N
N

N

Parallelism and modular

HAL

open science

proof in differential dynamic
logic

Simon Lunel

» To cite this version:

Simon Lunel. Parallelism and modular proof in differential dynamic logic. Artificial Intelligence

[cs.Al]. Université de Rennes, 2019. English.

HAL Id: ¢t

NNT: 2019REN1S005 . tel-02102687

el-02102687

https://theses.hal.science/tel-02102687
Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02102687
https://hal.archives-ouvertes.fr

UNIVERSITE

BRETAGNE UNIVERSITE DE

RENNES 1

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

Rapporteurs avant soutenance :
AIT AMEUR Yamine, Professeur, INPT-ENSEEIHT, Toulouse, France
ZHAN Naijun, Professeur, Chinese Academy of Science, Beijing, China

Composition du jury :

Président : BLAZY Sandrine, Professeure, ISTIC, Université de Rennes 1, Rennes, France
Examinateurs : AIT AMEUR Yamine, Professeur, HDR, INPT-ENSEEIHT, Toulouse, France

ZHAN Naijun, Professeur, Chinese Academy of Science, Beijing, China

GAO Sicun, Assistant Professor, University of California, San Diego, USA

BOYER Benoit, Chercheur, Mitsubishi Electric R&D Centre Europe, Rennes, France
Invité(s) : GHORBAL Khalil, Chercheur, CNRS, IRISA, Rennes, France

Dir. de thése : TALPIN Jean-Pierre, H, Chercheur, HDR, INRIA, Rennes, France

Remerciements

Je tiens a remercier Sandrine BLAZY, Professeure de I’Université de Rennes 1, d’avoir accepté
de présider mon jury. Je remercie également Yamine AIT AMEUR, Directeur de Recherche a
PINPT-ENSEEIHT, et Naijun Zhan, Professeur au Chinese Academy of Science, d’avoir bien
voulu rapporter cette these et pour leur relecture minutieuse. Khalil GHORBAL, Chargé de
recherche & 'INRIA, et Sicun GAO, Assistant Professor de I’Université de San Diego, ont
accepté de faire partie de mon jury de thése et je les en remercie.

Je tiens & remercier tout particulierement mon directeur de theése, Jean-Pierre TALPIN,
Directeur de recherche a 'INRIA, pour m’avoir guidé tout au long de ces trois années de
doctorat et sans qui je n’aurais pu accomplir ce travail. Ses retours ont toujours été pertinents
et ont abondamment nourri ma réflexion. Je remercie aussi Benoit BOYER, Ingénieur de
Recherche a Mitsubishi Electric qui m’a encadré sur toute la durée de mes travaux et qui a
toujours été présent pour répondre a mes nombreuses questions. Son enthousiasme m’a aidé
a continuer a de nombreuses reprises. Mes remerciements vont aussi a David MENTRE pour
les nombreux échanges constructifs que 'on a eu dans les locaux de Mitsubishi Electric.

Je remercie aussi Denis COUSINEAU et Ocan SANKUR pour avoir été membre de mon
comité de suivi de these ainsi que pour leur nombreux conseils et encouragements lors de ces
discussions.

Ce manuscrit n’aurait pas été possible sans les nombreuses interactions et échanges que
j’ail eu avec d’autres chercheurs, notamment André PLATZER, Stefan MITSCH, Andreas
MULLER, Rajesh GUPTA, Shuling WANG. La liste n’est probablement pas exhaustive,
et je tiens a m’excuser d’avance pour tout ceux que joublié. Je tiens aussi a remercier
tous mes colleégues de I’équipe TEA pour les échanges toujours intéressants et pour un sou-
tien bien necessaire parfois : Loic BESNARD, Thierry GAUTIER, Vania JOLOBOFF, Hai
Nam TRAN, Alexandre HONORAT, Jean-Joseph MARTY, Liangcong ZHANG et Lucas
FRANCESCHINO. Merci a Stephanie LEMAILE et Armelle MOZZICONACCI pour leur
précieuse aide dans les dédales administratifs de 'INRIA. Enfin, je remercie Mitsubishi Elec-
tric et PINRIA pour avoir respectivement financé et soutenu matériellement ma these.

Je tiens a remercier mes parents pour leur soutien durant ma these ainsi que pour toute
leur implication les vingts-trois années précédentes. Cette these n’aurait jamais vu le jour
sans eux. Je remercie aussi mes amis a qui j’ai donné des nouvelles de maniere erratique et
qui ne m’en tiennent pas rigueur. Enfin, je remercie Lucie qui a réussi a me supporter durant
ces trois années et m’a toujours soutenu.

Résumé en francais

Les systemes cyber-physiques mélangent des comportements physiques continus, tel la
vitesse d'un véhicule, et des comportement discrets, tel que le régulateur de vitesse d’un
véhicule. Ils sont désormais omniprésents dans notre société. Un grand nombre de ces
systemes sont dits critiques, ¢.e. une mauvaise conception entrainant un comportement non
prévu, un bug, peut mettre en danger des étres humains. Ainsi, un régulateur de vitesse qui
autoriserait un véhicule a dépasser les limitations de vitesse met en danger les passagers du
véhicule.

Il est nécessaire de développer des méthodes pour garantir le bon fonctionnement de tels
systemes. La méthode la plus répandue est le test. On va tester de maniere approfondie si
une voiture se comporte comme attendue ou si le programme réagit comme souhaité pour un
grand nombre de situations possibles. Mais si cette approche permet de mettre en évidence
des problemes, elle n’est pas en mesure de garantir I’absence de problemes. En effet, si on
teste la voiture pendant un millier d’heures, il est possible qu’un probléme arrive uniquement
a partir de la mille-et-unieme heure de fonctionnement. Une autre approche a été développé
ces dernieres décennies en informatique et qui permet de garantir ’absence problemes : les
méthodes formelles.

Les méthodes formelles regroupent des procédés mathématiques pour garantir qu’un pro-
gramme se comporte comme attendu, par exemple que le régulateur de vitesse n’autorise pas
de dépasser la vitesse maximale autorisée. Mais les procédés développés I'ont principalement
été pour des programmes, i.e. que ’on ne considere pas la partie continue du systéme comme
I’évolution de la vitesse, et on peuvent donc garantir le bon fonctionnement du systeme
physique. Il est donc souhaitable de développer des méthodes formelles spécifiques pour
garantir le bon fonctionnement de systéemes cyber-physiques.

Une telle tache rencontre néanmoins un probleme de taille qui est de réussir a conjuguer
deux formalismes de natures différentes. En effet, les systemes physiques sont représentés par
des équations différentielles a valeur dans ’ensemble des nombre réels R. Les programmes sont
eux modélisés comme étant a valeur dans les entiers naturels N. Cela est particulierement
problématique pour la représentation du temps. Quand un programme s’exécute, on ne
s’intéresse pas au temps qui peut s’écouler entre deux instructions, la représentation du temps
est discrete. Mais ’évolution d’un phénomene physique est continue : il n’y a pas de pause.

André Platzer a proposé en 2007 un nouveau formalisme, la logique dynamique différentielle,
réunissant ces deux aspects. Ce formalisme permet de modéliser formellement, i.e. avec une
sémantique définie mathématiquement, des systemes exhibant & la fois des comportements
continus et discrets, ainsi que leurs interactions possibles. De plus, André Platzer a défini un
systeme de preuve permettant de raisonner sur de tel systemes et donc de garantir leur bon
fonctionnement. Il devient alors possible de modéliser formellement un régulateur de vitesse
avec I’évolution réelle de la vitesse et de démontrer qu’il est impossible que le véhicule dépasse
les vitesses maximales autorisées, cela pour un intervalle de temps arbitrairement long et non
pour les mille premieres heures.

Malheureusement, la mise en ceuvre de cette méthode requiert une connaissance appro-
fondie des systemes étudiés ainsi que des mécanismes de preuves formelles associées. En effet,
le systeme est représenté dans sa globalité, en un bloc monolithique, et la complexité de la
preuve augmente en fonction de la taille du systeme. Ainsi, des systemes relativement simples
du point de vue d’un ingénieur dans I'industrie nécessitent un effort important de preuve qui
ne peut étre supporté par un ordinateur. Il nous faut donc développer des méthodes pour
passer a I’échelle et augmenter la complexité des systemes étudiés.

La complexité d’'un systeme cyber-physique revét deux aspects a notre connaissance. Le

premier aspect est la complexité que nous appelons mathématique. Il s’agit de la complexité
inhérente a un phénomene physique, par exemple le déplacement d’un satellite ou 'on est
obligé de prendre en compte la théorie de la relativité. Le deuxieme aspect est la complexité
que nous appelons structurelle. Elle provient de la répétition de composants élémentaires,
par exemple une usine de traitement des eaux ou plusieurs cuves sont connectées ensemble.
Chaque cuve prise individuellement est simple & comprendre, modéliser, et de la, a prouver
son bon fonctionnement. Mais il est difficile de considérer 'usine en entier car la répétition
rend la modélisation plus complexe ainsi que la preuve. Ces systemes sont trés courants dans
les milieux industriels.

C’est ce dernier aspect que nous avons voulu traiter dans ce mémoire. Notre problématique
est comment modéliser efficacement des systémes cyber-physiques dont la complexité réside
dans une répétition de morceaux élémentaires. Et une fois que ’on a obtenu une modélisation,
comment garantir le bon fonctionnement de tels systeémes.

L’approche classique ot ’on modélise le systeme d’un seul tenant et essaye ensuite de
montrer son bon fonctionnement n’est pas applicable. La modélisation serait laborieuse et
sujette a erreurs dues a la taille du modele. La preuve du modele résultant ne pourra pas
étre prise completement en charge par un ordinateur car la puissance de calcul nécessaire
est beaucoup trop élevée. Un expert en démonstration de systéme cyber-physique sera donc
nécessaire.

Notre approche consiste a modéliser le systéme de maniere compositionnelle. Plutot que
de vouloir le modéliser d’un seul tenant, il faut le modéliser morceaux par morceaux, appelés
composants. Chaque composant correspond a une brique élémentaire du systeme et il est
donc possible de le modéliser facilement. On obtient le systeme complet en assemblant les
composants ensembles. Ainsi I'usine de traitement des eaux est obtenue en assemblant les
cuves ensembles. L’intérét de cette méthode est qu’elle correspond a l'approche des ingénieurs
dans l'industrie : considérer des éléments séparés que ’'on compose ensuite.

Mais cette approche seule ne résout pas le probleme de la preuve de bon fonctionnement
du systeme. Il faut aussi rendre la preuve compositionnelle. Pour cela, on associe a chaque
composant des propriétés et on prouve qu’elles sont respectées. Cette preuve peut étre effectué
par un expert, mais aussi par un ordinateur si les composants sont de tailles raisonnables. 11
faut ensuite nous assurer que lors de I’assemblage des composants, les propriétés continuent
a étre respectées. Ainsi, la charge de la preuve est reportée sur les composants élémentaires,
I’assurance du respect des propriétés désirées est conservée lors des étapes de composition.
On peut alors obtenir une preuve du bon fonctionnement de systeémes industriels avec un cott
de preuve réduit.

Notre contribution majeure est de proposer une telle approche compositionnelle a la fois
pour modéliser des systemes cyber-physiques, mais aussi pour prouver qu’ils respectent les
propriétés voulues. Ainsi, a chaque étape de la conception, on s’assure que les propriétés
sont conservées, si possible a 'aide d’un ordinateur. Le systeme résultant est correct par
construction.

Plus précisément, nous avons défini formellement une notion de composant dans la logique
dynamique différentielle. Un composant est constituée d’une partie discrete, par exemple le
controleur du niveau d’eau dans une cuve, et d’une partie continue —sous la forme d’une
équation différentielle—, par exemple ’évolution du niveau d’eau, le tout formant un systeme
cyber-physique. On ne fait pas d’hypotheses de priorité entre chaque partie, ce qui correspond
a la réalité de fonctionnement des systemes cyber-physiques. Le systeme est réactif, et peut
s’exécuter pour une durée de temps arbitrairement longue. Il est possible pour un composant

d’étre uniquement discret, par exemple le controleur du niveau d’eau, ou uniquement continue,
par exemple I’évolution du niveau d’eau. Cette définition est assez générique pour permettre
de modéliser un vaste ensemble de systemes industriels.

Une fois la notion de composant définie, il nous faut un moyen pour les assembler. On
a défini un opérateur de composition paralléle. 11 permet de modéliser deux composants
s’exécutant simultanément — en parallele—, par exemple deux cuves d’eau. Le parallélisme
des parties discretes est obtenue par entrelacement; n’importe quelle ordre d’exécution est
possible. Le parallélisme des parties continues est obtenue en considérant le systeme composée
de chaque équation différentielles. Le composant résultant est la réunion des deux parties,
encore une fois sans hypothese de priorité.

Notre opérateur de composition parallele est syntaxique et peut donc étre implémentée
par un ordinateur. Ainsi, un ingénieur aurait & définir chaque composant formellement, puis
le systéeme résultant par composition serait générée par l'ordinateur, réduisant les risques
d’erreurs d’inattention.

Notre opérateur possede deux importantes propriétés algébriques : la commutativité et
lassociativité. La commutativité veut dire que I'ordre de composition n’est pas pertinent.
Composer une cuve d’eau A en parallele avec une autre cuve d’eau B en parallele revient
exactement & la méme chose que de composer la cuve B en parallele avec la cuve d’eau A.
L’associativité veut dire que I’on peut construire notre systéme pas-a-pas. On n’est pas obligé
de composer tout les composants d’un coup. Ainsi la composition d’une cuve A avec une cuve
B, puis le tout composé avec une troisieme cuve C est équivalent a la composition des cuves B
et C d’abord, puis composé ensuite avec A.

L’associativité est une propriété clé pour obtenir une approche vraiment modulaire. Des
travaux précédents avaient déja proposé une approche compositionnelle dans la logique dy-
namique différentielle, mais leur opérateur de composition parallele n’était pas associatif.

On a donc une méthode permettant de modéliser un systéme cyber-physique de maniere
modulaire grace a une approche par composant. Mais ce n’est que la moitié du résultat désiré.
On veut aussi pouvoir faire les preuves de correction des systemes cyber-physique de maniere
modulaire.

A chacun de nos composants, on associe ce que ’on appelle un contrat. Un contrat est une
structure formelle permettant de représenter les hypotheses sous lesquelles un composant peut
s’exécuter ainsi que les garanties apportées par le composant. On peut prouver ensuite en
utilisant le systeme de preuves de la logique dynamique différentielle qu’un composant satisfait
son contrat associé, i.e. que sous les hypotheses énoncées, les garanties seront toujours vérifiées
pour n’importe quelle exécution du composant.

Nous avons démontré un théoreme qui nous assure que sous ’hypothése que chaque com-
posant satisfait son contrat, la composition parallele de ces composants satisfait la conjonction
des contrats. La conjonction de deux contrats est le contrat ou les hypotheses sont la conjonc-
tion des hypotheses respectives et les garanties sont la conjonction des garanties respectives.
Ainsi, on conserve la satisfaction des contrats a travers la composition permettant d’obtenir la
preuve de bon fonctionnement du systéme par construction. Cependant, plusieurs conditions
sont requises pour que ce théoreme soit applicable.

La premiere condition est que les composants ne partagent pas de sorties communes. Cela
veut dire que deux composants ne doivent pas agir sur les mémes parties du systéeme. Par
exemple, deux controleurs pour des cuves différentes ne doivent pas controler la méme vanne.
Il s’agit d’une bonne pratique de conception, deux composants agissant sur une méme sortie
amene des conflits et peut produire des comportements inattendus.

La second condition est que les garanties d’un composant ne doivent pas faire référence
aux sorties d'un autre composant. Ainsi, les garanties d’un controleur d’une cuve ne doivent
pas référer aux sorties d’un controleur d’une autre cuve. Il s’agit 1a aussi d’une bonne pratique
de conception. Les garanties d’un composant doivent faire référence a ses propres sorties, i.e.
celles sur lesquelles il a une capacité d’action.

La derniere condition est que les garanties d’'un composant ne doivent pas infirmer les
hypotheses d’un autre composant. En effet, cela veut dire qu'un composant ne se comporte
pas de la maniere attendue par le second composant. Il y a donc un probleme de conception.

Ces trois conditions sont énoncées de maniere syntaxique et peuvent donc étre vérifiées
par un ordinateur. Ainsi, il est possible d’implémenter complétement cette méthode pour
conserver les contrats lors de la composition.

Pour résumer, nous avons proposé une approche permettant de modéliser et vérifier un
systeme de maniere modulaire. Nos définitions sont syntaxiques et 'approche peut donc étre
implémenté afin d’automatiser notre approche.

Nous avons implémenté un prototype dans le prouveur interactif de théoremes KeY-
maera X. Cela permet de montrer la faisabilité d’une telle implémentation. Nous avons
étudié deux systemes industriels afin de valider notre approche. Le premier est un régulateur
de vitesse, le second une usine de traitements des eaux composée de plusieurs cuves d’eau en
parallele. L’étude de ces deux exemples a permis de montrer la viabilité de notre approche,
mais a aussi mis en relief les améliorations possibles.

Un point particulierement important concerne la classe des systemes controlés par or-
dinateur. Il s’agit des systémes ou une grandeur physique, par exemple 1’évolution du
niveau d’eau d’une cuve, est régulé par un programme, par exemple le contréleur du niveau
d’eau. Le programme surveille ’évolution continue a ’aide d’un capteur qui mesure la valeur
périodiquement. Le programme doit ensuite agir de maniere a ce que les propriétés désirées
soit toujours respectées. Ainsi, pour la cuve d’eau, on veut que le niveau d’eau ne déborde ja-
mais. La caractéristique clé de ces systemes est la relation périodique au temps. Le controleur
doit avoir une information suffisamment souvent pour pouvoir réguler le systeme.

On a montré comment on pouvait améliorer notre approche précédente pour prendre
en compte ces aspects temporels supplémentaires. Lors de la définition d’'un controleur,
I'ingénieur doit préciser sa période d’exécution, i.e. 'intervalle maximum entre deux exécutions
du controleur. Lors de la définition de la partie dynamique, il doit fournir sa contrélabilité. Il
s’agit de la durée maximum pendant laquelle le systeme dynamique peut évoluer sans inter-
vention du controleur et encore satisfaire les propriétés voulues. On a modifié notre opérateur
de composition parallele et démontré que ’on conserve la satisfaction des contrats lors de la
composition sous les mémes conditions. On requiert en plus que la période d’exécution du
controleur soit inférieure a la controlabilité du systéme dynamique. Il s’agit encore une fois
d’une bonne pratique de conception, un systéeme ne satisfaisant pas cette condition aurait peu
de chance de fonctionner.

On a ensuite généralisé cette adaptation. On associe une période d’exécution lors de la
définition d’un composant discret et une controlabilité lors de la définition d’un composant
continu. On modifie aussi légérement notre opérateur de composition paralléle pour prendre
en compte ces deux caractéristiques temporelles. Lors de la composition parallele de deux
systemes discrets, la période d’exécution résultante est la somme des périodes d’exécution.
En effet, on suppose que 'exécution se fait sur une seule unité de calcul et le parallélisme est
obtenue par entrelacement. La controlabilité d’un composant continu résultant de la compo-
sition parallele de deux composants continus est le minimum des contrélabilités respectives.

Malgré ces ajouts, notre opérateur de composition parallele reste commutatif et associatif.

De la méme maniere que ’on a généralisé la modélisation par composants a des systemes
avec des caractéristiques temporelles, on a généralisé notre théoréeme permettant de conserver
la satisfaction des contrats lors de la composition. Etant donné la preuve de satisfaction des
contrats respectifs, on peut exhiber la preuve de satisfaction de la conjonction des contrats.
Les mémes conditions que précédemment sont nécessaires ainsi que la période d’exécution
résultante doit toujours étre inférieure a la controlabilité résultante.

Finalement, on a adapté notre approche pour modéliser deux autres cas que ’on rencontre
fréquemment dans les systeémes industriels : les modes de fonctionnement et la causalité
temporelle. L’exemple récurrent des modes de fonctionnement est la présence d’un mode
nominal, ou le systéme fonctionne normalement, et d’'un mode dégradé, ou le systéme doit
garantir uniquement des propriétés vitales. Par exemple, dans le cas de nos cuves d’eau
interconnectés, le premier mode correspond au fonctionnement normal ou les niveaux d’eau
ne doivent pas déborder, mais aussi étre suffisamment élevés pour garantir un débit minimal
a la sortie de la cuve. Le mode dégradé correspond a une urgence, par exemple un bouton
poussoir d’urgence enclenché, et toutes les vannes sont fermées. On veut juste alors garantir
que les cuves ne débordent pas.

On modélise chaque mode comme étant un composant et on obtient le systéme compor-
tant les deux modes de fonctionnement avec notre opérateur de composition parallele. Mais
on ne peut pas conserver les contrats lors de la composition. En effet, nos deux composants
représentant chacun un mode ont des sorties communes, et les conditions de notre théoreme
de composition ne sont pas donc pas remplies. Mais ces deux modes ne s’exécutent pas
vraiment en parallele, ils sont méme exclusifs; il n’est pas possible qu’ils se déroulent simul-
tanément. On caractérise chaque mode avec une formule, et sous condition que les formules
sont contradictoires, on peut conserver les contrats lors de la composition.

Nous avons aussi défini un opérateur de composition causale. Il est souhaitable parfois
d’ordonnancer deux composants plutét que de les exécuter en parallele. Par exemple, un cap-
teur doit toujours s’exécuter avant le programme utilisant les données du capteur pour réguler
le systeme dynamique. Dans le cas contraire, le programme raisonnerait avec des données
périmées et ne se comporterait pas comme attendu. Ce nouvel opérateur de composition reste
compatible avec 'opérateur de composition parallele et est toujours associatif, nécessaire pour
la modularité de notre approche. Comme précédemment, nous avons démontré un théoreme
permettant de conserver les contrats lors de la composition.

En conclusion, nous avons développé une méthodologie modulaire fondée sur la composi-
tion pour modéliser formellement et vérifier des systemes cyber-physiques. Nous avons illustré
qu’elle peut étre implémenté et modifié pour s’adapter a de nouveaux défis. Elle sert de base
théorique pour développer un outil sur la modélisation formelle et la preuve de systéemes
cyber-physiques.

Introduction

Programs are used to govern numerous parts of our society: in the monitoring of railway
networks or money transfers for example. It is mandatory that they behave correctly. When
we order online goods, we want to be sure that no one can access our personal information.
Power grids, water-plant and planes are all supervised by complex programs; a bug may lead
to disastrous and potentially deadly consequences. Such systems are called safety-critical.

To avoid bugs, software engineers have developed numerous testing procedures, but they
are fundamentally limited. “The test of programs may be a very efficient way to show the
presence of bugs, but is desperately inadequate to prove their absence” (Djikstra, 1972). A
test can not ensure that every behavior of a program is correct since there is an infinity of
behaviors, it only assesses that it works for the finite set of tested behaviors. Another approach
is to use the so-called formal methods. Instead of testing if a program works correctly for some
behaviors, it advocates the use of mathematics to prove that the program behaves correctly
for every possible execution. They are costly, being thus applied for critical programs only.

Numerous approaches and tools have been developed these past decades, and great suc-
cesses have been achieved. The CompCert compiler is a compiler for a consequent subset of
the C language formally verified using the theorem prover Coq. The Communication-Based
Train Control (CBTC) program running the lane 14 of Parisian subway has been entirely
developed using the B method, an other formal verification technique. But they have been
obtained at the cost of great effort and intensive research, and their systematic replication in
the industry is still not feasible.

Most approaches to the problem of verification of program assumed it to be already written
and try to prove that it behaves correctly. The conception of the program is usually achieved
by an expert of the domain and the verification process by a proof engineer who is not
familiar with the domain. The former conducts the development without thinking about the
formal verification. The latter has to deconstruct the software in order to conduct the proof.
It results in a huge amount of wasted time and resources, and possibly misunderstandings.
The correct-by-construction approach advocates the idea that the design and the verification
should not be separated, but rather conducted simultaneously. The verification provides
significant insights for the development of the software which is in return produced with its
verification as a goal. The B method follows this paradigm, which is believed to be the key
point of its success.

In the case of the CBTC verification, only the program has been verified; the physical
quantities involved (e.g. the speed of the train) are not considered or idealized. Programs
as the CBTC do not simply perform a computation, they exhibit frequent interactions with
the physical environment. The resulting behavior can not be fully understood without taking
physical evolution into consideration. Since such programs are often critical, e.g. auto-pilot of
planes or monitors of water-plant treatment, it is highly desirable to develop specific formal
methods.

Systems where physical behavior, e.g. the speed of a train, is mixed with discrete behav-
iors, e.g. the CBTC, are called cyber-physical systems (CPS) or hybrid systems. The first
behavior assumes a continuous model of time when the second possesses a discrete model of
time. The difference of nature between theses two models render the formal design of hybrid
systems very complex. Plus, many systems exhibit intangible interactions between discrete
and continuous behavior. Reasoning about such systems demands tools capable to accom-
modate the different abstractions level such as the system level, processor level, logic level,
etc.

In 2007, the Differential Dynamic Logic is defined by André Platzer to model and verify

10

such systems. It provides a precise mathematical semantics and considers physical evolution
on the same level as programming constructs. It features a proof system to ensure the
correctness of behaviors which has been used to prove numerous use-cases, some of them
unverified previously. The proof system has been implemented in the interactive theorem
prover KeYmaera X. This theorem prover is designed toward automation which is a key
functionality to make tractable proofs.

Despite this, most of the problems are still intractable in practice and a methodology to
tackle large problems is thus required. One of the most ancient method to address a difficult
problem is to divide it into smaller parts, as exposed by Descartes in his book Discours de la
méthode. Each part is easier to understand for a human, but also easier for a computer to
treat. Seeking methods to efficiently break down a system is thus highly desirable. Numerous
works have been produced for programs, but few have been done for cyber-physical systems
and in Differential Dynamic Logic.

My main contribution is the definition of a modular component-based framework in Differ-
ential Dynamic Logic to model and prove correctness of Cyber-Physical Systems. It provides
theoretical basis to represent parallel composition of Cyber-Physical systems and how to
implement a correct-by-design approach.

11

Contents

1 Adressed problem
1.1 Verification of Cyber-Physical Systems
1.1.1 Scalable verification of hybrid systems
1.1.2 Interest of hybrid systems
1.1.3 Our approach: correct-by-design
1.2 Stateoftheart
1.2.1 Formalisms for discrete systems
1.2.2 Addition of continuous features
1.2.3 Other approaches to verification of Cyber-Physical Systems
1.2.4 Existing tools Lo
1.3 Contributions L

2 Introduction to Differential Dynamic Logic
2.1 Modeling of Cyber-Physical Systems
2.1.1 Discrete behaviors or programs
2.1.2 Ordinary Differential Equations
2.1.3 Blending discrete and continuous aspects
2.2 Expressing Propertiesin dC
2.2.1 First-order Real Arithmetic
222 Amodallogic.
2.3 Proving properties in dL
2.3.1 Generalities on sequent calculus
2.3.2 First Order Real Arithmetic
2.3.3 Structural ruleso
2.3.4 Hybrid program rules Lo Lo
2.4 Theoretical results

3 A modular component-based approach in Differential Dynamic Logic
3.1 Definition of a component L Lo oL
3.1.1 What isacomponent
3.1.2 Definition in dL e
3.2 Parallel composition operator L Lo
3.2.1 Parallel composition of components
3.2.2 Definition in dL
3.2.3 Comparison with the parallel composition of hybrid action systems . .
3.2.4 Relation to the meta-theory of Benveniste

12

15
16
16
16
17
17
17
18
21
23
25

27
28
28
31
33
33
34
35
36
36
37
41
42
o1

53
54
54
58
61
61
63
67
69

3.3 Modular proof
3.3.1 Necessary conditions oo
3.3.2 Technicalresult
3.3.3 For two continuous components
3.3.4 For two discrete components
3.3.5 For a discrete component and a continuous component
3.3.6 For two general components

3.4 A prototype in KeYmaera X
3.4.1 Presentation of Bellerophon
3.4.2 Implementation in KeYmaera X

3.5 Study of a water-plant example oL
3.5.1 Environment and initial conditionso
3.5.2 Water-level o
3.5.3 Controller
3.5.4 Water-tank
3.5.5 Water-Planto
3.5.6 Discussion Lo e

Extensions of our framework

4.1 Computer-Controlled Systems oo
4.1.1 Modeling Computer-Controlled Systems
4.1.2 Coverage of the standard encoding
4.1.3 Modular proof of a Computer-Controlled System

4.2 Parallel composition in a timed framework
4.2.1 Definition of a timed component
4.2.2 Timed parallel composition for discrete components
4.2.3 Timed parallel composition of continuous components
4.2.4 Timed parallel composition of a discrete and a continuous component
4.2.5 Timed parallel composition of two general components

4.3 Handling of modes L
4.3.1 Modular modeling Lo o
4.3.2 Modular proof

4.4 A Causal Composition operator
4.4.1 Modular Modelling o
4.4.2 Algebraic properties
4.4.3 Modular proof

Future works
5.1 Continuing from the results on parallel composition.
5.1.1 Extending the parallel continuous composition with complementary do-
00T 3 T
5.1.2 Relaxing conditions of composition theorem
5.1.3 Addition of communication channels
5.1.4 TImplementation Lo
5.2 Improving extensions of the parallel composition
5.2.1 Timed parallel composition with several CPUs
5.2.2 Modes for continuous systemso

13

70
71
73
74
82
85
89
92
92
93
100
100
102
103
104
107
108

110
111
111
114
116
118
119
121
124
127
129
133
133
135
139
139
141
143

5.3

5.2.3 Causal composition for continuous components 155

Toward integration of refinement into component-based approach 155
5.3.1 Refinement indLl 155
5.3.2 Refinement and parallel composition 156

14

Chapter 1

Adressed problem

15

Cyber-Physical systems (or hybrid systems) are pervasive in our society. Autonomous
vehicles, water-plant or train control systems are examples of such systems. It is important
to have methods to faithfully model such systems and soundly reason on it. Furthermore,
these methods should be scalable, i.e. applicable to industrial systems as a water-plant factory.

We present briefly the problem of the scalable verification of hybrid systems in Section 1.1.
Verification of hybrid systems is an important subject and numerous solutions have been
proposed. We present in Section 1.2 such solutions. Lastly, we detail our contribution in
Section 1.3; it consists of a modular component-based framework, to address the problem of
modeling and proof of hybrid systems.

1.1 Verification of Cyber-Physical Systems

In Subsection 1.1.1, we give a detailed presentation of hybrid systems and of the verification
problem. We identify the challenges specific to this problem. We justify in Subsection 1.1.2
the interest of a formal treatment of hybrid systems and detail the need for proved systems.
In Subsection 1.1.3, we detail briefly our approach.

1.1.1 Scalable verification of hybrid systems

Cyber-Physical Systems (CPS) (or hybrid systems) mix continuous behaviors with discrete
behaviors. Continuous behaviors can be the speed of a vehicle or the water-level in a tank.
Discrete behaviors can be computer programs as a tachymeter or a water-level controller. It
can also be discontinuities between two continuous behaviors. In the bouncing ball example
[105], the fall and the bounce of the ball are two different continuous evolution and the
transition is modeled by a discrete behavior.

The problem of verification of hybrid systems consists in the development of mathemat-
ical methods to ensure the correct behavior of such systems. Numerous methods have been
proposed over the years for cyber systems, but much less for CPS. The reason is the com-
plicated interaction between the continuous behaviors and discrete behaviors. They have a
distinct model of time. Computers are assumed to function on a discrete basis. Between two
operations, there is a gap. But a plant evolves continuously; the speed of a car does not jolt.

Numerous solutions have been proposed to answer the challenge of modeling and verifica-
tion of CPS. But they are still not applicable to industrial systems as a water-plant factory
due to an increasing complexity in the conception or/and the verification. There is a need
for methodologies to scale up.

1.1.2 Interest of hybrid systems

Hybrid systems are ubiquitous and are used daily by everyone without knowing it. They
perform numerous tasks, most of them being critical. It is thus mandatory to ensure that
they behave correctly, i.e. they meet their requirements. The most common methods to verify
it is the use of testing methods. But they are fundamentally limited since they can only show
the presence of bugs, not their absence. Formal methods ensure such absence and are thus
desirable for systems where the failure is not acceptable.

A massive amount of efforts have been put to the development of efficient verification tools
and of methodologies for computer systems, but few for cyber-physical systems due to the
complicated relation between continuous and discrete behaviors. Efficient verification tools

16

reduce the proof effort to ensure that desired safety properties are satisfied. Methodologies
provide designers with guidance to efficiently model and prove systems. There is a crucial
need for efficient tools and methodologies to scale formal verification for hybrid systems.

1.1.3 Owur approach: correct-by-design

The current process to obtain reliable cyber-physical systems is to first design the system, then
to verify if meets its specification. But, once a system is designed, it is very difficult to prove
its correctness with respect to the specification. The processing of a proof is very different
from the design process and is often realized by a different person or team. Communication
issues add up in the case of different teams restraining more an efficient processing of the
proof. It is thus highly desirable to have methods to carry the design phase simultaneously
with the verification phase. It is the correct-by-design spirit.

Numerous formal methods have been developed to ensure correctness of a system, but a
few of them are scalable, i.e. that can be applied to realistic systems used in the industry
and not just on toy examples. The correct-by-design approach has been used for most of the
realistic systems verified by formal methods, e.g. the lane 14 of the Parisian subway. But it
is not enough to ensure scalability and the other proven approach is the component-based
approach.

1.2 State of the art

The most popular approach to tackle the issue of modeling and verification of hybrid sys-
tems has been the extension of existing formalisms with hybrid features, i.e. with differential
equations. We present such formalisms and their extensions in the two Subsections 1.2.1
and 1.2.2. Yet, several formalisms are not adaptation of previous work. We present them in
Subsection 1.2.3 s.

1.2.1 Formalisms for discrete systems

We present briefly formalisms primarily introduced to model and verify computer programs
or discrete systems. They have been extended to hybrid systems.

Automata theory Automata theory denotes the approach where systems are modeled by
automata and the verification is performed by model-checking [68]. It is widely used to model
formal languages and plays a major role in the field of formal verification.

B/Event-B The B-method is a refinement-based approach to develop programs from an
abstract specification [3]. It has been successfully used to develop the lane 14 of the Parisian
subway.

Fvent-B is an extension with a more flexible approach to refinement [70]. It is for example
possible to introduce events during a refinement step.

Dynamic Logic Dynamic Logic is a deductive approach to the verification of infinite-state
discrete systems [108]. Its characteristics are to internalize the operational model of the
system within logical formulas to the same level as the properties to be verified. A single

17

formula thus represents a system with its environment, assumptions, model and guarantees
of good behavior. It has been able to verify consequent Java programs [91].

Action Systems Action Systems are a formalism describing general reactive systems in
terms of atomic actions occurring during the execution of a system. The approach has been
applied to parallel and distributed systems [13].

It allows to model terminating or infinitely repeating systems, e.g. embedded systems.
Since most of hybrid systems are reactive systems, several extensions to continuous behaviors
have been proposed.

Communicating Sequential Processes Communicating Sequential Processes (CSP) is a
formalism proposed by Hoare in 1978 [66] to describe concurrent aspects of programs. CSP
allows to describe systems as independent component processes. It uses message-passing
communication to model the interaction between processes. It is mainly used to model safety-
critical systems.

Synchronous languages Synchronous languages have been developed to ensure the cor-
rectness of safety-critical embedded systems [21,53,58]. They support functional concurrency
and synchronicity. They aim to remain simple in order to facilitate the adoption by software
engineers. They are founded on a solid mathematical basis which makes it amenable for
proofs of correctness and certification purposes. Several successes in the industry have been
obtained [19)].

1.2.2 Addition of continuous features

This section presents formalisms obtained by the addition of continuous features. The original
formalisms are presented in Subsection 1.2.1. The approach consists of the adjunction of
differential equations as a new language construct.

Hybrid automata Hybrid automata is a formalism introduced in 1993 to model hybrid
systems. It extends the notion of automata with differential equations [8,63]. It has been one
of the first formalisms for modeling systems with mixed discrete-continuous behavior and has
attracted a lot of attention during the last decades. Hybrid automata have allowed the study
of numerous sub-classes of hybrid systems and provided important theoretical results.

Once a system is modeled as a hybrid automaton, we verify properties by model-checking.
The properties are usually expressed in the Real Arithmetic theory. For example, the model-
checker Hytech can verify properties on linear hybrid automaton [65].

Given two hybrid automata, it is possible to compose them in parallel to obtain a new
system. The resulting hybrid automaton is exponential in size, and thus intractable; it is the
state-space explosion problem.

I/O hybrid automata [/O hybrid automata is an extension of hybrid automata where
the inputs and outputs are explicit [83]. It has been developed to tackle the composability
issue and it allows to use the notions from contract theory. The verification of systems is also
performed by model-checking of desired properties.

18

Simulation-based verification Verification by simulation [40, 41,54, 60,90] considers full
set of time-bounded trajectories of a hybrid system evolving from an initial state. The ver-
ification is carried on by means of finite sample of initial states and a sensitivity argument.
It starts with a sufficiently dense sample of initial states on which numerical simulation is
applied to obtain the corresponding trajectories. The sensitivity argument is then used to
over-approximate the “tube” of trajectories.

Verification of stochastic hybrid systems Stochastic behaviors are omnipresent in hy-
brid systems due to the inherent uncertainty of environment or simplifications tackle the
complexity of modeling and verification. Stochastic hybrid systems exhibit a tight interac-
tion of discrete, continuous and stochastic behaviors.

Hybrid automata have been extended to model such systems. The verification is then done
through reachability analysis [2,7,29,44,121,129] or simulation [84,133]. Theses works have
introduced different notion of hybrid automata which differ on the randomness is introduced.

Another possibility is to introduce stochastic differential equations which generalize dif-
ferential equations [2,30,69]. A compositional modeling framework have been proposed to
handle the modeling of complex stochastic hybrid systems by André Platzer in d£ [100] and
the formalism HMODEST [57]. This last works extends the MODEST modeling language
with differential equations. MODEST is high-level language inspired by process algebra and
features compositional modeling as a native feature.

Hybrid Event-B Hybrid Event-B intends to apply the approach by refinement, character-
istic of the B method, to hybrid systems [4,16]. The development is carried as with Event-B,
except that continuous behaviors can be specified.

Differential Dynamic Logic (d£) Differential Dynamic Logic (dL) is a hybrid extension
of the Dynamic Logic. It is a logic-based approach to the modeling and verification of hybrid
systems [95]. The theory is implemented in the theorem prover KeYmaera X [85] whose core
has been formally verified in Coq and Isabelle [25].

Differential Dynamic Logic provides important theoretical results. It has proved that
discrete systems, continuous systems and hybrid systems are equivalent in a proof-theoretic
viewpoint [101]. More precisely, there is a sound and complete axiomatization of hybrid
systems relative to continuous dynamical systems, and conversely, there is a sound and com-
plete axiomatization of hybrid systems relative to discrete dynamical systems. These results
increase the confidence in the ability of computers, intrinsically discrete, to handle the veri-
fication of hybrid systems.

Hybrid systems are modeled by the so-called hybrid programs. The discrete fragment is
a small and Turing-complete programming language. It corresponds to the modeling part
of Dynamic Logic, which has been successfully used to verify several Java programs in the
theorem prover KeY [6].

The continuous fragment is comprised of Ordinary Differentials Equations (ODEs). The
instructions of the programming language are at the same level as discrete instructions. They
can thus be combined freely with them. The differential equations are required to have a
solution, but it is not mandatory to exhibit it to verify properties.

Properties are expressed in First-Order logic of Real Arithmetic augmented with a modal-
ity ([.]). Real Arithmetic allows to represent polynomials, but not trigonometric or exponen-

19

tial functions. First-Order Logic connects real arithmetic terms. The modality articulates
the behavior of hybrid programs with the properties.

A proof system under the form of a sequent calculus has been defined. Key aspects of
sequent calculus are a syntactic deductive approach amenable to automation and an adapt-
ability to extensions of logic. It features rules to handle First-Order logical connectives and
structural properties of proofs and rules to reason on hybrid programs. The former are com-
mon to many other sequent calculus. The latter can be subdivided in two. One part is
devoted to discrete instructions, and corresponds to rules in Dynamic Logic. The second part
regroups rules to reason on ODEs. Among these, the rule of Differential Invariant stands
out by its importance. It allows to prove that an ODE satisfies a property without having
to provide the solution. It makes a parallel between the discrete iteration and an ODE. The
sequent calculus has been proved sound, i.e. that every derived formula is semantically true.

Several extensions of dL have been proposed. In [96] and [71], the authors proposed an
extension of d£ with the diamond — { — and the box — [] — constructs of standard temporal
logic [107]. This conservative extension allows to express that a property ¢ is true along
all states of every trace of a hybrid program o — [a]Jp. Other extensions are Quantified
Differential Dynamic Logic used to model distributed hybrid systems [99], or an extension
for hybrid games [109]. In [118], the authors introduce architectural abstractions for hybrid
programs. They address the issues caused by the monolithic approach of d£, difficulty of
understanding and change, bu using component-based engineering.

The proof system has been first implemented in KeYmaera [105], which is an extension of
the KeY theorem prover [17]. The theorem prover has been completely rewritten to become
KeYmaera X [47]. The kernel asserting and checking the correctness of the proof has been
reduced to several thousands of lines of code and has been verified in Coq and Isabelle [25].
KeYmaera X is aimed toward automation [85]. It uses back-end tools, Z3 [39] and Math-
ematica [126], to respectively discard real arithmetic formula and reasoning on differential
equations.

In [88], the authors introduced a commutative (non-associative) composition operator in
dL. It allows to break down a system model into independent functional parts or components.
Under a proof of the properties associated to these components as a contract, a theorem allows
to transfer properties to the global system. A more recent work of A. Muller and A. Platzer
[89] is more closely related to our contribution. It extends previous work on component-
based design in dL by presenting a way to handle retro-action along with a methodology to
efficiently use it. It adds an important feature to earlier work [88] allowing to model a wider
class of systems, but it still lacks modularity for design and proof automation capabilities as
the composition is not associative.

Hybrid Action Systems Two different extensions of Action Systems have been intro-
duced: Differential Action Systems and Continuous Action Systems.

Differential Action Systems are an extension of Action Systems with a new action: the
differential action [114,116]. It represents differential equation. The weakest precondition
reasoning associated for differential action is developed with it.

The approach taken by Continuous Action Systems [12] is to enhance the variable with
time-dependent attributes. They are seen as functions from R, the time-domain, to con-
tinuous or discrete value domains. It allows to model real-time systems without adding new
actions and thus not having to redesign a proof theory behind it.

20

Hybrid Communicating Sequential Processes Hybrid Communicating Sequential Pro-
cesses is an extension of the process algebra CSP proposed in 1994 by Jifeng He [32,73]. It
integrates real-time and continuous constructs such differential equations to model continuous
evolution. As a process algebra, HCSP features to construct complex systems out of simpler
ones, notably using communication channels and a parallel composition operator which are
native. It has been used to model several industrial systems such as the Chinese Train Control
System [80] and a running aircraft [124].

In 2010, a Hoare-style calculus is introduced to reason about HCSP [56,80,123]. It makes
an extensive use of the Duration Calculus [31] to record the execution history of HCSP process.
The reasoning is a standard pre and post-conditions calculus. To reason about continuous
evolution, the authors introduce differential invariant [104,120]. They have extended their
approach to take into account communication failures, or probability and stochastic behav-
iors [93,124]. The calculus have been implemented in the theorem prover Isabelle [92] using
both a shallow and deep embedding [125]. They make use of the SledgeHammer tool to au-
tomate consequent parts of the proof. They have used it to verify several industrial systems
such as the Chinese Train Control System [80,123] or the descent guidance control program
of a lunar lander [130].

A framework to link HCSP models to Simulink diagrams have been proposed Zou et
al. [132]. Simulink diagrams are prominent in the industry, and brings many benefits to
validate systems by simulation, but they lack formal guarantees. Translating a Simulink
model into an HCSP model allows to obtain them. They have extended it to take into
account Stateflow diagrams [131].

Yan, Zhan et al. show how to discretize continuous HCSP to discrete HCSP. From the
discrete model, they generate executable code and prove that the generation does not alter
the meaning of the program [127,131]. It leads to a toolcgain, MARS [33], within which
it is possible to model a hybrid system with Simulink, translate it into an HCSP process,
generates invariant and verify them using the implementation into Isabelle, and finally obtain
executable SystemC code [128].

Extensions of synchronous languages Zelus is an extension of Lustre with Ordinary
Differential Equations [26]. It allows to model both continuous and discrete behaviors and
stay compatible with synchronous programs.

1.2.3 Other approaches to verification of Cyber-Physical Systems

Other approaches have been proposed and are not the extension of a formalism with dif-
ferential equation. They may be a new formalism as the d-decidability. They may be also
formalisms which have not been primarily intended for hybrid systems, but is expressive
enough to be applied to, e.g. TLA or Coq.

0-decidability J-decidability has been introduced by Sicun Gao, Jeremy Avigad and Ed-
mond Clark in 2012 [49,50]. It is a new decision procedure to decide the satisfiability of
formulas of extensions of Real Arithmetic. Real Arithmetic is decidable, but extensions with
trigonometric or exponential functions are undecidable. This undecidability holds for a pre-
cise and symbolic decision procedure. Most of the algorithms used for numerical computation
are based on approximations and are precise only up to a certain error. The authors follow

21

this idea to define a relaxed notion of correctness up to some error d, hence the name of
d-decidability.

