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1 Introduction

The objective of this thesis is to develop mathematical mod-
els of visual perception based on cortical architectures and to
apply them to reproduce phenomenological experiments as well
as to process natural images. We primarly focus on low level
vision tasks and in particular we are interested in the problem
of grouping and of individuation of perceptual units. In this set-
ting we will face the problem of the reconstruction of illusory
�gures and the detection of retinal vessels in optical images.
Then we consider the problem of encoding and decoding of the
fMRI signal from in vivo acquired brain activity of visual cortex.
This allows to estimate the structure of the cortex of a speci�c
human patient and eventually to reconstruct the visual stimu-
lus from fMRI activity, in a so called “brain reading” strategy.
The di�erence between our approach and the state of the art
literature consists in using previously de�ned neuromathemat-
ical models of the cortices as a-priori knowledge to regularise
the in vivo estimated structure. Even if it is a long term objec-
tive, we propose a �rst approach to improve the results in this
�eld.

The entire work of this thesis has been developed taking
into account results from phenomenology of perception on one
hand and results of neurophysiology on the other.

In the �eld of the phenomenology of perception, at the be-
ginning of the last century, the theory of the Gestalt psychology
[Wertheimer, 1938, Kohler, 1947, Ko�ka, 1935] de�ned the in-
tegration of contours and in particular they de�ned grouping
laws underlying perception. These are crucial in the construc-
tion of visual objects: points with characteristics in common
can be grouped together to form a new, larger visual object.
Many psychophysical experiments have been proposed to mea-
sure the quantitative parameters of these laws. A particular
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interest of this thesis is the concept of association �elds intro-
duced by Field et al. [1993] which encodes di�erent Gestalt prin-
ciples (for example, good continuation and proximity). They
showed that stimulus co-linearity and co-circularity play an
important role for the feature of grouping. Their study showed
how chances of perceiving the curvilinear path were high if
the orientation of its features was the one tangent at that point
and collapsed as their relative orientation deviated from being
tangent.

On the other hand, in neurophysiology, an impressive amount
of experiments con�rm that the problem of grouping and of
boundary detection is performed by the primary visual cortex
(V1). The fundamental structures of V1 implemented in the
neural circuitry are closely related to contour grouping [Hubel,
1995].

A mathematical framework, based on di�erential instruments,
has been introduced to formalize these �ndings. The �rst geo-
metrical models are due to Koenderink and van Doorn [1987],
who underlined the di�erential action of perceptual mechanisms,
and by Ho�man [1989], who described V1 as a �ber bundle
equipped with a contact structure. This �ber bundle is the
mathematical structure ideally modelling both the retinotopic
and hypercolumnar structure. More recently, Petitot and Ton-
dut [1999], reconsidering the �ber bundle model of Ho�man,
proved that it is coherent with contemporary psychophysical
and neurophysiological �ndings, and it is able to describe the
association �elds from one side and the functionality of simple
cell from the other. Other model that considered a di�eren-
tial geometry approach was introduced by Zucker [2006]. In
Citti and Sarti [2006], Citti and Sarti reconsidered this corti-
cal structure as a Lie group equipped with a sub-Riemannian
metric. They proposed to model the functional architecture as
Lie groups, showing the relation between geometric integral
curves, association �elds, and cortical properties. This method
has been implemented in Sanguinetti et al. [2008] and Boscain
et al. [2012]. Exact solution of the Fokker-Planck equation has
been provided by Duits and Van Almsick [2008] and their re-
sults have been applied by Duits and Franken [2009] to image
processing.

These di�erential models are local, hence insu�cient to ex-
plain the problems of grouping and constitution of a percept,
since a perceived form is characterized by a global consistency.
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Di�erent authors qualitatively de�ned this consistency as preg-
nancy or global saliency [Merleau-Ponty and Smith, 1996], but
only a few quantitative models have been proposed [Koch and
Ullman, 1987]. In particular spectral approaches for image pro-
cessing were proposed by Perona and Freeman [1998], Shi and
Malik [2000], Weiss [1999], Coifman and Lafon [2006]. In Sarti
and Citti [2015] it is shown how this spectral mechanism is im-
plemented in the neural morphodynamics, in terms of symme-
try breaking of mean �eld neural equations. In that sense, Sarti
and Citti [2015] can be considered as an extension of Bresslo�
et al. [2002].

Our results fall within this approach and in particular the
one introduced in Sarti and Citti [2015], but the main original
contributions of the thesis can be described as follows:

• quantitative �tting between the computed kernels and the
experimental ones is performed, in order to validate the model;

• the model is enriched exploiting the role of the polarity fea-
ture;

• the model is extended; including the feature of intensity and
curvature, �nally considering a 5-dimensional kernel;

• these models of cortical connectivity are applied to the prob-
lems of identi�cation and reconstruction of natural images
from human brain activity, adding into this analysis neuro-
physiological constraints.

The thesis is organized as follows:

Chapter 3 starts by brie�y reviewing the Gestalt theory and
some of its basic laws, that describe how elements tend to be
perceptually grouped and made salient. The chapter continues
by describing one key psychophysical experiment related to
contour organization which inspired the concept of association
�elds: it is the classical result of Field et al. [1993]. The chap-
ter ends by describing the visual cortex, introducing the visual
pathways, the receptive �elds and receptive pro�les. The main
structures implemented by neural circuitry are described: the
layered, the retinotopic, the hypercolumnar structure. Finally,
the pinwheel structure, that is the real topological implementa-
tion of the hypercolumns, and the horizontal connectivity are
introduced. These structures will be relevant to the models pre-
sented in the following Chapters.



16

Chapter 4 reviews several di�erential models of the visual
cortex, particularly focuses on the models of Petitot and Ton-
dut [1999] in the Heisenberg group and of Citti and Sarti [2006]
in the Rototranslation group. A di�erential structure is consid-
ered, in order to model the long range horizontal connections
between hypercolumns. The structure is formalized as the Lie
algebra of the SE(2) with a Sub-Riemannian structure. The in-
tegral curves of its generating vector �elds model the associa-
tion �elds. Then stochastic models of cortical connectivity are
presented [Mumford, 1994, Williams and Jacobs, 1997b, August
and Zucker, 2000, 2003], de�ning the connectivity kernels.

We underline our contribution to the model, clarifying how
it is neurally implemented in the cortex, extending it in high
generality and providing a solid numerical implementation.

We conclude the chapter describing the problem of individ-
uation of perceptual units.

In Chapter 5 we perform a quantitative validation of the
model of cortical connectivity comparing the proposed kernels
with neurophysiological data of horizontal connectivity [Bosk-
ing et al., 1997, Angelucci et al., 2002]. We make a compar-
ison between the fundamental solution of the Fokker Planck
equation with experimental data of Bosking et al. [1997], Ben-
Shahar and Zucker [2004] and Gilbert et al. [1996], showing
how the stochastic paths are implemented in the neural net-
work. In particular, we consider the distribution of a tracer
through lateral connection modeling each injection with stochas-
tic paths. The bouton distributions are realizations of a stochas-
tic process, in particular of a random walk in R2xS1 space. We
show how the probability density obtained as a combination
of Fokker Plank is an integration of stochastic paths. Moreover
we propose to use also the Subelliptic Laplacian kernel, in order
to account for the variability of connectivity patterns.

The chapter ends with a quantitative validation of these ker-
nels, comparing to an experiment of Gilbert et al. [1996]. The
link between the connectivity kernel and cell’s response is un-
derlined. This work is published in Favali et al. [2016b].

Chapter 6 is devoted to the generalization of the model of
cortical connectivity. As de�ned in Chapter 4, the visual cortex
has a modular structure and its cells are capable to extract sev-
eral features. We present here the inclusion in the model of cor-
tical connectivity of the feature of intensity and an extension
to a 5 dimensional kernel in the lifted space of positions, orien-
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tations, intensities and curvatures. The results in this chapter
are published in Favali et al. [2016a], Abbasi-Sureshjani et al.
[2016a].

Chapter 7 presents applications of these models to the prob-
lem of individuation of perceptual units. The �rst application
is in the analysis of illusory �gures: we present the identi�ca-
tion of perceptual units in experiments similar to the ones of
Field et al. [1993] and in Kanizsa �gures, underlying the role
of polarity and comparing the behavior of the di�erent kernels
previously presented. Then, the method is applied to the analy-
sis of retinal images, to face the problem of grouping during the
tracking of blood vessels. We underline how the features of in-
tensity and curvature become relevant to correctly identify the
perceptual units in these images. These works represent origi-
nal contributions of this thesis and are published in Favali et al.
[2016b,a], Abbasi-Sureshjani et al. [2016a].

Chapter 8 describes how to combine the theory of cortical
models with encoding and decoding techniques. The chapter
starts recalling the functional MRI and describing an overview
of brain encoding and decoding results in fMRI analysis [Chen
et al., 2014]. The problem of identi�cation of natural images
from human brain activity and the results of Kay et al. [2008]
on this topic are presented. A modi�ed version of the encod-
ing model is described, adding sparsity of the representation, a
nonlinearity of logaritmic type to consider the structure of the
cortex and a regularization in the subriemannian cortical struc-
ture. This represents an original contribution in the thesis. Im-
age identi�cation performances with our method are then de-
scribed. The chapter continues by considering the problem of
reconstruction of the stimulus, primarily using simple and ar-
ti�cial images. The inverse mapping is described and the fMRI
response is represented from the �attened cortex to the retinal
coordinates. Then, the reconstruction of images from Gabor
wavelets and from the contrast energy is presented, underly-
ing how the representation provided by a population of com-
plex cells encodes the phase information that is needed for ob-
ject recognition. The chapter ends de�ning the reconstruction
of images from fMRI activity, comparing our method and the
results obtained by Naselaris et al. [2009].

The last Section is devoted to the conclusions.
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2 Résumé

L’objectif de cette thèse est de développer des modèles math-
ématiques de perception visuelle basés sur des architectures
corticales et de les appliquer pour reproduire des expériences
phénoménologiques ainsi que pour traiter des images naturelles.
Nous nous concentrons principalement sur les tâches de vision
de bas niveau et en particulier nous sommes intéressés par le
problème du groupement et de l’individuation des unités per-
ceptives. Dans ce contexte, nous ferons face au problème de la
reconstruction des �gures illusoires et de la détection des vais-
seaux rétiniens dans les images optiques. Ensuite, nous con-
sidérerons le problème du codage et du décodage de l’activité
cérébrale du cortex visuel obtenue par Imagerie par Résonance
Magnétique fonctionnelle (IRMf). Ceci permet d’estimer la struc-
ture du cortex d’un patient spéci�que et éventuellement de re-
construire le stimulus visuel de l’activité IRMf, dans une stratégie
“de lecture du cerveau” (brain reading). La distinction entre
notre approche et l’état de la littérature consiste à utiliser des
modèles neuromathématiques du cortex comme connaissance
a priori pour régulariser la structure estimée.

Même si c’est un objectif à long terme, nous proposons une
première approche pour améliorer les résultats dans ce domaine.
L’ensemble du travail de cette thèse a été développé en tenant
compte des résultats de la phénoménologie de la perception
d’une part et des résultats de la neurophysiologie de l’autre.

Dans le domaine de la phénoménologie de la perception, au
début du siècle dernier, la théorie de la psychologie de la Gestalt
a dé�ni l’intégration des contours et en particulier Wertheimer
[1938], Kohler [1947], Ko�ka [1935] ont dé�ni le regroupement
des lois de la perception.

Celles-ci sont cruciales dans la construction d’objets visuels :
les éléments avec des caractéristiques en commun peuvent être
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regroupés pour former un nouvel objet visuel plus grand. De
nombreuses expériences psychophysiques ont été proposées
pour mesurer les paramètres quantitatifs de ces lois. Un intérêt
particulier de cette thèse est le concept de champ d’association
introduit par Field et al. [1993] lequel code di�érents principes
de la Gestalt (par exemple, la bonne continuation et la proxi-
mité).

Ces auteurs ont montré que la co-linéarité de stimulus et la
co-circularité jouent un rôle important dans la caractéristique
du groupement. Leur étude a montré comment les chances de
percevoir un chemin curviligne étaient élevées si l’orientation
de ses éléments était tangente à ce chemin.

D’autre part, en neurophysiologie, une grande quantité d’expériences
con�rment que le problème du groupement et de détection des
contours est e�ectué par le cortex visuel primaire (V1) [Hubel,
1995].

Un cadre mathématique, basé sur les instruments di�éren-
tiels, a été introduit pour formaliser ces résultats. Les premiers
modèles géométriques sont dus à Koenderink and van Doorn
[1987], qui ont souligné l’action di�érentielle des mécanismes
perceptifs, et à Ho�man [1989], qui a décrit V1 comme un fais-
ceau de �bres équipé d’une structure de contact. Ce faisceau de
�bres est la modélisation mathématique de la structure rétino-
topique et de l’organisation en hypercolonnes. Plus récemment
Petitot and Tondut [1999] reconsidèrent le modèle de faisceau
de �bres de Ho�man, et prouvent qu’il est cohérent avec les
résultats psychophysiques et neurophysiologiques contempo-
rains, et qu’il est capable de décrire les champs d’association et
la fonctionnalité des cellules simples.

Une autre modèle examiné dans l’approche de la géométrie
di�érentielle a été introduit par Zucker [2006]. Dans Citti and
Sarti [2006], Citti et Sarti reconsidérés cette structure corticale
en tant que groupe de Lie équipé avec une métrique sous-riemannienn.
Ils ont proposé de modéliser l’architecture fonctionnelle en tant
que groupes de Lie, en montrant la relation entre les courbes
intégrales géométriques, les champs d’association et les pro-
priétés corticales. Cette méthode a été implémentée dans San-
guinetti et al. [2008] et Boscain et al. [2012]. La solution ex-
acte de l’équation de Fokker-Planck a été fournie par Duits
and Van Almsick [2008] et leurs résultats ont été appliqués par
Duits and Franken [2009] au traitement d’image.

Ces modèles di�érentiels sont locaux, donc insu�sants pour
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expliquer les problèmes de groupement et de constitution d’une
perception, car une forme perçue est caractérisée par une co-
hérence globale.

Di�érents auteurs ont qualitativement dé�ni cette cohérence
comme la saillance globale [Merleau-Ponty and Smith, 1996],
mais seuls quelques modèles quantitatifs ont été proposés [Koch
and Ullman, 1987]. En particulier, l’approche spectrale pour
le traitement d’image a été proposée par Perona and Freeman
[1998], Shi and Malik [2000], Weiss [1999], Coifman and Lafon
[2006]. Sarti and Citti [2015] montrent comment ce mécanisme
spectral est implémenté dans la morphodynamique neuronale,
en termes de rupture de symétrie des équations neuronales de
champ moyen. Dans ce sens, le modèle de Sarti and Citti [2015]
peut être considéré comme une extension de Bresslo� et al.
[2002].

Nos résultats s’inscrivent dans cette approche et en parti-
culier celle introduite dans Sarti and Citti [2015] et les princi-
pales contributions originales de la thèse peut être décrit comme
suit:

• un ajustement quantitatif entre les noyaux calculés et les es-
sais expérimentaux est e�ectué, a�n de valider le modèle;

• le modèle est étendu en exploitant le rôle de la caractéris-
tique de polarité;

• le modèle est étendu y compris la caractéristique d’intensité
et de courbure, en considérant un noyau à 5 dimensions;

• ces modèles de connectivité corticale sont appliqués aux pro-
blèmes d’identi�cation et de reconstruction d’images naturelles
à partir de l’activité cérébrale humaine, en ajoutant à cette
analyse des contraintes neurophysiologiques.

La thèse est organisée comme suit:

Le chapitre 3 commence par une brève revue de la théorie
de la Gestalt et de quelques-unes de ses lois fondamentales, qui
décrivent comment les éléments tendent à être perceptivement
groupés et faits saillants. Le chapitre continue en décrivant une
expérience psychophysique clé liée à l’organisation du contour
qui a inspiré le concept des champs d’association : c’est le résul-
tat classique de Field et al. [1993]. Le chapitre se termine par la
description du cortex visuel, en introduisant les voies visuelles,
les champs récepteurs et les pro�ls récepteurs. Les structures
principales des circuits neuronaux sont décrites : les couches,
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l’organisation rétinotopique, les hypercolonnes. En�n, la struc-
ture “pinwheels” et la connectivité horizontale sont introduites.
Ces structures seront importantes pour les modèles présentés
dans les chapitres suivants.

Le chapitre 4 examine plusieurs modèles di�érentiels du cor-
tex visuel, puis se concentre sur les modèles de Petitot and Ton-
dut [1999] dans le groupe de Heisenberg et de Citti and Sarti
[2006] dans le groupe Rototranslation. Ces modèles consider-
ent une structure di�érentielle, a�n de modéliser les connex-
ions horizontales entre hypercolonnes. La structure est formal-
isée comme l’algèbre de Lie de la SE(2) avec une structure Sub-
Riemannienne. Les courbes intégrales de ces champs vecto-
riels générateurs modélisent les champs d’association. Les mo-
dèles stochastiques de connectivité corticale sont alors présen-
tés [Mumford, 1994, Williams and Jacobs, 1997b, August and
Zucker, 2000, 2003], dé�nissant les noyaux de connectivité.

