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Introduction

Fundamentally new paradigms are expected to emerge for the fields of soft matter and
mechanics at the nanometer scale. Those new behaviors stems principally from two distinct
effects: (i) a breakdown of the continuum concepts of mechanics when reaching molecular
sizes for which the granularity of matter has to be accounted for and (ii) the increasingly
predominant role played by interfaces and surfaces in nanoscale systems, leading to the
appearance of new force scales (Van der Waals, electrostatic forces...).

Importantly, this relation between nanosciences and traditional soft-matter and me-
chanics is dual. On the one side, the traditional fields of soft matter and mechanics
provide well grounded concepts, approaches and questions to study, characterize and ra-
tionalize the behavior of materials at the nanoscale. On the other side, many macroscale
phenomena in soft matter take their origin at the nanoscale, and can thus be illuminated
by experiments at those scales. This domain at the frontier between soft matter and nano
science has been allowed by the development of experimental techniques to measure and
quantify interactions at the nanoscale, such as Surface Force Apparatus and Atomic Force
Microscopy, as well as the development of techniques to routinely manipulate and fabricate
objects at the nanoscale.

In this Manuscript, we use a tuning fork based Atomic Force Microscope to measure
the properties of various soft matter systems at the nanoscale. The use of frequency-
modulation Atomic Force Microscopy techniques allow us to disentangle the conservative
and dissipative dynamic mechanical responses of nanoscale materials, extending traditional
soft-matter rheological approaches to the nanoscale. Doing so, we evidence several dramatic
transitions in the mechanical response of materials. Those transitions can be thermody-
namic and driven by surface effects, as in the case of the confinement-induced freezing of
ionic liquids, or driven by external forcings such as shear or normal pressure, as in the case
of shear-induced melting of nanometric gold junctions and stress-induced friction between
particles in shear thickening suspensions. Finally, we discuss some perspectives associ-
ated with this work, and show that such changes in the mechanical response of nanoscale
systems can be particularly interesting in the context of reactive lubrication and friction.
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2 CONTENTS

Chapter 1: Mechanics at the Nanoscale with the Tuning Fork based Atomic
Force Microscope.
Force measurements at the nanoscale can be challenging, and a robust instrumentation

is necessary for this daunting task. We show in this Chapter that we can take advantage of
quartz-tuning fork based Atomic Force Microscopy techniques to measure quantitatively
the dynamic response of fluid and solid materials at the nanoscale. Traditionally used in
hard condensed matter for exquisite imaging and force sensing at the atomic scale, this
instrument can be extended to the study of soft condensed matter systems. We introduce in
this Chapter the various framework and experimental techniques associated with the tuning
fork. In particular, we show that the quartz-tuning fork based Atomic Force Microscope can
be fruitfully used as a nano-rheometer, allowing quantitative measurements of conservative
and dissipative mechanical impedance of nanoscale soft matter systems, and unprecedented
characterization of friction and dissipation at those scales.

Chapter 2: Nanoscale Capillary Freezing in Ionic Liquids
In this second Chapter, we show how confinement drastically affects the properties and

flow of certain liquids. We focus on a particular type of electrolytes, known as Ionic
Liquids, which are composed purely of ions and are thus governed by strong electrostatic
interactions, challenging the conception of the liquid state. We show that ionic liquids
can undergo a sudden change in their mechanical response under nanoconfinement, which
is interpreted as a freezing transition. This response is found to be strongly dependent
on the electronic properties of the confining materials, with more conductive materials
facilitating this transition. We rationalize these observations by considering the relative
wetting properties of ionic liquid and solid phases at metallic interfaces.

Chapter 3: Molecular Rheology of Gold Nanojunctions
Similarly to the liquid state, the solid state can be challenged at the molecular scale.

In this third Chapter, we probe plasticity at the individual atomic level by measuring the
viscoelastic rheological response of gold necks of few atoms radius, submitted to picometric
oscillations. Shearing the bridge with increasing amplitude, we uncover a dramatic transi-
tion from a purely elastic regime to a plastic flow regime, up to the complete shear-induced
melting of the bridge. Varying the lateral junction size, we study the dependence of those
distinct rheological regimes on junction geometry. In those molecular objects, plastic flow
seems to be limited by the slip of atomic planes under shear, as predicted for dislocation
free systems.

Chapter 4: Pairwise Frictional Profile between Particles and the Non-Newtonian
Rheology of Suspensions
Suspensions are hybrid objects, composed of solid particles in a suspending fluid. They

can show non-newtonian behaviors, with for example dramatic increase in their viscosity
with shear rates as in the case of shear-thickening. In this fourth Chapter, we probe the lo-
cal frictional profile between pairs of particles from macroscopic suspensions, and evidence
a stress-induced transition between a lubricated and frictional regime between particles at
the nanoscale. Tuning the physicochemical properties of the suspending fluid, we demon-
strate unambiguously that the shear thickening transition at the scale of the suspension
takes its origin in this nanoscale frictional profile, and corresponds to a stress-induced
transition between a low viscosity and high viscosity branch. We further rationalize the
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shear-thinning regimes observed in macroscopic suspensions before and after the shear-
thickening transition.

Conclusion and Perspectives
Finally, we present some conclusions and perspectives which are rooted in the context

of this manuscript. Interestingly, the relations between nanoscale interfacial properties
and the macro scale behavior are particularly exacerbated in the context of macroscopic
friction, for which strong confinements, and shear localization can induce changes in the
mechanical properties of the sliding interface, which in turn can have profound impacts
on the macroscopic frictional behavior. We briefly discuss in this Perspective chapter two
on-going projects associated with phase-changing lubricants and reactive lubrication.
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6 CHAPTER 1. THE TUNING FORK BASED ATOMIC FORCE MICROSCOPE

Mechanical measurements at the nanoscale are a daunting task
and require robust and sensitive tools. In this first Chapter, we
introduce the principles of the quartz-tuning fork based Atomic
Force Microscope, which we used throughout this thesis. We present
the principles of frequency modulation techniques, the experimental
set-up and introduce the basic formalism for the quantitative mea-
surement of dissipative and conservative force response. We show that
the quartz-tuning fork based Atomic Force Microscope is a valuable
tool for studying the dynamic response of confined soft matter systems.

1.1 Force measurements at the nanoscale

In condensed matter, surface forces can be measured with two main classes of instru-
ments: Atomic Force Microscopy (AFM) and Surface Force Apparatus (SFA). We present
briefly here those two instruments, and their use as static and dynamic force sensors.

1.1.1 Static force measurements

A B

Cantilever

Tip

Laser Diode
Photodetector

Sample

XYZ Scanner

White Light Source

Spring

Spectrometer

Mica

Silver

Liquid

Figure 1.1: Schematic set-up for (A) Cantilever based Atomic Force Microscope (adapted
from [20]) and (B) Surface Force Apparatus.

Static force measurement
In their static mode of operation, traditional AFM and SFA techniques measure the

deflection δl [m] of cantilevers of known spring constant K [N.m−1] to measure static
forces Fs between surfaces, via:

Fs = Kδl (1.1)

In standard AFM, the cantilever deflection is measured through the reflection of a
focused laser beam on a photodiode (Fig. 1.1A). AFM cantilevers have a typical size of
hundreds of microns, with a sharp tip at the end (< 100 nm radius of curvature). Standard
spring constants range from 0.01 to 10 N.m−1.
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In classical SFA, the confining surfaces are typically back-silvered atomically smooth
mica surfaces of centimetric radius of curvature (Fig. 1.1B). The deflection of the spring
and the position between the two surfaces is obtained via white light interferometry, with
angstrom resolution. Typical spring constants are of the order of 103 N.m−1 [8, 12, 13, 26].

Limitation
For a given displacement sensitivity δl, the force sensitivity of the instrument in static

mode is inversely proportional to the spring constantK. High force sensitivity thus requires
the use of small spring constant K.

However, small value of the spring constant K are also detrimental as they lead to in-
stabilities when measuring strong attractive forces. If the attractive force gradient |∂F/∂x|
of the measured force field becomes larger than the stiffness K of the cantilever (e.g. due
to capillary forces or electrostatic forces...), mechanical instabilities can occur, leading to
"jump to contact" or "snap to contact" of the cantilever. Those instabilities preclude
the use of cantilevers with small spring constants in presence of strong attractive force
gradients.

Another intrinsic limitation associated with static force measurements relates to the
1/f noise in cantilever fluctuations. This flicker noise can be also a strong limiting factor
for static force resolution [5].

1.1.2 Dynamic force measurements

One way to overcome those limitations is to operate the cantilever or spring in dynamic
mode. In dynamic mode, the cantilever or spring is deliberately vibrated by an external
force. When the vibrating probe interacts with the external force field, the oscillation
amplitude and phase shift between the forcing and the cantilever oscillation is modified,
allowing the detection of the interaction.

log(f)f
0

log(s = a/F)

1/K

Q/K

∆f ~ f
0
/Q

K

M a.ei(2πft+φ)

F.ei2πft

Figure 1.2: Log-log plot for the sensitivity or transfer function s = a/F for a mass-spring
resonator (inset) as a function of excitation frequency f . F is the driving force, a the
oscillation amplitude, K [N.m−1] the spring constant, M the equivalent mass, f0 [Hz] the
resonance frequency, ∆f [Hz] the half width of the resonance, and Q = f0/∆f [-] the
quality factor at resonance.
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Dynamic sensitivity
A crucial parameter in dynamic mode is the sensitivity s, which quantifies the effect of

an additional force δF on the amplitude change δa or phase change of the oscillator, via
δa = s · δF . The sensitivity can be simply taken as the transfer function of the resonator
s = a/F . For a simple 2nd order mass spring resonator, the sensitivity has the typical
shape shown in Fig. 1.2, with a resonance at a frequency f0 ∼

√
K/M . The resonance is

characterized by the quality factorQ, which can be estimated from the resonance half-width
as Q = f0/∆f .

Far before the resonance, for small oscillation frequencies, we have s = 1/K, as in the
static case. Interestingly, at resonance, the sensibility is given by s = Q/K, and can thus
increase by orders of magnitudes compared to the low frequency or static case, depending
on the value of Q. The quality factor Q is thus a crucial parameter, as it sets the maximal
sensitivity in the dynamic case. The quantity 1/s = K/Q is referred to as the dynamic
stiffness, characterizing force sensitivity at the resonance in dynamic mode.

Amplitude and frequency modulation
Dynamic force measurements are obtained via two basic operation modes, known as

amplitude modulation and frequency modulation.

Amplitude modulation
In amplitude modulation techniques, the cantilever is driven at a fixed frequency f .

Elastic and dissipative interactions will cause a change in both the amplitude and the
phase shift (relative to the driving signal) of the cantilever. Such amplitude modulation
techniques are for example used in dynamic SFA [2, 22].

In dynamic AFM, the driving frequency is generally chosen close to the resonance
frequency f0, in order to maximize the response of the oscillator for high quality factor.
However, changes in amplitude or phase due to variation of the force field will not occur
instantaneously, but on a timescale τ ∼ Q/f0. A high Q maximizes the sensitivity but is
detrimental in term of response time.

Frequency modulation
Frequency modulation techniques were introduced to combine the benefit of high dy-

namic sensitivity through high quality factor Q with low response time. With frequency
modulation techniques, the oscillator is systematically excited at its resonant frequency,
and interactions are measured via measurement of the changes of the resonant frequency
and amplitude at resonance. The response time is then given by the time to measure the
change in resonant frequency, which scales as the inverse of the oscillator resonant fre-
quency τ ∼ 1/f0 (set by the phase detection bandwidth) [18], and is not related to the
intrinsic quality factor Q.

1.1.3 The quartz tuning fork based AFM

The main characteristic of quartz tuning forks is precisely their high quality factor Q,
which make them ideal candidates for their use in frequency modulation modes. Their
excellent behavior as mechanical resonators has lead to their commercial production and
use as oscillators in wristwatch (Fig. 1.3).

Tuning forks were first introduced in the context of scanning probe microscopy by
Karrai in 1995 [9]. In particular they were intensively used for Scanning Near Field Optical
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Figure 1.3: Quartz tuning forks are commercially produced for their use as excellent me-
chanical resonators in wristwatch.

Microscopy [6]. Since then, they have been successfully used in a variety of home-made
Atomic Force Microscope set-up for hard condensed matter or surface science measurements
[7, 15, 25], for example in the groups of F. Giessibl [3, 4] and E. Meyer [10, 11].

They were introduced in the group by A. Nigues in 2014 in the context of dissipation
measurement during interlayer sliding of nanotubes [19].

Interestingly, they were only scarcely used in the context of soft matter [21].

Characteristics of the quartz-tuning fork
When used with frequency modulation techniques in dynamic mode, quartz-tuning forks

combine several advantages.

(i) Large static stiffness
In comparison to other force measuring techniques, the main characteristic of the quartz-

tuning forks are there extremely large static stiffness, of the order of tens of kN/m. This
large stiffness gives the tuning fork a high mechanical stability, allowing perfect control of
the tip position even under strong attractive forces (e.g. with the tip immersed in liquids)
or strong repulsive forces (e.g. during indentation experiments).

However, this large static stiffness precludes the measurement of static forces with the
tuning fork.

(ii) Large quality factor and low dynamic stiffness
The second characteristic of tuning forks is their excellent resonator characteristics,

characterized by large quality factors Q of up to 10,000 in air, 50,000 in vacuum and
2,000-5,000 in liquids. These large quality factors confer the tuning fork a low effective
dynamic stiffness K/Q, corresponding to an increased dynamic force sensitivity. For a
quality factor of 10,000, the effective dynamic stiffness is thus of the order of a few N.m−1,
equivalent to standard AFM cantilevers.

(iii) Quantitative impedance measurements
As we will show in the following, working in frequency-modulation AFM mode allows

direct quantitative measurements of the conservative and dissipative mechanical impedance
of the force field with the tuning fork.

One disadvantage of frequency modulation techniques is that the excitation frequency
for the dynamic impedance measurement is fixed by the resonant frequency of the system
(of the order of tens of kHz) and cannot be tuned.
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1.2 The tuning fork as a mechanical resonator

1.2.1 The tuning fork and its resonant frequencies

Figure 1.4: Schematic of the quartz-tuning fork used throughout this study, with the
principal geometrical and physical parameters [24].

Tuning forks have several resonance frequencies, corresponding to symmetric and anti-
symmetric motion of there prongs. In this thesis, we used the two fundamental resonances
corresponding to antisymmetricmotion of the prongs (see Fig. 1.5). Because those antisym-
metric resonance lead to negligible displacements of the center of mass, the corresponding
quality factors are very large, providing an excellent dynamic force sensitivity. When a tip
is attached to one prong of the tuning fork, those resonances lead respectively to normal
(N) and tangential (T) motion of the attached tip with respect to the substrate, and are
thus important in the context of friction studies (see Chapter 4).

A B
Normal (N) Tangential (T)

Figure 1.5: Schematic of the two principal antisymmetric oscillation modes for the tuning
fork, corresponding to the excitation of (A) normal (N) and (B) tangential (T) oscillation
of the tuning fork with respect to the substrate.

1.2.2 Quartz-based sensing

The prong and body of the tuning fork are made of a single quartz crystal, which has
piezoelectric properties. When the tuning fork vibrates, stresses lead to polarization and
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charge dissociation inside the quartz material. An alternating stress field, caused by an
oscillatory motion, will thus lead to an alternating current. This current is read out using
the electrodes deposited on the quartz-tuning fork, making the tuning fork a self-sensing
device. In industrially made quartz-tuning forks, as the ones we used, those contacts are
positioned at strategic places so as to cancel out any electrical signal stemming from non-
antisymmetric deformation of the tuning fork, maximizing the signal to noise ratio for
antisymmetric deformations.

One thus has a simple relation between the alternating current i(t) = i0 · exp(iωt) and
the amplitude of oscillation a(t) = a0 · exp(iωt) of the tuning fork, as:

i(t) = α · a(t) (1.2)

The factor α has been calibrated using interferometry [24] and its calibration confirmed
over the course of this PhD (see Table 1.1).

1.2.3 Mechanical excitation

We excite the tuning fork mechanically, using a piezo-dither glued close to the tuning
fork. The piezo-dither induces mechanical vibration of the tuning fork through its holding
support. Mechanical excitation allows for a perfect decoupling between the excitation
signal sent to the piezo-dither and the electric signal generated by the oscillation of the
quartz prongs of the tuning fork. This decoupling contrasts with the standard electrical
excitation method, which uses the electrodes and the piezoelectric properties of the quartz
to simultaneously excite and detect the oscillation of the tuning fork.

One can model the effect of the piezo-dither as that of an oscillatory force F =
F0 exp(iωt) acting on the tuning fork. We have a perfectly linear relation between this
excitation force and the oscillatory voltage E(t) = E0 exp(iωt) exciting the piezo-dither,
with:

F0 exp(iωt) = C ·E0 exp(iωt) (1.3)

The transduction factor C depends on the clamping and on the added mass on the
tuning fork’s prong, and has to be calibrated at the beginning of each experiment (see
following section).

1.2.4 Resonance

Close to the resonance, one can in a very good approximation model the tuning fork as
an effective one-dimensional mechanical oscillator [1, 24]. The validity of this assumption
can be verified by probing the Lorentzian-like shape of the resonance.

Equation of motion
In the absence of interactions, the dynamics of the tuning fork close to its resonant

frequency can be simply modeled as a second order mass-spring resonator, with the tuning
fork oscillation amplitude a(t) solution of:

Meff ·
d2a

dt2
(t) + γeff ·

da

dt
(t) +Keff · a(t) = Fext(t) (1.4)

withMeff [kg] the equivalent mass, γeff [N.s.m−1] a viscous damping coefficient, Keff [N.m−1]
the equivalent dynamic spring constant of the tuning fork and Fext [N] the external exci-
tation forcing due to the piezo dither.
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Non-dimensionalization
Non-dimensionalizing this equation leads to:

ä+
ω0

Q
· ȧ+ ω2

0 · a =
Fext

Meff
(1.5)

with the natural resonant frequency:

ω0 =

√
Keff

Meff
(1.6)

and the quality factor at resonance:

Q =
Meff ·ω0

γeff
(1.7)
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Figure 1.6: Measured amplitude (A) and phase shift (B) of the tuning fork as a function of
excitation frequency f , along with theoretical fits (Eqs. 1.8 and 1.9), for a center frequency
f0 = 32,756 Hz and quality factor Q = 13,725.

Resonance
We can solve Eq. 1.5 under the oscillatory forcing F ext(t) = Fext · exp(iωt), leading to

the oscillation a(t) = a · exp(iωt + φ) of the prongs of the tuning fork. The amplitude a
around the resonance as a function of the excitation frequency ω is given by:

a(ω) =
Fext

Meff
· 1√

(ω2
0 − ω2)2 + ω2ω2

0/Q
2

(1.8)

with the phase shift φ between the excitation force F (t) and the tuning fork oscillatory
motion a(t) given by:

tan(φ(ω)) =
ωω0

Q(ω2
0 − ω2)

(1.9)

Finally, the amplitude a0 at resonance is given by:

a0 =
FextQ

Keff
(1.10)

We show in Fig. 1.6 the measured amplitude and phase shift for the resonance of a free
tuning fork, along with fits of the corresponding Eqs. 1.8 and 1.9.

Additionally, we show in Fig. 1.7 the resonance for the normal and tangential oscillation
modes of the tuning fork.
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Lorentzian approximation
For large quality factor, the resonance (Eq. 1.8) has to a very good approximation a

symmetric Lorentzian shape, with oscillation amplitude given by:

a =

(
F

Keff

)
ω0√

4(ω − ω0)2 + ω2
0/Q

2
(1.11)
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Figure 1.7: Resonance corresponding to normal (A) and tangential (B) oscillations of the
tuning fork

We have arctan(x) ∼ 1/x for x � 1, and we can express the variation of the phase
around the resonance as:

φ ∼ −2(ω − ω0)Q

ω0

(1.12)

1.2.5 Quality factor and force sensitivity

Quality factor
The quality factor Q quantitatively determines the sharpness of the resonance and can be

related to the resonance half-width ∆ω by Q = ω0/∆ω. It is also related to the sharpness
of the phase change around the resonance, with dφ/dω ∼ Q/ω0 (Eq. 1.12).

Additionally, the quality factor characterizes the equilibration time τ of the oscillator,
via τ ∼ Q/ω0.

Force sensitivity
As we saw earlier, the force sensitivity in dynamic mode is given by s = Q/K. The

quality factor of the resonance is thus a crucial parameter, as it sets the sensitivity of the
tuning fork at the resonance.

The sensitivity at the resonance is
directly proportional to the quality factor Q.

The limiting parameters for Q are internal damping loss of the quartz-crystal, clamping
loss, air damping and added mass the prongs. In vacuum, the quality factor for the normal
oscillatory motion can increase from 10,000 up to 50,000.



14 CHAPTER 1. THE TUNING FORK BASED ATOMIC FORCE MICROSCOPE

1.2.6 Parameters calibration

To obtain quantitative information on the force field, we need to calibrate the equivalent
parameters describing the tuning fork’s motion.

Equivalent stiffness Keff
Among the equivalent parameters characterizing the tuning fork, the equivalent stiffness

Keff is calibrated once and for all by pressing on cantilevers of known spring constant,
and measuring the resulting frequency shift for the resonance [16, 20, 24] (see following
Section). The equivalent stiffness for normal and tangential oscillatory modes are given in
Table 1.1.

Quality factor and resonant frequency
The quality factor Q0 in the absence of interactions and resonant frequency f0 (Eq. 1.3)

are measured for each tuning forks at the beginning of the experiments, by fitting the
resonance (Fig. 1.6).

Force transduction
The transduction factor C between the excitation voltage and the force F is also obtained

from the quality factor and the amplitude at resonance (Eq. 1.10) for a given excitation
voltage E0, with:

C =
Fext

E0

=
Keffa0
Q0E0

(1.13)

We summarize in the following table the main parameters for the two oscillatory modes
of the tuning fork.

Parameter Normal Mode Tangential Mode
Resonant Frequency f0 ≈ 32 kHz ≈ 18 kHz
Equivalent Stiffness K 40 kN.m−1 12 kN.m−1
Piezoelectric Current α 2 nA.nm−1 0.034 nA.nm−1

Typical Quality Factor in air 10,000− 12,000 8,000

Table 1.1: Parameters for the two oscillatory modes of the tuning fork

1.3 Quantitative measurements of dissipative and con-
servative response

1.3.1 Conservative and dissipative force field

When submitted to an external force field, the shape of the resonance of the tuning fork
is modified. We show in this section that quantitative informations about the conservative
and dissipative part of the interacting force field can be obtained, via measurements of the
shift of the resonance frequency, amplitude at resonance and external excitation force due
to the piezo-dither.

In particular, we show that non-linear dissipative forces such as solid friction forces can
also be extracted from such measurements.
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Figure 1.8: Tuning fork’s tip oscillating at frequency ω and amplitude a. The tip is
interacting with a force field, modeled by a conservative part corresponding to a stiffness
ki or real mechanical impedance Z ′, and dissipative part FD, modeled by the sum of
viscous like damping force γiẋ and solid-like friction force FSẋ/|ẋ|, and characterized by
the dissipative mechanical impedance Z ′′ = FD/a.

We model the external force field by the sum of conservative and dissipative contribu-
tions (Fig. 1.8).

We can also characterize the external force field by its mechanical impedance Z∗ = F ∗/a
[N/m], with F ∗ the complex force felt by the tuning fork. This notation is especially
convenient when measuring materials’ properties, for which one need to compare both the
elastic and the dissipative mechanical impedance.

Conservative force field
We can describe the conservative component of the force field by the stiffness ki [N/m],

or equivalently the real part Z ′ [N/m] of the mechanical impedance:

Z ′ = ki = −∂F
∂x

(1.14)

Z ′ or ki characterizes elastic forces which are in phase with the displacement.

Dissipative force field
The dissipative inelastic part of the force field is characterized by the dissipative forces

FD. Dissipative forces are in opposition of phase with the displacement.
The dissipative part of the force field can also be characterized by the imaginary part

Z ′′ [N/m] of the mechanical impedance, which is the ratio of dissipative forces FD [N] by
the oscillation amplitude a [m]:

Z ′′ =
FD

a
(1.15)

To fix the ideas, we can consider the dissipative frictional forces FD to be expressed as
the sum of a viscous and static (constant) friction force:

FD = γiẋ+ FS
ẋ

|ẋ|
(1.16)
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1.3.2 Tuning fork in interaction

Interacting tuning fork
The non-linear friction force FSẋ/|ẋ| can be express under a periodic forcing as a Fourier

series:

FS
ẋ

|ẋ|
=

4FS

π

∞∑
k=0

sin((2k + 1)2πft)

2k + 1
(1.17)

The equation of motion for the interacting tuning fork under an external forcing F ext =
Fext exp(iωt) becomes, considering only the response at the harmonic forcing frequency:

−ω2X + iω
γeff + γi
Meff

X + ω2
0

(
1− ki

Keff

)2

X =
1

Meff

(
Fext −

4FS

π

)
(1.18)

with factor 4/π stemming from the first Fourier coefficient of the square-like shape of the
solid friction force (Eq. 1.17).

The restriction to the response at the harmonic frequency is justified by the lock-in
detection scheme for the signal, which filters out higher harmonics in the oscillation signal.

Conservative response
Equation 1.18 corresponds to a new resonance, with shifted resonance frequency ωi such

that

ωi = ω0

√
1− ki

Keff
≈ ω0

(
1− ki

2Keff

)
(1.19)

One obtain thus a fundamental relation between the frequency shift
δf = (ωi − ω0)/2π of the resonance, and the conservative interaction
stiffness ki or conservative impedance Z ′, with:

Z ′ = ki = 2Keff
δf

f0
(1.20)

Dissipative response
Considering Eq. 1.18, the purely viscous-like damping leads to a decrease of the quality

factor at resonance Qi = ωiMeff/(γeff + γi), whereas the solid-like friction force acts as an
effective decrease of the external excitation force Fext.

The shift in resonance frequency is typically orders of magnitude smaller than the
resonance frequency, with δf/f0 ≈ 10−4, leading to a change in the effective damping
δQ/Q ≈ 10−4, which can be safely neglected. We thus have in an excellent approximation
Qi = ω0Meff/(γeff + γi).

