDK). The rotation
step ∆θ is fixed to 10◦. An increase in the rotation step results in loss of information.
For constructing the histogram, the image patch is divided into 16 blocks. All blocks
are of size 10x10 (Since we are using a patch of size 41 × 41 , the blocks in the extreme
right and bottom have 11x11 size). The number of bins (No−of−bins) is fixed to 8
per block, resulting in a 8 ∗ 16 = 128 bins for 16 blocks. Increasing the number of bins
gives almost the same performance but it increases the dimensionality of the descriptor.
AHGDK height µ and width λ is fixed to 6 and 1 respectively. AHEDK height αµ

and width αλ is fixed to 1 and 0.2 respectively. Width and height parameters are chosen
empirically, so as to have a ratio sharpness length suitable for robust edge detection, which
generally gives good results in most cases. This ratio is compatible with the angle filtering
step. Euclidean distance is used as the comparison metric. We have used the recursive
implementation of Gaussian filter as in [Der93] and similarly, the recursive implementation
for the exponential filter has been used. When implemented recursively, the exponential
filter is upto 4 times faster than the recursive implementation of Gaussian filter, providing
similar performance.

Table 4.2: Parameters
filter Height (µ, αµ) filter Width (λ, αλ) Rotation step (∆θ) No of BINS

6 , 1 1 , 0.2 5◦ 8

4.5.4 Descriptor Performance

The performance of descriptors obtained using both AHGDK and AHEDK are compared
against SIFT, GLOH and DAISY. For SIFT and GLOH, the descriptors are extracted
from the binaries provided by Oxford group 3. DAISY descriptor for patches is extracted

2http://www.robots.ox.ac.uk/~vgg/research/affine/
3http://www.robots.ox.ac.uk/~vgg/research/affine/
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from the code provided by [TLF10].
Here, we test the descriptors using similarity threshold based matching, as this tech-

nique is better suited for representing the distribution of the descriptor in its feature
space [MS03]. These descriptors has been compared on all the images in the dataset.
Initially, we show the quantitative results using the Recall vs 1−Precision plot that can
be found in Fig.4.10, Fig.4.11, Fig.4.12, Fig.4.14 and Fig.4.13. Each figure has 12 graphs.
In the first 4 graphs of every figure, we compare the descriptors based on AHGDK and its
variants with SIFT, SURF and DAISY. In the next 4 graphs, we compare the descriptors
based on AHEDK and its variants with SIFT, SURF and DAISY and the final 4 graphs
of these figure gives the comparison between descriptors based on AHGDK , AHEDK and
Anisotropic Full Gaussian Derivative Kernel(AFGDK). Finally, we show the qualitative
results using nearest neighbour matching strategy.

Variations in blur. (BIKE)

The quantitative results for the BIKE sequence can be seen in Fig.4.10. The qualitative
results can be found in Fig.4.15.

• From the first four graphs it is seen that the descriptors based on AHGDK outper-
forms SIFT, DAISY and GLOH.

• The same can be said about descriptors based on AHEDK (the next four graphs).

• In the final four graphs, when the descriptors based on half filters is compared to
that of full filter, we see that the descriptors based on half filters perform better
than that of the AFGDK. Amongst all the descriptors compared in the Fig.4.10,
the descriptor DESCT4-theta1-theta2-eta gives good performance. But, it has
the highest dimension.

Variations in rotation and zoom. (BOAT)

The quantitative results for the BOAT sequence can be seen in Fig.4.11. The qualitative
results can be found in Fig.4.16.

• From the first four graphs it can be seen that, the descriptors based on AHGDK
outperforms SIFT, DAISY and GLOH.

• The same can be said about descriptors based on AHEDK (the next four graphs).

• When compared with AFGDK, we see that the descriptors based on half filters
perform better than that of the AFGDK. Amongst all the descriptors compared in
the Fig.4.10, the descriptor DESCT4-theta1-theta2-eta gives good performance,
whereas, the descriptor based on AFGDK performs badly.

Variations in Compression. (COMPRESSION)

The quantitative results for the COMPRESSION sequence can be seen in Fig.4.11. The
qualitative results can be found in Fig.4.17

• Filters based on AHGDK outperforms SIFT, DAISY and GLOH.
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• The same can be said about descriptors based on AHEDK (the next four graphs).

