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Abstract 

Metabolic engineering, defined as the rational engineering of organisms towards 

production goals, has greatly evolved since its conception over three decades ago. Once 

applied to overproduce cell endogenous metabolites, it is now a promising approach also 

for the biosynthesis of non-natural compounds through the expression of synthetic 

metabolic pathways. Improved over billions of years by evolution, enzymes are however 

less adapted to new catalytic functions as required by synthetic metabolism. The present 

work was aimed at the construction of artificial routes for the biosynthesis of commodity 

chemicals through the application of concepts of enzyme engineering. 

(L)-2,4-dihydroxybutyrate (DHB) is a non-natural compound of industrial interest for the 

synthesis of methionine analogues, and whose biological production was previously 

demonstrated by the expression of a two-step pathway via homoserine in Escherichia 

coli. The pathway sequentially employs homoserine (HMS) transaminase and 2-keto-4-

hydroxybutyrate (OHB) reductase activities. In this thesis, rational enzyme design was 

used as a strategy to improve the last catalytic step of the pathway. Simultaneous 

expression of the evolved OHB reductase Ec-Mdh-5Q and HMS transaminase Ec-AlaC 

A142P:Y275D variant in an engineered homoserine-overproducing E. coli strain resulted 

in the production of 89.0 mM DHB from glucose, the highest titer reported to date. 

Of industrial relevance is also the synthesis of 1,3-propanediol (PDO), a metabolite 

generated from glycerol catabolism in various Clostridia species. Expanding the susbtrate 

range to sugars would render PDO production more flexible. Therefore, a six-step 

synthetic pathway yielding PDO from glucose via malate was conceived. While the three 

first reaction steps were previously demonstrated, the remaining DHB dehydrogenase, 

OHB decarboxylase and PDO oxidoreductase activities were identified in candidate 

enzymes acting on sterically cognate substrates. Improved enzyme activities were 

obtained based on sequence- and structure-based protein design. The feasibility of the 

PDO pathway was validated though expression of all required enyme activities in a single 

E. coli strain, while further improvements were achieved through co-cultivation of two 

E. coli strains each one expressing a partial segment of the completepathway (up to 3.8 

mM PDO). 



During the design and construction of the PDO pathway, OHB decarboxylases which 

release 3-hydroxypropanal as product of OHB decarboxylation, were found to be 

catalytically low efficient. To this end, a transcription factor-based metabolite sensor 

towards high-throughput detection of aldehydes in E. coli was developed. Optimization 

tasks of the metabolite sensor through 5’-UTR engineering rendered the sensor more 

sensitive to target compounds. In a proof of concept, simultaneous expression of the 

metabolite sensor and a segment of the PDO pathway in E. coli afforded the 

discrimination of two OHB decarboxylases with distinct kinetic properties. Therefore, the 

metabolite sensor can be implemented in directed evolution campaigns aiming at OHB 

decarboxylase development. 

Keywords: metabolic engineering, synthetic pathways, enzyme engineering, 2,4-

dihydroxybutyrate, 1,3-propanediol 



 

Résumé 

 
L’ingénierie métabolique utilise des techniques de clonage pour moduler directement les 

voies métaboliques de microorganismes dans le but de produire des molécules d’intérêts. 

Précédemment envisagée pour surproduire des métabolites endogènes, l’ingénierie 

métabolique est aussi considérée maintenant comme une approche prometteuse pour la 

biosynthèse de composés non naturels par l'expression de voies métaboliques 

synthétiques. Cependant, les enzymes sont moins adaptées aux nouvelles fonctions 

catalytiques requises par le métabolisme synthétique. Le but de cette thèse est donc la 

construction de voies artificielles pour la biosynthèse de molécules d’intérêts en 

appliquant des concepts d'ingénierie enzymatique. 

Le (L)-2,4-dihydroxybutyrate (DHB) est un composé non naturel qui présente un intérêt 

industriel pour la synthèse d'analogues de la méthionine. Des travaux précédemment 

réalisés dans notre équipe ont démontré la biosynthèse de DHB par l'expression d'une 

voie à deux étapes via l'homosérine chez Escherichia coli. Cette voie emploie 

séquentiellement l’action d’enzymes ayant une activité homosérine (HMS) transaminase 

et 2-céto-4-hydroxybutyrate (OHB) réductase. Dans ce travail, l’optimisation de la 

dernière étape de la voie catalytique a été envisagé grâce à l’ingénierie rationnelle des 

enzymes. Ainsi une OHB réductase évoluée, Ec-Mdh-5Q, exprimée simultanémment 

avec la HMS transaminase Ec-AlaC A142P:Y275D dans E. coli a permis la production 

de 89.0 mM DHB à partir de glucose, le titre le plus élevé signalé à ce jour. 

La synthèse du 1,3-propanediol (PDO), un métabolite généré par le catabolisme du 

glycérol chez diverses espèces de Clostridia, apporte un intérêt industriel. 

L’élargissement de la gamme de matières premières aux sucres rendrait la production des 

PDO plus flexible. Par conséquent, une voie de synthèse en six étapes produisant du PDO 

à partir du glucose via le malate a été conçue. Si les trois premières étapes de cette réaction 

ont été ingénierées dans des travaux précédents, les trois activités enzymatiques suivantes 

(DHB déshydrogénase, OHB décarboxylase et PDO-oxydoréductase) ont due être 

identifiées dans des enzymes candidates agissant sur des substrats similiaires. Des 

activités enzymatiques améliorées ont été obtenues par mutagénèse dirigée en se basant 

sur l’analyse de la séquence et de la structure de ces protéines. La faisabilité de la voie 

PDO a ensuite été validée par l'expression de ces six activités enzymatiques dans E. coli 

et des améliorations supplémentaires ont été obtenues grâce à la co-culture de deux 



souches E. coli exprimant chacune un segment partiel de la voie complète (jusqu'à 3,8 

mM PDO). 

Au cours de la construction de la voie PDO, les OHB décarboxylases qui en 

décarboxylant l'OHB libérent l’aldéhyde 3-hydroxypropanal se sont révélées être 

faiblement efficaces sur le plan catalytique. Ainsi afin de cribler à haut débit des banques 

d'enzymes mutées enzymes, un biosenseur a été mis au point afin de détecter les 

aldéhydes libérés par cette bioconversion. Son optimisation via l’ingénierie de 5’-UTR a 

par la suite permis de le rendre plus sensible aux composés ciblés. Dans une preuve de 

concept, l'expression simultanée du biosenseur et d'une partie de la voie PDO dans E. coli 

a permis de distinguer les capacités catalytiques de deux OHB décarboxylases. Par 

conséquent, ce biosenseur pourra être mis en œuvre dans de futures campagnes 

d'évolution dirigée visant à optimiser l’OHB décarboxylase. 

Mots clés: ingénierie métabolique, voies synthétiques, ingénierie enzymatique, 2,4-

dihydroxybutyrate, 1,3-propanediol 
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Chapter 1. Introduction 

 
1.1 Microbial cell factories 

Developments in petrochemistry have greatly enhanced industrial and societal progress. 

The continuous increasing rate of oil reserve exploitation has served as an abundant and 

inexpensive raw material for the synthesis of transportation fuels and production of 

commodity chemicals. But triggered by a rising energy demand, geopolitical 

uncertainties, environmental effects and oil-depletion concerns, industries have in recent 

times been demonstrating interest in the utilization of alternative feedstocks, including 

plant biomass and inexpensive sugars1.  

Originally seen as a source of food and beverage products, the past few decades have 

disclosed the potential of microorganisms as cell factories for the production of 

industrially relevant molecules such as biofuels2,3 and commodity chemicals4,5. Since the 

advent of metabolic engineering, a few number of bio-synthesized molecules (e.g. 

ethanol, succinate, lactate) successfully achieved commercialization thereby contributing 

to a shift towards a more sustainable economy6,7. However, the development of microbial-

based processes at prices competitive to those derived from petroleum are in part 

responsible for the still limited success rates of process industrialization.  

Cellular metabolisms are diverse and complex, composed of metabolic pathways from 

which thousands of unique chemicals are produced6. While metabolic engineering 

traditionally aims at channeling carbon flux towards overproduction of a target 

metabolite, recent advances in computational biology, molecular genetics and protein 

engineering are moving this young and exciting field to a new era8. By enabling the 

creation of non-natural metabolic pathways, the production of non-natural compounds 

can now be foreseen while the biosynthesis of natural metabolites can be achieved by 

multiple and diversified routes. Improved by evolution to perform metabolic functions, 

enzymes are however less adapted towards novel functions as required by synthetic 

metabolism.  
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1.2 Objective and outline of this thesis  

The construction of synthetic metabolic pathways requires the discovery of new enzyme 

functions. The main objective of this doctoral thesis was to engineer enzymes with new 

catalytic activities to be implemented in non-natural pathways aiming at the production 

of commodity chemicals, in particular 1,3-propanediol (PDO) and 2,4-dihydroxybutyrate 

(DHB). 

In Chapter 2, the field of metabolic engineering is reviewed. Starting by pathway design, 

the creation and implementation of metabolic pathways is approached, and optimization 

tasks reviewed. Particular attention is given to the construction of non-natural pathways 

and the domain of enzyme engineering, which permits (re)creating enzymes with new 

functions.  

In Chapter 3, rational enzyme engineering was employed as a strategy to improve the 

efficiency of the last reaction step towards DHB production from glucose via homoserine. 

The kinetic properties of created enzyme variants were determined, and those displaying 

the highest catalytic efficiencies were further evaluated upon implementation in the 

synthetic pathway.  

In Chapter 4, a synthetic pathway was designed and established in E. coli for the direct 

production of 1,3-propanediol from glucose via 2,4-dihydroxybutyrate. While those 

enzyme activities linking glucose to DHB were previously reported, the downstream 

pathway converting DHB into PDO employs two unknown enzyme functions. In this 

study, the discovery and engineering of those enzymes was reported and PDO production 

demonstrated.  

In Chapter 5, an E. coli metabolite sensor was designed and optimized towards 

intracellular aldehyde detection. Coupled to a powerful screening/sorting system, it can 

be used in directed evolution campaigns for the detection and isolation of improved 

aldehyde-producing enzyme variants. 

In Chapter 6, the main conclusions of this thesis are presented and the significance of 

current and future work discussed. 
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"Science is simply the word we use to describe a method of 

organizing our curiosity."  
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Chapter 2. Metabolic engineering meets enzyme design 

 
The concept of engineering metabolic pathways has been widely used in the past. For 

instance, 500-fold improved productivities of the antibiotic penicillin were found after 

submitting the fungi Penicillium chrysogenum to repeated rounds of random mutation 

and selection1. With the introduction of recombinant DNA technology by Cohen and 

Boyer2 started the development of techniques focused on rationally engineering 

microorganisms towards production goals, a field known today as metabolic engineering. 

First proposed by Bailey3 over three decades ago, metabolic engineering aims ultimately 

at the development of cost-efficient processes for the microbial production of fuels, 

chemicals and pharmaceuticals. Three are the main parameters used to evaluate the 

success of metabolic engineering projects: titer, yield and productivity4.  

The field of metabolic engineering assumes an industrial dimension. As such, it comprises 

not only the design and implementation of a functional pathway in a suitable host, but 

also its optimization so that a commercial process can be envisaged. Metabolic 

engineering can therefore be considered as an iterative design-build-test cycle. These 

elements encompass genetic engineering and molecular biology, but also components 

from graph theory, chemical reaction engineering, biochemistry, and optimization4,5.  

In this thesis, E. coli has been chosen as the host for metabolic engineering, reason for 

which only this organism is covered in this chapter. Considered as a prokaryotic model 

organism for which gene-editing tools and genome sequence information are readily 

available, E. coli constitutes the primary choice as host for metabolic engineering studies. 

In addition, the well-understood physiology, metabolism and genetics further aided in its 

development as a production organism. However, several other organisms have been 

explored for the successful biosynthesis of high-value metabolites4. While not covered in 

this thesis, the choice of an appropriate host is determinant for the success of metabolic 

engineering projects and should be carefully executed in each case scenario. 
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2.1 Pathway design  

When aiming at the overproduction of a target compound, both metabolic engineers and 

synthetic organic chemists pose themselves a common question: what pathways can be 

used to produce the compound of interest? The concept of pathway design is well-

established in organic chemistry, and aims at identifying the most favorable set of 

reactions towards the synthesis of a given compound. Metabolic engineering introduces 

three additional constraints in pathway design:  

- Set of reactions must be in overall thermodynamically favorable under biological 

conditions; 

- Intermediate molecules should not be toxic; 

- Enzymes required for conversion must be expressible in the host organism. 

Nature has evolved cell metabolism as a large and complex metabolic reaction network, 

in which through an extensive number of intermediates and enzymatic control 

mechanisms, the functional adaptability and stability required by life is maintained. The 

interconnectedness of metabolic reactions thus results in a very high number of potential 

pathways linking substrate to product. This means that pathways must be annotated, 

enumerated and assessed against other criteria6–8. The first complete method for pathway 

enumeration from a database of biochemical reactions was published in 1990 by 

Mavrovouniotis and colleagues9 and was used to identify several routes yielding lysine. 

In particular, the method allowed the authors to conclude that oxaloacetate is a necessary 

precursor for the biosynthesis of lysine. Advances in genome sequencing further 

permitted the construction and refinement of genome-scale metabolic models by linking 

metabolic and genomic data. Two major extensive collections of metabolic networks for 

a large number of organisms which describe interactions between enzymes and substrates 

are provided by KEGG Pathway and MetaCyc, whose inspection represents today the 

first step of any metabolic engineering project10. Intuition and manual design have been 

the preferred strategy for postulating both natural and non-natural pathways enabling the 

synthesis of a desired metabolite. But during the last decade a range of computational 

tools to assist in the prediction and prioritization of new metabolic pathways yielding  a 

target compound have been developed.  
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Early pathway finding algorithms (e.g. FMM, PathComp, Pathway Hunter Tool, 

MetaRoute) were developed based on known enzymatic reactions. These tools, also 

known as network-based path finding methods, all extract information from biochemical 

databases (e.g. KEGG, MetaCyc, BRENDA, MetRxn, Rhea) to identify those pathways 

that in a minimum set of reaction steps can link an input molecule to a target compound. 

On the other side, pathway prediction tools (e.g. BNICE, RetroPath, Route Designer) 

allow the user to design pathways that encompass novel reactions not found in metabolic 

databases. Those are mostly based on the concept of retrosynthesis, that by starting from 

a target product iteratively applies reversed biotransformations to reach a precursor 

present in natural metabolism11–14. Such strategy may for instance be applied in metabolic 

engineering projects which aim at overproducing non-natural compounds. 

While pathway design tools often identify multiple routes, these are now associated with 

pathway prioritization which allows to rank predicted routes. The most common method 

to rank pathways is based on the number of reactions steps (e.g. FindPath), in which the 

shortest pathway is considered as more favorable since it implies minimal enzyme 

requirement and avoids metabolic burden. Thermodynamic feasibility, intermediate 

toxicity, number of known reactions and kinetic proficiency are lately combined with 

pathway length for a more reliable prioritization of predicted pathways (e.g. BNICE, 

Retropath, SimPheny)11.  

The selection of the most appropriate computational tool for pathway design very much 

depends on user specifications, but one should keep in mind that the combination of 

prediction with ranking may yield more satisfactory results. For example, aiming at 

demonstrating the production of the non-natural compound 1,4-butanediol in E. coli, Yim 

and co-workers15 used the SymPheny Biopathway Predictor software to elucidate and 

evaluate all potential pathways linking host central metabolites to the target compound. 

Based on the transformation of chemical groups by known chemistry, the algorithm 

identified more than 10,000 possible pathways. Combined with the utilization of an in-

house software for pathway sorting and ranking, the authors identified the 1,4-butanediol 

pathway through 4-hydroxybutyrate as the highest priority for construction and 

implementation in an E. coli host strain. Rounds of optimization further resulted in a 

process which today paves its way to commercialization. In another example, Fehér and 

colleagues16 experimentally validated the RetroPath software in a study aiming at the 

design and implementation of a pathway yielding the flavonoid pinocembrin in an E. coli 
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strain. Starting with the desired compound as an input, the software searches and lists all 

possible pathways that link an endogenous metabolite in the host organism to the target 

molecule. Each of the listed pathways corresponded to a unique list of known enzymatic 

reactions, for which a set of criteria was pre-established towards pathway ranking. Of the 

11 found pathways, the algorithm identified as expected the natural flavonoid synthesis 

route as the most favorable one, and proposed a series of genes encoding for desired 

enzyme activities. After assembling and expressing the metabolic pathway in E. coli, 

pinocembrin was produced up to 24.1 mg L-1, a value in line with other studies targeting 

flavanone biosynthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

2.2 Pathway construction 

Pathway engineering involves ultimately at finding the right combination of enzymes that 

permits linking in an efficient manner a given molecule (e.g. substrate, endogenous 

metabolites) to a target compound. For clarity, in this thesis enzyme development is 

considered as a stage in pathway construction rather than a pathway optimization task. 

According to the synthetic character and biochemical solution space, Erb and colleagues17 

have previously classified engineered metabolic pathways into five levels, which are 

described in the next subsections.  

 

2.2.1 Endogenous pathways 

Early stages of metabolic engineering focused on optimizing the endogenous metabolism, 

i.e. existing pathways within their natural hosts, towards production goals (Figure 2.1a). 

Based on genome sequencing and annotated pathways, individual gene deletion and/or 

over-expression can be predicted aiming at pathway optimization. For example, Zhang 

and co-workers18 successfully redirected carbon flux towards overproduction of the Krebs 

cycle intermediate (L)-malate in E. coli. Starting with a previously engineered succinate-

overproducing strain (E. coli ΔldhA ΔackA ΔadhE ΔpflB), step-wise gene deletion of 

carbon diverting and malate degradation encoded-enzymes afforded the creation of a 

strain with 11 gene deletions which was able to significantly accumulate the desired 

metabolite under anaerobic conditions. Optimization of cell cultivation conditions further 

enhanced malate titers and productivities (up to 34 g L-1 and 0.47 g L-1 h-1).  

 

2.2.2 Copy, paste and fine-tuning pathways 

In a more advanced strategy named “copy, paste and fine-tuning”, annotated pathways or 

sub-pathways are introduced to a heterologous host (Figure 2.1b). Expressing the 

Weimberg pathway from Caulobacter crescentus in E. coli allows for an alternative route 

for xylose assimilation19 and illustrates the concept of copy-paste. While the engineered 

pathways keep unaltered their basic structure, minor changes can be a result of improved 

kinetics and/or thermodynamics. The replacement of individual enzymes is included in 

the latter case. For instance, in a pathway dedicated to the production of n-butanol 
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expressed in E. coli, substituting the thermodynamically limiting acetoacetyl-Coa 

synthetase with an irreversible acetyl-CoA:malonyl-CoA acetyltransferase 

(decarboxylating) substantially improved product titers, resulting in a fine-tuning of the 

production system20.  

 

 

Figure 2.1. The process of engineering natural pathways can be divided in two strategies. (A) Engineering endogenous 

pathways (highlighted in blue) involves gene deletion and/or overexpression aiming at carbon flux channeling towards 

target metabolite (square). (B) The concept of copy-paste is based on the transfer of entire pathways or genes (green) 

to a heterologous host, while fine-tuning can be achieved by replacing rate-limiting enzymes (e.g. thermodynamically 

unfavorable, in which ΔG > 0) by more favorable ones (e.g. thermodynamically favorable, in which ΔG < 0) (orange). 

Adapted from Hossain et al21. 

 

While engineering existing pathways or “copy, paste and fine-tuning” pathways is 

confined to the manipulation of natural metabolism, the creation of non-natural or 

synthetic pathways came to revolutionize the field of metabolic engineering. In specific, 

non-natural routes as described next enlarge the metabolic solution space by enabling the 

creation of both natural and non-natural compounds. Scientists are therefore able to 

implement the so-called concept of “total synthesis” also in the domain of industrial 

biotechnology17.  

 

2.2.3 Mix and match synthetic pathways 

Whilst the utilization of natural enzymes may enable the creation of synthetic pathways, 

the creation of new enzymes and engineering of natural ones may further expand the 

metabolic solution space.  The simplest form of synthetic metabolism is built upon a “mix 
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and match” concept, in which non-natural pathways are created through combinatorial 

expression of natural enzymes from various sources (Figure 2.2). Provided that the host 

strain produces the necessary precursors from its own primary or secondary metabolism, 

subsequent conversion to the desired target metabolite can be accomplished through 

heterologous gene expression. Without the need to evolve novel enzymatic reactions, a 

wide range of previously unreported pathways can be identified.  

 

 

Figure 2.2. The process of engineering non-natural pathways based on a “mix and match” approach. Based on 

endogenous metabolism (blue) which results in the synthesis of a certain precursor (blue square), expression of natural 

enzymes from various sources (each color, each source) can link the referred precursor to a desired metabolite (star). 

From Hossain et al21. 

 

The biosynthesis of arbutin, a glycoside used as skin-lightering agent, from glucose 

illustrates well this concept. By expressing 4-hydroxybenzoate 1-hydroxylase from 

Candida parapsilopsis (MNX1) and arbutin synthase from Rauvolfia serpentina (AS) 

enzyme activities in an E. coli host strain, Shen and co-workers22 were able to connect 

the endogenous precursor p-hydroxybenzoic acid to the desired metabolite. Other 

examples include production of pinocembrin and polyketide analogs, as summarized by 

Hossain and colleagues21.  

 

2.2.4 Synthetic pathways with novel reactions 

Pathway design frequently results in the identification of routes involving reaction steps 

that natural enzymes are unable (or unknown) to catalyze. Those catalytic steps may 

involve new enzymatic functions based on new reactions (Figure 2.3a). Designing 

metabolic pathways involving new reactions relies on the fact that biocatalysts can 
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catalyze the conversion of new substrates whilst keeping unaltered the respective 

enzymatic mechanisms. Three different strategies have been attempted to accomplish this 

goal (Figure 2.3b-d).  

 

Figure 2.3. The process of engineering non-natural pathways based on novel reactions (A). Based on endogenous 

metabolism (blue) which results in the synthesis of a certain precursor (blue square), expression of natural enzymes 

from various sources (each color, each source) can link the referred precursor to a desired metabolite (star). Novel 

reactions can be accomplished based on reaction reversibility (B), enzyme promiscuity (C) and/or enzyme engineering 

(D). Legend: mutation (black inverted triangle).  

 

The first approach is built upon the concept of reversibility of (bio)chemical reactions 

(Figure 2.3b). While some enzymatic reactions have been experimentally shown to be 

reversible in a cellular context depending on reactant(s)/product(s) ratio (e.g. branched-

chain amino acid transaminase), others are clearly irreversible (e.g. glycolytic enzymes 

hexokinase, phosphofructokinase). In some other cases, in vivo reversibility is still matter 

of debate. The case of the anaerobic pyruvate formate-lyase clearly shows how 

reversibility can enlarge the metabolic and enzyme solution spaces. Despite possessing a 

strong preference (standard Gibbs free energy,  ΔrG
0 = -21 kJ mol-1) for the CoA-

dependent pyruvate cleavage yielding formate and acetyl-CoA, Zelcbuch and co-
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workers23 demonstrated this same enzyme to enable growth on acetate and formate in 

cells devoid of the glyoxylate shunt by catalyzing the reverse reaction in vivo.  

Another alternative to find new reactions consists in exploring the substrate repertoire of 

natural enzymes (Figure 2.3c). Notably, around 10% of bacterial and archaeal enzymes 

have been reported as promiscuous24. Identification of those enzymes accepting 

substrates structurally analogous to the prospective substrate may therefore constitute a 

feasible strategy for constructing a non-natural pathway. For instance, in this doctoral 

thesis the NADPH-dependent broad-range aldehyde reductase from E. coli (Ec-YqhD) 

was employed as part of an alternative synthetic PDO pathway starting from glucose due 

to its ability to reduce various aldehydes into corresponding alcohols (see Chapter 4). 

While in this specific case 3-hydroxypropanal (3-HPA) was the target substrate, others 

took advantage of the relaxed substrate specifity of Ec-Yqhd to engineer other non-natural 

pathways for synthesis of e.g. 1,2,4-butanetriol25 and ethylene glycol26 (in which YqhD 

substrates were D-3,4-dihydroxybutanal and glycolaldehyde, respectively). Another 

example of a non-natural route based on substrate promiscuity is the xylulose-1-

phosphate pathway (addressed in Chapter 5), seen as an alternative route for xylose 

assimilation, that generates stoichiometrically equivalent amounts of glycolaldehyde and 

dihydroxyacetone phosphate (DHAP)27.  

Despite providing a convenient alternative towards the creation of synthetic pathways, 

the utilization of natural enzymes catalyzing reverse reactions and/or multiple substrates 

frequently results in poor product titers and yields. For example, Ec-YqhD has a catalytic 

efficiency (kcat / Km) for HPA equal to 0.13 s-1 M-1, a value lower by 6-orders of magnitude 

when compared with an average enzyme (~105 s-1 M-1)28,29. Engineering enzymes 

displaying promiscuity and / or activity on sterically cognate substrates may in those cases 

be a strategy to further improve the efficiency of both, biocatalysts and pathways (Figure 

2.3d). The exciting field of enzyme engineering and methods thereof will be reviewed 

later in this chapter. Two textbook examples of pathway construction based on engineered 

enzyme activities have been recently reported. In the first one, Walther and colleagues30 

successfully created a complete synthetic route that produces the non-natural compound 

DHB from the TCA cycle intermediate (L)-malate based on structure-guided rational 

protein design. In the second one, Schwander and co-workers31 followed a similar 

approach to engineer a synthetic pathway composed of 17 enzyme activities for the in 

vitro fixation of CO2 (CETCH cycle) at rates up to 5 mU mg protein-1.  
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2.2.5 Synthetic pathways with novel chemistries 

Empowered by the rapid growth of computational tools for engineering proteins, de novo 

enzyme design towards new biochemistries can now also be envisaged, i.e. new reactions 

with new mechanisms (e.g. using artificial co-factors). Out of the scope of this thesis, new 

enzyme biochemistries may enable the creation of fully artificial pathways that represent 

the maximum exponent of synthetic metabolism. The most remarkable example is 

perhaps the development of a formolase enzyme that allows the previously unreported 

carboligation of three formate molecules into a single molecule of DHAP, involved in 

central metabolism32.  
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2.3 Pathway optimization  

Once the possible pathways have been established in the host organism, the next step in 

engineering a production strain is to analyze the respective phenotype. Conventional 

chromatography techniques (e.g. HPLC, GC-MS) enable the user to quantify product 

formation, substrate consumption and accumulation of commonly released by-products 

(e.g. acetate, formate) at different stages of cell cultivation. This strategy enables a rapid 

phenotypic evaluation and allows the user to predict the most obvious genetic 

modifications that need to be introduced in the product strain aiming at improving product 

formation. A more comprehensive and systemic overview of cell metabolism as provided 

by omics data analysis is however necessary at later stages of metabolic engineering 

projects when all obvious genetic modifications have been attempted. This strategy may 

provide for a wide knowledge on network topography, kinetics and regulation of a 

metabolic pathway, identification of kinetic bottlenecks and competing pathways, and an 

assessment of dysfunction in pathway operation. Alternatively or in combination with 

rational-based approaches, adaptive laboratory evolution is not uncommon in the field on 

metabolic engineering, while pathway co-localization has recently emerged as an 

alternative but effective strategy for metabolism optimization5.  