They define a procedure called the d-decision problem. It either proves that the system is
safe or states that it is unsafe under some perturbation which can be made arbitrarily small.
It is implemented in the SMT solver dReal [51]. The procedure is fully automatic. It has
been adapted for several extensions of the theory and provides a way to encode ODEs [52].
A system has to be modeled as one formula in the SMT solver dReal, and it is thus not
compositional.

Linear Temporal Logic (LTL) The Linear Temporal Logic (LTL) [107] is a modal logic
devised to reason about temporal properties of a program. It allows to state properties such
as “For every execution of the program, the property ¢ will hold” or “There is an execution
of the program for which the property ¢ holds”. A generic use is to design a system under
the form of an automaton, and then to model-check a property expressed in LTL [34, 35].

It is widely used to express properties of discrete fragment of hybrid systems. But it is not
adapted to reason about complete hybrid systems which exhibit continuous behaviors since
the properties of LTL are related to discrete executions of a program.

Temporal Logic of Actions (TLA and TLA+) Temporal Logic of Actions (TLA) is a
formal specification language inspired by the Temporal Logic of A. Pnueli [107], and devised
by L. Lamport in 1990 [76]. The author intend to provide a mathematical setting to specify
concurrent programs.

The extension TLA+ is designed to be more suitable for engineers by providing means to
represent large formulas and systems [77]. Both formalisms feature a proof system to perform
proofs. It has been used to specify hybrid systems in [110], and a general approach to the
verification of hybrid systems is proposed in [76].

Modular proofs of hybrid systems in Coq In [111,112], the authors follow the idea of
modular proof of hybrid systems in the foundational proof assistant Coq. They have been
able to verify the behavior of a drone.

Hybrid Algebras for hybrid systems Several attempts have been made toward the defi-
nition of a process algebra for hybrid systems. Brinksma and Krilavicius propose an extension
of the classical processes algebra to hybrid processes [27,28], but their approach stays at the
design level and does not provide any tool to prove properties. Peter Hofner presents algebraic
approaches for several formalisms such as hybrid automata, CTL or Neighborhood Logic [67].
R. Alur et al. have presented a theory of modular design and refinement from hierarchical
state machines implemented in Charon [9], where verification of large systems would amount
to non-modularly explore the state-space of its composed elements.

Abstract interpretation Abstract interpretation tackles the problem of verification of
properties on a complex system by abstracting it [37]. It aims to formalize the notion of
approximation. The system is transferred into an abstract domain where it is easier to verify
properties. The proof on the abstract domain transfers to the concrete domain. This approach
has obtained some great successes [38]. Several specific abstract domains have been proposed
for hybrid systems [10,59].

22

Contract-based design Contract-based design advocates the use of contracts to precisely
define the inputs and outputs of a system. In the legal system, a contract formalizes the
commitment of a supplier, an employee or a product, for example the supply of ten tons of
steel per day to a car company by a smelting plant, the selling of five cars per day or the
guarantee that the product will work perfectly fine for three years. It formalizes also the
assumptions under which the output is guaranteed, for example, there is enough iron ore
delivered to the smelting plant, that the employee is provided with a computer and a salary,
or again that the product is used properly.

Contracts in systems are pairs of formulas (A, G) which state the assumptions A under
which the system operates, and its outputs satisfy the guarantees G. A and G are formulas
of a logic defined according to the type of system under consideration. It is known also as
pre and post-conditions and is used in several proof tools as [43].

The meaning of a contract is intuitive to grasp and matches the current work-flow of
engineers. It is natural to use it with a component-based approach. We associate to every
component a contract representing the assumptions on its inputs and the guarantees on the
outputs.

It has attracted a lot of attention in the field of embedded systems and hybrid systems
because it is easily understandable by engineers and scalable. But a drawback is that it
considers component as a black box, and just specifies the behaviors on inputs and outputs.
To develop a system, we need to couple it with a modeling language to specify components,
e.g. a Java program. To ensure that the properties defined in the contract are coherent and
that the component satisfies them, we need a proof system. It can be a theorem prover as
Coq [22] or [92] or an SMT solver as [39] or [51].

Benveniste et al. defined in 2012 a meta-theory of contracts to provide a unified framework
for contract-based design [18]. It can be instantiated by different contract theories, e.g. A-G
contracts or I/O contracts, and aims to ease the communication between separate teams of
engineers.

1.2.4 Existing tools

This section is devoted to tools that have been developed to model and verify hybrid sys-
tems. There are general interactive theorem provers (Coq, Isabelle) or specific (KeYmaera,
KeYmaera X). We present also model-checkers like HyTech, PHAVer or UPPAAL, and SMT-
solvers like Z3 or dReal.

General theorem provers: Coq and Isabelle Coq and Isabelle [22,36,92] are generic
interactive proof assistants first released respectively in 1986 and 1989. Coq implements the
Calculus of Inductive Functions. It is used for the formalization of mathematics and proof of
mathematical theorems, but also to model and verify software. It provides interactive proof
methods along with a tactic language. It has notably been used for the formalization of the
proof of the four-color theorem [55] and the verification of a C compiler [79].

Isabelle is also an interactive theorem prover providing a meta-logic used to express math-
ematical formulas in a formal language. It features several proof tools and has been used for
the proof of correctness of the seL.4 microkernel [74].

KeYmaera KeYmaera is the first theorem prover to implement d£ [105]. As the Differential
Dynamic Logic is an extension of Dynamic Logic, KeYmaera is an extension of the theorem

23

prover KeY which implements Dynamic Logic. It is coupled with Mathematica [126] and
Z3 [39] to treat real arithmetic formulas.

It provides some automation, but is not designed toward this goal; most of the proofs
require a manual effort. The kernel amounts to more than one hundred of thousand lines of
codes and has not been verified. The proofs produced are not completely trustworthy.

KeYmaera has been completely redesigned into KeYmaera X.

KeYmaera X KeYmaera X is the successor of KeYmaera [47], but completely rewritten
with clean foundations and automation in mind. It still uses Mathematica and Z3 as external
solvers to discharge goals. The kernel numbers less than ten thousand lines of codes and has
been formally verified in Coq and Isabelle [25]. A tactic mechanism, Bellerophon, has been
added, which allows proof programming [46].

dReal dReal is an SMT solver specialized in Real Arithmetic enriched with trigonometric
functions or exponential functions [51]. It implements the mechanisms of §-decidability. It
has been used to verify hybrid systems that were outside of the scope of existing tools.

Z3 73 is a general SMT-solver developed by Microsoft [39]. It is used as a back-end tool in
KeYmaera and KeYmaera X to discharge real arithmetic formulas.

HyTech HyTech is a symbolic model checker for hybrid systems [65]. The systems are
represented under the form of hybrid automata and safety or liveness properties are model-
checked against it. It has been used to verify multiple case studies such as the generic railroad
crossing [62,64].

PHAVer PHAVer is another model checker for hybrid systems [45]. It uses the same core
algorithm as HyTech, but adds several features to treat systems that were outside the capa-
bilities of HyTech. It has been used to verify the navigation benchmark [42] or the bouncing
ball system.

UPPAAL UPPAAL is a tool designed for the verification of real-time systems, but also
modeling and simulation [78]. The systems are modeled as a network of timed automata. It
has been used to verify multiple use-cases such as a collision-avoidance protocol [5,72].

Conclusion The formalisms in Section 1.2.2 and 1.2.3 have all proposed methods to model
hybrid systems and means to verify some properties on them. Several ideas have been imple-
mented and tested on various kinds of problems, allowing to evaluate their power. We have
presented different verification and modeling tools in Section 1.2.4.

To our understanding, there are two kinds of complexity that researchers have tried to
tackle, mathematical and systemic. The mathematical complexity is about the kind of systems
that are considered. Some formalisms are restricted to the linear differential equations and
other handle larger classes of ODEs. The properties may be expressed only in Real Arithmetic,
or others use trigonometric or exponential functions. From this point of view, d£ and the
d-decidability approach provide great advances.

The systemic complexity refers to systems that do not possess theoretical mathematical
difficulties, but where the size, often through repetition of similar components, is the main

24

difficulty to handle. This problem is not restricted to hybrid systems and is encountered in
diverse domains. For example, a factory is often a system with numerous captors, monitors,
and actuators, each one being very simple to understand and handle, but the overall behavior
is difficult to apprehend.

Two methods have emerged as an efficient way to tame systemic complexity: refinement
and component-based approach. The former consists of starting with a simple system, easy to
understand and verify. It is upgraded progressively, refined, until obtaining the desired system.
Each upgrade is kept simple allowing to handle the growing complexity. This approach
obtained successful results and the B method is its most famous representative. The latter
tames the complexity by breaking a system into pieces, the so-called components, which are
simple enough to be handled separately. It is a popular approach in computer science or
engineering.

1.3 Contributions

Modular component-based approach in Differential Dynamic Logic We have de-
fined a modular component-based approach to model and prove correctness of cyber-physical
systems in Differential Dynamic Logic (d£). The modeling and the proof are carried together
following correct-by-design principles.

We have defined a notion of component in dL which is able to model a wide variety of
hybrid systems. We have defined a parallel composition operator to build a system from its
parts and illustrated it with a cruise-controller example.

We have proved that the operator is commutative, which means that the order of com-
position is not important, and associative, which means that we can compose in a modular
way. It allows to model a system by considering each component separately rather than in
a monolithic way. To our knowledge, it is the first syntactic parallel composition operator in
dL which is commutative and associative. Previous attempts do not yield associativity, and
therefore modularity.

We have associated to every component a contract which specifies its assumptions and
guarantees. The user is required to prove that the components satisfies its contract using the
sequent calculus of dL.

We have demonstrated a composition theorem which ensures that we retain contracts
through parallel composition; if two components satisfy their respective contract, then the
component resulting from their parallel composition satisfies the conjunction of contracts. It
allows to carry the proof of correctness of components during the construction of the system,
reducing the proof effort to smaller systems, more likely to be tractable. Instead of proving
the correctness of the complete system as in the monolithic approach, we have to prove the
correctness of each part.

The proof that we retain contracts from composition is constructive; given the proof of
satisfaction of respective contracts, we have showed how to obtain a proof of satisfaction of the
conjunction of contracts. We have implemented this process as a prototype in KeYmaera X to
show the feasibility of an automation of our process. We have studied a water-plant use-case
to identify improvement points, leading us to new developments.

Extension of our modular component-based approach We have adapted our par-
allel composition operator to modularly model Computer-Controlled Systems (CCS). They

25

are systems where a continuous part, the plant, is regulated by a program, the controller, and
regroups most of industrial systems. A key aspect of such system is the timing aspect; the
controller must executes sufficiently often to ensure a correct functioning. But our parallel
composition operator does not provide insights on the timing aspects.

We have presented how to systematically take into account timing aspects: the control
period of the plant and the execution period of the controller. We have identified a framework
to apply our parallel composition operator and demonstrated that we retain contracts through
composition, all illustrated with a water-tank example.

We have extended the timing approach to handle systems where several plant and monitors
are running in parallel. We keep track of the control period and execution period through
composition to ensure it does not result in flawed systems. We have demonstrated that we
still retain contract and illustrated how it applies to the water-plant example.

We have identified a framework to soundly and modularly represent modes in a cyber-
physical systems via an composition operator adapted from the parallel composition operator.
As previously, we can associate contracts and retain them through composition.

We have defined a causal composition operator to model the ordering of two components,
e.g. a sensor before a monitor. It is an adaptation of the parallel composition operator and
is thus compatible with it. We have showed that it is associative, hence modular, and that
we retain contracts through composition.

26

Chapter 2

Introduction to Differential
Dynamic Logic

27

Differential Dynamic Logic (dL) is an extension of the Dynamic Logic, DL, of V. Pratt
[61,108] obtained by the addition of Ordinary Differential Equations (ODEs). DL is a modal
logic developed to model and verify imperative programs, in particular Java programs [6].
dL extends it in both aspects; it allows the modeling of ODEs and interactions with regular
programs, and it provides verification methods for hybrid systems.

dL has been proposed to model and verify hybrid systems. The dominant approach in
the previous decade was the modeling of a hybrid system as a hybrid automaton and the
model-checking of various properties. dL adopts a deductive approach to the problem of
verification. It is designed to be a general framework for hybrid systems.

Hybrid systems are represented by so-called hybrid programs which can be discrete or
continuous. Every system that can be represented under the form of a hybrid automaton
can be represented by a hybrid program [95]. It allows the modeling of a wide variety of
use-cases. We can model the speed of a car or its position relatively to a fixed point, essential
for autonomous vehicles. We can also model the water-level of a tank in a water-treatment
plant along with their control systems. An important aspect is the possibility to represent
and reason on real time instead of a discretized version.

The properties are formulas of the First-Order Real Arithmetic augmented with the modal-
ity [.]. It allows to reason on the executions of a hybrid program. For example, we can express
that at every point of time, the speed of a car stays in a safe range.

The verification of properties is achieved by a specific sequent calculus. It has been demon-
strated sound and is implemented in the theorem prover KeYmaera X [47]. It features specific
rules to reason on instructions of the language.

We present in Section 2.1 how to model hybrid systems with the help of hybrid programs.
We show in Section 2.2 how to associate properties to hybrid systems, notably safety and
liveness properties. The Section 2.3 is devoted to the presentation of the sequent calculus
and its rules to prove properties on hybrid programs. We present theoretical results on d in
Section 2.4.

2.1 Modeling of Cyber-Physical Systems

Hybrid systems exhibit both discrete and continuous behaviors. This duality is expressed in
dL by the modeling of ODEs and programs. We present in Subsection 2.1.1 how we model pro-
grams and in Subsection 2.1.2 how we represent differential equations. The Subsection 2.1.3
is devoted to examples of hybrid systems modeled in d..

2.1.1 Discrete behaviors or programs

In this section, we define the syntax and the semantics of discrete programs. We illustrate
the semantics with graphical examples and show how to implement the Fibonacci sequence
and a car-controller example.

Programs are usual computer programs. They are defined from a small language which is
Turing-complete; every program written in C or Java can be expressed in dL. It is easier to
reason on a small language, and the lack of usability can be overcome by definition of macros.
This small language is the same as in Dynamic Logic (DL) [108] [61].

Definition 1 (Syntax of discrete programs).

a,fu=x:=070|a;f|aup]|a*

28

where ¢ is a formula (Def. 6) and 0 is a real arithmetic term (Def. 5).

x := 0 is the assignment of term 6 to the variable x. 7 tests if the formula ¢ is true. The
operator ; denotes the sequence between two hybrid programs and u is the non-deterministic
choice between two hybrid programs. «o* is the iteration of « an arbitrary finite number of
times, possibly zero.

The semantics is a possible world Kripke semantics where worlds represent the possible
system states and the accessibility relation between worlds is reachability by hybrid transi-
tions. The states are tuples of variables to which are assigned real values. The value of a
variable x in a state w is denoted by [z],, and of a term 6 in a state w is denoted by [6],.

The semantic of programs is given by the reachability relation p,(«). It denotes the set
of states w reachable by the program « starting from the state v.

Definition 2 (Reachability semantic of discrete programs).

x:=0)={w |w = v except that [x], = [0].,}
pu(te) ={v|vie}

Oé;ﬁ) :Uwepy(a) ,OW(,B)
pv(a v B) =py(a) v pu(B)
po(@®) =U,en p(@) witha® =2T
and a"=a™: «

where v = @ means that the state v satisfies the formula .

We provide graphical examples of the reachability of each construct. The reachability set
of the assignment from the state v is all the states w which are the same as v, but for the
value of x. For example, in the Figure 2.1, the value of = in the sate w is now 42, but the
value of y is unchanged.

The reachability set from the state v of the test is the set formed of only the state v, but
which satisfies the formula . The values of the state are unchanged (cf Figure 2.26).

T =42 7o
y=2 y=2 y=2
Figure 2.1: Assignment Figure 2.2: Test

A reachable state of a; 8 from a state v is a state reachable by g from a reachable state of
a. In the Figure 2.3, v3 is a reachable state from 5 by 3 := y + 1 and 14 is a reachable state
of v1 by x := 42. Thus v3 is a reachable state from vy by the program z :=42;y := y + 1.

29

r:=42;y:=y+1

Figure 2.3: Sequence

A reachable state from the state v by a u § is either a reachable state of a or of 8. In
the Figure 2.4, w; is a reachable state from v by x := 42 and w- is a reachable state from v
by y := y + 1. Thus, w; and wy are reachable states of z :=42 Uy :=y + 1.

xr = 42
y =2

z:=42vy:=y+1

Figure 2.4: Non-deterministic choice

A state w is reachable from the state v by o™ if it is reachable by the program o™ which
is n consecutive executions of «. For example, vy is reachable by y := y + 1 and v3 by
y:=y+ 1;y :=y + 1. They are both reachable states of (y := y + 1)*.

y:=y+1 y:=y+1 y:=y+1
r=4 r=4 r=4
Y= y=3 Y=
(y:=y+1)*

Figure 2.5: Iteration

We can define the program that computes the Fibonacci sequence.
Example 1 (Fibonacci sequence).

Fibonacci = (Fn = n+1;Fn+1 = Fn+2;Fn+2 = Fn+1 + Fn)*

30

We assume that the formulas F, =0, F,41 =1 and F,12 = 1 hold at the initialization.
We can also encode a simple speed-controller for a car.

Example 2 (Controller for a car).
((?accel;a =A)va:= —b)>l<

If the condition accel is true, the car may accelerate by A, but it can always brake by —b.

Encoding of usual programming structure We retrieve the while and if-then-else
structure with the following encoding. The interested reader can find more encoding in [61, p.
167].

if ¢ then a else = (Ty;a) U (T—yp; B)
while ¢ do a = (7p;)*; 7=

2.1.2 Ordinary Differential Equations

In this section, we present the syntax and the semantic of Ordinary Differential Equations
(ODEs) in d£. We illustrate it with several examples.

The modeling of physical phenomena is mostly made by the use of differential equations
since the foundational work of Leibniz and Newton. The idea is to consider any infinitesimal
change in an equation to represent continuous motion. In mathematics, the change is made
with respect to an arbitrary variable, but in physics, we are mostly interested by the change
with respect to time. We adopt the convention that the variation of a quantity, represented
by x, over the time is denoted by x.

Definition 3 (Syntax of differential equation).
X=0x & H
where H is a formula of dL.

X is vector of variables (z1,...,z,) and Ox a vector (O1,...,0,) of terms of real arith-
metic. The symbol & stands for a separator between the differential equation and the
evolution domain H. It characterizes the domain in which it can evolve; if the formula H is
not true, then the evolution is not considered. For example, the evolution domain of time,
represented by the variable ¢, is ¢ > 0 since it does not make sense to consider negative time
by convention.

We assume that every differential equation has a solution which is unique. We define
accordingly the semantic using this solution. We define the reachability for a differential
equation with only one variable, but it is easily generalized for a vector of variables.

Definition 4 (Reachability semantics of differential equation).

p(@ =0, & H) = {f(r)]| thereis a function f:[0,7] - S such that
f(t) =2 =0 and f(t) = H for everyte [0,r]}

31

S is the set of states. f(¢) has to be understood as a solution of the differential equation.
The reachable states are every point to which the dynamic system can evolve providing that
the evolution domain still holds.

For example, in the Figure 2.6, w is a reachable state where the value of x is f(2), but
the value of y stays unchanged. Another reachable state is the one where the value of x is
f(2.1) and the value of y is unchanged. The behavior of an ODE can be understood as an
assignment iterated, except that the iteration step is infinitesimal.

=2t & t=0

[l
kh
=

I

—_

[l

DO —,
)

I

W

< 8
Il
[\
< 8
Il

Figure 2.6: Differential equation

We can model most of physical systems of interest. A limit is the modeling of dynamic
systems which do not admit solution, e.g. Partial Differential Equations (PDEs).

Example 3 (Passing of time).
t=1& t=>0

t represents the time, and it evolves linearly. We consider also the time to be always
positive by convention.

We are able to model more complex systems such as the speed of a car or the water-level
in a tank or in several tanks.

Example 4 (Speed of a car).
t=v,0=a & v=0

where x is the position of the car, v the velocity (speed) of the car and a the acceleration of
the car.

It is a system of differential equations and we add in the evolution domain v > 0 because
a speed is always considered positive.

Example 5 (Water-Tank). '
wl = fin — fout & wl =0

where wl is the water-level, fin is the inlet flow and fout is the outlet flow. We assume that
the water-level is always positive, i.e. that it is not below the bottom of tank.

Example 6 (Water-Plant). We can represent the water-level of a network of connected water-
tanks. For example, if the inlet flow of the second water-tank is the outlet flow of the first
water-tank and similarly for the second and third water-tank.

32

wly = fing — fouty
wlo = fout; — fouts & wli =Z0Awlo =20Awls =0
wl; = fouty — fouts

We can model continuous systems and discrete systems, but the very interest of hybrid
systems is the interaction of the two. The next section is devoted to several examples of such
interactions.

2.1.3 Blending discrete and continuous aspects

We present in this subsection several examples of standard hybrid systems. We present the
bouncing-ball example where the discrete interaction is not provoked by humans, and the class
of computer-controlled systems which are designed by humans. The bouncing-ball example
is a popular and simple hybrid system where the discrete interaction does not come from a
controller.

Example 7 (Bouncing ball). It models the velocity v and height h of a falling ball. The
discrete interaction comes from the bouncing on the floor. The ball falls until it touches the
floor (h = 0), then it bounces back. The velocity of the bouncing back is function of the falling
velocity moderated by a damping factor c accounting for loss of kinetic energy.

(h=0v,0=—g & h>=0;?h=0;v:= —cv)*

g s the value of gravity. The differential equation evolves until the height h equals 0.
Then, we can pass the test Th = 0 and we assign the value —cv to the velocity which accounts
for the bouncing. The iteration constructs allows to consider an arbitrary large number of
such sequences.

Modeling Computer-Controlled System Computer-Controlled systems are frequently
encountered and regroup systems where a continuous behavior, so-called plant, is monitored
by a controller, in this case a computer with sensors and actuators. The controller is triggered
by a timing condition. It executes at least every A units of time.

Example 8 (Time triggered).

(((?accelya:= A) v a:= —=b);toy =t (Control)
t=v,0=a,t=1& v=20At=0At—toy <A (Plant)

We are now able to model hybrid systems in dL, the next step is to express properties
that such systems should satisfy, for example that the water-level of the tank is within some
interval.

2.2 Expressing Properties in d_

First Order Real Arithmetic is a first-order logic with terms of Real Arithmetic. It allows
to represent polynomial terms, but not trigonometric or exponential terms. We present it in
Subsection 2.2.1. Formulas in d£ are First Order Real Arithmetic formulas augmented with
the modality [.]. [a]¢ means that the formula ¢ holds for every executions of the hybrid
program «. We detail it in Subsection 2.2.2.

33

2.2.1 First-order Real Arithmetic

We define the syntax of terms of Real Arithmetic and their semantic. We define also the
syntax of formulas of First-Order Real Arithmetic and their semantic. We present examples of
properties that we can express and state the surprising result of Tarski about the decidability
of the First Order Real Arithmetic.

Definition 5 (Terms of Real Arithmetic).
91,92::=$‘0|1‘01+92|91—92|91X92‘01+€2

The variables x are valuated in R. We have the usual semantic for the operators +, —, x, =.
It allows polynomials, e.g. + x? + 22, but does not allow more complex expressions like log-
arithms, exponential or trigonometric functions. The valuation of a term 6 at a state v is
denoted by [0],.

We define the formulas of Real Arithmetic by adding comparison operators between terms,
<, <,=,2>,>, and logical connectives.

Definition 6 (Formulas of First-Order Real Arithmetic).

o, = O ~O | mploat|ovy oy |Vop|Jzp| L
where ~ € {<,<,=,>,>}

We define the semantic only for the connectives ~, 1, A, — and V. The others can be
deduced from it.

Definition 7 (Semantic of formulas). The satisfiability of formulas is provided for any state

v:
Vlzel ~62 < [[91]]1/ ~ [[92]]11; ~€{<7<7:7>7>}
vEpaYy e vEpadvEY
vEp—>1Y < ifvEethenvEY
viEYrp < Yw such that Vz,z # x = [2]w = [2], we have w |= ¢
v L

We can express that a quantity x is within an interval x € [—42,42] as —42 <z A x < 42.

Example 9 (Water-level property). We require that the water-level wl in the water-tank
stays between 3 and 7 : wl = 3 A wl < 7. It means that there is always a sufficient outlet
flow, and that it does not overflow.

Tarski Algebra Surprisingly, contrary to the First-Order Natural Arithmetic, the First-
Order Real Arithmetic is decidable, it is the so-called Tarski’s Miracle [122]. The reason
comes from the sign conservation between two zeros of a polynomial in R, which is not the
case for the natural arithmetic.

Theorem (Tarski’s Miracle). The First-Order Real Arithmetic is decidable, with a complexity
doubly exponential in time.

Despite of the decidability result, it is still complex to prove formulas of Real Arithmetic.
Much progress have been made these last decades with efficient SMT solvers like Z3 [39].

We want to ultimately prove that a system satisfies a property for all its executions, i.e.
that it is an invariant. For example, we want that the water-level wl stays always between 3
and 7. We need modality to express such statement.

34

2.2.2 A modal logic

We present in this section the syntax and the semantic of the modal operator [.]. It allows
to express safety properties of a system. We show how to encode the notion of contract. We
present also the modal operator {.) to express liveness properties.

Modal operator [.] We add to the definition of formula of the Real Arithmetic the modality
[a]¢ which means that “for every reachable state by «, the formula ¢ is true”.

Definition 8 (Formulas of d().

o, = [alel|b~0| ~plonrd|ovi|p—9|Vop|Izp| L
where ~ € {<, <, =,>,>}

where « is a hybrid program (Def. 1 and Def. 8). We retrieve the Real Arithmetic formulas
defined in Def. 6.

The semantic is defined as follows.

Definition 9 (Semantic).

viElalp e Vwep(a), wie

The modality [.] articulates the behavior of hybrid programs and formulas of Real Arith-
metic.

Example 10. The formula [t = l,d=eé=—-d & t> 0]6{2 + €2 < 72 means that the
property d* + €% < r? is always true for any execution of t = 1,d = e,é = —d.

Example 11 (Satisfaction of the water-level property). The formula [Water — tank]3 <
wl < 7 means that the water-tank system satisfies the water-level property.

Remark 1. In [a]p, the formula ¢ is required to hold only at the end state of the execution.
For example, the formula [x := —1; 2z := 42]ax = 0 is valid although x is negative in the middle
of the execution. An extension of AL with temporal constructs has been proposed to take into
account the intermediary states [96]. However, most of systems of interest are modeled as a
iterated hybrid program o*. The semantic of the iteration implies that @ will be required to
hold at every possible executions of «, including the initial state since it is allowed to have
zero iteration.

Assume-Guarantee reasoning The Assume-Guarantee reasoning is widely used to ex-
press properties under which a system works and the properties guaranteed. It consists in
the specification of formulas which hold for the inputs, the assumptions, and for the outputs,
the guarantees. A contract is the 2-tuple of assumptions and guarantees.

Definition 10 (Contract in dL). Let o be a hybrid program, A the assumptions under which
a behaves and G the guarantees provided. A contract is represented by the formula

A — [a]G

Example 12. We want to ensure that under the assumption that F,, = OAFpy1 = 1A Fpi9 =
1, the Fibonacci program in the Example 1 satisfies the property Fnio = Fpy1 + F,. It is
represented by the formula

(F, =0A Fp1 =14 Fyyo =1) > [Fibonacci|Fpro = Fop1 + F,

35

Liveness properties The modality [.] allows to express safety properties, i.e. true for every
execution of the system under consideration. We may be interested by liveness properties,
i.e. properties which have to hold for at least one execution of the system under consideration.
The notion of liveness in d£ differs from the one in LTL or CTL. In the former, it is “there
is one execution of the system for which the desired property holds”, but for the latter, it
is that “for every execution of a system, there is a possible execution which leads to a state
where the property is true”.
The liveness modality {.) is the dual of the safety modality.

Definition 11 (Syntax of {.)).
{p = —la]-p

From the semantics of [.], we can deduce the semantics of {.).

Definition 12 (Semantics of {.)).
v oy = e pla), wk g

Conclusion We have presented how to model hybrid systems in d£ (Section 2.1) and the
definition of formulas of d£ (Section 2.2). We have also shown how to associate properties to
hybrid programs. In order to verify that a hybrid program satisfies its properties, we need
a proof system. The next section is devoted to the presentation of the rules of the sequent
calculus of d.L.

2.3 Proving properties in d_

This section is devoted to the detailed presentation of the proof system of dL. We present
briefly the general characteristics and definitions of sequent calculus in Subsection 2.3.1. In
Subsection 2.3.2, we present proof rules to prove First-Order Real Arithmetic formulas. We
present structural rules in Subsection 2.3.3. Theses rules are used to clarify proofs. In
Subsection 2.3.4, we present specific rules to reason on the execution of hybrid programs.

2.3.1 Generalities on sequent calculus

We present in this section generalities on sequent calculus along with the definition of a sequent
and how to read proof rules. We also state the definition of soundness and completeness for
a proof system.

A sequent calculus is a deductive proof calculus which relies on proof rules. It is widely
used to perform and represent proofs. Sequent calculus exhibits interesting aspects such as
the fact that it is a syntactic approach and thus amenable to automation. It is also easy to
implement proof strategies to augment its usability. Lastly, it is easily extendable to take into
account other theories. Several theorem provers use sequents to represent proof reasoning,
for example Coq [36], B-method [3], KeY [6].

It is characterized by the use of sequents I' - A where I" (resp. A) is a finite set of formulas

Y-y Yn (T€SP. 01,...,0m). The meaning is “the conjunction of formulas in I' implies the
disjunction of formulas in A” and is thus equivalent to the formula A v — \/ 9;.
1<ign I<gsm

36

Premise 1 . Premise n
Conclusion

Given a sequent, we can derive a proof tree by the use of proof rules. It is composed of n
sequents above the bar, called premises, and one sequent under the bar, called the conclusion.
The semantic is “If the premises are valid, the conclusion is valid”.

The set of proof rules is the sequent calculus. An important property is the soundness of
rules, i.e. that if the premises of a proof rule are valid, then the conclusion is valid.

Definition 13 (Soundness). A sequent calculus is sound if all its proof rules are sound.
Equivalently, for any formula ¢, if we have a derivation (denoted by \ @), then the formula
is valid (denoted by =).

It means that every formula proved with a sound sequent calculus is semantically valid.
It links a syntactical and mechanical procedure with a semantic meaning. The converse is
the completeness property. Every valid formula can be proved within the sequent calculus.

Definition 14 (Completeness). A sequent calculus is complete if for any valid formula ¢,
i.e. = ¢, we have a derivation, i.e. - ¢.

A sequent calculus for a logical theory which exhibits both properties implies that the
theory is decidable.

2.3.2 First Order Real Arithmetic

We present the rules to handle First-Order Real Arithmetic formulas. We define closing rules
which are leaves of a proof tree, then propositional rules which are for logical connectives —,
—, A and v. We present quantifier rules for quantified formulas.

Closing rules Closing rules are rules which do not have any premises. They are used to
close the proof tree, i.e. they are leaves. We present them in the Figure 2.7.

—_—ax Real Arithmetic
Lok e A TE 0 ~0yA QE
T, IrA © T-T.A |

Figure 2.7: Closing rules

The axiom rule ax means that “If ¢ is known and we try to prove , then the proof is
valid”. The rule L is the ez falso quod libet reasoning; if we have false in the hypothesis, we
can derive every formula, and thus our current goal. The rule T is the inverse. We try to
prove that the goal T is true, which is the case by definition.

The rule QE is slightly different. It is the rule to handle the validity of terms of real
arithmetic. They are are premises, but we do not consider them because we assume that
there is an external procedure to handle them. In KeYmaera X, it is achieved by Z3. The
name QE stands for Quantifier Elimination. A first-order theory admits quantifier elimination

37

if for each formula ¢, a quantifier-free formula gelim(y) can be effectively associated that is
equivalent, i.e. ¢ «<— qelim(p) and has no other free variables. Real Arithmetic enjoys such

property.

Propositional rules Propositional rules are for the logical connectives —, —, A and v.
They are presented in the figures 2.8, 2.9, 2.10 and 2.11.

—

Lo-¢,A FEp, A TipEA
F'Ep—9,A L=y A

Figure 2.8: Rules —, and —;

The rule —, transcripts the semantic of a sequent. To prove the goal ¢ — 1 is the same
as assuming ¢ and trying to prove the goal ¢b. We have a dual rule for the case where the
formula is in the hypothesis, i.e. on the left of a sequent. It splits in two premises. The left
premise asks to prove ¢ and the right premise assumes v; to be able to use ¥ as an hypothesis,
we have to prove that ¢ is true.

Cp-A F'p A
T

' —p, A I—pFA
Figure 2.9: Rules —, and —;

The rule —; means “To prove A knowing I and —, either I is sufficient or ¢ is true, thus
— is false”. We have the dual rule —,.. We can derive them from the rules 1 and —;:

e A E—
’ 1 can be derived from 'Ee A LA —

The notion of derived rule is very important. It can be understood as “macros” for proof
and it leads to proof programming [46]. It is one of the strengths of sequent calculus, and it
is necessary to scale to complex systems.

oA THYA Lo = A
'-paAy, A Lonty A

Al

Figure 2.10: Rules A, and A;

The rule A, has two premises; to prove the goal ¢ A 1, we have to prove the ¢ and v
separately. The dual rule A; transcripts the semantic of a sequent. The set of formulas on
the left of - are interpreted as a conjunction.

ok A Ly A Vi ', ¥, A
FeovyrE A '-pvy A

Vi

Figure 2.11: Rules v, and v,

38

Rules v, and v; are dual, and can be derived from A, and A; since we have ¢ v Y <«

(= A —Y).
Quantifier rules Quantifier rules handle formulas with a quantifier on topmost position.

I+ p(x/zY), A Lyo(z/0) - A
T Vo), A " T Vap(@) - A

where 29 is a fresh variable

and 0 is a chosen term of Real Arithmetic

Figure 2.12: Rules V, and V,

The notation o(x/2°) means “the formula ¢ in which every occurrence of the variable z
has been replaced by the variable z°”. It is a substitution. The interested reader can find
more information in [94, p.65].

In the rule V,, we replace every occurrences of = by a fresh variable z°. In mathematics,
to prove a universal property, we chose to reason with a parameter which has no connections
with the rest of the formula. It is similar to the a-renaming in the A-calculus. For the rule
Vi, we replace x with a chosen term of real arithmetic. If we assume a universal property, we
can instantiate it to use in a proof.

The existential quantifier rules are dual of the universal quantifier rules. They can be
derived also from the equivalence 3zp(x) < —(Va, —p(z)).

I - p(z/0), A Lop(e/a®) = A
' 3zp(x), A ™" I, 3ze(x) - A :
where 20 is a fresh variable

and 6 is a chosen term of Real Arithmetic

Figure 2.13: Existential rules

Invertible rules The rule V; is different from the previous rules; the proof engineer has to
choose a term of real arithmetic. It is possible that the conclusion is provable, but that the
premise is not. The proof tree 2.14 shows such possibility, where the instantiation of x has
been made with a wrong variable z instead of choosing the variable y as in the proof tree 2.15.

Figure 2.14: Wrong choice of variable in rule V,

Definition 15. A rule is invertible if the conclusion is provable if and only if the premises
are provable.

39

0
vi
=0

P =0y >
Ve.a? =0k y

Figure 2.15: Right choice of variable in rule V;

Invertible rules play an important role into the automation of proof. They can be applied
safely since they do not change the provability of the considered formula, and a possible
heuristic is to favor their use. The propositional rules and the rule V, are invertible, but the
rule V; is not. The rules presented in the following subsection are not invertible.

Theorem (Soundness theorem). The rules presented in figures 2.7 to 2.138 are sound.

Proof. We detail the case of the rule A,. The others can be found in [98, p. 97]. We reason
by induction on the structure of the formula. To prove that A, is sound, we assume that each
premise is valid. We prove then that the conclusion is valid.
Assume that = ¢ v A and =1 v A. We want to prove = (¢ A 1) v A. We obtain it by
application of the definition of the semantic of A (def. 7).
O

Conclusion The rules presented in figures 2.7 to 2.13 are sufficient to prove validity of
First-Order Real Arithmetic formulas. For example, we can prove the validity of the formula
((p—= g A(r—s)a(pvr)) = (gvs) (cf proof tree 2.16) or of the formula z = 3 — Vz,2% > 0
(cf proof tree 2.17).

ax ax

r—Ssp }_ P4, r—S,q l_ q,S — Slmllar to left branch
p—qr—5SpHqs p—q,r—Srq,s

pP—qr =S, pVrqs

p—qr—s,pvri(qvs)
p—q,(r—=s)Apvr)(qvs)

=g Ar(r—s)rpvr)E(qvVvs)
Fp—=a)A(r—s)ar(pvr))—(gvs)

Vi

r

Figure 2.16: Proof tree of the formula ((p — ¢) A (r —>s) A (pv 1)) = (¢ Vv 3)

For the proof of ((p — ¢) A (r — s) A (pv 1)) — (g v s), we apply mechanically the proof
rules and there is no need for a human intervention. This proof may be perform automatically.

Real Arithmetic E

t=3F =0
r=3FVYz.a2>=0
Frx=3->Ve.z2>0

Figure 2.17: Proof tree of the formula z = 3 — Vz.2?2 > 0

40

For the proof of z = 3 — Vx.z?2 > 0, we apply the logical rule —, and V, to obtain a
Real Arithmetic term 93(2) > 0 to prove. It is a well-known result that the square of a value is
always positive. It is thus closed by the rule QE.

2.3.3 Structural rules

We present in this subsection structural rules weakening and cut. they do not change the
power of the proof system; a provable formula is still provable without theses rules. But they
are important to structure a proof, hence for the scalability of proof of complex systems. We
present how we can derive the modus ponens rule with the cut rule.

Weakening rules In the left branch of the proof tree 2.16, the formulas » — s in the
hypothesis and s in the goal are not used in the proof, and diminish the readability of a
proof. We introduce the weakening rules to handle this problem.

A
'@, A

'=A

Wr Lot A

W,

Figure 2.18: Rules W, and W;

The rule W; allows to discard a formula in hypothesis. It is not invertible. The sequent in
the conclusion can be valid, but the resulting sequent in the premise may not be. Nevertheless,
the rule is still sound since, if we are able to prove a goal with a set of hypothesis I', we are
able to prove it with one additional hypothesis. The rule W, is the dual.

Weakening rules are intended to improve readability, but are also precious allies in the
conduction of proof in an interactive theorem prover. By discarding useless formulas, we
narrow the proof search and help the computer to automatically prove a goal.

Cut rule The Cut rule allows to introduce new formulas in a proof to strengthen hypotheses.
It is the transcript of the use of lemmas in a standard mathematical proof.

LA I'i-p, A
'-A

Cut

Figure 2.19: Cut rule

Examples Let us assume that we want to prove the validity of the formula z > 0 — z+y% >
0, and we already have a proof IT of the formula Yz, 22 > 0 (cf proof tree 2.17). We cut this
formula in the proof tree to achieve our proof tree 2.20.

It is a very important rule for the structuring of proofs. It allows to focus on one part of
the problem. The rule Cut is also very useful to define derived rules.

The modus ponens rule By using the Cut rule, we can define a specific proof rule for the
Modus Ponens (MP) reasoning (cf Fig. 2.21).

If we know ¢ — 9 and ¢, then we can deduce ¥. The proof rule derives from the proof
tree 2.22.

41

Real Arithmetic QE 11

¥ >0,2=0F2+y2>0 - VYa.z? >0
2 2 Vi 2 2 Wi, Wy
Vext, e =202 +y° =0 =20 Vex*=20,x+y 200‘5
u
t20Fz4+y*20
Fz>0—-2+92>0
Figure 2.20: Proof tree of 2 >0 — 2 + 4> > 0
-9, A TEpA
T o,A MP
Figure 2.21: Modus Ponens rule.
TFp—y,A
ax ax W
Lok e,A ¢, A Tobe—,A
Lo—d,ob9,A Lero—vd 00 ThEeA
Doy, A LEev,A L
T, A U

Figure 2.22: Proof tree for the derivation of the Modus Ponens rule

We have covered the proof rules for the standard logical connectives. The next step is to
consider proof rules to reason about hybrid programs.

2.3.4 Hybrid program rules

This subsection regroups the rules used to reason on runs of a hybrid program. We recall
that [a]p means that “the formula ¢ holds for every run of the hybrid program «”.

Assignment The assignment rule [:=] performs the change of value in the formula ¢ by
replacing every occurrence of z in ¢ by the term 6.

' ¢0),A
I [z:=0]p(z), A

Figure 2.23: [:=] rule

We have to be careful with the phenomenon of capture of variables as in the S-reduction in
A-calculus. We need a bound variable renaming process similar to a-conversion. Intuitively,
bound variables are variables that can change over the execution of a given system.

Bound variable renaming
Definition 16 (Bound variable). A variable z is bound if it is under the scope of a quantifier,

e.g. Vep(x) or Jzp(x), or if it is in the scope of a modality where x is the variable assigned,

42

e.g. ¢ := 0, or the variable derived, e.qg. x = 6.

Bound wvariables of a hybrid program « are variables that depend of the execution of «.
The renaming of bound variables is necessary to ensure soundness. For example, we have the
two proof trees 2.24 and 2.25, one without taking care of renaming bound variables, the other
one with renaming. The first one is obviously unsound and does not match the semantic of
the assignment.

>0,2>0Fz+2>24+2 (=]
r>0,2>0F[z:=z2+2]z>2
r>0,2>0F [z:=z][z:=2z4+2x]z>x

[:=]

Figure 2.24: No bound variable renaming

In Figure 2.24, the value of the variable z assigned to z is not the same as the variable
z in the second modality. It leads to a proof stuck, and there is thus no means to prove a
formula clearly valid.

Real Arithmetic QE
z>0,z2>0F24+2>2

r>0,2>0F [u:=z+z]u>=z
x>0,2>0F [z:=z][u:=2z+z]u>z
r>0,z2>0F[z:=z][z:=2z4+2zx]z>2x

=]

Renaming z ~» u

Figure 2.25: With bound variable renaming

In Figure 2.25, we rename the bound variable z in the second modality by a fresh variable
u to avoid confusion. The renaming step will not be made explicit in the next sections, but
is performed “on the fly”.

Test, sequence and non-deterministic choice The rule [7] is equivalent to try to prove
1 under the assumption ¢. It amounts to add ¢ as an hypothesis for the proof.

I'p—>9,A
L= o]y, A

[7]

Figure 2.26: Rules for the test

The rule [;] dissociates the two programs « and £.

I' = [a][B]p, A
[= [o; Blp, A

[;]

Figure 2.27: Rules for the sequence

43

The rule [U] creates two premises, one for the execution of o and one for the execution
of 3. We have to prove that ¢ holds for each possibility.

't [a]p, A L' [Ble, A]
' [au Ble, A

Figure 2.28: Rules for the non-deterministic assignment
In Figure 2.29, we present an example of their use. It is a simple if-then-else program.

y>0F220—[z:=2+9y%*2>0 y>0F2<0—[z:=2+y%2

y>0F[P2>0]z:=2+y*]z>0 _. y>0F [?72 <0][z:= 2% +y]z

y>0F [Tz > 220[] y>0F[?2 <0;2:= 2% +y]z
y>0-[Px=0;2:=0+3?)u (P <0;2:=22+9)]z =0

[7]
[;]

[V]

>0
>0
>0

Figure 2.29: Example of use of rules [?], [;] and [U]

We can prove that for every execution of the following if-then-else program : 7¢;z :=

0u?—p;x := 1, the formula ¢ - z = 0 A —=p — 2 = 1 holds. The proof is in the proof
tree 2.30.
. : —_ 1
Real Arithmetic Q 1l-0=1
Y, pF0=0 —p,p0=1
T T

oHp—=->0=0A—-p—->0=1 o
gok[xzzO]goﬁsz/\ﬁgon:l['_]
I—[?go][x::O]goﬁx:OAwpﬁmzl[:
F[?p;2:=0lp >x=0A—p—o>z=1 i I1
F[?e;x =007z :=1]lp >z =0A —~p >z =1 V]

Figure 2.30: Proof tree of [?¢;z := 0u?—p;z:=1]lp 22 =0A ~p > =1

The branch II in the proof tree 2.30 is, mutatis mutandis, developed as the left branch
already detailed.

Remark 2. The rules [:=], [?], [;] and [U] decompose the system without any choice involved.
They are syntactically directed and thus amenable to automation.

Iteration The rule [Ind] for the iteration is presented in the Figure 2.31. The reasoning is
standard induction. We have two premises, one for the initial step and one for the induction
step. The notation Y%y is the skolemization of the formula ¢ by the bound variables of the

hybrid program «.

44

Initial step Induction step
A

Ve N\
L'-e, A TE=YYp —[a]p), A
[Ind]
I [af]p, A

Figure 2.31: Rule [Ind]

To prove that a formula ¢ holds for every run of a*, we have to prove that it holds for
zero iteration, the initial step, and that if it holds an arbitrary number n of iterations, then
it holds for the next iteration, the induction step.

The skolemization of a formula ¢ by a set of variables {z1,...,z,} is the addition of
universal quantification over these variables in front of ¢, i.e. Vxq,...Vayp. It is a necessary
abstraction to ensure soundness. If we do not add it, we can prove obviously false formulas
as for example z = 1 — [(z := 2 — 1)*]z = 0 (proof tree 2.32).