• Here all the descriptor based on AHGDK, AHEDK and AFGDK shows good per-
formance.

Variations in brightness. (LUVEN)

The quantitative results for the LEUVEN sequence can be seen in Fig.4.13. The qualita-
tive results can be found in Fig.4.18.

• Filters based on AHGDK outperform SIFT, DAISY and GLOH.

• The same can be said about descriptors based on AHEDK (the next four graphs).

• Here, the descriptor based on AHGDK and AHEDK gives better performance than
AFGDK.

Variations in viewpoint. (GRAFF)

The quantitative results for the GRAFF sequence can be seen in Fig.4.14. It is a chal-
lenging sequence and the the qualitative results can be found in Fig.4.19.

• In the first two graphs, filters based on AHGDK outperforms SIFT, DAISY and
GLOH. In the third graph the DESCT-teta1-teta2-eta has an edge over the rest. In
the 4th graph it is seen that all the descriptors fail.

• Here, the descriptor based on AHEDK performs well in first two graphs but fails in
the next two graphs.

• Here, the descriptor based on AHGDK and AHEDK gives better performance than
AFGDK.

4.6 Summary

In this chapter, we propose a new image descriptor called RSD-HoG whose principle and
results have been published in [VMDM15c,VMDM15a]. The originality of this method
is that, it captures the geometry of the image patch by embedding the response of the
AHGDK or AHEDK in a HoG framework. Our method incorporates edge direction as well
as anisotropic gradient direction for generating the descriptor and its variations. On the
standard dataset provided by the Oxford group, our descriptor and its variants outperform
SIFT, GLOH and DAISY. By this method, we are able to overcome the drawbacks of the
descriptor that was proposed in chapter.3.
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Figure 4.10: BIKE DATASET with variations in BLUR
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Figure 4.11: BOAT DATASET with changes in rotation and zoom
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Figure 4.12: COMPRESSION DATASET with variations in compression
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Figure 4.13: LEUVEN DATASET with variations in Birghtness
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(k) GRAFF 1-4 (AHGDK vs AHEDK) (l) GRAFF 1-5 (AHGDK vs AHEDK)

Figure 4.14: GRAFF DATASET with variations in Birghtness
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(a) AHGDK

(b) AHEDK

Figure 4.15: Qualitative results using nearest neighbour matching approach. (a) Matching
between BIKE1 and BIKE4 using AHGDK (b) Matching between BIKE1 and BIKE4
using AHEDK.
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(a) AHGDK

(b) AHEDK

Figure 4.16: Qualitative results using nearest neighbour matching approach. (a) Matching
between BOAT1 and BOAT4 using AHGDK (b) Matching between BOAT1 and BOAT4
using AHEDK.
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(a) AHGDK

(b) AHEDK

Figure 4.17: Qualitative results using nearest neighbour matching approach. (a) Matching
between compression1 and compression4 using AHGDK. (b) Matching between compres-
sion1 and compression4 using AHEDK.
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(a) AHGDK

(b) AHEDK

Figure 4.18: Qualitative results using nearest neighbour matching approach. (a) Matching
between luven1 and luven4 using AHGDK. (b) Matching between luven1 and luven4 using
AHEDK.
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(a) AHGDK

(b) AHEDK

Figure 4.19: Qualitative results using nearest neighbour matching approach. (a) Matching
between GRAFF1 and GRAFF4 using AHGDK. (b) Matching between GRAFF1 and
GRAFF4 using AHEDK.
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Chapter 5

RSD-DoG

In the previous chapter we proposed a descriptor called RSD-HoG. In RSD-HoG, we bin
the orientations at which the edges occur and the angles of the anisotropic gradient to
form an image descriptor. Orientation of the edges and anisotropic gradient orientation
are obtained using first order gradient information. Computer vision literature shows
that second order image statistics provide valuable information about the image. In this
chapter, we propose another new descriptor based on second order image derivatives called
RSD-DOG. Here, we treat the image patch as a 3D surface, with intensity being the 3rd
dimension. The considered 3D surface has a rich set of second order features/statistics
such as ridges, valleys, cliffs and so on. These second order statistics can be easily captured
using the difference of rotating semi Gaussian filters. The originality of our method lies
in successfully combining the response of the directional filters with that of the Difference
of Gaussian (DOG) approach.

