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Résumé

Super- et sous-radiance dans un nuage dilué d’atomes froids

Le problème de l’interaction de N atomes avec un faisceau laser et les modes du vide

peut donner lieu à de nombreux phénomènes intéressants concernant l’émission spontanée

de la lumière et sa propagation dans l’échantillon. Les effets coopératifs, par exemple, tels

que la super- et la sous-radiance, sont des effets liés à la cohérence créée entre les atomes

lorsqu’un photon est émis spontanément par un seul atome excité. La super-radiance

peut être définie comme le renforcement de l’émission spontanée due à une interférence

constructive de la lumière diffusée. Son homologue, la sous-radiance, est le piégeage d’une

partie de la lumière restante en raison d’interférences destructives.

Dans les atomes froids, certains travaux théoriques antérieurs prédisent et caractérisent

ces deux effets coopératifs dans un nuage atomique large et dilué, dans le régime des faibles

intensités et à grands désaccords du laser incident. Le modèle théorique est un modèle de

dipôles couplés pour atomes à deux niveaux pilotés par un champ de faible intensité et

dans l’approche scalaire. L’expérience consiste à mesurer les taux de décroissance super-

et sous-radiants à partir de l’intensité temporelle émise après la coupure du laser incident

en régime stationnaire. Notre schéma expérimental consiste en un piège magneto-optique

d’atomes de rubidium 87 à grandes épaisseurs optiques à résonance. Un faisceau sonde

excite les atomes proche de la raie D2. L’intensité émise est detectée par un détecteur de

photons uniques dépourvu d’afterpulsing et une procédure d’étalonnage nous permet de

déterminer l’épaisseur optique résonante du nuage et sa température.

Dans ce travail, nous rapportons l’observation expérimentale de la super- et sous-

radiance dans un grand nuage d’atomes froids. Pour la sous-radiance, le résultat principal

est l’évolution linéaire du temps caractéristique avec l’épaisseur optique résonante du

nuage et son indépendance du désaccord. Pour la super-radiance, on observe la super-

radiance en dehors de la direction vers l’avant. Nous vérifions la validité de nos inter-

prétations avec les prédictions du modèle de dipôles couplés. Finalement, nous discutons

l’interaction entre la sous-radiance et le piégeage de radiation, ainsi que des prévisions

théoriques concernant: la configuration d’un nuage phasé, pour contrôler l’émission de

l’amplitude sous-radiante; et les effets de température, où la sous-radiance s’avère robuste

dans une large gamme de températures.

Mot clés : physique atomique, atomes froids, effets coopératifs, super-radiance, sous-
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radiance, piégeage de radiation.



Abstract

Super- and subradiance in a dilute cloud of cold atoms

The problem of the interaction of N atoms with a laser beam and vacuum modes can

give rise to many interesting phenomena concerning the spontaneous emission of light

and its propagation in the medium. The cooperative effects, for example, such as super-

and subradiance, are effects related to the coherence created between the atoms when a

photon is emitted spontaneously by a single excited atom. Superradiance can be defined

as the enhancement of the spontaneous emission due to constructive interference of the

scattered light. Its counterpart, subradiance, is the trapping of some remaining light due

to destructive interference.

In cold atoms, some previous theoretical works predict and characterize these two

cooperative effects in a large and diluted atomic cloud, in the regime of low intensities and

large detunings of the incident laser. The theoretical model is a coupled-dipole model for

two-level atoms driven by a low-intensity field and in the scalar approach. The experiment

consists in measuring the super- and subradiant decay rates from the temporal emitted

intensity after the switch off of the incident laser in the steady state. Our experimental

setup consists in a magneto-optical trap of rubidium 87 atoms at large resonant optical

thicknesses. A probe beam excites the atoms close to the D2 line. The intensity emitted

is detected by a single photon detector with no afterpulsing and a calibration procedure

allows us to determine the resonant optical thickness of the cloud and its temperature.

In this work, we report the experimental observation of super- and subradiance in a

large cloud of cold atoms. For subradiance, the main result is the linear evolution of the

characteristic time with the resonant optical thickness of the cloud and its independence of

the detuning. For superradiance, we observe superradiance out of the forward direction.

We verify the validity of our interpretations with the predictions of the coupled-dipole

model. Finally, we discuss the interplay of subradiance and radiation trapping, as well as

theoretical predictions for: a setup of a phased cloud, to control the subradiant amplitude

emission; and temperature effects, where subradiance is shown to be robust in a large

range of temperatures.

Keywords: atomic physics, cold atoms, cooperative effects, superradiance, subradiance,

radiation trapping.
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Introduction

It is known that physics had seen an important development since the last centuries,

when a large step was done from classical physics (classical mechanics, electromagnetism

and thermodynamics) to modern physics (relativity and quantum mechanics). While rela-

tivity describes phenomena in huge macroscopic scale dominated by the speed of light and

astronomical distances, quantum mechanics deals with the microscopic world, dominated

by atoms, ions, molecules and their dual nature, as well as light and its dual nature. A

throwback to the end 19th/early 20th centuries brings us to the introduction of new phys-

ical concepts about the structure of matter and light: the atom seen as bounded electrons

occupying discrete energy levels, by E. Rutherford and N. Bohr; the concept of quantum,

or photon, introduced by M. Planck and A. Einstein to explain the blackbody radiation

and the photoelectric effect, respectively; the wave nature of matter introduced by L. de

Broglie; the E. Schrödinger’s wave equation for matter and its numerous applications to

microscopic systems, with particles trapped or moving freely in several types of poten-

tial energies. Contemporary research in Physics is mainly based on these concepts, and

several fields are substantially based on light-matter interaction on a microscopic scale.

Some examples are: atomic physics [Foot 2005], which deals with the arrangement of the

electrons in the atomic energy levels when interacting with photons and other particles;

laser physics [Siegman 1986], which studies the laser light and how it is produced in a

cavity with a gain medium; and quantum optics [Scully 1997,Mandel 1995], which studies

phenomena related with the quantization of the electromagnetic field introduced by P.

Dirac.

Interaction processes between atoms and photons are not only responsible for phe-

nomena at the microscopic scale: in fact, one of the main goals in physics is to extend

applications and predictions in microscopic scale to explain and understand macroscopic

phenomena. One of these macroscopic phenomena is propagation of light in matter. De-

scribed mainly in classical electrodynamics [Jackson 1998] and optics [Hecht 2002], the

main assumption is to consider the medium as homogeneous and continuous, and hence

the problem is reduced to solving the Helmholtz equation and finding the features of the

light propagation and modifications in the medium properties as susceptibility and re-

fractive index. On the other hand, E. Rutherford studied the scattering of alpha particles

by a metallic sheet by considering the latter as a single scatterer. Here, a more realistic

picture is to consider the granularity of the medium, i.e., to see it directly as a set of

point-like particles spread out in space, what is called a disordered medium, like stars,

clouds, fog, smoke, or even a piece of paper. The disordered medium is the real situation
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Introduction 2

between the idealizations of a homogeneous medium and a single-scatterer medium (Fig.

1).

disordered

medium

single

scatterer

continuous

medium

Figure 1: Propagation of light (red arrow) in matter. Left: A medium composed by a
single scatterer. Center: A disordered medium. Right: A continuous medium.

Disordered media is a good assumption to study light scattering in crystals and gas-like

or vapor-like media. The interactions between the atoms and photons modify the external

and internal dynamics of the latter, since a photon carries momentum, energy and angular

momentum and these quantities are transmitted to the atom [Cohen-Tannoudji 1992]. As

introduced by A. Einstein, and later detailed by I. Rabi, V. Weisskopf and E. Wigner, a

photon interacts with an atom under three processes: absorption (absorption of a photon

from a low to an upper energy level), stimulated emission (emission of a photon from a

upper level to a lower level induced by an incoming photon), and spontaneous emission

(emission of a photon from a upper to a lower level spontaneously). These processes

allowed the building of the laser, a source of coherent and monochromatic light, by C.

Townes and A. Schawlow in 1960. Its achievement allowed a large development of several

experiments, in many research areas, and several types of laser are available, like dye

lasers, He-Ne, Ti:sapphire and semiconductors lasers. Later, in the 1980 − 1990s, the

development of techniques on cooling and trapping atoms by using radiation pressure

force allowed the production of atomic samples at very low temperatures [Metcalf 1999],

like clouds of cold atoms and Bose-Einstein condensates, thanks to the magnetic and/or

dipole traps.

The propagation of light in disordered media can be studied from standard experiments

in atomic physics, where the medium is a vapor of atoms, and the light is obtained from

a laser source, like semiconductor lasers. Semiconductor lasers provide laser light at high

powers and at tunable frequencies, and alkaline atoms like sodium, potassium, rubidium

and cesium are the main candidates for the vapor sample due to its simple structure of

a single optically active electron in the valence shell.1 In a hot vapor, all atoms have

a velocity and move, which introduces Doppler effect and collisions. However, since its

experimental achievement, cold atoms have become a powerful tool because of its low

temperatures (few µK, few nK) and tunable properties, like temperature, size, shape, and

density.

1 Experiments with earth-alkaline atoms, like calcium and strontium, are also carried out in many
research groups.
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Cooperative effects in cold atoms

Light propagation in a disordered medium can be seen as a sequence of absorption

and spontaneous emission performed by a photon when encountering an atom in the

medium. Absorption, stimulated emission and spontaneous emission lead the system

to an equilibrium state, or a steady state, where the medium emits light called fluo-

rescence. Phenomena like Rayleigh scattering, Mie scattering, Compton scattering and

Raman scattering depend on how close the light frequency is compared to the atomic

resonance frequency [Cohen-Tannoudji 1992], as well as the size of the particles with re-

spect to the light wavelength. The light emitted by the medium contains features of the

physical phenomenon taking place in the medium, when the photons are being scattered.

The results obtained from the problem of a single atom interacting with light and vacuum

modes [Griffiths 2005] are also valid for a set of N independent particles and, if the incom-

ing light is suddenly extinguished, the excited atoms in the medium decay by spontaneous

emission. The emitted fluorescence I(t) is isotropic and proportional to I(t) ∝ exp(−Γt)

[see Fig. 2(a)] where Γ = 1/τ0 gives the timescale related with the excited state.

Figure 2: Fluorescence emitted by a medium composed of (a) independent scatterers
and (b) dependent scatterers. Extracted from [Gross 1982].

In 1954, R. Dicke [Dicke 1954] proposed for the first time the interaction of light with

a system where all the atoms can interact themselves, by defining a wavefunction for the

whole system, like in a system of identical particles in quantum mechanics. Symmetrical

and anti-symmetrical states can be defined, and several posterior works [Gross 1982]

showed that, in the case of a sample size R very small compared with the light wavelength

λ, i.e., R� λ, the spontaneous emitted light is modified to be directional (non-isotropic),

and to decay with a very fast decay rate compared with the natural atomic decay rate Γ

[see Fig. 2(b)]. This is true even if there is only one atom in the excited state, as shown

later by [Scully 2006]. This phenomenon was named superradiance, or superfluorescence,

and the emitted light depends on how close the atoms are (which determines the strength

of the coherence created between them), as well as the number of atoms N and the sample

geometry.

A lot of work on superradiance was performed in the 1970−1980s, both experimentally

and theoretically [Gross 1982], focusing mainly in small pencil-shape samples and inverted

systems (many atoms in the excited state). However, the condition R� λ is very hard to
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achieve experimentally, so in 2006, M. O. Scully et al. [Scully 2006] proposed the single-

photon superradiance, i.e., a single resonant photon (obtained from, e.g., parametric down

conversion) excites a large sample, i.e., R > λ, of N atoms at random positions ~rj. In this

work, the assumption is that one of the atoms is excited in a such way that the whole

system is in the state

|Ψ(~r, t)〉 =
1√
N

N∑
j=1

ei
~k0·~rj |j〉

where |j〉 denotes the atom j at the excited state, j = 1, ..., N , k0 = 2π/λ, summed

to all possibilities of excited atoms, with position-dependent phase ei
~k0·~rj and divided

by the same probability 1/
√
N . The spontaneous decay of this state is shown to be at

the same direction of the incident photon, i.e., in the forward direction, with a rate Γsup

which depends on the size R and number of atoms N in the sample as Γsup∝ NΓ/(k0R)2

[Svidzinsky 2008c].

Since then, several theoretical works were performed concerning single-photon super-

radiance, using several theoretical approaches [Eberly 2006, Mazets 2007, Das 2008]. In

2010, P. W. Courteille et al. [Courteille 2010] proposed a theoretical model for describ-

ing superradiance. A cloud of cold atoms is an ideal example of disordered system for

experiments, with N identical atoms at random positions, and the excitation by a single

photon can be achieved by a far detuned laser beam at weak intensities, called linear op-

tics regime. Moreover, a large range of detunings can be covered, and not only resonant as

studied in the previous work. This model is a model of coupled dipoles, i.e., the atoms are

considered as dipoles driven by a monochromatic electric field. It was proposed originally

to describe the cooperative radiation pressure force, and the experimental observation of

this latter by T. Bienaimé et al. [Bienaimé 2010] provided an evidence that cooperative

effects can take place in a cloud of cold atoms.

A direct evidence of superradiance in cold atoms is the experimental observation of a

fast decay in the emitted intensity. In 2012, T. Bienaimé et al. [Bienaimé 2012] showed

numerically that, besides a superradiant emission, characterized by a fast decay rate

Γsup> Γ at early times, observed in emitted intensities, a subradiant emission is also

observed, characterized by a slow decay rate Γsub< Γ at late times (see Fig. 3). Both

decay rates scale with the parameter b0 ∝ N/(k0R)2, called resonant optical thickness,

i.e., these cooperative effects depend only on the medium properties.

Content of this thesis

The aim of this thesis is to present an experimental study of super- and subradiance

in a dilute cloud of cold atoms, as well as the interplay of subradiance with radiation

trapping. The main focus is the understanding of the phenomena with the predictions of

the coupled-dipole model.

Super- and subradiance are two examples of cooperative effects, due to the coherence

created by the atoms in the medium when interacting with a laser beam and vacuum

modes. Our experimental study is based in the predictions of references [Courteille 2010]

and [Bienaimé 2012], although we also intend to discuss improvements on the simulations
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Figure 3: Decay of the population of the excited state as a function of time for 2000 atoms
(full line), and comparison with the emission of a single atom (dashed line). Extracted
from [Bienaimé 2012].

methods and to present new and complete numerical results. Concerning subradiance, the

focus is the observation of a slow decay in a cloud of N atoms. Concerning superradiance,

the focus is on off-axis superradiance, i.e., the observation of a fast decay out of the

direction of the incident laser. In addition, we discuss the interplay of subradiance and

radiation trapping, where this latter is the random walk performed by the photon when

scattered several times by neglecting interference effects. All experiments were performed

using a magneto-optical trap (MOT) of 87Rb atoms already available in our laboratory.

This thesis is organized as follows. In Chapter 1 we present the standard model of

coupled dipoles, for two-level atoms, single excitations (linear optics regime) and scalar

approach (valid for dilute media, i.e., low densities). We discuss the response of the system

due to the atom-light interactions and then we derive analytical equations for the emitted

intensity by the sample, as well as some numerical predictions. Then, we discuss the main

results obtained in this thesis: subradiance, in Chapter 2; superradiance, in Chapter 3;

and subradiance versus radiation trapping, in Chapter 4. In each one, we present the

main predictions from the coupled-dipole model, the experimental setup designed for the

measurements, and the experimental results and discussion. In Chapter 5, we discuss

numerical results with the coupled-dipole model by taking into account phase shifts in

the incoming field and temperature effects. Finally, we point out the main conclusions

and perspectives for future works.
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Chapter 1
The coupled-dipole model for two-level atoms
in the scalar approach

The main problem treated in this thesis is super- and subradiance in cold atoms, and

it involves physical concepts on light propagation and light-matter interaction. We detect

super- and subradiance from the light emitted spontaneously by a cloud of atoms after

interacting with an incident laser beam. The emitted light depends on how the atoms

in the cloud interact with the incident radiation field. In this chapter, we present the

theoretical model for these interactions, which is the coupled-dipole model, whose main

goal is to describe the general features and the relevant processes about the arising of

super- and subradiance, as well as the set of parameters for detecting them from the

emitted fluorescence.

This chapter is divided in four sections. In section 1.1, we present the coupled-dipole

model for our physical system and its many approaches for deriving and solving the

equations for the dipole dynamics. In section 1.2, we define the detected intensity emitted

by the atoms and then we derive analytical expressions for the total emitted intensity and

the intensity detected in a given direction. In section 1.3, we discuss the simulations

methods for implementing the coupled-dipole model numerically, in order to perform a

theoretical study of super- and subradiance. Finally, in section 1.4, we point out the main

conclusions of this chapter.

1.1 The coupled-dipole model in the scalar approxi-

mation

1.1.1 Overview

Maybe the most used theoretical model in order to describe cooperativity in cold

atoms is the coupled-dipole model, which describes N identical atoms interacting with

a monochromatic electric field and the vacuum modes (see Fig. 1.1). The atoms are

treated as dipoles, which oscillate when interacting with the electric field, and a set of

coupled differential equations is obtained for the oscillation amplitudes of the atoms. From

them, we obtain analytical equations for the emitted intensity.1 The emitted fluorescence

1 In this thesis the term “fluorescence” is used with the meaning of “emitted (or detected) intensity”.

7
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contains signatures of cooperativity, and simulations can be implemented in order to study

and extract cooperative decay rates from the fluorescence, by varying the parameters of

the atomic sample, like density and optical thickness.

laser

cloud

0

|gj

|ej



atom

Figure 1.1: The physical system. An atomic cloud is considered as a set of N identical
atoms, interacting with a laser beam and the vacuum modes. The laser is modeled as a
monochromatic electric field and the atoms are modeled as two-level systems, where, for
any atom j, |gj〉 is the ground state and |ej〉 is the excited state, with energies Eg and
Ee, respectively. The atomic resonance frequency is defined as ω0 = (Ee−Eg)/~, and the
laser frequency is ω.

When interacting with a coherent radiation field, we will show in this chapter that the

amplitudes of the atoms evolve in time according to the coupled-dipole equations, given in

Eq. 1.15 and rewritten below:

β̇j =

(
i∆− Γ

2

)
βj −

iΩ

2
ei
~k0·~rj − Γ

2

∑
j′ 6=j

exp(ik0rjj′)

ik0rjj′
βj′

These equations are a system of N coupled first order linear differential equations for

βj(t), where j = 1, ..., N . They assume motionless atoms, low density for the atomic

sample (dilute media), interaction with a weak field (linear optics) with constant polar-

ization (scalar approximation). Different approaches can be used for their derivation, as

well as different solving methods. Physical operators like the radiation pressure force

and the detected intensity can be expressed as functions of the βj obeying these equa-

tions [Courteille 2010]. In many works the geometry of the atomic distribution is taken

as a slab or a Gaussian sphere, in both theory and experiments. Some cooperative phe-

nomena arising from these equations are: a forward emission lobe [Rehler 1971, Bien-

aimé 2011a], superradiance [Rehler 1971,Roof 2016], subradiance [Bienaimé 2012], coop-

erative Lamb shift [Scully 2009,Bienaimé 2011a], cooperative radiation pressure force [Bi-

enaimé 2010, Bux 2010, Bender 2010, Bienaimé 2014, Bachelard 2016], cooperative Mie

scattering [Bender 2010, Bachelard 2012], coherent multiple scattering [Chabé 2014], co-

herent backscattering [Chabé 2014,Rouabah 2014].

T. Bienaimé PhD thesis [Bienaimé 2011b] discusses different ways of deriving and

solving the coupled-dipole equations. For the derivation, we have the following approaches:

• Classical approach: The atoms and the laser field are treated classically, i.e., the



1.1. The coupled-dipole model in the scalar approximation 9

field is a sinusoidal monochromatic plane wave and the atoms have a single electron

which oscillates as a classical harmonic oscillator [Svidzinsky 2010]. The βj are the

position amplitudes of each electron.

• Semi-classical approach in the Schrödinger picture: The atoms are treated as two-

level systems and the coherent field is treated classically [Courteille 2010]. A wave

function is written as a superposition of the atom-field eigenstates, where its coeffi-

cients, the βj, are calculated from the Schrödinger equation, under the Markov and

Weisskopf-Wigner approximation [Scully 1997]. The βjs are the amplitudes of the

projection in the excited state, and the sum of their square absolute value,
N∑
j=1

|βj|2,

is related to the time evolution of the atomic excited states.

• Semi-classical approach in the Heisenberg picture: The Hamiltonian of the system

and other operators, like the annihilation operator, evolve in time according to the

Heisenberg equation [Bienaimé 2011a]. The Markov approximation is also assumed

in this approach. Physical observables like the emitted intensity can be evaluated

from the Heisenberg equation.

• The master-equation approach: The vacuum is considered as a reservoir of electro-

magnetic modes and interacts with the two-level atoms and the laser field [Fleis-

chhauer 1999]. A reduced density operator is defined and its time-evolution equation

is written in the density matrix formalism [Bienaimé 2013].

For the different solving methods, we can mention: a analytic solution, which includes

the timed-Dicke approximation and the continuous medium approximation; and a numer-

ical solution, which includes the steady state solution and the time dependent solution,

described below:

• The timed-Dicke approximation: A change of basis is done for the N single excited

states, in order to have one symmetrical state, which is superradiant, and N − 1

anti-symmetrical states, which are subradiant [Svidzinsky 2008c, Bienaimé 2013].

Then, the population of the subradiant states is neglected. The βj are replaced by

the coefficient for the superradiant state, yielding to a single coupled-dipole equation

which analytic solution in the steady state. Also, the expressions for the physical

observables in the timed-Dicke approximation can be written analytically.

• Continuous medium approximation: The atomic sample is considered as a continu-

ous medium and the βj are replaced by a scalar function β(~r, t), which transforms

the coupled-dipole equations into a single integral equation [Bachelard 2011]. This

approach was considered as main solving method by M. O. Scully et al. and R.

Friedberg, J. T. Manassah et al. in several works [Svidzinsky 2009,Manassah 2012],

and was shown to be reasonable for large optical thicknesses and large sample

sizes [Bachelard 2011,Bienaimé 2010]. More recently, the continuous approach was

shown to describe the scaling of super- and subradiance with the resonant optical

thickness as well in dilute samples [Cottier 2018]. The continuous approach can be

extended to include special features in the medium, like quantum statistic for bosons
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in several works from J. Ruostekoski’s and A. Browaeys’ groups [Morice 1995, Jen-

newein 2018].

• Solution for the steady state: The βj are seen as the elements of a column vector

and the coupled-dipole equations are written in a matricial form [Svidzinsky 2008b,

Guerin 2017b]. The matricial equation is diagonalized and solved by using the

eigenvalue method, such that we find the probability of occupation of each excited

state. Another approach is to calculate the eigenvalues and eigenstates of the system

from the diagonalization of an effective Hamiltonian [Bellando 2014].

• Time dependent solution: The coupled-dipole equations are a many-body problem

and have no analytical solution, except when N = 2, i.e., two interacting atoms.

Therefore, the more direct way to solve them is by using numerical methods for

differential equations, like the fourth order Runge-Kutta method.

As already mentioned, the derivation of the coupled-dipole equations is done under

specific assumptions and approximations about the physical system: motionless atoms,

dilute cloud, weak excitations, non-degenerate atoms. However, more general assumptions

with less approximations have been studied:

• Dense samples. If the atoms are close enough to each other, e.g., like in dense

samples, the polarization of the scattered field cannot be neglected, so near-field

effects take place and the βjs should be calculated in the vectorial approxima-

tion [Bellando 2014, Stephen 1964, Lehmberg 1970, Milonni 1974]. This is equiv-

alent to taking into account the degeneracy of the excited states in the two-level

atoms, like the transition |Jg = 0,mg = 0〉 → |Je = 1,me = −1, 0, 1〉 [Bellando 2014,

Milonni 1974]. Also, as the atoms are closer, interactions between them may occur,

like van der Waals interactions [Gross 1982], collisions, and quantum statistics for

bosons [Morice 1995]. Recent works show that high densities also lead to: red fre-

quency shifts and line broadening [Pellegrino 2014,Bromley 2016, Jennewein 2016],

absence of cooperative Lamb shift and Lorentz-Lorenz shift [Jenkins 2016], blue

frequency shifts and deviations in the Lorentzian wings in bi-dimensional sam-

ples [Chomaz 2012,Corman 2017].

• Sample geometry. The geometry of the sample has a big impact on the magnitude

and signal of the cooperative Lamb shift [Friedberg 2010].

• Ordered atomic positions. If the atoms are not randomly distributed, e.g., forming

a periodical array, the decay rates and emitted intensity change [Feng 2014]. In

the case of an optical lattice, cooperative phenomena like photonic band gaps arises

[Schilke 2011,Samoylova 2014].

• Strong excitation. If the incoming radiation field is at strong intensities, nonlinear ef-

fects take place, because more than a single excitation will be produced in the cloud.

The emitted light is distorted when propagating through the sample [Gross 1982].

New effects are predicted to arise, like cooperative blockade [Ott 2013], asymmetry

of the Mollow triplet [Ott 2013, Pucci 2017], additional sidebands in the Mollow

triplet [Pucci 2017].
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• Atomic motion. If the particles move, Doppler effects reduce drastically the cooper-

ative effects [Bienaimé 2012]. This will be discussed in detail in Chapter 5. Recently,

the observation of a superradiant flash was reported for a cloud with considerable

atomic motion [Kwong 2014].

• Phase of the incident field. Variations in the spatial phase of the incident laser beam

make the atoms experience a different incident phase. If each atom sees a random

detuning, the subradiant states are predicted to become hybrid, with features of

extended states and Anderson localized states [Biella 2013]. If an inhomogeneous

magnetic field is applied in order to induce Zeeman shifts in the atoms, a deviation

in the emission lobe is predicted to occur [Máximo 2014]. If half of the cloud is

excited by a incoming laser with a phase shift of π compared to the other half,

subradiance may be enhanced (to be discussed in Chapter 5).

• Atomic degeneracy and multilevel schemes. If the atomic two levels are degenerated,

line broadening may arise [Sutherland 2017]. Degeneracy was also considered in

schemes with multilevel atoms in other theoretical models to study superradiance [de

Oliveira 2014] and “subradiance echo” [Pavolini 1985].

1.1.2 Setting the equations

In this section we will use the semi-classical treatment in the Schrödinger picture to

discuss the coupled-dipole model. To fix the ideas, we start by defining the physical

variables of the physical system (see Fig. 1.1):

• Atoms: a set of N two-level atoms with two non-degenerate states: a ground state

|gj〉 and an excited state |ej〉, where j = 1, ..., N denotes the j-th atom. Each atom

has a natural frequency ω0, decay rate Γ and lifetime τ0 = 1/Γ. They do not move

and are distributed in random positions ~rj in space.

• Laser: a monochromatic plane wave with constant polarization vector ε̂ (linear

polarization), amplitude ~E0 = E0ε̂, wavelength λ, wavevector ~k0 of magnitude k0 =

2π/λ, and frequency ω. Its electrical field is given by

~E(~r, t) =
1

2
E0ε̂

[
ei(

~k0·~r−ωt) + c.c.
]

(1.1)

• Vacuum: a quantized electromagnetic field of amplitude ~EV (~r, t) defined by the

Fock states {
∣∣0~k〉, ∣∣1~k〉, ...} in the mode ~k and polarization ε̂~k, where ~k is the wave

vector, and frequency ωk, given by

~EV (~r, t) = i
∑
~k

√
~ωk

2ε0Vph

ε̂~k

[
a~ke

i(~k·~r−ωkt) + h.c.
]

(1.2)

where Vph is the photon quantization volume.
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The Hamiltonian for the system can be written as

H = HA +HV +HAL +HAV (1.3)

with

HA = −~∆

2

∑
j

|ej〉 〈ej| − |gj〉 〈gj| (1.4a)

HV =
∑
~k

~ωka†kak (1.4b)

HAL =
~Ω

2

∑
j

[
σje
−i(~k0·~rj−∆t) + h.c.

]
(1.4c)

HAV = ~
∑
j

∑
~k

gk
(
σje
−iω0t + h.c.

) (
ake

i(~k·~rj−ωkt) + h.c.
)

(1.4d)

where we simplified the notation
∑
j

=
N∑
j=1

. ~d is the dipole matrix element, Ω = ~d · ε̂ E0/~ is

the Rabi frequency, g~k = ~d · ε̂~k
√
ωk/2~ε0Vph is the quantum Rabi frequency, i.e., the single

photon coupling strength, σj = |gj〉 〈ej| is the atomic operator, ∆ = ω − ω0 is the laser

detuning, and ∆k = ωk−ω0 is the vacuum field detuning. HA is the atomic Hamiltonian;

HV is the Hamiltonian for the vacuum modes; HAL represents the interaction between

the atoms and the laser; and HAV represents the interaction between the atoms and the

vacuum.

Some important comments can be done here:

• HA can be written as HA =
∑

j Hj with Hj = −(~∆)/2 (|ej〉 〈ej| − |gj〉 〈gj|), i.e.,

HA is the sum of the Hamiltonians for single atoms. The same can be done for HAL

and HAV , in a such way that if N = 1 we recover the interaction of a single atom

with the monochromatic field and vacuum modes, treated in standard quantum

mechanics textbooks [Griffiths 2005,Cohen-Tannoudji 1992,Foot 2005,Scully 1997,

Berman 2008, Mollow 1969]. The obtained results can be extended for N inde-

pendent atoms. On the other hand, in the coupled dipole model, the N atoms are

“dependent”, in the sense that we consider that they can see each other and interact.

• HAL is written in the rotating-wave approximation (RWA) [Cohen-Tannoudji 1992],

and HA and HAL are written in the rotating frame. However, we do not do the

RWA for HAV , which allows virtual-photon exchanges. This is because, beyond

the cooperative Lamb shift, virtual photons contribute for a correct description

of the subradiant amplitudes and decay rates [Friedberg 2008a, Svidzinsky 2008a,

Friedberg 2008b,Svidzinsky 2009,Svidzinsky 2010]. Another approach with virtual

photons is discussed in [Li 2012,Li 2013].

Now, following [Svidzinsky 2010], we consider that there are the following possible

states for the atom-light-vacuum interaction:
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• The state
∣∣G, 0~k〉 ≡ |g1, ..., gj, ..., gN〉

∣∣0~k〉, where all atoms are in the ground state

and there is no photon; the N states
∣∣j, 0~k〉 ≡ |g1, ..., ej, ..., gN〉

∣∣0~k〉, where the

atom j is in the excited state and no photon (absorption). There are N excited

states because we do not know which atom is in the excited state, so there are N

possibilities. This is equivalent to consider that the atoms are a system of identical

particles.

• The state
∣∣G, 1~k〉 ≡ |g1, ..., gj, ..., gN〉

∣∣1~k〉, where all atoms are in the ground state

and one photon in the mode ~k is present (emission).

• The state
∣∣pq, 1~k〉 ≡ |g1, ..., ep, ..., eq, ..., gN〉

∣∣1~k〉, which stands for two excited atoms

and a photon in the mode ~k (virtual photon exchanges).

Thus, the wavefunction |Ψ(t)〉 of the system is

|Ψ(t)〉 = α(t)
∣∣G, 0~k〉+

∑
j

βj(t)
∣∣j, 0~k〉+

∑
~k

γ~k(t)
∣∣G, 1~k〉+

∑
p<q

∑
~k

αpq,~k(t)
∣∣pq, 1~k〉 (1.5)

with αpq,~k = αqp,~k. Note that this ansatz of |Ψ(t)〉 restricts ourselves to the limit of single

excitations, or linear-optics regime, which can also be expressed by the condition

s(∆) =
I/Is

1 + 4∆2/Γ2
� 1 (1.6)

where s(∆) is the saturation parameter [Foot 2005], with Is the saturation intensity and

I = (2Ω2/Γ2)Is is the laser field intensity.