1 Arithmeti
a:Rzeal - xt— 1et>CO QE
z=1,2>0F2-1>0
r=lLz>20F[z:=x—1]z>0
r=1Fz>20—>[z:=2—1]z >0
r=1F[(z:=2—1)*z >
Fe=1-[(z:=2—1)"x

Wi

Real Arithmetic
r=1Fx>=20 QE

—

r

0
=0
Figure 2.32: Incorrect proof without skolemisation

In the Figure 2.32, the problem comes from that we can use the formula z = 1 to conclude
the induction step, but it is the initial value of x.

Fibonacci We can prove that our implementation of Fibonacci (Example 1) satisfies
the property Fj,12 = F11 + F,,. We use the following notations:

e Fibonacci = (body)*

e where body = F,, := Fy,11; Fpi1 := Fpi9; Fnyo = Fhi1 + Fy

e Init=F,=0,F,11=1F,2=1

e p=Fho=F+F,

Our goal is to exhibit a proof tree of the sequent Init — [Fibonacci]ep.
it [step

Init — ¢ Init = VF,, Foi1, Fria(e — [bodyle)
Init = [(body)*]e

[Ind]

Figure 2.33: Proof tree for Fibonacci

45

We apply the induction rule [Ind] and it results in two premises: Il and Ilgs,. We
handle them separately in their respective branches 2.34 and 2.35.

Real Arithmetic QE
FTL:O?FTH-I = 17FTL+2 =1+-1=1+0
F,=0,F1=1Fyo=1FFyo=F1+F,
Init - ¢

Evaluation of F,,, Fj,.1 and Fy, .9

Figure 2.34: Branch I,

For the initial step (branch Il;,;), we verify that ¢ holds initially, i.e. if it is true after
zero execution of the system. We just have to replace the variables F},, F;, .1 and F}, .9 in the
right-hand side by their values in the left-hand side. We can conclude by trivial arithmetic.

5 5 ax
= Fo g+ Fpy = Flo+ Fpyy L1 =]
[F71+2 = F0+2 + Fn+1]Fn+2 = F19+2 + Fn+1 1, (=]

F [Fapr = FRyoi Faya = Fo + Bl = Fpy + F)

FR = Fp [Fnyy = Flios Fp = Fpyy +F0]

Wi, 5]
@ b [Fp o= F) s Foyy o= Fp g Fuyg = Foy + Fle? R .
O [FY:=F° s FY | :=F° ,;FO ,:=FY Faa T —
e’ [i Py = Pl Fylo 1= By + Fillp

Iy —r

Init + ¢° — [body®]¢°
Init - YF,, Fo11, Foia(e — [bodyle)

v,

Figure 2.35: Branch Ilg;,

For the induction step (branch Ilgp), we apply the rule Y,, and thus replace every
occurrence of variables Fj,, F,41 and F, 4o by F°, F? ne1 and F +2 which are assumed fresh.
body® (resp. ¢°) is the program body (resp. formula) where this replacement has been made.
We discard then the hypothesis Init which brings no information on the new variables and
pass ¢ in hypothesis by the use of the rule —,. We rename the variables to avoid confusion
for the multiple applications of rule [:=].

We deconstruct then the body with the rules [;] and [:=] until we obtain the formula
FO o+ F0 =F) ,+FY . We conclude by the rule ax.

Generalization The rule [Gen] allows to replace the invariant 1) by another invariant ¢ if
we prove that ¢ is stronger that .

[[a]p,A T=Y*e—1),A
= [a]y, A

[Gen]

Figure 2.36: [Gen] rule

The skolemization in the right premise of the rule presented in Figure 2.36 is for soundness
purposes as the rule in [Ind] (cf Fig. 2.31).

46

Induction rule with a stronger invariant There is an other version of the induction rule
where a stronger invariant is introduced, the rule [Ind2]. We present it in the Figure 2.37.

', A TEVY(e—[a]p),A TEV(e—19),A
I [a*]y, A

[Ind2]

Figure 2.37: Rule [Ind2]

We introduce a stronger invariant ¢ instead of the previous invariant ¢». We have to prove
the initial step and the induction step, but also to prove that ¢ implies 1.

It can be obtained as a derived rule by the combination of rules [Gen| and [Ind] as shown
in the Figure 2.38.

F'-p, A T EVY*p—[a]p),A
I [a*]e, A

Il p e o), A

TE [0, A [Gen]

Figure 2.38: Derivation of rule [Ind2]

Remark 3. The main difficulty of the induction rule is the finding of a suitable invariant.
There exists some heuristics to guess invariant, but no complete algorithms.

ODESolve rule The rule [ODESolve] asks to provide a solution of the ODE to prove that
(p is invariant.

DFVE>0((V0<s<t,[z:=s0l(s)|H) — [z := sol(t)]p), A
' [z=f(z) & Hlp,A

[ODEsolve]

Figure 2.39: Rule [ODEsolve]

In the rule 2.39, the formula sol(t) is the solution of the ODE z = f(z). We replace
the occurrences of x by its solution in the evolution domain H and in the invariant ¢. The
skolemization is for soundness. t represents the evolution of time. The left part of the
implication corresponds to the assumption that the evolution domain holds.

Example 13. We present in the Figure 2.40 an example of the use of the rule [ODESolve].
Consider the water-level ODE in the Example 5. The solution of the water-level ODE is
wl = (fin — fout)t + 4. We restrict its temporal evolution to one second by adding the
formula 0 < t < 1 in the evolution domain. Init denotes the initial value of the water-level,
wl = 4 and the value of the parameters fin = 0 (i.e. the inlet valve is closed) and fout = 0.75.

47

Real Arithmetic QE
Init,¥s 0 < s <1+ (fin— fout)t+4 <7
Initt (Vs 0<s<1)— (fin— fout)t +4 <7
Init =Vt = 0((Vs 0< s < 1) — (fin— fout)t + 4 < 7) "
Init =Vt = 0((Vs[t :=s]0 <t < 1) > [wl := (fm — fout)t + 4wl < 7)
Init — [wl = fin— fout & 0<t<1]wl <7

=1, =]
[ODESolve]

Figure 2.40: Example of use of the rule [ODESolve]

We apply the rule [ODESolve], then the assignment rule [:=] twice to replace the variables
by their solution. We deconstruct the formulaVt = 0((Vs 0 < s < 1) — (fin— fout)t+4 < 7),

and then discharge it to an external solver, e.q. Z3.

Structural differential rules The Differential Cut rule [DC] and the Differential Weak-
ening rule [DW] are two structural rules for the evolution domain. They are analogous to the

rule Cut and the weakening rules W; and W, in Subsection 2.3.3.
The rule [DW] in Figure 2.41 means that the evolution domain is sufficiently strong to

prove the guarantee without considering the behavior.

I'-Ve(H — ¢),A

= f@) & Hp.a PV

Figure 2.41: Rule [DW]

We have an example of its use in the Figure 2.42.

Real Arithmetic QE
Init =Vl t(0<t<TAwl<TA3<wl) »3<wl <7)

. . [DW]
Init = [wl = fin— fout,t =1 & 0<t<1Awl<TA3<wl3<wl <7

Figure 2.42: Example of use of the rule [DW]

We need to have a strong evolution domain to apply the rule [DW]. But it is usually not
the case when we model a hybrid system. It is typically reinforced by multiple application of

the rule [DC].
The rule [DC] in the Figure 2.43 introduces a new formula ¢ in the evolution domain

(right premise) provided we prove that the formula 9 is an invariant (left premise).

'+ [2=f(x) & H|p,A M [z=f(z) & HAvY]p, A
M [z=f(z) & H|p,A

DC

Figure 2.43: Rule [DC]

48

As for the rule Cut (Figure 2.19), it is very useful for the structuration of proofs. We
illustrate it in the Figure 2.44.

Example 14 (Water-level example). In the water-level example (cf Ex. 5 and 13), we want
now prove that the water-level does not overflow (wl < 7) and that it stays above a limit
(3 < wl) in order to keep a sufficient pressure on the outlet valve. We want a proof of the
sequent Init [wl = fin — fout & 0 <t <1]3 <wl<7. With the help of the rule [DC],
we can consider each case separately.

In the Figure 2.44, we first apply the rule [DC] twice to isolate each case. Finally, we
apply the rule [DW] since the evolution contain the formula 3 < wl < 7. The branch I1; is
already considered in the Figure 2.40. Mutatis mutandis, the branch Il is closed by the same
reasoning. The branch Ilg is trivially closed .

I3
Init -Vwl(0<t<1TAwl<TA3<wl) »3<wl <7 DW]
Init - [wl = fin — fout & 0<t<1Arwl<TA3<w]|3<wl <7
Il
Init - [wl = fin — fout & 0<t<1Awl<7]3<wl D]

Init - [wl = fin— fout & 0<t<1Awl <7]3<wl<7

1T,
Init - [wl = fin— fout & 0<t<1]wl <7
Init - [wl = fin — fout & 0<t<1]3<wl<7

[DC]

Figure 2.44: Example of use of rule [DC]

Differential induction The differential induction rule [DI] is similar to the induction rule,
but for differential equation. In the case of discrete iteration, we are interested in the change
between one step, the induction step. The step in a differential equation is just infinitesimal
and corresponds to the derivation of the equation. The rule is presented in the Figure 2.45.

Initial steDifferential Induction step

AN~
- N

F'-op,A I VY(H — ¢9),A
T[i=6 & H]p,A

[DI]
where <p§f means that we substitute every occurrence of & by 6

and ¢’ is the derivation of ¢ as in def. 17 and 18

Figure 2.45: Differential induction rule

49

The left premise is the initial step. It demands that ¢ holds at the initial time. In the right
premise, the differential induction step, we derive the formula ¢ according to Definitions 17

and 18 which implement the idea of differential step. We replace then the occurrences of &
by 6.

Definition 17 (Derivation of terms).

(r) 0 forreQ
(x) = for variable x
(@+b) = (af + 0

(a—b)" = (a) = (b)

(a-b) = (a)-b+a-(b)

(a/b)’ — (a)"-b—a-(b)’

They are the usual rules of the derivation calculus as taught in high school.
Example 15. If 0 = 22 + 2, then 0 = 2x3 + 2yy
We define also the derivation of formulas.

Definition 18 (Derivation of formulas).

(61 ~02) = (01) ~ (62) exceptif ~ is #
(FAGY = (F) (G

(FvG)Y = (F) A (GY

(VzF) = Va(F)

(JzF) = Va(F)

The rule [DI] allows to reason on differential equations without having to provide a solu-
tion.

Example 16. Let us consider the differential equations d = e, e = —d which represent an
object moving along a circle of radius v in the plane with coordinates d and e. The solution
involves trigonometric functions, and therefore is very difficult to handle. We want to prove
that d*> + €2 = 12 holds at any moment in the system. We apply the differential induction
rule and then the several rules of derivation until the obtaining of a First-Order formula of
the Real Arithmetic.

Real Arithmetic QE
- VdVe, (2de — 2de = 0)

- VdVe, (2de 4+ 2e - —d = 0)

—d

Real Arithmetic QFE - Vdve, (2dd’ + 2ee’ = 0)5,7
d=0,e=1,r=1Fd*+e*>=17r? — VdVe, (d% + ¢ = r2)¢ —d

. ¢ [DI]
d=0e=1r=1F[d=e,é=—d]|d* +e? =1r?

Figure 2.46: Proof tree of d = 0,e = 1,r = 1 [d = e,é = —d]d? + €2 = 12

50

2.4 Theoretical results

We state the soundness of the sequent calculus and its incompleteness. We present its relative
completeness with respect to its discrete and continuous fragment. We present several sound
extensions of dL and give a brief presentation of the theorem prover KeYmaera X.

Soundness theorem The soundness theorem means that if we have a derivation of a
sequent, then the sequent is valid.

Theorem (Soundness theorem). If '@ v A, then T |= o v A.

Proof. We have already stated that the rules for the first-order real arithmetic formulas are
sound. The interested reader can refer to [98, p.97] for a more detailed presentation of the
soundness of other rules. d

This theorem is very important since it ensures that if we obtain a proof of a formula,
then it is valid. The converse is not true. If a sequent is valid, there is not necessarily a
derivation. As a consequence, the logic d£ is incomplete.

Incompleteness theorem

Theorem (Incompleteness theorem). dL is incomplete, i.e. there exists a formula ¢ which
is valid, but for whose it is impossible to derive a proof tree.

Proof. We reduce this result to the halt problem. Since the discrete part of dL is Turing-
complete, if we assume that it is complete, then the verification problem of programs is
complete too. The halt problem is thus decidable which is absurd. O

Although the sequent calculus is not complete, we have relative completeness with respect
to the discrete or continuous fragment.

Relative completeness Relative completeness of a proof calculus with respect of an other
proof calculus means that if the first is complete, then the second too. The sequent calculus
of dL is relatively complete with respect to both its discrete and continuous fragment [101].

Theorem (Relative completeness with respect to the discrete fragment). If we assume the
discrete fragment to be complete, then the sequent calculus of dL is complete.

Theorem (Relative completeness with respect to the continuous fragment). If we assume
the continuous fragment to be complete, then the sequent calculus of dL is complete.

These results show that reasoning on hybrid systems, purely discrete systems or purely
continuous systems is equivalent from a proof-theoretical view.

Extensions Several extensions of d£ have been proposed to address fundamental prob-
lems. Each of these extensions has a sound sequent calculus and has been implemented in
KeYmaera.

Differential temporal logic (ATL) is a conservative extension with temporal constructs. It
allows to reason about the temporal behavior during the execution of a hybrid system [96] [71].
It provides means to express more complex liveness specification.

o1

Quantified differential dynamic logic (QdL) is an extension to handle distributed hybrid
systems [99]. Differential dynamic game logic (dDGL) integrates several game constructs on
top of dL allowing to analyze hybrid games [109]. Finally, Stochastic differential dynamic logic
(SdL) is designed to handle stochastic hybrid systems [100]. Security and privacy concerns
are addressed by introducing the notion of hybrid dynamic information flows. It allows to
reason about leakage of informations both in cyber channels and physical channels.

KeYmaera and KeYmaera X dL has been first implemented in KeYmaera [105]. As dC
is an extension of Dynamic logic, KeYmaera is an extension of the theorem prover Key which
implements Dynamic logic [6].

It has been completely rewritten to form KeYmaera X [47] [85]. It features a small kernel
which has been verified in Coq and Isabelle [25] and a graphical interface. There is also a
proof programming language Bellerophon [46] which allows a user to define its own tactics.

52

Chapter 3

A modular component-based
approach in Differential Dynamic
Logic

53

The parallel composition of Cyber-Physical Systems (CPS) models the parallel execution
of two CPS simultaneously. It is of paramount importance to scale to the modeling and proof
of large systems since most of CPS run in parallel.

We present our methodology to modularly model and prove correctness of Cyber-Physical
Systems. The Section 3.1 presents the definition of a component at the design level and its
precise implementation into d£. The Section 3.2 is devoted to the definition of a parallel com-
position operator which allows to modularly model a CPS. We show how to retain properties
of a component through composition in Section 3.3. We have exemplified each notion with a
cruise-controller example. The Section 3.4 present a prototype implemented in the theorem
prover KeYmaera X. It is prototype to automate the proof procedure. The Section 3.5 details
the complete study of a second use case, a water-tank.

3.1 Definition of a component

A component is a part of a system which has a distinct behavior and communicates with other
parts of the system via inputs and outputs. Properties are expressed on inputs and outputs.
It is a popular way to tackle the complexity of large systems, especially in the industry. The
basic idea is to decompose a system into several sub-systems which are easier to understand
and reason about.

The concept of component is fuzzy. It can denote the part of a mathematical proof, for
example an auxiliary lemma that we prove independently, or a module in a software, for
example the payment of a donation on Wikipedia. In the industry, a component may be the
speed sensor or the power engine in a car.

We provide a clear representation for a component at the design level in Subsection 3.1.1
and its logical equivalence in d£ in Subsection 3.1.2. We detail in Subsection 3.1.2 the general
form that a component exhibits in d£. We illustrate each notion and definition with a cruise-
controller example inspired from the use-case in the approach of Mueller et al. [88].

3.1.1 What is a component

A component is made up of three parts: a definition, an interface and a contract. The
definition provides a name and a description of the behavior of the component. The contract
describes the requirements attached of the component. It gives information on the purpose
of the component. The interface indicates how it can interact with the rest of the system.
The three parts can be interpreted from a d£ formula, i.e. it is possible to work purely from
dL logic. However, we add a supplementary layer, called textual representation, to reason on
the system without having to work on d£ formulas which might get more and more complex
along the construction of the system.

The conception of a system consists of two phases: a design phase and a verifying phase.
The design phase requires good understanding of the domain in order to develop a meaningful
system. The methodologies used here should not depend of a particular logic. The proving
phase is more technical and may require deep knowledge of proof theory.

Environment We assume that the designer provides a description of the environment in
the form of a set of formulas denoted by £. It regroups the free variables that are not outputs
of a component, the parameters. They cannot be controlled and are exterior to the considered

54

system. For example, the gravity value g is a parameter in most of mechanical systems or the
value of the speed limit S in our example. It is a value fixed by the government, a tachymeter
cannot change it freely. Parameters can be constant or in a range of value if we want to
represent uncertainty.

Time We assume that the time evolves continuously and linearly. It is represented by the
reserved variable ¢ and its evolution is modeled by the differential equation ¢ = 1.

Name and behavior A component is defined by a name and a behavior. The behavior is
the functional modeling of the component. It is represented as a hybrid program of d£! and
defines the evolution of the component trough time. We adopt the convention of denoting a
generic component by a capital letter and the associated behavior with its equivalent in the
greek alphabet.

Example 17 (Name and behavior of the Tachymeter component). The Tachymeter is a
software which senses the speed of the vehicle every € seconds. It decides the speed that should
be attained by the vehicle after € seconds and set up the acceleration given to the engine. Its
behavior is defined by the hybrid program denoted Tach. We give a detailed presentation in
Ezxample 21.

Name: Tachymeter

Behavior:

Tach = (?ttach+5 =t Sacm ‘= Sengi Stach 1= *;
7(0 < Stach < 8 A =0 < Siach — Saem < 5)a
Q= Stachgsucm; trach =t)*

Figure 3.1: Tachymeter

Interface The interface of a component describes how it interacts with the world. It
specifies the inputs and the outputs along with the properties associated to every component.

Example 18 (Interface of the Tachymeter). The component Tachymeter possess one input
and three outputs. The input se,g represents the actual speed of the engine and the output
Sacm the measured speed. siqcp 1S the target speed the vehicle should attain after € seconds and
a the acceleration to follow to reach the target speed.

!The syntax of hybrid programs can be found in Definitions 1 and 3

95

Name: Tachymeter
Inputs:

Seng

Outputs:

Sacm

Stach
a

Behavior:
Tach = (?ttach+5 =t Sgem = Seng; Stach ‘= *;
?(0 < Stach < 8 A =0 < Spach — Saem < 5)a

— *
a = StGChgsacm; ttach =t)

Figure 3.2: Tachymeter with inputs and outputs

Contract We associate properties to a component by using contracts. A contract is a pair
of formulas (A, G), called the assumptions A and the guarantees G. Guarantees are properties
on the outputs of the component. Assumptions are properties that the inputs are presumed
to satisfy.

We get inspiration from the meta-theory of contracts of Benveniste et al. [18]. The for-
mulas are formulas of d£?.

Example 19 (Contract of the Tachymeter). We assume that the speed of the vehicle, Seng,
does not exceed the speed limit S. Under this assumption on the real speed, the tachymeter
guarantees that the target speed does not exceed the speed limit. It also guarantees that the
measured speed is inferior to S and links the value of the acceleration to the measured and the
target speed.

Name: Tachymeter
Inputs:

Seng
Assumptions:

0 < Seng < S
Outputs:

a

Stach

Sacm

Guarantees:

0 < Saem < S A 0 < Sigen < S A q = PachTleem

Behavior:

Tach = (?ttach+5 Z 1) Saem ‘= Seng} Stach ‘= *;
?(0 < Stach < 8 A =0 < Siach — Saem < 5)a
a = W; tiach =1)*

Figure 3.3: Complete representation of the tachymeter

We can also define the component Engine representing the speed of the vehicle regulated
by the Tachymeter component.

2The syntax of formulas of d£ can be found in Definition 8

56

Example 20 (Engine component). The inputs of the engine are the outputs of the tachymeter,
and reciprocally the output seng is the input of the tachymeter. The assumptions of the en-
gine are the guarantees of the tachymeter. It assumes that the targeted speed Siqen, and the
measured speed Sqem provided by the Tachymeter do not exceed the speed limit S. Recipro-
cally, the guarantees of Engine, i.e. that the actual speed seng does not exceed the speed limit,
correspond to the assumptions of the Tachymeter component. The behavior Engine is the
differential equation detailed later in Fxample 22.

Name: Engine
Inputs:
a
Stach

Sacm

Assumptions:
Ogsacmg'SAogstacth/\a:w
Outputs:

Seng

Guarantees:

0 < Seng < S

Behavior:

Engineééengza,izl & 0 < t — tygen < ¢

Figure 3.4: Textual definition of the Engine

The formulas A and G are usually denoted as pre- and post-conditions in the related
work to Dynamic Logic [108] and Differential Dynamic Logic [98]. We have made the choice

here to refer as assumptions and guarantees to emphasis that we develop a component-based
approach.

Graphical representation Another popular way to represent a component is graphically.

It is a compact representation and similar to existing design methods as dataflow models.
The interface is represented by incoming arrows for the inputs and outgoing arrows for the

outputs. The box is divided in three part: the name A, the behavior o and the assumptions

and guarantees (A, G). The graphical representation of the component Engine is provided in
the Figure 3.5.

a Engine
Seng = a,i =
1 & 0 <t —tigen, < €
Stach Seng

Acng: 0 < Sgem < SA

0< Stach < S
Saem, a = Stach —Sacm
Geng: 0= Seng < S

Figure 3.5: Graphical representation of the engine

o7

Conclusion We have presented a concise representation of a component. It allow to reason
on CPS without requiring a deep knowledge of dL. It is very similar to the meta-theory of
contract defined by Benveniste et al. [18]. We have instantiated with the logic d£ in our
approach, but one can imagine to mix it with other approaches.

3.1.2 Definition in dL

We show how to transcript our notion of component into a formula of d£. The behavior
is already a hybrid program, but it should respect a particular form that we detail. The
interface corresponds to bound and free variable of the behavior and the contract can be
naturally expressed in d£ as seen in Definition 10.

General form of a behavior in dZ We define a general form that the behavior of a
component should respect. To gain in clarity, we partition specifications « into their discrete
and continuous parts disc, and cont,.

Definition 19 (General form of a behavior). The general form of a behavior a = (cont, U
discy)™ consists of its partition into a continuous part cont,, of the form X =0x & Hy,
and the discrete part disc,,.

Notice that the discrete part of a system disc,, is itself defined by the union of discrete,
functional, components.

Example 21 (Behavior of Tachymeter). We model the discrete controller of a cruise control
system that is responsible for delivering a targeted speed to the vehicle engine (e.g. a car).

Tach = (?ttach + € 2 t5 Sacm = Seng; Stach = *;
?(0 < Stach < S A =0 < Spach — Saem < 5)7

- *
Q= wﬂmch = t)

The test Mtyuen +€ =t ensure that no more that € seconds have passed since the last execution
marked by ticn. We measure then the value of the speed Seng by memorizing it in the variable
Sacm (Saem 1= Seng- It chooses an arbitrary value for sqy, the targeted speed, and checks if
it is in the desired range [0,S], where S is the speed limit. It additionally checks that the
difference between the speed measured by the tachymeter, Siacn, and the targeted speed, Setri,
is not too high, in order to ensure that the acceleration set is not too brutal and/or within the
capabilities of the engine.

Example 22 (Behavior of Engine). We model the continuous acceleration of the engine by
a guarded derivative:
Seng =0, t =1 & 0<t—tqen <¢€

The differential equation describes the evolution of speed by a function of the acceleration over
time.

We can model a large variety of hybrid systems as sensors, programs, plant.

58

Contract of a component in dL To soundly ensure that a component satisfies its contract,
we use the proof theory of dL.

A component A in an environment &£ is translated in d£ as a formula of the form (£ A
A) — [&]G where & is the environment, A and G are the assumptions and guarantees and
« the behavior of the component. For example, the component Tachymeter is translated as
(€ A Agaer) — [Tach]|Gigen.

The interface is implicit. The inputs (resp. outputs) of a component correspond to the
free variables (resp. bound variables) of the behavior. We have A.inputs € FV(«) and
A.outputs € BV(a). This notion is translated in dC by the notion of bounds and free
variables. The bound variables of a hybrid program « are variables that can be changed
during the execution of «, i.e. a variable on which the hybrid program acts. It is assimilated
to outputs. The remaining variables are the free variables, i.e. all the variables that are not
bound. The component cannot modify theses variables. We have to distinguish in these
variables the parameters, which are part of the environment, and the inputs which are the
variables that can potentially be outputs of other components.

It is now possible to precisely define the satisfaction of a contract by a component.

Definition 20 (Satisfaction of a contract). A component A satisfies its contract (A, G) if the
formula (€ A A) — [a]G is valid.

We add the environment £ in the formula because it is needed to achieve the proof. We
prove the validity of the formula by using rules of the sequent calculus of dC [98].
We refer to the behavior of the tachymeter by Tach in the next sections. We have:

Tach = (?ttach + € 2 t; Saem = Seng; Stach = *;
2(0 < Stach < S A =6 < Stach — Saem < 6);
a = stachgsacm : ttach, = t)*
Example 23 (Satisfaction of the contract of the Tachymeter). To show that the Tachymeter
component satisfies its contract, we prove the validity of the sequent:

57 ATach = [TaCh] GTach

where:
Tach = (Body)*
Body = Ttgen +€ =t Saem = Seng; Stach ‘= *;
7(0 < Stach < S A =0 < Stach — Saem < 6)7
a = w;tmch =t
Argen = 0< Seng < S
Grach = 0<5acm<S/\0<5tach<S/\a:w
£ 2 S5>0n¢e>0A Siach = Seng A Sacm = Seng A @ =0

We distinguish the hybrid program Body in the loop from the behavior of the component
Tach to clarify the proof. Body will occurs at multiple times. We use Graen as an invariant
for the application of the rule [Ind].

Hlm't HStep
ga ATach = GTach 67 ATach = vSacrm Stach, 4, ttach(GTach - [BOdy] GTach)
57 ATach - [(BOdy)*]GTach

[Ind]

59

We obtain two sub-goals left. The left goal is the initial step where we have to prove that
Grach holds after zero execution of the Tachymeter. It is proved by the branch Ily,;. The
second is the induction step. We assume that Gpgep s true and we have to show that it still
holds after one execution of the hybrid program Body. We skolemize the formula by every
bound variable of Tach. It is closed by the branch Ilgye, that we detail later.

We deal first with the branch I;n;:. We unfold the definition of Graen, and decompose the
goals in three sub-goals with the rule A,.:

gaATachl_()gStachg‘S’ 51ATach}_a:w
E, Arach =0 < Sgem < S E, ATach = 0 < Sggen < S A a = Ptach—Seem

e
8ATach|_O<5acm<SA0<3tach<S/\a:M .
€ Ao - Grot £ Unfolding of Graen
s ac ac

I

Ny

Ar

The three sub-goals 0 < Sgem < S, 0 < Sgaen < S and a = W are real arithmetic
formulas which can be proved by an SMT solver. We detail the case of the first sub-goal; the
two others are similar. It unfolds to the following sequent :

S>O/\5>078tach:Sengysacmzsengaa:0a0<Seng<SF0<5acm<S

We can replace sqem bY Seng in the right-hand side of the sequent. We obtain 0 < sepg < S
in the right-hand side and 0 < s¢pg < S is already present in the left-hand side. we conclude
by applying the axiom rule.
We consider the induction step. We have to prove the sequent €, Arach b YSaem, Stachs @s ttach (GTach —
[Body|Gracn). We apply the skolemization rule ¥, four times, denoted by ¥i. We obtain

5 ATach H (GTach [bOdy]GTach)

g; ATach = G%ach [BOdy]GTach
57 ATach = vsacrm Stach, @, ttach(GTach - [BOdy] GTach)

v4

GTach (resp. Body’) is GTach where every occurrences of Saem, Stach, @, ttach, have been
replaced by the fresh variables s° s?ach,ao t?ach (resp. Bodyo). We have:

acm>
s . <0 -
BOdy - ?ttach te=t; Sacm = Senga Stach 6_ *
(0<st h S8 N =0 < S5 — Saem <0);
0 ._ Stach—Sacm .
a” = =88 € ttach =1

0

0
<SA0<sY <SG Aal = ttach Cacm
tach = €

I

0<s

GTach acm

We use the rule [BoxAnd] twice to split the conjunctions in the invariant.

0 Og,c — gcm
57ATaCh7 G Tach = [BOdy] S?ach <5 g’ ATaCh’ G%‘wh - [BOdy]ao - % [Bo:rAnd]

0 0

57ATach7 GTach = [Body] Stach S A aU — StachTSacm

€

5, ATaciw G%ach = [BOdyO]O < Sgcm < S \
S0 0
&, Atach, GO [Body](0 < s acm <SA0<s0 < SAql= Ztach—Sacm
Tach Tach [Y](tach €) Unfold Gg“ach
5 ATach = GTach [BOdy]GTach N
g ATach l_ GTach [BOdy]GTach

[BoxAnd]

60

We detail the proof of the sub-goal £, Arach, Gy, H [Body]0 < 50, < S in Figure 3.6.
The two other sub-goals are similar. The basic idea is to unfold Body, the resulting sequent

is composed of Real Arithmetic formulas and is trivial to prove.

The corresponding .kyx file can be found in the annexes 5.3.2 for the Tachymeter and 5.3.2
for the Engine.

Conclusion We have presented how to represent a component A with its interface, contract
and behavior. We have defined the meaning of A satisfying its contract. We have explained
how it is translated in the d£ framework. It gives us a strong logical basis to soundly reason
on CPS. The next section is devoted to the presentation of the process of parallel composition
to modularly build a system.

3.2 Parallel composition operator

The composition of components is the core aspect of the component-based approach; it is the
mechanism that allow us to obtain a full system after having considered each of its components
separately. It specifies how we connect components and what the resulting behavior is.

The operator achieving it shall be the more general possible in order to handle a wide
variety of systems. The result of the composition of two components, the composite, shall
be a component that we can composed later with another component. The operator must
be modular, i.e. commutative and associative. If we compose two components A and B, then
another one C, we shall obtain the same result as if we have composed first B and C together,
and then A as illustrated in the Figure 3.7.

We present the parallel composition of components A and B in Subsection 3.2.1. The
Subsection 3.2.2 is devoted to the definition of the operator o to compose behaviors in dL.
We discuss the differences with the parallel composition of hybrid action systems in Subsec-
tion 3.2.3.

3.2.1 Parallel composition of components

When composing two components, there is no need to specify the inputs, the assumptions,
the outputs, the guarantees and the behavior of the resulting component; these characteristics
are automatically inherited from the composition. The inputs (resp. outputs) are the union
of respective inputs (resp. outputs). The assumptions (resp. guarantees) are the conjunction
of respective assumptions (resp. guarantees). The behavior is obtained by application of the
operator o, defined in Subsection 3.2.2.

Our model of communication for our parallel composition operator is based on variable-
sharing and is thus very simple. An output can be the input of several components, and it is
thus not possible to abstract matching inputs and outputs through composition. We outline
how we can model communication channels in our paradigm in the Subsection 5.1.3 of future
works.

Example 24 (Cruise-Control). The cruise-control system is obtained by parallel composition
of components Tachymeter and Engine. It is itself a component, named Cruise-Control
that may be composed later with other part of a vehicle, e.qg. a power-train. The result of the
composition is given in Figure 3.8.

A graphical representation is given in the Figure 3.9.

61

Ioqoufyoe
L 91} Jo uot
MOOXd U0 Id
1Je o8uel
pougep-o1d ot} ur sAeys WPs pood
oads painseawt
9y} Jey) JooI
d :9°¢ 2IndI
d

B @
m V O > _H Yyon} 3 @4 w Eu@
g o S =1 (D0 S Y 0s = ol Apog] "
§ s "issolr =17 ¥ ot O (9> “7hs = "gs > DY 3
- P — 0° = Vv B
o g o} T = T 0— v gsS Py s) e = 7
s s ol =1 0 oD (9> g = s s 08 S 0)¢ b = s H0uos =1 M
R > 90— ’ =
ow Won . qvT, —- ¢ 0 VeSS PPlg sy1< 3+ Yooy, .
g S ol = remer = (0> gs — s > 15 S) b =1 s g = W o] = ey
= R s o— ¢ -
) ow T T = D0 U 0 ¢—Vvg>S Pl Ov . : Z 34 P v 3
S = oS > OT . g 0 0° 0 A% = umm, _ Yol 0 Lok = cuamm ‘buag wWon owL - er ULy 2
Y S N— > 0 T
w WO . — » “A o 0 % \ w w QU@#% w .t Om@ ﬁ AT QU\BQ QU\B
oS Fuog N Oﬁ 0 s 0P (9> m% v, < 0 0) * =: cusmm. Guog — Egéo@&v\ 2
‘ 0 g =: 7 pFSe-VveEsS oD) =: s
: T g s 051 - o
[4] s Fme Ty = P o> o o8 > 0) % =: YoD1 116 123+ “ YOV, cyom
‘ § s s s ol = T o= "or O 0 Ms — s s is|[fues = s g Lyt
4 T——— s 0-vss s i< T
s = (0> buo s s)y e =1 Ly v L
5= 5= pile s - e s SETE Vs
. o5 s o[=% s - v s 0] H1< 3+ R
[Sy — 95 s 0)) o
o W g GMA% - buo 0 Ovm:* —: Yig Vv .\uu
g s udg v 0° 0 = 0%|HW _ o;l_w ITQUEEUE
Tg 0 Oﬁ =4 ww 3 0—VE>ST>(rmmwfcucrh
I Buog 0 m:mw T =: o@mA% > mﬁmm. V&Lv&.> —H1< s\udw oD 14 .W
[2] 25 s p =t P g FTESe-VESTS 60y 3
g s busg ey = oPll(0> busg _ o s S0 Hr< s+ R
(o] 2> 0l = P -rse-vgsaTs 60 Y3
‘7 = /
< buo “os—= o] < (o7 0)e] 1< 3+ T
S = IS S —Tr> ¢om,
ﬁnu_ 0 voﬁwnnioﬁmﬁﬁ 2 0 VQ|<‘WW&W U rﬁa\qr\uv
b =
g s buag “os—x o@; —H0> buag _ Ov H1<Z 2+ QUS CYODT, ~ ¢
g 52> ol = e Forse-veses Y3
0 _Hm:m = = x = O M oD
- bu ow\a OGH_ |_ mu w m.ﬁm% 3 |_| 4 w YoD [¢
oo (=22 s s or =7 o TS VESTS 023
Ly jo oal_mwa:u S 0923+ Phw
Jo uonuyep ploju g s Mg s FoTSe-vgS gD et
Jupn) ss0Hes gSTS(09< V'3
< buo s 9234 P
S>>0 ~ bua S9-vgeg>T> &Uéuc&
oS _zs o v S091<3 +:§ Eu@&@é V3
— gszTs DL
= >0 FH <z 3+ Qudw Qo@&@ v\ r\uw
S S =
V,oﬁw

62

(e le)ele) = Dde(ele[e])

Figure 3.7: Modularity of composition

Component: Cruise-Control
Inputs:

Sacm

Stach

a

Seng
Assumptions:
Atach N Aeng
Outputs:

Sacm

Stach

a

Seng
Guarantees:

Gtach N Geng
Behavior:
Engine o Tach

Figure 3.8: Cruise-control defined by composition of Engine and Tachymeter

3.2.2 Definition in dl

We present in first part the parallel continuous composition operator to compose purely contin-
uous behaviors of component, i.e. Ordinary Differential Equations (ODEs). We consider then
the parallel composition operator for behaviors under the general form as in Definition 19.

Our parallel composition is largely inspired by the work of Ronkko et al. [114]. We compare
the two approaches in the next Subsection 3.2.3.

A continuous parallel composition operator

We define the parallel composition o, between two continuous behaviors of a component.
Recall that a continuous behavior « is a simple ODE, i.e. of the form X = 0x & Hy.

Definition 21 (Definition of o.). Let a = (X = 0x & Hy) and 8 = (Y = 6y & Hy)
be continuous behaviors of components A and B. Assume that X and Y are separated, i.e.
X nY = . The parallel composition is:

aocﬂ%(XZGX,YZGY & Hx/\Hy)

It is the system composed of the two differential equations in parallel. The resulting
evolution domain is the conjunction of respective evolution domains. We require that the

63

Engine

Seng = a,i =
1 & 0 < t—tigen < €

——————»
Acng: 0 < Sgem < SA
0 < Staeh < SA
_ Stach —Sacm
= €
Geng: 0= Seng= S
@, Stachs Sacm Seng

Tachymeter

(?ttach + € 2 1; Saem = Seng) Stach 1= *;
?(0 < Stach < S A =0 < Stach — Saem < 5)7

_ *
a = w;ttach = t)

Agaen: 0 < Seng < S
Grach: 0 < Saem < SA
0 < Stach < SA

Stach —Sacm
g

a =

Figure 3.9: Cruise-control system

derived variables are separated (X n'Y = (), i.e. that they do not describe the evolution
of the same system. It is a restriction that makes sense at the design level, but it is also
mandatory to lift the contracts through composition. But occurrences of variables in X
(resp. in Y) can occur in Oy (resp. in Ox).

To illustrate the operator, assume that we want to set a time limit to our vehicle engine
component.

Example 25 (Time limit to the engine vehicle). Assume that in the description of the engine,
we did not make explicit the time and we do not have set a limit. We do not want to consider
perpetual execution of Engine since the tachymeter controls it periodically. To obtain the
behavior of the component Engine in 22, we consider the time as a component with output
the variable t, and the representation of the passing of time is achieved by introducing the
ODE t = 1. We add the formula 0 < t — tiqen, < € in the evolution domain ofi = 1, where
€ is the desired limit. Here, we limit the time with the formula 0 < t — ti4en < € rather than
t < e. It limits the time passed since the last execution of the Tachymeter component.
By composing this proposition with our example, we obtain the timed model:

(Seng = a)oc (=1 & 0 <t —tygen <€) = (Sepg = a,t =1 & 0 <t —tygen <€)

We may also compose the speed with other physical parts of the vehicle like the temper-

64

ature of the engine or the fuel’s consumption.

Algebraic properties The parallel continuous composition operator o, is commutative
and associative. Commutativity means that we can compose two physical systems in any
order. Associativity means that we can build a system step-by-step; we can compose two
components together, add a third component later, and we still obtain the same system as

if we have compose all together in the first place. It allows to hierarchy the composition of
components.

Proposition 1 (Commutativity of o.). Let o and 8 be continuous behaviors of components
A and B.
ao. 3= o

Proof. The idea is that the order of variables in an ODE is not important, we can re-arrange
them to show associativity.

Let a and 3 be continuous behaviors of components A and B, i.e. a = X =0x & Hy
and =Y =0y & Hy.

(X =0x & Hx)o. (Y =6y & Hy)

= XY =0x,0y & (Hx A Hy) (definition of o.)
2V, X =0y,0x & (Hx A Hy) (re-arrangement)
2V, X =0y,0x & (Hy A Hy) (commutativity of A)
= (Y =0y & Hy)o.(X =0x & Hy) (definition of o,)

O

Proposition 2 (Associativity of o.). Let o, B and 7 be continuous behaviors of components
A, B and C.

(O‘Ocﬁ>oc’7:aoc(/gocfy)

Proof. As for the proof of commutativity, the order of variables in an ODE is not important;
we can re-arrange them to show associativity.

Let «, B and v be continuous behaviors of components A, Band C, i.e. a = X =0x & Hy,
B2Y =0y & Hy andy=Z =0, & Hy.

(a Oc ﬁ) Oc Y

=2 (X, Y =0x,0y & Hx A Hy)o.vy (unfold definition of o)
= X,Y,Z =0x,0y,0; & Hx n Hy A Hz (unfold definition of o.)
< o, (Y,Z=0y,0; & Hy n Hy) (fold definition of o,)
= o, (Boe7) (fold definition of o)

O

We have presented the parallel composition operator for continuous behaviors of compo-
nents. We have shown that it is associative and commutative, two mandatory conditions for

the modularity. We present in the next section the parallel composition operator for behaviors
of the general form.

65

A parallel composition operator

Recall that a behavior « is said of the general form if o = (disc, U cont,)* (cf Definition 19.
We define the parallel composition between such behaviors. The behavior is divided between
its discrete part disc, and continuous part cont,. Due to their different nature, the com-
position between discrete parts of components differs from the composition between their
continuous part.

Definition 22 (Parallel composition between general behaviors). Let a and B be general
behaviors of components A and B, i.e. a = (disc, U cont,)* and B = (discz U contz)*. The
parallel composition operator o is defined by:

aof = (discCY U discg U (cont, o, contg))*
where o, is defined in Definition 21.

The composition between the discrete parts is a non-deterministic choice, which amounts
to an interleaving of every discrete parts. This full interleaving allows to model parallel
composition of discrete parts of hybrid systems. The continuous part are composed with o.
the discrete and continuous dynamics are then composed with the non-deterministic choice
u. Two examples of executions are given in the Figure 3.10.

cont, disc 3
—t e ——_
discg conts disc, disc,

contg
i R — >
disc, cont,, disc,, discg

Figure 3.10: Possible executions of the parallel composition

We exemplify the parallel composition of behaviors with both discrete and continuous part
by considering the composition of the Engine’s behavior with the Tachymeter’s behavior.

Example 26 (Behavior of the Cruise-control). The Cruise-control component is made
up of the Tachymeter and the Engine. It is itself a component that can be composed with
other components like the fuel consumption monitor. Its behavior Cruise-control is obtained
by the composition of Engine and Tach.

Cruise-control = Engineo Tach =
((?ttach + € = 15 Saem = Seng’ Stach 1= *; ?(O < Stach < S A =0 < Sgach — Saem < 5)7
Q= Stachgsacm trach 1= t)

. *
U(Seng =a,t =1 & 0<t— tigen <5)>

The tachymeter’s behavior senses the speed seng and decides of the targeted speed siqen. It set
the acceleration a followed by the engine’s behavior. The test tyqen, +€ =t at the beginning of
Tach ensures that there is at most € seconds between two execution of the tachymeter. tiuep
records the last instant the controller have executed.

66

Algebraic properties As in the continuous case, the parallel composition operator o is
commutative and associative.

Proposition 3 (Commutativity). Let a and 8 be behaviors of components A and B.
aoff=Poa

Proof. The commutativity property results from the commutativity of the operator U and
the commutativity of the operator o.. Let o and 8 be behaviors of components A and B, i.e.
a = (disc, U cont,)* and [= (discg U contg)*. We have:

aof (disc, U discg U (cont, o. contg))™ (Unfold definition of o)
(discs U discq U (contg o contﬁ))* (Commutativity of U)
(discg U disc, U (contg o, cont,))” (Commutativity of o)

)

Boa (Fold definition of o

b 1P

b b

Proposition 4 (Associativity). Let «, B and 7 be behaviors of components A, B and C.

(@of)oy=aoc(foy)

Proof. The associativity property results from the associativity of the operator U and the
associativity of the operator o,.

Let «, B and v be behaviors of components A, B and C, i.e. « = (disc, U cont,)*,
f = (discg U contg)* and v = (disc, U cont.)*.

(aof)ory
(disc, U discg U (cont, o cont[g))*> o7y (Unfold definition of o

II>

*
(disc, U discg) U discy U ((cont, o contg) o cont7)> (Unfold definition of o

[P

I

(*
(disca U (discg U disc,) U ((cont, o, contg) o, contv)) (Associativity of U
() (Associativity of o,

disc, U (discg U disc,) U (cont, o, (contg o, cont,))

((discB U disc, U (contg o, contv))*> (Fold definition of o
(Bow) (Fold definition of o

3
Q
(o)

I
Q
o

)
)
)
)
)
)

O]

Conclusion We have defined a parallel composition operator for Cyber-Physical Systems.
It is syntactically defined, and thus amenable to automation. It enjoys two important al-
gebraic properties: commutativity and associativity. The associativity property allows to
consider the construction of a system step-by-step.

3.2.3 Comparison with the parallel composition of hybrid action systems

We compare our parallel composition operator o with the parallel composition for hybrid
systems presented by Ronkko et al. [114]. We briefly present the hybrid action systems. The
second part is devoted to a detailed comparison of both approaches.

67

Hybrid action systems We first define what is a hybrid action system. It is used to model
reactive components, possibly non-terminating.

Definition 23 (Action system). An action system is an initialized block of the form:

A= |[varX:T

X = F;
do Aq|...|A, od
1] :Z

var X : T declares the list of variables X of type T. The variables can be global or
local. Global variables can be shared with other action systems. Z declares the imported
global variables that are used in Aq,..., Ay, but do not belong to X. The action X := FE
initializes the variables X by expressions F. After the initialization, the actions Ay, ..., A,
are repeatedly executed when it is possible. There is no fairness assumption and the choice
is non-deterministic.

Actions can be assignment X := E, sequence A; B, non-deterministic choice |, or a guard
p — A where p is a predicate and A an action.

Example 27 (Tachymeter). The tachymeter example presented in the Example 21 is repre-
sented by the following action system:

TACH = || var tigen : R, Saem : R, Staen : Rya: R
Sacm ‘= Seng, Stach ‘= Seng, @ 1= 0;
do tigen +e=t— (sacm i= Seng; Stach = *;
(0 < Stach S SA—=0< Stach — Sacm < 6) -
(a = Stach—Secm 3, :=1)) od
1|t Seng e, t,5,0

We first declare the variables tigeh, Sacm, Stach, @ Since they are the bounds variables of the
system and type them with R. Then we initialize them. The specification is very similar to
our definition in Example 21. The two differences are that the test Tty +€ = t;. .. is written
tigeh +€ =t — ... and the iteration symbol * is not explicit since the semantic of do. .. od is
the one of a while loop. Finally, we have to declare the variables seng,€,t,S,0 as imported.