5.1 Introduction

In the computer vision literature, features related to first order image statistics such
as segments, edges, image gradients and corners have been used in abundance for image
matching and object detection. In one dimension, first order gradient extracted at a point
gives the slope of the curve at that point. In case of an image, first order gradient at a pixel
measures the slope of the luminance profile at that pixel, while, second order derivatives
are abundantly present in many key-point detectors based on Hessian and laplacian.
But, only first order gradient information is included in the state of the art local image
descriptors such as SIFT [Low04], GLOH [MS03], DAISY [TLF10], and LBP [OPM02b].
Whereas, features related to second order statistics such as cliff, ridges, summits, valleys
and so on have been sparsely used for the image matching and object recognition purpose.
In one dimension, second order derivative at a point measures the local curvature at that
point i.e. how much the curve bends at a given point. This part of the thesis mainly
concentrates on the use of second order statistics for the task of image matching.

Digital images are represented in 2 dimensions as I = D(x, y), where I is the intensity
at the pixel location (x, y) in the digital image D. Alternatively, an image can also be
a 3D surface where every (x, y) pair has a third coordinate in the z plane. Here, the
intensity values are used to represent z axis. This representation has a surface that has
three coordinates for every point. This type of mapping from an open set ℜ2 into ℜ3, is
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known as a Monge patch and can be written in the parametric form as:

s(x, y) = (x, y,D(x, y)) (5.1)

where, D(x, y) is the original Digital image and s(x, y) is a 2-D surface in ℜ3. Parametriz-
ing an image as a 3D surface allows for the creation of a new feature space using differ-
ential geometry. Example of a digital image represented as a 3D image surface is shown
in Fig.5.1. Such a surface in 3D, consists of features such as ridges, valleys, summits or
basins and so on. The geometric properties of these features can be accurately charac-
terized by local curvatures of differential geometry through second order statistics. The
motivation behind this work is to extract these 2nd order image statistics and represent
them as a compact image descriptor for image matching.

(a) (b) (c)

Figure 5.1: (a) Image representation in 2D. (b) and (c) The same image being represented
in 3D, with intensity being the third dimension. Both (b) and (c) are viewed from different
angles. We can see that the 3D image is made of many second order statistics such as
ridges, valleys, summits, edges etc.

Here, for the generation of the RSD-DoG:

• Our idea is to consider the 2D image patch as 3D surface made of second order
statistics such as ridges, valleys, summits and so on. Then, we extract these second
order statistics by using a local directional maximization or minimization of the
response of difference of two rotating half smoothing filters.

• These directions correspond to the orientation of ridges, valleys or a junction of
ridges/valleys. The orientations at which these second order statistics occur are
binned to form a local image descriptor RSD-DOG of dimension/length 256. By
construction, the dimension of our descriptor is almost 3 to 4 times less when com-
pared to other descriptors [ZK13,OT01] based on second order statistics.

• This descriptor is evaluated for invariance to blur, rotation, compression, scale and
viewpoint changes. By construction, our descriptor shows enormous robustness to
variations in illumination. To highlight this property, we rigorously evaluate our
descriptor on dataset consisting of images with linear and non-linear illumination
changes.
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5.2 Directional Filter

Initially, we use the Anisotropic half Gaussian smoothing Filter (AHGSK) as discussed
in the chapter.2. Here, we cut the full smoothing filter into half by using the heaviside
function instead of the sigmoid function. To recap, the AHGSK is given by:

G(µ,λ)(x, y, θ) = C.H

(

Rθ

(

x
y

))

e
−
(

x y
)

R−1
θ





1
2 µ2 0

0 1
2λ2



Rθ





x
y





(5.2)

where C is a normalization coefficient, Rθ a rotation matrix of angle θ, x and y are pixel
coordinates and µ and λ the standard-deviations of the Gaussian filter. By convolving
the image patch with AHGSK at different orientations, we obtain a stack of directional
smoothed image patches Iθ = I ∗ G(µ,λ)(θ). To reduce the computational complexity, in
the first step, we rotate the image at some discrete orientations from 0 to 360 degrees (of
∆θ = 1, 2, 5, or 10 degrees, depending on the angular precision required and the smoothing
parameters) before applying non rotated smoothing filter. As the image is rotated instead
of the filters, the filtering implementation can use efficient recursive approximation of the
Gaussian filter. As presented in [MM10], the implementation of the method is clear and
direct. In the second step, we apply an inverse rotation of the smoothed image and obtain
a bank of 360/∆θ images.