We thus obtain the following relation between the amplitude a at resonance, the quality
factor Q at resonance, the external excitation force Fext, the solid-like dissipative force FS

and the stiffness Keff with:

a0
Q

=
(Fext − 4FS/π)

Keff
(1.21)

We first consider the limit where FS = 0.
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When all dissipative forces are of purely viscous type, the dissipa-
tive forces FD and dissipative impedance Z ′′ are directly related to the
change in the quality factor from Q0 to Q, via

Z ′′ =
FD
a

= Keff

(
1

Q
− 1

Q0

)
(1.22)

In the presence of non-linear solid friction force, one can still measure the dissipative
forces FD by measuring the additional force Fext − F 0

ext necessary to provide to the tun-
ing fork to maintain a constant oscillation amplitude a0 and compensate for additional
dissipation, with

Fext − F 0
ext = γi · v +

4FS

π
≈ FD (1.23)

with F 0
ext = Keffa0/Q0 the external excitation force in the absence of interactions (charac-

terizing internal damping of the tuning fork).
The factor 4/π ≈ 1.27, corresponds to an error of 27 % and characterizes the largest

error on the measurement of non-linear dissipative forces due to the loss of informations in
the harmonics.

One can thus directly measure the sum of all dissipative forces (viscous
or not) via the measurement of the external excitation force necessary
to apply on the tuning fork to keep a constant oscillation amplitude a0.
This excitation force Fext is directly proportional to the excitation volt-
age E of the piezo-dither, via:

Z ′′ =
FD
a0

=
Keff

Q0

(
E

E0

− 1

)
(1.24)

The factor C = Keffa0/Q0E0 characterizes the transduction of the piezo-dither, and one
can equivalently express the dissipative forces as :

FD = C(E − E0) (1.25)

1.3.3 Ring-down experiments

The nature and amplitude of the dissipative forces can be obtained alternatively from
"ring-down" experiments, where we monitor the relaxation of the oscillator after the in-
terruption of the excitation. This is a classical way to measure damping of oscillators, and
has been recently applied in the context of tuning forks [27].

The dynamics of the oscillator under both sliding friction and viscous-like damping is
not trivial. We follow here Ricchiuto [23], and compute the amplitude at the resonance
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frequency, given by:

x(t)/a0 ≈ exp(−ω0t/2Q)

[
1 + α +

2α

1− exp(−π/2Q)

]
+

[
α− 2α

1− exp(−π/2Q)

]
(1.26)

with α = FS/(ka0). In the limit of a large quality factor Q� 1, we obtain:

x(t)/a0 ≈ exp(−ω0t/2Q)

[
1 +

4αQ

π

]
− 4αQ

π
(1.27)

and the initial velocity is expressed as:

ẋ(t)/a0ω0 ≈ −
[

1

2Q
+

2α

π

]
(1.28)

One can thus disentangle the effect of viscous and solid-like friction forces using ring-
down experiments (see Chapter 4).

Viscous friction limit
For a purely viscous damping, α = 0 and the oscillator relaxes purely exponentially, with

a characteristic time τ = 2Q/ω0.

Sliding friction limit
For an oscillator damped only by sliding friction, Q =∞ and we recover a linear decay

of the motion, with x(t) ≈ a0(1− µω0t) and ẋ(t) = a0ω0µ.

1.4 Tuning-Fork based AFM set-up

Commercially available tuning forks have to be prepared before each experiment, to
become usable AFM probes. In this Section, we present briefly the workflow necessary to
prepare the tuning forks.

1.4.1 Tuning Fork preparation

Getting to the quartz-crystal

The tuning forks are commercially available (Radiospare). They are stored under con-
trolled atmosphere in a shell. The first step is to get the tuning fork out of its shell.

Wire Gluing
The second step is the gluing of the tip to one of the prong of the tuning fork (typically

tungsten or gold). The wire of 200 µm diameter is cut to a few centimeters and cleaned
with ethanol. A dot of conductive epoxy glue is deposited on one prong of the tuning fork
(preferentially touching one of the tuning fork’s electrodes in order to ground the tip). The
wire is put in contact to the glue, which can be cured using a hair-dryer.
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Tip Etching

To get reliable data, an important step relies in obtaining clean and controlled etched
tips [17]. We used the so-called double lamellae drop-off etching, which takes advantage of
small ring electrodes [14].

To etch the tungsten tips, a drop of 1 M NaOH in each ring creates an electrolytic cell
in which the tungsten wire is etched. After an etching time of less than 5 minutes, the wire
becomes so thin that the lower portion of the tungsten wire falls down under its weight,
opening the circuit and thus stopping the etching process automatically. The upper part
of the tip has a radius typically smaller than 100 nm.

In some applications, it may be necessary to increase the tip radius to larger values. To
do so, we connect the cathode to one electrode of the tuning fork, which is contacting the
tungsten wire via conductive glue. Tip end radii up to 10 µm can be obtained with this
technique.

A B

Figure 1.9: Typical AFM tip obtained after the etching process. (A) thin tip of ≈ 50 nm
radius (B) Large tip of 2 µm radius, for rheological measurements.

Etched tip

Conductive 

epoxy glue

Electrode

Figure 1.10: SEM image of a prepared tuning fork with etched tip glued on one prong.
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1.4.2 Integrated AFM Set-up

We present in this section the integration of the tuning fork in the global AFM set-up.

AFM Set-up

Piezoscanner 

xyz
Y

X

Z Substrate

Tuning Fork

Piezo

Dither
A B

Tuning Fork

Piezo

ScannerPiezo

Dither

SubstrateZ
Y

X

Figure 1.11: Schematic of the AFM set-up, with coarse positioning motors (X, Y, Z), a
3-axis piezoelectric scanner (xyz), the tuning fork, substrate and piezo dither.

The AFM set-up is composed of two kinds of actuators/positioners.
Coarse positioning motors allow the approach of the tip from the substrate. They are

inertial MechOnics motors. They can move with a step size of 30 nm over a total course
of 1 cm.

For AFM imaging or force spectroscopy, we use a piezoelectric scanner from Piezosystem
Jena. The scanner allows smooth displacements of up to 8 µm in the 3 spatial directions,
with a precision below 100 pm.

The coarse approach motors are first used to approach the tip of the tuning fork at
several micrometers above the substrate (see Fig. 1.12). Smooth displacements of the piezo
scanner are then used to measure interactions of the tip with the substrate.

Tuning fork prong

Tungsten Tip

Drop of Ionic Liquid

Figure 1.12: Photograph of the tuning fork tip standing close to the substrate, along with
its reflection.
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Isolation and stability
The environment and isolation of the AFM is critical for some measurements. The AFM

stands on a passively damped breadboard table, which is enclosed in an acoustic box. The
acoustic box sits on a 1 tonne marble table, coupled to the floor with rubber pads. All
passive damping elements act as low pass filters for acoustic or mechanical vibrations. The
acoustic box is also critical to reduce thermal drift in the set-up.

M = 1 tonne

passive antivibration table

Accoustic Box

XYZ xyz

Figure 1.13: Schematic of the environment isolation for the quartz-tuning fork AFM set-up.

External environment
In several cases, it can be important to control the external environment of the set-up in

term of vapor pressure. To control humidity, we place around the set-up a plexiglass box,
initially filled with nitrogen and containing desiccants. The AFM can also be adapted to
work in a vacuum chamber.

1.4.3 Signal acquisition

Detection of the oscillation amplitude
The piezoelectric current generated by the oscillation of the tuning fork is amplified

using a commercial femto preamplifier (DLPCA-200), typically with a gain of 107 V/A,
corresponding to a 50 kHz bandwidth.

Tip sample bias and current monitoring
In addition, we can apply a bias between the metallic tip and the sample as shown in

Fig. 1.14. The current is measured via another femto preamplifier (DLPCA-200).

1.4.4 Signal processing and control

To measure the mechanical impedance of the force field applied on the tuning fork,
we have to measure the shift of resonance frequency δf [Hz], the amplitude at resonance
a [m], and the excitation voltage E [V] of the piezo-dither. We thus use systematically
frequency-modulation AFM techniques, which allow to measure those parameters in real
time, without having to perform a resonance at each time step.
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A

A

V
i
tip/sample

i
TF

Figure 1.14: Configuration used to apply a tip/sample bias V , and measuring tip/sample
current itip/sample.

The detection and processing of the tuning fork signals is done via a Specs-Nanonis
package, designed for local probe control. It consists of a real time module RT4, one or two
Oscillation Controller OC4 for detection and servo control of the tuning fork signal, a high
voltage amplifier for piezoelectric scanner control and a module SC4 for data acquisition.

Lock-in
The motion of the tuning fork at the excitation frequency and the phase shift between

the excitation signal and the tuning fork oscillation is detected via a lock-in amplifier.
The lock-in amplifier can be thought of as a band-pass filter amplifier, with an extremely
small bandwidth and extremely high Q factor, that cannot be achieved by conventional
RLC circuits. It can thus extract a signal with a known frequency from a very noisy
environment. In essence, a lock-in amplifier takes the input signal, multiplies it with the
reference signal (Fig. 1.15, mixer) and integrates it over a specified time to obtain the DC
component (Fig. 1.15, low pass filter).

mixer Low Pass filter

mixer Low Pass filter

R

Θ~
reference
signal Vr(t)

input signal Vs(t)

+90°

X

Y

Figure 1.15: Schematic diagram of the operation principle for lock-in detection.

The outputs of the lock-in are the amplitude of oscillation a [m] and the phase shift
φ [rad] of the tuning fork oscillation a(t) with respect to the excitation voltage E(t) at
the excitation frequency ω. The properties of the lock-in are essentially determined by
the cut-off frequency (or equivalently the bandwidth) and the order of the low pass filter
(Fig. 1.15).
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PLL
To measure the change in resonance frequency f of the tuning fork under an interacting

force field, we use a Phase Lock Loop (PLL). In essence, the PLL tunes the excitation fre-
quency f of the piezo-dither to keep a constant phase shift φ = π/2 between the excitation
signal and the tuning fork oscillation, allowing to systematically excite the tuning fork at
its resonance frequency.

Filter (PID)

input signal V
i
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.t+φ
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)

output signal V
r
(t)

Phase
comparator

Voltage Controlled 
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i 
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Figure 1.16: Schematic of the PLL operation principle.

A schematic diagram representation is given in Fig. 1.16. The phase shift between
excitation and oscillation is measured via a lock-in amplifier. The bandwidth of the PLL
is set by the gain of the PID filter and of the lock-in.

PID
Finally, we use an additional PID servo loop, which tunes the excitation voltage E of

the piezo-dither to maintain constant the oscillation amplitude a of the tuning fork at the
resonance. The bandwidth of the PID is again determined by the choice of the PID gain.

Frequency-modulation AFM techniques are implemented using a Phase
Locked Loop, allowing to systematically excite the tuning fork at its
resonant frequency. The shift in resonance frequency gives a direct
measurement of the conservative force field applied on the tuning fork.
The excitation of the piezo dither, i.e. the external force applied
on the tuning fork is adjusted by an additional PID servo loop, to
maintain a constant oscillation amplitude at the resonance. This
excitation voltage gives a direct measurement of the dissipative forces
applying on the tuning fork.

Other operation modes
Note that the tuning fork can also be used simply in amplitude modulation mode. This

mode of operation is used in standard dynamic AFM imaging.
It remains possible to extract conservative and dissipative interactions in amplitude

modulation mode, but at the price of approximations and more complex analysis of the
phase and amplitude signals. As discussed in the first section of this chapter, amplitude
modulation also leads to slow response time when using large quality factors. Due to the
typically large quality factor of the resonance one also experiences a very quick loss in sen-
sitivity in the presence of strong force gradients without frequency modulation techniques.
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1.5 Limitation for dynamic force measurement

1.5.1 Fundamental limitations

We discuss in this section the limitation for dynamic force measurement with frequency
modulation techniques [5, 28].

In frequency modulation AFM, the limitation for dynamic force measurement is related
to the measurement of the oscillation period of the cantilever.

We can assume that the deflection a(t) of the cantilever is subjected to a noise level δa.
The deflection noise δa has two major contributions: thermal fluctuations of the cantilever
δathermal and instrumental noise δadetector.

The oscillation period Θ of the oscillator can thus only be measured with accuracy δΘ.
The uncertainty in this oscillation period δΘ can be related to f0 and δa as:

δΘ = 2 · δa

2πf0a
(1.29)

We have f0 = 1/Θ and the relative error in frequency shift is given by:

δf

f0
= δΘf0 =

δa

πa
(1.30)

The two sources of noise on the oscillation frequency are statistically independent. We
thus have

δf =
√
δf 2

detector + δf 2
thermal (1.31)

Thermal noise
For an oscillator submitted to white thermal noise, the spectral noise density ã [m.Hz−1]

for the amplitude is given by:

ã =

√
2kBT

πKf0Q
(1.32)

The thermal deflection noise is then given as a function of the measurement bandwidth:

δa =

√
2kBTB

πKf0Q
(1.33)

This corresponds to a relative frequency noise:

δ̃f thermal =

√
kBTBf0
πKa2Q

(1.34)

At room temperature for an oscillation amplitude of 1 nm, frequency of 32 kHz and
quality factor of the order of 10,000 one obtains a frequency noise density f̃thermal =
3 · 10−4 Hz.Hz−1/2.
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Detector noise
In practice, the limitation for frequency measurement is given by the detector noise

for the oscillation amplitude. One can characterize the detector by its noise density
nq [m.Hz−1/2].

Eq. 1.30, characterizes the error in the frequency measurement for a bandwidth B = f0
(i.e. over one oscillation cycle). In practice, the number of oscillation cycles which are
available for frequency measurements is given by N = f0/B and the positional noise δa is
related to the detector noise density nq with δa = nq

√
B.

We find

δfdetector = f0
1

N

δa

πa
=
nq
πa
B3/2 (1.35)

The detector frequency noise δfdetector has thus a strong dependence (power 3/2) on the
measurement bandwidth B. The bandwidth B should thus be chosen properly, in order to
keep low frequency noise while maintaining fast response time.

1.5.2 Experimental limitations

In practice force measurement are limited by the detector noise, as well as vibrations
and thermal drift.
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Figure 1.17: Current noise for a conductive gold tip touching a conductive gold substrate.
Black curve corresponds to current noise density with 3 MechOnics, and camera motors
turned on. One can clearly see mechanical resonance associated with vibration modes of
the set-up. Red curve corresponds to current noise with one MechOnics, camera motors
turned off and low pass filter on the control lines of the PiezoScanner.

Limitations in force measurements
For a bandwidth of 50 Hz for the PLL and PID, at an oscillation amplitude of 1 nm,

for the 32 kHz resonance, one obtains a power spectrum density for the frequency shift of
≈ 10−3 Hz.Hz−1/2, corresponding to a force gradient spectral density of≈ 2 mN.m−1.Hz−1/2.

Similarly, the noise in the excitation signal due to the control loop for the excitation
corresponds to a noise density for dissipative force of the order of 0.0024 nN.Hz−1/2.
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Vibration stability
Mechanical stability can also be crucial in some experiments.
For the experiments described in Chapter 3, we added low pass filters with cutoff

frequency of 1 Hz to the control lines for the piezoscanner. We also found that reducing
the number of MechOnics coarse approach motors leads to significant improvement in
stability. Finally, all additional motors coupled to the breadboard (e.g. controlling the
camera) were also turned off. Fig. 1.17 shows a comparison of the current noise for a
conductive gold tip touching a conductive gold substrate in those two configuration.

Thermal drift
Thermal drift can also be an issue in the case of slow approach speeds. Letting the

set-up at rest for several hours before performing experiments already leads to a significant
reduction of thermal drift. For set-up left to rest several days, we could achieve thermal
drift below 0.01 nm/s (Fig. 1.18).

100 150 200 250 300 350 400 450 500
time (s)

92

92.2

92.4

92.6

92.8

93

93.2

93.4

93.6

93.8

Z
 (

n
m

)

y(x) = a x + b

a = 0.0025944

b = 92.225

R = 0.88162  (lin)

0 50

Figure 1.18: Drift in position, for regulation at constant frequency shift. The thermal drift
is of order 0.003 nm/s



1.6. CONCLUSION 27

1.6 Conclusion

In this Chapter, we showed that the tuning fork based Atomic
Force Microscope is a valuable tool for force measurement at the
nanoscale. The main advantages of this device are:

1. An ultrahigh stiffness, which leads to excellent mechanical sta-
bility e.g. when working in liquid environments or under strong
attractive or repulsive force gradients.

2. Excellent mechanical resonator characteristics, conferring the tun-
ing fork a large dynamic force sensitivity.

3. The ability to quantitatively disentangle conservative and dissi-
pative forces acting on the tip of the tuning fork via frequency-
modulation AFM techniques, enabling the tuning fork to work as
a kind of nanorheometer.

Using frequency-modulation techniques, we have a direct access to
the conservative force gradient −∂F/∂z [N/m] and dissipative forces
FD [N], or equivalently to the conservative and dissipative mechanical
impedance Z ′ and Z ′′ [N/m] of the force field. Conservative force
response is related to the frequency shift δf [Hz] of the resonance, and
dissipative forces are related to the external excitation force (voltage)
necessary to keep constant the oscillation amplitude of the tuning fork
at resonance.
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In this Chapter, we use nanorheological measurements to explore the
properties of ionic liquids in nanometric confinement. We unveil a
dramatic change of the ionic liquid towards a solid-like phase below
a threshold thickness, pointing to a capillary freezing transition in
confinement. This threshold thickness is found to be intimately related
to the metallic nature of the confining materials, with more metallic
surfaces facilitating freezing. This behavior is interpreted theoretically
in terms of the shift of the freezing transition, taking into account
the influence of the electronic screening on ionic liquid wetting of the
confining surfaces, as described by a simple Thomas-Fermi approach.

This Chapter is based on the following articles:

• Comtet, J., Niguès, A., Kaiser, V., Coasne, B., Bocquet, L., & Siria, A. Nanoscale
capillary freezing of ionic liquids confined between metallic interfaces and the role of
electronic screening. Nature materials, 16(6), 634. (2017).

• Kaiser, V., Comtet, J., Niguès, A., Siria, A., Coasne, B., & Bocquet, L. Electrostatic
interactions between ions near Thomas–Fermi substrates and the surface energy of
ionic crystals at imperfect metals. Faraday discussions, 199, 129-158. (2017).

2.1 General Context

Figure 2.1: Table salt NaCl and the ionic liquid 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide at 27 ◦C.

Room Temperature Ionic Liquids are liquid salts in the ambient (Fig. 2.1). They are
new materials with peculiar properties, leading to a wealth of emerging applications for
energy storage, lubrication and catalysis [27, 36, 60]. As solvent-free electrolytes composed
solely of ions, ionic liquids also challenge the fundamental framework of electrolytes and of
the liquid state.
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Applications: from supercapacitor to lubrication
The large electrochemical window, low vapor pressure, thermal stability and low melting

point of ionic liquids make them ideal candidates for their use in applications related to
energy storage, for example in supercapacitors [5, 57]. Fig. 2.2 shows a schematic of a
supercapacitor composed of two porous carbon electrodes immersed in an electrolyte. The
principal reason for the use of ionic liquids in supercapacitors is their large electrochemical
window, of up to 5 V [22] (to be compared to the 1 V electrochemical window of water
based electrolytes) which can maximize the energy 1/2 ·C ·∆V 2 capacitively stored using
those electrolytes (with ∆V [V] the potential drop and C [F] the capacitance)

Separator

Electrolyte 

Porous CarbonCurrent Collector

+ - 

Figure 2.2: Cross-sectional section of a supercapacitor. The application of a potential drop
between the two electrodes leads to accumulation of ions on the electrodes [38]

Due to their strong interaction with surfaces, ionic liquids are also promising materials
for applications related to friction, and have shown unexpected lubricating and anti-wear
properties [42, 58]. They are particularly interesting in the context of boundary lubrication,
as they can prevent direct contacts between sliding surfaces [34, 50]. Ionic liquids also raise
significant interests in the context of active or voltage controlled lubrication, with recent
experimental and theoretical work showing that their frictional properties could be tuned
and controlled by the application of electric fields [14, 16, 46].

Fundamental challenges
The unique properties of ionic liquids result from the competition of strong electrostatic

interactions between ions with properly designed molecular structure to avoid crystalliza-
tion at room temperature. This inhibited crystallization stems from the relative large ion
size (which reduces electrostatic interactions), the asymmetry between the anion and the
cation, and conformational entropic effects of the molecules. Ionic liquids are thus a proto-
type for dense electrolytes, composed of pure ions. Interestingly, at such densities, standard
mean-field response, such as Poisson-Boltzmann theory, which constitutes the toolbox of
dilute electrolytes, cannot account for the structure of the ionic liquid close to surfaces.

We can grasp the peculiarities associated with ionic liquids by evaluating two charac-
teristic lengths. The Bjerrum length, which characterizes the typical inter-ionic distance
at which electrostatic interactions start to overcome thermal fluctuations can be expressed
as λB = e2/(4πεkBT ), with e the elementary charge, ε the dielectric constant and kBT the
thermal energy. In standard ionic liquids, this length is of the order of 5 to 10 nm, i.e. up
to 10 times the ion pair size, characterizing the strong electrostatic interactions at play in
those liquids. To compare, the Bjerrum length is only of the order of 0.7 nm in water.

Second, the expected Debye screening length for the electric field in the electrolyte is
of the order of λD =

√
εkBT/2c0e2 with c0 the concentration of charge carrier (here ions).
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This screening length is of order 0.1− 0.6 nm in ionic liquids, i.e. smaller than the ion pair
size and than the Bjerrum length. As a comparison, the Debye screening length is of order
1− 100 nm for dilute aqueous electrolytes (c < 100 mmol/L).

Those estimates highlight the peculiar nature of ionic liquids as dense disordered liquid
systems, controlled by strong electrostatic interactions between ions.

Behavior of ionic liquids at interfaces and in confinement
Like several other liquids, ionic liquids tend to adopt ordered layered structures extending

over several molecular lengths parallel to surfaces. These molecularly ordered structures
can be probed mechanically via SFA or AFM. Clear mechanical signatures of this molecular
ordering close to surfaces have been reported [10, 26, 28, 44, 51].

Interestingly, several other studies have also reported changes in the mechanical prop-
erties of confined ionic liquid at distances exceeding several molecular lengths. Hoth and
coworkers reported layering of ionic liquid with AFM at distances up 10 nm from surfaces
[29]. Bou-Malham and Bureau reported viscosity enhancement for ionic liquids confined
to 20 nm between charged Mica surfaces [10]. Solid-like behavior of ionic liquid confined
between silica surface to distances of 10 nm were reported by Ueno et al. [56]. Solid struc-
tures with thickness of tens of nanometers were grown by successive nanoconfinements
between mica surfaces in Jurado et al. [30]. Similarly, solid-like terraces were reported by
Bovio et al. on silica, mica and HOPG surfaces, for ionic liquids deposited by dropcasting
techniques [11, 12, 59].

Due to the dominant role of electrostatic forces in ionic liquids, one may anticipate
even more peculiar behavior of ionic liquids at metallic surfaces [21, 32, 39, 47]. 2D like
ordering of ionic liquids at electrified interfaces have indeed been revealed by AFM and
STM studies [6, 13, 17, 18, 52, 59]. Structures of the order of 1000 nm have also been
reported via spectroscopic methods at silver and gold surfaces, independently of surface
chemistry [3]. Finally, there are some reports in which the melting points of ionic liquids
has been found to increase when confined in nano porous conducting matrices like silver
and single and multi-wall carbon nanotube [48].

Confinement therefore opens an interesting window on the physics of ionic liquids and
their interaction with the confining interfaces [43]. In particular, due to the dominant role
of electrostatic forces, one may anticipate that the metallic nature of the confining surfaces
should affect the static and dynamic properties of confined ionic liquids. Such relationships
have not been explored up to now.

2.2 Experimental Set-up

2.2.1 General Set-up

We present in Fig. 2.3 a sketch of the experimental set-up. We glue the electrochemically
etched tungsten tip of end radius from 50 nm to 2.5 µm to the quartz tuning fork. The
tip of the tuning fork is immersed in a drop of liquid deposited on the substrate. The
probed liquid is confined between the oscillating tungsten tip and substrates of various
nature. Importantly, the entire set-up is placed in a vacuum chamber at a pressure of
approximately 10−6 mbar, to prevent contamination of the liquid with ambient water vapor.
The fact that we operate in vacuum might be important, as the mechanical properties of
ionic liquids under confinement have been found to be strongly dependent on environmental
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humidity [31].
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Figure 2.3: Experimental Set-up and schematic of the experiment. An etched
tungsten tip of end radius of curvature R between 50 nm and 5 µm is glued to the tuning
fork, and immersed in the ionic liquid. The substrate can be biased with respect to the tip
with a potential difference ∆V . The experimental set-up is placed in a vacuum chamber
at a pressure of ≈ 10−6 mbar.

2.2.2 Ionic Liquids
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Figure 2.4: (a) 1-Butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) (b) 1-Butyl-
3-methylimidazolium hexafluorophosphate (BmimPF6).

The ionic liquids under investigation are BmimBF4 and BmimPF6 (Sigma Aldrich,
98.5% purity) (Fig. 2.4). BmimBF4 is the main ionic liquid used throughout this study,
and a comparison with BmimPF6 is made in Section 2.6.2. The thermodynamic and
physical properties of these ionic liquids are summarized in Tables 2.1 and 2.2.

Ionic liquids are filtered through a 100 nm hole teflon membrane before use. A drop
is deposited on the substrate and the AFM tungsten tip is immersed in the liquid. The
liquid is left at rest in the vacuum chamber at least for 12h to remove water impurities.
The substrate can be biased with respect to the tip by a potential difference ∆V . To
verify the high purity of the ionic liquid, we systematically check the absence of long-term
electrochemical current when applying a potential drop between -1.8 V and 1.8 V, which
is smaller than the electrochemical window for those liquids [41].
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BmimBF4
Parameter Explanation Value

TB Bulk freezing temperature -71◦ C [8]
Lh Latent heat of melting 47 kJ/kg [8]
ρ Liquid phase density 1.21 g/mL
vm Molar volume 187 mL/mol
2a Lattice constant 0.67 nm
η Viscosity 150 mPa.s

Table 2.1: Summary of BmimBF4 bulk properties. Lattice constant of the crystalline
phase can be defined as 2a = (vm/Na)1/3 = 0.67 nm with vm = 187 mL/mol the ionic
liquid molar volume.

