
HAL Id: tel-02103303
https://theses.hal.science/tel-02103303

Submitted on 18 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Portable infrastructure for heterogeneous reconfigurable
devices in a cloud-FPGA environment

Arief Wicaksana

To cite this version:
Arief Wicaksana. Portable infrastructure for heterogeneous reconfigurable devices in a cloud-FPGA
environment. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2018. En-
glish. �NNT : 2018GREAT088�. �tel-02103303�

https://theses.hal.science/tel-02103303
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES
Spécialité : Nano Electronique et Nano Technologies (NENT)
Arrêté ministériel : 25 mai 2016

Présentée par

Arief WICAKSANA

Thèse dirigée par Frédéric ROUSSEAU, Professeur, UGA
et codirigée par Arif SASONGKO, Professeur associé, ITB

préparée au sein du Laboratoire Techniques de l’Informatique
et de la Microélectronique pour l’Architecture
des systèmes intégrés (TIMA)
dans l'École Doctorale Electronique, Electrotechnique,
Automatique et Traitement du Signal (EEATS)

Infrastructure portable pour un système
hétérogène reconfigurable dans un
environnement de cloud-FPGA

Portable infrastructure for heterogeneous
reconfigurable devices in a cloud-FPGA
environment

Thèse soutenue publiquement le 2 octobre 2018,
devant le jury composé de :

Monsieur Christophe JEGO
Professeur, Institut Polytechnique Bordeaux, Président
Monsieur Kenneth Kent
Professeur, Université Rudgers New Brunswick, Rapporteur
Monsieur Loïc LAGADEC
Professeur, ENSTA Bretagne, Rapporteur
Monsieur Alain FONKOUA
Ingénieur, Synopsys, Examinateur
Monsieur Olivier MULLER
Maître de conférences, Grenoble INP, Examinateur
Monsieur Arif SASONGKO
Professeur associé, Institut Technologique de Bandung, Co-directeur de thèse
Monsieur Frédéric ROUSSEAU
Professeur, Université Grenoble Alpes, Directeur de thèse

Cette thèse a été co-encadrée par Monsieur Olivier MULLER, Maître de
conférences, Grenoble INP

I’m writing my first draft and reminding myself
that I’m simply shoveling sand into a box

so that later I can build castles.

— Shannon Hale

Dedicated to my parents and brothers who always support me
in every step I take.

You don’t write because you want to say something,
you write because you have something to say.

— F. Scott Fitzgerald

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors without whom it
would not be possible to complete this work—Frédéric Rousseau, Olivier Muller,
and Arif Sasongko. Many thanks for your guidance, advices, and time during the
entire work and beyond.

I would also like to thank the reviewers, Mr. Kenneth Kent and Mr. Loïc
Lagadec, for their reviews and suggestions which not only improve the quality of
the presentation of this work but also provide me many insights in preparing to
be a better researcher, the president of the jury, Mr. Christophe Jego, and the
examiner, Mr. Alain Fonkoua, for the precious feedbacks and remarks during the
presentation of the defense.

Special thanks to Alban Bourge and Adrien Prost-Boucle which have inspired me
in a lot of ways. I am extremely grateful for the tool support which is one of the
most important parts of this work. Thank you for the help and suggestions during
the development and the experiments.

Many thanks to Robin Rolland-Girod which has provided help and assistance
for the experiments that used various FPGA boards. Thank you for giving the
technical support necessary to complete this work.

Many thanks to the other members of SLS team of TIMA Laboratory: Frédéric
Petrot, Liliana Andrade, Luc Michel, Clément Deschamps, Antoine Faravelon,
Thomas Baumela, and Georgios Christodoulis. Your presence and supports have
been a great help for me in achieving better results in work.

I would also like to express my deepest gratitude to my parents and my
brothers for their supports and encouragements. Thank you for always being there
during wonderful as many as difficult moments.

Last but not least, many thanks to all the people who helped me in any
way during my thesis.

v

ABSTRACT

Field-Programmable Gate Arrays (FPGAs) have been gaining popularity as hard-
ware accelerators in heterogeneous architectures thanks to their high performance
and low energy consumption. This argument has been supported by the recent inte-
gration of FPGA devices in cloud services and data centers. The potential offered by
the reconfigurable architectures can still be optimized by treating FPGAs as virtual-
izable resources and offering them multitasking capability. The solution to preempt
a hardware task on an FPGA with the objective of context switching it has been
in research for many years. The previous works mainly proposed the strategy to ex-
tract the context of a running task from the FPGA to provide the possibility of its
resumption at a later time. The communication during the process, on the contrary,
has not been receiving much attention.
In this work, we study the communication management of a hardware task while

it is being context switched. This communication management is necessary to ensure
the consistency in the communication of a task with context switch capability in a
reconfigurable system. Otherwise, a hardware context switch can only be allowed un-
der restrictive constraints which may lead to a considerable penalty in performance;
context switching a task is possible after the communication flows finish and the
input/output data have been consumed. Furthermore, certain techniques demand
homogeneity in the platform for a hardware context switch can take place.
We present a mechanism which preserves the communication consistency during a

hardware context switch in a reconfigurable architecture. The input/output commu-
nication data are managed together with the task context to ensure their integrity.
The overall management of the hardware task context and communication data fol-
lows a dedicated protocol developed for heterogeneous reconfigurable architectures.
This protocol thus allows a hardware context switch to take place while the task
still has ongoing communication flows on Reconfigurable System-on-Chips (RSoCs).
From the experiments, we discover that the overhead due to managing the commu-
nication data becomes negligible since our mechanism provides the necessary high
responsiveness for preemptive scheduling, besides the consistency in communication.
Finally, the applications of the proposed solution are presented in a task migration
prototyping and in a hypervisor-based system.

vii

RÉSUMÉ

La haute performance ainsi que la basse consommation d’énergie offertes par les
Field-Programmable Gate Arrays (FPGAs) contribuent à leur popularité en tant
qu’accélérateurs matériels. Cet argument a été confirmé par les intégrations récentes
des FPGAs "dans les nuages" et les centre de données. Toutefois, le potentiel d’une
architecture reconfigurable peut être encore optimisé en traitant les FPGAs comme
une ressource virtualisée et en offrant un support multitâche. La solution pour in-
terrompre une tâche sur FPGAs qui a pour objectif d’effectuer un changement de
contexte matériel (hardware context switch) est un sujet de recherche depuis de
nombreuses années. Les travaux précédents ont principalement proposé une stratégie
pour extraire le contexte d’une tâche en cours d’exécution sur FPGA pour offrir la
possibilité de sa reprise plus tard. Cependant, la gestion des données de communi-
cation tout au long du processus n’a pas reçu autant d’attention.
Dans cette thèse, nous étudions la gestion de communication d’une tâche

matérielle durant son changement de contexte. Cette gestion de communication
est nécessaire pour garantir la cohérence de la communication d’une tâche dans
un système reconfigurable avec la capacité de changement de contexte. Autrement,
un changement de contexte matériel est seulement autorisé sous des contraintes
restrictives; quand toutes les données d’entrées/sorties ont été consommées et que
le flux de communication est interrompu. De plus, certaines techniques demandent
l’homogénéité au sein de la plate-forme pour qu’un changement de contexte matériel
puisse se réaliser.
Nous présentons içi un mécanisme qui conserve la cohérence de communication

durant un changement de contexte matériel dans une architecture reconfigurable.
Les données de communication sont gérées avec le contexte de tâche pour assurer
leur intégrité. La gestion du contexte et les données de communication suivent un
protocole spécifique pour des architectures hétérogènes reconfigurables. Ce protocole
permet donc un changement de contexte matériel pendant que la tâche a encore
des flux de communication. À partir des expérimentations, nous validons que le
surcoût de la gestion de communication devient négligeable et notre mécanisme
assure une grande réactivité. Enfin, les applications possibles de la solution proposée
sont présentées à travers la migration de tâches matérielles et dans un système
utilisant un hyperviseur.

viii

CONTENTS

1 introduction 1
1.1 Background . 1
1.2 Research Contributions . 2
1.3 Thesis Outline . 3

2 motivation and problem statement 5
2.1 Reconfigurable Computing Architectures 6

2.1.1 Hardware Acceleration . 6
2.1.2 FPGA as Reconfigurable Accelerator 6
2.1.3 Multi-FPGA Systems . 8
2.1.4 Reconfigurable System-on-Chip 9
2.1.5 Communication Model and Requirements 10

2.2 Hardware Context Switch on FPGAs 11
2.2.1 General Concept . 11
2.2.2 Heterogeneity Requirements 14
2.2.3 Scheduling Constraints . 14

2.3 Problem Statement . 15
2.4 Conclusion . 19

3 state of the art 21
3.1 Hardware Task Context Extraction 22

3.1.1 Configuration-based Technique 22
3.1.2 Design-based Technique . 23
3.1.3 Overlay Technique . 24

3.2 Reconfigurable System Management 25
3.2.1 Linux-based OS . 26
3.2.2 ReconOS . 26
3.2.3 FOSFOR . 27
3.2.4 Rainbow . 27
3.2.5 CPRtree . 28

3.3 Conclusion . 28
4 communication management in hardware

context switch 31
4.1 General Hypothesis . 32
4.2 Hardware Context Extraction for Heterogeneous Multi-FPGA Systems 33

4.2.1 Design-based Technique . 34
4.2.2 High-Level Synthesis Flow . 36

4.3 Communication Model . 38
4.3.1 Kahn Process Network . 38
4.3.2 I/O Communication Scope . 38

ix

x contents

4.4 Context Switch Protocol . 41
4.4.1 Existing Solution . 41
4.4.2 Proposed Solution with Communication Data Management . . 42

4.5 Implementation in Reconfigurable Architectures 45
4.5.1 Compatible Systems . 45
4.5.2 Development in Physical Layer 47
4.5.3 Development in Communication Layer 49

4.6 Conclusion . 52
5 experiments and results 55

5.1 Overview . 56
5.2 Experimental Platforms . 57

5.2.1 Xilinx ZC706 Evaluation Board 58
5.2.2 Altera Arria V SoC Development Kit 58
5.2.3 Platform Comparison . 61

5.3 Hardware Implementation . 62
5.3.1 Benchmark Applications . 62
5.3.2 IP Generation with AUGH . 63
5.3.3 Communication Infrastructure 64

5.3.3.1 Basic . 65
5.3.3.2 Without Communication Extraction (CS) 65
5.3.3.3 With Communication Extraction (CSComm) 66
5.3.3.4 Hardware Resource Evaluation 66

5.3.4 Generation of FPGA Configuration File 71
5.4 Software Implementation . 73
5.5 Performance Evaluation . 74

5.5.1 Evaluation Scenario . 75
5.5.2 Total Execution Time . 75
5.5.3 Context Switch Time . 78
5.5.4 Preemption Latency . 81

5.6 Application . 83
5.6.1 Migration in Heterogeneous Reconfigurable Systems 85
5.6.2 Hypervisor-based System for FPGA Virtualization (Cloud-

FPGA) . 87
5.7 Conclusion . 90

6 conclusion and future works 91
6.1 Conclusion . 92
6.2 Future Works . 93

6.2.1 Hardware Context Switch in a System with Dynamic Partial
Reconfiguration . 93

6.2.2 Dynamic Task Migration in Large-Scale Distributed CPU-
FPGA Systems . 94

contents xi

6.2.3 Hardware Context Switch Support for Energy Efficient Cloud-
FPGA . 95

7 résumé 97
7.1 Introduction . 98
7.2 Problématique . 99

7.2.1 Le système hétérogène reconfigurable 99
7.2.2 Ordonnancement préemptif 99
7.2.3 Synthèse de la problématique 100

7.3 État de l’art . 100
7.3.1 Changement de contexte matériel 100
7.3.2 Gestion de communication . 101

7.4 Méthodologie . 102
7.4.1 Hypothèse de travail . 102
7.4.2 Solution proposée . 103
7.4.3 Protocole de changement de contexte matériel 104
7.4.4 Implémentation . 104

7.5 Expérimentation et résultats . 106
7.5.1 Plate-forme d’expérimentation 106
7.5.2 Caractérisation matérielle . 107
7.5.3 Caractérisation temporelle . 110
7.5.4 Application . 111

7.6 Conclusion et perspectives . 112

bibliography 115
list of publications 125

L I ST OF F IGURES

Figure 1 The basic structure of an FPGA (Hauck and DeHon [HD10],
p. 6-7) . 7

Figure 2 Basic configuration of reconfigurable architectures 8
Figure 3 An illustration of multi-FPGA systems 8
Figure 4 Abstract view of Xilinx reconfigurable SoC (Zynq) 9
Figure 5 An illustration of hardware tasks built on Zynq architecture . 10
Figure 6 An illustration of a software-based context switch 12
Figure 7 An illustration of a hardware-based context switch 13
Figure 8 Heterogeneity in FPGA architectures 15
Figure 9 Communication issues due to different situations in the hard-

ware context switch . 18
Figure 10 Re-using IP for different datasets is considered different hard-

ware tasks in this work . 33
Figure 11 Example of tasks running on a reconfigurable architecture in

this work . 34
Figure 12 Illustration of a scan-chain insertion into datapath elements

of a task (register and memory) 35
Figure 13 Modification in the finite state machine (FSM) of the task

to handle a context switch operation 36
Figure 14 Autonomous checkpoint selection and scan-chain insertion

using High-Level Synthesis Flow [BMR16] 37
Figure 15 Example of task representation in a reconfigurable architec-

ture using KPN . 38
Figure 16 Different location of communication FIFOs in an FPGA . . . 40
Figure 17 Context switch protocol in the existing solution 43
Figure 18 Steps in the proposed context switch protocol 44
Figure 19 Illustration of a reconfigurable architecture targeted for the

proposed context switch solution 46
Figure 20 Reconfigurable system built with multiple Reconfigurable

SoC platforms requires further development 47
Figure 21 Communication infrastructure to support the preemptive

context switch protocol with communication management on
FPGAs . 48

Figure 22 Details of FSM inside the communication infrastructure . . . 50
Figure 23 Management of the context and associated communication

data of a hardware task being context switched 51

xii

List of Figures xiii

Figure 24 Abstract view of Task Manager which manages the commu-
nication link and controls the communication infrastructure
on FPGAs. Communication address can be adjusted in case
of migration by the Task Manager. 52

Figure 25 Experimental system overview 57
Figure 26 Xilinx reconfigurable SoC platform 59
Figure 27 Altera reconfigurable SoC platform 60
Figure 28 Schematic of AXI-based communication infrastructure for

IPs without context switch ability 66
Figure 29 Schematic of AXI-based communication infrastructure with-

out communication data extraction for IPs with context
switch ability . 67

Figure 30 Schematic of AXI-based communication infrastructure with
the proposed communication solution for IPs without context
switch ability . 67

Figure 31 Autonomous flow of bitstream generation on Xilinx toolsuite 72
Figure 32 Autonomous flow of bitstream generation on Altera toolsuite 72
Figure 33 Software architecture to access the FPGA in the experiments 73
Figure 34 A program to evaluate the performance of the communica-

tion solution in a hardware context switch 74
Figure 35 Hardware context switch scenario used in the experiments . . 75
Figure 36 Total execution time with preemption requests at arbitrary

points in time (ZC706) . 77
Figure 37 Hardware context switch time measured from the moment a

preemption request is received until the task resumes (ZC706) 84
Figure 38 Hardware task migration between heterogeneous reconfig-

urable SoCs . 85
Figure 39 Task migration timeline . 86
Figure 40 Overview of Xen-based system on Zynq Ultrascale+ 89
Figure 41 Task allocation (scheduling) on FPGA in the hypervisor-

based environment . 89
Figure 42 Abstract view of a large-scale CPU-FPGA architecture

[Put+15]. Each server consists of a CPU and an FPGA. . . . 95
Figure 43 Une illustration d’un système reconfigurable avec multiple

FPGAs . 102
Figure 44 Exemple d’une représentation des tâches dans un système

reconfigurable en KPN . 103
Figure 45 Le protocole de changement de contexte matériel 105
Figure 46 L’infrastructure de communication pour supporter le proto-

cole de changement de contexte matériel avec la gestion de
communication sur les FPGAs 106

xiv List of Figures

Figure 47 La gestion de contexte et des données de communication as-
sociées d’une tâche commutée 107

Figure 48 Le scénario de changement de contexte matériel utilisé dans
l’expérimentation . 110

L I ST OF TABLES

Table 1 Experimental setup on ZC706 59
Table 2 Experimental setup on A5SOC 61
Table 3 Resource utilization (post-placement) of the communication

infrastructures synthesized for ZC706 in Vivado 2015.3 68
Table 4 Resource utilization (post-placement) of the communication

infrastructures synthesized for A5SOC in Quartus II 15.0 . . 69
Table 5 Task context size extracted from IP 71
Table 6 Comparison of average total execution time (FPGA cycles)

with a hardware context switch between CS and CSComm
in ZC706 . 78

Table 7 Comparison of average total execution time (FPGA cycles)
with a hardware context switch between CS and CSComm
in A5SOC . 79

Table 8 Comparison of average extraction/restoration time (FPGA
cycles) in hardware context switch between CS and CSComm
in ZC706 . 79

Table 9 Comparison of average extraction/restoration time (FPGA
cycles) in hardware context switch between CS and CSComm
in A5SOC . 80

Table 10 Comparison of average preemption latency (FPGA cycles)
between CS and CSComm in ZC706 82

Table 11 Comparison of average preemption latency (FPGA cycles)
between CS and CSComm in A5SOC 83

Table 12 Task migration time between A5SOC and ZC706 87
Table 13 L’utilisation (post-placement) des ressources de ZC706 par

l’infrastructure de communication 108
Table 14 L’utilisation (post-placement) des ressources de A5SOC par

l’infrastructure de communication 109
Table 15 Comparaison des moyennes du temps total d’exécution (en

cycle de FPGA) avec un changement de contexte matériel
entre CS et CSComm sur ZC706 111

Table 16 Comparaison des moyennes du temps de latence en préemp-
tion (en cycle de FPGA) entre CS et CSComm sur ZC706 . . 112

xv

L I ST INGS

Listing 1 A code snippet describing a simple hardware task in AUGH . 39
Listing 2 A code snippet describing a simple hardware task with FIFOs

in AUGH . 40
Listing 3 Generating IP for FPGA via AUGH command line 64
Listing 4 Script to call CP3 plugin in AUGH 64
Listing 5 Example of input–output port definition in top level file of

the generated IP . 65

xvi

ACRONYMS

API Application Programming Interface.
ASIC Application-Specific Integrated Circuit.
AXI Advanced eXtensible Interface.

BRAM Block Random-Access Memory.

CGRA Coarse-Grain Reconfigurable Array.
COTS Commercial Off-The-Shelf.
CPU Central Processing Unit.

DPR Dynamic Partial Reconfiguration.
DSP Digital Signal Processor.

FF Flip-Flop.
FIFO First-In First-Out.
FPGA Field-Programmable Gate Array.
FSM Finite-State Machine.
FSMD Finite State Machine with Datapath.

GPU Graphics Processing Unit.

HLS High-Level Synthesis.
HPC High-Performance Computing.

I/O Input/Output.
ICAP Internal Configuration Access Port.
IDCT Inverse Discrete Cosine Transform.
IP Intellectual Property.

KPN Kahn Process Network.

xvii

xviii Acronyms

LUT Look-Up Table.

NoC Network-on-Chip.

OS Operating System.
OS4RS Operating System for Reconfigurable Systems.

PCAP Processor Configuration Access Port.
PCIe PCI Express.
PE Processing Element.
PLB Processor Local Bus.

RAM Random-Access Memory.
Reconfigurable SoC Reconfigurable System-on-Chip.

SoC System-on-Chip.
SRAM Static Random-Access Memory.

UltraRAM Ultra Random-Access Memory.

VCGRA Virtual Coarse-Grain Reconfigurable Array.
vFPGA virtual FPGA.

1
INTRODUCTION

Contents
1.1 Background . 1
1.2 Research Contributions . 2
1.3 Thesis Outline . 3

1.1 background

M
ore than 50 years ago, Gordon Moore made a prediction which is
widely known as Moore’s Law, that the transistor capacity in an in-
tegrated circuit would double every two years [Moo06]. Moore’s Law

became a golden rule in the electronics industry, and it has been setting the pace
of our modern digital revolution. One thing that has been undeniably affected by
Moore’s prediction is the development of microprocessors. Since the emergence of
microprocessors in the late 1970s, its performance has increased nearly 10,000 times
compared to the first general-purpose electronic computer [HP11]. Another thing
that has not been left unnoticed is the integration rate of microprocessor-based
systems in our life. The physical size of microprocessors has been shrinking dramat-
ically which leads to their wide utilization in many devices. In the 21st century,
microprocessors can be found not only in the mainstream devices such as in desktop
computers and servers, but also in the household appliances, modern vehicles, and
the Internet of Things (IoT) devices.
Microprocessors in a modern computing system work with other components in

the system to run a specified application. They are most definitely connected to mem-
ory elements and coprocessors which assist them in specific tasks. These coproces-
sors are likely to be low-energy microprocessors, Graphics Processing Units (GPUs),
Application-Specific Integrated Circuit (ASIC) devices, or Field-Programmable
Gate Arrays (FPGAs). The system usually takes advantage of the co-processors
to run small repetitive tasks which may consume too much of microprocessor re-
sources. Although, the co-processors can also run in parallel with microprocessors
to complete critical tasks to increase the overall performance of the system.

1

2 introduction

In this thesis work, we are particularly interested in the FPGA exploitation for
modern computing architectures. Since the invention of FPGAs in 1985 [Car+86],
their architectures have been evolving to respond to various needs. Initially conceived
for prototyping [AYS06; Li+10], FPGA development was focused on increasing the
device capacity to verify and emulate digital circuits as much as possible. As the
FPGA capacity and performance have been substantially increasing, there exists a
growing interest in using FPGAs to speed up or to accelerate the application that
runs in a computing system. As a result, FPGAs are now used while considering
the other aspects such as flexibility, cost, energy consumption, etc.
The latest trend in high-performance servers for data centers present the inte-

gration of FPGAs in the cloud computing service or cloud-FPGA. Since the use of
connected mobile devices has been growing rapidly, the cloud computing requires
powerful computing infrastructure at the other end of the system to provide the
intended service. Such demand often causes the soaring cost of developing and main-
taining cloud infrastructures, and high energy consumption will be skyrocketing due
to high-performance computing resources. FPGA integration in the cloud can be the
solution for such problems as FPGAs have been known to offer a high performance
while consuming much less energy compared to most traditional microprocessor-
based systems.
In alignment with the use of FPGAs for computing acceleration in cloud infras-

tructure as well as to treat them as a virtualizable resource for users, FPGAs need
to support multitasking [FVS15]. Consequently, the ability to interrupt a task on an
FPGA whether for the purpose of migration or not, and to resume the interrupted
execution, known as hardware context switch, is necessary. With the hardware con-
text switch ability, we can share the FPGA resource with multiple users and increase
the flexibility in the system management and scheduling. With this objective in our
mind, we study the mechanism to enable a hardware context switch on FPGAs
particularly related to the communication.

1.2 research contributions

The purpose of this work is to enable hardware context switch operations on tasks
with communication flows in Field-Programmable Gate Arrays (FPGAs). A hard-
ware context switch support should naturally offer the ability of interrupting the
flow of execution due to preemption requests and saving the current state of the pre-
empted task. It is also worth mentioning that, as a part of the system, a hardware
task performs input/output (I/O) communication with the other tasks. While the
ability to save and reload the task state at preemption is essential, context switching
the task must also consider the communication aspect to avoid any irreversible error
in the process. We discover that the communication issues during a context switch
have not been receiving much attention. For that reason, we aim to provide a com-
munication solution which enables the hardware context switch operation. The work

1.3 thesis outline 3

presented in this thesis report contributes to the communication in the hardware
context switch as follows:

• Communication data integrity
When a task is context switched while it still has ongoing communication
flows, the risk of losing or causing disorder in-transit communication data is
present. The data integrity in communication channels needs to be maintained
to enable a proper context switch.

• Communication continuity
It is important to ensure the resumption of communication between tasks
after a context switch occurs. It consists of disconnecting and reconnecting the
communication links between tasks, including when a migration takes place.

• System responsiveness to preemption requests
Managing the communication in a hardware context switch removes the con-
straints in the communication. Instead of delaying the process after a pre-
emption request is received due to busy communication channels, a hardware
context switch can take place immediately. This offers a positive impact to
the latency in task preemption.

• Implementation in heterogeneous reconfigurable devices
The solution that we propose in this work is developed to be as generic as possi-
ble to accommodate heterogeneous reconfigurable platforms. Different reconfig-
urable System-on-Chip (SoC) platforms are used in this work to demonstrate
the genericity of our solution and to provide a prototype of task migration
application.

1.3 thesis outline

In the following chapters, we present the results of our study regarding the commu-
nication in a hardware context switch operation.
In Chapter 2, we present the problematic challenges which motivate us to carry

out this work. We focus on hardware tasks that still have ongoing communication
flows while being context switched. Some issues which threaten the task execution
will appear if this inter-task communication is not well treated.

In Chapter 3, we present a thorough literature review on the hardware context
switch topic. Methods to extract and restore task contexts from FPGAs, which are
essential in providing the hardware context switch support are proposed in some
notable works. Meanwhile, there exist some interesting works which discuss inter-
task communication management in reconfigurable architectures. Their methods are

4 introduction

reviewed to see the advantage and compatibility with the hardware context switch
support.
In Chapter 4, we describe the solution that we choose to overcome the challenges

in communication in a hardware context switch operation. We explain the hard-
ware context switch method which our solution is based on. Then, we describe the
communication model and the necessary context switch protocol to preserve the con-
sistency in communication. Finally, we present the implementation of our solution
in reconfigurable architectures.
In Chapter 5, we present the experiments which were conducted to evaluate the

performance and overhead of our solution. The platforms which are used in this
work are explained in this chapter as well. We present the evaluation results on each
heterogeneous platform and the applications developed using our solution.
Finally, the conclusion of this work will be drawn in Chapter 6, followed by pos-

sible extensions in future work.

2
MOTIVATION AND PROBLEM STATEMENT

T
he objective of this chapter is to describe the motivation behind
this work and the problems which need to be resolved. We begin by pre-
senting the trend towards the use of computing architectures which inte-

grate reconfigurable accelerators to increase their processing performance, known
as reconfigurable computing architectures. These architectures integrate FPGA de-
vices which have shown a potential in providing an excellent performance-to-energy
ratio. To fully exploit the potential of reconfigurable accelerators, there is a need
to virtualize FPGA resources by offering them a hardware context switch support,
which will be described in the next part of this chapter. Although hardware context
switch has been a research subject for over a decade, there still exist some challenges
which need to be overcome, particularly regarding the communication of the pre-
empted task. At the end of this chapter, we develop a problem statement in regards
to the communication challenges in reconfigurable accelerators which can hinder a
context switch operation.

Contents
2.1 Reconfigurable Computing Architectures 6

2.1.1 Hardware Acceleration 6
2.1.2 FPGA as Reconfigurable Accelerator 6
2.1.3 Multi-FPGA Systems . 8
2.1.4 Reconfigurable System-on-Chip 9
2.1.5 Communication Model and Requirements 10

2.2 Hardware Context Switch on FPGAs 11
2.2.1 General Concept . 11
2.2.2 Heterogeneity Requirements 14
2.2.3 Scheduling Constraints 14

2.3 Problem Statement . 15
2.4 Conclusion . 19

5

6 motivation and problem statement

2.1 reconfigurable computing architectures

2.1.1 Hardware Acceleration

The endless demand for higher processing performance drives the evolution of mod-
ern computing architectures. As many believe, the key to obtaining faster results in
computation are in parallelisms. With the energy and cost being the primary con-
straints, parallelizing applications in data-level and task-level is necessary [HP11].
Application parallelism is possible with the supports from adequate computer hard-
ware peripherals in addition to existing Central Processing Units (CPUs). Provided
that the scaling of supply voltage and frequency in CPUs cannot keep up with
Moore’s prediction [Moo06] anymore, the era of hardware acceleration has begun.
The term hardware acceleration has been used to describe a process of harnessing

accelerators to speed up the computation of a CPUs in computing architectures. An
accelerator is a specialized hardware unit that performs a set of tasks with higher
performance or better energy efficiency than a traditional CPU [SB15]. It can be
Digital Signal Processors (DSPs), Graphics Processing Units (GPUs), Application-
Specific Integrated Circuits (ASICs), or reconfigurable devices such as FPGAs. In
hardware acceleration, the accelerator which can be spatially exploited is dedicated
to specific functions or algorithms, tasks which are repetitive and heavy when ex-
ecuted in CPUs. CPUs and hardware accelerators work in tandem to reduce the
execution time of an application.