At every pixel in the image patch, we are required to estimate a smoothed second order
derivative of the image along a curve crossing these pixels. In one dimension, the second
order derivative of a signal can be easily estimated using a Difference Of Gaussian (DOG)
operator. In our method, we directly apply two half Gaussian filters with two different λ
and the same µ to obtain the directional derivatives (as in Fig.5.2). Later, we compute
the difference of the response of these two filters to obtain the desired smoothed second
order derivative information in the ridge/valley directions. We refer to this half Gaussian
filter combination as the difference of half smoothing filters(DHSF). More details of DHSF
can be found in Chapter2. To recap the DHSF is given by:

D(x, y, θ) = G(µ,λ1)(x, y, θ)−G(µ,λ2)(x, y, θ) (5.3)

µ, λ1 and λ2 correspond to the standard-deviations of the Gaussians. At each pixel
in the image patch, we are interested in the response of the DHSF at θM1 , θM2 , θm1 and
θm2 . Where, θM1 and θM2 are the directions at which the local maxima of the function D
occurs. D(x, y, θM1) and D(x, y, θM2) are the response of DHSF at θM1 and θM2 . θm1 and
θm2 are the directions at which the local minima of the function D occurs. D(x, y, θm1)
and D(x, y, θm2) are the response of DHSF (Fig.5.6) at θm1 and θm2 .

Some examples of the signal D(x, y, θ) obtained by spinning the DHSF around the
selected key-points extracted from the synthetic image are shown in Fig.5.3. On a typical
valley (point 1 in Fig. 5.3), the pixel signal at the minimum of a valley consists of at
least two negative sharp peaks. For ridges (point 7 in Fig. 5.3), the pixel signal at the
maximum of a ridge contains at least two positive peaks. These sharp peaks correspond
to the two directions of the curve (an entering and leaving path). In case of a junction, the
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Figure 5.2: DHSF in the ridge/valley directions.

number of peaks corresponds to the number of crest lines (ridges/valleys) in the junction
(point 4 in Fig. 5.3). We obtain the same information for the bent lines (illustrated in
point 2 on Fig. 5.3). Finally, due to the strong smoothing (parameter µ), D is close to
0 in the presence of noise without any crest line nor edge (illustrated in point 10 in Fig.
5.3). This illustrates the robustness of this method in the presence of noise.

5.3 Methodology

The methodology is shown in Fig.5.4. We use the Harris affine region detector for detecting
the interest regions. We follow the same procedure as explained in the Chapter.4 for affine
and rotation normalization of the key-region to obtain 41× 41 patch.

We consider this image patch as a 3D surface, with intensity being the 3rd dimension.
As in Fig.5.4, for each pixel in the image patch, we spin the DHSF and obtain a stack
of DOG patches. From this stack of DOG patches, for each pixel we extract the signal
D(x, y, θ) (for simplicity and proper viewing, in Fig.5.4 signal is not shown and a stack
of image patch is shown). From each signal we extract the four angles θM1 , θM2 , θm1 ,
θm2 and their corresponding responses ||D(x, y, θM1)||, ||D(x, y, θM2)||, ||D(x, y, θm1)|| and
||D(x, y, θm2)||. Once these informations are obtained, for each pixel P, we estimate the
average angles η1 and η2 and their respective average magnitudes δ1 and δ2 by:















η1(x, y) = (θM1 + θM2)/2
η2(x, y) = (θm1 + θm2)/2
δ1 = (||D(x, y, θM1)||+ ||D(x, y, θM2)||)/2
δ2 = (||D(x, y, θm1)||+ ||D(x, y, θm2)||)/2

The angle η1 is weighed by δ1 and η2 by δ2 and binned as in Eq. 5.4. Later, Hη1 and
Hη2 are concatenated to form the final 256 length/dimension RSD-DOG descriptor.