 

2.3.1 Metabolic flux analysis (MFA) 

MFA aims at determining intracellular reaction rates (i.e. in vivo fluxes) which can be 

compared between different conditions (e.g. two engineered strains). More important than 

the flux values per se are the deviations from control conditions which can provide 

insights into metabolic and regulatory responses, e.g. identification of key branch point 

flux distributions, detect carbon loss through competing pathways, evaluate engineered 

strains. While MFA has mostly been used to quantify fluxes in central metabolism, efforts 

have been made towards its application on a genome-scale. Typically, a 13C-labeled 

substrate is fed with cells and used to label downstream metabolites whose isotopic 

distributions are measured by GC-MS or 13C-NMR techniques. Intracellular fluxes are 

then determined by using a stoichiometric model for the major intracellular reactions and 

applying mass balances around intracellular metabolites. A set of measured extracellular 

fluxes, normally substrate uptake rates and product secretion rates, is used as input to 

computational analysis platforms (e.g. 13CFLUX2, OpenFlux, FiatFlux). The output of 
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MFA is a metabolic flux map showing a diagram of biochemical reactions included in 

calculations along with estimated reaction flux4,5,33. For example, MFA analysis of an 

engineered E. coli strain for the biosynthesis of 1,4-butanediol aided in the identification 

of the two last enzyme-reaction steps as rate-limiting, as their intracellular flux values 

were considerably lower than those of the upstream reaction steps34.   

 

2.3.2 Metabolomics 

Metabolomics analysis can point for metabolic bottlenecks, redox co-factor ratios and 

energy charge by looking at the instantaneous accumulation or depletion of metabolites, 

or by monitoring dynamic labeling of metabolites by using a labeled tracer. The 

combination of chromatography separation techniques with mass spectrometry detection 

affords the identification and quantification (relative or absolute) of a wide range of 

compounds. Comparison between different conditions associated with statistical analysis 

methods (e.g. PCA) may afford discrimination between samples34.   

 

2.3.3 Transcriptomics and proteomics 

Transcriptomics (e.g. RNAseq, microarray, qPCR) and proteomics (e.g. iTRAQ, MRM) 

elucidate the user on the expression levels of endogenous, heterologous and manipulated 

genes or proteins. They may enable the user to assess the physiology and overall cell 

health, based on the expression of regulons associated with global stress responses5,34.  

 

2.3.4 Genomics 

As costs associated with next-generation sequencing technologies keep decreasing, 

genomics emerges as a rapid method which permits to analyze engineered strains at a 

DNA scale during the different stages of a metabolic engineering project. In specific, 

genome and/or plasmid sequences allow to verify that the desired genetic modifications 

were correctly introduced. In addition, DNA sequence analysis enables the detection of 

unwanted introduction of mutations during cloning processes34. 
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2.3.5 Computational modelling 

A range of computational tools have been developed in an attempt to reduce the 

experimental workload required in pathway optimization tasks. 

 

Flux balance analysis 

A common problem associated with MFA is the cost and expertise that experimental 

procedures require. In this line, purely computational stoichiometric-methods to estimate 

fluxes have been developed, such as flux balance analysis (FBA). Both FBA and MFA 

make use of genome-scale metabolic models and mass balances. However, FBA is an 

undetermined system in which equations are formulated as a constrained optimization 

problem with a specific objective function to be maximized or minimized. By taking 

advantage of genome-scale models in simulating cell metabolism behavior, cell designs 

for maximizing chemical production can in principle be predicted. A common objective 

function are the maximization of cell growth and the minimization of metabolic 

adjustment. There are three key advantages of this methodology over the experimental 

approach:  

- Minimal experimental data are needed; 

- Perturbations (e.g. gene knockouts) can be made by changing a 1 to a 0 in silico; 

- Models can be continuously refined as new omics data become available. 

However, the major disadvantage of FBA-derived fluxes is that they are not the real fluxes 

of the system but fluxes yielding maximum biomass. A number of FBA-based algorithms 

have been developed to identify groups of gene knockouts that are predicted to change 

the fermentation profile of a cell when growing at a maximum growth rate, allowing 

simultaneously for the maximization of metabolite synthesis and growth rate (e.g. 

COBRA 2.0, OptKnock). OptKnock derivatives may also enable the simultaneous 

application of multiple up- or down-regulations and gene deletion (e.g. 

OptForce)4,5,10,33,35. 
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Protein expression levels 

Cells do not always express proteins at levels sufficient to provide enzyme activities at 

velocities compatible with the well-functioning of expressed metabolic pathways. While 

transcriptomics, proteomics and/or enzymatic assays may provide with valuable 

information on protein expression in its various levels (mRNA transcript, translation, 

activity), computational methods may allow to fine-tune their expression in cells. In 

particular, the ribosomal binding site (RBS) of an mRNA transcript has been shown to 

affect translation initiation rates and presents therefore an alternative approach for 

controlling enzyme production at the RNA level. The RBS Calculator tool is a web-based 

application that correlates translation initiation rates with RBS sequences. A protein 

coding sequence, together with desired translation initiation rate, and host organism are 

required as inputs so that RBS calculator can suggest a DNA sequence10,36. For example, 

RBS modification was previously used as a strategy to improve the phenotype of 

production strains37. 

 

2.3.6 Adaptive laboratory evolution 

Adaptive laboratory evolution, also known as evolutionary engineering, aims at the 

random introduction of mutations in the host genome at rapid rates through serial 

passaging that successively improves phenotype fitness by imposing a growth dependent-

selective pressure. Alternatively, the process can be executed in well-controlled reactors 

under steady state (i.e. chemostat) which can last from several weeks to several months. 

The strategy is particularly useful in cases where sugar assimilation is rate limiting or the 

cells are sensitive to toxic metabolites.  In the scope of metabolic engineering, this 

strategy is normally applied when all possible rational genetic modifications have been 

exhausted38.  

 

2.3.7 Pathway co-localization  

The spatial proximity of enzymes has previously been reported to allow for metabolic 

flux fine-tuning8. For example, inspired by those enzymes exhibiting substrate channeling 

(e.g. tryptophan synthase), Dueber and colleagues39 constructed synthetic protein 
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scaffolds towards the recruitment of target enzymes involved in the synthesis of 

melavonate in E. coli. By providing a modular control over metabolic flux, product titers 

were improved up to 77-fold when compared to spatially unorganized enzymes. In 

another study, Lewicka and co-workers40 fused pyruvate decarboxylase and alcohol 

dehydrogenase enzymes from Zymomonas mobilis. Expression of the resulting chimeric 

protein in E. coli JM109 wild-type cells resulted in the production of more than 400 mM 

ethanol after 72 h of cultivation, which corresponded to an improvement of ~2-fold if 

compared to cells expressing the two non-fused proteins. 
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2.4 Enzymes as key biocatalysts 

Most biochemical reactions cannot occur at rates compatible with life without the 

presence of catalysts41. While the first evidence of biological catalysis was found by the 

end of the 18th century, only in 1877 was the term enzyme employed by Kühne in 

reference to the ferments isolated from living organisms42. Enzymes are the product of 

billions of years of evolution, having evolved substrate and function specificity to 

improve the overall fitness of organisms in response to environmental needs43. All 

enzymes are by definition proteins, but other types of molecule such as RNA (i.e. 

ribozymes) may act to accelerate reactions, and are thus also catalysts.  

 

2.4.1 Structure and catalytic function 

Enzymes are mostly globular entities of variable size, with subunits ranging from 

approximately 60 to several hundreds of amino acids. They catalyze reactions where 

substrates are converted into products, which occur in a small region of the enzyme 

usually referred to as the active site. Often consisting of a partially or completely buried 

cavity or cleft constituting at most 10-20% of the total volume of an enzyme, the side 

chains of active site residues orient the substrate (binding site) for its subsequent 

conversion into a product (catalytic site)44. In Figure 2.6, the three-dimensional structure 

of the malate dehydrogenase enzyme from E. coli (Ec-Mdh) and corresponding active 

site are shown.  

 

 

Figure 2.4. Three-dimensional X-ray crystal structure of Ec-Mdh (left) and its active site region (right) bound with 

NAD+ (red sticks) and citrate (blue sticks) (PDB code 1emd). Side-chains of active site residues are shown in a dark 

stick representation. 
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Enzymes engage in both intra- and inter-molecular interactions (electrostatic, van der 

Waals interactions) which are important in catalytic functions and thermal stability. 

Substrate and/or product interactions should not be too tight to avoid enzyme inhibition, 

but exceptions do exist in which enzyme feedback inhibition has been reported as a 

mechanism of pathway regulation (e.g. phosphoenol pyruvate carboxylase)45,46.  

Enzymes are extraordinary catalysts able to accelerate the rates of biological reactions 

under mild conditions of temperature and pressure up to 1017-fold47. Like any other 

catalyst, enzymes enhance chemical reaction rates by following two main principles. 

First, they are not consumed or permanently altered by the reaction and second, the 

chemical equilibrium between reactants and products remains unchanged in accordance 

with the laws of thermodynamics. By decreasing the activation energy required to form 

an unstable transition-state complex, enzymes are able to convert substrates into products 

at higher rates when compared with uncatalyzed reactions. Among the factors responsible 

for the enhanced catalytic activities of enzymes are: 

- Approximation of reactants; 

- Covalent catalysis;  

- Acid-base catalysis; 

- Conformational distortion; 

- Pre-organization of the active site for transition state complementarity.  

Most enzymes utilize several of the referred effects to ensure efficient catalysis48.  

 

2.4.2 Enzyme specificity 

The substrate specificity of an enzyme depends on the arrangement of atoms in the 

enzyme active site pocket such that they complement the transition-state structure of the 

enzyme-bound substrate molecule, as opposed to its ground-state structure48. Enzyme 

specificity can be measured experimentally as (kcat/Km), corresponding to the difference 

in free energy of the enzyme-bound substrate transition-state relative to that of the 

substrate and enzyme free in solution. The (kcat/Km) parameter therefore provides a direct 

measure of the catalytic efficiency of the enzyme (relative to the uncatalyzed reaction in 

solution with a much higher transition-state activation energy barrier). This kinetic 

parameter is also used to evaluate the degree of enzyme stringency towards substrate 
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acceptance. For instance, enzymes involved in central metabolism (e.g. malate 

dehydrogenases) tend to be highly specific, while detoxification enzymes like Ec-YqhD 

are less specific since they act on a broad range of substrates. In the latter case, enzymes 

are called as promiscuous (or generalist). It is noteworthy to mention that promiscuity is 

a generic term, that can be based on: the ability of enzymes to utilize alternative co-factors 

(e.g. farnesyl diphosphate synthase), active site plasticity (e.g. β-lactamases) and 

ambiguous substrate (e.g. cytochrome P450)49. In the scope of this thesis, promiscuity is 

used for those enzymes with activity on a large spectrum of substrates.  

According to the neutral drift theory of evolution, highly specific-modern-day enzymes 

are thought to have evolved from promiscuous but more thermally stable primitive 

ancestral enzymes through an iterative trajectory of random gene duplication and 

mutation events49. In a similar fashion, enzyme promiscuity can be exploited in protein 

engineering to create new functions by mimicking natural evolution in a laboratory 

environment.  

 

2.4.3 Enzyme selectivity  

Selectivity refers to the ability of enzymes to discriminate between closely related 

substrates. It can be quantified as the ratio of the (kcat / Km) values for the individual 

substrates concerned. The concept of selectivity can be categorized into three distinct 

classes: chemoselectivity, regioselectivity and stereoselectivity. Chemoselectivity refers 

to the ability of an enzyme to catalyze the transformation of a single functional group in 

the presence of others in a substrate molecule. On the other hand, a regioselective enzyme 

can distinguish between one or more identical functional groups located in different sites 

of the substrate molecules. As a result, only one group participates in the reaction yielding 

a selective product. Finally, stereoselectivity refers to the capability of an enzyme to 

distinguish between a pair of stereoisomers, resulting in an 100% optically pure product 

in the case of fully selective catalysis50. For example, (L)-malate dehydrogenases are 

highly selective as they are able to only catalyze the NAD-dependent oxidation of (L)-

enantiomer of malate.  
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2.4.4 Enzyme kinetics  

When aiming at creating metabolic pathways towards production goals, the evaluation of 

enzyme performance plays a vital role by allowing possible bottlenecks to be predicted. 

The field of enzyme kinetics aims at studying the reaction rates of enzyme-catalyzed 

reactions, which in many cases can be conveniently described by a simplified Michaelis-

Menten model. According to the Michaelis-Menten model, enzyme activity increases 

hyperbolically with the increase of substrate concentration up to a maximum level at 

which enzyme saturation is reached. The Michaelis-Menten equation is given by 

𝑣 =  
𝑉𝑚𝑎𝑥×[𝑆]

𝐾𝑚+[𝑆]
  

where v is the initial enzyme velocity, Vmax is the maximum velocity, [S] the substrate 

concentration and Km the Michaelis constant.  

The performance of a given enzyme is evaluated based on three fundamental kinetic 

parameters, of which only any two are independent: (1) the catalytic constant or turnover 

number (kcat) which is defined as the maximum number of substrate molecules that a 

single enzyme copy converts to product per unit of time, and is a function of Vmax  

𝑘𝑐𝑎𝑡 =  
𝑉𝑚𝑎𝑥

𝐸0
 

where E0 is the total enzyme concentration; (2) the Michaelis constant (Km) is the 

substrate concentration at half-maximal velocity, which under conditions of quasi-

equilibrium substrate binding approximates to the affinity of the enzyme for its substrate, 

but which in general is defined by a more or less complicated function of kinetic rate 

constants describing the enzyme mechanism, and (3) ratio of  kcat and Km (kcat/Km) which 

measures the catalytic efficiency at which an enzyme converts a substrate into the 

corresponding product, and allows information concerning substrate specificity to be 

inferred51. Among the external factors influencing the performance of an enzyme are pH, 

temperature and ionic strenght. Enzymes are usually experimentally characterized in vitro 

following protein purification based on affinity chromatography techniques.  

Although many enzymes follow the Michaelis-Menten kinetics, others show deviations. 

Many factors can cause such behavioral deviations, including product/substrate 
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inhibition, kinetic and binding cooperativity, or the action of an allosteric effector at 

physically remote binding site. In these cases, other more complex models of the enzyme 

kinetics have been proposed48. 
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2.5 Creating new enzymes 

Although a considerable number of enzymes has been characterized (104,000 enzyme 

names available in BRENDA database by 2016), it corresponds only to a small fraction 

of the earth’s biodiversity52–54. The creation of new enzymes performing new reactions 

and/or chemistries remains therefore as a major goal in the successful implementation of 

non-natural metabolic pathways.  

In the last decades, protein engineering emerged as a popular approach for enzyme 

discovery largely contributing to the creation of the concept of “made-to-order” enzymes. 

Protein engineering towards a novel function can be accomplished by two main strategies, 

(i) site-directed mutagenesis based on rational protein design and (ii) random mutagenesis 

coupled with directed evolution55. Both approaches have their advantages and challenges. 

Lately, the combination of the two strategies in an iterative approach has been attempted. 

In this section, enzyme engineering is presented with special emphasis on engineering 

template specialist enzymes acting on sterically cognate substrates or promiscuous 

generalist enzymes. The shift towards gain in new function most typically follows a weak 

negative trade-off in which engineered enzymes display activity on multiple substrates 

(Figure 2.5). The creation of enzymes truly specialized in a new function still remains a 

holy grail in the field of synthetic biology, and is limited to very few examples.  

  

 

Figure 2.5. Possible routes for acquisition of new enzymatic function. The gain–loss of the new versus old function, 

and the conversion of one ‘specialist’ protein into another, may trade-off linearly (dashed line), or follow either concave 

or convex routes. From Khersonsky et al56. 
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2.5.1 Rational design  

In the process of rationally engineering enzymes, available information on protein 

sequence, structure and function may be exploited, and computational tools used to 

identify target mutation sites likely to improve a desired trait (e.g. new function, activity, 

affinity, inhibition tolerance, thermostability). By focusing on specific amino acid 

positions, a small number of variants is generated resulting in reduced screening efforts 

when compared to enzyme directed evolution-based approaches. Rationally engineered 

enzymes are usually assayed in low-throughput assays, e.g. by traditional 

chromatographic and NMR techniques, or microplate-based assays. However, although a 

rational design strategy is particularly powerful in the prediction of the molecular factors 

influencing catalytic activity, only a small number of examples of the successful 

engineering of stereospecificity or enantioselectivity have been reported in the 

literature57,58.  

 

Sequence-based design 

The primary structure (i.e. amino acid sequence) of enzymes provides the most abundant 

source of information concerning natural diversity which may be exploited in rational 

design. In particular, the analysis of multiple sequence alignments (MSA) of homologous 

proteins is used in the identification of functional- and specificity-related residues, spatial 

constraints in 3D protein modeling and protein function prediction. While those residues 

determining catalytic activity show high degree of conservation, more variability can be 

found in other regions among homologous proteins. Several multiple sequence aligners 

are publicly available (e.g. ClustalW, MAFFT, Muscle)59. Position-dependent residue 

profiling and mutation correlation analysis can be performed using software such as 

EVfold, CCMpred or pySCA. The applicability of this strategy has been demonstrated 

e.g. in a design study aiming at converting Ec-Mdh into an enzyme with (L)-lactate 

dehydrogenase activity, in which target mutations were predicted on the basis of multiple 

sequence alignments between proteins belonging to the Ldh/Mdh superfamily of 

enzymes60. 
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Structure-based design 

The function of a given enzyme is intrinsically linked to its 3D structure, as well as its 

sequence. With the increasing number of solved protein crystal structures with bound 

substrate(s) and/or inhibitor(s) available in the PDB (Protein Data Bank), protein design 

is expected to be more accurate compared to sequence-based methods. However, 

experimentally solved structures are not available for all enzymes. Enzyme structure can 

often be predicted in these cases by homology or comparative modeling methods given 

the existence of a known structure of at least one homologous protein (sequence identity, 

> 30%). A number of structural bioinformatics tools and web-severs can be used for this 

purpose (e.g. I-Tasser, Modeller, SwissProt). Several studies report enzyme engineering 

strategies based on the multiple overlay of protein and protein-ligand crystal structures. 

Root mean square deviation (RMSD) measures allow the identification of locally variable 

protein chain conformations resulting from residue substitution, and the clustering of 

bound substrate configurations within the active sites of homologous enzyme families. 

Structure-based design approaches can be used in conjunction with complementary MSA 

analysis methods59.  

 

Computational structure-based enzyme design  

Besides structure comparison, enzyme structures can be used as starting templates in 

computationally more intensive automated combinatorial exploration of sequence and 

protein conformational space. Computational protein design (CPD) software such as 

ROSETTA61 can be used to perform side-chain rotamer conformational searching with 

either fixed, or more computationally demanding, flexible representations of the protein 

main-chain backbone. The introduction of protein backbone flexibility permitted a > 18-

fold increase in Diels-Alderase activity62 in an artificial enzyme previously designed 

using a fixed backbone63. CPD atom-based energy functions64, used to score relative 

folding free energies and ligand-protein binding interaction energies, have been primarily 

constructed on the basis of their computational efficiency and amenability to pair-wise 

residue interaction energy decomposition. The computational overheads of automated 

enzyme design typically limit the search of substrate/ligand configurational space to six 

external translational and rotational degrees of freedom of pre-calculated conformers of 

low internal energy. Automated computational methods do not require any prior 
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knowledge of natural sequence variation, although appropriate constraints on the types of 

permitted residue substitutions can be applied.  

Classical ligand docking methods alone can be used to predicting the preferred binding 

mode of (non-) natural ligands within the binding pocket of individual mutant or wild-

type protein structures. Scoring functions predict ligand-protein binding energies, in 

which top ranked scores correspond to the most likely ligand configuration. Key residue 

positions involved in substrate binding and catalysis may be located through reasoned 

analysis of experimental or model structural data. Docking applications range from 

enzyme drug design to engineer enzyme promiscuity to enable conversion of synthetic 

substrates. For example, by manually docking the synthetic OHB substrate in to the 

crystal structure of (L)-lactate dehydrogenase from Geobacillus stearothermophilus, 

Walther and colleagues65 observed a steric clash between the glutamine residue at 

position 85 and the synthetic substrate (Figure 2.6). Saturation mutagenesis at this 

position revealed the variant Q85C from E. coli to confer enhanced enzyme activity on 

OHB when compared to the wild-type counterpart.    

 

 

Figure 2.6. Active site region in X-ray crystal structure of the (L)-lactate dehydrogenase from Geobacillus 

stearothermophilus. The synthetic OHB substrate (green sticks) was manually docked into the enzyme complex bound 

with NAD+ and the substrate analogue oxamate (PDB code 1ldn). Side-chains of active site residues are shown in a 

grey stick representation. From Walther et al65. 

 

While early ligand docking tools focused primarily on the assumption of a static nature 

of the receptor protein, changes observed in protein conformation upon binding of a small 

molecule suggested that both protein backbone and side-chain and ligand flexibility were 
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important to correctly model protein/ligand interactions. Numerous tools have been 

developed to better address the ligand docking over the past decades (e.g. Gold, FlexX, 

Dock, AutoDock, Glide, RosettaLigand). These tools utilize a wide range of protein 

representations, sampling algorithms and scoring functions to predict protein/ligand 

binding geometry66,67. While many predicted residue mutations are typically confined to 

the active site, rational engineering should ideally aim for a complete description of the 

enzymatic process, in which substrate migration and recognition (studied by biophysical 

techniques), and the biochemical reaction (modeled by combined quantum 

mechanics/molecular mechanics (QMMM) methods) are addressed68. 

 

2.5.2 Directed evolution  

As opposed to enzyme rational design, the strategy of directed evolution mimics the 

theory of Darwinian evolution (mutation, recombination and selection) to evolve template 

enzymes towards an impaired user-specified phenotype. The workflow for a standard 

directed evolution assay can be divided into two consecutive stages: (a) in vitro diversity 

generation and transformation, and (b) screening and selection. Each step can impose 

significant technical limitations on the efficient exploration of sequence space69. 

 

Diversity generation and transformation 

Next to the selection of an appropriate template enzyme, genotypic variability is 

introduced in vitro into the protein-coding sequence. Although knowledge of protein 

structure or respective catalytic mechanism is not necessary for diversity generation, a 

thoughtful analysis is required so that a mutant library can significantly cover the protein 

sequence space. For example, in a protein composed of 100 amino acids random 

mutagenesis could generate up to 1.3×10130 variants. While ensuring a full coverage of 

the sequence space, the overwhelming majority of residue substitutions will result in 

unfolded or misfolded proteins, and neutral or deleterious effects on the thermal stability 

and biological function of correctly folded proteins. In addition, screening and selection 

methods are limited in throughput (as later discussed). To this end, diversity generation 

techniques are commonly limited to a few possible substitutions in the sequence space 

(e.g. two substitutions per 100 amino acids yield up to 2.0×106 possible variants) thereby 

increasing the average quality of mutant libraries. Random mutagenesis of a given 
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protein-coding sequence is normally performed by error-prone PCR with the aid of low-

fidelity DNA polymerases, followed by ligation of resulting DNA fragments to a plasmid 

backbone. The obtained plasmid libraries are typically composed of 1012 molecules per 

mg plasmid.  

Subsequently, plasmid libraries are introduced in a host strain so that protein-encoding 

genes can gain in vivo functionality. E. coli and S. cerevisiae are the most common host 

strains, but other hosts can be used to meet the specifications of the protein of interest. 

Transformation of an in vitro library into an in vivo screening context can entail 

significant losses in library size. Enabling screening and selection in an in vitro 

environment through compartmentalization, the utilization of cell-free transcription-

translation systems has lately gained particular attention as it bypasses the process of 

library transformation. Out of the scope of this thesis, an excellent review70 on enzyme 

directed evolution through cell-free systems is available. Another alternative would be 

the utilization of bacterial mutator strains (e.g. E. coli XL1-Red) to generate in vivo 

mutant libraries thereby avoiding the low efficiencies imposed by plasmid 

transformation71.   

 

Screening and selection 

Last but not least in a directed evolution campaign stand the screening and selection of 

strains expressing best-performing enzyme variants. Screening and selection processes 

represent the most significant bottleneck in directed evolution as they need to be 

optimized in each case scenario considering three main factors: throughput, sensitivity 

and selectivity. A variety of screening assays ranging in their throughput are presented in 

Figure 2.7. 

 

 



31 

 

 

Figure 2.7. Flowchart of a directed evolution campaign, typically based on two main stages: diversity generation and 

transformation, followed by screening and selection of improved variants. From Dietrich et al69.  

 

In the bottom of the throughput scale are the traditional chromatographic and NMR 

techniques. Despite enabling a precise identification and quantification of metabolites 

from in vivo or in vitro enzyme bioconversion studies, their throughput is not compatible 

with a strategy of directed evolution. Microplate-based assays may therefore represent a 

more adequate strategy for screening enzyme mutant libraries (~104 variants per day)69. 

By miniaturizing test tubes to multiple wells, high density formats are available (up to 

9600-well) albeit a 96-well format is the most widely used. After cell culture and enzyme 

production, traditional enzymatic reactions can be performed in a microtiter plate by 

adding reaction components together with manually added crude extracts of purified 

proteins. Using a plate reader, production formation or substrate consumption can be 

followed by UV-vis absorbance or fluorescence72. This strategy is particularly convenient 

for engineering NAD(P)(H)-dependent enzymes or NAD(P)(H)-coupled enzyme 

activities. For example, Irague and colleagues73 developed a general coupled assay for 

screening poorly active kinase enzymes, in which a NAD+ alkali derivate is used as a 

measurable output signal at 360 nm. The method was successfully validated by screening 

an aspartate kinase mutant library towards improved unnatural malate kinase activities.  

Higher in the throughput scale are the agar plate-based methods (~105 mutants per day). 

By shifting from an in vitro to an in vivo environment, colonies are incubated with the 

enzyme substrate whose conversion yields a (in)direct output signal (e.g. fluorescence, 

color). While agar plate screenings are easy to operate and outstanding in identifying 

active variants, they do not allow the inspection of different enzyme catalytic rates. For 
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this reason, they are commonly coupled with a second screening system aiming at 

estimating enzyme activities74,75. In an ingenuous example, an agar plate assay based on 

pH indicators was established in which color change upon substrate hydrolysis allowed 

the detection of improved esterase variants acting on 3-hydroxyester58.   

