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Titre

Nouveaux biomarqueurs multi-échelles et multi-modaux pour le diagnostic précoce
de la maladie d’Alzheimer

Résumé

La maladie d’Alzheimer est la première cause de démence chez les personnes âgées.
Cette maladie est caractérisée par un déclin irréversible des fonctions cognitives.
Les patients atteints par la maladie d’Alzheimer ont de sévères pertes de mémoire
et ont de grandes difficultés à apprendre de nouvelles informations ce qui pose de
gros problèmes dans leur vie quotidienne. À ce jour, cette maladie est diagnos-
tiquée après que d’importantes altérations des structures du cerveaux apparaissent.
De plus, aucune thérapie existe permettant de faire reculer ou de stopper la mal-
adie. Le développement de nouvelles méthodes permettant la détection précoce
de cette maladie est ainsi nécessaire. En effet, une détection précoce permettrait
une meilleure prise en charge des patients atteints de cette maladie ainsi qu’une
accélération de la recherche thérapeutique. Nos travaux de recherche portent sur
l’utilisation de l’imagerie médicale, avec notamment l’imagerie par résonance mag-
nétique (IRM) qui a démontrée ces dernières années son potentiel pour améliorer la
détection et la prédiction de la maladie d’Alzheimer. Afin d’exploiter pleinement ce
type d’imagerie, de nombreuses méthodes ont été proposées récemment. Au cours
de nos recherches, nous nous sommes intéressés à un type de méthode en particulier
qui est basé sur la correspondance de patchs dans de grandes bibliothèques d’images.
Nous avons étudié ces méthodes à diverses échelles anatomiques c’est à dire, cerveaux
entier, hippocampe, sous-champs de l’hippocampe) avec diverses modalités d’IRM
(par exemple, IRM anatomique et imagerie de diffusion). Nous avons amélioré les
performances de détection dans les stades les plus précoces avec l’imagerie par dif-
fusion. Nous avons aussi proposé un nouveau schéma de fusion pour combiner IRM
anatomique et imagerie de diffusion. De plus, nous avons montré que la correspon-
dance de patchs était améliorée par l’utilisation de filtres dérivatifs. Enfin, nous
avons proposé une méthode par graphe permettant de combiner les informations de
similarité inter-sujet avec les informations apportées par la variabilité intra-sujet.
Les résultats des expériences menées dans cette thèse ont montrées une améliora-
tion des performances de diagnostique et de prognostique de la maladie d’Alzheimer
comparé aux méthodes de l’état de l’art.

Mots-clés

Imagerie médicale, Maladie d’Alzheimer, Multi-modalité, Multi-échelle, Analyse du
cerveaux, Méthodes non-local
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Title

Multi-scale and multimodal imaging biomarkers for the early detection of Alzheimer’s
disease

Abstract

Alzheimer’s disease (AD) is the most common dementia leading to a neurodegen-
erative process and causing mental dysfunctions. According to the world health
organization, the number of patients having AD will double in 20 years. Neuroimag-
ing studies performed on AD patients revealed that structural brain alterations are
advanced when the diagnosis is established. Indeed, the clinical symptoms of AD
are preceded by brain changes. This stresses the need to develop new biomarkers to
detect the first stages of the disease. The development of such biomarkers can make
easier the design of clinical trials and therefore accelerate the development of new
therapies. Over the past decades, the improvement of magnetic resonance imaging
(MRI) has led to the development of new imaging biomarkers. Such biomarkers
demonstrated their relevance for computer-aided diagnosis but have shown limited
performances for AD prognosis. Recently, advanced biomarkers were proposed to
improve computer-aided prognosis. Among them, patch-based grading methods
demonstrated competitive results to detect subtle modifications at the earliest stages
of AD. Such methods have shown their ability to predict AD several years before
the conversion to dementia. For these reasons, we have had a particular interest
in patch-based grading methods. First, we studied patch-based grading methods
for different anatomical scales (i.e., whole brain, hippocampus, and hippocampal
subfields). We adapted patch-based grading method to different MRI modalities
(i.e., anatomical MRI and diffusion-weighted MRI) and developed an adaptive fu-
sion scheme. Then, we showed that patch comparisons are improved with the use of
multi-directional derivative features. Finally, we proposed a new method based on
a graph modeling that enables to combine information from inter-subjects’ similar-
ities and intra-subjects’ variability. The conducted experiments demonstrate that
our proposed method enable an improvement of AD detection and prediction.

Keywords

Medical imaging, Alzheimer’s disease, Multimodality, Multi-scale, Brain analysis,
Patch-based methods
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Résumé en français

Introduction

Maladie d’Alzheimer

La maladie d’Alzheimer (AD) est la démence la plus répandue chez les personnes
âgées. La prévalence de cette maladie est d’environs 1% chez les personnes de 60
ans et augmente pour atteindre environ 40% des personnes de 90 ans. De plus, selon
l’organisation mondiale de la santé, avec le vieillissement constant de la population,
le nombre de patients atteints d’Alzheimer doublera dans les 20 prochaines années.
Par conséquent, la maladie d’Alzheimer va représenter un coût financier important
pour la société dans la prochaine décennies. Les patients atteins de cette démence
sont touchés par un processus neurodégénératif irréversible qui cause des dysfonc-
tionnements cognitifs tels que la perte de mémoire à long terme, des altérations du
langage, une désorientation, un changement de personnalité, et qui finalement en-
traîner la mort. Cette maladie est caractérisée par une accumulation de plaques de
bêta-amyloïde et d’enchevêtrements neurofibrillaires composé de neurofibrilles amy-
loïdes tau associé à une perte des synapses et neurones. À ce jour, aucun traitement
connu n’a été capable d’arrêter ou de ralentir la progression de cette maladie. De
plus, la neuroimagerie a révélé que des modifications du cerveau se produisent des
décennies avant le diagnostic est établi. Enfin, l’évolution de la charge pathologique
n’est pas corrélée linéairement à la fonction cognitive. Ainsi, lorsque le diagnostic
de la maladie d’Alzheimer la maladie est établie, la charge pathologique est déjà
élevée.

Une phase prodromique de la maladie d’Alzheimer est le déficit cognitif léger
(MCI). Les symptômes cliniques des patients atteints de MCI sont légers même
si la diminution des capacités cognitives est mesurable. Le syndrome MCI peut
être provoqué par des sources de facteur hétérogènes telles que, dans la plupart
des cas, une maladie cérébrovasculaire, une démence à corps de Lewy, une démence
fronto-temporale, aphasie primaire progressive. En outre, des études antérieures ont
suggéré qu’environ 12% des sujets atteints par le syndrome MCI progresse vers la
maladie d’Alzheimer au cours des quatre années suivant l’apparition des premiers
symptômes. Cependant, bien que les sujets MCI présentent un risque élevé de
développer la maladie d’Alzheimer, les sujets souffrant de ce syndrome peuvent rester
stables (c’est à dire, ne pas convertir vers Alzheimer ou en une autre démence). Ce
groupe de patients est appelé MCI stable à l’opposé de les patients qui développent
la maladie d’Alzheimer dans les années qui suivent le diagnostic de symptômes de
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MCI. Ce dernier groupe de patient est appelé MCI progressive (pMCI). Le sujet
souffrant de MCI peut également se convertir en une autre démence, voire même
revenir à un état cognitif normal. La prédiction précoce des sujets souffrant de
symptômes de MCI qui convertiront vers la maladie d’Alzheimer pourrait améliorer
l’efficacité des futurs traitements en réduisant les altérations cérébrales avant le
début du traitement. De plus, la prédiction de la conversion pourrait également
accélérer le développement de nouvelles thérapies en rendant la sélection du sujet
plus précise, ce qui réduirait le coût des essais cliniques et permettrait des études
cliniques plus précises.

Imagerie médicale pour la détection

Avec l’amélioration récente des techniques d’imagerie médicale qui fournissent des
des outils d’imagerie in vivo puissants et non invasifs, de nouveaux biomarqueurs
d’imagerie ont été proposés. Ces biomarqueurs peuvent être regroupés en fonc-
tion du type d’informations physiques qu’ils capturent. Les biomarqueurs basés sur
l’imagerie par résonance magnétique (IRM) capturent principalement les altérations
structurelles des structures cérébrales telles que l’atrophie de l’hippocampe et hy-
pertrophie des ventricules latéraux. Les biomarqueurs nucléaires utilisant l’imagerie
nucléaire tels que la tomographie par émission de positrons (TEP). Cette technique
d’imagerie détecte la présence de protéines spécifiques telles que les dépôts anormaux
de bêta-amyloïdes dans l’hippocampe. Enfin, les biomarqueurs fonctionnels tirant
avantage de l’imagerie fonctionnelle ont été développés pour décrire les altérations
des fonction cognitive.

Les biomarqueurs utilisant l’IRM sont des techniques in vivo qui proposent
plusieurs avantages. Les techniques employé sont non invasives, elles fournissent
des détails structurels et fonctionnels du cerveau presque immédiatement, ils sont
sensibles et spécifiques. De plus, les biomarqueurs d’imagerie fournissent un diag-
nostic qui est reproductible. Par conséquent, même si ce type de biomarqueur est
coûteux nécessite du personnel expérimenté, le développement de nouveaux biomar-
queurs d’imagerie a été très intense ces dernières années.

En effet, il a été démontré que les méthodes d’apprentissage automatique ont
le potentiel pour aider à identifier les patients atteints par la maladie d’Alzheimer
en découvrant des schémas discriminants dans les données de neuroimagerie. À ce
jour, les biomarqueurs basés sur l’IRM ont atteint de bonnes performances pour le
diagnostic, mais sont encore limitées pour le pronostic de la maladie. Par conséquent,
dans cette thèse, nous nous sommes concentré sur le dévelopement de nouveaux
biomarqueurs d’imagerie utilisant l’IRM dans le but d’améliorer la détections des
altérations structurelles.
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Méthodes basées sur les patchs

L’utilisation de méthodes basées sur les patchs pour la détection de la maladie
d’Alzheimer a été initialement proposée. posé par Coupé et al. (2012b) avec le cadre
de classement basé sur les patchs (PBG). L’idée principale de cette méthode basée
sur des exemples est d’utiliser la capacité des techniques basée sur les patchs pour
capturer des altérations subtiles du signal. L’idée est de propager les informations de
motif local intégrées par une bibliothèque de modèles à l’image en cours d’analyse. À
l’origine, cette méthode a été proposée pour capturer les dégradations anatomiques
causées par AD. Afin de déterminer le statut pathologique du sujet en cours, la
méthode PBG estime à chaque voxel la gravité des altérations structurelles par une
mesure de similarité non locale. La méthode SNIPE augmente les performances de
classification des méthodes basées sur une analyse de la structure de l’hippocampe.
En effet, la méthode PBG a obtenu une précision de 88% pour la détection de la
maladie et une précision de 71% pour sa prédiction. Cette méthode a dépassé les
approches précédentes basées sur l’analyse de l’hippocampe.

Motivations

Dans cette thèse, nous nous sommes concentrés sur le développement de nouveaux
biomarqueurs efficaces pour la détection précoce de la maladie d’Alzheimer. En
particulier, nous nous sommes principalement intéressés à l’amélioration des méth-
odes de classement par patch. En effet, l’introduction de méthodes basées sur les
patchs a permis de mieux estimer les modifications structurelles de structures spé-
cifiques telles que l’hippocampe. Cependant, certains éléments tendent à montrer
qu’une meilleure analyse de l’hippocampe pourrait augmenter les performances pour
la détection précoce de la maladie d’Alzheimer.

En effet, d’une part, une grande partie des données proviennent de différentes
campagnes d’acquisition et ont été obtenues dans différents centres de neuroim-
agerie. Par conséquent, même si un protocole d’acquisition a été défini, les images
sont acquises avec différents dispositifs d’imagerie. Cela se traduit par une vari-
abilité des intensités des images qui pourraient ne pas être corrigées par les étapes
de prétraitement. Ainsi, il semble essentiel de développer une méthode robuste à
la variabilité d’acquisition. En outre, l’amélioration de la comparaison des patchs
en mettant en évidence le signal discriminant dans les patchs pourrait conduire à
une amélioration des performances pour la détection précoce de la maladie. En ef-
fet, seulement une partie du signal contenu dans un patch peut représenter toutes
l’information discriminante. Par exemple, les signaux de bord et de texture pour-
raient être discriminants lorsque l’autre partie du signal pourrait ne pas être infor-
mative et simplement ajouter du bruits au sein de chaque groupe pathologique, car
étant peut être corrélée à d’autres facteurs.

D’autre part, l’IRM structurelle (IRM-s) n’est pas la seule modalité d’IRM utilis-
able dans le cadre des méthodes PBG. Par exemple, l’IRM de diffusion (IRM-d) peut
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également être intégrée dans les méthodes PBG. Les études basées sur la modalité
IRM-d capturent généralement les altérations des axones en analysant les modifi-
cations de la substance blanche par des approches de tractographie. Cependant,
l’IRM-d peut également être utilisée pour capturer les modification des microstruc-
tures appraissant dans les structures composées de matière grise. L’application de
la méthode PBG sur cette modalité pourrait améliorer les performances de détec-
tion précoce car de telles altérations sont considérées comme se produisant avant
modification structurelle. Cependant, une limitation de la d-IRM provenant de sa
résolution native, qui est souvent inférieure à celle de la IRM-s, réduit sa capacité
à fournir de bons biomarqueurs pour la détection AD. Néanmoins, les méthodes
récentes de super-résolution ont données de bons résultats et ont résolu des prob-
lème provoqué par la basse résolution des images dans de nombreux problèmes de
reconnaissance de formes.

En outre, l’hippocampe est une structure hétérogène. En effet, l’hippocampe est
composé de différents sous-champs ayant des caractéristiques distinctes. De plus, au
cours de la dernière décennie, Des études post mortem et chez l’animal ont montré
que la MA ne touchait pas les sous-champs de l’hippocampe. En effet, ces études ont
montré que certains sous-champs souffrent d’une atrophie plus forte à la fin de l’AD
que d’autres. Par conséquent, une analyse fine des modifications structurelles de
l’hippocampe à l’échelle des sous-champs pourrait également permettre d’améliorer
la détection précoce de la maladie.

Enfin, bien que les méthodes de l’état de l’art pour la détection précoce de la
maladie d’Alzheimer aient été principalement axées sur une extraction robuste des
similarités inter-sujets dans des régions d’intérêt spécifiques ou différents l’échelle
d’analyse (c’est à dire, voxel, patch, etc), certains travaux ont mis au point des
modèles qui rendent compte de la variabilité des altérations au sein du même su-
jets. Ces méthodes ont démontré qu’une représentation efficace de la topologie des
modifications, en modélisant la relation des modifications structurelles entre les dif-
férentes structures du cerveau, peut aider à améliorer la détection et la prédiction
de la maladie d’Alzheimer. En effet, il semble que les relations des altérations struc-
turelles entre les structures cérébrales forment un schéma spécifique qui fournit des
informations pertinentes sur l’évolution de la démence. Par conséquent, la modéli-
sation de ce modèle pourrait améliorer la détection précoce de la maladie.

En conséquence, pour répondres aux questions soulevées par ces éléments nous
avons exploré deux grands axes de recherche. Le dévelopement de biomarqueur
hippocampal avancé et le developement d’un modèle de la signature des altérations
structurelle provoqué par la maladie avec une approche basée graphe.
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Biomarqueur avancé basée sur l’hippocampe

Dans la deuxième partie de cette thèse, nous avons développé des biomarqueurs
avancés. Nous avons d’abord mis au point de nouvelles méthodes que nous avons
validées au sein de l’hippocampe. Nous avons proposé une méthode basée sur les
approches PBG en y intégrant des filtres de texture qui permet d’obtenir des per-
formances de pointe pour la détection AD. Cette première contribution démontre
que l’intensité de l’IRM n’est pas la meilleure entrée et qu’un filtre dérivatif multi-
directionnelle, tel que le filtre de Gabor, permet de mettre en évidence des signaux
informatifs. Ensuite, nous avons développé une méthode PBG multimodale combi-
nant IRM-s et MRI-d en utilisant un schéma de fusion adaptative. Les expériences
menées dans ce deuxième travail ont montré que, bien que l’IRM-s soit toujours
une bonne entrée pour la détection de la maladie d’Alzheimer, les changements
micro-structuraux détectés avec la modalité IRM-d et capturés avec les méthodes
PBG permettent une meilleure prédiction de la progression de la maladie. De plus,
notre méthode multimodale a démontré sa capacité à calculer un biomarqueur hip-
pocampique robuste qui a obtenu les meilleurs résultats pour la MA. détection et
prédiction.

Deuxièmement, nous avons étudié l’hippocampe à une échelle anatomique niveau
plus fine. En effet, au lieu de considérer l’hippocampe avec une approche glob-
ale, nous avons étudié l’efficacité des sous-champs de l’hippocampe. Nous avons
étudié les altérations des sous-champs de l’hippocampe avec notre nouvelle méthode
MPBG. Nos expériences montrent que le subiculum souffre des changements les plus
significatifs aux premiers stades de la maladie d’Alzheimer. En effet, les méthodes
MPBG appliquées au subiculum permettent d’augmenter la performances de prédic-
tion par rapport à son application dans l’ensemble de la structure de l’hippocampe.
Ces résultats confirment que les sous-champs les plus discriminants de l’hippocampe
permettre d’obtenir des biomarqueurs plus efficaces.

Enfin, bien que les contributions présentées dans cette partie présentent des
résultats de pointe en matière de détection, la prédiction de la conversion des sujets
en la maladie d’Alzheimer reste limitée. En effet, les améliorations apportées avec
les nouvelles améliorations proposées, par l’utilisation de modalités multiples ou
d’échelle d’analyse plus précis n’ont pas permis d’augmenter de manière significative
les performances de classification pour la prédiction AD. Notre hypothèse principale
est que même si notre méthode permet de capturer des modifications structurelles
subtiles, une meilleure modélisation des relation des altérations apparaissant entre
les structures considérées pourrait fournir des informations utiles. Par conséquent,
dans la suite de cette thèse, nous développerons une nouvelle méthode basée sur une
modélisation par graphe qui combine les informations de similarité inter-sujets et la
variabilité intra-sujets.
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Modélisation de la signature de la maladie d’Alzheimer

Dans cette partie, nous avons développé une nouvelle méthode pour mieux mod-
éliser la signature de la maladie d’Alzheimer. Le modèle de la maladie d’Alzheimer
développé pour cette méthode intègre deux types d’informations différentes. La
première est une information basée sur les similitudes inter-sujets extraites avec une
méthode PBG. La seconde intègre une représentation de la variabilité intra-sujets des
altérations capturées avec une modélisation basée sur des graphes. Nos expériences
ont démontré que notre modélisation combinant ces deux types d’informations per-
met une prédiction plus efficace de la conversion des sujets. à la maladie d’Alzheimer.
De plus, notre graphe des altérations des structures est générique et peut être ap-
pliqué avec diverses représentations de structures cérébrales. En effet, nous avons
appliqué notre méthode basée graphe à différentes échelles anatomiques. Dans les
deux cas, les expériences ont montré une augmentation des performances de prédic-
tion de la maladie d’Alzheimer. Enfin, nous avons proposé une méthode combinant
plusieurs échelles anatomiques du cerveau. Nous avons validé notre méthode pour la
combinaison des structures cérébrales et des sous-champs de l’hippocampe. Les ex-
périences réalisées dans cette partie ont montré des résultats de pointe en matière de
détection et de prédiction de la maladie d’Alzheimer. De plus, notre approche basée
sur les graphes améliore de 4 points de pourcentage en terme de précision de clas-
sification par rapport à nos meilleurs résultats obtenus par l’analyse d’hippocampe
et présenté précédemment (voir table 1).

Par conséquent, dans cette deuxième partie, nous démontrons la nécessité de
modéliser l’interdépendances des modifications en plus de capturer les modifications
subtiles qui se produisent dans les structures clés et intégrer des fonctionnalités à dif-
férentes échelles anatomiques. De plus, nous avons également montré la complémen-
tarité de notre nouvelle méthode basée sur l’imagerie avec les scores cognitifs souvent
utilisés dans les essais cliniques pour diagnostiquer la maladie d’Alzheimer. Ces élé-
ments mettent en évidence l’intérêt d’utiliser des méthodes basées sur l’imagerie en
plus des scores cognitifs pour le dépistage précoce de la maladie d’Alzheimer.
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Table 1: Comparaison des méthodes proposées dans cette thèse avec les méthodes de l’état
de l’art utilisant des base de données similaires issues de ADNI1. Tout les résultats sont
exprimés en pourcentage.

Méthode Recalage Caractéristique CN vs. AD sMCI vs. pMCI
(ACC en %) (ACC en %)

(Coupé et al., 2012b) Affine Intensité 88.0 71.0
(Liu et al., 2012) NG GM 90.8 −
(Tong et al., 2014) Affine Graph 89.0 70.4
(Moradi et al., 2015) NG GM − 74.7
(Tong et al., 2017a) NG Intensité − 75.0
(Suk et al., 2017) NG GM 91.0 74.8
TBG (Hett et al., 2018d) Affine Texture 91.3 72.0
GHSG (Hett et al., 2018a) Affine Graph − 74.7
GBSG (Hett et al., 2018b) Affine Graph − 75.5
MGSG (Hett et al., 2018c) Affine Graph 91.6 76.0

GM = Matière grise
NG = Non rigide
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Dementia

Dementias are characterized by a loss of thinking abilities that are severe enough to
interfere with daily life. Symptoms of dementia can vary significantly by affecting
memory, communication, language, ability to focus, reasoning, judgment, and vi-
sual perception. These symptoms are caused by damages of brain cells that interfere
with the communications between the brains cells in different brain regions which
are responsible for different cognitive functions. It has been estimated that 35.6 mil-
lion people lived with dementia in 2010 and the number expected to almost double
around 2030 (Prince et al., 2013). Dementia is not a part of normal aging and can
occur at any age. However, the major part of people affected by dementia is around
65 years old. There are several sources of dementia (see Figure 1). However, the
main causes of dementia come from AD, dementia with Lewy Bodies (DLB), Fron-
totemporal dementia (FD), Parkinson’s disease (PaD), and cerebrovascular disease
(CDB).

Figure 1: This pie-chart represents the proportion of the main dementias. As it is shown,
patients suffering from Alzheimer’s disease represent around 62% of the dementias.

Alzheimer’s disease

Alzheimer’s disease (AD) is the most prevalent dementia affecting elderly people
(Petrella et al., 2003). The prevalence of Alzheimer’s disease rises from 1% among
people of 60 years of age to about 40% among people of 90 years old. With the
constant aging of the population – according to the world health organization, the
number of patients having AD will double in 20 years. Therefore, in the next
decades AD will represent a substantial financial cost for the society (Wimo et
al., 1997). AD leads to an irreversible neurodegenerative process causing mental
dysfunctions such as long-term memory loss, language impairment, disorientation,
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change in personality, and finally causes death (Alzheimer’s, 2015). This disease is
characterized by an accumulation of beta-amyloid plaques and neurofibrillary tangles
composed of tau amyloid fibrils (Hardy, 2006) combined with synapse and neuronal
loss. To date, no known therapy has been able to stop or slow down the progression
of AD. Neuroimaging revealed that brain changes occur decades before the diagnosis
is established. Moreover, the pathological load evolution is not linearly correlated
to the cognitive function (see Figure 5). Thus, when the diagnosis of Alzheimer’s
disease is established, the pathological load is already high (DeCarli, 2003).

Figure 2: Illustration of the structural alterations caused by AD. On the left side, a brain
from a cognitively normal subject and the other side a brain from a patient suffering from
Alzheimer’s disease. This illustrates the atrophy of global atrophy of the brain structure
combined by hypertrophy of lateral ventricles and a focal atrophy of the medial temporal
lobe that plays a central role into the conscious memory divided. Source: (Association et
al., 2008)

Alzheimer’s disease impacts brain structures at three different scales (see Fig-
ure 2). First, AD causes global atrophy of brain structures combined with a hyper-
trophy of the lateral ventricles. Second, AD causes diffuse atrophy of grey matter
along the cerebral cortex. Finally, focal atrophy occurs. Pathological studies suggest
that regions first affected in the medial temporal lobe by brain changes in typical
disease progression are the entorhinal cortex (EC) and the hippocampus (Jack et
al., 1992; Bobinski et al., 1999). Moreover, neuroimaging studies have shown that
the hippocampus is the brain structure impacted by the most significant alterations
at the early stage of AD (Frisoni et al., 2010; Schwarz et al., 2016).

Mild cognitive impairment

A prodromal phase of AD is mild cognitive impairment (MCI). The clinical symp-
toms of MCI are slight but the decreases of thinking abilities are measurable. MCI
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although MCI subjects present a high risk of AD development, subjects suffering
from MCI can remain stable (i.e., do not convert to AD or any other dementia).
This group of patient is named stable MCI (sMCI) on the opposite of patients who
convert to AD in the following years after the diagnosis of MCI symptoms, named
progressive MCI (pMCI). Finally, subject suffering from MCI can also convert to
another dementia, or even recover to a cognitively normal status.

Diagnosis of Alzheimer’s disease

The accuracy of the diagnosis is essential to ensure that patients receive appropri-
ate treatments. Thus, to establish the diagnosis of Alzheimer’s disease, clinicians
conduct different tests. To assess the presence of Alzheimer’s disease the physician
evaluate: the impairment memory and cognitive skills, the exhibitions of changes
in the patient personality or behaviors, the impact of cognitive impairment in daily
life, and the potential cause of these symptoms.

Hence, the clinicians conduct different test such as neuropsychological tests that
evaluate the cognitive and memory skills (Rogers et al., 1993), these scores are used
to establish the degree of cognitive impairment. Among these tests we can cite (this
list is not exhaustive):

Mini-mental state examination (MMSE) is a general test that was designed to
evaluate the degree of cognitive impairment. It is used in clinical and research
settings. MMSE consists of 30 points questionnaire that involves 9 categories:
the orientation to time, the orientation to place, the registration, the attention,
the recall, the language, the repetition, and the ability to execute complex
commands (Folstein et al., 1975).

Alzheimer’s disease assessment scale-cognitive subscale (ADAS-cog) was designed
to measure the cognition, and it is frequently used in clinical trials. ADAS-cog
measure the languages and memory, it involves 11 categories: the word recall
task, naming objects and fingers, following commands, constructional praxis,
ideal praxis, orientation, word recognition task, remembering test directions,
spoken language, comprehension, word-finding difficulty (Mohs, 1983).

Rey auditory verbal learning test (RAVLT) was designed to assess immediate mem-
ory span, new learning, susceptibility to interference and recognition memory.
The examiner reads a list of 15 words. Afterwards, the subject has to repeat all
the words that he memorized. This process is carried out fives times (Schmidt
et al., 1996).

Functional activity questionnaire (FAQ) is a neuropsychological test that assesses
independence in daily life activities in normal aging or patient having mild
dementia (Pfeffer et al., 1982).
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Clinical dementia rating–sum of boxes (CDR-SB) is a numeric scale to measure
the degree of severity of dementia symptoms. This score evaluates the cog-
nitive performances in six categories: memory, judgment, problem solving,
community affairs, home and hobbies, and personal care (Morris et al., 1988).

Although the neuropsychological tests are widely used in clinical routine, their abil-
ities to provide an early diagnosis of Alzheimer’s disease are limited. Indeed, when
the patients start to fail at these test, the neurodegenerative process caused by AD
is already substancial. Early diagnosis of AD needs the development of new meth-
ods to detect the changes before these alterations decrease cognitive abilities of the
patients.

Biomarkers for Alzheimer’s disease

A biomarker indicates the presence and an activity related to a specific disease.
They are essential for the diagnosis and monitoring of the disease progression by
quantifying the degree of changes in the structures or the function under analysis.
Ideal biomarkers should be specific (i.e., detect with a high accuracy subject that
does not have the disease) and sensitive (i.e., detect with a high accuracy patients
suffering from the dementia).

Plasma biomarkers

Plasma is the liquid of blood where the red blood cells, white blood cells, and
platelets are isolated. Plasma is easily extracted from blood by low-speed centrifu-
gation combined with the presence of an anticoagulant. Several studies identified
that the level of specific proteins differs from AD patients to cognitively normal
subjects (Anoop et al., 2010). The main advantages of plasma biomarkers reside in
their low-invasive aspect and the simplicity to obtain samples. However, limitations
exist. First, plasma biomarkers are less correlated to AD. Moreover, their sensitiv-
ity and specificity for AD diagnosis are low compare to other biomarkers described
below.

