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Introduction

This thesis is part of a long-term project that aims to implement a quantum simulator using
superconducting circuits, more specifically superconducting resonators that resonate in the
microwave domain. The idea of a quantum simulator, which was developed almost 40 years
ago by R.Feymann [1], is to use a well-controlled quantum system enabling the simulation
of complex quantum matter. Experimental efforts to implement this idea have been pursued
using ultracold atoms, trapped ions, photonic systems, NMR and other systems [2]. Among
all the models that could be of interest to a quantum simulator, one is the Bose-Hubbard
(BH) model, which is the canonical model for interacting bosons on a lattice. This model is
particularly rich if one can implement a two-dimensional (2D) lattice, whose band structure
has non trivial topological properties. Simulating 2D strongly correlated quantum fluids is
motivated by the vast amount of results and questions raised by studies on the quantum
Hall effect in 2D electron gases. The quantum Hall effect results from the Landau level
quantization under a strong external magnetic field. Each filled Landau level is characterized
by a bulk topological invariant: the first Chern number. With interactions, incompressible
bulk states appear for specific partial fillings of the Landau levels [3, 4]. Those Fractional
Quantum Hall states support fractionally charged excitations and non trivial edge modes.
The quantum Hall physics has been generalized to topological insulators with dispersive bands
carrying a nontrivial Chern number, the so-called Chern insulators or Quantum Anomalous
Hall insulators both in the absence [5] and in presence of interactions, fractional Chern
insulators [6].

The simulation of these fascinating effects in lattices of superconducting resonators has
been proposed theoretically and seems to be an interesting route that deserves to be explored
[7–10]. Superconducting circuits have become one of the most advanced experimental plat-
form to tailor artificial quantum systems in particular for quantum information processing,
a field of research known as circuit Quantum ElectroDynamics (cQED) [11–16]. In terms
of lattice systems, the excitations are microwave photons (f ' 6 GHz) stored in supercon-
ducting resonators with high quality factor Q ' 105. The coupling between sites can be
engineered from a few MHz to several hundreds MHz. The main interest of this platform is
the possibility to reach the strongly interacting regime using Josephson junctions, which are
non-linear and non-dissipative inductances. The quantum regime is reached for temperatures
given by kBT � hf , which corresponds to T � 300 mK, a condition that is easily reached in
commercial dilution refrigerators that go down to temperatures T ' 10 mK. So far, exper-
iments are far from realizing 2D lattices combining strong photon-photon interaction with
non-trivial topology [17, 18]. It seems natural to first address separately the control of the
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interaction and of the band structure. Concerning interactions, some recent experiments have
demonstrated that the strongly interacting regime can be reached in 1D chains of resonators
[19, 20], but are limited so far to small systems with less than 20 resonators.

200 µm

Figure 1: Honeycomb lattice of superconducting spiral resonators. The left image shows the
sample installed in its holder. The right image is a SEM image of the lattice.

The second research direction, towards the realization of engineered band structures for
photons, catches up with the rapidly growing field of photonic lattices [21–23]. One key
motivation in the field is to bring to light topological properties of lattices that have been
historically discovered in condensed matter physics [5, 24–27]. One strong motivation is
the realization of topologically protected propagation channels that appear at the interface
between two materials with different topological invariants [28–32]. Highlighting these topo-
logically protected states constitutes a grail that requires the challenging realization of a
lattice with broken time-reversal symmetry. Experiments in this direction have been per-
formed in the optical domain using coupled waveguides [33, 34] and coupled ring resonators
[35, 36], in the microwave domain [37, 38] and in the radio-frequency domain with printed
board circuits [39]. However, it is still possible to observe topological effects in lattices with
time reversal symmetry. It is one of the main goal of this thesis. The most emblematic
system is undoubtedly the famous honeycomb lattice and its Dirac cones. They have al-
ready been studied in lattices of semi-conductor micro-cavity polaritons [40–42], dielectric
microwave resonators [43, 44], soda can [45], two-dimensional electron gas [46], waveguides
[47–49], nanopatterned GaAs quantum wells [50], and superconducting microwave billiards
[51].

At the beginning of this thesis, we decided to focus on the realization of relatively large
lattices in contrast to what had been realized so far in cQED. Such lattices had not yet been
realized using superconducting resonators and we had first to answer very basic questions: is
it possible to design a lattice to simulate any tight-binding model? If yes, is there an optimal
architecture to control the hopping term in the tight binding Hamiltonian? Could we keep
the disorder due to lithography process under control? We decided to concentrate our efforts
on the honeycomb lattice because of its interesting topological properties and realized a first
series of experiments to characterize such a lattice (see figure 1). An important experimental
development was the realization of a laser scanning imaging setup that allowed us to measure
the spatial distribution of the resonant modes across the lattice (see figure 2). This technique
is similar to the laser scanning microscopy developed to observe the current density in super-
conductor films [52–54]. By Fourier transforming these images, the momentum of the mode
is obtained, which enables us to reconstruct the dispersion relation in the first Brillouin zone
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and to compare it to our ab initio calculations (see figure 3).

Figure 2: Spatial distribution of some resonant modes observed in a honeycomb lattice
of superconducting resonators. The sample corresponds to HoneycombSi. The image
brightness is proportional to the local microwave intensity.

The good agreement between our data and the model allowed us to consider a more
advanced experiment aiming at the observation of the topological edge states known as
Semenoff states. The band structure of the honeycomb lattice consists of two bands that touch
at Dirac points. By introducing an on-site energy imbalance between the two inequivalent
sites of the lattice, a gap opens at the Dirac points. Semenoff predicted that, at the interface
between two lattices with opposite mass imbalance, propagating edge states appear that
cross the gap [55]. We have realized such a domain wall between two honeycomb lattices of
superconducting resonators with opposite on-site energy imbalance. Using the mode imaging
technique (see figure 4), we have reconstructed the dispersion relation of the edge states
that appear at the domain wall. These different experiments are detailed in the manuscript
following the outline below:

Chapter 1 introduces the two tight-binding models realized in this thesis. The first part
gives the band structure of the honeycomb lattice and shows the effects of next-nearest
neighbors on the density of states (DOS). We then use an argument based on the low energy
approximation to explain the existence of zigzag and bearded edge states but the absence of
edge states on the armchair boundary of the honeycomb lattice. We further analyse these edge
states with the tight-binding model to characterize them (dispersion relation, penetration
length,...). The second part of this chapter is dedicated to the Semenoff insulator. We derive
its band structure using the tight-binding model and derive the existence of propagating
edge states along the domain wall between two Semenoff insulators with opposite mass with
a low-energy model [55].

Chapter 2 presents the spiral superconducting resonators and how to design a lattice using
electromagnetic (EM) simulation software. We characterize the spiral resonator that we used
for all our lattices. We then show how to calculate the coupling between two spiral resonators.
We then develop two models to characterize the electromagnetic resonators. The first model
is based on the admittance matrix. It will be called admittance model. We present how to
calculate the band structure by simulating a few number of sites in the lattice. The second

7
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Figure 3: Dispersion relation of the resonant modes of a honeycomb lattice of superconducting
resonators. The experimental data points come from the measurement of ZigzagSi. They
are in good agreement with the predictions of an ab initio model of the lattice.

model is based on a coupled mode theory (CMT). We refer to this model as CMT model.
We use the CMT to take into account the coupling between resonators and extend it to a
periodic system. This approach uses the Maxwell equations to directly calculate the resonant
frequencies from the overlap integrals associated to the magnetic and electric couplings.

Chapter 3 explains the laser scanning microscopy (LSM) technique. This experimental
technique enables to probe the spatial distribution of the modes of the superconducting res-
onator lattices. This measurement corresponds to the measurement of the energy stored in
the resonators and therefore makes it possible to give the spatial dependence of the corre-
sponding electromagnetic mode and to label it.

Chapter 4 is devoted to the design and the study of the sample HoneycombSi corre-
sponding to the honeycomb lattice on a silicon substrate. We present the design of the sample
and characterize it. We then present the modes measured with the LSM. The LSM gives
access to the value of weight of the modes squared. To retrieve their relative sign, we designed
a optimization algorithm. Thanks to the mode imaging we are able to label the modes i.e.
to determine the momentum quantum number (kx, ky) associate to the resonant frequency.
This labelling allows us to reconstruct the band structure of the honeycomb lattice. This
band structure is compared to both admittance model and CMT model presented in chapter 2
as well as a phenomenological model deduced from the DOS. Finally, we present the study
of the zigzag and bearded edge modes of the honeycomb lattice by presenting their 1D band
structure and their penetration length.

Chapter 5 present the design and the characterization of the domain wall edge states
presented in chapter 1. We present the design of a Semenoff insulator sample with different
domain walls. It gives rise to measurements of different samples named ZigzagSi, Arm-
chairSi, ZigzagSa where zigzag/armchair stand for the domain wall type and Si/Sa for
the substrate material (silicon or sapphire). As for sample HoneycombSi, we were able
to reconstruct the band structure of these samples and compare it to theoretical models.
We then show that Semenoff edge states are localized on the domain wall. The observation
of the edge states complements the main result of this thesis. We characterize them with
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their band structure and their penetration length. Finally, we study disorder by looking at
localized states induced by vacancies in the sample ZigzagSi.

Figure 4: Experimental images of Semenoff edge states localized at the interface between two
different honeycomb lattices. The existence of the states is due to the different topological
properties of the two lattices.
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Introduction (Français)

Cette thèse s’inscrit dans un cadre plus général de la réalisation d’un simulateur quantique
avec des circuits supraconducteurs, et plus précisément en utilisant des résonateurs supra-
conducteurs résonnant dans le domaine des micro-ondes. L’idée d’un simulateur quantique a
été développée il y a près de 40 ans par R. Feymann [1] : en utilisant des systèmes quantiques
simples et bien contrôlés il est possible de simuler des modèles quantiques complexes. De
nombreux efforts expérimentaux ont tenté de réaliser un simulateur quantique avec différents
supports physiques comme les atomes ultra-froids, les ions piégés, les systèmes photoniques,
la RMN et d’autres systèmes [2]. Parmi les modèles pertinents pour la réalisation d’un simu-
lateur quantique, le modèle de Bose-Hubbard est le modèle type de bosons en interaction sur
un réseau ou fluide quantique fortement corrélé. Ce modèle est particulièrement riche si l’on
peut l’implémenter sur un réseau bidimensionnel (2D) dont la structure de bande possède
des propriétés topologiques non triviales. La simulation de ces fluides quantiques fortement
corrélés pour des systèmes bidimensionnels est motivée par la grande quantité de résultats
et de questions soulevées par l’étude de l’effet Hall quantique dans les gaz électroniques
2D. L’effet Hall quantique résulte de la quantification en niveaux de Landau sous un fort
champ magnétique externe. Chaque niveau de Landau rempli est caractérisé par un invari-
ant topologique appelé premier nombre de Chern. Lorsque des interactions sont présentes,
des états incompressibles avec des remplissages partiels des niveaux de Landau apparaissent
[3, 4]. Ces états de Hall quantiques fractionnaires présentent des excitations avec une charge
fractionnaire et des modes de bord non triviaux. Les propriétés topologiques de l’effet Hall
ont été généralisées aux systèmes appelés isolant de Chern, ou l’Effet Hall quantique anormal
en l’absence de champ magnétique [5] et de même en présence d’interactions avec les isolants
de Chern fractionnaires [6].

La simulation de ces effets à l’aide de réseaux de résonateurs supraconducteurs a été
proposée théoriquement [7–10]. Les circuits supraconducteurs sont devenus l’une des plates-
formes expérimentales les plus avancées pour la mise au point de systèmes quantiques ar-
tificiels, en particulier pour le traitement de l’information quantique sous le nom de circuit
Quantum ElectroDynamics (cQED) [11–16]. Pour des systèmes sur réseaux, les excitations
sont des photons micro-ondes (f ' 6 GHz) stockés dans des résonateurs supraconducteurs
à haut facteur de qualité Q ' 105. Le couplage entre sites peut aller de quelques MHz
à plusieurs centaines de MHz. L’intérêt principal de cette plate-forme est la possibilité
d’atteindre le régime d’interaction forte en utilisant des jonctions de Josephson, qui sont des
inductances non linéaires et non dissipatives. Le régime quantique est atteint pour des tem-
pératures données par kBT � hf , ce qui correspond à T � 300mK. Température facilement

11



Introduction (Français) A. Morvan

atteinte dans les réfrigérateurs à dilution commerciaux qui descendent à des températures de
l’ordre de T ' 10 mK. Jusqu’à présent, les expériences sont loin de réaliser des réseaux 2D
combinant à la fois une forte interaction photon-photon et une topologie non triviale [17, 18].
Il est donc naturel d’aborder d’abord séparément le contrôle de l’interaction et de la structure
de la bande. En ce qui concerne les interactions, des expériences récentes ont démontré que
le régime d’interaction forte peut être atteint dans des chaînes de résonateurs 1D [19, 20],
mais pour l’instant, ces expériences sont limitées à des systèmes de de 20 résonateurs.

200 µm

Figure 5: Réseau en nid d’abeilles de résonateurs supraconducteurs en forme de spirale.
L’image de gauche montre l’échantillon installé dans son support. L’image de droite est une
image du réseau prise au microscope électronique.

Le second axe de recherche, la réalisation de structures de bandes topologique pour les
photons, rejoint le domaine en pleine croissance des réseaux photoniques [21–23]. L’une des
principales motivations dans ce domaine est de mettre en avant les propriétés topologiques
de réseaux qui ont été historiquement découverts en physique de la matière condensée [5,
24–27]. Une raison importante de cet intérêt est la réalisation de canaux de propagation
topologiquement protégés qui apparaissent à l’interface entre deux matériaux avec des in-
variants topologiques différents [28–32]. La mise en évidence de ces états topologiquement
protégés constitue un graal qui nécessite la réalisation techniquement difficile d’un réseau
brisant la symétrie par renversement du temps. Des expériences dans ce sens ont été réal-
isées dans le domaine optique en utilisant des guides d’ondes couplés [33, 34], des résonateurs
en anneau couplés [35, 36], dans le domaine micro-ondes [37, 38] et dans le domaine des
radiofréquences avec circuits discrets [39]. Cependant, il est encore possible d’observer des
effets topologiques dans des réseaux en préservant la symétrie par renversement du temps.
C’est l’un des principaux objectifs de cette thèse. Le système le plus emblématique est sans
aucun doute le réseau en nid d’abeille et ses cônes Dirac. Ce réseau a déjà été réalisé et
étudié avec plusieurs types de plateformes : dans des réseaux microcavités semi-conductrices
[40–42], de résonateurs diélectriques [43, 44], des canettes de soda [45], des gaz bidimension-
nels d’électron [46], de guides d’ondes [47–49] des puits quantiques GaAs [50], des billards
supraconducteurs pour micro-ondes [51].

Dans cette thèse, nous avons décidé de nous concentrer sur la réalisation de larges réseaux
par opposition à ce qui avait été réalisé jusqu’à présent avec les circuits supraconducteurs.
Les résonateurs supraconducteurs n’avaient pas encore été utilisés pour réaliser ce type
d’expérience et nous devions d’abord répondre à des questions simples : est-il possible de
concevoir un réseau de résonateurs supraconducteurs pour simuler tout modèle de liaisons
fortes ? Si oui, existe-t-il une architecture optimale pour contrôler le terme de saut de ce

12



Introduction (Français) A. Morvan

modèle ? Est-ce que les techniques de fabrication permettent de réaliser ces réseaux sans
introduire trop de désordre ? Pour répondre à ces questions, nous avons décidé de concentrer
nos efforts sur le réseau en nid d’abeilles en raison de ses propriétés topologiques et nous
avons réalisé une première série d’expériences pour caractériser ce réseau (voir figure 5). Une
part importante du travail expérimental a été la réalisation d’un dispositif d’imagerie de
mode avec un laser qui nous a permis de mesurer la distribution spatiale des modes réson-
nants du réseau (voir figure 6). Cette technique est similaire à la microscopie à balayage
laser développée pour observer la densité de courant dans les films supraconducteurs [52–54].
En analysant la transformée de Fourier de ces images, il est possible de remonter au vecteur
d’onde de ces modes et de reconstruire la relation de dispersion dans la première zone de
Brillouin et de la comparer à nos calculs ab initio (voir figure 7).

Figure 6: Distribution spatiale de certains modes résonnants observés dans un réseau en
nid d’abeilles de résonateurs supraconducteurs. L’échantillon correspond à HoneycombSi.
Le niveau de gris de l’image est proportionnel à l’énergie micro-onde locale stocké par les
résonateurs.

Le bon accord entre nos données et nos modèles nous a permis d’envisager une expérience
plus avancée pour observer des états de bordure topologique appelés états de Semenoff.
La structure de bandes du réseau en nid d’abeilles est composée de deux bandes qui se
touchent aux points Dirac. En introduisant un déséquilibre énergétique in situ entre les
deux sites inéquivalents du réseau, une bande interdite s’ouvre aux points Dirac. Semenoff a
prédit qu’à l’interface entre deux réseaux avec un déséquilibre de masse opposé, des états de
bord apparaissent qui traversent la bande interdite [55]. Nous avons réalisé une telle paroi
de domaine entre deux réseaux en nid d’abeilles de résonateurs supraconducteurs avec un
déséquilibre d’énergie sur site opposé. En utilisant la technique d’imagerie en mode (voir
figure 8), nous avons reconstruit la relation de dispersion des états de bord. Ces différentes
expériences sont détaillées dans le manuscrit en suivant le plan exposé ci-dessous :

Le chapitre 1 présente les deux modèles réalisés dans cette thèse. La première partie donne
la structure en bande du réseau en nid d’abeilles et montre les effets des voisins les plus proches
sur la densité d’états (DOS). Nous utilisons ensuite un argument basé sur l’approximation
de basse énergie pour expliquer l’existence d’états de bord pour des terminaisons zigzag et
bearded, mais l’absence d’états de bords sur les terminaisons en armchair du réseau en nid
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Figure 7: Relation de dispersion des modes résonnants d’un réseau en nid d’abeilles de ré-
sonateurs supraconducteurs. Les données expérimentales proviennent de la mesure de Zigza-
gSi. Ils sont en bon accord avec les prédictions d’un modèle ab initio du réseau.

d’abeilles. Nous analysons plus en détails ces états de bord à l’aide d’un modèle de liaisons
fortes pour les caractériser (relation de dispersion, longueur de pénétration,...). La deuxième
partie de ce chapitre est consacrée à l’isolant de Semenoff. Nous dérivons sa structure en
bande en utilisant un modèle de liaison forte et nous dérivons l’existence d’états de bord le
long de l’interface entre les deux isolants de Semenoff avec un modèle de basse énergie [55].