Growth complementation assays further extend the throughput scale. In this strategy, the 

utilization of a strain auxotrophic for an essential molecule is required (e.g. amino acids, 

key precursors). Growth complementation is a robust and accurate assay that enables 

selection on the basis of growth rates, which means that an auxotrophy will only be 

relieved when the lost enzymatic function is regained upon transformation with an 

improved enzyme variant. This technique is however limited in the enzyme sequence 

space, and it is frequently associated with detection in microtiter plates (growth rates) or 

agar plates (colony size). Another drawback is the limited growth dynamic range, as 

active enzymes cannot be distinguished from very active enzymes in which wild-type 

growth is restored. Fine-tuning of protein expression levels may solve this problem69. 

Close to the threshold of plasmid transformation efficiency and on the top of the 

throughput scale (~109 variants per day) is fluorescence activated cell sorting (FACS). 

Based on the concept of flow cytometry, FACS technology allows a rapid evaluation of 

size and fluorescence levels of each single cell with additional sorting. Specifically, 

libraries are first passed through a preliminary screen, in which top-fluorescent cells 

(~0.5-1 % of cell population) are sorted and enriched. Post-sorting viable cells are then 

submitted to a second screen in which the desired phenotype is confirmed. Further 

enrichments can be performed to reduce cell population and decrease false positive rates. 

The best performing enzyme variants (around 10-103) are further characterized with 

suitable low-throughput techniques. The direct detection of fluorescent metabolites (e.g. 

carotenoids, lipids) or proteins is well explored in FACS. In the last few years, particular 

attention has been paid to the development of genetic biosensors, which can detect a 

molecule of interest and output a fluorescent reporter protein. Living cells dispose of an 

extensive repertoire of natural sensor devices that by detecting a metabolite (e.g. 

riboswitches, transcription factors) are able to regulate downstream gene expression. 

Taking advantage of this mechanism, replacement of downstream gene by a fluorescent 

reporter protein ensures product detection. The co-expression of desired enzyme activities 

and an appropriate genetic sensor in an in vivo context, in which product formation rate 

regulates the reporter output signal, enables the creation of metabolite and/or whole-cell 
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biosensors. While FACS technology empowers throughput to unprecedent levels, genetic 

biosensors must be highly sensitive and selective towards the presence of a molecule of 

interest in a crowded intracellular environment. The creation of genetic sensors for 

detection of small molecules is further discussed in Chapter 5. 
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"Knowing is not enough; we must apply. Wishing is not enough; 

we must do."  

―Johann Wolfgang Von Goethe 
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Chapter 3. Rational enzyme design towards improved microbial 

production of 2,4-dihydroxybutyric acid 

 
3.1 Introduction 

A central challenge in the creation of a resource-efficient and sustainable bioeconomy lies 

in the reduction of our dependence on fossil resources and a shift in focus towards the 

development of efficient biochemical pathways for the production of fuels and bio-based 

chemicals1. (L)-2,4-dihydroxybutyrate (DHB), an α-hydroxy acid whose industrial interest 

has been rapidly growing, can serve as a precursor of methionine analogues for animal 

nutrition2. Petrochemical synthesis of DHB is however not cost-competitive and no natural 

biosynthetic pathways leading to its production are currently known, despite its occurrence 

at trace levels in patients with succinic semialdehyde dehydrogenase deficiency3. Most 

recent developments in synthetic biology domain have enabled the development of non-

natural biochemical pathways, leading to the production of economically relevant 

compounds4–6 and in particular DHB. Previous work from our group has demonstrated the 

feasibility of DHB biosynthesis from glucose through the engineering of glyoxylate7, 

homoserine8 or artificial malyl-phosphate9 pathways in E. coli (Figure 3.1a-c). More 

recently, Dischert and colleagues have disclosed a new artificial DHB route through the 

extension of a synthetic 1,2,4-butanetriol pathway (Figure 3.1d), thus enabling product 

formation from xylose, a pentose sugar and a major constituent of the hemicellulose fraction 

in lignocellulosic biomass10.  

In particular, DHB production from glucose via extension of the homoserine pathway is 

enabled by the introduction of a two-step pathway composed of two hitherto unknown 

enzymatic activities (Figure 3.1a). Homoserine is first converted into 2-keto-4-

hydroxybutyrate (OHB) by the action of an engineered homoserine transaminase. This 

compound is then reduced to DHB by an improved OHB reductase variant. In an ongoing 

effort to improve DHB production, strategies to further increase the efficiency of the 

pathway are highly desired. Pathway optimization strategies11 (e.g. gene 

disruption/overexpression, 5’-UTR engineering, plasmid copy number variation, codon 

optimization) to redirect carbon flux towards a molecule of interest are today well 

established in the scientific community, with numerous successful examples reported in the 
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literature12,13. However, those do not address situations in which poor performance of a 

given pathway is hindered by enzyme-associated limitations. Protein design has been 

described in these cases as an indispensable tool to engineer an optimal pathway14. 

 

Figure 3.1. Disclosed synthetic (L)-2,4-dihydroxybutyrate (DHB) pathways starting from pentose and hexose 

sugars. Adapted from Dischert and colleagues10.  Legend: OHB – 2-keto-4-hydroxybutyric acid. 

 

Our group has previously identified enzymes displaying homoserine transaminase and OHB 

reductase activities, but which however possessed low affinities towards the corresponding 

substrates. In particular, studies carried out by our group have revealed the (L)-lactate 

dehydrogenases from Lactococcus lactis (Ll-LdhA)2 and rabbit muscle (Rm-Ldh) as 

candidate OHB reductases8,15. (L)-lactate dehydrogenases (Ldh) are NAD-dependent 

dehydrogenases and one the most well-studied enzyme families, comprising over 100 fully 
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biochemically characterized members that also include (L)-malate dehydrogenases (Mdh). 

Ldh and Mdh notably both act on 2-keto acids: pyruvate and oxaloacetate, respectively. 

Additionally, they share a similar tertiary fold in which the nucleotide co-enzyme binding 

pocket and catalytic residues are conserved16. On the basis of these findings, a strategy to 

rationally engineer OHB reductase activity into the (L)-malate dehydrogenase from E. coli 

(Ec-Mdh) was employed based on a comparative structural analysis with Ldh enzymes 

complexed with sterically similar cognate substrates. The best-performing mutants as 

assessed in vitro were introduced into the homoserine DHB pathway and product titers 

evaluated.  

 

3.2 Strategy for OHB reductase design 

The dimeric Ec-Mdh enzyme was previously shown to possess only residual activity 

towards OHB (reductive reaction) and DHB (oxidative reaction). Malate dehydrogenases 

are highly selective and specific for dicarboxylic acids, while the OHB/DHB target 

molecules are monocarboxylic acids. Increased activity towards the OHB/DHB 

substrate/product couple was therefore envisaged using a rational design approach to guide 

site-directed mutagenesis of Ec-Mdh.  

As a first step, the possibility of using a homologous protein template for OHB reductase 

design was investigated. Both Ldh and Mdh, catalyze the interconversion between 2-

hydroxyacids and their corresponding 2-keto acids using the NAD/NADH co-enzyme 

system17. Ldh and Mdh share a similar tertiary structural fold in which the nucleotide 

binding pocket and catalytic residues are conserved, but yet maintain strong selectivity for 

mono- (pyruvate/lactate) and dicarboxylic acids (oxaloacetate/malate), respectively16,18. 

Key differences between the enzymes are found in the sequences of a mobile loop region 

(positions 79 through 91 in Ec-Mdh) covering the active-site.  The loop is known to exist in 

two distinct conformations in Mdh: an open form, in which the enzyme is inactive, and a 

closed form, in which the enzyme is active (Figure 3.2).  
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Figure 3.2. Superposition of X-ray structures of an Ec-Mdh complex with bound NAD+ (stick representation), 

showing the “closed” form of the mobile active-site loop in green (PDB code 1ib6), and the “open” (gold 

colored) loop form of the apo enzyme (PDB code 1ie3). An overlay of the malate substrate from the modelled 

ternary complex with coenzyme (PDB code 1cme) is shown as van der Waals spheres. Side-chain positions 

Arg81 and Arg87 involved in binding of the malate substrate are indicated in the two loop conformers. 

 

Conformational change is triggered by the binding of the β-carboxylate group of the 

substrate to Arg81 and/or Arg87, and involves a change in the local secondary structure of 

the loop at positions 86 through 89 in Ec-Mdh19,20. In the homologous Ldh system, ordered 

binding of NADH and pyruvate triggers incremental conformational changes in the active 

site and the expulsion of solvent necessary for catalysis to occur. The existence of a common 

kinetic mechanism in Ldh and Mdh enzymes implies that a similar conformational transition 

of the active-site loop operates in both enzymes. Crucially however, Ldh active-site loop 

closure occurs in the absence of the favorable energy contributions of a stabilizing salt 

bridge formed between a second substrate carboxylate group, absent in pyruvate, and a 

second arginine guanidinium group (replaced by Glu81 in Ldh, Table 3.1). Since pyruvate 

and OHB are both monocarboxylic acids, the identification of compensatory stabilizing loop 

interactions in Ldh afforded a design strategy for the engineering of OHB reductase activity 

into Ec-Mdh. 
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Table 3.1. Comparison of Mdh/Ldh active-site loop sequences in selected species. Entirely conserved residue 

positions are highlighted in red. Main-chain residue conformation key: H, helix; P, +ve ϕ main-chain dihedral 

angle; C, random coil. 

 

 

3.3 Identification of target mutation sites in Ec-Mdh 

Comparison of active-site loop sequences in representative Mdh and Ldh enzymes shows 

complete conservation of three structurally important residues at positions Gly78, Gly84 

and Leu90, as well as the conservation of Arg87 directly involved in substrate binding 

(Table 3.1). Analysis of larger multiple sequence alignments of Mdh and Ldh enzymes 

further confirmed the heavily conserved nature of residue types at these positions. These 

common "key" or "canonical" residues21 thus appear to be necessary for the stabilization of 

the active-site loop in the same overall conformation in Mdh and Ldh enzymes. On the other 

hand, comparison of overlaid closed loop conformers in experimental structures of Ldh and 

the binary complex of Ec-Mdh/NAD+ (Figure 3.3a) revealed the presence of two internal 

loop stabilizing interactions specific to Ldh. The first is the replacement of Ala80 in Ec-

Mdh by an arginine, which would be expected to assist in the orientation of the side-chain 

towards the solvent and stabilize the co-enzyme binding through favorable electrostatic 

interactions with phosphate groups bridging adenine and nicotinamide nucleotides. The 

second loop stabilizing interaction involves the substitution of Met85 by either glutamate or 

glutamine. Stabilization occurs via hydrogen bond formation between the main-chain -NH 

group at position 82 with either the carboxylate oxygen of a glutamate, or the side-chain 

carbamoyl oxygen of a glutamine. The mobile active-site loop in Ldh appears to be further 
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stabilized by a third specific set of non-covalent interactions at position 86 on the solvent-

exposed surface (Figure 3.3b). In principle, these interactions can be reproduced in Ec-Mdh 

via the following residue exchanges: D86S (in the mobile loop), G179D (in the Gly176-

Thr181 loop) and T211Y (in the Gly210-Ala216 helix). The mutually stabilizing side-chain 

interactions at the juncture of the three structural elements in Ldh fill the space otherwise 

occupied by the (A317) sulphate ion in the X-ray structure of Ec-Mdh. 

 

 

Figure 3.3. Structural alignment of Ldh X-ray structures from multiple organisms (PDB codes 1lth, 1ldn, 

2v7p, 3ldh, 1i0z, 9ldt) depicted with green carbon atoms, with the binary complex of Ec-Mdh and NAD+ (PDB 

code 1ib6). (A) Overlay of closed loop conformations (positions 79-91, Ec-Mdh). (B) Overlay of three 

structural elements in the solvent-exposed region surrounding protein active-site. The malate substrate, 

extracted from an Ec-Mdh model ternary complex with co-enzyme (PDB code 1cme), replaces the (A316) 

sulphate ion bound in the active site. The second sulphate (A317) ion which stabilizes the mobile loop 

(residues 79 to 81) is shown as a stick representation. Overlays were obtained by pairwise structural 

superposition at all aligned protein chain residue positions with respect to Ec-Mdh subject to a 2Å cut-off (Cα 

- Cα) separation distance. 

 

 

 

 

Visual inspection of an Ec-Mdh ternary complex model construct with malate (reaction 

product) and NAD+ (PDB code 1cme), and multiple sequence alignment analysis were used 

to identify putative target positions for mutation in the substrate and co-enzyme binding 

sites. Residue positions closest to the C4 atom in bound malate, and by implication to the 4-

OH group in the DHB/OHB couple, are Arg81, Val214 and Ser222. Estimation of the 

relative Shannon entropy (HX, see Methods) of amino acid frequency distributions revealed 

that all three positions are fully conserved (HX = 0) amongst Mdh enzymes, with more 

variation being observed in the wider Ldh/Mdh superfamily: HX values for the Pfam 
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(Ldh_1_N and Ldh_1_C) protein family alignments at positions 81, 214 and 222 were 0.34, 

0.43 and 0.54, respectively. Putative residue side-chain replacements at these positions in 

the active-site of Ec-Mdh were further explored by flexible docking of OHB (Figure 3.4), 

suggesting that mutation of residue Arg81 is likely to be essential for OHB reductase 

activity.  

 

Figure 3.4. Active-site regions in molecular models of (A) A80R:R81A:M85Q:D86S:G179D:T211Y:V214T 

and (B) A80R:R81Q:M85Q:D86S:G179D:T211Y:V214T mutant Ec-Mdh with NAD+ and flexibly docked 

OHB. The OHB carbons in five members of the two top-ranked clusters with equal interaction energies are 

shown in green and cyan in (A). Members of an additional high-ranking energy interaction OHB cluster are 

depicted in (B) with grey carbons. The OHB cluster with the most favorable interaction energy in (B) is that 

shown with green colored carbon atoms. A potentially displaceable crystallographic water molecule is 

represented as a magenta colored sphere. Each of the models is overlaid on the X-ray structure of an Ec-Mdh 

model ternary complex with co-enzyme (PDB code 1cme) from which it was derived as described in Methods. 

 

In Figure 3.4a, OHB docking into an R81A-containing mutant resulted in two ligand 

conformational clusters (green and blue sticks) with equal Boltzmann averaged interaction 

energies. On the other hand, replacement of Arg81 by glutamine (as in Ldh, Figure 3.4b) 

revealed a clear preference (of 2.3 kcal mol-1) for the green conformer. Whilst the latter can 

interact favorably with Gln81, it is at the same time forced into making close contact with 

the α-carbon of Gly210. The R81Q mutation did not therefore appear to confer any real 
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improvement in substrate/product binding interactions, and may indeed hinder access to the 

binding site. In this regard, the replacement of Arg81 by alanine seemed more preferable 

since it should allow for unimpeded access to the active-site by the substrate. As shown in 

Figure 3.4b, favorable hydrogen bonding interactions of the substrate/product 4-OH group 

can be made in two of the three bound ligand conformations (shown with green or grey 

carbons) with the side-chain of Ser222. Thus, there did not seem to be any obvious 

advantage to be gained from the modification of this residue. In contrast, isosteric mutation 

of Val214 to threonine might be expected to aid in the orientation of the Ser222 side-chain 

through intra-protein hydrogen bonding. However, the closest approach distance of the 

substrate/product 4-OH group to the Thr214 oxygen was observed to be too long (at 

approximately 4.0 to 4.6 Å) for the formation a good hydrogen bond. The effects of amino 

acid changes introduced at this position were investigated experimentally and the results are 

described in the next section. 

Further analysis of the Ldh multiple sequence alignment notably revealed the presence of 

smaller residues close to the co-enzyme nicotinamide ring at equivalent positions Ile12, 

Ile117 and Met227 in Ec-Mdh (Figure 3.5). Substitution of smaller residue types at these 

positions could potentially influence the positioning of the nicotinamide ring, and thereby 

exert a direct effect on catalysis (e.g. on the rate of hydride transfer). Candidate residue type 

replacements at these positions were identified from frequency analysis of the Ldh multiple 

sequence alignment: position 12: Val; position 117: Ala or Val; position 227: Ile or Val. 

The introduction of mutations at these three residue positions was by inference expected to 

shift the substrate specifity of Ec-Mdh towards the OHB/DHB couple.  
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Figure 3.5. Positions of variable residue positions (highlighted with green carbon side-chain atoms) in 

Ldh/Mdh superfamily in the vicinity of the co-enzyme nicotinamide ring in a modelled ternary complex of 

Ec-Mdh mutant (A80R:R81A:M85Q:D86S:G179D:T211Y:V214T) NAD+ and flexibly docked OHB 

conformer representatives of the top-ranked ligand pose (shown in stick representation with cyan carbon 

atoms). The model is overlaid on the X-ray structure of an Ec-Mdh model ternary complex with co-enzyme 

(PDB code 1cme) from which it was derived as described in Methods. 

 

 

3.4 In vitro analysis of site-directed variants 

In order to experimentally assess the rational engineering approach, both wild-type and site-

directed enzyme variants were characterized in the reductive (biosynthetic) reaction using 

OHB as the substrate (Figure 3.6). As expected, the wild-type enzyme Ec-Mdh displayed 

very little OHB reductase activity (kcat = 0.03 s-1). Point mutations were then introduced in 

a step-wise manner into the substrate-binding region of Ec-Mdh, either individually or as 

groups. Substitution of Arg81 by alanine resulted in a dramatic 287-fold increase in 

maximum enzyme activity on OHB (kcat = 8.6 s-1). In contrast, insertion of an additional 

mutation at position 214 in the R81A:V214T variant resulted in lower activity (kcat = 3.1 s-

1).  
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Figure 3.6. Activity of wild-type and Ec-Mdh enzymes on OHB, expressed in s-1, and shown on a logarithmic-

scale.  The abscissa positioning allows the relative effects of each enzyme mutant to be readily discerned. 

Enzymes highlighted with an asterisk could not be saturated under the test conditions, and the reported 

activities were obtained at a substrate concentration of 50 mM. Activities of the other mutant enzymes 

correspond to calculated turnover numbers. The results are the mean of at least two biological replicate 

experiments. Error bars correspond to the standard deviation of the mean.  

 

The R81A mutation was then combined with amino acid changes either at residue position 

Ile12 proximal to the coenzyme nicotinamide ring, residue positions in the mobile loop 

covering the active site (Ala80, Met85 and Asp86) or at positions Gly179 and Thr211 

contacting the mobile loop. Increased OHB reductase activity (kcat = 13.4 s-1) was observed 

in the I12V:R81A double mutant, as compared to the R81A variant, when residue changes 

were simultaneously introduced in the substrate binding site and the coenzyme nicotinamide 

ring binding pocket. Grouping amino acid changes in the substrate binding site with those 

elsewhere in the active-site resulted in distinct underlying patterns of response. Thus, while 

changes in loop residue positions Met85, Asp86 and Gly179 enhanced OHB reductase 

activities yielding kcat values of up to 85.4 s-1 (variant R81A:M85Q), substitutions at the 

Ala80 and Thr211 target sites showed the opposite tendency. It is however noteworthy that 

the R81A:M85Q mutant could not be saturated within the tested OHB concentration range, 

and that the reported activity value was obtained at a substrate concentration of 50 mM. The 

results suggest that residue alterations at different locations within the active-site region 

elicit synergistic effects on both binding and catalysis. 
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To investigate whether OHB reductase activity could be further improved, the 

simultaneously introduction of amino acid changes in the substrate binding site, coenzyme 

binding pocket and at a structural contact region on the external surface of the mobile loop 

covering the active-site during catalysis was attempted. Variants from this group were found 

to be highly active on OHB, but more importantly could be saturated at lower substrate 

concentrations (< 35 mM). The catalytic efficiencies (kcat/Km) of the wild-type and best 

mutant enzymes were then evaluated for comparison on both OHB and the natural substrate 

oxaloacetate (Figure 3.7). The results indicate that Ec-Mdh engineering not only 

significantly improved enzyme efficiency for OHB, but also considerably decreased that 

towards oxaloacetate by at least 50-fold. Despite observing increased catalytic efficiencies 

towards OHB, the cumulation of amino acid changes in the best mutants resulted in variants 

with lower specificities (i.e. (kcat/Km)OHB / (kcat/Km)Oxaloacetate). However, intracellular 

concentrations of oxaloacetate are known to be very low, and for this reason we decided to 

fully kinetically characterize the four variants with the highest catalytic efficiency towards 

OHB notwithstanding their lowered specificity22,23.  

 

 
Figure 3.7. Catalytic efficiency (kcat/Km) in units of s-1 mM-1 of the wild-type and best Ec-Mdh mutant 

enzymes on OHB and oxaloacetate. The results are presented on a logarithmic scale as the mean of at least 

two biological replicate experiments. Error bars correspond to the standard deviation of the mean. 
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Table 3.2 shows the kinetic parameters for the reductive (biosynthetic) reaction of the wild-

type enzyme and the best mutants, for brevity henceforth denoted as Ec-Mdh-4E 

(I12V:R81A:M85E:G179D), Ec-Mdh-4Q (I12V:R81A:M85Q:G179D), Ec-Mdh-5E 

(I12V:R81A:M85E:D86S:G179D) and Ec-Mdh-5Q (I12V:R81A:M85Q:D86S:G179D). In 

view of its structural similarity to OHB, enzyme kinetic analysis was also carried out using 

pyruvate as substrate. All four mutants exhibited affinity for oxaloacetate, OHB and 

pyruvate, in contrast to the wild-type enzyme that possesses high stringency for its natural 

substrate. Although the Ec-Mdh-5Q variant showed the highest affinity and efficiency 

towards OHB (Km = 1.6 mM, kcat/Km = 37 s-1 mM-1), Ec-Mdh-4E was the most specific 

enzyme towards OHB ((kcat/Km)OHB / (kcat/Km)Oxaloacetate = 0.87). Of particularly important 

note, with the exception of Ec-Mdh-4E variant all four mutants displayed substrate-

inhibition kinetics towards OHB (Ki ~30 mM) and oxaloacetate. Lower catalytic 

efficiencies were recorded when using pyruvate as substrate (kcat/Km < 0.5 s-1 mM-1), and 

consequently Ec-Mdh mutants were more specific towards OHB (by up to two-orders of 

magnitude). The Ec-Mdh wild-type and variants were also characterized in the oxidative 

reaction using (L)-malate, (D/L)-DHB and (L)-lactate as substrates (Table 3.3). As 

expected, the catalytic efficiency of wild-type enzyme was much higher (by two orders of 

magnitude) in the reductive reaction (kcat/Km = 6,387 s-1 mM-1) than on (L)-malate (kcat/Km 

= 40 s-1 mM-1). The same trend was observed for Ec-Mdh mutants with respect to both 

natural and synthetic substrate/product couples. Additionally, the four best mutants 

displayed much higher DHB dehydrogenase activities when compared to the wild-type 

enzyme (by up to four orders of magnitude), but protein engineering resulted in considerably 

low affinities for the racemic mixture of DHB (Ec-Mdh-5Q, Km = 64.1 mM L-DHB). 

Finally, none of the mutants demonstrated saturation kinetics when using (L)-lactate as the 

substrate.
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3.5 Optimization of DHB production using site-directed variants 

In a previous study, Walther and colleagues2 have demonstrated the E. coli parent strain 

ECO4 (MG1655 ΔadhE ΔldhA ΔthrB ΔmetA) to functionally express the homoserine DHB 

pathway when transformed with the medium-copy number plasmid pZA23-thrAS345F-aspC-

ldhAQ85C, that encodes for the threonine-insensitive bifunctional aspartate 

kinase/homoserine dehydrogenase mutant ThrA S345F, the homoserine (HMS) 

transaminase Ec-AspC and the OHB reductase Ll-LdhA Q85C. The resulting strain ECO18 

was able to produce 3.7 mM DHB after 24 h of culture in M9 mineral medium supplemented 

with 20 g L-1 glucose9. To improve DHB production, the increase in the availability of 

homoserine pathway precursors was first attempted. Since overexpression of the 

aspartate/malate insensitive phosphoenol pyruvate (PEP) carboxylase mutant Ec-Ppc 

K620S has previously been shown to increase the intracellular concentration of 

oxaloacetate9,24, the corresponding gene was cloned downstream of the DHB operon and 

the obtained pECO2-ppc* plasmid was transformed into the ECO4 parent strain. After 24 h 

of culture, the resulting strain CF216 led to slightly improved DHB production (3.9 mM), 

demonstrating a moderate positive effect of the increase in PEP carboxylase activity (Table 

3.4). Further investigations were therefore carried out using the pECO2-ppc* plasmid as a 

backbone for further modification.  

The identified four highly active Ec-Mdh variants on OHB (Ec-Mdh-4E, Ec-Mdh-4Q, Ec-

Mdh-5E and Ec-Mdh-5Q) were employed as OHB reductases in the DHB operon, leading 

to the generation of strains CF132-135 (Table 3.4). In all cases, DHB titers and 

productivities were improved (by up to two- and three-fold, respectively) in comparison to 

the use of Ll-Ldh Q85C (strain CF216), demonstrating the superior performance of the 

characterized Ec-Mdh variants. The DHB production levels were similar for all the tested 

Ec-Mdh variants, despite their previously described distinctive kinetic properties. The 

highest DHB titers were obtained from the expression of either Ec-Mdh-5E (CF134, 7.9 

mM) or Ec-Mdh-5Q (CF135, 7.6 mM) with similar product yields (0.10 mol mol-1 glucose). 

The OHB reductase Ec-Mdh-5Q expressed from the pECO2-ppc*(Ec-Mdh-5Q) plasmid 

was therefore selected for further studies.  
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In an ongoing effort to achieve higher DHB titers and productivities, also the replacement 

of the currently used HMS transaminase Ec-AspC was envisaged, since it has been shown 

to be a particularly inefficient enzyme when (L)-homoserine is used as the substrate2. In 

this regard, Bouzon and co-workers25 have discovered a new HMS transaminase in a 

recent study of E. coli one-carbon metabolism following long-term cell cultivation. The 

newly identified HMS transaminase is a mutant variant of the alanine aminotransferase 

from E. coli (Ec-AlaC) with substitutions at positions Ala142 and Tyr275. The resulting 

variant Ec-AlaC A142P:Y275D displayed a high affinity for homoserine (Km, 1.7 mM), 

in contrast to Ec-AspC that was not saturated at homoserine concentrations of up to 50 

mM2,25. As such, Ec-AspC was replaced by the HMS transaminase Ec-AlaC 

A142P:Y275D variant in the pECO2-ppc*(Ec-Mdh-5Q) plasmid. When the vector 

obtained was expressed in the parent strain, resulting in the strain CF217, increased levels 

of DHB accumulation (19.8 mM) in higher yields (0.19 mol mol-1) were observed, 

suggesting that the homoserine transamination step is rate-limiting (Table 3.4). To further 

confirm this, the improved Ec-AlaC variant was expressed together with the Ll-Ldh 

Q85C OHB reductase variant (strain CF268). After 24 h of cell cultivation, DHB 

production more than doubled (to 9.7 mM) compared to the CF216 strain expressing Ec-

AspC and Ll-Ldh Q85C. Overall, our results show that redirection of the metabolic flux 

towards homoserine when combined with the improved (Ec-AlaC A142P:Y275D) HMS 

transaminase and (Ec-Mdh-5Q) OHB reductase variants led to an up to five-fold 

improvement in the DHB titer and productivity as compared to the original ECO18 strain. 