By replacing |Ψ(t)〉 in the Schrödinger equation H |Ψ〉 = i~ ∂ |Ψ〉 /∂t, with H in Eqs.

1.4, and projecting the result in each one of the four allowed states of the system, we obtain

the time evolution for the coefficients α(t), βj(t), γ~k(t) and αpq,~k(t) [Svidzinsky 2010]:

α̇ = −iΩ
2

∑
j

βje
−i(~k0·~rj−∆t) (1.7a)

β̇j = −iΩ
2
α ei(

~k0·~rj−∆t) − i
∑
~k

g~kγ~ke
i(~k·~rj−i∆kt) −

−i
∑
j′ 6=j

∑
~k

g~k αjj′,~k e
i[~k·~rj′−(ω+ωk)t] (1.7b)

γ̇~k = −ig~k
∑
j

βj e
−i(~k·~rj−∆kt) (1.7c)

α̇pq,~k = −ig~k e
i(ωk+ω0)t

(
βpe
−i~k·~rq + βqe

−i~k·~rp
)

(1.7d)

1.1.3 Solving the equations for the coefficients

Equations 1.7 are a system of coupled differential equations, and they have to be solved.

The initial conditions are α(0) = 1 and βj(0) = γ~k(0) = αpq,~k = 0, i.e., initially the atoms

are in the ground state when they interact with the incident laser field and vacuum modes.
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As we will discuss in section 1.3, we are interested in studying the temporal dynamics,

from the decay of each one of the single-atom excited states |j〉, so we solve Eqs. 1.7 for

βj(t).

For Eq. 1.7a, α(t) ≈ 1 is a good approximation because we are in the regime of weak

excitations (a general approach is to substitute Eq. 1.7a in Eq. 1.7b; see [Ott 2013]). For

Eqs. 1.7c and 1.7d, we integrate under the initial conditions, which gives

γ~k(t) = −ig~k
∫ t

0

∑
j

βj(t
′) e−i

~k·~rj e−∆kt
′
dt′ (1.8)

αpq,~k(t) = −ig~k
∫ t

0

ei(ωk+ω0)t′
[
βp(t

′)e−i
~k·~rq + βq(t

′)e−i
~k·~rp
]
dt′ (1.9)

Replacing α = 1 and Eqs. 1.8 and 1.9 in Eq. 1.7b, we get rid of the degrees of freedom

of the field and we obtain the time evolution for βj only:

β̇j = −iΩ
2
ei(

~k0·~rj−∆t) −
∑
~k

|g~k|
2
∑
j′

ei
~k·(~rj−~rj′ )

∫ t

0

βj′(t
′) e−i∆k(t−t′)dt′ −

−
∑
j′ 6=j

∑
~k

|g~k|
2

[∑
j′ 6=j

e−i
~k·(~rj−~rj′ )

∫ t

0

βj′(t
′) e−i(ωk+ω0)(t−t′)dt′−

− (N − 1)

∫ t

0

βj(t
′) e−i(ωk+ω0)(t−t′)dt′

]
(1.10)

The evaluation of the integral terms in Eq. 1.10 is done under three important ap-

proximations:

• The scalar approximation. This ignores near fields and polarizations, so only long-

range interactions are taken into account in describing the strength of the dipole-

dipole interactions with respect to the distances between the atoms. Hence, ~d · ε̂ = d

and ε̂~k = ε̂, which give Ω = dE0/~, ~d · ε̂~k = d and g~k = gk = d
√
ωk/2~ε0Vph in

Eq. 1.10 [Lehmberg 1970]. As we will see soon, the scalar approximation yields to

dipole-dipole interactions proportional to

Vjj′ ∝
1

k0rjj′
(1.11)

where rjj′ is the distance between to any atoms j and j′. If one does not do the

scalar approximation, we have thus the vectorial approximation [Lehmberg 1970,

Milonni 1974, Bellando 2014] and it yields to dipole-dipole interactions with angu-

lar terms and distances proportional to 1/(k0rjj′), 1/(k0rjj′)
2 and 1/(k0rjj′)

3 [Bel-

lando de Castro 2013]. It is possible to show that the quadratic and cubic distance

terms can be neglected for large rjj′ , which is true for dilute (low density) samples.

• Retardation terms : The retardation in the emitted fields is neglected, so t � |~rj −
~rj′ |/c. A discussion with retarded time for two atoms can be found in [Milonni 1974].
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• The Markov approximation. This assumes a large timescale compared to the re-

sponse of the physical system, i.e, t� 1/ω0. Thus, βj(t
′) is assumed to vary slowly

and it comes out of the integrals. Also, the upper integration limit is set as t→∞.

Under the scalar and Markov approximations, we go to the continuum limit for the

modes ~k, i.e.,
∑
~k

→ Vph

(2π)3

∫
d3~k, and the integrals are solved by using the Cauchy principal

value method. The calculations are detailed in [Svidzinsky 2010] and the result is finally

the coupled-dipole equations :

β̇j = −iΩ
2
ei(

~k0·~rj−∆t) − Γ

2

∑
j′

eik0rjj′

ik0rjj′
βj′ (1.12)

where rjj′ ≡ |~rj − ~rj′| is the distance between the atoms j and j′ and the natural decay

rate Γ has been defined as

Γ ≡ d2k3
0

2π~ε0
(1.13)

The term Vjj′ =
eik0rjj′

ik0rjj′
represents the interactions between the atoms, which are the

first correction that arises under the approximations and assumptions already discussed.

They are long-range interactions, which are small for two atoms but are summed up for

the whole set of atoms.

Eq. 1.12 can be rewritten as

β̇j = i∆βj −
iΩ

2
ei
~k0·~rj − Γ

2

∑
j′

eik0rjj′

ik0rjj′
βj′ (1.14)

by means of the change βj → βj e
−i∆t and β̇j → (β̇j − i∆βj)e−i∆t, which is to write βj in

the rotating frame. One can show [Svidzinsky 2010] that this equation can be rewritten

as

β̇j =

(
i∆− Γ

2

)
βj −

iΩ

2
ei
~k0·~rj − Γ

2

∑
j′ 6=j

eik0rjj′

ik0rjj′
βj′ (1.15)

Eqs. 1.15 tells us how the dipole amplitudes evolve in time. The first term is the decay

for a single atom, the second term is due to the interaction with the incident laser and

the third term is the dipole-dipole interaction, i.e., the field radiated by the other atoms

j′ onto the atom j. For a single atom, i.e., N = 1, and hence the third term is absent,

which yields to the standard time evolution for a single atom.

Effective Hamiltonian

It is possible to set the wavefunction of the system directly as (c.f. Eq. 1.5)

|Ψ(t)〉 = α(t) |G〉+
∑
j

βj(t) |j〉 (1.16)



1.1. The coupled-dipole model in the scalar approximation 16

i.e., without the degrees of freedom of the field. However, to obtain Eqs. 1.15, the

Hamiltonian has to be replaced by an effective Hamiltonian [Bienaimé 2013], shown to be

Heff =
~Ω

2

∑
j

[
σje
−i( ~k0·~rj−∆t) + c.c

]
− ~∆

∑
j

σ†jσj −
~Γ

2

∑
j,j′

Vjj′σ
†
jσj′ (1.17)

and hence Heff |Ψ〉 = i~ ∂|Ψ〉/∂t.

Timed-Dicke approximation

It is possible to solve the coupled-dipole equations analytically by means of the timed-

Dicke approximation [Courteille 2010]. A change of basis is done for the N excited states,

from the basis {|j〉} to the basis {|TD〉 , |s1〉 , |s2〉 , ..., |sN−1〉}, where |TD〉 is the super-

radiant state

|TD〉 =
1√
N

l∑
j=0

ei
~k0·~rj |j〉 (1.18)

known also as the timed-Dicke state [Scully 2006], and the N−1 states |sl〉, l = 1, ..., N−1,

are the subradiant states, defined by [Bienaimé 2011b,Scully 2007]

|sl〉 =
1√

l(l + 1)

(
l∑

j=1

ei
~k0·~rj |j〉 − l ei~k0·~rl+1 |l + 1〉

)
(1.19)

Note that |TD〉 is a symmetric combination of |j〉, while the |sl〉s are anti-symmetric

combinations of |j〉.
Hence, the wavefunction |Ψ(t)〉 in the new basis reads

|Ψ(t)〉 = α(t) |G〉+ βTD(t) |TD〉+
N−1∑
l=1

cl(t) |sl〉 (1.20)

and then we make cl(t) = 0, i.e., we neglect the population of the subradiant states. Thus,

the timed Dicke approximation assures that the system is equivalent to say that the atomic

system is at the state |TD〉, i.e., one excited atom, with phase ei
~k0·~rj , summed to all the

N atoms with equal probability 1/
√
N , as if the atomic cloud was excited originally by a

single photon at resonance, as originally proposed by [Scully 2006].

The assumption cl(t) = 0 is equivalent to neglect the Fano coupling [Fano 1961], which

states that:

If two physical systems (the superradiant state |TD〉 and all the subradiant states
|sl〉) are coupled each one with the vacuum, they also are coupled to each other.
Therefore, there is a transfer of population between them.

Neglecting the Fano coupling means that |TD〉 decays directly to the ground state

|G〉. This is true for samples whose size R is R � λ, as discussed initially by R. Dicke
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[Dicke 1954], and for large samples R > λ in the far detuning limit [Courteille 2010,

Bienaimé 2013].

The comparison with the wavefunctions in Eqs. 1.20 and 1.5 leads to

βj =
1√
N
βTDe

i~k0·~rj (1.21)

which is the timed-Dicke approximation defined in [Courteille 2010]. Moreover, if we

assume that the N atoms are distributed spatially in a Gaussian sphere of RMS ra-

dius R (which is approximately the case in our experimental cold atoms clouds), the

timed-Dicke state decays from the steady state with a decay rate in the forward direc-

tion [Courteille 2010]

ΓN =

(
1 +

b0

12

)
Γ (1.22)

where b0 = 3N/(k0R)2 is the resonant optical thickness for a Gaussian sphere (to be

discussed in section 1.3).

Simulations show that the coupled-dipole equations converge to the timed-Dicke ap-

proximation only when b(∆) < 1 [Bienaimé 2013], where b(∆) = b0/(1 + 4∆2/Γ2) is the

optical thickness of the sample for a spherical Gaussian distribution (see section 1.3). The

condition b(∆) < 1 can be achieved for large detunings of the incident laser beam.

1.2 The detected fluorescence

From the coupled-dipole equations, Eq. 1.15, we can derive analytic expressions for

the detected intensity. As we will discuss in section 1.3, cooperative signatures of the

atom-field interactions are extracted from the emitted intensity, after the atoms interact

with the laser for some time and the latter is switched off.

According to the photodetection theory [Mandel 1995], the intensity emitted by the

atoms detected in a given position ~r from the center of mass of the atomic distribution

and at time t is defined by

I(~r, t) = 2cε0
〈
E†E

〉
(1.23)

where E is the electric field given in Eq. 1.2. The photon annihilation operator ak(t)

can be calculated in the Heisenberg picture from the Heisenberg equation. It can be

shown [Bienaimé 2011a] that in the far-field limit

E(~r, t) ≈ −i dk
2
0

4πε0

e−iω0(t−r/c)

r

∑
j

e−ik0r̂·~rjβj(t) (1.24)

where the unit vector r̂ defines the detection direction, from the cloud center of mass to

the detector.

Inserting Eq. 1.24 in Eq. 1.23, we obtain the intensity collected by a photodetector

(see Fig. 1.2):
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I(~r, t) =
d2ω4

8π2c3ε0r2

∣∣∣∣∣∑
j

e−ik0r̂·~rjβj

∣∣∣∣∣
2

=
d2ω4

8π2c3ε0r2

∑
j

∑
j′

e−ik0r̂·(~rj−~rj′ )βjβ
∗
j′ (1.25)

z

laser

cloud 



x

y

),( trI


Figure 1.2: The detected intensity I(~r, t) emitted by a cloud of atoms excited by an
incident beam, detected in a point ~r of the space in a instant t. I(~r, t) is given by Eq. 1.25
(definition) and Eqs. 1.34 and 1.35 (in spherical coordinates), i.e., I(θ, φ, t) and I(θ, t),
this last one integrated in φ due to the symmetry of the cloud with respect to the laser
the laser axis, fixed at the z direction.

1.2.1 The total emitted intensity

The total emitted power P (t) is the power measured in the whole space, in all di-

rections. It corresponds to a spherical detector surrounding the atoms. By definition,

P (t) =
∫
I(~r, t) dA, where dA is the differential area element.

It is convenient to write I(~r, t) in spherical coordinates, {r, θ, φ}2, so I(~r, t) = I(r, θ, φ, t)

and dA = r2 sin θ dθ dφ, giving

P (t) = r2

∫ π

0

∫ 2π

0

I(r, θ, φ, t) sin θ dθ dφ (1.26)

By substituting Eq. 1.25, the terms r2 vanish and we have

P (t) =
d2ω4

8π2c3ε0

∫ π

0

∫ 2π

0

∣∣∣∣∣∑
j

e−ik0r̂·~rjβj(t)

∣∣∣∣∣
2

sin θ dθ dφ (1.27)

The double integral can be calculated analytically, which leads to

P (t) =
d2ω4

8π2c3ε0
× 4π

∑
j

∑
j′

sin(k0rjj′)

k0rjj′
βj(t)β

∗
j′(t) (1.28)

However, it is possible to prove that P (t) is also equal to

2 In this definition of spherical coordinates, r is the radial coordinate (from 0 to infinite), φ is the
azimuth angle (from 0 to 2π, laying on the xy plane) and θ is the polar angle (from 0 to π, from the z
axis). See Fig. 1.2.
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P (t) = −~ω d
dt

∑
j

|βj(t)|2 (1.29)

after the extinction of the incident field. In words: the total emitted power is proportional

to the derivative of the excited state population once the laser is switched off. We provide

a proof of Eq. 1.29 below.

Proof

The starting point is the definition of total emitted power in Eq. 1.27, which can be

rewritten as

P (t) =
d2ω4

8π2c3ε0

∫ π

0

∫ 2π

0

∑
j

∑
j′

e−ik0r̂·(~rj−~rj′ )βj(t)β
∗
j′(t) sin θ dθ dφ

and the integral

Ia =

∫ π

0

∫ 2π

0

∑
j

∑
j′

e−ik0r̂·(~rj−~rj′ )βj(t)β
∗
j′(t) sin θ dθ dφ

should be solved. As already pointed, it is exact.

To see that, we choose a coordinate frame where r̂ ·(~rj−~rj′) = rjj′ cos θ [Jackson 1998],

we have

Ia =
∑
j

∑
j′

βj(t)β
∗
j′(t)

∫ 2π

0

dφ

∫ π

0

e−ik0rjj′ cos θ sin θ dθ =

= 2π
∑
j

∑
j′

βj(t)β
∗
j′(t)

∫ 1

−1

e−ik0rjj′u du =

= 2π
∑
j

∑
j′

2 sin(k0rjj′)

k0rjj′
βj(t)β

∗
j′(t) (1.30)

exactly as in Eq. 1.28 and [Bienaimé 2014]. This is valid for all βj(t), in all instants t.

Now we will show that the derivative Ib =
d

dt

∑
j

|βj(t)|2 is also equal to Eq. 1.30 when

Ω = 0. To do so, we start by expanding the summation

Ib =
d

dt

∑
j

|βj(t)|2 =
d

dt

∑
j

∑
j′

βjβ
∗
j′δjj′ =

∑
j

∑
j′

δjj′
d

dt

(
βjβ

∗
j′

)
=

=
∑
j

∑
j′

δjj′
(
β̇jβ

∗
j′ + βjβ̇

∗
j′

)

and then we use the coupled-dipole equations, Eq. 1.14, to replace the two derivatives in

the parenthesis. When the laser is switched off, Ω = 0, so
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β̇j = i∆βj −
Γ

2

∑
j′

Vjj′βj′

with Vjj′ =
eik0rjj′

ik0rjj′
. Changing j → j′ and taking the conjugate in both sides, we have

β̇∗j′ = −i∆β∗j′ −
Γ

2

∑
j

V ∗jj′β
∗
j

(note that Vjj′ = Vj′j and we also have changed j′ → j in the last term because j is a sum

index).

Thus: (we do j → m, j′ → n; the terms in ∆ vanish)

Ib =
∑
j

∑
j′

δjj′

([
i∆βj −

Γ

2

∑
m

Vjmβm

]
β∗j′ + βj

[
−i∆β∗j′ −

Γ

2

∑
n

V ∗nj′β
∗
n

])
=

=
∑
j

∑
j′

δjj′

(
i∆βjβ

∗
j′ −

Γ

2

∑
m

Vjmβmβ
∗
j′ − i∆βjβ∗j′ −

Γ

2

∑
n

V ∗nj′βjβ
∗
n

)
=

= −Γ

2

∑
j

∑
j′

δjj′

(∑
m

Vjmβmβ
∗
j′ +

∑
n

V ∗nj′βjβ
∗
n

)

Now we use the property of the Kronecker delta to do
∑
j

δjj′Vjm = Vj′m and
∑
j′
δjj′V

∗
nj′ =

V ∗nj. So

Ib = −Γ

2

∑
j

(∑
j′

∑
n

Vj′mβmβ
∗
j′ +

∑
j

∑
n

V ∗njβjβ
∗
n

)

and from it we have (we undo m→ j, n→ j′)

Ib = −Γ

2

∑
j

∑
j′

(
Vjj′ + V ∗jj′

)
βjβ

∗
j′

Finally, we use the definition of Vjj′ to get

Ib = −Γ
∑
j

∑
j′

sin(k0rjj′)

k0rjj′
βjβ

∗
j′ (1.31)

exactly as in Eqs. 1.30.

Therefore,

∑
j

∑
j′

sin(k0rjj′)

k0rjj′
βjβ

∗
j′ = − 1

Γ

d

dt

∑
j

|βj(t)|2

and by substituting the equation above in Eq. 1.28, as well as the definition of Γ in Eq.

1.13, we obtain
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P (t) = − d2ω4

8π2c3ε0
4π

2π~ε0c3

d2ω3

d

dt

∑
j

|βj(t)|2 = −~ω d
dt

∑
j

|βj(t)|2

exactly as in 1.29. Q.E.D.

If Ω 6= 0, we can do a similar calculation to obtain

P (t) ∝ − d

dt

∑
j

|βj(t)|2 +
iΩ

2

∑
j

(
e−i

~k0·~rjβj − c.c.
)

(1.32)

which is valid for all t and Ω, both before and after the switch off of the incident field.

Total power for a single atom

For pedagogical purposes, we can write the total emitted power and the βj equations

for a single atom, i.e., N = 1. With one atom, Eqs. 1.23 and 1.15 turn into

I(~r, t) =
d2ω4

8π2c3ε0r2

∣∣e−ik0r̂·~rβ∣∣2 =
d2ω4

8π2c3ε0r2
|β|2

β̇ =

(
i∆− Γ

2

)
β − iΩ

2
ei
~k0·~r

since Vjj′ = 0 for a single atom. The total power is

P (t) = r2

∫ 2π

0

∫ π

0

d2ω4

8π2c3ε0r2
|β(t)|2 sin θ dθ dφ =

d2ω4

8π2c3ε0
4π |β(t)|2 = ~ωΓ |β(t)|2

as in Eq. 1.28.

When the incoming field is switched off, we have

β̇ =

(
i∆− Γ

2

)
⇒ β(t) = β(0) ei∆t e−Γt/2

providing an analytical solution for the single atom case, and t = 0 is the instant where

the field is switched off. From it, we have |β(t)|2 = |β(0)|2 e−Γt and

d

dt
|β|2 = −Γ|β|2 ⇒ |β|2 = − 1

Γ

d

dt
|β|2

Replacing this last equation in the total power, we have

P (t) = −~ω d
dt
|β|2

as in Eq. 1.29.

For the steady state, β̇ = 0, so β → β0 and hence
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0 =

(
i∆− Γ

2

)
β0 −

iΩ

2
ei
~k0·~r ⇒ β0 =

iΩ/2

i∆− Γ/2
ei
~k0·~r ⇒ |β0|2 =

Ω2/4

∆2 + Γ2/4

This is exactly the population of the excited state for the single atom, in the steady

state and and linear regime [Berman 2008]. Hence, the emitted fluorescence in the steady

state is P = ~ωΓ|β0|2.

1.2.2 Intensity in a given direction from the incident light

The intensity measured in a given position of space is indeed given by Eq. 1.25,

since it comes from photodetection theory as already discussed. By expanding ~rj − ~rj′ =

(xj − xj′ , yj − yj′ , zj − zj′) = (xjj′ , yjj′ , zjj′) and using spherical coordinates like in Fig.

1.2, we have r̂ = (sin θ cosφ, sin θ sinφ, cos θ), so the intensity detected in a direction

{θ, φ} is

I(r, θ, φ, t) =
d2ω4

8π2c3ε0r2

∑
j

∑
j′

βj(t)β
∗
j′(t) e

−ik0(xjj′ sin θ cosφ+yjj′ sin θ sinφ+zjj′ cos θ) (1.33)

In the following we drop the prefactor 1/r2 for the intensities. The main reason for that

is that all theoretical and experimental intensities presented this thesis will be normalized

by its steady-state value, so all constants cancel and we have only the dependency in the

summations. Formally, we can define a power P (θ, φ, t) = r2I(r, θ, φ, t) and then calculate

P (θ, φ, t); however, when normalized, P (θ, φ, t) ∝ I(r, θ, φ, t) ∝ summation. We will also

use the word “intensity” even if it means power.

Therefore, we have the detected intensity in spherical coordinates as

I(θ, φ, t) ∝
∑
j

∑
j′

βj(t)β
∗
j′(t) e

−ik0(xjj′ sin θ cosφ+yjj′ sin θ sinφ+zjj′ cos θ) (1.34)

For spherical Gaussian distributions, and averaging the positions along the azimuthal

angle φ, the atomic cloud is symmetric with respect to the incident laser axis, so we

can do an integration to remove one of the two angular dependencies. By setting the

incident laser beam along the z-axis of a Cartesian coordinate frame whose origin is in

the center of mass of the atomic cloud (see Fig. 1.2), we have ~k0 parallel to the z-axis, i.e,
~k0 = k0ẑ. Thus, the system cloud-laser is symmetric to z and, in spherical coordinates,

it is symmetric along the coordinate φ. The coordinate θ becomes the angle between the

detector and the laser direction. Therefore, the detected intensity is the intensity at the

position θ for all directions φ, so we integrate on φ:

I(θ, t) =

∫ 2π

0

I(θ, φ, t) dφ =
∑
j

∑
j′

βj(t)β
∗
j′(t)

∫ 2π

0

e−ik0(xjj′ sin θ cosφ+yjj′ sin θ sinφ+zjj′ cos θ) dφ

(1.35)

with θ ∈ [0, π], where θ = 0 is the forward direction and θ = π is the backward direction.

The integral in Eq. 1.35 has an analytic solution. We rewrite it as
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I(θ, t) ∝
∑
j

∑
j′

βj(t)β
∗
j′(t)e

−ik0zjj′ cos θ

∫ 2π

0

e−ik0 sin θ(xjj′ cosφ+yjj′ sinφ) dφ (1.36)

and then we use the identity∫ 2π

0

ei(a cosφ+b sinφ) dφ = 2π J0(
√
a2 + b2) (1.37)

where J0(x) is the zero order Bessel function of first kind. In our case, a = −k0 sin θ xj′j
and b = −k0 sin θ yj′j, which gives

I(θ, t) ∝ 2π
∑
j

∑
j′

βj(t)β
∗
j′(t)e

−ik0 zjj′ cos θJ0

(
k0| sin θ|

√
x2
jj′ + y2

jj′

)
(1.38)

It is important to point out that Eqs. 1.34 and 1.35 are equivalent in the sense that

both give the detected intensity in a given angle θ (Eq. 1.35 is just an integration of Eq.

1.34 over φ). In the other hand, Eq. 1.27 is the power integrated over all the space, so it

washes out the spatial features of the emitted light.

1.3 Simulation methods

The equations for the emitted intensity I(θ, t) and for the coefficients βj(t) were derived

with the initial condition that the atoms are in the ground state and no photon is present.

The interactions of the atoms with the incoming field and the vacuum modes drive the

system into a steady state after some time [Bux 2010], so the βj(t)s tend to a constant

value and by assumption at most one atom is in the excited state. Then, the incident

field is suddenly switched off, allowing the excited state to decay. We are interested in

the temporal dynamics of the system, i.e., in how the excited atom emits spontaneously

light [see Fig. 1.5(b)]. Contrary to the naive picture where the emitted light is I(t) ∝
e−Γt, the presence of the other N − 1 atoms modifies the emitted intensity in a such

way that I(t) has features of fast and slow decays, defined as super- and subradiance,

respectively [Bienaimé 2012]. The fast decay, i.e., superradiance, takes place immediately

after the switch off, whereas the slow decay, i.e., subradiance, takes place after a long

time after the switch off. Superradiance corresponds to the emission of most part of

the light, whereas subradiance corresponds to a late emission of some trapped light in the

atomic sample. Superradiance is due to constructive interference of the emitted light from

the dipole oscillations, whereas subradiance is related to destructive interference of the

scattered light. Decay rates Γsup and Γsub can be associated with super- and subradiance,

respectively, in a such way that Γsup> Γ and Γsub< Γ and they depend on the atomic

distribution.

We can perform simulations and characterize the decay dynamics of the physical sys-

tem. The main numerical results will be presented in the following chapters, however

some of results will be discussed in this section, as well as the procedure for evaluation.

The simulations consist in generating emitted intensities by means of Eqs. 1.29, 1.34

and 1.35, with the βj obeying Eq. 1.15. The incident laser was set along the z axis,
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so ei
~k0·~rj = eik0zj in the second term of Eq. 1.15, and the spherical coordinates {θ, φ}

are defined in Fig. 1.2. For the emitted intensity, an exponential fit y(t) = A exp(−Bt)
is done in an appropriate interval, in order to extract the super- and subradiant decay

amplitudes A = {Asup, Asub} and rates B = {Γsup, Γsub}, respectively. For superradiance,

the fit interval is chosen just after the switch off. For subradiance, the fit interval is set

for long times after the switch off.

Equations 1.15 contain the parameters of the physical system: the laser detuning ∆,

the Rabi amplitude Ω, the atom number N and the atomic positions ~rj, distributed under

a given spatial geometry. Concerning Ω, its value can be any value, since all equations

were derived under the assumption s << 1. In our experiments the atomic sample is a

Gaussian cloud, a cloud of atoms whose density is described by a Gaussian function, so

we consider a spherical Gaussian cloud characterized by the parameters atom number N ,

RMS radius k0R, density

n0λ
3 =

(2π)3/2N

(k0R)3
(1.39)

and resonant optical thickness b0 ∝ N/(k0R)2. The scalar approximation of the coupled-

dipole model yields a b0 defined as [Bellando de Castro 2013]

b0 =
2N

(k0R)2
(1.40)

known as scalar definition, whereas the vectorial approximation of the coupled-dipole

model yields a b0 defined as

b0 =
3N

(k0R)2
(1.41)

i.e., a factor of three instead of two, known as the vectorial definition. In the experiments,

the measured b0 is defined as

b0 = g
3N

(k0R)2
(1.42)

where g is a constant which depends on the degeneracy of the two levels in the atom

species, since pure two-level atoms are not the standard situation in experiments. In this

thesis, g = 7/15, which stands for the atom 87Rb in a equal statistical mixture of Zeeman

sublevels for the ground state.

Another parameter for the cloud is the optical thickness

b(∆) =
b0

1 + 4∆2/Γ2
(1.43)

The reader is refereed to Chapter 2, subsection 2.2.5, for the derivation of b0, b(∆)

and n0λ
3. In this thesis, we use mainly Eq. 1.40 in the numerical results and Eq. 1.42

for the experimental results, although we sometimes use Eq. 1.41 for both numerical
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and experimental results in order to have a direct comparison. The definition of b0 is

mentioned in all figure captions in this manuscript.

Typical experimental values for the atomic cloud parameters are N ∼ 109, R ∼ 10−3

m and k0 ∼ 106 m−1, which lead to b0 ∼ 10 − 100 and n0λ
3∼ 10−2. However, it is very

hard to simulate a cloud with large N in the computers, due to limitation in software

and running time, so we set N ∼ 103−4 and b0 ∼ 10, which makes n0λ
3∼ 1 − 10. In

the experiments n0λ
3� 1, so we are well in the dilute cloud regime. However, in the

simulations the density is 102−3 times higher and possible density effects must be checked.

The positions ~rj = (xj, yj, zj) for all atoms are set randomly from a spherical Gaussian

distribution for a given k0R. However, when setting randomly the positions, pairs of atoms

may occur, i.e., two atoms may be close to each other. It can be shown [DeVoe 1996,

Bienaimé 2011b] that the super- and subradiant decay rates Γ+ and Γ−, respectively, for

an interacting pair separated by the distance r12, are equal to

Γ± = Γ

[
1± sin(k0r12)

k0r12

]
(1.44)

i.e., pairs cause enhancement of super- and subradiance. As in our experiments the cloud

is dilute, we look for cooperative effects due to the N atoms as a whole. It can be shown

from Eq. 1.44 that Γ± → Γ when the distance between the two atoms become k0r12 & π,

i.e, absence of pair effects, so we remove the pairs in the simulation by imposing an

exclusion distance condition as follows: if the distance between the atoms j and j′ is

k0rjj′ < 3, one of the two atoms has its position changed. This condition is verified until

it is fulfilled for all atoms.

In the experiments, the incident laser light is a pulse of duration ∆tpulse enough large

for the system to reach a steady state, so ∆tpulse � τ0. Experiments with short excitations

were performed and superradiance and cooperative Lamb shift were observed [Roof 2016],

and a numerical study about angular distribution of superradiance with also dependence

on the pulse duration is discussed in [Kuraptsev 2017]. In our simulations, no effect due

to the pulse duration was observed, as shown in Fig. 1.3. We set ∆tpulse = 100τ0 in most

of our simulations, although smaller values like ∆tpulse = 50τ0 and ∆tpulse = 25τ0 were

also set.

The laser switch off is the abrupt extinction of the pulse intensity. Therefore, the laser

excitation is set as a step function defined by

Ω(t) =

{
Γ, if t < ∆tpulse

0, if t ≥ ∆tpulse
(1.45)

where Ω = Γ when the laser is on and Ω = 0 when it is off.

For ∆, we allow ∆ ∼ 0 − 10Γ to accomplish interactions both on resonance and far

from resonance. Then, Eqs. 1.15 are solved numerically by means of the fourth order

Runge-Kutta method. As the intensities might present speckles and spurious oscillations,

the calculation is repeated for different configurations of the atomic positions, and then

the intensity is averaged over the total number of configurations. This is also because in

the experiment the detector indeed measures an average intensity in time. We have set
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Figure 1.3: Emitted intensity I(θ, t) at (a) θ = 0o and (b) θ = 45o, for the pulse dura-
tions ∆tpulse = 100τ0 (blue), ∆tpulse = τ0 (green) and ∆tpulse = 0.1τ0 (red). Parameters:
∆ = 10Γ, n0λ

3= 4.7 and b0 = 11.3 (N = 633 and k0R = 11.3), for a single configuration
of the atomic positions.

between 50 and 100 realizations on the atomic positions in all calculations described in

this thesis.