CSF biomarkers

Cerebrospinal fluid (CSF) is considered as a great source for biomarker development.
CSF is in direct contact with the extracellular space of the brain and can reflect bio-
chemical changes that occur inside the brain during the progression of AD. To date,
three CSF biomarkers: beta amyloid (Aβ42), total-tau (t-tau), and phosphorylated-
tau (p-tau) have shown a high potential of diagnosis. CSF has several advantages, it
can directly be correlated with AD, it is highly sensitive and specific. However, this
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techniques is highly invasive. Indeed, samples of CSF are collected by lumbar punc-
ture. Moreover, the diagnosis made with CSF is irreproducible due to the sample
storage.

Imaging biomarkers

With the recent improvement of medical imaging techniques that provide power-
ful and non-invasive in-vivo imaging tools, new imaging-biomarkers were proposed.
Those biomarkers can be grouped with respect to what kind of physical informa-
tion they extract. Biomarkers based on magnetic resonance imaging (MRI) mainly
capture structural alterations of brain structures such as hippocampus atrophy and
lateral ventricles hypertrophy. Nuclear biomarkers using nuclear imaging such as
Positron emission tomography (PET), capture the presence of specific protein such
as abnormal beta-amyloid depositions in the hippocampus. Finally, functional
biomarkers were developed to describe the alterations of cognitive function with
functional imaging.

MRI-based biomarkers are in-vivo techniques with several advantages. They are
non-invasive, they provide structural and functional details of the brain almost im-
mediately, they are sensitive and specific. Furthermore, imaging biomarkers provide
reproducible diagnosis. Therefore, even though this kind of biomarker is expensive
and requires experienced personnel, the development of new imaging biomarkers has
been highly intensive these last years.

Indeed, it has been shown that machine learning methods have the potential
to assist in identifying patients with AD by learning discriminative patterns from
neuroimaging data. To date, biomarkers based on MRI have reached good perfor-
mances for AD diagnosis but are still limited for AD prognosis with the detection
of MCI patient whom progress to dementia. Therefore, in this thesis, we focused
on imaging biomarkers based on MRI with the aim to improve structural alteration
detections.

Magnetic resonance imaging

Magnetic Resonance Imaging is a medical imaging technique that creates three-
dimensional in-vivo images. On the opposite of computed tomography (CT) and
PET scans, MRI is non-invasive and does not irradiate the body. MRI provides
images with a high contrast of soft tissues (i.e., brain, nerves, skins, fat, etc.). It
is based on the principle of nuclear magnetic resonance (NMR). MRI requires a
strong and stable magnetic field

−→
B0 produced by a superconducting magnet that

aligns magnetic spin moments of protons. Weaker oscillating magnetic fields, called
radio-frequency, are applied to slightly modify this alignment and to produce a
precession phenomenon which provides a measurable electromagnetic signal. MRI
consists of precisely locating the origin of this NMR signal by applying non-uniform
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magnetic fields named gradients, which induce subtle different precession frequencies
depending on the position of the protons. Nuclear magnetic resonance exploits the
fact that the nuclei of certain atoms have a magnetic moment of spin. This is
particularly the case of the hydrogen atom which is an element of water composition
that is very abundant in biological tissues.

The spins of atomic nuclei are like spinning rotors around their axis z aligned
with

−→
B0 (see Figure 4) making a fast movement of precession around the axis of the

magnetic field. This movement is named Larmor’s precession.
As the magnetic moments return to the direction of the static field z, the oscil-

lating signal decreases until it disappears when all the magnetic moments are again
aligned longitudinally (i.e., in the z direction). The time that the nuclear magnetic
moments have to regain their longitudinal alignment is called longitudinal relaxation
time or T1 relaxation.

 

 

Figure 4: Schema of precession movement with magnetic field. At the left the schema
representing the spin of a proton and at the right a group of spins. This schema is inspired
from the illustration of the thesis of Vincent Noblet.

Moreover, the molecular agitation also contributes to another phenomenon. Whereas
in theory, the magnetic moments should all rotate coherently around the axis z,
(i.e., with a different constant phase), the molecular agitation causes a heteroge-
neous physicochemical environment. Therefore their Larmor’s frequency is also not
perfectly equal to the theoretical Larmor’s frequency. This results in a decrease
in the signal related to their synchronous rotation over time. This phenomenon is
named transverse relaxation time or T2 relaxation.

Structural MRI : By using a short repetition time and a short echo time (neu-
tralizes T2 time differences), we obtain a T1-weighted image contrast, also
called anatomical or structural MRI. In the T1-weighted images of the brain,
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heterogeneity stresses the need to develop new methods to detect patients who will
convert to dementia.

The early prediction of the subjects suffering from MCI symptoms who will
convert to AD may improve the effectiveness of the future therapies by reducing the
brain changes before the therapy starts. Moreover, the prediction of the conversion
can also accelerate the development of new therapy by making the subject selection
more accurate that would decrease the cost of clinical trials and would enable more
accurate clinical studies.

The recent development of MRI techniques has enabled to study the anatomical
changes such as brain structure atrophy with an high-contrast at a high-resolution.
MRI data provides high-dimensional from the millions of voxels representing the
brain tissues. To tackle the problem caused by the high-dimensionality of the prob-
lem, numerous methods have been proposed, some using a global context and others
based on a selection of the most discriminative voxels. Although those methods have
obtained good performances for the detection of AD, so far, the performances of the
prediction of subjects who will convert to AD is not satisfying. The performance
limitations of current methods are mostly due to the lack of abilities to capture
subtle changes that occurs within the patients who will convert to AD, and a bad
modeling of this changes through the brain. Thus, in this thesis, we propose new
methods to increase the performances of conversion to AD prediction with biomark-
ers able to capture those subtle changes and with a novel modeling of the brain
alterations.

Structure of this thesis

In this thesis, we have been interested in the development of new imaging biomarkers
based on MRI. The first part of this thesis is a description of the elements compos-
ing a computer-aided diagnosis system and a state-of-the-art overview of MRI-based
methods proposed in the literature. The second part focuses on hippocampus al-
terations detection with the improvement of patch-based grading technique. In this
part, we propose a new adaptive fusion scheme that we applied to multi-textures and
multi-modalities frameworks. In addition, we study the use of hippocampal subfields
alterations with our new multimodal framework. In the third part, we describe a
new graph-based method to better model the topology of alteration caused by AD
usgin patch-based grading techniques. These methods have been applied with two
anatomical representations, the hippocampal subfields, and the whole brain struc-
tures, demonstrating in both cases a great improvement of prediction performances.
Moreover, we also proposed a new method to combine the graph produced by this
two brain definitions into a unified framework that increases AD detection and
prediction performances. Finally, this thesis ends with a general conclusion and
perspectives of future works.
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In this part, we will describe the state-of-the-
art computer-aided pipeline for the diagnosis of
Alzheimer’s disease. We will discuss of each step
from the preprocessing to the classification meth-
ods that use features extracted from images to
make a diagnosis decision.

Part I:

Computer-aided diagnosis for

Alzheimer’s disease

11



Introduction

With the development of computer science and medical imaging techniques, the
computer-aided diagnosis has become a helpful tool that helps clinicians for estab-
lishing diagnosis and prognosis by improving its accuracy. Indeed, the combination
of magnetic resonance imaging and the last machine learning techniques has en-
abled to detect subtler anatomical changes at the earliest stages of dementia. This
yields to an increase of the precision for Alzheimer’s disease diagnosis and prognosis.

In this part, we present the main elements that composed the most recent
computer-aided diagnosis pipelines. Indeed, even though this thesis focuses on the
feature extraction, many steps are mandatory to reach satisfying performances. To
avoid bias in the extraction of feature, a proper preprocessing method must be de-
signed. The preprocessing step enables a better intra-subject and inter-subject voxel
value comparisons. Afterward, several choices have to be made, from the extraction
of feature related to the information of anatomical changes to the classifier methods,
numerous elements can impact the final classification results.

In this part, to help the reader of this thesis of understanding the motivation
of the choices that we made in this thesis. We will describe the methods of each
presented element.

Key-words

Computer-aided diagnosis, Classification pipeline, Alzheimer’s disease classification,
Feature extraction, Patch-based grading method

Contents

• The Chapter 1 presents the general framework of computer-aided diagnosis.
We describe in this chapter the different steps and the importance of each
one in the final results. The different methods involved in common MRI pre-
processing are presented. Also, the evaluation procedure and a description of
the main datasets used to compare the methods proposed in the literature are
provided. Finally, the different validation procedures are described.

• In the Chapter 2, an introduction of the state-of-the-art MRI-based methods
is provided. Methods are grouped with the contextual information that they
capture. ROI-based, voxel-based, deep-learning and patch-based methods are
presented with their classification performances. Moreover, in addition, a table
comparing all the mentioned methods is provided at the end of this chapter.

• The Chapter 3 presents three different patch-based grading methods. Indeed,
in this chapter we present from the original to the last methods proposed in
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the literature. The patch extraction step is also detailed with the introduction
of a new optimized patch match method that improves the computational ef-
ficiency of the method. This chapter ends with a study of the parameters of
the optimized patch match method and its influence for classification perfor-
mances.
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1. Computer-aided diagnosis pipeline

1.1 Introduction

The computer-aided diagnosis pipelines developed to detect AD are various and
their architecture are related to the descriptor of the structural brain changes that
methods capture. The pipelines are composed of different steps that usually in-
volved data preprocessing, features extraction, eventual correction of feature bias,
dimensionality reduction, and classification step; each step having their importance
in the final results. The first step of the pipeline, named data preprocessing, aims to
reduce the variabilities due to the acquisitions process and subject characteristics.
This step is primordial to ensure the reliability of the results by avoiding any bias
that could modify the evaluation of the results. Indeed, during the last decades, nu-
merous methods were proposed for the detection and prediction of AD (Arbabshirani
et al., 2017). The difficulty in comparing them comes from the large difference of
preprocessing, dataset, and evaluation schemes (see Figure 1.1). In this chapter, we
will discuss about the different steps composing the usual computer-aided diagnosis
pipeline of MRI-based methods.

Inhomogeneity
correction

Denoising Registration

Preprocessing

Segmentation
(optional)

Feature 
extraction

Classification
Dimensionality 

reduction
(optional)

Figure 1.1: Schema of an usual computer aided diagnosis pipeline. The raw MRI given
as input of the pipeline is preprocessed with a denoising, an inhomogeneities correction
and a registration step. Afterwards, a segmentation of different brain structures are often
performed. Then, feature extraction methods are applied. The features extraction can
produces high dimensionality vector of features. Consequently some methods use dimen-
sionality reduction method to fix this issue. Finally, the classification is performed.

However, several works have proposed to compare methods with the same pipeline
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1.2. Data preprocessing

and the same dataset (Wolz et al., 2011; Cuingnet et al., 2011). The advantage of
these works is that their results are easily interpretable. However, the main limi-
tation comes from that only a few features are compared. Also, some studies have
proposed to compare the impact of the different components of CAD pipelines with
their predictive performances (Sabuncu et al., 2015; Samper-González et al., 2018).
Recently, a standardized evaluation framework has been proposed for computer-
aided diagnosis of dementia based on MRI data (Bron et al., 2015). This framework
proposed to evaluate computer-aided diagnosis pipeline for three-classes classifica-
tion task (i.e. CN, AD, and MCI). The results of this challenge have demonstrated
the need for the use of similar dataset and robust validation procedures to compare
the numerous methods proposed in the literature. Indeed, during the last decades a
few open access MRI dataset related to Alzheimer’s disease have been released and it
has become complicated to compare results of methods validating their approaches
using different datasets.

In this chapter, to motivate the choices made in each contribution presented
in this thesis, we introduce the different step that composes a usual computer-
aided diagnosis pipeline, from the preprocessing step with denoising, inhomogeneity
correction, registration and segmentation methods to the final evaluation. For each
step, we present the advantage of limitation of each technique.

1.2 Data preprocessing

1.2.1 Denoising

MRI is corrupted by random noise that come from the acquisition process. The noise
introduces an uncertainty in the measurement of voxels intensities that are used in
further analysis. A straightforward technique to reduce the noise level would be to
an average of multiple acquisitions in the MRI scanner. However, this technique
is prone to numerous limitation and is not used in practice. The main limitation
coming from the fact that averaging multiple acquisitions increase significantly the
acquisition time. To avoid the augmentation of acquisition times numerous post-
processing has been proposed in the literature (Geman and Geman, 1984; Saint-Marc
et al., 1989; Perona and Malik, 1990; Black and Sapiro, 1999).

The most popular approaches are based on wavelet representation (Donoho and
Johnstone, 1994; Donoho, 1995; Portilla and Simoncelli, 2003; Anand and Sahambi,
2010). Noise is characterized by high frequencies signal. Thus, the wavelet denoising
approaches aim to delete wavelet coefficients where the noise energy is high. More
recently, non-local mean filter (NLM) initially proposed for the denoising of natural
images (Buades et al., 2005) have been adapted to process MRI. The approaches
based on NLM assess that similar signals are present in several areas in the image.
This group of methods aims to find a similar region, named patch, and average them
to reduce the power of noise. On the opposite of the other methods, NLM methods
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1. Computer-aided diagnosis pipeline

obtained excellent results for denoising while preserving the high frequencies in the
images (Coupé et al., 2008; Manjón et al., 2008, 2010) (see Figure 1.2).

Figure 1.2: Illustration of denoising method, images at the left and right represent the
data before and after the denoising process, respectively. Source: Coupé et al. (2008).

1.2.2 Inhomogeneity correction

One of the artifacts that MRI can suffer is the intensity inhomogeneity (see Fig-
ure 1.3. This artifact comes from the imperfection of the image acquisition. In-
tensity inhomogeneity can be see as a smooth intensity variation across the image.
This phenomenon causes a variation of the intensity of the same a tissue accord-
ing to its location. Moreover, the acquisition imperfection causing the intensity
inhomogeneity can be grouped into two groups.

The first group is related to the properties of the MRI device. It includes static
field inhomogeneity, bandwidth filtering of the data, eddy currents driven by field
gradients, and radio frequency transmission and reception inhomogeneity. To cor-
rect this group of inhomogeneities, shimming techniques with particular imaging se-
quences, or by a MRI calibration using a phantom image are usually used (McVeigh
et al., 1986; Axel et al., 1987; Wicks et al., 1993; Liang and Lauterbur, 2000).

The second group of inhomogeneities is related to the property of the patient
himself. Indeed, his shape, position, and orientation inside the magnet and the
specific permeability and dielectric properties of his body can modify the MRI in-
tensity. To correct this group of inhomogeneity sources, numerous methods have
been proposed (see (Vovk et al., 2007) for more details).

In this thesis, all MRI have been process with an improved N3 bias correction
to correct inhomogeneity (Tustison et al., 2010) that demonstrate state-of-the-art
performances in many applications.
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Figure 1.3: Illustration of inhomogeneity correction, from left to right: the original im-
age without Inhomogeneity correction, the inhomogeneity field, and the inhomogeneity
corrected image. Source: Vovk et al. (2007).

1.2.3 Registration

With the apparition of large datasets in the medical imaging field, the need of effi-
cient method to wrap images into a same spatial space has risen. The aims of the
registration method are to precisely aligned structures of interest coming from sev-
eral subjects. Brain registration has been widely studied these last decades (Collins
et al., 1994; Ashburner, 2007; Liao and Chung, 2010; Avants et al., 2011; Mayer et
al., 2011). The registration methods can be grouped into two groups; the registra-
tion methods based on parametric models, such as nodes (Wörz and Rohr, 2006),
curves (Thompson et al., 1997), or surfaces (Davatzikos, 1997) and the registration
based on a voxel intensity. The advantage of parametric approach is the compact
representation leading to a lower computational time compare to registration based
on voxel intensity. However, the main limitation of parametric approaches comes
from the imprecision related to the extraction of geometric primitive.

In addition, three different kind of transformation have been developed. The
first is based on a rigid transformation. The rigid transformation consists of a
linear mapping method that preserves distances, points, lines, and planes. The
rigid transform is composed of a set of two operations, translation, and rotation.
The second kind of transformation is composed of affine methods. Affine transform
extends rigid transformation with shear and scale modifications. Moreover, as rigid
methods, affine transform does not affect parallel lines which remain parallel after
an affine transformation. The third kind of transformation is composed of non-rigid
registration methods. On the opposite of rigid and affine transformations, non-
rigid transformations are able to align images with a proper transformation at each
voxel. However, although this last kind of transformations enable to better align
anatomical structures, it is also less robust than rigid and affine transformations
(Avants et al., 2011; Marstal et al., 2016).

All along the experiments described in this thesis, we only use an affine regis-
tration method (Avants et al., 2011). Affine registration has two main advantage
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1. Computer-aided diagnosis pipeline

compared to non-rigid method. First, the success rate is much higher and its com-
putation time is lower than non-rigid registration that often need affine registration
before processing estimation of non-rigid transformations. Indeed, affine registra-
tion uses only 12 parameters to deform the image with a translation, a rotation, and
a possible scale modification and can be calculated in just a few seconds. Second,
on the opposite of non-rigid transform, affine registration preserves proportion of
structures volumes and does not change the shape and textures of anatomical brain
structures.

1.3 Segmentation of anatomical structures

In computer-aided diagnosis pipeline, the segmentation step is often optional. How-
ever, the segmentation of brain structures on MRI images can be a mandatory
step for many computer-aided diagnosis pipeline which are based on the analysis
of specific ROIs (i.e., cerebral cortex, entorhinal cortex, hippocampus, amygdala,
etc.). To perform the extraction of ROIs, atlas-based methods are the most widely
use strategy. Such methods use atlas to obtain definite representation of the brain
structures with a strong a priori based on expert knowledge.

Among segmentation methods proposed these two last decades, three main atlas-
based segmentation approaches have been successively developed. The first one is
based on a non-linear registration of the atlas into the subject (Collins et al., 1995;
Babalola et al., 2009). This approach has been widely used because of its robust-
ness and its simple integration of expert knowledge via the deformation of manual
segmentations. However, these methods can be prone to imprecision. Indeed, these
methods can insufficiently capture the anatomical variability between subjects.

Significant improvement in segmentation performance has been achieved with
the simultaneous use of several atlas (Rohlfing et al., 2004; Heckemann et al., 2006;
Collins and Pruessner, 2010; Pipitone et al., 2014). Multi-atlas segmentation meth-
ods are based on an alignment of each atlas to the subject understudy with a non-
rigid transformation. Once, each atlas are aligned within the subject understudy,
a fusion method is applied to merge the information from each atlas (Iglesias and
Sabuncu, 2015). In these methods, registration errors coming from inter-subject
variability are considered as a random variable and are reduced with the use of
several subjects.

Recently, the non-local means algorithm proposed by Buades et al. (2005) has
been extended to patch-based label fusion (PBL) based on MRI of brain images
(Coupé et al., 2011). This method has been proposed to reduce the calculation time
of multiple atlas approaches based on non-linear registration. Rather than calcu-
lating non-linear transformations, the PBL method uses only an affine registration,
and relies on the comparison of patches of voxels, or square neighborhoods, in a
narrow search area between the subject to label, and several training atlas grouped
into a library. This non-local strategy allows PBL to be robust to inaccuracies of
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the registration step and effectively capture inter-subject variability. Thus, PBL
improves multiple atlas methods based on global associations of labeled images.
Moreover, patches locally describe the voxels content in the subject based on the
information embedded in the atlases. This method produces state-of-the-art results
for segmentation within reduced computing time (Giraud et al., 2016).

1.4 Features extraction

After the correction of the variabilities inherent to the acquisition process and sub-
ject characteristics, methods extract features describing the assessments related to
the brain alterations caused by AD. The role of the feature is to provide quantita-
tive information on the alterations caused by the disease. There are three categories
of features depending on the context. The first category of the feature has been
developed to analyze ROIs at a macroscopic level. Those features extract parame-
ters related to the structures under analysis, for instance, volume, shape, thickness,
etc (Wolz et al., 2011). The second category is composed of features working at a
finer grained level. Those features analyze the modifications of tissues at a voxel
scale (Ashburner and Friston, 2000). Finally, the last category is composed of inter-
mediate features that embed the neighbor information named patch (Coupé et al.,
2012b). Because the development of features is the main subject of this thesis, the
following chapter will provide further description of the state-of-the-art methods of
these three kinds of features (see Chapter 2).

1.5 Dimensionality reduction

Some feature extraction methods produce a considerable amount of features; it is
especially the case for methods working at a voxel scale. The high dimensionality
of the feature vectors does not enable to obtain satisfying performances. Therefore,
dimensionality reduction techniques are often used. A first of group is composed of
methods based on dimension projection techniques which are named principal com-
ponent analysis (PCA) (Jolliffe, 2011). These methods are based on a projection of
the vector into a more efficient feature space. Among proposed methods to perform
PCA we can cite; the single value decomposition (SVD), which is a canonical method
to compute PCA (De Lathauwer et al., 1994), and eigenvalues decomposition (EIG)
of the covariance matrix (Acharya et al., 2012). These two methods are based on
a selection of projected dimensions represented by the greater eigenvalues. Alter-
nating least squares (ALS) is a ranking algorithm designed to better handle missing
values (Kuroda et al., 2011). A major limitation of the methods using these tech-
niques come from that they failed to help for understanding the disease progression
since their results are not directly interpretable.

Besides dimensionality reduction, feature selection methods have been widely
investigated. Indeed, it has been demonstrated that feature selection enable to in-
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crease classification performances with high dimensional features (Chu et al., 2012).
Moreover, on the opposite to PCA techniques, features selection methods provide
interpretable results that can help to understand disease progression by capturing
key elements. One on the most used approach is based on methods that only look
at the intrinsic properties of the data. For instance, an usual method used to select
discriminant features is based on p-values estimated with statistical test (Ashburner
and Friston, 2000). Other proposed methods are based on dictionary learning tech-
niques. The method usually used are: the least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), its extension named elastic net (EN) (Zou
and Hastie, 2005), that adds a L2 regularization term which results in a grouping
effect helping to select highly correlated features, and the sparse logistic regression
(SLR) (Ryali et al., 2010). On the opposite of methods based on statistical test,
methods based on dictionary learning embed the correlation of features and can
avoid redundance of the information captured by the features. Finally, methods
embedded into classification algorithms are also used. These group of methods usu-
ally used the provided weight scores or the separability criterion used within the
classification methods.

1.6 Classification

Machine learning and statistical classification is a set of learning approaches which
aim to learn decision boundaries from a features space in order to discover hidden
data labels. In other words, the goal of classification methods is to use data features,
in our experiments the data represent MRI of brains, to identify which class it
belongs to. For instance, in binary classification the data belong to two classes,
and the classification methods aims to determine which class the sample belongs to
according a set of training samples. In this thesis, we only consider four classes; the
group that represents CN subjects, sMCI, pMCI and the group of patients whom
suffer from AD.

The use of classification method depends of whether the feature space is linearly
separable or not and how the distributions are modeled (i.e., normal distribution,
non-parametric, etc). For linearly separable features space linear classifier often per-
form satisfying results. The linear discriminant analysis (LDA) is frequently used
to perform classification with the assessment of normal distribution (Fisher, 1936;
Lachenbruch and Goldstein, 1979). To deal with non-parametric model of feature
distribution, other methods are often applied such as support vector machine (SVM)
(Cortes and Vapnik, 1995), decision tree (Quinlan, 1986), and its extension random
forest (RF) (Breiman, 2001). Recently, with the development of deep-learning (Le-
Cun et al., 2015), neural network has been introduced performing good performance.
The strength of this techniques is its ability to handle linear and non-linear task by
decomposition the classification problem into a network of linear classifiers organized
in layers. However, due to its high number of connection, neural network needs high
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number of training data. For the interested readers, these different methods are
described in the annex B of this thesis.

1.7 Evaluation

1.7.1 Dataset

Besides in-house database used in some works, to accelerate the development of new
imaging biomarkers for the early detection of Alzheimer’s disease, some program has
proposed to collect and distribute imaging data. These programs have succeeded
in building relatively large datasets that have contributed to the acceleration of
development of new imaging biomarkers. The three most used, and open access
database cited in the literature are:

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a North American
campaign launched in 2003 with aims to provide MRI, positron emission to-
mography scans, clinical neurological measures, and other biomarkers (Jack
et al., 2008). ADNI is a longitudinal multi-site observational study of elderly
people. ADNI involves subjects from 50 years old to more than 95 years old.
This database provides images from patients grouped in 3 different categories.
Cognitively normal (CN) that is composed of subjects having normal cogni-
tive abilities. MCI that is composed of two subgroups since its second phase
(ADNI2), early MCI (eMCI) and late (lMCI), and AD patients. The patients
have been followed on several years and their pathological status is available
for each visit. Thus, it is possible to know which and when patients convert
to AD. Thus, to date, ADNI provides large database composed of patients fol-
lowed up for more than 4 years. ADNI is the most used dataset with numerous
methods proposed in the literature using this database for their evaluation and
comparison to former proposed methods (Weiner et al., 2013, 2015).

Australian Imaging Biomarkers and Lifestyle (AIBL) is an Australian study
launched in 2006. AIBL is a longitudinal study of cognition on around 5 years
(Ellis et al., 2009). The minimum age of subjects required in this study is 60
years old. Data have been collected from two centers. The data are grouped
into 3 categories which are named CN for cognitively normal subjects, MCI
for subjects suffer from MCI at the baseline and AD for data coming from pa-
tients with AD diagnostic at the baseline. Similar to ADNI, the longitudinal
study also provides the time of conversion to AD of CN and MCI patients.

Open Access Series of Imaging Studies (OASIS) is a project compiling and
distributing MRI datasets acquired from MRI studies of Washington Univer-
sity. The MRI represent subjects across the adult life span age from 18 to 96
years (Marcus et al., 2007). OASIS provides anatomical MRI data and clinical
assessments of CN subjects and AD patients.

22 Kilian Hett



1. Computer-aided diagnosis pipeline

1.7.2 Validation

It has been known for long date that the use of same data to train a model and
evaluate its statistical performances yields to obtains over-estimated results (Larson,
1931). To fix this issue, cross-validation (CV) was proposed. The general idea of CV
comes from the separation of the same dataset into training and testing data. Since,
numerous CV procedure have been introduced, for instance: repeated leave-n-out
(LNOCV) (Shao, 1993), balanced incomplete CV (Shao, 1993; Wolz et al., 2011),
Monte-Carlo CV (Picard and Cook, 1984), controlled 50% vs. 50% (Cuingnet et al.,
2011), etc. In this section, we will describe only the three most common validation
procedure used in the literature of AD classification.

Stratified k-fold CV (KFCV) procedure consists of randomly dividing the data-
base into k different subset (Geisser, 1975; Liu et al., 2012). While one sub-
sample is used as testing data, the k − 1 other subsamples are used to train
the method. To capture the inner variability produce by the random selec-
tion, this procedure iterate N times, and the measures of final performances
are obtained by averaging each intermediate performances measures obtained
at each iteration.

Leave-one-out CV (LOOCV) procedure consist of train the method with n− 1
samples, where n is the size of the dataset (Stone, 1974; Allen, 1974; Geisser,
1975). With the large dataset, LOOCV has become computationally expen-
sive. However, it has been shown that LOOCV provides almost unbiased
estimator (Cawley and Talbot, 2004).

Using another database for the training step is a popular way to avoid any
bias or over-fitting issues that can be introduce by the use of the same database
for train and evaluate the proposed method. For instance some works proposed
to use ADNI database to train their proposed methods and evaluate their
performances with external databases (Coupé et al., 2015; Li et al., 2018).

1.8 Conclusion

It has been shown in this section the construction of computer-aided diagnosis
pipeline is complex. To enable an unbiased comparison of MRI data a proper pre-
processing involving denoising, inhomogeneity correction, and registration is manda-
tory. Then, according to the kind of extracted feature, a segmentation method can
be applied. Finally, the evaluation of the pipeline is conduct with the use of the CV
procedure. The complexity of the pipeline producing the final decision yields to a
difficult method comparison. These difficulties are mainly led by the use of different
datasets. Consequently, we decided to use in our works the ADNI database since
it is a widely used database. We compare the proposed methods with only using
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similar ADNI dataset. Moreover, we always provide a comparison with a baseline
method based on well-established features to ensure non-optimistic results.
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2.1. Volume and surface-based methods

2.1 Volume and surface-based methods

Alzheimer’s disease causes different modification of brain structures:

• A global atrophy combined with a hypertrophy of lateral ventricles resulting
from an increase of the quantity of CSF in the lateral ventricles.