Definition 24 (Differential action). A differential action is of the form e : X = F(X) where
e is a guard and X = F(X) is a system of differential equations.

The notation in d£ would be X = F(X) & e.

Definition 25 (Hybrid action system). A hybrid action system is an initialized block of the
form:

H= || var X:T

X =1
alt D with DA
1] :Z

alt D with DA is equivalent to do gD — D|—gD — DA od. All the discrete actions
D must execute before the differential action may execute. Thus, discrete changes have a
priority over continuous changes.

Time is assumed to pass linearly during a continuous evolution and do not evolves with a
discrete change. It is the same assumption as in d..

68

Differences with our approach The methodology is similar. The parallel composition
of discrete parts is their interleaving via the non-deterministic choice. They define a special
parallel composition for continuous components and integrate it with the discrete case.

There are two main differences. Discrete changes have a priority in their system and
it restricts the expressiveness of their approach. The second difference is that the parallel
continuous composition is linear.

Definition 26. Linear parallel composition The linear parallel composition of differential
actions e : X = F(X) and ez : X = G(X) result in the following action:

erne: X =F(X)+GX) | e1n—es: X =F(X) | —e1 neg: X = G(X)

The linear parallel composition is associative. But it induces an exponentially increasing
number of system of differential equation. It goes against the ideal of scalability. Plus, to our
knowledge, most of the CPS of interest share the same evolution domain. They have made
the choice of linear parallel composition to implement their approach in HyTech [65].

3.2.4 Relation to the meta-theory of Benveniste

In this section, we discuss how our contributions so far relate to the meta-theory of contract
developed by Benveniste et al. [18].

Component The authors define a component as an open system with typed inputs and
which generates outputs. Our definition of a component (Def. 19) is a reactive open system
under the form of a hybrid program. The inputs are a part of the free variables of the hybrid
program. They are not typed since every variable in dL is valuated in R. The outputs are
defined by the bound variables of the hybrid program.

Environment In the meta-theory, the environment of a component corresponds to other
components and the exterior world, i.e. variables that are not outputs of a component. In
our work, the environment is only the exterior world. We dissociate the other components to
clarify our approach.

Contract The authors define a contract as a pair composed of a subset of components
and a subset of environment. It is a very abstract definition. The first subset is the one of
components that implement the contract. The second subset represents the environments in
which the contract can operate. When it comes to concrete contract-based design theories,
they state two important properties. The contract needs to have a finite description that
does not directly refer to the actual components. The implementation relation needs to be
effectively computable.

In our work, a contract is defined by a pair of formulas (A, G). It is thus a finite description
that does not refer to the component which is under the form of a hybrid program «. The
implementation relation corresponds to the validity of the formula A — [a]G. It is indeed
computable since there is syntactic rules to decide it.

69

Composition of components The authors define a composition operator to support hor-
izontal processes. It must satisfies two important algebraic properties: commutativity and
associativity. The operator we have defined in the Definition 22 exhibit theses two properties.

The authors define also a composability criterion. It must be a syntactic property on pairs
of component that defines conditions under which the two components can interact. The two
components must not share common outputs. It is one of the condition presented in the
next section to be allowed to derive the satisfiability of the conjunction of contracts by the
composition of components. They define also a compatibility criterion on contracts which is
that there exists an environment in which the two contracts properly interact. It corresponds
to the conditions (b) and (c¢) of the theorem of the next section.

The authors have presented a meta-theory for contracts listing the right properties that
a contract-based theory must exhibit. Our component-based approach in dL matches the
stated characteristics. They present also two other contract operators: contract refinement
and contract conjunction. We think that it is possible to extend our approach to instantiate
theses constructs.

Conclusion

After having presented the definition of a component in d£ in Section 3.1, we have defined
a parallel composition operator to build a system from its parts. The operator is associative
and commutative, which is mandatory to modularly design a system. It is also syntactical,
making it amenable to automation.

We want to prove that the system resulting from the composition of component is correct.
Proving correctness of each individual component is not enough. We have to be able to
transfer the correctness of the component to the global system. In the next section, we state
and prove the theorem which allow to transfer the proof of correctness through composition.
It provides a proof that the result of the composition of two components satisfies the contract
(Aa A Ag,Go AGpg) provided that each component satisfies their respective contracts (Aq, Ga)
and (Ga,Gg).

3.3 Modular proof

We want to transfer the proof of correctness of component through composition. More pre-
cisely, let A and B be components with behaviors a and 3 and contracts (Aq, G) and (Ag, Gg).
If A and B satisfy their respective contracts, then we want that the component AB resulting
from the composition of A and B satisfies the contract (Aq A Ag,Go A Gg). In dL, it means
that if we have a proof tree for the sequents £, A, F [a]G and &, A - [B]G g, then we want
to automatically derive a proof tree for the sequent £, Ay, Ag - [0 B](Ga A Gg).

We present in Subsection 3.3.1 the necessary syntactic conditions to prove the desired the-
orem. We prove a technical result in Subsection 3.3.2. We state and prove in Subsection 3.3.3
the theorem for the parallel continuous composition operator o.. In Subsection 3.3.4, we con-
sider the case where both components are discrete, then in Subsection 3.3.5, the case where
one component is discrete and the second one is continuous. Last, we consider the case where
both components are general in Subsection 3.3.6.

70

3.3.1 Necessary conditions

There is three necessary conditions that components must respect to transfer the proof of
correctness through composition. They must not share the same outputs. The guarantees
of a component must not refer to the output of the other component. The assumptions of a
component must be implied by the relevant guarantees of the other component.

No common outputs The outputs of each component must be dissociated. Otherwise, it
means that two components A and B intervene on the same output, and thus have same the
same purpose.

In dL, it means that the bound variables of each behaviors are distinct, i.e. BV (a)) n
BV () = J; the behaviors o and 8 cannot modify the same variable. Otherwise, the execu-
tion of o o f may make no sense and the sequent £, Ay, Ag - [ac o 5](Go A Gg) may also be
invalid although &, A, F [a]G, and &, Az + [8]Gj are valid.

Example 28 (Composition with same outputs). Let a=(z:=)* and = (x := 100)* be
two hybrid programs. We can easily prove [a](z < 15) and [5](x < 100), but not [o B](z <
15 A & < 100) which is equivalent to [(x := 10 U z := 100)*](x < 15 A x < 100). As soon
as the last loop iteration assigns 100 to x, the left-handside (x < 15) of the formula does not
hold anymore.

A
(x := 10)*
T
Ay (z < 15)
Go: (x < 15)
—
B 7
(x := 100)* X
Ag: <100 !
Gg: x <100

Figure 3.11: Unsafe composition with common outputs

This example provides us with a first necessary condition toward automated derivation of
proof trees.

Guarantees do not refer to exterior outputs The second condition requires that the
guarantees of the component A do not refer to outputs of the component B, i.e. it does not
depend of the behavior of an other component. The converse is also true. It would be aberrant
for a tachymeter to refer to the fuel’s level of a vehicle.

71

In dL, it means that variables occurring in G, (resp. Gg) must not be bound in 3 (resp.
«). The condition amounts to:

Var(Ga) n BV(B) = & and Var(Gg) n BV (a) = &

Example 29 (Guarantee dependent of another component). Let o = (x := 10)* and § =
(y := 100)* be two hybrid programs. Assume that Gg refers to bound variables of o, e.g. if
Gp = x > 42. It is easy to prove that it is an invariant of B, i.e. x = 42 - [(y := 100)* |z > 42
is valid. But it is not an invariant of the component ccoB; the sequent x = 42 [(z := 10;y :=
100)*]z = 42 is not valid. As soon as the last loop iteration assigns 10 to x, the formula x > 42
does not hold anymore.

It is graphically represented in the Figure 3.12. A correct guarantee would refer to the
output y.

(y = 100)*
m >
AB: x =42
Gg: x =42

Figure 3.12: Unsafe composition with a guarantee referring to an exterior output

For the continuous case, we request also that the evolution domain of the discrete fragment
of a component does not refer to outputs of the other continuous fragment. We request that
Var(Hx) n BV (contg) and Var(Hy) n BV (cont,).

Assumptions are not falsified by exterior components A last condition is that the
guarantees G, of a component A must implies the assumptions Ag of the component B that
refers to outputs of A, and conversely. It means that the execution of A do not break the
assumptions under which B operated.

In dL, it is translated by the condition that the sequents Ag — V*(G, — Ag) and
Ay VP (Gg — A,) are valid.

Example 30 (Assumption not implied by other guarantee). Let a = (z := 10)* and § =
(y := x)* be two behaviors, Go = T, Ag = x =4 and Gg =y = 4. The sequents - [a]T and
x =4+ [Bly = 4 are valid. Yet, the sequent v = 4+ [(z := 10Uy := x)*]y = 4 is clearly not
valid. A first iteration assigns 10 to the variable x, then a second assigns x to y. We have
then y = x = 10 which contradicts y = 4.

72

A B
(z = 10)*) (y == z)* y
— — >
A, Ag: =4
Go: T Gg: y=4

Figure 3.13: Guarantee does not imply the assumption

Conclusion We have presented three necessary conditions for the sound composition of
components. They amount to good modeling practices and are mandatory to design a mean-
ingful system.

We believe that theses conditions may be weakened if we develop a more complex model of
communications such as in Hybrid Communicating Sequential Processes [73]. HCSP processes
uses outputs chle to send a message e along a channel ch and inputs ch?x to receive a message
along the channels ch. Such channels are unique and thus to an output corresponds precisely
an input. It allows a more subtle management of inputs and outputs during the composition.
We detail some preliminary results in the future works Section 5.1.3.

We present in the next section a technical result needed to achieve the proofs in Subsec-
tion 3.3.3 and 3.3.6. They are related to the conditions we have presented.

3.3.2 Technical result

We state and demonstrate an useful technical result, the separation lemma, to achieve the
proof of Theorems 1, 2, 3 and 4. It is to make use of the condition that the guarantee of a
component must not refer to outputs of another component. We recall the definition of the
skolemization of formulas, a notion needed in next subsections.

Definition 27 (Skolemization). We denote by V¢ the skolemization of a formula with respect
to the bound variables of its hybrid program «. (We will use the shorter notation ¢® where
unambiguous).

Example 31. Recall that BV (Engine) = {scng}. The skolemization of Gigen by the behavior
Engine is G,,% = Vseng, Grach-

Separation lemma We need a lemma which state that if the guarantees GG, of a component
A do not refer to the outputs of the other component B, i.e. they are separated, then B does
not affect G,.

Lemma 1 (Separation). Let o be a behavior of a component and ¢ a formula such that
BV (a) nVar(p) = &. Then the skolemization ® is equivalent to p, i.e. * <> p.

Proof. We prove the lemma by induction on the structure of the formula .

Let ¢ be an atomic formula, e.g. x = 6. We have to prove that the equivalence V¢zx >
0 «—— x = 6 is valid. We recall that the bound variables of « are separated of the free
variables of ¢. We first prove that V¥x >0 — x > 0.

73

r=20Fx>=0 ax

Ve Z2 0k x>0
We apply the proof rule V; to eliminate the quantification in the left-hand side of the sequent.
Since the quantification is over variables that are not present in the atomic formula x > 0, it
leaves it unchanged. We conclude using the axiom rule. We reason similarly for the second
implication x = § — Y%z > 6.

l

r>0Fz>0 &

c= 0V =0 "

We apply the proof rule V., and since the quantification is over variables that are not
present in the atomic formula x > 6, it leaves the right-hand side unchanged. We conclude
using the axiom rule.

Let ¢ be the conjunction ¢; A 2 and we assume that the formula ¢ < ¢; (i = 1,2)
is valid under the assumption that BV («) n Var(yp;) (i = 1,2) is empty. We have to prove
that the formula V(1 A @2) «<— @1 A @9 is valid assuming that BV («) n Var(er A 2).
By definition of quantification, V*(p1 A ¢2) is equivalent to (V¥p1) A (V¥p2). By induction
hypothesis, ¢ < ¢; (i = 1,2), and thus (V1) A (V¥p2) < ©1 A ¥2.

Let ¢ be an universally quantified formula Vz,pg. Again, we assume that the formula
V%po «— (o is valid under the assumption that the intersection BV (o) n Var(go) is empty.
By definition, V*Vxpq is equivalent to YaV%po. By applying the induction hypothesis, we
obtain the formula Vapg. U

3.3.3 For two continuous components

We first state the theorem for the composition of components at the textual representation
level. We state and prove after the equivalent result with behaviors in dL 1.

Theorem. Let A and B be two components with continuous behaviors and respective contracts
(Aq, Gq) and (Ag,Gp). Assume that they both satisfy their contracts. Furthermore, assume
that

(a) A.outputs N B.outputs = (J,

b1) A.outputs is separated from Gg and Hy,

)
)
by) B.outputs is separated from G, and Hx,
) Go must implies the assumptions Ag that refers to outputs of A,
)

(
(
(c1
(c2) G must implies the assumptions A, that refers to outputs of B.

Then the component AB resulting from the parallel composition of A and B satisfies the con-
junction of contracts (Aq A Ag,Ga A Gpg).

The conditions (a), (b) and (c) are detailed in Subsection 3.3.1. The first assumption (a)
assumes components to have separate internal variables and requires them to define disjoint
output variables (i.e. unique definitions), which essentially amounts to good modeling prac-
tice. The second assumption (b1) (resp. (b2)) requires the safety property G, (resp. Gg) to
guard the behavior of the system « (resp. (), i.e. its outputs, and of course not fs (resp. «).

74

It hence seems natural to require its separation with G (resp. G,). The condition (c;) (resp.
(c2)) requires the assumptions Ag (resp. Aq) to be implied by the guarantees G, (resp. Gg).

N

Recall that the behavior a of a component A is the form o = X = 0x & Hx and that
the behavior 8 of a component B is of the form § =Y =6y & Hy.

Theorem 1. Let o and B be two continuous behaviors of components A and B with respective
contracts (Aq, Go) and (Ag,Gg). Assume that we have two proof trees of £, Ay - [o]Gqo and
E,Ag - [B]G s respectively, where € is the environment. Furthermore, assume that

(a) BV(a) nBV(8) = &,

(b1) BV(a) n FV(Gg) = & and BV (o) n FV(Hy) = &,
(b2) BV(B) n FV(Ga) = & and BV(B) n FV(Hx) = &,
(c1) €, An - YVP(Gs — An),

(c2) & Ag - Y*(Go — Ap).

Then it exists a proof tree of €, Aa, Ag - [avoc B](Ga A Gp).

Proof. Let v and 8 be two continuous behaviors of components A and B, and assume that
we have a proof tree P, of £, Ay - [a]G, and a proof tree Py of £, Ag - [3]Gg. We have
a=X=0y & Hx and 3 =Y =06y & Hy.

The composition is still a continuous component and we want a proof tree of £, A,, Ag -
[ao. B](Ga A Gg) by using the proofs P, and Pg. We inspect all the rules that can be applied
in P, to prove the sequent &, A, [&]|Gq (resp. for the proof tree Pg of £, Ag - [5]Gp) and
for each particular association, we give a proof of £, Ay, Ag - [a o B](Ga A Gg).

Inspection of proof rules We can apply the following rules to the sequent &, A, F [a]Ga:
differential invariant [DI], ODE solution [ODEsolve], differential weakening [DW], differential
cut [DC], Cut and generalization [Gen|. The rules cut, generalization and differential cut
do not decompose the ODE since we still have to prove [a]G, in one of the premises. For
example, if we apply the rule Cut, we have the following proof tree:

gvAOé l_ [a]GCHSO €7Aa790 }_ [OZ]GQ
E, A]Gy

Cut

We still have to prove the modality [«]G, in the right premise.

This careful inspection shows that there are only three rules to consider: [DI}, [ODEsolve]
and [DW]. We first consider the case where £, A, — |G, and &, Ag + [B]Gs are proved
by the rule [DI]. For the rule [ODEsolve], we show how to construct a proof using [DI] rule
instead. Last, we consider the case where one have been proved by rule [DI] and the other
by rule [DW] and the case where both sequents have been proved by rule [DW].

We consider four cases :

e [DI]-[DI] Where the two have been proved using the rule [DI]: we apply also the rule
[DI] to the sequent representing the contract of the composite. It is divided in three
sub-cases:

75

— Where both ODEs are independent, i.e. the output of one component is not an
input of the other

— Where one ODE refers to the other, but the converse is false, i.e. the input of one
component is an input of the other

— Where both ODEs refer to the other.

The first sub-case basically means that they do not interfere, the proof is thus simple.
For the second case, we use the fact that the guarantee of a component implies the
assumptions of the other to guarantee a safe composition. In the last sub-case, we show
that we get back to the second sub-case.

e [ODEsolve| The case where one component have been proved by the rule [ODEsolve|:
we use a result of A. Platzer stating that if we have a proof with the rule [ODEsolve],
then we have a proof with the differential induction rule [DI]. We can thus get back to
the first case.

e [DW]-[DW] Where both proofs have been achieved by the use of the differential weak-
ening rule: we apply the rule [DW] to the sequent representing the contract of the
composite and we retrieve our assumptions easily.

e [DI-[DW] One sequent have been proved by the differential induction rule and the
second by the differential weakening rule: we introduce the guarantee of the first one in
the evolution domain with the differential cut rule and apply then the rule [DW]

([DI]-[DI])

If £, Ay - [a]G, and &, Ag - [B]Gp are proved by using rule [DI], then we have a proof tree
of this form for P,:

P,
0
€, Ao, HY 1= (GI0)%
i & Aa - H — (G20

EAm Hx - Go € Ay -V (Hx — (G)%X)
: X~ D]
E, Ao F [X =0x & Hx]Ga

—

r

The notation goi?(stands for the formula ¢ where all the occurrences of X are replaced

by 0x. The left part of the tree is P#x and the right part P,. We can derive a similar
proof tree for £, Az [B]Gz. We use these sub-parts to close goals of the proof tree of
E,AQ,AIQ — [X,Y =0x,0y & Hx A Hy](Ga A Gﬁ)

We have to prove the sequent &, Aq, Ag [X,Y =0x,0y & Hx A Hy|(Gq A Gp).

We have to be very careful to the fact that the body of an ODE refers to a derived variable
on the other component, e.g. if @ = 2 = y and y is derived in 8. When we reason individually
on «, y is assumed to be constant, but when we compose it became a changing value. We
have three possibilities : there is no references, one refers to the other but the converse is
false, and they both refers to the other. We consider each possibility separately.

76

Systems are independent We consider the case where both systems are independent, e.g.
a = ¢ =3t and f = ¢ = 42. Thus we assume here that 0x (resp. fy) does not refer to
outputs of 3 (resp. «), i.e. that FV(0x) n BV(B) = & (resp. FV(0y) n BV (a) =).

We first apply the rule [DI] with G A G as invariant.

E,Aa, A, Hx, Hy - Go A Gg 57Aa»ABFVO‘ﬁ((HX/\Hy)H(G' Vel)i;()fy) -
. . DI
&, Aa, Ap = [X,Y =0x,0y & Hx A Hy|(Go A Gp)

The left premise correspond to the initial step. We apply the rule A, to split the goal
and end up with the sequent &, A,, Ag, Hx,Hy = G, and &, Ay, Ag, Hx,Hy = Gg. By
assumption, we have the proof tree PX and PH¥ to conclude.

PHx pHy
gvAavAﬁaHX7HY|_Ga S>AQ>A,37HX7HYl_G,B
E,Aa,Aﬁ,Hx,Hy FGa A G/g

r

The second premise is the differential induction step. We have to prove the sequent

E,An, Ag =Y ((Hx A Hy) — (G, A G/)i;‘yey) to finish our proof tree.

Thanks to the condition (a) and (b), the formula (G, A G)i?}fy is equivalent to the

formula (G;)ig‘ A (G'B)f./y. Since the outputs of each component are dissociated and G, does
not contain occurrences of bound variables of 3, i.e. of Y, the substitution of Y by 8y does
not have any effect on G,. Idem for Gpg.

We apply the rule V, to eliminate the universal quantification in the goal. By applying
the separation lemma (Lemma 1) to the evolution domain Hxy A Hy, the resulting sequent
is & Ag, Ap - (H$ A HY) — ((Gg)igf A (GI’B);O-,Y)O‘B where the superscript « (resp. 3) in G
means that the bound variables of o (resp. () occurring in GY, are replaced by fresh variables.
The conditions (b1) and (b2) allows to apply the separation lemma to (GY,)O.X and (G%)iy

Thus, we have the sequent £, Ay, Ag - (H§ A Hg) — (G)ig‘}f’/) A (G)ig‘}fy)ﬁ).

£, Aa, Ag b (HS A HY) = ((GR)F) A ((G)%5)?)

€, Aw, Ag VP (Hx A Hy) — (Gl A Glp)%2 0Y)

We apply successively the rules —, and A; to pass the left-hand side of the implication
on the hypothesis.

€, Aoy Ag, H HY b ((G)%5)™ A ((G)%)P
€, Aa, Ag, HY A HY = ((GL)%)% A ((G)%)°
€, Aa, Ag = (HY A HY) — ((GR)%)* A ((G1)%)P)

We split the conjunction. The left premise is closed by P.. the second premise is closed
by P}.
B

7

P/
B8
€, Aa, Ag, HYY HY = (GL)'5)0 €, A, Ag, HY HY 1= ()%)P
€, Aa, A, HY \HY 1= ((G)75)* A ((G)%)P

Ny

For the left goal, either fx does not refer initially to bound variables of 8, and we can
thus conclude by P/. Either, occurrences of y have been replaced by f(z) and we can thus

conclude by the proof tree p/,0.

{PHX} {PHY} ESeparation lemma (with conditions (a), (b1) and (b2))}

Initial step {Differential induction step}

Application of rule [DI]

Figure 3.14: Summary of the proof for the case [DI]-[DI]

One system is dependent of the other We assume here that one system is dependent of
the other, e.g. the speed equations v = a,x = v. Here the second part of the equation refers to
the derived variable in the first part. More formally, we assume that F'V (6x) n BV (8) = {y}
and FV(0y) n BV (a) = &. It is easy to generalize it to a set of variables.

If we conduct the proof as in the previous case, we will have trouble with the skolemization
step. Indeed, y will be captured and it will not be possible to use A, to retrieve the proof
tree P..

Before applying the differential induction rule [DI], we introduce Gg in the evolution
domain thanks to the rule (Cut).

E,Aa,Aﬂl— [X,YZ@X,QY & HXAHy/\Gﬁ](GaAGg)

E,Au, Ag - [X,Y = 0x,0y & Hx A HY]G/;\

— DC
E,Aa,AﬁI—[X,Yzex,ey & Hx/\Hy](Ga/\G/B) []

The left premise is closed exactly as for the case where the continuous systems are inde-
pendent. By assumption, « will not interfere and the proof follows without trouble.

78

We introduce now the formula A, in the evolution domain of the right premise. The
skolemization step will now include A, and we will be able to retrieve the proof tree P.

E,Au, Ag - [X,Y = 0x,0y & Hx A Hy A Gg A Ay](Go A Gg)

5,Aa,A5 = [X,YZ Ox,0y & Hx A Hy A Glg]Aa

— DC
g,Aa,Aﬁl— [X,ngx,ey & Hx/\Hy/\Gﬁ](Ga/\Gﬁ) []

The left premise is closed by an application of the proof rule [DW] and the use of the
condition (c).
5,Aa,Aﬁ o Vo‘ﬁ((HX A Hy A Gﬁ) — Aa)
E,Au, Ag - [X,Y = 0x,0y & Hx n Hy A GglA,

[DW]

For the right premise, we now apply the differential induction rule [DI] to the sequent
S,AQ,AB [[X,Y =0x,0y & Hx A Hy A Gﬁ A Aa](Ga A Gﬁ)

€, An, Ag = VP ((Hx A Hy A Gy A Ag) — (Gl A G) %)

g,Aa,Aﬁ — (HX A Hy /\GB /\Aa) — (Ga /\G/B)\

— DI
E,Aa,Aﬁl— [X,YZH)(,QY & Hx/\Hy/\Gﬁ/\Aa](Ga/\Gﬁ) []

We now apply the skolemization step as in the previous case and we can conclude.

Both systems are dependent of the other We consider now the case where both systems
are dependent of the other, e.g. © = y,y = x. Recall that we assume that our ODEs possess
a solution f(¢). Assume that f(¢) is such solution for the differential equation y = . We
can then replace y in the differential equation & = y by f(¢). Notice that f(¢) may contain
occurrences of . We have now the following system & = f(t),y = x and we are in the second
situation that have already been considered.

(rule [ODESolve])

We consider the case where £, A, [X = 0x & Hx]|G, is proved by the use of the rule
[ODEsolve], which means that we find an explicit solution w.r.t. time to the ODE and we
replace each occurrence of X in G, by this solution. We show that, given a proof using the
rule [ODEsolve|, we can derive a proof using the differential invariant rule [DI]. This leads
us back to the previous situation. We do the proof with only one variable, X. It is easy to
generalize it to a system of ODEs. Our reasoning is inspired from [98, p. 247]. By hypothesis,
we have the following rule for [ODEsolve]

£, An - VL= 0(V0 <7 <t, (Hx)"D) = (Go)2
- (: Hx)x) = (Ca)x [ODEsolve]
£, A [X = 0x & Hx|Ga

79

y(t) is the solution of the ODE X = 6.
Let us introduce a fresh variable ¢ to stand for time in the ODE. It will be evaluated after
the rule [DI] by using the differential auxiliaries rule [DA].

E, A - [X =0x,t=1 & Hx]|Ga DA
E, AL [X =0x & Hx]Ga

Also, the solution of the ODE shall contain an occurrence of the initial value. To remember
it, we use the auxiliary variable rule [IA].

E,Ag - [Xo:= X][X =0x,t =1 & Hx]Gq
E, A [X =0x,t =1 & Hx]G,

[TA]

The proof tree of £, A, + [a]Gq using the rule [DI] is in the Figure 3.3.3. To introduce
the solution as an invariant, we use the generalization rule [gen].

IT;
E AL, X0 = y(to) — Gg
E,Aa XV =yt - G2
E,Ag FYXVE X =y(t) > Gy

—

ax

E,Aa, Hx H 0x = 0x

i
€, Aa Hx = (X = y(1))'%" W

€, Aa - Hx — (X = y(1))5, !
E A Hy X = y(0) " € Aq - VX, Hx — (X = y(1)%%! o1
: ; DI
E,AuH[X =0x,t=1 & Hx]X =y(?)

E,Au - [X =0x,t=1 & Hx]Gq

[gen]

0
By hypothesis, we assume a proof P of gog((t), Here, t° is the fresh variable introduced

by the rule V,., idem for X° and ¢". On the branch II;, we apply exactly the same logical
rules that the ones applied in P. For the logical connectives, there is no problem since the
structure is similar. We need to pay a little more attention to the case of arithmetic over
reals. Indeed, suppose we have proved y(t°) < fx in P. Then, we will have to prove X° < 6
in the proof of GY. Fortunately, we also know that X° = y(t) by hypothesis. Hence the
conclusion by applying basic arithmetic.

For the left premise of rule [DI], we must remember that it is here to prove the initial
condition: the property at time ¢ = 0, i.e. to ensure that the initials conditions prove the
(inductive) safety property. But the value of X is exactly y(0), so we can conclude with the
axiom rule. For the right premise, we just perform the substitution and the step (i) is justified
by the same reasoning as for [DI].

80

([DW]-[DW])
We still need to prove the differential weakening case. The proofs are of the following form:
POé
E, Ay, HS = G
E AL HS — Gy v
E, AL FYY(Hx — Gy) "

. [DW]
E Aok [X = 0x & Hx]Ga

T

Once £, A, + [a]Gy and €, Az [B]Gp are both proved by the mean of differential
weakening, then the proof of the composition is the following:
pe ps
£ A, Ag, HS HY = GS €, Aa, A, HY, HY + G
£, Ao, Ag b (HY A HY) — (GS A GY)
5,Aa,Aﬁ — Vo‘ﬁ((HX A Hy) — (Ga A Gﬁ))
€7Aaa AB = [a Oc B](Ga N Gﬁ)

Ny

r

[DW]

It is a very simple case, where the evolution domains are sufficient to prove the safety
properties. We first apply the differential weakening rule [DW]. Then the quantification rule
which results in the sequent &, A, Ag = (H$ A Hé) — (G& A Gg) thanks to the separation
lemma and conditions (a), (b1) and (b2). We split then the conjunction and ends up with
premises £, Ay, Ag, HY, Hg FGgand &, Ay, Ag, HS, H}B, - Gg. They are closed by the proof
tree P® and PP,

([DI}-[DW])

Assume that £, A, - [a]G have been proved by the use of rule [DI] and £, Ag - [5]Gg by
rule [DW]. The idea is to add G, into the evolution domain of « o, # using the differential
cut rule [DC].

£ Aw, Ag - [X,Y = 0x,0y & Hx A Hy A Go(Ga A Gp)

E,Aa,Ag — [X,Yzex,ey & Hx A Hy]GN

5,Aa,A5 — [X,Yzex,ey & Hx AHy](Ga /\Gg)

[DC]

The left premise requires to prove that G, is an invariant of o o. 8. We can follow the
methodology for the case where both components have been proved by differential induction
with T as invariant of Gz. The right premise requires to prove that G, A G is an invariant
of awo. 8. We apply the differential weakening rule [DW].

E,AQ,AB [VO‘B((HX A Hy A Ga) — (Ga A Gﬁ))
E,Aa,Aﬁk[X,Y:HX,Hy & Hx/\Hy/\Ga](GaAGg)

[DW]

81

We apply the skolemization step with the rule V, and, thanks to the separation lemma
(cf Lemma 1) with conditions (a), (b1) and (b2), we obtain the sequent £, Ay, Ag = (HS A
H{ A GS) — (G5 A GY).

£, A, Ag b (HY A HY A GS) — (GS A GY)
E,Aa, Ag E VP ((Hx A Hy A Go) = (G A Gp))

T

We apply successively the rules —,, A; and A,.

ax PB
£, Au, Ag, HS, HY G2 - G2 £, Aa, Ag, HY HY GS + G

£, Aa, Ag, HY, HY,GS -GS A G
£, Ao, Ag, HY HY) A GS -GS A G
£, Aa,Ag, H N HY A G5 -GS A G
£, Aa, Ag - (HS A HY A GS) — (G5 A G)

Ar

Al

Al

—

The left branch is closed by the rule ax. The right sequent is closed by P? as in the case
of [DW]-[DW].
O

When we compose two components with continuous behaviors, the Theorem 1 ensures
that the resulting component satisfies the conjunction of contracts. We have a similar result
for the composition of purely discrete components in Subsection 3.3.4.

3.3.4 For two discrete components

As in the previous subsection, we have a theorem ensuring that we retain contracts through
parallel composition of purely discrete components. The conditions are similar to the Theo-
rem 1.

Theorem. Let A and B be two discrete components with respective contracts (Aa, Go) and
(Ag,Gp). Assume that they both satisfy their contracts. Furthermore, assume that

(a) A.outputs n B.outputs = (7,

b1) A.outputs is separated from Gg

C1

(b1)

(b2) B.outputs is separated from G,

(c1) Go must implies the assumptions Ag that refer to outputs of A
(c2)

c2) Gg must implies the assumptions A, that refer to outputs of B.

Then the component AB resulting from the parallel composition of A and B satisfies the con-
Junction of contracts (Aq A Ag,Go A Gg).

We have the equivalent theorem with the behaviors in d.L.

82

Theorem 2. Let a and B be two discrete behaviors of components A and B with respective
contracts (Aq,Go) and (Ag,Gg). Assume that we have two proof trees of £, Ay - [a|Go and
E,Ap - [B]Gs respectively, where £ is the environment. Furthermore, assume that

(a) BV(a) n BV () = &,
(b1) BV(a)n FV(Gg) = O,

(b2) BV(B) n FV(Ga) = &,

(c1) & Ag - Y3(Gs — Ag),

(c2) & Ag ¥ (Go — Ag).

Then it exists a proof tree of £, Aa, A - o0 B](Ga A Gg).

The conditions are similar to the Theorem 1, except for conditions (b1) and (b2) where
we do not refer to the evolution domain as it is non-existent since we are working with purely
discrete components.

N

Proof. Assume o = [(disc,)*] and § = [(discg)*] are two behaviors of component A and B
respecting the conditions above. The composition « o 3 is given by the behavior (disc, U
discg)*. Given the proof of contracts £, Ay - [o]Go and €, Ag - [5]G 3, we want to prove
the sequent £, Ay, Ag = [a 0 B](Ga A Gp).

An application of the rule [Ind] have been necessary to prove the sequent £, A, +
[(discqa)*]Gq. It results in two premises : the initial step and the induction step. We assume
that we have a proof tree Pj;, such that the premise corresponding to the initial step is
closed by Pjp,. For the second premise, we apply the proof rule V, to skolemize bound
variables of a. We recall that the superscript ¢ on a formula or a hybrid program means that
we have replaced every occurrences of bound variables of « by fresh variables. The remaining
goal £, Ay, GS - [discq]G is closed by the proof tree P, .

Pinda
&, Ay, GS + [discy |GS
Pinit € Ao b Gy — [disc3]Gy
EAu b Go & Aqt ¥ (Gy — [disca]Ga) [1;(1]

E, Aq + [(discy)*]G

We apply a similar reasoning to the proof of the sequent 8 = [(discg)*]. We have thus
the proof tree Pinit, and Pmdﬁ-
To prove the sequent &, An, Ag - [(disc, U discg)*](Go A G), we apply the rule [Ind].

E,Aa, A Go A Gy E,Aq, A VP ((Ga A Gg) — [disc, U discs](Ga A Gp))
E,Aq, Ag = [(disc, U discg)*|(Ga A Gp)

[Ind]

The left premise corresponds to the initial step. We have to prove that both guarantees
hold after zero executions. We split the goal with the rule A, and obtain two premises that
correspond to the initial step of each individual proof. They are closed by using the proof
trees Pjpiz, and Pinits-

83

Pim'ta Pz’m‘tg
5,Aa,Agl—Ga g,Aa,Aﬁl—Gﬁ
€, An, Azt Go 1 Gg

T

The right premise corresponds to the induction step. We first apply the skolemization step
with the rule V, to the sequent &£, A,, Ag V“B((Ga A Gg) — [disc, U discg](Ga A Gp)).

E,Aq, Ag - (GSP A Ggﬁ) — [disc®® U discgﬁ](GgB A Ggﬁ)
5,14&,145 [VO‘B((GQ A Gﬁ) — [diSCa U diSCﬁ](Ga A G,B))

We can apply the separation lemma (cf Lemma 1) since the bound variables are dissociated
(condition (a)) and the variables of G, (resp. Gg) are different from the bound variables of 3

(resp. «) (conditions (b1) and (b2)). Thus, the sequent £, Ay, Ag (Ggﬁ A G’gﬁ) — [disc®” U
discgﬂ](Ggﬂ A Ggﬂ) is equivalent to &, Ay, Ag - (G2 A Gg) — [disc®? U discgﬂ](Gg A Gg)

We apply the rule —, to this sequent followed by the rule A; to pass in the hypothesis
(GS A GY).

£, Aa, Ap, G&, G} F [discd” U disc}’ (G A G)
£, Aa, Ag, G5 A G - [discd” U dise”](GS A G)
£, Aa, Ag - (G4 A G) — [discd” U disc}’|(GS A Gf)

The next step is to split discgﬁ v discgﬁ with the non-deterministic rule [U] to consider
separately their action. We obtain two premises which are similar to handle. We consider
only the case of the left premise, i.e. the sequent £, A, Ag, G, G’g - [discgﬁ](Gg A Gg)7 the
second one is closed by the same reasoning.

£, Aa, Ap, G&, G+ [discd®] (G A G) €, Aa, Ag, G5, G 1 [disc]’ (G A G)
£, Aa, Ag, GS, G + [discd” U disc}”]|(GS A G)

(V]

We have to prove the sequent S,Aa,Ag,Gg,Gg - [disc®?](GY A Gg) We split the
guarantees by using the rule [BoxAnd] since they are of different nature. G% is a guarantee
of the component A and we have already a proof by assumption. Gg is a guarantee of the
component B, but it is not affected by the execution of « thanks to the conditions (a) and

(b)-

€, A, Ag, G2, G 1= [discS?]GS €, Aa, A3, G, G - [discs?]G)
£, Aa, Ap, G%, G+ [discS®](GS A G)

[BoxAnd]

We have a proof tree Py,q, of £, Ay, GS [discS]GS and we want to close the left premise
2 £, A4, Ag, GY, Gg - [disc??)G2. Here disc? differs from disc®” by the variables of 8 that
are captured by the skolemization. We can not make use of the assumption A, to conclude
since it may refer to bound variables of .

The condition (c) states that the sequent A, Gg — A% is valid. We introduce the

formula Gg — A% with the cut rule (Cut).

84

£, Ao, Ap, GS, G5, G — AL+ [discd®]GS &, Aa, Ag, G2, G - [disc®]GS, G — A
£, Aa, Ap, G&, G + [disca”] G4

(Cut)

The right premise is closed by the assumption that we have a proof of Gg — AZ. For the

left premise, we can deduce the formula AS in the hypothesis thanks to an application of the
rule —;. The left premise is closed by the rule ax.

ax

£, Aa, Ap, GS, G + G, [disca®] G4 £, An, Ag, G2, G5, A5 - [disce?]Ge
£, Aa, A3, G2, G5, G — AG - [disci?]|GY

g

We are left with the right sequent £, A, Ag, G%, GB, Gg — Ag, Al - [discgﬁ]Gg, and by
assumption we have a proof P% of it.

To prove the remaining sequent £, A,, Ag, G, Gg - [discgﬁ]G’B , we symbolically execute
disc®?. Since Gg does not contain any bound variables of a (and thus of disc®?), it is not
affected. We conclude then by the rule az.

3 3 axr
€, Aa, A5, G4, Go + G

£, An, Ag, G2, G} F [disce’]GY

Symbolic execution

We have a summary of the structure of the proof tree in the Figure 3.15.

3.3.5 For a discrete component and a continuous component

We consider the case where one discrete component A is composed with a continuous com-
ponent B. We mix here reasoning for discrete and continuous composition, and thus have to
be very careful for the composition. As for the two previous section, we state the theorem
for the components expressed with the textual representation and the equivalent results with
behaviors.

Theorem. Let A be a discrete component and B be a continuous component with respective
contracts (Aq, Go) and (Ag,Gg). Assume that they both satisfy their contracts. Furthermore,
assume that

(a) A.outputs n B.outputs = (7,
b1) A.outputs is separated from Gg

)
)
ba) B.outputs is separated from G,
) Go must implies the assumptions Ag that refer to outputs of A
)

(
(
(a1
(c2

G must implies the assumptions A, that refer to outputs of B.

Then the component AB resulting from the parallel composition of A and B satisfies the con-
Junction of contracts (Aq A Ag,Go A Gg).

85

Prypa, Prypa,
Condition (c)

[BoxAnd]

Condition (c)

Application of rule [U]

{le‘ta} {Plnitg} {Separation lemma (with conditions (a), (b1) and (b2))}

Initial step Induction step

Application of rule [Ind]

Figure 3.15: Summary of the proof for the discrete case
We have the equivalent theorem for behaviors of components. Recall that the behavior /3
of a component B is of the form 8 =Y =60y & Hy.

Theorem 3. Let « be the discrete behaviors of a component A and B be the continuous
behavior of a component B with respective contracts (Ao, Ga) and (Ag,Gg). Assume that we

have two proof trees of £, Aa = [a]Gq and E,Ag [(B)*|Gp respectively, where & is the
environment. Furthermore, assume that

(a) BV(a) n BV () = &,
(b1) BV(a) n FV(Gg) = & and BV (a) n FV (Hy) = &,
(b2) BV(B) n FV(Ga) = O,
(c1) & Ag - YP(Gs — Ag),
(c2) & Ag Vo (Go — Ag).

Then it exists a proof tree of €, Aa, Ag - [0 B](Ga A Gg).

86

We also require that the bound variables of the discrete behavior do not occur in the
evolution domain Hy of . It is similar to the condition (b1) of the Theorem 1.

There is a major point to consider in this theorem. Instead of assuming having a proof
of the sequent &, Az - [5]Gq, we assume having a proof of £, Ag - [(5)*]G4. Indeed, when
we compose, the differential equation is now under an iteration. Thus, it may not access
to assumptions due to supplementary skolemization. We provide a counter-example to show
that without this assumption, the theorem does not hold.

Example 32 (Counter-example). Assume that the behavior of our continuous component is
=y & x =uy. Its contract is (T,z < 10) and the initial value of z is 0. It is simple to
obtain a proof of the sequent v =0+ [=y & z = y|x < 10. Indeed, we have that & = 0,
and thus x does not evolve. Since it is initialized at 0, we have that x < 10.

Let compose it with a behavior disc, of a discrete component and with contract (T,T).
The behavior resulting from the composition is (disc, v =y & x = y)*. We want to prove
the following sequent:

r=0F [(discaut =y & z=y)*|lz <10

We start by applying the induction rule [Ind] and obtain two sub-goals, one for the initial
step, the other for the induction step.

r=0F2<10 r=0FVz,(r <10 - [disc,ui =y & z =yl]z <10)
r=0F [(disco,ut =y & z=y)*|lz <10

[Ind]

Consider the induction step. We apply the rule V,. and replace the variable x by the fresh
variable xo. We then split the behavior between disc, and © =y & x =1y by using the rule

ISIE

x=0F 29 <10 - [discy|zo < 10 r=0F20<10—> [2g=y & 29 =y|zo <10
x=0,20 <10} [disc, vig =y & x9=1yl]ro <10

[V]

x=0F 29 <10 > [disco Uig =y & zg=yl|rg <
r=0FVz,(r <10 - [disco, ut =y & x=ylr <

The sequent x = 0 x9 < 10 — [29g =y & x9 = ylro < 10 is clearly not valid. For
example, if xg = 1 at the initialization, then we have xo < 10, y = 1, and thus £o = 1. As xg
is evolving linearly, we have that the formula o < 10 will not hold at some point.

Proof. The behavior « is of the form (disc,)* since it is a purely discrete component. We
assume to have a proof tree of the sequent &, A, [(discy)*|Gq. It is the same assumption
as in the proof of Theorem 2.

Hinda
&, Ay, GS + [discy |GS
Minit, € Ao+ Gy — [disc3]Gy
Aa o , Ao NGa — [discy|Ga "
E ARG & V(G [disc,|Ga) Ind]

E, Aq + [(discy)*]Ga

87

The behavior S of the continuous component B is of the form Y = Oy & Hy. We assume

to have a proof tree of the sequent £, Ag - [(Y = 0y & Hy)*]Gg3. It has the following shape.

Hstep/g
£, Ag, GiH[(Y =0y)’ & HYIGY
M, £ Ag Gl —[(V =0y) & HYIG
E, A3 - Gg E,AQI—V’B(GQH[YZQY & Hy|Gp)
E,As - [(Y =6y & Hy)*]Gp

T

[Ind]

We first apply the induction rule and then the skolemization step (rule V,.). Notice that
occurrences of bound variables of 5 in Hy are replaced by fresh variables, which is the meaning
of the notation H{i

Recall that the parallel composition of o and S results in the behavior (disca U (Y
Oy & Hy)))k We provide a proof tree for the sequent £, A, Ag [(disca u (Y =0y
1y))"](Ga A Gy).

We first apply the induction rule [Ind] with (G, A Gg) as invariant.

£, A, Agt-Ga AGg &, Aa, Ag - Y%((Ga A Gg) — [disca U (Y =0y & Hy)|(Ga A Gp))

£, An, Ap - [(disca U (Y = 0y & Hy))*](Ga r Gp)

We obtain two sub-goals, one corresponding for the initial step and one for the induction
step. The first sub-goal is handled as in the proof of the previous Theorem 2. We split the
formula G, A G using the rule A and then use the proof tree Il;,;;, and IL;p;; 5 to conclude.

We consider the second sub-goal £, Aa, Ag V9 ((Go A Gg) — [disc, U Y =06y &
Hy)](Ga A Gg)). We apply the rule V, to replace all occurrences of bound variables of « and
f in the formula (G, A Gg) — [disc, U (Y =0y & Hy)](Ga A G3). We denote by G2 the
effect of this replacement on the formula G,.

The step (i) is the application of the separation Lemma 1. Indeed, from conditions (b1)
and (b2), we deduce that G5’ is equivalent to G¢&. It justifies the fact that we obtain the
sequent £, Ay, Ag F (G§ A Gg) — [disc®”® U ((Y = 0y)? & Hé)](Gg A Gg) We apply

successively the rules —, and A; to pass the formula (G§ A Gg) into the hypothesis.

£, Aa, Ag, G3, G F [discd” U ((V = 0y)* & HY)|(GS A G)
£, Aa, A, G& A G 1= [discd” U (Y = 0y) & HY)](GS A G)
£, A, Ag b (GS A G) — [dised” U (Y = 0y)* & HY)](GS A G)
£, A, Ag b (G A GYP) = [discd? U (Y = 0y)*? & HY)](Ga’ A GF)
E Any Ag - Y8 ((Go A G) — [disc?” U ((Y = 0y)*? & HE)|(Ga A Gp))

(i)

Our next step is to split the hybrid program discgﬁ U ((Y = Hy)o‘ﬁ & H}B,) in two with
the non-deterministic choice rule [U]. We have two cases to consider: the execution of the
discrete part and the execution of the continuous part.