BmimPF6
Parameter Explanation Value

TB Bulk freezing temperature 7◦ C [55]
Lh Latent heat of melting 19.9 kJ/kg [55]
ρ Liquid phase density 1.38 g/mL
vm Molar volume 205.9 mL/mol
2a Lattice constant 0.7 nm
η Viscosity 300 mPa.s

Table 2.2: Summary of BmimPF6 bulk properties.

2.2.3 Substrates

We have performed experiments by confining the liquid between various substrates,
namely mica, HOPG, doped silicon, and platinum, whose characteristics are described in
the following. Note that doped silicon and the tungsten tips may be coated by natural
oxide layers of up to 1 nm in thickness [4, 40]. However, this length remains much smaller
than the typical length at which the phenomena under investigation occurs, in the range
of tens of nanometers.

Substrate Preparation

The samples were prepared and characterized before experiments to discard any arti-
facts in our measurements. Sample preparation and cleaning were done in a cleanroom
environment, and substrates and ionic liquids were immediately transferred to the vacuum
chamber.

• Mica: Mica was purchased from Sigma Aldrich and cleaved right before use.

• HOPG: HOPG was purchased from Sigma Aldrich and cleaved with adhesive tape
right before use.

• Doped Silicon: Silicon (100) P-Bore doped, was purchased from Sil’Tronix. Sub-
strates were sonicated in acetone and isopropanol, and dried with nitrogen before
use.
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• Platinum: Platinum was vacuum deposited on intrinsic (100) Silicon with native
oxide using a 5 nm thick nickel adhesion layer. The final thickness of the Pt film is
≈ 100 nm. The substrates were sonicated in acetone and isopropanol, and dried with
nitrogen before use.

Substrate Topography

The surface topography of the different substrates has been firstly characterized in air
using Atomic Force Microscopy. The samples have been prepared and cleaned following
the same procedure as during experiments with ionic liquid. In Fig. 2.5 we present the
images for the 4 different materials. Mica surface is atomically flat with a rms roughness
below 0.3 nm. HOPG present the standard terrace like feature of a multilayer surface: on
the terrace the surface is atomically flat with a rms roughness below 0.3 nm. Doped Silicon
and Platinum presents a very uniform and flat surface with a with a rms roughness below
0.3 nm for Doped Silicon and below 0.8 nm for Platinum
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Figure 2.5: Atomic Force Microscope Topography in air of the four different substrates.
Scan size is 3×3 µm.

Conductivity, Carrier density and Thomas-Fermi length

As we will show in the following, the electronic properties of the confining substrates
might determine strongly the behavior of the confined liquid. We characterize here the
electronic screening in the substrate by the Thomas-Fermi screening length for the electric
field.

The Thomas-Fermi wave vector kTF can be expressed in terms of the density of states
D(EF ) at the Fermi level EF , elementary ionic charge e and dielectric permittivity ε0:

k2TF =
e2

ε0
D(EF ) (2.1)
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To obtain a coarse estimation of the Thomas-Fermi length for the three conductive sub-
strates, we assume that they can be described as ideal 3D Fermi gas, for which

D(E) =
3n

2E
and EF =

~2

2me

(3π2n)2/3 (2.2)

where n is the carrier density, ~ is Planck’s constant and me is the electron mass. This
gives:

`TF ≈
1

2

(
a30
n

)1/6

with a0 =
4πε0~2

mee2
≈ 0.57 Å (2.3)

The carrier density and the Thomas-Fermi length are then estimated as follow:

• Mica: Mica is a band-gap insulator, for which the Thomas-Fermi length `TF →∞.

• HOPG: the carrier concentration is approximately equal to 10−4 per carbon atoms
[7]. From HOPG density, we find an atomic density of 1.14 · 1029 m−3. We thus
obtain a carrier density of n(HOPG) = 1.1 · 10−24 m−3. Conductivity in Table 2.3
corresponds to the graphite out-of-plane conductivity [45].
The corresponding Thomas-Fermi length is `TF ≈ 3.6 Å.

• Doped Silicon: using standard conductivity/carrier charts [54], we estimate a
dopant density of n(Si) = 1 − 3 · 1026 m−3, taking substrate conductivity given by
the seller (0.5-0.8 mΩ.cm).
The corresponding Thomas-Fermi length is `TF ≈ 1.5 Å.

• Platinum: carrier density is equal to atomic density, calculated as n(Pt) = ρ(Pt)/NA =
6.62 · 1028 m−3 where ρPt [g/cm3] is Platinum density.
The corresponding Thomas-Fermi length is `TF ≈ 0.5 Å.

We summarize the properties of the samples used in our experiments in Table 2.3.

Substrate Roughness Conductivity Carrier Density TF-length `TF

(RMS)
Mica < 0.3 nm insulator - `TF →∞

HOPG, ZYA grade < 0.3 nm 300 mΩ.cm 1.1 · 1024 /m3 `TF = 3.6 Å
Doped (100) Silicon < 0.3 nm 0.5-0.8 mΩ.cm 1− 3 · 1026 /m3 `TF = 1.46− 1.75 Å

Platinum ≈ 0.8 nm 0.1 mΩ.cm 6.6 · 1028 /m3 `TF = 0.55 Å

Table 2.3: Summary of Substrate Properties.

2.2.4 Tip

A chemically etched tungsten tip with a radius in the range 50 nm to 5 µm is glued
with conductive epoxy to one prong of the tuning fork. In Fig. 2.6, we show a SEM image
of a typical tungsten tip used during the experiments. The end diameter is measured here
as D = 1.85 µm and the tip is perfectly smooth at the end.
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2R
tip

Figure 2.6: SEM image of typical tungsten tips used in this study. The end diameter is
measured here as D = 1.85 µm and the tip is perfectly smooth at the end. Typical tip
diameters used in our experiments range from 1.5 to 5 µm.

2.3 Solid-like response and prewetting

2.3.1 Dissipation of an AFM tip oscillating in a viscous fluid
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Figure 2.7: Benchmark on a silicon oil. Nanorheological measurement on a silicon oil
confined between a tungsten tip and a mica sample, showing the variation of conservative
(Z’ - black) and dissipative (Z” - red) mechanical impedance; black dotted line is a fit based
on Eq. 2.4. Inset shows typical resonance curves of the tuning fork with the tip immersed
in the liquid and far from the surface (1), close to the surface (2) and in contact with the
substrate (3).

As shown in Fig. 2.7, the experimental set-up has been fully benchmarked using a
newtonian silicon oil with viscosity η ≈ 0.1 Pa.s, comparable to the viscosity of the ionic
liquid used in this study.
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Reynolds Force
Quantitatively, the increase of dissipation Z ′′ with decreasing confinementD for a viscous

newtonian fluid sheared under an oscillating sphere can be described by the Reynolds force
[33]:

Z ′′Reynolds(D) =
6πηR2 · 2πf0

D
(2.4)

where R is the radius of curvature of the tip, η ≈ 0.1 − 0.3 Pa.s the bulk viscosity of
the confined liquid, f0 ≈ 32 kHz the oscillation frequency and D [nm] the distance
between the tip and the substrate. This expression assumes no slip at the liquid/substrate
interfaces, which is expected for strongly interacting systems such as ionic liquids [9], or
for the viscous silicon oil.

Dissipation of the AFM tip
When the tip is oscillating close to the surface, the viscous impedance Z ′′(z) varies as:

Z ′′(z) = Z ′′Reynolds(z−z0)+Z ′′0 (z) with z0 the absolute position of the substrate, D = z−z0
the distance between the tip and the surface. The second term Z ′′0 (z) characterizes viscous
dissipation along the immersed tip and at the meniscus, which can be in principle dependent
on the tip/substrate position. Over the course of an approach to the substrate (≈ 300 nm),
this term varies approximately linearly with position, i.e. Z ′′0 (z) ∼ z. This second term
is accordingly taken into account for obtaining the expression of the Reynolds dissipation,
and the absolute position of the tip with respect to the hydrodynamic origin.

We show in the following only dissipative impedance corrected for this additional dis-
sipation.

2.3.2 Approach curve in the ionic liquid

Long-range hydrodynamic variations
We plot in Fig. 2.8a the typical variation of the elastic Z ′ = Re(Z∗) (black curve) and

dissipative Z ′′ = Im(Z∗) (red curve) parts of the mechanical impedance, as the tungsten
tip approaches a HOPG surface in the ionic liquid. Far from the substrate - zone (i) - the
elastic response is Z ′ ≈ 0 within the experimental precision. One can observe a minute
attractive component reminiscent of long-ranged forces recently reported in several SFA
experiments [23–25, 49]. The dissipative component Z ′′ increases gently as the confinement
thickness decreases; quantitatively, the increase of Z ′′ with decreasing confinement D can
be described by the Reynolds dissipative response of a viscous newtonian fluid sheared
under an oscillating sphere [33] Z ′′(D) = 6πηR2 · 2πf0/D (see Eq. 2.4). Fitting this initial
increase in dissipation allows us to estimate the absolute position D between the confining
tip and the surface.

Solid-like response
As shown in Fig. 2.8a, in ionic liquids, before reaching the hydrodynamic "zero" D → 0,

both the elastic Z ′ and dissipative part Z ′′ of the response suddenly diverge at a critical
confinement D = λS. This occurs for a confinement D in the range of a few tens of
nanometers, depending on the substrate. We have changed the tip oscillation amplitude
h0 over one decade, between 0.1 nm and 1 nm, verifying that λS does not depend on
oscillation amplitude and shear rates. Within our experimental precision, the retract and
approach curves over one approach are similar, showing no or negligible hysteresis.
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Figure 2.8: Confinement induced freezing transition (a) Real (Z ′, black) and com-
plex (Z ′′, red) part of the mechanical impedance characterizing conservative and dissipative
response of the liquid, versus tip-substrate position D, performed on a HOPG sample. The
origin of the tip-substrate position is defined as the hydrodynamic zero obtained by fitting
Z ′′ with Eq. 2.4. Upon a critical confinement distance λS, Z∗ changes from a liquid-like
response to a solid-like response, characterized by the onset of an elastic contribution (Z ′,
black dots) and a sharp increase of the dissipation (Z ′′, red dots). (b) Distribution of λS
on HOPG; ≈ 12,000 cycles were performed, over 18 distinct locations. Red vertical line is
the mean of the distribution. (c) Sketch of the freezing induced by confinement: upon a
critical confinement the ionic liquid changes from liquid (i) to solid-like (ii).

This strong repulsive elastic response (with Z ′ ≈ 30 N/m) shows that the ionic liquid
can now sustain a yield stress of order τ ≈ Z ′h0/πR

2 ≈ 1 kPa, providing a clear signature
of the solid-like response of the confined ionic liquid for D < λS. This behavior was found
repeatedly when performing approach and retract cycles of the tip, either at the same
or at distinct locations; typically ≈ 10,000 cycles were performed for each material, over
≈ 20 distinct locations. We measured accordingly the distribution of threshold confinement
thickness, as reported in the inset of Fig. 2.8b for HOPG, allowing to extract the mean
transition thickness, found to be λS ' 60 nm for HOPG.

Going further, the same phenomenon was observed for the various substrates under
investigation, Mica, HOPG, doped Silicon and Platinum, with a mean transition thickness
λS increasing in the order: Mica (15 nm) < HOPG (60 nm) < doped Silicon (110 nm)
< Platinum (160 nm). Interestingly this order corresponds to substrates with increasing
metallic character, as for example characterized by the conductivity, from the insulating
Mica to the highly conductive Platinum (see Fig. 2.10).

2.3.3 Prewetting

As a first interpretation of the approach curve shown in Fig. 2.8a, one may infer the
presence of solid layers pre-existing on the surface of the substrates. To explore this
assumption, we have performed AFM images of the surfaces using sharp tips with 10 -
50 nm of radius of curvature (Fig. 2.9). While in vacuum, the substrates surface appear
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Figure 2.9: Atomic Force Microscope Topography in Ionic Liquid of the four different
substrates: (a) Mica, (b) HOPG, (c) Doped Silicon and (d) Platinum.

atomically smooth on micrometric scales – with a typical rms roughness between 0.3 nm
and 1 nm depending on the substrate (Fig. 2.5) – one indeed observes solid-like terrace
structures on the surfaces when immersed in the ionic liquid. This thickness is measured
below 1 nm for HOPG and typically in the range of ∼ 20 − 30 nm for doped silicon and
platinum; no such terrace is evident on Mica (Fig. 2.9). Such structures are reminiscent
of observations using STM and AFM imaging [13, 17, 18, 59]. That such thick structures
are present on the substrate surfaces is unexpected per se and raises the question of the
prewetting of the surfaces by the ionic liquid, and the role of the metallic nature of the
substrates on this prewetting. We note however that the characteristic height of these solid
”prewetting” films is much smaller than the critical thickness at which the transition occurs
for each substrates (Fig. 2.10a, blue dots). Accordingly an alternative thermodynamic
explanation for the solid-like response of the liquid shown in Fig. 2.8 should be sought.
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2.4 Confinement-induced freezing transition

2.4.1 Gibbs-Thompson effect

Looking at Fig. 2.8a, the drastic change in both elastic response and dissipation from
D > λS to D < λS would actually rather suggest a complete confinement induced phase
change, with a freezing of the confined ionic liquid inside the gap. A confinement induced
phase transition is expected when the unfavorable bulk free energy is balanced by favorable
(wetting) surface contributions, thus stabilizing the unfavored phase in confinement. This
results in a shift for the phase transition, as observed for capillary condensation (the shifted
liquid-gas phase transition) or capillary freezing (shifted crystallization) [2]. The balance
of free energy leads to the so-called Gibbs-Thompson equation, which characterizes the
critical confinement λS at which the free energies of the liquid and solid phase become
equal [2]:

∆T = TC − TB = 2
TB∆γ

ρLh λS
with ∆γ = γwl − γws (2.5)

where ∆T = TC−TB is the shift in transition temperature, in confinement TC as compared
to the bulk transition occurring at TB. For the specific ionic liquid used here, TB =
−71◦ C; γwl and γws are the surface energy of the liquid and solid phase with respect to the
wall/substrate, ρ = 1.21 g/mL the density of the liquid phase and Lh = 47 kJ/kg the latent
heat of melting [8] (see Table 2.1). Eq. (2.5) shows that if wetting of the solid-phase on the
substrate is favored compared to that of the liquid (γws < γwl) the freezing temperature of
the confined phase TC is larger than the bulk freezing temperature TB (TC > TB in Eq. 2.5).
Putting numbers, one gets TC ∼ 25◦ C for a an ionic liquid confined in a gap of ∼ 20 nm
with ∆γ ∼ 0.3 J/m2 (anticipating on the values below). In other words, the ionic liquid
may freeze in nanoconfinement at room temperature. In this scenario, the distribution of
confinement length measured experimentally, see inset if Fig. 2.10, can be understood as a
signature of activation due to the first order character of the freezing transition, potentially
facilitated by the prewetting phase on the substrate.

2.4.2 Dependence on the metallicity of the substrate

A delicate question though is to understand the variations with the metallic nature of
the substrate. Following the argument above in terms of the shifted liquid-solid transition,
this raises the question of the surface energy of the solid (crystal) phase with the substrate
and how it is influenced by the metallic character of the substrate. Physically, one may
propose a simple explanation in terms of image charges. To highlight the argument, let
us consider a semi-infinite ionic crystal at the interface with a perfect metal, as sketched
in Fig. 2.10b. The network of image charges builds a crystal structure with a (nearly)
perfect symmetry with respect to the real upper half-lattice. Accordingly one expects
the electrostatic contribution to the surface free energy to (nearly) vanish, as the system
behaves as a single bulk lattice: γelecws → 0. This requires of course a perfectly symmetric
crystalline structure and this cancellation is not expected to occur for insulating substrates,
or for disordered liquid phases. In other words, the (semi-infinite) ionic crystal has a lower
surface energy at the interface with a metal wall as compared to an insulating substrate:
γinsulatingws > γmetal

ws . This shows that the crystal phase is favored on metallic surface as
compared to an insulating one and the Gibbs-Thompson equation (Eq. 2.5) accordingly
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Figure 2.10: Effect of substrate electronic properties on the freezing transition.
(a) Red dots: Variation of the mean solidification length (red dots) λS on Mica and
three conductive substrates: HOPG, Doped Silicon and Platinum versus the normalized
Thomas-Fermi wavevector, a · kTF, with 2a the typical ionic crystal lattice constant. Error
bars indicate standard deviation for Mica and standard error for the three conductive
substrates, with N ≈ 20 the number of positions investigated in each substrates. Blue open
dots represent the typical size of the preexisting solid layers measured with a sharp tip.
Error bar represents standard deviation of estimated height. Dotted line is the prediction
from Eq. 2.9. (b, c) Schematic representation of the ionic crystal close to an insulator
(αkTF � 1, (b)) and a perfect metal (αkTF � 1, (c)) for which image charges induced in
the substrate decrease the energy of the system.
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implies that the threshold confinement for the freezing transition should be larger with
metal as compared to insulating confining surfaces.

2.5 Role of electronic screening

2.5.1 Electronic screening by a Thomas-Fermi metal

In order to account for the non-ideal metallic nature of the confining walls, one should
model the electronic screening inside the substrates. To this end, we use the simple Thomas-
Fermi framework, based on a local density approximation for the free electrons gas [37].
This description provides a simple screening equation for the electric potential V (V) in
the metal, where the screening length λTF = 1/kTF [m] characterizes the typical length
over which a defect charge is screened in the metal and is defined in terms of the density
of states at the Fermi level, according to k2TF = 4πe2 ∂n

∂εF
; nT the state occupation and εF

the Fermi level (see Section 2.2.3). The limit of large kTF (small λTF) corresponds to the
perfect metallic case for which V is uniformly zero.

2.5.2 Influence of the electronic screening on charges in the ionic
liquid

The electronic screening therefore modifies the interactions of charge close to the
liquid-wall interface. The Green function Ψ for the electrostatic interaction, replacing
the Coulomb interaction, obeys equations:

∆ψ = −Q
ε
δ(r− r0) for z > 0 (2.6)

∆ψ − k2TFψ = 0 for z < 0 (2.7)

This allows us to calculate the energy of a semi-infinite ionic system in the presence of
the metal wall, as U = 1

2

∫
drρc(r)ψ(r), with ρc the charge density. For the crystal phase

ρcr(r) = Q
∑

n(−1)nδ(r − Rn), with Rn the lattice sites, while for the liquid phase, the
charge density ρliq(r) vanishes beyond a few molecular layer close to the wall. The calcula-
tion of this energy is a very challenging task, because both the one-body interaction of ions
with their image charges, and the two-body interactions between ions are strongly modified
by the presence of the confining metallic (TF) wall. Here, we develop a simplifying descrip-
tion which captures the main effects of wall metallicity on the surface electrostatic energies,
with the objective to rationalize the experimental data. This framework is described in
Appendix A.

2.5.3 Effect of metallicity on surface tensions

Overall, we predict that the surface tension excess, of the ionic liquid-metal versus the
ionic crystal-metal interfaces, is a function of the TF screening parameter kTF, taking the
form

∆γ = γWL − γWC ≈ ∆γins +
Q2 ∆ρ

16πε
×F(kTFa) (2.8)

where ∆γins = γinsWL − γinsWC [J.m−2] is the difference in surface energies at insulating walls,
∆ρ = ρC − ρL [m−3] is the density difference between the ionic crystal and ionic liquid
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phases (∆ρ > 0), a [m] is an ionic molecular size (typically given by the ionic crystal
lattice constant), Q = e [C] is the elementary ionic charge. The dimensionless function
F , whose expression is given in Appendix A, is an increasing function of the TF screening
kTF; it interpolates between 0 and 1 with a cross-over occuring for kTFa ∼ 1. As a
guideline, it can be well approximated as F(x) ≈ x/(ν + x) with ν ' 1.7. The steps
leading to this expression are discussed in details in the Appendix A. Overall, the physical
picture underlying Eq. (2.8) is that the electrostatic contribution to the surface energy –
in excess to the insulating wall situation – originates merely from the direct interaction
of ions close to the surface with their image charge, the latter being modified by the TF
screening. Interestingly this approximated approach emerges from exact calculations for
the 1D crystal-wall interface, which capture the main ingredients at stake and allows us
to calculate analytically the surface energy for any TF screening parameter kTF. These
calculations validate the simplified estimate of the excess surface energy in terms of image
charge interactions for a dense ionic system at the interface with a metallic wall, which is
then extended to the liquid-wall interface. As a complementary check of the framework,
molecular simulations of a model ionic system at finite temperature confirm the lower
energy of the crystal-wall interface as compared to the liquid-wall interface in the case of
insulating confining substrate, as well as the order of magnitude of the various contributions
to the surface energies (see Appendix A.5).

2.5.4 Effect of metallicity on the freezing transition

Altogether we obtain ∆γ = ∆γ0 (1 + δ · F(kTFa)), where ∆γ0 [J/m2] is the surface
tension difference between of the liquid-wall versus crystal-wall interfaces for an insulating
substrate and including also the non-electrostatic contributions to the surface energy (van
der Waals, ...) and the possible (constant) contribution from the tungsten tip. The dimen-
sionless parameter δ = e2(ρC − ρL)/(16πε∆γ0) quantifies the contribution of metallicity to
the surface energies.

Now using the Gibbs-Thomson result, Eq. 2.5, one predicts that the increase in surface
energy difference for better metals, i.e. for larger Thomas-Fermi wavevector kTF (Eq. 2.8)
will lead to a shift in the critical confinement distance for the freezing transition according
to

λS = λ0S(1 + δ · F(kTFa)). (2.9)

with λ0S the value for the perfectly insulating material defined in terms of ∆γ0 (here Mica).

2.5.5 Comparison with the experimental data

In Fig. 2.10, we compare the prediction for λS with the experimental data for the various
substrates investigated. Note that in doing this comparison, we estimated the values of
Thomas-Fermi length based on the substrate conductivity and carrier density (Section
2.2.3). We also fixed the molecular length to the crystal lattice constant as 2a = 0.67 nm
(as estimated from the molar volume of the ionic liquid). As shown in Fig. 2.10, a good
agreement between the theoretical predictions and the experimental results is obtained,
yielding λ0S = 15 nm and δ = 10.1. From the value for λ0 and Eq. 2.5, one gets ∆γ0 ≈ 0.2
J/m2. Using Eq. 2.9, and assuming ρL/ρC ∼ 0.8 as typical from such systems [15], this
would predict a value of δ ≈ 100, in fair agreement with the one obtained from the fit of
the experimental data, δ ≈ 10.
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2.6 Effect of tension and bulk melting temperature

2.6.1 Effect of tension
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Figure 2.11: Successive measurements of the solidification length λS (blue points) when
varying the bias voltage ∆U (red points) between the tungsten tip and a HOPG substrate.
Each point corresponds to one approach and retract (indicated by approach number, lower
axis).

Finally, we might also expect the bias voltage ∆U [V] applied between the two confining
surfaces to affect the observed freezing transition. As shown in Figure 2.11, we sweep the
applied voltage ∆U between -1.8 V and +1.8 V (red curve), while simultaneously measuring
the critical confinement distance λS (blue points) for each bias voltage between the tungsten
tip and a HOPG substrate. We observe hysteresis cycles in the critical confinement length,
with a peak to peak amplitude of approximately 20 nm. Note that such hysteretic effects
of the tension are not observed systematically (see for example the last bias cycle for which
no effect on critical confinement length is observed). This is not surprising, considering the
fact that hysteresis evidence the presence of metastable effects in the freezing transition.
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Figure 2.12: Hysteresis cycle for one of the bias cycle shown in Fig. 2.11

In Fig. 2.12, we show the critical confinement length as a function of bias for one
hysteresis cycle. The critical onset tension for the hysteretic effect is of the order of ±1 V.
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Following Eq. 2.5, we can interpret the dependence of critical confinement length λS on
bias voltage ∆U by considering the additional contributions to surface energies due to the
charged capacitance at the substrate/ionic liquid interface as:

∆γ = ∆̃γ +
1

2
C ·∆U2 (2.10)

where the last term is the area energy density stored in the capacitor, with C the interfacial
capacitance per surface area, and ∆̃γ takes into account all of the other electronic and non-
electronic contributions to surface energies. Considering a typical capacitance of the order
of 0.1 F.m−2 [1], we obtain an additional surface energy of 0.2 J.m−2, leading to a predicted
cycle amplitude of 15 nm, in very good agreement with our experimental results. Those
results suggest voltage induced controls of ionic liquid materials, as experienced in previous
experiments [35, 53] and theoretical work [19, 20, 46]. Furthermore, the dependence of the
critical solidification length on an external control parameter such as the bias voltage is
fully consistent with a capillary freezing mechanism implying bulk phase change between
the confining tip and the substrate.

2.6.2 Effect of bulk melting temperature
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Figure 2.13: AFM images of the surface of the various substrates immersed in BmimPF6.

In the framework of a confinement-induced freezing transition, due to an increase of
the melting temperature under confinement, one expect the external temperature and the
bulk freezing temperature of the ionic liquid to have an effect on the observed transition.
To test these dependence, we performed additional experiments on [Bmim][PF6], a second
ionic liquid with a much larger bulk freezing point of TPF6

B = 7◦ C (Table 2.2), compared
to TBF4

B = −71◦ for BmimBF4 (Table 2.1)
Fig. 2.13 reports experiments consisting of AFM scans of the various surfaces immersed

in [Bmim][PF6] using a sharp AFM tip with less than 50 nm end radius. As discussed in
Section 2.3.3, this allows us to image the prewetting structures (if any) on the substrates.
These experimental scans for [Bmim][PF6] with a small tungsten tip show the presence of
very large prewetting layers on the metallic substrates HOPG and Platinum as compared to
the Mica substrate. Importantly, we observe an increase in the height of these prewetting
layers for [Bmim][PF6], as compared to the prewetting layers on [Bmim][BF4] (see Fig. 2.9).
These observations confirm, at least qualitatively, the effect of the ionic liquid bulk melting
temperature on its structuration (prewetting) at interfaces.
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2.7 Conclusion

In this Chapter, we used nanorheological measurements to explore the
properties of ionic liquids in nanometric confinement.

1. Confining the ionic liquid between tungsten tips of few µm radius
and substrates of various nature, we unveil a dramatic change
of the ionic liquid towards a solid-like phase below a threshold
confinement of the order of tens of nanometers, pointing to a
capillary freezing transition in confinement.