{

Hη1 = {η1bin1
, η1bin2

, η1bin3
, η1bin4

.........η1bin128
}

Hη2 = {η2bin1
, η2bin2

, η2bin3
, η2bin4

.........η2bin128
}

(5.4)
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Figure 5.3: Points selection on a synthetic image. Examples of functions D(x, y, θ) on the
points selected on synthetic image using µ = 10,λ1 = 1,λ2 = 1.5. The x-axis corresponds
to the value of θ (in degrees) and the y-axis to D(x, y, θ).

5.4 Experiments and results

Matlab platform is used for the experiments. Harris affine key points [MS02] were used
for image patch extraction as well as the key points obtained from other detectors can
also be used for extracting these image patches. The descriptors used in our experiments
are tested with the dataset provided by Mikolajczyk et al.1. It is the same dataset used
for evaluating our descriptor RSD-HoG. More details about the dataset can be found in
Chapter.4.

In order to study in detail the performance of our descriptor for changes in illumination,
we also evaluated our descriptor on four image pairs, with complex illumination changes;
the data set for the same is publicly available2. The complex illumination dataset has 4
set of images, namely ’desktop’, ’corridor’, ’square’ and ’square root’. The first two sets,
’desktop’ and ’corridor’ have drastic illumination changes, whereas ’square’ and ’square
root’ datasets are obtained by a square and square root operation on the second image

1http://www.robots.ox.ac.uk/~vgg/research/affine/
2http://zhwang.me/publication/liop/
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Figure 5.4: Methodology involved in the construction of RSD-DOG descriptor.

(a) Original Image (b) η1 Image

Figure 5.5: Example of an η1 Image. The parameters used are ∆θ = 2◦, µ = 6,λ1 =
1,λ2 = 1.5.
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Figure 5.6: (a) η1 computation from θM1 and θM2 . (b) η1 corresponds to the direction
perpendicular to the ridge/valley at the level of a pixel P.

of the ’desktop’ set [WFW11]. The images of this illumination dataset can be found in
the Fig.5.7. For evaluating the RSD-DoG descriptor, we use the same protocol using the
Recall vs 1-Precision curves. The protocol is explained in Chapter.4.

Our descriptor depends on 5 different parameters: ∆θ, No− of − bins, µ, λ1 and
λ2. The rotation step ∆θ is fixed to 10◦. Increasing the rotation step results in loss of
information. As in [Low04], for histogram construction, the image patch is divided into
16 blocks. All blocks are of the size 10x10 (Since we are using a patch of size 41x41, the
blocks in the extreme right and bottom have 11x11 size). As in [Low04], the number of
bins (No−of−bins) is fixed to 8 per block, resulting in a 8 ∗ 16 = 128 bins for 16 blocks.
Increasing the number of bins results in same performance as in previous case, but it
increases the dimensionality of the descriptor. Filter height µ is fixed to 6. As in [Low04],
for DHSF the ratio between successive scales is fixed to

√
2. So, filter widths λ1 and λ2

are fixed to 2 and 2
√
2 respectively. In our experiments, we obtain state of art results

by using just two scales. Height (µ = 6) and Width (λ1 = 2, λ2 = 2
√
2) parameters are

chosen empirically so as to have a ratio sharpness length that is suitable for robust second
order feature detection , which generally gives good results in most cases. This ratio is

5.4. EXPERIMENTS AND RESULTS 113



CHAPTER 5. RSD-DOG

compatible with the angle filtering step. The parameters are tabulated in Table.5.1.

Table 5.1: Parameters
filter Height (µ) filter Width (λ1, λ2) Rotation step (∆θ) No of BINS

6 2, 2
√
2 10◦ 8

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m)

Figure 5.7: Illumination dataset for image matching. The images in the first row is
named as ’corridor ’ sequence. The images in the 2nd row is called as the ’desktop’. Both
the sequence has drastic variations in illumination. The images in the 3rd row is called
’square’ and ’square root ’.