2.1.2 FPGA as Reconfigurable Accelerator

Among the types of hardware accelerators, reconfigurable devices have been at-
tracting various communities due to its interesting characteristics. They offer per-
formance and concurrency benefits over software, yet they can be reprogrammed
cheaply and easily to provide a high flexibility in acceleration. With reconfigurable
accelerators, the advantages of hardware and software can be merged into one. The
idea of using reconfigurable devices to increase computing performance is not new;
a structure of fixed and variable part in computing architecture was introduced in
1960 by Estrin [Est60]. Traditional CPUs and reconfigurable devices are put together
in a system forming a reconfigurable computing architecture or a reconfigurable ar-
chitecture for short. Through the invention of FPGAs by Xilinx in the mid-1980s
[Car+86], reconfigurable accelerators have been widely utilized in many fields, e.g.,
image processing [Bat+02], High-Performance Computing (HPC) [VB13], neural
networks [Zha+15], etc.
An FPGA is an integrated circuit which provides the possibility of digital circuit

implementation after fabrication. In very general terms, FPGA resources consist of
logic and interconnect. Logic is where the arithmetic or logical functions are carried
out. It generally consists of Look-Up Table (LUTs) and memory elements such as

2.1 reconfigurable computing architectures 7

(a) Abstract overview of FPGA

(b) A simple logic block

Figure 1: The basic structure of an FPGA (Hauck and DeHon [HD10], p. 6-7)

Flip-Flops (FFs). Interconnect is the medium to forward data from one node of
computation to another. The interconnects on an FPGA form a matrix structure
which connects logic units through switch points. Figure 1 describes an abstract
overview of FPGA architecture and a simple representation of logic block with 4-
inputs LUT (4-LUT).
The logic and interconnect structures in commercial FPGAs are programmable

(or configurable). Modern FPGAs use Static Random-Access Memory (SRAM) bits
to hold user-defined configuration values or bitstream that program their logic and
interconnect structures. By tiling logic blocks together and connecting them through
a series of programmable interconnect, an FPGA can implement a task or function
in the form of digital circuits or Intellectual Properties (IPs). The configuration
of FPGAs in a reconfigurable architecture is normally performed by a CPU or a
manager in another FPGA. For more detail information about architectures and
programming model of FPGAs, the reader is referred to, among many others, the
following literature [HD10].
In its basic configuration, a reconfigurable architecture consists of a CPU, an

FPGA, and a shared memory. Such architecture is described in Figure 2. When
running an application, the CPU can delegate to the FPGA heavy and repetitive
parts of the application as hardware tasks or IPs. Meanwhile, the CPU can perform
another execution in parallel while waiting for the execution in the FPGA finishes.
The communication data and execution results can be stored in the memory to
allow common access. The CPU in the architecture is normally also responsible for
configuring the task to run on the FPGA.

8 motivation and problem statement

Figure 2: Basic configuration of reconfigurable architectures

Figure 3: An illustration of multi-FPGA systems

2.1.3 Multi-FPGA Systems

As FPGA devices have become larger and more powerful, adding more FPGAs in re-
configurable architectures is desired to achieve higher overall application speedups
and energy savings. Multi-FPGA systems are proposed to provide massive paral-
lelism in the execution of the tasks, for instance in the HPC community. Figure 3
presents an illustration of a system with a host CPU and multiple FPGAs con-
nected to the same interconnect. With more FPGAs in the system, more IPs can
run concurrently to complete the application. It is worth mentioning that a multi-
FPGA system requires a manager or administrator which manages the hardware
task scheduling and allocation or reconfiguration for every FPGA in the system. It
is also required to facilitate the communication between IPs, for instance to provide
the arbitration. These administration purposes can be set in the host CPU of the
system.
The interconnect between FPGA and CPU can be based on various standards.

One of the standard that offers high-bandwidth interconnection, scalable perfor-
mance, and ubiquitous presence is PCI Express (PCIe). RIFFA [Jac+15], CAPI
[Stu+15], and Xillybus [Xil] are some of the solutions based on PCIe. Saldana and
Chow [SC06] present an MPI-based communication protocol which is implemented

2.1 reconfigurable computing architectures 9

Figure 4: Abstract view of Xilinx reconfigurable SoC (Zynq)

using MultiGigabit Transceivers. Another solution which has slower communication
bandwidth but requires a cheaper infrastructure is Ethernet. In [ABS10], UDP/IP
packet transfers are used in communication between CPU and FPGAs.
The various communication standards shows that FPGAs are flexible enough to

support the connection nearly to any device. However, the protocol standards are
required to be implemented from the physical layer to support the interface to the
FPGAs. The effort from designers to provide such standards is high, and sometimes
it exceeds the effort required for implementing the original application. Furthermore,
significant FPGA resources are often required to implement the CPU-FPGA com-
munication. Hardware tasks allocation by reconfiguring FPGAs and communication
data exchange also need to be performed by the CPU.

2.1.4 Reconfigurable System-on-Chip

To improve the performance as well as to reduce the overhead in the communication
between CPUs and FPGAs in reconfigurable architectures, FPGA vendors provide
Reconfigurable System-on-Chip (Reconfigurable SoC) in their line of products. Re-
configurable SoC integrates ASIC-based components in traditional System-on-Chip
(SoC), i.e., CPUs and other peripherals, and an FPGA into one chip, e.g., Zynq
FPGA from Xilinx [Cro+14] and Altera FPGA SoC family from Altera (now Intel
FPGA) [Cor]. Figure 4 shows an abstract view of Reconfigurable SoC architecture
from Xilinx: Zynq family. The Reconfigurable SoC architecture like Zynq consists
of the fixed SoC part (CPU, memory, peripherals, etc.), which is shown in the fig-
ure as Processing System (PS), and the reconfigurable part or Programmable Logic
(PL). The PL and PS parts are linked using industry standard Advanced eXtensible
Interface (AXI) connections [Inc12].
Due to the integration of the CPU and FPGA, a system similar to the one in

Figure 3 can be built with a much lower effort. Figure 5 presents CPU and hard-
ware tasks (IPs) on FPGA built on Zynq architecture. The internal AXI interfaces

10 motivation and problem statement

Figure 5: An illustration of hardware tasks built on Zynq architecture

require fewer resources compared to other communication standards, e.g., PCIe, and
they offer higher performance than Ethernet. One or several IPs can be located on
the FPGA of Reconfigurable SoC in a condition the FPGA has enough resources.
The use of Reconfigurable SoC also offers a higher efficiency, particularly in the
configuration and task allocation from the CPU.

2.1.5 Communication Model and Requirements

The traditional computing architectures follow von Neumann model, also known as
stored-program computation model, to describe the communication between a CPU
and a memory unit. In stored-program model, the memory stores both data and
instructions (program), and the CPU fetches them to perform the operation. This
architecture provides a very high flexibility for general-purpose use since moving
from one instruction to the next can be done with ease by the CPU. With decades
of progress in technology, stored-program model has evolved with some extensions
in the architecture, e.g., memory-mapped I/O, cache, and scratch-pad memory.
While stored-program model remains used in today’s computing architecture, it is

more common to use dataflow representation to model the tasks in reconfigurable ar-
chitectures. The dataflow model describes computation in terms of locally controlled
events; each event corresponds to the "firing" of an actor [NLG99]. In the dataflow
model, the execution of instructions is determined based on the availability of input
data. As an alternative to the stored-program execution model, the dataflow model
is suitable for describing a parallel execution of tasks in a system with hardware
accelerators since a global synchronization between tasks are not required.
The concept of dataflow in computer architecture to exploit parallelism in pro-

grams was proposed in the early 1970s [Den74; Kah74]. In [Den74], the execution
of an operation is enabled by the availability of the required input values. The com-
pletion of one operation or test makes the resulting value or decision available to

2.2 hardware context switch on fpgas 11

the elements of the program whose execution depends on them. Another style of the
dataflow model where actors are replaced by sequential processes are proposed as
Kahn Process Network (KPN) [Kah74]. In KPN, processes communicate by sending
tokens through channels which consist of First-In First-Out (FIFO) queues. We can
consider KPN as a generalization of Dennis dataflow model [LP95] which models
the concurrent tasks in multithreaded architectures.
In the real-world implementation, the communication channel in dataflow consists

of FIFO buffers and endpoints which connect software and hardware tasks. FIFOs
are used to adapt to different protocols and bandwidth between tasks or to meet
some constraints, e.g., asynchronous data read/write. They can be located on the
private memory of CPUs, on FPGAs, or on a shared memory. There is a difference
when storing the communication data in FIFOs between CPUs and FPGAs. On
CPUs, FIFO data are stored in the memory (and cache). The size of FIFOs can be
increased and reduced with ease, and they can be created and removed by managing
pointers. On FPGAs, FIFOs consume FPGA’s logic and internal memory resource.
Their width and depth are fixed in the FPGA bitstream configuration.

2.2 hardware context switch on fpgas

With the increase of FPGA speed and capacity, there are growing interests in exploit-
ing them for general purpose computing [DeH96]. In general purpose use, computing
resources are required to perform a wide range of tasks. For this reason, a concept
of multi-users or multi-tasks must be supported in FPGA design. By default, an
FPGA can provide a certain level of flexibility due to their reconfigurable charac-
teristic. Unlike in ASICs, a task or an application running on an FPGA can be
replaced through a bitstream reconfiguration. However, the progress of execution
on the FPGA is wiped out once it is reconfigured with another bitstream, which
makes it impossible to resume an interrupted task execution. To approach the flex-
ibility of a CPU in executing a number of different tasks simultaneously, a context
switch support is necessary on FPGAs. Note that a context switch on FPGAs can be
performed either temporally or spatially. In this work, we are particularly interested
in the temporal sharing of FPGA devices which requires discharging their resource
from a currently running hardware task. Spatial sharing of FPGAs by storing mul-
tiple configurations inside the FPGA memory and multiplexing them according to
the process executed, as presented in [Tri+97; SV98; LCH00; TV02], is beyond the
discussion in this report.

2.2.1 General Concept

In Operating System (OS), a context switch is a well-known process of switching
from a task or process to another task in order to temporarily share CPU resources.
In context switch, the state of a task (task context) is saved before replacing it to

12 motivation and problem statement

Figure 6: An illustration of a software-based context switch

another task. Later, the task can be resumed by restoring the saved context either to
the same CPU or another one which is compatible. A task context in a CPU is the
contents of a CPU’s registers and program counter at any time. Figure 6 describes
a context switch between two different tasks: T1 and T2. Before the CPU execution
is given to T2, the context of T1 must be saved. Afterward, the execution of T2
can start. To context switch back from T2 to T1, the context of T2 must be saved,
followed by the restoration of the context of T1. Although the process of context
switching a task on CPUs can be costly [LDS07] as it requires a certain amount
of time for administrating – saving and restoring – context, it remains an effective
solution to support software multitasking.
It turns out that a similar feature requires more efforts to be implemented on

FPGAs. First of all, a context switch operation must be done at hardware level
(physical layer) since the FPGA tasks are implemented as hardware circuits. A
hardware context switch requires saving and restoring the contents of registers and
memories of the circuits on FPGAs. Furthermore, a bitstream reconfiguration may
be necessary when the task or IP on the FPGA is replaced. An illustration of
hardware context switch operation is presented in Figure 7. Two different tasks,
T1 and T2, are executed on the same FPGA. After the context saving of T1 is
completed, the FPGA must be configured with T2 and vice versa. Second of all,
an additional mechanism to save and reload the context from hardware circuits is
necessary. A native support of the hardware context switch is available only in very
limited commercial FPGAs at the time of writing of this thesis report. On top of
that, a context switch due to migration purposes requires the task to continue to
an identical FPGA. Unlike in CPUs, each hardware task on FPGAs may occupy
different area in the FPGA which makes it difficult to support the hardware context
switch. For these reasons, providing a context switch support on FPGAs requires
efforts in the design, tool, and infrastructure.
Over the years, a number of research works have been proposing mechanisms to ac-

cess the context from a task running on FPGAs [Joz+12]. In general, there exist two
main classifications for hardware context switch support on FPGAs. The first classi-

2.2 hardware context switch on fpgas 13

(a) Temporal overview

(b) Spatial overview

Figure 7: An illustration of a hardware-based context switch

14 motivation and problem statement

fication extracts the context through FPGA configuration port whereas the second
through an additional specific interface of the respective hardware task. Some works
based on intermediate fabrics to facilitate fast reconfiguration and context switch
operation on FPGAs are also introduced [LLB14]. A more thorough discussion of
the existing works for hardware context switching is presented in Chapter 3.

2.2.2 Heterogeneity Requirements

The FPGAs in today’s market are thousands of times bigger and almost a hundred
times faster than when the first FPGA was introduced. At the same time, they
integrate more heterogeneous elements, e.g., DSPs, Block Random-Access Mem-
ory (BRAM), or even larger dedicated Ultra Random-Access Memory (UltraRAM)
[Ahm+16]. Heterogeneous FPGAs offer a higher performance in custom computing
since they integrate more and more specialized units for different purposes, such as
high-performance DSPs and optimized Random-Access Memories (RAMs). Further-
more, FPGA vendors tend to provide a wide range of products (or families) with
different cost, size, and performance in the market. On the one hand, FPGAs have
become more capable of handling complex circuits, which is essential for their func-
tion as hardware accelerators in reconfigurable computing systems. On the other
hand, the heterogeneity of FPGA architectures increases more than ever, which
makes circuit design and configuration specific to the tools from FPGA vendor or
manufacturer.
Besides that, there exists a heterogeneity which is found between FPGAs due to

their difference in FPGA architecture, family, technology, etc. Figure 8 illustrates
two examples of FPGA architectures from different manufacturers. A similar trait
is also found among different FPGA families from the same manufacturer. A system
that uses different FPGAs can be considered as a heterogeneous reconfigurable sys-
tem. Given these points, the use of FPGAs as hardware accelerators must consider
their heterogeneous architectures especially when we want to provide a multitasking
support on them. For the rest of this report, the term heterogeneous architectures
will be used to describe the characteristic in multi-FPGA systems.

2.2.3 Scheduling Constraints

Similar to the software context switch, a hardware context switch operation is per-
formed due to a trigger or request from a scheduler. In reconfigurable architectures,
the scheduler can be implemented in a CPU or in a dedicated FPGA specialized
for hardware management. A scheduler follows a policy, static or dynamic, to take
a decision upon a hardware context switch. A scheduling policy on FPGAs can fall
into two categories according to the different approaches in reconfigurable systems
[Gua+08]: non-preemptive and preemptive.

2.3 problem statement 15

(a) Xilinx Virtex II architecture (b) Altera Cyclone V architecture

Figure 8: Heterogeneity in FPGA architectures

A non-preemptive scheduling, also known as co-operative scheduling, is a style
of scheduling in which a task voluntarily yields the control of computing resources
to another application without being initiated by another process. On FPGAs, a
non-preemptive scheduling waits until the task runs to completion before a context
switch can occur. Then, the current configuration of the FPGA can be switched to
a new one [WP02]. A non-preemptive context switch can be performed regularly
since the tasks occupying a common FPGA cooperate for the entire scheduling to
work.

A preemptive scheduling is a style of scheduling in which a preemption is given
to a running task without requiring its cooperation in order to exploit the occupied
resources for another task. In this case, the execution flow of the preempted task is
expected to be resumed at a later time. In preemptive scheduling, a context switch
can be performed at arbitrary points in time according to the scheduler’s request.
Preemption requests can be given due to the arrival of urgent or higher priority tasks,
insufficient execution window, or technical fault in the system. On the one hand, a
preemptive context switch offers a high flexibility in managing multiple hardware
tasks inside an FPGA. On the other hand, it requires higher efforts to handle the
hardware task preemption. The preempted task may be in a computation phase
which has ongoing communication flows. A preemptive context switch, therefore,
should consider interrupting the flow of execution as well as communication in the
FPGA.

2.3 problem statement

With the growing interest of using reconfigurable accelerators, FPGAs are put to-
gether with CPUs to offer higher processing performance and energy efficiency. The
communication between FPGAs and CPUs in a reconfigurable architecture follows
the dataflow model. Data transfers between tasks are done through FIFO channels.
To answer the demand for multitasking on FPGAs, a hardware context switch sup-

16 motivation and problem statement

port must be provided. Based on the scheduling policy, a hardware context switch
can follow either a non-preemptive or preemptive scheduling. In non-preemptive
scheduling, hardware tasks on FPGAs yield the control of the resource for a context
switch due to the end of their execution flow. Although there still exist some issues
which need to be solved [WP02], communication between tasks is not one of them as
a non-preemptive context switch ensures the communication flow is finished before
voluntarily yielding the control to the scheduler. Despite this, a non-preemptive so-
lution lacks the reactivity to immediately release FPGA resources for high priority
tasks and the capability to run multiple tasks simultaneously. For this reason, a
preemptive context switch support on FPGAs is necessary to increase the flexibility
in hardware task management.
In this thesis report, we limit the discussion only for the hardware context switch

due to preemptive scheduling. For this reason, a hardware context switch on FPGAs
may occur at arbitrary points in time, including when there are still ongoing com-
munication flows. The preemption requests will interrupt the execution flow of the
tasks on FPGAs as well as their communication flows. When the communication
aspects are considered, there still exist some challenges that need to be overcome to
support a hardware context switch on FPGAs. The following presents the questions
which will be answered throughout this thesis report.

how do we manage the context from a hardware task? This
is the first question that is raised when looking to enable the hardware context
switch on FPGAs. It consists of providing the method to access the context of a
task on an FPGA in order to save and restore the snapshot of the task at preemption.
According to the method chosen, the communication of the task during a hardware
context switch will be managed differently. Managing the task context also includes
how it will be relocated and where it will be stored. The question of where the task
will continue at a later time usually follows the context management since a context
switch may also include migration.

how do we preserve the communication data integrity? One
of the issues that may arise when a hardware task with ongoing communication
flows is context switched is the inconsistency of communication data. As mentioned
earlier, the scheduler can take control of the resources without any consent from the
task which is currently running on the FPGA. Meanwhile, whether a task is still
communicating with other tasks in the system depends on the current state of the
task. In other words, a hardware context switch may compromise the communication
data integrity or consistency which can lead to irreversible error in the execution
[Xie+15].
To give an illustration of this risk, Figure 9a depicts some tasks in CPUs (SW) and

in FPGAs (HW) running in parallel and communicating with each other through
channels. Each task has one or multiple Input/Output (I/O) ports and each port

2.3 problem statement 17

is connected to a FIFO that intermediately stores the communication tokens while
they are being transferred. The SW tasks are placed in any available CPU in the
system whereas the HW tasks are in any FPGA. The representation used in the
figure is generic. It is independent of the communication topologies in the architec-
ture. Popular communication topology, e.g., Bus, Switch, Network-on-Chip (NoC),
etc. can be used in the architecture. In case a shared memory is used (distributed
shared memory system), the FIFOs are used in communication channels in the same
fashion.
I/O communication data (tokens) are sent to local FIFOs when a task on an

FPGA is in communication or when the data are ready to be consumed by the des-
tination task to increase the efficiency. When a hardware context switch occurs on
an FPGA, the execution as well as the communication flows of the task will be inter-
rupted. Figure 9b illustrates the situation where a hardware task is removed from an
FPGA in the system while it still has ongoing communication flows. The communi-
cation tokens stored in FIFOs which are not consumed or forwarded yet will be left
untreated since the associated hardware task is not there anymore. The explained
situation will generate inconsistency issue during a hardware context switch due to
several reasons. We may lose the communication data inside the FIFOs which are
connected to the preempted task in the FPGA. Loss of data is unacceptable in hard-
ware context switch as it will cause error, incomplete execution, etc. Maintaining
the I/O data in the correct order is also important to maintain the consistency in
communication data.
Another cause of inconsistency is when a new task arrives in the FPGA after a

hardware context switch, as described in Figure 9c. Similar to the replaced task, this
task requires FIFO buffers to store its I/O communication tokens. As the untreated
tokens from the previously context switched task are still left in FIFOs, the current
task will consume false I/O data. It should be somehow guaranteed that a task
will not process the tokens which is not associated to it due to a hardware context
switch.
Ensuring the consistency of communication data until the resumption of the pre-

empted task is as important as extracting and restoring its context on the FPGA.
Otherwise, providing a hardware context switch in reconfigurable architectures will
not be easy, unless all the HW tasks run without any communication or isolated.
In reality, isolating HW tasks hinders their role as accelerators and, therefore, is
not preferred. As a consequence, a preservation of communication data integrity is
necessary.

how do we satisfy the performance constraint in a hard-
ware context switch? In preemptive scheduling, a hardware context
switch operation on an FPGA has to meet a certain deadline since the resources are
required by a higher priority task. Failing to do so will result in a low performance
of multitasking support. In some cases, it is more advantageous to wait a running

18 motivation and problem statement

(a) Tasks in a reconfigurable architecture
running in parallel and communicating
with each other

(b) A hardware task which is context
switched while it still has ongoing com-
munication flows

(c) A new task occupies the FPGA resources
and uses FIFOs for communication

(d) Hardware context switching a task on
FPGA only when there is no commu-
nication significantly reduces the perfor-
mance

Figure 9: Communication issues due to different situations in the hardware context switch

2.4 conclusion 19

task to finish rather than going through a hardware context switch. And sometimes,
the progress of an execution can be thrown away as it costs less than saving it. A
study done by Rupnow, Fu, and Compton [RFC09] evaluates these possibilities to
obtain the best performance of multitasking ability in reconfigurable architectures.
Nonetheless, when a task preemption is inevitable, a faster hardware context switch
is preferred.
The performance in a hardware context switch can be improved in several ways.

Although further discussion is beyond this report, some popular techniques to reduce
the size of bitstream configuration and context of a task can be used, such as using
Dynamic Partial Reconfiguration (DPR) on FPGAs [LF09]. The objective is to
minimize the size of data involved when context switching a task on an FPGA.
Unfortunately, the existence of communication flows when a hardware context

switch occurs will reduce the performance. This issue, in fact, appears when we try
to preserve the consistency of communication data without a proper method. With-
out any specific mechanism, the only solution is to avoid or to delay the hardware
context switch if the task still has ongoing communication flows or I/O commu-
nication data in its FIFOs. Such approach inflicts a restrictive constraint to the
preemptive context switch. As a result, the context switch will be delayed in an
unpredictable manner in order to complete the communication flows of the task, as
illustrated in Figure 9d. Satisfying the performance requirement in a hardware con-
text switch is one of the issues which needs to be resolved to support multitasking
on reconfigurable architectures.

how do we ensure the continuity of communication between
tasks? To resume all of the previous questions, a hardware context switch needs
to guarantee that a task execution can resume after it is reloaded to one of the FPGA
in the system. As we have known, when a hardware task is context switched, its
communication flows with the other tasks in the system is interrupted. Obviously,
context switching a task which is a part of a communication network causes a certain
impact in the entire communication flows. When the previously context switched
task is recharged back to the system, the communication needs to be restored.
To ensure the continuity of communication between tasks, we have to consider

the links between FIFOs. A connection and disconnection of the links associated
with a preempted task must be managed in a hardware context switch. The links
must be updated when a hardware task is replaced with another task and reloaded
back, either to the same or different resource (migration).

2.4 conclusion

Due to the performance and parallelism offered, FPGAs have been more and more
used in accelerated computing. Although FPGAs offer a lower flexibility in execution
compared to CPUs, their reconfigurability characteristic makes them exploitable for

20 motivation and problem statement

general purpose use. An even higher performance can be obtained by supporting
multitasking, for instance, using a hardware context switch on FPGAs. A hardware
context switch operation consists of interrupting a running task on an FPGA, ex-
tracting the current task context, and inserting the context of the new task to the
FPGA.
In this chapter, we have shown that, to provide a hardware context switch support

on FPGAs, the ability to extract the context of a running task and later restore it on
an FPGA to continue its execution is not sufficient. As a hardware task requires I/O
communication and synchronization, a mechanism to manage the communication in
a hardware preemptive context switch is undoubtedly necessary. In regards to these
communication aspects, we have several issues which need to be treated during a
hardware context switch operation in reconfigurable architectures. In this work, we
present a solution that can answer the questions described here. Before we describe
our solution in Chapter 4, the next chapter will present the existing works in a
hardware preemptive context switch.

3
STATE OF THE ART

I
n this chapter, we present a review of the existing research works whose
objective is to provide a hardware context switch in reconfigurable archi-
tectures. Before we discuss the methodology for managing the communi-

cation in a hardware context switch, it is important to know the solutions which
have been proposed in the community.
The mechanism to manage the communication in reconfigurable architectures

during a hardware context switch depends on the technique to perform the context
extraction and restoration. The first part of this chapter describes the works which
have been done to enable hardware task context extraction on FPGAs. The next part
of this chapter presents the existing management of reconfigurable systems in regards
to the hardware context switch support. These works include the communication and
synchronization between SW and HW tasks in reconfigurable architectures. Finally,
this chapter will be concluded with a vision of what has been done and what must
be done next in order to manage the communication during a hardware context
switch operation.

Contents
3.1 Hardware Task Context Extraction 22

3.1.1 Configuration-based Technique 22
3.1.2 Design-based Technique 23
3.1.3 Overlay Technique . 24

3.2 Reconfigurable System Management 25
3.2.1 Linux-based OS . 26
3.2.2 ReconOS . 26
3.2.3 FOSFOR . 27
3.2.4 Rainbow . 27
3.2.5 CPRtree . 28

3.3 Conclusion . 28

21

22 state of the art

3.1 hardware task context extraction

As briefly presented in Section 2.2, some research works have proposed mechanisms
to extract the context of a hardware task from an FPGA. A task context is defined as
a minimum set of live variables and states which are required to resume the execution
flow of a task after a context switch. These variables and states are stored in the
FPGA resources (registers and memory) of the preempted task. They are extracted
when a running task is interrupted due to a preemption request and restored back
when the task resumes.

There exists currently few supports to extract the context of hardware tasks run-
ning in certain Commercial Off-The-Shelf (COTS) FPGAs. Additional mechanisms,
therefore, are necessary to provide such a feature widely. This section presents the
developments of the design methods and tools to enable the task context extraction
(and restoration) on FPGAs. First, we describe the existing works which take advan-
tage of the FPGA configuration port, known as the configuration-based technique.
Then, we present other works that require a certain modification in the hardware
task design, namely the design-based technique. Finally, we show another method-
ology to reconfigure and context switch tasks on FPGAs with overlay architectures.

3.1.1 Configuration-based Technique

The technique which reads back the task context including the configuration bit-
stream from the FPGA configuration port is classified as Configuration-based, also
known as Platform-specific, Configuration Port Access or Readback technique. This
technique is the first and considered the most popular solution that allows context
switching hardware tasks on FPGAs as it is supported by a certain FPGA vendor.
Back in 2000, the authors of [Lev+00] and [SLM00] presented the ideas of FPGA

multitasking and the proof-of-concept using readback technique on Xilinx XCV300,
XCV400 and XCV1000. In their works, they specified the requirements of read-
back techniques as follows. Readback technique for FPGA multitasking requires the
FPGA board to have configuration and readback ability. Therefore, this technique is
only possible on specific FPGA families from certain vendors. A complete control of
the clock on the board is necessary to halt the task at a known and restorable state.
The bitstream extracted from the FPGA must contain the status of all internal
registers and memory.
Although the use of readback technique in hardware context switching enables

multitasking operation on FPGAs, it also presents some disadvantages. The useful
information which is necessary to resume the execution of a task after the context
switch is actually less than 10% of the total readback data [Lev+00; SLM00]. The
rest of unnecessary data must be filtered in order to obtain the task state from a
readback bitstream. With the technique proposed in [KP05], the data footprint in
readback technique can be reduced by extracting only the part that includes state

3.1 hardware task context extraction 23

information and belong to the suspended task. Another disadvantage in the readback
technique is the reconstruction of the task when it resumes the execution, which is a
merging process of the extracted task state and initial task configuration. To reduce
the effort in task reconstruction, [LWH02] proposes a modification of the bitstream
with custom tools such as JBits [JG00] to restore FPGA state. In [Lev+00; SLM00],
a concern for invalid data read/write is discussed if a task is context switched while
communicating with external RAM as the clock associated to the preempted task
is frozen during a context switch. To avoid such issue in readback, a context switch
is not allowed when there is communication.
Over the years, readback technique has been evolving to be more effective for

FPGA multitasking especially on Xilinx products. An improved support in the
COTS FPGAs has been highlighted in [Joz+10], for instance, the readback and
configuration capability through Internal Configuration Access Port (ICAP) on Xil-
inx Virtex-4 device [Xil17]. As readback access the port which already exists on the
FPGA, it does not require extra design efforts and additional hardware consump-
tion. Reconfiguration throughput in readback technique can be increased using a
solution such as Fast Reconfiguration Manager [DML11].
Nevertheless, readback technique remains exclusive for Xilinx FPGAs at the time

of writing of this thesis report. For a hardware context switch that involves task
relocation, the FPGAs used in reconfigurable systems must be identical. In other
words, a homogeneous environment is strictly required to provide the hardware con-
text switch support. A bitstream parser for each FPGA is necessary for separating
the context from the bitstream and, therefore, for reconstructing the task that will
be restored to an FPGA. These challenges including the overhead in reconfiguration
time and memory size are to be addressed to provide the multitasking feature on
FPGAs.