2. Varying the nature of the substrates from Mica, HOPG, Doped
Silicon and Platinum, we find this threshold confinement to be
related to the metallicity of the confining materials, with more
conductive substrates facilitating freezing.

3. We evidence a dependence of this threshold thickness on the bias
voltage between the tip and the substrates, leading to well-defined
hysteresis cycles. This dependence validates the interpretation of
the observed transition as of a bulk freezing transition, potentially
facilitated by the presence of prewetting solid-like layers.

4. We interpret the observed freezing transition by a Gibbs-
Thompson effect favoring the solid crystalline phase in confine-
ment. We rationalize the observed dependence of the freezing
transition on substrate metallicity by taking into account the
influence of the electronic screening (described by a simple
Thomas-Fermi approach) on ionic liquid wetting of the confining
surfaces.
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Despite extensive documentation of plastic deformation processes in
micro and nano sized metallic samples, very little is known on the
plastic mechanisms at play in systems of molecular size. In this Chap-
ter, we probe plasticity at the individual atomic level by measuring
the viscoelastic rheological response of gold junctions of few atoms
radius, submitted to picometric oscillations. Shearing the bridge
with increasing amplitude, we uncover a dramatic transition from a
purely elastic regime to a plastic flow regime, up to the complete
shear-induced melting of the bridge. Varying the lateral junction size
through the conductance of the system, we study the dependence
of those distinct rheological regimes on junction geometry. In those
molecular objects, plastic flow seems to be limited by the sliding of
atomic planes under shear, as predicted for dislocation free systems,
while the dissipative plastic regime is well-described by a viscous-like
frictional force, distinct from traditional models of plastic flow.

3.1 General Context
Solid metallic materials in the micron range and below have been show to exhibit drasti-

cally different mechanical behaviors than their macroscopic counterparts. Such size-effects
[17, 20] take their origin in the decreasing density of defect-mediated plastic events, such
as ocuring during dislocation gliding [26, 31, 36] or twinning [7, 22, 38], and the increasing
surface to volume ratio [41]. Extending those measurements to the 100-10 nm scale and
below has been a difficult and challenging task, leading to apparently contradicting mea-
surement reporting both very large yield stress [6, 32, 36] and liquid-like apparent behaviors
[21, 34]. The understanding of plastic flow in systems of molecular or atomic sizes, has
thus so far remained incomplete, despite its fundamental interest and broad applications
ranging from the understanding of shape stability in nanoelectronics [23, 34], fundamental
dissipation channels in nanomechanical resonators [18], as well as understanding the role
played by nanocontacts in macroscopic friction and adhesion [25, 28, 30].

In this Chapter, we probe plasticity at the individual atom level, in junctions of few gold
atoms. Such systems have been extensively studied for their electronic properties in the
past two decades [2, 27, 29, 37], their molecular dimensions leading to quantized electrical
conductance, and allowing a direct readout of transverse dimension of the junction at the
single atom level. Several mechanical measurements on metallic junctions have reported
that nanowire elongation is caused by successive elastic and yielding events, concomitant
with changes in the electrical conductance [1, 3, 24, 32, 33, 35]. We employ here a distinct
strategy by submitting the gold junction to increasing shear to probe it viscoelastic flow
properties.
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3.2 Experimental set-up

3.2.1 Experimental set-up
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Figure 3.1: Experimental Set-Up (A) Schematic of the experimental set-up. A gold
junction (red dashed box) is formed between a gold electrode, attached to the tuning fork
and the gold substrate. Inset: resonance curve of the free tuning fork in air, with ≈ 60 pm
maximal amplitude. (B) Schematic representation of the idealized junction geometry. The
junction is assumed to have a rod-like shape with height h and surface area S ∼ Nd2gold/4.
The junction is sheared vertically with oscillation amplitude a and frequency ω.

Figure 3.1A shows a schematic of the set-up. A gold tip is glued on one prong of the
quartz-tuning fork Atomic Force Microscope.

During a typical experiment, we first gently indent the gold tip on a gold-coated surface,
creating a metallic junction of gold atoms between the tuning fork and the substrate.
Increasing the separation between the electrode and the substrate leads to thinning and
necking of the junction, which can be tuned to reach molecular size of a few atoms width,
as schematically represented in Fig. 3.1B.

The gold tip is obtained by cutting a wire of 200 µm diameter (Goodfellow 99.99 %
purity) with a wire cutter. Gold substrates were obtained by evaporating a layer of 5
nm Cromium and 150 nm gold on Si/SiO2 substrates. Most experiments presented in
this Chapter were performed at room temperature, in a box initially filled with nitrogen
and desiccants, to keep humidity level below 5 % RH. Note that some impedance spec-
troscopy measurements, presented in Section 3.6.3 were performed in a vacuum chamber
at 10−6 mbar of pressure.

In all experiments, the gold substrate is biased with respect to the gold tip, with a
13 mV bias. The corresponding current flowing through the junction (of the order of
several µA) and junction conductance G [S] is measured with a current/voltage amplifier.

3.2.2 Static mechanical properties of the junction

Quantized electrical transport
Increasing the distance between the electrode and the substrate, the junction thins down

and we observe, as shown in Fig. 3.2A, a step-wise variation in the conductance G of the
junction, which varies approximately in multiples of G0 = 2e2/h ≈ 77 µS. Quantization of
the conductance occurs because the lateral size of the junction is smaller than the mean
free path for electrons in gold (λgoldmfp ≈ 40 nm), leading to ballistic electronic transport [3].
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In a good approximation, the conductance G is simply proportional to the number N of
conductance channels, i.e. to the number of atoms in the cross-section, with:

G ≈ N ·G0 (3.1)

Fig. 3.2A shows the conductance trace of the junction upon elongation. The junction thins
down from N = 9, down to N = 1 atom.
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Figure 3.2: Static mechanical properties of the junction (A) Typical dimensionless
conductance trace for increasing separation between the two surfaces. Conductance varies
stepwise, in multiples of G0. (B) Simultaneous measurement of the conservative (Z’, black)
and dissipative (Z”, red) part of the mechanical impedance Z∗ of the gold junction.

Mechanical properties of the gold junction upon elongation
To probe the mechanical response of the gold junction, we further excite the tuning fork

via the piezodither. We show in Fig. 3.2B, the variations of Z ′ and Z ′′ measured with
an oscillation amplitude a0 = 70 pm, along with the variation of junction conductance
(Fig. 3.2A). On each plateau in conductance, the stiffness Z ′ is approximately constant,
indicating a constant organization of the junction and the dissipative modulus Z ′′ is null, in-
dicating the absence of intrinsic dissipation in the structure. Those results are in agreement
with previous experiments on platinum chains [33] and show a clear correlation between
the mechanical properties of the junction, and the current trace.

At each change in conductance, we observe a transient loss of stiffness Z ′ and a slight
transient increase in dissipation Z ′′ (red arrows, Fig. 3.2B), which may indicate plastic
reorganization of the junction upon each change in atomic configuration.
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3.3 Rheology of a gold nanojunction

3.3.1 Viscoelastic junction properties
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Figure 3.3: Rheology of the gold nanojunction (A) Dimensionless conductance trace
N = G/G0 as a function of the oscillation amplitude of the tuning fork for sampling rate of
50 Hz. At the transition between the elastic and plastic regime of deformation, the current
noise increases, while retaining a fixed mean value. Histograms show conductance distribu-
tion for the elastic (green) and plastic (red) regimes. (B) Measurement of the viscoelastic
properties of the junction with a fixed cross-sectional area. Variation of storage (Z ′, black)
and loss (Z ′′, red) impedance of the junction as a function of oscillation amplitude a of the
tuning fork. With increasing oscillation amplitude, we observe a successive transition from
elastic (green, constant Z ′, Z ′′ = 0) to plastic (red, decrease in Z ′, increase in Z ′′) up to a
liquid-like regime showing capillary adhesion (blue, Z ′ < 0).
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Characterization for a fixed cross-sectional area
To go further in the characterization of the static and dynamic properties of the junction,

we probe the viscoelastic flow properties of the junction under shear. We maintain a fixed
cross-sectional area by imposing a constant junction conductance G (corresponding to a
fixed number <N> of atoms) and submit the junction to increasing solicitation amplitude a,
which can range from 20 pm up to 1 nm. The cross-sectional area is imposed by adjusting
the distance between the gold electrode attached to the tuning fork and the gold surface
in order to compensate for thermal drift and maintain a fixed mean current through the
junction (see Fig. 3.3A for current trace).

We show in Fig. 3.3B the simultaneous measurement of the elastic (Z ′ = Re(Z∗), black)
and dissipative (Z ′′ = Im(Z∗), red) part of the mechanical impedance Z∗ [N.m−1] of the
junction, as a function of the oscillation amplitude a of the tuning fork (lower axis) and
the strain of deformation ε = a/h (upper axis, see below for estimation of height), for a
mean contact number N = 11.

Elastic regime
At low oscillation amplitude, corresponding to weak solicitation of the junction, we

observe a purely elastic response of the gold junction, characterized by the absence of dis-
sipation in the junction (Z ′′ = 0) and a finite constant positive stiffness Z ′0 > 0 (Fig. 3.3A,
green). This regime corresponds to the one of Fig. 3.2B, where the oscillation amplitude is
small enough to keep the gold junction unperturbed. In this regime, current fluctuations
are small (Fig. 3.3B, green histogram with spectral power density SN = 0.01 Hz−1/2).

The constant positive elastic stiffness Z ′0 in this elastic regime allows for a coarse char-
acterization of junction geometry. Following [3], we model the junction as a short cylinder
of area A = Nπd2gold/4 with N the atomic contact number, d0 = 0.288 pm the gold atomic
diameter and h [m] an equivalent cylinder height (see Fig. 3.1B). The relation between the
equivalent junction height h and the junction stiffness Z ′0 at low oscillation amplitude can
be simply expressed as:

Z ′0 =
EgoldA
h

(3.2)

where we take Egold = 79 GPa the bulk gold young modulus. One should highlight that the
estimate of junction height then depends on the choice of the value of this young modulus.

Estimating the junction height h from the elastic impedance Z ′0 at low oscillation am-
plitude, we can characterize the plastic behavior of the junction as a function of the di-
mensionless strain ε = a/h (Fig. 3.3B, upper axis).

Plastic regime
Increasing the oscillation amplitude a or strain ε = a/h, we evidence in Fig. 3.3B a

decrease in stiffness Z ′ and an increase in dissipation Z ′′ (red zone). We characterize
the entry into this plastic regime of deformation by a critical oscillation amplitude aY
corresponding to the decrease of Z ′ and increase of Z ′′ to half of their asymptotic values
(Z ′(aY ) ≈ Z ′0/2 and Z ′′(aY ) ≈ Z ′′∞/2).

The entry into this plastic regime is well characterized by a yield force FY measured as:

FY = Z ′0 · aY (3.3)

This yield force only depends on raw experimentally measured quantities. Additionally,
entry in this plastic regime can be characterized by the critical yield strain εY = aY/h (Fig.
3.3B, upper axis).
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In this second plastic regime, irreversible changes occur due to the shearing action of
the tuning fork, leading to plastic flow in the junction, and an increase in dissipation.
Reorganization in the junction is further evidenced by the increase in current fluctuations
(Fig. 3.3A, red histogram with spectral power density SN = 0.04 Hz−1/2).

At large oscillation amplitude, in the plastic regime, the dissipative modulus plateaus,
pointing to a regime of hydrodynamic-like friction, with FD ∼ a, corresponding to Z ′′∞ ∼
FD/a ∼ cst, while the junction stiffness decreases steadily.

Liquid-like regime
Finally, increasing the oscillation amplitude even further, we observe a third regime

characterized by the appearance of a negative stiffness at a critical oscillation amplitude
aL (Fig. 3.3A, Z ′ < 0 for a > aL = 280 pm) corresponding to an attractive adhesive
response of the junction. Such adhesive effects are reminiscent of capillary adhesion [9],
and may express the liquid-like behavior of the junction at large oscillation amplitudes,
whose mechanical response becomes dominated by surface tension effects (See Section 3.5.2)

40 50 60 70 80 90 100 110 120 130
0

5

10

15

-0.5

0

0.5

1

1.5

2

2.5

40 50 60 70 80 90 100 110 120 130

3

4

<N> = 3 <N> = 4

0 50 100 150 200 250 300 350
-10

-5

0

5

10

15

20

25

<N> = 8

7

8

9

<N> = 11

0 50 100 150 200 250 300 350 400
-10

0

10

20

30

40

50

60

17

18

19

20

21

<N> = 19 <N> = 20

100 200 300 400 500 600 700 800 900 1000
18

19

20

21

22

23

100 200 300 400 500 600 700 800 900 1000
-5

0

5

10

15

20

25

30

100 150 200 250 300 350
10

11

12

100 150 200 250 300 350
-5

0

5

10

15

20

25

80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15

20

6040200

Z
*
 (

N
/
m

)

a (pm)
5

80 100 120 140 160 180 2006040200

4

3

a (pm)
0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350 400

a (pm)

a (pm)

Z
*
 (

N
/
m

)
G

/
G

0

G
/
G

0

a (pm)

a (pm)

Z
*
 (

N
/
m

)
G

/
G

0

Z
*
 (

N
/
m

)
G

/
G

0

Z
*
 (

N
/
m

)
G

/
G

0

a (pm)

a (pm)

Z
*
 (

N
/
m

)
G

/
G

0

Figure 3.4: Typical Rheological Curves. Typical rheological curves for various contact
conductance, showing conservative modulus Z ′ (black), dissipative modulus Z ′′ (red) and
mean current N = G/G0 (blue).
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3.3.2 Typical rheological curves and reversibility

We show in Fig. 3.4 additional examples of rheological curves for various contact con-
ductance. The general trends of the rheological curves are maintained, with (1) a plastic
transition at a critical oscillation amplitude aY, corresponding to a decrease in Z ′ and an
increase in Z ′′, and an increase in current fluctuations, (2) a plateau in the dissipative
impedance at large oscillation amplitude, (3) a decrease of the conservative impedance to
negative values Z ′ < 0, corresponding to a capillary-like attraction at a critical oscillation
amplitude aL.

Additionally, we show in Fig. 3.5 an example of a rheological curve obtained for increas-
ing and decreasing oscillation amplitude. The plastic transition is found to be reversible,
with here no visible hysteresis.
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Figure 3.5: Rheological curve obtained for increasing (dots) and decreasing (cross) ampli-
tude of oscillation. The plastic transition is found to be completely reversible, with here
no visible hysteresis.
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3.4 Yield stress and yield force for plastic flow
In the following sections, we probe the dependence of the rheological signature on

lateral junction size. Using the quantized variation of the junction conductance with lateral
number of atoms, we vary the lateral junction size atom by atom, from as low as N ≈ 3
atoms, corresponding to an equivalent cross-sectionnal area A ≈ Nπd2gold/4 ≈ 0.2 nm2,
and up to N = 30 atoms. We report the behavior of the junction as a function of the mean
junction size <N>, taken as the closest integer value of the mean dimensionless conductance
number N = G/G0.

3.4.1 Yield force, yield stress and yield strain
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Figure 3.6: (A)Yield Force FY, (B) Yield Stress σY and (C) Yield strain εY as a function
of mean contact number N . Error bars are standard deviation and we take a 10% relative
error for single valued point.

Yield force
We report in Fig. 3.6A the yield force FY = Z ′0 · aY corresponding to the force necessary
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to drive the junction in the plastic state as a function of the number of atoms in a cross-
section (lower axis), or equivalently to the cross-sectional area (upper axis). The yield force
FY has a fair linear variation with the mean number N of atoms in a cross-section.

Yield stress
Additionally, we report in Fig. 3.6B the yield stress σY = FY/A with A computed

from the contact number N as A = Nπd20/4. The yield stress σY is found to be roughly
independent of contact area and of the order of 5 GPa. Importantly, this value is much
larger than the yield stress in macroscopic gold samples, which ranges from 55 to 200 MPa
[15].

Yield strain
Additionally, we plot in Fig. 3.6C the critical yield strain εY = aY/h as a function of

the mean number of atoms in the junction. The yield stain εY is of the order of 4-12%, a
value much larger than the experimental yield strain in macroscopic gold samples (smaller
than 1 %), and is found to be roughly independent of the mean number of atoms in a
cross-section.

Note that the value of the yield strain is dependent on the value of the bulk gold young
modulus Egold = 79 GPa, which we used to estimate junction height h. This critical yield
strain follows the same trend as the yield stress σY, as we simply have σY = EgoldεY.

3.4.2 Interpretation of the deformation mechanism

d
0 τ

Figure 3.7: Schematic representation of a perfect slip event in the junction, leading to
change of equilibrium configuration.

Perfect slip in a crystal
The linear variation of yield force with cross-sectional area A and number N of atoms

in the chain (Fig. 3.6A) suggests a peculiar deformation mechanisms in the junction,
similar to slip in a perfect crystal, for which all the atoms implied in the plastic event
would contribute to the yield force (Fig. 3.7). Such defect-free deformation mechanism is
reminiscent of T1 events occurring in foams [8].

Importantly, this perfect slip mechanism is distinct from classical plastic deformation
mechanism, based on defects such as dislocations, which can move in the crystalline struc-
ture at a much lower energy cost, and lead to a decrease of the yield stress compared to
its maximal value. Here, such dislocation based mechanisms are probably forbidden due
to the molecular size of the sample.



3.5. DISSIPATIVE RESPONSE IN THE PLASTIC REGIME 65

Typical sample size for defect expulsion
We can estimate the typical size below which the sample should be dislocation-free by

comparing the stress field σ(r) ∼ Gb0/r created by a single dislocation of burger vector
b0 [m] in a material of shear modulus G [Pa] with the yield stress σY [Pa]. As an order of
magnitude estimate, we take G = 27 GPa and b0 = 288 pm of order of the gold atomic
diameter, to find a typical size r0 ∼ Gb0/(σY) ∼ 1.5 nm, corresponding to a mean contact
number N ≈ 25.

Maximal yield stress
In the case of slip in a perfect crystal, as pictured in Fig. 3.7, one can evaluate the

relation between the yield stress σY and the shear modulus G by following Frenkel [3,
16]. We consider two neighboring planes in a crystal with a repeat distance b in the shear
direction and spacing h. As a shear stress is applied, if these planes remain undistorted,
the shear stress τ will vary with displacement as:

τ =
Gb

2πh
sin(2πx/b) (3.4)

with G the shear modulus. The maximal value of τ is then τmax = Gb/(2πh). For the
(111) plane of a fcc metal, we have b = a/

√
6 and h = a/

√
3 with a the lattice parameter.

This gives τmax ≈ G/9. Taking the shear modulus G = 27 GPa for gold, we find a maximal
yield stress ≈ 3 GPa, in good agreement with our measurements.

3.5 Dissipative response in the plastic regime

We now come back to the dissipative behavior of the junction following the yielding
transition. Surprisingly, this dissipative response is consistently characterized by a plateau
in the dissipative mechanical impedance Z ′′∞, indicative of a linear relation between the
dissipative force FD and oscillation amplitude a (see Fig. 3.3 and Fig. 3.4).

3.5.1 Friction coefficient

The proportionality between the friction force FD and the oscillation amplitude a of the
tuning fork (corresponding to a constant mechanical impedance Z ′′∞) suggests to express
the dissipative response of the junction in terms of a friction coefficient λ [kg.m−2.s−1],
relating the dissipative force FD with the oscillation speed v = aω as:

FD = λ ·A · v (3.5)

We show in Fig. 3.8A the variation of FD/a = Z ′′∞ in the dissipative regime with the
mean number N of atoms in a cross-section. We find a fair linear variation of FD/a with
the cross sectional area.

We express the mean friction coefficient λ = FD/(aAω) = Z ′′∞/(Aω) with the cross-
sectional number of atoms. This equivalent friction coefficient λ is roughly independent
of the cross-sectional area with an increase at low N and is of order of 5 · 1012 kg.m−2.s−1
(Fig. 3.8B).
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3.5.2 Liquid-like dissipative response

Actually, the linear variation of dissipation with the oscillation amplitude a could sug-
gest a complete liquid-like behavior of the junction at large oscillation amplitude, with a
linear variation of dissipation with the shear rate γ̇ = aω/h, and a hydrodynamic force
scaling as:

FD =
ηaωA
h

= ηγ̇A (3.6)

with A the contact area and η the viscosity.
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To verify this correlation, we plot in Fig. 3.9A the quantity FD/γ = Z ′′∞ ·h = as a
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function of the number N of atoms in a cross-section. FD/γ is found to vary proportionally
to the cross-sectional atom number N .

We thus plot in Fig. 3.9B, the viscous stress ηω, characterizing viscous flow in the
junction. We find a mean viscous stress ηω ≈ 16 GPa, leading to a viscosity η ∼ 7 · 104 Pa.s.
Importantly, the viscous stress ηω ≈ 16 GPa appears to be of the same order of magnitude
as the yield stress σY ∼ 5 GPa. This suggests that the solicitation frequency of the junction
might play a key role in the viscous behavior at high shear rates, similar to a fluidizing
action as occurring in granular or soft materials. This therefore suggests that the excitation
does fix the relaxation time-scale of the junction under strong deformation, in direct line
with the behavior of yielding materials - emulsions, foams or granular materials - where
the fluidity (inverse viscosity) is fixed by the excitation time-scale itself [4, 12–14].

3.5.3 Frequency dependence of the plastic transition
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Figure 3.10: Effect of solicitation frequency on the plastic transition.
(A) Schematic of the set-up. An additional piezo dither is placed below the substrate, al-
lowing to shear the junction at an additional frequency fs/2π. (B) Mechanical impedance
Z ′ and Z ′′ of the gold junction, as a function of oscillation amplitude as of the substrate,
with fs = 200 kHz. (C) Variation of εY as a function of fs/fTF. Error bars are standard
deviation. (D) Variation of the viscosity η as a function of fs/fTF. Dashed black lines are
guide to the eyes. Error bars are standard deviation.

To further probe the influence of the frequency on the plastic transition, we use an
additional piezo dither to add an additional shearing motion to the substrate (Fig. 3.10).
In this configuration, the tuning fork probes the mechanical properties of the junction, with
a fixed oscillation amplitude aTF = 60 pm (smaller than the critical oscillation amplitude to
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induce plastic flow), and the piezo dither is excited at various frequencies from 1 to 500 kHz.
Experiments presented in this section are performed for a mean junction conductance
N = 15.

We show in Fig. 3.10B, the mechanical impedance of the junction as a function of the
oscillation amplitude of the piezo-dither. We recover a similar trace in the mechanical
impedance as in Fig. 3.3A, showing that the plastic transition can indeed be induced by
the oscillation of the piezo dither. Due to the absence of correlation between the tuning
fork oscillation aTF and the substrate oscillation as, we define here the critical oscillation
amplitude as aY = aTF + acrit.s and critical yield strain εY = aY/h.

We plot in Fig. 3.10C the critical yield strain εY as a function of the ratio of substrate
excitation frequency over the tuning fork frequency fs/fTF. The yield strain is found to
be independent of the excitation frequency, of order εY ≈ 8 %, similar to the critical yield
strain measured with the tuning fork (see Fig. 3.6). The independence of the yield strain
with the oscillation frequency validates our interpretation of the rheological curves as that
of a plastic transition set by a critical strain and not by a critical strain rate, as expected
for a "granular" system with a characteristic size (here the atomic size of a gold) but no
intrinsic timescales.

Additionally, we plot in Fig. 3.10D the viscosity η = Z ′′∞ ·h/(A ·ωs) as a function of the
ratio of substrate excitation frequency over tuning fork frequency fs/fTF. The viscosity η
is found to be roughly independent of the excitation frequency for fs < fTF and shows a
weakening for fs > fTF as η = η0 · (fs/fTF)−α with α ∼ 0.28. The decrease of the viscosity
for excitation frequency larger than the tuning fork frequency (fs > fTF) highlights the
dominant role of the tuning fork excitation in the hydrodynamic behavior of the gold
junction.

3.5.4 Solid-like dissipation regime at large oscillation amplitude
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In all our experiments, the dissipative regime right after the plastic transition exhibit
viscous-like behavior, with a constant mechanical impedance Z ′′∞. However, in few cases,
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we can observe a deviation from this behavior for even larger oscillation amplitude or
strains. We show in Fig. 3.11 a sample corresponding to a junction of equivalent height
h ≈ 2.8 nm and contact conductance N = 10. The variation of mechanical impedance Z ′′
(Fig. 3.11A) and dissipative force FD (Fig. 3.11B) are plotted with respect to oscillation
amplitude a or strain ε. For strains between 5 % and 15 %, we observe a linear increase of
the dissipative force FD with oscillation amplitude a or strain ε as in all of our experiments
(regime (i)). A deviation from this behavior is observed for even larger strains ε > 20 %,
where we evidence a second dissipative regime characterized by a constant (solid-like)
dissipative force FD (regime (i) in Fig. 3.11B) and a dissipative impedance Z ′′ decreasing
with oscillation amplitude as Z ′′ ∼ 1/a ∼ 1/ε. Interestingly, this dissipative solid-like
regime observed at very large oscillation amplitude corresponds to the predictions of our
analytical Prantl-Tomlinson model, and standard plasticity models, for which plastic flow
occurs at a constant stress (section 3.7).

The observation of such behavior in the rare cases where we attain such large strains
might express a change in the dissipative plastic behavior at large strains, from a shear-
induced viscous-like regime (where dissipation occurs along various distributed slip planes
in the junction), to a sliding friction regime (where dissipation is reduced to slip along one
shear plane), possibly due to conformational change of the sheared junction.

3.6 Conservative force response and capillary attraction

3.6.1 Capillary attraction

Interestingly, the hydrodynamic/liquid-like behavior associated with the dissipative re-
sponse of the junction in the plastic regime and uncovered in Section 3.5.2 is also recovered
in the conservative response Z ′ at large oscillation amplitude. As shown in Fig. 3.3B, we
measure at large oscillation amplitude an adhesive attractive capillary force, corresponding
to a negative measured stiffness Z ′ < 0 (blue zone).