Le chapitre 2 présente les résonateurs supraconducteurs en spirale utilisés lors de cette
thèse et comment concevoir un réseau en utilisant un logiciel de simulation électromagné-
tique (EM). Nous caractérisons le résonateur en spirale que nous avons utilisé pour tous nos
réseaux. Nous montrons ensuite comment calculer le couplage entre deux résonateurs en
spirale. Nous développons ensuite deux modèles pour caractériser les résonateurs électro-
magnétiques. Le premier modèle est basé sur la matrice d’admittance que nous appellerons
modèle d’admittance. Nous présentons ensuite comment calculer la structure de bande du
réseau en ne simulant que quelques sites du réseau. Le second modèle est basé sur une
théorie des modes couplés (CMT). Nous appellerons ce modèle CMT model. Nous utilisons
la théorie des modes couplés pour caractériser le couplage entre résonateurs et l’étendre à
un système périodique. Cette approche utilise les équations de Maxwell pour calculer di-
rectement les fréquences de résonance à partir des intégrales de recouvrement associées aux
couplages magnétiques et électriques.

Le chapitre 3 explique le fonctionnement de la technique de microscopie à balayage laser
(LSM). Cette technique expérimentale permet de sonder la distribution spatiale des modes
d’un réseau de résonateurs supraconducteurs. Cette mesure correspond à la mesure de
l’énergie stockée dans les résonateurs et permet donc de donner la dépendance spatiale du
mode électromagnétique correspondant.

Le chapitre 4 est consacré à la conception et à l’étude de l’échantillon HoneycombSi
correspondant au réseau en nid d’abeille sur un substrat de silicium. Nous présentons le
design de l’échantillon et ses propriétés. Nous présentons ensuite les modes mesurés avec
l’imagerie de mode laser. Cette imagerie nous donne accès à la valeur du poids des modes.
Pour récupérer le signe relatif de chaque site, nous avons conçu un algorithme qui, par une
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méthode d’optimisation permet de reconstruire ce signe. Grâce à l’imagerie de mode, nous
pouvons indexer les modes i.e. déterminer le vecteur d’onde (kx, ky) associé à la fréquence de
résonnance. Cette indexation nous permet de reconstituer la structure en bande du réseau
en nid d’abeilles. Cette structure de bande est comparée au modèle admittance et au modèle
CMT présentés dans chapter 2 ainsi qu’à un modèle phénoménologique déduit de la DOS.
Enfin, nous présentons l’étude des modes zigzag et bearded du réseau en nid d’abeilles en
présentant leur structure en bande 1D et leur longueur de pénétration.

Le chapitre 5 présente la conception et la caractérisation des états de bord de Semenoff
présentés dans le chapitre 1. Nous avons réalisé deux designs avec une interface entre les
deux isolants de Semenoff différents. Ces designs nous ont permis de fabriquer et de mesurer
plusieurs échantillons : ZigzagSi, ArmchairSi, ZigzagSa où zigzag/armchair correspond
au type d’interface et Si/Sa au matériau du substrat (silicium ou saphir). Comme pour
l’échantillon HoneycombSi, nous avons pu reconstruire la structure de bande de ces échan-
tillons et la comparer aux modèles théoriques. Nous montrons ensuite que les états de bords
de Semenoff sont localisés à l’interface entre les deux isolants. L’observation des états de
bord est le résultat principal de cette thèse. Ces modes sont ensuite caractérisés expérimen-
talement par leur structure de bande ainsi que leurs longueurs de pénétrations. Finalement,
ces échantillons nous ont aussi permis d’étudier le désordre en examinant la présence d’état
localisés induits par des sites vacants dans l’échantillon ZigzagSi.

Figure 8: Images expérimentales d’états de bords de Semenoff localisés à l’interface entre
deux réseaux en nid d’abeilles différents. L’existence de ces états est due aux différentes
propriétés topologiques des deux réseaux de part et d’autre de l’interface.
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1. Properties of the honeycomb lattice and Semenoff insulators A. Morvan

The honeycomb lattice is one of the simplest example of a system that exhibits topological
properties [56]. The band structure includes two Dirac cones around which the phase of the
wavefunction winds in opposite directions. Because of these properties, the honeycomb lattice
has been implemented as an artificial lattice in various experiments [42–44, 46, 57–61]. The
experiments reported in this thesis use superconducting circuits to realize a honeycomb lattice
for microwave photons. In particular, we have realized a variant of the honeycomb lattice with
staggered onsite energies similar to boron nitride, which was considered by Semenoff [62] and
is therefore named a Semenoff insulator. In this chapter, we first review the band structure
and the density of state (DOS) of the honeycomb lattice with nearest-neighbor (NN) hopping.
To take into account the long range coupling that appears in our superconducting lattices,
we also present the effect of next-nearest neighbor (NNN) coupling on the band structure
and DOS. In particular, we show that using the methodology developed by Bellec et al. [44],
it is possible to extract the NN and the NNN couplings by locating a few points of interest
in the DOS. We then show that for the zigzag and the bearded edges of a finite honeycomb
lattice, edge states with a flat band structure appear. We derive the band structure of these
modes with a Dirac equation formalism and with a tight-binding formalism.

The second part of this chapter analyses the Semenoff insulator [62]. We first extend the
method presented in the first part to obtain the parameters of the tight-binding model. The
Semenoff insulator possesses topological valley charges at the Dirac points. This topological
property induces topological edge states when two Semenoff insulators with opposite mass
are placed one next to another [55]. In the last part of this chapter, we review the proof
of existence of these edges states using an effective low energy model. We then derive their
band structure and their penetration length for two geometries of the domain wall.

1.1 Honeycomb lattice
In this section, we briefly review the tight-binding model of the honeycomb lattice and derive
its band structure and DOS. As superconducting circuits have non-negligible long range
coupling, we derive the effects of NNN hopping on the DOS and band structure. Following
[44], we show how the identification of five points of interest in the DOS allows one to estimate
an effective tight-binding model from a measured DOS.

1.1.1 Band structure
The honeycomb lattice is the superposition of two offset triangular sublattices respectively
denoted A and B shown in red and blue in figure 1.1. The unit cell consists of two sites, one
from the A sublattice, one from the B sublattice. The full lattice is spanned by the vectors
of the Bravais lattice a1 = a

2

(√
3, 3

)
and a2 = a

2

(
−
√

3, 3
)
where a is the distance between

two sites. We also define a3 = a1 − a2 for future use. A site of one sublattice is surrounded
by three sites from the other sublattice. We denote by si for i ∈ {1, 2, 3} the vectors that
connect a A-site to its three nearest B-site neighbors. The NN tight-binding Hamiltonian is:

H = t
∑

r

3∑
i=1

c†B(r + si)cA(r) + H.c. (1.1.1)

where we have set ~ = 1 and t is the NN hopping amplitude. The position r runs over all
cells of the lattice and c†α(r) creates an excitation on site r with α denoting the sublattice
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α = A/B.
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s3 s2

B

A

(b)(a)

6t

ky
kx

K
K'

Figure 1.1: (a) Honeycomb lattice: a1 and a2 are the two primitive vectors. The vectors si
for i ∈ {1, 2, 3} are the nearest neighbor hopping vectors. The two sublattices are colored
differently: the sublattice A in red and the sublattice B in blue. (b) Band structure of the
honeycomb lattice. The two bands are symmetric and have a width of 3t. They touch at the
Dirac points K and K ′.

To find the energy band structure, we introduce the Fourier transform of the cα(r) oper-
ators for each sublattice α = A,B:

cα(rα) = 1√
N

∑
k∈BZ

e−ikrαcα(k) (1.1.2)

where the sum over k runs over the first Brillouin zone and N is the total number of sites.
After substitution in equation (1.1.1), the Hamiltonian takes the form:

H =
∑

k
ψ†kH(k)ψk with ψ†k =

[
c†A(k) c†B(k)

]
. (1.1.3)

We have introduced the two component spinor ψk and the Bloch Hamiltonian H(k):

H(k) =
[

0 f1(k)
f ∗1 (k) 0

]
with f1(k) = t(1 + eik·a1 + eik·a2) (1.1.4)

The band structure is obtained by diagonalizing H(k) whose eigenvalues are:

ε±(k) = ±|f1(k)| = ±t

√√√√3 + 2
3∑
i=1

cosk · ai. (1.1.5)

This band structure is represented in figure 1.1(b). It displays two bands, the valence and
the conductance band. The two bands are symmetric with respect to the zero energy plane
(particle-hole symmetry). A noticeable feature is the presence of Dirac points where the two
bands touch. Theses points are solutions of the equation ε(k) = 0. Solving it in the first
Brillouin zone gives two inequivalent Dirac points positioned at:

k = ±K =
(
± 4π

3
√

3a
, 0
)

(1.1.6)
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The others Dirac points can be linked by a reciprocal lattice vector to one of theses two
points, and therefore describe the same physical state. The existence of these two Dirac
points is topologically protected by sublattice inversion and time-reversal symmetry [56].

1.1.2 Density of state (DOS)
The DOS D(E) counts the number of states per energy per unit cell. In order to compute the
DOS, we calculate the imaginary part of the retarded green function G(E, k) (or resolvent)
in the eigenbasis of the tight-binding model [63]:

D(E) = − 1
π

∑
k

ImG(k, E) with G(k, E) =
∑
j=±

1
E − εj(k) + iγ

(1.1.7)

with γ being a loss rate. The DOS of the honeycomb lattice is shown in figure 1.2.
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Figure 1.2: DOS of the honeycomb lattice with NN coupling t = 1. Five remarkable points
appear in this DOS: the two extema Emin, Emax of the band structure, the Dirac point at
E(k) = 0 where the density of states vanishes and two logarithmic divergences E+, E− due
to saddle point in the dispersion relation.

Like the band structure, the DOS is symmetric with respect to E = 0. Five particular
points can be identified as shown in the figure 1.2.

1.1.3 Role of the 2nd and 3rd nearest neighbor coupling
In our experimental realization of the honeycomb lattice, long range couplings naturally
appear leading to an asymmetry of the two bands and to a shift of the points of interest.
The Bloch Hamiltonian with 2nd (t2) and 3rd (t3) NN hopping terms is:

H(k) =
[

f2(k) f1(k) + f3(k)
f ∗1 (k) + f ∗3 (k) f2(k)

]
(1.1.8)
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Figure 1.3: 2nd and 3rd NN hopping terms in the honeycomb lattice. The t2 hopping couples
sites of the same sublattice whereas t3 couples sites from different sublattices.

where the link functions associated to each coupling in the Hamiltonian are:

f1(k) = t1(1 + eik·a1 + eik·a2) (1.1.9)
f2(k) = 2t2(cosk · a1 + cosk · a2 + cosk · (a1 − a2)) (1.1.10)
f3(k) = t3(eik·(a1+a2) + eik·(a1−a2) + eik·(a2−a1)) (1.1.11)

The band structure is then given by:

ε±(k) = f2(k)± |f1(k) + f3(k)| (1.1.12)
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Figure 1.4: Density of state (DOS) of graphene with t2 ranging from 0 to −0.15t. As t2
becomes larger, the two bands become asymmetric. For large t2, a Van Hove singularity
appears at the lower band edge.

The figure 1.4 shows the evolution of the DOS with increasing t2 and t3 = 0. If t2 has an
opposite sign to t1, the upper band is larger than the lower band. If they have the same sign,
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the lower band is larger than the upper band. In order to quantify the importance of t2 given
an experimentally measured DOS, one can identify special points in the measured DOS and
deduce t1, t2 and t3 as shown in Bellec et al. [44]. The upper and the lower boundaries of the
spectrum obtained when k · a1 = k · a2 = 0 are:

Emin = 6t2 − 3|t1 + t3| (1.1.13)
Emax = 6t2 + 3|t1 + t3| (1.1.14)

The two extremal points of the gap that are located at the two Dirac points (K ·a1 = ±2π/3
and K · a2 = ±2π/3) become:

ED = −3t2 (1.1.15)
Finally, the two logarithmic divergences corresponding to saddle points in the band structure
are located at k · a1 = k · a2 = π with energies:

E− = −2t2 − |t1 − 3t3| (1.1.16)
E+ = −2t2 + |t1 − 3t3| (1.1.17)

Since a model with 3rd NN hopping have 3 parameters t1, t2, t3 plus a global offset f0 and
there are 5 points of interest, it is possible to estimate these parameters from the point of
interest energies by inverting equations (1.1.13) – (1.1.17).

1.2 Zigzag and bearded edge states
A consequence of the winding of the phase of the wavefunction near the Dirac points is the
existence of edge states on some edges of a finite size honeycomb lattice. It has been shown
[31, 64, 65] that the existence of edge states on a specific boundary is related to a non-zero
Berry phase defined by a path in the reciprocal space. These states have been observed in
artificial systems [40, 48] and in particular in the microwave domain [43, 66]. In this section,
we review the proof of existence of edge states on a zigzag and a bearded boundary as well
as their non-existence on the armchair boundary using a Dirac equation approach. We then
derive the band structure and the penetration length of the edge states with a tight-binding
approach to finally show some results when NNN hopping is included.

1.2.1 Low energy analysis near the Dirac points
To understand the existence of edge states, we use a low energy approach near the Dirac point
[56, 67, 68]. We expand the wavevector near the Dirac points k = ξK + q where ξ = ±1 is
the valley isospin and q a small deviation from the Dirac point (|q|a � 1). Expanding the
Hamiltonian in the Bloch representation gives:

Hξ(q) '
[

0 3at
2 (ξqx − iqy)

3at
2 (ξqx + iqy) 0

]
= µσz + vF (ξqxσx + qyσy) (1.2.1)

where the Fermi velocity is vF = 3ta/2 and σi are the Pauli matrices. The energy dispersion
of the low energy Hamiltonian reads:

εξ(q) = ±vF |q| (1.2.2)
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Figure 1.5: Different edges for a finite size lattice. Zigzag, bearded and armchair edges are
represented. Without anisotropy, the armchair has no edge states whereas exponentially
localized states are present at the zigzag and bearded edges.

This band structure is independent of the valley isospin ξ, so there is a twofold valley de-
generacy. It is possible to concatenate the two valleys by defining a four component spinor
where the first two components describe the valley at +K and the last two the valley at −K
but with the two sublattices at inverted positions:

Ψq =


ψ+

q,A
ψ+

q,B
ψ−q,B
ψ−q,A

 (1.2.3)

The effective low energy Hamiltonian is then:

H(q) = vF τz ⊗ q · σ (1.2.4)

where the Pauli matrix τz applies to the valley isospin and the Pauli matrices σ to the
sublattice isospin. In real space, the Hamiltonian is obtained by substituting q → −i∇.

Zigzag edge

We consider a semi-infinite honeycomb lattice with a zigzag boundary at y = 0. The half
plane y > 0 is occupied by the honeycomb lattice whereas the half plane y < 0 is empty. We
look for solutions of the Schrödinger equation with a wavefunction Ψ(r) = eiqxxΨ(y). The
wavefunction must satisfy:

vF

(
−iτz ⊗ σy

d
dy + qxτz ⊗ σx

)
ψ(y) = Eψ(y) (1.2.5)

Multiplying this equation by τz ⊗
(
−iσy d

dy + qxσx
)
yields the uncoupled equations:(

− d2

dy2 + q2
x

)
ψ(y) =

(
E

vF

)2
ψ(y) (1.2.6)
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For a solution localized near y = 0, we require that |ψ(y)|2 → 0 when x → ∞. Localized
solutions exist only if |E| < vF |qx| and are of the form:

ψ(y) = exp
(
− y

2ξ(qx)

)
A1
B1
B2
A2

 with ξ−1(qx) = 2
vF

√
v2
F q

2
x − E2 (1.2.7)

with A1, A2, B1, B2 being integration constants. The amplitude of the mode on the two
lattices is: [

ΨA(r)
ΨB(r)

]
= eiqxxe−

y
2ξ(qx)

[
A1e

iK·r + A2e
iK′·r

B1e
iK·r +B2e

iK′·r

]
(1.2.8)

We can now implement the boundary condition. For the zigzag edge, the condition is that
the wave function on the B sublattice cancels, ΨB(y = 0) = 0 for all x. This yields the
solution B1 = B2 = 0. Injecting this solution in (1.2.5), there exists non-trivial solutions if:

E = 0 and
√
v2
F q

2
x − E2 = ξvF qx (1.2.9)

This means that zigzag edge states have a flat dispersion E(qx) = 0 and exist only for qx > 0
in the K valley and for qx < 0 in the K ′ valley. This analysis shows that, in the low energy
approximation near the Dirac points, zigzag edges present an edge state branch with a flat
band at zero energy E = 0. The edge states exist for wavevectors kxa ∈

[
2π

3
√

3 ,
4π

3
√

3

]
and their

penetration length is given by:

E(qx) = 0 and ξ(qx) = 1
2vF |qx|

(1.2.10)

Bearded edge

The boundary condition for the bearded edge is obtained by imposing ΨA(y = 0) = 0 leading
to A1 = A2 = 0 and:

E = 0 and
√
v2
F q

2
x − E2 = −ξvF qx (1.2.11)

Thus there exists edge modes for qx < 0 in the K valley and for qx > 0 in the K ′ valley or
for kx ∈

[
− 2π

3
√

3 ,
2π

3
√

3

]
. The band structure is also flat at E = 0 and the penetration length is

the same as before (1.2.10).

Armchair edge

For the armchair case, we swap x and y in (1.2.6) and in (1.2.7). The boundary condition is
ΨA(x = 0) = ΨB(x = 0) = 0:

0 = eiqyy
[
A1 + A2
B1 +B2

]
(1.2.12)

We therefore obtain
A1 + A2 = 0 and B1 +B2 = 0 (1.2.13)
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Injecting this solution into (1.2.5) leads to:(
vF
2ξ ± vF qy

)
A1 = ∓EB1 (1.2.14)(

vF
2ξ ± vF qy

)
B1 = ±EA1 (1.2.15)

whose only solution is the trivial null solution. However, introducing anisotropy between the
three nearest neighbors couplings leads to the existence of edge states on armchair boundaries
[66].

Figure 1.6 summarizes our results by showing the band structure of semi-infinite lattices
for the three boundaries considered above.