• A diffuse atrophy of the gray matter along the cerebral cortex.

• A focal atrophy focused on the medial temporal lobe.

Although quantitative measures of the global brain atrophy with volume or surface
analysis do not provide discriminant enough measures, numerous methods showed
that the study of diffuse and focal atrophy of gray matter structures provides a good
measure for the help of diagnosis. Among those methods two groups can be cited:
the first one is composed of methods using the volume of specific structures while
the second is composed of methods measuring the cortical thickness.

To perform volume and cortical-thickness analysis, the proposed methods need
reliable segmentation methods for the labeling of brain structures of interest and for
the delineation of the surface of the cerebral cortex. The most popular segmentation
method used are the statistical parametric mapping toolbox (SPM) (Ashburner and
Friston, 2005), FSL (Jenkinson et al., 2012), and FreeSurfer (Fischl, 2012). Recently,
a web segmentation system based on multi-atlas label fusion has been developed
(Manjón and Coupé, 2016).

2.1.1 Volume-based feature

Hippocampus volume has emerged as a gold standard imaging biomarker for quantify
the severity of AD and help to establish the diagnosis of Alzheimer’s disease (Kesslak
et al., 1991; Jack et al., 1992). However, the volume of EC has also been proposed
as an imaging biomarker for the detection of AD (Bobinski et al., 1999; de Leon
et al., 2001). Although some studies showed that the hippocampus volume is most
discriminant in term of diagnostic separability (Frisoni et al., 2010; Coupé et al.,
2012b; Schwarz et al., 2016) and it is considered as an enrichment biomarker for select
patients for clinical trials (Jack Jr et al., 2011), the merit of hippocampus volume
versus entorhinal cortex has been debated (Dickerson et al., 2001; Tapiola et al.,
2008). Besides hippocampus and entorhinal cortex, amygdala structures have also
been studied and showed a good diagnosis separability for the Alzheimer’s disease
(Ledig et al., 2018). A limitation of volumetric biomarkers comes from its correlation
to the total intracranial volume (TIV). Therefore, to reduce the variability due to
the brain size, the volume of structures of interest has to be TIV corrected.

A large-scale study based on 834 subjects, Wolz et al. (2011), using a segmen-
tation method based on an expectation maximization (EM) (Van Leemput et al.,
1999), the experiments conducted in this study shows that hippocampus volume ob-
tains an accuracy of 81% for the diagnosis of Alzheimer’s disease (i.e., classification
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of the cognitively normal subjects and Alzheimer’s disease patients), and 65% for
the prediction of Alzheimer’s disease (i.e., the classification of MCI subjects who
remain stable and subjects suffering from MCI that converted to Alzheimer’s dis-
ease in the following years). It is interesting to note that this study showed that
the volume of the hippocampus was among four methods on ten that predicted the
conversion to Alzheimer’s disease more accurately than a random classifier. In their
comparison with volumetric measurements, Coupé et al. (2012b) also evaluated the
performance of volume and EC which obtained 70% of accuracy for the diagnosis of
AD and 59% of accuracy for its prediction. This results demonstrated the interest
of hippocampus for the early detection of AD when using volume.

2.1.2 Shape-based feature

Despite volume measurement has provided good results with its application to the
hippocampus, it does not provide a full description of the changes that occurs with
the progression of AD. Thus, in addition to volumetric biomarkers, shape descrip-
tors have been introduced to capture finner modification of the hippocampus. Two
groups of shape-based methods has been proposed. First, shape descriptors based
on a representation using spherical harmonics (SPHARM) has been proposed to
capture the model of the hippocampus and capture shape changes (Brechbühler et
al., 1995; Gerardin et al., 2009; Cuingnet et al., 2011). Another kind of approach is
based on statistical shape models (Davies et al., 2002). These methods capture the
variability of the brain structure over the population, because they produce high
dimensionality feature vector, a dimensionality reduction such as PCA methods is
often applied (Shen et al., 2012). An advantage of shape-based features is that on
the opposite of the volume-based features, the shape descriptors are not correlated
to the TIV.

It has been shown that shape-based method based on the hippocampus increases
AD detection compare to the volume with a classification accuracy of 88% (Gerardin
et al., 2009). However, a comparative study showed that does not prove the merit
of shape descriptor of the hippocampus does not improve the results compare to its
volume for the prediction of AD with 50% of balanced accuracy against 65.5% for
the hippocampus volume (Cuingnet et al., 2011).

2.1.3 Cortical thickness

The cortical thickness is the most common cortical biomarker. Cortical thickness
features aim to measure the diffuse atrophy of gray matter along the cerebral cor-
tex by estimating its thickness (see Figure 2.1). The first way to compute cortical
thickness is to extract the surface of the cerebral cortex. The thickness represents
the minimal distance between two surface vertices of the meshes representing the
inner and outer surfaces (Fischl and Dale, 2000; Miller et al., 2003). Another way
to compute cortical thickness biomarker uses a voxel-based approach (Hutton et al.,
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Surface extraction Thickness measures Dimensionality reduction

Figure 2.1: Illustration based on the images coming from the paper of (Fischl and Dale,
2000) and (Wolz et al., 2011). The yellow line represents the inner-surface and the red line
represents outer-surface. From left to right, first the surface are extracted from the input
image. The next step measure the normal distance between each vertex of the surfaces
(yellow arrows). Finally, the cortical thickness are averaged into ROIs.

2008). In this method, the cortical thickness is defined at every voxel into the cere-
bral cortex as the length of the shortest path between the surface of white matter
and CSF boundary. Cortical thickness methods produce highly dimensional features
compared to the number of training dataset available. To reduce the dimensionality,
selection or reduction methods are needed to avoid the over-fitting problem due to
the curse of dimensionality. The most common method used to tackle this problem
is based on a ROI approach, the mean cortical thickness is computed within each
ROI and used as input of the classification step. An advantage of thickness mea-
surements compared to volume is that cortical thickness is not correlated with the
total intracranial volume (TIV) (Schwarz et al., 2016).

To date, several methods have been proposed to use cortical biomarkers for AD
classification. An extensive method comparison (Wolz et al., 2011) estimated corti-
cal thickness with a surface-based approach and averaged into defined ROIs. This
approach obtained 81% of accuracy for AD detection and 56% of accuracy for AD
prediction. A cortical thickness approach, using another surface-based extraction
method (Eskildsen and Østergaard, 2006), obtains 85% of accuracy for AD detec-
tion and 63.7% of accuracy for AD prediction (Eskildsen et al., 2013). Querbes et al.
(2009) proposed to adopt a decision tree classifier to better deal with the high dimen-
sionality of cortical thickness feature, this method obtained 85% of accuracy for AD
detection and 73% of accuracy for AD prediction. An approach proposed to capture
inter-regional covariation with a thickness network integrated into a multi-kernel
learning approach obtained 89% of accuracy for AD detection and 64% of accuracy
for Alzheimer’s disease prediction (Raamana et al., 2015). Another method based
on the same idea of constructing the thickness based network and focusing on the
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(TBM) (Ashburner et al., 2000; Hua et al., 2008) methods share the same principle
than VBM. Instead of considering intensity or gray matter probabilities values, the
TBM methods consider the Jacobian matrix at each voxel from the deformation
field. In this kind of approach, the determinant of the Jacobian matrix is used to
estimate the local atrophy. As VBM, the statistical maps are usually computed from
the determinant of the Jacobian matrix and used to select the most discriminant
voxels.

VBM and TBM studies have shown global cortical atrophy with focal atrophy
of the sensorimotor cortex, occipital lobes, and cerebellum (Karas et al., 2003).
Besides, their results have also shown that medial temporal lobe with the amygdala,
entorhinal cortex and hippocampus suffer from the most significant loss (Baron
et al., 2001; Hirata et al., 2005). These results confirm the interest of using ROI
approaches focusing on structures belonging to the medial temporal lobes.

Wolz et al. (2011) used TBM approach to detect and predict AD. In their work,
they obtained a detection accuracy of 87% and a prediction accuracy of 64%. An-
other voxel-based approaches used a SVM classifier (Abdulkadir et al., 2011; Cu-
ingnet et al., 2013). These two methods have obtained similar accuracy with respec-
tively 87% and 91% for the detection of AD.

More recently, a VBM approach aiming to improve the classifier method for
the prediction of AD obtained 74.7% of accuracy Moradi et al. (2015). On the
opposite of most of the previous VBM methods, the feature selection step has not
been conducted with a statistical test. Indeed, this VBM approach use a sparse
logistic regression method to capture the most discriminant voxels combined with a
low density separation (LDS) method to obtain the final prediction.

2.3 Patch-based methods

The use of patch-based methods for Alzheimer’s disease detection was initially pro-
posed by Coupé et al. (2012b) with the patch-based grading (PBG) framework. The
main idea of this exemplar-based method is to use the capability of patch-based tech-
niques to capture subtle signal alterations. The idea is to propagate local pattern
information embedded in a template library to the image under analysis. The orig-
inal method has been proposed to capture subtle alterations related to anatomical
degradations caused by AD. To determine the pathological status of the subject un-
der study, PBG method estimates at each voxel the severity of structural alterations
by a non-local similarity measure.

In the next chapter, we will describe three kinds of patch-based methods, the
first one based on the original PBG method named scoring of non-local image patch
estimator (SNIPE) (Coupé et al., 2012b), the second one proposes an approach
estimating a global patch-based grading feature based on a sparse representation
(Tong et al., 2017a), and finally a graph-based approach that consists of capturing
intra-subject variability information with a multiple learning approach (Tong et al.,
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2.4.1 Volume-based feature

The framework proposed by Suk et al. (2017) uses gray matter volumes as inputs of a
CNN architecture and has significantly improved AD prediction. The strength of this
method is to reduce the input dimensionality by providing relevant features to the
CNN. To extract a high-level model of the alteration relationships between several
brain structures, this deep volume-based method uses an iterate sparse regression
model set up with different parameters. The sparse regression models produce a
set of coefficients representing the different structures having the most discriminant
structural modifications. This results in a matrix of discriminant features that are
used as input of a CNN composed of two convolutional layers and two fully connected
layers. This method has been validated on a large dataset and obtained 91.0% for
the detection of AD and 74.8% for its prediction.
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Figure 2.5: Illustration of an usual deep-learning approach based on patches. First, dis-
criminant patches are extracted from the images. Then a CNN is trained for each patch.
Finally, a final classifier use the output of each CNN to compute the final decision.

2.4.2 Patch-based feature

Most of the methods based on a straightforward application of well-known CNN ar-
chitecture does not obtain satisfying results compared to state-of-the-art methods.
However, some of them using a data augmentation procedure based on patches reach
competitive performances for AD detection (Luo et al., 2017; Liu et al., 2018; Li et
al., 2018) (see Figure 2.5). Among them, (Liu et al., 2018) proposed a landmark-
based deep multi-instance learning approach. In opposite to end-to-end deep learn-
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ing methods, this approach uses patches extracted from the most discriminant land-
mark with a regression forest approach for data augmentation. For each training
data, numerous patches are extracted at each landmark and used as input of a CNN
method. Each landmark represents a bag of patches, a CNN network composed of
6 convolutional layers and two fully connected layers are used for estimating the
degree of alterations for each bag of patches. Then, the output of the last fully
connected layers are concatenated and connected to 3 last fully connected layers
and a soft-max function is used to take the decision (i.e., AD or CN, and pMCI or
sMCI). This landmarks-based neural network obtains state-of-the-art results for AD
detection. However, even though the results in terms of accuracy are relatively high
compared to the state-of-the-art methods with 76.9%, the testing dataset is poorly
balanced, and the results in terms of balanced accuracy is lower with only 62.3%.

2.5 Conclusion

In this chapter, we presented the state-of-the-art MRI-based methods for the classi-
fication of Alzheimer’s disease. As described in table 2.1, these methods are grouped
into 4 categories:

• Methods based on the analysis of volume and surface of specific brain structure
such as the hippocampus and the enthorinal cortex.

• Voxel-based analysis methods that capture structural changes at a fined grained
by comparing the value at a voxel scale.

• Methods based on deep-learning approaches that are based on high-level learn-
ing.

• Patch-based framework that is an exemplar-based approach which captures
neighbor context information.

The patch-based framework provides a simple and efficient approach to extract
relevant features from images. Indeed, the advantages of the patch-based framework
over the other methods comes from its efficient way to capture subtle pattern changes
using a local similarity measurement. On the opposite of volume and surface-based
approaches, patch-based methods do not limit its analysis to a global structure rep-
resentation. Moreover, it captures local information embedded in the patch and
enable an inter-patches comparisons when voxel-based methods only enable to com-
pare distribution values within the same voxel. Finally, a last benefit compare to
deep-learning approaches is that patch-based framework need smaller dataset to
perform state-of-the-art results.
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Table 2.1: Comparison of state-of-the-art methods based on similar ADNI dataset. The
methods are grouped into: volume and surface-based, voxel-based morphometry, patch-
based and deep-learning approaches. The results are expressed in term of detection (i.e.
cognitively normal subject vs. Alzheimer’s disease patients) and prediction (i.e., non-
converted MCI vs. converted MCI) of Alzheimer’s disease. Results are expressed in per-
centage of accuracy and balanced accuracy for results obtained with unbalanced dataset.

Method Region Feature Classifier Detection Prediction
Volume and surface-based
(Colliot et al., 2008) Hipp Volume NN 84.0 -
(Querbes et al., 2009) CC Thickness DT 85.0 73.0
(Gerardin et al., 2009) Hipp Shape SVM 88.0 -
(Wolz et al., 2011) Hipp Volume LDA 81.0 65.0
(Wolz et al., 2011) CC Thickness LDA 81.0 56.0
(Cuingnet et al., 2011) Hipp Shape SVM 76.5∗ 50.0∗

(Coupé et al., 2012b) EC Volume LDA 70.0 59.0
(Eskildsen et al., 2013) CC Thickness LDA 85.5 63.7
(Wee et al., 2013) CC Thickness SVM - 75.0†

(Raamana et al., 2015) CC Thickness MKL 89.0 64.0
Voxel-based morphometry
(Wolz et al., 2011) Brain Tensor LDA 87.0 64.0
(Abdulkadir et al., 2011) Brain Gray matter SVM 87.0 -
(Cuingnet et al., 2013) Brain Gray matter SVM 91.0 -
(Moradi et al., 2015) Brain Gray matter LDS - 74.7
Patch-based
(Coupé et al., 2012b) Hipp Patch LDA 88.0 71.0
(Tong et al., 2014) MTL Patch SVM 89.0 70.0
(Tong et al., 2017a) Hipp Patch SVM - 69.0
(Tong et al., 2017a) Brain Patch SVM - 75.0
Deep learning
(Suk et al., 2017) Brain Volume CNN 91.0 74.8
(Luo et al., 2017) Brain Patch CNN 83.0 -
(Liu et al., 2018) Brain Patch CNN 90.5∗ 62.3∗

(Li et al., 2018) Brain Patch CNN 89.5 -

∗ Balanced accuracy † Reduce ADNI1 dataset

LDA = Linear discriminant analysis MTL = Medial temporal lobe
LDS = Low density separation EC = Entorhinal cortex
SVM = Support vector machine Hipp = Hippocampus
DT = Decision tree CC = Cerebral cortex
CNN = Convolutional neural network NN = Nearest neighbor
MKL = Multi kernel learning
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3. Patch-based grading

3.1 Patch-based methods

3.1.1 Scoring of non-local image patch estimator

In his original paper, Coupé et al. (2012a,b) proposed to capture of hippocampus
structural alterations with a new scale of analysis. The scoring of non-local image
patch estimator (SNIPE) extract similar patches and encode the distances between
patches from training library and patch from the voxel under analysis into a weight
function.

The method starts as follows, a training library T composed of two datasets
of images is built: one with images from CN subjects and the other one from AD
patients. Next, for each voxel xi of the region of interest in the considered subject
x, the PBG method produces a weak classifier denoted gxi

. This weak classifier
provides a surrogate of the pathological grading at the considered position. The weak
classifier is computed using a measurement of the similarity between the patch Pxi

surrounding the voxel xi belonging to the image under study and a set Kxi
= {Ptj}

of the closest patches Ptj , surrounding the voxel tj, extracted from the template
t ∈ T (see Figure 2.3). The grading value gxi

at xi is defined as:

gxi
=

∑

tj∈Kxi
w(Pxi

, Ptj)pt
∑

tj∈Kxi
w(Pxi

, Ptj)
(3.1)

where w(xi, tj) is the weight assigned to the pathological status pt of the training
image t. We estimate w such as:

w(Pxi
, Ptj) = exp

(

−
||Pxi

−Ptj
||22

h2

)

(3.2)

where h = min ||Pxi
− Ptj ||

2
2 + ǫ and ǫ → 0. The pathological status pt is set to

−1 for patches extracted from AD patient and to 1 for patches extracted from CN
subject. Therefore, the PBG method provides at each voxel a score representing an
estimation of the alterations caused by AD. Consequently, cerebral tissues strongly
altered by AD have grading values close to −1 contrary to healthy one with scores
close to 1.

Finally, to deal with the variability of hippocampal volume and to reduce the
feature dimensionality, the mean grading value is computed as follows:

ḡ =
1

|V |

∑

xi∈V

gxi
, (3.3)

where ḡ is the mean grading value, V is the region of interest and |V | is the number
of voxels in this region. Thus, for each subject, PBG applied on the hippocampus
provides one to two features (i.e., if V represent the combined label of both hip-
pocampus, or one hippocampus) considered as input of the classification method.
It is interesting to note that the use of CN and AD data to estimate the structural
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alterations similarity provides the best results to model the relationship between
MCI and images from CN and AD. Then, the use of CN and AD to estimate grad-
ing values on MCI subjects provides better results than a straightforward approach
using MCI to classify MCI subjects. Indeed, the results of PBG decrease when
the grading values are computed with the group sMCI and pMCI. This effect could
come from that MCI group is too noisy compared to hippocampus from CN and AD
patients. Consequently, the uncertainty introduced with the use of MCI reduces the
classification performances.

3.1.2 Sparse-based grading

To model the relationship between MCI and images from CN and AD patients, Tong
et al. (2017a) proposed a dictionary learning approach combined with a sparse rep-
resentation. Each MCI subject is assumed to lie in the space of training population,
which means that it can be represented by a linear combination of CN and AD
patients in the training population.

In opposite to the previous method that analyzes local alteration in a cubic
fixed size patch, sparse-grading method proposes to study the similarity with a
non-definite shape of patch. Indeed, the first step of this method is based on a
feature selection proposed to capture the most discriminant voxel with a elastic-
net regression (Janoušová et al., 2012). Thus, after features selection the N most
discriminant voxels are determined and N intensity values are extracted from each
image. This results in XADCN ∈ RN×M the matrix containing the N intensities of
M training images and XMCI ∈ RN×1 that contains the N intensity values of the
test MCI image. The sparse-grading map is obtained by minimizing the following
function:

α̂ = min
α

1

2
||XMCI −XADCNα||22 + λ1||α||1 + λ2||α||

2
2 (3.4)

where α represents the coding coefficients, λ1 and λ2 represent the hyper-parameters
used to weight the L1 and the L2 norms, respectively.

g =

∑N

j=1 α̂(j)pj
∑N

j=1 α̂(j)
(3.5)

As described in the previous method, pj represents the pathological status of the
training image XADCN

j . pj is set to −1 to images of patient suffering from AD and
1 to images of subject having a cognitively normal status. Thus, if g is close to −1
the subject is more characteristic of AD patient than CN. Otherwise, a g closes to
1 is more characteristic of CN subject.

In opposite to the patch-based method proposed by (Coupé et al., 2012b) that
provides a grading value for each considered voxel, for each subject sparse-based
grading provides a single value representing the global similarity of the brain struc-
tures.
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3.1.3 Multiple instance learning

Instead of considering the similarity of each voxel, the multiple instance learning
method proposed by (Tong et al., 2014) considers the intra-subject’s patch variability
in a graph-based approach. In this method, each image is considered as a bag of
cubic fixed-size patches, Because the set of patches is equal to the number of voxel
representing the brain, the number of patches is extremely high. Thus, only a subset
of the most informative patches are extracted. To extract the most informative
patches, probability values that represent the discriminative power of each voxel
are estimated with a elastic net regression. Afterward, an iterative step is used to
avoid the overlap between selected patches. This step starts with the selection of
the voxel having the highest probability, next the probabilities of its neighborhood
within a predefined spatial distance are set to 0. Then, the voxel with the second
highest probability is selected and the same process is carried out until K patches
are extracted.

Patch extraction Graph construction

Kernel 
computation

Linear
classifier

MRI

Figure 3.1: Illustration of the multiple instance learning graph, from left to right: The
patches are extracted from the most discriminant voxel with a spatial constraint. Next,
the graph is built using all the patches extracted. A graph kernel is computed afterwards
and used as input of a linear classifier method.

As described in (Tong et al., 2014), the method proposed to integrate the rela-
tionship among patches extracted. The main assessments is that such relationship
can provide complementary information. Therefore, a graph is computed for each
image as follows:

N bags composed of K patches are extracted in the previous step. The inten-
sity values within each patch are organized into a feature vector p such as Bi =
{pi,1, ..., pi,j, ..., pi,K}. Finally, the training data is set as {(B1, y1), ..., (Bi, yi), ...,
(BN , yN)}, with yi ∈ {0, 1} is related to the pathological status of the bag Bi. In
this approach the nodes of the considered graph Gi are the patches of the bag Bi.
The distances between each node are defined in the matrix W i defined with a L2

norm as follows:
W i

a,u = ||pi,a − pi,u||
2
2 (3.6)

where pi,a and pi,u are two different patches from the same bag Bi. W i represents
the relationship between the patches of the bag Bi. In the same way that it has been
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done in (Zhou et al., 2009), who captures similarities among graphs with a linear
learning method trained using a kernel function KG is defined. The kernel function
KG is computed as follows:

KG(Bi, Bj) =

∑K

a=1

∑K

b=1 di,adj,bk(pi,a, pj,b)
∑K

a=1 di,a
∑K

b=1 di,b
(3.7)

where di,a = 1/
∑

u = 1KW i
a,u, dj,b = 1/

∑K

v=1 W
j
b,v, the kernel function k(pi,a, pj,b) =

exp(−γ||pi,a − pj,b||
2
2), pi,a and pj,b are the patches coming from the set Bi and Bj,

respectively.
On the opposite of the two previous methods presented that capture inter-

subjects’ similarities. This last patch-based method capture the intra-individual
variability by comparing the most discriminative patch. This method aims to cap-
ture specific pattern according to the pathological status.

3.2 Patch extraction

In the original method proposed by Coupé et al. (2011, 2012b) the patch extraction
process is composed of two steps. First, a template selection is carried out. The most
similar images from the training library are selected with a global image similarity
measure. To accelerate the patch extraction step, a first selection is conducted with
a global similarity measure. Thus, a L2 norm is computed for each images of the
training library as follows:

d(X, Yt) = ||X − Yt||
2
2, (3.8)

where X is the image under study and Yt is the image from the training library.
Finally, only the N% of the most similar images (i.e., images having the smallest
distances with X) are selected for the patch extraction process. Second, the patches
candidates are extracted from a search window around the coordinate of the voxel
under study. As it has been proposed in Coupé et al. (2008), a patch preselection is
also carried out to reduce the computational time. The original approach combines
an information based on a luminance and a contrast criterion to achieve the patch
preselection. The contrast criterion is based on the structural similarity measure
(SSIM) (Wang et al., 2004). Finally, the preselection measure can be expressed as
follows:

pp =
(2µiµt,j)

(µ2
i + µ2

t,j)

(2σiσt,j)

(σ2
i + σ2

t,j)
(3.9)

where µ and σ are respectively the mean intensity and the standard deviation of the
patch under consideration. i denotes the patch from the image X and j, t denotes
the patch from the training image Yt.

Thus, only patches having a pp value superior to a certain threshold are consid-
ered into the grading process. This results in a grading of the hippocampus structure
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iterative approximate nearest neighbor (ANN) search. The method consists in ran-
domly associating each patch of the image X with the patches in the image Yt.
Then, an iterative refinement process is carried out, based on the propagation of
good matches between adjacent patches, and on the random selection of candidates.
The combination of these two steps offers in practice a very fast convergence, and
since no preprocessing is performed, the complexity of the method only depends on
the number of pixels to be processed in the image X. The key idea of this method
is that, based on the spatial coherence of patches, good matches can be propagated
to spatially adjacent patches in the image under analysis (see Figure 3.2).

This approach has been optimized for three-dimensional images by Giraud et
al. (2016). The method is based on three steps: a constrained initialization, a
propagation step, and a random search in the training library (see Figure 3.3).

The constrained initialization consists of the random association of each patch
from the image X with a patch of the image Yt. To ensure, the fast convergence
and avoid the correspondence of patch with low intensity distance but with a high
spatial distance, the random initialization is carried out in a window search around
the coordinate of the voxel of X under study.

Then, in order to improve the initial map of correspondence M , a propagation
process and a random search are iteratively carried out. The propagation step is
the key step of the patchmatch algorithm. It consists in using the spatial coherency
of the patches. The process considers the adjacent patches in terms of 6-connected
voxels (i.e., patches at the coordinate: (x± 1, y, z); (x, y ± 1, z); (x, y, z ± 1)). With
respect to the position of the voxel under study, the process use the patch adjacent
patch in M . The propagation is validated if the intensity distances are lower than
the current candidate patch. Finally, after the propagation step, a random search in
a fixed size window is carried out. The use of random search after the propagation
enables to find a better match is the most-likely good candidate area with avoiding
possible local minimal.

The application of the optimized patchmatch algorithm has significantly im-
proved the computational time of the patch-based segmentation. For example, the
segmentation of the hippocampus is carried out in less than one second.

3.4 Influence of the parameters

In our works, we implemented the optimized patchmatch developed by Giraud et al.
(2016) in order to perform PBG (Hett et al., 2016). To ensure the best performance
of patch-based grading using the optimized patchmatch, a few parameters have to
be optimized. Thus, in this section, we are studying the influence of the number
of extracted patches, the influence of the patch size and finally the influence of the
number of template images used for computing grading values. Since the CN and
AD group are less prone to noise than the MCI group due to the heterogeneity of
the data, we evaluate the different parameters with the classification accuracy of
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Figure 3.3: Steps of the optimized patchmatch approach. The steps are illustrated for
the blue patch in S. The green, pink, purple and orange patches represent the adjacent
neighbors of the blue patch. During the constrained initialization (CI), the patches of the
subject S are associated (solid lines) to a random patch of the library in a search window
depending on their position in S. The propagation step is represented for the first and
second iterations. Offset matches of adjacent patches already processed during iteration are
tested to improve blue patch matching (dashed lines). The constrained random search is
also represented for the first and second iterations. Random matching tests are performed
in a search box. Source: Giraud et al. (2016)

images from CN and AD patients acquired at the baseline. We split our database
into two datasets, one is composed of training images and the second is composed of
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Table 3.1: Description of the data used for the evaluation of the optimal parameters for
the optimized patch-based grading. All data are from ADNI1 dataset.

Description Training Testing

Number of subjects
Ages
Sex
MMSE

CN AD
226 186

76.5 ± 5.0 75.3 ± 7.4
117/109 98/88

29.05 ± 0.9 22.8 ± 2.9

CN AD
50 50

75.4 ± 5.2 74.5 ± 8.2
28/22 30/20

29.3 ± 0.8 23.1 ± 2.3

testing images (see Table 3.1). Testing images are randomly chosen into the ADNI1
dataset. Moreover, the testing dataset is perfectly balanced to avoid any bias due to
the different size of groups. Finally, we evaluate the performance of our patch-based
grading feature with the area under the curve (AUC) measure.

3.4.1 Number of patches

Number of patches

A
U

C

Figure 3.4: The curves represent the classification performance in terms of AUC for CN
versus AD classification. Four size of patches have been compared, the results show that
patch-based grading method obtains its best performances when around 50 patches at
extracted at the size of 5× 5× 5 voxels.

First, we evaluate the impact of the number of patches extracted and its corre-
lation with the patch size. The experiments the number of patches from 1 to 100
combined with the size of patch from 3×3×3 to 9×9×9 voxels (see Figure 3.4). In
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(SSD) of the image under analysis and the images from the training database. In
this experiment with select the n closest template images. In this experiment, the
optimized patch-match method is set up with the optimal number of patches found
in the previous section (see Section 3.4.1).