In summary, we have the following algorithm for the procedure described above, im-

plemented in the programming language MATLAB and following the steps below:

• To define a value for ∆, b0, n0λ
3 and then to calculate the corresponding N and

k0R;

• To set randomly the positions of all the N atoms under a Gaussian distribution of

RMS radius k0R;

• To check the exclusion distance condition for each atom and to change randomly

the position of one of the atoms in the pair, by using the Gaussian distribution

previously defined. As some atoms will have their positions changed, the net effect

is an increase in the value of k0R;

• To calculate the new k0R from its definition, i.e., the definition of RMS average,

k0R =

√√√√∑
j

(k0xj)
2

N
+
∑
j

(k0yj)
2

N
+
∑
j

(k0zj)
2

N

and to recalculate b0 and n0λ
3, which will decrease;

• To substitute the positions, ∆ and Ω in the coupled-dipole equations and to solve

numerically for a given vector time t ≥ 0, where t = 0 is the initial time and

t = ∆tpulse > 0 is the instant of the switch off. Later t is redefined as t→ t−∆tpulse

in order to have t = 0 as the instant of the switch off. The solutions are N functions

βj(t);

• To substitute the βj(t) and the positions previously set in the intensities equations,

for each t;
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• To repeat the procedure with new atomic positions. This generates new emitted

intensities, and the final intensity is the arithmetic mean of all generated intensi-

ties. Then, we normalize it by its steady value, set as the value of the intensity

immediately before the switch off;

• To define a fit interval and to extract the decay rates Γsup and Γsub.

In the following we present qualitative results and interpretations from the simulations

with the coupled-dipole model.

1.3.1 Impact of the exclusion condition
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Figure 1.4: Comparison between the total fluorescence with and without atomic pairs.
Parameters: b0 = 3N/(k0R)2 = 11.3, n0λ

3= 4.6 (N = 633 and k0R = 11.3), ∆ = 10Γ,
over 100 configurations on the atomic positions.

A comparison between the emission with and without atomic pairs is shown in Fig.

1.4. The fluorescence P (t)/P (0) is the total emitted fluorescence in Eq. 1.29, normalized

by its maximum value and plotted in log scale. The cloud without pairs (blue) was

generated from initial b0 = 3N/(k0R)2 = 15.0 and n0λ
3= 7.0, which gives N = 633

and k0R = 11.3. After the exclusion distance condition is fulfilled, k0R increased to

12.9, however, the atomic distribution remains Gaussian with a good approximation. The

increasing of k0R gives recalculated b0 = 11.3 and n0λ
3= 4.6. We checked that ∼ 50%

of the atoms had their positions changed. This number increases for high densities and

might introduce correlations (i.e., equal distances and ordered pattern) in the positions,

so we also perform calculations at low densities, to be discussed in the next chapters. The

cloud with pairs (red) was generated from the final values of b0 and n0λ
3, without the

exclusion condition. We also plot the single-atom decay, P (t) ∼ exp(−Γt) (dashed line;

see subsubsection 1.2.1). The main difference between the curves is the amplitude for

times t � τ0, i.e., where subradiance takes place. The subradiant amplitude, which can

be seen as the curve level for fixed t, is larger for the red curve than for the blue curve.

This means that the presence of pairs increases the contribution of the subradiant states.

1.3.2 Emission diagram and off-axis superradiance

Figure 1.5(a) shows the emission diagram in logarithm scale and in the steady state,

i.e., I(θ, t) for t� τ0. This is equivalent to solve the coupled-dipole equations for β̇j = 0.
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Figure 1.5: (a) Emission diagram calculated from Eq. 1.35 in the steady state, i.e.,
with Eq. 1.15 for β̇j = 0. For better visualization, the blue curve is the logarithm of I(θ)
times 105. Parameters: b0 = 3N/(k0R)2 = 11.3, n0λ

3= 4.6 (N = 633 and k0R = 11.3),
∆ = 10Γ, averaged over 50 configurations on the atomic positions. (b) Emitted intensities
calculated from Eq. 1.35 for θ = 0o (blue) and 90o (red), for the same parameters in (a).
The dashed line is the decay for a single atom.

The main feature of the emission diagram is a forward lobe, i.e., a strong intensity in the

direction of the incident laser (θ ∼ 0). Such lobe is discussed extensively in the literature

of superradiance [Rehler 1971,Bienaimé 2011a] and more recently in [Rouabah 2014]. For

the directions outside the lobe (θ 6= 0), the emission is mainly isotropic.

Figure 1.5(b) illustrates emitted intensities I(θ, t) in log scale for θ = 0o and θ = 45o,

for different b0 and ∆ = 10Γ. By comparing the intensities with the decay for the single

atom, we see that they show super- and subradiance, which is verified by the slopes of the

emitted intensities, respectively faster and slower than the single-atom slope Γ. Moreover,

the curves show superradiance out of the forward direction. This is what we call “off-axis

superradiance”, i.e., superradiance detected from an intensity out of the driving laser axis

(θ 6= 0). We checked that intensity curves evaluated for different angles θ 6= 0 are similar.

We will discuss more detailed in Chapter 3 that intensities calculated and measured on-

and off-axis give different superradiant decay rates Γsup, but the same subradiant decay

rate Γsub.

1.3.3 Temporal decay rate

As already discussed, we use a fit procedure to extract the super- and subradiant decay

rates. However, another method is to calculate the instantaneous decay rate Γ(t), i.e., the

temporal decay rate, calculated from the emitted intensity I(t) from the ansatz

I(t) ∝ e−Γ(t)t (1.46)
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i.e, we assume that the emitted curve is an exponential with instantaneous decay rate

Γ(t). From it, by taking the logarithm and the derivative in both sides, we “isolate” Γ(t)

as

Γ(t) = − d

dt
ln I(t) (1.47)

Figure 1.6 shows the result of Eq. 1.47 for a decay after the switch off, where the

intensity is the total power P (t) from Eq. 1.29. Values Γ(t)/Γ > 1 denote superradiance,

while Γ(t)/Γ < 1 denotes subradiance. We see that Γ(t) remains evolving even for very

long times after the switch off, like t ∼ 100τ0, becoming constant only for t > 600τ0.

In amplitude, this corresponds to P (t)/P (0) ∼ 10−28, which is out of the limit for any

realistic experiment (we will discuss in Chapter 2 that subradiance was measured for

amplitudes ∼ 10−4, which corresponds to times between t ∼ 200 and 400τ0). However,

we can still see Γ(t)/Γ < 1 for lower times, although it does not correspond to a purely

exponential decay in the system.
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Figure 1.6: Temporal decay rates Γ(t) for different values of b0, calculated from Eqs. 1.47
and 1.29 for varying b0 = 2N/(k0R)2 at constant n0λ

3 and ∆. Parameters: n0λ
3= 4.6,

∆ = 10Γ, averaged over 100 configurations on the atomic positions.

The results plotted for several b0 show that the cooperativity is stronger as b0 increases,

i.e, the larger b0, the stronger cooperativity is, represented by a increase of Γ(t) for

t ∼ 0 (enhancement of superradiance) and a decrease of Γ(t) for t ≥ τ0 (enhancement of

subradiance). Physically, as cooperative effects are due to the interactions of all atoms

in the sample and their positions, larger b0 implies in large N and/or small k0R. For a

single atom, b0 → 0, since k0R→∞.

In our simulations, b0 was varied by varying N and k0R simultaneously. In our exper-

iment (to be discussed from Chapter 2), b0 was varied by varying k0R for constant (and

sometimes decreasing) N . Two clouds with different N and k0R but same b0 present

the same strength in cooperativity. Indeed, it has been discussed in [Guerin 2017a]

that, among the cloud parameters {N, k0R} and their combinations N/(k0R)2 ∝ b0 and
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N/(k0R)3 ∝n0λ
3, for a given detuning and geometry, the combination N/(k0R)2 ∝ b0 is

the only good parameter to investigate cooperativity. In Chapters 2 and 3, we will present

scaling laws for the super- and subradiant decay rates with respect to b0, as well as its

observations in the experiments performed in this work.

1.4 Conclusions of this chapter

We have discussed the coupled-dipole model in the scalar approximation for cooper-

ativity in cold atoms. Super- and subradiance will be the subject of discussion in the

following chapters, specially in Chapters 2 and 3, where theoretical and experimental re-

sults for the decay rates will be presented with respect to the parameters of the system. In

Chapters 4 and 5, super- and subradiance will be investigated besides radiation trapping,

temperature effects and an excitation with a phase shift in the incident laser.



Chapter 2
Subradiance in cold atoms

In this chapter, we discuss the results obtained in subradiance. The results include nu-

merical predictions, a full description of our experimental setup, the experimental results

and the overall discussion.

Since R. Dicke’s proposition about super- and subradiance [Dicke 1954], superradi-

ance was studied extensively in several kind of media and approximations [Gross 1982,

Scully 2006,Bienaimé 2013], but subradiance remained not studied experimentally due to,

maybe, experimental difficulties for its detection. In experiments, only two works report

the observation of subradiance: a late subradiant pulse emitted by Ga atoms in a three-

level scheme [Pavolini 1985], where the subradiant is induced by a superradiant decay to a

lower level; and the measurement of the subradiant decay rate for two ions [DeVoe 1996].

In the case of a system of N � 2 atoms, it was discussed in Chapter 1 that the model

of coupled dipoles for cold atoms predicts subradiance as a late decay in the emitted

intensity, with a rate Γsub smaller than the natural decay rate Γ. The observation of sub-

radiance in a large cloud of cold atoms is the subject of this chapter, and its detection at

very low amplitudes was achieved thanks to a good extinction and fall time in our driving

laser beam, as well as a hybrid photomultiplier to provide a clear detection.

This chapter is divided in four sections. In section 2.1, we present the main theoretical

predictions on the subradiant decay rates with the parameters of the system. In section

2.2, we discuss the complete experimental setup available in our laboratory, the techniques

for preparing and characterizing the atomic sample, the experimental procedure for per-

forming the measurements and the probe beam setup to measure subradiance. In section

2.3, we demonstrate the experimental results on subradiance. Finally, in section 2.4, we

point out the main conclusions of this chapter.

2.1 Numerical results

A numerical study on subradiance was firstly presented in [Bienaimé 2012], where

predictions for the subradiant decay rates Γsub in cold atoms were obtained with several

parameters of the system. However, in this work we have improved the simulation methods

since we added, for instance, an exclusion condition and the calculation of intensities that

depend on the detection direction (see Chapter 1). Also, we extended the simulation

procedure for the superradiant decay rates (to be discussed in Chapter 3), a truncated

31
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plane wave that excites the atoms (Chapter 4) and the inclusion of temperature and phase

effects (Chapter 5), so this work provides a more complete understanding.

Our study on subradiance was performed by using the equations predicted by the

coupled-dipole model, discussed in Chapter 1, with the simulation procedure described

in section 1.3. We extract the subradiant decay rates Γsub and its corresponding time

τsub= 1/Γsub by means of an exponential fit y(t) = Asub e
−Γsubt in the emitted intensity in

a range where a slow decay is observed compared to the single atom decay. The atomic

cloud is considered as a Gaussian sphere with RMS size k0R and atom number N , and

also density n0λ
3 (Eq. 1.39), resonant optical thickness b0 ∝ N/(k0R)2 (Eq. 1.40, 1.41

or 1.42) and optical thickness b(∆) (Eq. 1.43). The emitted intensity depends on the

coefficents βj(t) given by Eqs. 1.15 and can be the total emitted power P (t) (Eq. 1.29) or

the intensity detected in a given direction I(θ, φ, t) (Eq. 1.34) or I(θ, t) (Eq. 1.35). Eq.

1.35 is an integration of Eq. 1.34, obtained from symmetry of the cloud with respect to

the incident laser axis.

In our experiment, the detector was placed at an angle of θ = 35o from the incident

laser direction, so we investigate subradiance calculated with I(θ, t). We have checked

that Γsub extracted from I(θ, t) is similar to those extracted from I(θ, φ, t) and P (t). The

parameters for the simulations are b0 (cloud), n0λ
3 (cloud), the laser detuning ∆ (laser)

and θ (detection position). θ is varied to include directions in and out of the incident

axis. Also, the simulations are performed mainly at large detunings (i.e., ∆ � Γ), in

order to have b(∆) < 1 and thus to assure single scattering and the timed-Dicke state.

Also, we have performed simulations at resonance and other detection directions for a full

understanding.

2.1.1 Scaling with b0

The main prediction of the coupled-dipole model for subradiance is a linear scaling

of τsub with b0, displayed in Fig. 2.1. Fig. 2.1(a) shows emitted intensities I(θ, t) for

several b0, for constant n0λ
3 and detuning fixed at ∆ = 10Γ, calculated at θ = 45o, i.e.,

close to the position where the detector is placed in the experiment. The red curves are

exponential fits in the interval I(θ, t)/I(θ, 0) ∈ [10−4, 10−3], in order to extract τsub. This

interval was chosen based on experimental data, where we have observed subradiance in

amplitudes ∼ 10−4 (see Fig. 2.17).

Figure 2.1(b) shows the result of the fits, τsub versus b0. We set several n0λ
3 to

see whether the density plays a role (as discussed in section 1.3, the values of n0λ
3 in

the simulations are much higher compared to the experimental ones n0λ
3∼ 10−2). We

see a linear scaling of τsub with b0, as suggested in [Bienaimé 2012], and the density

has practically no effect in these subradiance data. Also, τsub increases with b0, i.e.,

cooperative effects are strong for high atom number and/or small sample sizes. About

the fit range, we have checked that, by choosing a fit range smaller in amplitude, e.g., for

I(θ, t)/I(θ, 0) ∈ [10−8, 10−6], the results are similar.

A linear fit τsub/τ0 = (1 + c b0) gives c = 0.54 for all the numerical data and c = 0.53

for the data at n0λ
3= 0.5, 0.9 and 2.5 (low densities), with b0 given in the scalar definition

(Eq. 1.40). By converting b0 to the vectorial definition (Eq. 1.41), we get c = 0.35. In the

experiment, we have found c = 0.80 with b0 in the vectorial definition [see Fig. 2.18(a)].
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Figure 2.1: (a) Emitted intensities for several b0 = 2N/(k0R)2, for n0λ
3= 4.6 and

∆ = 10Γ. The emitted intensity was calculated from Eq. 1.35 for θ = 45o. The red curves
are exponential fits in the interval I(θ, t) ∈ [10−4, 10−3]I(θ, 0). (b) Subradiant decay
rates τsub as a function of b0 = 2N/(k0R)2, for ∆ = 10Γ and n0λ

3= 0.5 (red circles), 0.9
(blue diamonds), 2.5 (green crosses), 3.7 (yellow asterisks), 4.6 (magenta X), 5.3 (black
squares). The decay rates were obtained from fits in the same interval as those in (a).
Data averaged over 100 configurations on the atomic positions.

As discussed in next section, the atom used in the experiment, 87Rb, is not a pure two-

level system: it is degenerated in hyperfine levels, so we should not expect an agreement

with the theoretical and experimental data.

2.1.2 Subradiance at resonance and for several detection direc-
tions

In order to investigate the subradiant decay at resonance and for different directions,

we plot in Fig. 2.2 τsub as a function of θ, for constant n0λ
3 and b0, on- and off-resonance

(red and blue data, respectively), extracted from I(θ, t) by varying the detection angles.

We see that τsub is constant for both θ ≈ 0 (forward emission, presence of an intensity

lobe) and θ 6= 0 (directions out of the incident laser, where our detector is placed); hence,

the subradiant decay rates are mainly isotropic. With respect to the detuning dependence,

τsub for ∆ = 10Γ is different of the ones for ∆ = 0 by a factor of ' 25%. This may be

due to radiation trapping and will be discussed in Chapter 4. Now one cannot know if

subradiance survives at resonance: the τsub at ∆ = 0 may be due to radiation trapping

only.

Figure 2.3 shows τsub as a function of b0 for several detunings of the incident laser

beam. This figure is similar to what will be discussed in the experimental results. At

resonance, i.e., for ∆ = 0, τsub is larger than the values for ∆ 6= 0, as in Fig. 2.2. For

∆ 6= 0, even for slight ∆, all curves practically collapse, showing that subradiance is

independent of the detuning.
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Figure 2.2: Angular dependence of τsub for ∆ = 0 (red) and ∆ = 10Γ (blue). The
dashed line is the time decay rate for a single atom. The fit interval is the same as in Fig.
2.1. Parameters: b0 = 2N/(k0R)2 = 8.55, n0λ

3= 4.6 (N = 921, k0R = 14.7), averaged
over 100 configurations of the atomic positions.

A linear fit τsub/τ0 = (1 + c b0) for the data for δ ≥ 1 yields to c ' 0.37 for b0 in the

vectorial definition. By converting b0 to the scalar definition to compare with the fit for

the data in Fig. 2.1(b), we obtain c = 0.37 × 3/2 = 0.56, which is practically equal to

c = 0.54 found from Fig. 2.1(b).
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Figure 2.3: Subradiant decay rates τsub as a function of the resonant optical thickness
b0 = 3N/(k0R)2, for several detunings δ = ∆/Γ. The value of τsub were extracted from
normalized intensities I(θ, t) at θ = 45o, in the interval I(θ, t)/I(θ, 0) ∈ [10−4, 10−3].
Parameters: n0λ

3= 4.6, averaged over 50 realizations for the first five data (smaller b0)
and 10 realizations for the three last data (larger b0).

Figure 2.4 displays the data in Fig. 2.3 as a function of ∆, for constant b0. Panel (a)

displays the emitted intensities for several detunings, and the respective fit curves in red.

We see that the fit slopes are practically the same. However, their amplitudes are higher

for ∆ ∼ 0. Panels (b) and (c) show, respectively, τsub and Asub extracted from (a) and

plotted as a function of ∆. In (b), as already discussed in Figs. 2.2 and 2.3, the values of

τsub are the same except for ∆ ' 0. In (c), Asub decreases when ∆ increases, but it tends

to a constant value of ∼ 10−2, showing that subradiance should be observed at very low

amplitudes.
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Figure 2.4: (a) Intensities and subradiant fits calculated at θ = 45o, for several detunings
δ = ∆/Γ at constant n0λ

3= 4.6, b0 = 3N/(k0R)2 = 12.8, averaged over 50 realizations.
(b) Subradiant decay rates τsub and (c) subradiant amplitudes Asub extracted from the
fits in (a), plotted as a function of δ.

2.1.3 Subradiance and temperature

As already discussed in Chapter 1, in our theoretical model it is assumed that the

atoms do not move, which implies temperature T = 0. However, in the experiments the

actual temperature is in the order of some µK. In our MOT setup, as discussed in the

next section, we have T ∼ 50 µK. Temperature means atomic motion, i.e., a gas where

the atoms move at random directions. Thus, the atomic positions change in time and it

is not evident from the coupled-dipole model if cooperative effects will remain detectable

and observable. Also, the atomic velocity causes a shift in the laser detuning ∆ (Doppler

shift) in the atomic frame. Frequency redistribution may occur, i.e., a photon may have

its frequency even and even shifted as long as it is scattered (absorbed and emitted) by

one or more atoms in the cloud.
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Figure 2.5: Subradiant decay rates τsub as a function of the optical thickness b0 =
3N/(k0R)2 at ∆ = 20Γ, for temperatures T = 0 and T = 50 µK. τsub were extracted from
the total emitted power P (t). Parameters: n0λ

3= 4.6, averaged over 20 configurations on
the atomic positions.

In order to investigate the impact of temperature in τsub, Fig. 2.5 shows τsub versus b0
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for zero and 50 µK. We see that both data collapse into a single curve, so Doppler effects

and frequency redistribution do not suppress subradiance. Details about the simulations

with temperature are discussed in Chapter 5, as well as a full numerical study about

cooperativity with temperature. The reader is refereed to Fig. 5.9 for a plot of τsub with

b0 for other values of temperatures.

The main conclusions of this numerical data are that subradiance is a robust slow decay

with large detuning, small temperatures and detection direction. Subradiance depends

mainly on b0, and the non-zero temperature should not limit the experiment. In the

following section, we will discuss the experimental setup developed in our laboratory.

2.2 Experimental setup

2.2.1 Basics about magneto-optical traps (MOTs)

In order to produce a sample of cold and neutral atoms at low temperatures, we have

in our laboratory a magneto-optical trap (MOT). The MOT is an experimental apparatus

in order to cool and trap atoms from a warm gas or vapor, from room temperature to very

low temperatures, close to the absolute zero [Foot 2005, Metcalf 1999] [see Fig. 2.6(a)].

Since its theoretical proposition and experimental achieving, which led to the 1997 Nobel

Prize in Physics to S. Chu, C. Cohen-Tannoudji and W. D. Phillips for the developing

of techniques for cooling and trapping atoms, the MOT has become a powerful tool to

produce experimentally cold and neutral atomic samples. Cold samples produced by a

MOT are subject of several research fields and interests. Also, the MOT is the first step to

produce samples even colder, like degenerate gases, Bose-Einstein condensates and optical

lattices. The MOT consists in a set of three pairs of identical counter-propagating laser

beams along the three spatial directions and a inhomogeneous magnetic field produced

by two identical circular coils set in the called anti-Helmholtz configuration.

The physical principle behind cooling atoms is the interactions between the atoms

and the photons from the laser, by absorption and spontaneous emission. Due to the fact

that a photon carries momentum, energy and angular momentum, all these quantities are

transferred to the atom because of the conservation laws. These interactions lead to light

forces, like radiation pressure force and dipole forces. It can be shown [Foot 2005] that,

for two-level atoms with degenerated excited states at small atomic velocities ~v and small

Zeeman shifts induced by the inhomogeneous magnetic field, the force seen by the atoms

in the MOT is equal to

~F = −β~v − κ~r (2.1)

where the first term comes from the six laser beams and reduces the velocity of the atoms

(each pair of beams reduces a component of the velocity), and the second term comes

from the gradient of magnetic field (magnetic field per unit of distance) and the circular

polarization of the six laser beams. In Eq. 2.1, the first term is a friction force, responsible

for the cooling, where the atoms have their velocity reduced after several absorption and

spontaneous emission events, and achieve a molasses phase. The second term is a restoring

force, responsible for trapping, due to the Zeeman shifts in the excited state and the
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Figure 2.6: The 87Rb MOT in our laboratory. (a) Six laser beams are set in the
three independent directions of the space. All the beams are identical in size, intensity,
size, spatial profile, negative detuning ∆MOT < 0 and have and right and left circular
polarizations for each counter-propagating pair. Two identical circular coils are placed
in the anti-Helmholtz configuration, i.e., the sense of the driving current I is in opposite
directions. This generates a linear position-dependent magnetic field from the center of
the system. There is also a pair of repumper beams. (b) The 87Rb D2 line and the laser
beams. The MOT laser beams are set close to the transition F = 2 → F ′ = 3 and the
repumper laser beams, at the transition F = 1→ F ′ = 2.

circular polarization, which selects the transitions for the absorbed photon. Thus, the

total force acts as a damped harmonic oscillator and drives the atoms to the center of the

six-beams-magnetic-field configuration. The constant β depends on the intensity IMOT

and the detuning ∆MOT of the six beams, and we must have the condition ∆MOT < 0 in

order to have β > 0 and to obtain a friction force. The constant κ is proportional to β

and to the magnetic gradient, and the choice of opposite circular polarizations for each

beam pair yields to the functional form of the second term of Eq. 2.1.

As already mentioned, the atom used in our experiments is the 87Rb, which is an alkali

element, very reactive with air and water, solid at room temperature and found in Earth

in a natural mixture with the isotope 85Rb, in quantities equal to 72% of 85Rb and 28% of
87Rb. We consider transitions in its D2 line [see Fig. 2.6(b)], i.e., its single optically active

electron is excited from the ground level 5S1/2 (valence level) to the excited level 5P3/2

(second allowed excited level). As 87Rb has a non-zero nuclear spin I = 3/2, its ground

level is split in two hyperfine states F = 1, 2, and the excited level is split in four hyperfine

states F ′ = 0, 1, 2, 3. The MOT laser beams are set in the transition F = 2→ F ′ = 3 for

two reasons: it is closed, i.e., once in the state F ′ = 3, the atom decays only to F = 2 (the

decay F ′ = 3→ F = 1 is not allowed according to the dipole selection rules); and has the

largest probability to occur among the transitions from F = 2 to F ′ = 1, 2, 3. However,

there is a non-zero probability of excitation of the state F ′ = 2 and consequently an

eventual decay to F = 1, which does not interact with the MOT beams. In order to

recover the atoms in this latter, a second laser called repumper [see Fig. 2.6(a)] is set at

the transition F = 1 → F ′ = 2. Thus the atoms go back to the state F ′ = 2 and can

decay to F = 2, restarting the cooling and trapping cycle.
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Some data about the 87Rb D2 line are [Steck 2001]: resonance wavelength λ = 780 nm,

natural lifetime τ0 = 26 ns, natural decay rate Γ = 2π × 6.066 MHz, saturation intensity

Is = 1.7 mW/cm2.

2.2.2 General description of our MOT setup

When this PhD thesis started, the experimental setup was already available in the

laboratory [Lucioni 2008,Bienaimé 2011b,Bellando de Castro 2013]. A description of the

whole setup is the subject of this and the next four subsections. The reader can find full

schemes of the experimental setup in Annex and should refer to them when necessary.

The main equipment in our MOT setup are:

• MOT laser : This laser source provides the MOT six laser beams and also the probe

beam, used to perform the measurements and for the absorption imaging technique

(to be discussed in section 2.2.5). It is a distributed feedback laser (DFB) placed

inside a homemade transparent box for providing electric current and temperature

regulation by means of the Peltier effect. Also, the six laser beams are arranged in

a setup of independent beams with one pair in the vertical plane and two pairs in

the horizontal plane of the optical table [see Fig. 2.6(a)]. Each beam has a waist

size 2.8 cm [Bienaimé 2011b], power ∼ 40 mW and detuning ∆MOT = −4Γ. This

laser source is not perfectly monochromatic and has a linewidth of ∆ω ∼ 3 MHz.

• Repumper laser : This laser source is also a DFB laser, also placed in a transparent

box with current and temperature controls similar to the DFB installed for the MOT

laser. In our experiment, the repumper beams are set as one counter-propagating

beam pair, superposed to one of the horizontal MOT beam pairs [see Fig. 2.6(a)].

Each repumper beam has a power of 5.5 mW and detuning ∆REP = −Γ. They

are initially linearly polarized but become circular polarized after passing through

the λ/4 waveplates placed in the MOT six beams setup for generating circular

polarization.

• Vacuum system: It consists of a vertical cylinder, with a cubic glass cell on the top

and a Rb reservoir at the bottom. The glass chamber has sides 10 cm and it is the

main chamber where the cold cloud is produced. The reservoir contains Rb in a

mixture of the isotopes 85Rb and 87Rb, at solid and vapor phases. A valve controls

the amount of vapor for the chamber, and an ionic pump from Varian VacIon Plus

20, model Diode 27 L·s−1, provides a vacuum of ∼ 10−9 mbar. This vacuum pressure

is estimated from the MOT loading time, i.e., the time necessary to produce the

cold atoms when the six beams and magnetic field are turned on [Arpornthip 2012].

• Coils for the magnetic field : The two main coils have a diameter of 26 cm and are

powered by a current source from TDK-Lambda. The current is equal to 4 A and

provides a field of∼ 12 G/cm at the center of the vacuum chamber [Bienaimé 2011b].

Also, compensation coils are set in the three spatial directions to cancel the Earth’s

magnetic field.

Like in standard atomic physics experiments, we use a locking system in order to sta-

bilize the frequency of the emitted laser beam, which usually is unstable due to mechanic
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and thermal fluctuations in the laboratory room. Our locking systems consist in a home-

made proportional-integrator (PI) controller (i.e., a PID controller without the derivative

part), where the input signal is the 87Rb saturated absorption spectrum [Foot 2005]. Also,

as in standard MOT experiments, we use acousto-optic modulators (AOMs) to modify the

frequency and intensity of the laser beams at different points of the optical table. AOMs

are devices which diffract light by means of the acousto-optical effect, and are driven by

a sinusoidal voltage generated by electronic devices called voltage-controlled oscillators

(VCOs). The amplitude and frequency of the sinusoidal voltage control, respectively, the

intensity and frequency of the diffracted light by the AOM.

A scheme of our laser setup is represented in Fig. 2.7. The MOT laser [panels (a)

and (c)] is locked at the crossover transition F = 2 → F ′ = 2, 3, i.e., in the middle-

frequency between the states F ′ = 2 and F ′ = 3. Then, an AOM set in the double-pass

configuration [McCarron 2007] shifts the frequency of the +1 order beam of 2×100 MHz.

This AOM was aligned to favor mainly negative detunings for the probe beam in the

range from +2Γ to −12Γ. It is followed by a tapered amplifier (TA) from Sacher, which

increases the laser output power to ∼ 1 W. Then, an AOM in single-pass configuration

is set such as its −1 order beam goes to the MOT and its zero order beam goes to the

probe beam. The frequency shift of the −1 order beam is equal to −66 MHz. This beam

passes through a spatial filter with a pinhole, in order to get a clean transverse mode for

the laser beam, and then it is split in the six laser beams for the MOT chamber.
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Figure 2.7: Simplified scheme of our experimental setup in our laboratory, showing the
laser sources and the AOMs setup. (a) The MOT laser setup, which provides the MOT
beams and the probe beam. (b) The repumper laser setup, which provides the repumper
beams. (c) Scheme for the transitions in the 87Rb D2 line for the MOT laser. C23 is
the crossover frequency between the levels F ′ = 2 and F ′ = 3. +200 MHz is the shift
frequency from the double-pass AOM, −66 MHz is the frequency shift from the single-pass
AOM, and −93 MHz is the frequency shift from the AOM in the probe beam setup (see
subsection 2.2.3).

The setup for the repumper laser is similar to the MOT laser setup [see Fig. 2.7(b)].

A saturated absorption spectroscopy spectrum is the input of another homemade PI

controller, which locks the laser at the crossover transition F = 1 → F ′ = 1, 2. Then, a
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double-pass AOM followed by a single-pass AOM shift the frequency of the +1 and −1

order beams, respectively, in order to reach the state F ′ = 2. The −1 order beam goes

into a monomode optical fiber in order to obtain a clean Gaussian beam. Then, it is split

in the two repumber beams and reaches the MOT chamber.

Finally, the experimental setup and the time sequence for performing the experiments

are controlled by TTL and analogical signals generated by a data-acquisition card, whose

input is controlled by a graphical interface of a program written in the software MATLAB.

After receiving the input parameters set by the user (e.g., frequency and intensities for the

laser beams, time duration of probe beams and MOT loading), the program code generates

a data matrix which is sent to the data-acquisition card from National Instruments, model

PCI-6723. The outputs of this card are connected to the two AOMs of the MOT laser

setup, to the current source of the MOT coils, to the AOM with focused beam in the probe

beam setup (see subsection 2.2.3) and to a CCD camera used in the absorption imaging

technique (see subsection 2.2.5). The double-pass AOM has its frequency modified, which

modifies the detuning for the probe beam. The single-pass AOM has its voltage amplitude

modified, which modifies the intensity of the −1 order beam and consequently the power

of the MOT beams. Finally, the AOM in the probe beam setup has its −1 order turned

on or off, which controls if the probe beam will be on or off.