88

£, Aa, Ag, G3, G [discd®|(GS A G)) €, A, Ag, GG+ [(Y = 0y)*® & HY|(GS A GY)
£, A0, A, GS, G F [discd” U (Y = 0y)*® & HY))(GS A GY)

[V]

The left sub-goal, £, Ay, Ag, G%, Gg - [disc®?](G2 A Gg), is handled as in the proof of
the Theorem 2. We detail the proof tree for the right sub-goal, &, A, A3, Gy, Gg - [(Y =
Oy) & HY)(GS A GH).

We first split the formula G A Gg under the modality with the rule [BoxAnd]. We then
carefully consider the two sub-goals.

€, A, Ag, G, G- [(V = 0y)*® & HYIGS €, Aa, A3, G2, G = (Y = 0y) & HYIG

: [BoxAnd]
£, A, Ag, GG [(YV = 0y)* & HYJ(GS A GY)

For the first sub-goal, E,Aa,Ag,Gg,Gg l— [(Y = 0y)™* & H}B/]Ga

o, remember that G,
does not contain any occurrences of bound variables of Y = 0y & Hy . Thus the evolution of
the differential equation does not affect GS. We symbolically execute it to obtain the sequent

which is closed by the axiom rule.

ax

£, A, A, GS. G -GS
£, Aa, Ag, G2, G [(Y = 0y)*? & HYIGS

Symbolic execution

It remains to prove the sequent £, A,, Az, G2, Gg - [(Y =0y) & H@]Gg Using the

condition (¢2), we obtain Ag in the hypothesis. We conclude with the branch Hgzep,
O

3.3.6 For two general components

We have shown in Subsection 3.3.3 how to retain contracts in the case of the parallel composi-
tion of two continuous components. We have proved a similar theorem in Subsection 3.3.4 for
the case of the parallel composition of two purely discrete components. In Subsection 3.3.5,
we have proved how to retain contracts when we compose discrete component with continuous
component. We state the main theorem which reunite the previous results for the case of the
parallel composition of general components, i.e. with both discrete and continuous aspects.

Theorem. Let A and B be two components with behaviors of the general form and respective
contracts (Aq, Go) and (Ag, Gg). Assume that they both satisfy their contracts. Furthermore,
assume that

(a) A.outputs n B.outputs = (7,

(b1) A.outputs is separated from Gpg

(b2) B.outputs is separated from G,

(c1) Go must implies the assumptions Ag that refers to outputs of A
(c2) Gg must implies the assumptions A, that refers to outputs of B.

89

Then the component AB resulting from the parallel composition of A and B satisfies the con-
Junction of contracts (Aq A Ag,Ga A Gpg).

Recall that the behavior « of a general component is of the form (disc,, U cont,)*, where
cont,, is a differential equation with evolution domain Hx.

Theorem 4. Let « and B be two behaviors of general form of components A and B with
respective contracts (Aq,Go) and (Ag,Gg). Assume that we have two proof trees of €, Aq
[a]Go and E,Ap +— [B]Gp respectively, where £ is the environment. Furthermore, assume
that

(a
by

V(a) n BV(8) = &,
V(a) n FV(Gg) = & and BV (o) n FV(Hy) = &,

) B
) B
b2) BV (B) n FV(Ga) = & and BV (8) n FV(Hx) = &,
c1) Aq - VYP(Gs — Ay),

)

(
(
(
(c2) Ag = VY(Ga — Ap).

Then it exists a proof tree of €, Aa, Ag - [0 B](Ga A Gg).

The proof uses the same mechanism as in the proofs of Theorems 1, 2 and 3.

Proof. Recall that the behavior o of component A is of the form (disc, U cont,)*. As
in previous theorems, we assume to have a proof tree of the sequent £, A, + [(disc, U
cont,)*|G,. It is of the following form:

Hinddisca Hindconta
E, Ay, GY - [disch|GS E, Ay, G% - [cont?|GS
€, Aq, Gy - [discy U contg|Gy V]
Wit E,Aq - G% — [disch U cont?|GY "
E, AL G, E, Ay V(G — [disc, U cont, |G
E, Ay F [(disc, U conty)*|G,

A&
< [Ind]

We have the same for the proof of the sequent £, Ag - [(discg U contg)*|G 3 Recall that
the behavior of the resulting component is «wo 3 = (disca U discg U (cont, o, contﬁ))*.

We apply the induction rule [Ind]. We obtain two sub-goals: the initial step (i) and the
induction step (i7). The first step (i) is handled exactly as for the discrete case or for the
continuous case with rule [DI].

For the last sequent &, A, Ag - V7 ((Go A Gg) — [(disc, Udiscg) Ucont,g](Ga A Gg)),
we first apply the skolemization rule, and then the non-deterministic choice rule [uU] (cf
Figure 3.17).

As shown in the Figure 3.17, we have two premises to consider. The left premise £, A, Ag, Ggﬁ A
Ggﬂ - [disc®® U discgﬂ 1(GSP A Ggﬂ) is exactly similar to the induction step of the case where
both components are discrete and is closed using II;,4 disen and Il;,4 disey The right premise

£, An, Ag, (G2F A Ggﬁ) = [contgg](Ggﬂ A Ggﬁ) is closed by applying the Theorem 1 and

using the proof trees q.,,,, and Hindcont5~

O]

90

(i)
E, A, Ag - VP ((Go A Gg) — [(disc, U discg) U (cont, o, contg)](Ga A Gj))

(2)
€, An, Ag I Gy A G

\

Ind
E,An, Ag I [(disc, U discg U cont,, o, contg)*|(Go A Gg) [Ind]

Figure 3.16: Application of the rule [Ind] for the general case

E,Aa,AmGg’B A Ggﬁ = [contzg](Ggﬁ A Ggﬁ)

£, Aa, Ag, G A G+ [discq” U dise}”](Ga” A GF)

\

[V]
£, Au, Ag, G2P A Ggﬁ - [(disc®? U discgﬁ) v contgg](GgB A Gg’g)
£, An, Ag - (G2 A Ggﬁ) — [(disc®? U discgﬁ) v, conto‘g](Ggﬂ A Ggﬁ)

«,

E,Aa, Ag Y ((Ga A Gg) — [(disc, U discg) U contas](Ga A Gg))

r

Figure 3.17: Induction step

The proof follows the distinction between the discrete part and the continuous one. We
now consider the proof of the Cruise-Control component.

Example 33 (Contract of the cruise-control). The Tachymeter and Engine components
respect the conditions of the Theorem J:

e The outputs are separated. We have BV (Engine) = {seng} and BV (Tach) = {Sqem., Stach, @},
thus BV (Engine) n BV (Tach) = .

e The guarantees do not refers to exterior outputs. We have Var(Geng) = {Seng} and
Var(Giach) = {Sacm, Stach, a}- It is easy to check that BV (Engine) n Var(Gien) = &
and BV (Tach) n Var(Geng) = .

e The guarantees imply the assumptions. We have Acng = Giach and Aigen, = Geng. It is
thus trivial to verify Aepg = V%" (Grach — Aeng) and Asaen = Y"9(Grach — Aeng)-

Thus, by application of the Theorem 4, the following sequent is valid:

E, Acruise E [Cruise-control|Geryise

91

where Acryise = Aeng AN Atach and Geryise = Geng N Giach- The Cruise-Control satisfies its
contract, and we have obtained this proof automatically.

We have exhibited in this section a methodology to lift the contracts of individual compo-
nents through composition. If components A and B satisfies their respective contracts (Aq, Go)
and (Ag, Gg), then the compound component AB resulting from the parallel composition sat-
isfies the contract (Ao A Ag,Ga A Gg).

The next section is devoted to the presentation of the implementation of a prototype in
KeYmaera X. We have successfully passed the cruise-controller example.

3.4 A prototype in KeYmaera X

We have implemented a prototype using the tactic language Bellerophon in KeYmaera X to
demonstrate the feasibility of our approach. We present the tactic language Bellerophon in
Subsection 3.4.1 and exemplify with the Fibonacci Example 1. We present the structure of
our prototype in Subsection 3.4.2. The cruise-controller have been verified using this example.

3.4.1 Presentation of Bellerophon

Bellerophon is a tactic language for the proof of hybrid systems and a library implemented
in KeYmaera X. It is both a stand-alone language and a Domain-Specific Language in the
Scala programming language [46,47].

It has been developed to provide decision procedures and heuristics for the theorem proving
of hybrid systems in KeYmaera X. It aims to ease proof automation.

It uses built-in tactics that can be combined through several tactic combinators. Built-
in tactics directly manipulate the KeYmaera X core to transform formulas in a validity-
preserving manner. They correspond either to specific rules of the sequent calculus, e.g. the
tactic andR which corresponds to the rule A, or correspond to heuristics, e.g. the tactic prop
corresponds to the repeated application of propositional rules until they are not applicable.

Definition 28 (Tactic combinators).
e1,e2 =7 | e(0) | er&ees | e1]ea | ¥ |7(e) |< (e1,€2,...,€,) | abbrvP(T) = ¢ ine

T is a built-in tactic. e(v) applies a tactic e to a list of positions or formulas. e;&es is the
sequential composition of two tactics; it applies the tactic es on the output of e;. eq|ea applies
eq if e fails. e* repeatedly applies the tactic e as long as it is applicable. ?(e) applies e if it
does not result in a error. < (eg,ea,...,e,) is used when there is n subgoals; it applies e; to
the first subgoal, es to the second subgoal, etc. abbrvP(Z) = ¢ in e replaces all occurrences
of ¢ with P(Z) in the current subgoal, and then applies e. After e, remaining occurrences of
P(7) are uniformly substituted back to ¢.

Example 34 (Fibonacci example). Remember that the hybrid program representing the Fi-
bonacci sequence is Fibonacci = (F,, := Fpi1; Fpe1 := Fuio; Fuio := Fuhy1 + F)* (cf Defi-
nition 1) and we want to prove the following formula (F, = O A Fpp1 = 1 A Fyyo = 1) —
[Fibonacci|Fp 1o = Fpi1 + Fy (cf proof tree 2.533).

We can find the .kyx file of the Fibonacci example in the annex 5.53.2. It is proved in
KeYmaera X by the following tactic:

92

implyR(1) ; loop({ Fn2=Fni+Fn 1}, 1) ; <(

QE,

closeld,

composeb(1) ; assignb(l) ; composeb(l) ; assignb(l) ; assignb(1l) ; QE
)

The tactic implyR(1) is the application of the rule —, to pass the initial values in the hypoth-
esis. Then, the tactic Loop({ Fn2=Fnl1+Fn"}, 1) apply the rule [Ind2] with Fn2 = Fnl+Fn
as tnvariant. It opens three sub-goals.

The first one requires that the invariant Fn2 = Fnl + F'n holds at the initialization. We
apply the rule QF to apply Real Arithmetic and conclude. The second sub-goal is trivial since
the invariant introduced in [Ind2] is the same as the original formula.

The third sub-goal deal with the induction step. We deconstruct step-by-step the hybrid
program by applying the tactics composeb(1) and assignb(1) corresponding to rules [;] and
[:=]. We conclude then by the rule QF.

3.4.2 Implementation in KeYmaera X

We detail how we have implemented the process described in the proof of Theorems 1, 2, 3
and 4. We define a tactic corresponding for each case; one for the case where both components
are continuous, one where both are discrete, one for the case of one discrete component and
one continuous component and one for the case of general components.

Continuous-continuous case

We follow the structure of the proof of the Theorem 1. In the theorem, we assume to have a
proof of the satisfaction of contract for each component. We have discussed that the proof can
be achieved by using either the Differential Induction rule [DI], the rule [ODESolve] where we
provide a solution of the differential equation and the Differential Weakening rule [DW]. We
consider each association that can arise, e.g. the use of rule [DI] for both proof of satisfaction
of their respective contracts by components, and show how to exhibit a proof tree from them.

We define a tactic continuousComposition which try a sub-tactic for each possible as-
sociation. We have a sub-tactic for the case where both proofs use the Differential Induction
rule [DI], one for the case where both proofs use the Differential Weakening rule [DW], and
one for the case where one proof use the Differential Induction rule and the other one the
Differential Weakening rule. We do not consider the case where we use the rule [ODESolve]
since we can always relate it to the case of Differential Induction rule [DI]. Finally, we combine
each sub-tactic with the combinator |.

val continuousComposition: BelleExpr = (
di2 | dw2 | dwdi | didw
)

We detail each sub-tactic di2, dw2, dwdi and didw.

93

DI-DI We consider the case where both cases have been proved with the differential in-
duction rule [DI]. We require the user to provide the tactic used to proved the initial step
(tactic baseStepl) and the differential induction step (tactic diffInductionStepl). They
correspond to the proof trees PHx and P/, in the proof of Theorem 1. We have the same for
the second component (baseStep2 and diffInductionStep2).

/* Base case of the first tactic */
val baseStepl: BelleExpr = (
/* To £ill by the user */

/* Differential induction step of the first tactic */
val diffInductionStepl: BelleExpr = (
/* To £fill by the user */

)

We follow the procedure presented in the proof of the Theorem 1. We apply the Differential
Induction rule [DI] (tactic dI('diffInd) (1)) and consider the initial step and the differential
induction step. We split the goal corresponding to the initial step with the rule A, (tactic
andR('R)) and use our two assumptions baseStepl and baseStep2 to conclude. In the
induction step, the sequent is of the form &£, A,, Ag [X = 0y;Y = Oy |GL, A G’B. We
perform all the assignments with the tactic chase('R) and split the resulting goal in two.
We use then our assumptions diffInductionStepl and diffInductionStep2.

val di2: BelleExpr = (
print ("Try DI2 tactic") & implyR(1) & dI('diffInd) (1) <(

print("Base step") & andR('R) <(
baseStepl,
baseStep2

),

print("Differential Induction step") & chase('R) & andR('R) <(
diffInductionStepl,
diffInductionStep2

)

)

The Differential Induction rule in KeYmaera X is implemented by the tactic dI with
several degrees of automation. We have chosen to consider only the case corresponding to the
version of the rule we have presented in the Chapter 2, the other cases are for future works.

DW-DW We consider the case where the proof of satisfaction of contracts of both compo-
nents have been achieved with the Differential Weakening rule [DW]. We follow the structure
of the proof of the Theorem 1. First, we require the user to provide the tactics tacticDW1
and tacticDW2 used to achieve each respective proof.

94

val tacticDW1l: BelleExpr = (
/* To £fill by the user */

)

val tacticDW2: BelleExpr = (
/* To £ill by the user */

)

We apply the tactic dW('R) corresponding to the Differential Weakening rule [DW]. We
use the tactics tacticDW1 and tacticDW2 to close the proof.

val dw2: BelleExpr = (
print ("Try DW2 tactic") & implyR(1) & dW('R)
& implyR(1) & andR(1) <(
tacticDW1,
tacticDW2

DI-DW We consider the case where the proof of satisfaction of contract of the first
component has been achieved with the Differential Induction rule [DI] and the one for the
second component has been achieved with the Differential Weakening rule [DW]. We require
the user to provide the tactic used to proved the initial step (tactic baseStepl) and the
differential induction step (tactic diffInductionStepl). We require also that she provides
the guarantee invarianti of the first contract and the tactic tacticDW2 used to achieve the
second proof.

/* Base case of the first tactic */
val baseStepl: BelleExpr = (
/* To £ill by the user */

/* Differential induction step of the first tactic */
val diffInductionStepl: BelleExpr = (
/* To £ill by the user */

95

val invariantl: Formula =
/* To £ill by the user */

val tacticDW2: BelleExpr = (
/* To fill by the user */

)

We follow the structure of the proof of the Theorem 1. We first add the guarantee of
the first component into the evolution domain using the Differential Cut rule [DC] (tactic
dC(invariant1) (1)). It results in two sub-goals. We close the first sub-goal by applying
the Differential Weakening rule [DW] (tactic dW('R)) and split the current goal in two parts.
The first part is trivial to handle since it requires to prove the formula G, (equivalent to
invariantl) under the assumption G, hence the use of the tactic master(). The second
part is closed by using our assumptions baseStepl and diffInductionStepl.

val didw: BelleExpr = (
print ("Try DIDW tactic") & implyR(1) & dC(invarianti1) (1) <(
dWw('R) & implyR('R) & andR(1) <(
master(),
tacticDW2
),
dI('diffInd) (1) <(
print("Base step") & baseStepl,
print("Differential Induction step") & chase('R) & diffInductionStepl,
)
)
)

We define also a symmetrical tactic dwdi for the inverse case.

Conclusion We have presented how to implement several of the possible associations con-
sidered in the proof of the Theorem 1. The implementation is not complete and does not
cover every possibility in KeYmaera X, but it shows the feasibility of such implementation.

Discrete-discrete case

We present the tactic corresponding to the case where both components are purely discrete.
The behavior « of the first component is assumed to be purely discrete and is of the form
a = (disc,)*. Given the contract (A, Goa), its satisfaction is obtained by the proof of the
sequent &£, A, [(disc,)*]Gy. The proof tree is obtained by the use of Induction rule [Ind]
and is closed by the branches Ilj,;;, and Ilge,,. We require to the user to provide the tactics
corresponding to these two steps. We also require to have the guarantee G.

96

/* Base case of the first tactic */
val baseStepl: BelleExpr = (
/* To £fill by the user */

/* Induction step of the second tactic */
val inductionStepl: BelleExpr = (
/* To fill by the user */

)

val invariantl: Formula =
/* To fill by the user */

We have similar tactics (baseStep2, inductionStep2 and invariant2) for the other
component. The tactic to obtain the proof of satisfaction of the conjunction of contracts by
the composition of components is given in the tactic discDiscCase.

val discDiscCase: BelleExpr = (
print ("Try Discrete-Discrete tactic") & implyR(1)
& loop(And(invariantl, invariant2)) ('R) <(
print("Base step") & andR('R) <(
baseStepl,
baseStep2
),
print ("Use step") & master(),
print("Induction step") & inductionStepTactic
)
)

In a .kyx file, the sequent is of the form -+ A — [a]G. We apply the rule —, (tactic
implyR(1) to pass the left-hand side of the implication on the hypothesis. We then apply
the induction rule [Ind] with the conjunction of guarantees. It yields three steps: the initial
step, the use step and the induction step. For the first one, we split the goal in two with the
rule A, (tactic andR('R)) and then use our assumptions (tactics baseStepl and baseStep2).
The second one corresponds to the case where we want to strengthen the invariant, but we
do not need it here, hence the use of the tactic master() to close this trivial goal. For the
third one, we apply the induction tactic detailed below.

97

val inductionStepTactic: BelleExpr = (
choiceb(1) & andR('R) <(

boxAnd (1) & andR('R) <(
inductionStepl,
V(1) & master()

),

boxAnd (1) & andR('R) <(
V(1) & master(),
inductionStep2

)

We follow the structure in the proof of Theorem 2. Recall that the sequent we want
to prove is of the form &£, Ay, Ag, G, Gg F [disc, U discg](Ga A Gg). We first apply the
non-deterministic choice rule [U] (tactic choiceb(1)) and split the resulting goal in two with
the rule A, (tactic andR('R)). We obtain two branches which are similar. In the first one,
we split the formula under the modality with the [BozAnd] rule (tactic boxAnd (1)) and the
rule A,.. It yields two cases; one where we have to prove that G, holds after one execution of
disc, and one where we have to prove that Gz holds after one execution of disc,. We use
our assumption inductionStepl for the first case. For the second, we apply the symbolic
execution (tactic V(1)) and then apply the tactic master ().

Discrete-continuous case

The exact same tactic can be applied for the composition of a discrete component with a
continuous component. Indeed, given a continuous component with behavior 8 and contract
(Ag,Gg), we require to have a proof of the sequent &£, Ag - [3*]G 3 instead of a proof of the
sequent £, Ag - [$]Gs. The tactic inductionStepl corresponds to the branch Hina,. The
tactic related to the continuous nature are present in the induction step.

General case

We present the tactic corresponding to the case where both components are general, i.e. with
discrete and continuous evolution. We follow the structure of the proof of the Theorem 4. As
previously, we require the user to provide the tactics baseStepl, discInductionStepl and
contInductionStepl which corresponds to the proof trees Iinit,, indg;, and indgon, - We
have the corresponding tactics baseStep2, discInductionStep2 and contInductionStep2
for the second component.

/* Base case of the first tactic */
val baseStepl: BelleExpr = (
/* To £ill by the user */

98

/* Discrete induction step of the first tactic */
val discInductionStepl: BelleExpr = (
/* To fill by the user */

/* Continuous induction step of the first tactic */
val contInductionStepl: BelleExpr = (
/* To fill by the user */

We also require the user to provide the guarantees invariantl and invariant?2 for each
contract. We apply the induction rule (tactic loop) with the conjunction of guarantees
(And(invariantl, invariant2)) as invariant. We consider the three resulting sub-goals.
The first two are handled exactly as in the case of composition of discrete components.
For the third sub-goal corresponding to the induction step, we use the non-deterministic
choice rule [U] (tactic choiceb) to separate the discrete part from the continuous part.
We apply the tactic inductionStepTactic for the discrete part. It is exactly the same
as in the case of purely discrete components. For the continuous part, we use the tactic
continuousComposition.

val generalCase: BelleExpr = (
print ("Try General tactic") & implyR(1) & loop(And(invariantl, invariant2))('R) <(
print("Base step") & andR('R) <(
baseStepl,
baseStep2
),
print("Use step") & master(),
print ("Induction step") & choiceb(1) & andR('R) <(
inductionStepTactic,
continuousComposition

)

Conclusion

We have presented the implementation of a prototype for our parallel composition operator
It follows the structure of the proofs of Theorems 1, 2, 3 and 4 and shows the feasibility of an
implementation. Yet, it not a complete and usable implementation. We have to take care of all
variations of rules in KeYmaera X. There is also other problems due to the implementation of
a theoretical process into an actual implementation, e.g. there is a difference between formulas
Ga ~ Gg A Gy and (G A Gg) A Gy although they are theoretically equivalent. We leave to
future works such complete implementation.

99

3.5 Study of a water-plant example

We present a water-plant example. It is a use-case with four components to exemplify asso-
ciativity. It is composed of two water-tanks with their respective controllers.

The water-tank example in Figure 3.18 is a simple example of a cyber-physical system.
The water-level wly inside the tank can go down or up depending if the inlet valve fin is
open or not. There is a hole at the bottom of the tank which provokes an assumed constant
outlet flow fouty. The inlet valve is commanded by a monitor, which is a standard computer
program. It decides the opening according to the value of the measured water-level wilm; by
the sensor which repeatedly senses the value of the water-level. The controller is made of the
monitor, the sensor and the actuator. It is a time-triggered example.

e
> Flow in %
\ (fin) Monitor
Twlmax =7
Water-level
(wl)
Sensor | imin = 3
(wlm)
Flow o

| (fout

Figure 3.18: Schema of water-Tank

A second version is possible where the actuation is on the outlet flow fout; and the inlet
flow fin is assumed to be constant. When connecting theses two version together, we obtain
a simple water-plant as in Figure 3.19.

We detail in Subsection 3.5.1 the environment under which the water-plant operates and
the initial conditions. The Subsections 3.5.2 and 3.5.3 are devoted respectively to the presenta-
tion of the water-level and of the controller component. We compose them in Subsection 3.5.4
to obtain the water-tank example. In Subsection 3.5.5, we present the water-plant obtained
by the composition of two water-tanks. The last Subsection 3.5.6 discuss some limitations
and the solutions that we provide in the Chapter 4.

3.5.1 Environment and initial conditions

We present the environment under which the water-plant should operate. It refers to global
variables that are not modified by any components, e.g. the maximum water-level allowed.

100

] 1 First monitor
Flow in
I (fin)
Twimaxl =7
'Water-level
| (wi1)
| wimind = 3 Second monitor
Sensor wiminz =
(wim2)
. &t
Flow out of
the first tank Twlmax2 =7
(foutl)
Water-level
(wi2)
Sensor
(wim2) +wimin2 = 3
= >
Flow out of

the second tank
(fout2)

Figure 3.19: Water-plant

We precise also how the time evolves and the initial conditions of the system. We denote
with &, the conjunction of all formulas.

Environment The environment is composed of parameters that are not outputs of com-
ponents. The parameter §; is the execution period of the first controller and do the execution
period of the second controller. wlmax1 and wlminl are respectively the maximum threshold
and the minimum threshold of the first tank that the water-level is allowed to reach. We have
the same values for the second tank The outlet flow fout; of the first tank is assumed to be
constant and is at 0.75.

61 =0.03

b9 = 0.02

wlmazx1 =7 A wlming = 3
wlmazxzo = 7 A wlming = 3
fout; =0.75

We will frequently replace wimax, and wlmin, by their respective values 7 and 3.

Time We assume that the time is passing linearly and is represented by the variable t.
The variable ¢, represents the last instant of execution of the controller. We use a similar
mechanism in the cruise-control system (cf Example 26). They are both initialized to 0.

Initial conditions We provide initial values for each outputs. We assume that both water-
levels have the value 5 and that the variable memorizing respective water-levels is equal to 5
also at the initialization. We also assume that the inlet valve fin and the outlet valve fouts
are both closed.

101

wl1 =5
wlg =5
wlmy =5
wlmo =5
fin=0

L fouty =0

The formula &, is thus the following conjunction:

61 = 0.03 A 69 = 0.02 A wimaz; = wlmaxe = 7 A wiming = wlming = 3 A fout; = 0.75
At = terl, = tetrl, = 0 A wlp = wly =5 A wlmy = wlmg =5 A fin = fouty =0

3.5.2 Water-level

The Water-levell component is the continuous evolution of the water-level of the first tank.
It depends of the inlet and outlet flow.

I/0O and contract The Water-levell component is defined in the Figure 3.20. The inputs
are the value of the measured water-level (wlmy) by the controller and the inlet flow (fin).
The assumptions A,,, correspond to the guarantees G4, provided by the controller. There
is only one output: the water-level wl;. The guarantee G, ensures that the water-level
stays within the defined range [3,7]. We add the solution of the differential equation as a
guarantee. It is necessary to specify the relation between the measured water-level and the
real water-level because we are in a time-triggered version. It requires a deep knowledge of
the timing behavior of the system. The behavior is denoted by WI1 and is detailed in the
Definition 29.

Name: Water-levell

Inputs:

fin // inlet flow

wlmy // measured water-level
Assumptions:

Gctrll

Outputs:

wly // water-level
Guarantees:

3 < wl1 < 7

wly = (fin— foutr)(t — tegry,) + wlmy
Behavior:

WI1

Figure 3.20: Water-level component

We can notice that the solution of the differential equation introduced as a guarantee of
the Water-levell component refers to fin and wlm, which are outputs of the controller (cf
Figure 3.18). It is not an issue with respect to the Theorem 4 since we show that the solution
is also a guarantee of the controller.

102

Behavior of Water-levell The behavior of the Water-levell component is a differential
equation. It is defined as the difference between the inlet flow fin and the outlet flow fout;.

Definition 29 (Water-level behavior). The behavior Wl1 of the water-level of the first tank
1s defined by the following differential equation:

w.llzfin—foutl,izl & (whi Z0At=0A0<t—tegry, <01)

The evolution of the component is the difference between the inlet flow fin and the outlet
flow fout;. We add in the evolution domain the formula 0 < t — ¢, < 61 which restricts
the evolution of the water-level to a duration of §; seconds. We use a similar mechanism in
the cruise-controller example (cf Example 26).

Implementation We have implemented the component as a model in KeYmaera X. The
corresponding .kyx file is in the annex 5.3.2. The proof that the component Water-levell
satisfies its contract is achieved with the proof tactic master in KeYmaera X. The Figure 3.21
sum it up with the green tick meaning that we have a proof of the satisfaction of the contract.

~

Water-levell
WI1
fin L 5
Awh : Gctrh wl1
wlmy Gui,: 3<wlh <7

Figure 3.21: Graphical representation of the Water-levell component

3.5.3 Controller

The Controllerl component regulates the water-level of the first tank. It repeatedly mea-
sures the value of the water-level at most every §; units of time. It decides accordingly to
this measured value to close or open the inlet valve. If the inlet valve is open, the water-level
rises, otherwise it goes down.

I/O and contract The component is detailed in the Figure 3.22. The only input is the
water-level wl;. The assumption Ag,q, correspond to the guarantee of the water-level. It
requires that the water-level stays in the predefined range [3,7] and that the solution of the
differential equation is respected. The outputs are the measured water-level (wlm;) and the
inlet flow (fin). The guarantees G, state that wlm; is within the range [3,7]. They also
state that if the measured water-level is below 3.5 (wlm; < 3.5), then the inlet valve is opened
(fin = 1). Conversely, if the measured water-level is above 6.5 (wlm; > 3.5), then the inlet
valve is closed (fin = 0). If the water-level is between these two values (3.5 < wlm; < 6.5),
the inlet valve can be either closed or opened (fin = 1 v fin = 0). Finally, we add the
solution of the differential equation as a guarantee. It is indeed a guarantee since after the
execution of the controller, we have t = t 4, (thus ¢ — t.q, = 0) and wily = wim;.

103

Name: Controller

Inputs:

wl; // measured water-level
Assumptions:

Gwh
Outputs:

fin // flow in

wlmy // measured water-level
Guarantees:

3 < wmp < 7

35 = wim — fin=1

wlmp = 6.5 — fin=0

(35 < wlmp < 65) — (fin=0 v fin=1)
wly = (fin — fout1)(t — tetrr,) + wimy
Behavior:

WICtrll

Figure 3.22: Controller component

Behavior of Controller The behavior W1Ctrll of the Controllerl component is defined
in the Definition 30.

Definition 30 (Controller behavior). The behavior WICtrll of the water-level controller of
the first tank is defined by the following hybrid program:

(7t <ty + 013 wlmy := wly; (Pwlmy = 6.5; fin = 0) U (Twlmy < 3.5; fin := 1)t =1)*

It is made up of three parts : a temporal part, a sensing and the decision part. The
temporal part is the test 7t < tyq, + 01 and the assignment ty,;, := t. The test ensures
that the component executes at most every d; seconds. The assignment remembers the last
execution. The sensing is implemented by wilm, := wl; where the value of the water-level wly
is assigned to the variable wilm,. The decision part is a standard if-then-else encoding.

Implementation We have implemented the component as a model in KeYmaera X. The
corresponding .kyx file is in the annex 5.3.2. The proof that the component Controlleril
satisfies its contract is achieved with the proof tactic master in KeYmaera X. The Figure 3.23
sum it up with the green tick meaning that we have a proof of the satisfaction of the contract.

3.5.4 Water-tank

The Water-tankl component is obtained by the parallel composition of the Water-levell
component and the Controllerl component.

Parallel composition of the controller with the Water-level The inputs (resp. out-
puts) of the Water-tankl component are the union of the inputs (resp. outputs) of the
Water-levell component and the Controllerl component. The assumptions A, (resp.

104

Controlleril

WICtrll
L 5
— > ACtrll : Gwh f’LTL
wly Getrty: wlmy < 3.5 — fin=1
6.5 < wlm; — fin =0 I wim, »

(3.5 > wlmy = 6.5)
— (fin=0v fin=1)

3<wm; <7
wly = (fin — fouty)(t — tewry,) + wlml/

Figure 3.23: Graphical representation of the Controllerl component

guarantees Gy,) of the Water-tank1 are the conjunction of A, and A.y, (resp. Gy, and
Getrl;). The behavior is detailed in Definition 31.

A summary of the parallel composition is given in the Figure 3.24. Notice that for
now, we have a proof of satisfaction of their contract by the components Water-levell
and Controllerl. We do not still have a proof that the component Water-tank1 satisfies its
contract.

Behavior of Water-tank The behavior WT1 of the Water-tank component is presented
in the Definition 31.

Definition 31 (Water-tank behavior). The behavior WT1 of the first tank results from the
parallel composition of W1 and WICtrl1.

< (?t < tegrly + 015 wlmy = wly; (Twlmy = 6.5; fin := 0) U (Pwlmy < 3.5; fin 1= 1);teyy, =

u(w.ll = fin—foutl,fz 1 & (wl1 =>0At=0A0 =t —tery, = Ont>= tctrll))

The addition of temporal constraints makes sense once we have composed the components.
The variable ¢.,;, remembers the instant of the last execution of the controller. It is then
equal to t. The water-level evolves along the time, and the difference between ¢ and t.,,
grows until it reaches §;. Then we know that the controller has to execute.

Application of the composition theorem The conditions of the Theorem 4 are re-
spected. The outputs of both components are separated. The guarantees G, of the
Water-levell do not refer to the outputs of the Controllerl and the inverse is also true.
The guarantee wl; = (fin — fouty)(t — tery,) + wlmy contains occurrences of outputs of both
components, but we have proved that it is a guarantee of both component. It is thus not
a problem to the application of the theorem. The guarantees G,,;, implies the assumptions
Aciri, trivially since they correspond, and the inverse is true. We have thus automatically the
proof of satisfaction of the conjunction of contracts by the resulting component thanks to the
application of the theorem.

We have sum up in the Figure 3.25 the Water-tankl component. We have now a proof
of satisfaction of its contract thanks to the application of the Theorem 4.

105

fin, wlmq

Water-levell

WI1
Awh: Gctrll
Gwll: 3 < 'LUll <7
wly = (fin — fout1)(t — ter,) + wimy /
wl1
Controlleri
WICtrll
Actrl1: Gwll
Getriy: wlmy < 3.5 — fin=1

6.5 < wlm; — fin =0
(3.5 = wimy > 6.5)

— (fin=0v fin=1)
3<wlm <7

wly = (fin — fouty)(t — tegr,) + wimy

vV

Figure 3.24: Parallel composition of Water-levell with the Controllerl

N

Water-tankl >
wlq WI1 o WICtrll wly
—> —
'lUlml Awtl: A'u}l]_ N ACtT‘ll wlml
: thﬁ Gwh A Gctrll :
fin fin

Figure 3.25: Graphical representation of the Water-tankl component

Implementation in KeYmaera X We have implemented in KeYmaera X the component
resulting from the composition 5.3.2. At the end of the file, in commentary, there is the
tactic used to achieve the proof. We have followed strictly our procedure detailed in the proof
of the Theorem 4. It requires a minimal supplementary proof effort from the proof of each

component. It may be automated.

The water-tank file shows us that even a simple example quickly grows in size.
approach requires that the engineer only consider the basic component, here the water-level

and the controller, which are much simpler to understand and prove.

106

3.5.5 Water-Plant

We compose two water-tanks with our parallel composition operator. It follows an intuitive
design in the sense that we first compose the Water-levell component with the Controllerl
component to obtain a first tank Water-tank1, then compose it with a second water-tank
obtained by similar mean.

Water-tankil Water-tank2

Water-levell‘ X LControllerl} X Water-level2| X |Controller?2

Second water-tank The second water-tank is a lot similar to the first one, but it is the
outlet valve that can be closed or open by the controller, the inlet flow is assumed to be con-
stant. A detailed .kyx file are given for the second water-level 5.3.2, the second controller 5.3.2
and the second water-tank resulting from their composition 5.3.2.

We have summed up in the Figure 3.26.

Water-tank?2 >
wlg WI2 o WICtrl2 wly
—> —
wlmQ A’th: Aw12 N Actrlg wlmQ

thQ: Gwlg N Gctrlg
fouto fouto

Figure 3.26: Graphical representation of the Water-tank2 component

Parallel composition The inputs (resp. outputs) of the Water-plant component are
the union of the inputs (resp. outputs) of the first Water-tank component and the second
Water-tank component. The assumptions A, (resp. guarantees G,,) of the Water-plant
are the conjunction of A, and Ay, (resp. Gy and Gyy,). The behavior WP of the
Water-plant component is presented in the Definition 32.

Definition 32 (Water-plant behavior). The behavior WP of the water-plant results from the
parallel composition of WT1 and WT2, where WT1 results from the parallel composition of
Wil and WICtrll and W T2 results from the parallel composition of W12 and WICtrl2.

WP WT1,0 WT2

+ (W10 WICtrlL) o (Wi2o WICtr2)

107

((?t < tetrl, + O1;wlmq = wlq; i
(?wlmy = 6.5; fin := 0) U (Pwlmy < 3.5; fin 1= 1);tem, = 1)
U (?t < tetrly + do; wims := wls;
2 | (Pwlmg = 6.5; fouty := 1) U (Twlma < 3.5; fouty := 0); tetrly := t)
u(w.ll = fin — foutl,wz2 = fout; — fouty,t =1
& (whi Z0At=0A8 =t —tegrty, =0T =t

*

Awly =0 A6y >t —tetrly >0t > tctrlg)))

In particular, we have an example of the parallel composition of two continuous compo-
nents with the water-levels composed in parallel.

Application of the theorem The conditions of the Theorem 4 are respected. The outputs
of both components are separated. The guarantees G, of the Water-tankl do not refer
to the outputs of the Water-tank2 and the inverse is also true. The sequent &,p, Awt, -
VW (Goyt, — Awt,) is valid since the outputs of the first water-tank are separated from the
variables in A,,,. The inverse is also true. We have thus automatically the proof of satisfaction
of the conjunction of contracts by the resulting component thanks to the application of the
theorem. It is summed up in the Figure 3.27.

Water-plant |
wly, wlo WT1 o WT2 wly, wly
wimy,wima | Ayp: Awty A Aty wlmy, wlmse
- Gwp: th1 N thz |
fin, fouty V' fin, fouts

Figure 3.27: Graphical representation of the Water-plant component

Implementation in KeYmaera X We have implemented in KeYmaera X the component
resulting from the composition 5.3.2. At the end of the file, in commentary, there is the
tactic used to achieve the proof. We have followed strictly our procedure detailed in the proof
of the Theorem 4. It requires a minimal supplementary proof effort from the proof of each
component. It may be automated.

3.5.6 Discussion

Monolithic approach VS Modular approach The source files 5.3.2 show that the design
of even a simple water-plant may result in a model quite complex to model. The proof is
also difficult to automate. New improvements in KeYmaera X can drastically improve the
readability and help to scale, but the same problem will arise for system more complex.

We strongly think that our component-based approach allows to handle both design and
proof complexity of systems made up of simple and repetitive parts.

Improvement points Our two examples, the cruise-control and the water-tank shares the
same structure : a continuous evolution (the plant) is monitored by a discrete controller. It

108

is a frequent design in Cyber-physical Systems and is referred to as Computer-Controlled
Systems. It includes most of the industrial systems.

In both examples, we have to add a machinery to ensure that the controller executes
periodically. This addition is not a function problem, but an architecture problem and the
designer should have tools to automate it. It is the subject of Section 4.1.

When we compose several CCS together as in our water-plant Example 32, the controller
might be executed on the same computation unit and therefore their execution period may
be modified by the parallel execution. We answer to this problem in Section 4.2.

A common design in critical system is the addition of an emergency mode to the nominal
mode. The natural way to express it in our framework is to compose in parallel the emergency
mode with the nominal mode. But we have to be careful since they have the same outputs.
We present a solution in Section 4.3.

When designing such system, one may want to define a causal relation between compo-
nents. We propose in Section 4.4 the definition of a causal composition operator compatible
with the previously defined framework.

109

Chapter 4

Extensions of our framework

110

We have presented a parallel composition operator in Chapter 3. The water-plant example
in Section 3.5 shows that our approach still requires that the engineer have to reason on non-
functional problems to achieve its design and proof. We present in this chapter adaptations of
the parallel composition operator to remediate to the problems identified in Subsection 3.5.6.

In Sections 4.1 and 4.2, we show how to adapt the results of the previous Chapter 3 to
systematically model Computer-Controlled Systems (CCS) in a modular approach. The idea
is to analyse the control period of the plant, i.e. the period of time it can evolve without
intervention of the controller, and the reactivity of the controller, i.e. the execution period
of the controller. We retain the associativity property and the ability to retain contracts
through composition. To clearly separate the design part of a system and its representation
in dL, we continue to use the textual representation of components.

In Section 4.3, we show how to express modes in a systematic and modular way by adapting
the parallel composition operator o.

An usual decomposition of a controller is Sensor -> Program -> Actuator. But the
three components are not in parallel, but in sequence. In Section 4.4, we define a causal
composition operator by adapting our parallel composition operator to enforce an order. It
features associativity, essential for modularity, and a theorem allowing to transfer automat-
ically guarantees of each component to the resulting compound component under relaxed
conditions.

4.1 Computer-Controlled Systems

We present a component-based approach to model and verify Computer-Controlled Systems
(CCS). We aim to simplify the reasoning on such systems and provide methodological insights
for designers and proof engineers.

We adapt our previous work by taking into account the period of execution of the con-
troller. We describe the integration and show that it cover the standard encoding of CCS
in dC. We adapt the composition Theorem 4 to show that we retain contracts through
composition of components. We exemplify it with the water-tank example.

4.1.1 Modeling Computer-Controlled Systems

We present how we model Computer-Controlled System. A CCS is classically composed of
a controller and a plant as in Figure 4.1. The former regulates the behavior of the latter
through an actuation. For example, the controller in the water-tank example regulates the
water-level by opening or closing a faucet.

Controller

Figure 4.1: Structure of a CCS

The key trait of CCS is the periodic execution of the controller to regulates the controller.

111

We associate a periodic value Acyy (resp. Apiant) to the controller (resp. the plant). For the
control part, it is the execution period, i.e. the maximal allowed time between two executions
of the controller. For the plant, it is the duration in which it can freely evolve and still satisfies
the safety property, the control period. We add timing constraints to model this requirement.
We use the water-tank example of Section 3.5, except that we distinguish the execution
period from the control period. These two notions were conflated in our previous example.

Time. We assume that the passing of time is accessible for every component through the
differential equation t = 1 & t > 0. The variable ¢ represents the time passing linearly and
is a global read-only variable. It is initialized to O.

Controller. We assume that a designer provides the functional behavior of a controller as
a discrete program Ctrl and the associated period Ay The functional behavior represents
one execution of the controller. We add timing constraints to model the periodic execution
of the controller.

The controller acts every Acgy, units of time. To ensure this periodic execution, we use
a fresh variable t..;. It works as a time-stamp saying that Ctrl has executed. We add at
the end the assignment t.:,; := ¢, which signals that the controller has executed. We add the
guard 7t < te + Aoy before the controller C'trl, which requires that at most Ay, units of
time have passed since the last execution. It results in the following canonical structure for
the controller, which is referred later as the behavior of the controller.

Definition 33 (Controller). The canonical structure of a controller is given by the hybrid
program:
Ctrl = (?t < tegrr + ACtrl; Ct?“l; tetr) 1= t)*

This definition allows Zeno behaviors, i.e. repetitive executions of the controller without
having the continuous systems to evolve. It is a problem when we want to implement a real
controller, but we are here interested into the verification of safety properties. Having a more
general modeling is thus not a problem. We could forbid this Zeno behavior by adding the
test tep < tin the guard. Another possibility is to replace the test ¢t <ty + Aoy With the
test t = ter + Acyrr. It assumed here that the controller executes every Ay, units of time
which is unrealistic if we want to obtain a real implementation later.

For example, consider the controller for the water-level of a tank in a water-plant. If the
level reaches a maximum (resp. minimum) threshold, here 6.5 (resp. 3.5), then we close the
inlet faucet fin (resp. we open the inlet faucet).

Example 35 (Water-level controller). The functional behavior is :
Bodyyy 04 = wim := wl; ((Twlm = 6.5; fin := 0) U (?wlm < 3.5; fin := 1))

It describes how the component operates, but does not refer to structural constraints like the
execution period. The period Ao of the controller is 0.05 sec. We augment the functional
behavior Bodyyy oy, with the period to obtain the behavior WICtrl:

*

7t < tegry + 0.05;
wim := wl; (Twlm = 6.5; fin := 0) U (?wlm < 3.5; fin := 1);
tetrg =1

At most every 0.05 seconds, the water-level controller samples the current water-level and
decides accordingly to open or close the inlet valve.

112

Retro-action It is possible to take account of the retro-action. Instead of using the last
sensing in the modeling, we use the previous one, i.e. the sensing performed Acy,; units of
time before. We use a temporary variable to memorize it. It accurately models the fact that
the actuation of controller at a time tg is in function of the sensing at tyg — Acyri.

Example 36 (Water-tank controller with retro-action). The behavior of the water-tank con-
troller with retro-action is:

%
7t < tetrl + AC’trl;

prewlm := wlm;wlm := wl;
(?prewlm = 6.5; fin := 0) U (?prewlm < 3.5; fin := 1);
letrl =1

In the example, the level of water of the tank is assigned to the variable wlm, then to the
variable prewlm. wlm is here to stock the value for one more iteration of the controller and
simulates a retro-action.

Plant. We assume that a designer provides the functional behavior of the plant as a differ-
ential equation ODE & H and the control period Apjan:. We implement it by adding the
formula ¢ < Apjgn: in the evolution domain.

Definition 34 (Plant). The canonical structure of a plant is:
Plant = ODE,t =1 & HAt<Apiant

The addition of the formula ¢ < Apjq,: adequately models that we consider an evolution
of the system in the duration of the control period.

The value of the control period A pyqytis obtained by external methods and is not computed
by our methodology. In practice, it is mostly obtained from the knowledge of engineers of the
field with some tolerance.

The evolution of the water-level is the difference between the inlet flow fin and the outlet
flow fout. The water-level is assumed to always be positive.

Example 37 (Water-level). The functional behavior of the water-level is the following dif-
ferential equation: '
wl = fin — fout & wl =10

The control period Ay of the water-level is 0.2 sec. The behavior WI of the water-level
component is thus given by:

u)lzfz'n—fout,le & wl=0nAt<0.2

Our proposed modeling is sufficient to reason on the system. Indeed, when we compose
the plant with the controller, we iterate the interaction. Thus, considering only the evolution
on the duration Apj.,: amounts to consider one step of the loop Plant-Controller.