Nous soulignons notre contribution au modèle, en précisant
comment il est implémenté neuralement dans le cortex, en four-
nissant une exécution numérique solide.

Nous concluons le chapitre avec une présentation du prob-
lème de l’individuation des unités perceptuelles.

Dans le chapitre 5 nous e�ectuons une validation quantita-
tive du modèle de la connectivité corticale comparant les noyaux
avec des données neurophysiologiques de connectivité horizon-
tale [Bosking et al., 1997, Angelucci et al., 2002].

Nous faisons une comparaison entre la solution fondamen-
tale de l’équation de Fokker Planck avec les données expéri-
mentales de Bosking et al. [1997], Ben-Shahar and Zucker [2004]
et Gilbert et al. [1996], montrant comment les chemins stochas-
tiques sont implémentès dans le réseau neuronal.

Nous considérons la distribution d’un traceur à travers la
connexion latérale avec la modélisation stochastique de chacun
des chemins d’injection.

Les distributions des boutons sont des réalisations de pro-
cessus stochastique, en particulier d’une marche aléatoire dans
l’espace R2xS1.

Nous montrons comment la densité de probabilité obtenu
sous la forme d’une combinaison de Fokker Planck est une in-
tégration de trajectoires aléatoires. De plus, nous proposons
d’utiliser également le noyau Laplacien-elliptique, a�n de tenir
compte de la variabilité des modèles de connectivité.

Le chapitre se termine par une validation quantitative de ces
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noyaux, comparé à une expérience de Gilbert et al. [1996]. Le
lien entre le noyau de la connectivité et de la réponse cellulaire
est soulignée. Ce travail est publié dans Favali et al. [2016b].

Le chapitre 6 introduit la généralisation du modèle de con-
nectivité corticale. Comme dé�ni au chapitre 4, le cortex visuel
a une structure modulaire et ses cellules sont capables d’extraire
plusieurs caractéristiques. Nous présentons ici l’inclusion dans
le modèle de connectivité corticale de la caractéristique d’ in-
tensité et une extension à un noyau à 5 dimensions dans l’espace
des positions (2 dimensions), des orientations, des intensités et
des courbures.

Les résultats de ce chapitre sont publiés dans Favali et al.
[2016a], Abbasi-Sureshjani et al. [2016a].

Le chapitre 7 présente les applications de ces modèles au
problème de l’individuation des unités perceptuelles. La pre-
mière application est dans l’analyse de �gures illusoires : nous
présentons l’identi�cation d’unités perceptives dans des expé-
riences similaires à celles de Field et al. [1993] et de Kanizsa, en
considérant le rôle de la polarité et en comparant le comporte-
ment des di�érents noyaux présentés précédemment.

Ensuite, la méthode est appliquée à l’analyse des images ré-
tiniennes, a�n d’examiner le problème du groupement des vais-
seaux sanguins. Nous soulignons comment les caractéristiques
d’intensité et de courbure deviennent fondamentales pour iden-
ti�er correctement les unités perceptives dans ces images.

Ces travaux représentent des contributions originales de cette
thèse et sont publiés dans Favali et al. [2016b,a], Abbasi-Sureshjani
et al. [2016a].

Le chapitre 8 décrit comment combiner la théorie des mo-
dèles corticaux avec les techniques de codage et de décodage.
Le chapitre commence avec une description de l’IRM fonction-
nelle et il décrit une vue d’ensemble des résultats de codage et
de décodage du cerveau dans l’analyse IRMf [Chen et al., 2014].
Le problème de l’identi�cation des images naturelles à partir de
l’activité du cerveau humain et les résultats de Kay et al. [2008]
sur ce sujet sont présentés.

Une version modi�ée du modèle d’encodage y est décrite,
en ajoutant la sparsité de la représentation, une non linéarité
de type logarithmique pour considérer la structure du cortex et
une régularisation dans la structure cortical subriemannienne.
Cela représente une contribution originale dans la thèse. Les
performances d’identi�cation d’image avec notre méthode sont
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ensuite décrites. Le chapitre continue en considérant le prob-
lème de la reconstruction du stimulus, principalement avec des
images simples et arti�cielles. La méthode de “mapping in-
verse” est décrite, pour laquelle la réponse IRMf est représentée
à partir du cortex jusqu’aux coordonnées rétiniennes. La recon-
struction des images à partir du �ltre de Gabor et de l’énergie
de contraste est ensuite proposée.

Le chapitre présente en�n la reconstruction des images à
partir de l’activité IRMf, en comparant notre méthode et les
résultats obtenus par Naselaris et al. [2009].

La dernière section conclut par un discussion generale.
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3 Phenomenology of perception and neurophysiol-

ogy of the visual cortex

3.1 Phenomenology of perception

We start this chapter recalling the main rules of the Gestalt
psychology, one of the most classical school of phenomenology
of vision, which expressed local and global laws at the basis of
grouping and constitution of percepts. Another crucial element
which can contribute to the explanation of segmentation is the
association �eld, introduced by Field, Hayes and Hess to de-
scribe which parts of the stimuli can be associated to the same
perceptual unit. A detailed analysis of phenomenology of per-
ception or of the visual cortex is out of the aim of this Chapter,
but we will focus on the structures relevant to the models pre-
sented in the following ones. The neurological basis of these
perceptual phenomena have to be searched in the functional
architecture of the primary visual cortex (V1). We introduce
the visual pathways, the receptive �elds and receptive pro�les
and the layered, retinotopic and the hypercolumnar structure.
Finally, the pinwheel structure and the horizontal connectivity
will be described.

3.1.1 Gestalt Theory

An important process in visual perception is represented by
perceptual grouping. Since the beginning of the last century,
Gestalt theory began to de�ne laws of perception, according to
which distinct visual stimuli can be perceived as a single per-
ceptual unit. It formulated both local and global laws which
can explain the grouping process (see for example [Wertheimer,
1938, Kohler, 1947, Ko�ka, 1935] and for a recent review we
quote: [Wagemans et al., 2012]). This process is fundamental
in visual perception, when points have one or several charac-
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teristics in common they form a new and larger visual object.
Gestalt psychologists formulated rules for perceptually signi-
�cant image structure and describe how elements tend to be
grouped together. The idea is that complex phenomena can be
understood considering the idea of structure more than a sin-
gle element. In particular, in order to individuate perceptual
units, gestalt theory has introduced local and global laws, that
describe the in�uence of global context in the perception of lo-
cal features. Among the local laws we recall here the principle
of good continuation, similarity and proximity:

• good continuation: elements aligned (or with comparable align-
ment) tend to form a continuous curve. As an example, in
Figure 3.1 we clearly perceive an unique curve of dots cross-
ing a black rectangle and not two distinct curves;

Figure 3.1: Examples of good
continuation Gestalt laws.
Adapted from: [Kanizsa,
1979].

• similarity: elements similar in color, texture, shape or orien-
tation are grouped together (see Figure 3.2);

Figure 3.2: Examples of simi-
larity Gestalt laws. Adapted
from: [Kanizsa, 1979].

• proximity: elements that are close to each other and apart
enough from the rest of the elements form a group or a clus-
ter (see Figure 3.3).

Figure 3.3: Examples of prox-
imity Gestalt laws. Adapted
from: [Kanizsa, 1979].
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These properties describe how elements tend to be percep-
tually grouped and made salient. More than one grouping laws
can play a role to the perception of a complex object. At local
level, the central idea of the Gestalt psychology is that continu-
ity is essential in perception. For example phenomena in which
there is a phenomenological presence of boundaries without a
physical stimulus describe the mechanisms of boundary com-
pletion. These local laws of good continuation and alignment
have a central role in phenomena as the modal completion of
Kanizsa presented in the next Section, but can not be su�-
cient to completely justify them. Indeed, in Figure 3.4 (left) we
clearly perceive the square if we �x at the center of the �g-
ure, but the subjective countours completely disappear if we
try to �x them, or if we focus on a packman inducer. As a con-
sequence global laws are necessary to explain the perception.
In the construction of percepts and in particular in the �gure-
ground articulation it is crucial a notion of saliency which de-
notes the relevance of a form with respect of a contextual frame,
the power of an object to be present in the visual �eld.

Due to the perceptual grouping process the scenes are per-
ceived as constituted by a �nite number of �gures and the saliency
assigns a discrete value to each of them. In particular the most
salient con�guration pops up from the ground and becomes a
�gure [Merleau-Ponty and Smith, 1996]. Note that in case of
continuous deformation of the visual stimulus, the salient �g-
ures can change abruptly from one percept to a di�erent one
[Merleau-Ponty and Smith, 1996]. This happens for example in
Figure 3.4 where a regular deformation is applied to the Kanizsa
square: we progressively perceive a more curved square, until
it suddenly disappears and the 4 inducers are perceived as stand
alone (see for example [Lee, 2001, Pillow and Rubin, 2002, Peti-
tot, 2008]).

Figure 3.4: Deformation of
visual stimulus, represented
by squares with di�erent
angles between the induc-
ers: the angle regularly de-
creases and we perceive reg-
ular deformations of the sub-
jective Kanizsa square up to
a certain value of curvature,
when the square suddenly
disappears and the inducers
are perceived.

From the previous example, we can observe that the percep-
tual reality is composed by a discrete number of objects that
do not necessarily depend on the existence of the correspon-
dent physical objects. These phycological concepts are based
on how the perception can in�uence the human behavior. In-
deed, the visual stimulus is composed by indipendent points,
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but the process performed by the visual system induces the
perception of perceptual units and objects, and a �gure-ground
segmentation, described in the following section.

3.1.2 Figure-ground segmentation

This articulation of the visual �eld in �gure and ground, rep-
resenting the minimal structure of visual perception, is one of
the fundamental process at the base of visual experience and of
the concept formulated by the Gestalt theory. It represents the
tendency of the perceptual �eld to distinguish between what is
primary and important in the �gure and what it is secondary.
The �gure is de�ned as the elements delimited by a boundary
that attracts our attention; the background is everything that
appears distant and acts as a “frame" of the picture. Between
the �gure-ground segmentation laws we recall:

• inclusion: at the same conditions, the regions of the image
that are enclosed or surrounded are perceived as the �gure;

• relative area: regions that are smaller in area are more likely
to be seen as �gure;

• orientation: observers are more likely to perceive the �gure
on the side of the edge where the familiar object lies.

Summarizing, regions that are convex, symmetric, smaller
in area, enclosed, or surrounded are more likely to be seen as
�gure than contiguous regions that are concave, asymmetric,
larger in area, or surrounding. The Gestalt psychologists held
that these properties for �gure-ground perception were largely
innate and did not depend upon an individual’s past experience
[Wertheimer, 1938].

When none of these conditions allow to distinguish what
is salient in the �gure, the perception becomes ambiguous. In
the case of ambiguous �gures the problem of the selection of
�gure-ground is particularly evident, as visualized in Figure 3.5.
This optical illusion may be perceived either as a vase or as
two human pro�les facing each other, so it is not possible to
perceive a more salient object in the scene.

The black regions in Figure 3.5 appear shapeless when they
are seen as grounds to the white vase, while they appear shaped
like pro�les of faces when seen as �gures. In a similar way, the
white region appears shapeless when it is seen as the ground
to the black pro�le faces, while appears to be a vase when it is



3 Phenomenology of perception and neurophysiology of the visual cortex. 31

Figure 3.5: The Rubin vase.
This illusion was created
by the Danish psychologist
Edgar Rubin.

seen as �gure. Thus, regions appear shapeless when they are
seen as grounds even though the same regions appear shaped
when they are perceived to be �gures.

3.1.3 Perceptual Completion

Kanizsa in Kanizsa [1979, 1980] underlined that visual percep-
tion represents a complex process which involves both the phys-
ical stimuli and their phenomenological organization, which in
general do not concide. This happens in a very clear way in the
subjective completion process, which, for this reason, can be
considered a �rst crucial tool for understanding visual percep-
tion. Kanizsa de�ned in particular two modality of completion:
modal and amodal completion.

In the �rst one, that is present for example in the famous
Kanizsa square (see Figure 3.4 (left)), we perceive an image
whose boundaries are not present in the physical stimulus with
the full modality of vision: the square pops up from the back-
ground and we perceive it with a gray level di�erent from the
background. Another example is presented in Figure 3.6 (left),
where a Kanizsa triangle is phenomenologically perceived even
if the boundaries are not present in the image. There is an ap-
parent contour separating the triangle from the �gure, indeed
the interior looks whiter than the background. This modal com-
pletion gives rise to the well known phenomenon of illusory
boundaries or subjective contours. The amodal completion (see
Figure 3.6 (right)) is much more common, since it is caused by
any partially occluded objects. The �gure perceived is a black
circle occluded by the gray square. The circle is present in the
visual �eld but its completion is performed without an illusory
contour. In this case we perceive a completion without the
modality of vision.



32

Figure 3.6: Left: the Kanizsa
triangle as an example of
modal completion. Right:
an example of amodal com-
pletion. Adapted from:
[Kanizsa, 1979].

3.1.4 Good continuation and association fields

In the previous Section it is described how in the problem of
perceptual grouping the local law of good continuation plays a
central role.

A number of results have been provided in order to re�ne
the principles of psychology of form and assess neural corre-
lates of the good continuation law. In particular, Grossberg and
Mingolla [1985] introduced a “cooperation �eld” to model illu-
sory contour formation. Similar �elds of association and per-
ceptual grouping have been produced by Parent and Zucker
[1989]. In this contest, in the 1990s Kellman and Shipley pro-
vided a theory of object perception that speci�cally adressed
perception of partially occluded objects and illusory contours
[Kellman and Shipley, 1991, Shipley and Kellman, 1992, 1994].
Von Der Heydt et al. [1993] provided a theory of �gural com-
pletion which can be applied to both illusory contour �gures
(as the Kanizsa triangle) and real images.

In the same years Field et al. [1993] introduced through psy-
chophysical experiments the notion of association �elds, to for-
malize the Gestalt principle of good continuation.

Figure 3.7: Field through the
ages: the cooperative �eld
of Grossberg and Mingolla
[1985] (left), the association
�eld of Field et al. [1993]
(middle) and the two group-
ing �elds of opposite orienta-
tion of Von Der Heydt et al.
[1993] (right).

They developed a new approach to psychophysically inves-
tigate how the visual system codes contour continuity. The
experiment introduced consists in showing to an observer an
image composed by a small number of aligned Gabor patches
(Figure 3.8 (b)) in a background of a large number of the same
patches randomly distributed (Figure 3.8 (a)). The purpose was
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to test the ability of the subject to detect the perceptual units
present in the visual stimulus and was repeated with di�erent
curves, changing the alignement of patches, their distances and
their orientation.

Figure 3.8: The stimulus
proposed by Field, Hayes
and Hess [Field et al., 1993]
(a) and the perceptual unit
present in it (b). In (c) the
�eld lines of the association
�eld [Field et al., 1993].

In this way they were able to describe the whole set of points
and orientations which can be mutually connected. Through a
series of similar experiments (see Figure 3.9), they constructed
an association �eld, that describes the pattern of position - ori-
entation elements of stimuli that can be associated to the same
perceptual unit and represents the elements in the path which
can be associated to the central point (see Figure 3.8 (c)). The
stimulus in the central position can be joined with other stim-
ula tangent to the lines in the �gure but can not be joined with
stimula with a di�erent direction (see Figure 3.7 (middle)).

Based upon these results, they suggested that local interac-
tions between contour elements follow speci�c rules and rep-
resent the basis for contour integration in humans.

3.2 The visual cortex

The origin of the previous described perceptual phenomena has
to be found in the functionality of the primary visual cortex
and its structures, which we describe here. The visual system
has dedicated pathways through the multiple visual areas, that
are related to separate functional measured properties as shape,
color, motion and disparity [Hubel and Wiesel, 1977, 1962].

The cerebral cortex is the outermost layer of neural tissue in
the two cerebral hemispheres and plays a central role in cogni-
tive and sensory processing. It is composed by sensory, motor
and association areas. The parts of the cortex that receive sen-
sory inputs are the sensorial areas and the one that serves the
sense of vision and receives the information from the visual
path is the visual cortex. The visual pathway is represented in
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Figure 3.9: Test images of
psychophysical experiments,
used by Field et al. [1993].
The experiment consists
of showing to subjects a
grid made of oriented Ga-
bor patches (left). In some
images, the grid contains
elements aligned over a path
and other similar patches
randomly distributed. In the
other cases, each oriented
element is placed randomly.
The task for the participant
is to detect whether there
are or not aligned elements
in the grid (right).

Figure 3.10, where the left visual �eld is processed in the right
half of the brain and viceversa [Zeki, 1993].

Figure 3.10: The visual path-
way. The left visual �eld is
processed in the right half
of the brain. Source: [Zeki,
1993].

From the retina, the optic nerve runs into the central brain
area and makes a connection in the Lateral Geniculate Nucleus
(LGN), a specialized area of the thalamus. The LGN is the pri-
mary processing center for visual information received from
the retina of the eye; in this area all incoming perceptual infor-
mations come together, as the visual, the tactile and the audi-
tory ones.