-π 0 π√
3kxa/2

−3

−2

−1

0

1

2

3

E
/t

(a)

-π 0 π√
3kxa/2

(b)

-π 0 π

3kxa/2

(c)

Figure 1.6: Band structure of semi-infinite honeycomb lattices with different free boundaries:
(a) zigzag, (b) bearded, (c) armchair. The grey region corresponds to the bulk states and
the red line to the edge states. No edge states appear in the armchair case, whereas zigzag
and bearded boundaries host a flat band edge branch.

1.2.2 Tight-binding analysis
The previous analysis in continuous space is only valid near the Dirac points k = K,K ′.
We now consider a tight-binding approach which is valid at all k. As before, we look for
solutions of the Hamiltonian (1.1.4) on a semi-infinite slab.

We first consider a semi-infinite honeycomb lattice with a zigzag edge at y = 0. We look
for a solution localized on the edge as

Ψ = λ|n|eikxxΦ(λ, kx), (1.2.16)

where n is the index of the unit cell starting from the edge, kx the wavevector in the x
direction and Φ(λ, kx) the sublattice spinor. In order to be localized near the boundary
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y = 0, we require that |λ| < 1. In the y > 0 half-plane, the Schrödinger equation for Φ(λ, kx)
reads:  E −t− 2λt cos

(√
3

2 kxa
)

−t− 2λ−1t cos
(√

3
2 kxa

)
E

 [Φ1
Φ2

]
= 0 (1.2.17)

which has non zero solutions if:

E2 − t2
(

1 + 4 cos2
(√

3
2 kxa

)
+ 2 cos

(√
3

2 kxa

)(
λ+ 1

λ

))
= 0. (1.2.18)

Two solutions are possible λ = V ±
√
V2 − 1 with:

V =
(
λ+ 1

λ

)
= 1

2 cos
(√

3
2 kxa

) (E2

t2
− 1− 4 cos2

(√
3

2 kxa

))
(1.2.19)

These solutions are associated with the eigenvectors:

Φ ∝
[
t+ 2tλ cos

(√
3

2 kxa
)

E

]
(1.2.20)

The zigzag boundary condition requires that ΦB = 0 leading to E = 0 and:

λ = −2 cos
(√

3
2 kxa

)
and ξ(kx) = − 1

2|log
(
2 cos

(√
3

2 kxa
))
|

(1.2.21)

As we require that |λ| < 1, the edge states exists only for kxa ∈ [ 2π
3
√

3 ,
4π

3
√

3 ].
For the bearded edge, we impose ΦA = 0 and we obtain E = 0 and:

λ = − 1
2 cos

(√
3

2 kxa
) and ξ(kx) = 1

2|log
(
2 cos

(√
3

2 kxa
))
|

(1.2.22)

As we require that |λ| < 1, the bearded edge states exist only for kxa ∈ [− 2π
3
√

3 ,
2π

3
√

3 ]. This
tight-binding analysis confirms the low energy analysis and refines the prediction for the
penetration length.

1.2.3 Effect of NNN hopping on edge states
The existence of edge states is governed by the position of the Dirac points in the Brillouin
zone [65]. The t2 and t3 hopping terms change the energy of the Dirac point but do not
displace them as they preserve sublattice inversion symmetry. Therefore, these hopping
terms do not modify the argument for the existence of edge states (section 1.2.2). The only
effect of NNN coupling is to give rise to dispersive edge state bands instead of flat bands (see
figure 1.7).

1.3 Semenoff insulator
Without any additional degree of freedom (e.g. spin), there are only four possible mass
terms [69] that generate gaps at the Dirac points. They are the Haldane mass [5], the
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Figure 1.7: Band structure of the edge states of a ribbon with one zigzag and one bearded
edge for different values of t2. Increasing t2 increases the width of the band but does not
change the penetration length.

Semenoff mass [55] and the two Kekule distortions [70]. The Haldane mass does not break the
lattice symmetry but breaks time reversal symmetry whereas the three other break sublattice
symmetry without breaking the time reversal symmetry. The hexagonal boron-nitride is an
example of non-zero Semenoff mass as the A and B sites are occupied by different atoms.
In this section, we investigate the properties of such lattices with non-zero Semenoff mass,
which are called Semenoff insulators. We first derive their band structure and their bulk
properties. Then, using a low energy description, we describe their topological properties by
calculating the Berry curvature near the Dirac points and show the existence of two opposites
topological charges at the two Dirac points.

1.3.1 Band structure and DOS

The Semenoff insulator is a honeycomb lattice where the A and B sublattices are offset by
an energy 2µ that breaks the sublattice inversion symmetry. The tight-binding Hamiltonian
of the lattice reads:

H =
(
t
∑

r

3∑
i=1

c†B(r + si)cA(r) + H.c.
)

+ µ
∑

r
c†A(r)cA(r)− µ

∑
r
c†B(r)cB(r) (1.3.1)

where we have used the same definitions as in (1.1.1) and µ is the Semenoff mass. In the
Bloch representation, this Hamiltonian takes the form:

H(k) =
[

µ f1(k)
f ∗1 (k) −µ

]
with f1(k) = t(1 + eik·a1 + eik·a2), (1.3.2)
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which gives the band structure:

ε±(k) = ±
√
µ2 + |f1(k)|2 = ±

√√√√µ2 + t2
(

3 + 2
3∑
i=1

cosk · ai
)

(1.3.3)

B

A

(a)

2µ

ky
kx

K
K'

ky
kx

K
K'

(b)

Figure 1.8: (a) Band structure of the Semenoff insulator for a Semenoff mass µ = 0.1t. A
gap of 2µ appears at the Dirac points K and K ′. (b) Berry curvature of the upper band for
µ > 0. The Berry curvature presents sharp peaks near the two Dirac points. The sign of the
peak maximum depends on the Dirac points: here positive for K and negative for K ′.

In comparison to the honeycomb lattice, the Semenoff insulator is a bulk insulator with
a gap 2µ at the Dirac points. The band structure is depicted in figure 1.8 and the DOS in
figure 1.9.

1.3.2 Role of the 2nd and 3rd nearest neighbor coupling

The bulk properties of Semenoff insulators are modified by next-nearest neighbor coupling.
The principal effect is to change the gap position and to distort the bands as in the case of
the honeycomb lattice. The Hamiltonian of a Semenoff insulator with 2nd and 3rd nearest
neighbor coupling is:

H(k) =
[

f2(k) + µ f1(k) + f3(k)
f ∗1 (k) + f ∗3 (k) f2(k)− µ

]
(1.3.4)

where fi is the i-nth nearest neighbor contribution as in (1.1.11). The bulk energy spectrum
is given by:

ε±(k) = f2(k)±
√
µ2 + |f1(k) + f3(k)|2 (1.3.5)
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Figure 1.9: DOS of Semenoff insulators with Semenoff mass ranging from 0 to 0.75t. The
Dirac points split in two points marking the gap between the two bands. The points of
interest are also shifted.

Following the notations of figure 1.3, we obtain the following energies for the 6 points of
interest:

Emin = 6t2 −
√
µ2 + 9(t1 + t3)2 (1.3.6)

Emax = 6t2 +
√
µ2 + 9(t1 + t3)2 (1.3.7)

E− = −2t2 −
√
µ2 + (t1 − 3t3)2 (1.3.8)

E+ = −2t2 +
√
µ2 + (t1 − 3t3)2 (1.3.9)

E−D = −3t2 − µ (1.3.10)
E+
D = −3t2 + µ (1.3.11)
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1.4 Edge modes between two Semenoff insulators: mas-
sive Dirac equation

When two Semenoff insulators with opposite Semenoff masses are set aside, edge states appear
at the boundary as discovered by Semenoff et al. [55]. In this section, we first derive the low
energy Hamiltonian from which the topological argument for the existence of the edge states
follows.

1.4.1 Berry curvature of Semenoff insulators
In the previous section, we have seen numerically that the Berry curvature of the bands
presents sharp peaks near the Dirac points. Here, we use the the low energy Dirac Hamilto-
nian to recover this property. Expanding the wavevector around the Dirac point, we obtain

H(q) = µτz ⊗ σz + vF τz ⊗ q · σ (1.4.1)

with the same definition as in (1.2.3) for the four component spinor. The energy spectrum
reads:

εξ(q) = ±
√
µ2 + v2

F |q|2 (1.4.2)

with ξ = ±1 the valley isospin. The associated Berry curvature is defined as:

Ω(q) = ξ
µ

2 (µ2 + v2
F |q|2)3/2 (1.4.3)

It presents two sharp peaks centered at the two Dirac points [56, 71]. Each valleys carries a
topological charge:

Cξ = 1
2π

∫
d2qΩ(q) = 1

2ξsign(µ) (1.4.4)

Hence, for a given Semenoff mass µ, each valley has a topological charge Cξ. However, the
total Chern invariant is zero (C+ + C− = 0) because of the time reversal symmetry of the
system. The Semenoff insulator is a trivial insulator in the sense of Chern invariant but still
possesses topological valley charges at each Dirac point.

1.4.2 Existence of edge states at domain walls
The sign of the Semenoff mass does not modify the band structure. However, it changes the
sign of the topological valley charge (1.4.4). For the valley ξ = +1, the charge is C+ = 1/2 for
µ > 0 whereas C+ = −1/2 for µ < 0. Let us construct a domain wall between two Semenoff
insulators with opposite Semenoff masses. We consider a position dependent Semenoff mass
µ(x) that changes sign at x = 0 and with the two limits:

lim
x 7→−∞

µ(x) = −µ < 0 and lim
x7→+∞

µ(x) = µ > 0 (1.4.5)

For x > 0, this system has a C+ = 1/2 (resp. C− = −1/2) and for x < 0, C+ = −1/2 (resp.
C− = 1/2). This configuration leads to the existence of C+(x > 0)−C+(x < 0) = 1 edge state
branch for the + valley as well as one edge branch for the other valley [71]. We now derive
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|Ψ(x)|2 ∝ exp
(
− 2µ|x|

vF

) −µ
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µ
(x

)

µ(x) = µ sign(x)

Figure 1.10: (a) Kink in the Semenoff mass: on each side there is a Semenoff insulator with
a sign difference between the mass on the right and on the left side. The topological valley
charge C+ changes sign from one side to the other. There is always a twofold degenerate
zero energy bound state localized near the domain wall. (b) Edge state profiles showing their
exponential decay.

these branches by looking for solutions of the Schrödinger equation with a wavefunction of
the form Ψ(r) = eiqyψ(x). The Schrödinger equation for ψ(x) reads:(

−ivF τz ⊗ σx
d

dx + vF qτz ⊗ σy + µ(x)τz ⊗ σz
)
ψ(x) = Eψ(x) (1.4.6)

The two solutions are:

ψL(x) = exp
(
− 1
vF

∫ x

0
dx′µ(x′)

)
1
i
0
0

 , with E = vF q (1.4.7)

ψR(x) = exp
(
− 1
vF

∫ x

0
dx′µ(x′)

)
0
0
1
−i

 , with E = −vF q (1.4.8)

Theses two solutions correspond to two counter-propagating localized states at the domain
wall. The band structure of this 1D metal inside the gap of the Semenoff insulator is remi-
niscent of the Dirac cone E(qy) = ±vF qy with no degeneracy except at E = 0 (figure 1.11).
A noticeable feature is that both slabs are insulator in the bulk and on their free edges
(zigzag edge states exist but do not cross the gap) but conduct at their interface. Contrary
to Chern insulators, the edge states are not topologically protected, which is consistent with
the time-reversal symmetry of the Semenoff insulator. Each propagating state comes with
a counter-propagating state at the same energy, which makes them not protected against
back-scattering.
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Figure 1.11: Band structure in the low energy approximation of a Semenoff insulator with two
domains of opposite masses. The grey area corresponds to the bulk states (see (1.4.2)). The
two edge state branches are in red. They present a linear dispersion relation E(q) = ±vF q
and form a 1D metal between the two Semenoff insulators.

1.5 Edge modes between two Semenoff insulators: tight-
binding approach

The low energy analysis near the Dirac point does not specify the size of the domain wall.
Actually the topological argument is valid for any shape and any thickness of the domain
wall. In this section, we consider two atom-thin domain walls as proposed by Semenoff et al.
[55]: a zigzag domain wall and an armchair domain wall. For both interfaces, we calculate the
band structure of the 1D metal and the penetration length of the edge states, and compare
these calculations to the predictions of the low energy model.

x

y

(a) zigzag (b) armchair

Figure 1.12: (a) Zigzag domain wall. (b) Armchair domain wall. The on-site energies are −µ
for the blue dots and +µ for the red dots. The two sublattices are swapped at the domain
wall denoted by a dashed line. Theses figures are taken from [55].
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1.5.1 Zigzag domain wall
We consider two semi-infinite Semenoff insulators set aside at y = 0 along a zigzag domain
wall. The zigzag domain wall is represented in figure 1.12 (a). In this geometry, the system
keeps the translation invariance along the x-axis allowing to write the edge mode wave-
function as:

Ψ(x, y) = λ|n|eikxxΦ(λ, kx), (1.5.1)
where n is the index of the unit cell starting from the domain wall along the y-axis, kx the
wavevector in the x direction and Φ(λ, kx) the sublattice spinor. To find the general solution
on the full lattice, we look for solutions Φy>0 in the y > 0 half-plane, and Φy<0 in the y < 0
plane. Then, we impose matching conditions on the domain wall, namely that |Ψ(r)|2 should
be symmetric with respect to the y = 0 line. In the y > 0 half-plane, the Schrödinger
equation for Φ(λ, kx) reads: E − µ −t− 2λt cos

(√
3

2 kxa
)

−t− 2λ−1t cos
(√

3
2 kxa

)
E + µ

 [Φ1
Φ2

]
= 0 (1.5.2)

which gives rise to non trivial solutions if:

E2 − µ2 − t2
(

1 + 4 cos2
(√

3
2 kxa

)
+ 2 cos

(√
3

2 kxa

)(
λ+ 1

λ

))
= 0. (1.5.3)

Two solutions are possible λ = V ±
√
V2 − 1 with:

V =
(
λ+ 1

λ

)
= 1

2 cos
(√

3
2 kxa

) (E2 − µ2

t2
− 1− 4 cos2

(√
3

2 kxa

))
(1.5.4)

These solutions are associated with two eigenvectors:

Φy>0 ∝
[
t+ 2tλ cos

(√
3

2 kxa
)

E − µ

]
(1.5.5)

For y < 0, the results are the same by symmetry, except that the two lattices are interchanged.
The eigenvectors read:

Φy<0 ∝
[

E − µ
t+ 2tλ cos

(√
3

2 kxa
)] (1.5.6)

At the interface, the wave function has to be symmetric or anti-symmetric in order to have
|Ψ(r)|2 symmetric. The wave matching condition at the interface reads Φy>0 = ±Φy<0. The
condition |λ| < 1 allows us to calculate λ and E(kx). This derivation recovers the results
from Semenoff et al. [55]:

ε±(kx) = ±t−
√
µ2 + 4t2 cos2

√
3a
2 kx (1.5.7)

Figure 1.13 (b) shows this band structure in red compared to the bulk band structure in
grey. Figure 1.13 (a) shows the DOS calculated using (1.1.7) for the bulk and edge states.
A noticeable feature is the existence of another edge state branch in the lower bulk band.
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Figure 1.13: Zigzag domain wall: (a) DOS of the bulk on the left and DOS of the edge states
for a Semenoff mass µ = 0.5t on the right. (b) The grey area corresponds to bulk states and
the red lines show the dispersion relation of the edge states.

This branch is not predicted by the low energy model. The existence of this branch is not
topologically protected but rather peculiar to this specific domain wall. For instance, if one
considers a domain wall with A sites rather than B sites at the interface, this branch appears
in the upper band.

In order to recover the results obtained in the previous section using the low energy
model, we expand the wavevector around the Dirac points for the branch that lies in the gap
kx = ± 4π

3
√

3a + q:

ε(q) ' t−
√
µ2 + t2 ± 3t2

2
√
µ2 + t2

qa+O(q2). (1.5.8)

In the limit t� µ, we recover the linear dispersion relation E(q) ' ±3ta
2 q of the low energy

model as shown in figure 1.14

Penetration length

The resolution of the wave-matching problem also gives us access to λ, from which we can
define a penetration length ξ:

ξ = −3a
2

1
2 log|λ| with λ =

√
µ2 + 4t2 cos2

(√
3

2 kxa
)
− µ

2t cos
(√

3
2 kxa

) . (1.5.9)

The factor 3a
2 is the distance along the y-axis between two cells and the factor 2 comes from

our definition of the penetration length as being the decay length of |Ψ|2.
The localization length is plotted in figure 1.14 (b) for increasing Semenoff mass µ. The

dashed line shows the localization length predicted by the low energy analysis. A major
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Figure 1.14: (a) Edge state band structure around the Dirac point for different values of µ for
a zigzag domain wall. (b) The penetration length (solid line) strongly depends on k contrary
to the penetration length predicted by the continuous analysis (dashed lines).

difference between the tight-binding model and the low energy model is that the penetration
length depends on the wavevector kx.

We can expand the penetration length near the Dirac point:

λ = µ

t
−
√

1 + µ2

t2
+ 3µ

2t

(
1−

√
µ2

µ2 + t2

)
qa+O

(
q2
)

(1.5.10)

At q = 0 and in the limit t� µ, we obtain λ ' −1 + µ
t
' − exp(−µ

t
) to first order µ/t. We

thus recover the prediction of the low energy model ξ = 3ta
4µ . At q 6= 0, we obtain to first

order:

λ = −1 + µ

t

(
1 + 3

2qa
)
' − exp

(
−µ
t

(
1− 3

2qa
))
, (1.5.11)

1.5.2 Armchair domain wall

The armchair domain wall is represented on figure 1.12 (b). This geometry is invariant by
translation along the y-axis with the vector b = 3a (0, 1), which is not a primitive vector of the
honeycomb lattice. This complicates the calculation as the edge states are now superposition
of two planes waves with wave vectors ky and ky + 2π/3a. We follow the same procedure as
for the zigzag domain wall. The wave function takes the form Ψ = λ|n|eikyyΦ. In the x > 0
half plane, the Schrödinger equation reads:

 E − µ −t
(
1 + λ+ λ−1ei3kya

)
−t
(
1 + λ−1 + λe−i3kya

)
E + µ

 [Φ1
Φ2

]
= 0 (1.5.12)
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Figure 1.15: Armchair domain wall: (a) DOS of the bulk on the left and DOS of the edge
states for a Semenoff mass µ = 0.5t on the right. (b) The grey area corresponds to bulk
states and the red lines show the dispersion relation of the edge states.