2.2.3 Setup for the probe beam

The probe beam is the laser beam used for performing the experimental measurements

(in this work, subradiance, superradiance and radiation trapping) and the absorption

imaging technique (to be discussed in subsection 2.2.5). Its experimental setup is imple-

mented and modified according to the specific features of the experiment to be performed

and investigated.

For the subradiance experiment, as subradiance is the emission of light at very low

amplitudes and late times, characterized by slow decay rates τsub> τ0, it is important to

have a good extinction and a fast enough fall time after the probe beam is switched off.

This is because, like in the simulations, in the experiment the driving laser is a square

wave pulse, but its extinction and ratio (which are ideal in the simulations, i.e., a perfect

square wave) must be as good as possible. In order to achieve these two requirements,

the setup was chosen to be two AOMs in series with a focused beam.

The probe beam setup for subradiance is shown in Fig. 2.8(a). The two AOMs are

connected to a function generator from Agilent, model 33220A, which generates square

pulses. A setup with a strongly focused beam inside an AOM is a technique to obtain a

fast fall time at the pulse edge, because the switch off of the probe beam is the switch

off of the −1 order beam, and this becomes faster if the beam is focused in the AOM.

Thus, the focusing lens, whose focal distance is 150 mm, was chosen in order to find the

best trade-off between a fast extinction, a reasonable diffraction efficacy, and the ability

to separate the different diffraction orders.

To obtain the good extinction in amplitude, the AOM with focused beam is connected

to two switches and another AOM is placed before, in such a way that one of the AOMs

has its switch connections inverted in order to provide the timing in Fig. 2.8(b): when
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Figure 2.8: Probe beam setup for the subradiance experiment. (a) AOMs in series
connected to a pulse generator, VCOs, switches and amplifiers. The lenses have focal
distance f = 150 mm. The −1 order beam enters into a monomode optical fiber towards
the atoms. (b) Timing of the AOMs. The probe beam is a squared pulse with maximum
and minimum amplitudes, and the two AOMs are connected in such a way that, at the
maximum amplitude, the first AOM is off and the second is on [exactly as in (a)], and at
the minimum amplitude, the first AOM is on (diffraction) and the second is off (no −1
order going into the optical fiber).

one AOM is on, i.e., diffracts, the other is off, i.e., does not diffract, and vice-versa.1 As

mentioned in the last subsection, the diffracted beam by the AOM depends both on the

frequency and the amplitude of the sinusoidal voltage provided by the VCO and, after

passing through a switch, the amplitude is reduced by a factor x. When the first AOM is

off, the second AOM is on [setup shown in Fig. 2.8(a)], thus the probe beam is on (max-

imum intensity) and excites the atoms. However, after the probe beam is extinguished

(minimum intensity), the first AOM diffracts, which reduces the input intensity for the

second AOM, and the second AOM does not diffract, which in theory means no light to

the cloud but in fact means light at very low intensity (this low intensity would be larger

if the first AOM was off). The two switches in the second AOM reduce this low intensity

by a factor of x2, and therefore a good extinction is achieved.

The −1 order beam after the second AOM has a frequency shift of −93 MHz [see Fig.

2.7(c)]. Then, it is collimated by a lens of focal distance f = 150 mm and passes through

two waveplates of λ/4 and λ/2 [not represented in Fig. 2.8(a)], whose purpose is to assure

linear polarization for the input of the monomode polarization-maintaining fiber placed

after. The optical fiber assures a clean Gaussian beam for the atoms.

After the monomode optical fiber, a small part of the probe beam is deviated to a pho-

todetector connected to an oscilloscope (we label it as femto PD, from the manufacturer’s

name, for the following discussions), in order to monitor the pulse amplitudes during the

measurements (ideally they should remain constant during the data acquisition, but in

practice small drifts may occur). Then, the probe beam reaches the atoms in the MOT

chamber (see Fig. 2.9). The waist size of the probe beam is 5.7 mm, which is enough to

1 The inverted connections is because we use the zero order of the first AOM as the input for the
second AOM. Another possibility of arrangement is to use the −1 order of the first AOM as the input
for the second AOM, and then the switches would not be inverted.
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Figure 2.9: Scheme of the probe beam, atomic cloud and hybrid photomultiplier (HPM).
Not represented: two standard photodetectors connected to an oscilloscope in order to
measure the pulses and fluorescence levels. In this thesis, they are labeled as Femto PD
and MOT PD, respectively.

excite the whole cloud, whose RMS size is of order of ∼ 1 mm.

The detector used in our measurements is a hybrid photomuliplier (HPM) from Hama-

matsu, model R10467U-50 MOD. The motivation for buying and setting this detector is

to avoid afterpulsing, i.e., spurious detection events after the switch off of the lasers, spe-

cially for low amplitudes, which is the main requirement for performing the subradiance

experiment. Before the purchase of the HPM, several other detectors were tested, but

with no success (see Fig. 2.10).
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Figure 2.10: Extinction of several types of detectors: photon counting photomultiplier
(black), continuous photomultiplier (blue), photodiode of bandwidth 10 MHz (green),
photodiode of bandwidth 200 MHz (red), and avalanche photodiode of bandwidth 10
MHz (cyan). The signal is normalized to the steady state value U0.

The HPM was set in an angle of θ ≈ 35o from the probe laser direction. Also, a

standard photodetector (not represented in Fig. 2.9; we label it as MOT PD for following

discussions) was set and connected to a oscilloscope in order to measure the fluorescence

amplitudes for the calibration procedure (to be discussed in subsection 2.2.7). A setup

with lenses and iris is placed between the cloud and the HPM in order to better collect

the fluorescence. A shutter was also set to protect the HPM when the MOT lasers are

on. All the HPM system is covered by a black cardboard box in order to avoid excess of



2.2. Experimental setup 43

light from the whole setup and laboratory room. Also, black cardboards are set on the

optical table to cover the main optics and to avoid excess of scattered laser light.
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Figure 2.11: Probe beam extinction (black) and comparison with two atomic fluores-
cences, for b0 = 108 and ∆ = 0 (blue) and ∆ = −5Γ (red), measured by the HPM, after
the probe beam setup for subradiance. The black dotted line is the single atom decay.
All the data are normalized by their steady value.

Figure 2.11 shows the normalized extinction of the probe beam after the AOMs outputs

(black) and the comparison with two fluorescences emitted by the cold atoms. All the

signals were recorded with the HPM. It was obtained a fall time of ∼ 15 ns in the edge

of the pulses, obtained from an exponential fit in amplitude between 10% and 90% of the

initial value. We also see that the extinction level is better than 10−4. The comparison

with two fluorescences, recorded at ∆ = 0 and ∆ = −5Γ, shows that the fluorescence

level is well above of the extinction level. Also, the comparison with the single atom

decay shows that a slow decay is indeed observed at late times, i.e., subradiance.

2.2.4 Cloud preparation and data acquisition procedure

The preparation of the atomic cloud sample inside the vacuum chamber and the ex-

perimental sequence for the data acquisition obey the following steps:

• MOT loading. From the vapor at room temperature, the six laser beams, the two

repumper beams and the magnetic field are turned on during a time tload, in order to

charge the MOT. The value of tload is 50−60 ms for the measurements, ∼ 500 ms for

the b0 calibration (see subsection 2.2.7) and 2−4 s for the absorption imaging cycle.

As already mentioned, the MOT and repumper beams have a detuning of −4Γ and

−Γ, respectively. They are set at their maximum intensities, which corresponds to

a power of 40 mW for each MOT beam and 5.5 mW for each repumper beam.

• Dark MOT. During 30 ms, the intensity of the repumper beams is reduced to 37%

of its maximum value and the MOT lasers detuning is changed to −5Γ, in order to

make the atoms go to the dark MOT phase [Ketterle 1993]. In this phase, due to

the weak repumper beams, the atoms accumulate in the ground level F = 1 and do

not interact with the cooling beams anymore. This reduces the repulsion between
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the atoms due to multiple scattering and excited-state collisions, which leads to an

increase of the cloud density and a decrease of the temperature.

• Extinction of the magnetic field. At this phase the MOT beams, the repumper

beams and the magnetic field are turned off, leading the cloud to a free expansion.

We set 1.0 ms for the extinction of the magnetic field.

• Optical hyperfine pumping. During 0.5 ms, the repumper beams are turned on at

maximum intensity to make the atoms go back to the state F = 2, since they went

to the state F = 1 at the dark MOT phase.

• Data acquisition or absorption imaging. As the MOT beams and magnetic field

were turned off, the cloud falls due to gravity and expands ballistically. During the

cloud expansion, the probe beam is turned on to perform either the data acquisition

(to be discussed in this subsection) or the absorption imaging (subsection 2.2.5).

The extinction of the magnetic field is displayed in Fig. 2.12. Panel (a) shows the

magnitude of the magnetic field B at the center of the MOT chamber, where the cloud is

produced. B was measured with a device based on the Hall effect. As it is not possible

to set the device at the cloud position, i.e., inside the vacuum chamber, the device was

placed at a distance d above the upper coil, where d is the vertical distance between

the cloud and the upper MOT coil (this vertical distance coincides with the axis of the

vertical MOT laser beams pair). In this configuration, the center of the upper coil is the

midpoint between the cloud and the device positions, and the magnitude of the magnetic

field measured by the device equals to the half of its value at the chamber center. The

magnetic field is turned on at the instant t = −93 ms and turned off at the instant t = −3

ms, remaining on during 90 ms. The MOT loading takes place at the first 60 ms; the dark

MOT phase, in the following 30 ms. Panel (b) shows how B decreases after the switch off.

The probe beam is turned on at t = 0. We see that B is not completely extinguished at

t = 0, meaning that the atoms might have their Zeeman levels split due to some residual

B.
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Figure 2.12: (a) Magnetic field at the MOT chamber center, measured with a device
based on the Hall effect. The magnetic field is turned on at the instant t = −93 ms and
is switched off at t = −3 ms. (b) Zoom of (a) around the switch off.
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The data acquisition consists in sending the probe beam as a sequence of 12 pulses to

the cloud, of duration 30 µs and separation 1.0 ms (see Fig. 2.9). The cloud expansion

allows us to have different values of b0 for each pulse, since the cloud size (and sometimes

also the atom number N) changes, for a fixed detuning ∆ and intensity I of the probe

beam. After the pulse sequence, a waiting time of 3.0− 5.0 ms is set and then the cycle

restarts. The total number of cycles is ∼ 500, 000, which corresponds to ∼ 14 hours of

acquisition.

During the cycles, the HPM averages the fluorescence emitted by the cloud. Also, the

pulse amplitudes before and after the atoms are averaged, by means of the photodetectors

Femto and MOT PD. The measurements are performed at a constant saturation parameter

s(∆) for the probe beam, where s(∆) is the definition in Eq. 1.6 multiplied by g = 7/15.

In Eq. 1.6, the probe beam intensity is I = 2P/(πw2
0), with w0 = 5.7 mm and P the

probe beam power. For a given detuning ∆, P is set in order to have s(∆) = 1 × 10−2,

but we can determine s(∆) experimentally since the pulses amplitudes are averaged with

the main data.

After the acquisition of the main data, a calibration procedure is run in order to

calculate b0 for each one of the pulses during the data acquisition. This calibration

procedure uses the absorption imaging and the time of flight (TOF) techniques. In the

three following subsections, we describe the absorption imaging, the TOF technique and

then the calibration procedure.

2.2.5 Absorption imaging

The absorption imaging is a standard technique in cold atoms experiments which is

used to measure some of the atomic cloud parameters, like: the atom number N , the RMS

sizes Rx, Ry and Rz in each direction, the temperature T , the density n0 at the center of

the cloud, the optical thickness b(∆), the resonant optical thickness b0 = b(∆ = 0).2 The

atom number N and the RMS sizes Rx,y,z are the independent parameters of the cloud.

They are related to the density and optical thicknesses by the expressions

n0λ
3 =

(2π)3/2N

(k0Rx)(k0Ry)(k0Rz)
(2.2)

b(∆) =
b0

1 + 4∆2/Γ2
(2.3)

b0 =
3N

(k0Rx)(k0Ry)
× g (2.4)

(c.f. Eqs. 1.39, 1.43 and 1.42). Eq. 2.2 comes from the volumetric density definition

N =
∫
n(x, y, z) dx dy dz, where

n(x, y, z) = n0 exp

[
−
(
x2

2R2
x

+
y2

2R2
y

+
z2

2R2
z

)]
(2.5)

2 Additional cloud parameters are: the vapor pressure, the MOT loading time and the MOT loading
rate.
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is the Gaussian cloud density profile with
∞∫
−∞

e−u
2/(2a2) du =

√
2πa. Eqs. 2.3 and 2.4 come

from the Beer-Lambert law,

T =
Iout

Iin

= e−b (2.6)

where Iin is the intensity of an incident light on the cloud propagating and Iout is the

transmitted intensity by the cloud. If Iin propagates along the z axis, b(∆) is by definition

b(∆) ≡ σ(∆)

∞∫
−∞

n(x, y, z) dz (2.7)

where σ(∆) = σ0 f(∆) is the optical cross section, σ0 = σ(∆ = 0) is the resonant

cross section and f(∆) is the atomic lineshape. For two-level atoms, σ0 = g × 3λ2/(2π)

[Foot 2005]. We assume only the natural atomic lineshape for the atoms in the cloud,

so f(∆) = 1/(1 + 4∆2/Γ2). The integration in Eq. 2.7 gives a function of x and y. By

setting x = y = 0, i.e., at the center of the cloud, and replacing Eq. 2.2, we obtain Eq.

2.3 with b0 given by Eq. 2.4.

The absorption imaging technique consists in illuminating the atomic cloud with a

weak probe beam of known detuning ∆, and then in measuring the transmitted intensity

by means of a CCD camera [Fig. 2.13(a)]. The analysis of the images collected by

the camera allows us to determine b0 and Rx,y,z, and from them we obtain the related

parameters. In our setup, we use a CCD camera from Point Grey, model GRAS-20S4M-

C, pixel size 4.0 µm. The cloud and the CCD camera were arranged in the called 2f-2f

configuration with unit magnification. The images recorded by the CCD camera are

analyzed with a program written in MATLAB [Fig 2.13(b)].

The CCD camera records a bi-dimensional image in its plane surface, which is set

perpendicularly to the probe laser beam propagation axis. We choose z as the laser

axis propagation and x, y the two orthogonal image axis lying on the camera plane, in

a such way that x (and also z) is horizontal to the plane of the optical table and y is

vertical. After the phases MOT loading, dark MOT, extinction of the magnetic field and

optical hyperfine pumping (see subsection 2.2.4), the probe beam is sent to the cloud as a

sequence of two pulses of width 30 µs and separation 70 ms. The first pulse goes through

the cloud, so the CCD camera records the transmitted intensity Iout(x, y). The second

pulse is sent after the cloud expands completely, so there is no more cloud and the CCD

camera records the incoming light intensity Iin(x, y). Finally, after another 70 ms, no

pulse is sent and the CCD camera records a third picture corresponding to the stray light

intensity Ibackground(x, y). Hence, from these three measured intensities, the transmission

is calculated according to

T (x, y) =
Iout(x, y)− Ibackground(x, y)

Iin(x, y)− Ibackground(x, y)
(2.8)

From the Beer-Lambert law T = e−b, we obtain b = − ln T as a function of x and y.

A Gaussian fit is done on these two directions, which allows us to extract the maximum
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Figure 2.13: The absorption imaging setup. (a) The probe beam (dashed red line),
the cloud shadow (continuous red line) and the CCD camera are in a 2f-2f configuration,
where f = 100 mm is the lens focal distance. (b) Interface of the imaging program written
in MATLAB showing the parameters of the cloud after the analysis.

optical thicknesses bx and by and also the cloud RMS sizes Rx and Ry, from the pixel size

of the CCD camera image. Then, we use b = (bx+by)/2, and b0 is calculated from Eq. 2.3,

because ∆ is known. Hence, N can be determined from Eq. 2.4. Finally, for the density

n0λ
3, as there is no way to measure Rz, we assume that the cloud is quasi-spherical, so

Rz is assumed to be equal to Rx or Ry. In our case, Rz = Rx, because the direction y

contains the MOT coils and thus Ry is expected to be different. Hence, n0λ
3 is calculated

with Eq. 2.2.

2.2.6 Time of flight (TOF)

Like the absorption imaging, the time of flight (TOF) is a standard technique in cold

atoms experiments. Its goal is to measure the temperature T of the atomic cloud. To do

this, during the ballistic expansion of the cloud, the absorption imaging technique (see

subsection 2.2.5) is run for different time delays tTOF between the switch off of the MOT

and the first pulse of the two-pulses sequence of the probe beam. This allows us to obtain

a set of cloud sizes Rx and Ry (and also b0, N , etc.) as a function of tTOF . Then, a fit is

done with the function

R(tTOF ) =
√
R2

0 + v2
RMSt

2
TOF (2.9)

where R0 is the initial RMS size and vRMS is the atomic RMS velocity. Eq. 2.9 is

derived from uniform motion, xj(tTOF ) = x0j + vxjtTOF for the atom j (and an analogous

equation for the y direction), and the RMS size is defined by R2
x =

N∑
j=1

x2
j/N ≡

〈
x2
j

〉
,

so xj(tTOF )2 = (x0j + vxjtTOF )2 = x2
0j + v2

xjt
2
TOF + 2x0jvxj and hence 〈xj(tTOF )2〉 =〈

x2
0j

〉
+
〈
v2
xjt

2
TOF

〉
+ 2 〈x0jvxj〉. The term on the left-hand side gives R2

x, the first term in

the right-hand size gives R2
0, the second term gives v2

RMSt
2
TOF , since v2

RMS has an analogous
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definition as R2
x, and the third term vanishes because there is no correlations between the

initial positions and velocities.

The fit with Eq. 2.9 allows to determine vRMS for the directions x and y. Then, the

temperature is extracted from the equipartition theorem [Salinas 2001]

kBT

2
=
Mv2

RMS

2
(2.10)

and the cloud temperature is the arithmetic mean of the temperatures in the directions

x and y.

Figure 2.14 below shows an example of a TOF measurement. The temperature ob-

tained in this fit is Tx = 62.5 µK in the direction x and Ty = 74.5 µK in the direction

y, which gives an average of T = 68.5 µK. An important remark is that in theory both

temperatures Tx and Ty should be the same, and it is out of our comprehension why we

have observed different values during all this work.
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Figure 2.14: Example of TOF measurement for the superradiance data. Each value of
the RMS size is averaged over 20 values. The continuous lines are the fits with Eq. 2.9,
for the directions x and y.

2.2.7 Calibration of b0

The calibration of b0 is a procedure developed in our laboratory in order to determine

the values of b0 for the atomic cloud in the experimental measurements. As discussed

in subsection 2.2.4, the experimental data are acquired by the HPM from a sequence of

pulses exciting the atoms, and as the pulses are sent during the cloud expansion, this

allows to vary b0 for a fixed detuning ∆ of the probe beam. However, b0 is not measured

simultaneously with the data and has to be determined separately.3

From Eq. 2.4, b0 drops due to the increasing of k0R during the expansion. However,

if the probe beam is largely detuned to the red, i.e., ∆ < 0 and Γ � |∆| (which is the

case in some of our measurements), there is a non-zero probability of atomic decay to the

3 In principle we can turn on the absorption imaging after the pulses sequence and then to measure
b0, however the disadvantages are longer cycles and total loss of atoms after the imaging, which results
in few atoms for the MOT loading. Due to this, we decided to use short cycles with recapture, i.e., no
absorption imaging and some remaining atoms after the pulses sequence. This allows to increase the
number of cycles and to average more the detected intensity.
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non-interacting state F = 1 (see Fig. 2.15), which causes a decrease in N . Thus, for each

pulse, b0 may also drop due to atom losses.
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Figure 2.15: Probe beam excitation. The probe beam has a detuning of ∆ with respect
to the transition F = 2→ F ′ = 3 and ∆′ = 44Γ−∆ for the transition F = 2→ F ′ = 2.
For |∆| � Γ, the state F ′ = 2 is occupied and decays to the states F = 2 or F = 1 with
a rate of, respectively, Γ s22/2 and ΓHF.

The atom number losses N(t) due to the decay from F ′ = 2 to F = 1 can be written

as

N(t) = N(0) e−ΓHFt (2.11)

where N(0) is the atom number at the first pulse of the pulses sequence, t is the time

axis composed of the accumulated pulses duration (i.e., t = 30, 60, 90, ... µs) and ΓHF is

the decay rate of the transition F ′ = 2→ F = 1, also called hyperfine depumping. ΓHF is

equal to

ΓHF =
1

2
× Γ

2
s22 (2.12a)

s22 =
1

6
× s(∆)

1 + 4(44Γ + ∆)2/Γ2
(2.12b)

where in Eq. 2.12a s22 is the saturation parameter for the transition F ′ = 2→ F = 2 and

the factor 1/2 is the decay probability of F ′ = 2 → F = 1 (the second factor 1/2 is due

to the definition of scattering rate, Γsc = Γ s/2). s22 is given by Eq. 2.12b, where: s(∆)

is the saturation parameter for the transition F = 2 → F ′ = 3; 1/6 is the probability

of excitation from F = 2 → F ′ = 2; and 44Γ is the frequency separation between the

levels F ′ = 2 and F ′ = 3 in such a way that ∆′ = 44Γ + ∆ > 0 is the detuning from

F = 2→ F ′ = 2.

The change in b0 due to the cloud expansion can be determined by running a TOF

measurement. A combination of Eqs. 2.4 and 2.9 allows to write (we simplify Rx ≈ Ry

since the cloud is quasi-spherical)
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b0(tTOF) =
b0(tTOF = 0)

1 + ct2TOF

(2.13)

where b0(tTOF = 0) is the value of b0 at the first pulse in the TOF measurement and c is a

constant which depends on the atom RMS velocity. A fit of the measured b0 as a function

of tTOF with Eq. 2.13 allows us to extract b0(0) and c.

Therefore, the values of b0 for the pulses sequence in the measurements can be written

as

b0(t) =
3N(t)

k2
0R(t)2

=
3N(0)e−ΓHFt

k2
0R(t)2

=
b0(0)

1 + ct2
e−ΓHFt (2.14)

with b0(0) = b0(tTOF = 0).

It is also possible to measure the hyperfine depumping rate ΓHF experimentally by

repeating the data acquisition procedure without the cold atoms and with the repumper

beams turned on during the pulse sequence. This is because, when performing the mea-

surements, the repumper beams are off during the pulse sequence and the light recorded

by the HPM contains also stray light from the vapor fluorescence and scattered light from

the chamber windows. In practice, after the experimental data acquisition, we perform

the followings auxiliary cycles:

(1) Data acquisition without the atoms. The magnetic field is turned off, so the phases

MOT loading, dark MOT, extinction of the magnetic field and optical pumping

are run without the atoms. The HPM and the MOT PD record the light from

the vapor in the chamber and some scattered light from the probe beam in the

chamber windows. This acquisition is performed during ∼ 40 minutes. This cycle

is to determine this amount of stray light.

(2) Data acquisition with the atoms and with the repumper beams. The magnetic field is

turned on and the repumper beams are turned on during the pulses sequence, which

imposes N constant during the pulse sequence. The MOT PD averages the cloud

fluorescence. b0 drops only due to the cloud expansion.

(3) Data acquisition without the atoms and with the repumper beams. The magnetic field

is turned off and the repumper beams are turned on, so the MOT PD measures the

light from the vapor and chamber windows. This cycle is to determine the amount

of stray light when the repumper beams are on.

(4) TOF measurement. The TOF is run to measure the cloud expansion and tempera-

ture. Each value is averaged for 20 realizations.

From the main data and the sequences (1) to (3) above, the fluorescence level for each

pulse is calculated by removing the minimum amplitudes after the pulses (due to dark

count and stray light from the laboratory room). Then, the comparison of pairs of data

with and without atoms allows us to remove the stray light from the vapor and chamber

windows, resulting in fluorescence levels due only to the atoms. Next, the fluorescence
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Figure 2.16: Example of calibration procedure. (a) Experimental fluorescence decrease
(blue) due to atom losses only and theoretical decreasing (green) obtained from Eq. 2.11,
where ΓHF was calculated from Eqs. 2.12. The experimental saturation parameter is
s(∆) = 0.92 × 10−2. (b) Experimental b0 decrease (black) due to the cloud expansion
obtained from a TOF measurement and fitted b0 (red) from Eq. 2.13. (c) Calibrated
b0 for each pulse in the main experimental data obtained from Eq. 2.14. The measured
temperature is T = 68.5 µK. Data for superradiance, ∆ = −10Γ.

levels without repumper beams are divided by the ones with the repumper beams, yielding

to Eq. 2.11, since the fluorescence levels are proportional to the atom number N for far-

detuned data. The result of the division is fitted with Eq. 2.11 and allows us to extract

ΓHF (see Fig. 2.16). In practice, we have used this procedure only for a set of data at

large detuning to calibrate s(∆) via Eq. 2.12. For other detunings, we have only used the

theory already discussed.

2.3 Experimental results

In this section we discuss the experimental results for subradiance, obtained from

the experimental setup and procedures described in the last section. All the subradiant

data were acquired and analyzed by William Guerin, and for this reason a summarized

discussion is presented in this thesis, without the technical adjustments and discussion for

observation of first data. The reader is refereed to [Guerin 2016] and its supplementary

material as the main reference about the subradiance experiment and detailed discussion.

2.3.1 Detected intensities with b0 and ∆

The measured values of the saturation parameter of the probe beam and the temper-

ature of the cloud were s(∆) ' 4.5 × 10−2 and T ' 50 µK. This temperature is small

enough to neglect Doppler effects and frequency redistribution, as already discussed (see

Fig. 2.5).

Figure 2.17 shows some experimental normalized intensities, for constant detuning

∆ = −6Γ and several b0 [Fig. 2.17(a)] and for constant b0 and several ∆ [Fig. 2.17(b)], as

well as the corresponding fitting curves in order to extract Γsub. The fitting interval was
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set to be one decade above the noise level. As discussed in subsection 2.1, subradiance

should not depend on ∆ (see Fig. 2.2), only on b0. This is checked by the slopes of

the emitted intensities in the slow range, which change with b0 and remain constant for

different ∆.
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Figure 2.17: Subradiant experimental intensities measured with the HPM as a func-
tion of time, as well as fit curves in the slow part. (a) Intensities for several b0 =
3N/(k0Rx)(k0Ry) for ∆ = −6Γ. (b) Intensities for several ∆ for b0 = 3N/(k0Rx)(k0Ry) =
108± 5.

2.3.2 Subradiant decay rates versus b0

Figure 2.18(a) shows experimental τsub as a function of b0, for several ∆, obtained

from the emitted intensities in Fig. 2.17. We see that all the values τsub for different

∆ collapse into a single curve. The dashed line is a linear fit of the data in the form

τsub/τ0 = 1 + c b0. Excluding the data for b0 > 120, the fit gives c ' 0.8. By converting

this b0 to the scalar definition (Eq. 1.40) to compare with the simulation data presented

in Figs. 2.1(b) and 2.3, we have 0.8 × 3/2 = 1.2, which is almost two times more than

the theoretical value of c = 0.53. However, as already mentioned, we do not expect any

agreement with the theoretical data because the atoms used in the experiments are not a

pure two-level system due to Zeeman states.

Figure 2.18(b) shows some of the data in (a) for a constant b0 for several ∆. The

fitted τsub are constant, showing that the slow decay does not depend on ∆, as expected

from the simulations (see Fig. 2.2). In Fig. 2.18(c), the fit amplitudes Asub are plotted

for the same data in Fig. 2.18(b). The increasing of the amplitudes for the data close

to resonance is what we see in Fig. 2.17(b), where the amplitude for the curve ∆ = 0 is

higher than for ∆ 6= 0. The numerical simulation simulations [see Fig. 2.4(c)] reproduces

this same effect.

2.3.3 Subradiant decay rates versus laser intensity

Figure 2.19 shows τsub [panel (a)] and Asub [panel (b)] as a function of the saturation

parameter s(∆), where s(∆) vary in the limit s � 1 to keep the linear optics regime.
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Figure 2.18: (a) Experimental subradiant decay rates τsub as a function of b0 =
3N/(k0Rx)(k0Ry) for several detunings δ = ∆/Γ. The dashed line is a linear fit of the
data. (b) Experimental τsub as a function of ∆ for b0 = 3N/(k0Rx)(k0Ry) = 50 (blue
circles), 80 (black asterisks) and 110 (red diamonds). (c) Experimental fit amplitudes
Asub as a function of ∆ for the same b0 value in (b).
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Figure 2.19: (a) Experimental subradiant time decay rates τsub as a function of s(δ),
δ = ∆/Γ, for b0 = 110± 8%. (b) Subradiant amplitudes Asub as a function of s(δ).
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Both the fitted τsub and Asub do not vary in the errorbar limits, as expected physically.

2.3.4 Possibility of radiation trapping in the subradiance data

The experimental results in the last three subsections show subradiance for a large set

of particles, where an incident laser beam of large size compared with the atomic sample

size excites all the atoms. The detuning ∆ of the incident beam was varied both for on- and

off-resonance, and its intensity was set in the regime of single excitations. The obtained

results are consistent with the theoretical predictions from the coupled-dipole model. The

only parameter which allows to obtain the correct scaling law for the subradiant decay

rates Γsub and τsub is b0, the resonant optical thickness of the cloud. This is true even for

the data at resonance.

Another well-known phenomenon in physics about trapping of light in a medium is

radiation trapping. Radiation trapping can be defined by the multiple scattering of a

photon propagating in a medium of large optical thickness b(∆). A physical picture is

that the photon performs a random walk: after being absorbed by an atom, the photon is

re-emitted in a random direction with a frequency which depends on the incident frequency

of the photon and on the velocity of the atom. The photon is absorbed and emitted (i.e.,

scattered) until it leaves the medium, with a certain frequency in a certain direction.

If the incoming laser beam is switched off, the time decay rate τRT extracted from the

output intensity is the time that the photon spent in the medium. If the medium is a

cloud of cold atoms and if the incident field has a small waist compared with the cloud

size, previous experimental work show that in the linear optics regime τRT extracted at

amplitudes ∼ 10−1 scales with b(∆)2 for sufficiently low temperatures [Labeyrie 2003],

meaning that, the higher b(∆) (i.e., ∆ ∼ 0 or large b0), the stronger is the radiation

trapping. Radiation trapping is also dependent very sensitively on the temperature, and

even for small temperatures like some µK, the scaling τRT∝ b(∆)2 is broken into linear-like

dependence [Labeyrie 2003,Labeyrie 2005]. In addition, this phenomenon is incoherent, so

there is no coherence created between the scatterers (absence of, e.g., the forward emission

lobe in the steady state) [Chabé 2014].

We discuss radiation trapping in more detail in Chapter 4, under an experimental setup

with a narrow beam exciting the sample. For the case of a large beam, the numerical

results presented in this chapter show very well slow decay rates independent of ∆, i.e.,

scaling with b0 only [Fig. 2.18]. Also, they are observed at amplitudes ∼ 10−3 � 10−1

[Fig. 2.17] and independent of temperature (Fig. 2.5). Therefore, if there are some

contribution from radiation trapping in these subradiant data, it is very small, even for

the data with incoming beam at ∆ = 0 [parallel slopes on Fig. 2.17(b)].