The LGN consist of 6 layers; the top four layers have small
cell bodies and form the parvo-cellular layers (Latin: parvus
= small). The bottom layers have larger cell bodies and form
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the magno-cellular layers (Latin: magnus = big). The parvo-
cellular layers contain shape and color information; the magno-
cellular layers are involved in mediating motion information.
The mapping from the retina to the LGN is very precise, each
layer is a retinotopic map of the retina.

Then, the axons of the cells of the LGN project the visual
signal to the primary visual cortex (V1), also known as the stri-
ate cortex, a region in the calcarine sulcus in Brodmann area
17 (see Figure 3.11, left).

Figure 3.11: On the left
the Brodmann area 17 (pri-
mary visual cortex) repre-
sented in red. Area 18 and
19 are shown respectively in
orange and yellow. On the
right the layered structure of
V1. Most of the axons of
LGN project to sublayer 4C.
Source: [Cocci, 2014].

The visual cortex is composed by 6 layers in a retinotopic
structure. Layer 4, which receives most visual input from the
LGN, is further divided into 4 layers, labeled 4A, 4B, 4Cα , and
4Cβ . Sub-lamina 4Cα receives most magnocellular input from
the LGN, while layer 4Cβ receives input from parvocellular
pathways. The sublayer 4C is where most of the axons from
the LGN arrive and where the concentration of oriented cells
is higher as represented in Figure 3.11 (right).

From V1 projections go to the higher visual layers of the
cortex as visual area V2, V3, V4 that correspond to Brodmann
area 18 and 19 visualized in Figure 3.11 (left) and the medio-
temporal (MT) layer [Wurtz and Kandel, 2000] as represented
in Figure 3.12.

3.2.1 Simple cells in V1

The primary visual cortex processes the orientation of contours
by means of the simple cells and other features of the visual
signal (as estimation of motion direction) by means of complex
cells. Every simple cell is characterized by its receptive �eld,
classically de�ned as the domain of the retina to which the neu-
ron is sensitive. The shape of the response of the cell in pres-
ence of a visual input is called receptive pro�le (RP) and can
be reconstructed by electrophysiological recordings [Ringach,
2002]. In particular, Hubel and Wiesel �rst provided the char-
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Figure 3.12: Diagram of the
visual pathways. Adapted
from [Kandel et al., 2000].

acterization of receptive �elds in V1 based on their responses
[Hubel and Wiesel, 1962].

Simple cells of V1 are sensitive to orientation and are strongly
oriented. Most of the V1 simple cells are functionally involved
in visual processing as orientation detectors. As was �rst noted
by Koenderink [1984], the receptive �eld pro�les of simple cells
have a remarkable resemblance to Gaussian derivative kernels.
Daugman proposed the use of Gabor �lters in the modeling of
the receptive �elds of simple cells in the visual cortex of some
mammals [Daugman, 1980]. Hence their RPs are interpreted as
Gabor patches [Daugman, 1985, Jones and Palmer, 1987]. Pre-
cisely they are constituted by two coupled families of cells: an
even and an odd-symmetric one (see Figure 3.13).

Figure 3.13: Receptive pro-
�le of a simple cell and
its representation as a
even-symmetric and odd-
symmetric Gabor �lters.
Source: [Sarti and Citti,
2011].

The Gabor �lter is a sinusoid modulated Gaussian (see Fig-
ure 3.14) and considering θ the orientation it has the following
expression:

ψ (x ,y) = e [−
(x̃2+ỹ2 )

2σ 2 +2πiωỹ] (3.1)
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where:
x̃ = xcos (θ ) +y sin(θ ) (3.2)

ỹ = −xsin(θ ) +y cos(θ ). (3.3)

Figure 3.14: A Gabor �l-
ter (bottom) described as the
product of a sinusoid (top
left) and a Gaussian function
(top right). Source: [Jones
and Palmer, 1987].

The imaginary part of the Gabor �lter models an odd-symmetric
RP while the real part models an even one.

3.2.2 The functional architecture of V1

The functional architecture is de�ned as the spatial organiza-
tion and as the connectivity between neurons in a cortical area.
In V1 it is possible to identify the following structures:

• the layered structure: the cortex is formed by 6 horizontal
layers and a number of sublayers (see Figure 3.11 (right));

• the retinotopic structure: what is near in the retina is near
in the cortex. This is due to a topographic organization im-
plying that the mapping from the retina to the cortex is pre-
served (see Figure 3.15). It is mathematically described by
a logarithmic conformal mapping, as described in Section
3.2.2.1;

• the hypercolumnar structure: it organizes the cortical cells in
columns corresponding to di�erent parameters (like orienta-
tion, color) (see Figure 3.18). This is described in details in
Section 3.2.2.2.
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Figure 3.15: The retinotopic
structure of the V1 recorded
by fMRI. On the left is vi-
sualized the radial mapping
while on the right is shown
the polar angle (source: [Ol-
man et al., 2010].

• the horizontal connectivity: it connects cells with the same
orientation belonging to di�erent hypercolumns, as described
in Section 3.2.3.

3.2.2.1 The retino-cortical mapping

In this section, we describe the deformation that a signal on
the retina obtains when represented on the cortex, estimating
a model for the retino-cortical mapping.

The notion of retinotopy based on the anatomy of the vi-
sual cortex was �rst suggested by Polyak [1941], then Talbot
and Marshall [1941] con�rmed the hypothesis of the existence
of a mathematical projection of the retina on the cortex using
physiological methods. The study of Daniel and Whitteridge
[1961] provided a source of quantitative data and a mathemat-
ical analysis of the retinotopic mapping has been presented in
[Schwartz, 1977]. In [Schwartz, 1977] the retinotopic mapping
of the striate cortex is mathematically described as a complex
logarithmic mapping.

The principal quantitative measure of the structure of the
cortical map is the magni�cation factor introduced by Daniel
and Whitteridge [1961]. The representation of an image on the
visual cortex is characterized by this factor: the portion of the
image closer to the center of the �eld of view (the fovea) is
strongly enlarged when mapped on the cortex [Tootell et al.,
1988]. This factor decreases when the distance from the fovea
(that is the retinal eccentricity) increases as represented in Fig-
ure 3.16.
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Figure 3.16: A visual stimu-
lus (top left) and a portion of
the cortex with correspond-
ing activated regions (top
right) [Tootell et al., 1988].
A schematic representation
of the magni�cation factor
property is visualized at the
bottom.

De�ned ρ the eccentricity, the magni�cation factor is deter-
mined as:

Ma,k (ρ) :=
k

ρ + a
(3.4)

where (a,k ) ∈ (0, 1] x R+ are two constants which determine
the �t. In [Schwartz, 1980, 1977] this mapping was evaluated
as a complex logarithmic function:

la,k (z) := kloд(z + a), (a,k ) ∈ (0, 1]xR+ and z ∈ C (3.5)

and near the fovea the equation becomes:

la,k (z) ≈ kloд(a) + k
z

a
. (3.6)

The motivation for considering a logarithmic function for the
cortical mapping is based on noting that the magnitude of the
cortical magni�cation factor is roughly inversely proportional
to retinal eccentricity. In these equations, k is a normalization
factor and a allows to discriminate between the linear (|z| « a)
and the logarithmic (|z| » a) map. Thus the complex logarithm
of a linear function of eccentricity provides a map from a lin-
ear foveal representation to a complex logaritmic surround (see
Figure 3.17).
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Figure 3.17: The retinotopic
mapping under the loga-
rithm function. Concentric
circles and radial straight
lines are mapped in equidis-
tant cartesian grid on the
cortex. Source: [Schwartz,
1977].

A comparison of Figure 3.17 with the experimental evidence
displayed in Figure 3.16 suggests that this function provides a
good model for the retino-cortical mapping.

In Montobbio [2016] it is shown a procedure designed in
order to estimate suitable values for the constants a and k of
the two-parameter logarithmic function la,k as a model for the
retino-cortical mapping.

3.2.2.2 The hypercolumnar structure

In the 70s Hubel and Wiesel discovered that the primary visual
cortex is organized in the so called hypercolumnar structure
[Hubel and Wiesel, 1962, 1977]. This means that for each reti-
nal point (x ,y) there is an entire set of cells each one sensitive
to a speci�c orientation θ of the stimulus.

Figure 3.18: The classical
Hubel and Wiesel cube
scheme of V1. Cells belong-
ing to the same column
share similar receptive
pro�le characteristics, the
orientation hypercolumns
are arranged tangentially to
the cortical sheet. Source
[Hubel, 1995].

Since ideally the position on the retina takes values in the
plane R2 and the orientation preference in the circle S1, the
visual cortex domain can be locally modelled as the product
space R2xS1. At a certain scale and resolution, for each point
of the retina (x ,y) there exists a whole set of neurons in V1
maximally responding to every possible orientation θ . Each
point (x ,y,θ ) of this 3D space, represents a column of cells in
the cortex associated to a retinal position (x ,y), all tuned to the
orientation given by the angle θ .
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In other words, simple cells extract the orientation informa-
tion at all locations and send a multi-orientation �eld to higher
levels in the brain. Via the retinotopy, the retinal plane can be
identi�ed with the 2-dimensional plane R2. A visual stimuli I
at the retinal point (x ,y) activates the whole hypercolumnar
structure over that point. All cells �re, but the cell with the
same orientation of the stimulus is maximally activated, giving
rise to orientation selectivity, as visualized in Figure 3.19.

Figure 3.19: The maximal ac-
tivity is observed for the sim-
ple cell sensitives to the di-
rection of the boundary of
the visual stimulus. Adapted
from [Sarti et al., 2008].In presence of a visual stimulus I (x ,y), the output of simple

cells is computed as the integral of the receptive pro�le with
the image:

h(x ,y,θ ) =
∫

ψx ,y,θ (x
′,y′)I (x′,y′)dx′dy′. (3.7)

The cortex is equipped with a neural circuitry, called the
intracortical circuitry, that is able to keep the direction of max-
imal response of the output of simple cells, achieved at a value
θ̄ . The lifted set is discrete and corresponds to the maximal ac-
tivity of the output of simple cells. It selects the hypercolumns
orientation of maximum output in response to a visual stimulus
and to suppress all the others. The maximal activity is observed
for the simple cell sensitive to the direction of the boundary of
the visual stimulus.

In particular, in the hypercolumnar structure, it is possible
to identify two types of connectivity between neurons. The in-
tracortical circuitry is able to select the hypercolumns of orien-
tation with maximum output in response to a visual stimulus.
Cells with the same orientation belonging to di�erent hyper-
columns are connected by the horizontal connectivity.

The horizontal connections connect cells with the same ori-
entation belonging to di�erent hypercolumns. Correlation tech-
niques have been used [Ts’o et al., 1986] to estimate the re-
lation between connectivity and orientation of cells; recently
techniques of optical imaging allowed to study the propagation
of the neural signal via cortico-cortical connectivity [Bosking
et al., 1997]. This connectivity allows to obtain the integration
process, that is at the base of the formation of illusory contours
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[Petitot and Tondut, 1999, Citti and Sarti, 2006].

3.2.2.3 The pinwheel structure

Optical imaging techniques were developed by Bonhoe�er et al.
[1991] to study the layout of the orientation domains of the
cortex. This in-vivo intrinsic-signal technique allowed to ob-
tain the global map of orientations through the acquisition of
activity from cells of the super�cial layers of V1 (see Figure
3.20 (left)). It is possible to notice in the iso-orientation maps,
that contain the areas that best respond to one orientation, the
presence of singular points where all colors appear once. These
points are arranged like spokes of a wheel and are called pin-
wheels see Figure 3.20 (right) [Petitot, 2003]. They found that
the orientation centres from which the pinwheel-like organiza-
tion of orientation preference originates are an important fea-
ture for organizing the representation of orientation in cortical
area.

In Figure 3.20 two features of the orientation centres are
shown: in all pinwheels each orientation appears once around
the centre; the pinwheels exist in two forms, a clockwise (top
right) and a counter-clockwise (top down)

Figure 3.20: Left: colour-
coded orientation preference
map found by Bonhoe�er
et al. [1991]. The preferred
orientation for every loca-
tion is coded according to the
scheme shown on the right,
where the yellow represents
area responding best to a ho-
rizontal bar. Source: [Bonho-
e�er et al., 1991].

Each orientation map can be obtained using a color scale
where the color corresponds to the best orientation stimulus.

Orientation preference map of tree shrew’s visual cortex is
visualized in Figure 3.21 [Bosking et al., 1997].

The orientation preference maps contain both linear zones,
which correspond to the orientation hypercolumns recorded
with the electrodes, and pinwheel structure (see Figure 3.21).
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Figure 3.21: Left: orienta-
tion preference maps of tree
shrew’s visual cortex. Orien-
tation preference of each lo-
cation is color-coded. Right:
the orientation preference
maps contain both linear
zones and pinwheel struc-
ture. Source: [Bosking et al.,
1997].

Since conventional optical imaging is not capable of resolv-
ing the �ne scale structure of the pinwheel centers, [Ohki et al.,
2006] used the two-photon calcium imaging technique based
on confocal microscopy to con�rm that pinwheels exist as a
real neurophysiological structure.

3.2.3 The horizontal connectivity

The 3D cortical structure is implemented in the 2D cortical
layer as a pinwheel structure, which codes for position and ori-
entations (see Figure 3.21 (left)).

From the neurophysiological point of view, there is experi-
mental evidence of the existence of connectivity between sim-
ple cells of di�erent hypercolumns. It is the so called long range
horizontal connectivity, that is responsible for the cortico-cortical
propagation of the neural activity between hypercolumns. These
experiments revealed that the linked cells of di�erent hyper-
columns not only share the angle of tuning, but also the axis
corresponding to the orientation is roughly the same. Bosking
et al. [1997] clari�ed properties of horizontal connections on
V1 of the tree shrew, measuring the cortico-cortical or horizon-
tal connectivity by injecting a tracer (biocytin) in a simple cell
and recording the trajectory of the tracer. In Figure 3.22 the
propagation through the lateral connections is represented by
black points. On the left, the bouton distribution shown over
orientation preference maps after an injection into a site with
a preferred orientation of 80 degree. The white symbols indi-
cate the location of cells that took up the tracer. In black the
boutons, found at sites with all orientation preferences near the
injection site, but preferentially at sites with the same orienta-
tion preference as the injection site at longer distances. On the
right, the results from an experiment in which an injection was
made into a site with an orientation preference of 160 degree.
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Bosking found that the propagation of the tracer is strongly
directional and the direction of propagation coincides with the
preferential direction of the activated cells. Moreover, he found
a large variability of injections, which however have common
stochastic properties as the direction of propagation. Combin-
ing the image of the propagation of a tracer through the lateral
connections with the orientation maps obtained with optical
imaging, they observed that nearby each neuron the connec-
tions are relatively isotropic but over larger distances they fol-
low the orientation preferences.

Figure 3.22: Left: bouton dis-
tribution shown over orien-
tation preference maps after
an injection into a site with
a preferred orientation of 80
degree. Right: results after
an injection into a site with
an orientation preference of
160 degree. Source: [Bosking
et al., 1997].

Angelucci et al. [2002] experimentally measured the lateral
or horizontal connections of macaques, which is represented in
Figure 3.23, showing a very isotropic morphology. Indeed, pri-
mates appear to have approximately isotropic horizontal con-
nections (once ocular dominance is taken into account).

These experiments have shown that the propagation of a
tracer is collinear to the preferred orientation of cells.

In the next Chapter we present a model for the functional
structures described, showing that these are the basis of per-
ceptual completion of contours.
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Figure 3.23: The isotropic
connectivity map found by
Angelucci et al. [2002] on
macaques. The connectivity
pattern is almost isotropic.
Source: [Angelucci et al.,
2002].
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4 Di�erential models of the visual cortex

In this chapter we recall several models of the functional ar-
chitecture of the visual cortex expressed in terms of di�erential
geometry.

We focus in particular on the models of the visual cortex of
Petitot and Tondut [1999] in the Heisenberg group and of Citti
and Sarti [2006] in the Rototranslation group.

We will see how the functional organization of V1 imple-
mented by long-range horizontal connections naturally induces
a Sub-Riemannian structure within the Lie group of simple cells.
In particular the position/orientation association �elds are mod-
elled with a family of horizontal integral curves in the R2 × S1

domain.
The propagation along the cortical connectivity is modelled

by the propagation kernel of the structure, which are the funda-
mental solutions of Fokker Planck, Sub-Riemannian Laplacian
and isotropic Laplacian equations.

It is well known that the fundamental solution of second or-
der di�erential operators is expressed as the probability density
of a suitable stochastic di�erential equation. This point of view
will be considered here and the density kernel will be estimated
with the e�cient numerical technique of Markov Chain Monte
Carlo methods (MCMC).

The classical mean �eld equation of Wilson and Cowan can
be endowed with these geometric connectivity kernels. In [Sarti
and Citti, 2015], instruments of spectral analysis have been ap-
plied to this modi�cated activity equation and they proved that
the corresponding stable states coincide with the eigenvectors
of the connectivity matrices, obtained by the density kernels.
In this way the authors provide a model of grouping and �gure
ground segmentation, which will be further studied here.
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4.1 The first di�erential models of V1

The term neurogeometry was introduced by Jean Petitot in Pe-
titot and Tondut [1999] to indicate the intrinsic geometry im-
manent to neural connectivity, to be clearly distinguished by
the geometry of the connectivity in the external ambient space.
This term is at the base of a large class of models, which use
instruments of di�erential geometry or group theory to model
the behavior of the visual cortex starting from its functional
architecture.