 

3.6 Fed-batch cultivation of DHB-producing strains 

The best DHB-producing strain CF217 (which expresses Ec-Mdh-5Q and Ec-AlaC 

A142P:Y275D enzymes) was further studied in a 1.5 L medium-containing fed-batch 

reactor (Figure 3.8a). Under fully aerobic conditions and non-limiting glucose 

concentrations, 89.0 mM DHB were produced from glucose after 48h of culture. 

Considering this period, DHB was produced at a rate of 1.85 mmol L-1 h-1 with a yield 

equal to 0.18 mol mol-1. Accumulation of DHB was accompanied by the production of 

lactate and acetate (up to 21.3 mM and 20.8 mM, respectively). To further confirm the 

role of HMS transaminase as main rate-limiting step towards DHB biosynthesis, the strain 
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CF135 which expresses both Ec-AspC and Ec-Mdh-5Q enzymes was also cultivated 

under similar conditions (Figure 3.8b). Lower DHB production was observed (up to 41.5 

mM) with a yield of 0.09 mol mol-1 when compared to the strain CF217. Also the 

extracellular accumulation of the by-products acetate and lactate was kept at low levels.  

 

Figure 3.8. Fed-batch cultivation of the DHB-producing strains CF217 (A) and CF135 (B). Cells were 

cultivated on 1.5 L defined mineral medium (pH 7.0) which was supplemented with 1 g L-1 threonine and 

methionine to complement strain auxotrophies. Glucose was manually added to assure non-limiting carbon 

source concentrations (below 10 g L-1) during cell cultivation. Dissolved oxygen concentration was 

maintained above 40 % of saturating concentration to assure aerobic conditions. The results are derived 

from a single experiment. 

 

A comprehensive analysis of the extracellular accumulation of natural amino acids and 

homoserine DHB precursor was performed at the end of cultivation of each strain to 

understand in more detail cell metabolism during DHB production. While in both cases 

homoserine was released at relevant concentrations (> 28 mM), the utilization of Ec-AlaC 

A142P:Y275D yielded 1.4-fold higher accumulation of the referred DHB precursor 

(Figures 3.9a-b). However, the observed titers of alanine (107.6 mM) suggest a 

pronounced substrate promiscuity of the enzyme (Figure 3.9a). The accumulation of 
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glutamate (> 17.8 mM) was found to occur upon cultivation of both strains (Figures 3.9a-

b). 

 

 

Figure 3.9. Amino acid analysis after 48h of fed-batch cultivation of the DHB-producing strains CF217 

(A) and CF135 (B). Only those amino acids with concentrations exceeding 1 mM are shown. Cells were 

cultivated on 1.5 L defined mineral medium (pH 7.0) which was supplemented with 1 g L-1 threonine and 

methionine to complement strain auxotrophies. Glucose was manually added to assure non-limiting carbon 

source concentrations (below 10 g L-1) during cell cultivation. Dissolved oxygen concentration was 

maintained above 40 % of saturating concentration to assure aerobic conditions. The results are derived 

from a single experiment. Legend: OHPro – hydroxyproline, HSer – homoserine, * - not measured.  

 

3.7 Discussion 

A new metabolic engineering approach, based on the construction of de novo synthetic 

pathways constituted of novel reactions, has recently emerged enabling the production of 

non-natural compounds. This new concept however requires the discovery of novel 

enzyme functions by extensive data mining and/or protein engineering to generate new 

activities in the absence of naturally available biocatalysts1,26. In the development of an 

artificial route for the production of the non-natural compound DHB from glucose via 

homoserine, the development of highly-efficient HMS transaminase and OHB reductase 

enzymes has previously been identified as a major lever to boost the performance of the 

designed DHB pathway. In this work, the generation of a more efficient OHB reductase 

is described which was obtained by the step-wise rational engineering of a template 

enzyme homologue acting on a sterically similar cognate substrate. 
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Rational protein engineering is a well-established technique for the generation of novel 

enzyme variants with enhanced activity, stability or altered substrate specificity1,27,28. 

Based on the sequence, structural and functional information about target enzymes, amino 

acid changes likely to confer the desired enzymatic properties can be predicted in silico. 

The selection of an appropriate template enzyme to be redesigned is crucial to the 

experimental success of targeted mutagenesis29. In this study, Ec-Mdh served as the 

enzyme to be engineered for OHB reductase activity. Template selection was made on 

the basis that Ldh enzymes have been previously shown to convert the monocarboxylate 

OHB to DHB, and that Mdh and Ldh enzymes possess highly similar structures and a 

shared catalytic mechanism8,30. A key exploitable difference between Mdh and Ldh 

enzymes resides in their strict respective selectivity for di- and monocarboxylic acid 

substrates16,18. However, previous attempts to alter the substrate specificity of Ec-Mdh 

from the dicarboxylate oxaloacetate to the monocarboxylate pyruvate were met with only 

partial success31. While the engineered Ec-Mdh mutant enzymes reported in the literature 

exhibited reversed substrate specificity, they were significantly less active than the wild-

type Ldh enzyme towards the natural substrate pyruvate, illustrating the stringent 

substrate specificity of Ec-Mdh32,33. 

Based on comparative structural and sequence analysis combined with molecular 

modelling, target mutation sites in Ec-Mdh for the introduction of catalytic activity 

towards the monocarboxylic acid OHB were identified. The predicted amino acid residue 

exchange sites were located in distinct functional regions: the substrate binding site, the 

coenzyme nicotinamide ring binding pocket and at a structural contact region on the 

external surface of the mobile loop covering the active-site during catalysis. Mutations 

were introduced into wild-type Ec-Mdh in a step-wise manner. Experimental delineation 

of the observed increases in OHB reductase activity permitted to recombine mutations in 

different zones of the template protein active-site, leading to the identification of mutant 

combinations with better optimized kinetic properties. Favourable synergistic effects 

arising from the combination of correlated mutations have been documented in other 

studies34. In total, 17 Ec-Mdh variants were generated and the most promising amino acid 

changes bestowing OHB reductase activity were identified as (I12V, R81A, M85E/Q, 

G179D and/or D86S). Kinetic evaluation of the four best Ec-Mdh mutants revealed an 

improvement of up to three orders of magnitude in both the OHB reductase activity and 
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the Michaelis constant for OHB with respect to the wild-type enzyme. However, all four 

mutants displayed higher catalytic efficiencies for the natural substrate oxaloacetate than 

for OHB.  

The feasibility of the most promising Ec-Mdh mutants for in vivo applications was further 

evaluated by individual expression in the homoserine DHB pathway. All tested enzyme 

variants provided for approximately two-fold higher DHB production, as compared to the 

Ll-LdhA Q85C OHB reductase variant. Further improvements were obtained by 

channeling the carbon flux towards homoserine (Ec-Ppc K620S) and expression of the 

HMS transaminase variant Ec-AlaC A142P:Y275D in the DHB operon resulting in DHB 

titers up to 19.8 mM. Fed-batch cultivation under well-controlled conditions of the best 

DHB-producing strain (CF217) as assessed in cell culture at shake flask level further 

resulted in extracellular accumulation of DHB to levels up to 89.0 mM (or 10.7 g L-1), 

corresponding to the highest titer observed to date. The extracellular accumulation of high 

amounts of the homoserine DHB precursor suggests however that the currently used HMS 

transaminase is a major rate-limiting step of the pathway. Since the intracellular 

accumulation of homoserine has previously been shown to inhibit its own biosynthesis35, 

only a HMS transaminase with high catalytic efficiency could convert homoserine to 

OHB without substrate accumulation. The release of such amino acid to the medium may 

therefore be seen as a strategy of cell metabolism towards the continuous production of 

DHB. Additionally, the presence of alanine in the culture broth further confirms the 

substrate promiscuity of the Ec-AlaC A142P:Y275D enzyme, reason for which HMS 

transaminase may need to be further engineered if industrially relevant DHB titers are 

desired. The accumulation of glutamate may similarly be a consequence of the 2-

ketoglutarate dependent HMS transaminase activity which yields homoserine and 

glutamate at stoichiometrically equal amounts, or alternatively from the oxidation of the 

2-ketoglurate metabolite derived from the Krebs cycle and catalyzed by a glutamate 

dehydrogenase enzyme. On the other side, other reasons may be behind the presence of 

lactate and acetate, mainly observed at a late-stage of fermentation in which cells were in 

a stationary phase. Being both metabolites generated from pyruvate inside cells, the 

accumulation of lactate was somehow unexpected due to the deletion of (L)-lactate 

dehydrogenase encoding-gene ldhA and since the other two lactate dehydrogenases from 

E. coli (LlDd and Dld) have a marked preference for lactate oxidation. The observed 
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lactate accumulation may therefore be linked to the observed residual activity of Ec-Mdh-

5Q on pyruvate. On the other side, the production of acetate may occur as a metabolic 

strategy towards the regeneration of intracellular ATP, if it proceeds via acetyl-CoA.  

In summary, the work outlined here shows production of DHB via homoserine up to 89.0 

mM at a yield of 0.18 mol mol-1 glucose. Further enzyme engineering to increase the 

efficiency of the synthetic pathway is necessary to solve the observed pathway 

imbalances and remove metabolic inefficiencies. Pathway optimization through 

combination of modeling technologies with omics data measurements can identify and 

address additional bottlenecks impeding higher product formation. 

 

3.8 Materials and methods 

3.8.1 Chemicals and reagents 

All chemicals and solvents were purchased from Sigma-Aldrich unless otherwise stated. 

Restriction endonucleases and DNA-modifying enzymes were purchased from New 

England Biolabs and used according to manufacturer’s instructions. DNA plasmid 

isolation was performed using GeneJET Plasmid Miniprep Kit (Thermo Scientific). DNA 

extraction from agarose gel was carried out using the GeneJET Gel Extraction Kit 

(Thermo Scientific). DNA sequencing was carried out by Beckman Coulter Genomics 

(Takeley, United Kingdom) or Eurofins SAS (Ebersberg, Germany). 

 

3.8.2 Protein cloning, mutagenesis, expression and purification 

E. coli DH5α (New England Biolabs) was routinely used for construction of plasmids. 

The mdh gene encoding the wild-type Ec-Mdh was amplified by PCR (primers listed in 

Table 3.5) and cloned into the corresponding sites of pET28a (Novagen) using T4 DNA 

ligase (Biolabs), thereby adding an N-terminal hexa-His tag. Point mutations were 

introduced on pET28-derived plasmid by inverse PCR using the primer pairs listed in 

Table 3.6. Resulting products were digested by DpnI to remove template DNA and 

transformed into competent cells. Mutated plasmids were verified by sequencing. 
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Table 3.5. Primers and restriction enzymes used to clone genes into pET28a expression vector 

 

Table 3.6. Primers used for site-directed mutagenesis in pET28a-Ec-mdh 

Mutation Primer sequences (5' – 3') Restr. 
site 

R81nnk TTATCTCTGCAGGCGTAGCGNNKAAACCCGGGATGGATCGTTC 

GAACGATCCATCCCGGGTTTMNNCGCTACGCCTGCAGAGATAA 

SmaI 

R81A M85E TTATCTCTGCAGGCGTAGCGGCTAAACCGGGTGAGGATCGTTCCGACCTG 

CAGGTCGGAACGATCCTCACCCGGTTTAGCCGCTACGCCTGCAGAGATAA 

none 

R81A M85Q TTATCTCTGCAGGCGTAGCGGCTAAACCGGGTCAGGATCGTTCCGACCTG  

CAGGTCGGAACGATCCTGACCCGGTTTAGCCGCTACGCCTGCAGAGATAA  

none 

I12V GTCGCAGTCCTCGGCGCCGCTGGCGGTGTCGGCCAGGCGCTTGCAC 

GTGCAAGCGCCTGGCCGACACCGCCAGCGGCGCCGAGGACTGCGAC  

NarI 

G179D CCGGTTATTGGCGGCCACTCTGATGTTACCATTCTGCCGCTGCTG  

CAGCAGCGGCAGAATGGTAACATCAGAGTGGCCGCCAATAACCGG  

EaeI 

R81A D86S GGCGTAGCGGCTAAACCGGGTATGTCTCGTTCCGACCTG  

CAGGTCGGAACGAGACATACCCGGTTTAGCCGCTACGCC  

none 

V214T ATCCAGAACGCGGGTACCGAAGTGACTGAAGCGAAGGCCGGT   

ACCGGCCTTCGCTTCAGTCACTTCGGTACCCGCGTTCTGGAT     

KpnI 

T211Y ACGGATCCAGAACGCCGGCTATGAAGTGGTTGAAGCG     

CGCTTCAACCACTTCATAGCCGGCGTTCTGGATCCGT 

NaeI 

R81A M85E D86S GCGGCCAAACCGGGTGAGTCTCGTTCCGACCTGTTTAACG 

CGTTAAACAGGTCGGAACGAGACTCACCCGGTTTGGCCGC 

HaeIII 

R81A M85Q D86S GCGGCTAAACCGGGCCAGTCTCGTTCCGACCTGTTTAACG 

CGTTAAACAGGTCGGAACGAGACTGGCCCGGTTTAGCCGC 

HaeIII 

 

Enzymes were expressed in E. coli BL21(DE3) cells (New England Biolabs) in 200 mL 

Luria-Bertani (LB) medium supplemented with 50 µg mL-1 kanamycin (37 ºC, 200 rpm) 

that were inoculated from an overnight culture at OD600 of 0.05 and grown to OD600 of 

0.6 before protein expression was induced for 3 h by addition of 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) to the culture medium. Cells were harvested by 

centrifugation (15 min at 4,000 rpm, 4 ºC) and pellets stored at -20 ºC until further 

analysis. Protein purification starting from frozen cell pellets was performed as described 

elsewhere9. 

Gene Primer sequences (5' – 3') Restriction enzymes Resulting vector 

Ec-mdh TATAATCATATGAAAGTCGCAGTCCTC 

TATAATGGATCCTTACTTATTAACGAACTC 

NdeI 

BamHI 

pET28-Ec-mdh 
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3.8.3 Enzymatic assays 

Protein concentrations were determined prior to enzymatic assays by the method of 

Bradford (Bio-Rad). All enzyme assays were carried out at 37 ºC in 96-well flat-bottomed 

microtiter plates in a final volume of 250 µl. The reactions were followed by the 

characteristic absorption of NADH at 340 nm in a microplate reader (Epoch 2, BioTek). 

Enzyme activities of wild-type Ec-Mdh and variants were assayed in both senses of the 

reaction. Assays in the reductive (biosynthetic) direction were carried out by monitoring 

NADH oxidation during the reduction of 2-keto acids. The assay mixture contained 60 

mM Hepes (pH 7), 0.25 mM NADH, 5 mM MgCl2, 50 mM KCl and appropriate amounts 

of purified enzyme or crude extract. Reactions were started by adding variable 

concentrations of oxaloacetate, OHB or pyruvate. Since OHB is not commercially 

available, it was produced in house by the action of L-amino acid oxidase in a single-step 

reaction starting from (L)-homoserine, and quantified by a ketone calibration curve36. 

Assays in the oxidative direction were carried out by following the reduction of NAD+ 

during the oxidation of 2-hydroxy acids. The assay mixture contained 179 mM glycine 

buffer (pH 9), 10 mM NAD+, 5 mM MgCl2, 50 mM KCl and appropriate amounts of 

purified enzyme or crude extract. Reactions were started by adding variable 

concentrations of (L)-malate, DHB or (L)-lactate. (D/L)-DHB consisted of a racemic 

mixture of stereoisomers kindly provided by Adisseo SAS (France). Values of kcat and 

Km were estimated by fitting kinetic data from at least five different substrate 

concentrations with SigmaPlot v12.0 following non-linear regression of Michaelis-

Menten equation, unless uncompetitive substrate inhibition was observed. 

 

3.8.4 Construction of pECO2ppc* (Ec-mdh-X) 

The genes coding for the best OHB decarboxylase variants (Ec-mdh-X, in which X 

determines the mutant) were PCR amplified from pET28A-derived vectors using primer 

pairs 1707/cf115 (see Table 3.7). The primers introduced unique restriction sites flanking 

the gene of interest, and additionally forward primers inserted a ribosome binding 

sequence (RBS) immediately upstream coding sequence. PCR products and vector 

eco2ppc-Ll-ldh were digested with NotI and BamHI restriction enzymes and ligated using 

T4 DNA ligase (New England Biolabs). The resulting constructions were transformed 
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into NEB 5-α chemically competent E. coli cells (NEB) and verified by DNA sequencing 

to contain the correct insert. Plasmids were then transformed in strain of interest. 

 

Table 3.7. Primers used to construct plasmids expressing the biosynthetic DHB pathway 

Primer Sequence (5' – 3') 

1469 

 

1470 

 

CTCTCATGGAAGTTAGGAGTCTGACCCGGGGTTTAACTTTAAGAAGGAG

ATATACCATGTTTGAGAACATTACCGCCGCTC        

CCTACAAGGATAACTTTTTTACGTTGTTTATCAGCCATGGTATATCTCCTT

CTTAAAGTTAAACGCGGCCGCTTACAGCACTGCCACAATCGCTTCGC 

1471 

 

1472 

 

GCGGCCGCGTTTAACTTTAAGAAGGAGATATACCATGGCTGATAAACAA

CGTAAAAAAGTTATCCTTGTAGG 

CGCAATGCGGAATATTGTTCGTTCATGGTACCGAGCTCGAATTCTGTTTC

CTGTTCTAGATTAGTTTTTAACTGCAGAAGCAAATTCTTC 

1473 

 

1474 

TCTAGAACAGGAAACAGAATTCGAGCTCGGTACCATGAACGAACAATAT

TCCGCATTGCG 

GATGCCTCTAGCACGCGTACCATCCCGGGTTAGCCGGTATTACGCATACC

TGCCG 

1707(mdh_xbaI_rv) 

cf115 (rbspet_mdh*_NotIF) 

 

ATAATTCTAGATTACTTATTAACGAACTCTTCGCCCAGGGC 

ATTAAGCGGCCGCGTTTAACTTTAAGAAGGAGATATACCATGAAAGTCG

CAGTCCTCGGCGCCGCTGGCGGTGTCGGCCAGGCGCTTGCACTACT  

 

 

3.8.5 Shake flask cultures for DHB production 

All cell cultivation was carried out at 37 ºC on a rotary shaker (Infors HT, France) running 

at 200 rpm. Pre-cultures were grown overnight in 10 mL of M9 mineral medium 

supplemented with methionine and threonine (0.2 g L-1) in 50 mL falcon tubes. The 

biomass needed to start main cultures with a starting OD600 of 0.2 was transferred to 250 

mL baffled-shake flasks containing 25 mL of M9 mineral medium supplemented with 

methionine and threonine, and IPTG was added at a concentration of 0.5 mM when OD600 

reached ~0.6. The antibiotic kanamycin sulphate was added when required at 50 mg L-1. 

One liter of M9 mineral medium contained: 20 g glucose, 18 g Na2HPO4*12H2O, 3 g 

KH2PO4, 0.5 g NaCl, 2 g NH4Cl, 0.5 g MgSO4*7H2O, 0.015 CaCl2*2H2O, 1 ml of 0.06 

M FeCl3 stock solution prepared in 100 times diluted concentrated HCl, 2 ml of 10 mM 

thiamine HCl stock solution, 20 g MOPS, and 1 ml of trace element solution (containing 

per liter: 0.04 g Na2EDTA*2H2O, 0.18 g CoCl2*6H2O, ZnSO4*7H2O, 0.04 g 

Na2MoO4*2H2O, 0.01 g H3BO3, 0.12 g MnSO4*H2O, 0.12 g CuCl2*H2O). The pH was 

adjusted to 7, and the medium filter-sterilized. 
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3.8.6 Fed-batch bioreactor cultures for DHB production 

The pre-cultures for the inoculation of the bioreactors were cultivated in 1 L shake flasks 

containing 150 mL mineral medium (composition as previously indicated) until 

exponential phase. Cells were then harvested and used to inoculate a 2 L bioreactor 

(Biostat B Sartorius) that initially contained 1.5 L medium with an OD600 of ~0.3. The 

composition of the fermentation medium was similar to the mineral medium used in the 

shake flask experiments (see subsection 3.8.5), with the exception that it additionally 

contained 6 g L-1 (NH4)2HPO4, 0.4 g L-1 (NH4)2SO4, 1 g L-1 threonine and methionine, 

6 g L-1 citrate and no MOPS. Initial glucose concentration was 45 g L-1. Glucose 

concentration was monitored during the fermentation and a concentrated glucose stock 

solution (500 g L-1) was manually added to assure non-limiting glucose concentrations 

during the first 45 h of cultivation. The pH of the cultures was kept at 7.0 by the addition 

of 5 M KOH, and reactors were aerated with air at 0.3–1.5 vvm. Dissolved oxygen tension 

was maintained above 30 % of the saturating oxygen concentration by adjusting the 

appropriate agitation speed (300–1500 rpm, Rushton rotor, 28 mm diameter) and aeration 

rate. Polypropylene glycol (P2000) was used as antifoaming agent during the culture. 

 

3.8.7 Analytical methods 

All samples were centrifuged (2 min at 13,000 rpm) and syringe-filtered (0.2 µm), and 

the resulting supernatant stored at -20 ºC before analysis. A standard calibration curve 

was obtained by injecting standards and used for all compound analysis.  

Extracellular concentrations of glucose, organic acids and DHB were determined on a 

Dionex Ultimate 3,000 HPLC system (Thermo Scientific, France) equipped with a RI 

detector (RID-10A, Shimadzu, Japan) and UV/Vis detector (SPD-20A, Shimadzu). The 

sample injection volume was 20 μL, and the compounds were separated on a Rezex RoA-

organic acid H+ (8%) resin-based column preceded by a SecurityGuard guard cartridge 

(Phenomenex, USA). The separation was performed at 80 ºC with 0.5 mM H2SO4 at 0.5 

mL min-1 as mobile phase.  

The analysis of homoserine and amino acids in culture broth was performed on an Agilent 

Infinity 1290 LC system coupled to an Agilent 6490 Triple Quadrupole LC/MS equipped 
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with Agilent Jet Stream and ion funnel technology. The chromatographic separation for 

amino acids was carried out on an InfinityLab Poroshell 120 HILIC-Z column (Agilent, 

France), which was maintained at a temperature of 30 °C, and the sample volume injected 

was 5 μL. Chromatographic separation was performed at a flow rate of 0.6 mL min-1 using 

a gradient with solvent A (10% 200 mM ammonium formate at pH 3 (formic acid) + 90% 

water) and solvent B (10% 200 mM ammonium formate at pH 3 (formic acid) + 90% 

acetonitrile). The mass spectrometer was operated in AJS ESI-Positive mode, capillary 

voltage 4.00 kV, nozzle voltage 1.00 kV, desolvation temperature 400°C, source 

temperature 250°C, cone gas flow 17 L min-1, desolvation gas flow was 12 L min-1, 

nebulizer 40 psi, iFunnel parameters (high-pressure and low‑pressure RF) were set to 140 

and 60, respectively. Collision energy, iFunnel parameters, and MRM transitions for the 

20 amino acids and nozzle voltage were optimized for each amino acid using MassHunter 

optimizer software. Dwell time was set to 45 ms, and delta EMV(+) to 200 V. Agilent 

MassHunter quantitative analysis software was used for data analysis.  

 

3.8.8 Computational methods 

Sequence alignments: Two sets of 1000 amino acid sequences were obtained by pair-wise 

BLAST searching of non-redundant data banks against Ec-Mdh (UniProtKB P61889) and 

Bacillus stearothermophilus lactate dehydrogenase (UniProtKB code P00344) sequences. 

The two sequence sets were multiply aligned using MUSCLE37. Pfam PF00056 

(Ldh_1_N) and PF02866 (Ldh_1_C) domain database alignments38, respectively 

corresponding to Ec-Mdh residue ranges Met1 through Gly145 and Thr147 through 

Val310, were used to explore position-dependent amino acid residue variation in the 

combined Ldh/Mdh superfamily. Residue frequencies and Shannon information entropy 

measures of residue variability, corrected for normalised frequencies of residue type 

occurrence in natural proteins, at selected corresponding positions in Ec-Mdh were 

calculated from the multiple sequence alignment data. The relative Shannon entropy (HX) 

is calculated at each residue alignment position (X) as 

 

𝐻𝑋 =
∑ 𝑝(𝑖|𝑋) ln 𝑝(𝑖|𝑋)
20
𝑖=1

∑ 𝑝(𝑖) ln 𝑝(𝑖)
20
𝑖=1
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where p(i/X) is the conditional probability of residue type (i) occurrence at the alignment 

position (X), and p(i) is the probability of residue type (i) occurrence at any position. To 

minimize sampling bias, p(i) was taken as the globally normalized residue type 

probability values for all natural proteins tabulated by Ranganathan and colleagues39. 

Values of HX vary continuously from zero, corresponding to a fully conserved residue 

position, to unity for a residue position exhibiting no intrinsic residue type preference.  

Structure alignments: Crystal structures of L-lactate dehydrogenases from 

Bidifobacterium longum (PDB code 1lth), Bacillus stearothermophilus (PDB code 1ldn), 

Thermus thermophilus (PDB code 2v7p), dogfish (PDB code 3ldh), human heart (PDB 

code 1i0z), and porcine muscle (PDB code 9ldt) were aligned with the binary complex of 

Ec-Mdh/NAD+ (PDB code 1ib6). Overlays were obtained by pair-wise structural 

superposition at all aligned protein chain residue positions with Ec-Mdh subject to a 2Å 

cut-off separation distance between aligned Cα atom centres. 

Molecular modelling: Chains A/B of the X-ray structure of binary complex Ec-Mdh 

R153C mutant with NAD+ (PDB code 1ib6) were used as a template dimeric structure for 

mutant enzyme modelling and OHB ligand docking studies. The mobile active-site loop 

in this structure is stabilized in the active form by the presence of two SO4
2- ions. The 

Arg153 side-chain was manually rebuilt in the same fully extended conformation 

observed in experimental Mdh and Ldh structures. Arg81 was truncated to alanine, and 

the resulting R81A mutant enzyme complex with NAD+ was energy minimized with 

harmonic constraints placed on all heavy atom positions. Minimization was carried out 

using the ff99SB Amber molecular mechanics force field variant for protein atoms40, and 

the GAFF force field41 for the co-enzyme. The electrostatic model comprised a distance-

dependent dielectric constant with ε = 4. Partial atomic charges for NAD+ were abstracted 

from the CHARMM27 residue topology file entry42. The (A317) sulphate ion stabilizing 

the mobile loop on the solvent-exposed surface was excised prior to the introduction of 

mutations in the loop and substrate binding-site. Residue modification was carried out 

using the interactive Richardson penultimate backbone-dependent side-chain rotamer 

library43 search facility and residue mutation functionality in the COOT molecular 

graphics and modelling package44. Mutant structures were re-minimized without 

constraints on atoms in modified and surrounding residue positions, with harmonic 

constraints placed on all other heavy atom positions. 
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Substrate docking: The (A316) sulphate ion and two water molecules (A344, A353) were 

removed from the active site of energy minimized binary complexes of the mutant 

enzymes before docking of OHB into the A subunit in the presence of bound NAD+. 