3.1.2 Design-based Technique

Another technique which allows task context extraction on FPGAs is design-based or
Task-Specific Access Structure (TSAS) technique. Initially proposed for debugging
purposes on FPGAs [Whe+01], the design-based technique integrates additional
structures, e.g., scan-chain structures, into the task design to enable access of the
task states and live variables stored in FPGA registers and memory. Design-based
technique extracts only the state-related data without any redundancy, leading to
high data efficiency in the task context extraction. In the design-based technique,
the context is extracted and restored back through an additional interface of the task
which does not require freezing the global clock on the FPGA [JTW07]. The other
part of the FPGA, therefore, can still work, for instance, to run another hardware
task.
Despite efficiency offered in the context extraction, the design-based technique has

a drawback in the performance and FPGA resource consumption. Wheeler et al. ex-

24 state of the art

plained the resource consumption in [Whe+01] due to the instrumentation of design
primitives, e.g., FFs and RAMs, and design hierarchy on FPGAs. Likewise, a design
instrumentation which uses register scan-path structures is presented in [Koc+04].
Such design instrumentations significantly increase the average FPGA resource uti-
lization; furthermore, they require high efforts from the users. In hardware tasks that
follow Finite State Machine with Datapath (FSMD) model, Jovanovic, Tanougast,
and Weber [JTW07] also described the requirements of adding structures both in
the controller and datapath for preemptive context switch support. Note that a
bitstream reconfiguration is also required if the context switch operation involves
different applications on the FPGA.
Nevertheless, the design-based technique can offer the advantages in data effi-

ciency since the bitstream is not included in the context extraction. This technique
is also independent of the FPGA technology. As a result, either any knowledge of
the bitstream or customized bitstream parser is not required in providing a hard-
ware context switch support. Koch, Haubelt, and Teich [KHT07] proposed using
checkpoint concept in design-based technique to obtain higher efficiency during task
preemption. A checkpoint state is a state where a context extraction from a hard-
ware task on an FPGA is allowed. The checkpoint selection can benefit from the size
of live variables that may vary from one state to another. By allowing the context
extraction only at checkpoint states, a smaller size of task context may be obtained
with a trade-off in the latency of preemption. In fact, all the recent works using
design-based technique integrate the checkpoint concept on different levels of imple-
mentation [KHT07; Vu+16; BMR16]. In [KHT07], scan-chain structures are added
to the netlist of hardware tasks. Vu et al. [Vu+16] proposed to modify the HDL code
of the task to obtain a higher level of abstraction. Bourge, Muller, and Rousseau
[BMR16] presented a mechanism which takes advantage of High-Level Synthesis
(HLS) flow to reduce users’ effort in adding scan-chain structures to hardware tasks
while at the same time obtaining the efficiency offered by the checkpoint concept.

To summarize, the design-based technique produces an overhead in hardware re-
source consumption and task performance which remain a challenge. Furthermore, it
may require an additional bitstream reconfiguration in addition to a context restora-
tion. The advantages of using a design-based technique are that it offers higher data
efficiency in context extraction and it is FPGA technology-independent. The inte-
gration of checkpoint concept reduces the overhead in performance and resource
with a trade-off in preemption latency.

3.1.3 Overlay Technique

As an alternative to the explained techniques of hardware context switch, the over-
lay technique is proposed on FPGA architectures to answer the requirements for
high performance in the context switch and task reconfiguration. The concept is
to synthesize reconfigurable architectures on top of the commercial FPGA archi-

3.2 reconfigurable system management 25

tectures. These synthesized architectures are homogeneous and independent to the
FPGA technology used. Hence, the homogeneous architectures overlay the heteroge-
neous architectures of FPGAs to generate virtual FPGAs (vFPGAs) [Naj+17]. The
overlay-based vFPGAs have some advantages, for instance the flexibility and com-
patibility between different FPGA architectures which are necessary in the hardware
context switch support.
The overlay architectures can be developed on both fine-grained and coarse-

grained architecture. In [Naj+17], the reconfigurable architectures are composed
of fine-grain reconfigurable elements. Although the virtualization in a fine-grain
architecture may produce a significant overhead, it makes sense for some applica-
tions that require portability and efficiency in the resource utilization. Nevertheless,
coarse-grained overlay architectures or Virtual Coarse-Grain Reconfigurable Arrays
(CGRAs) are more common. The concept is developed from classic Coarse-Grain
Reconfigurable Array (CGRA) which consists of a mesh of Processing Elements
(PEs) and interconnect network. The PEs in CGRAs are configurable at words-level
granularity to map the parts of computation and to be connected to each other via
the interconnect. For the overview of CGRA architectures, the reader can refer to
RaPiD [ECF96], PipeRench [Gol+99] and ADRES [Mei+03]. A bitstream configu-
ration is only required once to map a VCGRA architecture on an FPGA. After that,
a task ’configuration’ only involves the settings of the PEs and interconnect. As a
result, the hardware context switch in VCGRAs can be done much faster than the
fine-grained solutions.
With the fast reconfiguration and hardware context switch, VCGRAs are suitable

for hardware multi-threading support on FPGAs. Despite this, VCGRA architec-
tures have significant drawbacks in task performance and resource utilization. A
40× [BL12] and 100× [Lys+05] more hardware consumption than a regular FPGA
implementation are obtained due to the coarse granularity of the architecture. A de-
crease in performance due to 10× longer critical path is also highlighted in [Lys+05].
For hardware acceleration purposes, the processing performance and resource utiliza-
tion are, in fact, very important. Consequently, until the performance and resource
challenges in VCGRAs can be solved, the applications of this technique will remain
limited.

3.2 reconfigurable system management

The ability to preempt a running task on an FPGA and extract its context is
essential in providing the hardware context switch support in reconfigurable systems.
Managing the context (saving, storing, and restoring) as well as the communication
in the process is equally important. In reconfigurable architectures, a CPU which
runs a customized OS is generally required to manage the communication between
tasks, both in CPUs and FPGAs.

26 state of the art

In this section, we review some works which present an inter-task communica-
tion management in reconfigurable architectures [VPI05; LP08; Nar+11; Joz+13;
Vu+16]. These works consider that one of the CPUs in the reconfigurable system
manages the communication and synchronization between the software tasks on the
CPU and the hardware tasks on FPGAs using OS modules. Although not all of them
support hardware multitasking on FPGAs, their implementation on reconfigurable
architectures may provide some insights to our work.

3.2.1 Linux-based OS

Vuletić, Pozzi, and Ienne [VPI05] proposed a virtualization layer which allows a
hardware accelerator running on behalf of a user application to access the user space
virtual memory. The virtualization in this work is provided by a Linux OS module
which also assists the communication between hardware and software. With the uti-
lization of virtual memory, FPGAs and CPUs in the system share the same address
mechanism with the main memory. As a result, local memory inside the FPGA
which stores the I/O communication data is not required. This solution offers some
advantages, such as in duplicating or prefetching communication data with ease,
and variable allocation of memory page size for each task since the communication
in the system is performed through virtual memory.
The work presented in [VPI05] does not support the preemptive context switch

on FPGAs. Nevertheless, a similar solution can be implemented in a reconfigurable
system with a hardware context switch support. Their technique can be generally
applied to a reconfigurable architecture with a CPU which runs Linux OS. When
a HW task is context switched, the I/O data can be safely stored in the main
memory. Storing the addresses and pointers of virtual memory is necessary to resume
the communication at a later time. Although they present an interesting method
to manage the communication, the solution is strictly limited to shared memory
systems. The memory access latency must also be considered in the communication
between hardware tasks. Since the hardware task is directly connected to the main
memory in the system, there is a risk of inconsistency when context switching the
task while it is communicating [SLM00].

3.2.2 ReconOS

Built on top of an existing (real-time) OS, ReconOS enable transparent thread-to-
thread communication regardless of the HW/SW partitioning [LP08]. In ReconOS,
HW tasks are modeled as independent executing threads whose communications are
controlled by the OS modules. The HW-SW communication uses a method similar
to message-passing whereas the HW-HW communication employs FIFO buffers. A
specific OS synchronization state machine is added to the FPGA to facilitate the con-
trol of HW tasks. Thanks to the control from OS modules, flexible synchronization

3.2 reconfigurable system management 27

and communication mechanisms for multithreaded HW/SW systems are provided
on both the level of the programming model as well as the low-level implementation
of the HW/SW interface. Moreover, these communications and synchronizations are
transparent from the tasks.
Despite this, ReconOS lacks the scalability in HW-HW communication. It consid-

ers multithreading between HW and SW with a single HW in the system. Further-
more, preemptive scheduling is not available for HW task on the FPGA part of the
system. A support for preemptive context switching in ReconOS was later proposed
in [HTK15]. This work uses ReconOS to control the communication and task context
extraction on the FPGA using the readback technique. Alas, Happe, Traber, and
Keller [HTK15] did not take the consistency preservation into consideration when a
context switch occurs. Although further development is still required, a mechanism
to preserve the communication and synchronization in a preemptive context switch
can be integrated to a stable OS which is optimized for a reconfigurable system like
ReconOS.

3.2.3 FOSFOR

A more scalable and communication-intensive solution than ReconOS is proposed
using FOSFOR platform [Nar+11]. In FOSFOR, a notion of HW OS that manages
hardware tasks in FPGAs is introduced. These hardware tasks are configured in
partial regions of a DPR system. The communication between tasks is managed by
a middleware which monitors the channels requests and establishes the connection.
This middleware can set the communication to blocking and non-blocking according
to the existence of tasks. A NoC topology [Dev+10] is used to improve the flexibility
and reduce the communication overhead.
A communication mechanism which adapts to blocking and non-blocking situ-

ation can be used in multitasking systems. FOSFOR provides this possibility us-
ing HW OS on the FPGA. In [Nar+11], this mechanism is combined with DPR
for non-preemptive scheduling in hardware task management. Naturally, a further
development is still necessary to provide a preemptive context switch support in
FOSFOR platform. In their work, the impact of the solution to the performance in
communication is also not precisely quantified.

3.2.4 Rainbow

Another work that manages inter-task communication is Rainbow which is based
on Operating System for Reconfigurable Systems (OS4RS) [Joz+13]. Rainbow is
developed to support preemptable hardware tasks on reconfigurable systems. It pro-
vides the Application Programming Interface (API) which allows the communica-
tion and synchronization from SW. On the HW side, it supports DPR and uses
the readback technique to provide the preemptive context switch. In the commu-

28 state of the art

nication aspect, hardware and software tasks in Rainbow are connected to a bus
topology with the communication channels located between reconfigurable regions
in the FPGA. The communication data is transferred between tasks using a point-
to-point message-based communication. Such generic communication mechanism is
possible by encapsulating the HW task inside each partial region with a wrapper.
As explained in Section 3.1.1, the use of readback technique in the preemptive

context switch limits the implementation to a specific FPGA. However, the com-
munication data inside the reconfigurable region can be managed as long as they
are not included in the context extraction. In this case, communication FIFOs are
considered as the part of the HW task in our hypothesis. In other words, users must
have the knowledge of the HW task execution on the FPGA and third-party use
is generally avoided. As the work in [Joz+13] is based on the readback technique,
relocating tasks is possible only between identical partial regions. The HW task
relocation has not been taken into consideration in their work. It also lacks the pos-
sibility of using multiple FPGAs in the system and communication channels using
external memory, as presented in [SLM00].

3.2.5 CPRtree

Vu et al. [Vu+16] present an infrastructure which manages a context switch on
FPGAs. Using the design-based technique, the context of a task can be accessed at
checkpoints through a scan-chain interface. The global checkpoint/restart process on
the FPGA is controlled using API functions on the CPU. Similar to Rainbow, HW
tasks in CPRtree are connected on a wrapper inside the FPGA. However, this wrap-
per manages not only the communication but also the context extraction/restoration
as their work uses the design-based technique.
Although the work in [Vu+16] provides a preemptive context switch support which

can work in a heterogeneous environment, their system only extracts and restores
the I/O communication data inside the hardware task. The communication FIFOs
outside the task is not taken into consideration. Therefore, the only way to maintain
the communication consistency when a preemption request is given to a task with
ongoing communication flows is to stall the request until the task consumes all the
I/O communication data. They propose to throttle the communication data and
prevent new data from arriving at the buffers after a preemption request is received.
Although they claim that this solution will speed up the latency when preempting
a task, the impact of the communication solution is not evaluated in their work.

3.3 conclusion

Providing a hardware context switch support on FPGAs has been a research topic
for more than a decade. In order to context switch a hardware task on an FPGA,
communication management between tasks is required. Before extracting the con-

3.3 conclusion 29

text of a running hardware task, its execution and communication flows must be
safely interrupted to preserve the communication consistency. Data integrity should
be maintained to give a hardware task on an FPGA the possibility to resume its ex-
ecution correctly after a context switch. Over the years, context extraction solutions
have been proposed using the configuration-based, design-based, and overlay tech-
niques. However, the communication management has not been receiving enough
attention as it deserves.
Although none of the previous works particularly discuss the communication man-

agement in preemptive context switching, the readback technique may offer a certain
advantage to preserve the consistency. In readback, the clock associated with a task
on an FPGA is halted so that the context can be extracted as-is from the con-
figuration port of the FPGA. The I/O communication data in the FIFOs can be
extracted together with the task context as long as they are located on the same
FPGA [Joz+13; HTK15]. However, readback techniques are technology-dependent
and not applicable for heterogeneous FPGA environments. The context (and the
I/O data) can only be restored to an identical region of the same FPGA. Besides
the fact that the readback technique is tailored to specific FPGA families, the work
in [Joz+13] also mentions a problem in BRAM extraction which strongly depends
on the manufacturer.
A technology-independent approach in a hardware context switch can be offered

using the design-based technique [KHT07; BMR16; Vu+16]. In contrast to read-
back, the context extraction and insertion using design-based technique must be
done without stopping the associated clock of the task. On the one hand, this solu-
tion provides a higher efficiency since the rest of the system is minimally affected.
On the other hand, it requires a much higher effort to maintain data integrity in
the communication channels of the preempted task. Additional infrastructure is nec-
essary to access the task context from a specific interface on the task. The FIFOs
which contain the intermediately-stored data must also be managed.

In [KHT07] and [BMR16], the focus was reducing the overhead in the design-
based technique by using a checkpoint architecture. In [BMR16], the design effort
is also significantly reduced by using HLS flow to generate hardware tasks which
have context switch capability. Despite this, the communication management while
context switching hardware tasks on FPGAs is not discussed. They limit the strategy
for isolated tasks and do not consider the environment around the tasks.
The first work which uses design-based technique and considers the challenges in

communication is presented in [Vu+16]. Although they claim to offer a framework
that supports a hardware context switch, the constraints in communication may
reduce the multitasking performance to avoid inconsistency in the communication
data. To summarize, the mechanism to preserve the consistency in communication
data while maintaining the performance of multitasking is still required. The next
chapter will describe our solution to solve the issues in regards to the communication
during a preemptive context switch.

4
COMMUNICATION MANAGEMENT IN
HARDWARE CONTEXT SWITCH

L
ooking at the existing works presented in the previous chapter, we
conclude that a comprehensive communication solution in a hardware
context switch has yet to be found. The previous works still lack a mech-

anism to preserve the consistency in communication data when a hardware task is
context switched at arbitrary points in time (due to preemptive scheduling). Such
a condition results in a restrictive constraint in a hardware context switch; the
preempted task must not have any ongoing communication flow and all communi-
cation data in FIFOs has been consumed. Moreover, the existing works are limited
to homogeneous FPGA architectures.
Within this chapter, the communication mechanism in the hardware context

switch is described. The first part of this chapter presents the general hypothe-
sis in this work. Next, we describe the state-of-the-art method in hardware context
switch which motivates us in developing our communication solution. Afterward,
we present the programming model related to the existing hardware context switch
support. We introduce a dedicated protocol to manage the overall hardware context
switch, including the communication aspect, in the following section. Preceded by
showing the compatible systems for our solution, the implementation of our method
in the physical and communication layer is presented next with a discussion of the
limitation. Finally, the conclusion is presented at the end of this chapter.

Contents
4.1 General Hypothesis . 32
4.2 Hardware Context Extraction for Heterogeneous Multi-FPGA

Systems . 33
4.2.1 Design-based Technique 34
4.2.2 High-Level Synthesis Flow 36

4.3 Communication Model . 38
4.3.1 Kahn Process Network 38
4.3.2 I/O Communication Scope 38

4.4 Context Switch Protocol . 41
4.4.1 Existing Solution . 41
4.4.2 Proposed Solution with Communication Data Management 42

31

32 comm. management in hardware context switch

4.5 Implementation in Reconfigurable Architectures 45
4.5.1 Compatible Systems . 45
4.5.2 Development in Physical Layer 47
4.5.3 Development in Communication Layer 49

4.6 Conclusion . 52

4.1 general hypothesis

In order to perceive our solution in communication during a hardware context switch,
we need to review the architectures that it is intended for in the first place. This
section will help us to focus on the advantages of the given solution as well as its
limitation.
As mentioned earlier, we aim to support multitasking in reconfigurable architec-

tures by managing context switch operation between hardware tasks on FPGAs
while considering the communication aspect in the process. We define a task as a
part of an application that runs in a reconfigurable architecture. As a reconfigurable
architecture consists of CPUs and FPGAs, we recognize two natures of tasks: soft-
ware tasks and hardware tasks. We consider software tasks as programs which are
fetched from the memory and run on CPUs. Hardware tasks run in the form of
IPs or digital circuits on FPGAs. In many applications, the IPs on FPGAs are an
operator which can be used repetitively in the application.
In this work, FPGA reconfiguration may not be necessarily performed when dif-

ferent hardware tasks use the same IP. We consider two tasks using the same IP but
different datasets as two different hardware tasks. Figure 10 describes an illustra-
tion of two hardware tasks with the same IP. Re-using a third-party or legacy IP is
common in reconfigurable architectures as most FPGAs are dedicated to a specific
function. However, the dataset processed by the IP can be different each time. For
this reason, a hardware context switch may involve the saving and restoring of the
context without changing the reconfiguration of the task on the FPGA.
The architecture targeted in this work contains CPUs and FPGAs which can

communicate with each other through interconnect, as illustrated in Figure 3. This
architecture has a memory as well to store shared data, such as the FPGA bitstream
and task context. Figure 11 depicts an example of tasks running in such an archi-
tecture. T1, T2, and T3 are software tasks whereas T4, T5, and T6 are hardware
tasks. All tasks are connected to the main interconnect that allows them to com-
municate to each other. At every communication port of the tasks, FIFO buffers
are used to intermediately store the I/O communication data due to the bandwidth
difference between tasks and the main interconnect. Several tasks can be located in
the same CPU or FPGA. However, each of them should have its own connection to
the main interconnect. An instance is created in a CPU or FPGA to manage the

4.2 hardware context extraction for heterogeneous multi-fpga systems 33

task allocation in the system (task configuration for FPGA), which is presented as
Task Manager in Figure 11.

Let us assume that a context switch operation can be performed to any hardware
task in the system. The decision to perform a context switch is taken by a scheduler
(placed somewhere in the system, for instance in Task Manager) and forwarded to the
tasks as preemption requests. For this reason, a mechanism to preempt a hardware
task and take a snapshot of its current state is necessary. In Chapter 3, state-of-the-
art works have shown that accessing the context of hardware tasks is possible with
certain requirements, e.g., technology, hardware utilizations, etc. More importantly,
the architecture must be able to manage a task context in the hardware context
switch which includes the extraction of certain memory elements and the capability
to reload it in to the system. In the architecture, we depend on a Task Manager which
contains the information about the tasks related to the communication. It should
also safely disconnect and reconnect the communication links between the tasks
while preserving the consistency in the transferred communication data. Adjusting
the communication link between the tasks which are affected by the task context
switch is also necessary. This can also be done by the Task Manager as long as the
technology used in the communication allows it, which is the case in most of the
popular bus and NoC communication standards.

4.2 hardware context extraction for heterogeneous multi-
fpga systems

Section 2.2.2 briefly mentions heterogeneous reconfigurable systems with different
COTS FPGA architectures. Heterogeneous FPGAs are gaining popularity, espe-
cially in future cloud services and data center environments [Put+15]. A recent
paper presents a comparison between several types of heterogeneous platforms in
data centers [Con+16]. The performance and energy consumption of FPGAs are

Figure 10: Re-using IP for different datasets is considered different hardware tasks in this
work

34 comm. management in hardware context switch

evaluated using different implementations and programming models among other
platforms, e.g., server-class CPUs, embedded CPUs, and GPUs. The comparison re-
sults show the benefit of combining various platforms with different traits to obtain
the best trade-off in performance and efficiency. This has also been supported by the
rise of Reconfigurable SoC platforms, e.g., Zynq-7000 and Zynq Ultrascale+ from
Xilinx, and Cyclone V SoC and Arria V SoC from Altera, which integrate CPUs
and FPGA resources in the chip.
For cost and compatibility reasons, multiple FPGAs with different sizes and ar-

chitectures can be used in the same system. They can come from different FPGA
families, or even from FPGA vendors. Each FPGA is normally dedicated to a spe-
cific task which may optimize the execution. These multiple FPGAs form a het-
erogeneous reconfigurable system when put together. In heterogeneous multi-FPGA
systems, moving a task from an FPGA to another for migration purposes is com-
plicated. That is to say, adding features such as multi-tasking in order to exploit
FPGAs for general-purpose use is a conundrum.

4.2.1 Design-based Technique

To provide the capabilities of handling a wide range of applications, heterogeneous
reconfigurable architectures are required. Such a requirement influences the way we
provide hardware context switch support. In general, a context switch where the
task continues on the same FPGA afterward is possible as a certain FPGA vendor,
i.e., Xilinx supports configuration readback in some of their products. However, the
readback technique extracts the configuration bitstream of the FPGA together with
the context. This means that the readback technique needs to extract the context,
store it in a normalized form and insert it to another configuration for a different
FPGA used in the system which is an extremely complicated solution and requires
conserving a huge amount of data for each FPGA technology. Consequently, the

Figure 11: Example of tasks running on a reconfigurable architecture in this work

4.2 hardware context extraction for heterogeneous multi-fpga systems 35

Figure 12: Illustration of a scan-chain insertion into datapath elements of a task (register
and memory)

readback technique will hinder task relocation or migration when the FPGAs used
in the system are heterogeneous.
As the alternative, another technique of context extraction must be used for the

hardware context switch in heterogeneous architectures. The state-of-the-art works
show that using either design-based or overlay techniques is possible to context
switch hardware tasks between different FPGAs. However, both techniques require a
certain modification in the regular task implementation. The design-based technique
modifies the task design which is implemented on fine-grain FPGA architectures
whereas the overlay technique runs hardware tasks on the virtual architecture. From
the literature, we know that these techniques are technology-independent in contrast
to the configuration-based technique.
We base our hardware context switch solution on the design-based technique. This

technique instruments the hardware task with a structure which allows extracting its
context from an FPGA and, eventually, restoring it to the same or different FPGA.
In the FSMD model, a task consists of a state machine to control its execution flow
and a datapath to execute the operation. The design-based technique inserts addi-
tional hardware both in the state machine and datapath of the hardware task. The
hardware in the datapath is added to extract the context in a chain form (scan-chain)
from memory elements of FPGAs, which are the register and memory contents asso-
ciated to the task. Figure 12 shows an illustration of scan-chain structures connected
to the register and memory elements. Since this technique adds hardware to the ini-
tial design, a higher FPGA resource consumption and a lower performance due to
longer critical paths are expected, as already explained in Chapter 3.
In contrast to the readback technique, the IP in the design-based technique is not

frozen while saving the current state of a task. Instead, the task execution enters
into a specific flow in the state machine to perform the context extraction/restora-
tion. Along with the scan-chain structures, some states in the Finite-State Machine
(FSM) are selected as checkpoints which directs to additional states inserted in the
state machine to handle the context switch. Figure 13 illustrates the modification

36 comm. management in hardware context switch

Figure 13: Modification in the finite state machine (FSM) of the task to handle a context
switch operation

in the state machine to provide the hardware context switch support. In a normal
condition, the execution flow of a hardware task follows the initial FSM with a group
of execution states (A). The checkpoint states (CP1, CP2, etc.) are inserted in the
middle of A as a gateway to the extraction flow. When a preemption request is
received and the execution arrives at one of the checkpoints (CP2 in the figure), the
extraction flow will be initiated. Likewise, when a hardware task is being restored,
the restoration flow is carried out before going back to checkpoint. The extraction
and restoration (context switch) flows in the state machine include accessing the reg-
ister and memory contents. They are performed sequentially as they are forwarded
in a chain form. Similar to the datapath, adding states in the task consumes some
additional hardware and may reduce the performance.
Another aspect which must be considered in the design-based technique is the

necessary effort to modify the task design from designers’ perspective. As the real-
ization of design-based technique is usually done at fine-grain architectures, adding
the scan-chain structures which connect all registers and memories of the task is
laborious. The scan-chain insertion in a design-based technique needs to be auto-
mated in order to reduce the effort of the designers. With this in mind, a high-level
design flow is introduced to generate hardware tasks with scan-chain structures in
the next subsection.

4.2.2 High-Level Synthesis Flow

While the task modification in a design-based technique can be performed by hard-
ware designers as presented in [JTW07; KHT07; Vu+16], we develop our interest
in the HLS flow which is easily reproducible and requires a lower effort than the

4.2 hardware context extraction for heterogeneous multi-fpga systems 37

Figure 14: Autonomous checkpoint selection and scan-chain insertion using High-Level
Synthesis Flow [BMR16]

former solutions. Bourge, Muller, and Rousseau [BMR16] in their work proposed an
automated scan-chain insertion mechanism to hardware tasks which are generated
by HLS. They integrate their mechanism as a plugin, namely CP3, in a free and
open-source HLS tool AUGH [PMR14]. The flow of task generation and scan-chain
insertion is described in Figure 14.
The mechanism proposed in [BMR16] is inserted at the end of the HLS flow,

before the Circuit Generation. By doing this, the scan-chain structures are added
to the hardware task design which has been optimized by AUGH. Their mechanism
consists of two steps: checkpoint selection and scan-chain insertion. The checkpoint
selection relies on static analysis and greedy heuristic algorithm to select checkpoint
states. According to a given time constraint, all the execution states must be covered
by the checkpoint states. Thanks to the HLS flow, the introduced mechanism can
also search for the less costly selection of checkpoint states in terms of resource
consumption. After the checkpoint states are selected, the scan-chain structures
that chain the register and memory elements for in and out direction are added to
the design. The reader who is interested with the detail of this solution is referred
to [BMR16] and [Bou16].
As good as it gets when providing a hardware task context extraction on FPGAs

using AUGH + CP3, the solution does not consider the task communication during
a preemptive context switch. As a consequence, a hardware task cannot be context
switched while having ongoing communication flows. To ensure the continuity of a
task execution, we should also manage the I/O communication data associated to the
task. The existing scan-chain insertion flow does not handle the memory elements
located outside hardware tasks. In the next section, we present the communication
model of hardware tasks in reconfigurable architectures.

38 comm. management in hardware context switch

Figure 15: Example of task representation in a reconfigurable architecture using KPN

4.3 communication model

4.3.1 Kahn Process Network

Kahn Process Network (KPN) is proposed by Kahn [Kah74] to model tasks and their
communication channels. In KPN, a task is considered as an autonomous process
that works concurrently with other processes in the network and communicate to
each other through infinite FIFO buffers. These conditions results in a blocking
operation for reading and non-blocking operation for writing. However, due to a
finite amount of memory resources available on the FPGA, the reading and writing
operations are actually blocking [GB03]. An example of KPN with several tasks
connected to each other through channels is shown in Figure 15.
In this work, we use KPN to model an application in a reconfigurable system, in-

cluding software tasks on CPUs, hardware tasks on FPGAs, and the communication
between them. Due to the timing-insensitive model provided by KPN, the commu-
nication can be represented as generic as possible while still being able to describe
the interaction between tasks. Each task can run concurrently and asynchronously
with a global synchronization is subject to the existence of I/O communication data.
The communication channels in KPN use FIFO buffers, or FIFOs, to intermediately
store the I/O communication data or tokens while being transferred from one task
to another. With this being said, this communication data needs to be managed
when a hardware task in KPN is context switched due to preemptive scheduling.

4.3.2 I/O Communication Scope

Communication management during a hardware context switch requires a definition
of the I/O communication scope of the task with context switch capability. The
scope of I/O communication particularly includes the placement of communication
channels in the architecture. Use of the HLS tool AUGH + CP3 allows designers to
easily code hardware tasks from the desired functionality of acceleration and let the
tool instrument them with context extraction support. KPN specification does not

4.3 communication model 39

Listing 1: A code snippet describing a simple hardware task in AUGH

1 int32_t process (int32_t input){
...
}

int main (){
6 int32_t input_data , output_data ; /* variable to store input and output data */

do{
input_data = read_input (); /* read one token from input port */

output_data = process (input_data); /* execute */
11

write_output (output_data); /* write one token to output port */
} while (1);

}

restrain the location of communication FIFOs between tasks. It rather depends on
the programming model of the tasks themselves.
Listing 1 shows a code snippet used to describe a simple hardware task in AUGH.