Full system The full system is obtained by applying our parallel composition operator on
the plant and the controller with a slight difference.

113

Definition 35 (Computer-Controlled System). The canonical structure of the behavior of a
Computer-Control System is:

CCS = ((Plant,t=1 & H A0 <t —toym < Acin)
U(?t S tetrl + AC’trl; Ct?"l; letrl = t))*

The controller and the plant interact by the use of the variable t.,;. At the beginning of
one loop iteration, we have t = t.,; and thus ¢t — t.,; = 0. The difference ¢ — t.,; grows along
the evolution of time until the point ¢ — ¢, = Acy. Then, the controller has to act, but it
can act before.

The difference with the parallel composition operator in Definition 22 is that we replace
the formula ¢t = Apjane by the formula 0 < t — o < Acyri- We detail in the proof of the
Theorem 6 why this replacement is safe.

For our system to fit the desired modeling, we must have Ay < Apjant, i.€. that the
reactivity of the controller is shorter to the control period of the plant. Otherwise, there may
be runs of the whole system where the controller can not execute and the system is stuck. Yet,
we do not forbid such composition, but we will not be able to retain the contracts through
composition.

Example 38 (Water-tank). We compose the water-level with the water-level controller to
obtain the water-tank system. The behavior Water-tank resulting from the composition of
the water-level and the water-level controller is:

(wl = fin — fout & wl =0 A0 <t —tym <0.05)
U (7t < tegrg + 0.05; wim := wl; (Twlm = 6.5; fin := 0) U (Twlm < 3.5; fin := 1);tep = 1)

The composition is safe because the period of the controller (Awiceyr = 0.05) is inferior to
the control period of the plant (Ay; = 0.2).

We retain the general structure of component in Chapter 3 which is essential to obtain
modularity. Yet, one may ask if we accurately capture all CCS systems. We show in the next
subsection that we capture all systems that are encoded by the standard encoding of CCS
that we repeatedly found in the literature in d£. It gives us confidence that our proposed
approach captures such systems.

4.1.2 Coverage of the standard encoding

We first define what we call the standard encoding of Computer-Controlled Systems in d..
It is a recurrent structure in the literature. We then show that our modeling proposition can
model every system that can be modeled with the standard encoding.

Definition 36 (Standard encoding). The standard encoding of a CCS is:
(Ctrlyteym =t; Plant,t =1 & H A0 <t —tyn < Acim)*

The alternation of the controller and the plant is obtained by the use of the sequence
operator ; . Notice that a similar encoding is used to represent the cyclic relation to time. We
have a notification variable t¢.,; that is reset to t after the execution of the controller. This
modeling is simple, yet very efficient in a monolithic approach. But we think that it is not
the appropriate approach if we want to use a component-based approach.

114

y

Remember that p(a), where « is an hybrid program, is the set of reachable states of o (cf
Definitions 2 and 4). We show that the set of reachable states of the standard encoding of
CCS is included in the set of reachable states of our encoding. It means that a system that
can be modeled with the standard encoding can also modeled with our approach.

Theorem 5 (Coverage of the standard encoding). Every system that can be modeled with the
standard encoding may be modeled with our encoding, i.e.

p((Ctrl;tcm —t; Plant,t =1 & H A0 <t —tyy < Acm)*)
S p(((Plant,t =1 & H A0 <t —toy < Do) U (78 < temy + A Ctrls oy := 1))*)

Proof. We prove the equivalence by unfolding the semantic definition of our proposed encoding
and show that one of the subset of reachable states of our encoding matches exactly the set
of reachable states of the standard encoding. First, we add the test 7t <t + Aoy in front
of the standard encoding. It does not change the reachability, but is here to simplify the
identification to our encoding. We have the following equality.

p((Ctrl;tcm =t; Plant,t =1 & HAO<t —toyy < Acm)*)
= p((% <tan + Ay Ctrlitan = t; Plant,i =1 & H A0 <t —ten < Acin)*)

The right-hand side is trivially included in the left-hand side since we just add information,
and thus potentially reduces the set of worlds. For the other inclusion, if it is not true, then
there is a world w in p((Ctrl;tctrl =t; Plant,t =1 & HAOQ<t—tyn < Acm)*) such that
w =t <ty + Ao, but it contradicts the assumption that the continuous behaviors evolve
in a world where t <t + Agyr 18 true. We have thus the other inclusion.

We have to prove:

P((7t < tetrs + Dcrs; Ctrlstan =t Plant,t =1 & H A0 <t —tam < Acin)*)
< p((Plant,t =1 & H A0 <t —tep < Acyt) U (7 < bt + A; Ctrls o = t))*)

We adopt the following abbreviations:

P = Plant,t =1 & H A0 <t —tom < A
C =7t< tctrl + ACtrl; Ct?"l; tctrl =1

Thus, the standard encoding corresponds to (C; P)* and our encoding corresponds to (C' u
P)*. We unfold the semantic definition of the iteration. We obtain the following equality:

p((C o P)¥)
Unen p((C 0 P)")

We have thus p((C'u P)?) < p((C U P)*).
We unfold p((C U P)?):

p((Cu Py
p((C v P);(C U P))
= p(C;C) v p(C;P) v p(P;C) v p(P; P)

Thus the left-hand side is included in the right-hand side.

115

4.1.3 Modular proof of a Computer-Controlled System

The Subsection 4.1.1 have presented how to modularly model a CCS. We want now to be
able to still retain contracts through composition. This subsection presents an adaptation
of the Theorem 4 to transfer the respective contract of the plant and the controller through
composition.

Environment. We assume that the designer provides a description of the environment,
which is denoted by £. It contains all the variables that are not outputs of a component.
They cannot be controlled and are exterior to the considered system. A classical example in
hybrid systems is the gravity value g. The environment also regroups the initial values of the
system.

Example 39 (Water-tank environment). In the water-tank, the environment £, is the outlet
flow fout which is equal to 0 or 1. There is also the control period Acyr of the plant which is
0.2 sec and the period Acy of the controller which is 0.05. The initial value of the water-level
wl and the measured water-level wlm are 5. The inlet valve fin is closed at the initialization.

Ewt = fout =0.75 A Apicir =0.05 A Ay =02 Awl=wlm =5 A fin=0

Controller We assume that the designer provides the assumptions Acy; and guarantees
Gy on the controller. Following the restriction of the Theorem 4, guarantees must not
refer to outputs of the plant. Remember that the controller is said to satisfy its contract
(Definition 20) if the following formula is valid:

(€ A Acir) — [Ctrl)Gegn

We prove the validity by using the sequent calculus of d£, implemented in KeYmaera X.

Example 40 (Contract of the water-level controller). From the Example 3.22, the contract
of the water-level controller is:

Awictrt © Gul

Guictrr: wim <35 — fin=1
6.5 < wlm — fin =0
(3.5 = wlm = 6.5) - (fin=0v fin=1)
wl = (fin — fout)(t — tep) + wim

We have already a proof of the sequent:

Euwts Apicrl F [WlCt’I‘l]GwlCtrl

Plant Similarly to the controller, we assume that the designer provides assumptions A pjgnt
and guarantees G pyqpn: on the plant. Again, the guarantees of the plant must not refer to the
outputs of the controller. The plant satisfies its contract if the following formula is valid:

(5 A APlant) - [Plant]GPlant

We prove the validity by using the sequent calculus of d£, implemented in KeYmaera X.

116

Example 41 (Contract of the water-level). From the Example 3.20, the contract of the
water-level is:
Awt: Guictrt
Gwl D 3<wl L7
= (fin — fout)(t — teg) + wim

We have already a proof of the sequent:

gwta Awl H [Wl] Gwl

Full system The contract for the full system is the conjunction of the assumptions and of
the guarantees. As in Section 3.3, we want that the system CCS as defined in Definition 35
satisfies the conjunction of contracts (Aot A Apiant; Gotri AGplant). We adapt the Theorem 4
by adding the condition that the execution period must be shorter than the control period,
i.e. Aot < Aplant, to retain contracts.

Theorem 6 (Safe composition of a Plant and a Controller). Let Plant and Ctrl be two
behaviors as defined previously with respective contracts (Apiant, Gpiant) and (Actrr, Gotrl)-
Assume that we have two proof trees of £, Apiant = [Plant]|G piant and €, Acr = [Ctrl] G
respectively, where £ is the environment. Furthermore, assume that

(a) BV (Plant) n BV (Ctrl) = &,
b1) BV (Plant) n FV(Geyl) = &,

ba) BV (Ctrl) n FV(Gpiant) = & and BV (Ctrl) n FV (H),

(
(
(
(

)

)

¢1) Aptant = V" (Gowi — Apiant),

c2) Actr = VPG prane — Acir),
)

(d

Then it exists a proof tree of €, Apiant, Actri = [CCS)(Gpiant A Gotr)-

ACtrl plant .

The first assumption (a) assumes components to have separate internal variables and
requires them to define disjoint output variables (i.e. unique definitions), which essentially
amounts to good modeling practice. The second assumption (b;) (resp. (b2)) requires the
safety property Gy (resp. Gpiant) to guard the behavior of the system « (resp. (), i.e. its
outputs, and of course not s (resp. «). It hence seems natural to require its separation with
Gpiant (resp. Goyr). The condition (c;) (resp. (c2)) requires the assumptions Ag (resp. Aq)
to be implied by the guarantees Gy (resp. Gpiant)-

Proof. We re-use the result of the Theorem 4. In order to do so, we have to justify our slight
change where we replace the formula ¢t < Apjgpe with the formula 0 < t — oy < Aoy in the
Definition 35.

First, the condition (d) tells us that Agyy < Apjant. Thus, if the sequent &, Apjgn:
[Plant,t = 1 & H At < Apiant]Gpiant is valid, we have that the sequent &, Apjans -
[Plant,t =1 & H At < Act]Gprant is valid too. It shorten the amount of time that the
plant is allowed to evolve. So if we have proved that it satisfies the guarantees for a defined
amount of time, we have trivially that it satisfies guarantees for a smaller amount of time.

117

We can then safely replace the formula t < Agyp by 0 < ¢ — ey < Aoy in the evolution
domain since it represents the same amount of time. It is now possible to apply the Theorem 4
to conclude. O

Example 42 (Contract of the water-tank). From the Example 3.25, the contract of the
water-tank resulting from the composition of the water-level and the controller is:

At Awl N AwlCtrl
Gut : Gui AN Guictr

The conditions of the Theorem 6 are satisfied. The conditions (a) to (c2) are already con-
sidered in the previous section. Plus, we have that Ayiomi < Awi We have a proof of the
following sequent:

E, Ayt + [Water-tank|G

Conclusion

We have presented how we can adapt our parallel composition operator to modularly model
and prove a Computer-Controlled System and reason on a non-functional property like the
execution period and the control period. But the presentation in this section is only for
two elements, and we want to extend this approach with to a plant where several systems
Plant-Controller are composed in parallel. The next section is devoted to the presentation of
parallel composition with a systematic integration of timed constraints.

4.2 Parallel composition in a timed framework

We want to extend the integration of temporal considerations for every component in a timed
framework. Reasoning on temporal executions of CPS is an important step during the design
of such systems and this extension aims to ease its development.

When we execute two programs in parallel on one CPU, their execution periods, that we
identify to Worst Case Execution Time (WCET), is augmented. The computation resources
may be preempted by the other program and the first program has to wait. More precisely,
the resulting execution period is the sum of respective WCET. We have also to take into
consideration if the composition with the continuous part is still valid, i.e. that the resulting
execution period is still inferior to the control period of the plant.

The parallel composition operator in Definition 22 is too general to handle this kind of
reasoning. We present in the next section its adaptation by extending the idea of Section 4.1
and exemplify it with the water-plant example. We retain the algebraic properties, commuta-
tivity and associativity, as well as the theorem guaranteeing that the conjunction of contracts
is preserved through composition.

In Subsection 4.2.1, we defined how we integrate systematically the notion of execution
periods and control period to obtain a so-called timed component. The Subsection 4.2.2 details
the parallel composition between discrete timed components and we show that we retain
associativity and the composition theorem. The Subsection 4.2.3 is similar, but for continuous
timed component. The Subsection 4.2.4 show how we associate a discrete component and a
continuous component, where each of them may result from previous compositions. It is a
generalization of Section 4.1. Finally, the Subsection 4.2.5 show how to aggregate all the
previous definitions to obtain a parallel composition of timed general components.

118

4.2.1 Definition of a timed component

In this subsection, we present the definition of a component with the timed information and
how it is translated in d£. The designer should only provide the textual representation and
the translation in the d£ framework is handled automatically.

We associate to every atomic component a duration which is assumed to be provided by
the designer. For the discrete case, it is called the execution period and is understood as the
time the component takes to execute. We may assimilate it to WCET. In the continuous
case, it is the control period of the continuous system, i.e. the duration during which the
continuous component can evolves freely without an intervention of a controller. We extend
the definition by adding tests and assignment in a similar manner that in Section 4.1.1. To
keep the structure of components and the associated properties, we add tests and assignment
to discrete atomic sub-component along with the execution period provided by the designer.
The execution period of a compound component is obtained through composition of atomic
components.

Textual representation For a discrete component, A, represents the execution period of
the component. We just add this information to our previously defined textual representation
in Subsection 3.1.1. For example, for the first water-level controller, we add that the execution
period Apwoern is 0.03 seconds.

Example 43 (Textual representation of water-level controller). From the Example 3.22, the
water-level controller of the first tank is defined by:

Component: Controllerl
Period:

Awicirn = 0.03

Inputs:

wl1
Assumptions:

Gwh
Outputs:

fin

wlmy
Guarantees:

3 < wmp < 7

35 = wim — fin=1

wlmpy = 6.5 — fin=0

(35 < wlmp < 6.5) — (fin=0 v fin=1)
wly = (fin— foutr)(t — teprr,) + wlmy
Functional behavior:

Bodywicen = wlmy :=wly; (Pwlmy = 6.5; fin = 0) u (Twlm; < 3.5; fin

We have the same for the water-level controller W1Ctrl2 of the second tank for which the
execution Aw oo 18 0.02.

For a continuous component, &, represents the control period of the component. As for
the discrete case, we add this information in the textual representation. For example, for the
water-level component of the first tank, we have ey, = 0.2.

119

)

Example 44 (Textual representation of water-level). The water-level of the first tank is
defined by the following component:

Component: Water-levell
Control period:

ewn = 0.2

Inputs:

fin

wlmy
Assumptions:

Gctrh

Outputs:

wly
Guarantees:

3 < wh <7

wly = (fin— foutr)(t — tetrr,) + wlmy
Functional behavior:

wly = fin — foutyr & wli = 0

where Gy, are the guarantees of the component Controllerl.

We have the same for the water-level W12 of the second tank for which the control period
EWI2 is 0.1.

Behavior of a timed component To every discrete atomic component A of functional
behavior «, we associate a fresh variable t, which is used to specify the time stamp of the
component in an execution cycle.

Definition 37 (Behavior of an atomic component). Let A be an atomic component of duration
A, and functional behavior «. If o is discrete, then the behavior is:

(7t <ta+ Ag;asty :=1)*
If o is continuous, i.e. a = X =0 & H, then the behavior is:
X=0,i=1& HArO0<t<e,

The variable ¢ represents the time and it is assumed to be a read-only variable. We add
a guard in front of a discrete functional behavior « to test if A, units of times have passed
since the last execution of . It ensures that the discrete program executes periodically every
A, units of time. We add the assignment ¢, := ¢ which had to be understood as a time stamp
signaling that a has executed.

Given the functional behavior of the Controllerl and the Water-levell provided pre-
viously, and their respective execution period Awotr1 and ey, we have the following be-
haviors.

Example 45 (Behavior of the Controllerl and the Water-levell). The behavior WICtrl1
of the atomic component Controllerl is:

(7t < tcuu +0.03; Bodyyiopn; town =t)*

120

The behavior W1 of the atomic component Water-levell is:
wly = fin— fout;,i =1 & wl; >0A0<t<0.2

We have considered how to integrate temporal considerations on components provided
by the engineer. The other way to obtain a component is by parallel composition. The
parallel composition is different following that it is between purely discrete components, purely
continuous components or a mix of both. We detail the several case in the next subsections.

4.2.2 Timed parallel composition for discrete components

We adapt the parallel composition operator for discrete component by taking into account
their respective execution period A. We assume that the discrete components are executed
on one computation unit (e.g. one CPU). The resulting period is the sum of each respective
periods since it is the Worst Case Execution Time (WCET) for the interleaving on one CPU.

The problem is different if we dispose of several computation units. It is possible to run
two components truly in parallel and the resulting WCET will be the maximum of respective

WCET.

Modeling We first define the parallel composition of discrete components. The main dif-
ference with the definition of a parallel composition operator in Section 3.2 is the presence of
the execution period and it is modified through composition.

Definition 38 (Parallel composition of discrete components). The component resulting from
the parallel composition of two discrete components A and B is:

Compound Component: AB
Period:

Aa-l-Ag

Inputs:

A.inputs U B.inputs
Assumptions:

Ay AN Ag

Outputs:

A.outputs U B.outputs
Guarantees:

Ga/\Gﬁ
Functional behavior:

a ® f

There is no need to specify the period, the inputs, the assumptions, the outputs, the guar-
antees and the behavior of the resulting component, these characteristics are automatically
inherited from the composition. The inputs (resp. outputs) are the union of respective inputs
(resp. outputs). The assumptions (resp. guarantees) are the conjunction of respective as-
sumptions (resp. guarantees). The parallel composition of discrete components is performed
on one CPU, which means interleaving. The resulting period is the sum of respective periods.
We explain in the next sections how it unfolds in d£. The behavior is given by the parallel

121

composition operator & detailed below. We use a different symbol to mark that we are in
a timed framework.

As in Definition 22, the timed parallel composition consists of the non-deterministic choice
between each behaviors v and 8. The parallelism occurs by the interleaving of traces. The
only difference is that we replace the occurrences of A, (resp. Ag) by A,g. The execution
period of each sub-components is now the execution period of the whole discrete system.

The notation aﬁzﬁ represent the program « where every occurrences of A, is replaced
by Aqg. Recall that the general form of a discrete behavior a is given by (o U ... U ay)*,
where «; are composed of functional behaviors of sub-components of o augmented with the
test 7t < to, + A, and the assignment t,, := t.

Definition 39 (Parallel composition of discrete components). Let o and 3 be two behaviors
of discrete compound components A and B with respective periods A, and Ag. The parallel
composition a ® [is given by:

Aq Aq A, Do *
(alAaﬁ u...uanAaﬂ uﬁlAﬂﬂ U ...uBMAﬁﬂ)
where Appg = Ay + Ag.
For example, we can compose the two water-level controller in parallel.

Example 46 (Composition of two water-level controllers). We want to compose Controllerl
and Controller2 on one CPU. The functional behavior of the first controller is Bodyyy i
and is Bodyyy oo for the second controller. The first controller has a period Aywicirn of
0.03 seconds, and the second has a period Aw oo of 0.02 seconds. The behavior resulting
from the parallel composition of each respective behaviors is:

((7t < tewrnn + 0.05; Bodyyy i town i=t) U (7t < tewn + 0.05; Bodyyyicimo; towmz = t))*

Algebraic properties We retain the algebraic properties of the parallel composition op-
erator o (cf Propositions 3 and 4). The commutativity means that the order of composition
is not important. The associativity ensure that we can build a system step-by-step.

Proposition 5 (Commutativity and Associativity). Let «, 5 and 7 be behaviors of discrete
components A, B and C, and of respective periods Ay, Ag and A,

a®p = f® « (Commutativity)
a®pP)®y = a® (B ®7) (Associativity)

We retain the two algebraic properties because the sum operation is also commutative and
associative. In our definition, it is equivalent to update the period with A, +Ag or Ag+A,.

Proof. We first consider the case of commutativity. The behavior resulting from the parallel

composition of A with B is (alﬁzﬁ U...U anﬁzﬁ V) Blﬁgﬁ U...U ﬂmﬁgﬁ)* and the one resulting

from the parallel composition of A with B is (Blﬁ‘;ﬁ U... U Bmﬁ‘;ﬁ U alﬁzﬁ U...U anﬁzﬁ)*.
We have the following equality:

Aag = A, +A5

Ag + A,
Aga

122

The behaviors are thus equivalent because of the commutativity of the non-deterministic
choice operator u.
For the associativity, the key point is that the sum operation is associative, i.e. that:

(Aq +Ag) + Ay = An + (A + A)

The proof is then similar to the proof of associativity of the parallel composition operator o
in Proposition 4. O

Composition theorem The contract for the timed parallel composition of components A
and B is the conjunction of respective assumptions and guarantees. As in Section 3.3, we
want that the component resulting from the parallel composition as in Definition 39 satisfies
the conjunction of contracts (Aq A Ag,Ga A G). We adapt the Theorem 4 by adding the
condition that the execution period of a component must not occurs in its functional behavior,
nor its guarantees, to retain contracts.

Theorem 7. Let o and 8 be two behaviors of discrete components A and B with respective
contracts (Aq, Go) and (Ag,Gg) and respective periods A, and Ag. Assume that we have a
proof tree of £, Aq - [a]|Go and €, Ag - [B]Gp. Then, under the conditions:

(a) BV(a)n BV(f) = &,
bl (M FV(G@J) = @,
V(B) n FV(Ga) = &,

) B

b2) B

c1) Aq =Y (G — Ay),
)
)

(
(
(
(c2) Ap b ¥¥(Go — Ag),

(d) The period A, (resp. Ag) does not occur in the functional behavior of A or Gy (resp.

functional behavior of B or G).

We automatically obtain a proof tree of the sequent:
87A0¢7AB l_ [O[® /B](Ga N Gﬁ)

The three first conditions are similar to the Theorem 4. The fourth condition forbids
the occurrences of period A, in the functional behavior « or the guarantee G,. It is not
restrictive on the design of hybrid systems since a component should not rely on its execution
period or guarantee a property related to it. The period of execution of a program in a CPU
is extremely difficult to plan and may vary because of others programs.

The proof of the theorem is similar to the Theorem 4 once we have dealt with the update
of the execution period induced by the parallel composition.

Proof. Recall that o and 8 are behaviors of discrete component and are thus of the form
(1 U ... Uap)* and (B1 U ... U Bp)*. Without loss of generality, we can assume that
n = m = 1, the reasoning still works for an arbitrary n and m. «; is of the form 7t <
la; + Ag; BOdYal;tOll =t

Substituting A, by A,z does not break the guarantee G,. More precisely, if the sequent
E,An F [(a1)*]Gy is valid, then the sequent &, A, [(alizﬁ)*]Ga is valid too.

123

The condition (d) ensures that A, does not occur in the functional behavior Body,, of
aq, i.e. it occurs only in the test 7t < to, + An. Thus the substitution does not affect the
functional behavior a1, and the same proof rules used to prove the sequent £, A, + [(a1)*]G,
can be used to prove the sequent £, A, [(alﬁzﬂ)*]Ga.

We have thus a proof of £, A, + [(alizﬁ)*]Ga and of £, Ag I [(5122B)*]G5. We apply
the Theorem 4 to conclude. O

Example 47 (Proof of the composition of two controllers). We want to apply the Theorem 7
to the timed parallel composition of two controllers as in the Example 46. The conditions
(a) to (c2) are trivially satisfied since the two water-level controllers are independent. The
condition (d) is also verified since neither the execution period Ayicerin 0T Awictriz occurs in
the functional behaviors of both water-level controllers. Thus the component resulting from
the parallel composition of Controllerl and Controller2 satisfies the contract (Awicerin A

Awictriz, Gwictn A Gwicrz)-

Conclusion We have presented how we can compose discrete components and update their
execution period during the parallel composition. We present next how we compose contin-
uous components and still keep track of the control period, then how to compose continuous
and discrete components.

4.2.3 Timed parallel composition of continuous components

When composing in parallel two continuous components, the control period of the resulting
system is the minimum of respective control period. It is necessary to consider the minimum
to retain safety guarantees. Indeed, if a property is guaranteed for some duration, it is also
guaranteed for a shorter amount of time.

Modeling We present the textual representation of the parallel composition of two contin-
uous components, then define the resulting behavior.

Definition 40 (Parallel composition of continuous components). The component resulting
from the parallel composition of two continuous components A and B is:

Compound Component: AB
Control period:
min(eq, €g)

Inputs:

A.inputs U B.inputs
Assumptions:

Aa/\Aﬁ

Outputs:

A.outputs U B.outputs
Guarantees:

Ga/\Gg
Functional behavior:

a ® f

124

The resulting inputs (resp. outputs) is the union of respective inputs (resp. outputs) as
for the parallel composition of discrete components (cf Definition 38). Similarly, the resulting
assumption (resp. guarantee) is the conjunction of assumptions (resp. guarantee). The
control period €, is the minimum of respective control period €, and 5. Recall that the
behavior « of a continuous component is differential equation: X =0x,i=1& Hx A0<
t < e,

Definition 41 (Parallel composition of continuous components). Let o and [be two behaviors
of continuous components A and B with control period €, and eg. The parallel composition
a ® B is:

X = Qx,Y =0y & Hx AHz A0<t < min(sa,eﬁ)

For example, we have the parallel composition of the two water-level components. The
resulting control period is the minimum of respective control period, here 0.1 seconds.

Example 48 (Composition of the two water-level). We compose the components Water-levell
and Water-level2. They have respective control period €4, = 0.2 and €2 = 0.1. The con-
trol period of the resulting component is thus min(0.2,0.15) = 0.1 seconds. The resulting
continuous component is:

w'll = fin — foutl,w.lg = fout; — fouts,t =1 & wli =0Awly =0A0<t<0.15

Algebraic properties As for the timed parallel composition of discrete components, we
retain commutativity and associativity for the timed parallel composition of continuous com-
ponent.

Proposition 6 (Commutativity and Associativity). Let «, 8 and «y be behaviors of continuous
components A, B and C, and of respective control period €., €5 and e

a® B = 8 ® « (Commutativity)
a®pP)®y = a® (87 (Associativity)

Proof. Recall that the behavior « of a continuous component is the differential equation:
X =0x,t=1& Hx A0<t<e, Idem for foftheformY =6y, i =1 & Hy n0<t<eg
and'yoftheformZzﬂz,le & Hz AO<t<e,.

We first prove the commutativity property. The basic idea is that the operator min(.,.)
is commutative and associative.

We unfold the left-hand side and show it is equivalent to the right-hand side.

X=9X7Y=9y&HA
Yzey,Xzex&H/\
Yzey,XI(gX&H/\

= B Q®a«a

II>

a® p

II>

o O O
INCIN N
I S
INCIN N
3 33
3
o
2
™
<

The step (i) consists of the unfolding of the definition of the parallel composition operator
® for continuous behaviors. The second step (i) is the reordering of variables in the ODE.
The step (iii) replace min(eq,e5) by min(eg,eq) since they are equal. Finally, we fold the
definition to obtain 8 ® «.

125

For the associativity, we unfold the definition and use the associativity of the min(.,.)
operator to show that (o ®) ® Yy=a ® (8 ® 7).

(@ ® B) ® v

= (X = 0x,Y =0y & H A ControlPeriod,g) ® (Unfolding)
= X = GX, = 9y, =0z & H A ControlPeriod qg), (Unfolding)
£ X = HX, Gy, =0z & H A ControlPeriod,g.) (7)
2a ® (Y=0y,Z=0; & H A ControlPeriodg.) (Folding)
2a ® (B ®1) (Folding)

The step (i) use the equality min(min(eq,eg),ey) = min(eqa, min(eg,ey)). We deduce

that
Control Period o)

0 <t < min(min(eq,eg),ey)
0 <t < min(eq, min(eg, ey))
Control Periodg.)

O]

Modular proof As for the timed parallel composition of discrete components, we retain
contracts through the timed parallel composition of continuous components.

Theorem 8. Let a and 8 be two behaviors of continuous components A and B with respective
contracts (Aq, Go) and (Ag,Gg). Assume that we have a proof tree of £, Ay + [a]Go and
E,Ag - [B]Gs. Then, under the conditions:

(a) BV(a) n BV(6) = &,
BV (o) n FV(Gg) = & and BV (a) n FV(Hy) = &
BV (8) n FV(Ga) = & and BV(B) n FV(Hx) = &,
Aq vﬁ(Gﬁ — Aa),

We automatically obtain a proof tree of the sequent:
€, Aa, Ag - [a @ B](Ga A Gp)

We still have the restriction on separated outputs and that the guarantees of a component
must not refer to the outputs of an other component. We also require that the guarantee of
a component does not break the assumption under which the second component operates.

Proof. @ ® J is the same as o/ o 8’ where o/ = X = 0x & Hyx A Control Period,g
and ' =Y = 6y & Hy A ControlPeriod,s. o. is the parallel continuous composition in
Definition 21. If we have a proof of £, A, - [/]G and &, Ag - [']G 3, we can conclude by

the Theorem 1.
We show that if we have a proof tree II, of £, A, + [a]G., then we have a proof tree of

&, Ag - [/]Ga.

If min(eq,e8) = €a, then & = a and we have nothing to prove.

126

If min(eq,ep) = €3, we have o/ = X = 0y & Hx A0 <t < eg. By assumption, we
have a proof of the sequent &£, A, [X =0x & Hx A0 <t <ey|Gqy. Since g4 > €5, o
considers the evolution of the differential equation during a shorter amount of time, we can
then deduce the validity of the sequent &, A, + [o/]Ga.

O

Example 49 (Composition of two water-level). We want to apply the Theorem 8 to the timed
parallel composition of two water-level as in the Example 48. The conditions (a) to (c2) are
trivially satisfied since the two water-level are independent. Thus the component resulting from
the parallel composition of Water-levell and Water-level2 satisfies the contract (Awi A

Awiz, Gwn A Gwiz).

Conclusion We have presented how to integrate timing aspects in our component-based
approach for purely discrete systems and purely continuous systems. But the main interest
of hybrid systems is when the systems are hybrid, i.e. when there is an interaction between
continuous components and discrete components. It is also during this phase that a lot of
problems can arise and that our approach help to solve.

4.2.4 Timed parallel composition of a discrete and a continuous component

In this section, we present the composition of a discrete and a continuous component. It is
almost the same as the presentation in Section 4.1, but a more general integration of the
notion of control period and execution periods to pass to the composition of different hybrid
systems. We require that the control period of the continuous component is smaller to the
execution period of the discrete component to be able to retain contracts through composition.

Modeling We present the textual representation of the parallel composition of a discrete
component with a continuous component, then define the resulting behavior in Definition 39.

Definition 42 (Parallel composition of a discrete and a continuous component). The com-
ponent resulting from the parallel composition of a discrete component A and a continuous
component B is defined by:

Compound Component: AB
Control period:

€p
Period:

Aq

Inputs:

A.inputs U B.inputs
Assumptions:

Aa N Alg

Outputs:

A.outputs U B.outputs
Guarantees:

Go ~ Gp
Functional behavior:

a ® f

127

The control period and the execution period do not change. The behavior of the resulting
component is defined using these two values. A discrete component may be the result of the
parallel composition of several discrete sub-components and the behavior a of a component A
is of the following form: (o U... U ay)*, where a; represent the behavior of sub-components.
Each of them have a notification variable ¢, associated.

Definition 43 (Discrete-Continuous). Let o be the behavior of a discrete component A with
execution period A, and B be the behavior of a continuous component B with control period
eg. The parallel composition o @ 3 is:

(o1 u...uanuX =0 & H A ControlPeriodag)*

where ControlPeriodas = /\ 0 <t —tq, < A,.
1<i<n
The control period formula Control Period,g is the conjunction of control period formulas
for each sub-component behavior a; of . It is necessary to retain the associativity as shown
in the next Subsection 4.2.5. A simple example of the parallel composition of a discrete
component and a continuous components is the water-tank as in the Example 38.

Example 50 (Water-tank). The component Water—tankl is obtained by the composition of
components Controllerl and Water-levelll. It is similar the behavior in Example 38.

Example 51 (Water-plant). In Ezample 46, we have composed the two water-level con-
trollers. Let denote the resulting component by Controller12. In Example 48, we have com-
posed the two water-level. Let denote the resulting component by Water-levell2. By compos-
ing Controller12 with Water-levell2, we obtain the water-plant component Water-plant.
The execution period Ay, s the execution period of the parallel composition of both controllers,
i.e. Ayictrit + Apictriz = 0.03 4 0.02 = 0.05. The control period €., is the control period of
the parallel composition of the two water-level, i.e. min(ey1, €wiz = min(0.2,0.1) = 0.1.

Modular proof As for the two previous case, we have a theorem ensuring that we retain
contracts through composition. It is in fact almost the same as Theorem 6. The difference is
that we explicitly distinguish the notion of control period and of execution period. Plus, we are
not restricted to a system with one controller and one plant, but possibly several controllers
already in parallel with several plants already in parallel as in Example 51.

Theorem 9. Let a and B be two behaviors of a discrete component A and a continuous
component B with respective contracts (Aq, Go) and (Ag, Gg), control period g and execution
period Ay. Assume that we have a proof tree of £, Ay = []Go and €, Ag - [5]Gg. Then,
under the conditions:

(a) BV(a) n BV(B) = &,
(b1) BV(a) A FV(Gy) = @ and BV (@) 0 FV (Hj),
(b)) BV(B) n FV(Ga) = 2,

(c1) Aq - ¥P(Gs — Ag),

128

(c2) Ap =V (Ga — Ap),
(d) eg = Aq.
We automatically obtain a proof tree of the sequent:
E, A0, Ag - [a ® B](Ga A Gg)
Proof. The proof is exactly the same as for Theorem 6. O

Example 52 (Water-plant). The parallel composition of components Controllerl2 and
Water-levell2 satisfies the conditions (a) to (c2) of the Theorem 9 as presented in Sub-
section 3.5.5. Plus, we have seen in the Evample 51 that the execution period Ay, 18
0.05 and the control period e,y is 0.1. We have e,y = Ayyp; the condition (d) is thus re-
spected. By application of the Theorem 9, the component Water—-plant satisfies the contract
(Awictrin A Awictriz A Awit A Awizs Guictrin A Guictriz A Guit A Guiz)-

4.2.5 Timed parallel composition of two general components

A general component can be discrete and continuous, e.g. a CCS. The behavior « of such
component has the canonical form (disc, U cont,)*. If we want to add a discrete component,
e.g. a program monitoring an other plant but which have to run on this CPU, in parallel,
then we have to be careful that the new duration of execution of the resulting discrete sub-
component does not exceed the control period of the plant.

Modeling We present the definition of timed parallel composition for general components.
It aggregates the previous definitions.

Definition 44 (Parallel composition of two general components). The component AB re-
sulting from the parallel composition of a general component A and a general component B is

defined by:

Compound Component: AB
Control period:
min(eq, €3)

Period:

Aa—l—Aﬁ

Inputs:

A.inputs U B.inputs
Assumptions:

Aa/\Aﬁ

Outputs:

A.outputs U B.outputs
Guarantees:

Go N Gg
Functional behavior:

a ® f

129

The resulting control period is the minimum of respective control period as in Defini-
tion 40. The resulting execution period is the sum of respective execution periods as in
Definition 39.

To define the parallel composition @ ® [of the behaviors o and 3, we define the formula
Control Period,g according to every possible association of a and 3 being discrete, continuous
or general behaviors. Recall that the the canonical form of the discrete part of « (resp.) is

(1 U ...ap) (resp. (B1yU...0n)).

Definition 45 (ControlPeriod,g). Let o and 8 be behaviors of components A and B. Their
respective execution periods are defined by A, and Ag and their respective control period by
€q and eg. The formula ControlPeriod,g is defined by:

(0 <t<min(ea,ep) if o and B are continuous
X /\ 0<t—tp <Ap if a is continuous and B is discrete
<jsm
A 0<t—ty, <A, if a is discrete and [is continuous
1<i<n
AN (0<t—tg <Ay+Ag) A (ControlPerioda)iz+AB if « is general and B is discrete
1<j<m
AN (0<t—ty <Ay+AB)A (C’ontrolPeriod@)ingAB if a is discrete and (is general
1<i<n
ontrol Period,, A (Control Perio if a and B are genera
[(ControlPeriody)3" ™" A (ControlPeriods) 3" ">’ if o and B z

@

The first case where v and S are both continuous is presented in Subsection 4.2.3. The
second and third case, where one is discrete and the other continuous, is presented in Sub-
section 4.2.2. The fourth and fifth case is the conjunction of the two following formulas,

N\ (0<t—tg <Ay+Ap)and (C’ontrolPerioda)iz+AB. The resulting execution period

1<j<m
is %he sum of each respective period since both o and S exhibit discrete behaviors. The left
conjunct is obtained as in the second case, but with the updated value for the execution
period. The right conjunct is the control period formula of a already obtained by parallel
composition with also an updated value for the execution period. The control period formula
in the last case, when both a and 3 are general, is just the conjunction of both control period
formulas with an update on the execution period.

Having defined the formula ControlPeriod,g for every possible associations, we define
the parallel composition for general components.

Definition 46 (Parallel composition of general behaviors). Let o and B be behaviors of

N

general components. Remember that they respect the canonical form o = (disca u (X =
Ox & Hx A ControlPerioda))* and B = (dich U (Y =0y & Hy A C’ontrolPeriodg))*.
The parallel composition a« ® B 1is:

*

(discaﬁzﬁ U disc5§;ﬁ U (X = QX,Y =0y & Hx A Hy A ControlPeriod,g))

Example 53 (Water-Plant). In Ezample 51, we obtain the water-plant example by first
composing the two controllers and the two water-level separately and then composing each
resulting component. Here, we assume that we have composed the water-level of the first
tank with its controller, the water-level of the second tank with its controller, resulting in two
general components representing the first tank and the second tank. We can now compose
them to obtain the water-plant system.

130

The two ways to obtain the water-plant system are equivalent thanks to the commutativity
and associativity properties that we retain.

Algebraic properties We retain the commutativity and associativity properties necessary
to a modular component-based approach.

Proposition 7 (Commutativity and associativity). Let a, 8 and 7 be behaviors of general
components A, B and C, of respective evecution periods A., Ag and A, and of respective
control period €4, €5 and €.

a® p = [®«a (Commutativity)
@a®B)®@®y = a® (B 9) (Associativity)

Proof. Recall that the behaviors «, 8 and -y are of the respective canonical form (disca V) (X =
Ox & Hx A ControlPerioda))*, (disc5 V) (Y = Oy & Hy A ControlPeriodg))* and
(disc, U (Z=0yz & Hz A C’ontrolPeriodw))*.

The proof of commutativity is obtained by first unfolding the definition (step (7)). We use
the commutativity of the U operator to reorder the discrete parts (step (ii)). We reorder the
variables in the differential equation and use the commutativity of the conjunction A to pass
from Hx A Hy to Hy A Hx (step (iii)). The fourth step (iv) is justified by the equalities
Control Period,g = ControlPeriodg, and A,g = Ag,. We fold the definition to obtain
B ® alstep (v)).

a® B

= ((disca)ﬁzﬁ v (disc,g)igﬁ UX =0x,Y =0y & Hx rn Hy A ControlPeriodag)” (i)
= ((discﬁ)ﬁgﬁ v (disca)izﬁ UX =0x,Y =0y & Hx rn Hy A ControlPeriodaB)* (i7)
= ((discﬁ)ﬁgﬁ U (disca)izﬁ UY =0y, X =0x & Hy A Hx A Control Periodag)” (iii)
= ((discﬁ)ﬁga U (discy))" Y =0y, X =0x & Hy A Hx A C’ontrolPeriodBa)* (iv)

To prove the associativity property, we first unfold the definition of the parallel compo-
sition (steps (i) and (i7)). We use the equalities Control Period g, = Control Period,gs.)
and A(5)y = Aqy(sy) in the step (iii). We fold the definition in the steps (iv) and (v).

(@ ® B) ® v
. Aq . Ay
— (((dlsca)Aj v, (dlSCB)ABﬁ
UX = QX,Y =0y & Hx A Hy A ControlPeriodag)*) ® v (¢)

A A A
= ((d?sco()A(o‘B)7 v (discB)A;;“B)7 U (discW)A(jﬁ)”

@

uX = HX,Y =0y, Z =07 & Hx A Hy A Hy A ControlPeriod(aB)y)* (i)

- ((d%sca)iz(ﬁf’) U (disc,g)igw7> U (discw)ijw”)
UuX=0x,Y=0yv,Z=0; & Hx A Hy n Hz A C’ontrolPerioda(m))* (#i7)

a® (((disclg)ig7 v (discw)im

Y

Y =0y, Z=0; & Hy A Hy A ControlPeriodgfy)*> (iv)
a® (B ®9) (v)

131

O]

Modular proof We retain also the respective contracts through the timed parallel compo-
sition.

Theorem 10. Let o and B be two behaviors of general components A and B with respective
contracts (Ao, Go) and (Ag,Gg), control period e, and €g, and execution periods A, and Ag.
Assume that we have a proof tree of £, Aq - [a]Go and €, Ag + [B]Gg. Then, under the
conditions:

(a) BV(a) nBV(B) = &,

(b1) BV () n FV(Gg) = &,

(b2) BV(B) n FV(Ga) = I,

(c1) Ao+ VB(Gg — A,),

(c2) Agt=V*(Ga — Ap),

(d) The period Ay, (resp. Ag) does not occur in the functional behavior of A or G (resp.

functional behavior of A or Gg),
(e) min(ea,ep) = Aa + Ag.
We obtain automatically a proof tree of the sequent:
E, A0, Ag - [a ® B](Ga A Gg)

The conditions are the aggregations of the conditions of Theorem 7 and Theorem 8. The
proof of this theorem is achieved by applying the three theorems of the previous subsections.

Proof. Remember that o and § are behaviors of general components. They respect the
canonical form, and thus we have o = (disca u(X =0x & Hx A ControlPerioda))*

and 3 = (discg U (Y = Oy & Hy ControlPeriodﬁ))*. We want to prove the validity
of the sequent &, An, Az [((disca)izﬁ U (disc/g)ﬁgﬁ U (X = QX,Y =0y & Hx A Hy A
C’ontrolPerioda/g))*](Ga A Gg).

The behavior resulting from the parallel composition is given by ((disca)ﬁzﬁ U (discB)ﬁgﬁ V)

(X =0y, Y =0y & Hx A Hy A ControlPeriodag))* and it can be expressed as the successive
composition of discrete parts on one side, the continuous part on the other side, and then the
composition of both sides. More precisely, it is equivalent to

((discq)* @ (discp)*) ® ((X = 0x & Hx AControlPeriods) ® (Y = Oy & Hy AControl Periodg))
We successively apply the Theorems 7, 8 and 9 to conclude. O

Example 54 (Water-plant). We already a proof that the water-tankl component satisfies its
contract (Ayt1, Gut1) and that the water-tank2 component satisfies its contract (Awi2, Guwi2)-
The conditions of the Theorem 10 are verified and we have that the resulting component
Water-plant satisfies the conjunction of contracts (Awe1 A Awiz, Gutl A Guwi2)-

132

Conclusion

In this section, we have presented how to extend our previous component-based approach
to take into account the timing constraints inherent to the design of a Computer-Controlled
System. We have proved that we retain the commutativity and associativity properties,
essential to scale up to realistic systems. Finally, we state and prove theorems to retain
contracts through the parallel conditions. Theses results give us confidence in the ability of
our approach to be adapted to new challenges that will arise when confronted to realistic
industrial systems.

The next two sections present two adaptions of our parallel composition operator to handle
modes and causal composition. It features composition theorems with relaxed condition to
retain contracts.

4.3 Handling of modes

Complex computer-controlled systems often exhibits several modes. For example, in a water-
plant, there is the nominal mode where the treatment of water is working normally and the
water-level in tanks should be between a predefined range. And there is the error mode for
when there is an anomaly, e.g. a worker push an emergency button, and we just want to
ensure that there is no overflow by closing all the inlet faucets. It allows to model systems in
a degraded environment and still ensure some important safety properties.

The obvious approach will be to model each mode as a component behavior, and then
apply our parallel composition operator to obtain the global system. But by design, two
distinct modes have the same outputs and it is not possible to apply the Theorem 4 since
the condition (a) (the outputs must be separated) is not satisfied. The trick is that the two
modes do not execute simultaneously. They are exclusive; we cannot be in the two cases
at the same time. We exploit this exclusion to slightly alter our definition of component in
Subsection 3.1.1 similarly to our work in the previous Sections 4.1 and 4.2. We prove a similar
result to Theorem 4 while relaxing the condition of the disjoints outputs for this design.

Here, we present our approach only with discrete components. To our knowledge, the
definition of modes is for discrete systems since it is a design choice performed by an engineer.
The change of mode of a plant is enforced by the actuation of a controller.

4.3.1 Modular modeling

The designer provides an event E under the form of a formula which characterizes a mode,
e.g. Error = 0. Each event is added in the guard as for the time test in Section 4.2. The
events can change from one to the other at every execution cycle.

We define a component A as in Subsection 3.1.1 to which we add a event E,. From this
specification, we derive a behavior as a hybrid program which models the desired working.

Component: A

Event:

Eo

Inputs:

A.inputs u B.inputs
Assumptions:

133

AaAAB

Outputs:

A.outputs U B.outputs
Guarantees:

Goa ~ Gp

Functional behavior:

a

We recall that « is the functional behavior of a discrete component and may result from
multiple previous compositions. It is thus of the form o = a1 U. ..U, where «; are behaviors
of functional sub-components.

Definition 47 (Mode). Let v be the functional behavior of a discrete component A with event
E.. The canonical structure of a mode is given by the hybrid program:

(U ?Ea; (67)*
1<ign
We distribute the event formula F, to every sub-components «; of the component a.