Docking was carried out using in-house HOMER software and the PANENERGY pair-

wise (non-local) protein-ligand atomic statistical potential45 without the application of 1-

3 covalent atom connectivity energy scaling. Docked solutions from 200 simulated 

annealing runs were clustered, and a Boltzmann weighted average interaction energy 

calculated for each cluster. 
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Chapter 4. Construction of a synthetic pathway for production 

of 1,3-propanediol from glucose 

 
4.1 Introduction 

A central goal of the bioeconomy consists in reducing our dependence on petroleum by 

focusing on the development of efficient, sustainable and eco-friendly processes for 

production of chemicals and fuels1. 1,3-Propanediol (PDO) is an important commodity 

chemical that can serve as a monomer for the synthesis of industrially relevant polymers, 

including polyesters, polyethers and polyurethanes. Among those, the polyester 

polytrymethylene terephthalate (PTT) is seen as a major competitor of Nylon in carpet 

industries, therefore making PDO a molecule of significant industrial interest. While both 

acrolein hydration, and ethylene oxide hydroformylation followed by reduction of resulting 

aldehyde enable PDO synthesis, low product yields and harsh reaction conditions impede 

the successful development of a cost-competitive chemical production process2,3.  

Alternatively, PDO can be microbially produced from glycerol by Klebsiella and 

Clostridium species under anaerobic conditions in a two-step pathway that employs vitamin 

B12-dependent glycerol dehydratase and PDO oxidoreductase enzymatic activities. Albeit 

expanding the range of substrates would render PDO production more flexible, no natural 

microorganisms have been found to directly convert sugars to this compound. Previous 

studies demonstrated the adoption of two-stage and co-fermentation processes to enable a 

better control of cultivation conditions and a wider flexibility in terms of substrate 

utilization4–6. Another approach is the engineering of microorganisms for the direct 

production of PDO from sugars via glycerol. Successful examples include engineering K. 

pneumoniae and Saccharomyces cerevisiae for enabling PDO biosynthesis from glucose7. 

In addition, Genencor and DuPont have commercialized a process which employs a 

genetically modified E. coli strain able to produce PDO at high titers and yields8. In both 

cases, the engineered PDO synthesis pathways are composed of necessary reaction steps 

linking the glycolysis-derived metabolite dihydroxyacetone phosphate (DHAP) to PDO via 

glycerol.   

While traditional metabolic engineering resulted in great improvements in PDO 

biosynthesis, the rapid development of powerful genome mining and protein engineering 
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tools enables now the creation of de novo designed non-natural pathways for the production 

of economically relevant compounds9. In this regard, an artificial pathway enabling PDO to 

be synthesized from glucose or sucrose was established by extending the naturally-occurring 

aspartate-homoserine pathway in E. coli. In this approach, homoserine is first deaminated 

by an enzyme with homoserine transaminase activity10. The resulting 2-keto-4-

hydroxybutyrate (OHB) is then decarboxylated by an enzyme displaying OHB 

decarboxylase activity, while 3-hydroxypropanal (3-HPA) is finally reduced to PDO by an 

enzyme with 1,3-propanediol oxidoreductase activity. While the last reaction of this 

artificial pathway is catalyzed by the broad substrate range NADPH-dependent aldehyde 

reductase encoded by yqhD gene from E. coli (Ec-yqhD), the two preceding enzymatic 

reactions are not known to naturally occur in cell metabolism. In demonstration of this 

pathway, the authors have engineered an E. coli strain overexpressing both the native serC-

encoded transaminase (Ec-SerC) and branched-chain 2-ketoisovalerate decarboxylase from 

Lactococcus lactis (Ll-KivD). Low PDO titers were however obtained (0.3 mM). In another 

study, Chen and colleagues11 recently attempted to optimize this pathway by replacing the 

first catalytic step with an enzyme displaying homoserine dehydrogenase activity obtained 

by rational engineering of the E. coli NADP-dependent glutamate dehydrogenase, but PDO 

titers were not further improved. 

In the present work, the design and construction of an alternative synthetic pathway enabling 

PDO synthesis from glucose via the TCA cycle intermediate malate through six non-natural 

enzymatic reaction steps is described. Malate is first converted to the non-natural metabolite 

(L)-2,4-dihydroxybutyrate (DHB) by employing malate kinase, malate semialdehyde 

dehydrogenase and malate semialdehyde reductase activities as recently demonstrated by 

our group12. Extending this pathway with DHB dehydrogenase, OHB decarboxylase and 

PDO oxidoreductase eventually yields PDO. Based on enzyme screening and engineering 

approaches, the required enzyme activities were demonstrated, improved and found to 

enable in vivo PDO production from DHB. Simultaneous expression of all six enzymatic 

activities in one E. coli strain enabled direct PDO production from glucose, while 

distributing the malate-to-DHB and DHB-to-PDO pathway individual modules into two E. 

coli strains co-cultivated in mineral medium further improved PDO titers. 

 



79 

 

4.2 Design of the PDO synthetic pathway 

In a previous study, a de novo metabolic pathway leading to the production of DHB from 

glucose via malate was designed and experimentally validated by expressing malate kinase, 

malate semialdehyde dehydrogenase and malate semialdehyde reductase enzyme activities 

in E. coli12. This work demonstrates that the non-natural DHB metabolite may serve as a 

precursor for the microbial production of PDO. The conversion of DHB to PDO proceeds 

via three reaction steps (Figure 4.1): DHB is first oxidized to OHB; the resulting α-ketoacid 

is then decarboxylated to yield 3-HPA which is finally reduced into PDO. These reactions 

are catalyzed by enzymes bearing DHB dehydrogenase, OHB decarboxylase and PDO 

oxidoreductase reductase activities, respectively. The negative standard Gibbs free energy 

for the proposed pathway attests its thermodynamic feasibility (Supplementary 

information p. 104-105: Note S4.1, Table S4.1). Stoichiometric analysis of the metabolic 

network in E. coli shows that PDO can be produced from glucose with a theoretical 

maximum yield of 1.5 mol mol-1 (Supplementary information p. 106: Note S4.2). The 

maximum yield is similar to those previously reported on PDO production from glucose via 

homoserine11 and glycerol8. Implementation of the pathway requires enzymes bearing the 

three constitutive enzymatic activities. The promiscuous broad range aldehyde reductase 

YqhD from E. coli (Ec-YqhD) was previously shown to catalyze the reduction of 3-HPA to 

PDO14, and was therefore also used in this work. In contrast, OHB decarboxylase activity 

was found for the pyruvate decarboxylase from Z. mobilis (Zm-Pdc) but with limited 

success11, while DHB dehydrogenase activity has not been reported in literature to date.  
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Figure 4.1. The proposed synthetic 1,3-propanediol (PDO) pathway. Based on the group contribution theory, 

the pathway is thermodynamically favorable and has an overall standard Gibbs free energy of -60.9 kJ mol-1 

(see Supplementary information p. 105: Note S4.1). 
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4.3 Engineering of DHB dehydrogenase activity 

The soluble NAD-dependent (L)-malate dehydrogenase enzyme variant from E. coli Ec-

Mdh-5Q (I12V:R81Q:M85Q:D86S:G179D) was previously shown to accept DHB as 

substrate (as discussed in Chapter 3). But since the NAD-dependent oxidation of DHB is 

thermodynamically unfavorable (ΔrG
0 = 15.7 kJ mol-1) and this enzyme possesses a reduced 

affinity for (L)-DHB (Km = 64.1 mM) and a strong preference for OHB reduction (> 100-

fold), other candidate enzymes were screened. Crucially, E. coli MG1655 was found to 

possess the capability to assimilate the (L)-form of DHB, but not its D-stereoisomer (data 

not shown). The identification of those enzymes from E. coli endogenous metabolism with 

DHB dehydrogenase activity was therefore attempted. In particular, the utilization of 2-

hydroxyacid dehydrogenase enzymes acting on substrates structurally similar to the target 

(L)-form of DHB molecule was envisaged. In this regard, E. coli displays of a set of three 

lactate dehydrogenase enzymes able to catalyze the interconversion between lactate and 

pyruvate (encoded by llDd, ldhA and dld genes), but of which only the membrane-associated 

(L)-lactate dehydrogenase (Ec-LldD) possesses activity on (L)-stereoisomers15–17. 

Additionaly, Ec-LldD relies on a FMN-dependent co-factor system16 which would render 

(L)-DHB oxidation thermodynamically favorable (ΔrG
0 = -23.1 kJ mol-1; Supplementary 

information p. 105: Note S4.1) as opposed to NAD-dependent enzymes. For these reasons, 

the Ec-LldD enzyme was further characterized towards DHB dehydrogenase activity. To 

this end, the wild-type Ec-LldD enzyme was produced from a pET28-derived vector 

expressed in E. coli BL21(DE3) cells and the corresponding activity determined in crude 

extract. As indicated in Table 4.1, the Ec-LldD enzyme showed measurable activity on (L)-

DHB (Vmax = 0.6 U mg-1) which was however 4-fold lower than that on (L)-lactate (Vmax = 

2.1 U mg-1). In addition, a specificity (expressed as Vmax/Km) of 3-orders of magnitude 

higher for (L)-lactate than for (L)-DHB was observed, reason for which Ec-LldD was 

rationally engineered for increased DHB dehydrogenase activities as described next.  
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Amino acid residues responsible for substrate specificity in Ec-LldD were identified by 

visual inspection of the crystal structure of the homologous protein from Saccharomyces 

cerevisiae (Sc-Cyb2) bound to the reaction product pyruvate and the co-factor FMN18. Key 

residues in the active site of Sc-Cyb2 are shown in Figure 4.2. The negative charge of the 

α-carboxylate group of pyruvate is neutralized by electrostatic interaction with Arg376, 

while residues Leu199, Leu230, Leu286, Tyr254 and Phe325 delimit the active site pocket. 

The catalytic residue His373 deprotonates the α-hydroxyl group of (L)-lactate, but the 

mechanism of substrate oxidation is still not clear. The pivotal role of those residues in 

substrate binding was previously discussed by Mowat and colleagues19. In the same study, 

amino acid substitutions at residue Leu230 (corresponding to Val108 in Ec-LldD), which is 

in contact with the methyl group of pyruvate, were demonstrated to confer activity on larger 

substrates (e.g. mandelate). The amino acid valine in position 108 was therefore replaced 

by smaller amino acid residues such as alanine, serine, cysteine and glycine, and the 

activities of resulting mutants were analyzed (data not shown). Only the substitution V108C 

resulted however in an improved catalytic efficiency for DHB (Vmax/Km = 82 U mg-1 M-1) 

when compared to the wild-type enzyme (Vmax/Km = 58 U mg-1 M-1) (Table 4.1). Therefore, 

the Ec-LldD V108C mutant enzyme was chosen as the DHB dehydrogenase enzyme to be 

employed in the synthetic PDO pathway.  

 

 

Figure 4.2. Active site region in the X-ray crystal structure of S. cerevisiae flavocytochrome B2 (Sc-Cyb2) 

(PDB code 1fcb). The residues in contact with reaction product pyruvate (pyr) are highlighted. 
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4.4 Engineering of OHB decarboxylase activity 

The enzymes Zm-Pdc and the branched-chain ketoacid decarboxylase from L. lactis (Ll-

KdcA) were previously demonstrated to possess activity on a wide range of 2-ketoacids, 

yielding corresponding aldehydes and carbon dioxide as reaction products11. Due to the 

structural similarity between OHB and 2-ketoacids, activities of both enzymes on their 

natural substrates and OHB were examined. While both enzymes displayed OHB 

decarboxylase activities, a strong preference for the natural substrate of up to 3-orders of 

magnitude was observed (Table 4.2). For this reason, a rational engineering strategy was 

employed aiming at increasing enzyme activities towards the OHB substrate through site-

directed mutagenesis of both biocatalysts. 

Manual docking of OHB into the active site pocket of Zm-Pdc revealed the substrate binding 

site to be too small for its accommodation (Figure 4.3A). In particular, the steric clash of 

Trp392 with the OHB substrate can be avoided by replacement with glutamine (Figure 

4.3B), which may then be able to hydrogen bond with the 4-OH hydroxyl group, or leucine. 

Replacement of tryptophan by glutamine at residue 392 in Zm-Pdc resulted in 1.4-fold 

increased catalytic efficiency on OHB and a more than 100-fold improved specificity 

towards the non-natural substrate (Table 4.2). However, the measured enzyme activities for 

the variant W392Q still remained at low levels (Vmax = 0.02 U mg-1). 

 

Figure 4.3. Active site region in the crystal structure of Z. mobilis pyruvate decarboxylase (Zm-Pdc) wild-

type (A) and W392Q (B). The synthetic 2-keto-4 hydroxybutyrate (OHB) substrate was manually docked into 

the X-ray structure of the enzyme with bound pyruvate (Pyr) and a TPP analogue complexed with a Mg2+ ion 

(PDB code 2wva). The individual mutation at residue 392 was introduced to Zm-Pdc manually in Pymol and 

resulting change in pocket size is shown.
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Contrarily to Zm-Pdc, the substrate binding site in Ll-KdcA can accept a wide range and 

more voluminous molecules including branched chain substrates. Visual inspection of the 

X-ray crystal structure of an enzyme-bound inhibitory TPP analogue reaction intermediate20 

manually docked with pyruvate and OHB substrates, enabled the identification of target 

residue positions for mutation (Figure 4.4A). In particular, Val461 lies at the entrance of the 

S-pocket to which it can control access. Replacement by a bulkier isoleucine residue, as 

observed in Zm-Pdc (Ile472), is expected to further hinder binding in the S-pocket, and to 

improve interactions with the OHB in the main substrate channel (Figure 4.4B). The active 

site of Ll-KdcA is lined by several other key residues previously identified to play a critical 

role in controlling S-pocket sized and acceptance of bulkier substrates, including Phe381, 

Gly402, Met538, and Phe54221. Substitution of Val461 by isoleucine in Ll-KdcA provided 

a 2-fold increase in maximum enzyme activity on OHB while decreasing affinity towards 

this non-natural substrate by approximately two-fold (Table 4.2). Also the replacement of 

Gly402 with a serine residue in Ll-KdcA was attempted but with no noticeable 

improvements (data not shown).  

 

 

Figure 4.4. Active site region in the crystal structure of L. lactis branched chain keto-acid decarboxylase (Ll-

KdcA) wild-type (A) and V461I (B). The X-ray structure bound with a TPP analogue complexed with a Mg2+ 

ion (PDB code 2vbg) was aligned with Zm-Pdc structure (PDB code 2wva) crystalized with pyruvate bound. 

Upon protein structure overlay, the Zm-Pdc structure was hidden, leaving only the pyruvate, TPP analogue and 

Mg2+ and the Ll-KdcA active site shown. The pyruvate molecule served as an indicator of the putative binding 

position and orientation of the 2-ketoacid substrates within Ll-KdcA, after which the synthetic 2-keto-4 

hydroxybutyrate (OHB) substrate was manually docked. The individual mutation at residue 461 was introduced 

to Ll-KdcA manually in Pymol and resulting change in pocket size is shown. 
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4.5 PDO production from DHB 

To evaluate the possibility of converting DHB to PDO, an operon composed of genes 

encoding for the DHB dehydrogenase Ec-LldD V108C variant, OHB decarboxylase variant 

from either Zm-Pdc or Ll-KdcA and the aldehyde reductase Ec-YqhD was assembled. The 

operons were cloned into the medium-copy pACT3 vector22 and resulting plasmids were 

transformed into the wild-type E. coli MG1655 strain. PDO production from a racemic 

mixture of 40 mM (D/L)-DHB after 47h of incubation was obtained for all constructs except 

for the strain Pen946 which harbored an empty plasmid (Table 4.3). These results indicate 

that the proposed reaction sequence to transform DHB into PDO is feasible. The strains 

which expressed the OHB decarboxylase variants Ll-KdcA V461I (strain Pen913) and Zm-

Pdc W392Q (strain Pen966) showed the highest PDO titers (3.75 and 2.82 mM, 

respectively). Thus, increased OHB decarboxylase activity of the mutants translated into 

increased PDO production. But since DHB consumption by cells was not further improved, 

DHB oxidation and/or DHB uptake were hypothesized as limiting factor(s) towards PDO 

biosynthesis. To evaluate this possibility, the PDO-producing strain Pen913 was incubated 

with various DHB concentrations (10-100 mM) and PDO titers evaluated (Figure 4.5).  
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Figure 4.5. Production of PDO from various concentrations of (D/L)-DHB by Pen913 strain (E. coli MG1655 

pACT3-llDdV108C-kdcAV461I-yqhD). Cells were cultivated in 250 mL non-baffled shake flasks on mineral 

medium containing 20 g L-1 glucose. At OD600 ~0.6, IPTG (1 mM) and a racemic mixture of (D/L)-DHB were 

added to the medium. After 47h incubation time, product and substrate titers were measured. Data are presented 

as the mean (±S.D.) of at least two replicates.  

 

 

Indeed, cells were able to assimilate more substrate at increasingly higher DHB 

concentrations. Crucially, supplementation with 50 mM and 100 mM (D/L)-DHB yielded 

however a marginal 12% increase in DHB consumption by cells (11.4 and 12.8 mM 

consumed, respectively). This occurrence suggests that DHB uptake systems may be DHB 

unspecific and/or saturated. Dischert and colleagues23 recently proposed various permeases 

from E. coli as putative DHB transporters, including glycolate permease (GlcA) and α-

ketoglutarate permease (KgtP). In line with this information, DHB consumption from strains 

expressing the synthetic pathway in parallel with the aforementioned DHB uptake systems 

was therefore investigated. Interestingly, DHB consumption was substantially increased 

within 48h only in strains that overexpressed GlcA (Figure 4.6), supporting the fact that 

DHB uptake was rate-limiting for PDO production. The lower PDO yields observed 

(glcAproD: 0.44 mol mol-1) in comparison to the wild-type host strain (0.62 mol mol-1) may 

however indicate downstream catalytic inefficiencies and/or DHB conversion into other 

products.  
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Figure 4.6. Production of PDO from (D/L)-DHB by various E. coli MG1655 host strains (as indicated in X-

axis) harboring the pACT3-llDdV108C-kdcAV461I-yqhD plasmid. For each condition PDO yields were as follows, 

wt: 0.62 ±0.23 mol mol-1, glcAproD: 0.44 ±0.14 mol mol-1, and kgtPproD: 0.54 ±0.17 mol mol-1. Cells were 

cultivated in 250 mL non-baffled shake flasks on mineral medium containing 20 g L-1 glucose. At OD600 ~0.6, 

IPTG (1 mM) and a racemic mixture of 50 mM (D/L)-DHB were added to the medium. After 47h incubation 

time, product and substrate titers were measured. Data are presented as the mean (±S.D.) of at least two 

replicates.    

 

 

4.6 Synthesis of PDO from glucose 

To demonstrate PDO production directly from glucose, the genes coding for the complete 

six-reaction step pathway were cloned into two different plasmids. The previously 

constructed medium-copy pDHBop(ppc*) vector12 provided all enzymatic activities 

required to transform malate into DHB by driving the expression of malate kinase Ec-LysC 

V115A:E119S:E250K:E434V, malate semialdehyde dehydrogenase Bs-Asd E218Q, and 

malate semialdehyde reductase Ms-Ssr H39R:N43H enzymes. Overexpression of the 

malate-insensitive phosphoenolpyruvate carboxylase variant Ec-Ppc K620S from the 

pDHBop(ppc*) plasmid was previously shown to greatly increase DHB production12. The 

three genes responsible for the conversion of DHB to PDO were cloned into a high-copy 

vector yielding pEXT20-lldDV108C-pdcW392Q-yqhD or pEXT20-lldDV108C-kdcAV461I-yqhD. 

The pDHBop(ppc*) and pEXT20-derived vectors were transformed into E. coli strains 

which were cultivated for 24h on mineral medium containing 20 g L-1 glucose as the carbon 

source. Resulting strains CF317 and CF318 which expressed all pathway genes produced 

small amounts of PDO (up to 0.1 mM), whereas the control strain CF316 which only 

harbored pDHBop(ppc*) and an empty control pEXT20 plasmid was unable to produce PDO 

(Figure 4.7). While it is still unclear why DHB excretion was 5-fold higher in CF318 than 
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CF317, these results suggested that the very low PDO production from glucose can be 

associated to a weaker catalytic capacity of the downstream DHB-to-PDO pathway as 

compared to the DHB-yielding pathway.  

 
Figure 4.7. PDO production from glucose after 24h of cultivation of an E. coli mono-culture system. Cells were cultivated 

in 250 mL baffled shake flasks on mineral medium containing 20 g L-1 glucose. At OD600 ~0.6, IPTG (1 mM) was added 

to the medium. Data are presented as the mean (±S.D.) of at least two replicates.  

 

 

 

 

 

 

4.7 Employing a two-strain co-cultivation mode to increase PDO production 

To get some insights about which of the two synthetic pathways is limiting in the PDO 

production from glucose, a co-cultivation strategy was considered in which an E. coli strain 

expresses the synthetic DHB-yielding pathway while another one bears the PDO-producing 

pathway. Adopting such strategy would additionaly reduce the metabolic burden imposed 

by the expression of the whole synthetic pathway in a single production strain. This idea is 

further supported by the previous demonstration of bacterial co-cultures as a mean towards 

increased production of small molecules, including muconic acid24, 3-amino-benzoic acid25 

and n-butanol26. The design of the co-culture strategy is shown in Figure 4.8.  
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Figure 4.8. Scheme of the co-culture design, in which a first cell expresses the upstream pathway enabling DHB synthesis 

from glucose, while a second cell incorporates extracellularly accumulated DHB and converts it to PDO due to expression 

of the downstream pathway. 

 

The upstream DHB-yielding pathway was expressed from the CF285 strain whilst the 

downstream part of the pathway which converted DHB into PDO was expressed in the 

strains Pen913 or Pen966 (which differed in the expression of the OHB decarboxylase 

mutants, Ll-KdcA V461I and Zm-Pdc W392Q, respectively). To evaluate the performance 

of the two-strain co-cultivation strategy, the DHB- and PDO-producing strains were 

cultivated alone or simultaneously (in the latter case, at 1:1 inoculation ratio) for 24h on 

glucose-containing mineral medium (Figure 4.9).  

 

 

Figure 4.9. PDO production from glucose after 24h of cultivation of E. coli-E. coli co-culture systems at an inoculation 

ratio equal to 1:1 (in which 1 corresponds to an OD600 of 0.2). Improved PDO titers were achieved by varying PDO 

producing strains (Pen913, Pen966, CF283, CF286) while keeping unchanged the DHB producing strain CF285. Cells were 

cultivated in 250 mL baffled shake flasks on mineral medium containing 20 g L-1 glucose. After 3h of cell cultivation, 

IPTG (1 mM) was added to the medium. Data are presented as the mean (±S.D.) of at least two replicates.    
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In a control experiment, strain CF285 alone produced 14.7 mM DHB but no PDO. The co-

cultivation of CF285:Pen913 resulted in two-fold higher PDO production than of 

CF285:Pen966 (0.8 mM vs 0.4 mM), indicating that the catalytic efficiency of chosen OHB 

decarboxylase is critical in the DHB-PDO pathway. In both cases, DHB was extracellularly 

accumulated, which accordingly was the highest in the co-culture producing PDO at lower 

titers. This observation is supported by the idea that the PDO-producing pathway bearing 

the DHB dehydrogenase variant Ec-LlDd V108C and either one of the OHB decarboxylase 

mutants (Ll-KdcA V461I and Zm-Pdc W392Q) is catalytically less efficient that the DHB-

yielding pathway. As GlcA overexpression was found to enhance DHB uptake, this co-

cultivation strategy was repeated using a PDO-producing strain that overexpressed glcA 

(CF283: MG1655 glcAproD pACT3-llDdV108C-kdcAV461I-yqhD or CF286: MG1655 glcAproD 

pACT3-llDdV108C-pdcW392Q-yqhD). This resulted in increased PDO production up to 2.8 mM 

with CF285 and CF283 strain co-cultivation, whereas only 1.5 mM was obtained with co-

culture of CF285 with CF286, confirming the previous results suggesting that the OHB 

decarboxylase mutant Ll-KdcA V461I is more efficient than the Zm-Pdc W382Q (see Table 

4.3).  

In an attempt to fine-tune the best-performing CF285:CF2833 co-cultivation system, the 

inoculation ratios were varied (Figure 4.10). Specifically, the starting cell concentration 

(expressed as OD600) of PDO-producing strain CF283 was step-wise decreased while 

keeping constant the initial cell concentration of CF285 to assure DHB production at levels 

not inferior to those observed above. At least 2-fold higher accumulation of DHB was 

observed when less CF283 was added to the co-culture system, but improvements in PDO 

production were only marginal. In the overall, co-cultivation of CF285 and CF283 strains at 

an inoculation ratio of 1:0.5 resulted in the highest production of PDO (3.4 mM) from 

glucose.   
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Figure 4.10. PDO production from glucose after 24h of cultivation of DHB-producing strain CF285 and PDO-producing 

strain CF283 at various inoculation ratios (in which 1 corresponds to an OD600 of 0.2). Cells were cultivated in 250 mL 

baffled shake flasks on mineral medium containing 20 g L-1 glucose. After 3h of cell cultivation, IPTG (1 mM) was added 

to the medium. Data are presented as the mean (±S.D.) of at least two replicates.    

 

 

4.8 Discussion 

In this work, a synthetic pathway enabling PDO biosynthesis from glucose under aerobic 

conditions via the Krebs cycle intermediate (L)-malate is presented. The proposed route does 

neither involve supplementation of the expensive vitamin-B12 nor the use of glycerol as a 

precursor unlike naturally occurring PDO pathways. Instead, it is based on the extension of 

a previously published (L)-DHB metabolic pathway with three additional reaction steps. But 

as an energy and NADPH-intensive pathway which requires one mol of ATP and three mol 

of NAD(P)H per each mol of PDO generated from malate, co-factor supply is likely essential 

for achieving relevant PDO titers. In this scope, our group27 has previously engineered E. 

coli malate metabolism via Krebs cycle and glyoxylate shunt, which provides increased ATP 

and NADH amounts at the expense of a decreased maximum malate yield (1.33 mol mol-1 

glucose). Implementation of the complete PDO pathway in a malate-overproducing strain 

may therefore translate into increased PDO titers.   