Such adhesive effects are reminiscent of capillary adhesion [5, 9–11], and may express
the complete shear-induced melting of the junction, whose mechanical response becomes
dominated by surface tension effects. Similarly as in the configuration of a liquid meniscus
of surface tension γ perfectly wetting a spherical probe of radius R [9], we can express the
associated stiffness as:

Z ′ = −2πγ (R/h) (3.7)

Identifying the radius R with the cross-sectional area of the bridge, we find for Fig. 3.3B,
R/h ∼ 0.4 and Z ′ ≈ −2 N/m, leading to γ ≈ 0.8 N/m, in very good agreement with the
expected value of 1 N/m for gold [19].

3.6.2 Shear induced melting of the junction

A first naive explanation for this liquid-like adhesive behavior of the junction at large
oscillation amplitude would be local frictional heating, leading to melting of the gold.

To estimate this local heating of the junction, we write the increase in temperature
in the junction as A ·λ · (∆T/h) ∼ Pd, with Pd = Z ′′a2ω the power dissipated in the
junction. We take a conservative estimate, with λgold = 314 W/(mK) corresponding to
bulk gold conductivity, dissipated power Pd ≈ 100 eV/cycle ≈ 3.2 · 10−13 W (Fig. 3.12),
height h ≈ 6 nm and area A ≈ 0.3 nm2 (Fig. 3.3).
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This leads to a local temperature increase ∆T of the order of 2 · 10−5 K, discarding any
frictional heating effects in the melting of the gold nano junction.

Shear induced melting
The liquid behavior of the junction at large oscillation amplitude might thus take its

origin in the shear induced melting of the junction. We evaluate this possibility by balanc-
ing the work necessary to deform the junction in volume as Ev = AhσY with the energy
2πZ ′′∞a

2 injected in the junction over one oscillation cycle due to the shearing motion of
the tuning fork.

Using our rheology measurement, we characterize the critical amplitude aL at which
a negative stiffness, characterizing the liquid character of the junction is observed (Fig.
3.3).The energy dissipated in the junction per oscillation cycles for the oscillation amplitude
aL can then be estimated as:

Ed = Z ′′∞ · a2L · 2π (3.8)

Simultaneously, we can estimate the total volume V of the junction based on the mea-
surement of the cross-sectional area A (measured from the contact number N ) and height
h (estimated from the stiffness at low amplitude Z ′0), such that:

V = A ·h (3.9)

Figure 3.12 shows that those two quantities are well correlated, with

Z ′′a2L ∼ [hA] ·σLY (3.10)

Using this energy balance, we find another estimate of the yield modulus as σLY ≈ 1.6 GPa.
We can thus attribute the observed adhesive liquid-like regime to the complete shear in-
duced melting of the junction, due to the increase of density of plastic events in the junction.
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Figure 3.12: Dissipated energy in the junction over one oscillation cycle, as a function of
melted volume (see text above for details). The dashed line has a slope 1.

3.6.3 Jump to contact at large oscillation amplitude

Importantly, we observe similar capillary-like signature for the behavior of gold junc-
tions when performing force spectroscopy measurements at large oscillation amplitude
a = 1 nm in a high vacuum environment (10−6 mbar).
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Fig. 3.13 shows the approach of an oscillating gold tip on a gold substrate. We ob-
serve upon approach a sudden jump to contact, characterized by a negative stiffness
Z ′ = −4 N/m (Fig. 3.13A), concomitant with the apparition of a conductance of sev-
eral G0 in magnitude (Fig. 3.13B). Upon retraction, an hysteresis of ≈ 1 nm is observed.
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Figure 3.13: Force spectroscopy showing approach (black) and retract (blue) at large os-
cillation amplitude (1 nm) on the gold substrate for (A) the normal stiffness Z ′ and (B)
the dimensionless conductance G/G0.

This "jump to contact", concomitant with the apparition of a metallic conductance of
several atomic contact number in value is another signature for the liquid-like nature of
gold at large shear rates.

3.7 Prandtl-Tomlinson model
To get more insights into the plastic deformation mechanism at play in the junction

and try to rationalize the observed dependence of mechanical impedance on oscillation
amplitude, we follow [39, 40] and propose a simple model based on a harmonically driven
Thomlinson model, pictured in Fig. 3.14. We model slip between two atomic gold plane
as the relative motion of two corrugated surfaces of corrugation amplitude U0 ∼ 0.4 eV,
periodicity b ∼ 280 pm and number N of potential well, leading to an effective interaction
potential U(x) = NU0 sin(2πx/b).

3.7.1 Equations and non-dimensionalization

Dimensional equations

We follow [39, 40] and describe the motion of a harmonically driven oscillator interacting
with a periodic potential as pictured in Fig. 3.14A as:

Mẍ+ γẋ+Kx+
U0

2πb
sin(2πx) = Fext sin(ωt) (3.11)

where M [kg], γ [kg.s−1] and K [N.m−1] are the effective mass, damping and spring con-
stant of the oscillator, U0 [J] is the barrier height of the Prandtl-Tomlinson model, b [m]
the corrugation period, and Fext [N] is the external forcing due to oscillations. The free
oscillator is characterized by its quality factor Q = Mω0/γ [-] and resonant frequency
ω0 =

√
K/M [s−1].
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Figure 3.14: Prandtl-Tomlinson model (A) Schematic of the simulation system, com-
posed of a mass-spring oscillator, with mass M and stiffness K interacting with a corru-
gated potential, characterizing the slip between two adjacent gold planes (B) Corrugated
potential of corrugation energy U0 and corrugation period b, and number N of potential
wells.

Non-dimensionalization

After non-dimensionalization of Eq. 3.11, we obtain :

ω̃2Ẍ +
ω̃

Q
Ẋ +X + α sin(2πX) = F̃ sin(2πt) (3.12)

where we defined the dimensionless displacement X = x/b, force F̃ = Fext/Mω2
0, the

dimensionless driving frequency ω̃ = ω/ω0 and α = U0/b
2K, characterizing the relative

importance of the corrugation stiffness U0/b
2 over the probe stiffness K.

Following the same nondimensionalization, we define the dimensionless mechanical
impedance as Z̃ = Z/[NU0/b

2] and the dimensionless dissipative frictional force as F̃D =
FD/[NU0/b].

3.7.2 Simulation procedure

To obtain the variation in Z ′ and Z ′′, we numerically solve for the resonance of the
tuning fork under a periodic forcing, with a perturbative periodic potential α = 0.5.

We can extract the quality factor Q at resonance, and the center frequency of the
resonance ωr from the variation of the phase φ of the oscillator close to resonance, using:

1

tan(φ)
=
Q(ω2

r − ω2)

ωωr
≈ −2Q(ω − ωr)

ωr
(3.13)

Measurement of Z ′

From the measurements of the shift in resonance frequency ωr, we extract the dimen-
sionless storage modulus Z̃ ′ as:

Z̃ ′ =
2

α
(ω̃r − ω̃0) (3.14)
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Measurement of Z ′′

We can express the dimensionless loss modulus Z̃ ′′ as a function of the change in quality
factor as:

Z̃ ′′ =
1

α

(
1

Q
− 1

Q0

)
(3.15)

3.7.3 Simulation results and limiting cases

0

1

4
0

1

2

1 2 30 41 2 30

A B

Z
 =

 Z
/
[N

U
0
/
b
]

F
D
/
[N

U
0
/
b
]

x = x/b

F
0
 = NU

0
/b

Z’’ = F
0
/x

~

~

x = x/b~

Figure 3.15: Simulation Results (A) Dimensionless dissipative and conservative
impedance Z̃, as a function of dimensionless oscillation amplitude x/b. (B) Dimensionless
dissipative force F̃D as a function of dimensionless oscillation amplitude x/b.

We show in Fig. 3.15A the effective dimensionless mechanical impedance Z̃ associated
with the Tomlinson model and in Fig. 3.15B the associated dimensionless dissipative force
F̃D, as a function of oscillation amplitude x̃ = x/b.

Linear response at small oscillation amplitude

For low oscillation amplitudes x � b, we recover a purely elastic regime associated
with Z ′ ≈ NU0/b

2 and Z ′′ ≈ 0, corresponding to the linear response of the system. In this
purely elastic regime, we recover a simple relation between the shear modulus G and the
barrier height U0 with G ∼ Z ′/(N b) ∼ U0/b

3 (see Section 3.4.2).

Solid friction at large oscillation amplitude

As the oscillation amplitude x increases above the potential wavelength b, we recover a
plastic regime where adjacent atomic planes slip with respect to each other, characterized
by an increase of the dissipative impedance Z ′′ and a concomitant loss in mechanical
impedance Z ′ ≈ 0. This regime is associated with a constant solid-like friction force
F0 ∼ NU0/b corresponding to the force necessary to unpin the row of atoms from its
potential, which varies linearly with the number N of interacting atoms (Fig. 3.15B).
This constant friction force leads to an impedance decreasing with oscillation amplitude as
Z ′′ ∼ F0/x (Fig. 3.15A).
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3.7.4 Discussion

Using this harmonically driven Prandtl-Tomlinson model, we could recover qualita-
tively the transition from an elastic regime to a plastic regime, associated with a loss of
stiffness and an increase in dissipation as a function of driving amplitude (Fig. 3.15). We
recover with this model a yield force varying linearly with the number N of cross-sectional
atoms, leading a shear stress σY approximately independent of the cross-sectional area, in
agreement with a mechanism involving defect free deformation.

However, this simple model leads to a velocity-independent static frictional force F0 =
NU0/b associated with unpinning of the corrugated potential, and a decrease of the me-
chanical impedance for increasing oscillation amplitude x as F0/x.

In the range of deformations typically investigated in our experiments (Fig. 3.4), the
plastic regime can instead be described by a hydrodynamic regime of dissipation associated
with a constant mechanical impedance Z ′′∞ at large oscillation amplitude, and a liquid-like
viscous friction proportional to the shear rate γ̇ [s−1] of the junction (Section 3.5.2). Inter-
estingly, this solid-like friction regime uncovered in our Tomlinson model can be recovered
in some of our experiments, but only for large deformations ε (Section 3.5.4).
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3.8 Conclusion

In this Chapter, we investigated the viscoelastic rheological be-
havior of atomic gold junctions of a few atoms width. Due to ballistic
electronic transport in the junction, the conductance varies discretely
with the number of atoms in a cross-section, allowing to measure and
control the cross-sectional area of the junction atom by atom.

1. Submitting the junction to increasing shear, we evidenced a transi-
tion from (i) an elastic regime, characterized by constant stiffness
and the absence of intrinsic dissipation in the junction, to (ii) a
plastic regime, characterized by a decrease in stiffness, an increase
in dissipation and an increase in current fluctuations, up to (iii) a
liquid-like regime characterized by an adhesive force.

2. We investigate the dependence of the yield force on junction size,
by varying the cross-sectional number of atoms from a contact as
low as 3 atoms and up to 30 atoms. The yield force is found to
vary approximately linearly with the number of atoms in a cross-
section, leading to a yield stress approximately independent of the
cross-sectional number of atoms. This linear variation suggests a
dislocation-free plastic mechanism for the junction, with plastic
flow limited by the direct slip of atomic planes under shear.

3. Dissipation in the plastic regime is found to follow a well-defined
hydrodynamic friction law with a viscous-like dissipation propor-
tional to the shear rate in the junction. Interestingly, the asso-
ciated viscous stress ηω is found to be of the order of the yield
stress σY, suggesting that the hydrodynamic viscous behavior is
induced by the oscillatory shearing action.

4. We show that the adhesive behavior of the gold junction at large
shear rates is due to the shear-induced liquefaction of the junction,
and extract a characteristic surface tension for the liquid gold.

5. We attempt to rationalize our results through a harmonically-
driven Prantl-Tomlinson model. Our model can recover the tran-
sition from the elastic to the plastic regime, but leads to a static
constant depinning force at large oscillation amplitude, which does
not describe the observed hydrodynamic dissipation regime during
plastic flow in our experiments.
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Suspensions consist of solid particles in a suspending fluid. They can
show a range of non-newtonian behaviors, such as shear-thinning and
shear-thickening. In this Chapter, we measure the frictional profile
between pairs of particles from PVC and Cornstarch suspensions,
and correlate those measurements back to the macroscale rheological
behavior of the suspension. We report a clear transition at the
nanoscale from a low-friction regime, where pairs of particles support
a finite normal load while interacting purely hydrodynamically, to a
high-friction regime characterized by hard repulsive contact between
particles and sliding solid friction. Critically, we show that the
nanoscale pressure needed to enter the frictional regime matches the
macroscale critical stress at which shear thickening occurs in suspen-
sions. We further rationalize the two shear-thinning regimes observed
before and after the discontinuous shear thickening transition. Our
experiments bridge nano and macroscales and provide long needed
demonstration of the role of local contact forces between particles in
the rheology of non-brownian suspensions.

This Chapter is based on the following papers:

• Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A., & Colin, A. Pairwise fric-
tional profile between particles determines discontinuous shear thickening transition
in non-colloidal suspensions. Nature communications, 8, 15633. (2017).

• Chatté, G., Comtet, J., Niguès, A., Bocquet, L., Siria, A., Ducouret, G., Lequeux,
F., Lenoir, N., Ovarlez, G. & Colin, A. Shear thinning in non-Brownian suspensions.
Soft matter. (2018).

4.1 General context

4.1.1 Rheology of non-brownian suspensions

Suspensions are made of solid particles immersed in a liquid. Their flows are ubiquitous
in nature and industry: water or oil saturated sediments, muds, crystal-bearing magma,
concrete, silica suspensions, cornflour mixtures, latex suspensions and clays are example
of dispersions we meet in our everyday life. Despite the numerous studies performed since
the pioneering work of Einstein in 1905 [13, 14], their rheological properties remain poorly
understood.

In the simplest approximation, we can consider an assembly of non-brownian hard
spheres suspended in a fluid of viscosity ηf sheared with shear rate γ̇, under a constant
particle pressure P p. Dimensionally, in the absence of force scales or time scales coming
from inertia, forces associated with contact or thermal (brownian) forces, these systems are
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controlled by a single parameter, the viscous number IV =
ηf γ̇

Pp and have to be newtonian,
leading to a proportionality between shear stress σ and shear rate γ̇.

Strikingly, this analysis does not describe the reality, as suspensions exhibit a wide
range of non-newtonian rheological behaviors including shear thinning and shear thickening
(Fig. 4.1). Those non-newtonian behaviors suggests the presence of additional force scales
related to contact between particles.
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Figure 4.1: Flow curve for PVC suspensions in plasticizer, at 55 % and 60 % volume
fraction (See Fig. 4.6 and text for details), showing suspension viscosity η as a function
of shear rate γ̇. One can evidence successive shear thinning, shear thickening and shear
thinning regimes.

4.1.2 Shear thickening

Figure 4.2: Snapshot of a person running on top of a pool filled with a dense suspension
of cornstarch and water. The fluid can temporarily hold up the person’s weight like a
solid, sustaining stresses orders of magnitude beyond the capabilities of the suspending
Newtonian liquid (here water) (From [6]).

The most striking non-newtonian behavior is shear thickening, which corresponds to
an increase of viscosity as a function of the shear rate [20, 42] (Fig. 4.1). In the extreme
situation of discontinuous shear thickening, shear viscosity increases by orders of magnitude
at a given shear rate, and in cornflour suspensions, the formation of a dynamic jamming
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front under impact makes the fluid so resistant that a person can run on it [21, 51].
Industrially, shear thickening can have disastrous effects by enhancing the amount of energy
required to pump suspensions at high shear rate, damaging mixer blades or clogging pipes
[2]. Discontinuous shear thickening may also be harnessed and desirable when engineering
composite materials, for shock-absorbing materials or soft body armor [32]. Despite an
extensive characterization of discontinuous shear thickening transitions at the macroscale,
there is still no clear understanding of the microscopic mechanisms at play in this transition,
principally owing to the challenges associated with quantitative frictional measurements at
the nanoscale [17], especially for pairs of particle [18].

A long standing view is that thickening is driven by hydrodynamic and Brownian forces
[54]. At large shear rate, these forces create highly dissipative transient clusters of particles,
due to the singular lubrication flows between the particles. When normal elastohydrody-
namic contact forces are taken into account (without solid friction), these simulations
capture continuous shear thickening and large increase in suspension viscosity [24]. How-
ever, this model predicts shear rate independent rheology for non-Brownian systems and
broader transition that observed experimentally.

In order to get around this issue, recent works [49, 58] proposed a new picture that
neglects thermal fluctuations and put forward the role of (nanoscale) repulsive and frictional
forces. At low pressure, neighboring particles are separated by a gap filled with solvent
and interact via hydrodynamic forces. At high pressures, repulsive forces are overcome,
leading to frictional contacts and shear thickening.

At this stage, this picture and the role played by frictional forces have been validated
through numerical simulations but only indirectly through experiments at the level of the
suspension [9, 20, 35, 46].

4.1.3 Shear thinning

The second recurring non-newtonian behavior occurring in suspensions is shear thin-
ning, which corresponds to a decrease of the viscosity as a function of the shear rate (see
Fig. 4.1). Many studies report shear thinning for various suspensions: PMMA particles
in PolyEthylene Glycol (PEG) [25], fumed silica particles in PolyPropylene Glycol (PPG)
[34], cornstarch particles in water [15], glass spheres in mineral oil [7], cementitious pastes
[36], PolyStyrene particles dispersed in PEG [43] and also PVC particles dispersed in a
plasticizer [1, 3, 22, 40].

For brownian suspensions, shear thinning can occur due to a competition between dif-
fusion and convection. At low shear rate, particle diffusion is significant and particles
occupy a larger effective volume than at high shear rate, leading to a larger viscosity. Ex-
planations concerning shear thinning in non-Brownian suspensions are more vague. At low
shear rates, in non-Brownian suspension, shear thinning may occur due to the presence of
short-ranged stabilizing repulsive forces between particles. Such thinning has been already
observed in charge stabilized suspensions [30, 37] and predicted numerically [38].

Few other mechanisms have been proposed to rationalize the shear thinning behaviors
occurring at high shear rates. Using cornflour suspensions, Ovarlez and coworkers [15]
showed that the flow at high shear rate after discontinuous shear thickening is inhomoge-
neous. The system separates into two phases: a dilute one and a concentrated one. This
separation is concomitant with a shear thinning behavior. The shear thinning behavior
can then be explained as being due to the particular rheological properties of the two
shear induced phases and to the evolution of their respective size under shear. However,
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this explanation may not be universal, as some dispersions display shear thinning by flow-
ing homogeneously. Inspired from the old order-disorder theory of Hoffman et. al. [22],
Nakajima et. al. [41] explained the shear thinning at high shear rate by the breakdown
of spanning clusters to smaller size, releasing the trapped plasticizer and increasing the
maximum packing density; thus causing a decrease of viscosity at high shear rate. More
recently, elastohydrodynamic interactions have been proposed to explain the shear thinning
behavior [25, 26]. Under high normal load and shear rates, the particles may deform via
a lubricating liquid film opposing contact between particles. Last but not least, Vazquez-
Queseda [52] and coworkers have proposed recently that shear thinning might be related
to the non-Newtonian properties of the solvent at ultra high shear rates, assuming that
the shear rate in the film between particles might be much greater than the applied one.

4.2 Experimental Set-up

4.2.1 Measuring normal and tangential force profiles between two
approaching beads with the AFM

We present in Fig. 4.3a the schematic of the experimental set-up used to measure the
force profile between pairs of particles. First, we glue an electrochemically etched tungsten
tip of approximately 50 nm end radius to the quartz tuning fork. Using an in-house-built
nano-manipulator in a scanning electron microscope (SEM), we then glue one individual
particle to the end of the tungsten tip (Fig. 4.3b), using SEMGLU from kleindiek, and a
nanomanipulation station in-situ a SEM (FEI Nova NanoSEM 450 ).

During a typical experiment, the attached particle is immersed in solvent and brought
into contact to another bead fixed on the substrate, while monitoring the force profile
(Fig. 4.3a).

As detailed in Chapter 1, to measure simultaneously normal and tangential force profiles
between the two approaching particles, we simultaneously excite the tuning fork via the
piezo-dither at two distinct resonance frequencies fN ≈ 31 kHz and fT ≈ 17 kHz,
corresponding to the excitation of both normal (N , blue arrows) and shear modes (T , red
arrows) of the tuning fork, as shown in Fig. 4.3c. Both modes correspond to symmetric
excitation of the prongs, leading to negligible motion of the center of mass and high quality
factor of the oscillator [31]. Monitoring changes in the resonance of each modes (Fig. 4.3d)
allows us to measure respectively the normal and tangential force profile between the two
objects, characterized by the normal and tangential force gradient∇Fi [N.m−1], and normal
and tangential dissipative frictional forces F i

D with i ∈ {N, T}.

4.2.2 Particles, substrate and solvent

To compare local AFM measurements and macroscopic rheology, we used two distinct
systems, consisting of PVC particles suspended in various solvents [55, 56] and cornstarch
particles suspended in water [16, 39].

PVC dispersions

We used two dispersions D1 and D2 of PVC particles. All AFM experiments were
performed with suspension D1.
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Figure 4.3: Experimental set-up. (a) Schematic of the set-up. A particle is glued to the
quartz-tuning fork based AFM, immersed in the liquid and approached to the substrate,
made of casted particles. (b) SEM image of a 0.6 µm radius PVC bead glued to the
tungsten tip. Scale bar is 1 µm. (c) During the experiment, the tuning fork is excited at
two distinct frequencies, corresponding to mechanical oscillation of both normal (N , blue)
and tangential/shear (T , red) modes. Two Phase Locked Loops (PLL) track the frequency
of the resonance peaks, allowing characterization of normal and tangential force gradients
∇F and dissipative frictional forces FD. (d) Typical resonance curve of the normal mode,
for a bead in liquid (black) and in contact to another bead on the substrate (red).

In the first dispersion (D1), the mean particle radius, defined as R32 = <R3>/<R2>
is 1 µm. The size distribution is lognormal and the standard deviation estimated using
the volume distribution is 45%. In the second dispersion (D2), the particle size histogram
using a volume distribution is trimodal with lognormal peaks around 350 nm (standard
deviation of 25%), 3.3 µm (standard deviation of 55%) and 20 µm (standard deviation
of 22%). Both dispersions will reach Peclet numbers (Pe = 6πηsR3γ̇

kbT
∼ 250γ̇ with ηf the

suspending fluid viscosity, γ̇ the shear rate and R the particle radius) in the range of 10-106
for which Brownian effects are practically negligible [11].

Plasticizer and mineral oil

As a plasticizer for PVC particles, we use 1,2-cyclohexane dicarboxylic acid di-isononyl
ester (Dinch) supplied by BASF. This organic liquid Dinch enters the particles and creates
a polymer brush around them. This brush enables suspension stabilization due to steric
repulsion [56]. At high temperature (T ≥ 100◦C), Dinch can dissolve the PVC particles
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[59]. At room temperature, this process is much slower and takes more than one year.
Degree of plasticization can be changed by using a mix of mineral oil and plasticizer

[55] because mineral oil has a low affinity with PVC. Mineral oil viscosity standards were
provided by Paragon Scientific Ltd. Same viscosity as Dinch (41.1 mPa.s at 25◦C) was
achieved by mixing two different viscosity standards (55.7 mPa.s and 29.0 mPa.s). Result-
ing viscosity was checked in a shear rate range from 1 to 100 s−1 for different temperatures.
Same viscosity at 25◦C and same temperature dependence of viscosity (range 20-25◦C) were
found between plasticizer and obtained mineral oil.

Concerning PVC, we report results (both AFM and rheological experiments) for three
different plasticizing liquids: (1) 100 vol.% plasticizer; (2) 90 vol.% plasticizer + 10 vol.%
mineral oil; (3) 67 vol.% plasticizer + 33 vol.% mineral oil.

PVC substrate

0 μm

1 μm

2 μm
0

500 nm

1 μm

2 μm

250 nm

Figure 4.4: AFM image of one casted PVC particle at the surface of the sub-
strate. RMS roughness is ≈ 2.2 nm on the upper part of the particle.

To make the substrate, a given amount of PVC powder is introduced into a metallic
mold laying on a glass slide. A counter-mold is used on top. The mold and counter-mold
are then transferred into a hot press and compressed 5 min at 150◦C and 20 bars. Then,
the sample is cooled down, resulting in a compact and transparent piece of PVC. Even if
the pressing temperature is higher than the PVC glass transition temperature (Tg = 80◦C),
the original shape and surface topography of the particles is preserved (see Fig. 4.4). We
measured a RMS roughness of 2.2 nm for PVC particles from D1.

Randow Close Packing fractions for PVC

The random close packing fractions φRCP of these dispersions are measured. φRCP
corresponds to the value of the solid fraction at which the viscosity diverges at low shear
rate under the hypothesis of frictionless particles [57]. We measure the value of the viscosity
at γ̇ = 10 s−1 to get rid of interparticle interactions at low shear rate [8]. The data are
fitted using a Krieger-Dougherty model η = ηs(1− φ

φRCP
)−n, where ηs is the solvent viscosity.

We get φRCP = 69.4%± 0.25% for D1 suspensions and φRCP = 77.2%± 0.25% for D2. The
exponents n of the Krieger-Dougherty models are respectively n = 2.3 for the D1 dispersion
and n = 2.9 for the D2 dispersion. ηs is equal to 41 mPa.s.
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Cornstarch

Cornstarch was supplied by Sigma Aldrich and used without further modification. It
contains approximately 73% amylopectin and 27% amylose with particle diameter around
14 µm (polydispersity 40% from static light scattering) [39]. Due to very low volume used
and evaporation related problems, AFM measurements for cornstarch were done in pure
water as a suspending liquid. Rheological measurements were also carried out in pure
water for the cornstarch suspensions. Substrates were made by gluing cornstarch particles
on a flat silicon substrate using cyanoacrylate glue (see Fig. 4.5). We measured a RMS
roughness of 14 nm for the cornstarch particles.

0 μm

20 μm 

0 μm

13
 μ

m

13 μm

Figure 4.5: AFM image of one cornstarch particle at the surface of the substrate.
RMS roughness is ≈ 14 nm on the upper part of the particle.

4.2.3 Rheology of macroscopic suspensions

Preparation of PVC suspensions

We prepare our dispersions by weighting a given amount of PVC particles, a given
amount of Dinch and a given amount of mineral oil. The solid fractions are then calculated
knowing the density of PVC ρPVC = 1.38 g.cm−3, the density of Dinch ρDinch = 0.95 g.cm−3
and the density of mineral oil ρoil = 0.84 g.cm−3. Suspensions are stirred 5 min at 1000
rpm using a Dispermat LC55 (VMA Getzmann) to ensure good dispersion state. Samples
were freshly mixed for each experiment. This protocol was found to produce reproducible
samples. The solid volume fraction of the suspension is defined as the volume of particles
divided by the total volume: φ = [mPVC/ρPVC]/[mPVC/ρPVC +msolvent/ρsolvent].