Number of templates

A
U
C

Figure 3.6: The curves represent the classification performance in terms of AUC for CN
versus AD classification. The size of templates library has been evaluated from 1 template
to 120 templates for each group (i.e., CN and AD).

The experiments show that for any size of patch, the use of the most similar
template images from CN and AD library does not enable to capture the alteration
related to the disease. To obtain satisfying results compared to the original patch-
based grading method, a minimum of 30 templates in each training library must
be selected. The best results are obtained with the patch size of 5 × 5 × 5 and
60 template images in each pathological group that compose the training library.
Indeed, as illustrated in the Figure 3.7, the grading values are poorly estimated
with the use of one template image for each pathological status, even though they
are the images templates with the smallest global distance. The increase of the
number of template images leads to a refinement of the estimation that results in
an improvement of classification performances.

As illustrated in the previous section, patches 3 × 3 × 3 voxels are too small
to efficiently capture structural pattern. The best performances are reached with
30 template images for each training libraries. The smallest number of templates
needed for this size of the patch could be explained by the higher number of similar
area in the templates since the areas to compare are small. On the opposite, large
patches need more template images to reach best performances. We can notice
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Figure 3.8: As highlighted in this schema, during this thesis, we have focused on the
development of new imaging-based features to improve the detection and prediction of
Alzheimer’s disease.

Motivations

As illustrated in Figure 3.8, in this thesis, we focused on the development of new
efficient biomarkers for the early detection of AD. We have mainly been interested
in the improvement of patch-based grading framework. Indeed, the introduction of
patch-based methods has led to a better estimation of structural alterations into spe-
cific structures such as hippocampus compare to previous methods. Some elements
tend to show that a better analysis of hippocampus could increase the performance
for the early detection of AD.

Indeed, on the one hand, a large proportion of data comes from different neu-
roimaging campaign and has been acquired from different neuroimaging centers.
Therefore, even though an acquisition protocol has been defined, the images are
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acquired with different imaging devices. This results in a variability of MRI in-
tensities that might not corrected by the preprocessing step. It seems essential to
develop method robust to acquisition variability. Also, improving patch comparison
by highlighting discriminant signal into patch could lead to an improvement of the
performances for early detection of AD. Indeed, a part of the signal embedded in
a patch can contain all discriminant information. For instance, edge and texture
signals can be discriminant while the other part of the signal can be not informative
since it may just add noises within each pathological group since it can only be
correlated to other factors.

On the other hand, structural MRI (s-MRI) is not the only MRI modality us-
able within the PBG framework, for example, diffusion MRI (d-MRI) can also be
integrated into patch-based grading study. Studies based on d-MRI usually capture
axonal alterations by analyzing modifications of white matter with tractography ap-
proaches. However, d-MRI can also be used to capture micro-structural alteration of
grey matter structures. The application of PBG method on this MRI modality can
improve early detection performance since such alterations are considered to occur
before structural alteration. A limitation of d-MRI comes from its native resolution
that is often lower than s-MRI and reduces the ability of d-MRI for providing good
biomarkers for AD detection. However, recent super-resolution methods demon-
strate good results and have addressed the issue of low resolution in many pattern
recognition problems.

Besides, the hippocampus is a heterogeneous structure. Indeed, the hippocampus
is composed of different subfields having distinct characteristics. Moreover, during
the last decade, postmortem and animal-based studies have shown that the hip-
pocampal subfields are not equally impacted by AD. Indeed, these studies showed
that some subfields suffer from stronger atrophy at the late stage of AD than others.
Therefore, a fine-grained analysis of structural hippocampus alterations at subfields
scale could also lead to an improvement for the early detection of AD.

Finally, although state-of-the-art methods for the early detection of AD have
mostly focused on a robust extraction of inter-subjects’ similarities in specific ROIs
or different scale of analysis (i.e., voxel, patch, etc), some works developed models
that capture intra-subjects’ variability of alterations. These methods have demon-
strated that an efficient representation of the topology of alterations by modeling the
relationship of structural changes between the different brain structures can help to
improve AD detection and prediction. Indeed, it seems that the relationships of the
structural alterations between brain structures form a specific pattern that provides
relevant information on the progression of the dementia. Therefore, modeling this
pattern could improve the early detection of AD.

All these elements raise questions that suggest four ways of research to improve
PBG methods.

• How to improve patch comparison to enhance informative signals encoded the
patches?
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• How to develop an efficient multimodal approach involving d-MRI to improve
performances for early detection of AD?

• Is the study of hippocampal alterations at a finer scale, such as hippocampal
subfield analysis, effective for early detection of AD?

• Does the combination of inter-subject similarities and intra-subject variability
make it possible to increase AD prediction performance?

Therefore, in this thesis we will explore these four approaches as summarized in the
followings.

Research contributions and thesis outline

The contribution of this thesis are summarized below.

Adaptive fusion of texture-based grading

Computer-aided diagnosis system are usually based on method using intensity or
grey matter maps. However, it has been shown that texture filters improve classifi-
cation performance in many cases. The aim of this work is to improve performances
of patch-based grading framework with the development of a novel texture-based
grading method. In this work, we study the potential of multi-directional texture
maps extracted with 3D Gabor filters to improve patch-based grading method. We
also propose a novel patch-based fusion scheme to efficiently combine multiple grad-
ing maps. To validate our approach, we study the optimal set of filters and compare
the proposed method with different fusion schemes. In addition, we also compare
our new texture-based grading biomarker with state-of-the-art methods. This first
contribution dedicated to texture-based grading will be detailed in Chapter 5.

Multimodal patch-based grading

Our next contribution is the application of PBG framework to d-MRI modality. In
this work, we propose to use a similar framework on s-MRI and d-MRI. We compare
our new grading-based d-MRI features with basic MRI and d-MRI biomarkers. In
addition, we propose a new framework to efficiently merge PBG maps from s-MRI
and d-MRI. First, although d-MRI performance lower results than s-MRI in the late
stage of AD, we demonstrate that the proposed d-MRI biomarkers obtain competi-
tive results for the early detection of AD. Finally, the experiments conducted have
shown that our multimodal biomarker merging PBG from s-MRI and d-MRI obtain
robust classification performances. Indeed, our multimodal PBG obtains best clas-
sification performances for late and early detection of AD. This second contribution
dedicated to multimodal grading will be detailed in chapter 6.
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Hippocampal subfields grading

To date, the patch-based grading framework provides competitive hippocampal
biomarker. However, this structure is complex since the hippocampus is divided
into several heterogeneous subfields not equally impacted by AD. Former in-vivo
imaging studies only investigated structural alterations of these subfields using volu-
metric measurements and microstructural modifications with mean diffusivity mea-
surements. The aim of our work is to study the efficiency of hippocampal sub-
fields compared to the whole hippocampus structure with a multimodal patch-based
framework that enables to capture subtler structural and microstructural alterations.
To this end, we analyze the significance of the different hippocampal subfields for
AD diagnosis and prognosis with volumetric, diffusivity measurements and a novel
multimodal patch-based grading framework that combines structural and diffusion
MRI. The experiments conducted in this work showed that the whole hippocam-
pus provides the most discriminant biomarkers for advanced AD detection while
biomarkers applied into subiculum obtain the best results for AD prediction. This
third contribution dedicated to hippocampal subfields grading will be detailed in
chapter 7.

Graph of brain structures grading

Nowadays, numerous studies have proposed biomarkers to perform early detection
of AD. Some of them have proposed methods based on inter-subject similarity while
other approaches have investigated framework using intra-subject variability. There-
fore, our last contribution is the development of a graph-based model that embeds
inter-subjects’ similarity and intra-subjects’ variability information. Indeed, in this
work, we propose a novel framework combining both approaches within an efficient
graph of structures grading. First, we apply this framework with the definition of
hippocampal subfields studied previously. We demonstrate that our novel approach
obtains competitive results compared to former methods based on the hippocampus.
Second, since best methods are based on an whole brain analysis, we apply our novel
graph-based approach within the whole brain. This results in state-of-the-art perfor-
mance for the prediction of subject conversion to AD. Finally, we propose an unified
framework to combine whole brain structures representation with the hippocampal
subfields. The experiments conducted in this last work demonstrate state-of-the-art
classification performances for AD detection and prediction. This last contribution
dedicated to graph of structure grading will be detailed from the chapter 8 to 11
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The first contributions of this Ph.D are based on
the design of advanced hippocampus biomarkers.
In this part, we will present a novel adaptive frame-
work to fuse multiple grading maps. This adap-
tive fusion will be used for two different applica-
tions. The first application is a new texture-based
grading method that use texture filters to improve
patch comparison. The second one is a multimodal
patch-based grading method that involves s-MRI
and d-MRI. This multimodal approach aims to
improve AD performance detection by combining
structural and microstructural information. Fi-
nally, we we will present a multimodal study to
measure the hippocampal subfields effectiveness
for the early detection of AD.

Part II:

Advanced hippocampus biomarkers
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Introduction

To date, patch-based grading has been applied only to structural MRI intensities.
However, some recent works have proposed to apply patch-based segmentation meth-
ods by using different inputs (i.e., modalities). Indeed, recently segmentation meth-
ods based on patch-based framework have been improved with the use of multi-
source approaches (i.e., image derivatives such as gradient).

However, so far, a limitation occurs in the fusion methods designed to combine
information coming from the different image sources. On the one hand, a recent
multi-features patch-based segmentation method has proposed to fuse the different
estimator maps by a straightforward average. On the other hand, a multi-contrast
patch extraction method has proposed to compute the similarity of patches from
two different sources with a multi-contrast norm. Such methods assume that all
features or modalities have the same relevance. However, this is not always true
since there is in some cases similar patches in the template library. Therefore, in
this part, we propose a new adaptive fusion scheme that provides a locally adaptive
criterion for weighting grading values from each MRI sources at each voxel.

We apply this adaptive fusion scheme to develop a novel texture-based grading
method. This novel method takes advantage of the adaptive fusion of directional
derivative filters. The use of these filters aims to enhance informative signal in
different directions. This approach obtains state-of-the-art results for AD detection
compare to most advanced methods.

Besides structural MRI, other MRI modalities such as diffusion MRI could pro-
vide relevant information about brain alterations. Such modality can also be used
as input of path-based grading methods. Consequently, we investigate patch-based
grading method using diffusion MRI modality. The comparison of PBG based on
these two different MRI modalities demonstrates that structural MRI provides the
best results for AD detection. However, the application of diffusion MRI as input
of PBG enables to improve results for AD prediction. Consequently, we apply our
novel adaptive fusion scheme to fuse patch-based grading based on both structural
and diffusion MRI. The experiments show that the multimodal patch-based grad-
ing based on these two modalities obtains competitive results for AD detection and
prediction, confirming the interest of using structural and diffusion MRI.

Finally, we propose to study the hippocampus structure at a finer grained scale
with the analysis of the hippocampal subfields. Therefore, we carry out a compar-
ative multimodal analysis to emphasize the advantage of applying our method into
specific hippocampal subfields. The results of our experiments based on volumetric
measurement are in line with previous hippocampal subfields studies for the most
discriminant atrophy at late stages of AD. Moreover, we also show that subiculum
provides good multimodal biomarker at the early stage of AD and enables to improve
prediction performances compared to the use of the whole hippocampus.

Multi-scale and multimodal imaging biomarkers for early detection of Alzheimer’s disease 53



Key-words

Patch-Based Grading, Multi-Source, Multi-Modal, Multi-Feature, Adaptive Fusion,
Structural MRI, Diffusion MRI, Texture-Based Analysis, Hippocampal Subfields

Contents

• The chapter 4 presents state-of-art approaches that propose multimodal, and
multi-texture fusion methods. In this chapter, we propose an adaptive fusion
scheme that attempts to fuse efficiently several patch-based grading maps.

• In the chapter 5, we apply our new adaptive fusion framework with multiple
directional texture filter and propose a texture-based grading method. In this
chapter, the three main contributions are the applications of a bank of Gabor’s
filters that provides directional information of the texture, the application of
our novel adaptive fusion scheme and the aggregation of final fused grading
values over the hippocampus with a histogram representation. We validate
our approach with a comparison of different fusion schemes, different texture
filters. Finally, we investigate the optimal set of direction textures.

• The chapter 6 introduces the DTI patch-based grading and a new multimodal
patch-based grading that combines structural MRI and diffusion MRI. In this
chapter, we apply our novel fusion scheme to fuse mean diffusivity grading
and structural grading maps. This produces more robust features obtaining
state-of-the-art results for detection and prediction of Alzheimer’s disease.

• The chapter 7 studies the alterations of hippocampal subfields with our pro-
posed multimodal patch-based grading. In this chapter, we propose a compar-
ative study based on a multimodal framework to analyze changes that occur
into the hippocampal subfields. This work aims to validate whether a fine-
grained analysis of hippocampus based on its subfields can provide more effi-
cient biomarkers and identify the best hippocampal subfields for AD detection
and prediction.
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4.1 Introduction

Since the introduction of patch-based framework for brain image analysis (Coupé et
al., 2011), numerous improvements have been proposed to enhance the performance
of this framework. Some methods have proposed to replace the exponential kernel
by a sparse-based approach based on dictionary learning to estimate the most dis-
criminant patches extracted from the training library (Liu et al., 2012; Tong et al.,
2013, 2017a). However, despite an increased complexity of these patch-based meth-
ods, their performances have not demonstrated significant improvement compared
to the methods based on an exponential kernel.

Recently, a patch-match optimization technique (Barnes et al., 2009) was adapted
to the segmentation of 3D structural MRI (Giraud et al., 2016). This method dras-
tically reduces the computation time of the patch extraction step. Indeed, the use of
this optimization method leads to a computation of the hippocampus segmentation
under a second with state-of-the-art precision. This improvement has enabled the
use of multi-source inputs. The use of multi-source method requires fusion of the
different sources. This fusion step can occur at different stages of the patch-based
pipeline. We can cite two different fusion schemes. The first is a late fusion of the
different features computed by the method for each source, while the second is an
early fusion of the features produced at the patch extraction step. This last group of
methods demonstrates an improvement of patch-based method performances. How-
ever, a major limitation occurs since such techniques consider that all estimator
maps have the same relevance. Therefore, we develop in this chapter a new adap-
tive fusion scheme to locally and automatically weight the grading values coming
from each sources.

4.2 Background

This section is divided into the description of multi-modal fusion scheme proposed
in the literature that can be applied for any kind of method, and fusion approach
specially dedicated to the patch-based framework.

4.2.1 Multi-modal fusion for Alzheimer’s disease classifica-
tion

To date, several works proposed to improve AD classification using the complemen-
tarity of different medical imaging modalities. Thus, some methods proposed to
fuse features based on MRI with biomarkers based on PET, DTI, fMRI. Usually,
the proposed multimodal approaches extract features from each modality separately
and combine them into methods based on several classification layers.

Figure 4.1 illustrates a generic pipeline usually applied to multimodal image anal-
ysis. This first group of multimodal approaches proposed to extract features such as
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cortical thickness, grey matter intensity or PET intensities... This group of methods
computes a concatenation of the different feature vectors into an extended vector of
features to use it as an input of classifier method. The classification methods used
are often designed to deal with heterogeneous data such as multi-kernel learning
approaches or random forest (Kohannim et al., 2010; Zhang et al., 2011; Gray et
al., 2013). Other methods proposed to reduce the dimensionality of the features
by applying a feature selection or a linear transformation into a lower dimension-
ality space (Hinrichs et al., 2011; Dyrba et al., 2015). Recently, more advanced
methods proposed to use a stack of deep learning networks, each network having to
handle data from different modality (Calhoun and Sui, 2016; Shi et al., 2018), for
instance, a method proposed to find a latent hierarchical patch representation with
a deep Boltzmann method (Suk et al., 2014). Finally, another method proposed to
integrate brain structure volumes, FDG-PET and CSF biomarkers measures into a
non-linear graph fusion (Tong et al., 2017b). These works demonstrated that this
kind of framework can improve the classification performances of AD detection and
prediction by taking advantage of the complementarity information of each modality.

4.2.2 Multi-spectral/features fusion of patch-based methods

With the development of patch-based methods, some works proposed to fuse images
information at a patch scale. Some works proposed an early fusion of features into
the patch difference measurement (Kim et al., 2013; Bai et al., 2015), and another
proposed to integrate the distance with a multi-contrast semi norm (MSN) distance
based on a combination of SSD (Romero et al., 2017), this new metric is defined as
follows:

MSNi,j,s =
||Pxi

− Ptj ||
2
2.||Px′

i
− Pt′j

||22

M(||Pxi
− Ptj ||

2
2 + ||Pxi

− Ptj ||
2
2)

(4.1)

where Pxi
represents the patch surrounding the voxel i of the image x, Pxi

is the
patch surrounding the voxel j of the image template t. x and t represents the data
from the first modality while x′ and t′ represents the data from the second modality.

These proposed methods show that the use of different input combined with
a fusion at a patch scale can lead to better capturing the pattern of the tissue
surrounding the voxel under analysis. However, so far, the developed techniques
assume that each patch has the same relevance to describe the tissues under analysis
as each source has the same relevance. Thus, an optimized way to fuse the patch-
based estimators is crucial to deal with the fact that each patch-based estimator can
embed signal having unequal similarity relevance.

Taking advantage of the fast patch extraction based on an optimized patch match
(OPM) technique, (Giraud et al., 2016) proposed to fuse multiple feature images.
This method is based on the combination of images filtered with a gradient filter
and raw intensities of structural MRI. Moreover, in his work Giraud et al. (2016)
proposed to embed different features with a multi patch size approach. The method
proposed to fuse the estimator maps by a straightforward average of the estimators
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fidence αxi,n
gives more weight to a weak classifier estimated with a well-matched set

of patches. This adaptive fusion strategy can applied to any patch-based processing
to combine in the same manner multiple feature maps or different modalities.

4.4 Conclusion

The different fusion schemes proposed in the literature assess that each feature
coming from different image sources has the same significance. However, this could
be a limiting factor since the relevance of each feature extracted from different
sources can be unequal.

Furthermore, the relevance of patch-based grading values are related with the
similarities of the patches extracted from the training library. Indeed, a patches
with low similarity do not encode discriminant information about the structural
alterations of subject under analysis brain tissues.

Our method aims to improve patch-based grading estimation by locally adapting
the weight given to each weak-classifier from different images sources. Therefore, we
proposed a novel adaptive fusion scheme that is based on the similarity of the set
of patches extracted with the optimized patch match method (Giraud et al., 2016).
At each voxel a confidence criterion is used to weight the grading value from each
image source. In this thesis, we propose two applications of our adaptive fusion with
a multi-feature and multi-modality approaches.
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5.1 Introduction

In the previous chapter, we described a new adaptive fusion scheme that enables to
efficiently merge several patch-based grading maps.

In this chapter, we propose to apply this method to multi-directional derivative
texture filters. Indeed, to date patch-based methods have been based on intensities
(Coupé et al., 2012b; Tong et al., 2017a) and grey matter probability maps (Liu et al.,
2012; Komlagan et al., 2014). However, it is has been demonstrated that hippocam-
pus texture improves the detection at early stages of AD (Sørensen et al., 2016b).
A VBM method using several textural filter on medial temporal lobe area demon-
strated the reliability of texture information for AD detection (Chincarini et al.,
2011). Moreover, hippocampus texture enables to improve AD detection compared
to hippocampus volume (Sørensen et al., 2016a). This method could potentially
capture MRI signal alterations related to neurofibrillary tangles and beta-amyloid
plaque deposition, although such alterations are not directly detectable with MRI
at current resolution. Besides, a recent study recently showed the efficiency of using
edge detection filters to improve of patch-based segmentation (Giraud et al., 2016).
This result highlights that patch-based grading methods could be improved by es-
timating patterns similarity on derivative image features. Therefore, we propose to
perform patch-based grading on multiple texture maps obtained with Gabor filters.
Gabor filters are designed to detect salient features at specific resolution and direc-
tion. These filters were widely used for texture classification (Manjunath and Ma,
1996; Grigorescu et al., 2002; Riaz et al., 2013). The proposed strategy enables to
better capture texture modifications occurring at the first stages of the pathology
by improving patch comparison.

The first contribution proposed in this chapter is the development of a new
texture-based grading framework to better capture structural alterations caused by
AD. This new framework proposes multi-directional texture grading based on 3D
Gabor filters. Secondly, in order to combine all the grading maps estimated on
texture maps, we apply our innovative adaptive patch-based fusion strategy based
on local confidence criterion. Moreover, contrary to usual grading-based methods
using the average grading values over the considered ROI, we propose a classification
step based on a nonparametric grading values distribution representation to better
discriminate pathologies stages. In our experiments, we first study the optimal
number of Gabor filter directions for AD detection. In addition, we compare different
texture filers such as local variance or entropy. We also compare our new adaptive
fusion method with different fusion schemes. Finally, to highlight the improvement
of classification performances provided by our new framework, we compare our new
method with the state-of-the-art approaches and demonstrate its efficiency.
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5.2 Materials

Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset1. The data used in this study are all the baseline T1-
weighted (T1w) MRI of the ADNI1 phase. This dataset includes AD patients, MCI
and cognitive normal (CN) subjects. The group of MCI is composed of subjects
who have abnormal memory dysfunctions and embed two groups, the first one is
composed with patients having stable MCI (sMCI) and the second one is composed
with patients with progressive MCI (pMCI), such patients converted to AD during
the following 48 months from the baseline (Wolz et al., 2011). The information of
the dataset used in our work is summarized in Table 6.1.

Table 5.1: Description of the dataset used in this work. Data are provided by ADNI.

Characteristic / Group CN sMCI pMCI AD
Number of subjects 226 223 165 186
Ages (years) 76.0± 5.0 75.1± 7.5 74.5± 7.2 75.3± 7.4
Sex (M/F) 117/109 150/73 101/64 98/88
MMSE 29.05± 0.9 27.1± 2.5 26.3± 2.0 22.8± 2.9

5.3 Experiments

In this section, we describe the different steps of the proposed texture-based grading
framework as illustrated in figure 5.1. First, we use multi-directional Gabor filters
to extract texture in different directions. Second, a patch-based grading method is
applied within each texture map computed. Next, all the texture grading maps are
merged with our novel adaptive fusion method. Finally, the final feature considered
is a histogram representation of texture grading values in each hippocampus.

5.3.1 MRI preprocessing

All the T1w images were processed using the volBrain system Manjón and Coupé
(2016)1. This system is based on an advanced pipeline providing automatic seg-
mentation of different brain structures from T1w MRI. However, in this work, only
hippocampus segmentations were used. The preprocessing is based on: (a) a denois-
ing step with an adaptive non-local means filter Manjón et al. (2010), (b) an affine
registration in the MNI space Avants et al. (2011), (c) a correction of the image
inhomogeneities Tustison et al. (2010) and (d) an intensity normalization Manjón
et al. (2014). Afterwards, MRI were segmented in the MNI space using non-local

1http://adni.loni.ucla.edu
1http://volbrain.upv.es
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for a certain size of sample (Sturges, 1926). Finally, to prevent bias introduced by
structure alterations related to aging, all the grading values are age corrected with
a linear regression based on the CN group (Dukart et al., 2011). This correction is
done by removing the test CN subjects into a cross-validation procedure.

5.3.4 Implementation

During our experiments, texture maps were obtained using one scale and 11 different
directions. The texture-based grading maps were estimated using patches of 5×5×5
voxels. The grading step based on the optimized patch match was performed using
K = 50. The required computational time was 3s per texture maps, thus the global
grading step required 15 seconds with our setup. A support vector machine (SVM)
with a linear kernel was used to classify each test subject. We used the Matlab func-
tion provided by the Statistics and Machine Learning Toolbox. In our experiments,
the soft margin parameter C was optimized with a Bayesian optimization method.
The results of each experiment were compared in terms of accuracy (ACC) and area
under the ROC curve (AUC), specificity (SPE), and sensitivity (SEN). The AUC
is estimated with the a posteriori probabilities provided by the SVM classifier. We
carried out several experiments: CN versus AD, CN versus pMCI, AD versus sMCI
and sMCI versus pMCI. A t-test were performed to study the significance of the
results provided by adaptive fusion scheme compared to mean of textural maps and
late fusion into SVM classifier. Finally, our new texture-based grading framework
was validated within a repeated stratified 10-fold cross-validation procedure iterated
50 times for CN versus AD, CN versus pMCI and AD versus sMCI comparisons.
The mean ACC, AUC, SPE, and SEN over these 50 iterations are provided as re-
sults. As demonstrated in (Tong et al., 2017a), training the classifier with CN and
AD enables to discriminate sMCI and pMCI subjects better. Moreover, it enables
to perform classification without cross-validation procedure and to limit bias and
over-fitting problem. Therefore, only one run was performed for sMCI versus pMCI
comparison.

5.4 Results

5.4.1 Optimal number of directions

First, the optimal number of filter directions were investigated. Figure 5.3 shows
the evolution of accuracy related to the number of directions. This experiment
demonstrates that 5 different directions are enough to obtain the best results for
CN versus AD comparison. Indeed, the accuracy does not increase using more
directions. The best accuracy is reached with 5 different directions for sMCI versus
pMCI. A fusion of Gabor filters at different scales was also performed. However,
this experiment shown that filters at the full image resolution is enough to obtain
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Figure 5.3: Evolution of the accuracy and AUC for CN versus AD and sMCI versus pMCI
comparisons according to the number of Gabor filters. Red and green doted line represented
the accuracy and the AUC of intensity-based grading.

the best results. The experiments showed that the optimal set of filters directions
is {(θ = 0;φ = 0), (π/2; π/2), (0; π/2), (π/4; π/4), (π/4;−π/4)}. Therefore, in the
rest of the experiments, comparisons were performed with Gabor filters in these 5
different directions and at the full images resolution.

5.4.2 Comparison grading based on intensity vs. texture

To estimate the improvement provided by texture-based approach, we compare re-
sults obtained with our framework using intensities of the images in the MNI space
(i.e., intensity-based grading) and texture maps. For this comparisons, intensity
and texture-based grading were estimated using exactly the same pipeline involving

Table 5.2: Comparison of grading features based on histogram representation of the prob-
ability distribution of grading values. This table presents a comparison of intensity-based
grading and texture-based grading. These results show that texture-based grading im-
proves AUC of all comparisons. Moreover, these results show that histogram representa-
tion provides similar or better results for all comparisons than using average value (see
Table 5.3). All the results are expressed in percentage of AUC, SEN, and SPE.

Intensity-based grading histo. Texture-based grading histo.
(AUC/SEN/SPE in %) (AUC/SEN/SPE in %)

CN vs. AD 93.5/95.5/82.7 94.6/94.2/86.6
CN vs. pMCI 90.0/81.8/81.4 92.0/92.5/81.2
AD vs. sMCI 81.1/78.5/68.3 82.6/77.6/72.6
sMCI vs. pMCI 74.9/77.6/67.2 76.1/74.9/70.2
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Table 5.3: Comparison of grading features based on mean of the grading values within the
hippocampus structure. This table presents a comparison of intensity-based grading and
texture-based grading. These results show that texture-based grading improves AUC of
all comparisons. All the results are expressed in percentage of AUC, SEN, and SPE.

Intensity-based grading mean Texture-based grading mean
(AUC/SEN/SPE in %) (AUC/SEN/SPE in %)

CN vs. AD 92.6/86.7/83.3 94.7/93.4/87.6
CN vs. pMCI 89.9/78.2/85.4 92.3/91.6/83.0
AD vs. sMCI 80.8/76.2/69.9 82.2/77.6/71.0
sMCI vs. pMCI 73.2/76.4/65.0 75.1/77.0/64.1

adaptive fusion and histogram-based weak classifiers aggregation. Table 5.2 summa-
rizes the results of intensity-based grading and the proposed texture-based grading
obtained with 5 Gabor filters. Results are expressed with area under the curve
(AUC), sensibility (SEN) and specificity (SPE) measures.

As it is shown, texture-based grading improves classification performances in
all experiments using mean or histogram-based grading. Indeed, the comparisons
conducted with histogram-based representation show that texture-based grading
obtains 94.6% of AUC for CN versus AD, 92.0% of AUC for CN versus pMCI,
and 82.6% of AUC for AD versus sMCI comparisons while intensity-based grad-
ing obtains 93.5% of AUC for CN versus AD, 90.0% of AUC for CN versus pMCI,
and 81.1% of AUC for AD versus sMCI comparisons. Finally, with histogram rep-
resentation, texture-based grading obtains 76.1% of AUC for sMCI versus pMCI
comparisons and intensity-based grading obtains 74.9%. As results based on his-
togram representation, the average grading aggregation follows the same tendency.
These results demonstrate that texture maps enable to better capture structural
alterations.