It is well known since the fundamental studies of Hubel and
Wiesel [1962, 1977]) that V1 is one of the �rst physiological
layers along the visual pathway to carry out geometrical mea-
surements on the visual stimulus, decomposing it in a series of
local feature components.

The �rst geometrical models of the functional architecture
of the visual cortex in terms of di�erential geometry are due
to Koenderink and van Doorn [1987] and Ho�man [1989]. The
�rst author underlined the di�erential action of perceptual mech-
anisms, in particular with respect to jet spaces arising from
linear �lters, while the second author proposed to model the
hypercolumnar structure de�ning �ber bundle structure and
pointed out the central role of symmetries in perception ex-
pressing them in terms of Lie groups. In the �ber bundle the
retinal plane (x ,y) is the basis, while the �ber concides with
the hypercolumnar variable θ . This �ber bundle is the math-
ematical structure ideally modelling both the retinotopic and
hypercolumnar structure.

A variational approach to describe smooth edges was pro-
posed by Mumford [1994], in terms of the elastica functional
and stochastic path with random curvature at any point. His
model produces a probability distributions in the space R2 × S1

of positions and orientations whose probability peaks follow
elastica curves.

After that the studies mainly focused on the set of simple
cells, responsible for the detection of position and orientation.

Williams and Jacobs [1997b] introduced a stochastic comple-
tion algorithm based on suitable probability kernel in the space
of positions and orientations associated to the neural represen-
tation of images.

In the same 3D space, instruments of di�erential geometry
and frame theory have been used by Zucker [2006] to propose
models of boundary completion.
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More recently Petitot and Tondut [1999] described the set
of simple cells as a �ber bundle, relating the association �elds
of Field et al. [1993] with the contact geometry introduced by
Ho�man [1989] and the elastica of Mumford [1994]. They iden-
ti�ed the structure of this layer of cortical cells with the Heisen-
berg group, and performed contour completion in this struc-
ture minimizing a suitable Lagrangian functional. We will de-
scribed their model in detail Section 4.1.1.

Then the problem of edge organization in images was ad-
dressed in terms of a stochastic process of the type of Mumford,
introducing nonlinearities in order to take into account the role
of curvature, by August and Zucker [2003, 2000]. Citti and Sarti
[2006] and Sarti et al. [2008], proposed to describe the structure
of the visual cortex as a Lie group with a Sub-Riemannian met-
ric. We will describe their model in the Section 4.1.2.

In [Chossat and Faugeras, 2009] it is proposed that the cor-
tex is modelled as a space of 2D symmetric tensor and the hy-
percolumns of orientations encode the structure tensors. The
evolution of the activity in the cortex is governed by a Wilson-
Cowan equation type [Chossat and Faugeras, 2009] operating
under the appropriate mathematical space which takes into ac-
count the rotation and translation symmetries.

Finally we recall the work of Van Almsick et al. [2005], Franken
et al. [2007], who proposed new models in the same Lie group
and the results of Duits and Franken [2009, 2010a,b], Duits and
Van Almsick [2008]. They de�ned suitable �lters, inspired by
the shape of cells, which transform any image, de�ned in R2,
into a function de�ned on SE (2) or on an higher dimensional
Lie group of features. In this way an invertible map, called ori-
entation score,W : L2(R2) → L2(SE (2)) is derived from the set
L2(R2) of functions de�ned on R2 to the set L2(SE (2)) of func-
tions de�ned on SE (2). Enhancement of boundary, segmenta-
tion and completion are performed in L2(SE (2)) and induced
on the initial image I via the inverse of the mapW .

4.1.1 The visual cortex modeled in the Heisenberg con-
tact structure

The work of Petitot and Tondut in Petitot and Tondut [1999]
can be considered as a problem of naturalizing phenomenolog-
ical models, since they tried to justify the phenomenological
model on the basis of the neurophysiological evidence.

They described the retinal structure with a planeR and called
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M the cortical layer, they described the retinotopy by an iso-
morphism q : R → M . They modelled the hypercolumn over
each retinal position (x ,y) ∈ R as a full �bre of possible orienta-
tionu at (x ,y), whereu ∈ R represents the direction of a bound-
ary of an image mapped on the retina at the point (x ,y) and so
it is the angular coe�cient of the tangent to the boundaries.
Formally, if the boundary is described by a 2D curve (x ,y (x )),
then:

u =
dy

dx
. (4.1)

In presence of a visual stimulus, all the hypercolumn over
a retinal point (x ,y) is activated and the simple cell sensible
to the direction u has the maximal response. The retinal point
(x ,y) is lifted to the cortical point (x ,y,u) and the whole curve
is lifted to (x ,y,u) in the 3-dimensional space R3. By condition
(4.1), follows dy = udx so that all the lifted curves lie in the
kernel of the 1-form:

dy −udx = 0 (4.2)

This 1-forms is the contact form which de�nes the Heisenberg
contact structure. This model allows to lift only level lines or
boundaries expressed in the form y = y (x ). In the next Section
we will see how to overcome this limitation.

4.1.2 The visual cortex as the Rototranslation group

We will show that the visual cortex is naturally modelled as
the Rototranslation group. This group, also known as the 2D
Euclidean motion group SE (2), is the group of rotations and
translations.

4.1.2.1 The group law

In Section 3.2.2 we modeled the set of simple cells as a set
of �lters ψx ,y,θ , where (x ,y) ∈ R, represents the position on
the retina and the orientation preference θ takes values in S1.
Hence this family of cells can be identi�ed by the product space
R2 × S1. A representation of this space is illustrated in Figure
4.1: the half-white/half-black circles represent oriented recep-
tive pro�les of odd simple cells, where the angle of the axis is
the angle θ of tuning. Given their retinotopic position (x1,y1)

every possible receptive pro�le is obtained from a mother ker-
nel by translating it of the vector (x1,y1) and rotating over itself
by an angle θ .
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Figure 4.1: The visual cor-
tex modelled as the roto-
translation group, invariant
under translations and rota-
tions. Sorce: [Sarti and Citti,
2011].

It has been noted by Daugman [1980] and Bresslo� and Cowan
[2003] that this set of cells forms a group. Indeed, de�nedTx1,y1

the translation of the vector (x1,y1) and Rθ the rotation matrix
of angle θ :

Rθ =

(
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)
(4.3)

a general element of the Rototranslation group is de�ned as
the composition Ax1,y1,θ = Tx1,y1 ◦ Rθ and its application to a
point (x ,y) brings to:

Ax1,y1,θ

(
x

y

)
=

(
x

y

)
+ Rθ1

(
x1
y1

)
. (4.4)

Proposition 1. The set of all parameters {д = (x ,y,θ ) ∈ R2 ×

S1} forms a group with the operation induced by the composition
of elements Ax1,y1,θ1 ◦Ax2,y2,θ2 :

д1 ◦д2 = (x1,y1,θ ) +R (x2,y2,θ2) =

= *
,

((
x1
y1

)
+ Rθ 1

(
x2
y2

))T
,θ1 + θ2+

-

(4.5)

Indeed the +R veri�es the group operation axioms.

De�nition 1. The set R2 × S1 with the group law operation +R
form a group called SE (2).

4.1.2.2 The li�ing process

Due to the hypercolumnar structure, over each point (x ,y) there
is a whole ipercolumn of cells each with a di�erent preferred
orientation θ .

In presence of a visual stimulus I , characterized by edges
or level lines, the whole hypercolumn �res, but the maximal
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response is provided by the cell whose characteristic orienta-
tion θ coincides with the angle θ = − arctan(∂1I , ∂2I ) where
θ ∈ [0,π ]. We call θ the orientation of the level line. This
means that the vector �eld de�ned as:

Xθ = cos(θ (x ,y))∂1 + sin(θ (x ,y))∂2 (4.6)

is tangent to the level lines of I at (x ,y).
Note that this representation, introduced in [Citti and Sarti,

2006], allows to remove the assumption that all level lines are
expressed in the form y = y (x ), formulated in [Petitot and Ton-
dut, 1999] (see Section 4.1.1).

This process associates to each retinal point (x ,y) a cortical
point identi�ed by the variables (x ,y,θ (x ,y)):

(x ,y) → (x ,y,θ ). (4.7)

In this way every two dimensional curve is lifted to a new curve
in the 3D space, as shown in Figure 4.2. In blue it is represented
a 2D curve and in red is shown its 3D cortical lifting in the
Rototranslation group.

Figure 4.2: A contour rep-
resented by the blue curve
is lifted into the Rototransla-
tion group obtaining the red
curve. Adapted from: [San-
guinetti et al., 2010].

It has been proved in Citti and Sarti [2006] that each lifted
curve can be considered as integral curves of the vector �elds:

~X1 = (cosθ , sinθ , 0), ~X2 = (0, 0, 1). (4.1.8)

In particular the tangent vector of a lifted curve can not have
component in the direction of the orthogonal vector ~X3:

~X3 = (− sinθ , cosθ , 0) (4.1.9)

As a consequence we will call admissible, the curves which
are integral curves of these two vector �elds with non vanish-
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ing coe�cient in the direction X1:

γ̇ (t ) = (ẋ (t ), ẏ (t ), θ̇ (t )) = ~X1(t ) + k ~X2(t ) (4.1.10)

γ̇ (0) = (x0,y0,θ0). (4.1.11)

It has been noted in Citti and Sarti [2006] that these curves,
projected on the 2D cortical plane are a good model of the as-
sociation �elds (see Figure 4.3).

Figure 4.3: Left: the integral
curves of the vector �elds X1
and X2 in the (x ,y,θ ) space.
In blue the projections of
the integral curves on the xy
plane. Right: the distribution
of the integral curves, model-
ing the connectivity between
points. Adapted from: [Sarti
and Citti, 2011].

4.1.2.3 The Sub Riemannian structure

Generalizing De�nition 1 considering the application to more
than one feature, we will assume to havem vector �elds in Rn ×

S1. The points of the space will be denoted д = (x1, · · · ,xn,θ ).
The vector �elds will be denoted as:

X1, · · ·Xm.

Clearly in the present setting m = 2 and n = 2. We call hori-
zontal curves the integral curves of the vector �elds X1, · · ·Xm:

γ̇ (t ) = α1 ~X1(t ) + · · · + αm ~Xm (t ). (4.1.12)

This condition de�nes a choice of planes, subset of the tan-
gent plane at every point:

De�nition 2. We call horizontal plane at the pointд = (x1, · · · ,xn,θ )
the subspace of the tangent space, generated by X1, · · · ,Xm:

H = {α1 ~X1 + · · · + αm ~Xm : α1, · · · ,αm ∈ R}

.
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In R2 × S1 with our choice of horizontal plane reduces to:

H = {α1 ~X1 + α2 ~X2 : α1,α2 ∈ R}

.

Figure 4.4: The contact
planes at every point in
SE (2) and the orthogonal
vector ~X3. Source: [Citti and
Sarti, 2006].

Figure 4.5: The horizontal
tangent planes in each point
of the rototranslation group
is the span of the vectors ~X1,
~X2. Adapted from: [Sarti and
Citti, 2015].

A norm can be de�ned on the elements of this plane:

| |α1 ~X1 + · · · + αm ~Xm | | =

√
α2

1 + · · · + α
2
m. (4.1.13)

Consequently we can de�ne the length of an admissible curve
as the integral: ∫ 1

0
| |γ ′(t ) | |dt . (4.1.14)

These notions will lead to the de�nition of distance as the length
of the shortest admissible path connecting two given points.
However before giving this de�nition it is necessary to prove
that couple of points can be indeed connected by admissible
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curve. This is a consequence of some properties of the horizon-
tal planes. In this sense we will say that the horizontal planes
(visualized in Figure 4.5) in each point of the Rototranslation
group determine the di�erential structure of the space.

Let us now introduce �rst order di�erential operators with
the same coe�cients as the vector �elds ~Xi . In the speci�c 3D
model we will have:

X1 = cos(θ )∂1 + sin(θ )∂2, X2 = ∂2,
X3 = − sin(θ )∂1 + cos(θ )∂2.

(4.1.15)

In general, if ~X = (v1, · · · ,vn ) for suitable coe�cientsvj we
will call:

X = v1∂1 + · · · +vn∂n. (4.1.16)

We can de�ne an operation of bracket between vector �elds
as following.

De�nition 3. Given two smooth vector �eldsX ,Y we call bracket
or commutator:

[X ,Y ] = XY −YX . (4.1.17)

It is important to note that [Y ,Z ] is a �st order derivative
from the Euclidean point of view, even though it is obtained as
di�erence of second order derivative.

In the special 3D setting, a direct computation shows that:

X3 = [X2,X1] (4.1.18)

Figure 4.6: Schematic rep-
resentation of a simple cell
of V1 where the vectors
~X1, ~X2, ~X3 are indicated.
Source: [Sanguinetti, 2011].
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Note that we have now endowed the set of vector �eld with
a new operation, which allows to de�ne a Lie algebra.

De�nition 4. The Lie algebra generated byX1, · · · ,Xm is the set
of all directional derivatives, represented as a linear combination
of X1, · · · ,Xm and their commutators.

In the 3D model, even if the Lie algebra has 2 generators
it contains X3 = [X2,X1], so that it also contains the whole 3
dimensional tangent space at every point [Citti and Sarti, 2006]
(see Figure 4.6).

We say that the Hörmander condition is satis�ed ifX1, · · · ,Xm

and their commutators of any order span the Euclidean tangent
space at every given point. In the present case X1, X2 and their
commutator X3 are linearly independent and span the tangent
space to R2 × S1 at each point.

Hörmander condition is satis�ed, then the connectivity con-
dition, that is the possibility of connecting each couple of points
with an admissible curve, also holds [Citti and Sarti, 2006] (see
Figure 4.7).

Theorem 1. (Chow theorem, see [Bellaïche, 1996]) IfX1, · · · ,Xm

satisfy the Hörmander condition at every point, for each couple
of points д, д̄ there exists an horizontal curve γ which connects
them [Citti and Sarti, 2006].

Figure 4.7: Piecewise con-
stant integral curves of the
structure. Any couple of
points can be connected by
a piecewise reguale path.
Source: [Citti et al., 2015].

This Theorem 1 can be applied in R2 × S1. As a consequence
a distance between two points (x ,y,θ ), (x̄ , ȳ, θ̄ ) can be de�ned
as the length of the shortest path connecting them. The choice
of a family of planes at every point which satis�es the Hör-
mander condition and the de�nition of a distance induced by
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the horizontal paths, de�nes a Sub-Riemannian structure on
the space.

4.2 Stochastic models of cortical connectivity

4.2.1 Subelliptic di�erential operators and stochastic dif-
ferential equations

As a consequence of the Hörmander condition, we can de�ne
second order operators in terms of the directional derivatives
X1, · · · ,Xm instead of the standard partial derivatives. To this
end we will de�ne the subelliptic gradient as:

∇R = (X1, · · · ,Xm ). (4.2.1)

Under the assumption that the vector �elds Xi are self adjoint,
we will call subelliptic (or subriemannian) Laplacian:

∆SR = X 2
1 + · · · +X

2
m, (4.2.2)

where X 2
1 denotes the second directional derivatives in the di-

rection X1. Analogously, we call subelliptic heat operator:

HSR = ∂t − ∆SR . (4.2.3)

More generally, if α1, · · · ,αm,, σ1, · · · ,σm are constants we call
Fokker Plank equation:

LSR,n = ∂t + α1X1 + · · · + αmXm

− σ 2
1X11 − · · · − σ

2
mXmm.

(4.2.4)

If the vector �elds Xi satisfy the Hörmander condition, then
each of these operator have a smooth fundamental solution.
This condition is strictly related to the connectivity result, since
the fundamental solution with pole at a point д is smooth and
positive on the set of points which can be connected to д with
an admissible path.

It is well known that the fundamental solution can be ob-
tained as a solution of the Langevin equation. The m-dimensional
Langeving equation has the general form:

γ ′ =α1 ~X1 + · · · + αm ~Xm

+N (0,σ 2
1 ) ~X1 + · · · +N (0,σ 2

m ) ~Xm

(4.2.5)

where N (0,σi2) is a normally distributed variable with zero
mean and variance equal to σ 2

i .
We refer to Oksendal [2013] for the following classical the-

orem:
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Theorem 2. If p is the transition probability of the stochastic
process de�ned by the Langevin equation, from the initial state
д0 at time 0, then p is the fundamental solution of the Fokker
Planck equation with pole at д0.

4.2.2 Overview of stochastical cortical models present
in literature

A stochastical approach to continuation of boundaries was pro-
posed by Mumford [1994]. In his model edges of natural im-
ages are represented as planar curves whose the curvature is
expressed as white noise and the direction function as a one
dimensional Brownian motion. In this way contours can be de-
�ned by the stochastic process:




dx = cos (θ )dt

dy = sin(θ )dt

dθ = σdW (t )

(4.2.6)

where σ de�nes the amount of deviation of the particle from
the straight path. When σ = 0 particles never deviate from
straight paths, when σ → ∞ the motion is completely random.
In Figure 4.8 examples of di�erent random paths (8, 16, 32) re-
sulting from simulating the process in the system (4.2.6) for
two di�erent values of σ . When σ is higher the deviation of
the particle from the straight path is more evident.