In this example, we assume that the task has only one input and one output port.
Without involving any pragma, the execution flow of a task can be generally de-
scribed in three sequences: reading the input, executing the process, and writing
the output. Input reading process is performed by read_input() subroutine whereas
output writing process by write_output() in Listing 1. The task produces an output
token from each input token consumed. Communication FIFOs are necessary in the
architecture not only to satisfy KPN specifications but also to adjust to different
bandwidths of communicating tasks and increase the transfer efficiency. These com-
munication FIFOs are located between tasks in the architecture and not included
in the task code. As a result, the CP3 plugin does not manage the extraction and
restoration of I/O data inside FIFOs in the scan-chain.
In contrast to Listing 1, Listing 2 presents a code snippet of a hardware task with

communication FIFOs coded in the task. These FIFOs are described in forms of
array input_data[32] and output_data[32] which store all tokens during a process
1. Such implementation allows the tasks to group I/O communication for efficiency.
By coding the FIFOs inside the task, the extraction of communication data can be
managed together with the task context thanks to scan-chain structures provided by
the CP3 plugin. The different possible locations of communication FIFOs according
to the programming model is illustrated in Figure 16.
One of the ways to preserve the communication consistency is to extract the I/O

communication data which still remain in the FIFOs during a preemptive context
switch. Provided the implementation as shown in Figure 16b is taken, I/O com-
munication data and task context will be extracted and restored together during a
context switch. However, such an approach requires designers to develop the task

1 32 was arbitrarily chosen as the size of the FIFOs

40 comm. management in hardware context switch

Listing 2: A code snippet describing a simple hardware task with FIFOs in AUGH

1 int main (){
int32_t input_data [32] , output_data [32]; /* array to store input and output data

*/
int32_t i;
do{

for (i = 0; i < 32; i++)
6 input_data [i] = read_input (); /* storing all the input token in an array

*/

for (i = 0; i < 32; i++)
output_data [i] = process (input_data [i]); /* execute */

11 for (i = 0; i < 32; i++)
write_output (output_data [i]); /* send all the output token in one go */

} while (1);
}

(a) Communication FIFOs outside
the task

(b) Communication FIFOs inside
the task

Figure 16: Different location of communication FIFOs in an FPGA

4.4 context switch protocol 41

and its communication channels themselves. In many cases, a third-party or legacy
IP (task) is used and re-used, which makes the task a black box. To protect the IP, it
is sometimes distributed in a netlist form, and therefore is hard to reverse-engineer
and modify it. Without the knowledge of the communication scheme of the task
with a context switch capability, FIFOs must be added as shown in Figure 16a. At
the same time, communication FIFOs placed outside the task can be beneficial, for
instance, to share the same channels among the tasks. Prefetching communication
data is also possible when the FIFOs are separated from the task.
To summarize, the HLS tool AUGH and its CP3 plugin provide a hardware con-

text switch support on heterogeneous reconfigurable architectures. In contrast to the
other solutions, they allow automated flow to instrument the task design with scan-
chain structures which significantly reduces designers’ effort. However, the buffers
outside hardware tasks are not managed in the tool. As a result, the consistency of
communication data cannot be guaranteed if a task is context switched while still
having ongoing communication flows. A solution at the protocol level is required to
ensure the consistency in communication regardless of whether a task is communi-
cating or not when it is context switched.

4.4 context switch protocol

4.4.1 Existing Solution

This section presents the protocol which is currently followed in a hardware context
switch if the communication data is not managed. The objective is to preserve the
consistency in communication data when a hardware task with ongoing communica-
tion flows is context switched in order that this task can continue without any error
at a later time. We consider that the hardware task in the system has context switch
capability using the state-of-the-art solution. It communicates with other tasks in
CPUs and other FPGAs through the main interconnect, as illustrated in Figure 11.
To support the asynchronous data transfer between tasks, communication FIFOs
are used in the channels. A main memory is used to store the context of the tasks
in the system.
Figure 17 presents the steps in the current context switch protocol. A hardware

task T1 runs on one FPGA and communicates with other tasks in the system. The
other tasks can be located in any CPU or FPGA as long as they are connected
to the main interconnect. A preemption request is given to T1 when it is in the
middle of its execution with I/O communication data stored in the FIFOs on its
FPGA side. Despite the preemption request has been acknowledged, the context
of T1 cannot be extracted yet as the FIFOs still contain I/O data. Hence, the
output link must be maintained to empty the output FIFO and the input link can
be disconnected as shown in Figure 17b. After the communication FIFOs located
in the respective FPGA are empty (idle), the link can be completely disconnected

42 comm. management in hardware context switch

(Figure 17c). Figure 17d and Figure 17e show the process of switching the context of
T1 to hardware task T2 whose context is stored previously in the memory. After the
context switch operation is completed, the communication link of T2 is reconnected
to the task which communicates with it.
By following this protocol, the communication data integrity can be preserved

since the context switch is prevented if there exist communication data inside the FI-
FOs associated to the preempted task. Among the steps which have been explained,
step in Figure 17b requires much attention as it is unpredictable. The input process
rate of a task at arbitrary points in time can hardly be known as it strongly depends
on its real-time state. Preventing new input data to arrive to a preempted task in
order to accelerate the discharge of input FIFO, as presented in [Vu+16], should re-
duce the waiting time in this solution. Although, the moment when the input FIFO
is finally empty remains unpredictable. Furthermore, it is hard to know when the
task may send all its output data to its successor. In this regard, the feature where
designers can provide a fixed constraint in a hardware context switch [BMR16] is
diminished.

4.4.2 Proposed Solution with Communication Data Management

Our idea to preserve the consistency in communication data is simple and straight-
forward. We propose to perform an extraction to all the attributes of the hardware
task in context switch. These attributes are the context and the I/O communication
data stored in the FIFOs inside the FPGA. The extraction and restoration of the
task context and I/O communication data of a preempted task follow a dedicated
protocol that manages the overall context switch process.
Figure 18 describes the steps in the proposed context switch protocol. In contrast

to the existing protocol (Section 4.4.1), the connection between the FIFOs of the
preempted task and main interconnect can be immediately disconnected, as shown
in Figure 18b. Afterward, the context of T1 and its I/O communication data which
still remain in the FIFOs when the hardware context switch occurs are extracted
(Figure 18c). Likewise, when another task (T2) is reloaded to the FPGA, its I/O
communication data will be recharged to the FIFOs along with the restoration of
its context. Finally, the connection between task T2 and its predecessor as well as
successor can be re-established. By following these steps, the consistency in commu-
nication data can be preserved at all times.
Associating communication data which are stored in the ’local’ FIFOs during a

hardware context switch with the task context is natural and straightforward. Al-
though the idea is simple, it implies some challenges in exchange for its obvious
benefits. First of all, we must have complete control of all communication data in-
transit from the sender task to the receiver task in order to disconnect and later
reconnect the communication link safely. Losing communication data during the
process must be avoided at all cost. Second of all, the details of every one-on-one

4.4 context switch protocol 43

(a) T1 is executing and communicating (b) Waiting the FIFO to discharge

(c) Communication can be safely discon-
nected

(d) T1 context is extracted and saved

(e) T2 context is restored (f) T2 execution continues

Figure 17: Context switch protocol in the existing solution

44 comm. management in hardware context switch

(a) T1 is executing and communicating (b) Communication is immediately discon-
nected

(c) I/O data and context of T1 are extracted (d) I/O data and context of T2 are restored

(e) T2 execution continues

Figure 18: Steps in the proposed context switch protocol

4.5 implementation in reconfigurable architectures 45

communication link must be memorized, including when the task is migrated. Since
the IPs in FPGAs have FIFO-based ports, they do not include this information in
their context. These challenges must be overcome in order to provide the communi-
cation management in the context switch protocol.
In comparison with the solution without communication data management, our

solution increases data footprint in the task extraction and restoration of the hard-
ware context switch. This results in longer extraction and restoration time in the
process. However, it also offers predictability in the process. This predictability is
related to the maximum time required to safely interrupt the communication. The
method proposed in [BMR16] should guarantee the required latency in regards to
the task interruption. As our solution offers control of the communication FIFOs
outside the task, the time overhead due to the extraction/restoration of communica-
tion data can be estimated (at least the worst case). Furthermore, the size of FIFOs
is something that can be defined by designers. The management of I/O communica-
tion data consecutively with the task context from the same FPGA only makes sense
if the extraction and restoration of the context satisfy a defined time constraint. An
evaluation regarding this argument will be presented in Chapter 5.

4.5 implementation in reconfigurable architectures

This section presents the implementation of the infrastructure that supports hard-
ware context switch in reconfigurable architectures. The solution proposed in this
work runs at protocol level and it can be implemented in any system which is able
to fulfill the requirements presented in Section 4.1. Due to these requirements, not
all platforms can adopt our solution, at least without modifying the nature of the
protocol. First, we describe the systems which are suitable for our communication so-
lution. Secondly, we present the developments necessary to implement the proposed
protocol, particularly in the physical and communication layer.

4.5.1 Compatible Systems

Although the proposed solution is based on a generic protocol which can be applied
in any reconfigurable architecture which supports hardware context switches, it re-
quires the architecture to respect certain requirements. An instance is required to
allocate hardware tasks in FPGAs and manage the communication, we refer to this
instance as Task Manager. In many works [VPI05; LP08; Nar+11; Joz+13], this
function is done by a module that runs in the CPU of reconfigurable systems. Our
solution can be added to these existing software-based managements, although we
do not rule out the possibility of placing the Task Manager in the FPGA. All the
tasks in the system, both software and hardware, must be ’recognized’ by this Task
Manager. This can be supported with ease if all the tasks are connected to the same

46 comm. management in hardware context switch

Figure 19: Illustration of a reconfigurable architecture targeted for the proposed context
switch solution

interconnect. As a consequence, the same addressing method can be used by all
tasks which simplifies the communication link update during a context switch.
Figure 19 depicts the illustration of a reconfigurable architecture which can be

targeted by our context switch solution. In the past, soft-core processors (CPUs)
were used to manage the hardware tasks in a reconfigurable system. The main inter-
connect was therefore based on the Processor Local Bus (PLB) standard [Liu+09;
Joz+13]. However, such architecture consumes a considerable amount of FPGA re-
sources and the communication speed is limited to FPGA technology. Thanks to
PCIe-based communication controller that provides very high transfer bandwidth,
e.g., RIFFA [Jac+15], JetStream [Ves+16] and CAPI [Stu+15], the bottleneck in the
communication between FPGA and external hard-core processors can be reduced.
PCIe-based communication between CPUs and FPGAs in reconfigurable systems is
currently the most popular [Afo+13; Che+14; KGS17]. PCIe standard also offers
the possibility of connecting multiple FPGAs to the same CPU. Another possibility
of CPU-FPGA interconnect is by using Ethernet [ABS10]. With the recent Reconfig-
urable SoC platforms, the entire reconfigurable system can be placed in one platform
that uses internal communication through AXI standards [SSS15].
As shown in Figure 19, software tasks are located in the CPU of the system

whereas the hardware tasks are in the FPGA. We can also run software tasks in
soft-core processors that use FPGA resources. The software tasks may also support
a software-based context switch although it is not covered in this discussion.
We assume that the hardware tasks support the hardware context switch opera-

tion as they allow task context extraction. Due to the state-of-the-art design-based
method, previously extracted task can also be reloaded to another FPGA in the
system (in case of migration). Some of the existing works use Dynamic Partial Re-
configuration (DPR) solution to reduce run-time IP reconfiguration [DML12] and
to support IP relocation [Fek+12]. The hardware task migration can therefore be

4.5 implementation in reconfigurable architectures 47

Figure 20: Reconfigurable system built with multiple Reconfigurable SoC platforms re-
quires further development

done between hardware tasks located in different partial regions in the FPGA. Our
solution can adapt to such solution with the communication channels placed in the
static region.
The proposed context switch protocol, however, is not compatible with a system

that consists of multiple Reconfigurable SoC platforms at the moment. As a result,
hardware task migration between FPGAs in different Reconfigurable SoC while
maintaining the communication, as presented in Figure 20, cannot be treated yet.
This is due to the hierarchy in the communication interconnect between the tasks
in the system. In addition to the AXI interconnect which connects the CPU and
FPGA internally, another interconnect is required between Reconfigurable SoCs,
for instance using Ethernet or MultiGigabit Transceiver. Such hierarchical inter-
connects increases the complexity in the communication between tasks in different
Reconfigurable SoCs. Adjusting the communication by the Task Manager in a Re-
configurable SoC must consider the other Reconfigurable SoC. As a result, further
development is necessary to enable an implementation of our solution in such an
architecture, which is not covered in this thesis report.

4.5.2 Development in Physical Layer

The management of hardware task context and I/O communication data during
a context switch requires a development in the physical layer. We develop a com-

48 comm. management in hardware context switch

Figure 21: Communication infrastructure to support the preemptive context switch pro-
tocol with communication management on FPGAs

munication infrastructure which is essentially applied as a hardware task wrapper
in the FPGA. This communication infrastructure is paired to each hardware task
in the FPGA in order to provide an interface to the main interconnect. Figure 21
presents the illustration of the communication infrastructure in the FPGA. The
communication infrastructure integrates I/O communication FIFOs (input and out-
put), context FIFOs2 (save and restore), an FSM, and an interconnection point.
The FSM is responsible for controlling the communication flow and synchronization
during normal execution as well as when a preemption occurs. As this infrastruc-
ture connects each hardware task to the rest of the system, the FSM is responsible
for forwarding preemption requests to the hardware task. It also manages the data
transfer flows among the FIFOs to follow the protocol presented in Figure 18. For
FSM configuration and status, we add control and status registers in the communica-
tion infrastructure. The Interconnection Point is necessary to perform the protocol
conversion between the FIFOs and the external communication architecture. The
interface of this interconnection point will depend on the topology of the communi-
cation architecture and the technology used in the system.
The I/O communication FIFOs used in the proposed communication infrastruc-

ture are modified to allow data extraction and insertion without passing through
their standard ports. Multiplexers are added to manipulate the data flow according
to the condition of execution. For illustration purposes, we assume that the input
FIFO receives input data from interconnection points and forwards them to the task

2 task context is intermediately stored in these FIFOs as the transfer bandwidths are different
between inside and outside of FPGAs

4.5 implementation in reconfigurable architectures 49

in normal task execution. When the hardware task is being context switched, the
input data will be transmitted back to the interconnection point to empty the input
FIFO. These data will be considered as a part of the task context. The sequence and
timing of these FIFO extractions are managed by the FSM. This implementation is
simple and straightforward, yet it can guarantee the communication data integrity
without waiting until the communication channels are idle.

Figure 22 details the FSM which controls the communication and context FIFOs.
It consists of three parts which are connected to each other: FSM read, FSM write,
and FSM context. The three FSMs control the input, output, save and restore FIFOs
according to the flow. In the normal execution flow, FSM read manages the input
data from the main interconnect. Every time there is an external request, it performs
the input data transfer until there is no data or the input FIFO is full. When the
context is restored, the FSM read restores the communication data and context to
the input, output, and restore FIFOs. Likewise, FSM write manages the output data
from the hardware task. It performs the output data transfer when the destination
is ready to receive and the output FIFO is not empty. When the hardware task is
preempted, FSM write saves the data from the input, output, and save FIFOs.
The FSM read and write are configured (controlled) by the control registers whilst

they provide the information of their status in status registers. Through these control
registers, the command to start, save, or restore a hardware task can be given.
These commands control the interaction of FSM context with the hardware task to
trigger the execution as well as context switch. The control registers also contain the
configuration of connections of the hardware task with other tasks in the system. The
status registers hold the information about the size of extracted/restored context
and the states of the hardware task (execution or finish).
With the communication infrastructure wrapping each hardware task in the ar-

chitecture, we have complete control of the in-transit communication data. The
Interconnection Point used in the infrastructure only forwards the transmitted data
without storing them. As a result, we ensure the preservation of communication
data consistency during a hardware context switch.

4.5.3 Development in Communication Layer

The communication infrastructure developed in an FPGA is developed to ensure
the consistency of communication data in a hardware context switch operation. It
allows autonomous control and synchronization of the communication data and
context associated to a preempted task inside the FPGA. Figure 23 describes how
the I/O communication data and context are managed together. When a hardware
task is context switched, its context and the I/O communication data which resides
in the same FPGA are saved together in a shared memory. We refer to the set of the
context of a task and its associated communication data as a communication-aware
context. In addition, a communication-aware context includes the amount of data

50 comm. management in hardware context switch

Figure 22: Details of FSM inside the communication infrastructure

4.5 implementation in reconfigurable architectures 51

Figure 23: Management of the context and associated communication data of a hardware
task being context switched

which acts as a header of the context. This information is particularly necessary to
allow the communication infrastructure to perform the restoration of context and
communication data autonomously.
As we can see in Figure 23, the communication-aware context stored in the mem-

ory does not contain the details of the ongoing communication flows when a hard-
ware context switch occurs. Adjusting the communication link to disconnect FIFOs
and later reconnect them when a task is restored either to the same or a different
FPGA is done by the Task Manager. Practically, the Task Manager can be a pro-
gram, driver or a module which runs on the CPU. It can be installed either as a
standalone application or as a kernel module if a Linux-based OS is used. Figure 24
describes an abstract view of the Task Manager which controls the communication
link of the tasks. It holds the information of the connections between tasks in a table
and adjusts them according to the performed context switch in the system, for in-
stance when the task is moved to another FPGA (migration). Besides managing the
communication link, the driver also controls the FSM in the communication infras-
tructure to start the execution as well as to perform the extraction and restoration
in a context switch. This control is done by writing values to the control registers
and reading values from the status registers. Conversely, the communication infras-
tructure sends an interrupt (IRQ) to notify the driver of certain conditions, e.g., the
end of execution, the end of context extraction, etc.
Thanks to the implementation in communication layer which includes the integra-

tion of task context and its associated communication data into a communication-
aware context and the management of communication link by Task Manager, we
can ensure the continuity of communication between tasks in a reconfigurable ar-

52 comm. management in hardware context switch

Figure 24: Abstract view of Task Manager which manages the communication link and
controls the communication infrastructure on FPGAs. Communication address
can be adjusted in case of migration by the Task Manager.

chitecture that supports hardware context switching. In case of a task migration
between different FPGAs in the system is involved, e.g., in multi-FPGAs system,
the communication link update can be applied as well. The proposed solution in
this work is generic provided that the specified requirements are fulfilled.

4.6 conclusion

In this work, we address the challenges which hinder hardware tasks on hetero-
geneous reconfigurable architectures to be context switched at arbitrary points in
time due to preemption requests. The most efficient method to provide a hardware
context switch support in heterogeneous reconfigurable architectures is the design-
based one with checkpointing. As this method requires selecting checkpoint states
and inserting additional scan-chain structures in the task design, higher efforts from
the designers are necessary. The recent work proposed in [BMR16] takes advantage
of HLS flow to generate hardware tasks or IPs which are already instrumented with
the structures to perform context extraction (and restoration). However, it lacks the
communication management which prevents a task to be preempted while having
ongoing communication flows.
To preserve the communication data consistency in the hardware context switch,

the communication between tasks must be managed. The communication data con-
sistency must be preserved and the continuity in communication between tasks
should be guaranteed. Throughout this chapter, we introduce a protocol which

4.6 conclusion 53

manages the overall context switch process including the communication. During
a hardware context switch, the associated attributes of the preempted task should
be extracted and stored to offer a possibility of task resumption at a later time.
These attributes are the context and communication data of the task which resides
in the same FPGA. Meanwhile, the communication link should be safely discon-
nected when a task is preempted. The context and communication data are restored
back to the same or a different FPGA (in case of migration) in the system, and the
communication links of the task are reconnected when a hardware task resumes.
A development in the physical and communication layer is necessary to implement
the proposed mechanism in reconfigurable architectures. The physical layer develop-
ment focuses on the communication infrastructure in FPGAs. The implementation
in the communication layer is performed using a Task Manager, which is practically
a driver/module which runs in the CPU.
In comparison with the existing solution, our solution ensures the communication

data integrity with a predictable overhead, both in performance and resource. The
introduced protocol is generic and straightforward and therefore is not limited to
a certain communication topology in reconfigurable architectures, although it re-
quires all the tasks to be connected to the same interconnect with a Task Manager
which controls the communication. In the next chapter, a detailed evaluation of the
performance and overhead in our communication management will be presented.

5
EXPERIMENTS AND RESULTS

T
he previous chapter qualitatively presents the interests of managing
the communication in a hardware context switch, particularly in preserv-
ing the consistency in communication, and their solution. This chapter

presents the experiments performed to quantitatively measure the performance and
overhead of the proposed context switch management.
We begin by presenting the overview and the different platforms used in the exper-

iments. Next, we describe the generation of a FPGA configuration that integrates
the IPs produced by AUGH [PMR14] and its CP3 plugin [BMR16] and the infras-
tructure introduced in our solution. We created scripts to autonomously launch
the existing tools and generate the bitstream for the FPGAs in the experiments.
Then, we measured the performance in hardware context switch operation on the
platforms. For performance comparison purposes, we developed another framework
which followed the context switch protocol without communication management in
addition to the framework which followed our solution. Finally, we present a pro-
totype of task migration in heterogeneous reconfigurable architectures using two
Reconfigurable SoCs and an application of the solution to provide multitasking in
the context of hypervisor.

Contents
5.1 Overview . 56
5.2 Experimental Platforms . 57

5.2.1 Xilinx ZC706 Evaluation Board 58
5.2.2 Altera Arria V SoC Development Kit 58
5.2.3 Platform Comparison . 61

5.3 Hardware Implementation . 62
5.3.1 Benchmark Applications 62
5.3.2 IP Generation with AUGH 63
5.3.3 Communication Infrastructure 64

5.3.3.1 Basic . 65
5.3.3.2 Without Communication Extraction (CS) . . . 65
5.3.3.3 With Communication Extraction (CSComm) . 66
5.3.3.4 Hardware Resource Evaluation 66

55

56 experiments and results

5.3.4 Generation of FPGA Configuration File 71
5.4 Software Implementation . 73
5.5 Performance Evaluation . 74

5.5.1 Evaluation Scenario . 75
5.5.2 Total Execution Time 75
5.5.3 Context Switch Time . 78
5.5.4 Preemption Latency . 81

5.6 Application . 83
5.6.1 Migration in Heterogeneous Reconfigurable Systems . . . 85
5.6.2 Hypervisor-based System for FPGA Virtualization

(Cloud-FPGA) . 87
5.7 Conclusion . 90

5.1 overview

While providing hardware context switch support in heterogeneous reconfigurable
architectures will improve the flexibility in execution, it will also cause overheads
to the system. In these experiments, we evaluated the overheads of hardware con-
text switching in regards to the offered performance. Besides the overhead in the
hardware utilizations, we particularly focus on the temporal data results when the
hardware context switch occurs.
Figure 25 describes an overview of the system used to evaluate the performance

and overhead of our solution. The system is built on a Reconfigurable SoC platform
that integrates AXI interconnect for the communication between CPU and FPGA.
We prepared a simple case where a hardware task (HW Task) is executed on an
FPGA and context switched. A predecessor and a successor software tasks (SW
Tasks 1 and 2) are placed in the CPU and communicate with the hardware task.
The Task Manager that manages the connection between tasks are placed in the
CPU as well. The objective is to interrupt the HW Task in the middle while it still
has ongoing communication flows and remove it from the FPGA. Then, the HW task
is recharged back again to the FPGA to resume the execution. While performing
such operation, the performance and overhead are measured. Most importantly, the
performed operation must not cause any error to the execution. The output of the
HW task is verified with a reference to ensure that there is no error introduced due
to the hardware context switch.
First of all, we present the resource utilizations in the hardware due to implement-

ing our solution in FPGAs. Three architectures are built for comparison purposes.
The first architecture does not have any support to perform a hardware context

5.2 experimental platforms 57

Figure 25: Experimental system overview

switch, which we refer to as basic. Naturally, the IPs in this architecture does not
allow a context extraction from hardware tasks. The second architecture uses IPs
which provides context extraction ability and follows the context switch protocol
described in Figure 17 where context switching hardware tasks with ongoing com-
munication flows must be prevented. We refer to this architecture as CS. The third
architecture, which we refer to as CSComm, implements our communication solution
in the hardware context switch, as presented in Figure 18.
Next, we present the temporal properties of the context switch operation and

the impact of our solution. They are total execution time, context extraction and
restoration time, and latency in context switch. These properties were measured
in the CS and CSComm architectures using a scenario where a hardware task in a
reconfigurable architecture is context switched. The results are compared in order to
study the quantitative impacts of our solution besides its communication consistency
preservation.
Before presenting the detailed evaluation results of our context switch solution,

we introduce the experimental platforms in the next section.

5.2 experimental platforms

The architecture presented in Figure 19 can be built using a Reconfigurable SoC
platform. Among the available commercial Reconfigurable SoCs, we selected ZC706
Evaluation Board from Xilinx and Arria V SoC Development Kit from Intel FPGA
for our experiments.

58 experiments and results

5.2.1 Xilinx ZC706 Evaluation Board

The ZC706 Evaluation Board is based on XC7Z045-2FFG900C chip from Zynq-
7000 FPGA family developed by Xilinx. Much like the other Zynq boards, such as
Zybo and Zedboard, ZC706 integrates 32-bit ARM cores and FPGA on its chip.
Figure 26a depicts a block diagram of the Zynq-7000 architecture. The architecture
shown in the figure consists of Programmable Logic, Application Processing Unit,
and the connections to the peripheral devices which are all connected to Central
Interconnect. In Zynq-7000 architecture, the FPGA part is shown as Programmable
Logic (PL) whereas the rest of the system is known as a Processing System (PS).
The communication backbone between PL and PS in the Zynq-7000 architecture is
provided by AXI interconnect. There exist three types of ports for the AXI commu-
nication in this architecture: General Purpose Ports, High-Performance Ports, and
Accelerator Coherency Port (ACP). As General Purpose Ports are connected to the
Central Interconnect, they provide better efficiency in accessing the peripheral de-
vices from the PL. The ACP facilitates a direct connection to the processor from
the PL whereas High-Performance Ports provide high communication bandwidth to
the memory. With this wide selection of communication ports, hardware designers
are able to choose the ports which optimize their design.
Figure 26b illustrates the ZC706 platform with all the parts including the Zynq-

7000 Reconfigurable SoC. With the processor in the SoC, the board can work as
a standalone system. Furthermore, ZC706 has a PCIe connector which allows it to
be a daughter card. A 1GB DDR3 memory is located in the board which can be
accessed from the memory interfaces of the Zynq-7000 SoC. The presence of ARM
processors in the ZC706 supports development of an OS-based system. A linux-
based OS is particularly available in the community with popular distributions, e.g.,
Ubuntu and Debian. In addition, Xilinx offers Petalinux distribution [Inc] which
is also based on Linux and optimized for their products. Due to the utilization of
Linux OS, software development in ZC706 can be done with ease as many drivers
are already available in the system.
The setup of the ZC706 platform in this work is described in Table 1. Xilinx

Vivado Design Suite 2015.3 was used to develop the design in ZC706. We chose 50
MHz as the working frequency of the FPGA to adapt to the benchmark applications
which will be presented in Section 5.3.1. The size of a full FPGA configuration in
XC7Z045-2FFG900C is 13.3 MB. In this work, we only use one ARM processor core
which runs Linaro Ubuntu 15.04.

5.2.2 Altera Arria V SoC Development Kit

The Arria V SoC (A5SOC) Development Kit is based on 5ASTFD5K3F40I3N FPGA
chip from Altera V SoC family developed by Altera (now Intel FPGA). It was
chosen for the experiments because it provides comparable hardware resources as

5.2 experimental platforms 59

(a) Zynq-7000 block diagram

(b) Xilinx ZC706 Evaluation Board

Figure 26: Xilinx reconfigurable SoC platform

Table 1: Experimental setup on ZC706

EDA Tool Vivado Design Suite 2015.3
FPGA Xilinx Zynq-7000 XC7Z045-2FFG900C
Clock Frequency 50 MHz
Configuration size 13.3 MB
Host CPU ARM Cortex-A9
Operating System Linaro Ubuntu 15.04

60 experiments and results

(a) Arria V SoC block diagram

(b) Altera Arria V SoC Development Kit

Figure 27: Altera reconfigurable SoC platform

the ZC706. Similar to the other Reconfigurable SoCs, Arria V SoC integrates 32-
bit dual-core ARM processors and other peripheral devices in the chip. Figure 27a
illustrates the Arria V SoC architecture in a block diagram. The architecture consists
of FPGA, Microprocessor Unit (MPU) subsystem, and the switches to peripheral
devices which are all connected to L3 Interconnect Main Switch. In Arria V SoC, the
MPU subsystem and the connections to peripheral devices are grouped together as
a Hard Processor System (HPS). The FPGA can communicate to the components
in HPS through available bridges in the architecture: Lightweight HPS-to-FPGA
(LWH2F), HPS-to-FPGA (H2F), and FPGA-to-HPS (F2H) bridges. In addition, the
FPGA can access the SDRAM of the board via FPGA-to-SDRAM (F2S) interface.
These bridges and interface use the AXI communication standard.

5.2 experimental platforms 61

Table 2: Experimental setup on A5SOC

EDA Tool Altera Quartus II 15.0
FPGA Altera 5ASTFD5K3F40I3N
Clock Frequency 50 MHz
Configuration size 23.2 MB
Host CPU ARM Cortex-A9
Operating System Linaro socfpga_arria5

Figure 27b depicts an image of Altera Arria V SoC Development Kit. It offers
various connectors, e.g., Ethernet, USB, UART, etc. On top of that, the platform con-
tains 1GB SDRAM accessible from FPGA and 1GB SDRAM accessible from HPS.
The support of Linux-based OS from Altera as well as from the community (Rock-
etboards) is also available in A5SOC. They provide Linaro socfpga and Angstrom
distributions which simplify software developments due to provided drivers to access
the hardware in the platform.
Table 2 presents the setup for our experiments in A5SOC. The hardware design

for A5SOC in this work was developed using Altera Quartus II 15.0. To provide a
similar test environment as ZC706, we chose 50 MHz as the working frequency in
the FPGA. The size of a full FPGA configuration file of A5SOC is 23.2 MB. We
use one of the ARM cores in the MPU subsystem that runs a Linaro socfpga_arria5
distribution provided by Altera.