5.4.3 Comparison average grading vs. histogram-based grad-
ing

In this section, we compare our proposed histogram-based weak-classifier aggrega-
tion of texture-based grading values with a straightforward average that is usually
used in patch-based grading framework. As presented in Table 5.3 and 5.2, the
results show that histogram representation of weak classifiers distribution provides
similar or better classifications results for all comparisons. Histogram-based aggrega-
tion obtains 94.6% and 92.0% of AUC while the average obtains 94.7% and 92.3% of
AUC for CN versus AD and CN versus pMCI comparisons, respectively. Moreover,
histogram-based aggregation obtains better results for AD versus sMCI and sMCI
versus pMCI comparisons with 82.6%, and 76.1% of AUC compare to the average
that obtains 82.2% and 75.1% of AUC for the same comparisons, respectively.
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Figure 5.4: Comparison of different fusion schemes: mean of textural-grading maps, adap-
tive fusion of textural-grading maps and fusion into a SVM classifier (i.e., concatenation
of the histogram representing the grading of each texture direction as the input of SVM
method). This comparison shows that adaptive fusion provides best results for both AD
detection and prediction (i.e., CN versus AD and sMCI versus pMCI). P-values were es-
timated with a t-test to compare adaptive fusion with other fusion methods. ∗∗ indicates
that the p value is inferior than 0.001.

5.4.4 Comparison of different fusion schemes

Our fusion scheme was compared with a fusion based on the mean of texture-based
grading maps (i.e., fusion of the different grading maps provided at each direction
with a straightforward average) and a SVM fusion of our texture-based grading
features (i.e., concatenation of the histogram features at the different considered
directions into the SVM classifier). Results are summarized in Figure 5.4. During
the experiments, adaptive fusion obtained an accuracy of 91.3% for CN versus AD
comparison, the fusion using SVM classifier obtained 90.1% and the mean fusion ob-
tained 89.1%. Moreover, for sMCI versus pMCI comparison adaptive fusion obtains
72.2% of accuracy while SVM fusion obtains 68.3% and mean fusion obtains 69.1%.
Thus, adaptive fusion obtained the best results. Indeed, the results obtained by
adaptive fusion is 1.2 percentage point higher than SVM fusion and 2.1 percentage
point higher than mean fusion for CN versus AD comparison and 3.8 percentage
point higher than SVM fusion and 3.1 percentage point higher than mean fusion.
In order to study the significance of the accuracy differences between each fusion
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sMCI versus pMCI comparisons, respectively. Thus, patch-based grading applied
on an optimal set of Gabor filters provides better results than others texture filters
for both considered comparison. Gabor filters improve by 3.2 and 2.1 percent points
of accuracy for CN versus AD and sMCI versus pMCI, respectively, compared to
gradient filter.

5.4.6 Comparison to state-of-the-art methods

In addition, a comparison with state-of-the-art methods are provided in Table 5.4.
The results of this comparison are expressed in accuracy. On one hand, to compare
classification results using the same structure, the proposed framework is compared
with grading methods based on hippocampus (see the upper part of Table 5.4).
Thus, our proposed texture-based grading method is compared with the original
patch-based grading method (Coupé et al., 2012b), a grading based on multiple
instance learning method (Tong et al., 2014), and a patch-based grading based on a
sparse representation using two different registration strategies (Tong et al., 2017a).
This comparison shows that our method provides best results among hippocampus-
based grading methods. It reaches 91.3% of accuracy for CN versus AD, and 72.2%
of accuracy for sMCI versus pMCI comparisons. On the other hand, our proposed
method applied into hippocampus is compared with methods based on a whole brain
analysis using similar dataset (see the lower part of Table 5.4). Indeed, we compare
our texture-based grading approach applied on hippocampus with a patch-based
grading method based on a sparse representation applied on the whole brain (Tong
et al., 2017a), a sparse ensemble grading method that analyzes the whole brain
(Liu et al., 2012), and a Deep Learning (DL) method based a whole brain analysis
(Suk et al., 2017). The results show that our method obtains the best accuracy for
AD versus CN. This result is similar to classification results obtained with a DL
and sparse ensemble grading method (Suk et al., 2017; Liu et al., 2012). However,
methods based on a whole brain analysis and using non linear registration obtain
more accurate classification results for sMCI versus pMCI.

5.5 Discussion

In this work, to improve patch-based grading framework, we proposed to capture
texture information with a bank of Gabor filters. Our experiments showed that
using more than 5 directions does not improve the results while increasing compu-
tational time (see Figure 5.3). Moreover, we also investigated a multi-scale texture
approach. However, the experiments carried out showed that only one scale, at the
full image resolution, is enough and the use of multi-scale texture did not improve
classification performances. Therefore, we propose a multi-directional texture-based
grading framework based on 1 scale and 5 directions.

A new grading values aggregation method based on histogram was also proposed.
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Table 5.4: Comparison with state-of-the-art methods, all the results are expressed in ac-
curacy. The upper part of this table presents results of results of methods applied on
the hippocampus structure. Texture-based grading improves CN versus AD classification
by 2.3 percent points and sMCI versus pMCI classification by 1.2 percent points of ac-
curacy compared to grading approaches based on the same hippocampus structure. The
lower part presents results of methods that propose a whole brain analysis. Compared
to these approaches, our method obtains similar results than advanced methods based on
whole brain analysis for CN versus AD classification. However, such methods obtain better
performances for sMCI versus pMCI classification. In this table, we provide the type of
registration (Reg.) involved in the methods and the type of features (Feat.).

Methods Registration Feature CN vs. AD sMCI vs. pMCI
(ACC in %) (ACC in %)

Hippocampus
(Coupé et al., 2012b) Affine Intensity 88.0 71.0
(Tong et al., 2014) Affine Intensity 89.0 70.0
(Tong et al., 2017a) Affine Intensity − 66.0
(Tong et al., 2017a) NL Intensity − 69.0
Proposed Method Affine Texture 91.3 72.2
Whole Brain
(Tong et al., 2017a) Affine Intensity − 66.7
(Tong et al., 2017a) NL Intensity − 75.0
(Liu et al., 2012) NL GM 90.8 −
(Suk et al., 2017) NL GM 91.0 74.8

GM = Grey matter
NL = Non linear

During our experiments, histogram representation of grading values distribution did
not provide improvement for CN versus AD comparison compared to use a simple
average value. That could be explained by the fact that CN and AD distributions
are well separated and a parametric representation of their distributions is enough
to discriminate these two groups. However, for sMCI versus pMCI case, the two
distributions are less separable and histogram representation lead to better classifi-
cation performances with in average a gain of 1 percentage point of AUC compared
to a simple average value.

In order to fuse efficiently the different texture-based grading maps, we proposed
a novel patch-based grading fusion scheme. This method is based on a confidence
value estimated at each voxel. The comparison with different fusion schemes demon-
strated the efficiency of our method. Indeed, compared to a straight average of the
texture-based grading maps and a SVM fusion of the final histogram features with
the classifier, our proposed method obtained best accuracy for AD detection and
prediction. Moreover, the obtained improvement was significant. This improvement
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can be explained by the fact that our proposed adaptive fusion method weights the
grading values of each texture map according to their relevances while the fusion
into SVM classifier and the average of texture maps considers each grading value as
having the same importance.

Our work hypothesis is also that directional texture filters enable to improve
patch comparison, and thus increase AD detection and prediction accuracy. To
validate this hypothesis, our novel texture-based grading using an optimal set of
Gabor filters were compared with others texture filters as done for segmentation in
(Wachinger et al., 2017) (see Figure 5.5). STD, entropy, gradient and Gabor filters
were compared for AD detection and prediction. This experiment showed that STD
and entropy does not enable to improve patch comparison compare to intensity. The
limitation of these filters might be to perform feature estimation within a window.
Thus, only gradient and Gabor filters improve classification performances for AD
detection and prediction. Moreover, Gabor filters obtain best results for both com-
parisons. This improvement is related to the use of additional texture directions
compared to the three texture directions provided by gradient filter.

Table 5.4 summarizes the comparison of our proposed method with other grading
methods proposed in the literature. These results demonstrate that Gabor filters
enable to better capture structural alterations than method based on intensity or
grey matter data. Indeed, texture maps provide enhance information leading to a
better grading process. Thus, our method outperforms other grading methods us-
ing intensity when applied on the same structure (Coupé et al., 2012b; Tong et al.,
2014, 2017a). At the lower part of Table 5.4, we compare the performance of our
hippocampus-based grading method with methods using the whole brain. First, for
AD versus CN, the proposed method obtained similar or better results than methods
applied over the whole brain. It is important to note that these methods require non
linear registration (Liu et al., 2012; Tong et al., 2017a; Suk et al., 2017) while our
method only requires affine registration and proposes a fast grading step. Second,
for sMCI versus pMCI, our method obtained better results than all the methods
involving a simple affine registration, including whole brain method proposed in
(Tong et al., 2017a). On the other hand, the best results for sMCI versus pMCI are
produced by whole brain grading (Tong et al., 2017a) using non linear registration.
The improvement when using non linear registration is observed for hippocampus-
based and whole brain methods (Tong et al., 2017a). However, this improvement is
obtained at the expense of using non linear registration, which is subject to failure
and requires high computational time. Our method also demonstrated competitive
performances for AD versus CN classification compared to advanced DL methods
using whole brain and non linear registration (Suk et al., 2017). Finally, this com-
parison shows that patch-based grading methods (Tong et al., 2017a) obtain similar
or better results than recent deep learning methods (Suk et al., 2017) when applied
over the entire brain after non linear registration.
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5.6 Conclusion

In this chapter, we have proposed a new texture-based grading framework to better
capture structural alterations caused by AD. Our method combines textural grading
maps estimated on texture maps with our new adaptive fusion scheme. Moreover,
we also have proposed an histogram-based weak classifiers aggregation approach to
better discriminate early stages of AD. We have studied the optimal set of texture
directions. Experiments conducted in this work demonstrated the relevance of using
textural information in combination with with our novel locally adaptive fusion
method. Finally, we have demonstrated the competitive performances of our new
texture-based grading framework compared to several state-of-the-art approaches.
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6.1 Introduction

To date, patch-based grading has been applied on structural MRI, using intensity
feature (Coupé et al., 2012b; Tong et al., 2017a), grey matter probability maps (Liu
et al., 2012; Komlagan et al., 2014), and, as we proposed in the previous chapter,
using texture filters (see chapter 5).

However, although structural MRI is a valuable imaging technique to measure
global structural modifications, such modality is not able to capture microstruc-
tural degradation. Moreover, the microstructural modifications caused by AD are
considered to occur before the atrophy measured by structural MRI. Therefore, dif-
fusion MRI (d-MRI) appears as a potential candidate to detect the earliest sign of
AD. Several diffusion tensor imaging (DTI) studies proposed automatic methods
to detect modifications of diffusion parameters into the whole white matter using
machine learning (O’Dwyer et al., 2012; Dyrba et al., 2013, 2015). Others studies
showed modifications of diffusion parameters for AD patients into specific white
matter structures such as corpus callosum (Nir et al., 2013; Wang et al., 2015),
fornix (Liu et al., 2011), cingulum (Nir et al., 2013) and also in grey matter tissue
such as hippocampus (Rose et al., 2008). More advanced d-MRI studies using brain
connectivity and fiber tracking have been proposed to extract features describing
axonal fibers alterations (Liu et al., 2011; Wee et al., 2012; Prasad et al., 2015).
Finally, it has been shown that hippocampal mean diffusivity (MD) is correlated
to pathology progression and thus could be used as an efficient biomarker of AD
(Fellgiebel and Yakushev, 2011). Moreover, it was demonstrated that MD increases
with the development of AD in the grey matter (Kantarci et al., 2005; Müller et
al., 2005; Fellgiebel et al., 2006). Some methods proposed to fuse d-MRI and s-
MRI biomarkers to use the complementarity of these two MRI modalities (Cui et
al., 2012; Li et al., 2014). These studies showed the complementarity of s-MRI and
d-MRI to capture early alteration led by AD.

Therefore, in this chapter, we propose to extent our patch-based framework to
DTI grading and multimodal grading. First, we will show that patch-based features
applied on DTI demonstrates competitive performances to classify the early stages of
AD. Second, we propose to study the alterations of hippocampus with a multimodal
patch-based grading framework based on the adaptive fusion scheme described in
the Chapter 4. The conducted experiments show that patch-based grading method
based on d-MRI enables to better capture alterations at the first stage of AD but
does not improve results for late detection of AD. However, the fusion of s-MRI
and d-MRI provides hippocampus biomarker obtaining best performances for AD
detection and prediction.
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6.2 Materials

Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset1. This dataset includes AD patients, MCI and control
normal (CN) subjects. The group of MCI is composed of subjects who have abnor-
mal memory dysfunctions. In this work we used data from the ADNI2 campaign
that proposes eMCI and lMCI stages. The eMCI and lMCI subgroups were obtained
with the Wechsler Scale-Revised Logistical Memory I and II tests in accordance with
the education levels of each subject. 2. ADNI2 provides T1-weighted (T1w) MRI
and DTI scans for 54 CN, 79 eMCI, 39 lMCI and 47 AD subjects. Only patients
whose have T1w and DTI were selected in our work. Hence, in this work we used 52
CN, 99 MCI composed of 65 eMCI, 34 lMCI and 38 AD instead of the whole initial
ADNI2 dataset. All MRI data and clinical status were collected at the baseline. The
list of subjects involved in our experiments is available online 3. Table 6.1 shows
the distribution of the data for each group. The s-MRI and d-MRI scans used for
all considered subjects in this study were acquired with the same protocol 4. T1w
MRI acquisition protocol had been done with the 3D accelerated sagittal IR-SPGR,
according to the ADNI protocol (Jack et al., 2008). The d-MRI were composed of 46
separate angles, 5 T2-weighted images with no diffusion sensitization (b0 images)
and 41 directions (b=1000s/mm2). The d-MRI protocol was chosen to optimize
the signal-to-noise ratio in a fixed scan time (Jahanshad et al., 2010). The native
resolution of s-MRI and d-MRI was set to 1mm3 and 2mm3, respectively.

6.3 Experiments

6.3.1 MRI processing

As described in the chapter 5, T1w images were processed using the volBrain sys-
tem (Manjón and Coupé, 2016) 5. This system is based on an advanced pipeline
providing automatic segmentation of different brain structures from T1w MRI. The
preprocessing is based on: (a) a denoising step with an adaptive non-local mean
filter (Manjón et al., 2010), (b) an affine registration in the MNI space (Avants et
al., 2011), (c) a correction of the image inhomogeneities (Tustison et al., 2010) and
(d) an intensity normalization.

1http://adni.loni.ucla.edu
2http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.

pdf
3http://www.labri.fr/~khett/dataset_scirep18.csv
4https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf
5http://volbrain.upv.es
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Table 6.1: Description of the dataset used in this work. Data are provided by ADNI.
MMSE:Mini-Mental State Examination; CDR-SB: Clinical Dementia Rating-Sum of
Boxes; RAVLT:Rey’s Auditory Verbal Learning Test; FAQ: Functional Activity Ques-
tionnaire; ADAS(11/13): Alzheimer’s Disease Assessment Scale.

CN eMCI lMCI AD P value
Number 52 65 34 38
Age (years) 72.6 ± 5.9 73.0 ± 7.7 73.5 ± 6.6 73.8 ± 8.7 p = 0.80a

Gender (F/M) 29/23 39/26 21/13 20/18 χ2=3.12, p = 0.37b

MMSE 28.9 ± 1.2 28.2 ± 1.5 27.3 ± 1.8 23.4 ± 1.7 p < 0.01a∗

CDR-SB 0.0 ± 0.1 1.2 ± 0.6 1.7 ± 0.8 4.6 ± 1.4 p < 0.01a∗

RAVLT 45.4 ± 9.7 36.5 ± 10.2 30.7 ± 8.9 22.6 ± 7.0 p < 0.01a∗

FAQ 0.2 ± 0.9 2.3 ± 3.7 4.3 ± 4.8 14.6 ± 6.6 p < 0.01a∗

ADAS11 5.2 ± 3.0 8.1 ± 3.6 12.5 ± 4.9 20.2 ± 7.6 p < 0.01a∗

ADAS13 8.4 ± 4.4 13.3 ± 5.4 20.2 ± 6.7 30.0 ± 9.0 p < 0.01a∗

∗ Significant at p < 0.05.
a Chi-square test (df = 3).
b Kruskal–Wallis test (df = 3).

6.3.2 DTI processing

The preprocessing of the diffusion weighted images is based on: (a) a denoising step
based on the LPCA filter (Manjón et al., 2013) and (b) a correction of the head
motion using an affine registration. Afterwards, we performed several steps to first
obtain the mapping between the DWI native space and the MNI space and then to
estimate the MD in the MNI space.

1) Estimation of the mapping between DWI native space and MNI space: First, a
diffusion tensor model (Basser et al., 1994) estimated at each voxel using Dipy
library (Garyfallidis et al., 2014). The obtained MD is first linearly registered
to the CSF map obtained from the T1w in the MNI space. Then, the MD
(in the MNI space) is non-linearly registered to the CSF map (in the MNI
space) to compensate for echo-planar imaging (EPI) distortions (Avants et al.,
2011). Afterwards, the affine transformation and the non-linear deformations
are concatenated into a single transformation to obtain the final mapping
(including EPI distortion correction) from the DWI native space to the MNI
space. It has to be noted that the MD map estimated in the DWI native space
is only used to estimate the mapping between both spaces.

2) Estimation of the MD in the MNI space: First, the deformation field estimated
at the previous step is used to registered the b0 and each DWI direction from
their native space into the MNI space using b-spline interpolations (Avants et
al., 2011). This is done to limit interpolation artifacts and to correct partial
volume effect (PVE). Indeed, it has been shown that up-sampling each DWI
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direction individually using interpolation before estimating DTI parameters
enables to greatly reduce PVE present in DTI (Dyrby et al., 2014). Thus,
the final diffusion tensor model is estimated in the MNI space using all the
non-linearly registered DWI and b0.

To analyze microstructural modifications, the MD is estimated within the hippocam-
pus structure with the segmentation described in the previous section. MD is defined
as λ1+λ2+λ3

3
where λ1, λ2, λ3 are the three eigenvalues of the fitted tensor.

Finally, a quality control was conducted to exclude data presenting miss-segmentation
or miss-registration after MRI and DTI preprocessing step. Thus, 10 CN subjects,
18 eMCI, 5 lMCI, and 9 AD patients has been excluded from the initial considered
ADNI2 dataset (see the dataset used in our experiments Table 6.1).

6.3.3 Features estimation

Features were estimated over the right and left hippocampus masks. To reduce
the inter-individual variability, all volumes are normalized by the total intra-cranial
volume (Whitwell et al., 2001). Afterwards, we aggregate local weak classifiers of
the grading map into a single feature for both hippocampus (i.e., right and left) by
averaging them. Therefore, patch-based grading features are computed by an un-
weighted vote of the weak classifiers using the segmentation masks (see Figure 6.1).
Finally, to prevent the bias introduced as the structure alterations due to aging, all
the features (i.e., volume, mean of MD and MPBG) are age corrected with a linear
regression based on the CN group (Dukart et al., 2011).

6.3.4 Implementation

To find the most similar patches in the training library, we use the OPAL method
(Giraud et al., 2016). OPAL is a fast approximate nearest neighbor patch search
technique. This method enables to process each modality in about 4 seconds on a
standard computer. The training library is equally composed of 37 images for both
CN and AD subjects, leading to |T | = 76. The number of patches extracted from
each the training library is K = 160 (i.e., 80 from CN subjects and 80 from AD
patients) and the patch size is 5×5×5 voxels. Furthermore, we used zero normalized
sum of squared differences for T1w to compute the L2 norm (see Equation (3.2)). On
the other hand, d-MRI is a quantitative imaging technique. Therefore, to preserve
the quantitative information, a straight sum of squared differences is used for MD
in Equation (3.2),

6.3.5 Validation

To evaluate the efficiency of each considered biomarker to detect AD alterations,
CN group is compared to AD patients group. In addition, to discriminate the
impairment severity of MCI group, eMCI versus lMCI classification is conducted.
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The classification step is performed with a linear discriminant analysis (LDA) within
a repeated stratified 5-fold cross-validation iterated 200 times. Mean area under the
curve (AUC) and mean accuracy (ACC) are computed to compare performance for
each biomarker over the 200 iterations.

Figure 6.1: Proposed multimodal patch-based grading framework. At left, the input data:
T1w images registered into the MNI space and MD maps registered on the T1w images. At
the middle: the corresponding coronal view of a PBG and MPBG maps estimated on T1w
and MD. At right, the considered hippocampal biomarkers for all subjects under study.

6.4 Results

In this section, the results are presented in three parts. In the first part, we compare
the different approach applied within the entire hippocampus structure to evaluate
the performance of our new MPBG compared to usual biomarkers such as volume
and average MD. Afterward, we compare the results of our proposed multimodal
biomarker with state-of-the-art methods based on d-MRI to show the competitive
performance of our approach. Finally, in a last part, we study the relationship of
our multimodal biomarker with different cognitive tests.
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MD obtain 59.4% and 55.6% of AUC, respectively. Experiments demonstrate that
the hippocampus the volume obtains better classification results than the average
of MD for all comparison, especially for CN versus AD. Second, PBG biomarkers
applied with T1w and MD were compared. The results showed that T1w PBG
provides better results than MD PBG with 92.6% of AUC for CN versus AD clas-
sification. However, for eMCI versus lMCI classification MD grading provides the
best results with 69.5% of AUC. MPBG methods combining both modalities reaches
the best results for CN versus AD and eMCI versus lMCI with 92.1% and 69.5% of
AUC, respectively. Finally, the proposed MPBG biomarker provides results similar
to the best modalities for all considered comparisons. Compared to volume, MPBG
improves CN versus AD comparison result by 5.5% of AUC and by over 10% of AUC
for eMCI versus lMCI comparison. Thus, MBPG biomarker has a good capability
to capture modifications caused by AD at different severity stages (see Figure 7.3).

6.4.2 Relationship with cognitive scores

To investigate relationships between cognitive scores and MPBG values, we per-
formed a generalized linear analysis with the following model: MPBG = β0 +
β1.ages+β2.sex+β3.MMSE+β4.RAV LT+β5.FAQ+β6.CDRSB+β7.ADAS11+
β8.ADAS13. We found significant relationship of hippocampal MPBG with sex
(p<0.01), MMSE (p<0.05) and ADAS 13 (p<0.01).

Table 6.3: This table presents the p-values of our multimodal grading biomarker with some
meta-data (i.e., sex, age, and cognitive tests). ∗ and † indicate a p value inferior than 0.05
and 0.01, respectively.

Sexe Age MMSE RAVLT FAQ CDRSB ADAS11 ADAS13
Hippocampus 0.002† 0.638 0.030∗ 0.134 0.223 0.135 0.050∗ 0.007†

6.4.3 Comparison with state-of-the-art methods

To evaluate the performance of the proposed MPBG, we compared it with state-
of-the-art multimodal methods using d-MRI. To this end, we used the ACC val-
ues published by the authors. Table 6.4 shows the comparison of our proposed
biomarker within the hippocampus providing the best results with state-of-the-arts
methods using similar dataset based on ADNI2. We compared these biomarkers with
a method using features based on tractography (Nir et al., 2015), a method based
on a connectivity network of the different brain structures (Prasad et al., 2015), and
a voxel-based method that analyzes alterations of white matter (Maggipinto et al.,
2017). The results of comparison show that MPBG over whole hippocampus ob-
tains the best score for AD versus CN with 88.1% of accuracy while the best result is
achieved by a voxel-based method with a feature selection (Maggipinto et al., 2017)
that obtained 87.0% on similar ADNI2 dataset. To the best of our knowledge, the
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Table 6.4: Comparison of our proposed MPBG biomarkers with state-of-the-arts methods based on s-MRI and d-MRI using a similar
ADNI2 dataset. All results are expressed in percentage of accuracy.

Method Subjects Feature Classifier Classification ACC
CN eMCI lMCI AD CN/AD eMCI/lMCI

(Nir et al., 2015) 44 74 39 23 Tractography SVM 84.9% n/a
(Prasad et al., 2015) 50 74 38 38 Connectivity network SVM 78.2% 63.4%
(Zhan et al., 2015) n/a 73 39 n/a Connectivity network SLG n/a 65.0%
(Maggipinto et al., 2017) 50 22 18 50 Voxel-based RF 87.0% n/a
(La Rocca et al., 2018) 52 85 38 47 Connectivity network RF 83.0% n/a
MPBG hippocampus 62 65 34 38 Patch-based LDA 88.1% 68.8%

LDA = Linear Discriminant Analysis
SLG = Sparse Logistic Regression
SVM = Support Vector Machine
RF = Random Forest
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6.5. Discussion

only works providing eMCI and lMCI comparison using d-MRI from similar ADNI2
dataset are based on a connectivity network and obtained 63.4% and 65.0% (Prasad
et al., 2015; Zhan et al., 2015). The difference between the two approaches mainly
comes from the nature of the final considered features and the classification step.
Indeed Prasad et al. (2015) uses network measures proposed by Rubinov and Sporns
(2010) as input of a linear SVM method, while Zhan et al. (2015) based the decision
on the combination of a single value decomposition and a sparse logistic regression
(SLR) using the raw connectivity network features. These comparisons demonstrate
the relevance of MPBG biomarkers for AD detection and prediction. Indeed, our
method provides similar results than the best methods with similar dataset for CN
versus AD classification and provides the best results for eMCI versus lMCI classifi-
cation. Moreover, the proposed MPBG within the hippocampus obtains competitive
performances for eMCI versus lMCI classification with an accuracy of 68.8%, that
increases by almost 4 points of percentage compared to connectivity network-based
methods.

6.5 Discussion

The major contribution of the work presented in this chapter is a multimodal patch-
based grading method applied to the hippocampus for the early detection of AD.
Since PBG method applied into s-MRI and d-MRI have obtained best results re-
spectively for AD detection and prediction, our adaptive fusion scheme enables to
obtained best results by merging efficiently alteration information from both modal-
ities.

We compared the performance of different methods applied to the whole hip-
pocampus (see Table 6.2). The experiments showed that volume and mean of MD
within a structure as the hippocampus does not provides discriminant biomarkers to
detect early stages of AD. The MPBG method based on s-MRI and d-MRI obtains
best results compared to the volume and the average of MD. Moreover, compared
to recent methods proposed for AD detection (Arbabshirani et al., 2017) (see Ta-
ble 6.4), the proposed MPBG demonstrates state-of-the-art performances for AD
detection and prediction.

6.6 Conclusion

In this chapter we proposed a new multimodal approach combining a patch-based
grading method and our new adaptive fusion scheme. This multimodal grading
method based on s-MRI and d-MRI provides a robust hippocampal biomarker.

Indeed, the results obtained in this chapter seem confirm that the combination of
structural and microstructural information enables to better track the progression of
AD. However, this approach does not succeed to significantly improve classification
performances compare to the use of each modality separately. This might come
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from that the hippocampus is a heterogeneous structure. A better modeling of
the alterations occurring into the hippocampus, at a finner grained analysis of the
hippocampus structure could enable to improve the performance of hippocampal
biomarkers as we will investigate it in the next chapter.
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7. Hippocampal subfields grading

7.1 Introduction

In the previous chapters, to better capture modifications that occur during the early
stage of AD, we proposed two new PBG approaches. While the first one is based
on texture filters to enhance informative signal, the second embeds a multimodal
analysis based on s-MRI and d-MRI. This second method aims to capture both
structural and microstructural information into the same framework. Moreover, we
have focused on the hippocampus alterations using a global analysis of this structure.
This has been motivated by the fact that hippocampus is one of the brain structures
that suffers from the most significant atrophy at the early stages of AD.