One of the major challenges found during the construction of non-natural pathways consists 

in finding desired enzyme activities at rates compatible with in vivo applications. The 

proposed route uses a combination of natural and engineered enzymes acting on non-natural 

substrates. While the three first catalytic steps linking (L)-malate to DHB were demonstrated 

elsewhere12, the discovery of the three remaining steps that would render PDO production 
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possible was targeted in this work. Substrate promiscuity is a feature displayed by around 

one-tenth of naturally occurring enzymes and particularly useful towards the discovery of 

new enzyme functions28. Based on the selection of template enzymes performing similar 

reactions and acting on sterically cognate substrates, candidate (L)-DHB dehydrogenase and 

OHB decarboxylase enzymes were first screened. The chosen enzymes exhibited however 

weak activities on non-natural substrates, reason for which a protein rational engineering 

was considered towards optimization of desired catalytic efficiencies. But the relatively 

limited success in increased specificities towards these non-natural substrates obtained with 

engineered Ec-LlDd V108C and OHB decarboxylase variants (Ll-KdcA V461I and Zm-Pdc 

W392Q) demand for alternative strategies. In this regard, the recently developed 

transcriptional-based metabolite sensor for aldehyde detection (see Chapter 5), including 

the resulting 3-HPA product of OHB decarboxylation, may be used as a tool for in vivo 

screening of OHB decarboxylase and/or other rate-limiting upstream enzyme(s) mutant 

libraries generated by (semi-)random mutagenesis. 

For a more comprehensive understanding of the pathway, the feasibility of the proposed 

DHB-PDO pathway was first evaluated, but the uncomplete substrate consumption together 

with low PDO yields revealed an important limitation. This bioconversion experiments also 

indicated that the DHB uptake is a bottleneck, which was in part relieved by overexpression 

of the glycolate encoded transporter GlcA. However, even in a strain in which uptake of 

DHB has been improved, PDO yields were not increased which further suggests OHB 

decarboxylases to limit the rate at which DHB is converted to PDO. 

When the direct production of PDO from glucose was evaluated by expressing the six-step 

synthetic pathway in an E coli strain, a very weak production titer of 0.1 mM PDO was 

obtained from 110 mM glucose. In the same time, metabolic burden imposed by the 

expression of this whole synthetic pathway is likely to occur due to the presence of a 

medium- and high-copy plasmids in cells. Nevertheless, this experiment revealed that the 3-

step synthetic pathway that converts DHB to PDO was likely less efficient than the three-

step synthetic pathway yielding DHB from malate since a significant amount of DHB 

accumulated in the growth medium. As a mean to overcome the hypothetical metabolic 

burden arising from expression of this six-step synthetic pathway, a co-cultivation strategy 

was attempted in which the whole pathway was split into an E. coli strain expressing the 

DHB-yielding and another E. coli strain that expressed the PDO-producing pathway. This 
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strategy resulted in increased product formation (up to 3.4 mM PDO), thereby showing that 

the performance of a synthetic pathway can, in principle, be improved by splitting into 

functional modules that are expressed in different strains. In addition, a lower accumulation 

of DHB in the medium was observed when employing this co-cultivation approach as 

compared to the expression of the whole synthetic pathway in a single E. coli cell, which 

can be ascribed in part to a better functioning of the PDO-producing pathway when it is 

expressed alone. For industrial applications this is however not a preferable solution, in 

particular, for production of bulk chemical which requires extremely high carbon efficiency 

that cannot be achieved by co-culturing two strains. Overcoming the identified limiting steps 

of the DHB-PDO synthetic pathway, additional strain engineering towards increased 

availability of DHB to the PDO-producing pathway, as well as resolving the metabolic 

burden caused by expression of the six-step synthetic pathway are essential to achieve higher 

production of PDO from glucose in a single strain. 

 

4.9 Materials and methods 

4.9.1 Chemicals and reagents 

All chemicals and solvents were purchased from Sigma-Aldrich unless otherwise stated. 

Restriction endonucleases and DNA-modifying enzymes were purchased from New 

England Biolabs and used according to manufacturer’s instructions. DNA plasmid isolation 

was performed using GeneJET Plasmid Miniprep Kit (Thermo Scientific). DNA extraction 

from agarose gel was carried out using the GeneJET Gel Extraction Kit (Thermo Scientific). 

DNA sequencing was carried out by Beckman Coulter Genomics (Takeley, United 

Kingdom) or Eurofins SAS (Ebersberg, Germany). The racemic mixture of sodium (D/L)-

DHB (purity, 70%) was chemically synthetized by Adisseo SA (France).  

 

4.9.2 Protein cloning and mutagenesis 

E. coli DH5α (New England Biolabs) was routinely used for construction of plasmids. Wild-

type Ec-lldD and Zm-pdc genes were amplified from genomic DNA (extracted from E. coli 

MG1655 and Zymomonas mobilis ATCC® 31821, respectively) by PCR. The used primers 

are listed in Table 4.4. The gene Ll-kdcA from Lactococcus lactis B1157-NIZO was codon-
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optimized for expression in E. coli and synthesized by Eurofins. The resulting DNA 

fragments were digested with suitable restriction enzymes (see Table 4.4) and cloned into 

the corresponding sites of pET28a vector system (Novagen) using T4 DNA ligase (Biolabs), 

thereby adding an N-terminal hexa-His tag. Point mutations were introduced on pET28-

derived plasmid by inverse PCR using the primers listed in Table 4.5. Resulting products 

were digested by DpnI to remove template DNA and transformed into competent cells. The 

introduction of desired mutation was verified by sequencing. 

 

Table 4.4. Primers and restriction enzymes used to clone genes into pET28a expression vector 

* Ec (from Escherichia coli), Zm (from Zymomonas mobilis), Ll (from Lactococcus lactis) 

 

Table 4.5. Primers used for site-directed mutagenesis 

Matrix Mutated 
position 

Primer sequences (5' – 3') Restr. site 

pET28-Ec-lldD V108C TTCCGTTTACTCTGTCGACGTGTTCCGTTTGCCCGA 

TCGGGCAAACGGAACCCGTCGACAGAGTAAACGGAA 

HincII 

pET28-Zm-Pdc W392Q GTTATTGCTGAAACCGGTGACTCTCAGTTCAATGCGCA

GCGCATGAAGC 

GCTTCATGCGCTGCGCATTGAACTGAGAGTCACCGGT

TTCAGCAATAAC 

FspI 

pET28-Ll-kdcA V461I TTTGCTTTATCATTAATAATGACGGCTACACAATCGAG

CGCGAAATTCA 

TGAATTTCGCGCTCGATTGTGTAGCCGTCATTATTAAT

GATAAAGCAAA 

AseI 

 

 

4.9.3 Protein expression and purification 

Enzymes were expressed in E. coli BL21 (DE3) cells (New England Biolabs) in 200 mL 

Luria-Bertani (LB) medium supplemented with 50 µg/mL kanamycin (37 ºC, 200 rpm). 

Gene* Primer sequences (5' – 3') Restriction enzymes Resulting vector 

Ec-lldD CATATGATTATTTCCGCAGCCAGC 

AGATCTCTATGCCGCATTCCCTTTC 

NdeI 

BgI2 

pET28-Ec-lldD 

Zm-pdc CATATGAGTTATACTGTCGGTACC 

GGATCCCTAGAGGAGCTTGTTAAC 

NdeI 

BamHI 

pET28-Zm-pdc 

Ll-kdcA provided in vector by Eurofins NheI 

EcoRI 

pET28-Ll-kdcA 
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Expression cultures were inoculated from an overnight culture at OD600 of 0.05 and grown 

to OD600 of 0.6 before protein expression was induced by addition of 1 mM isopropyl β-D-

1-thiogalactopyranoside (IPTG) to the culture medium. Cells were harvested after 3 h of 

incubation by centrifugation (15 min at 4,000 rpm, 4 ºC) and pellets stored at -20 ºC until 

further analysis.  

Frozen cell pellets were resuspended in 1 mL of lysis buffer (50 mM Hepes, 300 mM NaCl, 

pH 7.5) and disrupted by four successive rounds of sonication (sonication interval: 30 s, 

power output: 30%, sonicator: Bioblock Scientific, VibraCell™ 72437). The resulting cell 

crude extract was directly used for measurement of FMN-dependent 2-hydroxyacid 

dehydrogenase activities, while 2-ketoacid decarboxylase enzymes were purified as 

described elsewhere12.  

 

4.9.4 Enzymatic assays 

Protein concentrations were determined prior to enzymatic assays by the method of 

Bradford29. All enzyme assays were performed in a microplate reader (Epoch 2, BioTek) at 

37ºC in 96-well flat-bottomed microtiter plates in a final volume of 250 µL.  

FMN-dependent 2-hydroxyacid dehydrogenase activity: Activity of wild-type membrane-

associated (L)-lactate dehydrogenase and mutant variant V108C assayed in the oxidative 

direction by monitoring reduction of 2,6-dichloroindophenol (DCIP) at 655 nm (ε = 5.9 mM-

1 cm-1) during oxidation of 2-hydroxy acids. The assay mixture contained 60 mM Hepes (pH 

7), 50 mM KCl, 0.06 mM DCIP and appropriate amounts of crude protein extract. Reactions 

were started by adding appropriate concentrations of (L)-lactate or a racemic mixture of 

(D/L)-DHB (Adisseo SAS, France). 

2-Ketoacid decarboxylase activity: Activity of keto-acid decarboxylase wild-type and 

mutant variants was assayed by coupling the decarboxylation reactions to the NAD(P)H-

dependent reduction of the produced aldehydes. The decarboxylation of natural substrates 

(pyruvate, 3-methyl-2-oxobutyric acid) was coupled to the NADH-dependent reduction of 

acetaldehyde catalyzed by yeast alcohol dehydrogenase (Sigma, A7011). OHB 

decarboxylase activity was assayed by coupling decarboxylase activity to the NADPH-

dependent reduction of the released 3-hydroxypropanal by purified aldehyde reductase Ec-
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YqhD. The assay mixture contained 60 mM Hepes (pH 7), 50 mM KCl, 5 mM MgCl2, 0.25 

mM NAD(P)H, 0.5 mM thiamine pyrophosphate, 100 µg mL-1 auxiliary enzyme and 

appropriate amounts of purified enzyme. Reactions were started by adding appropriate 

concentrations of pyruvate, 3-methyl-2-oxobutyric acid or OHB. The latter was synthesized 

in-house as previously described30.  

 

4.9.5 Construction of plasmids and strains for biosynthesis of PDO  

All plasmids and strains constructed and used in this study for PDO production are listed in 

Table 4.6.  

Plasmid construction: The gene Ec-yqhD was amplified by PCR from genomic DNA with 

primer pairs pen290/pen291, whilst the remaining genes were amplified from pET28-28 

derived vectors using primer pairs listed in Table 4.7. DNA fragments were purified and 

assembled by homologous recombination with BamHI/SalI digested pEXT20 or pACT3 

vector using the NEBuilder® HiFi DNA Assembly kit (New England Biolabs). The resulting 

plasmids were transformed into DH5α competent E. coli cells and assembled operons 

verified by DNA sequencing. 

Strain construction: E. coli K-12 substr. MG1655 (ATCC 47076) was used as the parental 

strain for all constructions in this study. Expression of glcA and ktgP genes was rendered 

constitutive by replacing the native chromosomal 5’-UTR of each gene by the synthetic 

constitutive and insulated promoter proD31. The proD sequence was preceded by a kan 

resistance cassette which was amplified by PCR adding 50 bp flanking sequences that were 

homologous to the target locus. The resulting DNA fragment was used to replace the natural 

gene promoter by homologous recombination32. Primers used are listed in Table 4.7. 

Positive clones were selected on LB agar plates containing kanamycin (50 µg mL-1) and 

verified by PCR analysis. The kan cassette was removed from the genome by expressing 

FLP recombinase from the pCP20 plasmid33 and correct excision of the cassette was verified 

by PCR using locus specific primers (Table 4.7). Plasmids were transformed into the target 

E. coli strains using standard protocols34. 
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4.9.6 Synthesis of PDO from DHB 

All cell cultivation was carried out at 37 ºC on a rotary shaker (Infors HT, France) running 

at 200 rpm. Pre-cultures were grown in 5 mL of LB in 50 mL falcon tubes. After ~10h, 500 

µL were used to inoculate a second pre-culture (10 mL of 90 % v/v M9 mineral medium 

supplemented with 20 g L-1 glucose and 10 % v/v LB in 50 mL falcon tubes) that was 

cultivated overnight. The biomass needed to start main cultures with a starting OD600 of 0.2 

was transferred to 250 mL baffled shake flasks containing 25 mL of 90 % v/v M9 mineral 

medium supplemented with 20 g L-1 glucose and 10 % v/v LB, and IPTG and (D/L)-DHB 

were added (at amounts indicated in each associated figure or table) when OD600 reached 

~0.6. The antibiotic chloramphenicol was added when required at 25 mg L-1. 

 

4.9.7 Synthesis of PDO from glucose 

Pre-cultures were grown in 5 mL of LB in 50 mL falcon tubes. After ~10h, 500 µL were 

used to inoculate a second pre-culture (10 mL of M9 mineral medium supplemented with 20 

g L-1 glucose in 50 mL falcon tubes) that was cultivated overnight. The biomass needed to 

start main cultures with a starting OD600 of 0.2 was transferred to 250 mL baffled shake 

flasks containing 25 mL of M9 mineral medium supplemented with 20 g L-1 glucose. The 

antibiotics ampicillin, kanamycin sulphate and chloramphenicol were added when required, 

respectively, at 100, 50 and 25 mg L-1. IPTG (1 mM) was added after 3 h of cell cultivation. 

In co-cultivation experiments, the different strains were inoculated at a ratio described in the 

text. 

 

4.9.8 Analytical methods 

Concentrations of glucose and (D/L)-DHB were determined on a Dionex Ultimate 3,000 

HPLC system (Thermo Scientific, France) equipped with a RI detector (RID-10A, 

Shimadzu, Japan) and UV/Vis detector (SPD-20A, Shimadzu). The sample injection volume 

was 20 μL, and the compounds were separated on a Rezex RoA-organic acid H+ (8%) resin-

based column preceded by a SecurityGuard guard cartridge (Phenomenex, USA). The 

separation was performed at 80 ºC with 0.5 mM H2SO4 at 0.5 mL min-1 as mobile phase.  
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All samples were centrifuged (2 min at 13,000 rpm) and syringe-filtered (0.2 µm), and the 

resulting supernatant stored at -20 ºC before analysis. A standard calibration curve was 

obtained by injecting standards and used for all compound analysis. 
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4.10 Supplementary information 

  

Table S4.1. Gibbs free energy of formation of PDO pathway intermediates. 

Compound  Contributing groups  ΔfG0’ [kJ mol-1] 

malate2-  2x –COO1-  
1x -OH  
1x -CH2-  
1x –CH<  

-840.98 

malyl-P2-  1x –COO1-  
1x -OH  
1x -CH2-  
1x –CH<  
1x -CO-OPO3H-  

-1740.1 

malate-SA-  1x -COO1-  
1x –OH  
1x -COH  
1x -CH2-  
1x –CH<  

-620.5 

DHB-  1x -COO1-  
2x –OH  
2x -CH2-  
1x –CH<  

-660.2 

OHB- 1x -COO1-  
1x –OH  
2x -CH2-  
1x >CO 

-626.6 

3-HPA 1x –OH  
2x -CH2-  
1x >CO 

-287.3 

PDO 2x –OH  
3x -CH2-  

-326.9 

ATP3- 
ADP2- 
NADPH 
NADP+ 
HPO42- 
H+ 
NADH 
NAD+ 
FMN 
FMNH2 
CO2 

 

 

-2819.4 
-1949.1 
-3082.9 
-3104.9 
-1096.1 
-39.9 
-2193.8 
-2215.8 
-1352.4 
-1449.0 
-386.0 
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Note S4.1. Standard Gibbs free energy of the DHB pathway 

The stoichiometry of the reactions malate kinase (MK), malate semialdehyde 

dehydrogenase (MSD) and malate semialdehyde reductase (MSR), 2,4-dihydroxybutyrate 

dehydrogenase (DD), OHB decarboxylase (OD) and aldehyde reductase (AR) is as follows 

(Equations S4.1-S4.6): 

MK:  malate2- + ATP3- + H+ = malyl-P2- + ADP2-  (S4.1) 

MSD:  malyl-P2- + NADPH = malate-SA- + NADP+ + HPO4
2-  (S4.2) 

MSR:  malate-SA- + NADPH + H+ = DHB- + NADP+  (S4.3) 

DD:  DHB- + FMN + H+= OHB- + FMNH2 (S4.4) 

OD:  OHB- + H+ = 3-HPA + CO2 (S4.5) 

AR:  3-HPA + NADPH + H+ = PDO + NADP+  (S4.6) 
 

The standard Gibbs free energy for the formation of the DHB pathway intermediates (ΔfG
0’) 

was calculated based on the group contribution theory35 using the dataset published by 

Jankowski36 (Supplementary Table 4). The standard Gibbs free energy of a reaction (ΔrG
0’) 

can be estimated according to Equation S8 from the standard Gibbs free energy of the 

formation of the participating compounds (ΔfG
0’), with νi being the stoichiometric 

coefficients. 

 

  (S4.8) 

 

Accordingly, the standard Gibbs free energy of the reactions S1 – S6 are MK: 11 kJ mol-1, 

MSD: 1.5 kJ mol-1, MSR: -21.8 kJ mol-1, DD: -23.1 kJ mol-1, OD: -6.8 kJ mol-1; AR: -21.7 

kJ mol-1. The upstream DHB pathway has a standard Gibbs free energy of -9.3 kJ mol-1, 

while downstream PDO pathway displays a standard Gibbs free energy of -51.6 kJ mol-1.  

The complete PDO pathway has a standard Gibbs free energy of -60.9 kJ mol-1. 
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Note S4.2. Calculation of the theoretical 2,4-dihydroxybutyric acid yield  

A previously published stoichiometric model of the central carbon metabolism in E. coli37 

was extended by 6 reactions steps enabling PDO production from malate. The theoretical 

yield was calculated based on elementary mode analysis using the CellNetAnalyzer 

software package38. The flux map showing one of the predicted carbon flux distributions 

that provide maximum yield was determined (data not shown). In the absence of cell growth, 

the maximum PDO yield is 1.5 mol per mol glucose. 

 

  



107 

 

4.11 References 

(1) Mak, W. S., Tran, S., Marcheschi, R., Bertolani, S., Thompson, J., Baker, D., Liao, J. 

C., and Siegel, J. B. (2015) Integrative genomic mining for enzyme function to enable 

engineering of a non-natural biosynthetic pathway. Nat. Commun. 6, 10005. 

(2) Saxena, R. K., Anand, P., Saran, S., and Isar, J. (2009) Microbial production of 1,3-

propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27, 

895–913. 

(3) Kraus, G. A. (2008) Synthetic Methods for the Preparation of 1,3-Propanediol. CLEAN 

- Soil, Air, Water 36. 648–651.  

(4) Xin, B., Wang, Y., Tao, F., Li, L., Ma, C., and Xu, P. (2016) Co-utilization of glycerol 

and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by 

Clostridium diolis. Sci. Rep. 6. 

(5) Biebl, H., and Marten, S. (1995) Fermentation of glycerol to 1,3-propanediol: use of 

cosubstrates. Appl. Microbiol. Biotechnol. 44, 15–19. 

(6) Hartlep, M., Hussmann, W., Prayitno, N. Meynial-Salles, I., and Zeng, A.-P. (2002) 

Study of two-stage processes for the microbial production of 1,3-propanediol from 

glucose. Appl. Microbiol. Biotechnol. 60, 60–66. 

(7) Nakamura, C. E., Gatenby, A. A., Hsu, A. K., La Reau, R. D., Haynie, S. L., Diaz-

Torres, M., Trimbur, D. E., Whited, G. M., Nagarajan, V., Payne, M. S., Picataggio, 

S. K., Nair, R. V. (1997) Method for the production of 1,3-propanediol by 

recombinant microorganisms. Patent US/6013494A. 

(8) Nakamura, C. E., and Whited, G. M. (2003) Metabolic engineering for the microbial 

production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459. 

(9) Mori, Y., and Shirai, T. (2018) Designing artificial metabolic pathways, construction of 

target enzymes, and analysis of their function. Curr. Opin. Biotechnol. 54, 41–44. 

(10) Soucaille, P., and Boisart, C. (2014) Method for the preparation of 1,3-propanediol 

from sucrose. Patent WO/2012/004247A1. 

(11) Chen, Z., Geng, F., and Zeng, A.-P. (2015) Protein design and engineering of a de novo 

pathway for microbial production of 1,3-propanediol from glucose. Biotechnol. J. 10, 

284–289. 



108 

 

(12) Walther, T., Topham, C. M., Irague, R., Auriol, C., Baylac, A., Cordier, H., Dressaire, 

C., Lozano-Huguet, L., Tarrat, N., Martineau, N., Stodel, M., Malbert, Y., Maestracci, 

M., Huet, R., André, I., Remaud-Siméon, M., and François, J. M. (2017) Construction 

of a synthetic metabolic pathway for biosynthesis of the non-natural methionine 

precursor 2,4-dihydroxybutyric acid. Nat. Commun. 8, 15828. 

(13) Deck, P., Exner, K. M., and Buschhaus, B. (2009) Method for the production of D,L-

2-hydroxy-4-alkylthio butyric Acid. Patent WO/2008/022953A1. 

(14) Jarboe, L. R. (2011) YqhD: a broad-substrate range aldehyde reductase with various 

applications in production of biorenewable fuels and chemicals. Appl. Microbiol. 

Biotechnol. 89, 249–257. 

(15) Clark, D. P., Nikolova, S., and Jiang, G. R. (2001) Regulation of the ldhA gene, 

encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology. 

147, 2437-2446. 

(16) Futai, M., and Kimura, H. (1977) Inducible membrane-bound L-lactate dehydrogenase 

from Escherichia coli. Purification and properties. J. Biol. Chem. 252, 5820–7. 

(17) Futai, M. (1973) Membrane D-lactate dehydrogenase from Escherichia coli. 

Purification and properties. Biochemistry 12, 2468–2474. 

(18) Tegoni, M., and Cambillau, C. (2008) The 2.6-Å refined structure of the Escherichia 

coli recombinant Saccharomyces cerevisiae flavocytochrome b2-sulfite complex. 

Protein Sci. 3, 303–313. 

(19) Mowat, C. G., Wehenkel, A., Green, A. J., Walkinshaw, M. D., Reid, G. A., and 

Chapman, S. K. (2004) Altered substrate specificity in flavocytochrome b2: structural 

insights into the mechanism of L-lactate dehydrogenation. Biochemistry 43, 9519–

9526. 

(20) Berthold, C. L., Gocke, D., Wood, M. D., Leeper, F. J., Pohl, M., and Schneider, G. 

(2007) Structure of the branched-chain keto acid decarboxylase (KdcA) from 

Lactococcus lactis provides insights into the structural basis for the chemoselective 

and enantioselective carboligation reaction. Acta Crystallogr. Sect. D Biol. 

Crystallogr. 63, 1217–1224. 

(21) Chen, G. S., Siao, S. W., and Shen, C. R. (2017) Saturated mutagenesis of 



109 

 

ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the 

ketoacid elongation cycle. Sci. Rep. 7. 

(22) Dykxhoorn, D. M., St. Pierre, R., and Linn, T. (1996) A set of compatible tac promoter 

expression vectors. Gene 177, 133–136. 

(23) Dischert, W., Dumon-Seignovert, L., Vasseur, P., Bestel-Corre, G., and Soucaille, P. 

(2016) A modified microorganism for the optimized production of 2,4-

dihydroxybutyrate with enhanced 2,4-dihydroxybutyrate efflux 1. Patent 

WO/2016/162442A1. 

(24) Zhang, H., Pereira, B., Li, Z., and Stephanopoulos, G. (2015) Engineering Escherichia 

coli coculture systems for the production of biochemical products. Proc. Natl. Acad. 

Sci. 112, 8266–8271. 

(25) Zhang, H., and Stephanopoulos, G. (2016) Co-culture engineering for microbial 

biosynthesis of 3-amino-benzoic acid in Escherichia coli. Biotechnol. J. 11, 981–987. 

(26) Saini, M., Hong Chen, M., Chiang, C. J., and Chao, Y. P. (2015) Potential production 

platform of n-butanol in Escherichia coli. Metab. Eng. 27, 76–82. 

(27) Trichez, D., Auriol, C., Baylac, A., Irague, R., Dressaire, C., Carnicer-Heras, M., Heux, 

S., François, J. M., and Walther, T. (2018) Engineering of Escherichia coli for Krebs 

cycle-dependent production of malic acid. Microb. Cell Fact. 17, 113. 

(28) Erb, T. J., Jones, P. R., and Bar-Even, A. (2017) Synthetic metabolism: metabolic 

engineering meets enzyme design. Curr. Opin. Chem. Biol. 37, 56–62. 

(29) Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 

248–254. 

(30) Walther, T., Calvayrac, F., Malbert, Y., Alkim, C., Dressaire, C., Cordier, H., and 

François, J. M. (2018) Construction of a synthetic metabolic pathway for the 

production of 2,4-dihydroxybutyric acid from homoserine. Metab. Eng. 45, 237–245. 

(31) Davis, J. H., Rubin, A. J., and Sauer, R. T. (2011) Design, construction and 

characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39, 1131. 

(32) Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal 

genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. 97, 6640–



110 

 

6645. 

(33) Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: 

TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-

resistance determinant. Gene 158, 9–14. 

(34) Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory 

manual. Mol. cloning a Lab. manual. 

(35) Mavrovouniotis, M. L. (1991) Estimation of standard Gibbs energy changes of 

biotransformations. J. Biol. Chem. 266, 14440–5. 

(36) Jankowski, M. D., Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. (2008) Group 

contribution method for thermodynamic analysis of complex metabolic networks. 

Biophys. J. 95, 1487–1499. 

(37) Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., and Gilles, E. D. (2002) Metabolic 

network structure determines key aspects of functionality and regulation. Nature 420, 

190–193. 

(38) Klamt, S., Saez-Rodriguez, J., and Gilles, E. D. (2007) Structural and functional 

analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2. 

 



111 

 

Chapter 5. Development of a metabolite sensor for high-

throughput detection of aldehydes in Escherichia coli 1  

 
5.1 Introduction 

Aldehydes are a class of chemicals with a wide range of applications, namely in the 

synthesis of rubbers, plastics and formulation of flavors and fragrances. Formaldehyde, 

butanal and isobutyraldehyde are among the aldehydes produced in quantities greater than 

1 Mt per year, while the aromatic aldehydes vanillin and benzaldehyde are the two most 

widely used flavoring agents in food products1,2. Producing these compounds from 

inexpensive sugar feedstocks using microbial species is therefore an alternative to the 

currently established chemical synthesis and plant-extraction processes3. Beyond their use 

as end-products, many aldehydes are intermediates of metabolic pathways resulting in 

multiple and diversified products (e.g. fatty acids, alcohols, alkanes, carboxylic acids), 

including those developed by our group leading to the production of glycolic acid (via 

glycolaldehyde), 1,3-propanediol (via 3-hydroxypropanal) and 2,4-dihydroxybutyrate (via 

malate semialdehyde)4–7. Optimizing those enzymatic activities that produce aldehydes is 

an essential task during the improvement of the above mentioned synthetic metabolic 

pathways. However, the rational or evolutionary engineering of such new enzymatic 

activities can be subject to various bottlenecks.  