Since radiation trapping is very dependent on the temperature and the scaling law

τRT∼ b(∆)2 is valid only for low temperatures, it may be possible that, even for the

data at ∆ 6= 0, resonant photons are created during the photon scattering such that

they undergo multiple scattering and are emitted at resonance. However, for incoming

far-detuned light, it is possible to show that the number of resonant photons created is

negligible.

Indeed, there are at least three factors in the experimental setup which are not included

in the theoretical model of coupled dipoles but may create resonant photons in the emitted
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Figure 2.20: Left: Measured spectrum of the probe laser beam (black) and a Gaussian
(red) and Lorentzian (blue) fits. Right: Fitted spectrum of the probe laser beam (red)
at ∆ = −6Γ and the spectrum of the emitted light (blue), with frequency redistribution,
calculated with a random-walk model. Parameters for the simulation: ∆ = −6Γ, b0 = 72.2
(N = 109 and R = 0.8 mm), T = 55 µK.

intensity:

(1) Spectrum of the probe beam. The probe laser beam is not perfectly monochromatic

and, as discussed in subsection 2.2.2, its linewidth is ∆ω ∼ 2π × 3 MHz. Ideally,

in atomic physics experiments, the probe beam linewidth should be chosen to be

very small compared to the natural decay rate of the chosen atomic species, i.e.,

∆ω � Γ. This is not the case, since Γ = 2π × 6.066 MHz, so there is a factor two

between ∆ω and Γ. Also, there is the line broadening beyond this linewidth. This

means that, even if the laser is set far from resonance, due to the large broadening

of the laser source, there are resonant photons that may excite the atoms.

(2) The Mollow triplet. For a single two-level atom interacting with a monochromatic

laser beam at any detuning ∆, the spectrum of its emitted intensity in general is

not monochromatic [Cohen-Tannoudji 1992, Berman 2008]. In the particular case

of ∆ � Γ and Ω � Γ, i.e., low s(∆), the spectrum of the emitted intensity has

an elastic Dirac delta function component centered at ∆ and two sidebands with

frequencies ∆ = 0 and 2∆, known as Mollow triplet [Mollow 1969]. The emitted

photons in the sidebands, i.e., emitted at ∆ = 0 and 2∆, are due to inelastic

scattering [Cohen-Tannoudji 1992]. It is possible to show that the ratio between the

inelastic and elastic scattering rates is Γinel/Γel = s(∆), so the arising of photons

at ∆ = 0, i.e., resonant, in the emission spectrum is proportional to the saturation

parameter of the incident light.

(3) Frequency redistribution. After an absorption, the off-resonant photon is re-emitted

with a frequency which depends both on the atomic natural lineshape and the atomic

velocity spectrum. After a certain number of absorption and emission events, the
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photon has its frequency shifted, even if initially out of resonance, and may leave

the medium at resonance.

For (2), it is shown in the supplementary material of [Guerin 2016] that the amplitude

for radiation trapping is negligible. For (1) and (3), Fig. 2.20 is a measurement of the

spectrum of the incident probe laser beam (left panel) and a random walk simulation

of the spectrum of the emitted photons by using the spectrum in (a) and the cloud

temperature (right panel). We see that the ratio between the number of resonant photons

and far-detuned photons is ∼ 10−4/10−1 = 10−3, i.e., negligible.

2.4 Conclusions of this chapter

The main conclusions about this chapter is that we were able to measure subradiance

in a sample of large number of particles. Both the experimental and theoretical results

show a scaling of the subradiant decay rates only with the resonant optical thickness

of the atomic cloud. Also, the measured subradiant decay rates are consistent with the

predictions of the coupled-dipole model.

In the next chapter, we discuss the decay rates obtained with the same experimental

setup, but for the fast decay, i.e., off-axis superradiance.



Chapter 3
Superradiance in cold atoms

In this chapter, we present the results obtained on off-axis superradiance. They include

a numerical study, the description of the experimental setup for the probe beam, and the

experimental results and discussion.

Superradiance in cold atoms in the single excitation regime has been studied exten-

sively since M. O. Scully’s work on single-atom superradiance [Scully 2006]. As discussed

in Chapter 1, this cooperative emission is characterized by a strong emission in the forward

direction with a decay rate Γsup faster than the natural atomic decay rate Γ. In the timed-

Dicke approximation, Γsup was calculated to be Γsup/Γ = 1 + b0/12 [Courteille 2010] and

takes place just after the switch off of the incoming exciting laser beam [Bienaimé 2012].

Concerning experimental works, recent experiments report a feature of superradiance, for

instance: a superradiant laser [Bohnet 2012], single-photon superradiance in cold atoms

in a multilevel scheme [de Oliveira 2014], and the observation of a superradiant flash in

the forward direction [Kwong 2014], observation of superradiance and cooperative Lamb

shift in the forward direction [Roof 2016]. Here, we discuss the off-axis superradiance,

i.e., the observation of a fast decay in a direction out of the forward direction.

This chapter is divided in four sections. In section 3.1, we present the numerical results

on superradiance, which consists mainly in off-axis superradiance and how it depends on

the parameters of the system. In section 3.2, we describe the probe beam setup to measure

superradiance and the data acquisition procedure. In section 3.3, we discuss the main

experimental results. Finally, in section 3.4, we point out the conclusions of this chapter.

3.1 Numerical results

In the same way as subradiance, the numerical study on superradiance was performed

by using the simulation procedure described in section 1.3. The superradiant decay rates

Γsup and its corresponding time τsup= 1/Γsup are extracted from an exponential fit in the

emitted intensity I(θ, t) given by Eq. 1.35, in a range where a fast decay is observed, just

after the extinction of the incident field. The coefficients βj are given by the differential

equations Eqs. 1.15, which are solved numerically. The atomic cloud with N atoms is

modeled as a Gaussian sphere with RMS size k0R and characterized by a resonant optical

thickness b0 ∝ N/(k0R)2 and density n0λ
3= (2π)3/2N/(k0R)3. b0 can be written in the

scalar definition (Eq. 1.40) or in the vectorial definition (Eq. 1.41). The incident laser has

57
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a detuning ∆ and the detector is placed at an angle θ from the incident laser direction (see

Fig. 1.2). We investigate how superradiance changes with respect to these parameters.

As discussed in Chapter 1, our approach is scalar, the atoms are excited by a pulse of

duration� τ0 and the incoming electric field is linearly polarized. A complete theoretical

study on angular superradiance is reported in [Kuraptsev 2017], where the authors inves-

tigate the forward emission lobe and the superradiant decay rates with a vectorial model.

The dependence of the results with the pulse duration, incoherent light and geometry of

the sample are also discussed.

3.1.1 Off-axis superradiance

As discussed in subsection 1.3.2, when calculating the emission diagram I(θ, t) in the

steady state, a lobe in the forward direction is observed, attesting a strong emission of

light [see Fig. 1.5(a)]. In its original context, superradiance was defined as a fast and

strong emission in the forward direction [Dicke 1954,Scully 2006], where the superradiant

decay rate is predicted to depend on b0 [Svidzinsky 2008c]. However, when calculating

the temporal emitted intensity directionally, a fast decay is observed even for directions

out of the forward lobe, what we have defined as off-axis superradiance.
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Figure 3.1: (a) Emitted intensities calculated from Eq. 1.35 for θ = 0o (blue) and
θ = 90o (red) and comparison with the single atom decay (dashed line). Parameters:
b0 = 3N/(k0R)2 = 11.3, n0λ

3= 4.6 (N = 633 and k0R = 11.3) and ∆ = 10Γ. (b)
Superradiant decay rates Γsup as a function of the resonant optical thickness b0, for ∆ =
10Γ, n0λ

3= 0.5 (magenta diamonds), 1.0 (blue circles), 2.5 (green triangles) and 4.6 (red
squares), for θ = 0o (filled symbols) and θ = 90o (open symbols), and comparison with
the law Γsup/Γ = 1 + b0/12 (black dotted line). The decay rates were obtained from a
fit of the emitted intensity I(θ, t). Data averaged over 50 configurations of the atomic
positions.

Figure 3.1(a) is a close-up of Fig. 1.5(b) in the fast decay range of the temporal emitted

intensities, calculated in the forward direction (θ = 0o) and in a perpendicular direction

(θ = 90o) with respect to the incident field. Both curves show a fast decay compared to

the single atom decay and, maybe surprisingly, the off-axis decay is even faster than the
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on-axis decay. We checked that intensities calculated for other values θ 6= 0o, for example,

θ = 45o and θ = 180o, are similar to the curve for θ = 90o.

Figure 3.1(b) shows the fitted Γsup for several b0 and n0λ
3, for the two directions in (a).

The fit interval was set as t ∈ [0, 0.2]τ0, where the value 0.2 τ0 was chosen in a such way

that Γsup does not depend on the fit range. We compare these two sets of data with the

analytic expression for Γsup, Eq. 1.22 (see subsection 1.1.3), obtained by [Courteille 2010]

in the timed-Dicke approximation and rewritten below:

Γsup

Γ
= 1 +

b0

12

where b0 is defined as b0 = 3N/(k0R)2 as in Fig. 3.1(b). We see that this law is valid

only in the forward direction. The reference [Kuraptsev 2017] also finds this law valid for

θ = 0 and for a short pulse of duration 0.1τ0. Note that, despite most part of the light is

emitted at θ = 0o, the off-axis contribution yields to Γsup significantly larger than those

on-axis. A linear fit Γsup/Γ = 1 + c b0 for the off-axis data results in c ' 0.15, which is

' 1.8 times larger than the constant 1/12 ' 0.083, found for the forward direction. More

features of this linear scaling of Γsup with b0 are discussed in the following subsection.

3.1.2 Scaling with b0
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Figure 3.2: (a) Emitted intensities for several b0, for n0λ
3= 4.6 and ∆ = 10Γ. The

emitted intensity was calculated from Eq. 1.35 for θ = 45o. The red curves are exponential
fits in the interval t ∈ [0, 0.2]τ0. (b) Superradiant decay rates Γsup as a function of the
resonant optical thickness b0 = 2N/(k0R)2, for ∆ = 10Γ and n0λ

3= 0.5 (red), 0.9 (blue),
2.5 (green), 3.7 (dark yellow), 4.6 (magenta) and 5.3 (black). The decay rates were
obtained from fits similar to those in (a). Data averaged over 100 configurations of the
atomic positions.

In analogy to what was discussed in subradiance, Fig. 3.2(a) shows the same emitted

intensities as in Fig. 2.1(a) in Chapter 2, but here the fits were done in the fast decay

part. Fig. 3.2(b) shows Γsup extracted from the fits in (a), for several b0 and n0λ
3. The

intensities were calculated at θ = 45o, i.e., off-axis, and ∆ = 10Γ, i.e., far from resonance.
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As for subradiance, a linear scaling with b0 is also observed, but for superradiance

Γsup∝ b0, whereas for subradiance τsub=Γsub
−1 ∝ b0. In addition, whereas τsub does not

vary for high values of n0λ
3, the superradiance data for n0λ

3≥ 2.5 deviate from those at

smaller n0λ
3. However, as discussed in section 1.3, experimental values of n0λ

3 are on the

order of ∼ 10−1 (more precisely n0λ
3' 0.03), so we do not expect such density effects in

the experiment.

A linear fit Γsup/Γ = 1 + c b0 gives c ' 0.21 for the data at low densities (n0λ
3= 0.5

and 0.9), with b0 in the scalar definition. For b0 in the vectorial definition, the constant

becomes c ' 0.14, exactly as obtained in Fig. 3.1(b) for θ = 90o. Also, as discussed for

subradiance, we do not compare these values with the experiments due to the complexity

of the atomic transitions in the latter.

3.1.3 Superradiance at resonance and for several detection di-
rections

In the last subsection we discussed superradiance for far-detuned laser, i.e., |∆| � Γ.

Γsup was found to be larger at off-axis directions than at on-axis directions. In this

subsection, we investigate Γsup at resonance and with respect to the detection directions.
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Figure 3.3: Angular dependence of Γsup for ∆ = 0 (red) and ∆ = 10Γ (blue). The dashed
line is the decay rate for a single atom. Parameters: b0 = 12.8 (vectorial definition),
n0λ

3= 4.6 (N = 921, k0R = 14.7), averaged over 100 configurations on the atomic
positions.

Figure 3.3 shows Γsup as a function of the direction θ, for constant b0 and n0λ
3, on-

and off-resonance. We see that the off-resonant data (blue) confirms what was discussed

in the last subsections: Γsup is larger for θ 6= 0 than for θ ∼ 0. On the other hand,

at resonance (red data), superradiance is seen only for directions close to the forward

direction (Γsup/Γ > 1). For other directions, Γsup/Γ < 1, which is a signature of radiation

trapping. As explained briefly in subsection 2.3.4, at resonance the photons are multiply

scattered by the atoms before they escape, instead of single scattering. For subradiance,

multiple scattering was shown to not suppress the subradiant states; however, concerning

the fast decay, the red data in Fig. 3.3 show that superradiance is suppressed at resonance

except in the forward direction. The reference [Chabé 2014] displays emission diagrams at

resonance calculated with the coupled-dipole model and a pure radiation trapping model.

The obtained diagrams are similar, except for a lobe in the forward direction, present only
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for the coupled-dipole model. Therefore, resonant light has signatures of superradiance

only in the forward direction.

As a last comment, the reference [Kuraptsev 2017] calculates Γsup for values of θ inside

the emission lobe. They are predicted to oscillate with θ.
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Figure 3.4: Superradiant decay rates Γsup as a function of the laser detuning ∆, for
θ = 0o (blue) and θ = 90o (red). The dashed line is the decay rate for a single atom.
Parameters: b0 = 3N/(k0R)2 = 12.8, n0λ

3= 4.6 (N = 921 and k0R = 14.7), averaged
over 50 configurations on the atomic positions.

Figure 3.4 is another way to see the effect of the detuning for the on- and off-axis

superradiant emissions, where Γsup is plotted for varying ∆ for two fixed directions, on-

and off-axis. By detecting the emitted intensity in the forward direction for several ∆

(blue data), where the peak of the emission lobe is present, superradiance is present both

on- and off-resonance (Γsup/Γ > 1); however, Γsup is larger at ∆ ∼ 0 than at ∆ 6= 0.

On the other hand, the off-axis detection (red data) presents superradiance only far from

resonance, as discussed in Fig. 3.3. The superradiant decay rate drops when ∆ becomes

close to zero. Superradiance is completely suppressed for ∆ ' 0.

Finally, Fig. 3.5 shows Γsup as a function of b0 and b(∆) for several detunings of

the incoming laser beam, at θ = 45o. This figure is similar to what will be discussed

in the experimental results. Close to resonance [i.e., ∆ ∼ 0 for panel (a) or large b(∆)

for panel (b)], Γsup/Γ < 1 for all b0, attesting radiation trapping. Γsup becomes smaller

for increasing b0 and b(∆) (large b0 and b(∆) increase the amount of multiple scattering

events in the medium). For large detunings [or small b(∆)], Γsup starts to increase with

b0, so superradiance appears. The linear scaling becomes completely independent of ∆

from ∆ & 3Γ and b(∆)� 1.

The conclusion of these numerical study is that, contrary to subradiance, superradi-

ance is strongly dependent on the laser detuning and the detection direction. Far from

resonance, it is present both in and out of the forward directions, but on resonance only the

forward direction contains superradiant emission. Also, superradiance is stronger off-axis

than on-axis. Indeed, off-axis superradiance was observed in our first subradiant data, and

this was our motivation to perform detailed simulations and to observe it experimentally.
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Figure 3.5: Superradiant decay rates Γsup as a function of (a) the resonant optical
thickness b0 = 3N/(k0R)2 and (b) the optical thickness b(δ) = b0/(1 + 4δ2), for several
detunings δ = ∆/Γ. The values of Γsup were extracted from the intensity I(θ, t) at θ = 45o.
Parameters: same as in Fig. 2.3.

3.2 Experimental setup

The experimental setup for the superradiance experiment is the same as used for

subradiance and it is described in section 2.2. We use a MOT of 87Rb atoms to produce the

atomic sample, a sequence of laser pulses to excite the atoms and a hybrid photomultiplier

(HPM) placed at an angle of θ ≈ 35o from the incident probe beam to collect the emitted

intensity. However, the setup for the probe beam was modified in order to accomplish the

particular features of a superradiance experiment. In this section we describe the probe

beam setup for superradiance.

3.2.1 Setup for the probe beam

For the subradiance experiment, as discussed in subsection 2.2.3, the probe beam setup

was arranged in order to obtain a fast enough fall time and good extinction after its switch

off, in order to observe a subradiant decay, which is late and small in amplitude. These

conditions were accomplished with a setup of two AOMs in series where the laser beam

is focused in the second AOM, which provides a fast fall time. The obtained extinction

time was ∼ 15 ns. As Rb natural lifetime is τ0 = 26 ns, we wish to measure τsup< τ0 as

accurate as possible, so it is important to improve this extinction time in order to detect

superradiance.

To do this, we decided to keep the AOM-foused-beam setup and, to improve this

extinction time, we placed an electro-optic modulator (EOM) based on a Mach-Zehnder

interferometer after the AOM output. In this type of EOM, the input beam is split in two

paths, one to which a voltage is applied. A change in the voltage induces a phase shift

for the beam passing through that path and, after the beams are recombined, the phase

shift determines constructive or destructive interference for the recombined output beam.

The setup of both AOM and EOM is shown in Fig. 3.6. We used an EOM from

EOspace, reference AZ-0K5-10-PFU-SFU-780. Also, the AOM and EOM are connected

to a pulse generator from Stanford Research Systems, model DG535, which generates the
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Figure 3.6: Setup for the probe beam for the superradiance experiment. An AOM and
an EOM are set in series and controlled by the computer, pulse generator and a PID
circuit. The laser beam between the two lenses is focused in the AOM. Its -1 order beam
goes into the EOM.

pulse sequence. The voltage which induces the phase shift in the EOM is applied in the

input VDC, and its value is such as destructive interference takes place, making the EOM

output to be minimum. As the output intensity might fluctuate due to drifts in the EOM

itself, a PID circuit is set to stabilize the EOM emission in that minimum. Also, the EOM

is placed in a box of polystyrene, in order to minimize thermal and mechanical vibrations.

The EOM VRF input is connected to the pulse generator, which provides the pulse

sequence for the EOM and also the AOM. The pulse sequence for both are the same and

must be synchronized in the output in order to avoid delays between them. A TTL asks

the PID circuit to hold its feedback during the measurements, and the computer controls

the timing of the probe beam as follows: when the probe beam is on, the TTL turns on

the VRF input and VDC is held, and then pulses are sent to the AOM and EOM. Emitted

light is seen in the output, corresponding to the pulses amplitudes. When the probe beam

is off, i.e., after the edge of each pulse, the TTL turns off the VRF input and VDC makes the

extinction faster because of the destructive interference which takes place in the EOM.

The EOM output beam goes to the MOT chamber to excite the atoms and the emitted

fluorescence is collected by the HPM (see Fig. 2.9).

Figure 3.7 shows the pulses extinction after the EOM output, with and without the

cold atoms in the MOT chamber. Both curves were recorded with the HPM. The curve

without atoms (black) was recorded by placing a white paper after the MOT chamber to

scatter the light to the HPM. It shows the pulse profile after it is extinguished. We observe

a fast decay of ∼ 1.5 − 2.0 ns, measured from an exponential fit in amplitude between

10% and 90% of the maximum intensity. The fast decay is followed by an irregular profile

due to the AOM response. The curve with atoms (red) is the emitted fluorescence for

b0 = 3N/(k0R)2 = 19 and ∆ = −6Γ. Compared to the single atom decay (dashed line),

the fluorescence decay is faster, i.e., off-axis superradiance.



3.3. Experimental results 64

0 2 4 6 8 10 12
10

−4

10
−3

10
−2

10
−1

10
0

t / τ
0

I /
 I

m
ax

 

 
without atoms

with atoms

single atom

Figure 3.7: Probe beam extinction (black) and atomic fluorescence (red) for b0 =
3N/(k0R)2 = 19 and ∆ = −6Γ, measured by the HPM, after the probe beam setup for
superradiance. The black dashed line is the single-atom decay. All data are normalized
by their steady value.

3.3 Experimental results

From the experimental setup for the probe beam described in the last section, we can

perform measurements on superradiance. The experimental procedure for preparing the

sample and acquiring the data is the same as used for subradiance (see subsection 2.2.4):

the MOT is loaded including a dark MOT and optical pumping phases, and then it is

turned off, yielding to the cloud expansion. During the cloud expansion, a sequence of

12 pulses is sent and the emitted fluorescence is collected by the HPM. Each pulse has a

duration of 30 µs and separation 1.0 ms. The cloud expansion allows to vary b0 for each

pulse, for a fixed saturation parameter s(∆) of the probe beam (fixed detuning ∆ and

intensity I). After the data acquisition, a calibration procedure is run (see subsection

2.2.7) in order to measure b0 for each pulse and the cloud temperature.

The first measured data showed no superradiance due to a large amount of background

vapor light in the measured intensity. Hence, we decided to close completely the Rb valve

of the vacuum system, in order to decrease the vapor amount. This is because the valve

closure causes an immediate drop in the vapor pressure and an increase in the MOT

loading time, but the atom number N and consequently b0 take some time to start to

decrease. At the same time, the setup of the probe beam had to be checked, so b0 dropped

significantly after some days, which led us to open again the valve by 1/2 of a turn. Then

we waited four weeks for the stabilization and measurements.

3.3.1 Fit procedure

Our method to extract Γsup from the experimental detected fluorescence is the same

as in the simulations, i.e., an exponential fit just after the switch off, where the faster

decay is observed. In the simulations, the fit range was set to be t ∈ [0, 0.2] τ0. However,

in the experiment, the measured intensity does not contain only the emitted light from

the atoms: as already mentioned in Chapter 2, in fact it is a sum of the fluorescence due

to the cold atoms, light from the background vapor in the MOT vacuum chamber and

scattered light due to the chamber walls.

Assuming that each fluorescence and the scattered light from the windows have a
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characteristic decay rate after the probe beam extinction, we can write the measured

fluorescence as

I(t) = Ase
−Γsupt + Ave

−Γt + Awe
−Γextt (3.1)

where Γsup is the superradiant decay rate we want to extract; Γ is the vapor decay rate,

which decays as a single atom; and Γext = 1/τext, τext = 1.5 − 2.0 ns, is the decay of

the scattered light, which is the extinction time from the AOM and EOM setup. We

measure values of Γsup such as Γext >Γsup> Γ, which implies that the decay of I(t) is

firstly governed by the EOM extinction, then by the superradiant decay and then by the

background vapor decay. Also, the amplitudes As, Av and Aw determine the amount of

vapor and windows scattered light in the total signal.

Each one of three amplitudes in Eq. 3.1 can be measured experimentally as follows.

As a fluorescence signal without atoms is recorded during the calibration procedure (see

subsection 2.2.7), it contains the scattered light only from the vapor and chamber walls,

i.e.,

Iwo(t) = Ave
−Γt + Awe

−Γextt (3.2)

so the ratio between the pulse amplitudes of Iwo(t) and I(t) gives Iwo(t = 0)/I(t = 0) =

(Av+Aw)/(As+Av+Aw), i.e., the amount of vapor and windows light together in the main

signal. Then, by recording Iwo(t) at resonance (probe beam detuning ∆ = 0) and far from

resonance (by delocking the laser source and setting it very far from the Rb spectrum,

which gives a frequency of some GHz), one can measure the contribution from the vapor

and windows separately in Iwo(t): the pulses amplitudes from the resonant Iwo(t) has both

contributions, i.e., Av + Aw, and the pulses amplitudes from the detuned Iwo(t) contain

only the scattered light from the windows, i.e., Aw. The ratio Aw/(Av + Aw) gives the

amount of light from the windows and from it, as Av + Aw = 1, we can determine Av.

We observed that 70% of the total scattered stray light comes from the chamber

windows and 30% comes from the Rb vapor. On the other hand, the ratio between

the amplitudes for the fluorescence with and without atoms depends on the probe beam

detuning and varies for each pulse.

In order to define a fit range to extract the superradiance decay rates Γsup, we consid-

ered the following analysis procedures:

• The subtraction of the signals with and without atoms, i.e., S(t) = I(t)− Iwo(t) ∝
e−Γsupt. This gives a clear exponential decay, where an exponential fit can be done;

• An alternative fit method which consists in choosing a range fit of I(t) where the

decays Γext and Γ, from the windows and vapor, respectively, can be neglected.

Hence, in this range the exponential fit gives Γsup.

The disadvantage of the subtraction method is the noise introduced when subtracting

Iwo(t) from I(t), specially for the data at large detunings, where we run out of enough

probe beam intensity due to the alignment of the double-pass AOM. On the other hand,
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as Γext >Γsup> Γ in Eq. 3.1 and as the amplitudes As, Av and Aw can be determined, we

use the alternative fit method where the fit range I(t) was set as follows:

• The fit range starts at t/τ0 = 0.1. The scattered light by the windows MOT cham-

ber is the first one to decay, and becomes negligible when its amplitude decays

to ∼ 10% of this initial value. Thus, 0.10 I(t) = I(t) e−Γextt, which yields to

t = − ln(0.10) τext ≈ 0.13τ0 ≈ 0.1τ0. Therefore, for t ≥ 0.1τ0 in the detected

intensity, there is no more contribution from scattered light by the windows.

• The fit range ends when the amplitude of I(t) decays to 20% of its initial value or

when the vapor scattered light starts to contribute. The 20% value comes from the

standard definitions of fall time (pulse decay time), which is the time of decay of

a signal calculated when its amplitudes decays from 80% to 20% (or from 90% to

10%) of its initial value. However, the vapor contribution in I(t) might be impor-

tant earlier (the vapor decay follows the superradiant decay and has rate Γ). By

measuring the ratio between the pulse amplitudes Iwo(t) and I(t) for each pulse, and

by multiplying it by 0.30, since 30% comes from the Rb vapor, we get the amplitude

in I(t) where the vapor decay starts to dominate. This value is compared to the

20% value and the fit range goes until the larger one.

In addition, we discard the fit results where the number of points in the fit range is

ten or when the statistical goodness of the fit R2 is smaller than 0.85. In the following,

we present and discuss the experimental results.

3.3.2 Superradiant decay rates versus b0
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Figure 3.8: Experimental superradiant decay rates Γsup as a function of b0 =
3N/(k0Rx)(k0Ry) for several detunings δ = ∆/Γ, extracted from an exponential fit from
(a) the fit range method and (b) from the subtraction method.

After the acquisition of the data and after checking the measured temperatures and

saturation parameter, we obtained the values T ' 50 µK (same for the subradiance data)

and s = (2.2 ± 0.6) × 10−2, which assures the linear optics regime. Fig. 3.8 is the
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comparison between the two fit methods discussed in the previous subsection. Panel (a)

shows Γsup extracted from the fit range method, whereas panel (b) displays Γsup extracted

from the subtracted intensities with and without atoms. For low ∆, we see similar values of

Γsup. However, for large ∆, the data from the subtraction method contain large errorbars.

This is because for large detunings we need more intensity in the probe beam to balance the

saturation parameter s(∆), and our tapered amplifier (TA) does not provide it. Hence,

the signal resulted from the subtraction is noisy. The conclusion is that the fit range

method is satisfactory for our data analysis, leading to reliable values.

Figure 3.9(a) shows the same data as in Fig. 3.8(a) where the data at δ = −8, δ = −10

and δ = −12 were removed. This is because, due to the low intensity available in our probe

beam for large detunings, those data yield to smaller values of the saturation parameter

compared to the ones obtained for the other detunings.1 Fig. 3.9(b) are the same Γsup

in (a) but plotted as a function of b(∆) = b0/(1 + 4∆2/Γ2). the optical thickness of the

cloud.
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Figure 3.9: Experimental superradiant decay rates Γsup as a function of (a) b0 =
3N/(k0Rx)(k0Ry) and (b) b(δ) = b0/(1 + 4δ2), for several detunings δ = ∆/Γ.

We see that the measured Γsup increases with b0 for small b0 (b0 . 20) and large δ,

up to Γsup/Γ ∼ 5− 6, which is a significant measurement of Γsup for an off-axis direction.

Also, Γsup do not collapse into a single curve as seen for subradiance [c.f. Fig. 2.18(a)],

showing that superradiance is more sensitive to the detuning than subradiance. Indeed,

for b(∆) > 0.1, Γsup starts to decrease. This is a clear signature of multiple scattering, i.e.,

the photon is scattered more than one time before leaving the cloud. The superradiance

appears for low b(∆), showing that in this regime the scattering is predominantly single

scattering. For δ ∼ 0, we see clearly that Γsup/Γ < 1, i.e., superradiance is suppressed at

resonance.

3.3.3 Superradiant decay rates versus laser intensity

In analogy to what was done for subradiance, we performed measurements by changing

the saturation parameter in order to check the validity of the prediction from the coupled-

1 Indeed, since we are in the linear optics regime, Γsup does not depend on s(∆) (to be discussed in
the next sub-subsection). Hence, no need to remove the data for large detuning.
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dipole model that Γsup should not depend on s(∆) for s(∆) � 1. Fig. 3.10 shows the

result of this measurement, for constant b0. The saturation parameter was varied by

changing the intensity of the probe beam for a fixed ∆. Γsup practically does not change

with s(∆) in the errorbars limit, which validates our measurements in the linear optics

regime.
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Figure 3.10: Experimental superradiant decay rates Γsup as a function of s(∆), for
b0 = 3N/(k0Rx)(k0Ry) = 21± 1 and ∆ = −4Γ.

3.3.4 Superradiant decay rates for small b0

As discussed in the previous subsection, we detected successfully superradiance versus

b0 with a magnitude of Γsup= 5 − 6Γ. However, we decided to take more measurements

in order to have more data for small b0 at resonance and to see Γsup tending to Γ for the

far-detuned data.

In order to decrease b0 in the data acquisition procedure, we opted to decrease the

MOT loading time. A small b0 implies a decrease of the measured intensity, which may

decrease the signal-to-noise ratio when compared to the stray light. However, the obtained

Γsup showed to be good due to their small errorbars. There are some ways to reduce the

amount of stray light, like to close (partially or totally) the Rb valve in our vacuum

system, and to use an iris to slightly decrease the probe beam waist. The former was

not done because it takes a considerable time for stabilization, and the latter suppressed

superradiance.

Figure 3.11 shows the measured Γsup for small b0, for some detunings δ = ∆/Γ. We

see that Γsup for δ = −8, −10 and −12 seem to tend to Γ, but with large errorbars, which

may be a noise effect. For the other detunings, the same discussion for Fig. 3.9 applies,

i.e., multiple scattering for large b0.

3.4 Conclusions of this chapter

We were able to observe superradiance for a large cloud of cold atoms out of the

incident laser beam direction. We measure increasing superradiant decay rates with b0.

The experimental results are in agreement with the theory of coupled dipoles. The main

results obtained are a theoretical scaling of the superradiant decay rates with the resonant

optical thickness of the atomic cloud, the suppression of superradiance at resonance due
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Figure 3.11: Experimental superradiant decay rates as function of b0 = 3N/(k0R)2, for
several detunings δ = ∆/Γ.

to multiple scattering, and larger superradiant decay rates for off-axis than on-axis. As

a last comment, a similar experiment on superradiance was performed at the same year

as ours in M. Havey’s group on on-axis superradiance and detection of the cooperative

Lamb shift [Roof 2016].