Indeed, as shown in the previous chapters, the hippocampus has been one of
the most studied structures and is involved in numerous computer-aided diagnosis
systems to detect AD. However, this structure is complex and not homogeneous.
Hippocampus is subdivided into several subfields, each one having specific charac-
teristics. The terminology differs across segmentation protocols (Yushkevich et al.,
2015) but the most recognized definition (Lorente de Nó, 1934) mainly divides hip-
pocampus into the subiculum, the cornu ammonis (CA1/2/3/4), and the dentrate
gyrus (DG). The CA1 subfield represents the biggest area in the hippocampus. It is
composed by different layers called the stratum radiatum (SR), the stratum lacuno-
sum (SL), the stratum molecular (SM), and the stratum pyramidale (SP). Further-
more, hippocampal subfields are not equally impacted by AD (Braak and Braak,
1997; Braak et al., 2006; Apostolova et al., 2006; La Joie et al., 2013; Kerchner et al.,
2010, 2012; Trujillo-Estrada et al., 2014). Indeed, several MRI studies demonstrated
that subfields are impacted differently according to AD stages. Postmortem, and
in vivo imaging studies showed that CA1SR-L-M are the subfields impacted with
the greatest atrophy in advanced AD (Apostolova et al., 2006; La Joie et al., 2013;
Kerchner et al., 2012). Recently, it has been shown that subiculum is the earliest
affected hippocampal region (Li et al., 2013; Trujillo-Estrada et al., 2014). These
studies indicate that a subfield analysis of hippocampus alterations at a finer scale
could provide better tool for AD detection and prediction. Finally, a recent study
combining volumetric measurements and mean diffusivity of hippocampus subfields
demonstrated that CA1 and subiculum are the most impacted in late AD stage (Li
et al., 2013).

All these elements in addition to the results obtained in the previous chapter
indicate that a multimodal analysis of hippocampal subfields using an advanced im-
age analysis framework could provide valuable tools to improve AD detection and
prediction. Consequently, in this chapter, we propose to study hippocampal sub-
fields using s-MRI and d-MRI modalities. We study the efficiency of hippocampal
subfields to improve AD detection and prediction with volume, MD and our mul-
timodal patch-based grading method. Our results demonstrate that the study of
hippocampus at finner scale improves AD prediction. Indeed, the experiments show
that biomarkers based on whole hippocampus obtain best results for AD detection
but biomarkers based on subiculum obtain best results for AD prediction.
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7. Hippocampal subfields grading

7.2.2 DTI processing

The pipeline described in previous chapter has been used to prepare DTI scans (see
chapter 6 for further details). The preprocessing of the diffusion weighted images is
based on: (a) a denoising with a LPCA filter (Manjón et al., 2013), (b) a correction
of the head motion using an affine registration and (c) an affine and a non-rigid
registration to the T1w MRI in the MNI space (Avants et al., 2011). Afterwards, a
diffusion tensor model (Basser et al., 1994) is fitted at each voxel using Dipy library
(Garyfallidis et al., 2014). To analyze microstructural modifications, the MD is
estimated within each hippocampal subfield and the whole hippocampus structure
with the segmentation described in the previous section.

Figure 7.2: Proposed multimodal patch-based grading framework. At left, the input data:
T1w images registered into the MNI space and MD maps registered on the T1w images.
Data represented in this figure belongs to a CN subject. At the middle: a coronal view
of hippocampal subfields segmentation on T1w, and the corresponding coronal view of a
MPBG map estimated on T1w and MD. At right, the considered subfield biomarkers for
all subjects under study. From top to bottom, the features are the volumes, the MPBG
values, and the average of MD.
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7.3 Experiments

7.3.1 Features estimation

As it has been shown in the previous chapter, the features were estimated in each
hippocampal subfield and over the whole hippocampus as the union of all hippocam-
pal subfields masks. All volumes are normalized by the total intra-cranial volume
(Whitwell et al., 2001). Afterwards, we aggregate local weak classifiers of the grading
map into a single feature for each considered structure (i.e., hippocampal subfields
and whole hippocampus). Therefore, patch-based grading features are computed
by an unweighted vote of the weak classifiers using the segmentation masks (see
Figure 7.2). Finally, to prevent the bias introduced as the structure alterations due
to aging, all the features (i.e., volume, mean of MD and MPBG) are age corrected
with a linear regression based on the CN group (Dukart et al., 2011).

7.3.2 Implementation

To find the most similar patches in the training library, we use the OPAL method
Giraud et al. (2016). OPAL is a fast approximate nearest neighbor patch search
technique. This method enables to process each modality in about 4 seconds on a
standard computer. The training library is equally composed of 37 images for both
CN and AD subjects, leading to |T | = 76. The number of patches extracted from
each the training library is K = 160 (i.e., 80 from CN subjects and 80 from AD
patients) and the patch size is 5×5×5 voxels. Furthermore, we used zero normalized
sum of squared differences for T1w to compute the L2 norm (see Equation (3.2)). On
the other hand, d-MRI is a quantitative imaging technique. Therefore, to preserve
the quantitative information, a straight sum of squared differences is used for MD
in Equation (3.2),

7.3.3 Validation

To evaluate the efficiency of each considered biomarker to detect AD alterations,
CN group is compared to AD patients group. In addition, to discriminate the
impairment severity of MCI group, eMCI versus lMCI classification is conducted.
The classification step is performed with a linear discriminant analysis (LDA) within
a repeated stratified 5-fold cross-validation iterated 200 times. Mean area under the
curve (AUC) and mean accuracy (ACC) are computed to compare performance for
each biomarker over the 200 iterations.

7.3.4 Statistical analyses

Statistical tests have been conducted with an analysis of variances (ANOVA) proce-
dure to determine the significance of biomarkers changes, related to the alterations
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caused by AD. The results of these tests have been corrected for multiple compar-
isons with the Bonferroni’s method. Significant changes have been tested within six
comparisons (i.e., CN-AD, CN-eMCI, CN-lMCI, eMCI-lMCI, eMCI-AD, and lMCI-
AD). These comparisons have been achieved into each HIPP regions and with the
three considered biomarkers (i.e., volume, average of MD, and our newly proposed
MPBG).

Figure 7.3: Results obtained for different severities of cognitive impairments. From top to
bottom slices on the coronal plane of the segmentation maps and the fusion of T1w and
MD patch-based grading with the proposed multimodal patch-based grading method. The
blue and the red colors represent the healthy and altered tissues, respectively.

7.4 Results

In this section, the results are presented in two parts. First, we compare the perfor-
mances in terms of AUC of each considered biomarkers within hippocampal subfields
to investigate the potential of hippocampal subfields analysis to improve result of
AD detection and prediction. Finally, in a last part, we compare the results of
our proposed multimodal biomarker with state-of-the-art methods based on d-MRI
to show the competitive performance of our approach. In addition, we provide a
comparison with our texture-based method applied in different hippocampus region.

7.4.1 Hippocampal subfield comparisons

Figure 7.4 shows the distribution of volumes (A), average of MD (B) and MPBG (C)
for each hippocampal subfield at each different AD stages. For each comparison a
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p-value was estimated with a multi-comparison test (Hochberg and Tamhane, 1987).
We can note that for all hippocampal subfields, alterations caused by the disease
are related to volume and MPBG decreases while MD increase. Subiculum subfield
presents the most significant differences for CN versus lMCI using volume and MD,
for AD versus lMCI using MD, and for eMCI versus lMCI using MPBG. Indeed, it is
the only subfield providing a p-value inferior than 0.05 for the comparison CN versus
eMCI using volume, a p-value inferior than 0.01 for lMCI versus AD using MD and
a p-value inferior to 0.001 to eMCI versus lMCI using MPBG, which are the most
challenging comparisons. The distribution of MPBG shows a better discrimination
between each group for all hippocampal subfields. Indeed, MPBG applied within
CA1SP, and CA1SR-L-M provides p-values inferior than 0.01 for eMCI versus lMCI.
Moreover, MPBG applied within the subiculum provides p-value inferior than 0.001
for the same comparison. Thus, MPBG enables to perform a detection of AD with
each subfield with an advantage for subiculum for the comparison of eMCI versus
lMCI .

To estimate the efficiency of the considered biomarkers for AD detection, we
also performed a classification experiment. Figures 7.5 shows the results of two
comparisons, CN versus AD (part noted A in the figure) and eMCI versus lMCI
(part noted B). First, for AD diagnosis (i.e., CN versus AD classification), the
subfield providing the most discriminant volume is the CA1S-R-L-M with an AUC
of 86.0%. Moreover, the most discriminant MD biomarker is given by the subiculum
with an AUC of 88.1%. For this comparison, MD of subiculum is the only biomarker
performing better results than whole hippocampus. The best results obtained by
MPBG feature is provided by the CA1SP with an AUC of 92.1% followed by CA1S-
R-L-M and subiculum. Second, for eMCI versus lMCI classification, the subiculum
provides the best results for each considered feature. Indeed, subiculum obtained
an AUC of 66.1% for the volume, 62.4% for the average of MD, and 71.8% for
MPBG. Moreover, subiculum provided better results than whole hippocampus for
each feature. Thus, the experiments conducted with three different biomarkers
showed that the use of hippocampal subfields, especially the subiculum, enables to
obtain better results for AD prediction than the whole hippocampal analysis.

7.4.2 Relationship with cognitive scores

As it has been conducted in the previous chapter,to investigate relationships between
cognitive scores and MPBG values, we performed a generalized linear analysis with
the following model: MPBG = β0 + β1.ages+ β2.sex+ β3.MMSE + β4.RAV LT +
β5.FAQ+ β6.CDRSB + β7.ADAS11+ β8.ADAS13. We found significant relation-
ship of hippocampal MPBG with sex (p<0.01), MMSE (p<0.05) and ADAS 13
(p<0.01). This results on MMSE and ADAS scores is valid for all subfields of the
hippocampus. We found no specific model for a given subfield, all presented a similar
pattern. These results are in line with relationships obtained between hippocampus
subfields volumes and MMSE and ADAS (Khan et al., 2015).
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Table 7.1: This table presents the p values representing the relationship of our multimodal
grading hippocampal biomarkers with some meta-data (i.e., sex, age, and cognitive tests).
∗ and † indicate a p value inferior than 0.05 and 0.01, respectively.

Sex Age MMSE RAVLT FAQ CDRSB ADAS11 ADAS13
Hippocampus 0.002† 0.638 0.030∗ 0.134 0.223 0.135 0.050∗ 0.007†

Subiculum 0.107 0.188 0.009† 0.133 0.084 0.311 0.031∗ 0.003†

CA1-SP 0.001† 0.932 0.016∗ 0.081 0.269 0.149 0.109 0.016∗

CA1-SRLM 0.003† 0.675 0.032∗ 0.174 0.222 0.207 0.035∗ 0.006†

CA2/3 0.000† 0.669 0.173 0.143 0.417 0.098 0.070 0.009∗

CA4/DG 0.003† 0.485 0.065 0.241 0.250 0.102 0.047∗ 0.010†

7.4.3 Comparison with state-of-the-art methods

To evaluate the performance of the proposed MPBG applied on HC subfields, we
compared it with state-of-the-art multimodal methods using d-MRI. To this end,
we used the ACC values published by the authors. Table 7.2 shows the comparison
of our proposed biomarkers within the hippocampal area providing the best results
(i.e. the whole hippocampus and the subiculum) with the state-of-the-arts methods
using similar dataset based on ADNI2.

We compare our novel hippocampal subfield biomarker with the the method de-
scribed in the previous chapter. These comparisons demonstrate the relevance of
MPBG biomarkers for AD detection and prediction. Indeed, our method provides
similar results than the best methods with similar dataset for CN versus AD classifi-
cation and provides the best results for eMCI versus lMCI classification. Moreover,
the proposed MPBG method based on subiculum improves the performance for
eMCI versus lMCI classification with an accuracy of 70.8%, that increases by 2%
the accuracy based the whole hippocampus and over 6% compared to a connectivity
network based method.

In addition, we conducted a comparison of MPBG applied within the most dis-
criminant area for each comparison (i.e., whole hippocampus and subiculum) with
the texture-based grading proposed in the chapter 5 (see Table 7.3). These compar-
isons show that MPBG biomarkers provided better results than the texture-based
grading for eMCI versus. lMCI comparisons. However, texture-based grading ob-
tains the best results for CN versus AD comparison.

7.5 Discussion

7.5.1 Hippocampal subfield biomarkers

The main contribution of this study is the multimodal analysis of hippocampal
subfields. Indeed, most of the proposed biomarkers based on hippocampus focused
on the whole structure or capture structural atrophy of hippocampal subfields with
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Table 7.2: Comparison of our proposed MPBG biomarkers with state-of-the-arts methods based on s-MRI and d-MRI using a similar
ADNI2 dataset. All results are expressed in percentage of accuracy.

Method Subjects Feature Classifier Classification ACC
CN eMCI lMCI AD CN/AD eMCI/lMCI

(Nir et al., 2015) 44 74 39 23 Tractography SVM 84.9% n/a
(Prasad et al., 2015) 50 74 38 38 Connectivity network SVM 78.2% 63.4%
(Zhan et al., 2015) n/a 73 39 n/a Connectivity network SLG n/a 65.0%
(Maggipinto et al., 2017) 50 22 18 50 Voxel-based RF 87.0% n/a
(La Rocca et al., 2018) 52 85 38 47 Connectivity network RF 83.0% n/a
MPBG hippocampus 62 65 34 38 Patch-based LDA 88.1% 68.8%
MPBG Subiculum 62 65 34 38 Patch-based LDA 86.5% 70.8%

LDA = Linear Discriminant Analysis
SLG = Sparse Logistic Regression
SVM = Support Vector Machine
RF = Random Forest
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Table 7.3: Comparison of multimodal patch-based grading and texture-based grading
(TBG) proposed in the previous chapter. The results of this comparison show that MPBG
and TBG obtains similar results for eMCI versus lMCI comparison. However, for CN
versus AD, TBG improve by 2 points of percentage of AUC compare to MPBG method.

Method CN vs. AD eMCI vs. lMCI
(AUC in %) (ACC in %) (AUC in %) (ACC in %)

Hippocampus
MPBG 92.1 88.1 69.5 68.8
TBG 94.1 90.2 69.2 68.1
Subiculum
MPBG 90.9 86.5 71.8 70.8
TBG 93.5 89.0 70.6 69.7

methods based on volume despite such method are not well fitted to capture subtle
alterations. The lack of work studying alterations of hippocampal subfields with
advanced biomarkers could be explained by the fact that automatic segmentation
of the hippocampal subfields is a complex task due to subtle borders dividing each
area.

In this work, we compared the efficiency of diffusion MRI and multimodal patch-
based biomarkers for AD detection and prediction over the hippocampal subfields.
Comparisons based on MD, volume and multimodal patch-based biomarkers showed
that the subiculum is the most discriminant structure in the earliest stage of AD
providing the best results for AD prediction (see Figure 7.4 and 7.5). However,
whole hippocampus structure, followed by CA1SR-L-M, obtains best results for AD
detection.

These results are in accordance with literature studies based on animal model
and in vivo imaging combining volume and MD demonstrating that subiculum is
the earliest hippocampal region affected by AD (Trujillo-Estrada et al., 2014; Li et
al., 2013). Moreover, postmortem studies showed that hippocampal degeneration in
early stages of AD is not uniform. After the apparition of alterations in the EC,
the pathology spreads to the subiculum, CA1, CA2-3 and finally the CA4 and DG
subfields (Braak and Braak, 1997; Braak et al., 2006; Thal et al., 2000; Trujillo-
Estrada et al., 2014). It is interesting to note that the results of our experiments
using volume-based biomarkers are also coherent with the previous in-vivo imaging
studies that analyzed the atrophy of each hippocampal subfield at advanced stage
of AD. These studies showed that CA1 is the subfield impacted by the strongest
atrophy (Apostolova et al., 2006; Mueller et al., 2007; La Joie et al., 2013; Carlesimo
et al., 2015). Furthermore, studies using ultra-high field at 7T enabling CA1 layers
discrimination showed that CA1SR-L-M is the subfields showing the greater atrophy
at advanced stages of AD (Kerchner et al., 2010, 2012).
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7.6. Conclusion

7.5.2 Comparison with state-of-the-art methods

In the past years, a large amount of studies dedicated to automatic detection of
Alzheimer’s disease have been proposed (Dyrba et al., 2013; Nir et al., 2015; Li et al.,
2014; Oishi et al., 2011). During our comparison, for fair comparison, we consider
only methods based on the similar modalities and validated on the same ADNI2
dataset. Direct comparison with other monomodal methods applied on ADNI1
is difficult since group definition and pathological status definition are different.
However, we can observe that the results obtained by the proposed method are
in line with recent published results (Arbabshirani et al., 2017). Moreover, the
comparison with our texture-based grading shows the interest of using biomarker
based on d-MRI for the early detection of AD (see chapter 5). This comparison
confirms that the higher native resolution of s-MRI may enable to capture more
valuable brain modification at a late stage of the disease.

7.6 Conclusion

In this chapter, we proposed the analysis of hippocampal subfield alterations with
a multimodal framework combining structural and diffusion MRI. In addition, to
study tenuous modifications occurring into each hippocampal subfield, we applied
our novel adaptive fusion scheme to create a new multimodal patch-based biomarker.
Besides, an analysis of the hippocampal subfields with the volume, the average of
MD and MBPG methods was conducted. Although CA1 is the subfields having the
greater atrophy in the late stage of AD, the experiments demonstrated that whole
hippocampus provides the best biomarker for AD detection while subiculum pro-
vides the best biomarker for AD prediction. Finally, we compared our novel MPBG
method with the texture-based grading method proposed in the chapter 5 with the
same ADNI2 dataset. The results of this comparison show that MPBG method
provides better biomarker for AD prediction, even though our new texture-based
method outperform the performance of patch-based grading method for AD detec-
tion.
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Part conclusion

In the second part of this thesis, we developed advanced hippocampus biomarkers.
We first developed novel methods that we validated within the hippocampus. We
proposed a texture-based grading method that obtains state-of-the-art performances
for AD detection. This first contribution demonstrates that MRI intensity is not the
best input and that a directional derivative filter, such as Gabor’s filter, enables to
highlight informative signals. Next, we have developed a MPBG method combining
s-MRI and d-MRI using our adaptive fusion scheme. The experiments conducted
in this second work have shown that although s-MRI is still a good input for AD
detection, the microstructural changes detected with d-MRI modality and captured
with PBG methods enable a better prediction of AD progression. Moreover, our
MPBG method demonstrated its ability to compute robust hippocampal biomarker
that obtained best results for AD detection and prediction.

Second, we studied the hippocampus at a finer grained level. Indeed, instead of
considering the hippocampus with a global approach, we studied the efficiency of
hippocampal subfields. We investigated the hippocampal subfields efficiency with
our novel MPBG method. Our experiments show that subiculum suffers from the
most significant changes in the early stages of AD. Indeed, MPBG methods applied
to the subiculum enable to increase the prediction performances compared to its
application within the whole hippocampus structure. These results confirm that the
most discriminant hippocampal subfields enable to obtain more effective biomarkers.

Finally, although the contributions presented in this part showed state-of-the-
art results for AD detection, the prediction of subjects’ conversion to AD are still
limited. Indeed, the improvement improvements achieved using new features, mul-
tiple modalities or finner-scale ROIs did not succeed to increase significantly the
classification performances for AD prediction. Our main assumption is that even
though our method enables to capture subtle structural modifications, a better mod-
eling of the relationship alterations between the considered structures could provide
useful information. Therefore, in the next part of this thesis, we will develop a
new graph-based method that embeds inter-subjects’ similarities information and
intra-subjects’ variability.
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So far, our works have been focused on cap-
turing anatomical alterations into key structures.
However, even though the experiments conducted
demonstrate an improvement for Alzheimer’s dis-
ease detection, the prediction of subjects’ conver-
sion to AD remains a difficult task since the only
use of inter-subjects’ similarities features does not
enable to improve prediction performance. Sev-
eral studies have recently proposed features based
on the intra-subjects’ variability, suggesting that
a modeling of the inter-related alterations can
help to predict the dementia. Consequently, in
this part, we will propose a new method based
on a combination of inter-subjects’ similarity and
intra-subjects’ variability features to better model
Alzheimer’s disease signature.

Part III:

Modeling of Alzheimer’s disease

signature
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Introduction

In the previous parts of this thesis, we have studied advanced patch-based grading
method to better capture hippocampal alterations. However, although our work
yields to an improvement of performances for Alzheimer’s disease detection, these
improvements show a low increase of performances for the prediction of subjects’
conversion. This might come from the global grading representation that has been
used. Indeed, although the estimation of grading value distributions slightly im-
prove the performances of prediction, it does not enable to capture complex pattern
of alterations into the structures under study. We assume that a better modeling of
AD signature should enable to increase performance for AD prediction.

Nowadays, the imaging-based methods developed in the literature for the pre-
diction of the subjects’ conversion can be grouped into two categories. On the one
hand, methods based on inter-subjects’ similarities have been proposed such as the
PBG framework that we are studying in this thesis. On the other hand, other meth-
ods capturing an intra-subject variability by modeling the correlation of alterations
of the different brain structures have also been proposed. This second group of
method suggests that AD does not impact brain structures independently and thus
that structures have inter-related alterations. However, the methods belonging to
both groups have shown comparable classifications performances.

Consequently, we proposed to combine both inter-subjects’ similarity and intra-
subjects’ variability features into a graph of structure grading method. In this
part, we first apply a novel graph of structure grading within the definition of hip-
pocampal subfields used in the previous chapter to better model the alteration of
the hippocampus. This results in an increase of prediction performance compare
to other hippocampal biomarkers. Second, we apply the same framework within a
whole brain structure representation, leading to a considerable increase the predic-
tion performances. Finally, we combine both anatomical scales (i.e, hippocampal
subfields and entire brain) into a multiple graph approach. The experiments con-
ducted confirm our assumptions and demonstrate state-of-the-arts performances for
the detection and prediction of Alzheimer’s disease.

Key-words

Intra-Subject Variability, Inter-Subject Similarity, Graph-Based Model, Brain Anal-
ysis, Hippocampal Subfields, Patch-Based Grading, Mild Cognitive Impairment,
Alzheimer’s Disease Prediction

Contents

• The chapter 8 presents the general framework of the proposed graph of struc-
ture grading method. In this work, the grading values, that can be computed
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from any patch-based grading method (i.e., original PBG, texture-based grad-
ing, ...) are used to describe the inter-subjects’ similarities and are embedded
into a graph modeling to capture the relationship of alterations between dif-
ferent structures or sub-structures.

• The chapter 9 presents the application of our graph-based method to the hip-
pocampal subfields definition used in the previous chapter. In this chapter,
we aim at demonstrating that better modeling of hippocampus alterations
enables to increase AD prediction performances. We compare patch-based
grading values averaged within the whole hippocampus mask, in each differ-
ent hippocampal subfields, and our graph of structure grading method. The
obtained results demonstrate an increase of performance compared to other
methods applied within the entire hippocampus structures.

• In the chapter 10, we apply our novel graph of structures grading to the
entire brain. We compare the performance of inter-subjects’ similarities, intra-
subjects’ variabilities features and the combination of both. The experiments
conducted in this work show that intra-subjects’ variability provides valuable
information and its combination with inter-subjects’ similarity features obtains
competitive performance for AD prediction.

• The chapter 11 introduces an extension of our graph of structures grading, to
combine multiple anatomical brain representation into an unified graph-based
method (i.e., brain structures and hippocampal subfields for instance). In
this chapter, we proposed both approaches. The first one is a straightforward
extension of our graph of structure grading while the second is based on a cas-
cade of classifiers. We also study the complementarity of cognitive tests and
our imaging-based method. We demonstrate in this chapter that the mod-
eling of AD signature carried out within multiple brain structure definitions
enables to increase AD detection and prediction and that our method obtains
competitive performance compared to state-of-the-art approaches.
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8. Graph of structures grading

8.1 Introduction

In the previous part of this thesis, we have proposed advanced hippocampus biomark-
ers to improve AD detection and prediction. The developed methods focused on a
better capture of inter-subjects’ similarities using structural and microstructural
modifications caused by the progression of AD. However, although the proposed
methods obtain state-of-the-art results for AD detection, it seems that only using
methods based on inter-subjects’ similarities does not enable to increase the per-
formance of prediction for subjects’ conversion. This might come from the current
modeling of hippocampus alterations (i.e., average and histogram representation of
grading values). Indeed, it seems that the capture of alterations in specific ROIs
could not provide enough information on AD. Moreover, recent works suggest that
a better modeling of the alteration relationships between brain structures leads to
an increase of AD prediction performances.

Consequently, in this chapter, we develop a novel framework that better cap-
tures AD signature. This method is based on the combination of the relationship
of alterations through the different structures analyzed. Our model provides in-
formation of intra-subjects’ variability combined with the inter-subjects’ similarities
computed with a PBG method that provides subtle detection of the alterations. The
main assumption of our work is that AD does not cause independent alterations of
structures but these alterations are inter-related. A good model of this inter-related
alterations could improve the prediction performances of subjects’ conversion which
is still limited with our current methods. Therefore, in this work we proposed a new
approach to model specific pattern of alterations caused by AD.

8.2 Background

Over the past decades, the improvement of magnetic resonance imaging (MRI) has
led to the development of new imaging biomarkers (Bron et al., 2015). Many works
developed biomarkers based on inter-subject similarities to detect anatomical alter-
ations by using group-based comparison (e.g., patients vs. normal controls). Some
of them are based on regions of interest (ROI) to capture brain structural alterations
at a large scale of analysis. The alterations of specific structures such as the cerebral
cortex and hippocampus are usually captured with volume, shape, or cortical thick-
ness (CT) measurements (Wolz et al., 2011). Other approaches proposed to study
the inter-subject similarity between individuals from the same group at a voxel scale.
Such methods commonly use voxel-based morphometry (VBM). VBM-based studies
showed that the medial temporal lobe (MTL) is a key area to detect the first man-
ifestations of AD (Wolz et al., 2011). Recently, more advanced methods have been
designed to improve computer-aided diagnosis (Bron et al., 2015). Among them,
patch-based grading (PBG) framework (Coupé et al., 2012b) proposed to better
analyze inter-subject similarities. PBG uses intermediate scale between structure
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8.3. Method

and voxel and demonstrated state-of-the-art results for AD diagnosis and prognosis
(Coupé et al., 2012b; Hett et al., 2017; Tong et al., 2017a).

Besides inter-subject similarity approaches, other methods proposed to capture
the correlation of brain structures alterations within subjects. Indeed, although
similarity-based biomarkers provide helpful tools to detect the first signs of AD,
the structural alterations leading to cognitive decline are not homogeneous within
a given subject. Thus, another group of biomarkers suggests that the structural
changes caused by the disease may not occur at isolated areas but in several inter-
related regions. Therefore, intra-subject variability feature provides relevant in-
formation. Some methods proposed to capture the relationship of spread cortical
atrophy with a network-based framework (Wee et al., 2013). Other approaches es-
timate inter-regional correlation of brain tissues volumes (Zhou et al., 2011). A
study has proposed a generic framework that embed spatial and anatomical priors
within a graph modeling. This method extract inter-subject variability from dif-
ferent features (for instance, voxel-based and cortical thickness) and various MRI
modalities (Cuingnet et al., 2013). Recently, convolutional neural network (CNN)
have been used to capture relationship between anatomical structures volumes (Suk
et al., 2017). Finally, some works showed that patch-based strategy can be used to
model intra-subject brain alteration (Liu et al., 2014; Tong et al., 2014; Amoroso et
al., 2018).

All these elements demonstrate that inter-subjects’ similarity and intra-subjects’
variability features provide important information on the presence of the disease.
Consequently, in this work, we proposed to combine PBG framework to capture
inter-subjects’ similarity information with a graph-based approach to model the
specific pattern of the alterations caused by AD. Indeed, we assume that a combina-
tion of inter-subjects’ similarities and intra-subjects’ variability method in a single
modeling should provide an efficient method for AD prediction.

8.3 Method

8.3.1 Method overview

As illustrated in the Figure 8.1, our method is composed on several steps. First, a
segmentation of the structures of interest is conducted on the input images. Then,
a PBG approach is carried out over every segmented structures, for instance, hip-
pocampal subfields, entire brain structures, etc. Two different factors can be de-
tected with PBG methods: the changes caused by the normal aging (Koikkalainen
et al., 2012) and the alterations caused by the progression of AD. Therefore, at each
voxel, the grading values are age-corrected to avoid the bias due to normal aging.
After the patch-based grading maps are age-corrected, we construct an undirected
graph to model the topology of alterations caused by Alzheimer’s disease. To reduce
the dimensionality of the feature vector computed by our graph-based method, we
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8.4. Conclusion

assign a weight given by the function ω : E → R defined as follows:

ω(vi, vj) = exp(−W (Hvi , Hvj)
2/σ2) (8.1)

where W is the Wasserstein distance with L1 norm (Rubner et al., 2000) that showed
best performance during our experiments. Wasserstein distance between two his-
tograms is defined as the minimization of the following equation,

W (Hvi , Hvj , F ) = min
F={fk;l}

∑

k,l

fk;ldk;l (8.2)

subject to,
∑

(k)∈I

fk;l = pk ∀k ∈ I

∑

(l)∈I

fk;l = ql ∀l ∈ I

fk;l ≥ 0 ∀(k; l) ∈ J

(8.3)

Where I = {k|1 ≤ k ≤ m} is the index set for bins, Hvi = {pk|k ∈ I} and
Hvj = {qk|k ∈ I} are the two normalized histograms, J = {(k, l)|k ∈ I, l ∈ I} is the
set for flows, and dk;l = ||k − l||p is the group distance defined by a Lp norm. As
described above, in our experiment we used the L1 norm.