Figure 4.8: Examples of 8
(left), 16 (middle), 32 (right)
random paths resulting from
simulating the process in the
system (4.2.6) for σ = 0.1
(top) and σ = 0.5 (bottom).

Called p the probability of transition p (x ,y, t ) of the ran-
dom paths, by Theorem 2 the deterministic partial di�erential
equation modeling the evolution in the time of p (x ,y, t ) is the
Fokker-Planck equation:

∂tp = −cos (θ )
∂

∂x
p − sin(θ )

∂

∂y
p +

σ2
2
∂2

∂θ 2p. (4.2.7)
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This is a probability distribution in the space R2 × S1 of po-
sitions (x ,y) ∈ R2 and orientation θ ∈ S1 whose probability
peaks follow elastica curves.

Following Mumford’s ideas that contour continuation can
be modelled by stochastic process Williams and Jacobs [1997b,a]
used the stochastic processes to implement a mechanism of
stochastic completion. In their approach of stochastic comple-
tion �elds [Williams and Jacobs, 1997b,a, Thornber and Williams,
1996] they computed the likelihood that a completion joining
two contour fragments passes through any given position and
orientation within the image plane. This likelihood represents
a measure of the saliency of a possible contour.

They also provided a stable �nite di�erence scheme for solv-
ing the underlying Fokker-Planck equation (4.2.7) identi�ed by
Mumford. In particular, in Williams and Jacobs [1997b] were
computed by large kernel convolution with �lter generated by
Monte Carlo simulation. In Figure 4.9 an example of the stochas-
tic completion �eld applied to a Kanizsa example of illusory
contours, the Kanizsa triangle.

Figure 4.9: The Kanizsa tri-
angle (left) and the stochastic
completion �elds applied to
it (right). Source: [Williams
and Jacobs, 1997a].

A generalization of the stochastic process of by Mumford,
was proposed by August and Zucker [2003, 2000], who took in
consideration also curvature, and will be described in detail in
the next section.

4.2.3 Connectivity kernels as models of cortical connec-
tivity

From the neurophysiological point of view, there is experimen-
tal evidence of the existence of connectivity between simple
cells belonging to di�erent hypercolumns. Hence connectivity
can be summarized as preferentially linking neurons with co-
circularly aligned receptive �elds.
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The propagation along the connectivity can be modeled as
the stochastic counter part of the deterministic curves de�ned
in equation (4.1.10) for the description of the output of simple
cells. If we assume a deterministic component in direction X1
(which describes the long range connectivity) and stochastic
component along X2 (the direction of intracolumnar connec-
tivity), the equation can be written as follows:

(x′,y′,θ ′) = ~X1 +N (0,σ 2) ~X2 (4.2.8)

whereN (0,σ 2) is a normally distributed variable with zero mean
and variance equal to σ 2. By Theorem 2 the probability density
of this process, denoted by p, is the solution of the time depen-
dent Fokker Planck operator:

LSR = ∂t −X1 − σ
2X22. (4.2.9)

In Cocci [2014] it has been proposed to integrate this kernel in
time, in order to obtain a model of cortical connectivity. Inte-
grating in time the density p1, we obtain a time independent
kernel:

Γ1(x ,y,θ ) =
∫ +∞

0
p1(x ,y,θ , t )dt (4.2.10)

which is the fundamental solution of the Fokker Planck opera-
tor

FPSR = X1 + σ
2X22. (4.2.11)

The kernel Γ1 is strongly biased in direction X1 and not sym-
metric; a new symmetric kernel can be obtained as following:

ω1((x ,y,θ ), (x′,y′,θ ′)) = 1
2Γ1((x ,y,θ ), (x′,y′,θ ′))

+
1
2Γ1((x

′,y′,θ ′), (x ,y,θ ).
(4.2.12)

In Figure 4.10 (a) it is visualized an isosurface of the simmetrized
kernel ω1, showing its typical twisted butter�y shape. The ker-
nelω1 has been proposed in Sanguinetti et al. [2008] as a model
of the statistical distribution of edge co-occurrence in natural
images, as described in Sanguinetti et al. [2008]. The similarity
between the two is proved both at a qualitative and at a quanti-
tative level (see [Sanguinetti et al., 2010]) (see also Figure 4.10
(a) and (b)).

If we assume that intracolumnar and long range connec-
tions have comparable strength, the stochastic equation equa-
tion (4.2.8) reduces to:

(x′,y′,θ ′) = N (0,σ 2
1 ) ~X1 +N (0,σ 2

2 ) ~X2 (4.2.13)
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Figure 4.10: An isosurface
of the connectivity kernel ω1
obtained by symmetrization
of the Fokker Planck fun-
damental solution equation
(4.2.10) (a). The distribution
of co-occurrence of edges in
natural images (from [San-
guinetti et al., 2010]) (b).

where N (0,σi2) are normally distributed variables with zero
mean and variance equal to σ 2

i . In this case the speed of prop-
agation in directions X1 and X2 is comparable. The associated
probability density is the fundamental solution of the Sub-Riemannian
Heat equation [Jerison and Sánchez-Calle, 1986]. The integral
in time of this probability density:

Γ2(x ,y,θ ) =
∫ +∞

0
p2(x ,y,θ , t )dt (4.2.14)

is the fundamental solution of the Sub-Riemannian Laplacian,
de�ned in (4.2.2).

It is a symmetric kernel, so that we do not need to sym-
metrize it and we use it as a model of the connectivity kernel:

ω2((x ,y,θ ), (x′,y′,θ ′)) = Γ2((x ,y,θ ), (x′,y′,θ ′)). (4.2.15)

In Figure 4.11 (a) it is shown an isosurface of the connectivity
kernel ω2.

Let us �nally note that the kernel introduced here have a
strongly anysotropic behavior, if compared with the standard
Riemannian kernel, fundamental solution of the operator:

L = σ 2
1X11 + σ

2
2X22 + σ

2
3X33.

As it is well known this kernel is associated to an isotropic
stochastic equation:

(x′,y′,θ ′) = N (0,σ 2
1 ) ~X1 +N (0,σ 2

2 ) ~X2 +N (0,σ 2
3 ) ~X3, (4.2.16)

where N (0,σi2) are normally distributed variables with zero
mean and variance equal to σ 2

i . One of its level sets is repre-
sented in Figure 4.11 (b).
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Figure 4.11: Isosurface of the
connectivity kernel ω2 ob-
tained from the fundamen-
tal solution Γ2 of the Sub-
Riemannian Laplacian equa-
tion equation (4.2.14) (a). An
isosurface of the fundamen-
tal solution of the isotropic
Laplacian equation (b).

4.3 Our contribution to the model

Even though the stochastic approach was already applied to
the visual cortex, here we provide a new contribution to the
model, clarifying how it is neurally implemented in the cortex,
extending it in high generality and providing a solid numerical
implementation.

4.3.1 Propagation, stochastic paths and connectivity ker-
nels

The propagation of each visual signal in the cortical architec-
ture will be described as a realization of stochastic sample func-
tions. In particular if a tracer is injected in the cortex, each sin-
gle injection can be described with stochastic paths. The prob-
ability density obtained as a combination of Fokker Plank is an
integration of stochastic paths and describes the connectivity
kernel.

4.3.2 General time independent kernels

The technique we have presented here is very general and can
be applied to obtain fundamental solutions of general time in-
dependent operators.

If X1, · · ·Xm are di�erential operators in Rn × S1, α1, · · · ,αm
σ1, · · · ,σm are constants, we call:

FPSR,n = α1X1 + · · · + αmXm

− σ 2
1X11 − · · · − σ

2
mXmm.

(4.3.1)

the time independent Fokker Planck operator associated to the
time dependent operator LSR,n de�ned in (4.2.4).
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Proposition 2. Let us denoteд = (x1,xn,θ ) the points of Rn ×S1.
If p is the fundamental solution of the operator LSR de�ned in
(4.2.4) and:

Γ(д,д0) =

∫ +∞

0
p (д,д0, t )dt ,

then Γ is the fundamental solution of the operator (4.3.1).

4.3.3 Numerical approximations of the kernels

In this section we numerically approximate the connectivity
kernels ωi , de�ned in Section 4.2, with a technique partially in-
spired by [Williams and Jacobs, 1997b] .
We obtain the discrete fundamental solution Γ1 of equation (4.2.10)
by developing random paths from the numerical solution of the
system (4.2.8), that can be approximated by:




xs+∆s − xs = ∆s cos(θ )
ys+∆s −ys = ∆s sin(θ ), s ∈ 0, ...,H
θs+∆s − θs = ∆sN (σ , 0)

(4.3.2)

where H is the number of steps of the random path and
N (σ , 0) is a generator of numbers taken from a normal distri-
bution with mean 0 and variance σ . In that way, the kernel is
numerically estimated with Markov Chain Monte Carlo meth-
ods (MCMC) [Robert and Casella, 2013]. Various realizations
n of the stochastic path will be given solving this �nite di�er-
ence equation n times; the estimated kernel is obtained averag-
ing their passages over discrete volume elements, as described
in detail in Higham [2001], Sarti and Citti [2015]. In particular,
we �rst �x a discretization step ∆s = 1 without loss of gener-
ality; then we simulate n several discrete-times random paths,
assigning a value between 0 and 1 corresponding to the num-
ber of paths that passed through it, divided by n. This provides
a distribution over the cells that, for a large value of n, gives a
discrete approximation of the connectivity kernel [Cocci et al.,
2015]. Proceeding with the same methodology the numerical
evaluation of fundamental solution Γ2 of the hypoelliptic Lapla-
cian (equation (4.2.14)) is obtained and the system (4.2.13) dis-
cretized:




xs+∆s − xs = ∆sN (σ1, 0) cos(θ )
ys+∆s −ys = ∆sN (σ1, 0) sin(θ ), s ∈ 0, ...,H
θs+∆s − θs = ∆sN (σ3, 0)

(4.3.3)
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where and σ3 is the variance in the θ direction. The kernel
represented in Figure 4.11 (a) is obtained by the numerical in-
tegration of that system and averaging as before the resulting
paths.

Finally, the same technique can be potentially adapted to
study the fundamental solution of general operators of the form
(4.3.1).

4.4 The cortical activity equation

The most classical equation describing the cortical activity is
the classical mean �eld equation of Ermentrout and Cowan [Er-
mentrout and Cowan, 1980] and Bresslo� and Cowan [Bresslo�
et al., 2002, Bresslo� and Cowan, 2003]. This equation describes
the evolution of the cortical activity and depends on a connec-
tivity kernel. In Sarti and Citti [2015] the relation between the
stable states of these equation and perceptual units of the input
has been established. The discrete output h of the simple cells,
selects in the cortical space (x ,y,θ ) the set of active cells and
the cortical connectivity, restricted on this set, de�nes a neural
a�nity matrix. The eigenvectors of this matrix describe the sta-
tionary states of the mean �eld equation hence the emergent
perceptual units. The system will tend to the eigenvector asso-
ciated to the highest eigenvalue, which corresponds to the most
important object in that scene. Mathematically the approach
is strongly linked to spectral analysis techniques for locality-
preserving embeddings of large data sets [Coifman and Lafon,
2006, Belkin and Niyogi, 2003, Roweis and Saul, 2000], for data
segregation and partitioning [Perona and Freeman, 1998, Meila
and Shi, 2001, Shi and Malik, 2000], grouping process in real im-
ages [Weiss, 1999].

We have described in Section 4.1 that in presence of a vi-
sual stimulus cells aligned to its boundary give the maximal
response. We will assume that a discrete number of cells N

are maximally activated and we will denote them (xi ,yi ,θi ) for
i = 1, ...,N .

In Figure 4.12 we show as an example the cells responding
to a Kanizsa �gure, represented with their Gabor-like receptive
pro�les.

Following Sarti and Citti [2015] the cortical connectivity is
restricted to this discrete set and reduces to a matrix A:

Ai ,j = ω ((xi ,yi ,θi ), (xj ,yj ,θj )). (4.4.1)
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Figure 4.12: The Kanizsa tri-
angle (left) and the maxi-
mally responding odd �lters
(right).

In this discrete setting the mean �eld equation for the corti-
cal activity reduces to:

du

dt
= −λu (i ) + s

( N∑
j=1

A(i , j )u (j )
)

(4.4.2)

where s is a sigmoidal function and λ is a physiological param-
eter. The solution tends to its stationary states, which are the
eigenvectors of the associated linearized equation:

N∑
j=1

Ai ,juj =
λ

s′(0)ui (4.4.3)

Hence these are the emergent states of the cortical activity,
that individuate the coherent perceptual unit in the scene and
allow to segment it. This is why we will assign to the eigenval-
ues of the a�nity matrix the meaning of a saliency index of the
objects. Since we have de�ned three di�erent kernels di�erent
a�nity matrices will be de�ned. However all kernels are real
and symmetric, so that the matrix A is a real symmetric matrix
Ai ,j = Aj,i . Their eigenvalues are real and the highest eigen-
value is de�ned. The associated principal eigenvectors emerge
as symmetry breaking of the stationary solutions of mean �elds
equations and they pop up abruptly as emergent solutions. The
�rst eigenvalue will correspond to the most salient object in the
image.

4.4.1 Individuation of perceptual units

Since the three di�erent kernels described in Section 4.2 assign
di�erent role to di�erent direction of connectivity, the di�erent
a�nity matrices and their spectrum will re�ect these di�erent
behavior. Consequently the resulting data set partitioning will
be stronger in the straight direction using the Fokker Planck
ω1 kernel, or will allow rotation using the ω2 kernel (see also
[Cocci et al., 2015] for a deeper analysis). Using the kernel ω3
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we expect an equal grouping capability in the collinear direc-
tion and in the ladder direction.

In Figure 4.13 we visualize the a�nity matrix of the image
presented in Figure 4.12. It is a square matrix with dimensions
NxN, where N is exactly the number of active patches. It rep-
resents the a�nity of each patch with respect to all the others.

The structure of the a�nity matrix is composed by blocks
and the principal ones corresponds to coherent objects. On the
right we visualize the complete set of eigenvalues in a graph:
(eigenvalue number, eigenvalues).

Figure 4.13: On the left it is
visualized the a�nity matrix
of the image presented in Fig-
ure 4.12, that contains infor-
mations about the a�nity of
an active patch with respect
to all the others. On the right
the set of its sorted eigenval-
ues.

The �rst eigenvector can be recognized as the emergent per-
ceptual unit, but here we also study the role of the other eigen-
vectors. They do not describe an ordered sequence of �gures
with di�erent rank. However, their presence is important, above
all when two eigenvalues have similar values. In this case, small
deformation of the stimulus can induce a change in the order of
the eigenvalues and produce a sudden emergence of the corre-
spondent eigenvector with an abroupt change in the perceived
image.

This is in good agreement with the perceptual character-
istics of salient �gures of temporal and spatial discontinuity,
since they pop up abruptly from the background, while the
background is perceived as indi�erentiated [Merleau-Ponty and
Smith, 1996]. Spectral approaches give reason to the discontin-
uous character of �gure-ground articulation better than contin-
uous models, who instead introduce a graduality in the percep-
tion of �gure and background [Lorenceau and Alais, 2001].
To �nd the remaining objects in the image, the process is then
repeated on the vector space orthogonal to p, the second and
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the following eigenvectors can be found, until the associated
eigenvalue is su�ciently small. In this way onlyn eigenvectors
are selected, withn < N , this procedure reduces the dimension-
ality of the description. This procedure neurally reinterprets
the process introduced by Perona and Freeman in Perona and
Freeman [1998].
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5 �antitative kernel validation

In this chapter we will compare kernels previously described
with neurophysiological data of horizontal connectivity [An-
gelucci et al., 2002, Bosking et al., 1997]. We also perform a
quantitative validation of the kernel considering the experiment
of Gilbert et al. [1996], showing the link between the connec-
tivity kernel and cell’s response. This work has been published
in Favali et al. [2016b].

5.1 Validation of the model of connectivity

As described in Favali et al. [2016b], we will introduce here
various substantial di�erences from the techniques in litera-
ture in the de�nition of a mathematical model of �gure-ground
segmentation. The Fokker Planck and the Laplacian kernel in
the motion group are already largely used for the description
of the connectivity, since they qualitatively �t the experimen-
tal data [Sarti and Citti, 2015]. We perform a quantitative �t-
ting between the computed kernels and the experimental ones,
in order to validate the model. We show that the cortical ar-
chitecture is a realization of stochastic sample functions and
how through this realization we can construct the connectiv-
ity kernel. We make a comparison between the fundamental
solution of the Fokker Planck equation with experimental data
of Bosking et al. [1997], Ben-Shahar and Zucker [2004], and
Gilbert et al. [1996], showing how the stochastic paths are im-
plemented in the neural network. In particular, we consider
the distribution of a tracer through lateral connection model-
ing each injection with stochastic paths. The bouton distribu-
tions are realizations of a stochastic process, in particular of a
random walk in R2xS1 space. We will show how the proba-
bility density obtained as a combination of Fokker Plank is an
integration of stochastic paths. Moreover we propose to use
also the Subelliptic Laplacian kernel, in order to account for
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the variability of connectivity patterns.