Rheology of PVC suspensions

For normal stress differences lower than 1000 Pa, rheological measurements were per-
formed on a stress-controlled rheometer (DHR-3 from TA instruments) or on a strain
controlled rheometer (ARES from TA instruments). We used either a Couette cell (gap
e = 1 mm, inner radius R1 = 14 mm, and height H = 42 mm) with smooth surfaces or a
cone-and-plate geometry with smooth surfaces of diameter 25 mm (diameter D = 40 mm,
angle = 2◦, truncation gap = 54 µm). The temperature was fixed at 25oC. No wall slip was
measured in these experiments. This was checked indirectly by measuring velocity profiles
using ultrasounds in Couette cells.
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Figure 4.6: (a) Flow curves η(γ̇) of D1 55 % (open symbols) and 60 % (closed symbols);
(b) Flow curves of D2 60% (open symbols) and 64 % (closed symbols); (c) same as (a) but
for σ = f(γ̇); (d) same as (a) but for σ = f(γ̇). For all curves, blue squares are obtained
from rotational rheometer; purple diamonds from in house-built capillary rheometer and
red circles from commercial capillary rheometer. Dotted lines are power law fits of η =
g(γ̇).

The rheometer measures (or imposes depending upon the controlled mode) both the
torque Γ exerted on the geometry and its angular velocity Ω in real-time. From Ω and Γ,
a global shear rate γ̇ and a global shear stress σ were computed as a function of time.

High shear rate rheology of PVC suspensions

To measure the rheological properties over a large range of shear rate, we combined mea-
surements from both rotational and capillary rheometers. Home-made capillary rheometers
consist in a manometer (pressure range 0-8 bars) plugged on compressed air network 0 -
7 bars), a syringe with a piston and a capillary firmly plugged to the syringe. Capillary
rheometers measure or impose the drop of pressure ∆P required to get a given flow rate
Q. From these data, they compute a shear rate at the wall γ̇w and a shear stress at the
wall σw. The viscosity is then defined as η = σw/γ̇w.

Preparation and rheology of Cornstarch suspensions

Dispersions were also prepared by weighting a given amount of cornstarch and a given
amount of water. The solid fractions are then calculated knowing the density of cornstarch
ρcornstarch = 1.63 g/cm3 and the density of water ρwater = 1.00 g/cm3. The solid volume
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fraction of the suspension is also defined as the volume of particles divided by the total
volume. Samples were freshly mixed for each experiment.

Rheology was measured using a stress controlled DHR-3 rheometer (TA Instruments)
equipped with a hatched plate (diameter D = 40 mm) like in previous works [39]. Contrary
to PVC suspensions, both lower and upper plate are hatched to avoid wall slip. Flow curves
were obtained with a logarithmic stress sweep from 0.1 to 100 Pa (10 points/decade). Each
point was measured during 10 s which was long enough to ensure equilibrium while avoiding
water evaporation and/or particles sedimentation.

Caracterisation of the DST transition
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Figure 4.7: Characterization of the Discontinuous Shear Thickening transition.
Measurements of the viscosity as a function of the shear stress for various solid volume
fractions. (a) PVC D1, 100% Dinch, from top to bottom the solid fractions correspond to
66%, 64%, 60%. The dotted line corresponds to the shear stress σc above which discon-
tinuous shear thickening occurs. (b) PVC D1, 90% Dinch; from top to bottom the solid
fractions correspond to 66%, 64%, 60%. (c) 67% Dinch, from top to bottom the solid
fractions correspond to 63%, 62%, 60% 58%. (d) Cornstarch suspension in water, from
top to bottom the solid fractions correspond to 44%, 42%, 40%.

Ah high stresses (see Fig. 4.7), both PVC and cornstarch suspensions exhibit Discon-
tinuous Shear Thickening (DST) where the gradient d(log η)/d(log σ) reaches 1 (vertical
flow curve when plotting η = f(γ̇)). Within experimental uncertainty, shear thickening
begins at a fixed onset stress which depends only on the studied system and not on the
volume fraction φ [20] (see dotted lines on Fig. 4.7).

We focus here on particles from the D1 suspension. For PVC particles in a suspending
liquid made of 100 vol.% plasticizer, an onset stress of 75±5 Pa is found. For PVC particles
in a suspending liquid made of 90 vol.% of plasticizer, an onset of 38± 5 Pa is measured,
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and for PVC particles in a suspending liquid made of 67 vol.% of plasticizer an onset of
8 ± 2 Pa is found . For cornstarch particles suspended in pure water, an onset stress of
3− 4 Pa in found very close to previous works [16, 39].

4.3 Nanoscale force profile

4.3.1 Typical approach curve

We show in Fig. 4.8 the typical force profile measured between two approaching PVC
beads in good solvent. Monitoring changes in the resonance for the two oscillating modes
allows us to characterize pairwise interparticles interactions through the normal dissipation
FN
D (Fig. 4.8b), the projection of the normal force gradient along the normal direction -
∂FN/∂z (Fig. 4.8c) and the tangential friction force FT

D (Fig. 4.8d).
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Figure 4.8: Characterization of nanoscale force profile. (a)When immersed in Dinch
a good solvent, polymer brush form at the surface of PVC particles. Distance between
bead’s no shear plane is written z, where z = 0 correspond to hard contact. (i) z > 0
Entropic repulsion between polymer brushes. (ii) z < 0 hard contact. (b) Inverse of
the normal dissipative force 1/FN

D . (c) Projection of the normal force gradient along the
normal direction −∂FN/∂z. (d) Tangential friction force FT

D . The radius of the attached
bead is 0.6 µm and beads are immersed in pure Dinch.
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4.3.2 Normal dissipative force

We first show in Fig. 4.8b the inverse of the normal dissipative force 1/FN
D . The red line

is a linear fit of the inverse dissipation, showing that normal dissipation FN
D is characterized

by hydrodynamic drainage and Stokes law as the beads are separated from each other:

FN
D ∼

ηR2v

z
(4.1)

where η ≈ 40 mPa.s is solvent viscosity, v = aω [m.s−1] is the typical speed of the oscillating
particle, z [m] is the distance between the two no-shear planes and R [m] is an equivalent
bead radius. The intersection of the red line with the horizontal axis defines the hydro-
dynamic zero (z = 0), which defines the absolute position of the no-shear planes between
the two objects (vertical dotted lines Fig. 4.8a). This zero defines two domains, corre-
sponding to (i) z > 0, hydrodynamic lubrication (light blue) and (ii) z < 0 hard contact
(light red). Note that for confinement below ≈ 3 nm, we observe a deviation from Stokes
hydrodynamics with a regularization of the hydrodynamic divergence, possibly stemming
from elastohydrodynamic interactions [24, 33, 53]. The dissipative normal forces measured
for z < 0 may be due to viscoelasticity of the PVC particles.

The effective viscosity of the PVC polymer brushes can be measured through a fit of
normal dissipation (Eq. 4.1). We first calibrate normal dissipation by approaching the
casted particle substrate in a mineral oil of similar viscosity as the plasticizer, but for
which no polymer brushes are created. Doing approaches this time in the plasticizer, we
find similar viscosities showing that the polymer brushes do not seem to impede the flow.

4.3.3 Normal force gradient

We now turn to the normal force gradient −∂FN/∂z [N.m−1] shown in Fig. 4.8c. For
the two approaching particles, we observe an increasing repulsive normal force gradient
(−∂FN/∂z > 0) before contact between the two particles (z > 0, blue zone). These repul-
sive forces vary steadily and smoothly with distance, while normal dissipation is dominated
by hydrodynamics during the approach (Fig. 4.8b). We thus interpret these repulsive forces
as a signature of the entropic repulsion between polymer brushes forming at the surface of
the PVC beads, due to the effect of the plasticizing solvent [19, 56] (Fig. 4.8a). We can
characterize the steepness of this repulsive profile right before contact by an exponential-
like law F ≈ exp(−z/λ) with λ ≈ 4 nm (Fig. 4.3c, red dotted line) [23]. Upon contact,
the steepness of the repulsive profile increases slightly.

4.3.4 Tangential dissipative force

We show in Fig. 4.8d the tangential dissipative friction force FT
D (tangential mode T,

Fig. 4.3c). Before contact (blue zone (i)), tangential forces are below 1 nN, consistently
smaller that the normal hydrodynamic dissipative forces which are of the order of 5 to
10 nN. Upon contact (red zone, (ii)), we observe a clear increase of frictional forces. We
note that, depending on the respective surface states of the beads, contact can also occur
before the hydrodynamic zero (for z > 0), due to the presence of asperities on one of the
bead surface (See Fig. 4.9). Finally, we note that the fact that we recover solvent viscosity
η in the dissipative normal force and that there is low tangential lubrication forces before
contact are a signature of the absence of brush interpenetration in the probed experimental
conditions [28].
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Figure 4.9: Typical approach in plasticizer (100% Dinch) between two PVC
particles in presence of a surface asperity. The attached particle is 0.6 µm radius.
(a) Inverse normal dissipation. (b) Normal force gradient (c) Tangential dissipative force.
(d) Schematic of contact configuration, with an asperity of height h ≈ 8 nm present on
the bead attached to the substrate.

4.3.5 Approach in presence of a surface asperity

We show in Fig. 4.9 an approach in presence of a surface asperity on the particle
attached to the substrate, for which contact occurs here at≈ 8 nm before the hydrodynamic
zero. This contact is traduced by a sudden breakdown of hydrodynamic normal dissipative
drainage force at a finite distance between the two beads.

4.3.6 Approach between cornstarch particles

Force spectroscopy on cornstarch particles, as shown in Fig. 4.10 are qualitatively sim-
ilar to the one on PVC during the approach.
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Figure 4.10: Typical approach curve between two cornstarch particles. The at-
tached particle is 3.8 µm radius. (a) Inverse normal dissipation. (b) Normal force gradient
(c) Tangential dissipative force.
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4.4 Frictional force profile

4.4.1 Characterization of the frictional regime

We now turn in Fig. 4.11 to the nature of the frictional profile, as uncovered by the
two regimes shown in Fig. 4.8. We plot in Fig. 4.11a the typical form of the tangential
dissipative force FT

D as a function of the normal load FN, obtained by integrating the
normal force gradient [47]. In the first regime of hydrodynamic lubrication (blue zone,
(i)), tangential frictional forces are small, and arise purely from hydrodynamic interactions
while a normal load FN can be sustained due to entropic repulsion of the brushes. This
situation results in a friction coefficient as low as µ ≈ 0.02, as observed in previous friction
studies on polymer brushes in SFA [4, 27–29, 48].
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Figure 4.11: Critical load frictional profile. (a) Tangential friction forces versus normal
load, showing a transition between (i) a hydrodynamically lubricated low friction regime,
to (ii) a solid-like high friction regime. (b) Variation of the friction coefficient µ with
sliding velocity v for one pair of beads. Error bars are s.e.m. for N > 2. (c) Distribution
of the friction coefficient found on 30 different pairs of beads. The radius of the attached
bead is 0.5 µm and the solvent between the two beads is pure Dinch.

Upon a critical normal load FC
N corresponding to the force necessary to completely

compress the polymer layers and reach hard contact, the system switches to a second
state characterized by a sharp increase in friction (Fig. 4.8d, red zone (ii)). This second
regime is well characterized by Amontons-Coulomb laws, with a proportionality between
tangential frictional forces and normal load: FT

D = µ(FN − FC
N ) + FC

V , where FC
V is the

tangential viscous dissipation right before contact. Moreover, as shown in Fig. 3b, the fric-
tion coefficient between two beads is independent of the sliding speed for tangential speeds
above 200 µm.s−1, a clear characteristic of solid-like friction (relative speed is changed here
through the oscillation amplitude a0).
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4.4.2 Distribution of friction coefficient and normal critical load

We show in Fig. 4.11c and Fig. 4.12 the distribution of friction coefficient and critical
normal force obtained over 30 different pairs of beads. As characterized in Fig. 4.11a and
Fig. 4.11b, the friction coefficient and critical normal force is a well defined properties of
each particle interactions but also depends on the local physicochemical, geometrical, me-
chanical and roughness surface state of the two sliding beads. We find a mean interparticle
friction coefficient µ = 0.45 ± 0.2, in very good agreement with the macroscopic friction
coefficient of PVC on PVC [50].

We find a mean normal critical pressure FC
N /πR

2 ≈ 12± 1 kPa.
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Figure 4.12: Distribution of normal critical pressure for PVC particles in pure Dinch for
approaches over ≈ 30 distinct PVC particles.

4.4.3 Ring-down and characterization of non-linearity

To confirm the presence of solid friction in the frictional contact regime at large normal
force, we performed additional ring-down experiments, where we monitor the relaxation of
the tuning fork with the attached bead sliding on the substrate (see Chapter 1)

At t = 0 we switch off the external excitation and monitor the amplitude of the oscillator
motion as it relaxes. In absence of solid friction, the envelope of this signal decreases as
a(t)/a0 = exp(−t/τ) with τ = 2Q/ω0, as shown for the PVC beads in the liquid (Fig. 4.13,
blue curve). In presence of solid friction force Fs, the envelope of this signal decreases as

x(t)/a0 ≈ exp(−ω0t/2Q)

[
1 +

4FsQ

Ka0π

]
− 4FsQ

Ka0π
(4.2)

The fact that the relaxation is not purely exponential during contact between the two
particles (Fig. 4.13, red curve) confirms the presence of solid friction in the frictional
regime (see Fig. 4.11b).
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Figure 4.13: Characterization of the relaxation of the tangential oscillations of
the tuning fork ("ring-down"). Blue lines: relaxation of the PVC bead in liquid. Red
lines: relaxation in contact between two PVC beads (normal load of 30 nN and normal force
gradient of 17.5 N/m, in Dinch solvent). Plain line are fit of the data through a(t)/a0 =
exp(−ω0t/2Q)(1+4FsQ/Ka0π)−4FsQ/Ka0π, and dashed lines represent pure exponential
viscous-like relaxation exp(−ω0t/2Q). Initial oscillation amplitude is a0 ≈ 60 nm. Non-
exponential relaxation when in contact with the PVC substrate confirms the presence of
solid-like sliding friction.

4.4.4 Measurements under moderate and high normal load
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Figure 4.14: (a) Tangential friction forces FT
D versus normal load FN, showing a sublinear

variation of friction forces with normal load at large normal loads (FN � FC
N ). The radius

of the attached bead is 0.5 µm and the solvent between the two beads is pure Dinch.
(b) Variation of the tangential conservative forces kT as a function of the normal load
FN. The linear relation between kT and FN suggests that the real area of contact varies
proportionally to the normal load.
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Figure 4.15: Variation of the microscopic interparticle friction coefficient µ = FT
D /FN as

a function of the normal load. µ decreases with increasing loads. Note that the particles
involved in this measurement are not the same than the one used in Figure 4.11.

We focus now on the behavior at high normal load, for which the particles experience
frictional interactions. We plot in Fig. 4.14a tangential dissipative friction forces FT

D as
a function of the normal load FN, for loads up to 2 µN. Whereas in the initial frictional
regime uncovered in Fig. 4.11a (ii), friction was found to obey coulomb law, we clearly
observe in Fig. 4.14a a sublinear variation of tangential dissipative forces with normal load
at larger loads. We can extract from Fig. 4.14a a microscopic friction coefficient defined
as µ = FT

D /FN, which we plot in Fig. 4.15 as a function of the normal load. µ decreases as
a function of the applied load.

To understand this deviation from Coulomb laws, we express the frictional force between
the two PVC surfaces as FT

D = τ · Areal, where Areal is the real area of contact, and the
shear strength τ [Pa] characterizes friction per real contact area between the PVC surfaces.
The deviation from the classical Amontons-Coulomb law at large load i.e.. the non-linear
dependence between tangential friction and normal load (Fig. 4.14a) and the decrease
in the friction coefficient µ (Fig. 4.15) could stem from (1) a geometrical origin, i.e.. a
non-linear variation of the real contact area Areal with normal load FN (as given for a Hertz
contact) or (2) a physical origin, i.e.. a decrease in the shear strength τ [Pa] with normal
load. To disentangle between those two effects, we plot in Fig. 4.14b the tangential stiffness
kT [N/m] as a function of the normal load. kT can be considered to be directly proportional
to the real area of contact Areal (i.e. to the numbers of contact). This tangential stiffness
is found to vary proportionally to the normal load over the entire range of measurements.
We thus deduce that the real area of contact increases proportionally with the normal load,
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in agreement with classical multi-asperity models. The non-linear variation of tangential
dissipation with normal load has thus its origins in a decrease of the shear strength τ with
increasing normal loads, and stems from the physical interaction between the two PVC
surfaces.

Such decrease of the friction coefficient with load has been reported in the literature
for strongly compressed polymer brushes in good solvents [5, 45].

4.5 Results and Discussions: toward a global vision of
the rheology of non-Brownian suspensions
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Figure 4.16: Nanoscale critical load determines macroscale critical shear stress.
(a) Shear viscosity as a function of the shear stress for suspensions of PVC in pure Dinch
and a volumic solid fraction equal to 60%. (b) Flow curves for PVC in pure Dinch, for
volumic solid fractions equal to 66%, 64% and 60% (from top to bottom) allowing the
characterization of the critical shear stress σC. The vertical dashed line corresponds to the
critical shear stress σC = 75 Pa ±5. (c) Correlation between the critical normal stress FC

N
and critical shear stress σC for PVC in 100% (red triangle), 90% (red circle) and 67% (red
square) plasticizer and cornstarch in water (blue square). Horizontal error bars are s.e.m.
for PVC, with N > 15 and standard deviation for Cornstarch (N = 4). Red and blue
dotted lines are respectively linear fit to the PVC and cornstarch systems.

4.5.1 The shear thickening transition in PVC and Cornstarch

We now come back to the macroscale behavior of non-Brownian suspensions.
As shown in Figs. 4.16a-b and Fig. 4.7, we measured using standard rheometry the

flow curves (i.e the relation between the applied shear stress σ and the measured shear rate
γ̇) for various solutions of PVC particles in mixtures of Dinch and mineral oil [55, 56] and
cornflour particles in water [16, 39] at various solid fractions. All these suspensions exhibit
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a discontinuous shear thickening transition above a critical shear stress σC (defined as the
critical shear stress above which the viscosity starts to increase as a function of the shear
rate [20]). As found previously, σC (contrary to the corresponding shear rate γ̇C) does not
depend upon the solid fraction of particles φ [20] for high solid fractions (Fig. 4.16b).

Following recent models, σC corresponds to the shear stress required to obtain a par-
ticule normal stress high enough to overcome the repulsive forces and to transit from
lubricated to frictional contacts [38, 49]. If the shear thickened state is characterized by
frictional interactions between the particles, there should be a correlation between the
macroscale critical shear stress σC and the critical load FC

N uncovered in Fig. 4.11. To ver-
ify this correlation, we measured the microscopic critical load FC

N for each of the systems
of Fig. 4.16a.

We report in Fig. 4.16b the macroscale shear stress σC, versus the nanoscale critical
force FC

N for each discontinuous shear thickening systems. For both PVC and cornstarch
systems, we see a clear correlation between those two nanometric and macroscopic quan-
tities, with the critical stress at the macroscale varying proportionally to the critical force
needed to enter into frictional contact at the nanoscale:

σC = β · F
C
N

πR2
(4.3)

We find here a proportionality coefficient βPVC ≈ 0.006 and βCornstarch ≈ 0.02, in fair
agreement with predictions from simulations performed on smooth particles (βsimu ≈ 0.05
for a friction coefficient µ = 1 [38]). Those coefficients characterize stress transmission
from the suspension to the particle level and depend on the microscopic friction coefficient
[38] for both static and sliding friction, as well as particle shape and roughness. Note that
in the simulations, the values of the static and dynamic friction are assumed to be the
same, which may not be the case in our situation. Macroscopic roughness may also block
the particles and affect the value of β found by numerical simulations.

The good correlation between the macroscopic shear stress σC and the nanoscale criti-
cal pressure FC

N /πR
2 for PVC suspensions shows unambiguously that discontinuous shear

thickening transition corresponds to a stress-induced transition from lubricated to frictional
contacts between particles.

Let us underline that FC
N does not depend upon the relative tangential velocities between

particles in the range of experimental data. Moreover both FC
N and σC are measured for

approximatively the same range of relative velocities between the two particles. In the
macroscopic experiments, the relative velocity between two particles can be approximated
as v ≈ γ̇CR at the onset of the shear thickening transition and varies between 4 µm.s−1
and 200 µm.s−1. In the AFM experiments, the normal RMS speed is approximately 30−
200 µm.s−1 and the tangential RMS speed 150− 800 µm.s−1.

4.5.2 Shear thinning at low shear rate in PVC suspensions

We now attempt to describe the first shear-thinning regime occurring in PVC suspen-
sions at low shear rates (Fig. 4.6). In PVC, we checked that this regime cannot be at-
tributed to a competition between diffusion and convection, neither to the non-Newtonian
properties of the solvent, neither to migration of particles. Forces measurements between
particles prove that the contact between particles are lubricated at low normal load i.e. at
low shear rate (Fig. 4.11a).

In this situation, shear thinning may come from the fact that the suspension behaves
essentially as soft lubricated particles at low shear stresses, with an apparent size that
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a.

b.

Figure 4.17: (a) Scheme of the process involved in the first shear thinning regime: increas-
ing the pressure decreases the effective size of the particles, leading to a decrease of the
effective solid fraction φeff. (b) The decrease of the effective volume fraction φeff towards
the solid fraction for hard spheres φ leads to an increase in the distance from the random
close packing fraction φRCP at which viscosity diverges for frictionless particles, and thus
a decrease of the suspension viscosity.

includes the hard sphere (radius R) and a part of the surrounding soft repulsive potential,
which varies as a function of shear rate. If a particle is subjected to a particle pressure
P , the minimum gap 2h(P ) between this particle and its neighbors will be such that
FN(h) = PπR2, where FN is the conservative normal repulsive force between the particles.
Under this pressure, the apparent radius of the particle will be given by R + h(P ). In
this regime, the particles have an apparent radius larger than the one of their hard core
and this effective radius decreases as a function of the applied pressure i.e. applied shear
rate and shear stress. As shown in Fig. 4.17b, the decrease of the effective radius leads
to a decrease of the effective solid fraction φeff towards the hard sphere packing fraction
φ. This decrease in φeff comes with an increase of the distance between φeff and φRCP, the
random close packing fraction at which viscosity diverges for frictionless spheres, and thus
to a decrease of the suspension viscosity and a shear thinning behavior. Such thinning has
been already observed in charge stabilized suspension [30, 37] and predict numerically [38].

To go further and quantitatively analyze our results, we extract the repulsive force
profiles from the rheological measurements and we compare them to the data obtained
using our Atomic Force Microscope. We start by building upon the analysis of Wyart and
Cates for dense suspensions [58]. For the sake of simplicity, we assume as in [58] that the
pressure P and the shear stress σ are proportional, and can be expressed as

σ/γ̇ = BP/γ̇ = η (4.4)

η = ηs

(
φRCP

φRCP − φeff

)n
(4.5)

where n is a fitting parameter, ηs is the shear viscosity of the Dinch solvent, φeff is the
effective volume fraction and φRCP is the random close packing fraction at which viscosity
diverges for frictionless particles (see Fig. 4.17b). B is a constant and does not depend
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upon the nature of contact between particles. The effective solid fraction can be related to
the apparent minimum possible gap h(P ) between particles and to the hard sphere volume
fraction φ and will be given by:

φeff = φ

(
1 +

h(P )

R

)3

(4.6)

By combining the last two equations, we get the evolution of the interaction potential
between the particules W (h) = PR as a function of h [12].

h =

((
φeff
φ

)1/3

− 1

)
·R (4.7)

φeff = φRCP −
(
η(γ̇)

η(γ̇∗)

)1/n

(φRCP − φ) (4.8)

W (h) = PR = σR/B = W0(σ/σ
∗) (4.9)

In those expressions, γ̇∗ is the shear rate at the entry of the shear thickening zone, and
σ∗ is the shear stress associated with the shear thickening transition. At the entry of the
shear thickening zone, the particles are close to contact. This leads to h ≈ 0 and φeff = φ.
The pressure at the entry of the shear thickening zone P ∗ is linked to the potential of
interaction at the contact onset W0 through P ∗ = FC

N /(πR
2) = W0/R. The knowledge

of P ∗ allows us also to estimate B through B = σ∗/P ∗. The mean value of P ∗ averaged
over 30 measurements is equal P ∗ = 6300 Pa, σ∗ = 100 Pa and B = 0.016 for the D1
suspensions and to P ∗ = 4200 Pa, σ∗ = 100 Pa and B = 0.025 for the D2 suspension.
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Figure 4.18: Variation of the interaction potential W as a function of h. The black curve
corresponds to the value of W for D1 extracted from the AFM experiments (Fig. 4.8). The
blue squares correspond to the dispersion D2 (φ = 0.64), the blue circles to the dispersion
D2 (φ = 0.6), the red squares to the dispersion D1 (φ = 0.6) and the red circles to the
dispersion D1 (φ = 0.55). To compute this curve we use R equal 1 µm for D1 and R equal
1.5 µm for D2.

To find n and φRCP, we measure the value of the viscosity η∗ at γ̇∗ where the viscosity
vs shear rate curve goes through a minimum as a function of the solid fraction and fit the
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curve using a Krieger-Dougherty model. We get φRCP = 69.4%±0.25% for D1 suspensions
and φRCP = 77.2%± 0.25% for D2. The exponents n of the Krieger-Dougherty models are
respectively n = 2.3 for the D1 dispersion and n = 2.9 for the D2 dispersion.

Figure 4.18 displays the values W (h) from equation 4.9 which would lead to the four
rheological curves displayed in Fig. 4.6. All the data collapse on a single curve, and is very
close to the repulsive profile measured by the AFM, shown as the black line in Fig. 4.18.
To compute this curve we use R equal 1 µm for D1 and R equal 1.5 µm for D2. The
slight differences between the measurements and the theoretical model may be related to
the polydispersity of the samples.