When presenting and discussing the results on subradiance and superradiance, we

have found that at resonance multiple scattering is present. Superradiance is suppressed

by multiple scattering, but subradiance is more robust. As both subradiant and multi-

ple scattering decays take place at late times, we decided to study closely the interplay

between subradiance and radiation trapping. This is the subject of the next chapter.
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Chapter 4
Radiation trapping and subradiance

In the last chapters, we discussed the interaction of an atomic sample with a monochro-

matic plane wave by means of the coupled-dipole model. Cooperative effects like super-

and subradiance were predicted by the coupled-dipole equations in the far-detuned field

regime and were studied theoretically and experimentally. Whereas superradiance is a

fast decay due to constructive interference, subradiance is the trapping of some remaining

light due to destructive interference, emitted at late times.

In the particular case of the incident laser beam at resonance, the light may be multiply

scattered in the medium, which characterizes radiation trapping, discussed briefly in the

end of Chapter 2. Contrary to subradiance, which is a coherent effect due to destructive

interference between the scattered light, radiation trapping is incoherent, i.e., the light

imprisonment is due to the random walk performed by the photon. Radiation trapping was

studied initially in hot vapors ( [Holstein 1947] and references therein), where Doppler

and/or collisional broadening are taken into account because of the high temperature

of the atomic samples. However, with the advent of laser cooling and cold atoms in

the 1980 − 1990s, radiation trapping could be observed experimentally in a setup with

a narrow beam exciting a cloud of cold atoms, firstly by [Fioretti 1998] and then by

[Labeyrie 2003, Labeyrie 2005]. Its main features are its strong dependency with the

detuning of the incident field and the temperature of the sample, even if it is in order of

few µK. Radiation trapping is strong for high optical thickness and negligible far from

resonance. Concerning super- and subradiance at resonance, and taking into account

that the experimental setup discussed up to here is a plane wave exciting the atoms, we

discussed in Chapters 2 and 3 that superradiance is suppressed at off-axis directions, but

subradiance is robust: we showed with simulations that our observed late decay rates are

indeed subradiance, and not radiation trapping.

In this chapter, we analyze in detail the slow and late trapping of light in cold atoms,

in order to see the interplay between radiation trapping and subradiance. Our starting

point is the experiment with a narrow and resonant beam exciting the atoms described

in [Labeyrie 2003], but in our setup we can go to much lower amplitudes in the detected

emitted intensity and we have the coupled-dipole model to take into account the inter-

ference between the scattered fields. As we will discuss, the key idea is to see where one

phenomenon changes to the other phenomenon, by using as reference their dependence

with the parameters of the system, like the detuning, optical thickness and temperature.
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This chapter is divided in six sections. In section 4.1, we present the standard theory

for radiation trapping in cold atoms, based on the random walk and diffusion model. It will

be discussed the ideal case of no atomic motion and the real case treated in experiments. In

sections 4.2 and 4.3, we discuss numerical simulations with the narrow beam setup, as well

as the results obtained from the random walk model (incoherent) and the coupled-dipole

model (coherent). In section 4.4, we present the modifications in our experimental setup

in order to observe radiation trapping and subradiance, and in section 4.5 the obtained

experimental results are presented and discussed. Finally, in section 4.6 we summarize

the main conclusions.

4.1 Radiation trapping in cold atoms

4.1.1 Overview

Our current physical system consists in a medium modeled by a set of N identical

two-level atoms at rest which interacts with a light beam modeled by a monochromatic

electric field. We are in the wave picture (or semi-classical picture), since the light is

described by a wave field. This allows us to take into account the interference between

the fields scattered by each atom, during the scattering process, for single and multiple

scattering. Therefore, the coupled-dipole model allows the description of the phenomena

related with interference, like speckles, the emission lobe in the forward direction, coherent

backscattering, Anderson localization, and the already discussed super- and subradiance.

Despite of this wave picture, maybe the most naive idea about propagation of light in

a medium is the corpuscular picture, where the light is modeled as a punch of photons

which are scattered by the atoms (Fig. 4.1). In each scattering event, the photon is ab-

sorbed (from the bottom level to an upper excited level) and then emitted by spontaneous

emission (decay from the excited level to a lower level), in such a way that the photon

is emitted in a random direction with a certain frequency ω′ and travels a distance x

called step size before being absorbed by another atom. After Ndiff scattering events, the

photon leaves the medium in a certain direction and with a final frequency, and the time

scale associated with the propagation is related to the time that the photon spent in the

medium when performing the scattering.

laser

cloud

x1 x2

...
xN

Figure 4.1: The physical mechanism for radiation trapping. A laser beam hits a medium
modeled as a cloud of cold atoms at random positions. The distances x1, x2, ..., xN are
the step sizes traveled by the photon between each scattering event.

The light scattering is thus seen as a sequence of collisions between the photons and

the atoms, so the interference effects due to the scattered field are neglected. This light
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scattering is called multiple scattering and explains the light propagation in fog, clouds,

milk, etc. In the specific case where the photon frequency is close to the atomic resonance

frequency, the multiple scattering is refereed as radiation trapping and takes place in stars,

light bulbs and gases.

Historically, initial description considered radiation trapping as a random walk de-

scribed by a Brownian motion and diffusion, with constant attenuation coefficient [Comp-

ton 1922] and constant mean free path [Milne 1926]. Later, by restricting the problem

to hot vapors with Doppler broadening, C. Kenty showed that the diffusion equation is

not appropriate for a description of the photon propagation [Kenty 1932], so T. Holstein

proposed a description with an integral equation [Holstein 1947]. He showed that, for a

slab geometry with Doppler broadening, the emitted intensity I(t) in the steady state is a

sum of exponentials I(t) ∝
∑

n exp (−t/τn) such that, at late times, I(t)→ exp (−t/τRT),

where the radiation trapping decay rate τRT is proportional to τRT ∝ b
√

ln (b/2), b be-

ing the optical thickness of the sample. In cold atoms, the pioneering experiment was

carried out by A. Fioretti et al. with Cs atoms [Fioretti 1998], but G. Labeyrie and col-

laborators showed that, in a experiment with narrow beam in a 85Rb cloud, τRT scales

with b2 for zero temperature and is slightly modified due to the low temperature in cold

samples [Labeyrie 2003]. The scaling τRT∝ b2 for cold atoms was calculated from a the-

ory of elastic multiple scattering [Lagendijk 1996, van Rossum 1999] adapted for cold

atoms [Müller 2002]. Temperature effects and frequency redistribution in radiation trap-

ping in cold atoms were observed in more detail in [Labeyrie 2005]. Later, R. Pierrat et

al. proposed an integral equation description for low temperatures [Pierrat 2009].

The radiation trapping depends on the parameters of the medium and light. In atomic

physics experiments, the light source is a coherent laser beam and the scattering media

is a vapor, where the atoms move at low velocities (cold atoms) or high velocities (hot

vapors). Some of the main regimes and features of radiation trapping are discussed below:

• Macroscopic, mesoscopic and microscopic regimes. The light scattering can be char-

acterized by the mean free path l = 〈x〉, which is the average of all step sizes x during

the scattering. The relation between l and the medium dimensions L determine the

scattering regime [van Rossum 1999]. If l � L, we are in the macroscopic regime

and the scattered intensity obeys the diffusion equation. If l ∼ L, we are in the

mesoscopic regime and the problem is described by the radiative transfer equation.

If l � L, we are in the microscopic regime and the scattering is described by the

quantum mechanics formalism, with scattering matrices, Born approximation and

the Bethe-Salpeter equation.

• Geometry of the medium. Many works consider the medium as a slab of finite

thickness and large transverse dimensions, in a such way that the photon, when

leaving the medium, is emitted either at the same side of the incident light beam

(diffuse reflection) or at the opposite side of the incident light (diffuse transmission).

However, cold atoms experiments are generally carried out in anisotropic and quasi-

spherical atomic clouds [Fioretti 1998, Labeyrie 2003, Labeyrie 2005]. It is shown

in [Labeyrie 2004] that the diffuse transmission by a cloud of cold atoms excited by

a narrow beam, detected close to the forward and backscatter directions, is analog
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to, respectively, the diffuse transmission and diffuse reflection obtained in a slab

geometry.

• Atomic motion in the medium. The atoms move in gaseous media like clouds of cold

atoms or hot vapors. Hence, after each scattering event, the photon has a frequency

which depends on the velocity of the atom. This phenomenon is called frequency

redistribution, since the frequency is shifted for every scattering event due to the

Doppler effect. In addition to the velocity, the frequency redistribution depends

also on the collisions between the atoms, the atom lineshape and the spectrum

of the incident photon (which is not monochromatic in experiments), as well as

the number of scattering events (the more the photon is scattered, the more the

frequency is shifted). For cold atoms, partial frequency redistribution occurs, due to

the small temperatures in these samples [Labeyrie 2003,Labeyrie 2005,Pierrat 2009].

For hot atoms, complete frequency redistribution occurs [Holstein 1947] and the

output photon frequency is completely uncorrelated from its initial value. The

frequency redistribution can modify the photon step size distribution, from the

standard exponential distribution to a Lévy distribution, also called Lévy flights of

photons [Pereira 2004,Mercadier 2009,Chevrollier 2012].

• Light beam size. The ideal situation is to consider the incident photons as a beam

of negligible size compared with the medium dimensions. This assures that the

photons will suffer a high number of scattering events, instead of single scattering

(one scattering event) which could take place at the borders of the medium. In

[Labeyrie 2003], the laser beam size has a waist of 2 − 3 times smaller compared

with the cloud size. Our experiment described in this chapter used a beam size of

4 − 5 times smaller than the cloud size. However, simulations with a large beam

(infinite beam size) exciting the atoms was also considered [Chabé 2014].

• Light spectrum. No source of light is perfectly monochromatic, which means that the

incoming photons have different frequencies. As the medium absorption coefficient

depends on the light frequency, each incident photon will be scattered differently

and the features of the output light might contain frequency redistribution. The

spectrum of the incident photon may be the spectrum of the laser source itself, of a

Doppler spectrum, which can be achieved if the output of a primary hot vapor cell

is used to excite the main sample [Mercadier 2009].

4.1.2 Theory

We start by restricting the discussion to the most simplified possible case: two-level

atoms at rest, and interaction with a monochromatic and infinitely narrow light beam.

Also, we do not consider coherence, degeneracy, and inelastic scattering. The atoms

are modeled as pure two-level systems, as before; however, here the light is modeled as

a beam of photons. Under these assumptions, we have the theory of multiple elastic

scattering by resonant point scatterers [Lagendijk 1996,van Rossum 1999,Müller 2002] for

the description of radiation trapping in cold atoms.

To fix the ideas, we assume the physical system as follows:
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• Atoms: a set of N motionless two-level systems, distributed in random positions ~rj,

j = 1, ..., N , with two non-degenerate states |gj〉 and |ej〉, resonance frequency ω0,

natural decay rate Γ, natural lifetime τ0 = 1/Γ and natural Lorentzian lineshape

fL(∆) ∝ 1/(1+4∆2/Γ2). The geometry of the atomic sample is a sphere of Gaussian

density and RMS size R, and it is characterized by a density n0λ
3, resonant optical

thickness b0 and optical thickness b(∆) defined by Eqs. 1.39, 1.41 and 1.43, respec-

tively. Also, the cloud is dilute, i.e., n0λ
3� 1, and characterized by a attenuation

coefficient α(∆).

• Light: a set ofN monochromatic photons with frequency ω and detuning ∆ = ω−ω0,

such as ω is close to ω0 in order to have frequency dependence. Thus, the scattering

is resonant and multiple, i.e., the photon undergoes several scattering events before

leaving the cloud. The incident photons travel along an axis which passes through

the cloud center of mass (see Fig. 4.1). The light beam has no transverse size, i.e.,

it is infinitely narrow, and has weak intensity, i.e., saturation parameter s(∆)� 1,

to restrict the problem to linear optics. In these conditions elastic scattering occurs

[Cohen-Tannoudji 1992], i.e., the frequency ω′ of the scattered photon is equal to the

frequency ω of the incident photon, so ω′ = ω. There is no frequency redistribution.

Also, the atoms are point-like, i.e., the effect of the atomic size during the scattering

is neglected.

Random walk and diffusion equation

When penetrating into the medium, the photon travels a distance x, and the incoming

intensity I(x) is attenuated according to the Beer-Lambert law:

I(x) = I0 e
−b(∆) = I0 e

−α(∆)x (4.1)

where α(∆) = 1/l(∆) [Rogers 2008] with l = 〈x〉 the mean free path.

The Beer-Lambert law can be seen as a probability distribution for the photon step

size, since each photon travels a distance x, x ∈ (0,∞), before being absorbed, and the

absorption depends on ∆. Hence, the probability P (x) of the photon travels a certain

distance x before being absorbed by an atom is

P (x) =
1

l
e−x/l (4.2)

On the other hand, as the photon emission is random, and as absorption and sponta-

neous emission occur several times, the photon performs a random walk. It can be shown

that, in the one-dimensional case, the probability density function p(x, t) of the photon to

be at a position x+dx at a time t+dt, where p(x, t) may be, e.g., the energy distribution

or intensity distribution in the medium, obeys the equation

∂p

∂t
=
〈x2〉
2τ

∂2p

∂x2
(4.3)

for a homogeneous medium, where τ is the time interval between two scattering events
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and 〈x2〉 is the mean square value of x. Eq. 4.3 is the diffusion equation [Butkov 1968],

with diffusion coefficient

D =
〈x2〉
2τ

(4.4)

The quantity 〈x2〉 is defined by 〈x2〉 =
∫
x2 P (x) dx, where P (x) is the probability

distribution of the step size. For P (x) given by Eq. 4.2, we obtain 〈x2〉 = 2l2. Also, by

definition, 〈x〉 =
∫
xP (x) dx, and 〈x〉 = l for P (x) defined by Eq. 4.2.

The generalization for three dimensions gives p(x, t)→ p(~r, t) and Eq. 4.3 as

∂p

∂t
= D∇2p (4.5)

for a homogeneous medium. For a non-homogeneous medium, D = D(~r) and

∂p

∂t
= ∇ · (D∇p) (4.6)

Also, in three dimensions, Eq. 4.4 reads

D =
l2

3τ
(4.7)

In addition, the solutions p(~r, t) of the diffusion equation are Gaussian functions and

from it one can show that 〈
r2
〉
∝ 6Dt (4.8)

where r = |~r|, i.e., the mean squared distance traveled by the photon is proportional to

the traveled time t.

Transport time and number of scattering events

As already mentioned, the time τ is the time interval between two scattering events.

It is called transport time and can be written as

τ = τW + τsc (4.9)

i.e., the sum of the interaction time τW, called Wigner time, plus the photon propagation

time τsc. It can be shown that τW ≈ τ0 [Weiss 2018], i.e., the interaction time is equal to

the atomic lifetime τ0, and τsc = l/vg, where vg is the group velocity, such as τ0 � l/vg.

Hence, the transport time is equal to

τ ≈ τ0 (4.10)

in the diffusion equation.

If the photon is scattered Ndiff times before leaving the cloud, its total time τRT spent

in the medium is
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τRT ' Ndiff τ0 (4.11)

In order to find the value of Ndiff , we rewrite Eq. 4.11 as follows: since τRT is the

time scale that the photon spent in the cloud, we have τRT ∼ 〈r2〉 /6D from Eq. 4.8.

The quantity 〈r2〉 is in the order of the squared of the medium size R, so 〈r2〉 ∼ R2, and

D = l2/(3τ0) from Eqs. 4.7 and 4.10, so we obtain τRT ∼ (R2/l2)τ0. By comparing this

latter with Eq. 4.11, we have Ndiff ∝ (R/l)2, and R/l ∝ b(∆) from the Beer-Lambert law

Eq. 4.1, because b = αx ∼ αR = R/l, since x is in the order of the cloud size. Therefore,

τRT

τ0

∝ b(∆)2 (4.12)

i.e., the number of scattering events is proportional to the square of the optical thickness

of the medium. The exact calculation gives [Labeyrie 2003]

τRT

τ0

' 3

aπ2
b(∆)2 (4.13)

where a is a proportionality constant which depends on the geometry and density of the

atomic sample. For a slab, a = 1. For a homogeneous sphere, a = 4. For a sphere with

Gaussian density (our case), we have a = 5.35, so

τRT

τ0

' 3

5.35π2
b(∆)2 ' 0.0568 b(∆)2 (4.14)

Atomic motion

The result obtained in the last subsection for τRT corresponds to the ideal case where

the atoms do not move and the incoming field is monochromatic. This means that no re-

distribution frequency occurs. However, in experiments the light source is not monochro-

matic and even a sample of cold atoms has a Doppler motion which can influence the

scattering.

The detuning ∆′ seen by the photon due to the atomic motion is equal to [Foot 2005]

∆′ = ∆− k0v (4.15)

where k0 = |~k0| is the wave vector magnitude of the incoming light and v is the atomic

velocity component in the direction of the photon, so the quantity k0v determines the

amount of frequency redistribution that the photon will suffer. If

b(∆) k0v � Γ (4.16)

we have partial frequency redistribution [Pierrat 2009], e.g., in cold atoms. If b(∆) k0v �
Γ, total redistribution occurs, e.g., hot vapors.

The time τRT can be measured from the intensity emitted by the cloud after the

light-atoms interaction reaches a steady state and the incoming field is switched off, ex-

actly as done when searching super- and subradiance signatures. This is indeed done
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in [Labeyrie 2003], where radiation trapping was observed for a resonant laser beam in a

cloud of cold atoms of 85Rb, for an incoming beam of diameter 2−3 times smaller than the

cloud RMS diameter. The values of τRT were extracted by exponential fits in the interval

I(t)/I(0) ∈ [10−2, 10−1], i.e., at amplitudes ∼ 10−2 from the normalized emitted intensity.

It was found that the quadratic law Eq. 4.14 breaks due to the cloud temperature, in

order of ∼ 80 µK [Labeyrie 2005], so simulations were performed to take into account the

atomic velocities and to compare with the experimental data. The comparison between

the experimental data and the simulations with frequency redistribution was successful.

4.2 Simulation methods with the small beam setup

The random walk and coupled-dipole models describe the propagation of light in a

disordered medium, with the single difference that the random walk model neglects the

interference in the scattering. On the other hand, the coupled-dipole model takes into

account the coherence and interference between the atoms and the scattered field, and

at resonance it describes a coherent multiple scattering, whereas the random walk model

describes an incoherent multiple scattering [Chabé 2014]. As our setup here is a cloud

excited by a narrow laser beam, it is important to run simulations with both models, in

order to investigate radiation trapping and cooperative effects by means of the comparison

between the results given by these two models.

In the following, we will discuss the simulation methods for an atomic cloud interacting

with a narrow beam (see Fig. 4.1). We label “small beam” the setup with a narrow laser

beam exciting the cloud, and “large beam” the setup with a plane wave exciting the cloud.

4.2.1 Coupled-dipole model

For the simulations with the coupled-dipole model, we have the coupled-dipole equa-

tions Eq. 1.15 for the amplitudes βj(t) and the simulation procedure described in section

1.3: Gaussian spherical cloud of N atoms and RMS size R characterized by a resonant

optical thickness b0 and density n0λ
3, and atomic positions drawn under an exclusion

volume condition to produce dilute cloud without close atomic pairs. However, to achieve

the condition of small incoming field, we model it as a truncated plane wave of radius

w =
R

2

i.e., the waist w of the incoming field is set to be the half of the cloud RMS size R. This

makes ∼ 10% of the atoms in the cloud to be directly excited by the incoming field.

Smaller waists decrease the number of driving atoms, and larger waists may break the

small-beam assumption. Also, to make the simulations more reliable, we set the atom

number to be N ∼ 104, so 10% of this gives at least ∼ 102 atoms interacting directly with

the truncated incoming beam.

By setting the driving beam on the z axis and the cloud center on the origin of the x

and y axis (c.f. Fig. 1.2), and defining ρj =
√
x2
j + y2

j the distance between the atom j
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and the cloud center lying on the xy plane (so ρj ⊥ ẑ), the term Ω in the coupled-dipole

equations Eq. 1.15 is set as

Ω =

{
Γ, if ρj ≤ w
0, if ρj > w

(4.17)

i.e., zero if the atom j is out of the laser “tube”, or Γ if the atom j is in the laser “tube”.

This condition is checked for all the N atoms. Note that the incoming field is on to excite

the atoms until a steady state is reached, such that after the switch off, Ω = 0 for all the

atoms. Then, Eqs. 1.15 are solved numerically and the emitted intensities are calculated,

totally in space (Eq. 1.29) or in a certain direction {θ, φ} (Eq. 1.34 or 1.35), where θ and

φ are the angular spherical coordinates (see Fig. 1.2). Also, the intensities are calculated

for several configurations of the atomic positions and then averaged, in order to remove

spurious oscillations and noise.

4.2.2 Random walk model

The random walk simulations were done by William Guerin and consists in sending a

given quantity of photons into a cloud defined by an optical thickness b = b(∆). After the

photon leaves the medium, its number of scattering events Ndiff and its emission direction

{θ, φ} are determined and then the scattered intensity as a function of the time can be

plotted for a given direction.

The medium is modeled by a cloud with a given optical thickness b and Gaussian

density n(r) = n0 e
−r2/(2R2), where the parameters n0 and R are written as a function of b.

The incident photons have a frequency ∆, i.e., they are monochromatic, and are sent at a

fixed direction and position: for example, if the cloud center is at the origin of a Cartesian

frame and if the photons travel along the z -axis, the incident photons will enter into the

cloud at the position {z = −R, θ = π, φ = 0}. Thus, the incoming photons beam has

zero waist, i.e., it is infinitely narrow.

Each photon enters into the cloud and travels a distance x before being absorbed,

where x is set randomly from the probability law P (x) in Eq. 4.2. The value of l can be

written in units of b. After setting the value of x, for a homogeneous cloud, the scattered

photon is checked to be in or out of the could by comparing x with the cloud size R.

However, for a Gaussian cloud, the comparison is not made: a calculation with integrals

takes place to determine the photon position. If the photon is still in the cloud, one

scattering event is counted and then the emission direction is calculated randomly, i.e.,

θ and φ are set randomly by assuming isotropic emission in all space. A new value x is

set randomly from P (x) and if the photon is still in the cloud a second scattering event

is counted. A new emission direction is also set randomly. The procedure is repeated

until the photon leaves the cloud, and then the output emission direction {θ, φ} and the

performed number of scattering events Ndiff are collected for this photon.

The procedure is repeated for many photons, set to be ∼ 105, and they hit the cloud

at the same position and direction. After they are all scattered, we have the values of θ, φ

and Ndiff for all the photons. If one takes into account the beam waist in the simulation,

the photon input position is set randomly from a given waist w < R (truncated plane

wave) or from a Gaussian distribution with waist w < R (Gaussian beam). If one takes
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into account the incoming laser spectrum (i.e., non-monochromatic photons), the photon

detuning ∆ is set randomly from a given frequency probability distribution. For the

simulations with temperature, after the first absorption event, a velocity value is set

randomly from a Gaussian distribution of given k0v. Then, the detuning of the emitted

photon is calculated as ∆− k0v, and the new value of x is set from P (x) where the value

of l will depend on the new detuning.

In order to obtain the emitted intensity I as a function of the time, one plots the

number of emitted photons as a function of Ndiff , because Ndiff = t/τ0 from Eq. 4.11

and I is proportional to the number of emitted photons (e.g., if for 1000 photons, 110

performed zero scattering events, 350 performed one scattering event, 220 two scattering

events, and so on, we have t/τ0 = {1, 2, ...} and I = {350, 220, ...}. The photons which

performed zero scattering events are not included because in fact they were coherently

transmitted.). Then, as the cloud-beam system is symmetric with the z-axis, it is enough

to collect the emitted photons in a given direction θ for all φ (see subsection 1.2.2), so it

is chosen only the photons which were emitted at a value of θ we want. In order to have

more photons and to improve the quality of the computed intensities, we set θ = 45o±15o,

i.e., it was considered photons with θ ∈ [30o, 60o].

The advantage of the random walk simulations is that it takes much less time than

the coupled-dipole simulations. Hence, it is even possible to use the parameters of the

experiment for the cloud and laser size. For the simulations with temperature, the chosen

parameters were like in the experiment. For the simulations without temperature, b is the

single parameter, so the cloud atomic number, density or size are not defined.

Table 4.1 summarizes the parameters and assumptions for the simulation with small

beam with the random walk and coupled-dipole models.

Model Coupled dipoles Random walk
optical thickness b ∼ 10 b ∼ 10

cloud size R ∼ 10/k0 not defined
atom number N ∼ 104 not defined

density n0λ
3∼ 10 not defined

beam waist w = R/2 zero
emission angle θ = 45o θ = 45o ± 15o

Table 4.1: Comparison between the parameters used in the simulations with the coupled-
dipole model and the random walk model.

4.3 Numerical results

4.3.1 Emitted intensities versus time

The simulation results discussed in this section have as the main goal the comparison

between the two models for propagation of light in the atomic cloud. As the coupled-

dipole model takes into account interference and coherence, contrary to the random walk

model, we can see that the former is more complete than the latter, in the sense that the

random walk model will give only the contribution due to the radiation trapping, whereas

the coupled-dipole model gives also the cooperative effects.
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Figure 4.2 shows emitted intensities with the small beam setup, with the coupled-

dipole and random walk models, for different values of b(∆). In this simulation, the

detuning ∆ was fixed at resonance, in a such way that b in the coupled-dipole simulation

was varied with the atom number N and cloud size k0R. For the random walk model,

the values of b were chosen to be equal or close to the ones given from the coupled-dipole

model.
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Figure 4.2: Emitted intensities calculated from the random walk (red) and coupled-
dipole (blue) models, for small beam and several values of the optical thickness b. For the
simulations with the coupled-dipole model, the values of b were calculated for ∆ = 0 and
by varying b0 by means of N and k0R at n0λ

3= 4.6. I/I(0) are the normalized intensities
at θ = 45o for the coupled-dipole model [I(θ, t), Eq. 1.35] and θ = 45o ± 15o for the
random walk model.

We see that, for small b [panels(a) to (d)], the two intensities do not coincide for

low amplitudes and late times, meaning that the contribution due to the random walk is

weak compared with the coupled-dipole model. This can be interpreted that low b also

decrease the number of scattering events, so the photons are not multiple scattered. In

another words, the slow decay seen from the coupled-dipole curves are mainly due to the

coherence and interference, i.e., subradiance. However, when b increases [panels (d) to

(f)], the two curves become close to each other, collapsing completely for b ≥ 10 [panels

(e) and (f)]. This means that the slow decay seen in the coupled-dipole model is in fact

radiation trapping. On the other hand, the early decay of the intensity are the same in

all panels, meaning that radiation trapping takes place in the early decay.

Figure 4.3 is the same as Fig. 4.2, but now b is varied by changing the detuning.

This means that for the coupled-dipole simulations b0 is constant, i.e., constant N and

k0R. We see that, for high b, i.e., close to resonance [panel (a)], the two models are in

agreement; however, when b decreases, i.e., increasing ∆ [panels (b) to (g)], the intensity

from the random walk model decays faster than the intensity from the coupled-dipole
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model. For very low b [panels (e) to (g)] we see clearly that the slow decay from the

random walk model is practically negligible compared to the one from the coupled-dipole

model. Also, the early decay of the intensity with the two models are the same, meaning

that radiation trapping takes place at short times; however, for high b [panels (e) to (g)],

the fast decay from the coupled-dipole model is faster than the one from the random walk

model, meaning that we can see superradiance with the small beam setup at large b0 or

∆.
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Figure 4.3: Emitted intensities calculated from the random walk (red) and coupled-
dipole (blue) models, for small beam and several values of the optical thickness b. The
values of b were calculated from constant b0 and by varying ∆. I/I(0) are the normalized
intensities at 45o for the coupled-dipole model [I(θ, t), Eq. 1.35] and at 45o ± 15o for
the random walk model. Parameters: b0 = 16.9 and (a) ∆ = 0, (b) ∆ = 0.18Γ, (c)
∆ = 0.37Γ, (d) ∆ = 0.47Γ, (e) ∆ = 0.60Γ, (f) ∆ = 0.77Γ and (g) ∆ = 1.1Γ.

The main conclusions from these two figures is that, with the setup of small beam,

at low b radiation trapping is negligible, meaning that the slow decay observed from the

coupled-dipole model is subradiance. In another words, subradiance is present with the

setup of small beam, and at the same range of amplitudes (≤ 10−2) as the ones observed

with the large beam setup. On the other hand, radiation trapping takes place at short

times, meaning that, after the switch off of the incoming beam, initially the emitted light

is trapped by radiation trapping. The value of b determines if some remaining light will

be trapped due to subradiance and emitted later.

4.3.2 Decay rates versus b

One can do an exponential fit in the slow part in all previous curves to characterize

the slow decay. Initially our idea was to plot the fitted τfit as a function of b and to see the

quadratic scaling given by Eq. 4.14, however, we cannot go far in b in the coupled-dipole
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model, and the plot for small b can be confused between quadratic and linear scaling.

Figure 4.4 shows the fit of the data in Fig. 4.3, where b was varied with the detuning

for the data in the coupled-dipole model, in the range I/I(0) ∈ [10−3, 10−2]. We see that,

for small b, more precisely b < 10, τfit from the coupled-dipole model is constant, i.e.,

subradiance (τfit =τsub) showing that it does not depend on the detuning of the incoming

beam. These rates correspond to subradiance. As b increases (near resonance), the τfit

from the coupled-dipole model tend to the τfit from the random walk model, and they

collapse for b ≥ 10. This shows that the slow decay in this regime is radiation trapping

(τfit =τRT).
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Figure 4.4: Slow decay rates τfit as a function of the optical thickness b, in (a) linear
and (b) logarithm scale, extracted from the intensities in Fig. 4.3 calculated with the
random walk model (red circles) and coupled-dipole model (blue diamonds). The dashed
line is Eq. 4.14. Parameters: same as in Fig. 4.3.

4.3.3 Comparison with the large beam setup

For the large beam setup, the simulations with the coupled-dipole model give sub-

radiance independently of the detuning, as discussed in Chapter 2. At resonance both

radiation trapping and subradiance take place, however the amplitude of radiation trap-

ping in the emitted intensity for the large beam setup was calculated numerically and

shown to be small [Guerin 2016], so we can conclude that radiation trapping is weak com-

pared with subradiance in the setup of resonant large beam. On the other hand, at early

times, superradiance is suppressed at off-axis directions, as shown in Chapter 3, however,

the coherent transmitted light (forward direction) contains interference and superradiant

features.

4.3.4 Effects of temperature and laser spectrum

The random walk and coupled-dipole models are in agreement for large optical thick-

nesses in the ideal case, i.e., for monochromatic incident light and motionless atoms. How-

ever, as already described in section 4.2, we can include temperature and laser spectrum

in the random walk model in order to investigate how they can impact the experiment.

Figure 4.5 shows τRT as a function of b0 for three situations: both negligible tem-

perature and laser spectrum (ideal case), T = 100 µK and negligible laser spectrum

(experimental temperature with a ideal laser), and T = 100 µK and the actual probe
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Figure 4.5: Radiation trapping decay rates τRT as a function of b calculated by taking
into account the temperature and the incident laser spectrum. In the legend, “narrow”
stands for a Gaussian spectrum of width 0.01Γ and “probe” stands for the spectrum in
Fig. 2.20 left. The dashed line is Eq. 4.14. The values of b were calculated for ∆ = 0,
so b = b0 = 3N/(k0R)2, and b was varied by varying R for constant N . The values of
τRT were extracted from intensities at 45o ± 15o, in the interval I/I(0) ∈ [10−4, 10−2].
Parameters: N = 109, ∆ = 0, R ∈ [0.61, 3] mm, w = 300 µm with a Gaussian profile, for
105 incident photons.

beam spectrum in our experiment, displayed in Fig. 2.20 (experimental parameters).