We can change the phase of λ without changing the equation by setting: λ̃ = λe−i3kya/2 and
to introducing 2C = λ+ λ−1: E − µ −t

(
1 + 2ei3kya/2C

)
−t
(
1 + 2e−i3kya/2C

)
E + µ

 [Φ1
Φ2

]
= 0. (1.5.13)

Non-trivial solutions exist if:

E2 − µ2 − t2
(

4C2 + 4C cos 3a
2 ky + 1

)
= 0 (1.5.14)

This is a second order equation in C with two solutions C1 and C2. We use the relation
between coefficients and roots of a 2nd order polynomial to write:

C1 + C2 = − cos 3a
2 ky (1.5.15)

E2 = µ2 + t2 − 4t2C1C2 (1.5.16)

We now introduce K such that:

ε(ky) = ±
√
t2 sin2 3a

2 ky + µ2K (1.5.17)

Using this definition of K and the two equations (1.5.15), (1.5.16), we obtain:

K − 1 = t2

µ2 (C1 − C2)2 (1.5.18)
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This equation and (1.5.15) are equivalent to the equations obtained in Semenoff et al. [55].
By applying wave-matching at y = 0 and taking into account that there are two solutions,
we get:

K(1− λ2
1)(1− λ2

2) = (1− λ1λ2)2 (1.5.19)
The set of equations (1.5.15) – (1.5.19) have to be solved numerically. The figure 1.15

shows the DOS and the band structure of the edge modes. There is a gap between the edge
state branches at E = 0. We also observe two supplementary branches. In order to compare
to the low energy model, we first expand the energy spectrum for µ� t. The two branches
read:

ε1(q) = ±
√
µ2 + t2

(
5 + 4 cos 3a

2 q
)

(1.5.20)

ε2(q) = ±
√√√√√t2 sin2 3a

2 q + 4µ4

t2
(
4− cos2 3a

2 q
)2 (1.5.21)

At first order in µ/t and qa � 1, we recover the linear dispersion relation ε(q) = ±vF q.
However, a gap appears at order µ4/t2 in the dispersion relation. This gap is of the order
∆E = 4µ2/3t and goes to zero in the µ� t limit.

Penetration length

The resolution of the wave matching problem also gives two solutions Φ1 and Φ2 associated
with two values λ1 and λ2. The general form of the edge state is a linear combination of
these two solutions:

Ψ(r) = αλ
|n|
1 eiqyΦ1 + βλ

|n|
2 ei(q+

2π
3a )yΦ2 (1.5.22)

To define the penetration length, we see that one of the two solutions decays faster than the
other, and we define:

ξ = max
i=1,2

{
−
√

3a
2

1
2 log|λi|

}
(1.5.23)

Figure 1.16 (b) shows this penetration length as a function of the energy (solid line) compared
to the prediction of the continuous model (dashed line). Unlike the zigzag domain wall, the
penetration length is almost constant.
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Figure 1.16: (a) Edge state band structure around the Dirac point for different values of µ for
an armchair domain wall. A gap appears that increases with µ. (b) The penetration length
(solid line) weakly depends on the mode wavevector and is close to the localization length
obtained from the low energy model (dashed line).

1.6 Conclusion
In this chapter, we have analyzed the bulk properties of the honeycomb lattice without and
with a Semenoff mass. For both, it is possible to identify a set of points of interest in the DOS
that allow us to deduce the tight-binding parameters. For the honeycomb lattice, we have
derived the flat band structure of zigzag and bearded edge states and their penetration length.
In the case of the Semenoff insulator, we have characterized its topological properties, namely
the two topological valley charges at the Dirac points. These charges allow us to understand
the existence of edge states between two Semenoff insulators with opposite masses. These
edge states have been further characterized for two domain walls: zigzag and armchair. For
both geometries, we have derived their band structure as well as their penetration length. In
both cases, we have seen that in the Dirac limit µ � t and in the low energy limit qa � 1,
the tight-binding model recovers the results from the low energy model.
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In this chapter, we present the two different models that we have developed in order to
describe lattices of superconducting resonators. The starting point for each model is the
numerical simulation by the Sonnet software of a single or a few coupled resonators, from
which we extrapolate a model of the full lattice. The first model takes as an input the
admittance matrix computed by Sonnet for a few lattice sites and periodize it. We then
look for Bloch wave solutions to the equation of motion for the voltage amplitude across the
lattice. The second model only needs the simulation of a single resonator and takes as an
input the charge and current distribution of the fundamental mode. We then apply a coupled
mode theory (CMT) in order to obtain the lattice band structure.

The chapter starts by a description of the spiral resonator that constitutes the building
block of all the lattices described in this manuscript. In particular, we show the simulated
charge and current distributions of the first resonant modes that are used in the CMT model.
We then detail the two models and compare them. In the strong coupling regime, which is
relevant for the experiment shown in chapter 4, we show that the admittance model is more
appropriate. We have performed several checks that indicate that the admittance model
correctly describe the lattice despite the large coupling strength. In the moderate coupling
range, which is relevant for the experiment shown in chapter 5, both models agree.

2.1 Properties of the spiral resonator

2.1.1 Resonant modes
The spiral is a folded λ/2 resonator with a total length l = 8.6 mm as shown in figure 2.1.
The characteristic impedance of a microstrip line having the same width as the wire forming
the spiral is Z0 = 143.2 Ω and the phase velocity is vp = 9.25× 107 m · s−1. For a straight line
resonator, this would give rise to resonance frequencies being multiples of vp/2l = 5.38 GHz.

Figure 2.1 shows the imaginary part of the self-admittance calculated by Sonnet using a
port at the center of the spiral. Qualitatively, the admittance is similar to the one of a λ/2
resonator, which is a tangent function. But the positions of the zeros, which correspond to
the resonances, and the variation around a resonance are quantitatively different because of
the spiral shape1. We observe that the resonance frequencies are equidistant and their value
is well approximated by 5.95 GHz + n× 8.17 GHz where n = 0, 1, . . . labels the resonance.

Figure 2.2 shows the current and charge distributions of the first three lowest modes.
Once again, we observe a qualitative but not quantitative agreement with the expected sine
and cosine mode distributions of a λ/2 resonator. Because of the presence of the ground
plane below the substrate, the complete charge and current distributions for a given mode
also include the image distributions that must be taken into account to compute the electric
and magnetic field. We will detail this point when we describe the CMT model.

2.1.2 Coupling between two resonators
To characterize the coupling between two resonators, we simulate with Sonnet two resonators
separated by an edge to edge distance d and we extract the admittance matrix (or Y -matrix)

1Of course, the self-admittance function depends on the location of the port in the resonator. Only the
positions of the zeros that indicate the resonances are independent of the port location.
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Figure 2.1: On the left, design of the spiral used for the sites of our different lattices. The
spiral is a 8.6 mm long wire with a width of 4.33 µm and a gap between adjacent line of
8.66 µm. The wire is deposited on a dielectric substrate (usually Si), whose back side is
covered with metal and connected to the ground. On the right, we show the self-admittance
calculated for a port located at the center of the spiral. The resonances correspond to the
zero-crossings (red dots), which are linearly spaced with a fundamental resonance at 5.95 GHz.

calculated with two ports, one at the center of each spiral. The voltage amplitude at each
port is given by the solution of the linear system

Y [ω]V = I (2.1.1)

where I is the vector representing the current injected at each port. In the absence of source
terms I = 0 and the system has a non-trivial solution iff detY [ω] = 0, which gives the
resonance condition. The output of Sonnet is an estimation of the Y matrix coefficients in a
given frequency range with a given number of frequency points. From this output, we build
an interpolating function Y [ω] that we use later for our numerical calculations. Because the
system is lossless, we suppose that the admittance is purely imaginary and discard the real
part given by Sonnet, which is anyway negligible. The function detY [ω] is then real and its
zero-crossings correspond to the resonance frequencies.

Figure 2.3 shows the evolution of the diagonal and off-diagonal elements of the imaginary
part of Y [ω] as a function of frequency for a distance d = 5 µm. The evolution of log | detY [ω]|
is also shown, with two dips corresponding to the two resonances of the coupled system. We
define the coupling t as the half-splitting between these resonances. The figure 2.3c shows
the evolution of t as a function of the distance d. Because the spiral is not invariant by a
rotation of π/3, the coupling t depends on the spiral orientation with respect to the direction
of separation. More details about this anisotropy are given in 4.1.
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Figure 2.2: Current and charge distributions in the spiral resonator for the first three lowest
modes. The right figures show the normalized unfolded distributions along the wire. They
are qualitatively similar to the ones of a straight λ/2 resonator.
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Figure 2.3: Coupling of two spiral resonators. (a) Evolution of the diagonal Y0 and off-
diagonal Yc elements of the admittance matrix as function of frequency for d = 5 µm. (b)
Evolution of log | detY [ω]|. The two minima indicate the position of the two resonances. (c)
Evolution of the half-splitting between the two resonances as a function of the distance d.
The spiral orientation is shown above.
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2.2 Admittance matrix periodization
In the last section, we have used the admittance matrix to find the resonances of a single
resonator and of two coupled resonators. In principle, one could extend this method to a
larger system and look for the zeros of detY [ω] in order to find the eigenmodes of the finite
size lattice corresponding to the one that is experimentally realized. However, this method
is not very satisfying and is anyway impractical. Our lattices with a few hundred resonators
cannot be simulated directly with Sonnet, at least on a standard desktop computer. In this
section, we show how we can approximate the periodic admittance of an infinite lattice from
the numerical simulation of a small circuit with only a few sites. The solutions of the equation
Y V = 0 are then easily found as Bloch waves. This method has already been used to describe
lumped element lattices with non-trivial topology [39, 72].

2.2.1 Band structure from the admittance matrix
We consider an infinite lattice of resonators with N ports per unit cell and look for a solution
at a given frequency ω. The voltage amplitude V (r) at the site r is a complex vector with
N components that satisfies

Y0[ω]V (r) +
∑
i

Yi[ω]V (r + ai) + Y T
i [f ]V (r− ai) = 0 (2.2.1)

Here, Y0[ω] is the admittance matrix between the ports belonging to the same cell and Yi[ω]
is the admittance matrix between the ports corresponding to two cells separated by a lattice
vector ai. In principle, the sum over i is infinite but, in practice, the matrix elements of
Yi decrease with i and the sum can be truncated to imax terms. We look for a Bloch wave
solution V [r] = V eikr and obtain

(
Y0[ω] +

imax∑
i

Yi[ω]eikai + Y T
i [ω]e−ikai

)
V = 0 (2.2.2)

The dispersion relation is obtained from the solution of:

det
(
Y [ω] +

imax∑
i

Yi[ω]eikai + Y T
i [ω]e−ikai

)
= 0 (2.2.3)

Two practical problems arise: one must choose the number of ports N per unit cell and their
locations, and one has to determine the number of coupling terms imax. As we show below,
the two quantities N and imax are actually linked.

We emphasize that the number of terms appearing in the sum is not directly connected
to the number of coupling terms in an effective tight-binding description of the lattice. For
example, a chain of capacitively coupled LC resonators is exactly described by a nearest-
neighbor admittance matrix but the effective tight-binding model contains a coupling that
decreases exponentially with the distance and is not strictly a NN coupling. The converse
is also true, a lattice may be well described by a NN tight-binding model even though the
coefficients of the Yi matrices decrease slowly with i.
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2.2.2 Influence of the number of ports
We now consider the case of a honeycomb lattice of spiral resonators. Figure 2.4 shows the
band structure obtained from the simulation of a small system with only four resonators and
one port at the center of each resonator. The Sonnet simulation yields a 4 × 4 admittance
matrix. From this matrix, we extract the orientation dependent admittance coupling Yi
between two resonators and the self-admittance Y0 from the self-admittance of the central
resonator. We see that, for the smallest distance d = 5 µm, the calculation fails to find a
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Figure 2.4: Band structure of a honeycomb lattice of spiral resonators. The Sonnet simulation
is done with a four resonator system. We plot the band structure deduced from the computed
admittance matrix. The inset shows the path followed in the first Brillouin zone. The band
structure is normalized to the coupling t that is calculated from the two resonator case. At
the smallest distance, the band structure calculation fails to find the lower band.

complete lower band. This indicates that the truncation to the NN admittance coupling with
one port per resonator is very inaccurate. This problem is cured by increasing the number of
ports as shown in figure 2.5. Already with two ports, the calculation finds two bands in the
complete Brillouin zone and adding a third port almost does not change the band structure.

2.2.3 Influence of the coupling range
In order to understand better the convergence of the calculated band structure, we have
performed simulations on a larger system with 16 resonators (see figure 2.8) and different
numbers of ports per resonator (from 1 to 6). The distance d is fixed to 5 µm, which is the
most problematic case. Figure 2.6 shows the decay of the Yi coefficients as a function of
distance for different numbers of ports per resonator. With only one port per resonator, the
coefficients slowly decrease but that increasing the number of ports leads to a much faster
decay.

In figure 2.7, we compare the calculated band structures as a function of imax for different
numbers of ports. With two ports or more, the results barely change, as already observed
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Figure 2.5: Band structure of a honeycomb lattice of spiral resonators. The Sonnet simulation
is done with four resonators as shown in figure 2.4. We vary the number of ports per resonator,
their locations are shown on the left. The distance between resonators is d = 5 µm. The
calculated band structure rapidly converges when the number of ports is larger or equal to
two.
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Figure 2.6: Decay of the Yi matrix elements as a function of distance. Each color corresponds
to a different number of ports per resonator. The ports are located in order to split the spiral
wire in approximately equal pieces. Each point corresponds to the average of the admittance
in a frequency band from 5 to 7 GHz. The different points with the same index correspond to
the same distance but different coupling directions. The line shows the decay of the average
over the different directions.
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above in the four site simulation. We also see that keeping the fourth neighbor admittance
matrix does not modify the band structure as compared to the calculation including NN, NNN
and NNNN admittance terms, except for the single port case. In this case, the inclusion of
more terms has a strong effect because of the slow decay of the Yi coefficients.

Finally, we compare in figure 2.8 the band structures obtained with fourth neighbor cou-
pling and different numbers of ports. We also consider two different locations of the ports in
the case of the three port simulation. All the curves with two or more ports are identical up
to a global offset that we substract. We are thus confident that the simulated band structure
calculated with the admittance model is an accurate numerical description of the lattice.
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Figure 2.7: Band structure of a honeycomb lattice of spiral resonators. The Sonnet simulation
is done with 16 resonators. Each plot corresponds to a given number of ports per resonator.
Each line is the calculated band structure where we increase the number imax of coupling
admittance matrices that are taken into account in the calculation.
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Figure 2.8: Band structure of a honeycomb lattice of spiral resonators. The Sonnet simulation
is done with 16 resonators as shown on the left. Each curve is obtained with a different number
of ports per resonator. In the case of three ports, we consider two different locations of the
central port. Except for the single port case, all the curves lead to the same band structure
up to a small offset that is here subtracted.
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2.3 Coupled mode theory
In the last section, we have presented a calculation of the band structure of a lattice of
resonators using the admittance matrix. In the context of meta-material based on arrays of
resonators, several works [73–75] have developed a coupled mode theory (CMT) in order to
predict the band structure. In this section, we briefly review this approach and apply it to
our situation. We then compare the obtained results with the ones of the admittance model.

2.3.1 Coupled mode theory for a periodic lattice
The coupled mode theory is a generic method where the fields of interest are expanded on
a mode basis in order to drastically reduce the number of degrees of freedom and obtain an
easily tractable model. The application of CMT to coupled microwave resonators is detailed
in Elnaggar et al. [75]. In its simplest form, the expansion is performed over the modes of
the uncoupled elements, which are supposed to be known. The CMT is then a perturbative
approach and its regime of validity is limited to the weak coupling regime.

In the case of our lattice of resonators, we suppose that we know the current and charge
distribution ji and ρi of the ith resonant mode with resonant frequency ωi of an isolated
spiral resonator. These charge and current distributions give rise to an electric field Ei and
a magnetic field Bi. We look for a solution to the Maxwell equations in the lattice as

E(r′, t) =
∑
r

∑
i

ai(r)Ei(r′ − r) eiωt (2.3.1)

B(r′, t) =
∑
r

∑
i

bi(r)Bi(r′ − r) eiωt (2.3.2)

where the sum over r is over the lattice cells and the complex coefficients ai(r) and bi(r) are
the electric and magnetic amplitudes of the ith mode at site r. The resonance condition for
the coupled system is obtained by equating the electric and magnetic energies a†Da = b†Gb.
The coefficient of the D and G matrices are overlap integrals of the electric and magnetic
fields of the modes at different sites. The vector b can be eliminated using Maxwell equations
and the resonance condition yields the eigenvalue problem [75]:

ΩG−1ΩDa = ω2a (2.3.3)

where Ω is a diagonal matrix containing the resonance frequencies of the different modes at
the different sites. Here, we suppose that all the materials are non-magnetic and we also
neglect the fact the fields of a given resonator may not fulfill the correct boundary conditions
on the conductor of a nearby resonator.

In order to take advantage of the lattice periodicity, we rather look for a periodic solution
with momentum k as:

Ek(r′, t) =
∑

r

∑
i

eikrai(k)Ei(r′ − r) eiωt (2.3.4)

Bk(r′, t) =
∑

r

∑
i

eikrbi(k)Bi(r′ − r) eiωt (2.3.5)

The resonance condition is then

ΩG−1(k)ΩD(k)a(k) = ω2(k)a(k) (2.3.6)
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where a(k) is now a small vector, whose length corresponds to the number of orbitals per
lattice cell. The matrix Ω is the diagonal matrix obtained from the resonance frequencies of
each orbital. Finally, the matrix elements of G(k) and D(k) are given by

Dij(k) =
∑

r
eikr〈EiEj〉r and Gij(k) =

∑
r
eikr〈BiBj〉r (2.3.7)

where the overlap integrals are defined as

〈EiEj〉r = 1
4

∫
V
ε(r′)Re [E∗i (r′) ·Ej(r′ − r)] d3r′ (2.3.8)

〈BiBj〉r = 1
4µ0

∫
V
Re [B∗i (r′) ·Bj(r′ − r)] d3r′ (2.3.9)

2.3.2 Evaluation of the overlap integrals

GND
GND

...
...

Figure 2.9: Image current and image charge. The image current is simply the mirror image
of the current distribution of the resonator by the ground plane. The case of the charge
distribution is more complicated because of the dielectric interface. There is an infinite series
of image charges with decreasing values.