5.1.1 Stochastic paths and cortical connectivity

In this section, we describe the cortical architecture as a real-
ization of stochastic sample functions, in particular we will see
how the connectivity is associated to random paths. We will
show that the position of presynaptic boutons in the images of
Bosking et al. [1997] can be seen as the realization of stochastic
paths via the anatomy. Every single random walk starts from
the injection site of a tracer and gives the position of a set of
boutons, as visualized in Figure 5.2 (a). Finally, the probability
density, that is described as a kernel, is obtained as the integra-
tion of all the random paths. From the neural point of view this
integration can be interpreted as the action of a columnar popu-
lation and provides an estimation of the density of the boutons.

Let’s consider an hypercolumn of the ice cube of visual cor-
tex, it is composed by approximately 100 neurons. In the con-
nectivity map in Figure 5.2 (a) we notice the presence of an
average of 6 boutons. In this way, the number of possible con-
nections in the visual cortex is 1006 and in our model we use
a number of paths compatible with this data. Now we make
a comparison between the connectivity kernel previously de-
�ned and the experiments of Bosking et al. [1997] and Ben-
Shahar and Zucker [2004].

In Figure 5.1 we can see the results of [Ben-Shahar and Zucker,
2004]. On the left the mean and standard deviation of the distri-
bution of long-range connections of 7 injection sites consider-
ing the data of [Bosking et al., 1997], in the middle the expected
median distribution for 7 cells from the curve model described
in Ben-Shahar and Zucker [2004]. They noticed that the stan-
dard deviation is nonmonotonic, �nding two local minima at
approximately +30 and -30 degrees. Con�rming their results,
we show that our model implies a nonmonotonically changing
variance as the orientation di�erence increases. In particular,
on the right of Figure 5.1 it is visualized the mean and the stan-
dard deviation of 7 random paths, at a �xed orientation. We
notice the presence of the nonmonotonicity of the standard de-
viation and that the two local minima at almost 30 degrees are
preserved.

Moreover the fact that the mean and the variance of the
model are similar to the experimental data suggests that the
choice of the normal distribution allows to �nd physiological
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values. For these reasons, the connectivity represents the anatom-
ical implementation of random paths.

Figure 5.1: From left to right:
the mean connection dis-
tribution computed in Ben-
Shahar and Zucker [2004]
from Bosking et al. [1997],
the expected median distri-
bution for seven cells and
the results of our model con-
sidering 7 di�erent random
paths. It is evident that
also in our model the stan-
dard deviation is nonmono-
tonic with two local minima
at +30 and -30 degrees.

We will now study in which extent kernels ωi , i = 1, 2 are
models of connectivity. The kernel ω3 is used for comparison
and to show that an uniform Euclidean kernel does not capture
the anysotropic structure of the cortex. Random paths that we
compute through MCM are implemented in the functional ar-
chitectures in terms of horizontal connectivity of a single cell.
On the other hand the connectivity of an entire population of
cells corresponds to the set of all single cells connectivities,
then to the Fokker Planck fundamental solution.

A �rst qualitative comparison between the kernels ω1, ω2
and the connectivity pattern has been provided in Sarti and
Citti [2015]. Here we follow the same framework, but we pro-
pose a more accurate, quantitative comparison.

As described in 3.2.2.3, the 3D cortical structure is imple-
mented in the 2D cortical layer as a pinwheel structure (see
Figure 5.2 (b)). The pinwheel structure has a large variability
from one subject to one other, but within each species com-
mon statistical properties have been obtained. Cortico-cortical
connectivity has been measured by Bosking et al. [1997] by in-
jecting a tracer in a simple cell and recording the trajectory of
the tracer, represented by black points in Figure 5.2 (a). Bosk-
ing found a large variability of injections, which however have
common stochastic properties as the direction of propagation,
a patchy structure with small blobs at approximately �xed dis-
tance and the decay of the density of tracer along the injection
site.

We model each injection with stochastic paths solutions of
equation (4.2.8). Then we evaluate the stochastic paths on the
pinwheel structure.

Due to the stochastic nature of the problem, we do not com-
pare pointwise the image of the tracer and the stochastic paths
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but we average them on the pinwheels. We partition both the
images of the tracer and of the stochastic paths in M regions
corresponding to the pinwheels:

I = ∪iRi (5.1.1)

and for every Ri we compute the density of tracer DTi and the
density of the stochastic paths DPi . The two vectors DTi and
DPi are then rescaled in such a way to have unitary L2-norm
and the mean square error is computed:

E =

√√√
1
M

M∑
i=1

(
DPi −DTi

)2
(5.1.2)

The free parameters of the model are the value of the standard
deviation, the number of paths, the number of steps, appearing
in equation (4.2.8) and in the system (4.3.2). The best �t be-
tween the experimental and simulated distributions has been
accomplished by minimizing the mean square error by varying
these parameters.

Due to the di�erent role of the directions X1 and X2 in the
de�nition of these kernels, the Sub-Riemannian Laplacian paths
and the Fokker Planck paths have di�erent structure.

The Subriemannian Laplacian allows di�usion in direction
X2, allows the changement of the angle and it can be used
to describe short range connectivity. Hence it is responsible
for the central blob, in a neighborhood of the injection points
(see Figure 5.2 (c)). The Fokker Planck kernel produces an el-
ogated, patchy structure and seems responsible for the long
range connection (see Figure 5.2 (d)). We apply our quantita-
tive �t only to the long range connectivity, hence discarding
the tracer in a neighborhood of the injection. For this reason
the Sub-Riemannian Laplacian is not involved in the validation
of the model.

The method is �rst applied to �t the image of the tracer
taken by Bosking [Bosking et al., 1997] (see Figure 5.2 (a)). All
the kernels are evaluated on the pinwheels provided in the
same paper (see �gure 5.2 (b)), to obtain a patchy structure. In
order to apply the formula (5.1.1), we cover both the image of
the tracer and the Fokker Planck with a regular distribution
of rectangles, with edges equal to the mean distances between
pinwheels (see Figure 5.2 (c),(d)) (clearly we do not cover the
central zone, where we can not �t the Fokker Planck kernel).
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Figure 5.2: The connectiv-
ity map measured by Bosk-
ing et al. [1997] (a), the pin-
wheel structure used for the
estimate (b), the tracer par-
titioned according to rectan-
gles with sides equal to the
distance between pinwheels
(c) and the best �t results (d).

The resulting error value is E < 8%, showing that the model
accurately represents the experimental distribution.

A similar procedure has been applied to the image of the
tracer provided in Angelucci et al. [2002] (see Figure 5.3 (a)).
The result of Angelucci is obtained with various injections in a
neighborhood of a pinwheel, so that all orientations are present,
and the tracer propagates in all directions. In this case we do
not have natural pinwheels, hence we use arti�cial pinwheels,
obtained with the algorithm presented in Barbieri et al. [2012]
(see Figure 5.3 (b)), with the constraint that the mean distance
between the arti�cial pinwheels is equal to the mean distance
between the blobs produced by the tracer. Here we consider
Fokker Planck paths with all directions, to obtain the apparent
isotropic di�usion. Also in this case we cover with rectangles
and perform a best �t and the minimum error value is E < 8%,
(see �gure 5.3 (c), (d).

Figure 5.3: The connectivity
map measured by Angelucci
et al. [2002] (a), the pinwheel
structure used for the esti-
mate (b), the tracer parti-
tioned according to rectan-
gles with sides equal to the
distance between pinwheels
(c) and the best �t results (d).

In his paper Bosking et al. [1997] showed a famous image,
with the tracer superimposed to the piwheel structure (see Fig-
ure 5.4 (a)). In particular in this case we have the tracer and the
pinwheel of the same animal. This allows to go below the scale
of the pinwheel and we correctly recover the orientation with
the pinwheel (see Figure 5.4 (b)). The estimated kernel is again
a combination of Fokker Plank. As before, we focus on orien-
tations, hence we only model the long range part of the image,
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discarding the central blob. The evaluation of the error is made
with squared regions at a scale smaller that the pinwheel and
the error goes below E < 9%.

Figure 5.4: In (a) the tracer
superimposed to the piwheel
structure found by Bosking
et al. [1997] and in (b) the
isocontours obtained from
a combination of Fokker
Planck.

5.1.2 Perceptual facilitation and density kernels

In order to obtain a stable and deterministic estimate of this
stochastic model, we use the density kernel, which is a regu-
lar deterministic function, coding the main properties of the
process. We perform in Favali et al. [2016b] a quantitative val-
idation of these regular kernel comparing to an experiment of
Gilbert et al. [1996].

This work studies the capability of cells to integrate infor-
mation out of the single receptive �eld of the cells. This inte-
gration process is due to the long-range horizontal connections,
hence it can be used to validate our model of long range con-
nectivity. As we have recognized in the previous section it is
the Fokker Planck kernel which can be considered as a model
for long range connectivity, hence we use here this kernel.

Figure 5.5: The experiment
of Gilbert et al. [1996], with
the stimulus composed by
randomly placed and ori-
ented lines (left) and the
black histogram of cell’s re-
sponse (middle). On the
right the histogram evalu-
ated from the probability
density in response to the
same distribution of lines.

In Figure 5.5 (left) it is shown the results of Gilbert et al.
[1996], where it is visualized the cell’s response to randomly
placed and oriented lines in a black histogram (middle). A ver-
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tical line is present in the receptive �eld of a cell selective to
this orientation and the intensity of its response is represented
in the �rst column of the histograms. If the stimulus is sur-
rounded by random elements aligned with the �rst one, the
cell’s response increases (respectively in the second, third and
the last column of the histograms). When the other random el-
ements are not aligned with the �xed one (as in the �fth, sixth,
seventh columns), the cell’s response decreases because it re-
�ects an inhibitory e�ect.

On the right in the blue histogram we evaluate the probabil-
ity density modelled by the kernel in equation (4.2.12) in pres-
ence of the same con�guration of elements. The same trend is
obtained considering the probability density distribution, as vi-
sualized in Figure 5.5 (right). In order to consider the inhibitory
e�ect we evaluate the kernel with 0 mean. A quantitative anal-
ysis of the di�erences between them have been evaluated con-
sidering the mean square error between the two normalized
histograms. The error of 8% underlines how this connectivity
kernel well represents neural connections.
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6 Generalization of the model of cortical connectiv-

ity to Rn × S1

In Chapter 4 we presented a cortical model in R2 × S1, and
recognized that the theoretical instruments, which support the
model, can be extended to a general space Rn × S1. This remark
has an interest which goes beyond the theoretical content of
the theorems we stated. Indeed the visual cortex has a modu-
lar structure and its cells are capable to extract other features,
as contrast, curvature, scale. This is why we will now include
in the model of cortical connectivity and of individuation of
perceptual units other features. We present how to consider
in the model of connectivity the feature of intensity [Favali
et al., 2016a] and an extension to a 5 dimensional kernel in
the lifted space of positions, orientations, intensities and cur-
vatures [Abbasi-Sureshjani et al., 2016a].

In chapter 7 we will present applications of these models
to the problem of individuation of perceptual units in illusory
�gures and to the analysis of retinal vessel, for which these
features are relevant.

6.1 4-D kernel - intensity integration

In order to include the intensity term in the model of cortical
connectivity, we use the Euclidean distance between the inten-
sities of two corresponding points. If f (x ,y) represents the
image intensity at position (x ,y) the stimulus is lifted to the
extended 4-dimensional feature space:

(x ,y,θ ) → (x ,y,θ , f (x ,y)).

An admissible curve in this space is de�ned as the solution of
the following di�erential equation:

γ ′(s ) = (k1(s ) ~X1 + k2(s ) ~X2 + k4(s ) ~X4) (γ (s ))

γ (0) = (x1,y1,θ1, f1), γ (1) = (x2,y2,θ2, f2)
(6.1.1)
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where the vector �elds are:

~X1 = (cosθ , sinθ , 0, 0), ~X2 = (0, 0, 1, 0),

~X4 = (0, 0, 0, 1) (6.1.2)

and the coe�cientsk1 andk2 represent a distance in the (x ,y,θ )
domain and k4 is an Euclidean distance. Starting from these
vector �elds we can model the cortical connectivity, that can
be described as the probability of connecting two points in the
cortex, directly applying the theory developed in Section 3.

The stochastic counterpart of the curves in equation (6.1.1)
can be represented as:

(x′,y′,θ ′, f ′) = ~X1 +N (0,σ 2
1 ) ~X2 +N (0,σ 2

2 ) ~X4 (6.1.3)

where N (0,σ 2
1 ), N (0,σ 2

2 ) are normally distributed variable with
zero mean and variance equal to σ 2

i . It is a particular case of
equation (4.2.5), so that Theorem 2 and Proposition 2 can be
applied and we could use our general theory to �nd the fun-
damental solution of the operators LSR,4 and FPSR,4 in R3 × S1

and the 4D symmetrized kernel ω4 in R3 × S1. Note that these
operators are:

LSR,4 = ∂t +X1 − σ
2
2X22 − σ

2
4X44 (6.1.4)

and:
FPSR,4 = X1 − σ

2
2X22 − σ

2
4X44. (6.1.5)

Let us explicitly note that the vector �elds X1, X2, X3 from
one side and X4 depend on completely di�erent variables. This
allows to simplify the study when considering the kernel asso-
ciated to the operator LSR,4.

Its fundamental solution satis�es the following property:

Proposition 3. The fundamental solutionp4 of the operatorLSR,4
can be explicitly written as:

p4 = p1p f ,

where p1 is the fundamental solution of the operator LSR de�ned
in (4.2.9) and p f is the fundamental solution of the operator ∂t −
X44, which is a Gaussian bell.

Proof. For the sake of simplicity we make the computation only
far from the pole:

∂t (p4) = ∂t (p1p f ) = ∂t (p1)p f +p1∂t (p f ) =
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= (−X1 +X22)p1p f +p1X44p f = (−X1 +X22 +X44) (p1p f ).

Hence LSR,4(p1p f ) = 0 far from the pole, which proves the as-
sertion. �

As a consequence, applying Proposition 2 the fundamental
solution Γ4 of the operator FPSR,4 can be computed as:

Γ4 =

∫ ∞

0
p4(x ,y,θ , f , t )dt ,

and the associated connectivity kernel ω4 can be obtained by
symmetrization.

In order to simplify, we will approximate the connectivity
kernelω4 as the product of the connectivity kernelω1 obtained
by symmetrization of the 3D Fokker Planck fundamental solu-
tion in equation (4.2.12) with a Gaussian bell in the variables f :

ω f ( fi , fj ) = e
(− 1

2 (
fi−fj
σ2

))2 . (6.1.6)

The �nal connectivity kernel can be written as the product (as
these are probabilities) of the two components:

ω4((xi ,yi ,θi , fi ), (xj ,yj ,θj , fj ))
= ω1((xi ,yi ,θi ), (xj ,yj ,θj ))ω f ( fi , fj ).

(6.1.7)

Starting from the connectivity kernel de�ned previously, it
is possible to extract perceptual units from images by means
of spectral analysis of suitable a�nity matrices. The eigenvec-
tors with the highest eigenvalues are linked to the most salient
objects in the scene [Perona and Freeman, 1998]. The connec-
tivity is represented by a real symmetric matrix Ai ,j :

Ai ,j = ω4((xi ,yi ,θi , fi ), (xj ,yj ,θj , fj )) (6.1.8)

that contains the connectivity information between all the lifted
points. The eigenvectors of the a�nity matrix are interpreted
as perceptual units [Sarti and Citti, 2015, Favali et al., 2016b].

This approximation allows us to use the kernel ω1, already
numerically computed in Section 4.3.3. The intensity-based
kernel ω f , the �nal connectivity kernel ω4 and the a�nity ma-
trix A, were calculated using equations (6.1.6), (6.1.7), (6.1.8) re-
spectively.
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6.2 5-D kernel - curvature integration

6.2.1 Review of Curvature models

According to the experiments of Dobbins et al. [1987, 1989],
the primary visual cortex not only includes the orientation se-
lective cells, but it is also sensitive to the curvature at each
point. According to this conjecture it is the role of the end-
stopping cell to detect curvature. The role of curvature within
the problem of edge organization in images was also addressed
by August and Zucker [2003, 2000]. Their main idea was to use
the positions orientations space and Mumford’s Fokker-Planck
equation de�ned in (4.2.7) for the propagation of the direction
information. Including the curvature, leads to the representa-
tion of the image in the space R2 × S1 ×R. It is worthwhile
to note that this 4D space does not coincide with the 4D one
studied in the previous section, since the role of the variables
is not the same. When the curvature of the structures present
in the image is high, this method allows to obtain better results
as visualized in Figure 6.1. In Ben-Shahar and Zucker [2004] is
given a justi�cation based on biological evidence for the con-
sideration of the term of curvature. This framework leaves the
curve model as a free parameter, allowing to introduce a new
stochastic model for the detection of curvature to better cap-
ture the shape of the curves.