Recent advances in synthetic biology together with decreasing DNA synthesis costs allow 

today for rapid design and assembly of DNA sequences that may encode individual enzymes 

or even entire metabolic pathways8,9. While an increasingly large sequence space becomes 

accessible at lower costs and higher rates, the available analytical systems to screen this vast 

number of sequences for positive variants often do not provide the necessary throughput. 

Small molecules such as aldehydes can be detected and quantified through the use of 

conventional chromatography (GC-MS, HPLC-MS)10 and colorimetric techniques (Schiff’s 

test). However, the analytical throughput of these techniques is far from being exploitable 

for laboratory evolution campaigns that are based on random mutagenesis. The development 

                                                 
1 A modified version of the published manuscript Frazão CJR, Maton V, François JM, Walther T. (2018) 

Development of a metabolite sensor for high-throughput detection of aldehydes in Escherichia coli. Front. 

Bioeng. Biotechnol. 6, 118. 
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of high-throughput screening and selection methods is therefore of crucial importance for 

successful directed evolution of strains and enzymes aiming at aldehyde overproduction11. 

A variety of devices sensitive to the accumulation of intra- or extracellular small molecules, 

ions or changes in physical parameters have been evolved using microbial cells12. Among 

those, ligand-responsive transcription factors (TFs) play a major role in cell physiological 

adaptation. They are DNA-binding proteins that regulate gene expression by physically 

interacting with specific target molecules13,14. Therefore, they are interesting devices for a 

broad range of applications, including the construction of whole-cell biosensors or 

metabolite sensors for detection of, respectively, extracellular or intracellular target 

molecules15–17. Metabolite sensors are usually modular. While a sensing module contains a 

transcriptional regulator which is activated in the presence of a target ligand, a reporter 

module consisting of a corresponding cognate promoter which drives transcription of a 

reporter gene (e.g. lacZ, gfp and mutant variants) enables the output of measurable signals18. 

The utilization of metabolite sensors has recently gained particular interest for evolution of 

bacterial strains19–21 and enzymes22,23. 

When metabolite sensors that detect the intracellular production of target molecules are 

combined with FACS systems, ultra-high throughput analyses and sorting of individual cells 

become feasible at rates higher than 107 cells screened per hour24. While these numbers 

make metabolite sensors a highly attractive tool for strain and enzyme engineering, the use 

of these sensors and respective implementation in a screening protocol is still far from being 

an “off-the-shelf technology” thereby requiring significant research efforts for both, the 

optimization of the sensor and the screening protocols. In this work, a metabolite sensor for 

detection of various aldehydes in E. coli was developed which employs the aldehyde-

responsive transcription factor YqhC to drive the expression of the yellow fluorescent 

reporter protein SYFP2. Based on 5’-UTR engineering of the sensor and reporter modules, 

the gain of the fluorescence signal in response to the model compound glycolaldehyde was 

strongly increased. The best sensor variant detected various extracellularly added aldehydes 

at concentrations in the range of 1-10 mM. In addition, intracellular production of aldehydes 

via two in-house synthetic pathways was reliably detected. This result showed that the 

metabolite sensor can be applied in screening systems that rely on the detection of 

intracellular production of a target aldehyde in live cells.  
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5.2 YqhC can be employed as an aldehyde sensor 

In a previous study, YqhD was identified by our research group as the major glycolaldehyde 

reductase in E. coli4, while others demonstrated this enzyme to be active on a broad range 

of short-chain aldehydes (e.g. butyraldehyde, 3-hydroypropanal, acrolein)25. In a genomic 

context, YqhD is expressed from the yqhD-dkgA operon that is known to be induced by the 

divergently transcribed transcriptional regulator YqhC (Figure 5.1)26,27. Genome-wide 

transcriptome studies from our group, furthermore, revealed yqhD and dkgA genes to be 

strongly up-regulated (by 26- and 10-fold, respectively) when wild-type E. coli cells were 

exposed to 10 mM glycolaldehyde4. On the basis of these observations, the transcription 

factor YqhC may in principle be used to engineer an in vivo aldehyde-sensor system in E. 

coli.  

 

 

Figure 5.1. The yqhC/D-dkgA operon in E. coli MG165528. When cells are exposed to aldehydes, the constitutively 

expressed transcription factor YqhC binds to the promoter region of yqhD that contains a SoxS-like binding sequence as 

well as a 24-bp palindrome (red rectangles), enhancing/activating transcription of yqhD and dkgA genes, resulting in the 

increased expression of the NADPH-dependent aldehyde reductases YqhD and DkgA. Solid and dashed arrows represent 

the transcription start site of divergently transcribed genes. 
 

 

To investigate this possibility, a bi-modular system was constructed in which the sensing 

module (named pSENS-13) drove constitutive expression of the regulatory protein YqhC 

from a low-copy number vector. In the reporter module (named pREP-14), expression of 

the super yellow fluorescent protein SYFP229 was placed under transcriptional control of 

the yqhD promoter region, that included 150-nt of the yqhC coding sequence and the 

adjacent 108-nt yqhC/D intergenic region (until 28-nt downstream the transcription start site 

where the putative ribosome binding site pre-sequence upstream yqhD gene starts) (Figure 

5.2a). To maximize protein expression, a 35-nt strong ribosome binding site (RBS_01) was 

designed using the RBS calculator tool30 and placed in front of the syfp2 reporter gene 

(Table 5.1 shows DNA sequence). Reporter and sensing modules were then co-transformed 
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into the parent strain CF30 (MG1655 Δsad ΔyqhD), that was chosen as the host for 

evaluating biosensor-strains. Deletion of the yqhD and sad genes was expected to minimize 

intracellular degradation of short-chain aldehydes and semialdehydes, respectively. All 

resulting biosensor-strains were cultivated in M9 mineral medium and candidate aldehydes 

were added to the exponentially growing cells when OD600 reached ~0.6. It is of note that 

the utilization of a minimal medium resulted in a strong reduction of cell background 

fluorescence, as opposed to utilization of Luria Broth (LB) and 2x Yeast tryptone (YT) rich 

media (data not shown). Since glycolaldehyde was previously found as a potent inducer of 

the YqhC-dependent transcriptional response4, the behaviour of the constructed sensor  was 

evaluated in response to this compound at a non-lethal concentration of 5 mM. After a 4h 

incubation period, fluorescence intensity was measured at the single-cell level by flow 

cytometry and found to be increased by 6.8-fold when compared to cells which were 

cultivated in the absence of this aldehyde (Figure 5.2b). In a control experiment, the host 

strain CF30 was co-transformed with the pZS23 empty plasmid and the reporter module 

pREP-14. The resulting strain displayed no fluorescence increase upon aldehyde exposure, 

thereby confirming the feasibility of the developed metabolite sensor.  
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Figure 5.2. Design of the YqhC-based aldehyde sensor. (A) The sensing module pSENS-13 consists of a low-copy plasmid 

in which yqhC is under control of a medium-strength constitutive promoter (PBBa_J23106) and a weak ribosome binding site. 

The reporter module pREP-14 was built by fusing the syfp2 reporter gene (preceded by a strong RBS) to the YqhC cognate 

promoter in a high-copy vector. The 5’-UTR regions containing regulatory elements responsible by transcription of yqhC 

and reporter genes were named pX and pY, respectively. In each module, the antibiotic resistance marker and origin of 

replication is shown (grey and white boxes, respectively). (B) Fluorescence variation upon aldehyde exposure of 

engineered E. coli strain co-transformed with pSENS-13 and pREP-14. In a control experiment, the host strain was 

transformed with pZS23 and pREP-14. All strains are derived from the host strain CF30 (E. coli MG1655 Δsad ΔyqhD). 

Cells were cultivated in M9 mineral medium containing 20 g L-1 glucose and incubated for 4 h with 5 mM glycolaldehyde 

when OD600 reached ~0.6. SYFP2 fluorescence was calculated using cytometry data based on geometric mean. The 

reported values represent the mean ± S.D. (n ≥ 2). 
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Table 5.1. Constitutive promoters and RBS used for construction of sensing modules in the metabolite sensor. 

 

a  Nomenclature of promoters and relative promoter strengths as in Registry of Standard Biological Parts 

(http://partsregistry.org/Main_Page). 
b  Strength calculated based on information available at Registry of Standard Biological Parts 

(http://parts.igem.org/Part:BBa_J23114) and study from Davis and co-workers31. 
c  RBS with various strengths were designed using online RBS calculator tool (https://salislab.net/software/forward). 

 

5.3 Engineering biosensor modules for improved aldehyde detection 

The effect of varying yqhC expression levels on the strength of the fluorescence signal by 

engineering promoter and RBS sequences in the sensing module was next evaluated (Table 

5.2). The impact of three alternative constitutive promoters with different characteristics 

(strength, insulation) immediately upstream of the weak RBS that controlled protein 

expression from the yqhC coding sequence was first tested (see DNA sequences in Table 

5.1). Whilst keeping reporter module pREP-14 unaltered in the host strain, co-

transformation with the engineered pSENS-X plasmid variants (in which X = 16-18) 

resulted in distinct behaviors regarding fluorescence induction ratios upon glycolaldehyde 

exposure (Table 5.2). The expression of yqhC gene under control of a weak constitutive 

promoter (PBBa_J23114) resulted in the highest fluorescence induction ratios (18.9-fold, p < 

0.001), and the corresponding plasmid pSENS-16 was therefore used as the backbone for 

further modifications. The implementation of ribosome binding sites of variable strengths 

(pSENS-X, in which X = 19-21) resulted in further improved fluorescence induction ratios 

of up to 32.6-fold when the pSENS-20 plasmid (medium-strength RBS, p < 0.01) was used.

http://parts.igem.org/Part:BBa_J23114
https://salislab.net/software/forward


1
1
7
 

 

 



118 

 

Having optimized the sensing module, the aldehyde sensor was further improved by 

engineering the promoter region of the reporter module pREP-14 (Figure 5.3). To this end, 

the plasmid pREP-15 was first created by extending the promoter region to include the full 

yqhC/D intergenic region plus the adjacent 150-nt downstream coding region of yqhD 

followed by a stop codon (Figure 5.3a). The additional introduction of this nucleotidic 

region was made in an attempt of including possibly missing uncharacterized motifs present 

in the genome of E. coli. However, significantly lower fluorescence induction ratios (10.9-

fold) were observed upon aldehyde exposure when compared to pREP-14 (32.6-fold, p < 

0.001) (Figure 5.3c). For this reason, the optimization of the promoter region in the pREP-

14 module was rather attempted to further enhance SYFP2 expression. In the genome of E. 

coli,  the yqhD gene is preceded by the -35 and -10 elements TTGAGA and CACAAT, 

respectively, to which RNA polymerase and the sigma factor σ70 bind to initiate 

transcription (with C as the initiation element)26. This configuration was maintained in 

pREP-14 to control expression of SYFP2. But since the sequence of the -10 promoter core 

element deviates from the consensus sequence for σ70-dependent promoters (-35: TTGACA; 

-10: TATAAT; initiation element: A)32, the -10 core and downstream distal elements in 

pREP-14 were replaced by those found in the well-characterized synthetic IPTG-inducible 

and σ70-dependent promoter PLlacO-1 (Figure 5.3b). When the resulting plasmid pREP-22 

was used to detect glycolaldehyde, a 70-fold fluorescence induction ratio was observed 

(Figure 5.3c), which corresponded to a 2-fold improvement when compared to the 

utilization of plasmid pREP-14 as reporter module (p < 0.001). Therefore, the plasmids 

pSENS-20 and pREP-22 were used as sensing and reporter modules for subsequent 

experiments. 
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5.4 The YqhC-based aldehyde sensor detects various aldehydes 

The best metabolite sensor was next characterized in response to the presence of various 

aldehydes at a concentration of 5 mM (Figure 5.4). After incubating exponentially-growing 

cells with candidate aldehydes, a clear correlation between the fluorescence induction and 

the chain length or the chemical structure of the aldehyde could not be established, although 

the presence of a benzyl group in aldehyde molecules (vanillin and phenylacetaldehyde) 

resulted in comparatively high fluorescence. Additionally, the presence of the short-chain 

aldehydes acrolein and succinic semialdehyde led to inductions up to 20-fold when 

compared to non-induced cells, whereas the biosensor was almost insensitive to butanal, 

furfural and hexanal.  

 

Figure 5.4. Aldehyde detection spectrum (at a concentration of 5 mM) of E. coli host strain CF30 (MG1655 Δsad ΔyqhD) 

harboring pSENS-20 and pREP-22 as sensing and reporter modules, respectively. Cells were cultivated in M9 mineral 

medium containing 20 g L-1 glucose and incubated for 12 h with aldehyde inducer when OD600 reached ~0.6. SYFP2 

fluorescence was calculated using cytometry data based on geometric mean. The reported values represent the mean ± 

S.D. (n ≥ 2). 

 

The dose-response curves for the fluorescence-inducing compounds are depicted in Figure 

5.5. With the exception of vanillin, they show that extracellular aldehyde concentrations 

above 1 mM were necessary to trigger a significant increase of the fluorescence signal.  
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Figure 5.5. Dose-response curve of E. coli host strain CF30 (MG1655 Δsad ΔyqhD) harboring pSENS-20 and pREP-22 

as sensing and reporter modules, respectively, when exposed to various aldehydes in the concentration range of 0.1-10 

mM. Cells were cultivated in M9 mineral medium containing 20 g L-1 glucose and incubated for 12 h with aldehyde 

inducer when OD600 reached ~0.6. SYFP2 fluorescence was calculated using cytometry data based on geometric mean. 

The reported values represent the mean ± S.D. (n ≥ 2). 

 

 

 

5.5 The aldehyde sensor can detect in vivo aldehyde production 

To explore the applicability of the biosensor as a tool for strain and/or enzyme evolution, 

intracellular aldehyde production during induction of two in-house synthetic metabolic 

pathways was monitored.  

 

5.5.1 Xylulose-1-phosphate synthetic pathway 

In the xylulose-1-phosphate (X1P) pathway (Figure 5.6a), xylose is first converted into (D)-

xylulose by xylose isomerase (XylA, E. coli)4. Xylulose is then phosphorylated by an 

enzyme with xylulose-1-kinase activity (KhkC, Homo sapiens) before the resulting 

xylulose-1-phosphate is cleaved into glycolaldehyde and dihydroxyacetone phosphate 

(DHAP) by a xylulose-1-phosphate aldolase (AldoB, H. sapiens). While glycolaldehyde can 

be further metabolized into either ethylene glycol or glycolic acid, DHAP is metabolized 

through the Embden-Meyerhof-Parnas pathway thereby enabling cell growth. It was 

previously shown that deletion of the xylulose-5-kinase encoding gene xylB was necessary 

to deviate the xylose-derived carbon flux into the synthetic pathway4. Therefore, we 

evaluated whether the glycolaldehyde production via the synthetic pathway could be 

monitored by our metabolite sensor in an E. coli ΔxylB ΔyqhD mutant strain that expresses 

the aldehyde sensor modules (pSENS-20, pREP-22) and the synthetic pathway (pZA33-
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khkC-aldoB). Deletion of yqhD served to minimize reduction of glycolaldehyde to ethylene 

glycol and under these conditions, the production of glycolic acid is very low4. The resulting 

strain was cultivated in mineral medium containing either 20 g L-1 glucose or a mixture of 

1 g L-1 glucose and 10 g L-1 xylose as carbon sources. In both cases, expression of the 

synthetic pathway was induced by the addition of 1 mM IPTG at the start of the culture. 

Rapid growth was observed during the cultivation on glucose, resulting in a depletion of 

carbon source in the first 24 h of the cultivation (Figure 5.6b). Cells growing on glucose 

exhibited no increase in fluorescence or extracellular accumulation of glycolaldehyde. A 

different behavior was observed when cells were cultivated on the glucose/xylose mixture. 

As expected, glucose was first consumed resulting in a doubling of the cell density after the 

first 3h of the cultivation. During the diauxic shift which lasted approximately 3h, cell 

density increased only very marginally before the growth rate increased again concomitant 

with utilization of xylose as carbon source. The fluorescence signal further mirrors this 

behavior in that there was no observable increase of fluorescence during growth on glucose 

and during the diauxic shift. Only upon induction of the X1P pathway by xylose, an increase 

in single-cell fluorescence by more than 40-fold was measured, which nicely correlated with 

the accumulation of glycolaldehyde in the medium. 

 

 



1
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5.5.2 1,3-Propanediol synthetic pathway from 2,4-dihydroxybutyrate 

In Chapter 4, a de novo six-step pathway enabling biosynthesis of 1,3-propanediol (PDO) 

from malate was conceived and experimentally validated. During the study, metabolic 

inefficiencies linked, among other factors, to the low catalytic efficiency of 2-keto-4-

hydroxybutyrate (OHB) decarboxylases were observed, reason for which improving such 

enzymes by directed evolution campaigns may ultimately render the designed pathway more 

efficient. Therefore, this subsection aims at detecting the 3-hydroxypropanal (3-HPA) 

product released by the enzyme since previous incubation of the metabolite sensor with 

exogenously added 3-hydroxypropanal yielded no fluorescence increase (data not shown) 

presumably due to the high-instability of the commercial version of the aldehyde.  

In line with this information, an alternative strategy for demonstration of intracellular 

accumulation of the 3-HPA compound was employed and it is based on the expression of a 

fraction of the PDO pathway that links DHB to 3-HPA (Figure 5.7a). In this sub-pathway, 

DHB is first converted into OHB by a (L)-DHB dehydrogenase. OHB is then 

decarboxylated by an enzyme with OHB decarboxylase activity. Since expression of the 

aldehyde reductase Ec-YqhD was previously shown to catalyze the conversion of the 

released 3-HPA molecule to PDO, deletion of yqhD and sad genes was expected to avoid 

aldehyde degradation. The production of 3-HPA via the synthetic pathway was first 

monitored by the metabolite sensor in an E. coli Δsad ΔyqhD lldDproD glcAproD lacIQ::Sp 

host strain (named CF267) that harbored the aldehyde sensor modules (pSENS-20, pREP-

22) and a medium-copy pZA33 plasmid expressing various OHB decarboxylase variants. 

The overexpression of DHB dehydrogenase and DHB importer encoding genes lldD and 

glcA permitted increased flux towards OHB synthesis from DHB, while the constitutive 

expression of lacIQ ensured a strong repression of target genes expressed from the pZA33 

plasmid in the absence of IPTG inducer molecule.  
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Figure 5.7. The monitoring process of in vivo production of 3-hydropropanal (3-HPA) from a racemic mixture of (D/L)-

2,4-dihydroxybutyrate (L-DHB) (A) is hampered by the unstable levels of background fluorescence in the absence of DHB 

precursor molecule from the E. coli host strain CF267 (MG1655 Δsad ΔyqhD lldDproD glcAproD lacIQ::Sp) co-transformed 

with pYqhC-20, pREP-22 and pZA33-derived plasmids (B). Cells were cultivated in M9 mineral medium containing 20 

g L-1 glucose and IPTG (1 mM) was added when OD600 reached ~0.6 (t = 0 h), after which fluorescence was monitored. 

SYFP2 fluorescence was calculated using cytometry data based on geometric mean. The reported values represent the 

mean ± S.D. (n ≥ 2). 

 

The resulting strains were cultivated in mineral medium containing 20 g L-1 glucose, and 

IPTG was added at 1 mM at OD600 ~0.6 (t = 0 h) to express the OHB decarboxylase variants 

Ll-KdcA wt or V461I. In a control experiment in which the DHB precursor was not added 

to the cultivation medium (Figure 5.7b), the expression of both decarboxylases resulted 

however in a fluorescence increase over time thereby suggesting that both enzyme variants 

were able to convert other intracellularly available 2-ketoacids into corresponding 

aldehydes to which the metabolite sensor is sensitive. This was further confirmed by the 

expression of the empty plasmid pZA33, which resulted in nearly no fluorescence variation 

over time in the absence of DHB. Crucially, the Ll-KdcA wild-type enzyme has been 

previously shown to possess activity on a broad range of 2-ketoacids involved in the 

synthesis of branched chain amino acids (BCAA)33. The BCAA metabolic pathways leading 

to the synthesis of valine, leucine and isoleucine are represented in Figure 5.8. 

 

 



126 

 

 

Figure 5.8. Branched-chain amino acid pathway in E. coli involves the synthesis of intermediate 2-ketoacids. Adapted 

from Dietrich, 201334. 

 

 

In particular, the enzymes encoded from the ilvEDA operon are determinant for the 

anabolism/catabolism of valine, leucine and isoleucine. Whilst the addition of extracellular 

excess amounts of those amino acids has previously been reported to result in the 

transcriptional repression of ilvEDA operon and subsequent abolishment of BCAA 

synthesis35, no perceptible improvements in cell fluorescence background were observed 

when supplementing the cultivation medium with BCAAs at a concentration of 0.5 mM 

(data not shown). For this reason, step-wise gene deletion of ilvEDA operon from the host 

strain was envisaged. While ilvE gene deletion yielded no further improvements, the 

additional genetic deletion of ilvD and ilvA resulted in a low fluctuation in fluorescence 

levels up to 4 h post-induction in the absence of DHB (Figure 5.9). Therefore, the host 

strain CF267 ΔilvEDA was chosen to continue the studies aiming at demonstrating 3-HPA 

production from extracellularly added DHB. 
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Figure 5.9. Engineering the host strain CF267 harboring pYqhC-20, pREP-22 and pZA33-kdcA plasmids towards 

decreased levels of intracellular branched-chain 2-keto acids yielded a strong reduction in background fluorescence in the 

absence of DHB. Cells were cultivated in M9 mineral medium containing 20 g L-1 glucose and IPTG (1 mM) was added 

when OD600 reached ~0.6 (t = 0 h), after which fluorescence was measured. SYFP2 fluorescence was calculated using 

cytometry data based on geometric mean. The reported values represent the mean ± S.D. (n ≥ 2). 

 

 

Aiming at demonstrating intracellular production of 3-HPA, the strain CF267 ΔilvEDA 

harboring the metabolite sensor and pZA33-kdcA was cultivated in mineral medium and 

IPTG (1 mM) and a racemic mixture of (D/L)-DHB (20 mM) were added during cell 

exponential phase (OD ~0.6). Increased fluorescence levels were observed after 4h post-

induction reaching its maximum at 6h post-induction time (Figure 5.10). Crucially, 

expression of the catalytically more efficient OHB decarboxylase Ll-KdcA V461I as 

assessed by in vitro studies (see Chapter 4) yielded higher fluorescence values when 

compared to the utilization of its wild-type counterpart (Figure 5.10). On the other side, 

transformation of the host strain with the empty pZA33-plasmid resulted in a stable but low 

fluorescence background. These results suggest therefore that under optimal conditions the 

metabolite sensor is able to detect 3-HPA released from the synthetic pathway and that in 

principle E. coli does not possess any enzymes with sufficient OHB decarboxylase activity 

from its endogenous metabolism. The additional discrimination between enzyme variants 

possessing variable OHB decarboxylase activities further suggests the applicability of the 

metabolite sensor towards directed evolution campaigns. 
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Figure 5.10. Monitoring of in vivo production of 3-hydropropanal (3-HPA) by an artificial metabolic pathway using the 

aldehyde metabolite sensor. The E. coli host strain CF267 ΔilvEDA (MG1655 Δsad ΔyqhD lldDproD glcAproD lacIQ::Sp 

ΔilvEDA) was co-transformed with pYqhC-20, pREP-22 and various pZA33-derived plasmids. Cells were cultivated in 

M9 mineral medium containing 20 g L-1 glucose and IPTG (1 mM) and 20 mM (D/L)-DHB was added when OD600 reached 

~0.6, after which fluorescence was measured. SYFP2 fluorescence was calculated using cytometry data based on geometric 

mean. The reported values represent the mean ± S.D. (n ≥ 2). 

 

5.6 Discussion 

The success in improving individual enzymes and/or entire metabolic pathways by directed 

evolution is often hindered by the lack of high-throughput screening/selection methods 

enabling detection of target phenotypes11. Specific detection of small molecules is often 

required when large mutant libraries are screened for over-producing strains or improved 

enzyme activities. In the present study, the design and implementation of a metabolite sensor 

system for the detection of various aldehydes in E. coli was demonstrated. While other 

aldehyde-sensing systems have previously been developed on the basis of invasive and 

indirect sampling methods36, the herein developed system allows for direct aldehyde 

detection and may additionally enable FACS-based high-throughput screening and selection 

for aldehyde-producing enzymes or strains.  

In this work, YqhC served as the transcriptional regulator to detect the presence of an 

aldehyde and to induce expression of a fluorescent marker protein. Turner and colleagues  

previously constructed a YqhC-based metabolite sensor in E. coli, in which the firefly 

luciferase-encoding gene was put under transcriptional control of putative yqhD promoter 

region in a low-copy number plasmid27. Albeit the genomically expressed YqhC levels 

ensured a light response upon aldehyde exposure, the low measurable output signals 

observed from cell lysates were not compatible with high-throughput screening purposes, 

in which cell sorting is desired. In those cases, engineering poor ligand-transcription factor 

binding through protein or 5’-UTR engineering has previously been reported to dramatically 
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change the response profiles of metabolite sensors37,38. To this end, an alternative bi-

modular aldehyde sensor based on YqhC was constructed. A sensing module drives 

constitutive expression of yqhC gene, while a reporter module drives expression of syfp2 

reporter gene under transcriptional control of yqhD promoter region. One of the major 

challenges when developing metabolite sensors is to optimize their sensitivity and dynamic 

range. Therefore, SYFP2 was selected as a reporter protein since it allows for optimized 

folding, maturation and superior brightness when compared to sfGFP and eYFP 

autofluorescent protein variants29. Fine-tuning of the expression levels of YqhC by 

engineering the promoter and RBS region of the reporter module further resulted in a 10-

fold improvement over the initial sensor system. These results suggest the previously 

reported concept of two-module metabolite sensors16,39 to be particularly useful when it 

comes to optimization tasks, since it enables to independently fine-tune each of its parts.  