Also, the values of b were calculated from values of N and k0R in the order of our exper-

imental values, i.e., N ∼ 109 atoms and R ∼ 1 mm (see section 1.3). We see that both

negligible temperature and spectral width (red data) corresponds to the diffusion theory

in the ideal case, showing that these fitted τRT are due to radiation trapping. However, a

temperature of some µK (blue data) and also a large laser spectrum (green data) break

the theoretical prediction. In addition, the blue and green data collapse, meaning that

the cloud temperature plays a more important role in radiation trapping than the laser

width, at least at resonance.
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Figure 4.6: Radiation trapping decay rates τRT as a function of the temperature T , for
(a) b = 82 and (b) b = 124, calculated for incident laser light spectrum of narrow width
10 kHz (blue diamonds) and with the probe laser spectrum given in Fig. 2.20 left (red
circles). The dashed green line is the prediction from Eq. 4.14.

Figure 4.6 shows how the slow decay rate is impacted by the temperature, for a

constant value of b [b = 82 in (a) and b = 124 in (b)], with a negligible laser spectrum
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(blue data) and the actual probe laser spectrum in our experimental setup (red data).

We see that, for large T , τRT is the same with and without spectrum, which means that

the radiation trapping is strongly impacted by the temperature. However, for low T , τRT

without laser spectrum tends to the ideal value, whereas τRT with laser spectrum saturates

in a very low value compared with what is expected from the theory. Also, in panel (b),

τRT does not tend exactly to the ideal value as in (a). This can be explained by frequency

redistribution due to the high value of b, which favors more scattering events.

We see how radiation trapping is modified when the cloud temperature and the laser

spectrum are taken into account. Therefore, in order to perform a radiation trapping

experiment in our laboratory, the experimental setup had to be modified to accomplish

these two features.1 This is discussed in the next section.

4.4 Experimental setup

The simulations with the random walk model showed that radiation trapping is very

sensitive to the cloud temperature and the probe beam laser spectrum. About tempera-

ture, there are some experimental methods in order to decrease it, like adding a molasses

phase, which can provide a decrease of the temperature until ∼ 20 µK. The molasses

phase consists in turning on only the six MOT laser beams after the MOT loading, dark

MOT phase and extinction of the magnetic field (subsection 2.2.4), so the atoms will see

a friction force F = βv (Eq. 2.1) and their velocities will be reduced. Another way to

decrease the temperature is to check if the parameters of the dark MOT phase are opti-

mized, since the dark MOT helps in the temperature decreasing due to the low intensity

of the repumper beams.

In our experimental setup, as b0 is very large, in order of b0 ∼ 100− 120, it is a very

hard task to decrease the temperature until ∼ 20 µK with the molasses technique. In

addition, radiation trapping was observed at ∼ 80 µK in [Labeyrie 2005], so we opted to

keep the temperature and to replace the laser source to solve at least the laser linewidth

problem. Also, we checked the parameters of dark MOT phase to see if they are already

optimized.

In this section, we describe the changes made in the experimental setup in order to

perform experiments with the small beam setup. The changes include: the setup of the

new laser source, the optimization of the dark MOT phase, and the setup of the probe

beam.

4.4.1 New laser source

In order to have a probe beam with small linewidth, we decided to replace the DFB

laser source in our MOT setup (see subsection 2.2.2) by a laser from Toptica Photonics,

references Dl pro and Sys DC 110, which has a linewidth of 200 kHz, much smaller

compared with the Rb natural linewidth 6.067 MHz and the DFB laser linewidth ∼ 2− 3

MHz. This laser was already available in our laboratories, in another experimental setup.

1 In fact, as we will discuss in section 4.4, we could only replace the laser source in order to provide a
narrower spectrum. We could not decrease the temperature of our atomic sample.
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The setup of this new laser source in our experiment required some work due mainly

to its mode hopping and temperature stabilization. Before placing it, we measured and

wrote down the values of the cloud parameters (atom number, b0, MOT loading time,

vapor pressure), as well as the powers of the MOT laser beams, the emitted power at the

DFB laser output and the power of the probe beam. Then, we placed the laser head on

the optical table and its box control on a shelf. The laser head contains the diode laser and

a diffraction grating; the box control contains the electronic controllers for temperature,

current, frequency scan and the frequency stabilization circuits. After the laser output,

we placed an optical isolator and then two mirrors in order to recover the whole original

alignment by adjusting these mirrors.

After connecting the temperature, current and scan controls, we noticed that the

laser was in the wrong emission wavelength λ by means of absence of fluorescence in the

saturated absorption Rb cell. The correct value of λ was set by adjusting the diffraction

grating in the laser head and by monitoring the output beam with an optical spectrum

analyzer (OSA) from Yokogawa, reference AQ6370D, in a such way that the OSA displayed

the values of λ for the DFB and the Toptica lasers. Another ways to measure λ are to use

a wavemeter (which was not available in our laboratories) and to scan the laser current

until a fluorescence in the Rb cell is observed (tried but not successful).

After adjusting λ, we tried to lock the Toptica laser with our homemade PID controller,

whose input is the Rb saturated absorption spectrum at the crossover transition F = 2→
F ′ = 2, 3 (c.f. subsection 2.2.2). However, we noticed some noise in the generated error

signal for the PID, due to the fact that the frequency modulation in our PID controller,

50 kHz, is much smaller compared with the required modulation frequency, 30 MHz,

according to the user manual from Toptica. Also, the user manual suggests that the laser

should be locked by means of two electronic boxes provided by the company itself, where

one of them uses the Pound-Drever-Hall (PDH) technique [Drever 1983] to generate the

error signal and the other is a PID controller. The PID box was included in the laser box

control, but the PDH controller was not, so we ordered and installed it.

It is known that the frequency modulation with the PDH technique creates two side-

bands separated by the modulation frequency from the desired (central) frequency. Also,

the PDH output for modulation was supposed to be connected to the laser head, in order

to modulate its current (the current modulation provides the frequency modulation, since

the emitted frequency depends on the current sent to the diode laser). After setting the

PDH and PID controllers in our laser source, we noticed that the sidebands could be

a problem for the experiment, because beyond the central frequency, the atoms will see

the sidebands frequency (separated by 30 MHz ' 5Γ) and interact with them, specially

for detuned frequencies (e.g., a detuning of −5Γ for the central frequency would bring

one of the sidebands to resonance, so the atoms could interact with resonant photons).

In order to solve this, we opted by using an EOM from Photonics Technologies, model

EOM-02-20-V, in a such way that the PDH modulation output was connected to the EOM

to modulate the laser phase, providing the sidebands only for the absorption saturation

setup and not for the whole setup. Other ways of solving the sidebands problem are: to

modulate Zeeman shifts in the absorption saturated Rb cell by setting a coil around it to

generate a magnetic field [Shim 1999], and to set a Fabry-Pérot cavity to filter the side-

bands frequencies before the beam is sent to the main setup. The former works well at low
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modulation frequencies (not our case) and the latter requires a hard work for mechanical

stabilization.

to the main

setup

EOM

to double-
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Figure 4.7: Scheme for the laser stabilization setup. Legend: BS: beam splitter, DL:
diode laser, EOM: electro-optic modulator, FPD: fast photodiode, OI: optical isolator,
PDH: Pound-Drever Hall controller, PID: proportional–integral–derivative controller.

Figure 4.7 is a scheme of our laser stabilization after the setup of the EOM. The laser

beam is emitted at the laser head, where the laser diode and diffraction grating are, and

then passes through an optical isolator and a beam splitter, where it is split in two. Most

of the power goes to the double-pass AOM setup [McCarron 2007], and its output beam

goes to the main setup, i.e., MOT and probe beam. A small power goes to the EOM

and then to the saturated absorption setup, in order to stabilize the laser frequency by

means of the detection of the signal with a homemade fast photodetector (FPD) and

then modulation and locking with the PDH and PID controllers. Before the EOM was

installed, the low power beam went directly to the saturated absorption setup and the

PDH output, which sends the modulated signal, was connected to the diode laser, so the

diode laser emitted light with the sidebands, which would be also present in the main

setup. With the EOM installed, the PDH output is connected to the EOM, so only the

light after the EOM output contains the sidebands. The light emitted by the laser head

does not contain the sidebands: it contains only the central frequency and is already

stabilized due to the PID correction sent to the diode laser. The output beam goes to the

double-pass AOM setup and then to the main setup.

Figure 4.8 shows the connections between the laser head and its control box, as well as

the connections with the FPD and EOM for the frequency stabilization. Once the laser

head and its control box were placed on the optical table, we connected the laser head

to the temperature and current controllers (inputs T and I) and then the piezoelectric

scanner (output 1 to input A). The connections with the PDH and PID controllers were

done as follows: the absorption saturated signal measured by the FPD is sent to the input

of the PDH controller (fast output to input 4), then the signal is mixed with a modulating

signal provided by an internal VCO. The modulating signal (with modulation frequency

30 MHz) is also sent to the EOM (output 3 to EOM) − before the EOM setup, the output

3 was connected to the AC modulating input current at the laser head (input B). The
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Figure 4.8: Scheme for the connections of the laser box control to the laser head and
the fast photodiode. Legend: 1: piezo output, 2: trigger, 3: internal oscillator, 4: phase
detector, 5: error output, 6: output, 7: monitor output, A: piezo input, B: AC modulation,
C: DC modulation, T: temperature input, I: current input.

result of the electronic mixing is the derivative signal, which is sent to the PID controller

(output 5 to the PID input). Then, the PID controller makes the correction and this

is sent to the laser head (output 5 to input C). The saturated absorption signal can be

displayed at an oscilloscope (output slow to channels 2 of oscilloscopes 1 and 2), by using

the piezoelectric scanning as trigger (output 2 to oscilloscopes 1 and 2) as well as the

derivative and correction signals (outputs 6 and 7, respectively). The parameters of the

PDH and PID controllers, like modulation level, amplitude levels and gain, are adjusted

with knobs at the control box by seeing the signals at the oscilloscope.

After the setup of laser stabilization and solving the mode hopping in frequency, we

obtained the following values for the laser source parameters: temperature 20.3oC, current

222 mA, output power after the optical isolator 60 mW, power for the double-pass AOM

51 mW, power for the saturated absorption setup 3 mW, efficiency of the double-pass

AOM setup 60% for detuning +Γ.

4.4.2 Optimization of the dark MOT phase

As explained briefly in subsection 2.2.4, the dark MOT phase [Ketterle 1993] takes

place after the MOT loading and its goal is to increase the density and decrease the

temperature of the atomic cloud. For this, the intensity of the repumper beams is reduced,

so the atoms do not interact with the MOT laser beams and repulsion between atoms due

to scattering is reduced. Also, the detuning of the MOT laser beams is modified.

The MOT loading is a dynamical process, meaning that its parameters, like atom

number, temperature, vapor pressure, etc., vary over time. This is because the amount of

Rb atoms in the chamber changes, due to losses due to the chamber walls and the “pump-

ing” due to the reservoir. For the super- and subradiance experiments, the temperature

of the cloud was ≈ 50 µK, however, for the experiments with small beam, it increased
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to ≈ 100 µK, maybe due to a new opening of the valve of the Rb reservoir to increase

b0 and N for the small beam measurements. Hence, as an attempt to recover the 50 µK

value, we decided to optimize the parameters for the MOT and repumper beams during

the dark MOT phase. These parameters are the intensities and detunings for the MOT

and repumper beams.

We ran several cycles with the phases MOT loading, dark MOT, extinction of the

magnetic field and TOF (see subsections 2.2.4 and 2.2.6). In each cycle, a different value

of the repumper beam intensity IREP was set and the values of the repumper beams

detuning, MOT beams detuning and MOT beams intensity were kept. The parameters

for the MOT loading phase for all cycles were the same. For each cycle, we measured b0

and N before the cloud expansion and the temperature T . These three parameters can

be plotted as a function of IREP.
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Figure 4.9: Measurement of the (a) atom number N , (b) resonant optical thickness b0

and (c) temperature T of the cloud as a function of the repumper beam intensity IREP

during the dark MOT phase, for ∆REP = −Γ, ∆MOT = −5Γ and IMOT = Imax during
the dark MOT phase. In (c), Tx is the temperature measured at the horizontal direction
perpendicular to the propagation probe beam axis, Ty is the temperature measured at the
vertical direction (same direction as the MOT coils) and T = (Tx + Ty)/2.

Figure 4.9 shows N , b0 and T as a function of IREP. Physically, for low IREP, many

atoms stop interacting with the MOT beams, so N and consequently b0 drop. For high

IREP, N is supposed to be constant, but the repulsions due to the high scattering rate

increases and then b0 drops. Hence, there should be an intermediate value of IREP where

b0 and N are maximum. The maximum values for N and b0 occurs at IREP = 0.35 Imax,

for which the temperature is 77 µK. Therefore, we set IREP = 0.35 Imax in the control

program during the dark MOT phase.

We repeated the measurement of Fig. 4.9 for another detuning of the repumper beams,

∆REP = −2Γ, because a more detuned beam in principle reduces the scattering rate. We

obtained figures similar to the ones discussed, but the obtained maximum values of N

and b0 were smaller.

4.4.3 Setup of the probe beam

As done for super- and subradiance experiments, the setup of the probe beam was

modified in order to perform the measurements with the small beam. Since radiation
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trapping is a slow decay in time under excitation with a narrow beam, and since we want

to perform subradiance measurements for comparison, also because the laser source was

changed, the setup was arranged to accomplish these two features.

The probe beam setup was arranged in two steps: firstly we placed back the setup

for subradiance (subsection 2.2.3), i.e., we removed the Mach-Zehnder EOM from the

superradiance setup (3.2.1) and we set back the two AOMs in series. The single difference

compared with the original subradiance setup is that now the AOMs were connected to

the new pulse generator installed for the superradiance experiment. Also, as this pulse

generator has two outputs which generates identical but inverted signals, the inversion

connection in the two switches for the focused AOM was undone.

Then, a setup with lenses was imagined and simulated in MATLAB by means of the

ABCD matrices theory for propagation of laser beams [Siegman 1986], in order to obtain a

small probe beam compared with the atomic cloud dimensions. Also, we wanted to keep

the original setup for the large probe beam for eventual comparison with subradiance,

so a practical way to alternate between the large and small probe beam setups was also

considered.

cloud

BS

300 mm50 mm

100 mm large

beam

small

beam

M

M

Figure 4.10: Setup for the probe beam for the radiation trapping and subradiance
experiment. Two collimators allow to alternate between the small probe and large probe.

The setup was set as displayed in Fig. 4.10. The original setup with the large probe

beam, for the super- and subradiance measurements, was as before, where the laser beam,

coming from a monomode optical fiber, leaves the collimator and goes through two lenses

before reaching the atoms. The two lenses are a telescope of magnification that serves to

increase the beam waist to 5.7 mm, very large compared with the cloud RMS size, R ∼ 1

mm (see subsection 2.2.3). For the small probe beam, a second collimator from Thorlabs,

reference F240APC-780, output waist 750 µm, was set, followed by a mirror, a lens and

a beam splitter, in a such way that the probe beam should reach the atoms by using the

same propagation path as the large beam. This propagation path was aligned by adjusting

the mirror and the collimator. The waist of the small beam at the cloud depends on the

lens focal distance and the distance between the lens and the 50 mm lens. The alternance

between the small and large beam setups is done by coupling the monomode optical fiber

output to the corresponding collimator.

For a lens of focal distance 300 mm placed at a distance of 32.5 cm from the 50 mm

lens, the laser beam, after leaving the collimator and arriving at the 300 mm lens, is

focused before arriving at the 50 mm lens, in a such way that its focus is just before

the 50 mm lens. Also, its waist is much smaller than the initial value. After the 50 mm
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lens, the beam focuses just after it and then its waist increases a bit. After leaving the

100 mm lens, it focuses at the cloud position, with a waist of 0.200 mm = 200 µm. In

addition, the beam Rayleigh length is 16.1 cm, i.e, a large Rayleigh length, which assures

that the beam waist is quasi-collimated around the cloud position. The beam waist was

measured by deviating the beam with a mirror and by using a beam profiler based on the

“knife-edge” technique.

4.5 Experimental results

The experimental procedure for preparing the atomic sample and acquiring the data

is the same used for super- and subradiance, described in subsections 2.2.4 and 2.2.7:

the MOT is loaded by including a dark MOT and optical pumping phases and then it is

turned off, allowing the cloud to a free expansion. During its expansion, the probe beam

is sent to the cloud as a sequence of pulses, and the emitted fluorescence is measured by

the HPM. After the main measurements, a calibration measurement is run in order to

measure b0 for each pulse.

The pulse separation was set as 1.0 ms, as for super- and subradiance experiments,

however, the pulse duration was modified to 10 µs, i.e., three times shorter. This is because

the temperature change in the cloud during the pulse excitation has to be negligible to

avoid frequency redistribution. The temperature change ∆T is given by

∆T ∝ Nph Trec (4.18)

where Nph is the number of scattered photons and Trec is the recoil temperature, which

is equal to 0.362 µK for 87Rb in the considered transition [Steck 2001]. Nph is given by

Nph = Γsc ∆t, where Γsc = Γ s(∆)/2 is the scattering rate and ∆t is the pulse duration.

For s(∆) = 0.1 and ∆t = 30 µs, we have Nph = 57 and ∆T = 21 µK per pulse, whereas

for ∆t = 10 µs we get Nph = 19 and ∆T = 6.9 µK per pulse.

Our data acquisition started initially with the small probe beam setup only, without

the replacement of the MOT DFB laser source, but only subradiance was observed. Then,

the simulations with temperature and laser spectrum described in subsection 4.3.4 were

run, so we decided to replace the laser source. We also opened the Rb reservoir valve by

1/4 of a turn to increase N and b0. After optimizing the dark MOT phase, we checked the

probe beam polarization with a polarimeter and also the magnification of the 2f−2f setup

for the cloud and CCD camera (see subsection 2.2.5). We also measured the linewidth at

the output of the probe beam setup, to check the value 200 kHz, and we set a polarizing

beam splitter at the input of the optical fiber after the AOMs setup (see Fig. 2.8) to

correct intensity and polarization fluctuations due to the switch on and off of the −1

order beam.

4.5.1 Data for large beam

The first measurement done was to see subradiance with this new setup, since the laser

source was replaced and the probe beam has a new spectral broadening compared with

the previous setup. Fig. 4.11 shows the emitted intensities for several b0 at ∆ = −3.15Γ
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[panel (a)] and the exponential fits done at the slow part, for several b0 and ∆ [panel (b)].

The fit interval was done at the same range as for subradiance discussed in Chapter 2, i.e.,

one decade above the noise level. We see in (a) that the slope increases for increasing b0,

and in (b) that the fitted decay rates collapse on the same line for several ∆, a signature

of subradiance. The solid line is a linear fit τsub/τ0 = 1 + c b0 of the data, where the

constant c was found to be c = 0.65. By converting this constant for the definition

b0 = 3N/(kR)2 in order to compare with the value c = 0.8 obtained in Chapter 2, we

have c = 0.65× 7/15 = 0.30, much smaller than those obtained initially.
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Figure 4.11: Experimental data obtained from the large beam setup. (a) Experimental
emitted intensities as a function of time, for several resonant optical thicknesses b0 and
∆ = −3.15Γ, with the large probe beam. The dashed blue line is the decay for a single
atom. (b) Experimental decay rates as a function of b0 = 3N/(k0R)2 × 7/15 for several
∆. The solid black line is a linear fit of the data. Parameters: s(∆) ≈ 10−2.

4.5.2 Data for small beam

For the data with the small beam setup, the saturation parameter was set initially to

s(∆) = 0.1, i.e., ten times larger than for the super- and subradiance experiments. This is

because a small size beam at resonance implies in a weak emitted intensity, which makes

worse the signal-to-noise ratio, since the incoming beam is strongly attenuated when

penetrating the cloud. From the definition of s(∆), we have s(∆) = g × s0/(1 + 4∆2/Γ2)

with g = 7/15, ∆ = 0, s0 = I/Is, where I = 2P/(π w2
0), w0 = 200 µm and Is = 1.7

mW/cm2, so we obtain P = 229 nW. This value is very small compared with the required

power for the large beam setup. On the other hand, as the effective s(∆) seen by the

atoms inside the cloud decreases as long as the incident beam propagates (shadow effect

discussed in [Chabé 2014]), we decided to increase the value of s(∆) to 0.2, 0.5 and even

1.0, in order to improve the signal-to-noise ratio. The values of the fitted decay rates were

compared for different s(∆) to check that there are only linear effects.

Figure 4.12 shows the temporal emitted intensities, acquired with the small beam

setup, for several values of b0 and constant ∆ = −0.9Γ. We see that the intensities present
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Figure 4.12: Experimental emitted intensities as a function of time, for several resonant
optical thicknesses b0 and ∆ = −0.90Γ, with the small probe beam. The dashed blue line
is the decay for a single atom.

two slow decay regimes compared with the single atom decay: an intermediate decay,

around ∼ [10−2, 10−1] in amplitude, and a very late decay, from amplitudes smaller than

10−2. The late decays seem to vary with b0 like the data for the large beam in Fig. 4.11(a)

and the numeric data for small beam in Fig. 4.3, which may be a signature of subradiance.

The intermediate decay takes place at the same amplitude range in [Labeyrie 2003], and

may be radiation trapping.

In order to characterize these two decay regimes, we extracted the corresponding decay

rates and plotted them as a function of b0 and b(∆). For the late decay rate, we did an

exponential fit in the same range as for the subradiance data for large beam, i.e., one

decade above the noise level. For the intermediate decay, we set the decay rate τRT equal

to the time t where the intensity decays to 1/e = 0.368 of its value at t = 0.

Figure 4.13 displays the fitted decay rates, plotted as a function of b0 and b(∆), for

the intermediate decay [panels (a) and (b), labeled τRT] and the late decay [panels (c)

and (d), labeled τsub]. In (a), we see that τRT does not scale at all with b0, but in (b)

they scale well with b(∆), which is a signature of radiation trapping. This should be

compared with the data in [Labeyrie 2003], where radiation trapping was observed at the

same amplitude range and showed to agree with simulations by taking into account the

frequency redistribution.

For the late decay rates τsub, [Labeyrie 2003] does not study them because his detector,

a standard photomultiplier, measures only amplitudes ∼ 10−2, whereas in our setup, we

use a hybrid photomultiplier able to reach amplitudes ≤ 10−4 (c.f. Fig. 2.10). Also, in

our setup we have a better extinction ratio and longer integration time, as discussed in

Chapter 2. We see in panel (d) that τsub do not scale at all with b(∆). In (c), they vary

linearly with b0, but they do not collapse into a single line as well as the τsub obtained from

the large beam setup, represented by the dashed line. We attribute this to noise effect

from the intensities measured with the small beam setup, due to the low power collected

in the measured intensities.

As a last comment, numerical simulations with the random walk model by including

the experimental temperature and the current laser spectrum were run in order to calculate

τRT versus b(∆) as in Fig. 4.13(c). Also, emitted intensities with the small beam setup

were calculated for comparison with the experimental ones. All the obtained results
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Figure 4.13: Experimental decay rates for the small beam setup, for several detunings
δ = ∆/Γ. (a) Intermediate decay rate τRT as a function of b0 = 3N/(k0Rx)(k0Ry)× 7/15
(b) Intermediate decay rate as a function of b(δ) (c) Late decay rate as a function of
b0 = 3N/(k0Rx)(k0Ry)×7/15 (d) Late decay rate as a function of b(δ). The dashed black
line in (c) is the linear fit in Fig. 4.11(b).

were shown to agree with the experiment. In addition, more simulations were run by

considering possible anisotropy of the cloud and misalignment of the probe beam in the

cloud center. These effects were shown to be negligible. The reader can find the detailed

discussion in [Weiss 2018].

4.5.3 Attempt to decrease the temperature of the cloud

The experimental data shown in the two last subsections and their comparison with

the theory show well the occurrence of radiation trapping and subradiance for the same

sample in the emitted intensities, for certain values of b0 and ∆. The cloud temperature

was 100 µK, a value optimized with the dark MOT phase. However, in our laboratory,

after obtaining these experimental data, we wanted to use a molasses phase to control

the temperature of the cloud in order to perform a systematic study of radiation trapping

and subradiance as a function of temperature.

As already mentioned, the molasses phase was added after the MOT loading, dark

MOT and extinction of the magnetic field, and its goal is to control the cloud temperature

for the main measurements. It consists in turning on the MOT six beams and the two

repumper beams during a time tmol. Then, the TOF is run to measure b0 just after

the molasses duration and the temperature. It is known from MOT theory that the

cloud temperature varies as T ∝ IMOT/|∆MOT| [Foot 2005], where IMOT and ∆MOT are

the intensity and detuning of the MOT beams, so T decreases if IMOT decreases and/or

∆MOT increases to the red. Also, T decreases for increasing tmol and reaches a constant

value.
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Before adding the molasses phase, we varied ∆MOT during the dark MOT phase (we

had up to here ∆MOT = −5Γ; see section 4.4.2). Also, we decided to vary ∆MOT smoothly

by adding a sweep function R, i.e., to increase ∆MOT to the desired value from its value at

the MOT loading phase, which is ∆MOT = −4Γ. For example, if we set ∆MOT = −5RΓ,

this means that ∆MOT will increase linearly from −4Γ to −5Γ during the time duration of

the dark MOT phase. This linear increasing is to avoid atom losses, compared if ∆MOT is

set abruptly to ∆MOT = −5Γ. A comparison between ∆MOT with and without the sweep

shows that we lose less atoms in the former.

Table 4.2 shows the temperatures and b0 measured for some values of ∆MOT. The

value T = 98 ≈ 100 µK is the value we had for the radiation trapping measurements. We

see that ∆MOT = −6RΓ gives the largest b0 and a smaller temperature.

∆MOT/Γ b0 T (µK)
−5R 69 98
−6R 75 80
−7R 67 77
−8R 51 63

Table 4.2: Measurement of b0 = 3N/(k0Rx)(k0Ry)×7/15 and temperature T by changing
the detuning ∆MOT of the MOT laser beams during the dark MOT phase. The symbol
R at the ∆MOT values means that ∆MOT was varied linearly from ∆MOT = −4Γ. Other
parameters: ∆MOT = −Γ, IMOT at its maximum value, IREP = 0.39 IREP max.

So, we modified ∆MOT = −6RΓ for the MOT beams during the dark MOT phase

and then we turned on the molasses phase in order to decrease more this temperature.

Firstly we set ∆MOT = −10Γ during the molasses phase (∆MOT can be varied from −Γ

to −11Γ in the double-pass AOM without power losses) and then we increased tmol, for

other parameters fixed. Naturally, as tMOT increases, b0 drops due to the cloud expansion,

so we also measured b0 to see how it drops.
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Figure 4.14: Cloud temperature Tx along the x direction as a function of the molasses
duration tmol, for b0 = 3N/(k0Rx)(k0Ry) × 7/15 and ∆MOT = −10Γ. Other parameters:
∆REP = −Γ, IMOT and IREP at their maximum values.

Figure 4.14 shows Tx [panel (a)] and b0 [panel (b)] as a function of tmol. The tempera-

ture was measured only along the direction x because in this measurement the fits along

y direction were very bad, for reasons that we could not understand. In (a), we see that,
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after a small increase, Tx starts to decrease and remains constant from tmol ≥ 13 ms, with

a value Tx ≈ 34 µK. On the other hand, in (b), b0 drops from b0 = 103 to 51 for tmol = 13

ms and to b0 = 39 for tmol = 16 ms.

At this point, the following step is to repeat the measurement above with ∆MOT more

detuned and by changing IMOT and IREP (maybe it will be not necessary because b0 may

drop more). However, the tapered amplifier (TA) in our experimental setup (see Fig. 2.7),

which provides the power for our MOT laser beams, broke and, as the substitution and

new measurements would require some additional months, we decided to try to publish the

experimental radiation trapping data already discussed. The systematic study of radiation

trapping and subradiance as a function of temperature thus remains to be studied and is

part of the next experiments to be performed on this work.

4.6 Conclusions of this chapter

The main conclusion about the interplay between subradiance and radiation trapping

is that we could perform an improved experiment with a narrow beam exciting the atoms,

concerning good extinction of the probe beam and better average in the measured signals.

In the decay dynamics, radiation trapping is the first phenomenon to take place, and then

subradiance comes later, at lower amplitudes. Also, the strongest dependence of radiation

trapping with the detuning of the incoming beam suggests that one should consider only

interactions close to resonance to see radiation trapping and subradiance at the same time.

Therefore, both phenomena occurs, which shows the robustness of subradiance with the

laser detuning and even with the laser beam size.



Chapter 5
Phased cloud and temperature effects

In the last chapters, we discussed super- and subradiance theoretically and experimen-

tally in a cloud of cold atoms with the coupled-dipole model, our main tool for describing

the response of N atoms after interacting with a plane wave, i.e., a large-sized field com-

pared with the cloud dimensions. The interactions of all atoms with the field give rise

to cooperative effects like super- and subradiance, discussed in Chapters 1 to 3. The

discussion relies on the coupled-dipole equations for the dipole amplitudes βj, Eqs. 1.15,

rewritten below

β̇j =

(
i∆− Γ

2

)
βj −

iΩ

2
ei
~k0·~rj − Γ

2

∑
j′ 6=j

eik0rjj′

ik0rjj′
βj′ (5.1)

and the emitted intensity I(θ, φ, t) in Eq. 1.34, rewritten below

I(θ, φ, t) ∝
∑
j

∑
j′

βj(t)β
∗
j′(t) e

−ik0(xjj′ sin θ cosφ+yjj′ sin θ sinφ+zjj′ cos θ) (5.2)

(also Eq. 1.35 depending on symmetry considerations and Eq. 1.29 for the total emitted

intensity). In Chapter 4, the interaction field was modified to a truncated plane wave with

a small size compared to the cloud size, which allowed us to discuss radiation trapping

and its interplay with subradiance.

In this chapter, we modify the original setup of N atoms and light field in order to

obtain new features in the emitted intensity and cooperative effects. More precisely, we

discuss two specific setups: the phased cloud, which takes into account a plane wave with

a phase difference in its spatial profile; and temperature effects, which investigates the

impact of the atomic motion in the case of plane wave excitation. The former has as

main result an increase of the subradiant amplitude level, which can be an improvement

for its experimental detection. The latter suppresses the cooperative effects when the

temperature becomes significantly large. Experiments will be run in the future in our

laboratory in order to observe and characterize these predictions.

This chapter is divided in three sections. In section 5.1, we present and discuss the

phased cloud setup. In section 5.2, we discuss the coupled-dipole model with temperature

and the harmonic oscillator model as a procedure for our simulations, in order to simulate

the atomic motion without cloud expansion, as well as its impact in the cooperative decay

97
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rates. Finally, in section 5.3 we summarize the obtained conclusions.

5.1 Excitation with a phased cloud

5.1.1 Description

Super- and subradiance are cooperative effects related to the phase of the dipole os-

cillations, which plays a role on the decay rates due to the interference of the light fields

scattered by the dipoles. For far-detuned light, both the amplitudes and the decay rates

magnitudes are modeled by the cloud parameters, which determine the coherence strength

created between the dipoles when interacting with the incident light field.