8.3.3 Selection of discriminant graph components

Graph representation of structure grading provides high-dimensional features. In
this work we used the elastic net regression (EN) method that provides a sparse
representation of the most discriminative edges and vertices, and thus enables to
reduce the feature dimensionality by capturing the key structures and the key rela-
tionships between the different brain structures (see Fig. 8.1). Indeed, it has been
demonstrated that combining the L1 and L2 norms takes into account possible inter-
feature correlation while imposing sparsity (Zou and Hastie, 2005). Finally, after
normalization, a concatenation of the two feature vectors is given as input of EN
feature selection method, defined as the minimization of the following equation:

β̂ = min
β

1

2
||Xβ − y||22 + ρ||β||22 + λ||β||1 (8.4)

Where β̂ is a sparse vector that represents the regression coefficients and X is a
matrix where rows correspond to the subjects and columns correspond to the features
(vertices, edges or a concatenation of both).

8.4 Conclusion

In this chapter, we have developed a new graph-based model to combine inter-
subjects’ similarities and intra-subjects’ variability. This approach models the level
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8. Graph of structures grading

of structures degradation and provides a global pattern of key structures modifica-
tion. As it is described in the figure 8.1, our method is composed of three main
steps: the grading of the structures of interest, that provides information about the
structural alterations with an inter-subjects’ similarities approach, the construction
of the graph by estimating the relationship of alterations throughout the different
brain structures with the distances of grading values distributions, and finally a
sparse selection of the most discriminant graph components.

In the next chapters, we will study the efficiency of our novel graph-based frame-
work with the study of hippocampal subfield alterations. Then, we will apply our
new graph of structure grading with a representation of the entire brain structures.
Finally, we will present an unified approach to combine our graph of structure grad-
ing within this two different anatomical scales.
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9. Graph of the hippocampal subfields

9.1 Introduction

In the previous part of this thesis, we capture alterations by computing global patch-
based grading values into key regions. We have first studied the hippocampus struc-
ture and then compared its efficiency with the hippocampal subfields. We demon-
strated that subiculum and CA1 are the best hippocampal subfields to compute
global grading features. However, the results showed a low improvement in early
detection performance.

We assume that a global grading value computed into specific ROIs, for instance
the hippocampus or the subiculum, could limit the prediction performances since
the alterations caused by AD can be inter-related. Indeed, we believe that better
modeling the pattern of hippocampus alterations may improve the subjects’ conver-
sion prediction. This pattern could be based on the relationships of hippocampus
alterations over the hippocampal subfields.

To confirm this assumption, we propose to apply our novel graph-based grading
to hippocampal subfields. Indeed, in the previous chapter, we proposed a new
graph-based framework to better model the signature of structural alterations. Our
proposed method model brain alterations by combining inter-subjects’ similarities
and intra-subjects’ variability. Therefore, the main assumption of this chapter is
that our novel method can provide an efficient representation of the inter-related
alterations through the hippocampus. This would results in an improvement of the
performance of the prediction of subjects’ conversion to AD

The experiments carried out in this chapter confirm our assumption. Indeed,
the results of our experiments demonstrate that our novel approach improves patch-
based grading method applied into the hippocampus by 4 percent points of accuracy
and obtains state-of-the-art results compared to last advanced methods based on
whole brain analysis for AD prediction.

9.2 Materials

As described in the previous chapters, data used in this work were obtained from
ADNI dataset 1. The data used in this study are all the baseline T1-w MRI of
the ADNI1 phase. This dataset includes AD patients, MCI and CN subjects. The
group of MCI is composed of stable MCI (sMCI) and progressive MCI (pMCI) who
converted in the following 36 months after the baseline. The information of the
dataset used in our work is summarized in Table 9.1.

1http://adni.loni.ucla.edu
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9.3. Experiments

Table 9.1: Description of the dataset used in this work. Data are provided by ADNI.

Characteristic / Group CN sMCI pMCI AD
Number of subjects 213 90 126 130
Ages (years) 75.7± 5.0 74.9± 7.5 73.7± 7.0 74.1± 7.7
Sex (M/F) 108/105 58/32 68/58 64/66
MMSE 29.1± 1.0 27.6± 1.7 26.5± 1.6 23.5± 1.9

9.3 Experiments

9.3.1 Preprocessing

First, each image was preprocessed with an advanced pipeline based on: (a) a de-
noising step with an adaptive non-local mean filter (Manjón et al., 2010), (b) an
affine registration in the MNI space (Avants et al., 2011), (c) a correction of the
image inhomogeneities (Tustison et al., 2010) and (d) an intensity normalization.

Second, we used the same pipeline that has been described in the chapter 7.
Consequently, the segmentation of hippocampal subfields was performed with HIPS.
This method is based on a combination of non-linear registration and patch-based
label fusion (Romero et al., 2017). The method provides automatic segmentation
of hippocampal subfields gathered into 5 regions: Subiculum, CA1SP, CA1SR-L-M,
CA2-3 and CA4/DG.

Finally, visual quality control was conducted to remove all wrong segmentations
from the dataset. Moreover, to prevent any cognitive bias in the dataset, the quality
control was performed without the pathological status of each subject.

9.3.2 Graph construction

Figure 9.1 represents the pipeline of the graph construction. First, the texture-based
grading presented in chapter 5 is carried out over the entire hippocampus structure.
Next, a histogram is computed to estimate the probability distribution of the grading
values. These histograms are computed for each hippocampal subfields provided
by the segmentation masks described in the previous section. Thus, here G =
(V,E,Γ, ω), represents the graph of the hippocampal subfields where the vertices V
represents alteration measures of hippocampal subfields and the edges E represent
the alteration relationship between two hippocampal subfields.

9.3.3 Details of implementation

The most similar patches were extracted with a patch-match method (Giraud et
al., 2016). We used the optimal parameters found in the chapter 3 for patch size
and number of patch extracted. This results in hippocampus grading processed in
about 1 second. Next, the age effect is corrected using linear regression estimated
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9.4. Results
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Figure 9.2: Graphic representing the coefficients estimated by EN method from the vector
of features computed by our graph-based method after z-score normalization. The first six
labels represent hippocampal regions and the others represent relationships of these regions.
It is interesting to note that selected structures are in line with previous hippocampal
subfields investigations (see chapter 7). The graph components selected are these with a
EN coefficient greater than 0. In the green box, vertices of our graph. In the red box,
edges of our graph.

(i.e., CA1-SP and CA1-SRLM, see Figure 9.2). It is very interesting that hippocam-
pal subfields selected by EN method are in line with previous studies which have
shown CA1 and subiculum are the subfields having the most significant atrophy in
late stages of AD (Kerchner et al., 2012; Trujillo-Estrada et al., 2014). TBG based
on the whole hippocampus structure obtains 76.8% of AUC, 70.3% of ACC and
is more specific than sensitive. Although TBG values of all hippocampal subfields
(see “all” in the table 9.2) does not improve prediction performances, TBG values
within subiculum, CA1-SP, and CA1-SRLM obtain 77.1% of AUC, 71.1% of ACC
(see “best” in the table 9.2), and improve specificity compare to hippocampus TBG.
Thus, the concatenation of mean grading values based on each hippocampal sub-
fields selected with a EN method slightly increases the prediction performances of
AD. Furthermore, our proposed graph-based method improves by 1.4 percent points
of AUC and 4.4 percent points of ACC compared to the hippocampus. Our graph-
based method also improves by 1.1 percent points with AUC and 3.6 percent points
with ACC compared to the use of the most discriminant hippocampal subfields.
Moreover, in both cases, our proposed graph-based method increases the sensibility
of AD conversion.
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Table 9.2: Comparison of different hippocampal PBG approaches. First, TBG applied
within the whole hippocampus is provided as the baseline. Second, all hippocampal subfield
features are concatenated into a single vector. Next, the best hippocampal subfield features
are selected by EN method. Finally, results provided by our graph-based of hippocampal
subfields grading. This comparison shows that our proposed method improves AUC, ACC,
BACC, and SEN compared to other approaches. All results are given in percentage.

Methods AUC ACC BACC SEN SPE
Hippocampus 76.8±0.2 70.3±0.0 70.6±0.0 69.0±0.0 72.2±0.0
Hipp. subfields (all) 73.9±0.2 67.1±0.0 67.9±0.0 72.2±0.0 63.5±0.0
Hipp. subfields (best) 77.1±0.2 71.1±0.4 71.4±0.4 69.5±0.6 73.2±0.5
Proposed method 78.2±0.2 74.7±0.4 74.3±0.5 77.1±0.5 71.4 ± 0.9

9.4.2 Comparison with state-of-the-art methods

Second, a comparison of our novel graph-based method based on hippocampal sub-
fields and state-of-the-art method based on the hippocampus, using similar ADNI1
dataset, is provided in the upper part of Table 9.3. In this comparison, we in-
cluded the original PBG method (Coupé et al., 2012b), a method based on multiple
instance learning (Tong et al., 2014), and an advanced PBG method based on a
sparse-based grading (SBG) (Tong et al., 2017a). The results demonstrate that our
novel graph-based method obtains better results than all compared methods applied
to the hippocampus. Indeed, to the best of our knowledge, state-of-the-art methods
applied on hippocampus have obtained 71% of ACC for sMCI versus pMCI classi-
fication while our graph-based of hippocampal subfields grading obtains 74.7% of
ACC.

Finally, in the lower part of Table 9.3 a comparison with state-of-the-art methods
applied on the whole brain is provided. Our method is compared with a VBM
approach (Moradi et al., 2015), the advanced PBG method based on a sparse-based
grading (Tong et al., 2017a) and a recent deep ensemble learning method (Suk et
al., 2017). This comparison shows that our novel graph of hippocampal subfields
grading obtains comparable ACC and AUC than these last advanced approaches.

9.5 Discussion

In this chapter, we studied a better modeling of hippocampus alterations with the
application of our graph-based framework within the hippocampal subfields. First,
we studied the efficiency of a straightforward approach that consist to compute the
average of grading values in each hippocampus subfield. This results lower perfor-
mances compared to the average of grading values within the whole hippocampus.
However, the use global grading values within each most discriminant hippocampal
subfields (i.e., subiculum and the two definitions of CA1) obtains similar perfor-
mances than the average of grading values within the whole hippocampus. This
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Table 9.3: Comparison with state-of-the-art methods based on the hippocampus region
and approaches based on a whole brain analysis using similar ADNI1 dataset and the
same definition of sMCI/pMCI. These results show that our proposed method obtains best
results compared to methods applied within the hippocampus. Moreover, compared to
approaches based on a whole brain analysis, our method obtains competitive results. All
results are given in percentage.

Methods Registration AUC ACC SEN SPE
Hippocampus
PBG (Coupé et al., 2012b) Affine − 71.0 70.0 71.0
MIL (Tong et al., 2014) Affine − 70.4 66.5 73.1
SBG (Tong et al., 2017a) Non Linear − 69.0 − −
Proposed method Affine 78.2 74.7 77.1 71.4
Whole brain
VBM (Moradi et al., 2015) Non Linear 76.6 74.7 88.8 51.6
SBG (Tong et al., 2017a) Non Linear − 75.0 − −
CNN (Suk et al., 2017) Non Linear 75.4 74.8 70.9 78.8

might come from that subiculum and CA1 represent around 70% of the total vol-
ume of the hippocampus. Consequently, the average of grading values within the
hippocampus work as a majority vote, and since CA1 and subiculum have the large
amount of grading values. Therefore, the global hippocampus grading value is led
by the grading values within subiculum and CA1. On the opposite, the use of grad-
ing values of each subfields as input of the classifier method introduce noises since
the grading value of CA2/3 and CA4/DG are considered having the same relevance.
Furthermore, our experiments conducted in this comparison confirm our first as-
sumption. Indeed, our graph of hippocampal subfields grading (GHSG) method
enables an improvement of the results for AD prediction.

Finally, the second comparison of the GHSG demonstrate a better AD prediction
performance than state-of-the-art methods applied to hippocampus. Indeed, our
method obtains better results compared to the original PBG (Coupé et al., 2012b), a
patch-based grading approach based on multiple instance learning techniques (Tong
et al., 2014), and an advanced grading method (Tong et al., 2017a). Moreover,
compared to approaches based on whole brain analysis, our GHSG method obtains
similar performances.

9.6 Conclusion

In this chapter, we have applied our graph of brain structure grading method to
better capture AD signature over the hippocampal subfields. Alterations were cap-
tured with a patch-based grading framework while the relationships of alterations
between the different subfields were based on histogram distances. We demonstrate
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that our method improves patch-based grading methods based on hippocampus by 4
percent points for sMCI versus pMCI classification. Moreover, although the former
works based on an analysis of hippocampus alterations have obtained limited perfor-
mances for AD prediction compared to state-of-the-art method using a whole brain
representation, our novel graph-based approach of hippocampal subfields obtains
competitive results.

However, although our method applied within the hippocampus obtains com-
petitive results, its application within an entire brain representation should increase
the prediction performances. Indeed, former methods have shown that the whole
brain analysis leads to an improvement of results AD prediction compared to the
study of hippocampus alterations. Therefore, in the next chapter, we will propose
to apply our new GSG method within an entire brain representation.
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10. Graph of the brain structures

10.1 Introduction

In the previous chapters, we presented a new graph-based model. The proposed
graph modeling encodes inter-subjects’ similarities in its vertices using global PBG
values and intra-subjects’ variability in its edges with the distance of PBG value
distributions. The application of this framework within the hippocampal subfields
has demonstrated an improvement of prediction performances. Although the anal-
ysis of hippocampus alterations provides valuable biomarkers for the AD detection
(Coupé et al., 2012b), former studies focused on hippocampus have obtained limited
performances for the prediction of subject conversions to dementia.

However, besides these works based on the hippocampus, several studies based on
the analysis of the entire brain obtained more competitive prediction results (Wee
et al., 2013; Moradi et al., 2015; Tong et al., 2017a; Suk et al., 2017). Indeed, a
recent study has demonstrated using the same method that the analysis carried out
the whole brain instead the hippocampus enables to improve prediction of subjects’
conversion significantly (Tong et al., 2017a).

Consequently, in this chapter, we proposed to apply our graph of structure grad-
ing framework to model the alterations within the entire brain structures. In our
experiments, we compare the performance of intra-subject variability features (i.e.,
the edges of our graph) with inter-subject pattern similarity features (i.e., the ver-
tices). Moreover, we demonstrate the capability of intra-subject variability features
to early detect AD and show that the combination of both features improves AD
prognosis. Finally, we show competitive results of our new method compared to
state-of-the-art approaches.

10.2 Materials

Data use in this work were obtained from the ADNI dataset We use similar dataset
than the one used in the experiments described in the chapter 5, which is based on
the baseline T1w MRI of the ADNI1 phase (see Table 10.1)..

Table 10.1: Description of the ADNI dataset used in this work.

Characteristic / Group CN sMCI pMCI AD
Number of subjects 228 100 164 191
Ages (years) 75.8± 5.0 75.3± 7.2 74.2± 6.64 75.26± 7.4
Sex (M/F) 117/109 150/73 101/64 98/88
MMSE 29.05± 0.9 27.1± 2.5 26.3± 2.0 22.8± 2.9
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These histograms are computed for each brain structures provided by the segmen-
tation masks of brain structures. Thus, here G = (V,E,Γ, ω), represent the graph
of brain where the vertices V represent alteration measures of brain structures and
the edges E represent the alteration relationship between two vertices (i.e., brain
structures).

10.3.3 Details of implementation

TBG were computed with the optimized patch-match method (Giraud et al., 2016)
(see chapter 3). We used the optimal parameters found in the chapter 3 for patch
size and number of patch extracted. This results in a whole brain grading in about 10
seconds. Age effect is corrected using linear regression estimated on CN population.
The EN method is computed with the sparse learning via efficient projection package
(SLEP) (Liu et al., 2009). Two classifiers were used to validate our method – support
vector machine (SVM) and the random forest (RF). A linear kernel was used as
SVM, which has only a soft margin parameter C. This parameter was optimized
in a range of 2i, with i = {−10, 9, ..., 10}. RF has two parameters, the numbers of
three N and the number of randomly selected features T . These two parameters was
set as follows, N = 500 and T = 9. All features were normalized using z-score. In
our experiments, we performed sMCI versus pMCI classification. The EN features
selection and the classifiers were trained with CN and AD (see Fig. 8.1). Thus,
only one run was performed for the SVM and 30 runs was performed to capture the
inner variability of RF. The mean accuracy (ACC), sensibility (SEN), and specificity
(SPE) over these 30 iterations are provided as results (see Table 10.2).

10.4 Results

To evaluate the improvement of performances provided by our new graph-based
method, we first compare the performance of inter-subjects’ similarities using the
vertices of our graph, the intra-subjects’ variability using the edges only, both se-
lected with the EN regression method, and all selected GSBG features (i.e., vertices
and edges). Finally, we compare the performances of our new GSBG approach with
the results of state-of-the-arts methods for AD prediction.

10.4.1 Comparisons of the different graph components

To investigate the results of our new GBSG method combining inter-subject pat-
tern similarity features (i.e., vertices) and intra-subject variability features (i.e.,
the edges) several experiments were performed (see Table 10.2). The texture-based
grading over the hippocampus as presented in the chapter 5 is used as baseline.

First, we estimated the performance obtained by each feature separately us-
ing SVM. Compared to hippocampus TBG, vertices showed an improvement of
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Table 10.2: Classification of sMCI versus pMCI. Results obtained by inter-subject similar-
ity features (i.e., vertices), intra-subject variability features (i.e., edges) and a combination
of both. TBG applied over the hippocampus is provided as baseline. The results show that
GBSG edges improve the accuracy and the sensibility as compared to the hippocampus
PBG and GBSG vertices. Finally, GSBG provides the best results. All results are given
in percentage.

Methods Classifier ACC SEN SPE
Hippocampus SVM 71.5 72.5 70.0
Selected vertices SVM 71.9 71.95 72.0

RF 70.1 69.6 71.1
Selected edges SVM 74.6 81.7 63.0

RF 73.8 81.3 61.6
GBSG SVM 75.8 82.3 65.0

RF 76.5 81.7 68.0

the specificity while the accuracy and the sensibility did not change. Therefore,
additional structures selected by EN did not improve results compared to use hip-
pocampus only. On the other hand, using edges improved the accuracy and the
sensibility but was less specific compared to hippocampus TBG and vertices. These
results indicate that relevant information is encoded within GBSG edges.

Second, we evaluated the performance of combining vertex and edge features.
GBSG provided the best results in terms of accuracy and sensibility. Moreover it
improved the specificity compared to the intra-subject variability feature. Finally,
we compared SVM and RF classifiers to study the stability of our framework. The
results obtained with both classifier showed the same tendency. The RF provided
the best results with 76.5% of accuracy.

These results obtained with two different classification methods demonstrate the
complementarity of inter-subject similarity and intra-subject variability features.
Indeed, both information are relevant.

10.4.2 Comparisons with state-of-the-arts methods

Afterwards, we compared our GBSG method using RF classifier with state-of-the-art
methods on similar ADNI1 datasets. First, we included methods modeling inter-
subject variability based on PBG within hippocampus (Coupé et al., 2012b), VBM
(Moradi et al., 2015) and an advanced PBG (SBG) estimated over the entire brain
(Tong et al., 2017a). Second, we included methods capturing intra-subject variability
based on last deep learning framework (Suk et al., 2017), multiple instance learning
(MIL) (Tong et al., 2014) and integrative network of cortical thickness abnormality
(ICT) (Wee et al., 2013). We applied our GBSG on two definitions of sMCI/pMCI
populations as defined in (Moradi et al., 2015) and (Tong et al., 2017a) to perform
a fair comparison. Results of this comparison are presented in Table 10.3. This
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comparison shows that best methods based on intra-subject or inter-subject obtained
similar accuracy around 75% while our GBSG combining both reached 76.5% of
accuracy. Compared to VBM on the same dataset (Moradi et al., 2015), our GBSG
improved accuracy by 1.8 percent point. However, compared to SBG (Tong et al.,
2017a) GBSG provided similar results on the same dataset. Finally, compared to the
CNN-based method proposed in (Suk et al., 2017) our method obtained competitive
performances. These results highlight the efficiency of combining intra-subject and
inter-subject features.

Table 10.3: Comparison of the proposed method with state-of-the-art approaches. These
results show the competitive performance of our new GBSG method that obtains the
best accuracy on both definitions of sMCI/pMCI populations. All results are given in
percentage.

Method sMCI/pMCI Area Feature ACC SEN SPE
PBG (Coupé et al., 2012b) 238/167 Hipp. Inter 71.0 70.0 71.0
VBM (Moradi et al., 2015) 100/164 Brain Inter 74.7 88.8 51.59
SBG (Tong et al., 2017a) 129/171 Brain Inter 75.0 - -
ICT (Wee et al., 2013) 111/89 Cortex Intra 75.0 63.5 84.4
MIL (Tong et al., 2014) 238/167 MTL Intra 72.0 69.0 74.0
CNN (Suk et al., 2017) 226/167 GM Intra 74.8 70.9 78.8
GBSG 129/171 Brain Inter + Intra 75.2 80.0 68.7

100/164 Brain Inter + Intra 76.5 81.7 68.0

10.5 Discussion

In this chapter we apply our novel graph based framework within a whole brain anal-
ysis. The comparisons of the inter-subjects’ similarity and intra-subjects’ variability
graph components (see Table 10.2) demonstrate that capturing the information of
the alterations relationship between the different brain structures enable to increase
the classification performances for AD prediction. Moreover, our experiments show
that most of the elements selected are graph edges, while only a few vertices repre-
senting alterations of brain structures are selected (see Figure 10.2). Indeed, only the
cuneus, the medial frontal cortex, the central operculum and the postcentral gyrus
are selected. Although the hippocampus is not present in the selected vertices, the
hippocampus is highly present in relationship with other brain structures. This indi-
cates that the correlation of hippocampus alteration with other brain structures is a
key element to detect and predict the dementia. These results also demonstrate that
the combination of both features enables a better discrimination of subject whom
convert to the dementia in the following years, confirming the main assessment of
the chapter 8.
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Figure 10.2: Chart of the most discriminant graph components selected by the EN regres-
sion method. The four first label correspond to the selected vertices of our graph, the
others correspond to structural relationships of brain structures. This might demonstrate
that intra-subjects’ variability could provides more reliable informations for the prediction
of AD conversion than straightforward inter-subjects’ similarity informations.
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Finally, the comparison of the prediction performance with state-of-the-arts
methods demonstrates the efficiency of our method. Indeed, the application of our
graph-based framework within the entire brain obtains competitive performances
compare to last methods based on advanced VBM method (Moradi et al., 2015)
and an advanced grading method (Tong et al., 2017a). Furthermore, our method
obtains competitive performance compare to a deep-learning approach (Suk et al.,
2017) that captures intra-subject variability of grey matter volume.

10.6 Conclusion

In this chapter, we proposed to apply our novel framework based on a promising
graph of structures grading to analyze the entire brain structures. Our new method
combines inter-subjects’ pattern similarities and intra-subjects’ variability to better
detect AD alterations. The pattern similarity is estimated with a patch-based grad-
ing strategy, while the intra-subject variability between structure grading is based
on graph modeling. Our experiments showed the complementarity of both informa-
tion. Finally, we demonstrated that our method obtains competitive performance
compared to the most advanced methods.
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11. Multiple graph of brain structures

11.1 Introduction

In the third part of this thesis, we proposed a novel graph-based framework to
combine inter-subjects’ similarities and intra-subject’ variability within an innova-
tive graph-based model. We demonstrated the genericity of this method with its
successful application to two different anatomical scale (i.e., brain structure and
hippocampal subfields). Indeed, our graph of structure grading applied on brain
structures and the hippocampal subfields showed an improvement of performance
for Alzheimer’s disease prediction.

In order to combine these two anatomical scales efficiently, we proposed and
compared two graph fusion methods. The first one is a straightforward extension
of the graph of structures grading method described in the previous chapter. This
method is similar to a work that has proposed a multi-scale analysis based on vol-
umes of brain structures embedded into a hierarchical anatomical brain network
(Zhou et al., 2011). The second approach presented in this chapter is based on a
cascade of classifiers as done previously for multimodal fusion (Gray et al., 2013) or
other medical imaging problematics such as the detection of other cerebral disease
and multi-organ localization (Fazlollahi et al., 2014; Gauriau et al., 2015). These
works have demonstrated the capability of multi-layer classifiers to improve decision
precision.

In this chapter, we evaluate the performances of our two proposed approaches
that combine both anatomical scales studied in the chapter 9 and 10. First, we
compare two previous application of our graph of structure grading and the proposed
combination of the anatomical scales. Second, we compared the best approach
with state-of-the-art methods for the detection of AD and the prediction of subject
conversion to AD. Finally, we study the complementarity of cognitive tests and our
imaging-based method that captures brain structural alterations. All the results
obtained in this chapter indicate the high potential of our proposed approach for
the early detection of AD.

11.2 Materials

Data used in this work is come from the same ADNI1 dataset used in the chapter 9.
The data used in this study are all the baseline T1-w MRI of the ADNI1 phase.
This dataset includes AD patients, MCI and CN subjects. The information of the
dataset used in our work is summarized in Table 6.1.
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Table 11.1: Description of the dataset used in this work. Data are provided by ADNI.

CN sMCI pMCI AD P value
Number 213 90 126 130
Ages (years) 75.7± 5.0 74.9± 7.5 73.7± 7.0 74.1± 7.7 p = 0.63a

Sex (M/F) 108/105 58/32 68/58 64/66 χ2=5.29, p = 0.15b

MMSE 29.1± 1.0 27.6± 1.7 26.5± 1.6 23.5± 1.9 p < 0.01a∗

CDR-SB 3.5 ± 2.7 4.5 ± 2.3 4.8 ± 2.1 4.7 ± 1.9 p < 0.01a∗

RAVLT 45.4 ± 9.7 35.5 ± 10.2 27.7 ± 8.9 24.6 ± 7.0 p < 0.01a∗

FAQ 8.4 ± 4.4 13.3 ± 5.4 20.2 ± 6.7 30.0 ± 9.0 p < 0.01a∗

ADAS11 5.2 ± 3.0 8.1 ± 3.6 12.5 ± 4.9 20.2 ± 7.6 p < 0.01a∗

ADAS13 0.2 ± 0.9 2.3 ± 3.7 4.3 ± 4.8 14.6 ± 6.6 p < 0.01a∗

∗ Significant at p < 0.05.
a Chi-square test (df = 3).
b Kruskal–Wallis test (df = 3).

11.3 Experiments

11.3.1 Preprocessing

Each image has been preprocessed with the pipeline described in chapter 10 and
9. First, the data are preprocessed using the following steps: (1) denoising using a
spatially adaptive non-local means filter (Manjón et al., 2010), (2) inhomogeneity
correction using N4 method (Tustison et al., 2010), (3) low-dimensional non-linear
registration to MNI152 space using ANTS software (Avants et al., 2011), (4) intensity
standardization, (5) segmentation using a non-local label fusion (Giraud et al., 2016)
and (6) systematic error corrections (Wang et al., 2011).

Brain structures have been segmented with a patch-based multi-template seg-
mentation using 35 images manually labeled by Neuromorphometrics, Inc. 1 follow-
ing the brain-COLOR labeling protocol composed of 134 structures.

Segmentation of hippocampal subfields was performed with HIPS. This method
is based on a combination of non-linear registration and patch-based label fusion
(Romero et al., 2017).

11.3.2 Fusion of graph

To combine this two anatomical scales (i.e., brain structures and hippocampal sub-
fields), we explore two approaches. The first one is based on a single hierarchical
graph of brain structure grading while the second uses an approach based on a
cascade of classifiers.