5.4.1 Descriptor Performance

In our experiments, we have used two variations of our descriptor (1) RSD-DOG (2-
SCALES) with height µ = 6 and width λ = 2, 2

√
2 respectively. This has a dimension of

256. (2) RSD-DOG (3-SCALES) with height µ = 6 and width λ = 2, 2
√
2, 4 respectively.

Here, in step one, we smooth the image patch with µ = 6, λ1 = 2 and λ2 = 2
√
2 to obtain

a 256 length descriptor. In the second step, we smooth the image patch with µ = 6,
λ1 = 2

√
2 and λ2 = 4 and obtain another 256 length descriptor. Lastly, we concatenate

the two parts to form a 512 size RSD-DOG(3-SCALES) descriptor. All our experiments
are based on similarity matching and euclidean distance is used as the distance measure.

The performance of these two variants of RSD-DOG is compared with the performance
of SIFT, GLOH, DAISY, GIST and LIDRIC descriptors. GIST and LIDRIC descriptors
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are based on Gabor filters. Zambanini et al. [ZK13] propose LIDRIC descriptor, based
on multi-scale and multi-oriented even Gabor filters. The descriptor is constructed in
such a way that typical effects of illumination variations like changes of edge polarity or
spatially varying brightness changes at each pixel are taken into account for illumination
insensitivity. LIDRIC has a dimension of 768. Oliva et al. [OT01] employ Gabor filters to
the grey-scale input image at four different angles and at four spatial scales to obtain the
GIST descriptor. The descriptor has a dimension of 512 and is more global. For SIFT and
GLOH, the descriptors are extracted from the binaries provided by Oxford group. For
DAISY descriptor, the patches are extracted from the code provided by 3. The matlab
code for GIST and LIDRIC descriptors were obtained from 4 and 5 respectively.

For changes in rotation, viewpoint, blur and compression both variants of the RSD-
DOG shows better performance than the other 5 descriptors. The recall vs 1-precision
plots in the Fig.5.8, Fig.5.9 and Fig.5.10 illustrates the superiority of our descriptor. In
Fig.5.11, image pair graf(1-5) is a complex image pair. As a result, performance of all
the descriptors deteriorates. It should be noted that, in most of the cases, RSD-DOG (3-
SCALES) performs similar to or slightly better than that of RSD-DOG (2-SCALES). Our
hypothesis is that since the region around the key-point is normalized, the effect of scale
is reduced. So, increasing the number of scales increases the complexity and descriptor
dimension with very little gain in performance.

For variations in illumination, in all cases (Fig.5.12, Fig.5.13 and Fig.5.14) both the
variants of RSD-DOG performs consistently better than all the other descriptors. When
it comes to ’square’ and ’square root’ images (Fig.5.15) SIFT, DAISY, LIDRIC and GIST
descriptors exhibit poor performance and GLOH descriptor fails miserably.

5.5 Summary

The paper proposes a novel image patch descriptor based on second order statistics such
as ridges, valleys, basins and so on. The originality of our method lies in combining the
response of directional filter with that of the Difference of Gaussian (DOG) approach. One
of the advantage of the proposed descriptor is the dimension/length. Our descriptor has a
dimension of 256, which is almost 2 to 4 times less than other descriptors based on second
order statistics. Our dataset shows good variations to complex illumination changes. On
the standard dataset provided by the Oxford group our descriptor outperforms SIFT,
GLOH, DAISY, GIST and LIDRIC. This methodology forms our final contribution and
resulted in the publication [VMDM15b].

3http://cvlab.epfl.ch/software/daisy
4http://people.csail.mit.edu/torralba/code/spatialenvelope/
5http://www.caa.tuwien.ac.at/cvl/project/ilac/
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Figure 5.8: Recall vs 1-Precision curves for BIKE sequence.

116 5.5. SUMMARY



CHAPTER 5. RSD-DOG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 − precision

R
e

c
a

ll

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 − precision

R
e

c
a

ll

(a) BOAT 1-2 (b) BOAT 1-3
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Figure 5.9: Recall vs 1-Precision curves for BOAT sequence.
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(a) COMPRESSION 1-2 (b) COMPRESSION 1-3
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Figure 5.10: Recall vs 1-Precision curves for COMPRESSION sequence.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 − precision

R
e

c
a

ll

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − precision

R
e

c
a

ll

(c) GRAFF 1-4 (d) GRAFF 1-5

Figure 5.11: Recall vs 1-Precision curves for GRAFF sequence.