Based on [Scully 2015], which proposes a setup with two clouds excited by laser beams

with a phase shift, we propose what we call a phased cloud setup (Fig. 5.1). Like in the

Chapters 1 to 3, a monochromatic plane wave excites a cloud of N two-level atoms, with

the difference that the incoming beam goes through a wave plate of different thicknesses

before reaching the atoms. The thickness of the wave plate is built in a such way that half

of the incoming beam is shifted to a phase of π with respect to the other half. By setting

a Cartesian coordinate frame with the laser beam on the z axis and cloud center at the

origin (c.f. Fig. 1.2), the setup is arranged such that the cloud side y > 0 is excited by a

phase δ = π with respect to the side y < 0. Hence, the atoms in the respective halves are

excited by a field with a phase difference of π with respect to each other.
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photo-
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Figure 5.1: The phased cloud setup. A cloud of N identical and motionless atoms
interacts with a laser beam and vacuum modes. The beam is set on the z axis and the
wave plate has different thickness in a such way that half of the beam at the side y > 0
suffers a phase shift of δ = π with respect to the side y < 0 (δ = 0). The detector
measures the intensity I(θ, φ, t) given by Eq. 5.2. In the figure, the detector is placed on
the xy plane, i.e., θ = 90o and φ ∈ [0, 2π].

Due to the phase shift in each half of the cloud, the coupled-dipole equations, Eqs.

1.15, are written as
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where Eqs. 5.3a are for the j′ = {1, ..., N ′} atoms at the y < 0 side (phase shift δ = 0),

i.e., as before, and Eqs. 5.3b are for the j′ = {N ′ + 1, N ′ + 2, ..., N} atoms at the y > 0

side (phase shift δ = π), i.e., a phase of eiπ in the second term. In words: each atom j sees

the interaction with all the other N − 1 atoms, as previous, but a phase term is present

or absent in the driving field depending on which side the atom j lies.

As before, the incoming field excites the cloud during enough time that a steady

state is reached, and then the emission dynamics is analyzed after the incident field is

extinguished. We use Eq. 5.2 to compute the emitted intensity by the cloud, for a chosen

direction {θ, φ}. In Eq. 5.2, θ is the polar angle, measured from the z axis, and φ is the

azimuth angle, lying on the xy plane (see Fig. 1.2 for the definition of θ and φ). Note

that, as the phased cloud is not symmetric with respect to the z axis, we cannot use Eq.

1.35 to compute the emitted intensity (see subsection 1.2.2).

5.1.2 Simulation methods

The simulation procedure for the phased cloud setup is the same described in section

1.3: a Gaussian spherical cloud of RMS size k0R and atom number N has an resonant

optical thickness b0 ∝ N/(k0R)2 and density n0λ
3= (2π)3/2N/(k0R)3, and it is excited by

a laser beam of detuning ∆. The atomic positions ~rj are drawn randomly in space and

then an exclusion condition is applied to restrict the simulations to dilute clouds without

close pairs.

Equations 5.3 are solved numerically by means of the fourth order Runge-Kutta

method, for a set of atomic positions and a value of the detuning ∆ of the incoming

beam. Then, the solutions βj(t) are obtained and substituted in Eq. 5.2, as well as

the atomic positions, in order to obtain the emitted intensity for each instant t, for a

given direction θ and φ. Then, as the intensity may present oscillations and spurious

numerical effects, it is calculated for several configurations of the atomic positions and

averaged. Finally, an exponential fit is done in an appropriate interval in order to extract

the cooperative decay rates.

5.1.3 Numerical results

The study for the phased cloud was done only for far-detuned light and for a single

value of b0 and n0λ
3, in order to make a qualitative study about the differences between the

phased cloud setup compared with the standard setup discussed in the previous chapters.

In the following, we label normal cloud/normal excitation the standard setup without

phase shift, and phased cloud/phased excitation the phased cloud setup.
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Figure 5.2: Emission diagram for the phased cloud in the steady state. Parameters:
b0 = 2N/(k0R)2 = 8.55, n0λ

3= 4.6 (N = 921), ∆ = 10Γ, averaged over 100 realizations.

We start by presenting the emission diagram for the phased cloud. Fig. 5.2 shows

the emission diagram in three dimensions, computed with Eq. 5.2 in the steady state for

several values of θ and φ. We see that the forward lobe is divided in two, a remarkable

difference with respect to the setup with no phase shift, where a single lobe is observed

[c.f. Fig. 1.5(a)]. Thus, the phase difference seen by the two cloud halves has the net effect

of separating the forward lobe in two, as if each half corresponded to two independent

clouds with phase difference of π. A deviation in the emission forward lobe also due to a

phase shift seen by the atoms in an atomic cloud was reported in [Máximo 2014], but in

this case the phase shift is produced by an inhomogeneous magnetic field.

Due to this lobe separation, the maximum emission intensity is reached at an angle

θ slightly larger than zero, compared to the normal cloud where the lobe peak is exactly

at θ = 0. For θ = 0 in the phased cloud setup, the intensity has the same value as for

those out of the lobe region, and this position is also the border between the two cloud

sides. The two lobes are symmetric to each other. Also, the value of the intensity at the

two peaks in the phased cloud is smaller than the value of the single peak in the normal

cloud, meaning that the total intensity is only redistributed.

Now we turn to the emitted intensity from the steady state. Fig. 5.3(a) shows emitted

intensities for the direction {θ = 90o, φ = 90o}, i.e., a detector placed orthogonally to the

z axis and on the y axis in the positive side, i.e., the δ = π side (like in Fig. 5.1). We see

that the decay amplitude for the phased cloud has a higher amplitude compared to the

normal setup, meaning an increase in the subradiance level. Also, we see that the two

curves are practically parallel (same slope), showing that the decay rate is not impacted.

The ratio between the phased and normal intensities is plotted in Fig. 5.3(b), for all

t. By choosing a range which corresponds to the subradiant part displayed in (a), e.g.,

t ∈ [12, 115]τ0, we see that the ratio is equal to 6 − 8. This represents a significant gain

in the subradiance amplitude in the phased cloud setup.

Figure 5.4 displays the ratio between the intensities for more detection directions in
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Figure 5.3: (a) Emitted intensities I(θ, φ, t) from Eq. 5.2 for the phased cloud (red)
compared to a identical cloud with no phase excitation (black), calculated for θ = 90o and
φ = 90o. (b) Ratio between the curves in (a), where Iphased and Inormal are the normalized
intensities I(θ, φ, t)/I(θ, φ, 0) for the phased and normal clouds, respectively. Parameters:
same as in Fig. 5.2.

Figure 5.4: Ratio between the intensities Iphased/Inormal for several detection positions
on the space. Parameters: same as in Fig. 5.2.
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space. All of them were calculated similarly to Fig. 5.3(b), from intensities similar to the

ones in 5.3(a). We see that, for the directions lying on the plane xy [panels (a) to (d)],

the increase factor is ≈ 5− 8 [the panel (b) is the Fig. 5.3(b) already discussed], meaning

that on the xy plane, the enhancement in subradiance amplitude is the same. On the

other hand, for the forward direction [θ = 0; panel (e)], the ratio is huge. This is because,

as already discussed, at θ = 0 the normal cloud has its lobe and the maximum value,

whereas the phased cloud has its intensity at the same value for directions out of its two

lobes. The normalization makes the amplitudes for the normal cloud to go down, and the

calculation Iphased/Inormal becomes high. Finally, for the backscattering direction [panel

(e)], the ratio is not significant, meaning that there is no enhancement in the subradiant

amplitude calculated in that direction.
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Figure 5.5: (a) Average ratio G(θ, φ) as a function of θ and φ, where G(θ, φ) is the
average of the values of Iphase(t)/Inormal(t) in the interval t ∈ [25, 100]τ0. (b) Rotation of
(a) in a such way that the φ axis is perpendicular to the plane of the page, towards the
reader. Parameters: same as in Fig. 5.2.

Another way to analyze the ratio between the intensities for the phased and normal

clouds is to take the average value of Iphased/Inormal in a range where it is significantly

enhanced, e.g., t ∈ [25, 100]τ0 [see Fig. 5.3(b), c.f. Fig. 5.4]. Labeling G(θ, φ) this

average value, and repeating the simulation for more values of {θ, φ} in order to cover

more detection positions, we obtain Fig. 5.5. In (a), we see that, for θ ≈ 0 and all φ,

G(θ, φ) is high like discussed in Fig. 5.4(e). For θ & 0, G(θ, φ) decreases drastically and,

from a given value of increasing θ, G(θ, φ) is roughly constant.

Figure 5.5(b) is a side view of (a), zoomed for small G(θ, φ) for a better visualization.

We see that, except around the forward direction, G(θ, φ) ≈ 6−8 between θ ∈ [50o, 150o],

meaning that the enhancement of subradiance is practically constant for all detection

directions. This does not depend on the detector placement with respect to the cloud

halves. Therefore, the subradiance amplitude level is improved practically for all directions

in the phased cloud setup.
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5.2 Temperature effects

5.2.1 The coupled-dipole model with temperature

So far we have discussed the coupled-dipole model for motionless atoms, which means

zero temperature. In experiments, no real physical situation accomplishes total absence

of motion and, as discussed in Chapters 2 to 4, the temperature of the atomic cloud in

our experiments were 50 and 100 µK. We had to show with numerical simulations that

such temperatures do not play any significant role for cooperative effects (see Fig. 2.5),

although for radiation trapping the temperature effects are more important in the decay

dynamics. In this section, we discuss the details of the simulations with temperature for

the standard cloud setup excited by a plane wave (setup of Chapters 1 to 3), and we will

see that higher temperatures impact the super- and subradiant decays.

To include the temperature in the coupled-dipole model, the idea is to allow the

atoms to move, so the atomic positions ~rj will be functions of the time t. Consequently,

the second and third terms in the coupled-dipole equations, Eq. 5.1, are now functions of

t:

β̇j =

(
i∆− Γ

2

)
βj −

iΩ

2
ei
~k0·~rj(t) − Γ

2

∑
j′ 6=j

eik0|~rj(t)−~rj′ (t)|

ik0|~rj(t)− ~rj′(t)|
βj′ (5.4)

After the steady state is reached and after the driving field is extinguished, the emitted

intensity I(θ, φ, t) in a detection direction (Eq. 5.2, and also Eq. 1.35), as well as the

total emitted power P (t) (Eq. 1.29 rewritten below)

P (t) ∝ − d

dt

∑
j

|βj(t)|2 (5.5)

depend on these new βj(t)s in Eqs. 5.4. Then, by setting a reference frame where the

incoming laser travels along the z axis and the cloud center is at the origin of the x and

y axis (see Fig. 1.2), we have ~k0 = k0ẑ and

|~rj(t)− ~rj′(t)| =
√

[xj(t)− xj′(t)]2 + [yj(t)− yj′(t)]2 + [zj(t)− zj′(t)]2

in the second and third terms of Eq. 5.4, respectively. Therefore, in order to solve Eq.

5.4, we need expressions for the position components xj(t), yj(t), zj(t).

5.2.2 The ballistic model

The atomic cloud is a vapor, so the atomic motion is about each atom having a velocity

~v. When the MOT is turned off, the cloud performs a free expansion and the incoming

laser beam is turned on to excite the cloud (see subsection 2.2.4). As discussed in section

1.3, the interaction is modeled as a square pulse of a given time duration, large enough

to allow a steady state before the decay.

The velocity ~v of each atom during the cloud expansion has constant magnitude and

a given direction in space. The directions of all velocities are random, but its magnitude

is given by the Maxwell-Boltzmann probability distribution [Salinas 2001]
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P (v) =
1√

2πσv
exp

(
− v2

2σ2
v

)
(5.6)

where v is the magnitude of each one of the components {vx, vy, vz} of ~v, for each atom

in the cloud. The parameter

σv =

√
kBT

M
(5.7)

is the standard deviation of v, where T is the temperature of the sample, kB is the

Boltzmann constant and M is the atom mass. We can also write Eq. 5.7 in adimensional

form as

k0σv
Γ

=
k0

Γ

√
kBT

M
(5.8)

The parameter k0σv/Γ is the parameter we will use to describe temperature effects. It

is related to the temperature T by simply isolating T in Eq. 5.8:

T =
M

kB

(
k0σv

Γ
× Γ

k0

)2

(5.9)

With Eqs. 5.8 and 5.9 we can determine the value of k0σv/Γ for a known T and vice-

versa. Some examples: for the temperatures 50 and 100 µK we obtain k0σv/Γ= 0.0146

and 0.0207, respectively, so k0σv/Γ∼ 10−2; for k0σv/Γ= 0.1 (10 times higher), we have

T = 2.34 mK. Also, the functional dependencies of these quantities are k0σv/Γ∝
√
T and

T ∝ (k0σv/Γ)2. The values of the constants M , k0 and Γ depend on the atomic species.

For 87Rb in the transition F = 2 → F ′ = 3 (see Chapter 2), the values are [Steck 2001]:

Γ = 2π × 6.066 MHz, k0 = 2π/λ with λ = 780 nm, and M = 1.44× 10−25 kg.

When the cloud expands, each atom j = 1, ..., N in the atomic cloud performs a linear

motion with constant velocity, so their positions components evolve linearly in time:

xj(t) = xj(0) + vxjt

yj(t) = yj(0) + vyjt (5.10)

zj(t) = zj(0) + vzjt

for an initial t = 0. The velocities {vxj, vyj, vzj} come from the distribution P (v) in Eq.

5.6 for a given k0σv/Γ, so we have analytical expressions for the temporal positions and

Eqs. 5.4 can be solved.

The cloud expansion due to the atomic ballistic motion implies in an increase of the

cloud size R(t) with t according to

R(t)2 = R(0)2 + v2
RMSt

2 (5.11)

(c.f. Eq. 2.9; see subsection 2.2.6), where vRMS ≈ σv for large atom number N . Eq. 5.11

can be written in adimensional form as
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(k0R(t))2 = (k0R(0))2 +

(
k0σv

Γ

)2

(Γt)2 (5.12)

During the pulse excitation, the cloud size R(t) indeed increases, however, in the

experiment this increase is neglected. This is because typical experimental values of the

cloud size are very high, in order of k0R(0) ∼ 103 (because R(0) ∼ 10−3 and k0 ∼ 106 m−1;

see section 1.3 and subsection 2.2.4). Then, for a light excitation of duration Γt ∼ 103

(because Γ ∼ 2π × 6.066 MHz and t = 30 µs in the experiment) and, e.g., k0σv/Γ= 0.1,

the last term of Eq. 5.11 is equal to (k0σv/Γ)2(Γt)2 ∼ 103, i.e., much smaller than

(k0R(0))2, so k0R(t) ≈ k0R(0) and the cloud increase is practically negligible. However,

in the simulations, k0R(0) ∼ 10, i.e., much smaller than the experimental value, and a

excitation duration of Γt ∼ 102 leads to an increase of ∼ 50% in the cloud size k0R(t),

which is not negligible.

The increase of the cloud size makes the resonant optical thickness b0 drop during the

atom-field interaction, in a such way that b0 after the pulse ends is different of its initial

value. Fig. 5.6 shows b0 calculated at the end of a light pulse of duration Γt = 100,

for several values of k0σv/Γ, calculated with Eq. 5.11, for initial b0 = 11.4. The larger

k0σv/Γ, the larger k0R(t) after the pulse duration, so consequently the smaller b0. We see

that, when k0σv/Γ= 0.1 (T ' 2 mK), b0 has dropped from 11.4 to 7.13, i.e., a decrease of

37.5% of its initial value. b0 drops completely to zero for k0σv/Γ≥ 1, i.e., T ≥ 234 mK.
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Figure 5.6: Resonant optical thickness b0 = 3N/(k0R)2 as a function of k0σv/Γ, cal-
culated with Eq. 5.11, for a light excitation of duration Γt = 100. Parameters: initial
b0 = 11.4, n0λ

3= 4.6 (N = 633 and k0R = 12.9).

We see that b0 varies during the light excitation, due to the values of the parameters

in the simulations, meaning that after the interaction is switched off, the emitted light

may also contain effects of the cloud expansion. Also, the cloud remains expanding after

the field extinction. So, in order to analyze temperature effects, the cloud size must be

kept constant, and to achieve that condition in the numerical simulations, we replace the

ballistic model by the harmonic oscillator model, discussed in the following.

5.2.3 The harmonic oscillator model

In order to simulate the atomic motion without any changes in b0, we decided to

use the harmonic oscillator model, where each atom oscillates independently around its
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initial position. Physically, this consists in adding a quadratic potential in space where its

minimum coincides with the cloud center of mass. This can be achieved experimentally

by a magnetic or optical trap [Foot 2005]. Although the quadratic potential introduces a

potential energy and modifies the atomic motion compared to our experimental situation,

where the cloud is free in space (zero potential energy), it impacts only the external

dynamics of the atoms, so the internal dynamics, where the βj(t) evolution comes from,

is not impacted.

With the harmonic potential, the positions and velocities for each atom are given by

xj(t) = xj(0) cos(ωt) +
vxj(0)

ω
sin(ωt)

vxj(t) = −ω xj(0) sin(ωt) − vxj(0) cos(ωt)
(5.13)

and similar equations for yj(t), zj(t) and vyj(t), vzj(t). In Eqs. 5.13, {xj(0), yj(0), zj(0)}
are the initial atomic positions, {vxj(0), vyj(0), vzj(0)} are the initial velocities (which

come from the Maxwell-Boltzmann distribution) and ω is the oscillation frequency.

The oscillation frequency ω can be extracted from the equipartition theorem [Sali-

nas 2001], which in our case gives

1

2
Mσ2

v +
1

2
Mω2R2 = 3kBT (5.14)

By extracting ω above, we obtain

ω =
1

R

√
kBT

M
(5.15)

so ω depends on the temperature. In adimensional form, we have

ω

Γ
=
k0σv/Γ

k0R
(5.16)
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Figure 5.7: RMS cloud size k0Rx(t) in the x direction as a function of the time t/τ0 = Γt,
calculated from the definition of RMS value and Eq. 5.13. Parameters: k0Rx(0) = 13.1
(in order to have the same b0 and N as in Fig. 5.6) and k0σv/Γ= 1.

Figure 5.7 shows the cloud size at the x direction as a function of the light excitation

duration, calculated with the harmonic oscillator model for k0σv/Γ= 1. We see that,

as all the atoms oscillates around their initial positions, the net effect is an oscillation
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of the cloud size, however, this oscillation is small in amplitude, which makes the cloud

size to be practically constant during the light interaction. The cloud size was calculated

from its definition, i.e., k0Rx(t) =
√∑

j xj(t)
2/N , where xj(t) were calculated with Eq.

5.13. The initial cloud size is k0Rx(0) = 13.13. Its maximum and minimum values are

13.14 and 12.6, respectively, and its mean value and standard deviation are 12.9 and 0.18,

respectively.

5.2.4 Simulations methods

The simulation procedure for the coupled-dipole model with temperature is the same

described in section 1.3. The starting point is to set randomly the initial atomic positions

under a Gaussian sphere of RMS size k0R for N atoms, where N and k0R are calculated

for given b0 and n0λ
3. The exclusion condition is checked in order to avoid atom pairs

and to have dilute clouds.

The initial velocities vx,y,z j(0) are also set randomly from a Gaussian distribution of

size σv (or k0σv/Γ), which is calculated with Eq. 5.8 for a given temperature T . Then, ω

is calculated with Eq. 5.15, with the detail that in the simulation the frequencies for each

one of the directions x, y, z are set as

ωx = ω × π/3
ωy = ω × 3/π (5.17)

ωz = ω

i.e., ω is multiplied by π/3, 3/π and 1 before being substituted in Eqs. 5.13 (ωx is for

xj, vxj and so on for the directions x and z). This is to have incommensurable values,

i.e., the trajectories of the atoms are set to be not closed paths, so the periodicity of the

motion is slightly broken. Thus, possible oscillations in the emitted intensities due to the

harmonic oscillator model are avoided.1 Then, the positions and velocities in Eq. 5.13

are calculated for each value of t and replaced in Eqs. 5.4, with ∆� Γ and

∆� k0σv (5.18)

i.e., far detuned light and no resonant frequency seen by the atoms, respectively. If

∆ = 0, some atoms will be out of resonance due to their motion, so we discuss only the

off-resonance case. Finally, Eqs. 5.4 are solved numerically and then replaced in Eqs.

5.5, 5.2 and 1.35 in order to calculate the emitted intensities. The result is averaged for

several configurations on the atomic positions and velocities in order to avoid spurious

oscillations in the result.

1 We noticed later that by setting the same frequencies ω for all positions and velocities, the result is
not impacted.
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5.2.5 Numerical results

In the simulations with temperature, it was noticed that the total emitted power P (t)

is clean enough, however, the emitted intensity I(θ, φ, t) contains spurious oscillations.

This is true even for high enough values of the configurations of the atomic positions

and velocities (e.g., 50 configurations). Also, the intensities I(θ, t) and I(θ, φ, t) were not

equal (which is not understandable because even with the atomic motion the cloud-laser

system is still symmetric with respect to the z axis). In addition, the simulations with

temperature take much more time compared with the case T = 0, so the incoming pulse

duration was reduced from 100τ0 to 25τ0.

The reference [Bienaimé 2012] presents some of temperature effects, but, as already

discussed in section 2.1, in this work all the simulations methods were improved. The

main results here are the cooperative decay rates as a function of b0 and k0σv/Γ, i.e., how

the linear scaling is impacted in the former and how the rates evolve with the temperature

in the latter for a fixed b0. Also, due to the problem of oscillations observed in I(θ, φ, t),

the decay rates were extracted from P (t), which technically is wrong for superradiance

but correct for subradiance.

Cooperative decay rates versus k0σv/Γ

Figure 5.8 shows the fitted decay rates Γfit obtained from the total emitted power P (t)

calculated for several k0σv/Γ, for two values of b0. The values Γfit/Γ > 1 (blue and red

above the dashed line) were fitted in the range t ∈ [0, 0.2]τ0, i.e., Γfit =Γsup, whereas

the values Γfit/Γ < 1 (blue and red below the dashed line) were fitted in the interval

P (t)/P (0) ∈ [10−4, 10−3], i.e., Γfit =Γsub.
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Figure 5.8: (a) Decay rates Γfit as a function of the parameter k0σv/Γ for constant
b0 = 3N/(k0R)2 = 11.4 (blue) and 6.6 (red), calculated from the normalized total emitted
intensity P (t)/P (0). (b) Close up of the Γsub displayed in (a). Parameters: ∆ = 20Γ,
over 20 realizations on the atomic positions and velocities.

We see that, for the subradiant part, when k0σv/Γ increases, the subradiant decay

rates tend to Γ, showing that subradiance is suppressed for increasing temperature. For

b0 = 11.4 (blue data), the initial value is Γsub/Γ = 0.17, for k0σv/Γ= 0.001 (T = 0.23

µK, i.e., negligible temperature). For k0σv/Γ= 0.1 (T = 2.3 mK, i.e., few milikelvins is

already the maximum than we can get in our experiment, in a 87Rb MOT; a 88Sr MOT
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may provide a better detection due to its larger natural linewidth), Γsub/Γ = 0.18, i.e.,

a very non significant increase. A significant increase starts from k0σv/Γ= 0.2 (T ≈ 9

mK), where Γsub/Γ = 0.23, i.e., an increase of 36%. For k0σv/Γ= 1 (T = 233 mK),

Γsub/Γ = 0.54, and from k0σv/Γ≥ 3 (T = 2 K), Γsub/Γ starts to increase more slowly,

apparently tending to the unity for very large k0σv/Γ. The values of Γsub for b0 = 6.6 (red

data) present a similar behavior.

Concerning the superradiant part, Γsup increases with k0σv/Γ, however we cannot trust

these results because they were obtained from the total emitted fluorescence P (t), where

the angular dependence was washed out: superradiance is angular-dependent, as discussed

in Chapters 1 and 3, so Γsup extracted from P (t) may be an “average” of the real Γsup(θ).

Physically we expect a suppression of Γsup with increasing k0σv/Γ like for Γsub.

Cooperative decay rates versus b0 for several temperatures

Figure 5.9 shows subradiant decay rates τsub as a function of b0 for several tempera-

tures, in order to see the impact of the atomic motion in the linear scaling already dis-

cussed. We see that, for low temperatures (50, 100 and 151 µK), τsub is practically equal

to the values for zero temperature, which shows that the temperature at this range does

not impact subradiance. However, when T increases to some mK, τsub decays abruptly,

tending to τ0 (no cooperative effects) for ∼ 2K.
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Figure 5.9: Subradiant decay rates τsub as a function of b0 = 3N/(k0R)2 for different
temperatures T . The values of the temperatures correspond to the following values of
k0σv/Γ, respectively: 0, 0.0146, 0.0207, 0.0254, 0.2, 0.5 and 3. τsub were extracted from
exponential fits of P (t), range P (t)/P (0) ∈ [10−5, 10−3]. Parameters: n0λ

3=4.6, ∆ = 20Γ,
averaged over 20 realizations.

An observation of suppression of super- and subradiance will be the subject for next

experiments. More simulations will be needed, as well as physical understanding, to

explain why subradiance is robust for increasing k0σv/Γ.

5.3 Conclusions of this chapter

We have presented simulations on the coupled-dipole model by including a phase shift

in the incident field and by considering the atomic motion in the cloud, to take into

account temperature effects. The main obtained results are that the subradiance level

can be increased for a phase shift of π, and subradiance is robust with temperature.
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Changes and improvements in our experimental setup are in progress in order to ob-

serve these two phenomena in the future. In addition, new simulations may be performed.

Some ideas are: the phased cloud with temperature, to see if the temperature plays any

role in the subradiant gain; and how the subradiance decay rates scale empirically with

k0σv/Γ. Another idea come from the reference [Kwong 2014], where a cooperative flash

was detected in the forward direction for a far-detuned probe laser exciting a cold sample

of 88Sr at a temperature of k0σv/Γ= 3.4.



Conclusion

In this thesis, we presented an experimental study on super- and subradiance in a

large cloud of cold atoms, as well as the interplay of subradiance and radiation trapping.

We measured the intensity emitted by a dilute atomic cloud, after interacting with a

weak laser beam. The emitted intensity is collected after the extinction of the incoming

laser when the cloud-light system reaches a steady state. We extracted the super- and

subradiant decay rates from the emitted intensity, for several resonant optical thicknesses

and detunings of the incoming probe beam. Our main method for extracting these decay

rates is an exponential fit in the region of interest: early times for superradiance, where a

fast decay is observed; and late times for subradiance, where a slow decay is observed.

We have interpreted our experimental results by using a model of coupled dipoles for

cold atoms, in the low-density regime (scalar approach) and by considering only single

excitations (linear optics regime). This model describes the response of identical two-level

atoms after interacting with a monochromatic plane wave and vacuum modes, and had

been already developed and studied extensively in the literature. In the particular case

of the super- and subradiant decay rates, a scaling of the decay rates with the resonant

optical thickness was predicted.

In order to perform a detailed theoretical study, we improved the simulation methods

and we obtained analytical expressions for the emitted intensities where the angular de-

pendence is taken into account. We also added an exclusion volume in the simulations

in order to avoid spurious pair physics effects, we averaged our results for several con-

figurations on the atomic positions to remove speckles in the emitted intensity, and we

used a quadratic trap model to simulate temperature effects without spurious expansion

of the cloud, which in the simulations need to be rather modest in initial size. We showed

that subradiance is very robust with temperature and angular direction, as well as the

detuning of the probe laser, even at resonance. On the other hand, superradiance is ob-

served mainly off-resonance. Superradiance was also shown to be completely suppressed

at resonance, except in forward direction.

In order to detect these two phenomena experimentally, we had a 87Rb MOT available

in our laboratory to produce large clouds of atoms, at high resonant optical thicknesses. To

detect subradiance, we set the probe beam in a setup of two AOMs with a focused beam, in

order to obtain a good extinction and short fall time. For superradiance, the probe beam

setup was with a single AOM and a Mach-Zehnder EOM, in order to provide a fall time as

short as possible. In addition, we set a hybrid photomultiplier to detect clearly the atomic

decay without afterpulsing after the probe beam extinction. We performed systematic
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measurements and all the experimental results were consistent with the coupled-dipole

model, even when taking into account the laser spectrum, possible inelastic scattering

and frequency redistribution in random walk simulations.

Since subradiance at resonance may be confused with radiation trapping, i.e., the sim-

ple random walk performed by a resonant photon, we revisited an experiment performed

with a narrow beam exciting the cold atoms, in order to see the interplay between these

two phenomena. Contrary to subradiance, radiation trapping is very dependent on the

laser detuning and cloud temperature, being important at resonance and for low tempera-

ture and narrow laser spectra. Also, it is observed in amplitudes of order ∼ 10−2, whereas

subradiance reaches decays low to ∼ 10−4. With our experimental setup of lower extinc-

tion and better acquisition average, we could observe that the two phenomena can be well

observed simultaneously for certain values of the detuning and optical thickness, where

radiation trapping comes first, followed by subradiance. These results are consistent with

an incoherent model for random walk and also by taking into account laser spectrum,

frequency redistribution and other effects.

Moreover, we observed experimentally signatures of off-axis superradiance and subra-

diance in a large and dilute cloud of cloud atoms, in the linear optics regime. We observed

that the resonant optical thickness is the single observable to study cooperativity, and all

results are consistent with the coupled-dipole model. Despite of some limitations of the

coupled-dipole model compared with the experiment, like low atom number, higher den-

sities and non-degenerate atoms, we expect that this model is a powerful tool to study

experimentally other predictions related to super- and subradiance, like a setup where the

incoming field has a phase shift, and for larger temperatures of the atomic cloud.

Perspectives

As perspectives for future works, there are a priori two ideas, which are the experi-

mental observation of the two theoretical predictions discussed in Chapter 5: the phased

cloud setup, whose goal is to see the enhancement of the subradiance amplitude; and

the effects of decoherence in subradiance by increasing the temperature of our atomic

cloud. The experiment is now being carried out by the postdoctoral researcher Patrizia

Weiss and the PhD student Ana Cipris. Up to now (October 2018), the experiment is

under technical improvement and adjustment after installing a new tapered amplifier from

Toptica and a new diode laser in the Topica laser source.

Publications

Below we list the articles published in scientific journals throughout this thesis, in

chronological order.

• [Guerin 2016] W. Guerin, M. O. Araújo and R. Kaiser. Subradiance in a Large

Cloud of Cold Atoms. Physical Review Letters 116, 083601 (2016).

• [Araújo 2016] M. O. Araújo, I. Krešić, R. Kaiser and W. Guerin. Superradiance in

a large and dilute cloud of cold atoms in the linear-optics regime. Physical Review

Letters 117, 073002 (2016).
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• [Araújo 2018] M. O. Araújo, W. Guerin and R. Kaiser. Decay dynamics in the

coupled-dipole model. Journal of Modern Optics 65, 1345 (2018).

• [Weiss 2018] P. Weiss, M. O. Araújo, R. Kaiser and W. Guerin. Subradiance and
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Figure 10: The complete experimental setup on the main table. Subradiance experiment.
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S. Nascimbène, J. Dalibard, and J. Beugnon. Transmission of near-resonant light

through a dense slab of cold atoms. Physical Review A, Vol. 96, p. 053629, Nov

2017.

[Cottier 2018] F. Cottier, R. Kaiser, and R. Bachelard. Role of disorder in super- and

subradiance of cold atomic clouds. Physical Review A, Vol. 98, p. 013622, Jul

2018.

[Courteille 2010] P. W. Courteille, S. Bux, E. Lucioni, K. Lauber, T. Bienaimé, R. Kaiser,
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