5.2.3 Platform Comparison

The ZC706 and A5SOC are Reconfigurable SoCs that use different FPGAs. Not only
do they have different architectures, but they also use technologies from different
FPGA manufacturers. The different platforms are used in this work to show that
our solution can be used in heterogeneous reconfigurable architectures. As we pro-
pose a generic protocol in the hardware context switch, it can work on any FPGA
architecture used in the system. The decision to base our work on a design-based
technique for task context extraction [BMR16] also allows us to migrate hardware
tasks between different FPGAs. Unfortunately, our communication solution is lim-
ited to FPGAs with a common interconnect as already explained in Section 4.5.1.
As a result, migrating a hardware task from a FPGA in a Reconfigurable SoC to a
FPGA in another Reconfigurable SoC will involve the entire application which will
be presented in Section 5.6.1.
Besides the difference of the architectures and FPGAs used in the ZC706 and

A5SOC, there exist similarities between them as well. Both the ZC706 and A5SOC

62 experiments and results

are Reconfigurable SoCs that use the AXI communication standard for their internal
connection, which is implemented in most commercial Reconfigurable SoCs. As a
consequence, the AXI communication interface can be used for the Interconnection
Point of the communication infrastructure in the FPGA (cf. Figure 21). In our
design, the Interconnection Point is the only part of the communication that must be
adapted to the main interconnect of the system. If the system uses NoC topology, for
instance, to facilitate the communication between tasks, the Interconnection Point
will be a NoC router/switch. With the AXI interconnect in both platforms, the same
design can be used in our experiments, which simplifies our implementation.
As described in the previous sections, both Reconfigurable SoC platforms also

present 32-bit dual-core ARM processors. A similar Linux-based OS, therefore, can
run on the processors of both platforms. Clearly, some details such as the OS kernel
version, available memory size on the board, and the peripheral addressing map
will cause some differences in the drivers/modules code on both platforms. However,
the same processor architecture will result in more or less a similarity in software
development, especially for the Task Manager that must be implemented to manage
the communication link between tasks in the system.

5.3 hardware implementation

5.3.1 Benchmark Applications

To evaluate the proposed communication management in the hardware context
switch, third-party IPs were used. These IPs are instrumented with the structures
that allow context extraction and restoration through a specific interface at check-
point states. We used HLS tool AUGH with CP3 plugin to prepare these IPs. The
IPs themselves are chosen from the benchmark applications which have been tested
by the same tool. They are a subset of the CHStone benchmark suite [Har+08] for
HLS tool and Inverse Discrete Cosine Transform (IDCT) application. Among the
benchmark applications, we selected the ones that can work at frequency 50 MHz
or higher and consume memory elements on the FPGA. They are the following
benchmark applications:

1. ADPCM
ADPCM (Adaptive Differential Pulse Code Modulation) implements the
CCITT G.722 ADPCM algorithm for voice compression. It includes both en-
coding and decoding functions, which can be pipelined. The two functions can
be also used as independent benchmark programs.

2. AES
AES (Advanced Encryption Standard), also known as Rijndael, is a symmetric
key cryptosystem. The AES program includes both encryption and decryption
functions, which can also be used as two benchmark programs.

5.3 hardware implementation 63

3. BLOWFISH
BLOWFISH implements a symmetric block cipher. The BLOWFISH program
contains only the encryption function.

4. GSM
This is a program for LPC (Linear Predictive Coding) analysis of GSM (Global
System for Mobile Communications), which is a communication protocol for
mobile phones. This program implements only lossy sound compression of
GSM.

5. IDCT
IDCT (Inverse Discrete Cosine Transform) returns the inverse of the discrete
cosine transform function. It is frequently used in the lossy compression of
audio and images applications.

6. MOTION
MOTION decodes a motion vector formatted according to the MPEG-2 stan-
dard, which is one of the decompression methods of video, audio and so on.

7. SHA
SHA (Secure Hash Algorithm) is a cryptosystem consisting of a set of hash
functions. This SHA program is written so as to conform with Netscapes SSL.

5.3.2 IP Generation with AUGH

In this work, we used AUGH to generate the IPs which were implemented in the
FPGA. It is a free and open source HLS tool under Affero General Public License
version 3 (AGPLv3.). AUGH receives the behavioral description of a task written
in C for High-Level Synthesis and compiles it to an IP in Register Transfer Level
(RTL). The plugin CP3 which instruments the IPs with context switch capability is
called during the compilation, as presented in Figure 14.
At the time of the writing of this report, AUGH can only be launched via com-

mand line. Listing 3 shows a typical AUGH command line to generate an IP for
FPGA. The tool is launched by a keyword augh and the associated parameters.
In Listing 3, the IP is generated for xilinx platform, i.e., xc7z045 chip. This chip
has speed grade 2 (XC7Z045-2FFG900C). The working frequency intended for the
IP is 50 MHz. Besides the command parameters, AUGH can accept more specific
configurations by calling a script during the execution. More on the details of how
to use AUGH are explained in the user guide found in [Lab].
The command to activate the CP3 plugin is located in the compilation script

(shown as ip.script in Listing 3). Listing 4 presents the CP3 plugin part in the script.
The width of the scan-chain structures is 32-bit. In the CP3 plugin, the maximum

64 experiments and results

Listing 3: Generating IP for FPGA via AUGH command line

1 # augh -v -p xilinx -chip xc7z045 -speed 2 -freq 50M -script ip. script

Listing 4: Script to call CP3 plugin in AUGH

plugin load cp3
plugin cmd cp3 init
plugin cmd cp3 set_cp_id_width 32

4 plugin cmd cp3 set_sc_width 32
plugin cmd cp3 set_log 0
plugin cmd cp3 set_costfun_type area
plugin cmd cp3 set_sc_type semifull
plugin cmd cp3 set_mem_sort_type cell

9 plugin cmd cp3 set_reg_stack_type fewhole
plugin cmd cp3 set_cp_mode escape
plugin cmd cp3 set_mem_analysis_type no
plugin cmd cp3 set_cs_latency 5000
plugin cmd cp3 cp

latency of context extraction/restoration can be defined by the designers (it is 5000
in Listing 4). This latency includes the total time to arrive at a checkpoint state
and extract the task context in that state. The other CP3-related configurations in
the script were used in this work by default, e.g., set_sc_type, set_cp_mode, etc.
Unfortunately, the user guide of CP3 is not available at the time of writing of this
report.
The results of IP generation using AUGH are written in the VHDL language.

Listing 5 presents the I/O ports found in the top level file of the IP. The standard
I/O interfaces in an AUGH-generated IP is handshake protocol. Both input and
output interfaces have data, rdy, and ack ports. It has a signal to trigger the start
of execution and an indicator can be added to notify the end of execution. In ad-
dition, the CP3 plugin enables context extraction and restoration through the CP3
interface which uses the handshake protocol as well. The infrastructure around the
IP, therefore, must adapt to this interface.

5.3.3 Communication Infrastructure

The design-based context switch ability is added using the HLS tool AUGH whereas
the communication infrastructure is implemented in the Verilog language. The im-
plementation of the communication infrastructure followed the design illustrated in
Figure 21. As the design is implemented in Reconfigurable SoC platforms, AXI inter-
face is chosen as the Interconnection Point to support the communication between
a hardware task to the rest of the system.
For comparison purposes, we built three versions of the communication infrastruc-

ture. The first version was built to give the idea of the communication infrastructure

5.3 hardware implementation 65

Listing 5: Example of input–output port definition in top level file of the generated IP

entity top is
2 port (

clock : in std_logic ;
reset : in std_logic ;
start : in std_logic ; -- start the execution
finish : out std_logic ; -- finish signal

7 -- fifo_in
stdin_data : in std_logic_vector (31 downto 0);
stdin_rdy : out std_logic ;
stdin_ack : in std_logic ;
-- fifo_out

12 stdout_data : out std_logic_vector (31 downto 0);
stdout_rdy : out std_logic ;
stdout_ack : in std_logic ;
-- cp3 ports
cp_en : in std_logic ;

17 cp_ok : out std_logic ;
cp_rest : in std_logic ;
cp_din : in std_logic_vector (31 downto 0);
cp_dout : out std_logic_vector (31 downto 0)

);
22 end top;

necessary for an IP which does not have hardware context switch ability. We refer to
this version as Basic. The second version of communication infrastructure was built
for IPs that can be context switched. However, it does not support I/O communi-
cation data extraction. We refer to this version as CS. The third version used our
solution to manage the communication in a hardware context switch and is referred
to as CSComm.

5.3.3.1 Basic

Figure 28 shows a schematic view of an AXI-based communication infrastructure
for IPs without context switch ability. It consists of AXI interfaces, an FSM, and
FIFOs. Two AXI ports were implemented in the design for the communication with
the main interconnect; they are AXI-Lite and AXI (full). The AXI-Lite port was
used to provide the control from the Task Manager via control and status registers
while the AXI port was for the communication data transfer. The FSM triggers the
read and write transfers from the FIFOs to the other tasks in the system.

5.3.3.2 Without Communication Extraction (CS)

The second version was the communication infrastructure that supported hardware
context switch but did not manage the communication during the process. The
schematic of this version of communication infrastructure is presented in Figure 29.
Similar to the Basic version, CS integrates an FSM, FIFOs, and AXI interfaces. In
addition, the context FIFO was implemented to the communication infrastructure

66 experiments and results

Figure 28: Schematic of AXI-based communication infrastructure for IPs without context
switch ability

as the IP supported the context extraction/restoration through its CP3 interface. To
share the AXI ports between the I/O communication and the context, multiplexers
are added in the design.
The context switch operation using this communication infrastructure follows the

protocol described in Figure 17. The FSM controls the flow of data transfer in the
FIFOs. When a preemption request is received, the input data flow from external to
FIFO read will be blocked. Meanwhile, the output data produced by the IP will be
sent from FIFO write to external as soon as the destination is ready. Although the
architecture has some differences, a similar solution was also presented in another
work in the literature [Vu+16]. Unfortunately, they did not present the details of
the hardware and its consumption. For this reason, this version of communication
infrastructure was developed by ourselves.

5.3.3.3 With Communication Extraction (CSComm)

The third version of communication infrastructure that we implemented in this
work is the one with communication data extraction in hardware context switch in
order to follow the protocol presented in Figure 18. To provide the communication
data management in the hardware, multiplexers were added and a modification
was performed to the FSM. Figure 30 presents the schematic of the communication
infrastructure that implements our communication solution.

5.3.3.4 Hardware Resource Evaluation

This section presents the evaluation of hardware consumption in the three versions
of communication infrastructure which were explained previously. The designs of
communication infrastructure are synthesized using the EDA tool for each FPGA
vendor. The results for the ZC706 are presented in Table 3 whereas the ones for the
A5SOC are in Table 4.

5.3 hardware implementation 67

Figure 29: Schematic of AXI-based communication infrastructure without communication
data extraction for IPs with context switch ability

Figure 30: Schematic of AXI-based communication infrastructure with the proposed com-
munication solution for IPs without context switch ability

68 experiments and results

Table 3: Resource utilization (post-placement) of the communication infrastructures syn-
thesized for ZC706 in Vivado 2015.3

Version Components LUT FF BRAM

Basic a

AXI interfaces +
registers

454 590 0

FSM + mux 229 117 0
I/O FIFO 0 0 1
Total 683 707 1

CS b

AXI interfaces +
registers

454 590 0

FSM + mux 641 543 0
I/O FIFO 0 0 1
Context FIFO 0 0 6
Total 1095 1133 7

CSComm c

AXI interfaces +
registers

454 590 0

FSM + mux 855 626 0
I/O FIFO 0 0 1
Context FIFO 0 0 6
Total 1309 1216 7

aWithout hardware context switch support
bExisting hardware context switch approach
cProposed solution

5.3 hardware implementation 69

Table 4: Resource utilization (post-placement) of the communication infrastructures syn-
thesized for A5SOC in Quartus II 15.0

Version Components ALM REG M10K

Basic a

AXI interfaces +
registers

411 581 0

FSM + mux 65 179 0
I/O FIFO 0 0 2
Total 476 760 2

CS b

AXI interfaces +
registers

411 581 0

FSM + mux 499 801 0
I/O FIFO 0 0 2
Context FIFO 0 0 24
Total 910 1382 26

CSComm c

AXI interfaces +
registers

411 581 0

FSM + mux 642 897 0
I/O FIFO 0 0 2
Context FIFO 0 0 24
Total 1053 1478 26

aWithout hardware context switch support
bExisting hardware context switch approach
cProposed solution

70 experiments and results

As the FPGA chip in A5SOC comes from a different vendor than ZC706, and,
therefore, they use different technology, the results are not quite comparable. The
logic, register, and memory utilizations are presented in different units in both plat-
forms. Nevertheless, we are able to observe the impact of adding features in the
communication infrastructure for each platform. The three version used the same
AXI interfaces where they consumed the same amount of hardware resources in the
FPGA.
The difference between each version is particularly observed in the resource uti-

lizations of FSM, multiplexers, and the FIFOs. Our measurement shows that CS
consumed the logic resources in the FPGA almost three times as much as the Basic
version due to adding the support of hardware context switch in ZC706. In A5SOC,
the resource utilization increase was even higher. We showed that the complexity of
the communication infrastructure increased due to enabling task context extraction
and restoration. Indeed, it may be relative to the designers’ coding ability when
adding the support. However, we want to show that the complexity in the communi-
cation environment also increases due to adding a context switch ability to hardware
tasks. Although, the environment has less effect to the performance of the tasks than
the scan-chain structures which are directly integrated to hardware tasks. Likewise,
CSComm consumed more FPGA resources than CS as the communication manage-
ment was added in the context switch protocol. However, the complexity added to
the infrastructure was not high as we only observed an increase of approximately
33% (214) for LUTs and 15% (83) for FFs in ZC706. In A5SOC, the observed in-
creases were 31.2% (143) for LUTs and 12% (96) for FFs.
The other components in the communication infrastructures are the FIFOs for I/O

communication and context. They consume the BRAMs (Xilinx) or M10Ks (Altera)
in the FPGA. In our experiments, we fixed the data width to 32-bit words in our
designs. For FIFO size of 1024 × 32-bit (4 Kbytes data), 1 BRAM 36K was consumed
(or 4 M10Ks in Altera). As we considered KPN in the communication model which
does not include timestamp in the communication, the size of the communication
FIFOs was not important. In these experiments, we chose 256×32-bit for the I/O
FIFO size which was sufficiently big for all the benchmark applications used. The
necessary context FIFO size, however, depends on the context size of each IP. To
give an idea of how many BRAMs (or M10Ks) are required, we present the context
size of each benchmark application in Table 5. We fixed them at 3072×32-bit (12
KBytes) for Save FIFO and Restore FIFO to adjust to the maximum context size
(motion). Both CS and CSComm consumed the same amount of BRAMs and M10Ks
in the FPGA.
In summary, the proposed communication solution extends the feature in the

existing hardware context switch support. It preserves the communication data in-
tegrity inside the FPGA at a cost of FPGA resources. The resource overhead is
particularly due to the FSM and multiplexers which consumes more LUTs and FFs.
The increase, however, is considered modest considering one-third of the total hard-

5.3 hardware implementation 71

Table 5: Task context size extracted from IP

App Context (bytes)

adpcm 1996
aes 2668
blowfish 4408
gsm 844
idct 628
motion 8400
sha 496

ware resources was already for AXI interfaces. Regarding the memory elements in
the FPGAs (BRAM or M10K), our solution did not cause any impact to the con-
sumption.

5.3.4 Generation of FPGA Configuration File

This section describes the flow in generating the FPGA configuration file or bit-
stream for each Reconfigurable SoC platform from the previously explained IPs and
communication infrastructures. The aim was to obtain the bitstream that would be
used to configure the FPGA for each benchmark application. Figure 31 and Fig-
ure 32 present an illustration of bitstream generation for both Xilinx and Altera
platforms using each vendor toolsuite. We developed scripts to perform the flow
autonomously, from a benchmark application which is described in C language until
a bitstream file.
The applications in C were compiled using AUGH (with CP3 plugin) to generate

the circuit descriptions in VHDL. At the same time, the information of port width
was taken from the application and used to configure the port width of the commu-
nication infrastructure. After the IP was generated by AUGH, the information of
the task context size was also used particularly to define the context FIFOs. The
results were the communication infrastructure and the IP of the application written
in HDL. Until this step, the execution flow for both platforms are identical.
For ZC706, Vivado Design Suite 2015.3 was used to generate the bitstream from

the HDL codes. The tool packaged each IP and integrated them in a project. After-
ward, the synthesis process was performed which was followed by the place-and-route
step. Finally, the bitstream was generated and .bit file was received. The process
inside Vivado was controlled by TCL scripts.
For A5SOC, Quartus II 15.0 was used to generate the bitstream. The IP packag-

ing and project integration were done in Qsys, a system integration tool in Quartus.

72 experiments and results

Figure 31: Autonomous flow of bitstream generation on Xilinx toolsuite

Figure 32: Autonomous flow of bitstream generation on Altera toolsuite

5.4 software implementation 73

(a) Software implementation using userspace drivers

(b) Software implementation using kernel modules/drivers

Figure 33: Software architecture to access the FPGA in the experiments

Afterward, the steps were similar with Vivado, from synthesis to bitstream genera-
tion. The steps in Quartus were performed using a combination of TCL scripts for
Qsys and bash scripts for synthesis, place-and-route and bitstream generation.

5.4 software implementation

The software implementation was performed in Linux for both ZC706 and A5SOC
platforms. Drivers are developed to control each hardware task in the FPGA and
trigger commands. There exist two ways to implement these drivers. They can be
implemented either as Userspace drivers or as Linux kernel modules. Figure 33
illustrates the possible software architectures for the experiments. We tried both
methods and there was no significant difference in performance between them, except
that kernel module implementation provided tidier access. In general, the drivers
were needed to trigger start, save, and restore commands (fpga_start, fpga_save,
and fpga_restore). When the drivers are implemented in the kernel space, they
could treat the interrupt signal (irq) which were received from the communication
infrastructure, for instance to notify the end of execution. In the userspace drivers,
the application had to read the status registers by polling to verify that the execution
was terminated.

74 experiments and results

Figure 34: A program to evaluate the performance of the communication solution in a
hardware context switch

For the experiments, a real scheduler was not necessary since the objective was to
measure the performance of the solution. Instead, we developed a program written
in C language that could send preemption requests at a specified time. The Task
Manager and software tasks in the processors that communicated with the hard-
ware task in the FPGA were also integrated into the program that sent preemption
requests. Figure 34 illustrates this program. It accessed the driver that controls the
task in the FPGA through a file descriptor, e.g., /dev/mem or /dev/fpga_mod. As
this implementation was done in software, it did not add any hardware resource
consumption.

5.5 performance evaluation

This section presents the results of the performance evaluation in the experiments.
The evaluation mainly compares the context switch performance between communi-
cation infrastructures with CS and CSComm versions to see the quantitative benefits
of our solution. The performance evaluation was done on ZC706 and A5SOC plat-
forms for every benchmark application, except for SHA which did not run properly
in A5SOC due to a low performance issue. To maintain the FPGA working fre-
quency at 50 MHz, we excluded SHA application on A5SOC. As the FPGA clock
rate is fixed for every benchmark application, the time measurements do not reflect
the real performance of the tasks and communication infrastructure. For this reason,
the measured time is presented in FPGA cycles.
Firstly, we describe the evaluation scenario which includes a hardware context

switch operation. Then, we present the measurement results of total execution time
when a context switch is performed. Afterward, the extraction and restoration time
of context and associated I/O communication data are presented. Finally, we inspect
the effect of our solution to the context switch latency.

5.5 performance evaluation 75

Figure 35: Hardware context switch scenario used in the experiments

5.5.1 Evaluation Scenario

Figure 35 presents the scenario that we followed in our experiments. During every
task execution, a hardware context switch was performed to a hardware task. This
scenario was repeated 1000 times for every benchmark application to obtain results
with statistical confidence. The scenario began by starting the execution of a hard-
ware task on the FPGA. At an arbitrary point in time, a preemption request was
given to the task. We defined the time from the arrival of the preemption request to
the beginning of context extraction as the latency in hardware context switch (pre-
emption latency). The context and the I/O data inside the communication channels
were extracted and stored in the main memory of Reconfigurable SoC platform
through AXI interconnection. After the task context extraction was finished, it was
restored back to the FPGA from the main memory to complete the execution. The
storing time between the extraction and restoration of contexts was not considered
as it was not relevant in this evaluation.
The explained scenario was used to evaluate the communication infrastructure

used with every benchmark application. The FPGA configuration was done once
before the scenario was executed on each application. The average time required
to perform an FPGA full configuration from Linux on the processor using Proces-
sor Configuration Access Port (PCAP) driver was 0.546 seconds in ZC706 and 1.23
seconds in A5SOC due to the different configuration file size. To obtain a fair evalua-
tion of our communication method, we did not use any specific scheduler to generate
preemption requests. Instead, we developed a simple script in bash to generate pre-
emption requests at a random time from the ARM processor. These requests were
sent through AXI interconnection to the FSM in communication infrastructure.

5.5.2 Total Execution Time

Due to communication data management during a hardware context switch in addi-
tion to the conventional task context extraction and restoration, the data footprint
associated to the process was increased. First of all, we verified the impact of the con-

76 experiments and results

text switch to the total execution time. Using the prepared scenario, context switch
was performed to the system which followed two protocols, CS and CSComm, and
the total execution time was measured. Figure 36 presents the plots of the total
execution time for each benchmark application when a hardware context switch is
performed due to a given preemption request. We present only the results of the
measure in ZC706 since the experiments in A5SOC provide similar results. The x-
axis of the plots represents the moment when a preemption request is received by
the communication infrastructure where it will be relayed to the hardware task. The
maximum range in x-axis thus is the total execution time if there is no hardware
context switch during task execution. The y-axis of the plots represents the total
execution time including the normal execution and hardware context switch.
By sending preemption requests at arbitrary points in time, we were able to ob-

serve the impact of our solution in the entire spectrum. The total execution time in
CS shows a small variation due to the different time required to arrive at checkpoint
states. In contrast, different patterns in CSComm for each benchmark application
can be observed in Figure 36. These patterns appeared due to the nature of the
execution and the condition of communication channels at the moment when pre-
emption requests were given. In the beginning of the execution, the input FIFO is
usually filled with the input data. Since the CSComm manages the communication
data, it increases the total execution time when the hardware context switch oc-
curs. A longer time is required to extract and eventually restore the context and the
communication data.
We can see that the amount of data inside the communication FIFOs evolves

over time by observing the patterns in the plots for CS and CSComm. A shorter
hardware context switch was obtained when the hardware task had consumed input
data while it had not produced any output data yet. The patterns in CSComm
can be clearly seen in Figure 36c, Figure 36f, and Figure 36g. In BLOWFISH, for
instance, the context switch time (therefore the total execution time) with CSComm
solution was lower when a preemption request was given at cycle 60000 than when
it was given at cycle 40000. The total execution time of CSComm approached CS
when the communication channel was empty. Less obvious patterns are seen for the
system that uses CS solution. For instance, for MOTION (Figure 36f), the data in
output FIFO caused the total execution time increases when preemption requests
are given after cycle 1800.
From the plots presented in Figure 36, we can also see that the total execution

time in CSComm is constantly higher for most cases than in CS. The average values
of total execution time with a hardware context switch are presented in Table 6 (for
ZC706 platform). The results shown in the table are expected. As the CS solution
does not manage the communication data in the context switch, it must delay the
preemption requests if there exist ongoing communication flows. The latency shown
in Figure 35 will therefore increase unpredictably, which will be explained in Sec-
tion 5.5.4. However, the execution flow of the task in CS will advance while waiting

5.5 performance evaluation 77

(a) ADPCM (b) AES (c) BLOWFISH

(d) GSM (e) IDCT

(f) MOTION (g) SHA

Figure 36: Total execution time with preemption requests at arbitrary points in time
(ZC706)

78 experiments and results

Table 6: Comparison of average total execution time (FPGA cycles) with a hardware
context switch between CS and CSComm in ZC706

App CS CSComm Overhead

adpcm 20879 20933 0.26 %
aes 14184 14237 0.37 %
blowfish 146255 146583 0.22 %
gsm 12548 12619 0.57 %
idct 1388 1516 9.19 %
motion 13009 13268 1.99 %
sha 331767 332435 0.2 %

the communication flows to finish. As a result, CS will leave a shorter part to be
resumed after the task is restored compared to CSComm. For this reason, the larger
data footprint due to managed data in communication FIFOs has a bigger influence
on the total execution time, which explains the overhead of CSComm compared to
CS.
Nevertheless, the overhead in the total execution time due to our communication

solution is negligible in most of the benchmark applications. The exception is par-
ticularly observed in IDCT which already has a short execution time in the first
place. Performing the context extraction and restoration in CS increases more than
100% of the initial execution time (cf. Figure 36e). A higher overhead is obtained
due to our communication solution in CSComm which includes I/O communication
data in the process. The overall results in A5SOC, which are described in Table 7,
generally agree with the results of the experiments in ZC706.

5.5.3 Context Switch Time

This section details the overhead of our communication solution (CSComm) to the
context switch time, which is the extraction and restoration time of the hardware
task context and I/O communication data which we refer to as communication-
aware context (cf. Section 4.5.3). In contrast, the context in CS did not include
the data in communication FIFOs. Table 8 describes the comparison of extraction
and restoration of task context between the system which implemented CS solution
and the one with CSComm solution. As expected, CSComm required more time
in extraction and restoration for all benchmark applications. However, the table
shows that the increases in the extraction time were not significant in most of the
applications for CSComm. In these experiments, we took advantage of a character-

5.5 performance evaluation 79

Table 7: Comparison of average total execution time (FPGA cycles) with a hardware
context switch between CS and CSComm in A5SOC

App CS CSComm Overhead

adpcm 21293 21341 0.23 %
aes 14768 14815 0.31 %
blowfish 147241 147625 0.26 %
gsm 12695 12757 0.48 %
idct 1480 1594 7.68 %
motion 14808 15099 1.96 %

Table 8: Comparison of average extraction/restoration time (FPGA cycles) in hardware
context switch between CS and CSComm in ZC706

App Extraction Time Restoration Time Total
OverheadCS CSComm Overhead CS CSComm Overhead

adpcm 1151 1152 0.07 % 1174 1229 4.7 % 2.41 %
aes 1485 1486 0.06 % 1510 1562 3.45 % 1.77 %
blowfish 2400 2401 0.04 % 2429 2720 12 % 6.05 %
gsm 527 547 3.74 % 551 608 10.39 % 7.14 %
idct 417 501 20.18 % 442 539 21.94 % 21.08 %
motion 4494 4495 0.02 % 4519 4776 5.69 % 2.86 %
sha 396 714 80.33 % 422 745 76.28 % 78.24 %

istic of the scan-chain structures provided by the CP3 plugin. This characteristic is
that there do not exist communication data reading and writing between checkpoint
states. For this reason, we put the extraction of I/O communication data first when
a preemption request is received. By the time the task arrived at a checkpoint, and
the extraction of task context can be started, a certain amount of I/O data has
already been extracted. For several applications, this led to an extraction overhead
less than 0.1 %.
The benefit of starting the I/O data in advance can be overshadowed if a task

has intensive communication and a small context size, such as for SHA. SHA had
the smallest context size among the bench applications (cf.Table 5) and showed the
highest overhead in context extraction. The second highest overhead is shown by
IDCT with less intensity in communication. Although GSM also has a context size

80 experiments and results

Table 9: Comparison of average extraction/restoration time (FPGA cycles) in hardware
context switch between CS and CSComm in A5SOC

App Extraction Time Restoration Time Total
OverheadCS CSComm Overhead CS CSComm Overhead

adpcm 1351 1352 0.06 % 1390 1438 3.44 % 1.78 %
aes 1770 1772 0.1 % 1809 1854 2.5 % 1.31 %
blowfish 2891 2893 0.05 % 2934 3286 12 % 6.07 %
gsm 599 613 2.4 % 632 681 7.83 % 5.19 %
idct 462 540 16.79 % 496 582 17.55 % 17.18 %
motion 5450 5450 0 % 5503 5795 5.3 % 2.66 %

lower than 1 KByte, its total overhead was only 7.14% due to its relatively low
I/O data. BLOWFISH, on the other hand, has a relatively large context size and
intensive communication.
In restoration, the checkpoint architecture does not bring any advantage. The

I/O data and context must be restored to the channels and the task sequentially,
which explains why the overhead of the restoration time is higher in CSComm for
most of the applications. The restoration mechanism built in the communication
infrastructures also caused longer restoration time for both CS and CSComm. Since
the amount of I/O communication data and context size are stored in main memory,
the FSM had to retrieve them first before restoring the data through AXI interface.
This mechanism added approximately 25 FPGA cycles in restoration time for all
applications. As we can see in Table 8, the restoration time of CS is longer even
though the extracted and restored data size is identical. Similar results were found
in A5SOC as presented in Table 9, besides the SHA application which was not
implemented.
To summarize, the overhead in extraction and restoration due to the proposed

solution is almost inevitable as the communication management increases data foot-
print. On top of that, the communication management during hardware context
switch will generate a noticeable impact on a task that has small context size. Al-
though, the worst case additional time in the extraction/restoration can be predicted
from the size of the FIFOs which need to be managed. Minimizing the FIFO size
for communication thus will reduce the maximum additional time in the extraction
and restoration of communication-aware context.

5.5 performance evaluation 81

5.5.4 Preemption Latency

The preemption latency, as described in Figure 35, is defined as the time between
the arrival of preemption request and the beginning of context (and communica-
tion data) extraction. Whereas, the total preemption time is defined as the sum
of latency and context switch time. There are two components in the preemption
latency in our system. The first component is caused by the checkpoint architecture.
In order to start the context extraction from a hardware task, the execution flow has
to reach a checkpoint state. This latency depends on the implementation of scan-
chain structures in the task. The second latency component is due to the ongoing
communication flows which prevent a hardware task to be context switched. In CS,
this latency is shown by the delay in context switch until there is no communication
data intermediately stored in the channels. In contrast, CSComm removes this delay
since it can handle the situation where the communication channels are still busy
when a preemption request is received.