We complicate the water-tank example by adding to the nominal mode, (cf Subsec-
tion 3.5.3), an emergency mode. The event formula is error = 0 for the nominal mode
and error = 1 for the error mode. We introduce the variable error representing the pushing
of an emergency button. It is assumed to be an external variable; we add in the environment
the fact that error =1 v error = 0.

Example 55 (Error mode). The functional behavior of the error mode is fin := 0; fout := 0.
We close both the inlet and outlet faucet and the system does not evolve anymore. It implies
that the variable fout is no longer part of the environment, but an output of the component
Error. The behavior is

(Perror = 1; fin := 0; fout := 0)*

The composition of two modes is obtained by applying our parallel composition operator as
in Definition 22.

Definition 48 (Mode composition). Let A and B be two discrete components with respective
behavior o = (U ?Ea;ai)* and = (| ?Eg;ﬁj)*, and respective events E, and Eg.

1<i<n 1<j<m

The behavior of the composition of A and B is defined as:

aof=(|J Baaiv |J Es8)"

1<isn 1<j<m

We use the parallel composition operator of Definition 22. We do not explicitly require that
the events should be exclusive for the composition. We can model systems where two modes
can overlap, but we will not be able to retain contracts through the parallel composition.

Example 56 (Composition of component Controller and component Error). From Def-
wiation 30, remember that the functional behavior of the water-level controller component,
Controller, is:

wim := wl; (?wlm = 6.5; fin := 0) U (?wlm < 3.5; fin := 1);

134

We drop the timing constraint for the sake of clarity, but they can be added without problem.
By applying the Definition 48, the behavior of the resulting component is

(Perror = 1; fin := 0; fout := 0) *
u(?error = 0; wim := wl; (?wlm > 6.5; fin := 0) U (?wlm < 3.5; fin := 1))

4.3.2 Modular proof

As in Section 3.3, we associate contracts to each component and prove that each component
satisfies it. To obtain automatically the satisfaction of the conjunction of contracts by the
global system, we have the following theorem.

Theorem 11. Let o and B be two behaviors of discrete components A and B with respective
contracts (Aa, Go) and (A, Gg), mode events E, and Eg. Assume that we have a proof tree
of £, Aq - [a]Gy and £, Ag - [B]Gs. Then, under the conditions:

((1) (Ea AN EB) — J_,
(b1) FV(Ga) n (BV(ON(BV (a) n BV(8))) = @,

(b2) FV(Gg) n (BV()\(BV(8) 0 BV(a)) = @,
(1) Ao = V(G5 > Aa),
(c2) A b V(G — Ap).
We have a proof of:
€, Aa,As - [a ® B)(Ea — Ga n Eg — Gg)

We relax the condition that the outputs must be separated, i.e. that BV (a)nBV(8) = &.
To still guarantee the soundness of the composition, we add the requirement that the two
events are exclusive, i.e. (Ey A Eg) — L. Since the we relax the condition on separated
outputs, we have to be more careful for the statement of conditions (b1) and (62). Indeed,
the guarantee G, of a component may refer to a common output of both components, e.g.
fin in our water-tank example. So, we forbid G, to refer to outputs of B that are not also

outputs of A, hence the condition F'V (Gy) N (BV(B)\(BV(@) N BV(ﬁ))) = .

Proof. Let a and 8 be two behaviors. They respect the canonical form (U 7Eq; ai)* and

1<i<n

(U 7E5;Bj)*. To simplify the proof, we assume that n and m are reduced to 1, i.e.

1<j<m
o= (?Ea; 041)*. The reasoning can be applied for arbitrary n and m.
We assume that we have a proof tree for the sequent £, A, + [(?Eq; @1)*]Gq. The proof
tree is of the form

Hlnito, HSt@pa
€. A0l Ga & Aq bk Y (Gq — [7Eq;a1]Ga)
E,An F [(TEy; 01)*]Gy

[Ind]

135

We apply the induction rule and obtain two goals, the initial step £, A, + G, and
the induction step &£, Ay — YV (Gq — [?E4;1]Ga). We assume that they are closed
by the branches Il7,;;, and Ilgse,,. We have a similar proof tree for the sequent &, Ag -
[(?Ep; B1)*]Gp with the branches I p;, and Ilgyep, -

We want to derive a proof tree of the sequent &, A, Ag - [((?Ea; ar)u(?Eg; Bl))*](Ea —
Go N Eg — Gpg). We use the notation G.g = E, — G4 A Eg — Gg to shorten the
representation of the guarantees. We first apply the induction rule.

E, A, Ag - Gop E,Aa, Ag Y8 (Gop — [(?Ew;an) U (7Eg; B1)]Gap)
€, Ao Ag = [((7Eas 1) U (7Eg; 1)) “1Gap
We first consider the left premise which corresponds to the initial step. We unfold the

notation G,p and separate the conjunction to finally retrieve our assumptions Ilr,;, and
Unit, to close the proof tree.

[Ind]

Hlm'ta HIm‘tB
E,An, A, Eo - Gq . E, Ay, Ag, Bz - Gg
E Au, Ag - Ey — Go | & An,AsF Es— Gj
E,AQ,AB F E, — G, /\Eﬁ —
S,Aa,Ag F Gag

T

T

5 Unfold Gag

We now consider the second premise which corresponds to the induction step. We want to
derive a proof tree for the sequent £, A,, Ag yos (Gag — [(?Eq; 1) U (TEg; 51)]Ga5). We
apply the skolemization rule V,. As in the previous section, we denote with the superscript
that a formula ¢ has seen all the occurrences of bound variables of « replaced by fresh
variables. Thus Gg'g means that every occurrences of bound variables of both o and 5 in G,
have been replaced by fresh variables.

£ An, Ag - (B2 — G A B’ — GFP) > [(7Ba; 1) U (7Eg; B1)*°|(BS” — GaP A E5° — GY°)

T

S,Aa,Aﬁ = Vaﬁ((Ea — Gy A EB — Gg) — [(?Ea;al) U (?Eg;ﬁ1)](Ea — Gy A EB — Gﬁ))

Unfold G.p
&, Aay Ag = Y% (Gop — [(?Ea; 1) U (7Eg; 1)]Gagp)

We can apply the separation lemma (cf Lemma 1), thanks to the condition (b), to replace
G by G%. The variables of Ga that may be captured by the quantification on bound
variables of § are already captured by the quantification on bound variables of 5. Idem
for the replacement of Ggﬂ by Gg. We apply the right implication rule —, to the sequent
£, Aa, Ag b (B2 — G& A B — G) = [(?Ea; 1) U (7Eg; B1)P)(ES” — G4 A B —
Gg) We then split the program (?E,; 1) U (7Eg; 81)*? in two with the non-deterministic
choice rule [U].

136

£, Aa, Ap ES” — G4 A B — G+ [(7Eg; 1) *P)(ES” — G& A BS — G

€, An, Ag, B — G4 A BY — G — G 1 [(2Ba; a0)*P)(ES” — G 1 B — &)

.

£, Aa, Ag, BS” — G A B — G - [(TBaion)* U (7Eg; 1))(ES” — G& ~ 5P — G)

[V]

£, A, Ag b (B — Go A ES” — G) — [(7Ba;) U (7Eg: B1) | (ES” — Go A B’ — GY)
We have two cases to consider. We only consider the first one, the sequent &£, A, Ag, ESP -
G& A Egﬁ — Gg F [(?Ea; a1)*P)(ESP — G& A Egﬂ — Gg); the second case is similar.

We split the invariant (E$® — G2 A Egﬁ — Gg) with the rule [BoxAnd] and consider
separately each premise.

£, Aa, Ag, BS” — G& B — G+ [(7Ea; a1)*P)(ES” — G)

€, An, A, ES” — G5, E57 — G b [(?Eas 1)P)(BS” — G2))
£, An, Ag, B3P — Gg,Egﬁ - Gg [(?Ea; a1)P)(ES” — Go A ES” — G)

[BoxAnd]

We close the first premise &, Ay, Ag, EX® G, FE aﬁ — Gﬁ F [(TEq; al)aﬁ](Egﬁ - G9)
with the branch Ilgep,. For the second premise, we make use of the assumption that the
events E, and Eg are exclusive.

First, notice that (?Eq; a1)®? is equivalent to ?ES7; a?ﬁ . We apply the sequential compo-
sition rule [;] followed by the text rule [?]. We apply then the rule —, to pass the left-hand
side of the implication in the hypothesis.

£, Aa, Ag, BS” — G&, BS” — G5 ES + [07°](E5” — Gf)
S,AQ,AB,ESB - G E aﬁ — G+ B > [ofP)(E - GY)
£, Ans A, ES — G, F “ﬁ - G - [2Ea")[a8)(E5” -)
€, Aa, Ag, B — G, E “ﬁ = Gy [7E” 0f "B — Gp)

[7]
[;]

B

We symbolically execute a]”. Since Eg does not refer to bound variables of «, the

symbolic execution of a?ﬁ does not modify EO‘B . We have to derive a proof tree for the
sequent &, Ay, Ag, Eq —>G QB —>G B8 |—E§6—> (Gg)“(lw.
We pass the event EB in the left- hand side of the sequent with the rule —, and conclude

by ex falso quod libet (rule L). Indeed, we have that £, and E3 are exclusive, thus ES® and
E%P 3 also.

137

€, Aay Ag, ES” — G2, ES” — G5, ESP ES7 - (G5)~”

—

T

€, Aa, Ag, ESP — Q8 ES® — G5, ESP v B — (G5
O

Example 57 (Contract for the error mode). The contract (Aepr, Gerr) for the Error compo-
nent 18:

Aerr
Gerr o fin=0
fout =0

It is simple to verify that Error satisfies its contract. As we consider the two components
without a context, we can drop the assumption on the outputs of the water-level, we restrict
the contract of Controller as following:

Actrr
Getrg 2 wlm <35 — fin=1
6.5 <wlm; — fin =20
(3.5 = wlmy; =2 6.5) = (fin=0v fin=1)

Example 58 (Composition of Error and Controller components). The event error = 0
and error = 1 are exclusive. Gerr does not refer to outputs of Controller other that fin
which is the common output. Also, Gy does not refer to outputs of Error other that fin.
The condition (c) is also verified trivially.

Thus we have that the component ControllerError resulting from the composition of
Controller and Error satisfies the contract (Aerr A Aetrl, (error = 0 — Ayy) A (error =
11— Aerr)) .

Conclusion

Compared to the previous theorem on parallel composition, we drop the assumptions that
the outputs of the two components must be different, and still retain that the compound
component satisfies the conjunction of respective guarantees.

We have presented how to handle two modes, but we think it is easy to generalize. To
retain the associativity of the parallel composition operator o, we must be careful that each
added event is mutually exclusive with all the other existing events. We think that a similar
mechanism can be extended to components of the general form with the event being incor-
porated in the evolution of the continuous evolution. Yet, a mode is typically two possible
functioning flow of a system and is something decided by a human.

When we reason on modes, we do not want to loose the reasoning on temporal constraints
as presented in Section 4.2. We think it is possible to integrate both aspects, but it requires
extra carefulness to mix theses methods. For example, the notification variable t.,; must be
shared with the component Error.

Fault-tolerance may also be handled using our mechanism of modes. The appearance of
a fault is modeled as one mode of functioning and the composition is carried accordingly.

138

4.4 A Causal Composition operator

When building a system from components, we may want to enforce a special ordering between
two components because they have a causal relation, for example the composition of a sensor
and the associated monitor. The parallel composition operator is not fitted for that. In this
section, we present how we adapt it by adding ordering constraints to obtain a so-called a
causal composition operator.

We work in the framework of timed parallel composition defined in Section 4.2. We make
advantage of the notion of notification already introduced. Hence, one is able to freely combine
our causal composition operator with the timed parallel composition operator. We exemplify
the causal composition by breaking the water-level controller into three components, a sensor,
a monitor and an actuator. We want the sensor to run before the monitor since the monitor
needs value from the sensor to decide what to do. The actuator have to run after the monitor
since it needs the decision of the monitor to actuate on the system. Such decomposition
has the advantage that each component performs exactly one task, but our previous parallel
composition operator was not fitted for that.

4.4.1 Modular Modelling

We define the causal composition operator for discrete components. To our knowledge, it is
not clear if an extension to continuous systems makes sense. Indeed, a design justification
for the ordering of two continuous evolution is not obvious. But it may be interesting for the
structuring of the proof for a continuous evolution with different stages, e.g. the growth of a
bacterial population is first a lag phase, then exponential, followed by a stationary phase and
then a death phase as the resources rarefy.

Recall that the behavior a of a timed discrete component A and execution period A, is of
the form ((?t < ta, +An;1ita, =) U...U (7t < ta, + A anita, :=1))". q; are functional
behaviors of sub-components of A. The test 7t < t,, + A, requires that at most A, units
of time have passed since the last execution of o. The assignment t,, := t remembers the
instant of the last execution of a.

Example 59 (Behavior of the water-level sensor). The functional behavior of the water-level
sensor component, denoted Sensor, is wim := wl. Its execution period is 0.01 seconds and
the notification is the variable tsens. Thus, its behavior is:

(7t < tsens + 0.01; wlm 1= wl; teens :==t)*

Example 60 (Behavior of the water-level monitor). The functional behavior of the water-level
monitor component, denoted Monitor is the functional behavior of the controller component
as in Subsection 3.5.3, but without the sensing part. It is (Twlmy = 6.5; fin := 0) U (Twlm; <
3.5; fin := 1) where the inlet valve is open or closed according to the value send by the sensor.
Its execution period is 0.02 seconds. Thus, the behavior of the water-level monitor is:

(?t <t + 0.02; (Twlm = 6.5; fin := 0) U (Twlm < 3.5; fin = 1);teyy = t)*

The execution period of a compound component obtained by the causal composition of
two components A and B is the sum of respective execution periods.

Definition 49. The component resulting from the causal composition of two discrete compo-
nents A and B 1s:

139

Compound Component: AB
Period:

Aa—l—Aﬁ

Inputs:

A.inputs U B.inputs
Assumptions:

Aa/\Aﬁ

Outputs:

A.outputs U B.outputs
Guarantees:

Go ~ Gp

Functional behavior:

a O f

We first present the definition for the case of two atomic discrete components to clearly
identify the additions enforcing the ordering. We generalize it in the Definition 51. We
proceed as for the timed parallel composition with the update of the execution period, but
we also add ordering constraints in the test in front of the functional behavior.

Definition 50 (Causal composition of discrete atomic component). Let o and 8 be two
functional behaviors of discrete atomic components A and B with respective periods A, and
Ag. Their causal composition o © [is given by:

(7tg <t <to+Aa+Ag;asty :=1) ¥
U (Mt<tg+As+Agntsg<tyfitg:=1t)

As for the timed parallel composition, we replace the occurrences of A, and Ag by the
sum A, + Ag. We add two supplementary formulas: ¢g < ¢ in the guard of o and tg < ¢, in
the guard of 3. The second formula constraint 8 to wait that o has executed, i.e. that the
value of £, is greater meaning that it has executed more recently. It rules out traces where
executes before a.

The formula t3 < t requires that a non-zero amount of time has passed since the last
execution of § before executing again . We have to remember that we are in a context where
we model systems that take real time. It is thus not too restrictive to add the assumption
that a small lapse of time have passed since the last execution.

Example 61 (Sensor-Monitor). We causally compose the Sensor component with the Monitor
component. The resulting component SensorMonitor has the following behavior. The result-
ing execution period is 0.01 + 0.02 = 0.03.

(7t < tsens + 0.03; wlm 1= wi;tsens 1= t) *
U (7t <ty + 0.03; (Pwlm = 6.5; fin := 0) U (Pwlm < 3.5; fin := 1)ty = t)

We generalize it for discrete general components. Remember that the canonical form of a
discrete behavior with execution period A, is o = (U (7t <to, + Ansista, = t))* The
1<i<n
«; are functional behaviors of discrete atomic sub-components.
But the component may result from the causal composition of several of its sub-components.

We thus have to add the formula Lapse,, and Ord,, accounting respectively for the forbidding

140

of a instant execution of the first component after the execution of the second component and
for the possible already existing ordering constraints. They may be equal to T. In our defi-
nition with discrete atomic components, we have Lapse, = tg < t, Lapseg = T, Ord, = T
and Ordg = tg < t,.

Definition 51. (Discrete causal composition). Let a and (be two discrete behaviors of
components A and B with evecution periods A, and Ag. They respect the canonical form
(U (PLapseq;, At < to, + Ag A Ordy,; ista, = t))* for the behavior o and we have

1<isn

(U (?Lapseg, At <tg, + Ag A Ordg;; Bj;ts, = t))* for the behavior f3.

1<j<m

The causal composition o« © [is defined by:

U (7(A tg; <t) A Lapsea;, At <ta; + Ao + Ag A Orda,; s ta, 1= t) *

1<isn 1<j<m

U U (?Lapseg, nt <tp, + Do+ Dg A Ordg, A (N ta; =tg,); Bj;t, = t)

1<j<m 1<i<n

We add the constraint (/\ tg, < t) in front of each sub-behaviors a; of a. Since «
1<j<m

may result from previous parallel composition, and thus be made of several elements that are

independent, we have to forbid each of them to execute instantaneously after the execution

of 8. We also add the ordering constraint (A\ ta, = tg;) in front of each sub-behaviors 3;
1<i<n
of 8. Indeed, we have to constraint each of its sub-components to start before the end of

execution of «.

4.4.2 Algebraic properties

We show in this subsection that we retain the associativity property, essential to achieve a
truly modular component-based approach. We lose the property of commutativity, but it is
expected since we want to ensure a particular order between two components.

Proposition 8 (Non-commutativity and associativity). Let «, § and v be behaviors of dis-
crete components A, B and C, of respective execution periods A,, Ag and A .

a ®p # B0 « (Non-commutativity)
(@@ pB) Oy = a® (BO) (Associativity)

The associativity property ensures that the modularity is preserved with the addition of
the causal composition operator.

Proof. Recall that the behavior a respects the following form

*
(U (?Lapseq,s A (t < to, + Aa)iz-i-AB A Ordy,; i ta, == t))

1<isn

The behaviors 8 and « respect a similar form.

For the proof of non-commutativity, it is a negative result and we just have to exhibit
a counter-example to associativity. For that, we chose to reason with two discrete atomic
components to be in the case of Definition 50, simpler to handle. It means that n = m =1
and thus « is of the form (7t < to, + Aasai;ta, :=1t)* and B is (7t < tg, + Ag; fritg, = 1) .

141

We show that there exists reachable states of & © S that are not reachable by 5 ® a. We
have:
a®pB = ((M <t<ta +As+Agan;ite, =1t
Ut < tg + Do+ Ag Aty <tay;Bists =1))"

and on the other side:

BOa = ((Ma <t<tg +A2+Ay;Butg =1))
U(?t Stay + Ag+ Ag A ta, <tganita, = t))

In the first case, a sole execution of « is possible, thus p(7tg <t < to + Aq + Ag; sty
t) € p(a ® (). But in the second case, a sole execution of « is not possible. We must have
8 executed before executing a, thus p(?tg <t < to + Aq + Agsaita :i=1t) £ p(f O a).

For the associativity property, we unfold the definition of each successive causal composi-
tion. We denote the formula (A tg, <t) A Lapseq; by Lapseq,s. In the similar manner,

1<j<m
we denote the formula Ordgj AN ta; =ts,) by Ordagj
1<isn

We unfold twice the definition of ® for (a O’ NO)

(a®pB) O~
= ((U (?Lapseaiﬁ At <t + Aq + Ag A Ordy,; oyt i= t)
1<i<n
*
V) (?Lapsegj ANt <tp + Ag + Ag A Ordag;; Bjitp; 1= t))) ® v
1<j<m
= (U (?Lapseq,s A Lapseay At < to, + (Do + Ag) + Ay A Orda,; agita, = 1)
1<i<n
v U (7Lapsegﬂ At <tp + (Aa + Ag) + Ay A Ordag;; Bists; = t)

C

*
?Lapsey, At <ty + (Aq + Ag) + Ay A Orday, A Ordgy, ;Y ty, == t))

We expand the definition for o @ (8 ©® 7)

a O (609
= a0 (((?Lapsegﬂ ANt <tp + Ag+ Ay A Ordg; Bjstp, = t)
1<js<m
*
u U (‘?Lapse% A<ty +Ag+ Ay A Ordgy, s vk ty, = t)))
<k<

< U '7Lapsea 8 A Lapseq,p At <ta, + Ao+ (Ag+ Ay) A Orda,; o ta, == t)

lgzén

U (7Lapselg A At <tp + Aa + (Ag + Ay) A Ordag,; By ts; = t)
1<]<m
*

v (?Lapses, At <ty + Ao+ (Ag+ Ay) A Orday, A Ordgy,; Vi ty, 1= t))

1<k<p

Since (Aq +Ag)+ A, = Ay + (Ag+ Ay), we conclude that (a« ©) © vy =a O (8 © 7)
because the unfolded definition are equivalent.]

142

E, A0, Ag =G ntg =t — Gp E, Ay, Ag - VQB((GQ ANilg, =t — Gﬁ) — [bodyes U bodyg](Ga ANig =t — Gg))

4.4.3 Modular proof

We present a version of the Theorem 4 where we relax the condition that the guarantee of
B must not refer to the outputs of A. The idea is to temporally characterize the execution of
the component B (or of one of its sub-components). At this instant, we know that A has not
executed, and we thus refers to outputs of A.
Recall that the behavior g of a discrete component B respects the following form (U (?Lapseg, A

1<gjs<m

t <tg, + Apg A Ordg,; Bjitp,; = t))* It is characterized by the formula \/ tg = t, hence
1<j<m
the following theorem.

Theorem 12. Let o and B be two behaviors of discrete components A and B with respective
contracts (Ao, Ga) and (Ag,Gg) and respective execution periods A, and Ag. Assume that
we have a proof of £, Aq - [a]Gy and £, Ag - [5]Gg. Then, under the conditions:

(a) BV(a) nBV(8) = &,
(b) BV(B) n FV(Ga) = &,
(c1) Aq I—V/B(Gg—nél)
(c2) Ap bV (Ga — Ap)

We have a proof of:
£, Aa, Agt=[a © B(Gan (\/ g, =1) = Gp))

1<j<m

Proof. For simplicity, we assume that the behaviors a and 8 are atomic. It is straightforward
to generalize. We recall that the behaviors o and 8 respect the following canonical form
(7t <tay + Ao+ Agsarste, :=1t)" and (7t <tg, + Ao + Ap; fi5ts, :=t)*. Ga is of the form
tg, =t — pp,-

By assumption, we have a proof tree of the sequents £, Ay - [(7t < to, +An+Ag; ity =
t)*]Go and €, Ag = [(7t < tg, + Ao + Ap; fr5tp, :=1)*]|(ts, =t — Gg).

The proof tree of £, Ay - [(7t < to, + Aa + Apg; ai;ta, = t)*]G, is of the following form:

Hlnita HSt@pa
E, AL Gg E Ay V(G — [t < tay + Ad; Prita, i =t]Ga)
E AL H (Tt < toy + Ans s ta, :=1)*]Gq

We have a similar proof tree for the sequent &£, Ag - [(7t < tg, + Ao + Ap; fr5tp, =
t)*](ts, =t — Gpg). Using the branches Iyt , Minits, Istep, and Hgiep,, we derive a proof
tree for the sequent £, Ay, Ag - [a1 © B1](Ga A tg, =t — Gg).

We unfold the definition of @« ® 3 before applying the induction rule [Ind]. We adopt the
notation body, = (7tg, <t <t +Aq+Ag;ar;ty, :=1t) and bodys = (7t < tg, + Aq + A A
tgy < tay;Pritp = t).

[Ind]

- [Ind]
&, Aa, Ag 1= [(bodya U bodyg)"|(Ga A tg, =t — Gpg)

S,Aa,Ag — [a ® 5](Ga Ailg, =t — Gﬁ)

Unfolding

143

The two premises correspond to the initial step and the induction step. We first consider
the case of the initial step. We split the conjunction using the rule A,. We close each premise
with the branches Hn, and Ilpi,.

Hlmta Hlnitﬁ
E, A0, Ag = G E Ay, Ag =tg, =t — Gg
E, A, Ag =G ntg =t — Gp

N

It remains the induction step to consider. We first apply the rule V.. to replace occurrences
of bound variables of a and § by fresh variables. We separate then the program by applying
the non-deterministic choice rule [U].

€, Aa, Ag, G&7 A (tg, = t — Gp)* 1= [body ") (G A (ts, = t — G)*)

£, An, Ag, GOP A (tg, =t — Gp)*® 1 [bodysP1(GSP A (ts, = t — Gp)*P)

;

£, Aa, Ag, G& A (tg, =t — Gg)*P 1 [bodya” U body"1(Ga’ A (ts, =t — Gp)*P)

[V]

r

E,An, Ag - (GP A (ts, =t — Gp)¥’) — [bodys” U bodygﬁ](Ggﬁ A (tg, =t — Gg)*P)

E,AQ,AB — Vaﬁ((Ga A (tgl =t — Gﬂ)) — [bodya U bodyﬂ](Ga A (tgl =t — Gﬁ))) vr

We have two cases to consider, the case where there is one execution of @ and the case
where there is one execution of 3. The second case is similar to the reasoning in Theorem 4.
This reasoning can not be applied to the first case since Gg may refer to bound variables of
« and thus be modified.

We first unfold the notation body,. We split the guarantee in the sequent £, A, Ag, G2P A
(tg, =t — Gp)®P = [(2p, <t <tay+Da+Ag;a1sta, = t)PGEP A(ts, =t — Gp)*P) with
the rule [BoxAnd]. It yields two goals. Using the condition (b), we have that G2 is equivalent
to G2. The goal &, Ay, Ag, GE A (tg, =t — Gg)®P 1 [(Ttg, <t <tay + Ao + Agjar;ta, =

144

t)*%]G< is closed by the branch gyep,, -

£, A, A, G" A G - [(Ms, <t <tay + Do+ Agionita, :=1)7])GY’

HStepa
£, Aa,Ag, Gg A (tﬂl =t — Gﬁ)aﬁ — [(?t51 <t <t + A, + Ag; a1;ta, 1= t)aﬂ]Gg
£, A, Ag, GSP A (g, =t — Gp)*P 1= [(Pt, <t < tay + Do + Ag;an;te, i=t)*]GS°

[BoxAnd]

E, Aoy Ag, GP A (tg, =t — Gg)P 1 [(Tts, <t <ta, + Ag+ Agiarite, i=1)P(GEP A (tg, =t — Gg)*B
, 8 A (s, 8)*" = [(Ttg, L+ Ba + Agiarita, 1= 1] (Ga” A (ts 8))Unfolding

€, Aay Ap, G A (tg, = t — G)*P 1 [bodye”)(GE” A (tg, = t — Gp)*P)

It remains to derive a proof tree for the sequent E,Aa,Ag,Ggﬂ A(tg =t — Gﬁ)aﬁ -
[(7ts, <t <tay + Ao+ Ap;ar;te, = 1)P](ts, =t — G)*’. We first weaken the left side
of our sequent with the rule W; because these formulas will not be needed. We symbolically
execute (?tg, <t < ta, +An+Ag;ar;ts, :=t)* which yields in the hypothesis the formulas
tg, <tand t <ty +An+ Ag.

We apply the rule —, and have two contradictory formulas in the left-side of the sequent.
We can thus apply the ex falso quod libet (rule L) to conclude.

1

tg, <t,t<tal+Aa+Alg,t51 ZtI—Gg
tg, <t,t <ta, + Ao+ Aghtg =t— G5’

Symbolic execution
Wi

[(7tg, <t <tay + Ao+ Agiarite, 1= 1) (ts, =t — Gg)*P
S,Aa,Aﬁ,Ggﬁ A (tﬁl =t — Gﬁ)aﬁ — [(?tgl <t <ty + A, + Ag;al;tal = t)aﬁ](tﬁl =t — Gﬁ)a,@
O

Conclusion

We have presented how to order discrete components using notifications introduced in Sec-
tion 4.2. For a causal composition of a component A with a component B, we relax the
condition stating that guarantees of a component B must not refer to outputs of a component
A.

145

Chapter 5

Future works

146

In this chapter, we present research directions following our work. There is two categories
of directions; one where we extend the expressiveness of our framework to take into account
more systems, and one where we validate our approach against use cases. For each direction
discussed, it is yet unclear if the results hold or whether it will prove to be useful.

We organize them in three sections. Section 5.1 presents research ideas continuing the re-
sults of Chapter 3. The Section 5.2 presents research ideas continuing the results of Chapter 4.
The last Section 5.3 presents possible ideas on integrating refinement into component-based
approach.

5.1 Continuing from the results on parallel composition

There are three main directions to investigate from the results of Chapter 3. Recall that we
have defined a parallel composition operator to modularly model cyber-physical systems and
a composition theorem ensuring that the component resulting from a parallel composition of
two components satisfies the conjunction of respective contracts, allowing a modular proof of
correctness of the system. We have also described a prototype to implement the process of
construction of a proof of satisfaction of respective contracts.

First, we may want to modify our continuous composition operator o, to take into account
a wider variety of models. We discuss possible ideas and difficulties that can be encountered.
Secondly, we think that it is possible to relax the condition of Theorem 4 requiring that the
guarantee of a component must not refer to outputs of an other component. Last, we discuss
improvement points of the implementation of our prototype.

5.1.1 Extending the parallel continuous composition with complementary
domains

When composing in parallel two continuous components, we define the resulting behavior,
a differential equation, on the conjunction of evolution domains. The main reason for this
choice is that we consider systems with distinct outputs. We also require that the evolution
domain of a continuous behavior must not refer to outputs of other components. These
requirements are crucial to ensure that the resulting component satisfies the conjunction of
contracts. Given these conditions, two evolution domains should not interfere, making the
choice of considering the conjunction of evolution domains not too restrictive.

Given two continuous components, the parallel composition of their behaviors is defined
to be the system of both differential equations on the conjunction of evolution domains.
We recall the definition of parallel continuous composition. Let a = X =0x & Hy and
B =Y =6y & Hy be continuous behaviors of components A and B. The parallel composition
is:

aocﬂﬁXZG)X,Yzey & Hx A Hy

There exist systems that we would like to compose in parallel, but for which this operator
is not fitted. For example, consider two water-levels, one running during the duration [0, 5],
the other one running during the duration [3,7]. We want to model the system during the
duration [0,7]. Yet, if we apply the parallel composition operator, we obtain the execution
only on the duration [3, 5].

Example 62 (Two water-levels). Let wly = fing — fout1,t =1 & 0<t <5 and wly =
fing — foute,t =1 & 3 <t <7 be two behaviors.

147

Their parallel composition results in the following differential equation:
wly = fing — fouty,wls = fing — fouts,i=1 & 0<t<H5A3<t<T
which is equivalent to
wly = fing — foutl,zz}lg = fing — fouts,t =1 & 3<t<5

We lose the evolution of the first water-level on the duration [0,3] and the evolution of the
second water-level on the duration [5,7].

There is one global variable that is read by every component: the time. A restriction may
arise from time-related properties as in Example 62. In our work, we are mainly interested in
systems that run for an arbitrary long period of time, and this kind of time-related properties
is unlikely to arise. Yet, it may be interesting to investigate how to modularly model this
kind of systems.

Extension with complementary domains A possible adaptation is to consider the evo-
lution on complementary domains as in the work of Ronkko et al. [114]. The continuous
parallel composition of two differential equations X =0x & Hx and Y =0y & Hy would
be given by

((XZQX,YZQY & Hx/\Hy)U(XZQX & HXAE)U(YZHY & ?XAHy))*

We have three differential equations separated with a non-deterministic choice. The no-
tation Hy means the complement of the domain defined by Hy. We iterate the whole to
allows to pass freely from a differential equation to another one during the execution. The
proposed definition still matches our general form of behavior.

Example 63 (Two water-levels on complementary domains). Applying it to the two water-
level example results in the following model:

*

wly = fing — fout,t=1 & 0<t<3
U wli = fing — fouty, wly = fing — fouts,t =1 & 3<t <5
U wlnging—foutg,i=1&5<t<7

On the duration [0,3), we consider only the execution of the first water-level, and reciprocally
we consider only the execution of the second water-level in the duration (5,7]. For the duration
[3,5], we have both executions in parallel. We pass from one equation to the other with the
passing of time.

There are several points to investigate. First, we have chosen to not specify the evolution
of the differential equation X = fx on the evolution domain Hx. An other option, the linear
continuous parallel composition in the work of Ronkko et al. [114], is to specify that X=0
on the complementary domain Hy. It means that we assume that the system does not evolve
when it is not on its evolution domain.

Although the linear parallel composition is more restrictive, it also has more interesting
properties. According to Ronkko et al., it is associative when the case where the evolution
is not specified does not enjoy associativity. We think that this result may extend to the

148

definition presented in this subsection. Such property would have to be investigated to deter-
mine whether this extension of the continuous parallel composition is useful to our modular
component-based approach.

A very important point of our approach is the guarantee that the component resulting from
the parallel composition of two components satisfies the conjunction of respective contracts.
It remains to investigate whether such result holds for both versions of the extension of the
parallel continuous composition operator with complementary domains.

Lastly, we have to be cautious is that this extension of continuous parallel composition
does not build models with a combinatorial size, obliterating the scalability of such system.
Considering complementary domains may lead to such problem ad it may be possible to have
to consider methods to tame it.

5.1.2 Relaxing conditions of composition theorem

One of the necessary conditions to retain contracts through parallel composition is that the
guarantees of a component must not refer to the outputs of an other component. It is also
a good design practice. Yet, we may want express a guarantee according to outputs of other
component. For example, the water-level controller has the guarantee wim < 3.5 — fin =1
which means that if the water-level measured wilm is below 3.5, we have to open the inlet
valve (fin = 1). Assume we split the controller in two sub-components, a sensor to measure
the value and a monitor deciding the course of action according to the value of the sensor.
Then the guarantee wim < 3.5 — fin = 1 is the one of the monitor, but it refers to an output
of another component, the sensor.

But we think that it is possible to relax this condition. Assume that the guarantee G,
of a component A is of the form p — ¢, where p is a literal and ¢, is a formula. Instead
of requiring that there is no occurrences of outputs of another component B in p — ¢, ,
we forbid such occurrences only in ¢,. We can refer to outputs of B in p. The idea behind
this relaxation is that p is a “hidden hypothesis”. We require thus that p is implied by the
guarantees of A.

Conjuncture 1. Let o and 8 be two behaviors of general form of components A and B with
respective contracts (Ao, Gao) and (Ag,Gg). Assume that G, is of the form p, — ¢o and
Gp of the form pg — @g. Assume that we have two proof trees of £, Ay + [&]Gq and
&, Ag + [B]Gp respectively, where € is the environment. Furthermore, assume that

(a) BV(a)n BV () = &,
(b1) BV(a) n FV(pp) = &,
(b2) BV(B) N FV(pa) = &,
(c1) €&, Aa - Vﬁ(Gg (Ao A pa)),
(c2) €, Ap - Va(G — (Ap /\pg))

Then it exists a proof tree of €, Aa, Ag - [avoc B](Ga A Gpg).

149

Proof sketch We provide a proof sketch of the conjuncture. Recall that the behavior « is
of the form (disc, U cont,)* and f is of the form (discg U contg). The parallel composition
a o [results in the behavior (disca u discg U (cont, o, contﬁ))*.

The idea of the proof is to use the conjunction of guarantees G, A Gg as an invariant for
the induction rule. We separate disc,, discg and cont,, o. contg with the non-deterministic
choice rule [U]. We have to prove the sequent &£, A,, Ag, Ggﬁ, Ggﬁ [[discgﬁ](Ggﬂ A Ggﬁ).
We have similar sequents for the branches corresponding to discg and cont, o. contg. We
split the formula under the modality with the [BoxAnd] rule to distinct the cases of G2P and
G3’.

To prove the sequent &£, A, Ag, GaP , ng’ - [discgﬁ]Ggﬂ , we use the separation lemma in
the proof of Theorem 4 and the fact that Gz does not refer to bound variables of disc,, and
thus is not modified by the execution of disc,. Here, since Gg refers to bound variables of
disc,, we cannot apply this mechanism immediately, we have to be more cautious.

We first unfold the formula Ggﬂ . The step (i) is the application of the separation lemma

(cf Lemma 1 to the formula gog’B . We then symbolically execute disc, which does not modify
wg, but may modify pgﬁ . To mark this possible change, we use the superscript 4i¢ A

consequence is that pg’B and (pgﬁ)disc‘l are possibly different formulas, and we can not use
them to conclude. Remember that we have the condition (c2) which allow us to obtain the
formula pg from G, and thus pg’g from G2°. The conclusion is straightforward.

£ AouAﬁ,GgﬁJ?gﬁ N 90??(Oéﬁ)disca — 906

£, A, Ag, G 03" — o - (p57) 8% — f
£ Aoy Ay G " — oy [disei’ 5" — o
1

5 AonAﬁvGa 7pﬁﬁ - 905/8 [dlSCg’B] gﬁ a0

-
b Unfolding G op
£, Aa, Ap, G&7 G 1 [disc?1GY’

r

Symbolic execution of disc,

The technical reason is that the literal p is in negative position. It is thus possible to
extend it to the more general condition: “Occurrences of outputs of the component B can
only occurs into negative formulas”.

5.1.3 Addition of communication channels

Our model of communication is based on shared variables. It is a simplistic model and is not
realistic to tackle more complex systems. We present in this subsection how we can define
communicating channels in a similar manner to the primitives of HCSP. We present how it
can be used to revisit our composition theorem 4. We also outline how it will be possible to
integrate communication delays.

Definition of communicating channels We follow the encoding proposed by Guelev et
al. [56] to model inputs and outputs with several dedicated shared variables.

chle means that we send the value e along the channel ch and ch?x means that we assign
the value received on the channel ch to the variable z. A very naive way to encode this is by
chle = ch := e and ch?”z = x := ch which is just variable sharing with one extra step. In such

150

setting, the sender does not care if the value has been received. It may send several times
a value (e.g. a sensor which repeatedly measure some physical variable sent to a controller)
when the receiver only receive one of them (e.g. , the controller use one of two updates). It
is a very loose specification.

A less naive encoding is given by:

chle =7rcv = 1;ch :=e;rcv :=0
ch?x £7rcv = 0,z := ch;rcv =1

where rcv is a dedicated variable accounting to know if the value has been received or not.
With this encoding a sensor can not send a new value unless the controller has acknowledged
to have receive one.

Yet, it is not the way communications are modeled in HCSP. In Hybrid Communicating
Sequential Processes, a communication channel is blocking, i.e. that a process can not continue
if the reception has not been acknowledged. For example, in the program chle; o, o can not
execute until e has been received by the other side of the channel. The proposed encoding is
the following one:

chle = ch := e;ch! := T;await ch?; await —ch?;ch! := L
ch?e = ch? := T;await ch!;x := ch;ch? := 1;await —ch!

where ch? and ch! are dedicated boolean variables. await ch? means that we wait for the
variable ch? to be true, i.e. that the receiver is ready. Then, we wait that the receiver signals
that it has effectively received the value (—ch? is true). For the receiver, the encoding is a
mirror.

Alas, this encoding is not directly usable in d£. Indeed, it uses the fact that parallelism
is a base feature of the formalism. If we directly use this definition, we would never receive
the acknowledgment sent by the receiver since we do not let a possibility to the receiver to
executes. We need to adapt the encoding to comply with our notion of parallelism based on
the non-deterministic choice operator.

The idea is to separate the encoding of chle and ch?z of a by the non-deterministic choice
operator U to retrieve our framework. We have to add ordering constraints to ensure that
chle executes before av. We make extensive use of guards in a similar manner to the encoding
of Section 4.2. We proposed the following encoding:

chle = (?ch? =T Achl = 1L;ch:=e;chl:=T)

U(?(ch? =L Achl=T)v (ch? =T Anchl =T);chl :== 1)

(P7ch! =T A ch? = Tyx :=ch;ch? :== 1)

U(?((ch? =L Achl=T)v (ch? =L Anchl=1)Anx=ch;ch? =T

[

ch?z

We also use two dedicated boolean variables ch! and ch? to perform the ordering con-
straints. The two constructs in the right-hand side of the non-deterministic choice operator
U are here to account for the waiting periods await —ch? and await ch!. Using the non-
deterministic choice operator allows time to flow between two executions.

We show how it interacts with other constructs. Let « and 8 be discrete programs. We
define chle; o and ch?z; 8 as following:

151

chle;a = (7ch? =T Achl = L;ch:=e;chl :=T)
U(?(ch? =L Achl=T)v (ch?=T Achl=T);a;chl := 1)
ch?xz; 8 = (?ch! =T Ach? =T,z :=ch;ch? :== 1)

U(?((ch? =L Achl=T)v (ch? =L Achl=1)) nx=ch;B;¢ch?:=T

We do not use the sequence operator ; as it does not allow time to flow between com-
munications. But the proposed encoding is equivalent in terms of reachability semantic.
Remember that we assume our components to always be iterated an arbitrary number of
times. Thus we compare the reachability set of (chle;a)* and ((?ch? = T A ch! = L;ch :=
e;chl :==T)u (7ch? = L A chl = T;a;5ch! = J_))*

Conjuncture 2.
p((ch!e;a)*> = p(((?ch? = TAchl = L;ch:=e;ch! := T)u(?ch? = Lach! = T;a;ch! := J_))*>

We can use the same idea to encode the other usual interactions such as non-deterministic
choice and iteration.

Revisiting the parallel composition Since we have an explicit notion of communication
channels, we can assume that they are unique and more subtle during the composition for the
resulting inputs and outputs. When composing two components with matching inputs and
outputs, we can hide it at the level of the component resulting from the parallel composition.
The communication channel is internalized and communicates no more with the exterior. The
Figure 5.1 details the process.

chilep chi?xy
—_—
cha?xo —— —¢ chsles
chsles cha?xy

cho?x chsle
2: 02— Chs'es
AoB

—e >~
-
Ch4 ?a:4 Ch5 !65

Figure 5.1: Parallel composition with communication channels

In the Figure 5.1, the channel ch; is hidden by the composition. It helps the scalability of
our method since it allows to hide variables that are of no use during after the composition.
Such process is not possible using our simple model of communications based on shared
variables. Indeed, an output may be used by several components and hiding it during the
composition may forbid associative composition and incremental design.

Communication delays Communication delays are a serious issue for the design of hy-
brid systems in a compositional manner. The addition of new components may introduce

152

delays that were not expected and cause malfunction. We show how to add delays to our
communication channels using the work of Section 4.2.

Assume that the sending of a message takes A; units of time and the acknowledgment
Ao units of time. We add two special notification variables t., and t.? to remember the
last execution. We add the tests 7t < to + A1 and 7t < tep? + Ao in the guards and the
assignment t.p :=t and .7 := t as following:

chle = (2c¢h? =T Achl =L At <te+ Ar;ch:=e;chli= Tt :=1)
U(?(ch? =L Achl=T)v (ch? =T anchl =T);ch!l :== 1)

ch?x A q(?ch! =T Ach? =T At <tepr + Ag;x:=ch;ch? := Litepr :=1)
U(?((ch? =L Achl=T)v (ch?=LAnchl=1))Anx=ch;ch? =T

We detail the case of chle; where «v (resp. () is a discrete program and has an execution
period of 6, (resp. Ag).

chle = (7ch? =T Achl =1L At <tugy+ Ar;ch:=e;ch! i= Titep :=1)

U(?((ch? =L Achl =T)v (ch? =T anchl =T)) At <tq+ Ag;asty :=1t;chl :=1)

(P7ch! =T Ach? =T At <tepr + Aoy i= ch;ch? i= Lty :=1t)

U(?((ch? =L Achl=T)v(ch? =L Aachl=1))rnx=chnrt<tz+Ag;Bitg:=1t;ch?:=T

Il

ch?x

Our composition operator can be modified accordingly to take into account communication
delays.

Conclusion We have presented ideas on the integration of communications channels in our
framework, improving further the usability of our work. It allows the modeling of communi-
cation delays. It may also served as a basis to take into account privacy and security concerns.
Indeed, being able to model a communication channel allows the modeling of attackers.

5.1.4 Implementation

We have presented in Section 3.4 a prototype implementing the process of construction of a
proof of satisfaction of the conjunction of contracts in KeYmaera X. It shows feasibility of an
automation of our approach, yet we are far from an usable tool. We discuss several directions
to improve our prototype.

First, we need to take into account all the subtleties of the implementation of dL in
KeYmaeraX. This theorem prover is in active development, and it is difficult to keep track of
all introduced variations of proof rules.

A second is to implement the effect of the parallel composition operator. For now, each
component are defined in the form of a .kyx file and the component resulting of the parallel
composition is manually defined in a separate .kyx file. Since the parallel composition operator
is syntactically defined, there should not be theoretical issues to this work.

With the two previous steps achieved, it will allow to test the effectiveness of our approach
against more use-cases. It will help to define by practice for which kind of systems our
approach is really effective and compare it with the component-based approach of Mueller et
al. [88] and the standard approach in KeYmaera X.

153

5.2 Improving extensions of the parallel composition

We discuss research directions coming from results of Chapter 4. In this chapter, we have
defined extensions of our parallel composition operator to take into accounts several category
of systems. We have first defined a framework to take into account timing aspect inherent to
Computer-Controlled Systems (CCS). We have also presented how to adapt the approach to
model modes in a system and causality relations between discrete components.

First, we discuss in Subsection 5.2.1 how to handle timing aspects of CCS when there
is more than one computation unit. In Subsection 5.2.2, we investigate the extension to
continuous component our approach to handle modes in Cyber-Physical Systems. Last, we
discuss also a possible extension of our causal composition operator to continuous component
in Subsection 5.2.3.