Figure 6.1: Filtering an Euler
spiral without noise (top)
and with noise (bottom).
The original images (left);
the result after �ltering
using the curve indicator
random �eld based on
Mumford’s direction-based
Markov process (center)
and using curvature-based
Markov process of August
and Zucker [2003] (right).
Source: [August and Zucker,
2003].

In computer vision and more speci�cally in retinal image
analysis, several methods have been introduced for measuring
the curvatures of curvilinear structures (i.e. blood vessels) [Kalitzeos
et al., 2013]. The classical methods that measure the curvatures
locally need an initial segmentation, centreline extraction, and
separation of segments located between junctions. It is then
followed by �tting curves to the segments and by curvature
measurement using equation (6.2.3) [Hart et al., 1999, Annun-
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ziata et al., 2016, Wilson et al., 2008]. The drawback of all these
methods is their dependency to initial preprocessing and seg-
mentation steps, which may contain errors and missing infor-
mation. More importantly, the curvature information is not
available for junction points because it is not possible to �t a
curve to these points where more than one elongated structure
meets.

To solve these problems, Bekkers et al. [2015] proposed a
local curvature measurement technique by locally �tting expo-
nential curves [Duits et al., 2016] to the lifted image in SE (2).
The exponential curves in SE (2) are interpreted as straight lines
considering the curved geometry of SE (2) and they have con-
stant tangent vectors relative to the rotating frame { ~X1, ~X2, ~X3}.
The tangent vectors of the exponential curve that best �t the
data in the lifted image are obtained by eigensystem analysis of
the Gaussian Hessian (expressed in the rotating frame). Then
they directly de�ne the curvature value of their spatial projec-
tions [Franken and Duits, 2009]. This approach makes it possi-
ble to assign to each location and orientation in the lifted image
a curvature value, without needing explicit curve parameteriza-
tions. Such curvature maps (on SE(2)) can be projected on the
plane whereby only one value of curvature value is assigned to
each spatial location in the image. Finally, these 2D curvature
maps can be �ltered in a later stage by a vessel con�dence map
(as a Laplacian ridge detector) [Franken and Duits, 2009] or any
other vessel enhancement methods.

6.2.2 The neurogeometry of the curvature space

A regular curve in the two-dimensional plane can always parametrized
by arch length, so that then the tangent vector becomes unitary
and can be represented in the form:

(ẋ (t ), ẏ (t )) = (cos (θ (t )), sin(θ (t ))). (6.2.1)

By di�erentiating x and y once more in equation (6.2.1), we
then have:

(ẍ , ÿ) = (− sin(θ (t ))θ̇ (t ), cos(θ (t ))θ̇ (t )). (6.2.2)

So the curvature can be computed as:

κ = θ̇ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2 . (6.2.3)

We assume that the two-dimensional curve in cortical plane
(R2) is lifted to a 5D space of positions, orientations, intensity
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and curvature (R2 × S1 ×R×R). Thus, the lifted curve may be
written as:

γ2D = (x (t ),y (t )) → γ (t ) = (x (t ),y (t ),θ (t ), f (t ),κ (t )).
(6.2.4)

According to equations (6.2.1) and (6.2.3), we will have:

γ̇ (t ) = (ẋ (t ), ẏ (t ), θ̇ (t ), ḟ (t ), κ̇ (t )) (6.2.5)

where (ẋ (t ), ẏ (t )) = (cos(θ ), sin(θ )) and θ̇ (t ) = κ (t ). Hence:

γ̇ (t ) = (cos(θ ), sin(θ ),κ (t ), ḟ (t ), κ̇ (t )). (6.2.6)

By de�ning new vectors in the 5D space as:

~Y1 =(cos(~θ ), sin(~θ ),κ, 0, 0)
~Y5 =(0, 0, 0, 0, 1) ~Y4 = (0, 0, 0, 1, 0)

(6.2.7)

we are able to write γ̇ (t ) in terms of these vectors:

γ̇ (t ) = ~Y1(t ) + ḟ (t )~Y4 + κ̇ (t )~Y5(t ). (6.2.8)

Let us explicitly note that this expression is a generalization
of the lifted curve used by Citti and Sarti [2006] in equation
(4.1.10). In general, we will call horizontal curve the solution
of the following di�erential equation:

γ̇ (t ) = (α1(t )~Y1(t ) + α5(t )~Y5(t ) + α4(t )~Y4(t )) (γ (t ))

γ (0) = (x0,y0,θ0, f0,κ0),γ (1) = (x1,y1,θ1, f1,κ1).
(6.2.9)

The horizontal distribution of planes is now Span{~Y1, ~Y5, ~Y4}

and the Lie algebra is generated by these three vector �elds. For
the sake of simplicity, we will call ~Y2 = ~X2, ~Y3 = ~X3. Follow-
ing the same notation as in (4.1.16) we denoteYi the directional
derivatives in the direction of the vectors ~Yi :

Y1 = cos(θ )∂x + sin(θ )∂y +κ∂θ
Y2 =∂θ Y3 = − sin(θ )∂x + cos(θ )∂y
Y5 =∂k Y4 = ∂f

(6.2.10)

Therefore, the commutators of these vectors are as follows:

[Y1,Y5] = −∂θ = −X2 = −Y2

[[Y1,Y5],Y1] = sin(θ )∂x − cos(θ )∂y = −X3 = −Y3

[[Y1,Y5],Y5] = 0.
[Yi ,Y4] = 0 for every i .

(6.2.11)
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In particular the Hörmander condition (see Theorem 1) is sat-
is�ed by the vector �elds Y1,Y4,Y5. Figure 6.2 represents the
fan of integral curves of equation (6.2.8) in the SE (2) group for
similar number of κ values changing with two di�erent κ̇ rates.
This �gure shows how the shape of curves is dependent on the
curvature value (κ) and its rate of change (κ̇). The projection
of both curves on 2D cortical plane represents a good model
of the association �elds introduced by Field et al. [1993] for
modeling the cortical connectivity. The association �elds (or
connectivity patterns) are considered as the basis for the cre-
ation of connected boundaries in visual perception, imposing
the Gestalt law of good continuation [Wagemans et al., 2012,
Wertheimer, 1938].

Figure 6.2: The fan of in-
tegral curves of equation
(6.2.8), visualized in R2 × S1

and their projection on the
xy plane. The blue curves
have a higher rate of curva-
ture change (κ̇).

The cortical connectivity can also be modeled by a stochas-
tic counterpart of equation (6.2.8), which follows in the general
framework stated in equation (4.2.5). The Markov process that
results from the Brownian motion with randomly curved paths
has been introduced by August and Zucker [2003]. The process
is represented by the following di�erential equations:

γ ′ = α1~Y1 +N (0,σ 2
1 )~Y4 +N (0,σ 2

2 )~Y5 (6.2.12)

where N (0,σi2) is a normally distributed variable with zero
mean and variance equal to σ 2

i . If p5 denotes the probability
density to �nd a particle at a point (x ,y) with a certain direc-
tion θ , intensity f and curvature κ, at a speci�c time t , then the
Fokker-Planck equation describing the di�usion of the particle
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density will be according to Theorem 2:

∂tp5 =
σ 2

5
2 Y55p5 +

σ 2
4

2 Y44p5 −Y1p5 (6.2.13)

so that Y44 = ∂
2/∂ f 2 and Y55 = ∂

2/∂κ2. This partial di�er-
ential equation means that a particle at a point (x ,y,θ , f ,κ)
transports in the direction of (cos(θ ), sin(θ ),κ, 0, 0) in the 5D
space. There is no transport in the f or κ direction, but the dif-
fusion in the κ direction indicates the rate of transport in the θ
direction. The di�usion in direction f is independent from the
other variables.

Integrating in time, we obtain thanks to Proposition 2 the
fundamental solution Γ5 of the following equation:

σ 2
4

2 Y44Γ5((x ,y,θ , f ,κ), (x′,y′,θ ′, f ′,κ′))

+
σ 2

5
2 Y55Γ5((x ,y,θ , f ,κ), (x′,y′,θ ′, f ′,κ′))−

Y1Γ5((x ,y,θ , f ,κ), (x′,y′,θ ′, f ′,κ′)) =
δ (x ,y,θ , f ,κ).

(6.2.14)

In order to compute an estimate of the fundamental solution
we �rst restrict as in the previous section to a fundamental so-
lution Γk of the Fokker Planck operator independent of f :

σ 2

2 Y55 +
σ 2

2 Y44 −Y1.

We recall that this is possible because the vector �eldY4 is inde-
pendent of all the other variables. Let us explicitly note that we
can not perform the same simple restriction to the variable k ,
since the vectors Y1 and Y5 do not commmute. The restriction
in this case is more delicate. Then we restrict the fundamental
solution to a 3D kernel, with κ �xed:

Γ′κ ((x ,y,θ ), (x′,y′,θ ′)) = Γk ((x ,y,θ ,k ), (x′,y′,θ ′,k ))

, symmetrized and multiplied by an exponential term which
considers the closeness between two points located in the dif-
ferent intensity planes, times an exponential term in the curva-
ture planes. Hence, this new connectivity kernel is presented
as:

ω5((x ,y,θ , f ,κ), (x′,y′,θ ′, f ′,κ′)) =

e
−

(κ−κ ′)2

σ 2
κ × e

−
(f −f ′)2

σ 2
int ×

1
2

(
Γ′κ ((x ,y,θ ), (x′,y′,θ ′)) + Γ′κ ′ ((x

′,y′,θ ′), (x ,y,θ ))
) (6.2.15)
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Figure 6.3 represents two level sets of the 5D kernel by �xing
κ (a) and θ (b) dimensions. The 2D projection on R2 by summa-
tion over all orientations of �ve di�erent 4D stochastic kernels
having di�erent curvature (κ) values is also presented by Fig-
ure 6.3 (c). The intensity term is kept constant for all �gures.
As seen in these �gures, by increasing the absolute value of
curvature, the shape of the kernel also changes and it deviates
from the elongated shape.

Figure 6.3: Visualizations
of the 5D stochastic kernels
in 3D and 2D. (a) and (b)
the iso-surfaces of the ker-
nel while keeping κ and θ

�xed respectively; (c) the
2D projection of the kernel
over all orientations for sev-
eral curvature values: κ =

{−0.08,−0.04, 0, 0.04, 0.08}
from left to right. Intensity
is constant for all �gures.

This new kernel can be used for de�ning the a�nity matrix
as:

Ai ,j = ω5((xi ,yi ,θi , fi ,κi ), (x′j ,y′j ,θ ′j , f ′j ,κ′j )). (6.2.16)

By this de�nition, considering the fact that this matrix in-
cludes information about the correct grouping, this problem
has been presented in terms of dimensionality reduction of this
matrix [Favali et al., 2016b, Sarti and Citti, 2015], often done by
eigensystem analysis.

6.2.3 Numerical approximation of the 5-D kernel

The kernel is numerically estimated using the general Markov
Chain Monte Carlo method technique recalled in section 4.3.3.
We say a few words on how to adapt it to the 5D case for reader
convenience. The system in equation (6.2.12) can be approxi-
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mated by:




xs+∆s − xs = ∆s cos(θ )
ys+∆s −ys = ∆s sin(θ ), s ∈ 1, ...,H
θs+∆s − θs = ∆sκ

κs+∆s −κs = ∆sN (0,σ5)

(6.2.17)

whereH is the number of steps of the random path andN (0,σ5)

is a generator of numbers taken from a normal distribution
with mean 0 and standard deviation of σκ . The stochastic path
is obtained from the estimate of the kernel as the average of
their passages over discrete volume elements, solving this �-
nite di�erence equation n times [Sarti and Citti, 2015]. The
a�nity matrix described in equation (6.2.16) is evaluated from
this kernel.

6.2.4 Product of normalized a�inity matrices

We have introduced a quite general setting which generates an
a�nity matrix starting from a set of vector �elds X1, · · · ,Xm,
satisfying an Hörmander condition in Rn × S1. In general the
a�nity matrix A does not have a probabilistic meaning. It can
be normalized by columns to recover this meaning. De�ning
the diagonal matrix D as the sum di =

∑
j aij , the normalized

a�nity matrix is obtained as: P = D−1A where P represents
the transition probability. In case di�erent normalized a�nity
matricesA1,A2, are used to describe the measured connectivity
in di�erent cortical areas, their productA1A2 describes the joint
action of the two probability measures.
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7 Individuation of perceptual units

We have presented in Chapter 4 and 5 the cortical connec-
tivity kernels. Here we describe the results of simulations pre-
sented in Favali et al. [2016b]: we will identify perceptual units
in di�erent Kanizsa �gures, highlighting the role of polarity,
discussing and comparing the behavior of the di�erent kernels.

We will also apply the presented method to the analysis
of retinal images [Abbasi-Sureshjani et al., 2016a, Favali et al.,
2016a], to a�ord the problem of grouping during the tracking
of blood vessel, highlighting the role of the feature of intensity
and curvature. These works have been developed in collabora-
tion with the Eindhoven Univesity of Technology (TU/e).

7.1 Phenomenological experiments: emergence of per-
cepts in illusory images

In the following experiments some numerical simulations will
be performed in order to test the reliability of the method pre-
sented in Section 4.2 for performing grouping and detection of
perceptual units in images. The kernel considered here only
depends on orientation. Hence it can be applied to detect the
saliency of geometrical �gures, which can be very well described
using this feature.

7.1.1 Proposed technique

The purpose is to select the perceptual units from visual images,
using the following algorithm:
1) de�ne the a�nity matrix Ai ,j from the connectivity kernel;

2) solve the eigenvalue problem Ai ,jui = λiui , where the order
of i is such that λi is decreasing;

3) �nd and project on the segments the eigenvector u1 associ-
ated to the largest eigenvalue.
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The parameters used are: 1000000 random paths with σ =

0.15 in the system (4.3.2), σ1 = 1.2, σ3 = 0.11 in the system
(4.3.3), σ , ρ = 0.15 in the discretization of (4.2.16). The value
of H is de�ned as follows: H = 1

3dmax , where dmax is the max-
imum distance between the inducers of the stimulus. Similar
parameters have been used for all the experiments.

7.1.2 The Field, Hayes and Hess experiment

In this section we consider some experiments similar to the
ones of Field et al. [1993], where a subset of elements organized
in a coherent way is presented out of a ground formed by a
random distribution of elements. A �rst stimulus of this type is
represented in Figure 7.1 (left). The connectivity among these
elements is de�ned as in equations (4.2.10) and (4.2.14).

After the a�nity matrix and its eigenvalues, the eigenvec-
tor corresponding to the highest eigenvalue is visualized in red.
The results show that the stimulus is well segmented with the
fundamental solutions of Fokker Planck and Sub-Riemannian
Laplacian equations (Figure 7.1 (right)).

Figure 7.1: Example of stim-
ulus (left) similar to the
experiments of Field et al.
[1993]. The stimulus contain-
ing a perceptual unit is seg-
mented with Fokker Planck
and Sub-Riemannian Lapla-
cian (right), using the �rst
eigenvector of the a�nity
matrix.

Now we consider a similar experiment proposed in Field
et al. [1993], where the orientation of successive elements dif-
fers by 15, 30, 45, 60 and 90 degrees and the ability of the ob-
server to detect the path was measured experimentally. It was
proved that the path can be identi�ed when the successive el-
ements di�er by 60 deg or less. With our method, we obtain
similar results: if the angle between successive elements is less
than 60 degree (Figure 7.2 (a), (b),(c)), the identi�cation of the
unit is correctly performed. With an angle equal to 60 degree
(Figure 7.2 (d)) only a part of the curve is correctly detected:
this can be interpreted as the increasing observer’s di�culty to
detect the path. Considering higher angles (Figure 7.2 (e)) the
�rst eigenvector of the a�nity matrix corresponds to random
inducers, con�rming the results.
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Figure 7.2: In red the �rst
eigenvector of the a�nity
matrix considering images
containing paths in which
the orientation of successive
elements di�ers by 15 (a), 30
(b), 45 (c), 60 (d) and 90 (f)
degrees.

Finally we present an example where there are two units
in the scene with roughly-equal salience, they have roughly-
equal eigenvalues. In the �rst and in the second row of Figure
7.3 the stimuli are composed by a curve and a line in a back-
ground of random elements. In the stimulus (a) represented in
the �rst row, the elements composing the curve are perfectly
aligned and very nearby, so that this has the highest saliency
and it represents the eigenvector associated to the �rst eigen-
value (as shown in red in Figure 7.3 (b)). The second eigenvalue
in this case is sligtly smaller. After the computation of the �rst
eigenvector, the stimulus is updated (Figure 7.3 (c)), the �rst
eigenvector of the new a�nity matrix is computed and it cor-
responds to the inducers of the line (Figure 7.3 (d)).

Figure 7.3: First and second
rows. Examples (a,e) with
two units in the scene, where
a change in the angle leads to
a change in the order of the
eigenvalues (b,f), (c,g), (d,h).

In the second row (e) we slightly modify the stimuli, in par-
ticular the alignement of the element forming the curve (e.g. an
angle of pi/18). As a consequence, the line becomes the most
salient perceptual unit and the �rst eigenvector (Figure 7.3 (f)).
The stimulus is updated (Figure 7.3 (g)) and the �rst eigenvec-
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tor of the new a�nity matrix corresponds to the inducers of
the curve (Figure 7.3 (h)). It is notable that in this case a small
changement of the eigenvalues corresponds to small change-
ment of the eigenvectors, but the �rst eigenvalue swaps with
the second one and consequently we obtain an abrupt change
in the perceved object.