Table 10 describes the comparison of average preemption latency between CS
and CSComm in ZC706. It is worth mentioning that our implementation of CS
manipulated the input data flow to cut the delay due to the communication (cf.
Figure 17). The input data flow is stopped when a preemption request is given so
that no new data could arrive at the communication buffers, as proposed in [Vu+16]
and presented in Section 5.3.3.2. At the output side, output data was immediately
transferred to the FIFO of the software task every time they were produced until
the context extraction began. This was possible due to the large size of FIFOs of
the software task in the experiments. This condition is beneficial to the preemption
latency of CS since, normally, the output data can only be transferred outside the
FPGA if the receiver is ready (enough space in the FIFO of the successor task).
Despite this, the latency of benchmark applications shown in the table are still
significant, particularly for applications which are communication-intensive, e.g.,
BLOWFISH and SHA. For applications with less intensity in communication, the
latencies were 147 cycles or more. This shows the cost of the penalty due to the
communication.
With our solution in CSComm, the latency in preemption was significantly re-

duced to 56 cycles or less for all benchmark applications. This value reflects the
initial latency caused by the checkpoint architecture since the preemption requests
were not stalled anymore when the preempted task has ongoing communication
flows. This result shows the evident benefit of our solution. While maintaining the
communication data consistency in a preempted task, it also significantly reduces
the latency in a hardware context switch operation.
With the latency and total preemption time in Table 10, we also present the

ratio between them. When we compare the ratio of latency to total preemption
time between CS and CSComm, we observe substantial differences between CS and
CSComm. This ratio correlates to the system responsiveness to preemption requests.

82 experiments and results

Table 10: Comparison of average preemption latency (FPGA cycles) between CS and
CSComm in ZC706

App CS CSComm

Latency Total
Preemption

Ratio Latency Total
Preemption

Ratio

adpcm 147 2472 5.93 % 6 2387 0.23 %
aes 148 3143 4.71 % 17 3066 0.56 %
blowfish 20017 24847 80.56 % 56 5177 1.08 %
gsm 178 1256 14.16 % 14 1168 1.16 %
idct 180 1039 17.3 % 10 1050 0.93 %
motion 876 9889 8.86 % 7 9278 0.07 %
sha 10153 10971 92.54 % 7 1467 0.51 %

How fast hardware tasks in reconfigurable architectures react to preemption requests
from the scheduler is frequently important in a system with a strict time constraint.
When the latency ratio is high in the hardware context switch, the system has
low responsiveness to preemption requests. CS spends more time waiting until the
communication channels do not contain data anymore rather than performing the
context extraction and restoration. In Table 10, the latency of CS took up to 92.54
% of the total preemption time whereas CSComm reduced the latency to 1.16 % and
below for the benchmark applications. This result means that our communication
management provides the high system responsiveness in a hardware context switch.
With the reduction of preemption latency in CSComm, we also obtained a shorter

preemptive context switch time for most of our bench applications. This advantage
was shown in most of the benchmark applications used in the experiments. However,
more obvious differences between CS and CSComm regarding the total preemption
time are shown in BLOWFISH and SHA. The overhead caused by extracting and
restoring the I/O communication data became negligible thanks to the reduction in
preemption latency. Nonetheless, the overhead in data footprint is still higher for
IDCT due to its small context size and its less intensity in data exchange. Similar
results when the evaluation was performed in A5SOC are presented in Table 11.
Finally, we would also like to highlight the predictability in the preemption offered

by our solution. Figure 37 shows the preemption time presented in box-and-whisker
plots. The box describes 50 % of the data and the whiskers represent the maximum
and minimum values in our measurements. A wide range of values in the plots
shows a high variation in the preemption time. Not only does our communication
solution reduce the average latency in preemption, it also improves the predictability
of the total preemption time for most of the benchmark applications. Again, these

5.6 application 83

Table 11: Comparison of average preemption latency (FPGA cycles) between CS and
CSComm in A5SOC

App CS CSComm

Latency Total
Preemption

Ratio Latency Total
Preemption

Ratio

adpcm 145 2887 5.04 % 5 2795 0.19 %
aes 149 3728 4 % 18 3643 0.48 %
blowfish 19726 25551 77.2 % 54 6233 0.86 %
gsm 174 1405 12.4 % 15 1309 1.14 %
idct 175 1133 15.47 % 10 1132 0.84 %
motion 886 11838 7.48 % 7 11252 0.06 %

results are expected since our method bounds the latency due to the communication
channels, at least in the worst case, before a context extraction can begin. The
plots show that the systems which use CSComm have less variation in the total
preemption time, except for IDCT. The negative impact in IDCT was due to the
small context size of the task.
In conclusion, our solution provides the necessary high responsiveness in a hard-

ware context switch besides preserving the communication data integrity during the
process. It also improves the predictability in the context switch since the size of
the FIFOs in the communication channels can be adjusted.

5.6 application

The hardware context switch ability on FPGAs which is offered by the state-of-the-
art techniques and the I/O communication management which comes with it in our
solution enable hardware multitasking in heterogeneous reconfigurable architectures.
In addition to the performance evaluation, we developed two applications in the ex-
periments. The first application was task migration in heterogeneous reconfigurable
systems. We migrated a hardware task that ran in one of the Reconfigurable SoC
platforms in the experiments, as shown in Figure 25, to another Reconfigurable SoC
platform. As discussed in Section 4.5.1, communication between FPGAs in differ-
ent Reconfigurable SoCs is not treated yet in this work. For this reason, we had to
migrate the entire application from one Reconfigurable SoC platform to another. A
task migration in this work is actually a migration of an entire application between
Reconfigurable SoC platforms. Our communication solution ensured the communi-
cation data consistency at any time during the migration. The second application

84 experiments and results

(a) ADPCM (b) AES (c) BLOWFISH

(d) GSM (e) IDCT

(f) MOTION (g) SHA

Figure 37: Hardware context switch time measured from the moment a preemption request
is received until the task resumes (ZC706)

5.6 application 85

(a) Migration NFS (b) Migration SSH

Figure 38: Hardware task migration between heterogeneous reconfigurable SoCs

was built for FPGA virtualization where multiple users in independent operating
systems share common hardware resources in a cloud-FPGA.

5.6.1 Migration in Heterogeneous Reconfigurable Systems

A hardware context switch for the purpose of migrating a task from an FPGA to
another can occur due to many reasons, e.g., load distribution, fault tolerance, etc.
As we base our work on design-based techniques to provide the hardware context
switch ability, task migration between two different FPGAs should be absolutely
feasible. We developed, using the two Reconfigurable SoC platforms, a system for
prototyping task migration in heterogeneous reconfigurable systems.
Figure 38 describes the overview of two migration architectures that were built

in the experiments. Both Reconfigurable SoC platforms in the architectures were
connected through an Ethernet connection. The difference between the two archi-
tectures was the method to transfer the context and communication data between
platforms. In Figure 38a, NFS protocol was used. To facilitate such a protocol, a
disk was mounted in the network as a sharing media between the platforms. In Fig-
ure 38b, the context was transferred from a Reconfigurable SoC platform to another
by using the SSH protocol.
The application was launched from a host PC. The request to migrate was given

by the host PC as well. When a migration request is given to one of the platforms, a
script that was created for the task (application) migration by accessing the drivers
in each platform was called. Figure 39 presents the timeline in our task migration
application. The migration script ran the execution flow in each Reconfigurable
SoC platform as well as the transfer of context and communication data as files.
Besides the drivers to control the communication infrastructure in the FPGA (cf.
Section 5.4), we also used Linux drivers to read and write from the FIFOs of all

86 experiments and results

Figure 39: Task migration timeline

tasks on each platform. We consider the time from the arrival of migration request
until the context is ready to be sent in the source Reconfigurable SoC as textract

whereas the time from the arrival of context until the task resumes in the destination
Reconfigurable SoC as trestore.
Table 12 presents the timing results in the task migration. The textract took 0,03

seconds or less on average to perform the process of reading a task context and
communication data as well as saving them as files. The trestore required roughly
the same period to restore the tasks and resume the execution. Both the textract

and trestore include the preemption time in the FPGAs. The tmigration shows the
total required time as well as the cost of transferring the files from one platform
to another. We can see in the table that the NFS transfer took a shorter amount
of time thanks to asynchronous transfer through a NFS-mounted disk in both plat-
forms. The SSH transfer, on the other hand, performed handshaking before doing a
synchronous transfer from a sender to a receiver. The values shown in Table 12 are
the average values for both migration direction. As a result, they do not include the
FPGA reconfiguration time due to the difference in each platform. As a reminder,
reconfiguring the FPGA in ZC706 takes 0.546 seconds while reconfiguring the FPGA
in A5SOC takes 1.23 seconds.
Throughout this section, we showed a task migration prototyping in heteroge-

neous reconfigurable systems. Although further development is still necessary to
improve the performance of the method, we have shown two advantages of our work.
First, we have shown that the proposed mechanism is functional in heterogeneous
reconfigurable systems and is capable to preserve the communication data integrity
during the migration. Secondly, we have shown the genericity of our solution by
implementing the same mechanism in different heterogeneous platforms. Although
some differences due to memory mapping must be considered when implementing
the software (cf. Section 5.4), the hardware architectures are identical.

5.6 application 87

Table 12: Task migration time between A5SOC and ZC706

textract
(s)

trestore
(s)

tmigration (s)

NFS SSH

ADPCM 0.026 0.021 0.577 0.759
AES 0.025 0.021 0.577 0.760
BLOWFISH 0.030 0.027 0.606 0.969
GSM 0.025 0.020 0.572 0.757
IDCT 0.024 0.020 0.574 0.762
MOTION 0.028 0.027 0.606 0.972

5.6.2 Hypervisor-based System for FPGA Virtualization (Cloud-FPGA)

For years, FPGAs have always been used as hardware accelerators. By moving the
execution of the performance critical or heavy parts from a CPU to an FPGA, a
typical 10×–100× speed-up can be obtained. Recently, there are growing interests in
using FPGAs in cloud infrastructures (cloud-FPGA). FPGAs offer better security
to data and computation compared to software solutions which is a fundamental
problem in cloud computing [EV12]. The authors in [Che+14] explained the FPGA
integration in cloud is non-trivial due to the capability of FPGAs in resource ab-
straction and sharing. Due to similar reasons, the work in [FVS15] proposed FPGA
accelerators for cloud server. The latest implementations in datacenter application
for Baidu [Ouy+14] and Microsoft Bing [Put+15] search services confirm the poten-
tial which can be offered by FPGAs.
In recent works, the virtualized environments have been used in popular hetero-

geneous CPU-FPGA architectures [KSH05]. Hypervisors, which is a form of para-
virtualization in bare-metal level, were proposed both in X86 and ARM architectures.
They offer several advantages in the cloud implementation, e.g., higher system secu-
rity due to the user isolation, resource efficiency from the hardware virtualization,
and thus power efficiency. Over the years, hypervisors that manage the CPU and
FPGA resources have been proposed for various architectures. Xen hypervisor which
runs on X86 processors was integrated with an FPGA [WBP13]. The processor and
the FPGA communicate to each other via a PCIe connection. A similar architecture
was also proposed in [KS15] where the FPGA resources were divided into partial
regions. A solution using microkernel-based hypervisor for embedded platform were
proposed in [Jai+14].
A hardware context switch support combined with a hypervisor-based system will

provide an illusion of a higher capacity system. Most of the existing works consider
the FPGA as a dedicated resource in fixed functions. Dividing FPGA resources

88 experiments and results

into partial regions enables run-time task allocation in the system. However, it
also reduces the available resource for more complex applications. With support in
hardware context switch, several users can share common FPGA resources for bigger
applications. Such features can also be used for consolidating the cloud resources
for higher energy efficiency.
We developed a hypervisor-based system on a heterogeneous CPU-FPGA archi-

tecture with the hardware context switch support. This architecture was built on the
Xilinx Zynq Ultrascale+ MPSoC ZCU102 Evaluation Kit. This platform integrates
a quad-core ARM Cortex A53 processors, dual-core Cortex-R5 real-time processors,
a Mali-400 MP2 GPU, and programmable logic. The ZCU102 platform was chosen
due to its compatibility with one of available hypervisors in the market, Xen.
Guest operating systems run as domains (Dom) in Xen hypervisor where it is re-

sponsible in their memory management and CPU scheduling of all virtual machines.
One of the domains has the privilege to access the hardware directly (Dom0). The
Dom0 is responsible to launch and manage the other domains (DomU) in the system.
To access devices which are shared between domains, DomUs must communicate
with Dom0. This is done by a two-part driver: frontend and backend. The drivers
for interdomain communication in Xen hypervisor support Grant table and event
channel, and ring buffer for data transfers between domains.
Figure 40 describes the overview of a Xen-based system built on Zynq Ultrascale+

(ZCU102). All the users in DomUmay access the FPGA in the system through Dom0
without users knowing the detail. When a DomU is accessing the FPGA resource,
the commands are forwarded from its frontend driver to the FPGA driver by backend
driver in Dom0. We developed a scheduler in Dom0 that allocates the access from
each DomU in the system and follows round-robin scheduling policy.
The illustration of task allocation for different DomU (users) in the FPGA is

shown in Figure 41. Xen hypervisor performs the scheduling for each domain (oper-
ating system) in the system. In the figure, every domain can run for 100 µs in the
CPU before being switched. Meanwhile, the task scheduling on the FPGA is man-
aged by Dom0. Another width of execution window can be set to every task that
runs on the FPGA, for instance 1 ms in the experiments. Due to the hardware task
scheduling on the FPGA, Dom0 triggers the hardware context switch operation to
switch between tasks from User 1 and User 2. The entire hardware task management
is completely invisible to the users.
Using the hypervisor-based system, we show that our context switch solution

can be used to virtualize the FPGA. The communication management that we
propose preserves the communication data integrity in the process and provides a
high responsiveness at the same time which is necessary in a system with tight time
constraints. The developed system in this work only verified the functionality of
the design. In future works, the system can be improved to implement real-time
streaming applications and to obtain its quantitative characteristics, e.g., energy
consumption, performance, etc.

5.6 application 89

Figure 40: Overview of Xen-based system on Zynq Ultrascale+

Figure 41: Task allocation (scheduling) on FPGA in the hypervisor-based environment

90 experiments and results

5.7 conclusion

In this chapter we present the experiments to evaluate the performance and over-
head of our communication solution as well as some applications in heterogeneous
reconfigurable systems. Two popular commercial Reconfigurable SoCs from different
vendors were used in the implementation: ZC706 and A5SOC. They are used in the
experiments to demonstrate the genericity of our solution and the ability of our sys-
tem to serve in heterogeneous reconfigurable systems. In the hardware part, we used
an existing HLS tool AUGH (and its CP3 plugin) which allows the instrumentation
of hardware tasks with a context extraction ability. A communication infrastructure
which implements our solution is added to connect each hardware task to the rest
of the system. We show, in this chapter, the integration of such infrastructure and
hardware task, and the software development to manage the communication link
between tasks.
The evaluations of the solution were performed on each Reconfigurable SoC plat-

form. A scenario where a context switch was performed once to a running hardware
task in the FPGA was devised. To the total execution time, our solution added a
modest overhead in the benchmark applications. This was due to managing the I/O
communication data stored in the FIFOs in addition to the context of a task in
preemption. The overhead in the data footprint was detailed in the results of extrac-
tion and restoration time. However, the responsiveness of the system to preemption
requests is significantly improved. Without any communication management, con-
text switch must be prevented or delayed if the preempted task still has ongoing
communication flows. Our solution guarantees the communication data integrity
that enables a context switch operation to be started immediately after the pre-
emption request is received. For the overall preemption process, the communication
management that we propose also improved its predictability.
In this work, we present an application of hardware context switch to prototype

dynamic task migration in heterogeneous reconfigurable systems. Hardware tasks
can be migrated between two FPGAs in different Reconfigurable SoC platforms.
Although, the prototype presented in this work required a migration of the entire
application including the tasks in the CPU due to the limitation in our communi-
cation solution. Another application that we developed is to virtualize the FPGA
resources in the cloud using hypervisor-based systems. In such systems, FPGA re-
sources are shared among the users which have access to an independent guest OS.
The hardware context switch support is therefore necessary to provide this mul-
titasking feature. Our solution ensures the communication consistency when the
hardware context switch occurs.

6
CONCLUS ION AND FUTURE WORKS

T
his chapter concludes this work which presents our contributions in
the communication management and consistency preservation during a
hardware context switch operation in heterogeneous reconfigurable sys-

tems. The possible future works that can extend the current development are also
described in this chapter. This work is normally expandable either in the applica-
tion or optimization/enhancement of the communication management in a hardware
context switch.
The first proposition in the future works is to place hardware tasks that have the

context switch ability in partial regions to optimize the FPGA resource utilization.
We measured the performance of our solution in the experiments by using an FPGA
with only one hardware task in the entire FPGA. However, the communication
management presented in this work should be applicable for a system that has either
multiple FPGAs or partial reconfigurable regions in an FPGA. The next proposition
is to expand the compatibility of our communication solution to heterogeneous CPU-
FPGA systems for large-scale distributed implementation. The scalability of the
solution must be improved in order to adapt to such systems. The third proposition
continues the application of hardware context switch in FPGA virtualization for
hypervisor-based CPU-FPGA system, as presented in Section 5.6.2.

Contents
6.1 Conclusion . 92
6.2 Future Works . 93

6.2.1 Hardware Context Switch in a System with Dynamic
Partial Reconfiguration 93

6.2.2 Dynamic Task Migration in Large-Scale Distributed
CPU-FPGA Systems . 94

6.2.3 Hardware Context Switch Support for Energy Efficient
Cloud-FPGA . 95

91

92 conclusion and future works

6.1 conclusion

In recent years, FPGA devices have shown their capability to accelerate heavy com-
putation and provide high performance to energy ratio. In order to fully exploit the
potential of FPGA devices as hardware accelerators, multitasking support similar
to the one in multiprocessors architectures is necessary. Executing, interrupting, mi-
grating, or resuming hardware tasks on FPGAs from specific points in execution
is possible if a hardware context switch support is provided. Enabling hardware
context switch in reconfigurable devices has been an important research topic for
decades, and many solutions have been proposed for this specific objective.
In this work, we focus on hardware context switch techniques that are appropri-

ate for preemptive scheduling. The literature review has shown that design-based
techniques which instrument hardware tasks on FPGAs with scan-chain structures
for context extraction can offer a hardware context switch ability which is powerful
and independent to the FPGA architecture used. The state-of-the-art hardware con-
text switch solution presents a high-performance, reduced overhead, and low effort
scan-chain instrumentation on hardware tasks that takes advantage of a high-level
synthesis circuit generation. And yet, little attention has been paid to manage the
consistency in communication when a hardware task is part of a communication net-
work and needs to be context switched. Like in many other solutions in the literature,
the questions such as data integrity, continuity, and performance in communication
are left open.
This work deals with the communication data integrity that prevents a hardware

task in an FPGA for being context switched while it has ongoing communication
flows. Hence, the existing solutions so far proposed a hardware context switch that
works under very strict constraints, i.e., absence of communication data in the chan-
nels or end of communication flows. These conditions cause a performance drop and
unpredictability in the process, or the inability to context switch hardware tasks at
the intended time.
To overcome the challenges in communication, we propose a context switch proto-

col that guarantees the communication consistency between tasks while eliminating
the constraints in the existing solutions. In any case, the I/O communication data
in the channels are to be managed during a context switch. We propose to extract
the communication data in the FIFOs associated to the preempted task together
with its context. Before the context and communication data of a preempted task
are extracted, the communication link to the rest of the system has to be safely
disconnected. Later, it must be reconnected to resume the interrupted execution
and communication flows. Since the idea is simple and straightforward, the solu-
tion is generic and adaptable to various communication topologies as well as FPGA
architectures.
A CPU-FPGA architecture was targeted in the implementation of our commu-

nication solution in the hardware context switch operation. The method is inte-

6.2 future works 93

grated in a communication infrastructure that interfaces each hardware task with
a context switch ability to the rest of the system. The communication flow and the
extraction/restoration of task context as well as I/O communication data in the
communication infrastructure are controlled by an FSM. The context and communi-
cation data are managed together as a communication-aware context in our solution.
Meanwhile, the communication link is managed by a task manager, which can be a
program or module, in one of the CPUs in the system. The task manager keeps the
information of the communication between tasks in order to ensure the continuity
in communication after a context switch.
Experiments were done to validate our method as well as to evaluate its per-

formance and overhead in a real system. Two Reconfigurable SoC platforms with
a FPGA from a different family and vendor were used. We implemented a system
that followed our communication solution and a system which used the existing solu-
tion for comparison purposes. As expected from the additional communication data
management in a context switch operation, our solution modestly increases the time
required to extract and restore the context, thus the total execution time. According
to the size of the communication FIFOs, the overhead in the context extraction and
restoration may vary. Despite the overhead in the context extraction and restora-
tion time, we had successfully shown that our communication significantly reduced
the latency in the preemption. That means the responsiveness of the system toward
preemption requests increases. Consequently, the total preemption time decreases
and is more predictable in the system with our solution.
Nevertheless, the proposed solution has still some limitations which are not yet

addressed in this work. Our communication management requires all the CPUs and
FPGAs in the system to be connected in the same interconnect. To increase the
scalability, a NoC-type communication topology is necessary. Otherwise, the num-
ber of CPUs and FPGAs that can be added to the system is limited. Without NoC
topology, multiple interconnects need to be set in a hierarchy which requires further
development. Some applications that use our solution are also possible in a system
which contains partial reconfigurable regions or use hypervisor to manage the vir-
tualization of FPGAs. The topics to improve our existing method and development
will be discussed in Section 6.2.

6.2 future works

6.2.1 Hardware Context Switch in a System with Dynamic Partial Reconfiguration

Due to the growing capacity of FPGAs, the resources in an FPGA can be divided
into partial reconfigurable regions to optimize the resource utilization. Dynamic
Partial Reconfiguration (DPR) has been gaining popularity recently as it provides
not only dynamic placement of tasks [WP02] but also reduced FPGA configuration
time [DML12]. Thanks to DPR technology, each task can be processed, interrupted,

94 conclusion and future works

or reconfigured separately without affecting the others. Due to this feature, some
works claim to offer a non-preemptive context switch by partially reconfiguring
FPGAs [Gua+08].
Integrating our solution in a system with DPR support will enable preemptive

scheduling in the hardware context switch. The protocol which is proposed in this
work is perfectly adapted to hardware tasks configured in partial reconfigurable
regions. Each partial region in the FPGA contains a hardware task and is managed
separately. Since we base our context switch solution on design-based technique, we
do not require homogeneity in each partial regions, which reduces the constraints
in the implementation. Each hardware task in the system is connected to a main
interconnect through a communication infrastructure.
Nevertheless, there are other challenges that need to be resolved if we want to

integrate a context switch method into a system with DPR support. Task relocation
and fragmentation in an FPGA are some of the challenges. The potential to provide
a faster communication mechanism between hardware tasks as they are located in
the same FPGA must also be studied. Despite these challenges, our solution itself
should be applicable in such systems.

6.2.2 Dynamic Task Migration in Large-Scale Distributed CPU-FPGA Systems

The communication solution in this work is developed for the system presented in
Figure 19 where all the components share the same interconnect. However, it poses
a limitation in the number of CPUs and FPGAs that can be added to the system. A
NoC-type communication topology can be used to increase the scale of the system,
which is adapted by our solution, but it is still limited to the network capacity. In
other words, the current targeted system lacks scalability. Currently, there exist no
interest in enabling a hardware context switch and task migration in large-scale
heterogeneous architectures.
When the scale of a heterogeneous CPU-FPGA is increased for high complexity

applications, further developments are necessary to enable hardware context switch
and maintain the communication consistency in the system. In a large-scale CPU-
FPGA system that handles complex applications, for instance the Catapult project
proposed by Microsoft, many distributed servers are integrated into a common sys-
tem as presented in Figure 42. Each server consists of a CPU and an FPGA device.
These servers are connected by two links: PCIe and Gigabit Ethernet links. A similar
architecture can also be built using Reconfigurable SoC plaforms.
The hardware context switch support in such architecture can be added if the tasks

on FPGAs do not communicate with other tasks. That being so, a task migration is
possible from a server to another. However, if the hardware tasks communicate with
other tasks, migrating them will not be easy. The reason why our solution cannot
be directly adapted to such a system is because it requires encapsulation in the
communication. The connection inside each server and between servers have different

6.2 future works 95

Figure 42: Abstract view of a large-scale CPU-FPGA architecture [Put+15]. Each server
consists of a CPU and an FPGA.

levels. To provide the scalable solution that can satisfy a large-scale distributed
system, the communication management in the context switch must consider the
encapsulation for different levels of communication.

6.2.3 Hardware Context Switch Support for Energy Efficient Cloud-FPGA

FPGA devices are graining traction in cloud infrastructures due to the performance
and efficiency offered. The objective is to virtualize FPGA resources and provide
them to users in various cloud applications. In cloud architectures, accessing FPGA
resources must be indirect to avoid malicious attack. For this reason, virtual ma-
chine managers, such as hypervisors are necessary to isolate the hardware from
direct access as well as to manage the system transparently from the users. In order
to obtain even higher performance and flexibility in the system, hardware context
switch support is required to provide multitasking in FPGAs.
In this work, we presented an integration of the hardware context switch support

in a Xen-based system. A common FPGA resource was shared between several
users in guest OSes (DomUs). Since the users did not have the privilege to access
the FPGA in the system directly, the scheduling and task allocation were performed
by Dom0. A simple scheduler was implemented in Dom0 to give turns of FPGA use
to each user.
Now that we have shown the possibility of hardware context switching tasks, fur-

ther developments are required to move the work in a new direction. We target an
energy-efficient cloud architecture which takes advantage of virtualized FPGA re-
sources. Since the scale of cloud infrastructures has been significantly increasing due
to the growing interests for remote applications, the cost and energy consumption
in the cloud architecture is becoming an important concern. The direction of this
work should focus on providing at least the same performance as the existing archi-
tectures that use microprocessors, but with a higher energy efficiency. The challenge
lies in offering an accepted performance for as many users as possible. In order to

96 conclusion and future works

do that, a reliable scheduling and task allocation strategies are necessary which may
include the decision to context switch based on priority, fairness, execution window,
etc.
For the moment, the impact of the scheduling and task allocation strategies to

the overall system performance is still unknown and needs to be evaluated. The
relationship between the performance and the energy consumed needs to be studied
in order to decide the maximum number of hardware tasks that can occupy the
same FPGA in order to stay cost-effective. Regarding the context switch for task
migration purposes, the management of hardware tasks from the hypervisor may
offer certain advantages. We believe that these questions need to be resolved in the
future works in cloud-FPGA architectures.

7
RÉSUMÉ

C
e chapitre en français synthétise le travail qui est décrit en anglais
dans les chapitres de ce mémoire de thèse. Le chapitre résumé commence
par une introduction qui explique le contexte du travail. Ensuite, les prob-

lèmes ciblés sont présentés. L’état de l’art décrit des travaux précédents qui concer-
nent le même sujet. La solution proposée et son implémentation sont détaillées dans
la partie méthodologie. Nous montrons par la suite les résultats des expérimenta-
tions pour évaluer notre solution. Nous finissons par la conclusion et les perspectives
de ce travail de thèse.

Contents
7.1 Introduction . 98
7.2 Problématique . 99

7.2.1 Le système hétérogène reconfigurable 99
7.2.2 Ordonnancement préemptif 99
7.2.3 Synthèse de la problématique 100

7.3 État de l’art . 100
7.3.1 Changement de contexte matériel 100
7.3.2 Gestion de communication 101

7.4 Méthodologie . 102
7.4.1 Hypothèse de travail . 102
7.4.2 Solution proposée . 103
7.4.3 Protocole de changement de contexte matériel 104
7.4.4 Implémentation . 104

7.5 Expérimentation et résultats . 106
7.5.1 Plate-forme d’expérimentation 106
7.5.2 Caractérisation matérielle 107
7.5.3 Caractérisation temporelle 110
7.5.4 Application . 111

7.6 Conclusion et perspectives . 112

97

98 résumé

7.1 introduction

Au 21ème siècle, les microprocesseurs sont trouvés dans de nombreux dispositifs
électroniques, de l’ordinateur de bureau aux serveurs hautes performances. Les
microprocesseurs dans un système informatique fonctionnent en coopération avec
les autres composants tels que des éléments mémoires et des coprocesseurs qui les
aident à exécuter les calculs spécifiques. Ces coprocesseurs sont généralement des
processeurs à faible consommation d’énergie, des processeurs graphiques (GPU), des
circuits intégrés (ASIC), ou des processeurs reconfigurables de type FPGA.
L’utilisation des coprocesseurs pour accélérer les calculs dans les architectures des

ordinateurs, connue sous le nom d’accélération matérielle, suscite de nos jours beau-
coup d’intérêts. Un accélérateur matériel est capable d’exécuter des fonctions ou
algorithmes complexes avec un meilleur rapport de performance/consommation én-
ergétique qu’un microprocesseur (CPU) classique. Parmi les accélérateurs matériels
existants, le FPGA offre un bon rapport entre la performance et la consommation
énergétique avec une flexibilité pour changer d’application à la volée.
Au cours de la dernière décennie, l’utilisation de nuage informatique (cloud com-

puting) pour fournir des services au marché industriel devient de plus en plus im-
portant. Les calculs sont exécutés en tant qu’instance sur des ressources de calcul
virtualisées, dans ce cas des CPU et des FPGAs. Par conséquent, la capacité de gérer
les instances dans cet environnement virtualisé est nécessaire. Elle est indispensable
notamment pour distribuer les charges de calcul, gérer les ressources en panne et
mettre à niveau l’infrastructure. La gestion des ressources virtuelles peut être offerte
par le support de changement de contexte à la fois sur les CPU et sur les FPGAs.
En informatique, le changement de contexte est un phénomène bien connu et par-

faitement maitrisé, il consiste à partager le temps d’utilisation du microprocesseur
entre les applications en cours d’exécution. Le système d’exploitation gère l’arrêt
d’une application, la mémorisation des informations nécessaires à la poursuite de
son exécution avant l’exécution de l’application suivante. Le changement de contexte
matériel sur FPGA suit le même principe; il permet l’interruption d’une fonction-
nalité (ou d’une tâche) sur FPGA puis mémorise les informations nécessaires à la
reprise de la fonctionnalité plus tard.
Contrairement aux tâches sur CPU qui sont stockées en tant que programme

sur la mémoire du système, les tâches sur FPGA sont implémentées en matériel.
Bien que la performance en exécution sur matériel soit meilleure, le changement
de contexte matériel sur un FPGA doit considérer une sauvegarde des contenus
de registres et mémoires sur FPGA ainsi qu’une gestion des communications de la
tâche matérielle. Dans ce travail, nous avons étudié l’aspect communication durant
un changement de contexte matériel. Une méthode de communication qui permet
de maintenir la cohérence de communication lorsqu’une tâche sur un FPGA est
commutée est nécessaire. Dans la section suivante, nous présentons les problèmes
qui sont liés à la communication durant un changement de contexte matériel.