The integrals appearing in the definition of D and G correspond to the electric and
magnetic coupling energies between two resonators separated by a lattice vector r. In the
absence of the dielectric substrate and without the ground plane, these coupling energies
could be simply rewritten in terms of charge and current distributions as [76]:

〈EiEj〉r = 1
16πε0

∫
Re[ρ∗i (r1)ρj(r2 − r)] 1

|r1 − r2 + r|
d2r1d2r2 (2.3.10)

〈BiBj〉r = µ0

16π

∫
Re[j∗i (r1)jj(r2 − r)] 1

|r1 − r2 + r|
d2r1d2r2 (2.3.11)

The presence of the image current and the image charges, as shown in figure 2.9, modify
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these formula to

〈EiEj〉r = 1− k
16πε0

∫
Re[ρ∗i (r1)ρj(r2 − r)]

(
1

|r1 − r2 + r|
+

M∑
n=1

(−1)nkn−1(1 + k)
|r1 − r2 + r− 2nez|

)
d2r1d2r2

(2.3.12)

〈BiBj〉r = µ0

16π

∫
Re[j∗i (r1)jj(r2 − r)]

(
1

|r1 − r2 + r|
− 1
|r1 − r2 + r− 2ez|

)
d2r1d2r2

(2.3.13)

where e is the wafer thickness, k = (εr − 1)/(εr + 1), εr is the dielectric constant of the wafer
and M is the number of image charges at which the sum is truncated, we use M = 4. These
expressions neglect any propagation effect, we have checked that this approximation is fully
justified in our situation.

We numerically compute these integrals from the charge and current distribution ρi and
ji that we obtain from Sonnet. Before calculating the band structure of a full lattice, let us
compare the coupling between two resonators as predicted by the CMT to the one obtained
from the admittance model. We consider the fundamental mode and define the electric and
magnetic coupling constants κe and κm as

κe = 〈E0E0〉r/〈E0E0〉0 (2.3.14)
κm = 〈B0B0〉r/〈B0B0〉0 (2.3.15)

The resonance condition can then be written(
1 κm
κm 1

)−1 ( 1 κe
κe 1

)
a = ω2

ω2
0
a (2.3.16)

We have used the fact that 〈E0E0〉0 = 〈B0B0〉0, which corresponds to the resonance condition
of the uncoupled resonator. The two resonance frequencies are given by

ω± =
√

1± κe
1± κm

ω0 (2.3.17)

Figure 2.10 shows the evolution of κe, κm and ω± as a function of the distance d between
two spiral resonators. The electric coupling decays more rapidly than the magnetic coupling
which dominates at large distances. This is due to the fact that the spiral is a magnetic dipole
and a higher order electric multipole. The resonance frequencies match well the predictions
of the admittance model as long as d > 30 µm. For shorter distances, the approximation that
the total field is a linear combination of the fields of two uncoupled resonators is not valid.

2.3.3 Comparison to the admittance model
We now compare the predictions of the two models for the band structure of the two lattices
that are measured in chapter 4 and 5. The band structure of the CMT model is obtained
by diagonalizing ΩG−1(k)ΩD(k) and taking the square root of the eigenvalues. We have
checked that the first excited mode at 14 GHz does not influence the band structure of the
first two bands. We therefore restrict the number of orbitals to one per site. The matrix to
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Figure 2.10: Coupling between two spirals as predicted by the CMT model. The left plot
shows the evolution of the electric and magnetic coupling constants as a function of the dis-
tance d between the resonators. The right plot compares the predicted resonance frequencies
by the CMT and the admittance model. The CMT model is valid in the region d > 30 µm.

diagonalize is a 2× 2 matrix, where the two components correspond to the A and B sites of
the honeycomb lattice.

If we suppose that the overlap integrals are isotropic, we can obtain an analytic formula
for the band structure by following the same calculation as in the first chapter. The D(k)
and G(k) matrices are given by

D(k) = ε0

(
1 + f2,e(k) f1,e(k) + f3,e(k)

f ∗1,e(k) + f ∗3,e(k) 1 + f2,e(k)

)
(2.3.18)

G(k) = ε0

(
1 + f2,m(k) f1,m(k) + f3,m(k)

f ∗1,m(k) + f ∗3,m(k) 1 + f2,m(k)

)
(2.3.19)

where ε0 = 〈E0E0〉0 = 〈B0B0〉0 and the fi,e and fi,m functions are defined as in (1.1.11).
The coupling ti is replaced by the corresponding overlap integral of the electric (magnetic)
field normalized by ε0 in the case of the fi,e (fi,m) function. The two matrices D(k) and
G(k) are diagonal in the same basis with eigenvalues 1 + f2,α(k)± |f1,α(k) + f3,α(k)| where
α = e,m. The band structure is therefore given by

ω± =

√√√√ 1 + f2,e(k)± |f1,e(k) + f3,e(k)|
1 + f2,m(k)± |f1,m(k) + f3,m(k)| ω0 (2.3.20)

In the weak coupling limit and considering only NN and NNN couplings, we recover the band
structure of the tight-binding model (1.1.12). The coupling ti are given by the half difference
of the corresponding electric and magnetic couplings. For example, in the nearest-neighbor
approximation, we obtain

ω± =

√√√√ 1± κef̃1(k)
1± κmf̃1(k)

ω0 '
(

1± κe − κm
2 f̃1(k)

)
ω0 (2.3.21)
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where f̃1(k) = |1 + eik·a1 + eik·a2|.

K Γ M K

Wavevector

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
re

q
u

en
cy

(G
H

z)

1-th NN

2-th NN

3-th NN

Y

K Γ

M K

Figure 2.11: Band structure of a strongly coupled honeycomb lattice as realized in chapter
4. The admittance model corresponds to the 3 port model with 16 resonators as shown in
figure 2.8. We expect that this model is an accurate simulation of the lattice. We compare
it to the predictions of the CMT model for different coupling ranges. The agreement is not
perfect because the coupling is too strong for the CMT model to be valid.

In our numerical simulation, we take into account the coupling anisotropy and we nu-
merically diagonalize ΩG−1(k)ΩD(k) for each k. Figure 2.11 shows the comparison of the
two models for the strongly coupled honeycomb lattice that is measured in chapter 4. The
distance d is only 5 µm, which is outside the validity regime of the CMT model. As expected,
the two models lead to slightly different band structures. In chapter 5, we use a different
lattice with less coupling (d = 35 µm) and with two inequivalent A and B sites to realize a
Semenoff insulator. Figure 2.12 shows the lattice geometry (more details can be found in
chapter 5), and the comparison of the two models. Because d is large enough, the models
match very well up to an offset, which is removed in the plot.
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Figure 2.12: Band structure of a Semenoff insulator as realized in chapter 5. The admittance
model corresponds to a 2 port model with 16 resonators. We compare it to the predictions
of the CMT model for different coupling ranges. When we include NNNN coupling, both
models perfectly match up to a global offset that is here removed.
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Chapter 3
Mode imaging using laser scanning microscopy
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In order to probe the spatial dependence of the mode wavefunctions in lattices of super-
conducting resonators, two different approaches have been considered. For small 1D lattices,
it is possible to couple every sites to a transmission line and to measure directly the amplitude
of the mode on every site [18, 20]. This becomes impractical in large chains or in 2D lattices.
In [77], Underwood et al. used a piezo actuator to move a small piece of dielectric across a
2D lattice of CPW resonators. The dielectric introduces a local defect corresponding to a
shift of the resonance frequency of the site below the dielectric. Therefore the variation of the
resonance frequency of a lattice mode as a function of the defect position leads to a map of
the mode wavefunction. In this chapter we present a new method relying on the same prin-
ciple but where the defect is created by a laser spot. This laser scanning microscopy method
(LSM) has been previously used to map the wavefunction of resonant modes of single super-
conducting resonators [53]. In the first section, we present the principle of the measurement.
We then show the two optical setups that we used to obtain an homogeneous and intensity
constant laser spot across the sample. Finally we characterize the lattice response to the laser
light. In particular, we identify the regime of laser intensity where the response is linear and
present the different protocols used to obtain the mode images shown in chapters 4 and 5.

3.1 Principle of laser scanning microscopy
Laser scanning microscopy was first developed to optically probe the spatial profile of mi-
crowave frequency superconducting currents [52, 53, 78] in a resonant structure. Figure 3.1
shows the principle of the measurement. A Vector Network Analyzer (VNA) is used to mon-
itor the change in transmission induced by the laser as a function of position. As shown in
[53], the main effect of the light is to locally increase the resistivity of the superconducting
material and thus to decrease the microwave transmission. In this section, we show how this
method can be adapted to obtain the weights of a lattice mode on each site of the lattice.

Laser

sample

in out

VNA

Figure 3.1: Principle of laser scanning microscopy. A laser is used ad a spatial probe of the
superconducting circuit which is measured in transmission at the same time. Usually, the
microwave generator and detector are a Vector network analyzer (VNA). The variation of
transmission as a function of the laser position leads to a map of the resonant mode.

Close to a resonance, the transmission between two ports can be approximated by a
Lorentzian function:

S21[δ] = κ

δ + i(γi + γl + κ) (3.1.1)

58



3. Mode imaging using laser scanning microscopy A. Morvan

where δ is the detuning to the resonance, κ is the loss rate to the transmission line, γi is the
intrinsic loss rate and γl the added loss due to the laser. Considering that the laser spot is
a Gaussian of waist w centered at position rl, the model of Zhuravel et al. [53] leads to the
following expression for γl as a function of the laser position:

γl(rl) =
∫
ρl exp

(
−2 (r− rl)2

w2

)
|j(r)|2dr× E−1 (3.1.2)

where ρl is the sheet resistance induced by the laser at the center of the spot, j is the
current density of the mode and E is the total energy stored in the mode. Figure 3.2 shows
γl(rl) for different laser waists and an experimental image taken with a waist of 60 µm.
The measurement shows the same ringlike structure than the simulation. This qualitatively
confirms that the laser mostly probes the current distribution.

w = 10 µm w = 20 µm w = 40 µm

w = 80 µm w = 120 µm w = 200 µm

Figure 3.2: Convolution of the current distribution |j(r)|2 of a spiral resonator with the shape
of the laser spot. For small laser spot, we can distinguish the structure of the spiral. When
the size of the spot is increased, this structure is blurred. For large spot, the hexagonal shape
of the resonator disappears. The right image shows the measured loss rate for a spiral in a
lattice, the image is qualitatively similar to the one computed on the left.

The current distribution can be expanded as:

j(r) =
∑
i

Ψ(ri)j0(r− ri) (3.1.3)

where j0 is the current distribution of the orbital of the mode and Ψ(ri) is the mode amplitude
on site i at position ri. The loss induced by the laser can be rewritten as:

γl(rl) =
∑
i

|Ψ(ri)|2
∫
ρl exp

(
−2 (r + ri − rl)2

w2

)
|j0(r)|2dr× E−1 (3.1.4)
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In order to retrieve the weight |Ψ(ri)|2, we average γl over a region corresponding to the site
i:

〈γl〉i = 1
M

M∑
j=1

γl(ri + δrj)× E−1 (3.1.5)

' |Ψ(ri)|2ρl

 1
M

M∑
j=1

∫
exp

(
−2 (r + δri)2

w2

)
|j0(r)|2dr

× E−1 (3.1.6)

Here, we suppose that the overlap of the Gaussian spot centered at ri + δri with the current
distribution of the neighboring sites is negligible. The number of positions M varies between
6 and 200 points depending on the scan method.
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3.2 Optical and microwave setups
Our lattices are made of niobium (Nb) which has a critical temperature Tc = 9 K. This high
critical temperature allows us to operate on the 1 K stage of the Hexadry 400 dilution fridge.
In this section, we present how we implement the laser scanning microscopy by reviewing the
two optical and microwave setups used in this thesis. We will refer to these setup as setup
A and setup B in the rest of the manuscript. For each setup, we have characterized the
homogeneity of the laser spot over the sample area.

3.2.1 Setup A
The optical setup must focus a laser spot on the sample which is clamped to the 1 K stage
of the dilution fridge. The 1 K plate is separated from the top of the fridge by 606 mm.
The laser goes through a sealed optical windows and three lenses that are fixed in a cage
system (see figure 3.3). The first two lenses (f ′ = 100 mm) form a telescope with an optical
magnification of 1. The last lens is positioned at f ′3 = 100 mm to refocus the beam on the
sample. For a sample size of d = 8 mm, the maximum tilt angle of the laser is given by
θM = arctan (d/(2f ′3)) = 2.3◦. The two tilt angles are controlled by two motors mounted on
a mirror mount on which the laser is fixed. Pictures of the setup are shown in figure 3.4. The

80 mm Sample

Optical 
density

f'=100 f'=100f'=100

Laser diode
+

Aperture

50 K 4 K 1 KOptical 
window

Sample observation

Photodiode
Beamsplitter

Beamsplitter

Diode
+

condenser
f'=100

CCD Camera

Figure 3.3: Schematic view of the optical setup A. The 8:92 beamsplitter and the photodiode
are used to measure the intensity of the laser beam and its position.

laser source is a Thorlab Laser diode CPS635F with an aperture of 1 mm diameter. In order
to measure the laser intensity, the beam is separated before entering the dilution fridge with
a 8:92 pellicle beamsplitter. The transmitted light goes towards the sample and the reflected
light goes to a photodiode. The beam intensity can be reduced by adding optical densities
between the laser diode and the beamsplitter. For the alignment of the laser spot on the
sample, the sample can be illuminated by a LED and a condenser and imaged with the camera
A. The position of the laser spot on the sample can be tracked during the measurement. The
presence of the beamsplitter on the laser path gives rise to a gradient of laser intensity on
the sample. This is due to the fact that the transmission and reflection coefficients of the
beamsplitter strongly depend on the angle of incidence.
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Figure 3.4: Pictures of the Setup A. The left picture shows the optics outside of the fridge.
The LED with the condenser can illuminate homogeneously the sample. The reflected light
is then collected by the camera A. The right picture shows the optical path in the dilution
fridge. For spot calibration, the sample is replaced by a camera in order to measure the spot
size as well as the homogeneity of the spot as a function of the position.
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Homogeneity of the laser spot

To control the size of the spot on the sample, we use a camera at the sample position (camera
B in figure 3.4). With this setup, we measure at room temperature the profile of the spot in
order to check that the spot size and intensity are homogeneous over the area corresponding
to the lattice to be measured. Figure 3.5 shows a typical profile observed with the camera.
The spot is well approximated by a Gaussian:

I(x, y) = I0 exp
(
−2(x− x0)2

w2
x

)
exp

(
−2(y − y0)2

w2
y

)
(3.2.1)

In order to probe the homogeneity of the laser spot, we repeat this measurement on a grid.
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Figure 3.5: Image of the spot obtained with camera B in figure 3.4. The pixel size is 5.4 µm.
The image is averaged on the x-axis and the y-axis to obtain the Gaussian profile of the spot.
Here, the fit yields a waist of about 55 µm with a slight asymmetry between the two axes.

The figure 3.6 shows the evolution of the fitted waists as well as the intensity of the laser
spot. The mean waist size is 59 µm and its variation is less than 2 % over the sample area.
The variation of intensity is less than 5 %.

Microwave setup

The measurements are realized with a VNA directly connected to the probing transmission
lines. Figure 3.7 shows the different microwave cables used with the SetupA. Attenuators
are used to avoid parasitic reflections at the connections between cables.

3.2.2 Setup B
For the Semenoff experiment, the optical setup was modified to measure larger samples. The
spot size needs to be homogeneous on a region of about 15 mm of diameter. To realize this,
we use the optical setup presented in figure 3.8. Compared to setup A in figure 3.3, the
last lens has a bigger focal f ′3 = 300 mm. We have also changed the first lens for one with
a bigger diameter. We have simplified the optical setup outside the fridge by removing the
two beamsplitters.
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Figure 3.6: Homogeneity of the waists of the laser spot and of its intensity for the Setup A.
The plot shows the variation of these quantities compared to their mean values. Over the
whole measurement, the variation of the waists is less than 2 % and the variation of intensity
is less than 5 % for this setup.

The maximum angle needed to reach the border of the sample is θM = 1.5◦. Assuming
that the beam is Gaussian with an entering diameter of D (controlled by a diaphragm), its
waist at the focus point of the last lens is:

w = 2λ
π

f ′3
D
. (3.2.2)

This relation holds only for the on-axis spot. For D = 4 mm and a wavelength λ = 635 nm,
this relation yields a waist of w = 60 µm. Using the optical design program OSLO, we recover
this value for the on-axis spot size. The same simulation shows that with an angle of θ = 1.5◦,
the spot size remains the same.

Homogeneity of the laser spot

We have measured the evolution of the waist as a function of the position on the sample. The
position of the spot was measured at room temperature using the same camera as before. In
order to cover a larger area, the camera is fixed to a linear micrometer positioning stage. The
measured waists and the intensity are shown in figure 3.10. The mean waist is 56 µm with a
standard deviation of less than 1 % over a radial distance of 8 mm. The standard deviation
of the intensity is less than 3 % over the same area.

Positioning accuracy

In order to check the reproducibility of the positioning of the laser spot, we use the camera
at the sample level to track the spot position and loop over different spot positions every 2 s
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Figure 3.7: Microwave SetupA. The sample is clamped the 1 K stage and is connected to
four transmission lines. The cables from room temperature to the 4 K stage are inox cables.
The sample is connected to these cables with flexible copper coaxial cables.
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Figure 3.8: Schematic of the optical setup B.
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Figure 3.9: Picture of the optical setup B in the dilution fridge.
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Figure 3.10: Waist and intensity variations for Setup B.

as in the experiment. Figure 3.11 shows the drift of the laser spot with time. The reference
positions are taken at the end of the first measurement (the portion of curve at zero). This
measurement shows that after a long period without moving, the motor absolute position is
not accurate during a period of about 1000 moves (33 min). The drift stabilizes to a value
of 11 µm with respect to a reference position. This drift is one order smaller than the size of
resonators (400 µm) and should be negligible as long as the motors are not stopped for too
long.

Microwave setup

The microwave setup used in this experiment is shown in figure 3.12. There are four probing
points on the sample, which makes six possible transmission measurements. We connect the
two ports connected to the domain wall to two cryogenic amplifiers so that we can measure
edge states with a good signal/noise ratio. Two broadband (DC - 8 GHz) non-reflective
GaAs SPDT switches (HMC270AMS8GE) are inserted in the setup so that we can calibrate
the transmission along the domain wall. We also insert two directional couplers in order to
measure the reflection spectra.
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Figure 3.11: Drift of the laser spot position. The two colors represent two sets of data. The
first one in blue starts after a full night without using the motor. The second set (in orange)
is done 1 h after the end of the first set.
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Figure 3.12: Microwave SetupB. Rectangles with arrows represent directional couplers from
Krytar. The two switches between the sample are two broadband (DC - 8 GHz) non-reflective
GaAs SPDT switches (HMC270AMS8GE). The two cryogenic amplifiers are Low Noise Fac-
tory LNF-LNC4-8C models with a noise temperature of 2 K in the 4 GHz to 8 GHz range.
The sample holder and the two directional couplers are fixed to the 1 K stage of the dilution
fridge.