1http://Neuromorphometrics.com
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Hierarchical graph of structure grading (HGSG) is a straightforward exten-
sion of the graph of structures grading method described in this part. To
integrate graph of hippocampal subfields grading and the graph of brain struc-
tures grading, the relationships between the whole hippocampus and each hip-
pocampal subfield have been added in our model (see Figure 11.1). Once the
graph features are computed, we use an EN regression method to select the
most discriminant components of our graph. Finally, a RF is used as classifier
to provide the final decision.

Multiple graphs of structure grading (MGSG) This method is based on a
cascade of classifiers. In this approach, graph of brain structure grading and
graph of hippocampal subfields grading are computed separately as it has
been described in chapters 10 and 9 (see Figure 11.2). The EN regression
method has been used to select the most discriminant features of each graph.
Afterward a first layer of RF classifier is used to compute both a posteriori
probabilities P (Y |XGBSG) and P (Y |XGHSG) for whole brain and hippocampal
subfields, respectively. Here Y represents the pathological status of the subject
under study, XGBSG and XGHSG represent the selected features of GBSG and
GHSG models respectively. Finally, these a posteriori probabilities are used
as input of a linear classifier to make the final decision.

11.3.3 Combination with cognitive tests

In addition of the study on the effectiveness of the proposed imaging-based biomark-
ers, the complementarity of our proposed method with cognitive tests has also been
conducted. In this work, we consider MMSE, CDR-SB, RAVLT, FAQ, ADAS11,
and ADAS13 cognitive tests. The scores are concatenated into a vector of cognitive
test features and graph-based features and used as input of the final classifier.

11.3.4 Details of implementation

As shown in the previous chapters of this part, grading maps have been obtained
with the texture-based grading proposed in the chapter 5. Once the grading maps
are estimated, the age effect is corrected using linear regression estimated on CN
population. The EN method is computed with the SLEP package (Liu et al., 2009).
The classifications were obtained with a RF 2. In our experiments the impurity
criterion used is the Gini index. RF has two parameters, the numbers of three N
and the number of randomly selected features T . These two parameters was set as
follows, N = 500 and T = 20 for the brain structures representation and T = 4
for the branch based on the hippocampal subfields. A linear discriminant analysis
(LDA) classifier has been used to compute the final decision for the MGSG approach.

2http://code.google.com/p/randomforest-matlab
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11.4. Results
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Figure 11.1: Schema of the proposed hierarchical graph of structure grading. In this ap-
proach, the two anatomical scales are embedded into a single graph-based model. The
hippocampal subfield nodes are only connected with the node representing the hippocam-
pus.

All features were normalized using z-score before selection and classification. In
our experiments, we performed sMCI versus pMCI classification trained with data
coming from CN and AD patients. However, 100 runs were performed to decrease the
inner variability of RF. Furthermore, for CN versus AD classification, a stratified
10-fold cross-validation has been conducted 50 times. Finally, mean area under
curve (AUC), accuracy (ACC), balanced accuracy (BACC), sensibility (SEN), and
specificity (SPE) are provided as results in Tables 11.2, 11.3, and 11.4.

11.4 Results

In this section, to evaluate the performance of the combination of the two considered
anatomical scales, the performances of HGSG and MGSG are compared. Next, we
compare the best approach with state-of-the-art methods for Alzheimer’s disease
classifications. Finally, we compare our imaging-based method to cognitive test
scores and the combination of both.
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11.4. Results

11.4.1 Comparison of the different approaches

Table 11.2: Comparisons of the different PBG approaches for sMCI versus pMCI classifi-
cation task. TBG computed over the hippocampus is provided as baseline. Results show
that MGSG approach improves performances in terms of AUC, ACC, BACC, SEN and
SPE. All results are expressed in terms of percentage.

Methods AUC ACC BACC SEN SPE
TBG Hipp. 76.8±0.2 70.3±0.0 70.6±0.0 69.0±0.0 72.2±0.0
GHSG 78.2±0.2 74.7±0.4 74.3 ±0.4 77.1±0.4 71.4±0.4
GBSG 79.4±0.2 75.5±0.4 75.2 ±0.4 77.6±0.4 72.6±0.4
HGSG 79.6±0.2 74.5±0.4 73.9 ±0.4 77.3±0.4 70.6±0.4
MGSG 80.6±0.2 76.0±0.4 75.7±0.4 77.8±0.4 73.6±0.4

In Table 11.2, we compare the performance of each proposed approach. TBG
has been computed over the whole hippocampus and is provided as the baseline.
First, we compared GHSG and GBSG within the same dataset. The results of this
comparison confirm that for sMCI versus pMCI classification a whole brain analysis
provide better results than considering only the hippocampus. Indeed, GBSG ob-
tains 79.4% of AUC and 75.5% of accuracy while GHSG obtains 78.2% of AUC and
74.7% of accuracy. Second, we compare the two approaches proposed to combine
both whole brain structures and hippocampal subfield. The results suggest that
HGSG method does not enable to improve the performance compare to GBSG and
GHSG, this method obtains 79.6% of AUC and 74.5% of ACC. However, MGSG
method shows an increase of performance for each considered measures of classifi-
cation. This last method obtains 80.6% of AUC and 76% of accuracy. Therefore, in
the rest of the experimentations, we only consider the MGSG method.

11.4.2 Comparison with state-of-the-art methods

A comparison of MGSG results with state-of-the-art methods is provided in Ta-
ble 11.3. We compare all the method using a similar ADNI1 dataset. Our graph-
based method is compared with the original PBG method (Coupé et al., 2012b),
a graph-based grading method (Tong et al., 2014), an ensemble grading method
(Liu et al., 2012), a method based on a sparse-based grading grading (Tong et al.,
2017a), a VBM method (Moradi et al., 2015) and a advanced method based on deep
ensemble learning technique (Suk et al., 2017).

The results of these comparisons demonstrate the competitive performances of
our MGSG method for CN versus AD and sMCI versus pMCI classifications. Indeed,
our method obtains the best results with 91.6% of accuracy and 94.3% of AUC for
CN versus AD which are competitive with last advanced method based on deep-
learning techniques (Suk et al., 2017). Moreover, our method improves by 1 point
of percentage in term of accuracy the performance of the best PBG method (Liu et
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Table 11.3: Comparison with state-of-the-arts methods for Alzheimer’s disease classifica-
tion using similar ADNI1 dataset. In addition to sMCI verus pMCI, we provided results
of CN versus AD classification. All results are expressed in percentage.

Methods Registration Feature CN vs. AD sMCI vs. pMCI
(ACC in %) (ACC in %)

(Coupé et al., 2012b) Affine Intensity 88.0 71.0
(Liu et al., 2012) NL GM 90.8 −
(Tong et al., 2014) Affine Graph 89.0 70.4
(Moradi et al., 2015) NL GM − 74.7
(Tong et al., 2017a) NL Intensity − 75.0
(Suk et al., 2017) NL GM 91.0 74.8
MGSG Affine Graph 91.6 76.0

GM = Grey matter
NL = Non linear

al., 2012). Furthermore, our method obtains also state-of-the-art performances for
sMCI versus pMCI classification with 76.0% of accuracy and 80.6% of AUC.

11.4.3 Complementarity with cognitive tests

Table 11.4: Comparison of our graph-based approach with cognitive test scores (CS) and
combination of both for AD prediction. Although, our MGSG obtains better results in
terms of AUC, ACC, BACC, and SPE, the results of this comparison demonstrate the com-
plementarity of our imaging-based method with cognitive scores. All results are expressed
in percentage.

Methods AUC ACC BACC SEN SPE
CS 78.8±0.2 74.5±0.4 72.4±0.4 84.9±0.4 60.0±0.4
MGSG 80.6±0.2 76.0±0.4 75.7±0.4 77.8±0.4 73.6±0.4
MGSG + CS 85.5±0.2 80.6±0.4 79.2±0.4 87.3±0.4 71.1±0.4

Finally, in table 11.4 we compare the results obtained using features derived
from cognitive tests (CS), using our imaging-based features and the combination of
both. This comparison demonstrates the superiority of our imaging-based method
that improves sMCI versus pMCI classification by 1.8 points of percentage of AUC
and 1.5 points of percentage of accuracy compared of using CS only. Finally, the
combination of CS and MGSG features obtains 85.5% of AUC and 80.6% of accuracy
which improves by around 4.9 points of percentage of AUC and 4.6% of accuracy
the results of MGSG method.
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11.5. Discussion

11.5 Discussion

In this chapter, we proposed two approaches to achieve the combination of the
whole brain structures and hippocampal subfields definition within our new graph of
structure grading modeling. We compared the performances of these two approaches
with the graph of structure grading applied within each structure definition. We
compared our best approach to state-of-the-art methods for Alzheimer’s detection
and prediction. Finally, we studied the complementarity of our proposed imaging-
based method with cognitive measures.

11.5.1 Comparison of the different approaches

We first compared the results of HGSG and MGSG with the previously described
GBSG and GHSG. Besides, TBG applied within the whole hippocampus structure
has been provided. First, our graph of structure grading applied within hippocampal
subfields definition improves prediction of Alzheimer’s disease conversion compared
to other methods provided in the literature. Second, the comparison of GBSG
and GHSG approaches has confirmed that the analysis of the whole brain instead
specific structures such as hippocampus enables a better prediction of AD conversion
(Moradi et al., 2015; Tong et al., 2017a; Suk et al., 2017).

Next, the results obtained by the straightforward extension of the graph of struc-
ture grading to combine whole brain structure and hippocampal subfields did not
demonstrate an improvement of AD conversion prediction. This might come from
two limitations, the augmentation of feature dimensionality and the fact that we
put into the same feature space structures at different anatomical scale. To address
these limitations, we proposed the MGSG method. This other approach is based
on a cascade of classifiers. It helps feature selection methods to reduce high feature
dimensionality efficiently. This results in an increase of AD prediction performances
compared to GBSG and GHSG methods.

11.5.2 Comparison with state-of-the-art methods

We compared the results obtained with the MGSG method to state-of-the-art ap-
proaches using similar ADNI1 datasets. This comparison demonstrates the compet-
itive performances of our novel graph-based grading method for both AD detection
and prediction. The main difference with other methods come from the integra-
tion of graph-based features combining inter-subjects’ similarities and intra-subjects’
variability. Furthermore, our approach proposed for the first time to combine hip-
pocampal subfields with brain structures for Alzheimer’s disease classification.
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11.5.3 Complementarity with cognitive tests

Finally, an analysis of the complementarity of our imaging-based method with cogni-
tive tests has been carried out. Our experiments demonstrate that our imaging-based
method obtains better results for the prediction of AD. The combination of this two
types of feature demonstrates a great improvement of performances compared to
the use of these features separately.

11.6 Conclusion

In this chapter, we proposed a method to combine our graph-based grading frame-
work estimated at two different anatomical scales into an unified framework. Our
method proposes for the first time to combine global alterations at the brain scale
and a fine-grained modifications at the hippocampal subfields scale. This framework
has been initially proposed to predict the subject conversion to AD. However, the
experiments conducted demonstrate state-of-the-art results for both classification
tasks, the detection and the prediction of AD.
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Part conclusions

In this part, we developed a new method to better model the signature of the dis-
ease. The signature of Alzheimer’s disease embeds two different types of information.
The first is an information based on inter-subjects’ similarities that are extracted
with the patch-based grading framework. The second involves an intra-subjects’
variability representation of alterations captured with a graph-based modeling. Our
experiments demonstrated that our modeling combining these two kinds of infor-
mation enables a more effective prediction of subjects’ conversion to Alzheimer’s
disease. the genericity of our novel methods. We applied our graph-based frame-
work within different anatomical scales. In both cases, the experiments have shown
an increase in classification performances. Thus, the state-of-the-art results for both
anatomical scales demonstrate that our graph of structure grading is generic and can
be applied within various representations of brain structures. Finally, we proposed
a method to combine multiple anatomical scales of brain representation. We have
validated our method for the combination of brain structures and hippocampal sub-
fields. The experiments carried out in this part showed state-of-the-art results for
the detection and prediction of AD. Moreover, our graph-based approach improves
by 4 points of percentage compared with our best results obtained with the analysis
of hippocampus.

Consequently, in this part, we demonstrated the need for modeling the inter-
related alterations in addition of capturing subtle alterations that occurs into key
ROIs and integrating features at different anatomical scales. Moreover, we have
also shown the complementarity of our new imaging-based method with cognitive
scores often used in clinical trials to diagnose Alzheimer’s disease. This highlights
the interest of using imaging-based methods in addition to cognitive scores for the
early detection of Alzheimer’s disease.
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General conclusion

In this thesis, we explored new patch-based grading methods to improve performance
for detection of Alzheimer’s disease. Our works have focused on two main tasks; the
detection of Alzheimer’s disease and the prediction of subjects’ conversion to this
dementia. In order to increase the classification performances, we identified four key
points, summarize by four questions.

The first one is “How to improve patch comparison to enhance informative sig-
nals encoded the patches?”. Indeed, patch comparison aims at capturing similar sig-
nals. Therefore, we assume that by enhancing relevant signal in the data, the patch
comparison would be more accurate and would result in more reliable patch-based
grading values. To answer this first question, we have proposed a new texture-
based grading framework to better capture structural alterations caused by AD.
Our method combines textural grading maps using a new adaptive fusion scheme.
Moreover, we also have proposed an histogram-based weak classifiers aggregation
approach to better discriminate early stages of AD. We have studied the optimal set
of texture directions and compared our adaptive fusion to other fusion schemes. The
results obtained in this work demonstrated the relevance of using textural informa-
tion in combination with our novel locally adaptive fusion method. The experiments
demonstrated the competitive performances of our new texture-based grading frame-
work compared to several state-of-the-art approaches.

The second question we answered in this thesis is “How to develop an efficient
multimodal approach involving d-MRI to improve performance of early detection of
AD?”. So far, the patch-based grading framework has been applied to structural
MRI. However, MRI techniques provide others modalities that extract different
information on brain tissues. Especially, diffusion MRI seems to be a promising
modality since it can capture microstructural alterations. We assumed that mi-
crostructural alterations occur before structural modifications and could lead to
earlier detection of Alzheimer’s disease. To explore the use of patch-based grading
method with diffusion MRI, we also proposed a new multimodal approach using our
new adaptive fusion scheme. This multimodal grading method based on s-MRI and
d-MRI provides a robust hippocampal biomarker. Our novel MPBG method was
compared to the volume and the average of MD over the whole hippocampus. This
comparison demonstrated that MPBG method improves performances for AD de-
tection and prediction. Moreover, a comparison with state-of-the-art diffusion-based
methods showed the competitive performance of our MPBG biomarker.

The third question we addressed in this thesis is “Is the study of hippocampal
alterations at a finer scale, such as hippocampal subfield analysis, effective for early
detection of AD?”. Indeed, hippocampus is a heterogeneous structure divided in dif-
ferent subfields having distinct characteristics and being unequally impacted by AD.
Therefore, the study of alterations of hippocampus at a finer grained scale should
improve the performance of AD detection. To this end, we proposed the analysis of
hippocampal subfield alterations with our new multimodal patch-based biomarker
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combining s-MRI and d-MRI. We analyzed the hippocampal subfields alterations
with the volume, the average of MD and MBPG method. Our experiments showed
that, although CA1 is the subfields having the greater atrophy in the late stage of
AD, the whole hippocampus provides the best biomarker for AD detection while
subiculum provides the best biomarker for AD prediction. Also, we compared our
novel MPBG method with the proposed texture-based grading method on the same
ADNI2 dataset. The results of this comparison conducted within the hippocampal
subfields showed that MPBG method provides better biomarkers for AD prediction,
even though our new texture-based method is better for AD detection.

Finally, the last question is “Does the combination of inter-subject similarities
and intra-subject variability can increase AD prediction performance?”. To date,
patch-based grading methods proposed a single feature computed by an average of
the grading values within a mask. We assume that a better modeling of brain alter-
ations could improve performances of Alzheimer’s disease detection and prediction.
Consequently, we have developed a new graph-based model to embed inter-subjects’
similarities and intra-subjects’ variability. Our experiments have showed the com-
plementarity of both information. Our method is composed of three main steps:
the grading of brain structures, the construction of the graph by estimating the
relationship of alterations throughout the different brain structures, and finally a
sparse selection of the most discriminant graph components. First, we have applied
our graph of brain structure grading method into the hippocampus. Our method is
based on a graph-based representation of inter-related hippocampal subfields alter-
ations. Second, we proposed to apply our novel framework to the brain structures.
Finally, we developed a method to combine these two applications of our graph-
based grading approach into a unified framework. Our method proposes for the
first time to embed in a single global framework alterations at a brain scale and a
hippocampal subfields scale. Our experiments demonstrated state-of-the-art results
for AD detection and prediction. These results confirmed the assumption defined in
the last part of this thesis. Indeed, our works demonstrated the need for modeling
the inter-related alterations in addition of capturing subtle alterations that occurs
into key ROIs.

The results of all contributions proposed in this thesis are summarized in the
table 11.5 and compared to state-of-the-art methods presented in the first part of
this manuscript. We can notice that despite the improvement proposed with TBG
obtains competitive results for AD detection, the prediction have not been improved
until we include intra-subjects’ variability information into our model. Furthermore,
the combination of both anatomical scale enabled to obtain state-of-the-art results
in both detection and prediction of AD compared with last advanced method based
on deep-learning. We have not provided results of MPBG in this tabular since it has
been carried out with another definition of MCI. However, MPBG obtained slightly
better results than TBG for AD prediction, even though TBG obtained outperform
MPBG for AD detection.
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Table 11.5: Comparison of state-of-the-art methods based on similar ADNI dataset. The
methods are grouped into: volume and surface-based, voxel-based morphometry, patch-
based and deep-learning approaches. The results are expressed in term of detection (i.e.
cognitively normal subject vs. Alzheimer’s disease patients) and prediction (i.e., non-
converted MCI vs. converted MCI) of Alzheimer’s disease. All results are expressed in
percentage of accuracy for balanced group, and balanced accuracy for results based on
unbalanced group of subject.

Method Region Feature Classifier Detection Prediction
Volume and surface-based
(Colliot et al., 2008) Hipp Volume NN 84.0 -
(Querbes et al., 2009) CC Thickness DT 85.0 73.0
(Gerardin et al., 2009) Hipp Shape SVM 88.0 -
(Wolz et al., 2011) Hipp Volume LDA 81.0 65.0
(Cuingnet et al., 2011) Hipp Shape SVM 76.5∗ 50.0∗

(Wolz et al., 2011) CC Thickness LDA 81.0 56.0
(Coupé et al., 2012b) EC Volume LDA 70.0 59.0
(Wee et al., 2013) CC Thickness SVM - 75.0
(Raamana et al., 2015) CC Thickness MKL 89.0 64.0
Voxel-based morphometry
(Wolz et al., 2011) Brain Tensor LDA 87.0 64.0
(Abdulkadir et al., 2011) Brain Gray matter SVM 87.0 -
(Cuingnet et al., 2013) Brain Gray matter SVM 91.0 -
(Moradi et al., 2015) Brain Gray matter LDS - 74.7
Patch-based
(Coupé et al., 2012b) Hipp Intensity LDA 88.0 71.0
(Tong et al., 2014) MTL Intensity SVM 89.0 70.0
(Tong et al., 2017a) Hipp Intensity SVM - 69.0
(Tong et al., 2017a) Brain Intensity SVM - 75.0

TBG (Hett et al., 2018d) Hipp Intensity SVM 91.3 72.2
GHSG (Hett et al., 2018a) Hipp Intensity RF - 74.7
GBSG (Hett et al., 2018b) Brain Intensity RF - 75.5
MGSG (Hett et al., 2018c) Brain Intensity RF 91.6 76.0
Deep learning
(Suk et al., 2017) Brain Volume CNN 91.0 74.8
(Luo et al., 2017) Brain Patch CNN 83.0 -
(Liu et al., 2018) Brain Patch CNN 90.5∗ 62.3∗

(Li et al., 2018) Brain Patch CNN 89.5 -

∗ Balanced accuracy
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Perspectives

Graph of multimodal grading

The first lead of research that we would investigate is the development of graph-
based model embedding different modalities such as T1, DTI, PET, etc. The first
step will be the straightforward application of our multiple graph of brain structures
to combine graph based on T1-weighted MRI and DTI. Indeed, the development of
a multiple graph learning method is a promising path to better predict the con-
version to Alzheimer’s disease. Indeed, during the last years, several methods have
shown that multi-modal framework enables to improve the prediction performance
of Alzheimer’s disease (see Arbabshirani et al. (2017)). However, those methods do
not model the topology of the multi-modal biomarker abnormalities. Furthermore,
the last graph-based methods (Parisot et al. (2017); Tong et al. (2017b)) used graph
modeling to encode inter-subjects’ group similarities. However, the information pro-
vided by the topology of multi-modal biomarker abnormalities could improve the
classification performances. The modeling of multi-modal signature of the dementia
is a challenging task, and multiple graph learning might be the best way to tackle
this issue.

Deep grading framework

Recently, the deep-learning method with CNN architecture has become intensively
studied, leading to many improvement in the computer recognition of natural im-
ages. These methods enable a modeling features at a higher level of abstraction.
Moreover, since the similarity of two patches is computed with a linear equation,
it would be possible to compute grading values with a deep-learning approach in-
stead the current sum of squared distance combined with a non-local search. This
could enable a finner modeling of patch similarity between the healthy subject and
the patients suffering from Alzheimer’s disease. We are currently working on this
project. The first results obtained on the hippocampus area are promising.

Application of our framework to other dementia

Finally, I will explore the efficiency of our novel methods to detect and predict other
brain disorders classification within a differential diagnostics framework. The dif-
ferentiation between several types of neurodegenerative diseases is crucial in clinical
practice. Indeed, although that Alzheimer’s disease is the most common dementia
for elderly people, several others brain disorders can occur during the aging, and
their differential diagnosis is a challenging task. To date, methods proposed a dif-
ferential diagnostics only for the detection of dementias (see Tong et al. (2017c);
Tolonen et al. (2018)). However, the development of a new differential diagnostics
framework that enables to better predict dementias at their first stages can help
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physicians when treatment decisions have to be made. Moreover, this improvement
has a significant potential for the enrichment of clinical trials.
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Linear classifier

A linear classifier achieves this by making a classification decision based on the value
of a linear combination of the features. Thus, the main assessment for this group of
classifier methods is that decision boundaries are linear. Such classifiers work well
in the case of features are linearly separable, reaching performances comparable to
non-linear classifiers with a lower computational time to train and use it.

Among linear classifier, the linear discriminant analysis (LDA) is a well-know and
widely used linear classifier method is (Fisher, 1936; Lachenbruch and Goldstein,
1979). In this approach a strong assumption is made on the conditional density
probabilities, x being the feature vector and y the pathological status of the subject,
p(x|y = k) are normally distributed with the parameters mean µk and the covariance
matrix Σk, where k represents the class. LDA assumes that any class k, Σk = Σ.
Thus, the linear discriminant functions is defined as follows,

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + logπk, (11.1)

Where πk = Nk/N is the class-k observations. The decision is made by finding the
optimal parameter with argmaxkδk(x).

A generalization of LDA is quadratic discriminant analysis (QDA). On opposite
of LDA, QDA does not assume the equality of covariant matrix Σk. The parameters
estimations of LDA and QDA are similar, except that separate covariance matrices
must be estimated for each class. Therefore, when the features dimensionality is
high, the number of parameters can dramatically increase.

Support vector machine

Support vector machine (SVM) is a generalization of linear decision boundaries
for classification that intend to find optimal separating hyperplanes (Cortes and
Vapnik, 1995). On opposite of LDA and QDA, SVM is a non-probabilistic binary
linear classifier. SVM intends to maximize the margin of the separating hyperplanes
as described in Figure 11.3.

With a given vectors of pairs (x1, y1), (x2, y2), ..., (xN , yN), where xi ∈ Rp and
yi ∈ {−1, 1}, SVM compute the optimal separating hyperplane. To deal with the
class overlap and allow for some samples to be on the wrong side of the boundary
decision, slack variables ξ = {ξ1, ξ2, ..., ξN} are defined. These variables aim to
penalize samples in the wrong boundary decision side. The equation minimization
form is expressed as follows,

min
β,β0

1

2
||β||2 + C

N
∑

i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i,

(11.2)
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intends to fix this issue with the use of multiple kernel extending the SVM framework
(Sonnenburg et al., 2006).

Decision tree and random forest

Decision tree is a non-linear approach that aims to split the feature space with in
a set of subspace and fit a simple model in each of them (Quinlan, 1986). Their
concept is simple but very powerful. In Figure 11.4, we consider a two dimensional
feature vector X = (X1, X2). The first split we consider to find the threshold
t1 maximizing the separability of feature of the dimensionality X. Next, a new
threshold is computed to split the subspace created by t1. This process continue
until the stopping criterion is reached, usually it is set as the minimum node size
or a certain tree depth. The algorithm intend to find the optimal split point t to
separate the space R into two half subspace R1 and R2, such as:

R1(j, t) = {X|Xj ≤ t} and R2(j, t) = {X|Xj > t} (11.3)

Figure 11.4: Illustration of the feature space partition conducted with the decision tree
method. The values t1, t2 and t3 are the splitting points computed to partition the feature
space into multiple subspaces.

150 Kilian Hett



The algorithm seek the splitting variable j and t that solve minj,t Gmk, where
Gmk is the impurity measure which can be defined as:

Misclassification error: 1− p̂mk(m)

Gini index:
∑K

k=1 p̂mk(1− p̂mk)

Cross-entropy: −
∑K

k=1 p̂mk log p̂mk

Where m is the index of the terminal node, k is the class and p̂mk =
1

Nm

∑

xi∈Rm
I(yi =

k) is the proportion of of class k observations in the node m. Here Nm the number
of observation, R the subspace of feature space and I(.) the indicator function. A
pruning algorithm is often done afterward. Indeed, the complexity of the tree is
defined as the number of split. The reduction of this complexity can prevent for
over fitting the training data. Finally, the classification of the observation is made
with k(m) = argmaxkp̂mk.

To reduce variance of an estimated prediction function, bagging and bootstrap
aggregation techniques have been proposed. Random forest (RF) (Breiman, 2001)
is a modification of bagging that builds a large set of de-correlated decision trees,
and use a majority voting to make the final decision. RF became very popular since
their are simple to train and use and have high abilities to deal with heterogeneous
data.

For each tree in the RF, a boostrap sample of the training data is selected. On
opposite of decision tree, each splitting step involve a random process that select l
feature from the vector of feature and pick the best feature and split point among
those l features.

Neural network

A neural network is a nonlinear model that consists of units (neurons), arranged
in layers (see Figure 11.5). The central idea is to extract linear combinations of
the inputs as derived features and model the target as a nonlinear function of these
features. The networks are defined feed-forward way as follows: a unit feeds its
output to all the units on the next layer. Each unit takes an input, applies a
function to it and then passes the output on to the next layer (LeCun et al., 2015).

In other words, for a 2-class classification, there are two units at the end of the
network, each one modeling the probability of the class that the unit represents.
Hence, there are K units for a K-class classification network, the K units measure
Yk, with k = 1, .., K each having a value between 0 and 1. For a single layer
network as illustrated in Figure 11.5, the derived features Zm, named hidden layer,
are created from linear combinations of the inputs and the target Yk is modeled as
a function of linear combination of the Zm, such as:

Zm = σ(α0m + αT
mX),m = 1, ...,M

fk(X) = gk(β0k + βT
k Z, k = 1, ..., K

(11.4)
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where Z = (Z1, Z2, ..., ZM). The function σ(.) is named activation function. The
first activation function was chosen to be a sigmoid, or hyperbolic tangent. However,
the recent neural network usually choose to a rectified linear unit (ReLU) that offer
practical benefits compare to the sigmoid function. The main benefit of the ReLU
come from its sparsity and by reducing likelihood of the gradient to vanish. Indeed,
the training phase of neural network induces a backward propagation that adjusts
the parameters of each layers fitting the network to the classification problem. Fi-
nally, the probability of each class k is usually computed with a softmax function
gk defined as:

gk(T ) =
eTk

∑K

l=1 e
Tl

(11.5)

Input Hidden 
layer

Output

Figure 11.5: Illustration of a single hidden layer neural network. Xi represents the input
i (i.e. the feature i), Zj represents the neurons j in the hidden layer of neurons and Yk is
the target output of class k.

With the recent development of deep-learning methods, neural-network has be-
come highly popular outperforming numerous state-of-the-art methods in pattern
recognition fields. However, in the neuroimaging fields, such approaches have barely
obtained competitive performance compare to more simple methods. The main lim-
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itations of these methods come from their great number to optimize, needing large
training libraries.
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