7.2 problématique 99

7.2 problématique

7.2.1 Le système hétérogène reconfigurable

Le changement de contexte matériel est un sujet important dans la recherche au
cours des dix années. Afin de fournir la solution qui permet d’interrompre une tâche
en cours d’exécution, l’aspect hétérogénéité est souvent considéré dans des nom-
breux travaux précédents. La définition de l’hétérogénéité dans ces travaux est mal-
heureusement différente. Cette section présente le type d’hétérogénéité considérée
dans notre travail.
Un système reconfigurable est normalement constitué au moins d’un FPGA et

d’un CPU. Le FPGA agit comme l’accélérateur des calculs lorsque le CPU exécute
les applications logicielles. Cette intégration du CPU/FPGA va aboutir à un système
qui est hétérogène. L’hétérogénéité se trouve aussi à l’intérieur de l’architecture de
FPGA du système. Aujourd’hui, un FPGA intègre différents éléments de calcul et
élements mémoires, par exemple des processeurs de signal numérique (DSP), des
blocs mémoires (BRAM), etc. Ces éléments augmentent la performance de calcul
fournie par un FPGA comme ils permettent d’implémenter les tâches plus grosses
et plus complexes. Cependant, l’implémentation des tâches sur un FPGA devient
de plus en plus spécifique aux outils fournis par les fabricants des FPGAs.
L’optimisation apporté par des fabricants pour viser les différentes gammes

d’utilisations cause l’hétérogénéité entre les FPGAs de différentes familles, tech-
nologies, architectures, etc. En raison de l’évolution de l’infrastructure pour une
modernisation ou pour remplacer les ressources en panne, les FPGAs utilisés dans
le système peuvent être différents. Pour ces raisons, le support du changement de
contexte matériel doit considérer cette hétérogénéité entre les FPGAs différents.
Pour le reste de ce chapitre, le terme «hétérogénéité» sera utilisé pour décrire la
différence d’architecture des FPGAs dans un système reconfigurable.

7.2.2 Ordonnancement préemptif

Similaire au changement de contexte logiciel, le changement de contexte matériel est
effectué suite à un déclenchement ou une demande d’un ordonnanceur. Dans un sys-
tème reconfigurable, l’ordonnanceur peut être implémenté sur un CPU ou un FPGA
dédié pour la gestion de tâche matérielle. Il existe deux catégories d’ordonnancement
selon la prise de décision à la gestion des tâches dans le système [Gua+08], non-
préemptif et préemptif.
L’ordonnancement non-préemptif ou coopératif est un ordonnancement dans

lequel une tâche volontairement donne le contrôle de ressources à une autre appli-
cation. Au contraire, l’ordonnancement préemptif gère une demande d’interruption
à une tâche sans coopération afin d’exploiter les ressources utilisées. D’un côté,
l’ordonnancement préemptif offre une grande flexibilité à la gestion de tâche car une

100 résumé

interruption peut se faire à tout moment durant l’exécution des tâches. D’un autre
côté, les efforts sont nécessaires pour gérer les flux d’exécution et de communication
qui sont interrompus, ce qui doivent être considérés dans la méthode du changement
de contexte.

7.2.3 Synthèse de la problématique

Dans ce travail, la discussion s’est bornée au changement de contexte matériel suite à
une demande de préemption. Pour cette raison, un changement de contexte matériel
peut se faire à des instants arbitraires, y compris lorsqu’il y a un flux de communica-
tion en cours. La demande de préemption va interrompre l’exécution en cours d’une
tâche sur un FPGA et en même temps son flux de communication. Les questions de
synthèse auxquelles nous allons tenter de répondre sont les suivantes :

• Comment le contexte d’une tâche matérielle doit être géré ?

• Comment doit-on préserver l’intégrité des données de communications ?

• Comment satisfaire les contraintes de performance du changement de contexte
matériel ?

• Que faire pour assurer la continuité de communication entre les tâches dans
un système reconfigurable ?

7.3 état de l’art

7.3.1 Changement de contexte matériel

Au fil des années, des techniques d’extraction de contexte sur un FPGA ont été
proposées. Elles sont principalement classées en deux grandes familles [Joz+10]. La
première classe rassemble les techniques d’extraction de configuration de tâches et
des contenus de registres et mémoires à travers le port de reconfiguration des FPGA.
Le changement de contexte est donc limité à certaines familles et fournisseurs de
FPGA. Cette méthode d’extraction de contexte est connue sous le nom de méthode
de relecture. Les travaux précédents [Lev+00; SLM00] démontrent que cette tech-
nique permet de sauvegarder les contenus de tous les registres et les mémoires sur un
FPGA à un moment précis. En conséquence, la gestion du contexte d’une tâche et
des données de communication est fournie par la méthode de relecture. Cependant,
cette méthode génère une taille de contexte importante en raison de l’extraction
de la configuration en même temps que le sauvegarde du contexte. D’ailleurs, la
méthode de relecture est moins adaptée pour interrompre une tâche sur un FPGA
et la continuer sur un autre FPGA et inadaptée si les FPGA sont hétérogènes.
La deuxième méthode rassemble les techniques d’ajout d’interfaces aux fonction-

nalités sur FPGA, qui permet un changement de contexte indépendamment de la

7.3 état de l’art 101

technologie du FPGA [Whe+01], connue sur le nom de la méthode embarquée. Une
structure supplémentaire (scan-chain) qui connecte les registres et les mémoires sous
forme chainée est ajoutée dans la conception de tâches sur FPGA. La méthode em-
barquée permet d’extraire seulement les données des tâches à l’état où l’exécution
est interrompue, ce qui donne une meilleure efficacité au changement de contexte
matériel et l’indépendance à la technologie FPGA utilisée. Cependant, la structure
scan-chain introduit un surcoût en taille et performance de circuit qui peut être
important à la conception de tâches matérielles. La notion de points de sauvegarde
"checkpoints" est souvent intégrée à la méthode embarquée pour diminuer le surcoût
matériel de la conception [KHT07; Vu+16; BMR16]. Le travail récemment mené par
[BMR16] propose un outil de synthèse de haut niveau pour ajouter automatique-
ment la structure scan-chain aux tâches matérielle. Ceci diminue fortement l’effort
nécessaire par les utilisateurs, qui rend la solution avec la méthode embarquée très in-
téressante et prometteuse pour offrir le support du changement de contexte matériel.

7.3.2 Gestion de communication

La capacité d’interrompre une tâche matérielle en cours de son exécution et
d’extraire son contexte est primordiale afin de fournir un support au changement
de contexte matériel. La gestion (sauvegarde, stockage, et restauration) du contexte
et des données de communication est également importante. Dans des nombreux
travaux existants [VPI05; LP08; Nar+11; Joz+13], la gestion de communication
est effectuée par un système d’exploitation sur le CPU. Le CPU est alors respon-
sable de la synchronisation entre tâches et de la communication entre logiciel et
matériel. Cependant, ces travaux ne prennent pas en compte le changement de con-
texte matériel dans un système reconfigurable. Le travail dans [LP08] a été complété
par [HTK15] avec l’intégration de méthode de relecture pour l’extraction de contexte
du FPGA.
Pour satisfaire l’aspect hétérogénéité d’un support de changement de contexte,

la méthode embarquée est plus prometteuse par rapport à la méthode de relecture.
En revanche, la méthode embarquée ne gère pas les données de communication
à l’extérieur de tâche matérielle. Un changement de contexte matériel est donc
possible seulement quand il n’y a pas de flux de communication entre tâches. Ceci
est montré par le travail de [Vu+16] qui propose une solution d’étranglement sur
les canaux de communication afin de vider les tampons des données. Lorsqu’une
demande de préemption est donnée à une tâche matérielle sur un FPGA, les flux
entrants de communication sont bloqués et le changement de contexte matériel est
retardé jusqu’à ce que la tâche ait consommé toutes les données dans les tampons
de communication.

102 résumé

Figure 43: Une illustration d’un système reconfigurable avec multiple FPGAs

7.4 méthodologie

Dans cette section, nous allons présenter brièvement l’hypothèse de travail incluant
le système visé par notre solution. Ensuite, nous proposons la solution afin de ré-
soudre les problèmes de communication durant un changement de contexte matériel
sur un FPGA avec le modèle de réseau de communication de Kahn (KPN). Finale-
ment, nous décrivons un protocole qui permet de faire un changement de contexte
matériel en prenant en compte la consistence de communication.

7.4.1 Hypothèse de travail

Nous avons visé un système reconfigurable qui est constitué d’au moins un CPU,
un FPGA et une mémoire partagée. Les tâches peuvent être exécutées à la fois sur
le FPGA et le CPU, selon les besoins. La gestion des tâches est effectuée par le
CPU. Les tâches matérielles sur le FPGA sont implémentées sous la forme d’IPs.
Ces IPs peuvent provenir d’ailleurs, ce qui signifie que nous n’avons pas la maîtrise
de leur conception. De multiples FPGAs sont possibles dans le système visé par
notre travail et ils sont tous connectés au même réseau d’interconnexion avec le(s)
CPU(s) comme illustré dans la Figure 43.
Nous basons notre travail sur la méthode embarquée pour les raisons détaillées

dans la Section 7.3.1. Nous supposons que les IPs utilisées ont la capacité du change-
ment de contexte matériel fournie par cette méthode. Le travail présenté dans
[BMR16] propose un mécanisme automatisé d’insertion de structure scan-chain en
conception des IPs dans une synthèse de haut niveau (HLS). Cette automatisation
de la méthode embarquée est intégrée dans AUGH, un outil HLS libre proposé dans
[PMR14]. Grâce au flux de synthèse de haut niveau, le mécanisme d’insertion de
scan-chain et la sélection des checkpoints dans la méthode embarquée peuvent être
optimisés.
Bien que la méthode embarquée offre les avantages sur la performance et

l’hétérogénéité, elle ne gère pas les données de communication qui sont en transit

7.4 méthodologie 103

Figure 44: Exemple d’une représentation des tâches dans un système reconfigurable en
KPN

entre deux tâches en communication. Par conséquent, un changement de contexte
doit se faire lorsque les canaux de communication sont vides naturellement ou par
un étranglement [Vu+16]. La section suivante présente notre solution pour résoudre
les problèmes de communication durant un changement de contexte matériel.

7.4.2 Solution proposée

Nous avons modélisé la communication entre tâches en utilisant le réseau de com-
munication de Kahn (KPN) [Kah74]. Dans KPN, une tâche est considérée comme
un processus autonome qui travaille simultanément avec les autres processus dans le
réseau et communique avec eux à travers des tampons FIFO de taille infinie. Cette
condition aboutit à une lecture bloquante et une écriture non-bloquante en théorie.
En pratique, les opérations de lecture et d’écriture sont bloquantes en raison de la
quantité limitée de mémoire [GB03].
Le choix du modèle KPN est motivé par le fait qu’il est déterministe. La commu-

nication dépend de l’existence des données et l’ordonnancement n’est pas nécessaire
tant que la sémantique de communication bloquante est respectée. De ce fait, la
connexion entre tâches est interruptible et les autres tâches peuvent continuer leur
exécution jusqu’à la saturation des canaux de communication (vide ou plein).
Nous proposons l’intégration des données de communication à l’extraction de con-

texte des tâches matérielles. Lorsqu’un changement de contexte matériel est effectué,
le contexte et toutes les données de communication associées à la tâche matérielle
sont extraits du FPGA vers la mémoire partagée et vice-versa dans le cas de la
restauration. Avant que ces données soient extraites, un gestionnaire qui peut être
à la fois une tâche matérielle et logicielle gère la déconnexion de communication de
la tâche commutée. Cette solution permet de maintenir l’intégrité des données de
communication. Grâce à cette approche, le changement de contexte matériel n’a pas
besoin d’attendre que les canaux de communication soient vides. Ceci va améliorer
la performance et satisfaire les contraintes de temps.

104 résumé

7.4.3 Protocole de changement de contexte matériel

La solution proposée est intégrée dans un protocole de changement de contexte
matériel qui prend en compte la communication en cours d’une tâche sur le FPGA du
système. La Figure 45 présente ce protocole. Premièrement, le flux de communication
doit être interrompu lorsqu’une demande de préemption est envoyée à une tâche
matérielle qui est en communication sur le FPGA. La connexion entre la tâche à
commuter et les autres tâches dans le système doit être coupée. Selon notre solution,
le contexte de la tâche et les données de communication peuvent être extraits du
FPGA associé. Quand ces données sont sauvegardées, par exemple dans l’espace de
mémoire partagée, le FPGA est disponible pour une autre tâche (cf. Figure 45c). Une
nouvelle tâche peut démarrer ou continuer son exécution en restaurant son contexte
et ses données de communication. Finalement, les tâches qui communiquent peuvent
reprendre le flux de communication comme illustré dans la Figure 45e.

7.4.4 Implémentation

Nous avons implémenté la solution proposée dans un système reconfigurable qui
contient un CPU, un FPGA et une mémoire partagée. Cette implémentation est
constitué de la partie matérielle et la partie logicielle. L’implémentation matérielle
est faite sur le FPGA alors que l’implémentation logicielle est faite en tant que
module qui s’exécute sur un des CPUs dans le système.
Sur le FPGA, nous avons construit une infrastructure de communication comme

illustré dans la Figure 46. Cette infrastructure de communication est associée à
chaque tâche matérielle ou chaque IP qui est programmé sur les FPGAs dans le sys-
tème reconfigurable. Elle intègre les FIFOs de communication entrée-sortie (E/S),
les FIFOs de contexte1, une machine d’état (FSM) et un point d’interconnexion. La
FSM est responsable du contrôle du flux de communication et de synchronisation lors
de l’exécution normale et du changement de contexte matériel. Elle est aussi respon-
sable de transmettre la demande de préemption à l’IP. Le point d’interconnexion
est nécessaire pour la conversion de protocole entre les FIFOs et l’interconnexion de
communication externe.
Les FIFOs E/S dans l’infrastructure de communication sont conçues pour re-

specter le protocole de changement de contexte matériel proposé dans la Figure 45.
Elles permettent d’extraire et de restaurer les données de communication sans passer
par ces ports standard. Le flux de communication entrant peut être redirigé à
l’extérieur ou vice-versa durant un changement de contexte matériel. Les multi-
plexeurs sont ajoutés aux deux extrémités de ces FIFOs.
L’implémentation logicielle est faite sur un CPU dans le système reconfigurable.

Nous avons développés les drivers qui permettent de contrôler l’infrastructure de

1 les contextes sont temporairement stockés dans ces FIFOs afin de s’adapter aux bandes passantes
différentes entre l’intérieur et l’extérieur du FPGA

7.4 méthodologie 105

(a) T1 est en cours d’exécution et en com-
munication

(b) La communication est déconnectée im-
médiatement

(c) Les données E/S et le contexte de T1 sont
extraits

(d) Les données E/S et le contexte de T2
sont restaurés

(e) L’exécution de T2 est reprise

Figure 45: Le protocole de changement de contexte matériel

106 résumé

Figure 46: L’infrastructure de communication pour supporter le protocole de changement
de contexte matériel avec la gestion de communication sur les FPGAs

communication sur le FPGA. Ces drivers prennent en compte les déclenchements
qui démarrent l’exécution de tâche sur les FPGAs et interrompent l’exécution en
cas de changement de contexte matériel. L’implémentation des drivers a été faite en
tant que un module dans le noyau du système d’exploitation Linux. La Figure 47
présente le contrôle de connexion entre une tâche sur un FPGA et les autres tâches
à l’extérieur.
La Figure 47 montre également comment le contexte et les données de communi-

cation sont stockés dans la mémoire partagée. Les tailles de données E/S ainsi que
la taille du contexte sont inclus comme un en-tête. Ils sont tous intégrés comme un
contexte d’une tâche matérielle qui prend en compte les données de communication
durant le changement de contexte matériel.

7.5 expérimentation et résultats

7.5.1 Plate-forme d’expérimentation

Les expérimentations ont été effectuée sur des plates-formes système-sûr-puce (SoC)
reconfigurable. Deux SoCs ont été choisis pour montrer la généricité de notre so-
lution, ZC706 de Xilinx et Arria V SoC de Intel Altera. Chaque SoC intègre un
processeur embarqué du type ARM, une mémoire partagée (DDR) et un FPGA
dans la même puce avec un bus de communication interne AXI. Le but d’utiliser
ce type de plate-forme était de pouvoir lancer l’application en tant qu’une tâche
matérielle sur le FPGA et de faire la gestion de tâche à partir du processeur ARM.
Le processeur ARM est responsable de la configuration du FPGA, de la gestion

7.5 expérimentation et résultats 107

Figure 47: La gestion de contexte et des données de communication associées d’une tâche
commutée

de communication entrées-sorties du FPGA et de la supervision du changement de
contexte matériel.
Le même système a été implémenté dans les deux plates-formes SoCs.

L’infrastructure de communication proposée est suffisamment générique et paramé-
trable pour que la modification supplémentaire en matérielle ne soit pas nécessaire.
Du côté logiciel, une petite modification sur les drivers est nécessaire afin d’adapter
l’interface de communication aux adresses disponibles en mémoire partagée.

7.5.2 Caractérisation matérielle

Cette section présente les résultats de caractérisation matérielle de notre solu-
tion. Ce sont principalement les ressources consommées dans le FPGA suite à
l’implémentation de l’infrastructure de communication. Pour évaluer le surcoût
matériel de notre solution, nous avons développé trois versions de l’infrastructure
de communication. La première version, appelé Basic, est conçue sans la capacité
du changement de contexte matériel. En version Basic, l’infrastructure de commu-
nication est utilisé uniquement pour la communication E/S. La deuxième version,
appelé CS, a un support du changement de contexte matériel en plus de la commu-
nication E/S. La version CS contient les FIFOs de contexte mais elle implémente la
solution classique presenté dans [Vu+16]. La troisième version de l’infrastructure de
communication, appelée CSComm, a été développée avec notre protocole de change-
ment de contexte matériel. Les Tableau 13 et Tableau 14 détaillent les ressources
de FPGA consommées par l’infrastructure de communication dans les deux plates-
formes utilisées.

108 résumé

Table 13: L’utilisation (post-placement) des ressources de ZC706 par l’infrastructure de
communication

Version Élements LUT FF BRAM

Basic a

Interface AXI + registres 454 590 0
FSM + mux 229 117 0
FIFO E/S 0 0 1
Total 683 707 1

CS b

Interface AXI + registres 454 590 0
FSM + mux 641 543 0
FIFO E/S 0 0 1
FIFO Contexte 0 0 6
Total 1095 1133 7

CSComm c

Interface AXI + registres 454 590 0
FSM + mux 855 626 0
FIFO E/S 0 0 1
FIFO Contexte 0 0 6
Total 1309 1216 7

aSans support du changement de contexte
bSolution existante du changement de contexte
cSolution proposée

7.5 expérimentation et résultats 109

Table 14: L’utilisation (post-placement) des ressources de A5SOC par l’infrastructure de
communication

Version Élements ALM REG M10K

Basic a

Interface AXI + registres 411 581 0
FSM + mux 65 179 0
FIFO E/S 0 0 2
Total 476 760 2

CS b

Interface AXI + registres 411 581 0
FSM + mux 499 801 0
FIFO E/S 0 0 2
FIFO Contexte 0 0 24
Total 910 1382 26

CSComm c

Interface AXI + registres 411 581 0
FSM + mux 642 897 0
FIFO E/S 0 0 2
FIFO Contexte 0 0 24
Total 1053 1478 26

aSans support du changement de contexte
bSolution existante du changement de contexte
cSolution proposée

110 résumé

Figure 48: Le scénario de changement de contexte matériel utilisé dans l’expérimentation

7.5.3 Caractérisation temporelle

Afin d’évaluer la performance fournie par notre solution au système sur le change-
ment de contexte matériel, nous avons fait la caractérisation temporelle. Nous avons
notamment comparé la performance du changement de contexte matériel lorsque
l’infrastructure de communication utilise la version CS et CSComm. Les expérimen-
tations ont été effectuées avec une application IDCT et les applications de CHStone
[Har+08]. Ces applications représentent les applications de traitement d’images et
de chiffrement qui sont souvent accélérées sur FPGA.
Nous avons proposé un scénario qui inclut une exécution de tâche sur un FPGA et

un changement de contexte matériel lorsque la tâche est en communication avec une
autre tâche sur le CPU. La Figure 48 illustre ce scénario de test. Après chaque démar-
rage de l’exécution, une requête de préemption est envoyée aléatoirement par un or-
donnanceur du système pour interrompre la tâche sur le FPGA. Ensuite, l’extraction
de contexte (et des données de communication) est faite pour libérer le FPGA util-
isé. La deuxième requête est envoyée plus tard pour restaurer la tâche sur le FPGA
et rependre l’exécution. Le temps entre l’arrivée de la requête de préemption et le
démarrage de l’extraction est défini comme le temps de latence. Le temps total de
préemption est donc la somme du temps de latence, du temps d’extraction et du
temps de restauration.
Tout d’abord, nous avons mesuré le temps total d’exécution, y compris le change-

ment de contexte matériel. Le Tableau 15 présente la comparaison de la moyenne
du temps total d’exécution en cycles entre CS et CSComm sur ZC706. Notre so-
lution ajoute un surcoût temporel en raison de l’extraction et de la restauration
des données de communication. Ceci génère un surcoût temporel total relativement
faible qui est présenté dans le tableau. D’après les expérimentations, notre solution
a ajouté moins de 2% de surcoût temporel sauf pour l’IDCT, qui est une application
rapide et ne devrait pas être préemptée. Pourtant, le surcoût temporel ajouté par
notre solution sur l’IDCT est inférieur à 10%. Les mesures sur A5SOC donnent des
resultats similaires.

7.5 expérimentation et résultats 111

Table 15: Comparaison des moyennes du temps total d’exécution (en cycle de FPGA) avec
un changement de contexte matériel entre CS et CSComm sur ZC706

App CS CSComm Surcoût

adpcm 20879 20933 0.26 %
aes 14184 14237 0.37 %
blowfish 146255 146583 0.22 %
gsm 12548 12619 0.57 %
idct 1388 1516 9.19 %
motion 13009 13268 1.99 %
sha 331767 332435 0.2 %

Ensuite, nous avons observé la latence de la préemption, ce qui correspond à la
réactivité du système à la demande d’interruption qui arrive de l’ordonnanceur du
système. Le Tableau 16 présente une comparaison des moyennes du temps de la-
tence en préemption entre CS et CSComm sur ZC706. Contrairement à la solution
classique (CS), la demande de préemption peut être traitée à tout moment par notre
solution (CSComm). L’extraction de contexte peut être commencé presque immé-
diatement sans attendre que l’IP ait consommé toutes les données dans les canaux
de communication. Ceci réduit énormement le temps de latence sur la plupart des
applications dans nos expérimentations. Le temps total de préemption est diminué
notamment pour les applications qui demandent beaucoup de transferts des données.
Avec nos expérimentations, nous avons réussi à montrer que la gestion de commu-

nication durant le changement de contexte matériel est nécessaire et qu’elle présente
des avantages en terme de réactivité du système à la demande d’interruption. Notre
solution génère un surcoût matériel raisonnable et un surcoût temporel faible. Dans
la solution classique, l’estimation du temps total de préemption ne peut pas être fait
à cause de données de communication qui ne sont pas gérées. Avec notre solution,
nous sommes maintenant capables de mieux estimer le budget maximal de temps de
préemption qui est la somme du temps d’extraction et de restauration du contexte
et des données de communication.

7.5.4 Application

Grâce à notre mécanisme de gestion de communication, nous pouvons maintenir la
cohérence de communication de tâches dans le support du changement de contexte
matériel. Nous avons implémenté le support de changement de contexte matériel
dans deux applications différentes. La première application est sur la migration des

112 résumé

Table 16: Comparaison des moyennes du temps de latence en préemption (en cycle de
FPGA) entre CS et CSComm sur ZC706

App CS CSComm

Latence Préemption
totale

Ratio Latence Préemption
totale

Ratio

adpcm 147 2472 5.93 % 6 2387 0.23 %
aes 148 3143 4.71 % 17 3066 0.56 %
blowfish 20017 24847 80.56 % 56 5177 1.08 %
gsm 178 1256 14.16 % 14 1168 1.16 %
idct 180 1039 17.3 % 10 1050 0.93 %
motion 876 9889 8.86 % 7 9278 0.07 %
sha 10153 10971 92.54 % 7 1467 0.51 %

tâches entre des FPGAs hétérogènes. La deuxième application est sur un système
hypervisé.
L’application de migration hétérogène est développée pour démontrer la capacité

de notre solution à réaliser un système dans les nuages. Les deux plates-formes
utilisées dans les caractérisations de solution sont utilisées pour effectuer la migration
de tâche. Elles sont connectées au même réseau Ethernet. Nous avons montré, avec
cette application, qu’une tâche qui est en cours d’exécution sur un FPGA peut être
migrée sur un autre FPGA qui n’est pas forcement de même nature.
Le support de changement de contexte matériel est fourni dans un système hy-

pervisé pour virtualiser la ressource FPGA. Aujourd’hui, un hyperviseur est utilisé
pour virtualiser les ressources de calcul afin d’augmenter la sécurité du système et
la transparence d’accès. Dans un système CPU-FPGA, la ressource FPGA n’est pas
encore bien virtualisée notamment pour partager cette ressource entre de multiples
utilisateurs du système. Le changement de contexte matériel est nécessaire pour
donner les accès au FPGA de façon équitable. Notre solution de changement de con-
texte matériel est capable de maintenir la cohérence des données de communication
et de fournir la performance nécessaire à la virtualisation du FPGA.

7.6 conclusion et perspectives

Dans ce travail, nous avons étudié l’aspect communication du changement de con-
texte matériel dans un système hétérogène reconfigurable. Nous avons proposé une
solution pour garantir la cohérence de communication durant le changement de
contexte matériel. La solution proposée est conceptuellement simple. Les données
de communication qui sont temporairement stockées dans les FIFOs sur un FPGA

7.6 conclusion et perspectives 113

sont extraites avec le contexte d’une tâche matérielle quand la tâche est préemptée.
De même manière, les données de communication et le contexte de la tâche sont
restaurées à la reprise de son exécution.
Cette solution a été caractérisée dans notre expérimentation et nous avons montré

que notre solution génère un faible surcoût temporel, fournit une grande réactivité
à la demande de préemption au système, ainsi qu’une prédictabilité sur le temps de
préemption. Nous avons démontré la généricité de la solution en réalisant le même
environnement de test sur les FPGAs dans deux SoCs des fabricants différents :
ZC706 (Xilinx) et Arria V SoC (Intel Altera). Deux applications ont été proposées
avec notre solution. La première application est la réalisation d’un prototype de
migration hétérogène sur les SoCs. La deuxième application est l’intégration de la
capacité du changement de contexte matériel dans un système hypervisé.
Les perspectives de ce travail se déclinent en trois axes différentes. La première,

axée sur le court terme, est l’implémentation de la méthode de changement de
contexte matériel sur un FPGA multi-régions. La deuxième perspective propose
l’intégration de notre solution aux systèmes distribués à une grande échelle. La
dernière perspective concerne à la continuation de notre application sur un système
hypervisé afin d’obtenir ses caractéristiques liées à la performance et à la consom-
mation énergétique.

B IBL IOGRAPHY

[AYS06] Ben A Abderazek, Tsutomu Yoshinaga, and Masahiro Sowa. ‘High-
Level Modeling and FPGA Prototyping of Produced Order Parallel
Queue Processor Core.’ In: The Journal of Supercomputing 38.1 (2006),
pp. 3–15 (Page 2).

[Afo+13] George Afonso, Zeineb Baklouti, David Duvivier, Rabie Ben Atital-
lah, Eli Billauer, and Stephan Stilkerich. ‘Heterogeneous CPU/FPGA
reconfigurable computing system for avionic test application.’ In: Par-
allel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2013 IEEE 27th International. IEEE. 2013, pp. 260–267
(Page 46).

[Ahm+16] Sagheer Ahmad, Vamsi Boppana, Ilya Ganusov, Vinod Kathail, Vidya
Rajagopalan, and Ralph Wittig. ‘A 16-nm multiprocessing system-on-
chip field-programmable gate array platform.’ In: IEEE Micro 36.2
(2016), pp. 48–62 (Page 14).