69



3. Mode imaging using laser scanning microscopy A. Morvan

3.3 Characterisation of the photoresponse
In this section, we characterize the photoresponse of our samples to laser light. We first
show some experimental proofs for the presence of two level systems (TLS) on samples with
silicon substrate. The presence of TLS is important to understand the microwave response of
these samples to light. We then show how continuous and pulsed laser excitation modify in
a different way the linewidth and the resonance frequency of the lattice modes as a function
of laser intensity.

3.3.1 Evidences for the presence of TLS
Figure 3.13 shows the evolution of a resonance peak for the two samples ZigzagSi and
ZigzagSa, which have silicon and sapphire as substrates respectively. In the case of sapphire,
the resonance frequency and the quality factor increase as the temperature decreases. This is
the expected behavior for superconducting resonators. The Mattis-Bardeen formula predicts
that the kinetic inductance of a superconducting wire increases with decreasing temperature
while the real part of the conductance decreases. In the case of the silicon wafer sample,
we observe the same behavior until T reaches 3 K. Below this value the resonance frequency
decreases with temperature. At the same time the quality factor keeps increasing. This
behavior is usually attributed to the presence of TLS [37, 79, 80].
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Figure 3.13: Evolution of the resonance of one mode with temperature for the ZigzagSi
sample and the ZigzagSa. In both cases, the quality factor increases as the temperature
decreases. But, the evolution of the resonance frequency is different for each sample. We
attribute this to the presence of TLS on the silicon sample.

The presence of TLS on the silicon sample is confirmed by the evolution of the resonance
as a function of microwave power as shown in figure 3.14. Increasing the power first saturates
the TLS, which results in an increase of the quality factor and of the resonance frequency. At
low temperature, we also observe that the quality factor passes by a maximum and decreases
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again at large microwave power. For both temperatures we observe that the resonance
curves become asymmetric which is characteristic of a non-linear effect. We attribute this
non-linearity to the TLS but more studies would be necessary to validate this hypothesis.
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Figure 3.14: Transmission measurement of a mode at 6.498 GHz of the zigzagSi sample on
silicon with setup B. The left curves are taken at 4 K and the right ones at 900 mK.

3.3.2 Continuous laser excitation
We have noticed that some silicon samples present a large photoresponse with a very slow
time-scale on the order of a few seconds. This slow dynamic may be due to the presence of
TLS or to the slow relaxation of charge carriers in the silicon at low temperature. Figure 3.15
shows the evolution of a resonance of the sample ZigzagSi for various laser intensities. We
see that the effect of an increasing continuous laser intensity is similar to the one of increasing
microwave power. The resonance frequency increases with intensity while the quality factor
first increases, passes by a maximum and then decreases.

3.3.3 Pulsed laser excitation
In order to separate the effect of the rapid and slow photoresponses, we pulse the laser
as shown in figure 3.16. The mean laser intensity is kept constant and we measure the
evolution of the resonance as a function of the intensity at the maximum of the pulse. The
results are shown in figure figure 3.17. We observe a different behavior than for continuous
excitation. Here, the resonance frequency is not affected by the laser and the quality factor
is monotonously decreasing with the laser intensity. The bandwidth of the laser diode power
supply is limited to 20 kHz, with this bandwidth we were not able to see any time dependence
in the photoresponse.

Figure 3.18 shows the evolution of γl for two resonances with fixed laser position. We
observe that both curves are proportional to each other, and that they have a linear behavior
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Figure 3.15: Effect of increasing continuous laser intensity on the transmission of a bulk
mode of the sample ZigzagSi. The laser spot is localized on one bulk resonator.
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Figure 3.16: Pulse shape for the modulation of the power intensity. For a given laser power
Ph, the mean value of the mean value of the power 〈P 〉 is kept constant by adjusting the low
value power Pl. The transmission measurement is done while the laser is set at P = Ph.
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Figure 3.17: Effect of increasing pulsed laser intensity on the transmission of a bulk mode of
the sample ZigzagSi. The laser spot is localized at the same spot as in figure 3.15. For each
curve the laser power is kept constant.
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Figure 3.18: Evolution of the laser induced loss rate as a function of the laser power Pl. The
loss rate is deduced from the variation of the inverse transmission at resonance. We observe a
linear behavior for laser power below 200 µW. The blue curve corresponds to the data shown
in figure 3.17 and the orange curve to another resonance peak keeping the laser at the same
spot. The insert figure shows the proportionality between the two measurements.

73



3. Mode imaging using laser scanning microscopy A. Morvan

for Pl < 0.2 mW. This suggests that the non-linear behavior is due to a non-linear variation
of ρl as a function of Pl in equation (3.1.6) rather than a non-linear response to the weight
|Ψ(ri)|2. We anyway use a laser power below 0.2 mW during mode imaging.
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3.4 Measurement protocols
In the previous section, we have shown that, for a given mode, a rapidly varying light intensity
translates into a variation of the loss rate, which is proportional to the weight of the mode
on the illuminated site. In order to measure the weights over all the lattice sites, we use
two methods: We either scan the position of the laser continuously with a fixed frequency
of the microwave excitation, or we move the laser from site to site and acquire a microwave
spectrum for each laser position.

3.4.1 Continuous scanning
During such a measurement, the VNA is set at a fixed frequency of a resonance mode f0 and
the motors continuously scan the laser spot across the sample line by line. The laser is kept
at a fixed intensity or is modulated to improve the signal to noise ratio. The variation of
γl is deduced form the variation of S12 as a function of position. During the scan, the laser
spot moves at approximately 1 mm · s−1, the illumination time of a single site is about 0.3 s,
which is fast compared to the slow dynamics. Figure 3.19 shows a mode image obtained on
the HoneycombSi sample with fixed laser intensity. A full image requires about 30 min of
acquisition.
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Figure 3.19: Continuous scanning at constant laser intensity of a mode of the sample Hon-
eycombSi. This measurement was performed with the setup A. The plot on the right
shows the measured transmission of the resonance corresponding to the dashed lines of the
left figure.

Modulated laser intensity

For the measurement of the Semenoff samples, we modulate the laser intensity at fm ≈ 5 kHz
to improve the signal to noise ratio. The photoresponse is measured using the VNA set to
a bandwidth of BW = 20 kHz = 4fm. The modulation frequency is adjusted to precisely
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match this condition. The VNA time trace is digitally demodulated as shown in figure 3.20.
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Figure 3.20: Digital IQ used to demodulate the signal acquired from the VNA. The VNA
trace is first multiplied by two arrays which correspond to cos and sin functions sampled at
four times their period. The two quadratures are then filtered with a low pass FIR filter
(150 coefficients) with a cutoff frequency of 800 Hz. We show on the right panel the filter
coefficients and its frequency response in amplitude.

3.4.2 Raster acquisition
The acquisition time of the continuous scanning method is too long to get the spatial dis-
tribution of a large number of lattice modes. Instead of continuously scanning the position
of the laser, we identify the positions of the sites as shown in figure 3.22. We then choose a
set of positions corresponding to a few measurement points per site (between 1 and 6). For
each position we acquire a transmission spectrum from which we obtain the variation of S12
for many modes at the same time. For the HoneycombSi sample, this method was used
with constant laser intensity. For the ZigzagSi and ArmchairSi, we modulated the laser
intensity and demodulated each spectrum with the same method as explained above.

3.5 Failure of mode imaging on Sapphire
Figure 3.23 shows some of our attempts to image some modes with continuous laser scanning
and modulated laser intensity. The different images correspond to different optical densities.
We have observed that the images are blurred and that the signal to noise ratio is much worth
than for silicon samples. We have not fully understood the reasons for this behavior. We
suspect that one problem may come from multiple reflections of the laser inside the substrate.
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Figure 3.21: Continous scanning of an edge state of ZigzagSI performed with the setup B
and modulation. The plot on the right shows the measured photoresponse along the dashed
line. The signal amplitude is given by

√
|Q|2 + |I|2.
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Figure 3.22: Obtaining the positions of the resonators across the lattice. For the Setup A
on the left, the sample and the laser spot can be directly observed. For the Setup B, on the
right, we take a fine image near the corners of the sample and in the center to calibrate the
lattice positions.
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Figure 3.23: Images of two modes of a lattice on a Sapphire substrate. The top row shows
the same mode imaged at different laser intensities. The bottom row shows a single image of
a Semenoff edge state.
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In this chapter, we present the experimental results obtained with a honeycomb lattice
of superconducting resonators. We first explain the design of the sample and then show the
measured transmission spectra. We then present the results of the mode imaging using the
technique detailed in chapter 3. We show how we retrieve the wavevector of the imaged modes
although we only have access to the modulous of their wavefunctions across the lattice. This
allows us to obtain an experimental band structure that we compare to the different models
developed in chapter 2. The last section of this chapter is devoted to the characterization
of the zigzag and bearded edge states that we could image. In particular, we compare their
band structure and penetration lengths to the predictions obtained in section 1.2.

4.1 Design of the sample
Our lattice is made of hexagonal spirals with a typical size of 300 µm as shown in figure 4.1.
The spiral length was tuned in order to have a fundamental mode of the resonator around
6 GHz. More details about the resonator properties can be found in chapter 2.

200 µm

400 µm

100 µm

Figure 4.1: On the left, design of the spiral used for the sites of the lattice. The spiral is a
8.6 mm long wire with a width of 4.33 µm and a gap between two adjacent turns of 8.66 µm.
On the right, a SEM picture of a central region of a sample realizing a honeycomb lattice.

4.1.1 Nearest-neighbor coupling
As seen in 4.1, the gap between two sites is smaller than the gap between two turns of the
spiral. We made this choice to maximize the NN hopping strength in order to minimize the
effect of disorder. But this complicates the modeling of the lattice because the orbital of an
isolated spiral is not a good approximation to the orbital of a lattice site. The evolution of
the NN coupling energy t1 between two resonators is shown in the right curve of figure 4.2
for each of the three direction t1α, t1β, t1γ. The spiral breaks the invariance by rotation of
π/3 around its center leading to a small anisotropy between the three directions. The NN
coupling is calculated by simulating a circuit of two coupled resonators and looking at the
half splitting between the two resonances. For an equal distance between spirals in each
direction dα = dβ = dγ = 5 µm, we obtain the coupling values given in table 4.1.
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Figure 4.2: On the left, the definition of the three NN couplings between the spiral resonators.
On the right, the evolution of theses couplings as a function of the distance between the
resonators. One can observe a small anisotropy of the coupling at small distances.

f0 (GHz ) t1α (MHz ) t1β (MHz ) t1γ (MHz )
Silicon 5.934 208 204 199

Table 4.1: Coupling between adjacent sites obtained for d1 = d2 = d3 = 5 µm

4.1.2 Free boundaries and coupling to probe lines
The full design of the sample is shown in figure 4.3, it contains 324 sites. The actual samples
are micro-fabricated through photo-lithography and reactive ion etching of a sputtered Nb
layer as detailed in Appendix A. In chapter 1, we have seen that the honeycomb lattice
presents edge states on bearded and zigzag edges. Our design combines the three possible
types of boundaries to test these predictions. As can be seen in figure 4.3, the upper boundary
is a bearded edge, the bottom one is a zigzag edge and the two side ones are armchair edges.
Four probing lines are coupled to B sites located at each of the four corners of the lattice. We
have chosen B sites to ensure that we couple to the edge states as these modes are localized
on the B sublattice (see section 1.2). Figure 4.4 shows SEM pictures of the coupling regions.
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1 2

3 4

1 mm

Figure 4.3: Mask design to micro-fabricate a honeycomb lattice by lithography. Each of the
324 sites is a spiral resonator. The lattice presents different edges: armchair on the sides,
zigzag at the bottom and bearded on the top. The lattice is coupled to coplanar waveguides
(numerated 1 to 4) through the four corner sites of the lattice. The lattice covers an area of
7.2 mm× 7.2 mm.

200 μm200 μm

Figure 4.4: SEM picture of a honeycomb lattice sample. The right figure shows the bearded
edge and how the probe transmission line is coupled to the corner spiral. The second figure
shows the coupling to one zigzag edge.
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f0 (GHz ) t1 (MHz ) t2 (MHz ) t3 (MHz )
Silicon 5.984 205 −28 12

Table 4.2: Coupling parameters obtained from the DOS for the HoneycombSi sample. The
resulting DOS is plotted in figure 4.6.

4.2 Transmission measurements
In the following, we present the results obtained with a sample fabricated on a silicon sub-
strate. This sample, labeled HoneycombSi, was chosen for the small number of visible
defects at the end of the fabrication process. The sample was mounted in our dilution fridge
equipped with the microwave and optical setup A described in chapter 3.

The most straightforward characterization of the sample is obtained by acquiring trans-
mission spectra between the different ports connected to the sample. The results are shown
in figure 4.5, the measurement is performed with a resolution bandwidth 1 kHz. We distin-
guish two bands: a lower from 5.54 GHz to 5.84 GHz and an upper band from 5.90 GHz to
6.79 GHz. The transmission also presents peaks due to edge states around 5.95 GHz, which
are most clearly visible on the transmission along the bearded edge. These peaks also appear
in some diagonal transmissions and on the spectrum corresponding to the transmission along
the armchair edge.

4.2.1 Density of states
We construct the Density of States (DOS) by counting the number of peaks in a frequency
window of 15 MHz. To do so, we sum all the transmission presented in figure 4.5 and use a
standard peak detection routine to find the peaks. This routine consists in finding the local
maxima of the transmission and keeping only the maxima separated from each other by at
least 500 kHz. The summation over all transmission spectra avoids counting the same peak
many times. The resulting DOS is shown in figure 4.6. As detailed in chapter 1, we identify
five points of interest in the DOS, from which we deduce the values of the parameters entering
the tight-binding model:

f0 = 1
6 (fmin + fmax + 4fD) (4.2.1)

t1 = 1
8
(
fmax − fmin + f+

l − f−l
)

(4.2.2)

t2 = 1
9

(
fD −

fmax + fmin

2

)
(4.2.3)

t3 = 1
24
(
fmax − fmin − 3f+

l + 3f−l
)

(4.2.4)

The deduced values are summarized in table 4.2. The 2nd NN coupling t2 is about 15 % of
t1.

4.2.2 Comparison to Green function calculations
Using the tight-binding model parameters obtained above, we can estimate the expected
transmission for our sample and compare it to our data. We calculate the Green function
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Figure 4.5: Transmission measurements for the sample HoneycombSi. The type of edge
is indicated in the upper right corner. For the bearded edge, we clearly see peaks around
5.95 GHz that correspond to edge states. For the others transmissions, we distinguish two
bands. The lower band presents less peaks than the upper band and seem less coupled. The
zigzag edge does not have peaks in the gap between the two bands.
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Figure 4.6: Measured DOS of the HoneycombSi. The blue histogram counts the peaks
identified from the sum of all the transmission measurements shown in figure 4.5. The
orange line represents the DOS of the tight-binding model extracted by the point of interest
method. The difference between the data and the model is due to the fact that many modes
are not visible in the transmission spectra.

between the sites i and j using

Gij[f ] '
∑
µ

wiµwjµ
f − fµ + jγ

(4.2.5)

where the sum runs over all the eigenmodes µ of the lattice. As shown in figure 4.7, this
qualitatively reproduce the measured spectra. We count 7 edge state peaks between the two
bands for the bearded edge and 3 for the zigzag one. This ratio of approximately 2 between
the number of edge states along the two different edges is due to the fact that, in the Fourier
space, bearded edge states occupy a range of wavevectors two times larger than zigzag edge
states.

4.3 Measured band structure

In order to gain more insight about the modes observed in the transmission spectra, we use
the mode imaging technique described in chapter 3. Figures 4.8 and 4.9 shows 24 modes
measured with continuous scan and fixed laser intensity. The raw images correspond to the
variation of |S12|2 as a function of position. For a given mode, we obtain the weight |Ψ(r)|2
on site i by averaging the image over the area of the site. We have also measured 110 more
bulk modes using the raster scan method. Eight of them are shown in figure 4.10. We then
use the following sign retrieval algorithm to obtain Ψ(r).
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Figure 4.7: Green function calculated from a tight-binding model of the sample. This fig-
ure must be compared to figure 4.5. The tight-binding parameters correspond to the ones
indicated in table 4.2.
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6.8052 GHz 6.6238 GHz

6.7718 GHz 6.6124 GHz

6.6860 GHz 6.5826 GHz

6.6801 GHz 6.5793 GHz

6.6522 GHz 6.5512 GHz

6.6392 GHz 6.5168 GHz

Figure 4.8: Images of the highest frequency modes obtained by continuously scanning the
laser position across the sample. For each mode, the raw data which is proportional to |Ψ(r)|2
is shown on the left. On the right, the mode Ψ(r) is represented with the retrieved sign
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6.4520 GHz 6.3484 GHz

6.4216 GHz 6.3186 GHz

6.4136 GHz 6.3171 GHz

6.4047 GHz 6.2370 GHz

Figure 4.9: Following of figure 4.8
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5.4985 GHz 5.5114 GHz 5.5170 GHz 5.5234 GHz

5.5262 GHz 5.5318 GHz 5.5451 GHz 5.5535 GHz

Figure 4.10: Images of the lowest energy modes obtained with the raster scan method.