This quantitative analysis shows that the existence of short-ranged repulsive forces
along with lubricated contacts at low particular pressure are responsible of the shear thin-
ning behavior observed at low shear rate.

4.5.3 Shear thinning at high shear rate in PVC suspensions

a.

b.

Figure 4.19: (a) Scheme of the process involved in the second shear thinning regime: in-
creasing the pressure decreases the value of the microscopic frictional coefficient µ. (b) The
decrease of the microscopic friction coefficient µ leads to an increase in the critical volume
fraction φm(µ) at which viscosity diverges for frictional sphere towards the random close
packing fraction φRCP. The increasing distance between the suspension volume fraction φ
and φm(µ) for increasing pressure leads to a decrease in suspension viscosity.

The second shear thinning behavior at large shear rates occurs after the shear thickening
transition and thus happens in the context of a frictional rheology (see Fig. 4.19a). To
explain this shear thinning behavior we thus turn to our experimental measurements of
the friction coefficient between two beads, shown in Figs. 4.14 and 4.15. We pointed out
that µ decreases as a function of the normal load, going down from 0.12 to as low as 0.03
for normal forces up to 1 µN. In our experiments the shear stress varies between 104 Pa
and 105 Pa in the shear thinning region. Normal forces are of the order of 105 − 5 · 105

Pa with B = 0.016 or B = 0.025 (Eq. 4.5). Even though local heterogeneities might be
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present at the level of the stress field [44], we use a simple argument to estimate the normal
load. Assuming that the stress is homogeneous in the sample, the normal force applied on
a single bead of radius 1 µm is comprised between 0.3 and 1.5 µN, which corresponds to
the range of normal loads for which µ decreases.
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Figure 4.20: Variation of φexpm (γ̇) as a function of µ. The blue squares correspond to the
dispersion D2 (φ = 0.64), the blue circles to the dispersion D2 (φ = 0.6), the red squares
to the dispersion D1 (φ = 0.6) and the red circles to the dispersion D1 (φ = 0.55).

To go further in our analysis, we follow the model of Wyart and Cates [58]. As shown
in Fig. 4.19b, a decrease of µ will increase the value of the friction-dependent jamming
density φm and thus will increase the distance between the volume fraction φ and the
critical volume fraction φm. It is worth noting that φm(µ) is very sensitive to µ in the
range 0 − 0.2 which correspond to the our microscopic friction coefficient variations. At
the scale of the suspension, an increase in the shear rate γ̇ will lead to an increase in the
particular pressure and thus a decrease of the value of the interparticle friction coefficient µ.
To validate this picture, we correlate the critical volume fraction φm with the microscopic
friction coefficient µ in the following.

For a frictional rheology, the viscosity of the suspension can be expressed as:

η = ηs

(
φm(γ̇)

φm(γ̇)− φ

)n
(4.10)

with ηs the solvent viscosity. Here, we assume that the exponent n of the Krieger-Dougherty
model does not depend upon the nature of the contact, and can thus be taken equal to
the exponent found for the lubricated rheology at low shear rates (Eq. 4.5). This leads
to φm(γ̇) = φ/

(
1− ( ηs

η(γ̇)
)1/n
)
. The shear rate is given by γ̇ = BFn/(πR

2η). Knowing
experimentally the link between µ and FN, we display in Fig. 4.20 the evolution of φm(γ̇)
as a function of µ. The data obtained by using the rheological measurements displayed
on Fig. 4.20 collapse on a single curve for each dispersions revealing the validity of our
analysis. The variations of φm(γ̇) required to explain the shear thinning behavior are of the
order of 10% when µ varies between 0.08 (close to the entry of the shear thickening zone)
and 0.04−0.01 in the shear thinning zone. Such behavior is in agreement with simulations
[10].
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4.6 Conclusion

In this Chapter, we measured the frictional interaction (normal and
tangential force profile) between pairs of particles from non-newtonian
PVC and Cornstarch suspensions.

1. We evidenced a pressure-induced transition from a lubricated
regime where pairs of particles can sustain a normal load due to
repulsive entropic effects while interacting purely hydrodynami-
cally, to a frictional regime characterized by frictional contacts and
sliding (solid-like) friction. Extending our friction measurement
to larger load we further evidenced a decrease of the interparticle
friction coefficient at large normal pressure.

2. We first focus on the discontinuous shear thickening transition
occurring in concentrated suspensions of particles. Tuning the
physico-chemical properties of the solvent, we vary both the crit-
ical load at which this frictional transition takes place, and the
macroscopic onset stress at which discontinuous shear thicken-
ing occurs. We find a clear correlation between these two stress
scales, explaining unambiguously the discontinuous shear thicken-
ing transition as stemming from the onset of hard frictional con-
tacts between particles, leading to a transition from a lubricated
to a frictional rheology.

3. We then extend our analysis to the two shear thinning regimes
occurring in non-brownian PVC suspensions. At low shear rate,
we show that shear thinning occurs for a lubricated rheology, due
to compressibility of the short-range repulsive force profile. The
second shear thinning regime at high shear rate occurs after the
shear thickening transition, for a frictional rheology. We show that
this regime can be rationalized by the decrease of the interparticle
friction coefficient at large normal loads.
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We evidenced throughout this thesis that the mechanical properties of materials at the
nanoscale can be dramatically affected by external drivings such as confinement, shear or
pressure.

The investigation of those questions has been allowed by the development of a quartz-
tuning fork based Atomic Force Microscope, which we introduced in the first Chapter. This
instrument has been traditionally used in hard condensed matter for exquisite imaging and
force sensing at the atomic scale. We have shown throughout this thesis that it can be
successfully applied to probe the mechanical response of soft matter systems.

In particular, via the use of frequency-modulation AFM techniques, the quartz-tuning
fork based AFM can be fruitfully used as a nanorheometer, allowing quantitative mea-
surement of conservative and dissipative mechanical impedance of nanoscale soft matter
systems, and unprecedented characterization of friction and dissipation at those scales.
Interestingly, those quantitative measurements allow for a complete characterization of the
viscoelastic properties (solid-like and liquid-like) of confined nanoscale materials.

We present in this last chapter the conclusions and perspectives associated with the
investigations presented in this thesis. We then present on-going work and perspectives on
two questions related to reactive lubrications, which have been addressed in the last year
of this PhD, along with two other PhD students, Luca Canale and Antoine Lainé.
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5.1 General Conclusion and Perspectives

5.1.1 Nanoscale Capillary Freezing in Ionic Liquids

In the second Chapter of this thesis, we focused on the rheological behavior of ionic liq-
uids confined at the nanoscale. Confining ionic liquids between micron-size AFM tungsten
tips and substrates of various nature, we evidenced a dramatic change in the mechanical
properties of the ionic liquid, with the appearance of a solid-like response for confinements
of tens of nanometer. This abrupt change in the rheology was interpreted as a signature
of a bulk confinement induced freezing transition for the ionic liquid, with an elevation
of the melting temperature due to the predominance of surface energies in nano confine-
ment (Gibbs-Thompson effect). This response was found to be strongly dependent on the
electronic properties of the confining materials, with more conductive materials facilitat-
ing the freezing transition. This experimental observation was rationalized by considering
the influence of metallic boundaries on the relative wetting properties of ionic liquid and
solid phases. Additionally, using AFM tips with small radii of curvature, we could also
evidence the presence of pre-wetting solid-like structures preexisting on the substrates in-
dependently of any confinements, but with smaller heights than the observed confinement
lengths. Finally, the freezing transition could be reversibly tuned through the application
of an additional bias voltage between the confining interfaces, giving strong support to
the interpretation of the observed change in mechanical impedance as of a bulk freezing
transition.

Similar investigation on the behavior of ionic liquids confined at dielectric and metallic
interfaces were recently carried out in the group of Elisabeth Charlaix using a dynamic
Surface Force Apparatus [8]. They obtained qualitatively similar results, with a strong
dependence of the rheological properties of the ionic liquid on the metallic character of
the confining interfaces (comparing metallic platinum coated surfaces with dielectric in-
sulating glass surfaces). Interestingly, they interpreted there rheological measurements on
metallic platinum surfaces as evidencing a soft solid-like phase of complex frequency re-
sponse preexisting to any confinement, and not with a bulk confinement induced freezing
transition.

Those independent observations, along with their similarities (strong effect of substrate
metallicity on the ionic liquid rheology) and distinctions (bulk confinement induced freezing
transition versus surface effects), open broad perspectives by showing that the electronic
properties (condensed matter properties) of materials can have a profound effect on the
mechanical behavior of soft materials, through subtle electrostatic effects. More specifically,
the question of the effect of probe size on the kinetics and metastability of the freezing
transition (colloidal micrometric scale in our case, millimetric scale in the experiments of
Garcia et al. [8]), as well as the role of solicitation frequency on the mechanical properties
of the ionic liquid and solid phases should be addressed in future studies.

Our results have broader implications related to the dynamics of dense electrolytes in
porous matrices [27, 31], which are crucial in the context of supercapacitors dynamics [21].
Other exotic behaviors might emerge for confinements of the order of the ion size [7] while
the presence of disordered and rough surfaces, as typically present in supercapacitors might
prevent the freezing transition reported here [13, 14]. Further experimental and theoretical
investigations of these regimes seem now to be necessary in light of our study.

In the context of lubrication, our results also suggest to take advantage of the dramatic
and abrupt ionic liquid phase change to tune nanoscale friction via modifications of the
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substrate, from insulating to metallic, and possibly with dedicated patterning via metallic
coating. The relatively weak solid phase would indeed prevent undesired direct substrate-
substrate contact by generating normal forces. The solid phase could be regenerated in
situ, as it takes its origin in the ionic liquid confinement. Furthermore, the modification of
the confinement-induced transition under a voltage drop could finely modify the lubricating
state by active polarization. While such perspectives require further exploration, they open
new and exciting perspectives for phase-changing lubricants, and are developed further in
the second part of this perspective Chapter.

5.1.2 Molecular Rheology of Gold Nanojunctions

Shear is another driving which can be used to actively tune the mechanical properties
of nanoscale objects. In the third Chapter of this thesis, we focused on the mechanical
response of necks of few gold atoms. The molecular size of those systems leads to quantized
electronic transport, allowing to measure and control their lateral dimension with atomic-
scale precision. By submitting the junction to increasing subnanometric deformations, we
uncovered a transition from a purely elastic regime to a plastic flow regime, up to the
complete shear-induced melting or fluidization of the junction. Our measurements allowed
us to measure the critical yield force governing the onset of plastic flow in the junction, as
a function of lateral size. The yield stress, characterizing the onset of plasticity, is found to
be approximately independent of lateral junction size, suggesting that in those molecular
systems, plastic flow is limited by the sliding of atomic planes under shear, as expected
for dislocation starved systems. We then analyzed the dissipative behavior of the junction,
which is found to be well characterized by a hydrodynamic friction law, with dissipation
directly proportional to the shear rate and the junction cross-sectional area. We thus
extracted a characteristic viscosity and hydrodynamic stress for the junction under shear.
We found a hydrodynamic stress of the same order as the plastic yield stress, suggesting
that the observed hydrodynamic behavior is intrinsically related to the shearing motion of
the tuning fork. Interestingly, a liquid-like behavior was also recovered in the conservative
force response at large strain, in the form of an attractive adhesive force. This adhesive
behavior at large oscillation amplitude is interpreted as the complete shear-induced melting
of the gold junction, leading to the appearance of adhesive capillary effects. We rationalized
part of our results by considering the dynamics of a harmonically driven Prandtl-Tomlinson
model.

Our study extends viscoelastic rheological measurements, traditionally used to charac-
terize the response of macroscopic soft matter systems such as foams [29] and emulsions
[19] to a metallic system of molecular size. Those results could find useful applications in
the context of ultrasonic [4] and cold welding [3, 18], where one might expect injection of
ultrasounds and mechanical energy to locally liquefy the interfaces and participate in the
welding process. Reversibly, the question of shape stability of nanoscale components is
critical, for example in the context of nano electronics [17, 28], where liquid-like behavior
or surface tension driven reorganization should instead be prevented.

On a more fundamental perspective, we evidenced a viscous-like dissipative behavior
for the gold neck under shear, distinct from static frictional forces given by standard
plasticity models. Further theoretical work and simulations could help to identify the
fundamental dissipation channels in such nanoscale assemblies. The study of the origin
and rate dependence of dissipative processes in nanoscale systems is critical in the context
of nanomechanical resonators [6, 11].
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The correlation between the lateral system size and the yield force should also break
down above a characteristic sample size, above which one should recover defect-mediated
plastic behavior. A proper investigation of this limit, and of the associated dissipative
regimes would be very interesting to probe experimentally.

Finally, an important perspective lies in the context of macroscopic sliding friction, in
which interfaces are composed of a number of micro and nano metric contacts, which can
flow and deform plastically under shear. The plastic behavior of those nanocontacts under
shear and their role in macroscopic static and dynamic friction and adhesion [1, 20, 22,
23, 33] could be disentangled through joint studies of macroscopic interfacial friction and
single contact rheology.

5.1.3 Non Newtonian Rheology of Suspensions

In the fourth Chapter, we measured the local frictional profile between pairs of particles
from a macroscopic suspension (pairs of PVC and cornstarch particles in various solvents),
and related those measurements to the macroscopic behavior of the suspension. We evi-
denced a pressure-induced transition at the nanoscale between a lubricated regime, where
pairs of particles support a finite normal load, while interacting purely hydrodynamically,
and a frictional regime characterized by hard repulsive contacts between particles and slid-
ing friction. Tuning the physicochemical properties of the suspending fluid, we showed that
the normal pressure needed to enter the frictional regime at nanoscale matches the critical
stress at which shear thickening occurs for macroscopic suspensions. This demonstrates
that the shear thickening transition observed at the scale of the suspension takes its ori-
gin in this nanoscale frictional transition, and corresponds to a stress-induced transition
between a low viscosity and high viscosity branch. Further measurements allowed us to
rationalize the two shear thinning regimes observed in PVC suspensions before and after
the shear thickening transition. We interpreted the first shear thinning regime observed at
low shear rates as occurring for a lubricated rheology, due to compressibility effect of the
soft repulsive potential. The second shear thinning regime observed for large shear rates
after the shear-thickening transition occurs for a frictional rheology, and can be interpreted
as stemming from a decrease of the interparticle friction coefficient at large normal load.

Our experiments bridge nano and macro scales and provide long needed demonstration
of the role of microscopic local interactions in the rheology of suspensions. In this context,
further measurements could allow to rationalize the drastically different behavior of corn-
starch and PVC suspensions in the shear-thickened state. Whereas PVC suspensions seem
to behave as "ideal" shear-thickening fluids, with homogeneous flow and a well-defined
frictional rheology in the shear-thickened state, cornstarch suspensions show migration,
phase separation and important density fluctuations in the shear thickened state, remi-
niscent of the behavior of a yield stress fluid. These distinct behaviors could be due to
the large nanoscale adhesion measured between cornstarch grains. Similarly, additional
correlations, for example between microscopic friction coefficients and macroscopic jam-
ming packing fractions for frictional suspensions could be tested following similar joint
nanometric and macroscopic approaches.

More generally, our measurements open broad perspectives by showing the crucial im-
portance of detailed local interactions in the understanding of the global behavior of soft
matter systems and assemblies. It could be extremely interesting to extend those joint
macroscopic and nanometric measurements to other soft matter systems such as colloidal
gels, granular materials, etc..
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5.1.4 Instrumental Perspectives

Using frequency-modulation AFM techniques, we could measure the dissipative fric-
tional response of various nanoscale systems as a function of shear rate via a change of the
oscillation amplitude at a fixed oscillation frequency. This technique gave very satisfactory
results. However, in some cases, it might be interesting to be able to probe the response
of the system at various driving frequencies for a fixed oscillation amplitude (e.g. in the
context of gold).

One difficulty associated with such multifrequency measurements is that one loses the
large response of the oscillator close to the resonance frequency. However, such multifre-
quency measurements are possible for example via novel state of the art techniques such
as Force Feedback Microscopy techniques [26, 32] or high-speed AFM techniques [25].

5.2 On-Going Perspectives on Reactive Lubrication
We evidenced in this thesis the occurrence of dramatic changes in the mechanical prop-

erties of materials at the nanoscale, either due to confinement induced phase transitions
in ionic liquids, or due to the application of external shear in the context of nanoscale
gold junctions. Moreover, as shown in the context of the non-newtonian rheology of sus-
pensions, the properties of materials at the nanoscale can have profound impacts on their
macroscale behavior.

Interestingly, this relation between nanoscale interfacial properties and the macroscale
behavior is particularly exacerbated in the context of friction, for which strong confine-
ments, and shear localization at the interface can induce changes in mechanical properties
of the sliding interface, which in turn can have profound impacts on the macroscopic lu-
bricating behavior.

I started to address those perspectives related to the context of phase changing lubri-
cants, over the course of the last year of this PhD, in collaboration with two other PhD
students of the team, L. Canale and A. Lainé.

5.2.1 The Tuning Fork based dynamic Surface Force Apparatus

The study of those new perspectives bridging macroscale friction and nanoscale in-
terfacial behavior were allowed by the use of a tuning fork based dynamic Surface Force
Apparatus (dSFA), recently developed in the group.

In essence, the tuning fork based dynamic Surface Force Apparatus (Fig. 5.1) is a
macroscopic version of the quartz-tuning fork based AFM. Due to its centimetric size and
large mass, this macroscopic tuning fork can support centimetric glass beads, as in stan-
dard SFA, while maintaining good quality factor allowing to take advantage of frequency-
modulation techniques. This dynamic SFA can be used to measure macroscopic friction,
while simultaneously informing on the local nanoscale mechanical properties of the sliding
interfaces.

The core of the microscope is a centimeter-sized tuning fork made of aluminum. Due
to the large mass of the tuning fork, macroscopic probes can be attached to the aluminum
prongs while maintaining good quality factors for antisymmetric resonances (Table 5.1).
In the context of rheological studies, millimetric glass spheres can be used as the confining
probes. The oscillations of the tuning fork are measured using an accelerometer directly
glued at the extremity of one prong. Symmetric oscillations of the macroscopic tuning fork
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Figure 5.1: (A) Schematic of the tuning fork based dynamic Surface Force Apparatus.
(B) Photograph of a spherical glass probe, melted out of a 2 mm glass rod, leading to
smooth glass surfaces.

are excited mechanically, using a piezo dither glued to the tuning fork or electromagnets,
and allow to tune the oscillation amplitude over orders of magnitude, from 1 nm up to
10 µm.

In this configuration, this tuning fork can be thought of as a dynamic Surface Force Ap-
paratus [9, 24], allowing to obtain the dissipative and conservative response of confined soft
matter systems using similar frequency-modulation techniques as described in Chapter 1.

Importantly, we can take advantage of the two principal resonant frequencies of the
tuning fork, to measure normal and tangential dynamic impedance, as described in Chap-
ter 4.

The sensitivity of the tuning fork based dynamic Surface Force Apparatus is reduced
compared to the quartz version, mainly due to the larger stiffness K, but this loss in
sensitivity is compensated by the increase of several orders of magnitude of the radius of
curvature of the confining probes.

Parameter Normal Mode Tangential Mode
Resonnant Frequency f0 ≈ 900 Hz ≈ 500 Hz
Equivalent Stiffness K 890 kN.m−1 300 kN.m−1

Typical Quality Factor in air 300 2000
Oscillation Amplitude 1 nm – 100 nm 1 nm – 10 µm

Table 5.1: Parameters for the two oscillatory modes of the tuning fork based dynamic
Surface Force Apparatus.

We now present briefly two perspectives related to reactive lubrication using the tuning
fork based dynamic Surface Force Apparatus

5.2.2 Reactive Lubrication in Skiing

Friction coefficient of most materials on ice and snow are usually extremely small, with
values typically as low as µ ∼ 0.01− 0.03 depending on the conditions [2, 5, 12]. This is at
least one order of magnitude smaller than what is observed with dry friction involving other
materials (typically µ ∼ 0.3). The low ice friction behavior is explained by the presence of
a liquid layer between the solid and the ice. It is now an accepted idea that its origin resides
in frictional melting: frictional dissipation generates heat which rises the temperature at
the contact region, induces melting and lubricates contact. However, no evidence for the
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presence of a water film during sliding and no measurements of film thickness have been
obtained so far.

In collaboration with L. Canale, we used the tuning fork based dynamic Surface Force
Apparatus to evidence the presence of this interfacial water film during sliding. As shown
in Fig. 5.2, we use the tangential oscillation mode of the tuning fork to induce frictional
melting, and the normal oscillation mode as a probe to measure the resulting film thickness.
Accordingly, we drive the tangential mode to amplitudes ranging from 1 µm to 50 µm,
corresponding to velocities in the range of 0.01− 0.1 m.s−1. Normal oscillation amplitude
is kept to values of the order of 50 nm.
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Figure 5.2: (A-C) Typical approach curves, consisting of three phases of approach, relax-
ation and retract (A). Variation of the normal dissipative modulus Z ′′N, (B) and tangential
frictional force FT (C). Both Z ′′N and FT relax to a steady state value characterizing an
equilibrium condition (red horizontal dotted line). (D) Variation of 1/Z ′′N (red) during
retraction, as a function of retraction distance Z. The horizontal dotted line indicated the
steady state value for Z ′′N, identified in (B).

Fig. 5.2A shows the typical procedure when approaching the surface of ice. We first
approach the probe in contact to the ice surface (Fig. 5.2A, (i)), leading to the increase in
tangential frictional force FT (Fig. 5.2C) and in normal dissipative modulus Z ′′N (Fig. 5.2B).
The approach is then stopped, leading to relaxation towards a steady state equilibrium
(Fig. 5.2A, (ii)). Upon retract, the tangential friction and normal impedance relax smoothly
to zero (Fig. 5.2A, (iii)). We plot in Fig. 5.2D the variation of the inverse of normal
dissipative modulus, which varies linearly with distance for sufficient confinement. This
linear variation points to a liquid-like behavior of the confining interface, characterized by a
dissipative impedance varying as Z ′′ = 6πηR2ω/D, with η the viscosity, R the probe radius,
ω the normal oscillation frequency and D the confining distance. The linear extrapolation
of the inverse dissipative modulus crosses the horizontal axis at a well-defined point, which
characterizes the thickness of the interfacial water film developing during frictional sliding.

The tuning fork based dynamic Surface Force Apparatus can thus be used to measure
the thickness and the interfacial properties of the confined water film forming during fric-
tional sliding. We measure a viscosity for the water film of the order of η ≈ 20 mPa.s.
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Interestingly, the measured film thickness varies between 100 nm and 1 µm, corresponding
to values much smaller than what were previously predicted. We now plan to carry out a
systematic investigation of the parameters influencing the thickness and properties of this
interfacial film. Especially interesting would be to probe the effect of the sliding velocity,
temperature as well as properties of the sliding materials, in terms of heat conductivity
and hydrophobicity.

5.2.3 Reactive Lubrication in Ionic Liquids

As discussed at the beginning of this Chapter, the confinement-induced freezing transi-
tion of ionic liquids evidenced in the second Chapter could also be particularly interesting
in the context of reactive lubrication and protection against wear. One could indeed imag-
ine to take advantage of the change in the ionic liquid phase to prevent undesired direct
substrate-substrate contact by generating normal forces between the sliding surfaces. One
might expect a yield stress for this weak ionic solid phase, beyond which it will start to
flow. This phase could be potentially regenerated in situ, presenting potentially novel
self-healing properties.

We show in Fig. 5.3 preliminary results obtained with A. Lainé for the macroscale
rheology and frictional properties of confined ionic liquids using the tuning fork based
dynamic SFA. Fig. 5.3 shows an approach curve in the ionic liquid BmimBF4 confined
between a smooth pyrex sphere and an intrinsic (undopped) silicon substrate, showing
measurements of both normal dissipative and conservative impedance (Fig. 5.3A), and
tangential frictional forces (Fig. 5.3B).
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Figure 5.3: Approach curve for BmimBF4 confined between a smooth pyrex sphere and an
intrinsic silicon substrate. (A) Normal impedance (Z ′ in black and Z ′′ in red) (B) Tan-
gential frictional force at 2.5 nm and 25 nm amplitude.

The normal impedance response shown in Fig. 5.3A is reminiscent of elasto-hydrodynamic
measurements obtained using dynamic SFA [15, 16, 30]. The frictional profile in Fig. 5.3B
is well characterized by an initial hydrodynamic logarithmic increase of the tangential
dissipation as D decreases with FT

D ∼ ηvTR ln
(
R
D

)
[10], followed by hard contact.

Those preliminary measurements validate the use of the tuning fork based dynamic SFA
as a valuable tool for friction measurements in ionic liquids and test further the effects of
shear rate and substrate metallicity on ionic liquids rheology in the context of friction
studies.
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Appendix A

Theoretical model: Interfacial energies
with Thomas–Fermi boundary
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We consider in this Appendix the energetics of an ionic system interacting with an
imperfect conductor. The electronic screening inside the conductor is described by the
Thomas-Fermi (TF) theory, defined in terms of the screening length `TF = k−1TF. The finite
screening length is due to the energy cost for localizing electrons under external charges
[4].

The objective of this part is to obtain an estimate of the surface energies of the crystal-
metal and liquid-metal interfaces, and predict its behavior as a function of the metallicity
of the metal, introduced here with the TF screening parameter. We first introduce a 1D
simplified model, which gives many insights into the dominant contributions to surface
energies, and then extend our conclusions to a general ion-metal interface.

A.1 Surface energy of a crystal with a TF wall
We first start our consideration with the ideal case of a perfect 1D crystal in contact

with a TF wall. Negative and positive point charges are distributed in an alternating
fashion giving the charge density as

ρcr(z,R) = Q
∞∑
n=0

(−1)n
δ(z − (na+ h))δ(R)

2πR
, (A.1)

where we used the representation of δ-function in cylindrical coordinates, corresponding
to the axial symmetry of the problem. The lattice constant is a and the crystal is at
the distance h from the boundary. This allows us to gives the results in terms of two
dimensionless variables kTFa and h/a. In the following we assume to simplify that h = a/2.

117
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We also assume to simplify that the dielectric constant of the crystal background and of
the metal are both equal to ε (an hypothesis that can be easily relaxed).