5.2.1 Timed parallel composition with several CPUs

We have presented in Section 4.2 how to take into account execution periods during parallel
composition. We are in the context of Computer-Controlled Systems where discrete compo-
nents are in fact programs. For that, we have assumed that we execute the programs on one
CPU, leading that the resulting execution period of two programs in parallel is the sum of
respective execution periods. An interesting point to investigate is if we assume that each
program have its own CPU. Thus the resulting execution period from the parallel composition
would be the maximum of each resulting periods.

Given this slight change in the definition of a timed parallel composition operator (cf
Definition 46), we should retain the commutativity and associativity properties. Also, we
should still be able to guarantee that the component resulting from this parallel composition
satisfies the conjunction of respective contracts, i.e. a theorem similar to Theorem 10.

Yet, it seems a little unrealistic to assume that every program is executed on its own CPU
and it may be too restrictive to assume that they all execute on one CPU. An interesting
point to investigate would be how we can define a timed parallel composition operator when
we have two CPUs, three CPUs, or a fixed number n of CPUs. More generally, how it is
possible to integrate results on WCET calculus in our framework.

5.2.2 Modes for continuous systems

We have defined modes only for discrete systems in Section 4.3. It is justified by the fact that
modes are inherently human-made constructs, and thus it seems unnatural to define modes
on continuous components. Yet, there may be systems outside our knowledge to which such
modeling will be useful. It may also be useful as a proof artifact.

A possible modeling would be to add the events E in the evolution domain. To accounts
for the two possible modes, we would have to split our continuous system in two differential
equation and use the non-deterministic choice operator for consistency with our previous
definition. It is somehow similar to the idea in Subsection 5.1.1.

Given two behaviors X = 0x & Hx and Y =0y & Hy, and a mode event E, the mode
composition would result in the following behavior

(X=0x & Hx AE)u (Y =0y & Hy A —E))"

154

It is unclear how it would interact with discrete components, and whether it is associative.
Also, it is not clear whether the same reasoning as in Subsection 4.3.2 can be applied to retain
contracts through composition.

5.2.3 Causal composition for continuous components

As for the mode structure, we have defined the causal composition for discrete components.
We think that an extension to continuous component is possible, but it is not clear if there is
a need for it. However, it may be useful as a proof artifact.

Causal composition of two components means that one has to execute before the other
one. The obvious choice to model it is to use the sequence operator ; of dL. But, it does not
fit our general form of a component’s behavior with the use of non-deterministic choice. A
possibility is to make profit of the control period notion to temporally separate them.

Definition 52 (Continuous causal composition). Let o = X =0x & Hx nt <A, be the
behavior of a component A with control period Ay and 8 =Y = 60y & Hy nt < Ag be
the behavior of a component B with control period Ag. The continuous causal composition of
these behaviors would be:

(X=0x & Hx nt<Ay) U (Y =0y & Hy A Ay <t <Ag+Ay))"

We first execute «, then 5. It is similar to the idea of continuous composition presented in
Subsection 5.1.1. Yet, there is several issues with this definition. First, it is incompatible with
the rest of the framework where the continuous part is only one differential equation. This
seems more compatible if we have already extended the definition of the continuous parallel
composition as discussed in Subsection 5.1.1. A second issue is how it would interact with
the discrete part. Two last issues are whether this composition is associative and whether
the component resulting from this composition would satisfies the conjunction of contracts.

5.3 Toward integration of refinement into component-based
approach

5.3.1 Refinement in dl

In [86], the authors define a notion of refinement for hybrid programs. A hybrid program «
refines a hybrid program g if the set of reachable states of « is included in the set of reachable
states of 8. Recall that we note p(«) the set of reachable states of a.

Definition 53 (Refinement). A hybrid program o« refines a hybrid program B, denoted by
a B, if
ple) < p(B)

In [81], the authors integrate the notion of refinement as a first-class formula of the system
and provide an extension of the sequent calculus to syntactically reason on refinement. The
formula stating that « refines g is denoted by a < 5. Its semantic follows from the previous
definition.

Definition 54 (Semantic a < f3).
visasBiff{w](vw)epla)} < iwl(vw)ep(B)

155

An important rule associated to this formula is the rule [<]. To prove that ¢ holds for all
executions of «, it is sufficient to prove that ¢ holds for all executions of 8 and that « refines

8.

' [Ble Fa<p
' [o]e

The rule is correct. Indeed, if ¢ holds for every executions of 3, and that executions of «
are just a subset of executions of 3, ¢ holds also for all executions of a.

The authors provide also rules to derive the validity of formula o < [following the
structure of a and 5. For example, we have the following rule.

[<]

PFar<as T [al](B < B2)
' (a1;681) < (ag; f2)

G)

To show that aq; 31 refines ao; B2, we have to show that «q refines as and, after all runs
of a1, that 81 also refines 5.

5.3.2 Refinement and parallel composition

When designing an industrial system, it is common to update a component, e.g. a sensor
is updated with a new model that samples twice faster. Yet, we do not want to redo all
our design and proof only to u pdate one component. A very interesting feature would be
to say that if the behavior of a component B refines the behavior of a component A, with
same contract and input/outputs, then we can replace A by B. We think that our parallel
component-based operator enjoys this property.

Conjuncture 3 (Update of a component). Let o, o' and 8 be behaviors of component. If
a1 < o, then :

(a1 ® B) < (2 ® P)

156

Conclusion

157

Our initial goal was how to modularly design and prove correctness of Cyber-Physical
Systems (CPS)? Such systems feature physical evolution with discrete interactions. Such
systems are pervasive, but their dual nature make them hard to model and verify. We are
more specifically interested into what we call structural complexity. It refers to systems
where blocks are elementary and the complexity of the system arise from their repetitive
composition. The challenge is to come up with a correct-by-design methodology usable by
an engineer. For that, it must follow as much as possible the usual workflow of designer of
Cyber-Physical Systems while integrating proof methods to ensure correctness of the system.

To tackle the structural complexity, we have developed a modular component-based ap-
proach in the Differential Dynamic Logic (dL) presented in the Chapter 3. We have shown
also how to adapt it to several common design patterns in the Chapter 4.

More precisely, we have defined a notion of component at a high-level specification, the
so-called textual representation, and at a low-level specification, the so-called behavior, as a
hybrid program of dL. We have defined what it means for a component to satisfy its contract
and exemplified it with a cruise-control example.

We have defined how to compose parallel components by mean of a parallel composition
operator. We have shown that it is commutative, meaning that the order of composition
is not important, and associative, meaning that we can incrementally design a system. We
hence have a truly modular design method for CPS.

On top of that, we have stated and demonstrated a theorem that allows to construct con-
tracts through composition. Given two components that satisfy their respective contracts, the
component resulting from the parallel composition satisfies the conjunction of contracts. The
theorem operates under conditions that correspond to required properties for a meaningful
composition. It has also been exemplified with the cruise-control example.

To assess the feasibility of a possible implementation of our method, we have developed
a small prototype using the tactic language defined in KeYmaera X. Although it is just a
working prototype, it comforts us to think that a full-fledged implementation is possible.

Finally, to explore the possibility of our methodology, we have studied a small water-plant
example where two water-tanks are linked together and they have their water-level controller.
It shows that our methodology is general, and requires a lot of supplementary efforts from the
designer to conceive Computer-Controlled Systems, a special class of Cyber-Physical Systems
widely used in industrial systems.

To remedy such facts, we have studied several adaptations of our parallel composition op-
erator to take into account the timing constraints on executions of a system, the introduction
of modes and the causal composition of two components.

For each adaptation, we have presented how to modularly model and prove correctness
of considered systems. We have be careful to retain the associativity property and that the
adapted composition remains syntactic. We have also stated and demonstrated for each case a
theorem ensuring that the component resulting from the composition satisfies the conjunction
of respective contracts.

We have presented a modular framework to model and prove correctness of Cyber-Physical
Systems. We have showed it was adaptable if necessary. Yet, we have to validate it against
more complex use cases to determine its effectiveness. For that, a complete implementation
will be necessary. Validation against use cases will also help to determine if there is a need
for more extensions of our framework or if the presented approach is sufficient.

158

Bibliography

1]

2]

[10]

[11]

Proof measurement and estimation. https://ts.data6l.csiro.au/projects/TS/
pme.pml.

Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic
reachability and safety for controlled discrete time stochastic hybrid systems. Automat-
ica, 44(11):2724-2734, 2008.

Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge Uni-
versity Press, 2005.

Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. Formalizing hybrid systems with
event-b. In International Conference on Abstract State Machines, Alloy, B, VDM, and
Z, pages 178-193. Springer, 2012.

Luca Aceto, Augusto Burgueno, and Kim G Larsen. Model checking via reachability
testing for timed automata. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 263-280. Springer, 1998.

Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Christoph Glad-
isch, Sarah Grebing, Reiner Haéhnle, Martin Hentschel, Mihai Herda, Vladimir Kle-
banov, et al. The key platform for verification and analysis of java programs. In
Working Conference on Verified Software: Theories, Tools, and Exrperiments, pages
55—71. Springer, 2014.

Eitan Altman and Vladimir Gaitsgory. Asymptotic optimization of a nonlinear hy-
brid system governed by a markov decision process. SIAM Journal on Control and
Optimization, 35(6):2070-2085, 1997.

Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verification of hybrid systems.
In Hybrid systems, pages 209-229. Springer, 1993.

Rajeev Alur, Radu Grosu, Insup Lee, and Oleg Sokolsky. Compositional modeling
and refinement for hierarchical hybrid systems. The Journal of Logic and Algebraic
Programming, 68(1-2):105-128, 2006.

Rajeev Alur, Thomas A Henzinger, Gerardo Lafferriere, and George J Pappas. Discrete
abstractions of hybrid systems. Proceedings of the IEEE, 88(7):971-984, 2000.

Karl J Astréom and Bjérn Wittenmark. Computer-controlled systems: theory and design.
Courier Corporation, 2013.

159

[12]

[13]

[14]
[15]

[16]

22]

[23]

[24]

Ralph-Johan Back, Luigia Petre, and Ivan Porres. Continuous action systems as a
model for hybrid systems. Nord. J. Comput., 8(1):2-21, 2001.

Ralph-Johan Back and Joakim Wright. Refinement calculus: a systematic introduction.
Springer Science & Business Media, 1998.

RJR Back and Joakim von Wright. Trace refinement of action systems. Springer, 1994.

Jos CM Baeten. A brief history of process algebra. Theoretical Computer Science,
335(2-3):131-146, 2005.

Richard Banach, Michael Butler, Shengchao Qin, Nitika Verma, and Huibiao Zhu. Core
hybrid event-b i: single hybrid event-b machines. Science of Computer Programming,
105:92-123, 2015.

Bernhard Beckert, Reiner Hahnle, and Peter H Schmitt. Verification of object-oriented
software: The KeY approach. Springer-Verlag, 2007.

Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste
Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner Damm, Thomas
Henzinger, and Kim Guldstrand Larsen. Contracts for system design. Technical report,
2012.

Albert Benveniste, Paul Caspi, Stephen A Edwards, Nicolas Halbwachs, Paul Le Guer-
nic, and Robert De Simone. The synchronous languages 12 years later. Proceedings of
the IEEFE, 91(1):64-83, 2003.

Albert Benveniste, Dejan Nickovic, and Thomas Henzinger. Compositional Contract
Abstraction for System Design. Research report, INRIA, 2014.

Gérard Berry and Georges Gonthier. The esterel synchronous programming language:
Design, semantics, implementation. Science of computer programming, 19(2):87-152,
1992.

Yves Bertot and Pierre Castéran. Interactive theorem proving and program development:
Coq’Art: the calculus of inductive constructions. Springer Science & Business Media,
2013.

Frangois Bobot, Jean-Christophe Filliatre, Claude Marché, and Andrei Paskevich.
Why3: Shepherd your herd of provers. In Boogie 2011: First International Workshop
on Intermediate Verification Languages, pages 5364, 2011.

Brandon Bohrer and André Platzer. A hybrid, dynamic logic for hybrid-dynamic infor-
mation flow. Technical report, Technical Report CMU-CS-18-105. School of Computer
Science, Carnegie Mellon ..., 2018.

Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Voélp, and André Platzer. For-
mally verified differential dynamic logic. In Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs, pages 208-221. ACM, 2017.

Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with odes. In
Proceedings of the 16th international conference on Hybrid systems: computation and
control, pages 113-118. ACM, 2013.

160

[27]

[28]
[29]

[30]

Ed Brinksma, Tomas Krilavic¢ius, and Yaroslav S Usenko. Process algebraic approach
to hybrid systems. IFAC Proceedings Volumes, 38(1):325-330, 2005.

Hendrik Brinksma and Tomas Krilavicius. Behavioural hybrid process calculus. 2005.

Manuela L Bujorianu. Extended stochastic hybrid systems and their reachability prob-
lem. In International Workshop on Hybrid Systems: Computation and Control, pages
234-249. Springer, 2004.

Manuela L Bujorianu, John Lygeros, and Marius C Bujorianu. Bisimulation for general
stochastic hybrid systems. In International Workshop on Hybrid Systems: Computation
and Control, pages 198-214. Springer, 2005.

Zhou Chaochen, Charles Anthony Richard Hoare, and Anders P Ravn. A calculus of
durations. Information processing letters, 40(5):269-276, 1991.

Zhou Chaochen, Wang Ji, and Anders P Ravn. A formal description of hybrid systems.
In International Hybrid Systems Workshop, pages 511-530. Springer, 1995.

Mingshuai Chen, Xiao Han, Tao Tang, Shuling Wang, Mengfei Yang, Naijun Zhan,
Hengjun Zhao, and Liang Zou. Mars: A toolchain for modelling, analysis and verifica-
tion of hybrid systems. In Provably Correct Systems, pages 39-58. Springer, 2017.

Edmund M Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look at Itl
model checking. Formal Methods in System Design, 10(1):47-71, 1997.

Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press,
1999.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
computation, 76(2-3):95-120, 1988.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In Pro-
ceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238-252. ACM, 1977.

Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. The astrée analyzer. In European Symposium
on Programming, pages 21-30. Springer, 2005.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337-340. Springer, 2008.

Alexandre Donzé and Oded Maler. Systematic simulation using sensitivity analysis. In
International Workshop on Hybrid Systems: Computation and Control, pages 174—189.
Springer, 2007.

Tulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. Compositional semantics and
analysis of hierarchical block diagrams. In International Symposium on Model Checking
Software, pages 38-56. Springer, 2016.

161

[42]

[43]

[44]

[55]

Ansgar Fehnker and Franjo Ivanci¢. Benchmarks for hybrid systems verification. In
Hybrid Systems: Computation and Control, pages 326-341. Springer, 2004.

Jean-Christophe Fillidtre and Andrei Paskevich. Why3—where programs meet provers.
In Furopean Symposium on Programming, pages 125—-128. Springer, 2013.

Martin Franzle, Ernst Moritz Hahn, Holger Hermanns, Nicoldas Wolovick, and Lijun
Zhang. Measurability and safety verification for stochastic hybrid systems. In Proceed-
ings of the 14th international conference on Hybrid systems: computation and control,
pages 43-52. ACM, 2011.

Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In
International workshop on hybrid systems: computation and control, pages 258-273.
Springer, 2005.

Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. Bellerophon: Tac-
tical theorem proving for hybrid systems. In International Conference on Interactive
Theorem Proving, pages 207-224. Springer, 2017.

Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Volp, and André Platzer.
Keymaerax: An axiomatic tactical theorem prover for hybrid systems. In International
Conference on Automated Deduction, pages 527-538. Springer, 2015.

Nathan Fulton and André Platzer. A logic of proofs for differential dynamic logic. 2016.

Sicun Gao, Jeremy Avigad, and Edmund M Clarke. §-complete decision procedures for
satisfiability over the reals. In International Joint Conference on Automated Reasoning,
pages 286-300. Springer, 2012.

Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over the reals.
In Logic in Computer Science (LICS), 2012 27th Annual IEEE Symposium on, pages
305-314. IEEE, 2012.

Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: An smt solver for nonlinear
theories over the reals. In International Conference on Automated Deduction, pages
208-214. Springer, 2013.

Sicun Gao, Soonho Kong, and Edmund M Clarke. Satisfiability modulo odes. In Formal
Methods in Computer-Aided Design (FMCAD), 2013, pages 105-112. IEEE, 2013.

Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative language
for synchronous programming of real-time systems. In Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 257-277. Springer, 1987.

Antoine Girard and George J Pappas. Approximate bisimulation: A bridge between
computer science and control theory. FEuropean Journal of Control, 17(5-6):568-578,
2011.

Georges Gonthier. A computer-checked proof of the four colour theorem, 2005.

162

[56]

[70]

Dimitar P Guelev, Shuling Wang, and Naijun Zhan. Compositional hoare-style reason-
ing about hybrid csp in the duration calculus. In International Symposium on Depend-
able Software Engineering: Theories, Tools, and Applications, pages 110-127. Springer,
2017.

Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter Katoen. A
compositional modelling and analysis framework for stochastic hybrid systems. Formal
Methods in System Design, 43(2):191-232, 2013.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language lustre. Proceedings of the IEEE, 79(9):1305-1320,
1991.

Nicolas Halbwachs, Yann-Eric Proy, and Pascal Raymond. Verification of linear hybrid
systems by means of convex approximations. In International Static Analysis Sympo-
stum, pages 223-237. Springer, 1994.

Zhi Han and Bruce Krogh. Reachability analysis of large-scale affine systems using
low-dimensional polytopes. Hybrid Systems: Computation and Control, pages 287-301,
2006.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. In Handbook of philo-
sophical logic, pages 99-217. Springer, 2001.

Constance L. Heitmeyer, BG Labaw, and RD Jeffords. A benchmark for comparing
different approaches for specifying and verifying real-time systems. Technical report,
NAVAL RESEARCH LAB WASHINGTON DC, 1993.

Thomas A Henzinger. The theory of hybrid automata. In Verification of Digital and
Hybrid Systems, pages 265-292. Springer, 2000.

Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: the next generation.
In Real-Time Systems Symposium, 1995. Proceedings., 16th IEEFE, pages 56-65. IEEE,
1995.

Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker
for hybrid systems. International Journal on Software Tools for Technology Transfer,
1(1-2):110-122, 1997.

Charles Antony Richard Hoare. Communicating sequential processes. Communications
of the ACM, 21(8):666-677, 1978.

Peter Hofner. Algebraic calculi for hybrid systems. BoD-Books on Demand, 2009.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata
theory, languages, and computation. Acm Sigact News, 32(1):60-65, 2001.

Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid
systems. In International Workshop on Hybrid Systems: Computation and Control,
pages 160-173. Springer, 2000.

Abrial Jean-Raymond. Modelling in event-b. system and software engineering, 2008.

163

[71]

[75]

[76]

[77]

[78]

[79]

[30]

[85]

[36]

Jean-Baptiste Jeannin and André Platzer. dtl 2: Differential temporal dynamic logic
with nested temporalities for hybrid systems. In International Joint Conference on
Automated Reasoning, pages 292-306. Springer, 2014.

Henrik Ejersbo Jensen, Kim G Larsen, and Arne Skou. Modelling and analysis of a
collision avoidance protocol using spin and uppaal. BRICS Report Series, 3(24), 1996.

He Jifeng. From csp to hybrid systems. In A classical mind, pages 171-189. Prentice
Hall International (UK) Ltd., 1994.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al.
sel4: Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 207-220. ACM, 2009.

Leslie Lamport. Hybrid systems in tla+. In Hybrid Systems, pages 77-102. Springer,
1993.

Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(3):872-923, 1994.

Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International
journal on software tools for technology transfer, 1(1-2):134-152, 1997.

Xavier Leroy et al. The compcert verified compiler. Documentation and user’s manual.
INRIA Paris-Rocquencourt, 2012.

Jiang Liu, Jidong Lv, Zhao Quan, Naijun Zhan, Hengjun Zhao, Chaochen Zhou, and
Liang Zou. A calculus for hybrid csp. In Asian Symposium on Programming Languages
and Systems, pages 1-15. Springer, 2010.

Sarah M. Loos and André Platzer. Differential refinement logic. In LICS. ACM, 2016.

Simon Lunel, Benoit Boyer, and Jean-Pierre Talpin. Compositional proofs in differential
dynamic logic. In Axel Legay and Klaus Schneider, editors, ACSD, 2017.

Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid i/o automata. Information
and computation, 185(1):105-157, 2003.

José Meseguer and Raman Sharykin. Specification and analysis of distributed object-
based stochastic hybrid systems. In International Workshop on Hybrid Systems: Com-
putation and Control, pages 460—475. Springer, 2006.

Stefan Mitsch and André Platzer. The keymaera x proof ide-concepts on usability in
hybrid systems theorem proving. arXiv preprint arXiv:1701.08469, 2017.

Stefan Mitsch, Jan-David Quesel, and André Platzer. Refactoring, refinement, and
reasoning. In International Symposium on Formal Methods, pages 481-496. Springer,
2014.

164

[87]

[38]

[89]

[98]

[99]

[100]

Andreas Miiller, Stefan Mitsch, and André Platzer. Verified traffic networks:
component-based verification of cyber-physical flow systems. In 2015 IEEE 18th In-
ternational Conference on Intelligent Transportation Systems, pages 757-764. IEEE,
2015.

Andreas Miiller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and André
Platzer. A component-based approach to hybrid systems safety verification. In Erika
Abraham and Marieke Huisman, editors, IFM, volume 9681 of LNCS, pages 441-456.
Springer, 2016.

Andreas Miiller, Stefan Mitsch, Werner Retschitzegger, Wieland Schwinger, and André
Platzer. Change and delay contracts for hybrid system component verification. In

International Conference on Fundamental Approaches to Software Engineering, pages
134-151. Springer, 2017.

Tarik Nahhal and Thao Dang. Test coverage for continuous and hybrid systems. In
International Conference on Computer Aided Verification, pages 449-462. Springer,
2007.

Corina S Pasareanu and Willem Visser. Verification of java programs using symbolic
execution and invariant generation. In International SPIN Workshop on Model Checking
of Software, pages 164-181. Springer, 2004.

Lawrence C Paulson. Isabelle: A generic theorem prover, volume 828. Springer Science
& Business Media, 1994.

Yu Peng, Shuling Wang, Naijun Zhan, and Lijun Zhang. Extending hybrid csp with
probability and stochasticity. In International Symposium on Dependable Software En-
gineering: Theories, Tools, and Applications, pages 87-102. Springer, 2015.

André Platzer. Cheat sheet of rules in keymaera. http://symbolaris.com/info/
KeYmaera-cheat.pdf.

André Platzer. Differential dynamic logic for verifying parametric hybrid systems. In
International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, pages 216—232. Springer, 2007.

André Platzer. A temporal dynamic logic for verifying hybrid system invariants. In
International Symposium on Logical Foundations of Computer Science, pages 457-471.
Springer, 2007.

André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas.,
41(2):143-189, 2008.

André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer, Heidelberg, 2010.

André Platzer. Quantified differential dynamic logic for distributed hybrid systems. In
International Workshop on Computer Science Logic, pages 469-483. Springer, 2010.

André Platzer. Stochastic differential dynamic logic for stochastic hybrid programs. In
International Conference on Automated Deduction, pages 446-460. Springer, 2011.

165

[101]

[102]
[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

André Platzer. The complete proof theory of hybrid systems. In LICS, pages 541-550.
IEEE, 2012.

André Platzer. Logics of dynamical systems. In LICS, pages 13-24. IEEE, 2012.

André Platzer. A uniform substitution calculus for differential dynamic logic. In Inter-
national Conference on Automated Deduction, pages 467—481. Springer, 2015.

André Platzer and Edmund M Clarke. Computing differential invariants of hybrid
systems as fixedpoints. In International Conference on Computer Aided Verification,
pages 176-189. Springer, 2008.

André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover for hy-
brid systems (system description). In International Joint Conference on Automated
Reasoning, pages 171-178. Springer, 2008.

André Platzer and Jan-David Quesel. European Train Control System: A case study
in formal verification. In Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume
5885 of LNCS, pages 246-265. Springer, 2009.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science,
1977., 18th Annual Symposium on, pages 46-57. IEEE, 1977.

Vaughan R Pratt. Dynamic logic. Studies in Logic and the Foundations of Mathematics,
104:251-261, 1982.

Jan-David Quesel and André Platzer. Playing hybrid games with keymaera. In Inter-
national Joint Conference on Automated Reasoning, pages 439-453. Springer, 2012.

Anders P. Ravn, Hans Rischel, and Kirsten Mark Hansen. Specifying and verifying re-
quirements of real-time systems. IEEFE Transactions on Software Engineering, 19(1):41—
55, 1993.

Daniel Ricketts, Gregory Malecha, Mario M Alvarez, Vignesh Gowda, and Sorin Lerner.
Towards verification of hybrid systems in a foundational proof assistant. In Formal
Methods and Models for Codesign (MEMOCODE), 2015 ACM/IEEE International
Conference on, pages 248-257. IEEE, 2015.

Daniel Ricketts, Gregory Malecha, and Sorin Lerner. Modular deductive verification of
sampled-data systems. In Proceedings of the 13th International Conference on Embedded
Software, page 17. ACM, 2016.

Mauno Ronkkoé and Xuandong Li. Linear hybrid action systems. Nordic Journal of
Computing, 8(1):159-177, 2001.

Mauno Roénkko and Anders P Ravn. Action systems with continuous behaviour. In
International Hybrid Systems Workshop, pages 304-323. Springer, 1997.

Mauno Ronkko, Anders P Ravn, and Kaisa Sere. Hybrid action systems. Theoretical
Computer Science, 290(1):937-973, 2003.

166

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]

[128]

[129]

Mauno Ronkko and Kaisa Sere. Refinement and continuous behaviour. In International
Workshop on Hybrid Systems: Computation and Control, pages 223-237. Springer,
1999.

Ivan Ruchkin, Dionisio De Niz, Sagar Chaki, and David Garlan. Contract-based integra-
tion of cyber-physical analyses. In Embedded Software (EMSOFT), 2014 International
Conference on, pages 1-10. IEEE, 2014.

Ivan Ruchkin, Bradley Schmerl, and David Garlan. Architectural abstractions for hybrid
programs. In Proceedings of the 18th International ACM SIGSOFT Symposium on
Component-Based Software Engineering, pages 65-74. ACM, 2015.

Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Taming dr.
frankenstein: Contract-based design for cyber-physical systems. Furopean journal of
control, 18(3):217-238, 2012.

Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna. Constructing invariants
for hybrid systems. In International Workshop on Hybrid Systems: Computation and
Control, pages 539-554. Springer, 2004.

Jeremy Sproston. Decidable model checking of probabilistic hybrid automata. In Inter-
national Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems,
pages 31-45. Springer, 2000.

Alfred Tarski. A decision method for elementary algebra and geometry. In Quantifier
elimination and cylindrical algebraic decomposition, pages 24-84. Springer, 1951.

Shuling Wang, Naijun Zhan, and Dimitar Guelev. An assume/guarantee based compo-
sitional calculus for hybrid csp. In International Conference on Theory and Applications
of Models of Computation, pages 72-83. Springer, 2012.

Shuling Wang, Naijun Zhan, and Lijun Zhang. A compositional modelling and verifica-
tion framework for stochastic hybrid systems. Formal Aspects of Computing, 29(4):751—
775, 2017.

Shuling Wang, Naijun Zhan, and Liang Zou. An improved hhl prover: an interactive
theorem prover for hybrid systems. In International Conference on Formal Engineering
Methods, pages 382-399. Springer, 2015.

Stephen Wolfram. The mathematica. Cambridge university press Cambridge, 1999.

Gaogao Yan, Li Jiao, Yangjia Li, Shuling Wang, and Naijun Zhan. Approximate bisimu-
lation and discretization of hybrid csp. In International Symposium on Formal Methods,
pages 702—-720. Springer, 2016.

Gaogao Yan, Li Jiao, Shuling Wang, and Naijun Zhan. Synthesizing systemc code from
delay hybrid csp. In Asian Symposium on Programming Languages and Systems, pages
21-41. Springer, 2017.

Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns, and Ernst Moritz Hahn.
Safety verification for probabilistic hybrid systems. In International Conference on
Computer Aided Verification, pages 196-211. Springer, 2010.

167

[130] Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, and Yao Chen. Formal
verification of a descent guidance control program of a lunar lander. In International
Symposium on Formal Methods, pages 733-748. Springer, 2014.

[131] Liang Zou, Naijun Zhan, Shuling Wang, and Martin Franzle. Formal verification of
simulink /stateflow diagrams. In International Symposium on Automated Technology
for Verification and Analysis, pages 464—481. Springer, 2015.

[132] Liang Zou, Naijun Zhan, Shuling Wang, Martin Frinzle, and Shengchao Qin. Verifying
simulink diagrams via a hybrid hoare logic prover. In Proceedings of the Eleventh ACM
International Conference on Embedded Software, page 9. IEEE Press, 2013.

[133] Paolo Zuliani, André Platzer, and Edmund M Clarke. Bayesian statistical model check-
ing with application to simulink/stateflow verification. In Proceedings of the 13th ACM
international conference on Hybrid systems: computation and control, pages 243-252.

ACM, 2010.

168

Models in KeYmaera X

Fibonnaci

/* .kyz file for the Fibonnaci function */

ProgramVariables.
R Fn.

R Fnl.

R Fn2.

End.

Problem.

Fn =0 & Fnl =1 & Fn2 = 1 /¥ Inttial value */

-> [{Fn := Fnl; Fnl := Fn2; Fn2 := Fnl + Fn;}*] /* Program*/
Fn2 = Fnl + Fn /* Invariant */
End.

/* Proved by tactic :
wmplyR(1) ; loop({ Fn2=Fni+Fn}, 1) ; <(
QE,
closeld,
composeb (1) ; asstignb(1) ; composeb(1l) ; assignb(1) ; assignb(1) ; QE
)
*/

169

Cruise-control

Cruise-control: Engine

ProgramVariables.

R t. /* time */

R ttach. /* timestamp of the last ezecution of the tachymeter */
R a. /* acceleration set by the tachymeter */

R stach. /* speed choosen by the tachymeter */

R sacm. /* speed measured by the tachymeter */

R seng. /* speed of the engine */

R eps. /* mazimum time between two executions of the tachymeter */
R S. /* mazimum speed */

End.

Problem.

eps > 0 & S > 0 /* parameters value */

& t = ttach & sacm = seng /* initial values of t and seng */

& a = (stach - sacm) / eps /* assumption from the tachymeter */

& sacm >= 0 & S >= sacm /* assumption from the tachymeter */

& stach >= 0 & S >= stach /* assumption from the tachymeter */

-> [{sengm = a, tm = 1 /¥ behavior of the engine

& (eps >=t - ttach & t - ttach >= 0)} /* evolution domain */
] (seng >= 0 & S >= seng) /* guarantees of the engine */

End.

/* Proved by the following tactic

prop ; dC({ seng=a*(t-ttach)+sacm™}F, 1) ; <(
master,
master

)
*/

170

Cruise-control: Tachymeter

ProgramVariables.

R t. /* time */

R ttach. /* timestamp of the last ezecution of the tachymeter */
R a. /* acceleration set by the tachymeter */

R stach. /* speed choosen by the tachymeter */

R sacm. /* speed measured by the tachymeter */

R seng. /* speed of the engine */

R eps. /* mazimum time between two executions of the tachymeter */
R S. /* maxzimum speed */

R delta.

End.

Problem.

eps > 0 & S > 0 & delta > 0 /* parameters value */

& stach = 0 & sacm = 0 & a = 0 /* 4nitial values of stach, sacm and a */
& seng >= 0 & S >= seng /* assumption from the engine */

> [{
/* behavior of the tachymeter */
7 (ttach + eps >= t); sacm := seng; stach := *;
? (stach >= 0 & S >= stach
& stach - sacm >= - delta & delta >= stach - sacm);
a := ((stach - sacm) / eps); ttach := t;
I
]

/* guarantees of the tachymeter */

(sacm >= 0 & S >= sacm

& stach >= 0 & S >= stach

& a = ((stach - sacm) / eps))
End.

/* Proved by the followign tactic :

prop ; loop({ sacm>=08S>=sacméistach>=064S>=stachéa=(stach-sacm)/eps F, 1) ; <(
master,
master,
prop ; master

)
*/

171

Water-plant

First water-level

ProgramVariables.
R wll. /* water level of the first tank */

R wlml. /* water level measured by the first controller */

R fin. /* <nlet flow of the first tank */

R t. /* time */

R tctrll. /* timestamp of the last execution of the first controller */
R deltal. /* ezecution period of the first controller */

R foutl. /* outlet flow of the first tank */
End.
Problem.

(foutl = 0.75 & deltal = 0.2) /* Environment */
/* Inttial wvalues */
& tctrll = t /* initial value of t and tctrll */
/* Assumptions from the first water-level controller */
/* value of fin according to the measured water-level */
& (((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = 0 | fin = 1)))
/* assumption that the measured water-level is in the range [3,7] */
& (wlml >= 3 & 7 >= wlml)
/* solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml)
=->
[
/* Behavior of the water-level */
{wll[]= fin - foutl, t[]= 1 /* differential equation */
& (t >= 0 & wll >= 0 & t - tctrll >= 0 & deltal >= t - tctrll)
/* evolution domain */
}
]
/* Guarantees */
((wll >= 3 & 7 >= wll) /* the water-level stay in the desired range */
& wll=(fin-foutl)*(t-tctrll)+wlml)
End.

/* Proved by the tactic master */

172

Second water-level

ProgramVariables.
R wl2. /* water level of the second tank */

R wlm2. /* water level measured by the second controller */
R foutl. /* inlet flow of the second tank */
R t. /* time */
R tctrl2. /* timestamp of the last execution of the second controller */
R delta2. /* ezecution period of the second controller */
R fout2. /* outlet flow of the second tank */
End.
Problem.

(foutl = 0.75 & delta2 = 0.2) /* Environment */
/* Initial values */
& tctrl2 = t /* dnitial value of t and tctrl2 */
/* Assumptions from the second water-level controller */
/* value of fout2 according to the measured water-level */
& (((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* assumption that the measured water-level is within the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2)
/* solution of the differenttal equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2)
->
L
/% Behavior of the water-level */
{le[]= foutl - fout2, t[]= 1 /* differential equation */
& (t >= 0 & wl2 >= 0 & t - tctrl2 >= 0 & delta2 >= t - tctrl2) /* evolution doma
}
]
/* Guarantees */
((wl2 >= 3 & 7 >= wl2) /* the water-level stay in the desired range */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2)
End.

/% Proved by tactic masterx/

173

First water-level controller

ProgramVariables.

R wll. /* water level of the first tank */

R wlml. /* water level measured by the first controller */

R fin. /* <nlet flow of the first tank */

R t. /* time */

R tctrll. /* timestamp of the last execution of the first controller */
R deltal. /* ezecution period of the first controller */

R foutl. /* outlet flow of the first tank */

End.

Problem.
/* Environment */
deltal = 0.2
/* Inttial value */
& wlml >= 3 & 7 >= wlml /* initial assumption on the measured water-level */
/* initial assumption on the relation between the measured water-level and inlet flow #
& ((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = O | fin = 1)))
/* Assumption from the first water-level */
/* the first water-level is in the range [3,7] */
& wll >=3 & 7 >= wll
/* solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml

> [
/% Behavior of the controller */
{
7tctrll + deltal >= t;wlml:=wlil;
{?wlm1>=6.5;fin:=0; ++ 73.5>=wlml;fin:=1;}
;tetrll:=t;
I
]

/* Guarantees of the controller */
/* behavior of the controller according to the value of the measured water-level */
((((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = 0 | fin = 1)))
/* measured water-level is in the range [3,7] */
& (wlml >= 3 & 7 >= wlml))
/* solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml)
End.

/* Proved by tactic master */

174

Second water-level controller

ProgramVariables.
R wl2. /* water level of the second tank */

R wlm2. /* water level measured by the second controller */

R foutl. /* inlet flow of the second tank */

R t. /* time */

R tctrl2. /* timestamp of the last execution of the second controller */
R delta2. /* ezecution period of the second controller */

R fout2. /* outlet flow of the second tank */

End.

Problem.

/* Environment */
delta2 = 0.2
/* Inttial wvalues */
& wlm2 >= 3 & 7 >= wlm2 /* initial assumption on the measured water-level */
/* initial assumption on the relation between the measured water-level and inlet flow
& ((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* Assumption from the second water-level */
/* the second water-level is in the range [3,7] */
& wl2 >=3 & 7 >= wl2
/* solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2

> [
/% Behavior of the controller */
{
7tctrl2 + delta2 >= t;wlm2:=wl2;
{?wlm2>=6.5;fout2:=1; ++ 73.5>=wlm2;fout2:=0;}
;tetrl2:=t;
I
]

/* Guarantees of the controller */
/* behavior of the controller according to the wvalue of the measured water-level ¥
((((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* measured water-level is in the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2))
/* solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2)
End.

/* Proved by tactic master */

175

First water-tank

ProgramVariables.
R wll. /* water level of the first tank */

R wlml. /* water level measured by the first controller */

R fin. /* <nlet flow of the first tank */

R t. /* time */

R tctrll. /* timestamp of the last execution of the first controller */
R deltal. /* ezecution period of the first controller */

R foutl. /* outlet flow of the first tank */

End.

Problem.

/* Environment */
(deltal = 0.2 & foutl = 0.75)
/* Assumptions of the plant */
/* value of fin according to the measured water-level */
& (((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = 0 | fin = 1)))
/* assumption that the measured water-level <s in the range [3,7] */
& (wlml >= 3 & 7 >= wlml)
/* Assumption of the controller */
/* the first water-level is in the range [3,7] */
& wll >=3 & 7 >= wll
/* solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml
> I
/* Behavior obtained by parallel composition */
{

/* behavior of the first water-level controller */
{?tctrll + deltal >= t;wlml:=wli;
{7wlm1>=6.5;fin:=0; ++ 73.5>=wlml;fin:=1;}
;tetrll:=t;

+
/* behavior of the water-level */
++ {wl1]| = fin - foutl, t/'| = 1
& (¢t >= 0 & wll >= 0 & t - tctrll >= 0 & deltal >= t - tctrll)
}
Fx
]
/* Guarantees of the first controller */
/* behavior of the controller according to the value of the measured water-level */

((((wlml >= 6.5 -> fin = 0) & (3.5 >= wilml -> fin = 1)

& ((wlml > 3.5 & 6.5 > wlml) -> (fin = 0 | fin = 1)))
/* measured water-level is in the range [3,7] */
& (wlml >= 3 & 7 >= wlml))

/* Guarantees of the first water-level */

176

&((wll >= 3 & 7 >= wll) /* the water-level stay in the desired range */
/* Solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml)
End.

/* Proved by tactic
amplyR(1) ; loop({ (((wimi>=6.5->fin=0)&(3.5>=wliml->fin=1)&(wim1>3.566.5>wlmi->fin=0/fin=
master,
master,
choiceb (1) ; andL(-1) ; andL(-5) ; andR(1) ; <(
bozAnd(1) ; andR(1) ; <(
master,
boxAnd (1) ; andR(1) ; <(
GV(1) ; master,
master
)
),
boxAnd (1) ; andR(1) ; <(
GV(1) ; master,
master

177

Second water-tank

ProgramVariables.
R wl2. /* water level of the second tank */

R wlm2. /* water level measured by the second controller */

R foutl. /* inlet flow of the second tank */

R t. /* time */

R tctrl2. /* timestamp of the last execution of the second controller */
R delta2. /* ezecution period of the second controller */

R fout2. /* outlet flow of the second tank */

End.

Problem.

/* Environment */
(delta2 = 0.2 & foutl = 0.75)
/* Assumptions of the plant */
/* value of fout2 according to the second measured water-level */
& (((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* assumption that the measured water-level is in the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2))
/* Assumptions of the controller */
/* the second water-level is tn the range [3,7] */
& (wl2 >=3 & 7 >= wl2)
/* solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2
> I
/* Behavior obtained by parallel composition */
{
/* behavior of the second water-level controller */
{?7tctrl2 + delta2 >= t;wlm2:=wl2;
{7wlm2>=6.5;fout2:=1; ++ 73.5>=wlm2;fout2:=0;7
;tetrl2:=t;
+
/* behavior of the second water-level */
++ {wl2'| = foutl - fout2, t/'| = 1
& (¢t >= 0 & wl2 >= 0 & t - tctrl2 >= 0 & delta2 >= t - tctrl2)
}
T
]
/* Guarantees of the controller */
/* behavior of the controller according to the value of the measured water-level */
((((wlm2 >= 6.5 —> fout2 = 1) & (3.5 >= wlm2 —> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* measured water-level is in the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2))
/* Guarantees of the water-level */

178

& (wl2 >= 3 & 7 >= wl2)
/* Solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2)

End.

/%
Proved by tactic
implyR(1) ; loop ({ (((wim2>=6.5->fout2=1)€(3.5>=wlm2->fout2=0)&(wim2>3. 566. 5>wlm2->fout2=(
master,
master,
andL(-1) ; andL(-5) ; choiceb(1) ; andR(1) ; <(
boxAnd (1) ; andR(1) ; <(
master,
boxAnd (1) ; andR(1) ; <(
GV(1) ; master,
master
)
),
bozAnd (1) ; andR(1) ; <(
GV(1) ; master,
master

179

Water-plant

ProgramVariables.
R wll. /* water level of the first tank */

R wlml. /* water level measured by the first controller */

R fin. /* inlet flow of the first tank */

R t. /* time */

R tctrll. /* timestamp of the last execution of the first controller */
R deltal. /* ezecution period of the first controller */

R foutl. /* outlet flow of the first tank */

R wl2. /* water level of the second tank */

R wlm2. /* water level measured by the second controller */

R tctrl2. /* timestamp of the last execution of the second controller */
R delta2. /* ezecution period of the second controller */

R fout2. /* outlet flow of the second tank */
End.
Problem.

/* Environment */
(deltal = 0.2 & foutl = 0.75 & delta2 = 0.2)
/* Assumptions of the first water-tank */
/* value of fin according to the measured water-level */
& (((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = 0 | fin = 1)))
/* assumption that the measured water-level <s in the range [3,7] */
& (wlml >= 3 & 7 >= wlml)
/* Assumption of the controller */
/* the first water-level is in the range [3,7] */
& wll >=3 & 7 >= wll
/* solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml
/* Assumptions of the second water-tank */
/* Assumptions of the plant */
/* value of fout2 according to the second measured water-level */
& (((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* assumption that the measured water-level is in the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2))
/* Assumptions of the controller */
/* the second water-level is in the range [3,7] */
& (wl2 >=3 & 7 >= wl2)
/* solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2
> [
/* Behavior obtained by parallel composition */
{

/* behavior of the first water-level controller */

180

{?tctrll + deltal >= t;wlml:=wli;
{?7wlm1>=6.5;fin:=0; ++ 73.5>=wlml;fin:=1;}
;tetrll:=t;
}
/* behavior of the second water-level controller */
++ {7tctrl2 + delta2 >= t;wlm2:=wl2;
{7wlm2>=6.5;fout2:=1; ++ 73.5>=wlm2;fout2:=0;}
;tetrl2:=t;
}
/* parallel composition of two water-levels */
++ {wl1]| = fin - foutl, wl2'| = foutl - fout2, t/'| = 1
& (£t > 0 & wll >= 0 & t - tctrll >= 0 & deltal >= t - tctrll
& wl2 >= 0 & t - tctrl2 >= 0 & delta2 >= t - tctrl2)

}
F
]
/* Guarantees of the first controller */
/* behavior of the controller according to the wvalue of the measured water-level */
(((((wlml >= 6.5 -> fin = 0) & (3.5 >= wlml -> fin = 1)
& ((wlml > 3.5 & 6.5 > wlml) -> (fin = O | fin = 1)))
/* the measured water-level is in the range [3,7] */
& (wlml >= 3 & 7 >= wlml))
/* Guarantees of the first water-level */
&((wll >= 3 & 7 >= wll) /* the water-level stay in the desired range */
/* Solution of the differential equation */
& wll=(fin-foutl)*(t-tctrll)+wlml))
/* Guarantees of the controller */
/* behavior of the controller according to the wvalue of the measured water-level */
& ((((wlm2 >= 6.5 -> fout2 = 1) & (3.5 >= wlm2 -> fout2 = 0)
& ((wlm2 > 3.5 & 6.5 > wlm2) -> (fout2 = 0 | fout2 = 1)))
/* measured water-level ts in the range [3,7] */
& (wlm2 >= 3 & 7 >= wlm2))
/* Guarantees of the water-level */
& (wl2 >= 3 & 7 >= wl2)
/* Solution of the differential equation */
& wl2=(foutl-fout2)*(t-tctrl2)+wlm2))
End.

/* Proved by tactic
implyR(1) ; loop({ ((((wimi1>=6.5->fin=0)&(3.5>=wlml->fin=1)&(wim1>3.566.5>wlmi->fin=0/fin=
master,
closeld,
andL(-1) ; andL(-5) ; andL(-4) ; andL(-5) ; andL(-6) ; choiceb(1) ; andR(1) ; <(
boxAnd (1) ; andR(1) ; <(
boxzAnd (1) ; andR(1) ; <(
master,
boxAnd (1) ; andR(1) ; <(

181

GV(1) ; master,
master
)
),
GV(1) ; master
),

choiceb(1) ; andR(1) ; <(
boxAnd (1) ; andR(1) ; <(

GV(1) ; master,

boxAnd (1) ; andR(1) ; <(

master,

bozAnd (1) ; andR(1) ; <(

GV(1) ; master,
master
)
)
),

boxdAnd (1) ; andR(1) ; <(
boxAnd (1) ; andR(1) ; <(

GV(1) ; master,
master

s

boxAnd (1) ; andR(1) ; <(

GV(1) ; master,
master

182