4.3.1 Sign retrieval algorithm
In order to retrieve the sign of a mode, we have to make some assumptions about the model
that gives rise to this mode. Here, we suppose that the measured Ψ(r) are close to the
modes of an ideal honeycomb lattice. More precisely, we search for the vector β such that
|∑M

α=1 β
αφα(r)|2 reproduces the measured |Ψ(r)|2, where φα(r) are the eigenmodes of the

honeycomb lattice having the same geometry as the sample but with only NN coupling.
Numerically, we have to minimize the following quantity:

L(β) =
∑

r

|Ψ(r)|2 −
∣∣∣∣∣
M∑
α=1

βαφα(r)
∣∣∣∣∣
22

(4.3.1)

This function can be rewritten as

L(β) =
∑

r

∣∣∣∣∣
M∑
α=1

βαφα(r)
∣∣∣∣∣
4

− 2
∑

r
|Ψ(r)|2

∣∣∣∣∣
M∑
α=1

βαφα(r)
∣∣∣∣∣
2

+
∑

r
|Ψ(r)|4 (4.3.2)

The last term is a constant and can be dropped out. For a fully delocalized mode, φα(r) ∝
1/
√
N and the first sum is approximately N times smaller than the second one. We therefore

start by maximizing the opposite of the second term that corresponds to a quadratic form:

∑
r
|Ψ(r)|2

∣∣∣∣∣
M∑
α=1

βαφα(r)
∣∣∣∣∣
2

=
M∑
γ=1

M∑
α=1

(∑
r
φγ(r)|Ψ(r)|2φα(r)

)
βγβα (4.3.3)

Maximizing this quadratic form under the constraint |β| = 1 can be done exactly by tak-
ing the eigenvector associated to the largest eigenvalue. This gives us a starting value
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Measurement M = 1 M = 2 M = 3

Figure 4.11: Convergence of the sign retrieval algorithm. The left plot is the measured mode.
The three other images show the sign calculated by the algorithm for different values of M .

of β from which we minimize L(β) through an iterative procedure. We define Ψ̃(r) =√
|Ψ(r)|2×sign(∑M

α βαφα(r)) and look for β that minimizes the least square problem ||Ψ̃(r)−∑M
α βαφα(r)||2. We reiterate the procedure until the vector β converges to a fixed point. The

obtained vector β depends on the choice of basis modes φα(r). We then iterate over all the
sets of M basis modes with adjacent energies and keep the one that minimizes L(β). We
have tested the procedure for different values of M , we observe that the deduced sign does
not change for M > 3 (see figure 4.11). The experimentally measured mode is finally given
by

Ψ(r) =
√
|Ψ(r)|2 × sign(

M∑
α

βαφα(r)) (4.3.4)

4.3.2 Band structure of the bulk
From the measured signed mode Ψ(r) =

[
φ1(r) φ2(r)

]
, we can now compute the mode

amplitude in Fourier space:

Ψ(k) =
∑

r
eikr

[
φ1(r)
φ2(r)

]
, (4.3.5)

Figures 4.12 and 4.13 shows the Fourier transform ||Ψ(k)||2 of the modes plotted in figures 4.8
and 4.9. To attribute a wavevector to a mode, we look for the value of |k| that maximizes
||Ψ(k)||2 in the first Brillouin zone.

We finally obtain the relation dispersion of the modes as a function of the norm of the
wavevector |k| as shown in figure 4.14. This plot comes from the mapping of 138 modes
out of the 324 expected ones with 93 modes in the upper band and 45 in the lower band.
We compare this measured band structure with three models: the effective tight-binding
deduced from the DOS (see above), and the two ab-initio models developed in chapter 2: the
admittance model and the CMT model.

For the admittance model, the curve is the direct result from EM calculation without
any additional offset. For the CMT model, we have adjusted the bare frequency f0 in order
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Figure 4.12: Fourier transform of the modes shown in figure 4.8. For each mode, the signed
mode Ψ(r) is shown on the left. On the right, the mode Fourier transform ||Ψ(k)||2 is
represented. The red line delimits the first Brillouin zone and the dashed circle indicates the
value of |k| where the maximum of the Fourier transform is located.
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Figure 4.13: Fourier transform of of the modes shown in figure 4.9. See figure 4.12.
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Figure 4.14: Band dispersion obtained from the measurements shown in figures 4.8 and 4.9
and other not shown measurements. This band structure displays 138 modes out of the 324
expected mode of the lattice. The solid curves are three different models of infinite lattice:
in gray the admittance model, in green the CMT model and in black the tight binding
obtained from the DOS.
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to take into account the layer of silicon oxyde on top of the substrate. As shown in chapter 2,
we do not expect the CMT model to be quantitatively exact because the distance between
the sites is too small for the model to be valid. The admittance model is also not in perfect
agreement with the data. We do not have any explanation for the systematic shift of the
lower band compared to the expected dispersion relation.

94



4. Honeycomb lattice of superconducting resonators A. Morvan

4.4 Characterization of the edge states
In the transmission spectra, we have identified peaks that we attributed to edge states. In
this section, we present the images of these modes from which we deduce their band structure
and penetration lengths.

4.4.1 Edge state wave functions
Figure 4.15 shows the mode intensities for the 9 edge states that we have identified. Their
frequencies lie between 5.87 GHz to 5.94 GHz, close to the Dirac point frequency estimated at
5.92 GHz. All the modes only occupy the sublattice that is next to the boundary as expected
for such states (see section 1.2).

5.9323 GHz 5.9205 GHz 5.9090 GHz

5.9047 GHz 5.8991 GHz 5.8962 GHz

5.8937 GHz 5.8843 GHz 5.8796 GHz

Figure 4.15: Measured edge state intensities |Ψ(r)|2.
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4.4.2 Measured band structure
In order to reconstruct the band structure of these modes, we cannot use the method described
for the bulk modes as these modes are not localized over the whole lattice and the sign
algorithm fails. We extract their wavevectors directly from the Fourier transform of the
mode intensity |Ψ(r)|2. We look for the maximum of the Fourier transform which yields
a wavevector that is twice the wavevector of the mode. The resulting band structure is
presented in figure 4.16.

We compare this measured band structure to the calculated one for an infinite ribbon
having the same height than our sample and the same type of top and bottom edges. The
tight-binding parameters are taken from table 4.2, we also allow for a shift of the resonance
frequency of the sites located on the edges.
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Figure 4.16: Reconstructed band structure of the zigzag and bearded edge states. The dots
indicate measured points. The red line is the prediction of a tight-biding model for an infinite
ribbon having the same height, top and bottom edges than the sample. The tight-binding
parameters correspond to the ones that were deduced from the measured DOS. We shift the
resonance frequency of the sites on the edge by −9 MHz to reproduce our data. This shift is
comparable to the value of −10 MHz that is predicted from Sonnet simulations.

4.4.3 Measured penetration length
The decay of the edge states are shown in figure 4.17. Each curve is the average of the mode
intensity along the direction perpendicular to the boundary. We see that some edge states
have weight on both sides of the sample. We fit these curves to a decaying exponential. The
resulting penetration lengths ξ(kx) are shown in figure 4.18 and compared to the predictions
of the tight-binding model described above.
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Figure 4.17: Decay of edge state intensities |Ψ(r)|2. Each profile is normalized so that the
intensity is one at y = 0. Here, we only take into account the weight on the B sublattice.
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Figure 4.18: Evolution of the localization length of the edge states for the bearded and the
zigzag boundaries. The measured lengths (dots) are compared to the predictions of the same
tight-binding model than used in figure 4.16.
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Conclusion
We have shown in this chapter that superconducting circuits offer an interesting platform
to simulate lattices system. We were able to reproduce several properties of the honeycomb
lattice with our sample. We have been able to reveal the wavefunction of many lattice
modes, from which we could reconstruct the band structure of the honeycomb lattice. This
band structure is quantitatively explained by the ab initio admittance model developed in
chapter 2. Finally, we have been able to observe the edge modes of the honeycomb lattice
and show that they appear, as predicted, on the zigzag edge and not on the armchair edges.
For theses zigzag/bearded edge states, we have been able to reconstruct their band structures
and we measured their penetration lengths.
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In the first chapter, we have described the edge states arising when two Semenoff insulators
with opposite mass are set aside [55]. Theses edge states with atom thick domain wall are
difficult to observe in solid-state 2D material as it requires high tunability over the lattices
parameters. In artificial system, this constraint is lifted as it is straightforward to tune
individually each site and each coupling by design. This tunability have allowed Noh et al.
[81] to observe Semenoff edge states in evanescently coupled waveguide arrays. In this chapter,
we present the realization and the observation of Semenoff edge states in a superconducting
lattice. In the first part of this chapter, we describe the design of the two types of samples
that we considered. Three samples have been measured for this thesis: two zigzag domain
walls on a silicon substrate and a sapphire substrate that we will now on name ZigzagSi and
ZigzagSa respectively and one armchair domain wall on a silicon substrate ArmchairSi.
Similarly to the chapter on the experimental realization of the honeycomb lattice, we then
first present transmission measurements for the three samples. The point of interest method
is used to fit the DOS and get the tight-binding parameters. The mode imaging allows
us to reconstruct the band structure and to compare it to different models. Combining
optical observation and mode imaging, we have also been able to observe site defects and the
associated localized states [82]. The last section of this chapter is devoted to the observation
and the characterization of the Semenoff edge states. With the mode imaging, we are able to
extract both their band structure ω(k) and their penetration length ξ(k). This information
is then compared to the theoretical expectation for different models: infinite slabs and finite
size tight-binding simulations.

5.1 Superconducting circuit design
In this section, we first give the target model using the analysis done in the first chapter.
We then present how we implement the different parameters of this model: the Semenoff
mass µ and the hopping term t1. Finally, we discuss the two Semenoff designs used in this
experiment.

5.1.1 Target parameters
Some complications in the admittance model and the CMT model of the HoneycombSi
sample come from the strong nearest neighbor coupling. To avoid such complication, we
reduced the NN coupling to t1 = 120 MHz which corresponds to a gap between two adjacent
spiral of about 35 µm. For this experiment, we also decided to implement a larger lattice than
the honeycomb lattice sample. The Semenoff lattices we propose have a size of 13.6 mm by
8 mm. The optical and microwave setup B described in chapter 3 was specifically designed for
this purpose. The domain wall is implemented in the longest direction in order to maximize
the number of edge states and thus having a better resolution in the band structure. To
observe a clear signature of edge modes, the penetration length ξ has to be smaller than the
half width of the sample. Using the low energy model derived in section 1.4 this imposes:

ξ0 = 3ta
4µ <

w

2 or µ >
3a
2wt (5.1.1)

with the step of the lattice a ' 400 µm. The Semenoff mass has to be bigger than 9 MHz in
order to have a penetration length smaller than the half-width. The Semenoff mass should
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not be too large as the low energy picture breaks down for too high values of µ. In order to
have a penetration length significantly smaller than the half-width, we target µ = 60 MHz.
With this value, the edge states are well defined with a penetration length ξ0 = 600 µm.
Finally, in order to address the edge modes we couple the two extremal sites of the domain
wall to two probing transmission lines. The target parameters are summarized in table 5.1.
The following of this section is dedicated to the implementation of theses parameters in a
lattice of spiral resonators.

f0 (GHz) µ (MHz) t1 (MHz) vF (a.MHz) ξ0 (a)
Target 6.0 60 120 180 1.5

Table 5.1: Targeted parameters for the Semenoff domain lattices. The Fermi velocity and
the penetration length are calculated from the low energy model section 1.4.

5.1.2 Tuning of the on-site energy
The Semenoff mass µ is given by the detuning between the two sublattices. One of the site
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Figure 5.1: On the left, the spiral resonator design. The grey part represents the part that is
removed in order to tune its frequency. The left panel present the evolution of the resonance
frequency as the spiral is shortened. In order to have a µ of about 60 MHz, the spiral has to
be shortened by 500 µm or 3 turns.

of the Semenoff insulator is the spiral resonator used for the honeycomb lattice described in
section 2.1. The other one is the same spiral with a reduced length as shown in figure 5.1.
To keep the same space occupation for each spiral, we reduce the length starting from the
center of the spiral. The right panel in figure 5.1 shows the evolution of the first resonance
frequency as the spiral is shortened. To implement a µ of 60 MHz, a length of 500 µm must
be removed.
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5.1.3 Nearest neighbor coupling
As shown in chapter 4, the coupling between two spiral resonators depends on the orientation
of the link. This is due to the fact that spirals do not have the honeycomb lattice symmetry.
When designing this sample, we have adjusted the distance between the sites depending
on the link direction as shown in figure 5.2. The three distances are adjusted such that
the hopping calculated with the method described in section 2.1 is 120 MHz for all three
directions as shown in figure 5.2: d1 = d3 = 30 µm and d2 = 35 µm.
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Figure 5.2: On the left, the geometry of the coupling between an A site and a B site. Due to
the anisotropic design of the spiral, the hopping energies t1α, t1β and t1γ are not necessarily
the same for a given distance. On the right, the hopping energy as a function of the distance.
The hopping t1γ is smaller than t1α and t1β. The dashed line indicates the targeted hopping
energy.

5.1.4 Complete sample design
In chapter 1, we have derived analytic results for two domain wall geometries: zigzag and
armchair domain walls. The figure 5.3 presents these two configurations with spiral res-
onators. Due to the anistropy described in the last section, we cannot simply translate the
spiral from on side to the other of the domain wall. A mirror image would not work either
as the spirals on opposite side of the domain wall would have opposite winding orientations,
leading to a very different NN coupling at the domain wall. To prevent this change of orien-
tation and keep the anisotropy, the spiral are rotated by π from one side to the other as can
be seen in figure 5.3. The length of the sample allows us to have 21 cells along the domain
wall in the zigzag case, 24 in the armchair case. For this finite geometry, there should exist
about the same number of modes in the edge state branch.

Maximizing the number of spirals in one sample is obtained for a rectangular shape of the
lattice. However, the honeycomb lattice gives rise to zigzag edge states for zigzag boundaries
(see section 1.2). For some design, zigzag edge states and Semenoff edge states would share
the same sites, giving rise to a mixing of these states. This situation can happen at the two
ends of the domain wall as depicted in figure 5.4. In order to prevent this, we have shaped
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(a) (b)

Figure 5.3: Designed domain wall (a) zigzag (b) armchair. The A sites are in blue and the B
sites in red. The dashed line indicates the domain wall. The zigzag domain wall is constituted
of A sites only whereas the armchair domain wall is made out of A and B sites.
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Figure 5.4: Schematics of the designed samples. The zigzag edge states are represented in
orange and the Semenoff edge states are represented in red. For the zigzag domain wall (a)
the two edges do not meet whereas in the armchair domain wall case (b), the Semenoff edge
states mix with the zigzag edge states for a rectangular shape. The blue shape shows the
designed shape without zigzag edge states mixing with the Semenoff edge states.
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the edges of the sample with the armchair domain wall to have armchair edges. The final
design is presented in figure 5.5 with 574 sites for the zigzag domain wall sample and 480
sites for the armchair domain wall.
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(a)

(b)

1 2

3 4

1 2

3 4
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Figure 5.5: Mask design to observe the Semenoff edge states between two Semenoff insulators.
(a) Zigzag domain wall and (b) Armchair domain wall. Two probing lines are coupled to the
ends of the domain wall. The two other are coupled to a corner site of the lattice. The zigzag
(resp. armchair) is composed of 574 (480 resp.) spiral resonators.
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5.2 Transmission measurement
The lattices presented in figure 5.5 have been fabricated like the HoneycombSi sample with
the process described in Appendix A. Out of several samples, we have measured 3 distinctive
ones: ZigzagSi, ZigzagSa and ArmchairSi where zigzag/armchair stands for the design
and Si/Sa for the substrate Silicon/Sapphire. In this section, we present the characterization
of this three samples using the setup B described in chapter 3.

The transmission measurements are shown in figure 5.6. These measurements have been
taken with the microwave setup B in a 1 GHz band between 5.7 GHz and 6.7 GHz with a
resolution bandwidth of 1 kHz. Figure 5.6 presents the two main transmissions: the bulk
transmission and the domain wall transmission. In the bulk transmission, two bands appear
separated by a gap of 2µ ' 120 MHz depicted by a light gray area. For the domain wall
transmission, this region presents peaks related to the edge states. Like the HoneycombSi
sample, the two bands are asymmetric with the lower band having a smaller span that the
upper band. For the sample ArmchairSi, we can also notice that the lower band presents
less peaks and lower intensity than the upper band.

5.3 Density of states and band structure of bulk states
We have counted the number of peaks for each sample with the same method as for the
HoneycombSi sample described in section 4.2. The resulting DOS is shown in figure 5.7.
For the zigzag design, we identify ' 80% of the expected number of peaks. Whereas for
the armchair case, this number is reduced to ' 65%. The figure 5.7 (b) shows most missing
peaks lie in the lower band. This indicates that modes in the lower band are less coupled
to the transmission lines than the ones in the upper band. The DOS fitted using the points
of interest is plotted as a solid line. The expression of the tight-binding parameters as a
function of the point of interest frequencies are:

f0 = 1
6
(
fmin + fmax + 2f−D + 2f+

D

)
(5.3.1)

µ = 1
2
(
f+
D − f−D

)
(5.3.2)

t1 = 1
8

(√
(fmax − fmin)2 − 4µ2 +

√
(f+
l − f−l )2 − 4µ2

)
(5.3.3)

t2 = 1
9

(
f+
D + f−D

2 − fmax + fmin

2

)
(5.3.4)

t3 = 1
24

(√
(fmax − fmin)2 − 4µ2 − 3

√
(f+
l − f−l )2 − 4µ2

)
(5.3.5)

The parameters obtained by fitting the DOS are summarized in table 5.2. They show a good
agreement with the coupling parameters obtained from the admittance matrix and CMT
calculations and are close to the target parameters given in table 5.1.

5.3.1 Bulk mode images
The mode imaging of the sample ZigzagSi and ArmchairSi is done with the optical setup
B described in chapter 3. The measurements are done with an alignment around the four
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Figure 5.6: Transmission measurements for the three Semenoff samples. The grey area
represents the gap of the system. For all three samples, modes appears in the domain wall
transmission compared to the bulk transmission. Both transmissions are renormalized by the
attenuation and the amplification of the probing line.
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Figure 5.7: DOS for (a) ZigzagSi, (b) AmrchairSi and (c) ZigzagSa. The blue histogram
counts the number of detected peaks in bins of 10 MHz. The orange solid line shows the
lattice DOS of an infinite Semenoff insulators that has the same frequency positions for the
points of interest than the measured DOS. The curve is renormalized such that integration
over the full bandwidth gives the number of resonators (574 for zigzag, 480 for armchair).

f0 (GHz ) µ (MHz ) t1 (MHz ) t2 (MHz ) t3 (MHz )
Si zigzag 6.136 58 126 −18 12
Si armchair 6.091 60 124 −20 13
Sapphire zigzag 6.089 60 132 −20 13

Admittance model 5.98 60 120 −18 10

Table 5.2: Coupling parameters obtained by extracting the frequencies of a the points of
interest in the DOS.
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corners and a central region of the lattice. The sampling of the lattice is realized by taking
6 points per resonators and 6 points per empty cell between the resonators. A few modes of
the upper bands are shown in figures 5.8 and 5.9 for ZigzagSi and ArmchairSi. The sign
is retrieved using the same technique described in section 4.2 with a linear combination of
3 theoretical modes obtained from a tight-binding simulation on finite size lattice with the
parameters obtained in table 5.2.