5.5. SUMMARY 119



CHAPTER 5. RSD-DOG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − precision

R
e

c
a

ll

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 − precision

R
e

c
a

ll

(a) LUVEN 1-2 (b) LUVEN 1-3
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Figure 5.12: Recall vs 1-Precision curves for LUEVEN sequence.
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(a) CORRIDOR 1-2 (b) CORRIDOR 1-3
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Figure 5.13: Recall vs 1-Precision curves for CORRIDOR sequence.
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(a) DESKTOP 1-2 (b) DESKTOP 1-3
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Figure 5.14: Recall vs 1-Precision curves for DESKTOP sequence.
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(a) Square (b) Square-Root

Figure 5.15: Recall vs 1-Precision curves for SQUARE and SQUARE-ROOT sequence.
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Chapter 6

Conclusion & Future work

To the best of our knowledge, image descriptors based on anisotropic filters or any half
filters were not fully explored in the computer vision field. In this thesis, we have proposed
new image descriptors based on a family of anisotropic half filters which outperforms
many state of the art descriptors that are based on first order image statistics and filter
responses. This unique work can be used in many different computer vision applications.

6.1 Conclusion

Initially, we conducted a brief literature review on the image matching pipeline and we
discussed about different interest point detectors emphasizing on the popular interest
point and region detectors. This was followed by a brief overview on different categories
of descriptors where we identified their advantages and disadvantages. Next was the
matching stage which is usually based on minimization of the inter-distance between the
descriptors. This stage allows to determine the pairs of points with the best likeness.

The literature review was followed by discussion on different isotropic and anisotropic
filters. In the first part of the chapter.2 different isotropic and anisotropic filters based
on Gaussian and exponential were discussed. The latter, considers the advantage of half
filters over the full filters and explores different anisotropic smoothing and derivative half
filters.

In chapter.3 a new low bit-rate descriptor called RSD was discussed. By construction,
the descriptor doesn’t exhibit Euclidean invariance. FFT correlation was used to obtain
rotation invariance and constrained dynamic time warping was used to achieve partial
affine/deformation invariance. A cascade matching scheme was developed to improve the
robustness of the final matches. Drawbacks of the proposed method were discussed and
since the descriptor was of low dimension, it was extended to the video platform. This
was our first contribution to the thesis.

The next important contribution was, the new image patch descriptor RSD-HoG pre-
sented in Chapter.4. The descriptor was constructed in a novel way by embedding the
response of the rotating half filter in the histogram of orientation gradient (HoG) frame-
work. The proposed descriptor captured the angles at which the edges occurred and the
direction of the anisotropic gradient. This combination of features exhibited enormous ro-
bustness to geometrical and photometric variations. Image matching results on standard
dataset using the standard matching protocol proves the superiority of the RSD-HoG
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descriptor against the state of the art descriptors.
Final important contribution, the RSD-DoG descriptor, was presented in Chapter.5.

The presented method follows a different approach by considering the image patch as a 3D
surface. Thus, considered image patch is made of many second order image statistics such
as ridges, valley etc. We then extract the angles at which these second order statistics
are present by combining the response of the half filter with that of the Difference of
Gaussian (DoG) method. Matching results using the recall vs 1-precision curves proves
the strength of the RSD-DoG descriptor.

6.2 Future work

In conclusion, this thesis verified that using half filters we can extract the first order
and second order image statistics effectively to form the local image patch descriptors for
image matching . In the future we would like to include the following improvements:

• Our methods uses many parameters for descriptor construction. In the future, we
would like to introduce a learning step from which we can learn the parameters to
maximise the performance of the descriptor.

• In the future, we would like to test the performance of our descriptor on textured
image and High resolution image dataset.

• Both RSD-HoG and RSD-DoG uses the first order and second order image statistics
such as anisotropic gradient, edge direction, ridges, valleys etc. But it doesn’t use the
already existing response of the half filters. Like in SURF, we can use the response
of the half filters to further enhance the RSD-HoG and RSD-DoG descriptors.