[ABS10] Nikolaos Alachiotis, Simon A Berger, and Alexandros Stamatakis. ‘Effi-
cient PC-FPGA Communication over Gigabit Ethernet.’ In: Computer
and Information Technology (CIT), 2010 IEEE 10th International Con-
ference on. IEEE. 2010, pp. 1727–1734 (Pages 9, 46).

[Bat+02] Joan Batlle, J Martı, Pere Ridao, and Josep Amat. ‘A new FPGA/DSP-
based Parallel Architecture for Real-Time Image Processing.’ In: Real-
Time Imaging 8.5 (2002), pp. 345–356 (Page 6).

[Bou16] Alban Bourge. ‘Changement de contexte matériel sur FPGA, entre
équipements reconfigurables et hétérogènes dans un environnement de
calcul distribué.’ PhD thesis. Grenoble Alpes, 2016 (Page 37).

[BMR16] Alban Bourge, Olivier Muller, and Frédéric Rousseau. ‘Generating Ef-
ficient Context-Switch Capable Circuits through Autonomous Design
Flow.’ In: ACM Transactions on Reconfigurable Technology and Sys-
tems (TRETS) 10.1 (2016), p. 9 (Pages 24, 29, 37, 42, 45, 52, 55, 61,
101, 102).

[BL12] Alexander Brant and Guy GF Lemieux. ‘ZUMA: An open FPGA over-
lay architecture.’ In: Field-Programmable Custom Computing Machines
(FCCM), 2012 IEEE 20th Annual International Symposium on. IEEE.
2012, pp. 93–96 (Page 25).

115

116 Bibliography

[Car+86] William S. Carter, Khue Duong, Ross H. Freeman, Hung-Cheng Hsieh,
J. Y. Ja, J. E. Mahoney, L. T. Ngo, and S. L. Sze. ‘A User Pro-
grammable Reconfigurable Logic Array.’ In: Proceedings of the IEEE
Custom Integrated Circuits Conference (CICC). 1986, pp. 233–235
(Pages 2, 6).

[Che+14] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and KunWang. ‘Enabling FPGAs in the Cloud.’ In: Proceedings
of the 11th ACM Conference on Computing Frontiers. ACM. 2014, p. 3
(Pages 46, 87).

[Con+16] Jason Cong, Muhuan Huang, Di Wu, and Cody Hao Yu. ‘Heterogeneous
Datacenters: Options and Opportunities.’ In: Proceedings of the 53rd
Annual Design Automation Conference. ACM. 2016, p. 16 (Page 33).

[Cor] Intel Corporation. Intel SoCs: When Architecture Matters. Web. Last
Accessed: June 9th 2018. url: https://www.altera.com/products/
soc/overview.html (Page 9).

[Cro+14] Louise H Crockett, Ross A Elliot, Martin A Enderwitz, and Robert W
Stewart. The Zynq Book: Embedded Processing with the Arm Cortex-A9
on the Xilinx Zynq-7000 All Programmable Soc. Strathclyde Academic
Media, 2014 (Page 9).

[DeH96] Andre DeHon. ‘Reconfigurable Architectures for General-Purpose Com-
puting.’ In: (1996) (Page 11).

[Den74] Jack B Dennis. ‘First Version of a Data Flow Procedure Language.’ In:
Programming Symposium. Springer. 1974, pp. 362–376 (Page 10).

[Dev+10] Ludovic Devaux, Sana Ben Sassi, Sebastien Pillement, Daniel Chillet,
and Didier Demigny. ‘Flexible interconnection network for dynamically
and partially reconfigurable architectures.’ In: International Journal of
Reconfigurable Computing 2010 (2010), p. 6 (Page 27).

[DML11] François Duhem, Fabrice Muller, and Philippe Lorenzini. ‘FaRM: Fast
Reconfiguration Manager for Reducing Reconfiguration Time Over-
head on FPGA.’ In: International Symposium on Applied Reconfigurable
Computing. Springer. 2011, pp. 253–260 (Page 23).

[DML12] François Duhem, Fabrice Muller, and Philippe Lorenzini. ‘Reconfigura-
tion Time Overhead on Field Programmable Gate Arrays: Reduction
and Cost Model.’ In: IET Computers & Digital Techniques 6.2 (2012),
pp. 105–113 (Pages 46, 93).

[ECF96] Carl Ebeling, Darren C Cronquist, and Paul Franklin.
‘RaPiD—Reconfigurable Pipelined Datapath.’ In: International
Workshop on Field Programmable Logic and Applications. Springer.
1996, pp. 126–135 (Page 25).

https://www.altera.com/products/soc/overview.html
https://www.altera.com/products/soc/overview.html

Bibliography 117

[EV12] Ken Eguro and Ramarathnam Venkatesan. ‘FPGAs for Trusted
Cloud Computing.’ In: Field Programmable Logic and Applications
(FPL), 2012 22nd International Conference on. IEEE. 2012, pp. 63–
70 (Page 87).

[Est60] Gerald Estrin. ‘Organization of Computer Systems: The Fixed Plus
Variable Structure Computer.’ In: Papers presented at the May 3-
5, 1960, Western Joint IRE-AIEE-ACM Computer Conference. ACM.
1960, pp. 33–40 (Page 6).

[FVS15] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. ‘Virtu-
alized FPGA Accelerators for Efficient Cloud Computing.’ In: Cloud
Computing Technology and Science (CloudCom), 2015 IEEE 7th Inter-
national Conference on. IEEE. 2015, pp. 430–435 (Pages 2, 87).

[Fek+12] Sándor P Fekete, Tom Kamphans, Nils Schweer, Christopher Tessars,
Jan C van der Veen, Josef Angermeier, Dirk Koch, and Jürgen Teich.
‘Dynamic Defragmentation of Reconfigurable Devices.’ In: ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS) 5.2 (2012),
p. 8 (Page 46).

[GB03] Marc Geilen and Twan Basten. ‘Requirements on the Execution of
Kahn Process Networks.’ In: Programming languages and systems
(2003), pp. 319–334 (Pages 38, 103).

[Gol+99] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu,
Srihari Cadambi, R Reed Taylor, and Ronald Laufer. ‘PipeRench: A Co-
processor for Streaming Multimedia Acceleration.’ In: ACM SIGARCH
Computer Architecture News 27.2 (1999), pp. 28–39 (Page 25).

[Gua+08] Nan Guan, Qingxu Deng, Zonghua Gu, Wenyao Xu, and Ge Yu.
‘Schedulability Analysis of Preemptive and Nonpreemptive EDF on
Partial Runtime-Reconfigurable FPGAs.’ In: ACM Transactions on De-
sign Automation of Electronic Systems (TODAES) 13.4 (2008), p. 56
(Pages 14, 94, 99).

[HTK15] Markus Happe, Andreas Traber, and Ariane Keller. ‘Preemptive hard-
ware multitasking in ReconOS.’ In: International Symposium on Ap-
plied Reconfigurable Computing. Springer. 2015, pp. 79–90 (Pages 27,
29, 101).

[Har+08] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and
Katsuya Ishii. ‘CHStone: a Benchmark Program Suite for Practical C-
based High-Level Synthesis.’ In: Circuits and Systems, 2008. ISCAS
2008. IEEE International Symposium on. IEEE. 2008, pp. 1192–1195
(Pages 62, 110).

118 Bibliography

[HD10] Scott Hauck and Andre DeHon. Reconfigurable Computing: the Theory
and Practice of FPGA-based Computation. Vol. 1. Morgan Kaufmann,
2010 (Page 7).

[HP11] John L Hennessy and David A Patterson. Computer Architecture: A
Quantitative Approach. Elsevier, 2011 (Pages 1, 6).

[Inc12] Xilinx Inc. "AXI Reference Guide", UG761. https://www.xilinx.
com/support/documentation/ip_documentation/axi_ref_guide/
v13_4/ug761_axi_reference_guide.pdf. [Online; accessed 7-June-
2018]. Jan. 2012 (Page 9).

[Inc] Xilinx Inc. Petalinux Tools. Web. Last Accessed: June 21st 2018. url:
https://www.xilinx.com/products/design- tools/embedded-
software/petalinux-sdk.html (Page 58).

[Jac+15] Matthew Jacobsen, Dustin Richmond, Matthew Hogains, and Ryan
Kastner. ‘RIFFA 2.1: A Reusable Integration Framework for FPGA
Accelerators.’ In: ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 8.4 (2015), p. 22 (Pages 8, 46).

[Jai+14] Abhishek Kumar Jain, Khoa Dang Pham, Jin Cui, Suhaib A Fahmy,
and Douglas L Maskell. ‘Virtualized Execution and Management of
Hardware Tasks on a Hybrid ARM-FPGA Platform.’ In: Journal of
Signal Processing Systems 77.1-2 (2014), pp. 61–76 (Page 87).

[JG00] Philip James-Roxby and Steven A Guccione. ‘Automated Extraction of
Run-Time Parameterisable Cores from Programmable Device Config-
urations.’ In: Field-Programmable Custom Computing Machines, 2000
IEEE Symposium on. IEEE. 2000, pp. 153–161 (Page 23).

[JTW07] Slavisa Jovanovic, Camel Tanougast, and Serge Weber. ‘A Hard-
ware Preemptive Multitasking Mechanism Based on Scan-Path Reg-
ister Structure for FPGA-based Reconfigurable Systems.’ In: Second
NASA/ESA Conference on Adaptive Hardware and Systems (AHS
2007). IEEE. 2007, pp. 358–364 (Pages 23, 24, 36).

[Joz+13] Krzysztof Jozwik, Shinya Honda, Masato Edahiro, Hiroyuki Tomiyama,
and Hiroaki Takada. ‘Rainbow: An Operating System for Software-
Hardware Multitasking on Dynamically Partially Reconfigurable FP-
GAs.’ In: International Journal of Reconfigurable Computing 2013
(2013), p. 5 (Pages 26–29, 45, 46, 101).

[Joz+12] Krzysztof Jozwik, Hiroyuki Tomiyama, Masato Edahiro, Shinya Honda,
and Hiroaki Takada. ‘Comparison of Preemption Schemes for Partially
Reconfigurable FPGAs.’ In: IEEE Embedded Systems Letters 4.2 (2012),
pp. 45–48 (Page 12).

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html

Bibliography 119

[Joz+10] Krzysztof Jozwik, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki
Takada. ‘A Novel Mechanism for Effective Hardware Task Preemption
in Dynamically Reconfigurable Systems.’ In: 2010 International Con-
ference on Field Programmable Logic and Applications (FPL). IEEE.
2010, pp. 352–355 (Pages 23, 100).

[Kah74] Gilles Kahn. ‘The Semantics of a Simple Language for Parallel Program-
ming.’ In: In Information Processing 74 (1974), pp. 471–475 (Pages 10,
11, 38, 103).

[KP05] Heiko Kalte and Mario Porrmann. ‘Context Saving and Restoring for
Multitasking in Reconfigurable Systems.’ In: International Conference
on Field Programmable Logic and Applications (FPL), 2005. IEEE.
2005, pp. 223–228 (Page 22).

[KSH05] Kenneth B Kent, Micaela Serra, and N Horspool. ‘Hardware/Software
Co-Design for Virtual Machines.’ In: IEE Proceedings-Computers and
Digital Techniques 152.5 (2005), pp. 537–548 (Page 87).

[KGS17] Oliver Knodel, Paul R Genssler, and Rainer G Spallek. ‘Migration of
Long-Running Tasks between Reconfigurable Resources using Virtual-
ization.’ In: ACM SIGARCH Computer Architecture News 44.4 (2017),
pp. 56–61 (Page 46).

[KS15] Oliver Knodel and Rainer G Spallek. ‘RC3E: Provision and Manage-
ment of Reconfigurable Hardware Accelerators in a Cloud Environ-
ment.’ In: FPGAs for Software Programmers (FSP), 2015 2nd Interna-
tional Workshop on. 2015 (Page 87).

[Koc+04] Dirk Koch, Ali Ahmadinia, Christophe Bobda, and Heiko Kalte.
‘FPGA Architecture Extensions for Preemptive Multitasking and Hard-
ware Defragmentation.’ In: Field-Programmable Technology (FPT),
2004. Proceedings. 2004 IEEE International Conference on. IEEE.
2004, pp. 433–436 (Page 24).

[KHT07] Dirk Koch, Christian Haubelt, and Jürgen Teich. ‘Efficient Hardware
Checkpointing: Concepts, Overhead Analysis, and Implementation.’ In:
Proceedings of the 2007 ACM/SIGDA 15th International Symposium
on Field Programmable Gate Arrays (FPGA). ACM. 2007, pp. 188–
196 (Pages 24, 29, 36, 101).

[Lab] TIMA Lab. AUGH: Autonomous and User Guided High-level synthesis.
Web. Last Accessed: June 23rd 2018. url: http://tima.imag.fr/
sls/research-projects/augh/ (Page 63).

[LLB14] Loïc Lagadec, Jean-Christophe Le Lann, and Théotime Bollengier. ‘A
Prototyping Platform for Virtual Reconfigurable Units.’ In: Reconfig-
urable and Communication-Centric Systems-on-Chip (ReCoSoC), 2014
9th International Symposium on. IEEE. 2014, pp. 1–7 (Page 14).

http://tima.imag.fr/sls/research-projects/augh/
http://tima.imag.fr/sls/research-projects/augh/

120 Bibliography

[LWH02] Wesley J Landaker, Michael J Wirthlin, and Brad L Hutchings. ‘Mul-
titasking Hardware on the SLAAC1-V Reconfigurable Computing Sys-
tem.’ In: International Conference on Field Programmable Logic and
Applications (FPL). Springer. 2002, pp. 806–815 (Page 23).

[LP95] Edward A Lee and Thomas M Parks. ‘Dataflow Process Networks.’ In:
Proceedings of the IEEE 83.5 (1995), pp. 773–801 (Page 11).

[Lev+00] L Levinson, Reinhard Männer, M Sessler, and Harald Simmler. ‘Pre-
emptive Multitasking on FPGAs.’ In: Field-Programmable Custom
Computing Machines (FCCM), 2000 IEEE Symposium on. 2000,
pp. 301–302 (Pages 22, 23, 100).

[LDS07] Chuanpeng Li, Chen Ding, and Kai Shen. ‘Quantifying the Cost of
Context Switch.’ In: Proceedings of the 2007 Workshop on Experimental
Computer Science. ACM. 2007, p. 2 (Page 12).

[Li+10] Meng Li, Charbel Abdel Nour, Christophe Jego, and Catherine Douil-
lard. ‘Design and FPGA Prototyping of a Bit-Interleaved Coded Mod-
ulation Receiver for the DVB-T2 Standard.’ In: Signal Processing
Systems (SIPS), 2010 IEEE Workshop on. IEEE. 2010, pp. 162–167
(Page 2).

[LCH00] Zhiyuan Li, Katherine Compton, and Scott Hauck. ‘Configuration
Caching Management Techniques for Reconfigurable Computing.’ In:
Field-Programmable Custom Computing Machines (FCCM), 2000
IEEE Symposium on. IEEE. 2000, pp. 22–36 (Page 11).

[LF09] Wang Lie and Wu Feng-Yan. ‘Dynamic Partial Reconfiguration in FP-
GAs.’ In: Intelligent Information Technology Application, 2009. IITA
2009. Third International Symposium on. Vol. 2. IEEE. 2009, pp. 445–
448 (Page 19).

[Liu+09] Ming Liu, Zhonghai Lu, Wolfgang Kuehn, Shuo Yang, and Axel Jantsch.
‘A Reconfigurable Design Framework for FPGA Adaptive Computing.’
In: 2009 International Conference on Reconfigurable Computing and
FPGAs. IEEE. 2009, pp. 439–444 (Page 46).

[LP08] Enno Lübbers and Marco Platzner. ‘Communication and Synchroniza-
tion in Multithreaded Reconfigurable Computing Systems.’ In: ERSA.
2008, pp. 83–89 (Pages 26, 45, 101).

[Lys+05] Roman L Lysecky, Kris Miller, Frank Vahid, and Kees A Vissers. ‘Firm-
core virtual FPGA for just-in-time FPGA compilation.’ In: FPGA.
2005, p. 271 (Page 25).

Bibliography 121

[Mei+03] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and
Rudy Lauwereins. ‘ADRES: An Architecture with Tightly Coupled
VLIW Processor and Coarse-Grained Reconfigurable Matrix.’ In: In-
ternational Conference on Field Programmable Logic and Applications.
Springer. 2003, pp. 61–70 (Page 25).

[Moo06] Gordon E Moore. ‘Cramming More Components onto Integrated Cir-
cuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965,
pp. 114 ff.’ In: IEEE Solid-State Circuits Newsletter 3.20 (2006), pp. 33–
35 (Pages 1, 6).

[Naj+17] Mohamad Najem, Théotime Bollengier, Jean-Christophe Le Lann,
and Loïc Lagadec. ‘Extended Overlay Architectures For Heteroge-
neous FPGA Cluster Management.’ In: Journal of Systems Architecture
(2017) (Page 25).

[NLG99] Walid A Najjar, Edward A Lee, and Guang R Gao. ‘Advances in the
Dataflow Computational Model.’ In: Parallel Computing 25.13 (1999),
pp. 1907–1929 (Page 10).

[Nar+11] Surya Narayanan, Daniel Chillet, Sebastien Pillement, and Ioannis
Sourdis. ‘Hardware OS Communication Service and Dynamic Mem-
ory Management for RSoCs.’ In: Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on. IEEE. 2011, pp. 117–
122 (Pages 26, 27, 45, 101).

[Ouy+14] Jian Ouyang, Shiding Lin, Wei Qi, Yong Wang, Bo Yu, and Song Jiang.
‘SDA: Software-Defined Accelerator for Large-Scale DNN Systems.’ In:
Hot Chips 26 Symposium (HCS), 2014 IEEE. IEEE. 2014, pp. 1–23
(Page 87).

[PMR14] Adrien Prost-Boucle, Olivier Muller, and Frédéric Rousseau. ‘Fast and
Standalone Design Space Exploration for High-Level Synthesis under
Resource Constraints.’ In: Journal of Systems Architecture 60.1 (2014),
pp. 79–93 (Pages 37, 55, 102).

[Put+15] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, et al. ‘A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services.’ In: IEEE Micro 35.3
(2015), pp. 10–22 (Pages 33, 87, 95).

[RFC09] Kyle Rupnow, Wenyin Fu, and Katherine Compton. ‘Block, Drop or
Roll (back): Alternative Preemption Methods for RH Multi-Tasking.’
In: Field-Programmable Custom Computing Machines (FCCM), 2009.
17th International Symposium on. 2009, pp. 63–70 (Page 19).

122 Bibliography

[SC06] Manuel Saldana and Paul Chow. ‘TMD-MPI: An MPI Implementa-
tion for Multiple Processors across Multiple FPGAs.’ In: Field Pro-
grammable Logic and Applications, 2006. FPL’06. International Con-
ference on. IEEE. 2006, pp. 1–6 (Page 8).

[SV98] Stephen M Scalera and Jóse R Vázquez. ‘The Design and Implemen-
tation of a Context Switching FPGA.’ In: Field-Programmable Custom
Computing Machines (FCCM), 1998. Proceedings. IEEE Symposium
on. IEEE. 1998, pp. 78–85 (Page 11).

[SB15] Yakun Sophia Shao and David Brooks. Research infrastructures for
hardware accelerators. Vol. 10. 4. Morgan & Claypool Publishers, 2015,
pp. 1–99 (Page 6).

[SSS15] João Silva, Valery Sklyarov, and Iouliia Skliarova. ‘Comparison of on-
chip communications in zynq-7000 all programmable systems-on-chip.’
In: IEEE Embedded Systems Letters 7.1 (2015), pp. 31–34 (Page 46).

[SLM00] Harald Simmler, L Levinson, and Reinhard Männer. ‘Multitasking
on FPGA Coprocessors.’ In: International Workshop on Field Pro-
grammable Logic and Applications (FPL). Springer. 2000, pp. 121–130
(Pages 22, 23, 26, 28, 100).

[Stu+15] J Stuecheli, Bart Blaner, CR Johns, and MS Siegel. ‘CAPI: A Coher-
ent Accelerator Processor Interface.’ In: IBM Journal of Research and
Development 59.1 (2015), pp. 7–1 (Pages 8, 46).

[TV02] Jim Tørresen and Knut Arne Vinger. ‘High Performance Computing
by Context Switching Reconfigurable Logic.’ In: ESM. Vol. 2. 2002,
pp. 207–210 (Page 11).

[Tri+97] Steven Trimberger, Dean Carberry, Anders Johnson, and Jennifer
Wong. ‘A Time-Multiplexed FPGA.’ In: Field-Programmable Custom
Computing Machines (FCCM), 1997. Proceedings., The 5th Annual
IEEE Symposium on. IEEE. 1997, pp. 22–28 (Page 11).

[VB13] Wim Vanderbauwhede and Khaled Benkrid. High-performance comput-
ing using FPGAs. Springer, 2013 (Page 6).

[Ves+16] Malte Vesper, Dirk Koch, Kizheppatt Vipin, and Suhaib A Fahmy. ‘Jet-
Stream: An Open-Source High-Performance PCI Express 3 Streaming
Library for FPGA-to-Host and FPGA-to-FPGA Communication.’ In:
Field Programmable Logic and Applications (FPL), 2016 26th Interna-
tional Conference on. EPFL. 2016, pp. 1–9 (Page 46).

[Vu+16] Hoang Gia Vu, Supasit Kajkamhaeng, Shinya Takamaeda-Yamazaki,
and Yasuhiko Nakashima. ‘CPRtree: A Tree-Based Checkpointing Ar-
chitecture for Heterogeneous FPGA Computing.’ In: 2016 Fourth Inter-
national Symposium on Computing and Networking (CANDAR). IEEE.
2016, pp. 57–66 (Pages 24, 26, 28, 29, 36, 42, 66, 81, 101, 103, 107).

Bibliography 123

[VPI05] M Vuletić, Laura Pozzi, and Paolo Ienne. ‘Seamless Hardware-Software
Integration in Reconfigurable Computing Systems.’ In: IEEE Design &
Test of Computers 22.2 (2005), pp. 102–113 (Pages 26, 45, 101).

[WP02] Herbert Walder and Marco Platzner. ‘Non-Preemptive Multitasking
on FPGAs: Task Placement and Footprint Transform.’ In: Proceedings
of the 2nd International Conference on Engineering of Reconfigurable
Systems and Architectures (ERSA). 2002, pp. 24–30 (Pages 15, 16, 93).

[WBP13] Wei Wang, Miodrag Bolic, and Jonathan Parri. ‘pvFPGA: Access-
ing an FPGA-based Hardware Accelerator in a Paravirtualized En-
vironment.’ In: Hardware/Software Codesign and System Synthesis
(CODES+ ISSS), 2013 International Conference on. IEEE. 2013, pp. 1–
9 (Page 87).

[Whe+01] Timothy Wheeler, Paul Graham, Brent Nelson, and Brad Hutchings.
‘Using Design-Level Scan to Improve FPGA Design Observability and
Controllability for Functional Verification.’ In: International Confer-
ence on Field Programmable Logic and Applications (FPL). Vol. 1.
Springer. 2001, pp. 483–492 (Pages 23, 24, 101).

[Xie+15] Mimi Xie, Mengying Zhao, Chen Pan, Jingtong Hu, Yongpan Liu,
and Chun Jason Xue. ‘Fixing the Broken Time Machine: Consistency-
Aware Checkpointing for Energy Harvesting Powered Non-Volatile Pro-
cessor.’ In: Proceedings of the 52nd Annual Design Automation Confer-
ence. ACM. 2015, p. 184 (Page 16).

[Xil17] Inc. Xilinx. Virtex-4 FPGA Configuration User Guide. June 2017
(Page 23).

[Xil] Xillybus. An FPGA IP core for easy DMA over PCIe with Windows
and Linux. Web. Last Accessed: July 8th 2018. url: http://xillybus.
com/ (Page 8).

[Zha+15] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Ja-
son Cong. ‘Optimizing FPGA-based Accelerator Design for Deep Con-
volutional Neural Networks.’ In: Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM.
2015, pp. 161–170 (Page 6).

http://xillybus.com/
http://xillybus.com/

L I ST OF PUBL ICAT IONS

[Wic+16a] Arief Wicaksana, Alban Bourge, Olivier Muller, and Frédéric Rousseau.
‘Demonstration of a context-switch method for heterogeneous reconfig-
urable systems.’ In: Field Programmable Logic and Applications (FPL),
2016 26th International Conference on. IEEE. 2016, pp. 1–1.

[Wic+17] Arief Wicaksana, Alban Bourge, Olivier Muller, Arif Sasongko, and
Frédéric Rousseau. ‘Prototyping dynamic task migration on heteroge-
neous reconfigurable systems.’ In: Proceedings of the 28th International
Symposium on Rapid System Prototyping: Shortening the Path from
Specification to Prototype. ACM. 2017, pp. 16–22.

[Wic+16b] Arief Wicaksana, Olivier Muller, Arif Sasongko, and Frédéric Rousseau.
‘Validation automatique d’une methode de migration des tâches sur
la plateforme Zynq.’ In: Journées Nationales du Réseau Doctoral en
Micro-nanoélectronique (JNRDM), 2016 19ème édition des. CNFM.
2016, pp. 1–6.

[Wic+16c] Arief Wicaksana, Adrien Prost-Boucle, Olivier Muller, Frédéric
Rousseau, and Arif Sasongko. ‘On-board non-regression test of HLS
tools targeting FPGA.’ In: Proceedings of the 27th International Sym-
posium on Rapid System Prototyping: Shortening the Path from Speci-
fication to Prototype. ACM. 2016, pp. 41–47.

125

	Dedication
	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Research Contributions
	1.3 Thesis Outline

	2 Motivation and Problem Statement
	2.1 Reconfigurable Computing Architectures
	2.1.1 Hardware Acceleration
	2.1.2 FPGA as Reconfigurable Accelerator
	2.1.3 Multi-FPGA Systems
	2.1.4 Reconfigurable System-on-Chip
	2.1.5 Communication Model and Requirements

	2.2 Hardware Context Switch on FPGAs
	2.2.1 General Concept
	2.2.2 Heterogeneity Requirements
	2.2.3 Scheduling Constraints

	2.3 Problem Statement
	2.4 Conclusion

	3 State of the Art
	3.1 Hardware Task Context Extraction
	3.1.1 Configuration-based Technique
	3.1.2 Design-based Technique
	3.1.3 Overlay Technique

	3.2 Reconfigurable System Management
	3.2.1 Linux-based OS
	3.2.2 ReconOS
	3.2.3 FOSFOR
	3.2.4 Rainbow
	3.2.5 CPRtree

	3.3 Conclusion

	4 Communication Management in Hardware Context Switch
	4.1 General Hypothesis
	4.2 Hardware Context Extraction for Heterogeneous Multi-FPGA Systems
	4.2.1 Design-based Technique
	4.2.2 High-Level Synthesis Flow

	4.3 Communication Model
	4.3.1 Kahn Process Network
	4.3.2 I/O Communication Scope

	4.4 Context Switch Protocol
	4.4.1 Existing Solution
	4.4.2 Proposed Solution with Communication Data Management

	4.5 Implementation in Reconfigurable Architectures
	4.5.1 Compatible Systems
	4.5.2 Development in Physical Layer
	4.5.3 Development in Communication Layer

	4.6 Conclusion

	5 Experiments and Results
	5.1 Overview
	5.2 Experimental Platforms
	5.2.1 Xilinx ZC706 Evaluation Board
	5.2.2 Altera Arria V SoC Development Kit
	5.2.3 Platform Comparison

	5.3 Hardware Implementation
	5.3.1 Benchmark Applications
	5.3.2 IP Generation with AUGH
	5.3.3 Communication Infrastructure
	5.3.3.1 Basic
	5.3.3.2 Without Communication Extraction (CS)
	5.3.3.3 With Communication Extraction (CSComm)
	5.3.3.4 Hardware Resource Evaluation

	5.3.4 Generation of FPGA Configuration File

	5.4 Software Implementation
	5.5 Performance Evaluation
	5.5.1 Evaluation Scenario
	5.5.2 Total Execution Time
	5.5.3 Context Switch Time
	5.5.4 Preemption Latency

	5.6 Application
	5.6.1 Migration in Heterogeneous Reconfigurable Systems
	5.6.2 Hypervisor-based System for FPGA Virtualization (Cloud-FPGA)

	5.7 Conclusion

	6 Conclusion and Future Works
	6.1 Conclusion
	6.2 Future Works
	6.2.1 Hardware Context Switch in a System with Dynamic Partial Reconfiguration
	6.2.2 Dynamic Task Migration in Large-Scale Distributed CPU-FPGA Systems
	6.2.3 Hardware Context Switch Support for Energy Efficient Cloud-FPGA

	7 Résumé
	7.1 Introduction
	7.2 Problématique
	7.2.1 Le système hétérogène reconfigurable
	7.2.2 Ordonnancement préemptif
	7.2.3 Synthèse de la problématique

	7.3 État de l'art
	7.3.1 Changement de contexte matériel
	7.3.2 Gestion de communication

	7.4 Méthodologie
	7.4.1 Hypothèse de travail
	7.4.2 Solution proposée
	7.4.3 Protocole de changement de contexte matériel
	7.4.4 Implémentation

	7.5 Expérimentation et résultats
	7.5.1 Plate-forme d'expérimentation
	7.5.2 Caractérisation matérielle
	7.5.3 Caractérisation temporelle
	7.5.4 Application

	7.6 Conclusion et perspectives

	Bibliography
	List of Publications