5.3.2 Band structure of the bulk
The mode imaging allows us to associate a wavevector k to each peak observed in the trans-
mission by doing a Fourier transform as described in section 4.2. The band structure is
represented in figure 5.10 using the norm of the obtained wavevector |k|. The result is com-
pared to several models. The black solid line is the band structure obtained for an infinite
lattice with the parameters determined in table 5.2. The gray line is obtained through ad-
mittance matrix simulation with two ports per resonator. We can see that the tight-binding
model is close to the experimental data. However, the upper band does not match exactly.

The two ab initio models reproduce very well the experimental data. The admittance
model is plotted as is for the ArmchairSi sample and with an offset for the ZigzagSi
sample. For the CMT models, the frequency of the bare resonators were adjusted to match
the observed gap for both samples. To complete the band structure analysis, we also consider
the x and y components of the measured wavevectors to estimate the band structure as a
function of kx and ky. Figure 5.11 shows the interpolated band structure of the ZigzagSi
and the ArmchairSi samples in the 2D Brillouin zone. The interpolation is done using a
simple linear interpolation between the data points.

5.4 Zigzag edge states
The ZigzagSi sample has two zigzag boundaries that can host zigzag edge states. As the
probing line are coupled to the corner of the lattice, we have been able to measure some of
them. They are shown in figure 5.12. As expected, these modes occupy only one sublattice.
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Figure 5.8: Images of modes in the upper band of the ZigzagSi sample. Besides each
measured mode image is the reconstructed mode with the sign obtained by the method
described in section 4.2.
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Figure 5.9: Spatial dependence of modes in the upper band of the ArmchairSi sample. See
figure 5.8
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Figure 5.10: Bulk band structure of the Semenoff samples. The plot shows the band structure
as a function of the norm of the wavevectors |k|. The black line is the band structure
calculated from the parameters obtained in table 5.2. The gray line is the band structure
calculated from the admittance model. The green curve is calculated with the CMT model.

(a) (b)

Figure 5.11: Interpolated band structure of the (a) ZigzagSi and (b) AmrchairSi sample.
The blue surface represents the upper band and the red surface the lower band. Each dot
represent a mode obtained by the mode imaging. We see that the upper band is well sampled
whereas the lower band is more sparsely sampled.

112



5. Simulation of Semenoff insulators with superconducting resonators A. Morvan

f = 6.117 GHz f = 6.119 GHz f = 6.131 GHz
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f = 6.143 GHz f = 6.144 GHz f = 6.146 GHz

f = 6.148 GHz f = 6.150 GHz f = 6.153 GHz

Figure 5.12: Observed zigzag edge states of the sample ZigzagSi. As expected, these edge
states occupy only one sublattice (here A).
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5.5 Characterization of the Semenoff edge states

We now focus on the measurement of the Semenoff edge states and their characterization.
We first analyze the transmission spectrum along the domain wall. We then use the mode
imaging to reconstruct their spatial distribution to confirm their localization near the domain
wall. The mode imaging also allows us to reconstruct their band structure as well as their
penetration length. We compare them with the theoretical models developed in chapter 1
using the parameters of table 5.2 and we additionally compare them to finite size tight-binding
calculations.

5.5.1 Edge state transmission

In the transmission measurement plotted in figure 5.6 we have seen that peaks appear in the
gap of the Semenoff insulator when probing the transmission along the domain wall. A closer
look to these spectra reveal several peaks represented in figure 5.13. The ZigzagSi presents
regularly spaced peaks with monotonic amplitude. To understand this result, the theoretical
transmission using the parameters of table 5.2 is shown in figure 5.13.
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Figure 5.13: The first row shows the measured transmissions of the edge states. The second
row shows the Green function from one side of the domain wall to the other calculated with
the finite size tight-binding model. The Green functions reproduce the observed transmission
in the zigzag case. In the armchair case, the model does not seem to capture well the edge
state amplitudes.
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5.5.2 Measured band structure
Mode images are shown in figures 5.14 and 5.15 for both the ZigzagSi and ArmchairSi
samples. Their measurement is done by using the continuous scan described in section 3.4. In
both cases, the edge states are localized near the domain wall and present periodicity along
the domain wall. For the zigzag case, the penetration length of the state strongly depends
on the energy of the observed mode whereas for the armchair states, the penetration length
is rather the same for all observed modes. In the first few modes at low energy of the zigzag
domain wall, we observe some defects that interact with the edge states.

In order to obtain the band structure of the modes, we first integrate the spatial distri-
bution of the mode to obtain a longitudinal profile |Ψ(x)|2 as a function of the coordinate x
along the domain wall (see figures 5.14 and 5.15). The dispersion relation of the modes is
obtained from a Fourier transform of these longitudinal profiles. For the armchair domain
wall, the periodicity is twice the periodicity of the lattice and the primitive cell is a 4 site cell.
The band structures are plotted in figure 5.16 with the analytic band structures obtained
with the Dirac equation (see section 1.4 and with the infinite NN tight-binding model (see
section 1.5). We also show the results of a calculation on a finite size lattice. We do not
observe as many modes as expected. One reason may be that the modes with large wavevec-
tors have the largest penetration length and mix more easily with bulk modes, making them
harder to identify.

5.5.3 Measured penetration length
In chapter 1, we have seen that a rough estimate of the localization length ξ(k) is given by
the ratio of the NN hopping energy to the Semenoff mass, ξ0 = 3ta

4µ . We have also shown that
the penetration length depends on the domain wall geometry. For a zigzag domain wall, the
penetration length strongly depends on the wave vector k and presents a linear behavior near
the Dirac point. But, in the armchair case, the penetration length is almost independent on
the wave vector. The figure 5.17 shows the decay of the edge states. As can be seen on this
figure, the penetration length of the zigzag sample varies much more than for the armchair
sample. The values of ξ deduced from an exponential fit are shown in figure 5.18 as well as
the theoretical penetration length for the low energy model (dashed line) and the penetration
length predicted by with an infinite tight-binding model (blue solid line).

The experimental values of the penetration length ξ agree well with the theoretical expec-
tations. For the zigzag sample, we see that the finite size of the system bends the curve ξ(k)
in agreement with the data. For AmrchairSi, there is a clear difference between the infinite
model (blue curve) and the finite size model (red curve) due to the shape of the sample near
the gap edges. However, we were not able to observe edge states in these frequency ranges.
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Figure 5.14: Profile of the edge states along the domain wall for ZigzagSi. The modes are
organized by ascending frequency. The modes present clear periodicity.
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Figure 5.15: Profile of the edge states along the domain wall for ArmchairSi. The modes
are organized by ascending frequency. For this system, the periodicity of the domain wall is
twice the periodicity of the lattice
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Figure 5.16: Band structure of the edge states. The dots indicate the measured modes. Three
models are plotted: the dashed line corresponds to the low energy model (see section 1.4)
with a slope given by the Fermi velocity. The blue is the analytic result for an infinite tight-
binding (see section 1.5). The red is the result of a tight-binding numerical calculation on a
finite lattice with the parameters of table 5.2.
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Figure 5.17: Profile of the edge states in the direction orthogonal to the domain wall. The
colors correspond to the modes in figures 5.14 and 5.15. For the ZigzagSi sample, we see
that the decay is different from mode to mode whereas for the ArmchairSi sample, the
decay is almost the same for all the measured modes. For the ZigzagSi sample, one mode
has a large weight not centered on the domain wall. This is due to a defect that affects this
particular mode.
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Figure 5.18: Penetration length ξ of the edge states in cell unit. The dot colors correspond
to the curves in figure 5.17. Three models are plotted: the dashed line is the low energy
model (see section 1.4). The blue is the analytical result for an infinite tight-binding (see
section 1.5). The red is the tight-binding numerical calculation done for a finite lattice with
the parameters of table 5.2.

5.6 Observation of localized states induced by defects

During the fabrication of the sample, some defects appear in the lattice. The kind of defects
that change most the lattice are metallic scraps that fall back on some resonators during
the lift-off. This usually creates a short between two meanders of the spiral, decreasing its
effective length and thus increasing the resonance frequency. For large shifts, this results in
a vacancy in the lattice. The effect of a single vacancy on a honeycomb lattice in the tight-
binding approximation was studied by Pereira et al. [82]. They show that such vacancies
induce localized states around the defect and that the energy of these defect is close to
E = 0. Moreover, these states only occupy the sublattice opposite to the defect site.

5.6.1 Identification of the defects

Optical inspection of the sample with a microscope usually reveals a few defects in the lattice.
The defects spotted on the sample ZigzagSi are shown in figure 5.19. In order to see if we
are able to spot these defect with the mode imaging, we look for sites in the lattice that are
weakly populated when summing over all modes. The plot on the right of figure 5.19 shows
the average mode amplitude of each site over all the measured modes. To make the defect
appear more clearly, we have increased the contrast. This map reveal 5 defects in the bulk
that are connected to visible defects as shown in the right panel.
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Figure 5.19: The left panel shows the optical image of the defects. The right panel shows
the average of the weight of the modes squared with an increased contrast to see the defect.

5.6.2 Localized defect states
Pereira et al. [82] have shown that the localized modes around a defect are zigzag-like states
where the mode is localized on the sublattice opposite to the one of the defect. They have
found in the infinite lattice approximation that the wave function with a defect on the
sublattice B behaves as:

ΨA(x, y) ' e(4πix)/(3
√

3)

y + ix
+ e2πi(y+x/

√
3)/3

y − ix
and ΨB(x, y) = 0 (5.6.1)

where x and y are the coordinates with respect to the position of the defect. We have run
simulations with a single defect to confirm that adding a Semenoff mass and NNN coupling
does not change the localization of these states. The results with the parameters of table 5.2
are shown in the last row of figure 5.20 and we indeed observe a localized mode near the
defect. Localized states are usually not coupled to the edge. However, due to the finite
size of the sample, some of the defect modes are coupled to the probing lines and can be
observed. The images of these modes are shown in figure 5.20. They are localized near the
defects revealed in figure 5.19. Figure 5.20 shows the decay of theses modes. We see that
these localized modes have a typical size of two sites and form a triangular shape around the
defect, exactly like predicted by the finite size simulation.
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Figure 5.20: Observed defect modes |Ψ(r)|2. The first colon is the full mode, the second colon
shows a zoom onto the mode. The last colon shows the wavefunction |Ψ(r)|2 as a function
of the distance to the defect observed in figure 5.19. Each color represents a sublattice. The
last row presents a theoretical mode calculated from a tight-binding model with one defect.
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Conclusion
In this chapter, we have probed the physic of topological edge states in a lattice of supercon-
ducting resonators realizing a domain wall between two Semenoff insulators with opposite
masses. In addition to show their presence in the gap, we have been able to fully characterize
their band structure and their penetration length for two different geometries. The agreement
between our measurements and the theory proves our ability to successfully design lattices
in order to observe specific topological effects.
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This thesis work aimed at using superconducting circuits to simulate condensed matters sys-
tems. We chose to design and realize a honeycomb lattice and a Semenoff insulator. The
main interest of the Semenoff insulator is the existence of a topological charge for each val-
ley. When two Semenoff insulator are put side by side these topological charges insure the
existence of edge states in the gap of the insulator. The realization and observation of these
two lattices constitute a demonstration of the ability of superconducting circuits to explore
specific topological effects. The first point (see chapter 1) of this thesis was to determine the
range of parameters allowing to study these effects. Then, to have a faithful description of the
superconducting lattices, we have developed in chapter 2 two models that rely on numerical
simulation of a single or a few resonators. The first model uses the admittance matrix calcu-
lated on a small subregion and periodizes it to obtain the band structure. The second model
relies on the coupled mode theory to calculate the band structure. From an experimental
point of view, in order to probe the spatial dependence of the mode wavefunctions in the
lattice of resonators, we have developed in chapter 3 a mode imaging technique based on the
creation of a local loss with a laser. With this technique, we have observed several modes of
a honeycomb lattice (chapter 4) and of Semenoff insulators (chapter 5) leading to the recon-
struction of the band structure of these lattices. For the three lattices imaged in this thesis,
we have a good agreement between the measured band structures and the calculated ones.
We also observe the edge states on the zigzag and bearded edge of the honeycomb lattice as
well as the Semenoff edge states. For both, we have measured their band structure and their
penetration length and we have a good agreement with tight-binding predictions. A question
to answer is why the sapphire lattice did not work. At the time of writing of this thesis, we
did not have enough time to investigate more thoroughly, but the Sapphire substrate seems
to offer different conditions of mode imaging as it is TLS free. Another challenge for the mode
imaging is the information on the phase between each site. In our case, the phase is just a
sign, but in some situation it can be any angle. There have been implementation of a phase
sensitive measurement of superconducting resonators by Karpov et al. [83], however, they
rely on an amplitude modulation of the laser at a frequency close to the resonance frequency
of the resonators and requires a better modulation setup than we have. As a follow-up of
these experiments, several systems with the same spiral resonators can be considered and im-
plemented: a kekulé distortion [70] or pseudo-magnetic field using inhomogeneous coupling
[47, 84–86]. In a broader perspective, a topological matter cornerstone is the time reversal
symmetry. Breaking this symmetry leads to non-zero Chern numbers and chiral edge states.
The superconducting resonators offer a possibility to realize this by using modulated cou-
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pling [18, 87] or by using a specific configuration of a Josephson junction [9]. However its
implementation on large arrays remains a challenge for superconducting circuits. A second
main direction is the use of Josephson junctions or high kinetic inductance materials ([88–90]
for their non-linearity in order to enter the strong interaction regime. This interaction term
allows to explore the physics of photonic Mott insulators [20] and paves the way to quantum
simulation.
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Appendix A
Sample fabrication

A.1 Fabrication
The superconducting resonators presented on figure 4.4 are made of niobium on a oxide silicon
substrate. Niobium is a conventional BCS superconductor largely used for thin films deposit.
It has a critical temperature Tc = 9.2 K which allow to work easily on the 1 K plate of a
dilution fridge or in a pumped Helium fridge. It also yields good quality factors (Q > 105)
for GHz resonators at theses temperature. The niobium film is homogeneously deposited
over the whole wafer by sputtering. The pattern is realized with optical lithography with
a chrome mask and then etched with Reactive Ion Etching (RIE). Figure A.1 presents a
detailed list of the fabrication steps of the fabrication process:

Resist S1813

Nb

Substrat

(a) Sputtering

(b) spin-coating (d) Development

Cr mask

UV

(c) Lithography

(f) Lift-off

(e) Etching

SF6 Plasma

Figure A.1: Fabrication process of the chip. The Nb deposit was done at LPS Orsay in a
Plassys sputtering chamber. The optical lithography and the etching is done at C2N Orsay

• Cleaning of the sapphire wafer in piranha acid for 10 min to remove dust. For Silicon
wafer, the wafer were sufficiently cleaned to be processed right away.

• (a) Deposit of 250 nm of Nb at a rate of ∼ 1.4 nm · s−1 by sputtering technique.
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10 mm

1 mm

(a) (b)

Figure A.2: (a) Sample holder with PCB soldered on top. The sample holder is made out
of plain copper. The sample holder has been gold platted in order to avoid oxidization of
the copper. (b) Zoom on the wedge bonding of the sample. The edges of the chip are wedge
bonded to the ground plane of the PCB. each sides of the CPW transmission line are wedge
bonded in order to avoid inhomogeneity in the ground plane.

• (b) Spin-coating of the wafer with the photo-resist Shipley S1813 followed by baking
on a hot plate at 110 ◦C for 1 min.

• (c) Lithography of the pattern with UV exposure through the chrome mask in hard
contact on a manual mask aligner (MJB4 - SÜSS MicroTec).

• (d) Development in pure MF319 developer to remove the exposed resist.

• (e) Reactive ion etching using SF6 plasma. The end of the etching process is determined
by optical setup. Typically, the etching last 6 min.

• Dicing of the wafer with a diamond saw.

• Deposition of a Nb back plain.

• (f) Removal of the remaining resist in hot bath (60 ◦C) of acetone.

The chips are then examined in order to check if the probing transmission lines are well
defined and to count the number of defective resonators (usually some non-etched metallic
part shortening two lines of a resonators).

A.2 Sample holder
The sample is fixed onto the sample holder with silver glue. The microwave lines and the
ground plane are wedge bonded to the PCB figure A.2. Wedge bonding all around the chip
and over the CPW lines allow for a good ground definition and remove some parasitic effect
due to propagation in the ground plane.
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Réseaux en nid d’abeille de résonateurs supraconducteurs: Observation
d’états de bords topologiques de Semenoff
Mots clés : Circuits supraconducteurs, Réseau nid d’abeille, Isolant de Semenoff, État
de bord, Topologie
Résumé : Cette thèse décrit la réalisation et l’étude de réseaux bidimensionnels de
résonateurs supraconducteurs en nid d’abeille. Ce travail constitue un premier pas vers
la simulation de systèmes de la matière condensée avec des circuits supraconducteurs.
Ces réseaux sont micro-fabriqués et sont constitués de plusieurs centaines de sites. Afin
d’observer les modes propres qui y apparaissent dans une gamme de fréquence entre 4
et 8 GHz, nous avons mis au point une technique d’imagerie. Celle-ci utilise la dissipa-
tion locale créée par un laser avec lequel nous pouvons adresser chaque site du réseau.
Nous avons ainsi pu mesurer la structure de bande et caractériser les états de bord de
nos réseaux. En particulier, nous avons observé les états localisés qui apparaissent à
l’interface entre deux isolants de Semenoff ayant des masses opposées. Ces états, dits
de Semenoff, sont d’origine topologique. Nos observations sont en excellent accord avec
des simulations électromagnétiques ab initio.

Honeycomb lattices of superconducting microwave resonators: Observation
of topological Semenoff edge states
Keywords: Superconducting circuits, Honeycomb lattice, Semenoff insulator, Edge
states, Topology
Abstract: This thesis describes the realization and study of honeycomb lattices of
superconducting resonators. This work is a first step towards the simulation of condensed
matter systems with superconducting circuits. Our lattices are micro-fabricated and
typically contains a few hundred sites. In order to observe the eigen-modes that appear
between 4 and 8 GHz, we have developed a mode imaging technique based on the
local dissipation introduced by a laser spot that we can move across the lattice. We
have been able to measure the band structure and to characterize the edge states of
our lattices. In particular, we observe localized states that appear at the interface
between two Semenoff insulators with opposite masses. These states, called Semenoff
states, have a topological origin. Our observations are in good agreement with ab initio
electromagnetic simulations.
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