• Our descriptors and in particular the approach used for extracting the local features
can be used effectively in medical image analysis especially in retina image analysis.
In the future, we would also like to enhance the popularity of our descriptors by
using it in the medical imaging field and biometrics field(Finger print recognition).

• In the future, we would like to use the proposed descriptors in applications related
to content based image and video retrieval.

• One of the limiting aspect of the proposed RSD-HoG and RSD-DOG descriptors is
the speed: the local features are slow to compute. This can be addressed by using
GPU or parallel programming. But, this performance is unacceptable in consumer
oriented mobile platforms applications and hence, we would like to address this issue
in the near future.

• One of the distant scope of the thesis is to use computer vision techniques to help the
old and disabled people in smart homes. The proposed descriptors were not used
in any applications such as (object detection and gesture recognition) that could
help the old and disabled in smart homes. Due to lack of time we couldn’t propose
any application. In the near future, we would like to use our work in applications
related to smart homes.
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Publication in the context of this thesis

• Object matching in videos using rotational signal descriptor. Darshan
Venkatrayappa, Philippe Montesinos, and Daniel Diep. In Three-Dimensional Im-
age Processing, Measurement (3DIPM), and Applications, San francisco, California,
United States, volume 9393. SPIE, 2015.

• RSD-HOG: A new image descriptor. Darshan Venkatrayappa, Philippe Mon-
tesinos, Daniel Diep, and Baptiste Magnier. In Image Analysis - 19th Scandinavian
Conference, SCIA 2015, Copenhagen, Denmark, June 15- 17, 2015. Proceedings,
volume 9127 of Lecture Notes in Computer Science, pages 400–409. Springer, 2015.

• A novel image descriptor based on anisotropic filtering. Darshan Venka-
trayappa, Philippe Montesinos, Daniel Diep, and Baptiste Magnier. In Computer
Analysis of Images and Patterns - 16th International Conference, CAIP 2015, Val-
letta, Malta, September 2-4, 2015 Proceedings, Part I, volume 9256 of Lecture Notes
in Computer Science, pages 161–173. Springer, 2015. (Best Paper award)

• RSD-DOG : A new image descriptor based on second order derivatives.
Darshan Venkatrayappa, Philippe Montesinos, Daniel Diep, and Baptiste Magnier.
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October 26-29, 2011. (To Appear), Lecture Notes in Computer Science. Springer,
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[ZP07] Guoying Zhao and Matti Pietikäinen. Dynamic texture recognition using
local binary patterns with an application to facial expressions. IEEE Trans.
Pattern Anal. Mach. Intell., 29(6):915–928, 2007.

[ZR14] Jun Zhu and Mingwu Ren. Image mosaic method based on SIFT features of
line segment. Comp. Math. Methods in Medicine, 2014:926312:1–926312:11,
2014.

[ZSG+05] Wenchao Zhang, Shiguang Shan, Wen Gao, Xilin Chen, and Hongming
Zhang. Local gabor binary pattern histogram sequence (LGBPHS): A novel
non-statistical model for face representation and recognition. In 10th IEEE
International Conference on Computer Vision (ICCV 2005), 17-20 October
2005, Beijing, China, pages 786–791. IEEE Computer Society, 2005.

[ZTH+14] Shiliang Zhang, Qi Tian, Qingming Huang, Wen Gao, and Yong Rui. USB:
ultrashort binary descriptor for fast visual matching and retrieval. IEEE
Transactions on Image Processing, 23(8):3671–3683, 2014.

[ZTL+13] Shiliang Zhang, Qi Tian, Ke Lu, Qingming Huang, and Wen Gao. Edge-
sift: Discriminative binary descriptor for scalable partial-duplicate mobile
search. IEEE Transactions on Image Processing, 22(7):2889–2902, 2013.

[ZWY+13] Sheng Zhong, Jianhui Wang, Luxin Yan, Lie Kang, and Zhiguo Cao. A real-
time embedded architecture for SIFT. Journal of Systems Architecture -
Embedded Systems Design, 59(1):16–29, 2013.

BIBLIOGRAPHY 149