In the TF model, the screening parameter kTF = 1/`TF allows to interpolate smoothly
between the insulating case, with `TF = ∞, and the perfect metal case, with `TF = 0. In
both limits the electrostatic energy can be readily calculated [1]. The corresponding surface
energy reduces to γins = Q2/8πεa for the insulating wall, and to γmetal = Q2/16πεa for the
perfect metal wall (both in 1D). This points already to the fact that the metallicity of the
wall reduces the surface energy by a factor δγ = −Q2/16πεa. The case of TF substrates
will interpolate between these two limiting cases.

As we demonstrate below, the surface tension between a perfect semi-infinite ionic
crystal and a TF substrate writes as

γWC (kTFa) = γinsWC −
Q2

16πε
ρCF(kTFa) (A.2)

where ρC is the crystal density (ρC = 1/a in 1D) and the function F is defined as

F(kTFa) = 1− Jcr (kTFa) + JTF (kTFa) , (A.3)

with the expressions for Jcr and JTF as follows:

Jcr (kTFa) =

∫ +∞

0

dλ
4λ

λ+
√
λ2 + (kTFa)2

e−2λ(h/a)

(1 + e−λ)2
(A.4)

JTF (kTFa) =

∫ +∞

0

dλ
2λ(kTFα)2√

λ2 + (kTFα)2
[
λ+

√
λ2 + (kTFα)2

]2 e−2λ(h/α)

(1 + e−λ)2
. (A.5)

To find this expression, we first formulate the problem of a single charge close to the bound-
ary and solve for the potential using the Hankel transform, which we integrate to obtain
the electrostatic energy of a single charge, and finally we sum the individual contributions
to get the energy of the crystal, thus the surface tension.

II. Thomas-Fermi metal

I. Dielectric / Crystal

z

Q (z=a, R=0)xR

Green’s functions. The quantity of interest for the electrostatic interactions is the Green
function. The potential for a point charge at z = α in an insulator next to the surface of
TF metal (at z = 0) follows the combined Poisson and TF equations

∆ψcr = −Qδ(z − α)δ(R)

2πεR
for z > 0 (A.6)

∆ψTF − k2TFψTF = 0 for z < 0, (A.7)
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which read in their Hankel transformed form – ψ(z,K) =
∫

dRψ(z,R)RJ0(KR) –

(∂zz −K2)ψcr = −Qδ(z − α)

2πε
, (A.8)

(∂zz − κ2
TF)ψTF = 0 with κ2

TF = K2 + k2TF . (A.9)

Boundary conditions at the surface are the continuity of the potential ψcr(z = 0+) =
ψTF(z = 0−) and the electric displacement field ε[∂zψcr](z = 0+) − ε[∂zψTF](z = 0−) = 0
and the potential decaying to zero at infinity.

Previous equations are solved to give

ψcr(z > α,K) =
Qe−Kα

4πεK

[
K − κTF

K + κTF

+ e+2Kα

]
e−Kz (A.10)

ψcr(z < α,K) =
Qe−Kα

4πεK

[
e+Kz +

K − κTF

K + κTF

e−Kz
]

(A.11)

ψTF(z,K) =
Qe−Kα

4πεK

2K

K + κTF

e+κTFz . (A.12)

In practice, it proves technically easier to consider the ideal metal case a a reference
state and calculate the energy difference with respect to (w.r.t.) this case. Accordingly we
calculate the excess potential w.r.t. the ideal case (which is obtained readily as a sum of
Coulomb potentials from the real and image charges):

∆ψcr(z,K) = ψcr(z ≥ α,K)− ψ(id)
cr (z ≥ α,K) = (A.13)

=
Q

4πεK

[
e+Kα − κTF −K

κTF +K
e−Kα

]
e−Kz − Q

4πεK

[
e+Kα − e−Kα

]
e−Kz (A.14)

=
Q

4πεK

2K

κTF +K
e−Kαe−Kz (A.15)

∆ψcr(z,K) = ψcr(z ≤ α,K)− ψ(id)
cr (z ≤ α,K) = (A.16)

=
Q

4πεK

[
e+Kz − κTF −K

κTF +K
e−Kz

]
e−Kα − Q

4πεK

[
e+Kz − e−Kz

]
e−Kα (A.17)

=
Q

4πεK

2K

κTF +K
e−Kαe−Kz (A.18)

∆ψTF(z,K) = ψTF(z,K)− ψ(id)
TF (z,K) = ψTF(z,K) =

Q

4πεK

2K

IκTF +K
e−Kαe+κTFz ,

(A.19)

where we note that we have a single expression for ∆ψcr instead of two different ones for
ψcr and the potential is zero in an ideal metal due to its perfect screening of any charge.

The inverse transform ψ(z,R) =
∫

dKψ(z,K)KJ0(KR) is not expressible in simple
analytic functions. However, the electrostatic energy is an integrated quantity which
can be found using the Plancherel theorem for Hankel transform

∫
dRf(R)g(R)R =∫

dKf(K)g(K)K. As we have no boundary terms at infinity and the relation between
potential and the induced charge is linear ρind(z,K) = −εk2TFψTF(z,K), we can evaluate
the electrostatic energy as the integrated product of charge and potential [1]. The differ-
ence of energy, ∆U , between a crystal close to a TF metal and a crystal close to an ideal
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metal reads accordingly:

∆U =
1

2

∫ +∞

−∞
dz

∫ +∞

0

2πRdRρ(z,R)∆ψ(z,R) = π

∫ +∞

−∞
dz

∫ +∞

0

dKρ(z,K)∆ψ(z,K)K ,

(A.20)

which we split into the metal (ρind,ψTF,z < 0) and the crystal (ρcr,ψcr,z > 0) integrals to
be evaluated separately

∆U = π

∫ +∞

−∞
dz

∫ +∞

0

dKρcr(z,K)∆ψcr(z,K)K + π

∫ +∞

−∞
dz

∫ +∞

0

dKρind(z,K)ψTF(z,K)K .

(A.21)

(1) Crystal contribution to the electrostatic energy: The part of the electrostatic
energy sum associated with the charge distribution (A.1), i.e. the first term in Eq.(A.21),
reads

∆Ucr =
Q

2

∞∑
n=0

(−1)n
∫ +∞

0

dK
∞∑
l=0

(−1)l∆ψ(α=la+h)
cr (na+ h,K)K . (A.22)

which, using eq. (A.13), corresponds to

∆Ucr =
Q2

8πε

∫ +∞

0

dK
2K

κTF +K
e−2Kh

∞∑
n=0

∞∑
l=0

(
−e−Ka

)n+l
. (A.23)

This double geometric series yields

∆Ucr =
Q2

8πε

∫ +∞

0

dK
2K

κTF +K

e−2Kh

(1 + e−Ka)2
, (A.24)

which can be expressed as a prefactor multiplied by a integral over a dimensionless variable
λ = Ka which evaluates to values between zero and one

∆Ucr =
Q2

16πεa

∫ +∞

0

dλ
4λ

λ+
√
λ2 + (kTFa)2

e−2λ(h/a)

(1 + e−λ)2
(A.25)

≡ Q2

16πεa
× Jcr (kTFa) . (A.26)

Note that ∆Ucr vanishes in the perfect metal limit kTF →∞ and evaluates to Q2/(16πεa)
for the ideal dielectric boundary kTF → 0, which is a result for a dielectric-dielectric
interface previously derived in literature [1].

(2) Metal contribution to the electrostatic energy: The second part of the
electrostatic energy sum – second term in Eq.(A.21) – is due to the charge distribution
induced in the metal to screen the external charges. For the Thomas-Fermi metal part we
use the charge-potential relation ρind = −εk2TFψTF yielding

∆UTF = π

∫ +∞

−∞
dz

∫ +∞

0

dKρind(z,K)ψTF(z,K)K = −πεk2TF

∫ 0

−∞
dz

∫ +∞

0

dK [ψTF(z,K)]2K .

(A.27)
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The potential ψTF is a geometric sum of the contributions of individual charges to the
metal potential

ψTF(z,K) =
∞∑
n=0

(−1)nψ
[na+h,(−1)nQ]
TF (z,K) =

Qe−Kh

4πεK

2K

K + κTF

e+κTFz

1 + e−Ka
, (A.28)

the convergence of which can be proven by considering physically relevant finite crystals.
This yields the electrostatic energy of the charge induced in the metal as

∆UTF = −πεk2TF

[
Q

2πε

]2 ∫ 0

−∞
dz

∫ +∞

0

dK

[
1

K + κTF

e−Kh

1 + e−Ka

]2
e+κTFzK (A.29)

= −Q
2k2TF

4πε

∫ +∞

0

dK

[
1

K + κTF

e−Kh

1 + e−Ka

]2
K

κTF

(A.30)

= −Q
2k2TF

8πε

∫ +∞

0

dK
Ke−2Kh√

K2 + k2TF

[
K +

√
K2 + k2TF

]2
[1 + e−Ka]2

, (A.31)

which goes to zero as k−1TF = `TF if `TF → 0 (ideal metal limit, kTF →∞) and also vanishes
as kTF = `−1TF for vacuum or ideal dielectric boundary (kTF → 0). We convert this integral
to a dimensionless form

∆UTF = − Q2

16πεa

∫ +∞

0

dλ
2λ(kTFa)2√

λ2 + (kTFa)2
[
λ+

√
λ2 + (kTFa)2

]2 e−2λ(h/a)

(1 + e−λ)2
(A.32)

≡ − Q2

16πεa
× JTF (kTFa) , (A.33)

Summary: Surface energy
We now gather the various contributions for the electrostatic energy, ∆UTF and ∆Ucr.
These correspond to surface energies, w.r.t. the ideal metal case. Thus, adding the sur-
face tension for the perfect metal substrate, recalled above, we thus obtain γWC (kTFa) =
Q2

16πεa
[1 + Jcr (kTFa)− JTF (kTFa)], where the J -functions are defined in the expression

above. Reorganizing the terms, this concludes the proof of Eq. (A.2).

A.2 Physical interpretation and an approximated scheme

An interesting remark is that the electrostatic contribution to the interfacial energy
γWC, which is exactly obtained in Eq. (A.2) for a 1D crystal, can be qualitatively interpreted
in terms of the interaction of individual particles with their images. More specifically, we
show below that for any kTF parameter, the excess surface tension w.r.t. its insulating
limit can be roughly approximated by

γWC(kTF)− γinsWC ≈ ρC × a× U (1)(a) (A.34)

where U (1) is the one-body interaction energy of a single ion with its image charge, at a
distance a close to the TF surface; ρC is the crystal density, and the expression for γWC(kTF)
is given in Eq. (A.2).
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This conclusion, which is interpreted physically below, stems from a detailed analysis
of the various analytical contributions to the surface tension and energy interaction.

To do so, let us first calculate the one-body interaction of a single, isolated particle
close to a flat surface, at a distance z from the wall. In the case of an ideal metal, the
potential of a charge can be found from the image charge method and the electrostatic
energy U (1)

ideal = −Q2/[16πεz] is half of what an equivalent pair of real charges would yield
[1]. In the general case, the total electrostatic energy is half the scalar product of the charge
density and the electrostatic potential, split between the induced charge (ρind, ψTF = ψTF,
z < 0 support) and the external charge (ρcr, ψcr = ψcr, z > 0 support) parts. Therefore
the derivation for U (1)(z) follows the same steps as for the total electrostatic energy above

U (1)(z) = π

∫ +∞

−∞
dz′
∫ +∞

0

dKK [ρind(z|z′,K) + ρcr(z|z′,K)]ψ(z|z′,K) (A.35)

where we used the Plancherel theorem for the Hankel transform to equate the direct and
reciprocal space integrations. The resulting expressions for U (1)(z) are obtained in terms
of an integral Icr over the dimensionless variable λ = Kz

U (1)(z) = − Q2

16πεz
(1− Icr + ITF) , where (A.36)

Icr =

∫ +∞

0

dλ
4λe−2λ√

λ2 + (kTFz)2 + λ
(A.37)

ITF =

∫ +∞

0

dλ
2(kTFz)2λe−2λ(

λ+
√
λ2 + (kTFz)2

)2√
λ2 + (kTFz)2

. (A.38)

Icr goes to unity for the insulating limit (kTF = 0) and vanishes for the ideal metal (kTF →
∞); ITF vanishes in both limits.

At this stage, a key remark then is that taking for z = a, leads to

U (1)(a) ≈ − Q2

16πεa
F(kTFa) (A.39)

where the expression for F(kTFa) is given in Eq. (A.2). This can be actually verified by
a direct numerical comparison between the two expressions. But beyond, their analytical
definitions are extremely close, as pointed out by a direct inspection of their expression:
compare Icr and Jcr in Eq. (A.4) versus Eq. (A.37), as well as ITF and JTF in Eq. (A.5)
versus Eq. (A.38). Furthermore they interpolate smoothly between the perfect metal
and the insulating substrate, as a function of the characteristic TF parameter kTF, with
obviously a cross over occuring at kTFa ∼ 1; they also have the same limiting values in
both limiting regimes of insulating walls and perfect metal.

The underlying physical reason is transparent: this agreement stems from the fact that
the surface energy – in excess to the insulating case as a reference, in which there is no
image charge– merely originates from the interaction of ions in the vicinity of the substrate
with their image charges. Contributing charges are typically within a volume of extension
of a molecular length a, with a number Nc ∼ ρC×a (per unit surface, with ρC the density of
the crystal). The molecular extension a is determined by the electroneutrality condition,
leading to a cutoff of the interaction beyond a. Accordingly it suggests that the excess
surface tension can be approximated by summing up the direct one-body energy terms
within this volume of size a (and dividing by the lateral area a2):

γWC(kTF)− γinsWC ≈ ρC × a× U (1)(a) (A.40)
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Figure A.1: Sketch of charges close to a Thomas-Fermi metal interacting with their image
charges. A volume of extension a, defined in terms of electro-neutrality, interact with its
image charges. Charges beyond are screened out by electroneutrality.

This approximated expression captures the main tendencies of the surface tension γWC as
a function of the TF screening parameter kTF.

Obviously Eq.(A.40) is not an exact result, but this simple estimate is fully validated
by the exact calculation of the interfacial energy. It further captures the main physical
ingredients and reproduces properly – at a qualitative level – the dependency of the surface
tension of the crystal with a TF wall.

A.3 Surface energy of a liquid with a TF wall
By giving a simple interpretation of the surface tension for a condensed phase at a

metal surface, the previous argument can be extended to other interfaces, and in particular
a liquid-wall interface. Indeed in this case, the ion configurations are mostly disordered,
although with a strong local ordering originating in the electrostatic correlations. It is a
priori not possible to proceed along the analytical steps above to calculate the expression
for the electrostatic energy of a ionic liquid in the presence of a TF wall. However following
the previous approximation scheme, one may assume physically that the contribution of
the interfacial energy – in excess to the insulating case – of a ionic liquid at a metallic wall
originates mostly from the direct interaction of charges with their images. This provides
an approximated scheme to obtain an estimate of the liquid-TF wall surface energy, γwl.
Following the discussion above, one can thus writes as

γwl − γinswl ≈ ρL × a× U (1)(a) (A.41)

where ρL is now the density of the ionic liquid (since ρL < ρC for ionic systems, there are
less ions interacting with their image at the surface); a is again a molecular length scale, in
the range of the molecular size of the ions, and thus of the same order of magnitude as the
crystal lattice spacing. Since a× U (1) ≈ − Q2

16πε
F(kTFa), at this level of approximation, we

can write this equation approximatively in terms of the function F . We therefore obtain

γwl − γinswl ≈ −ρL ×
Q2

16πε
F(kTFa) (A.42)



124APPENDIX A. INTERFACIAL ENERGIES WITH THOMAS–FERMI BOUNDARY

Note that at this level of approximation, we took the same value of a for both the liquid
and crystal (chosen here as the crystal lattice spacing in the crystal), since this choice does
not make a strong difference in the functional dependence of F(kTFa).

Again we emphasize that this expression is only approximate, but this approximation
is expected to capture the main contributions for the surface energy, as validated by the
exact benchmarking calculations above for the crystal-metal interface.

A.4 Relative wetting of the crystal versus the liquid at
a TF wall

We can now gather the various contribution to calculate ∆γ = γwl − γWC the interfa-
cial free energy difference between the liquid-metal and the crystal-metal interfaces. Using
Eqs.(A.2) and (A.42), one accordingly obtains

∆γ = γwl − γWC ≈ ∆γins + (ρC − ρL)
Q2

16πε
×F(kTFa) (A.43)

where ∆γins = γinswl − γinsWC. The last term is positive because ρL < ρC. This is the equation
(5) reported in the main text.

Note that for practical purposes, one may use a simple fitting form for the function
F(kTFa) as F(kTFa) ' kTFa/(ν+kTFa). We find that ν ' 1.7 provides a good quantitative
fit to the exact expression for F(kTFa). This is inspired in particular by a similar expression
for U (1) derived by Kornyshev and Vorotyntsev [2] (assuming in the present case a uniform
dielectric constant). This simple rational approximation has the merit of simplicity.

A.5 Molecular dynamics of the crystallisation of a molten
salt in confinement

In order to investigate the effect of confinement on the crystallization of ionic systems,
we performed molecular simulations for a simple salt made up of positive and negative
(unit) charges confined inside an atomistic slit pore. In the simulations described below,
the confining boundaries are insulating.

In what follows, all lengths and distances are expressed with respect to the lattice
spacing a for the crystalline phase while energies are expressed with respect to the energy
for an ionic pair separated by the distance a, U0 = q2/(4πε0a). As a result, temperatures
are expressed in reduced units with respect to the reference temperature T0 = U0/kB (the
latter choice allows defining the dimensionless temperature from the Bjerrum length lB,
i.e. T = a/lB). The ionic system is described using the well-established Tosi-Fumi model
[8] with the physical parameters for NaCl [9]. Within this model, the pair interaction
potential between two atoms i and j separated by a distance r is given as the sum of a
Born-Huggins-Mayer repulsive contribution, two attractive dispersive contributions, and
the Coulomb interaction contribution:

Uij(r) = Aij exp[Bij(σij − r)]−
C6
ij

r6
−
D8
ij

r8
+

qiqj
4πε0r

(A.44)

In order to keep these molecular simulations as simple as possible while retaining the
physics of the Coulomb interaction, we use the damped shifted Coulomb force technique.



A.5. MOLECULAR DYNAMICS OF A MOLTEN SALT IN CONFINEMENT 125

0.000

0.002

0.004

0.006

0.00 0.03 0.06 0.09 0.12

0.030

0.033

0.036

0.00 0.06 0.12
a/H

T
m
/T

0

a/H

Δ
T
m
/T

0

Figure A.2: Shift in the melting temperature ∆Tm/T0 with respect to the bulk melting
point as a function of the reciprocal of pore size a/H for a nanoconfined salt. The symbols
are the results from molecular simulation (direct coexistence method) while the dashed
line is a linear fit corresponding to the Gibbs-Thomson equation. The insert shows the
melting temperature Tm/T0 as a function of a/H. The snapshots on the right show a
typical molecular configuration for the confined liquid (top) and crystal (bottom). The
blue and green spheres are the cations and anions while the grey atoms are the wall atoms.

This method consists of truncating and shifting the pair force and pair potential so that
both go to zero at the cut-off value, rC/a = 6.7:

UC,ij(r) =
qiqj

4πε0r

[
1

r
+

r

r2C
− 2

rC

]
(A.45)

FC,ij(r) =
qiqj

4πε0r

[
1

r2
− 1

r2C

]
r
r

(A.46)

The slit pores considered in this work, which have a reduced size H/a, are made up of
a cubic array of neutral atoms separated by a distance a. Each ion in the confined system
interacts through the same pair potential as that described in Eq. A.44 (except for the
Coulomb contribution since the wall atoms are neutral). For such a wall/ion contribution,
we used the same physical parameters as those for the cation/cation interactions. Fig. A.2
shows typical molecular configurations for the confined liquid and crystal in a pore of a
width H/a = 27.

Crystallization of the confined salt as well as of the bulk salt was assessed using the
Direct Coexistence Method [3, 7]. With this method, we first prepared a system in which
the crystal and liquid phases coexist (typically, if z is the direction perpendicular to the pore
surface, the system is prepared with the crystal occupying the space x ≤ 0 while the liquid
occupies the rest of the space x > 0). Such a coexisting system was then equilibrated at
different temperatures in the canonical ensemble using Molecular Dynamics (temperature
was imposed using a Nose-Hoover thermostat). From this initial condition, and depending
on the temperature, the crystaline phase grows or shrinks. The melting temperature Tm
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is determined as the cross-over between these two regimes: the crystal melts for T > Tm
while the liquid crystallizes for T < Tm.

Fig. A.2 shows the shift in the melting temperature ∆Tm/T0 with respect to the bulk
melting point as a function of the reciprocal of pore size a/H for the nanoconfined salt. The
crystal/liquid transition temperature is shifted to higher temperature for all pore sizes H/a
(ranging from 0.03 to 0.10), suggesting that the crystal wets better the surface than the
liquid. The shift in melting temperature increases linearly with increasing the reciprocal
pore size a/H, in full agreement with the celebrated Gibbs-Thomson equation:

∆Tm = Tm − T 0
m =

2T 0
m∆γ

ρL∆hfusH
(A.47)

where T 0
m is the bulk melting temperature, ∆γ = γLW − γCW the difference between the

liquid/wall and crystal/wall surface tension, ρL the bulk density of the liquid phase (here
assumed to be equal to that of the crystal for simplification), and ∆hfus is the bulk latent
heat of fusion.

Since ∆hfus and ρL are known for the Tosi-Fumi model considered in this work, ∆γ can
be estimated by fitting the data in Fig. A.2 against Eq. (A.47). We found ∆γ = 0.2 which
is positive since the crystal wets the wall surface rather than the liquid (considering the
reduced units used in throughout this part, surface tensions are normalized to γ0 = q2

4πε0a3
).

In order to confirm these numbers, we estimated independently γLW and γCW from the
normal (PN) and tangential (PT) pressures:

γ =
1

2

∫
(PN(z)− PT(z))dz ∼ Lz

2

〈
PN − PT

〉
(A.48)

where the second equality simply corresponds to the mean value theorem (Lz is the system
dimension in the direction z which corresponds to the direction normal to the pore surfaces).
The factor 1/2 in the above equations is required as the system exhibits two wall/liquid
or wall/crystal interfaces. PN = Pzz and PT = 1/2(Pxx + Pyy) can be estimated from the
pressure tensor using the virial formalism (for N particles i and j subjected to pair additive
interactions):

Pαβ = ρkBTδαβ +
1

V

N∑
j>i

Fijrji (A.49)

where α, β = x, y or z. δαβ is the Kronecker symbol, V the system’s volume, Fij the
force exerted by j on i and rji = ri − rj. Following the work of Nijmeijer et al. [5, 6],
wall/fluid interactions were omitted when computing the tangential pressure owing to the
atomistic/crystalline nature of the pore wall. We found that the liquid/wall surface tension,
γLW = 0.15, is indeed larger thant the crystal/wall surface tension, γCW = 0.07, leading to
a surface tension difference ∆γ of the same order of magnitude as that inferred from the
Gibbs-Thomson equation applied to the results from the direct coexistence methodology.
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Résumé

Dans ce Manuscript, nous mesurons
la réponse mécanique à l’échelle na-
nométrique de divers systèmes issus
de la matière molle en utilisant un Mi-
croscope à Force Atomique basé sur
un diapason à quartz. Utilisé comme
un nano-rhéomètre, cet instrument
permet une mesure quantitative des
propriétés viscoélastiques des maté-
riaux et des processus frictionnels et
dissipatifs aux nanoéchelles.
Nous montrons d’abord que les li-
quides ioniques confinés aux nanoé-
chelles peuvent subir un change-
ment dramatique de leurs proprié-
tés mécaniques, suggérant une so-
lidification capillaire. Cette transition
est favorisée par la nature métallique
des interfaces confinantes, montrant
la présence d’effets électrostatiques
subtils dans ces électrolytes denses.
Nous étudions ensuite les méca-
nismes de plasticité à l’échelle ato-
mique en mesurant la réponse vis-
coélastique de jonctions d’or de
quelques atomes de diamètre. Nous
mettons en évidence une transition
sous cisaillement entre un régime
élastique, puis plastique, jusqu’à la
liquéfaction complète de la jonction.
Nous caractérisons ainsi de manière
fine les mécanismes de plasticité
dans ces systèmes moléculaires.
Finalement, nous montrons les ef-
fets profonds que les interactions à
l’échelle nanométrique peuvent avoir
sur le comportement macroscopique
de la matière molle. Nous mesurons
le profil frictionnel entre paires de
particules de suspensions de PVC
et de Maïzena. Nos mesures mettent
en lumière le rôle dominant des inter-
actions locales entre particules dans
la rhéologie non-newtonienne des
suspensions.

Mots Clés
Microscopie à Force Atomique – Tri-
bologie – Rhéologie – Matière Molle
– Nanoscience

Abstract

In this Manuscript, we use a tuning
fork based Atomic Force Microscope
to measure the mechanical response
of various soft matter systems at the
nanoscale. This instrument is used
as a nano-rheometer, allowing quan-
titative measurements of viscoelastic
material properties, and unpreceden-
ted characterization of friction and
dissipation at the nanoscale.
First, we show that ionic liquids can
undergo a dramatic change in their
mechanical properties when confi-
ned at the nanoscale, pointing to
a capillary freezing transition. This
transition is favored by the metallic
nature of the confining substrates,
suggesting the occurrence of subtle
electrostatic effects in those dense
electrolytes.
Second, we probe plasticity at the in-
dividual atomic level, by measuring
the viscoelastic rheological response
of gold junctions of few atoms diame-
ter. For increasing shear, we uncover
a transition from a purely elastic re-
gime to a plastic flow regime, up to
the complete shear-induced melting
of the junction. Our measurements
give unprecedented insights on the
plastic mechanisms at play in those
molecular systems.
Finally, we show that nanoscale in-
teractions can have profound ef-
fects on the macroscopic behavior of
soft materials. Focusing on the non-
newtonian flow behavior of concen-
trated suspensions of particles, we
measure the nanoscale frictional
force profile between pairs of par-
ticles of PVC and Cornstarch sus-
pensions. Our measurements high-
light the dominant role of local in-
terparticle interactions on the macro-
scale rheology of suspensions.

Keywords
Atomic Force Microscopy – Tribology
– Rheology – Soft Matter – Nanos-
cience
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