The specificity and dynamic range responses of the constructed biosensor were evaluated 

with respect to a spectrum of aldehydes, including short, medium carbon chain and aromatic 

compounds. At variance to Turner and colleagues27 who reported a YqhC-dependent 

transcriptional activation of the firefly-luciferase encoding reporter gene to ethanal, 

propanal, butanal, methylglyoxal and lignocellulose inhibitors (furfural, cinnamaldehyde), 

the biosensor was almost insensitive to some of these compounds, but responded to others 

such as glycolaldehyde, vanillin and phenylacetaldehyde. The discrepancy between the 

results herein achieved and those from Turner and colleagues can be explained in part by 

the difference in the genomic design of the constructed sensor. In this specific case, a bi-

modular sensor was employed in which the yqhC gene is used out of its natural genomic 

context and expressed constitutively from a low-copy plasmid, while the reporter module 

bears the syfp2 gene preceded by a strong RBS and flanked upstream by a promoter region 

that included 150-nt of yqhC coding sequence plus 108-nt of adjacent yqhC/D intergenic 

region. On the other side, a different reporter gene (leading to the expression of the firefly 

luciferase) immediately preceded by the yqhD promoter region was constructed by the 

Ingram group to investigate the response to aldehydes in a E. coli strain expressing YqhC 

from its genomic locus27. In addition, and whatsoever the difference between the two 

sensors, the structural diversity of the aldehydes that exhibit transcriptional induction raised 

questions about the mechanism by which YqhC may interact with these compounds. While 

the apparent lack of specificity can be regarded as a disadvantage, it can instead be 
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considered as an appropriate feature for the in vivo screening of synthetic pathways in which 

a single aldehyde is produced as an intermediate or end-product, and whose accumulation 

can be correlated to the catalytic efficiency of the upstream enzymatic reaction or can 

indicate a bottleneck in the downstream reaction in that pathway. This is nicely exemplified 

by the demonstration of glycolaldehyde detection produced by the synthetic X1P pathway 

and 3-HPA production via the artificial PDO pathway. 

Another key feature determining biosensor performance is its dynamic range of detection. 

We found that the sensitivity of our biosensor to aldehyde was in the range of 1-10 mM. 

However, in spite of this elevated minimum concentration, the application of the sensor 

should be possible when aiming at detecting aldehyde over-producing strains or enzymes. 

In addition, this relatively poor sensitivity could be an advantage as it may avoid 

perturbation resulting from potential endogenous aldehydes, whose concentrations are 

actually relatively low due to the presence of many aldehyde reductases in E. coli2. Also, 

fluorescence saturation from the metabolite sensor at higher concentrations may constitute 

an advantage in metabolic engineering projects, in which high product titers are desired. 

Indeed, as a first proof-of-principle application, the feasibility of the system to monitor 

intracellular aldehyde production from a strain harboring the xylulose-1-phosphate pathway 

that can generate glycolaldehyde from xylose at a theoretical yield of 1 mol mol-1. A 

remarkable increase of the fluorescence signal dependent on xylose consumption was 

observed. In a second proof-of-concept, the intracellular production of 3-HPA was 

monitored from a strain harboring a partial PDO synthetic pathway. The expression of OHB 

decarboxylases with distinct catalytic efficiencies matched well with the observed 

differences in fluorescence levels, thereby confirming the potential applicability of the 

developed high-throughput biosensor system towards metabolic and/or enzyme engineering 

projects upon minor optimization adjustments in each case scenario. 
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5.7 Materials and methods 

5.7.1 Chemicals and reagents 

All chemicals and solvents were purchased from Sigma-Aldrich unless otherwise stated. 

Restriction endonucleases and DNA-modifying enzymes were purchased from New 

England Biolabs and used according to instructions of the manufacturer. DNA plasmid 

isolation was performed using GeneJET Plasmid Miniprep Kit (Thermo Scientific). DNA 

extraction from agarose gel was carried out using the GeneJET Gel Extraction Kit (Thermo 

Scientific). DNA sequencing was carried out by Eurofins SAS (Ebersberg, Germany). 

 

5.7.1 Plasmid construction 

All plasmids and primers used in this study are listed in Tables 5.3 and 5.4, respectively. 

Construction of sensing modules: The upstream regions (including variable strength 

constitutive promoters and ribosome binding sites) were introduced into the forward primer 

that together with the reverse primer CF154 served to amplify the wild-type yqhC gene from 

genomic DNA of E. coli K-12 substr. MG1655 (ATCC 47076). Additionally, the primers 

used allowed the insertion of unique restriction sites upstream and downstream of the 

amplified fragments. Resulting PCR products and the low-copy vector backbone pZS23 

(Expressys, Germany) were digested with XhoI and BamHI restriction enzymes, gel purified 

and ligated with T4 DNA ligase. The resulting plasmids were transformed into DH5α 

competent E. coli cells (New England Biolabs) and inserts verified by DNA sequencing. 

Construction of reporter modules: The YqhD promoter region was PCR amplified from 

genomic DNA with primers pairs CF155/CF156, while the syfp2 gene (synthesized by 

Eurofins) was amplified with primers CF157/CF158. DNA fragments were gel purified and 

assembled by homologous recombination with the XhoI/BamHI-digested pZE13 vector 

using the NEBuilder® HiFi DNA Assembly kit (New England Biolabs). The resulting 

plasmid was named pREP-14. For construction of pREP-15 and pREP-22 vectors, promoter 

regions of yqhD gene were PCR-amplified from E. coli genomic DNA using respectively 

the primer pairs CF159/160 and CF155/324. The obtained PCR products and pREP-14 

plasmid were digested (XhoI, HindIII), gel-purified and complementary-ends ligated. After 

sequencing analysis, the resulting plasmids were named pREP-15 and pREP-22, 

respectively. 
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Construction of pZA33-khkC-aldoB: The khkC-aldoB operon was amplified by PCR from 

pEXT20-khkC-aldoB 4 using the primer pairs Pen268/Pen269, while the medium-copy 

vector pZA33 (Expressys, Germany) was PCR-linearized using primer pairs 

Pen321/Pen322. Resulting PCR products were gel purified and assembled by homologous 

recombination using the NEBuilder® HiFi DNA Assembly kit (New England Biolabs). The 

resulting plasmid was transformed into DH5α competent E. coli cells and the assembled 

operon verified by DNA sequencing. 

Construction of pZA33-kdcA variants: The kdcA gene variants were amplified from pET-28 

derived vectors using the primer pairs CF183/CF192. Resulting PCR products and the 

medium-copy vector pZA33 were digested with EcoRI and BamHI restriction enzymes, gel 

purified and ligated with T4 DNA ligase. The resulting plasmids were transformed into 

DH5α competent E. coli cells (New England Biolabs) and inserts verified by DNA 

sequencing. 
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Table 5.4.  Primers used in this study for plasmid construction and strain validation. 

Primer Sequence (5' – 3') 

 
Construction of sensing modules (pSENS) 
CF149 
 
CF154 
CF161 
 
CF162 
 
CF163 
CF164 
 
CF257 
 
CF258 
 
CF259 

tatataGtcgagtttacggctagctcagtcctaggtatagtgctagcGGTCCACCGCTTACCCCCCCA
AGGGACGAATAAAatgCTACAAAATTGCGCACA 
tgcttaggatcCttaATTCCCCTGCATCG 
taagcactcgagtttatggctagctcagtcctaggtacaatgctagcGGTCCACCGCTTACCCCCCCA
AGGGACGAATAAAatgCTACAAAATTGCGCACA 
taagcactcgagctgatggctagctcagtcctagggattatgctagcGGTCCACCGCTTACCCCCCCA
AGGGACGAATAAAatgCTACAAAATTGCGCACA 
taagcactcgagCACAGCTAACACCACGTC 
TGTGCGCAATTTTGTAGcatTTTATTCGTCCCTTGGGGGGGTAAGCGGTGGACCAAA
GTTAAACAAAATTATTTGTAGAGG 
taagcactcgagtttatggctagctcagtcctaggtacaatgctagcGTCTTAACAAAGGAAAAAAT
TTACTatgCTACAAAATTGCGCACA 
taagcactcgagtttatggctagctcagtcctaggtacaatgctagcAAATTTACTTATAAAGGAGG
AGATAGatgCTACAAAATTGCGCACA 
taagcactcgagtttatggctagctcagtcctaggtacaatgctagcTCGGAAGAAGAATCGAGGA
GGAGGTATCAatgCTACAAAATTGCGCACA 

 
Construction of reporter modules (pREP) 
CF155 
CF156 
CF157 
 
CF158 
CF159 
CF160 
CF324 

gaggccctttcgtcttcacctcgagttaCACATCGGGCAACAGTCC 
gtatttaagttggaaagcttAGGGCAGAGAACGATCTG 
tctctgccctaagctttccaacttaaatacaaggaaaataaggaggtcaacATGGTTAGCAAGGGCGA
AG 
gtacgcgtaccatgggatccTTATTATTTATACAGCTCATCCATACCC 
TAAGCActcgagttaCACATCGGGCAACAGTC 
tgcttaAAGCTTTTAAACTTGATCGAGAACGCC 
tgcttaAAGCTTGGTCAGTGCGTCCTGCTGATGTGCTCAGTATCATCGCCAGCGCCCTG 

 
Construction of xylulose-1-phosphate pathway 
Pen268 
Pen269 
Pen321 
 
Pen322 

cggctgctaacaaagcccg 
gaattctgtgtgaaattgttatccgc 
tttcacacagaattcGTTTAACTTTAAGAAGGAGATATACCATGGAAGAGAAGCAGATC
CTGTGC 
ctttgttagcagccgggatcctcaTTAATACGTGTAACAGGCCGTAAACAGA 

 
Construction of pZA33-kdcA variants 

CF183 
 
CF192 

cggataacaatttcacacagaattcatcgacgctaaaacaaaaatataaggaggaacataATGTATACC
GTTGGGGATTATC 
cagtggtggtggtggtggtacgcgtaccatgggatccTTATTTGTTCTGTTCAGCAAAC 

 
Strain construction 
glcA-proD_fw (CF253) 

 

glcA-proD_rv (CF254) 

 

lldP-prod_fw (CF249) 

 

lldP-prod_rv (CF250) 

 

CCGAACCGTTATTACACGCCTGGCGTTTACGCGAAAAAGAAAGTCATTAAGTGTAG

GCTGGAGCTGCTTC 

GCCCCAGTCCTCCCATCGGCATATACATTTGGGTCCAGGTAACcatATAATACCTCCT

AAAGTTAAACAAAATTATTTGTAG 

CAATTCTCTGATGAGGATTGCCCTTTTCTTTACCAGACATCTCCCCCCACGTGTAGGC

TGGAGCTGCTTC 

CCAGATATTCCCGGCGGGATCGTAGTTTTGTTGCCAGAGATTcatATAATACCTCCTA

AAGTTAAACAAAATTATTTGTAG 
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Table 5.4.  (continued) 

Primer Sequence (5' – 3') 

 
Strain verification 
Δsad-ver-fw 
Δsad-ver-rv 
ΔyqhD-ver-fw (Pen15) 
ΔyqhD-ver-rv (CF346) 
glcA_ver_fw (CF255) 
glcA_ver_rv (CF256) 
lldP_ver_fw (CF251) 
lldP_ver_rv (CF252) 
LacIQ_fw (CL20)  
SpecR_rv (CL21)  

CTGCCAGCTTCGGCAA 
GGGTAAAGTCGCGGATTAT 
CAAGCGGCAAATCTCTTCAC 
TGGATTAGCCATACGTTCCT  
AATTTCGCTAACTCGTG  
ATGTCCTTTCAGACGTAATA 
ATTCTGCACATTCCTATAGG 
CATTTTATAGAACAGCAAAG 
CCAATCAGCAACGACTGTTT 
CGTACATTTGTACGGCTCC 
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5.7.2 Strain construction and growth conditions  

E. coli K-12 substr. MG1655 (ATCC 47076) was used as the parental strain for all 

constructions in this study. Single gene deletion (yqhD, sad, ilvE) and constitutive 

expression of lacIQ was achieved using the phage transduction method adapted from 

Miller41. Expression of glcA and lldD genes was rendered constitutive by replacing the 

native chromosomal 5’-UTR of each gene by the synthetic constitutive and insulated 

promoter proD. The proD sequence was preceded by a kan resistance cassette which was 

amplified by PCR adding 50-bp flanking sequences that were homologous to the target 

locus. The resulting DNA fragment was used to replace the natural gene promoter by 

homologous recombination31. Primers used are listed in Table 5.4. Positive clones were 

selected on LB agar plates containing either kanamycin (50 µg mL-1) or spectinomycin (50 

µg mL-1) and verified by PCR analysis. The kan cassette was removed from the genome by 

expressing FLP recombinase from the pCP20 plasmid40 and correct excision of the cassette 

was verified by PCR using locus specific primers (Table 5.4). Plasmids were transformed 

into the target E. coli strains using standard protocols42. 

The cultures of E. coli strains were carried out at 37 ºC on a rotary shaker running at 200 

rpm in a M9 mineral medium which, unless otherwise stated, contained per liter: 20 g 

glucose, 18 g Na2HPO4*12H2O, 3 g KH2PO4, 0.5 g NaCl, 2 g NH4Cl, 0.5 g MgSO4*7H2O, 

0.015 CaCl2*2H2O, 1 ml of 0.06 M FeCl3 stock solution prepared in 100 times diluted 

concentrated HCl, 2 ml of 10 mM thiamine HCl stock solution, 20 g MOPS, and 1 ml of 

trace element solution (containing per liter: 0.04 g Na2EDTA*2H2O, 0.18 g CoCl2*6H2O, 

ZnSO4*7H2O, 0.04 g Na2MoO4*2H2O, 0.01 g H3BO3, 0.12 g MnSO4*H2O, 0.12 g 

CuCl2*H2O). The pH was adjusted to 7 and the medium was filter-sterilized. The antibiotics 

ampicillin and kanamycin sulfate were added when required at concentrations of 100 mg L-

1 and 50 mg L-1, respectively.  

For assaying in vivo production of glycolaldehyde by the E. coli strain CF272 harboring the 

xylulose-1-phosphate pathway and metabolite sensor, the experiments were carried out as 

follows. Pre-cultures were grown in 10 mL M9 mineral medium in the presence of the 

antibiotics ampicillin, kanamycin sulphate and chloramphenicol at 100, 50 and 35 mg mL-

1. After an overnight incubation, cells were spun down by centrifugation (4000 rpm, 10 min 

at 4 ºC) and washed with sterile water. They were resuspended at an initial OD600 of 0.5 in 

25 mL of fresh M9 mineral medium containing 1 mM IPTG and appropriate antibiotics and 
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in the presence of glucose or a mixture of glucose / xylose. Cell growth was followed by 

monitoring OD600, and samples were regularly withdrawn for flow cytometry analyses and 

sugars consumption. 

For assaying in vivo production of 3-HPA by various E. coli host strains harboring the 

metabolite sensor and pZA33-derived plasmids, the experiments were carried out as 

follows. Pre-cultures were grown in 5 mL M9 mineral medium in the presence of the 

antibiotics ampicillin, kanamycin sulphate and chloramphenicol at 100, 50 and 35 mg mL-

1. After an overnight incubation, cells were added at an initial OD600 of 0.2 in 10 mL of fresh 

M9 mineral medium containing 20 g L-1 glucose and appropriate antibiotics. When OD600 

reached ~0.6, IPTG (1 mM) and a racemic mixture of (D/L)-DHB (20 mM) were added to 

the cultivation medium. Samples were regularly withdrawn for flow cytometry analyses. 

 

5.7.3 Microtiter plate screening system 

Screening of biosensor-strains: Pre-cultures were grown overnight in 5 mL of M9 mineral 

medium (37 ºC, 200 rpm). They were used to inoculate 10 mL of M9 mineral medium 

supplemented with the appropriate antibiotics starting at an initial OD600 of 0.2 in 50 mL 

falcon tube flasks placed on a rotary shaker set at 200 rpm and at 37°C. When OD600 reached 

~0.6, 200 µL of cell culture were transferred in a 96-well plate and supplemented with 

glycolaldehyde at a final concentration of 5 mM. During the induction phase, microplates 

were incubated at 37 ºC with an orbital frequency at 807 rpm (Epoch 2, BioTek). After 4 h 

of incubation, single-cell fluorescence was measured by flow cytometry.  

Aldehyde dose-response curves: Pre-cultures were grown overnight in 5 mL of M9 mineral 

medium (37 ºC, 200 rpm). The biomass needed to start main cultures with a starting OD600 

of 0.2 was transferred to 250 non-baffled shake flasks containing 25 mL of M9 mineral 

medium with appropriate antibiotics (37 ºC, 200 rpm). When OD600 reached ~0.6, 200 µL 

of cell culture were inoculated in a 96-well plate and supplemented with aldehydes at the 

desired concentrations. During the induction phase, microplates were incubated at 37 ºC 

with an orbital frequency at 807 rpm (Epoch 2, BioTek). After 12 h of incubation, single-

cell fluorescence was measured by flow cytometry. 
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5.7.4 Flow cytometry 

Flow cytometry measurements were performed with an Attune™ Acoustic Flow Cytometer 

(Life Technologies) with 488 nm excitation. Forward-scatter characteristics (FSC) and side-

scatter characteristics (SSC) were detected as small-angle and large-angle scatters of the 

488 nm laser, respectively. SYFP2 fluorescence was detected using a 530/30 nm (channel 

BL1) band-pass filter set. Data were analyzed using the Attune™ software (Life 

Technologies). A total of 100,000 events was recorded per sample, and electronic gating 

was applied on the densest subset of cells on the basis of forward- versus side-scatter height. 

The same gate was used to estimate geometric mean levels of SYFP2 fluorescence.  

 

5.7.5 Analytical methods 

The concentrations of glucose and xylose were determined on a Dionex Ultimate 3,000 

HPLC system (Thermo Scientific, France) equipped with a RI detector (RID-10A, 

Shimadzu, Japan). The sample injection volume was 20 μL, and the compounds were 

separated in an Aminex HPX-87H column protected by a Micro-Guard Cation H+ pre-

column (BioRad, USA). The separation was performed at 35 ºC with 1.25 mM H2SO4 at 0.5 

mL min-1 as mobile phase. All samples were centrifuged (2 min at 13,000 rpm) and syringe-

filtered (0.2 µm), and the resulting supernatant kept at -20 ºC until analysis.  

 

5.7.6 Statistical methods 

All statistical analyses were conducted in Microsoft Excel® using the Analysis ToolPak 

package. A two-tailed unpaired t test was to use to compare fluorescence induction levels, 

in which an alpha level of p < 0.05 was set for significance. 
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Chapter 6. Conclusions and future directions 

 
As discussed throughout this work, a central goal of this thesis has been the construction of 

synthetic metabolic pathways for the synthesis of two industrially relevant commodity 

chemicals: 1,3-propanediol and (L)-2,4-dihydroxybutyrate. In this context, rational enzyme 

engineering was applied towards the generation of enzyme activities necessary for pathway 

operation, while the construction of an aldehyde-metabolite sensor may contribute for 

further improvements of the established non-natural routes. This thesis is likely to mirror 

the challenges in creation of metabolic pathways for which required biocatalysts are not 

known to exist in nature. 

 

6.1 A set of pathways with DHB as key intermediate molecule 

While (L)-2,4-dihydroxybutyrate is a non-natural metabolite, recent efforts have proved 

synthetic pathway engineering to enable its biosynthesis in E. coli. In particular, this work 

outlined enzyme engineering as a mean towards optimization of a metabolic route yielding 

DHB as final product via homoserine (see Chapter 3). An alternative three-reaction step 

synthetic route aiming at DHB biosynthesis from the Krebs cycle intermediate malate was 

previously developed by our group. Extension of the malate DHB pathway with three 

additional steps further allowed conversion of DHB into PDO (see Chapter 4). This work 

contributed therefore to the optimization of metabolic pathways in which DHB can be seen 

as a key player molecule (Figure 6.1).  
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Figure 6.1. Synthetic metabolic pathways with 2,4-dihydroxybutyrate (DHB) as key (intermediate) molecule. Each 

rectangle represents an engineered enzyme. Legend: OHB, 2-keto-4-hydroxybutyrate. 

  

 

6.2 Engineering DHB pathway via homoserine 

Construction of a catalytically efficient functional OHB reductase which could be employed 

as part of the DHB pathway via homoserine proved to be a difficult and labor-intensive task. 

As detailed in Chapter 3, sequence comparative analysis and computationally-aided protein 

design permitted the identification of amino acid substitutions likely to introduce OHB 

reductase activity into the template enzyme. Characterized by possessing a very strong 

affinity towards the reduction of oxaloacetate, substitution of Arg81 by an alanine residue 

in Ec-Mdh yielded an enzyme variant with 287-fold improved activity on OHB substrate. 

This substitution in particular has previously been reported as essential towards a shift in 

Ec-Mdh activity in dicarboxylic acids. But no saturation was observed under the tested range 

of OHB concentrations. Only when amino acid substitutions were simultaneously 

introduced into three different regions of the protein, highly active variants with low Km 

values on OHB were observed. However, the increased OHB reductase activity as observed 

in most-promising variants was accompanied by an increase in activity on the natural 

oxaloacetate substrate, yielding variants with catalytic efficiencies comparable between 

both substrates.  
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To demonstrate the applicability of the best mutant enzymes for in vivo applications, each 

of those was individually expressed as part of the DHB pathway via homoserine in E. coli. 

Shake-flask experiments resulted in increased DHB titers and yields of up to two-fold when 

compared with the previously reported OHB reductase variant Ll-LdhA Q85C. The 

simultaneous expression of the best-performing OHB reductase Ec-Mdh-5Q variant 

(I12V:R81A:M85Q:G179D:D86S) and the Ec-AlaC A142P:Y275D homoserine 

transaminase variant in the homoserine-overproducing ECO4 parent strain, together with 

carbon flux redirection allowed further improvements in the designed synthetic pathway. 

Cell cultivation under well-controlled conditions in fed-batch mode further resulted in the 

production of up to 10.7 g L-1 DHB. Whilst it corresponds to the highest titer reported to 

date, the concomitant accumulation of high amounts of homoserine precursor and alanine 

anticipate HMS transaminase as a major rate-limiting step of the pathway. As a part of a 

competitive project with an industrial partner, several strategies are in current development 

by our team in an attempt to overcome this bottleneck, which could not be solved in this 

thesis.  

 

6.3 Construction of a PDO pathway via DHB 

Product derivatization (e.g. DHB) into other compounds of industrial interest (e.g. PDO, 

1,2,4-butanetriol) is notably important in the context of biorefinery, thereby allowing for a 

flexible commercialization of a range of related but diversified products according to market 

needs. 

In this scope, a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol 

(PDO) from glucose via the Krebs cycle intermediate malate was conceived. The proposed 

route extends the previously published pathway for the synthesis of DHB with three 

additional reaction steps catalyzed by DHB dehydrogenase, OHB decarboxylase and PDO 

oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB 

dehydrogenase from the membrane-associated (L)-lactate dehydrogenase from E. coli and 

OHB decarboxylase variants derived from either the branched-chain ketoacid decarboxylase 

encoded by kdcA from L. lactis or pyruvate decarboxylase from Z. mobilis, whose 

simultaneous overexpression with the ydhD-encoded aldehyde reductase enabled PDO 

biosynthesis from DHB. Simultaneous expression of the six enzymatic activities in a single 
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E. coli strain resulted however in a low production of 0.1 mM PDO from 110 mM glucose. 

A metabolic burden and the occurrence of bottlenecks in the pathway may be behind the 

observed weak titers. However, a co-cultivation strategy in which an E. coli strain 

expressing the DHB-yielding pathway and another strain bearing the plasmid with the DHB-

to-PDO pathway resulted in increased PDO titers up to 3.4 mM. While co-cultivation of two 

E. coli strains proved effective in increasing product formation, this strategy is less desired 

for industrial applications.  

 

6.4 A metabolite sensor for high-throughput aldehyde detection 

In this work, a fluorescence-based metabolite sensor enabling in vivo detection of various 

aldehydes of biotechnological interest in E. coli was developed. By assuming that a native 

transcription factor promoter pair which is capable to detect any small molecules can be 

identified in Nature, the E. coli YqhC-PyqhD system was selected in an attempt to 

demonstrate its potential application as high-throughput screening and selection devices. 

YqhC is a transcriptional regulator that is known to be involved in the upregulation of the 

yqhD-dgkA operon in the presence of aldehydes. By taking advantage of this property, a bi-

modular biosensor was constructed, in which a sensing module constitutively expresses 

yqhC while a reporter module drives the expression of the syfp2 reporter gene that is put 

under control of the yqhD promoter.  

The sensitivity of the sensor has been optimized by engineering the 5’-untranslated region 

of both the sensing and reporter modules, resulting in a 70-fold gain of fluorescence in 

response to the model compound glycolaldehyde at 5 mM. The optimized sensor further 

responded to other aldehydes when supplemented to the cultivation medium at 

concentrations of 1-10 mM.  

Additional studies further demonstrated that this metabolite sensor was functional in vivo 

upon expression of two in house synthetic pathways. In particular, it responded to the 

presence of glycolaldehyde that is specifically produced upon induction of a synthetic 

xylulose-1-phosphate pathway expressed in E. coli, as well as to 3-HPA produced from a 

fraction of the PDO pathway via DHB. This bi-modular sensor has been shown to constitute 

a potential tool for FACS-based ultra-high throughput screening of aldehyde (over-) 

producing enzymes. 
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6.5 Future work 

As previously outlined, this thesis contributed to the establishment of a set of synthetic 

pathways in which DHB can be seen as a central metabolite. In particular, production of 

DHB was accomplished from homoserine or (L)-malate, while extension of the malate-to-

DHB pathway allowed for PDO biosynthesis. But this work further opens the possibility to 

produce PDO from homoserine if the herein identified HMS transaminase, OHB 

decarboxylase and PDO oxidoreductase enzymes are expressed in a homoserine-

overproducing strain (Figure 6.1). Interestingly, PDO synthesis from homoserine has the 

advantage of only requiring three additional reaction steps, as opposed to its formation from 

malate via DHB. But in both cases further enzyme engineering is likely critical so that 

proposed routes can operate at efficient rates. 

In particular, the designed pathways as assessed in Chapters 3 and 4 were shown to possess 

several botlenecks including rate-limiting steps (e.g. HMS transaminase, OHB 

decarboxylase), which resulted in the accumulation of intermediate molecules. In line with 

this information, the metabolite sensor as developed in Chapter 5 can be applied in 

combination with FACS technology in high-throughput screening studies aiming at the 

selection of randomly-mutated enzyme variants with higher catalytic efficiencies, as far as 

3-HPA can be generated as end-product from a single enzyme or combination of multiple 

enzymes (as shown in Figure 6.1) with minor adjustments of the metabolite sensor. The 

metabolite sensor has, additionaly, the advantage of being well-suited for alternative 

metabolic engineering projects, in which randomly mutated strains expressing pathways 

yielding 3-HPA can be detected and selected.  

While identification of highly-efficient enzymes is crucial in the construction of metabolic 

pathways, it only comprises one step in the long process of metabolic engineering.  A more 

comprehensive analysis of cell metabolism can identify further bottlenecks, which can be 

addressed by host strain engineering. Also, process engineering and optimization of 

conditions of cell cultivation in well-controlled bioreactors will allow to reach higher 

productivities and titers.    
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"Valeu a pena? Tudo vale a pena 

Se a alma não é pequena. 

Quem quer passar além do Bojador 

Tem que passar além da dor. 

Deus ao mar o perigo e o abismo deu, 

Mas nele é que espelhou o céu."  

―Fernando Pessoa 

 

 

 

The End 

 

 

 

 

 