In the previous examples we have considered all contours
with almost the same length. We show here that this length
does not a�ect the faeture of saliency. In Figure 7.4 (a), (e) are
visualized two perceptual units with di�erent length. The re-
sults underline how the proximity of contours is stronger than
lenght: the shortest units with nearer segments are the �rst
perceptual units, associated to the most salient eigenvectors
(Figure 7.4 (b), (f)). Then the stimuli are updated (Figure 7.4 (c),
(g)) and the second eigenvectors are visualized in Figure 7.4 (d),
(h).

Figure 7.4: Examples (a,e)
with two units in the scene
with di�erent length. In
(b,f),(c,g) and (d,h) the results
of simulation.

In this analysis di�erent features can be considered. In par-
ticular also the distances between the segments play a central
role. Let’s consider for example the straight line in Figure 7.4
(a). If one or more segments is missing from the contour we
could obtain a less accurate segmentation (a similar e�ect is
noticed in the case of not-aligned segments). A similar analy-
sis considering small or disconnected contours has been con-
sidered in Favali et al. [2016a], applied to the study of vessel
connectivities.
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7.1.3 The role of polarity

The term of polarity leads to insert in the model the feature
of contrast: contours with the same orientation but opposite
contrast are referred to opposite angles. For this reason we
assume that the orientation θ takes values in [0, 2π ) when we
consider the odd �lters and in [0,π ) while studying the even
ones.

Figure 7.5: In the �rst row
schematic description of the
whole hypercolumn of odd
simple cells centered in a
point (x ,y). The maximal ac-
tivity is observed for the sim-
ple cell sensitive to the direc-
tion of the boundary of the
visual stimulus. The set of
maximally �ring cells are vi-
sualized in the last image.
In the second row: a cartoon
image (a), the �rst eigen-
vector of the a�nity matrix
without polarity (b), its rep-
resentation with polarity de-
pendent Gabor patches (b)
and the corresponding �rst
eigenvector (d).

The response of the odd �lters in presence of a cartoon im-
age is schematically represented in Figure 7.5. At every bound-
ary point the maximally activated cell is the one with the same
direction of the boundary. Then the maximally �ring cells are
aligned with the boundary (Figure 7.5, top right).

In order to clarify the role of polarity we consider an im-
age in Figure 7.5 (a), that has been studied by [Kanizsa, 1980],
in the contest of a study of convexity in perception. In this
case, if we consider only orientation of the boundaries without
polarity, we completely loose any contrast information and we
obtain the grouping in Figure 7.5 (b). Here the upper edge of the
square is grouped as an unique perceptual unit. On the other
side, while inserting polarity, the Gabor patches on the upper
edge boundary of the black or white region have opposite con-
trast and detect values of θ which di�ers of π (see Figure 7.5 (c)).
In this way, there is no a�nity between these patches, and the
�rst eigenvector of the a�nity matrix represented in red cor-
rectly detects the unit present in the image and corresponds to
the inducers of the semicircle (see Figure 7.5 (d)). This under-
lines the important role of polarity in perceptual individuation
and segmentation. We also note that the �st perceptual unit
detected is the convex one, as predicted by the gestalt law (see
[Kanizsa, 1980]).
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7.1.4 The Kanizsa illusory figures

We consider here stimuli formed by Kanizsa �gures, represented
by oriented segments that simulate the output of simple cells.
In Lee [2001] it is described that completion of Kanizsa �gures
takes place in V1.

We �rst consider the stimulus of Figure 7.6 (a). The con-
nectivity among its elements will be analysed with the kernels
de�ned in equations (4.2.10), (4.2.14).

The results of simulations with the fundamental solutions
of Fokker Planck and Sub-Riemannian Laplacian equations are
shown in Figure 7.6.

Figure 7.6: The Kanizsa tri-
angle (a) and the maximally
responding odd �lters (b).
In (c) it is shown the �rst
eigenvector of the a�nity
matrix, using the funda-
mental solutions of Fokker
Planck (4.2.10,6.2.17) and
Sub-Riemannian Laplacian
equations (4.2.14,4.3.3). After
this computation, the a�nity
matrix is updated removing
the detected perceptual unit;
the �rst eigenvector of the
new matrix is visualized (d).

The �rst eigenvector is visualized in red and it corresponds
to the inducers of the Kanizsa triangle (Figure 7.6 (c)). In this
example, after the computation of the �rst eigenvector of the
a�nity matrix, this matrix is updated removing the identi�ed
perceptual unit and then the �rst eigenvector of the new matrix
is computed (Figure 7.6 (d)): these simulations show that circles
are associated to the less salient eigenvectors. In that way, the
�rst eigenvalue can be considered as a quantitative measure
of saliency, because it allows to segment the most important
object in the scene and the results of simulations con�rm the
visual grouping.

When the a�nity matrix is formed by di�erent eigenvec-
tors with almost the same eigenvalues, as in Figure 7.6 (d), it
is not possibile to recognize a most salient object, because they
all have the same in�uence. We choose here to show just one
inducer in red. The other two have the same eigenvalue. That
also happens, for example, when the inducers are not co-circularly
aligned or they are rotated.

Now we consider as stimulus the Kanizsa square and then
we change the angle between the inducers, so that the subjec-
tive contours become curved (Figure 7.7 (a), (b), (c), (d)). The
fact that illusory �gures are perceived depends on a limit cur-
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vature. Indeed we perceive a square in the �rst three cases,
but not in the last one. The results of simulations with the
fundamental solutions of Fokker Planck and Sub-Riemannian
Laplacian equations con�rm the visual grouping (Figure 7.7 (a),
(b), (c), (d), second row): when the angle between the inducers
is not too high (cases (a), (b), (c)) the �rst eigenvector corre-
sponds to the inducers that form the square, otherwise (case
(d)) the pacman becomes the most salient objects in the image.
In this case, we obtain 4 eigenvectors with almost the same
eigenvalue.
Now we consider a Kanizsa bar (Figure 7.7 (e)), that is perceived
only if the inducers are aligned. Also in that case, the result of
simulation con�rms the visual perception if we use the funda-
mental solutions of the Fokker-Planck and the Sub-Riemannian
Laplacian equations (Figure 7.7 (e), second row).

Figure 7.7: Examples of
stimulus with aligned and
not-aligned inducers. The
�rst eigenvectors of the
a�nity matrix using the fun-
damental solutions of Fokker
Planck and Sub-Riemannian
Laplacian are visualized in
red (second row).

When the inducers are not aligned, all the kernels con�rm
the visual perception, showing two di�erent perceptual units
(Figure 7.8 (a)).

Considering a stimulus composed of rotated or not-aligned
inducers, as in Figure 7.8 (b), (c) it is not possible to perceive
it and the results of simulations, using all the connectivity ker-
nels described, con�rm the visual grouping. In that case, the
a�nity matrix is decomposed in 3 eigenvectors with almost
the same eigenvalues, which represent the 3 perceptual units
in the scene.

7.1.5 Sub-Riemannian Fokker Planck versus Sub-Riemannian
Laplacian

The two kernels we are going to analyze are not mutually ex-
clusive and they can be implemented in di�erent cells. The
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Figure 7.8: Stimulus with ro-
tated (a) and not-aligned (b),
(c) inducers. The �rst eigen-
vectors of the a�nity ma-
trix using the fundamental
solutions of Fokker Planck
and Sub-Riemannian Lapla-
cian are visualized in red
(second row).

presence of di�erent population of cells in relation with mathe-
matical models has been also studied in Ben-Shahar and Zucker
[2004]. We have outlined in Sections 4.2.3 and 5.1.1 that the
Fokker Planck kernel accounts for long range connectivity, while
Sub-Riemannian Laplacian for short range. In the previous ex-
amples we obtain good results with both kernels, but this dif-
ference emerges while we suitable change the parameters. In
Figure 7.9 we compare the action of these two kernels.

Figure 7.9: In the �rst row a
few aligned segments, which
are correctly grouped by the
Fokker Planck and the Sub-
Riemannian Laplacian (a),
(b). When we separate the
inducers, the perceptual unit
is correctly detected using
the Fokker Planck kernel (c),
while the Sub-Riemannian
Laplacian is not able to per-
form the grouping (d). In the
second row we consider an
angle. In this case the Fokker
Planck is unable to perform
the grouping (e), while the
Sub-Riemannian Laplacian
can correctly perform the
grouping (f).

In the �rst row we see some segments, which form an unique
perceptual unit. If they are not too far, the grouping is correctly
performed both by the Fokker Planck and the Sub-Riemannian
Laplacian (Figure 7.9 (a),(b)). When we separate the inducers,
the perceptual unit is correctly detected by the Fokker Planck
kernel (Figure 7.9 (c)), while the Sub-Riemannian Laplacian is
not able to perform the grouping (Figure 7.9 (d)). This con�rms
that the Fokker Planck kernel is responsible for long range con-
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nectivity. In the second row we consider an example with seg-
ments disposed to form an angle. When the angle is su�ciently
high, the Fokker Planck becomes unable to perform the group-
ing (Figure 7.9 (e)), while the Sub-Riemannian Laplacian, cor-
rectly performs the grouping of the perceptual unit (Figure 7.9
(f)). This con�rms that the Sub-Riemannian Laplacian can be
used as a model of short range connectivity.

7.1.6 Sub-Riemannian versus Riemannian kernels

In order to further validate the Sub-Riemannian model we show
that the model applied with the isotropic Laplacian kernel does
not perform correctly. As shown in Figure 7.10 (�rst row) the
visual perception is not correctly modeled: the �rst eigenvec-
tors coincide with one of the inducers and the squares are not
recognized. That also happens for the stimulus of Figure 10 (a)
and when the inducers are not co-circularly aligned or they are
rotated.

Figure 7.10: Stimulus of Fig-
ure 7.8. The results do not
�t the visual perception if we
use the isotropic Laplacian
equation (4.2.16) and con�rm
the necessity to use a Sub-
Riemannian kernel to model
the cortical connectivity.

7.1.7 Discussion

We have presented a neurally based model for �gure-ground
segmentation using spectral methods, where segmentation has
been performed by computing eigenvectors of a�nity matri-
ces. Di�erent connectivity kernels that are compatible with
the functional architecture of the primary visual cortex have
been used. We have modelled them as fundamental solution of
Fokker-Planck, Sub-Riemannian Laplacian and isotropic Lapla-
cian equations and compared their properties. With this model
we have identi�ed perceptual units of di�erent Kanizsa �gures,
showing that this can be considered a good quantitative model
for the constitution of perceptual units equipped by their saliency.
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We have also shown that the fundamental solutions of Fokker-
Planck and Sub-Riemannian Laplacian equations are good mod-
els for the good continuation law, while the isotropic Laplacian
equation is less representative for this gestalt law. However it
retrieves information about ladder parallelism, a feature that
can be analysed in the future. All the three kernels are able to
accomplish boundary completion with a preference for the op-
erators Fokker Planck and the Sub-Riemannian Laplacian. The
proposed mathematical model is then able to integrate local
and global gestalt laws as a process implemented in the func-
tional architecture of the visual cortex. The kernel considered
here only depends on orientation. Hence it can be applied to
detect the saliency of geometrical �gures which can be very
well described using this feature.

Similar method can be applied to natural images if their
main features are related to orientations, as presented in the
Section 7.2 and 7.3. However for general images we can not
rely on this simple geometric method, since di�erent cortical
areas can be involved in the de�nition of the saliency, with a
modulatory e�ect on the connectivity of V1.

7.2 Application to medical images: emergence of per-
cepts in retinal images

Retinal images provide early signs of diabetic retinopathy, glau-
coma and hypertension. These signs can be investigated based
on microaneurysms or smaller vessels. The diagnostic biomark-
ers are the change of vessel widths and angles especially at junc-
tions, which are investigated using the vessel segmentation or
tracking. Vessel paths may also be interrupted; crossings and
bifurcations may be disconnected.

Here we apply the method presented in Section 6.1 based on
the geometry of the primary visual cortex (V1) to study these
di�culties. The proposed method represents an engineering
application of segmenting and representing blood vessels in-
spired by the modeling of the visual cortex. This shows how
these models can be applied to the analysis of medical images
and how these two �elds can be reciprocally used to better
understand and reinforce each other. We have analysed the
speci�c problems at junctions with a connectivity kernel ob-
tained as the fundamental solution of the Fokker-Planck equa-
tion, which is usually used to represent the geometrical struc-
ture of multi-orientation cortical connectivity. By using the
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spectral clustering on a large local a�nity matrix constructed
by both the connectivity kernel and the feature of intensity,
the vessels are identi�ed successfully in a hierarchical topol-
ogy each representing an individual perceptual unit.

7.2.1 Vessel extraction and its di�iculties

The vasculature can be extracted by means of either pixel clas-
si�cation or vessel tracking. Several segmentation and track-
ing methods have been proposed in the literature [Fraz et al.,
2012, Bühler et al., 2004, Felkel et al., 2001]. In pixel classi�-
cation approaches image pixels are labeled either as vessel or
non-vessel pixels. Therefore, a vessel likelihood (soft segmen-
tation) or binary map (hard segmentation) is created for the
retinal image. Although the vessel locations are estimated in
these approaches, they do not provide any information about
vessel connectivities. On the contrary, in tracking based ap-
proaches, several seed points are selected and the best connect-
ing paths between them are found [Al-Diri et al., 2009, Chutat-
ape et al., 1998, Poon et al., 2007, Quek and Kirbas, 2001, Xu
et al., 2011, Can et al., 1999, De et al., 2014, 2013, Delibasis et al.,
2010, González et al., 2010]. The main bene�t of vessel track-
ing approaches is that they work at the level of a single vessel
rather than a single pixel and they try to �nd the best path
that matches the vessel pro�le. Therefore, the information ex-
tracted from each vessel segment (e.g. diameter and tortuosity)
is more accurate and reliable.

There are several di�culties for both vessel segmentation
and tracking approaches. Depending on imaging technology
and conditions, these images could be a�ected by noise in sev-
eral degrees. Moreover, non-uniform luminosity, drift in image
intensity, low contrast regions and also central vessel re�ex
make the vessel detection and tracking complicated. Several
image enhancement, normalization and denoising techniques
have been developed to tackle these complications (e.g. [Abbasi-
Sureshjani et al., 2015, Foracchia et al., 2005, Narasimha-Iyer
et al., 2008]).

The tracking methods are often performed exploiting the
skeleton of the segmented images. Thus, non-perfect segmen-
tation or wrong skeleton extraction results in topological trac-
ing errors e.g. disconnections and non-complete subtrees as
discussed in several methods proposed in the literature [Joshi
et al., 2011, Al-Diri et al., 2009, De et al., 2013, 2014, González
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et al., 2010]. Typical non-perfections include missing small ves-
sels, wrongly merged parallel vessels, disconnected or broken
up vessel segments and the presence of spur branches in thin-
ning. Moreover, the greater di�culty arises at junctions and
crossovers: small arteriovenous crossing angles, complex junc-
tions when several junctions are close together, or presence of
a bifurcation next to a crossing makes the centreline extraction
and tracing challenging. These di�culties are mentioned as the
tracking limitations in the literature. Some of these challeng-
ing cases are depicted in Figure 7.11 with their corresponding
artery/vein ground truth labels. Arteries and veins are anno-
tated in red and blue colors respectively. The green color rep-
resents the crossing and the types of the white vessels are not
known.

C1

C2

C5 C6

C3

C4

C1

C2

C3

C4

C5 C6

C2C1 C3 C4 C5 C6

Figure 7.11: A sample
image from the DRIVE
dataset [Staal et al., 2004]
(top left) and its correspond-
ing artery/vein ground truth
from the RITE dataset [Hu
et al., 2013] (top right). Sev-
eral di�cult cases are shown.
C1: complex junction (bi-
furcation and crossing with
narrow crossing angle);
C2: interrupted lines and
missing small vessels; C3:
high curvature vessel; C4:
complex junction; C5: two
nearby parallel vessels;
C6: missing small vessel,
merged parallel vessels and
interrupted segment.

Our method, which is not dependent on centerline extrac-
tion, is based on the fact that in arteriovenous crossings there is
a continuity in orientation and intensity of the artery and vein,
respectively, i.e., the local variation of orientation and intensity
of individual vessels is very low. The proposed method models
the connectivity as the fundamental solution of the Fokker–Planck
equation, which matches the statistical distribution of edge co-
occurrence in natural images and is a good model of the cortical
connectivity [Sanguinetti et al., 2008].
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7.2.2 Spectral Analysis

The goal of clustering is to divide the data points into several
groups such that points in the same group are similar and points
in di�erent groups are dissimilar to each other. The cogni-
tive task of visual grouping can be considered as a form of
clustering, with which it is possible to separate points in dif-
ferent groups according to their similarities. In order to per-
form visual grouping, we will use the spectral clustering algo-
rithm. Traditional clustering algorithms, such as K-means, are
not able to resolve this problem [Ng et al., 2002]. In recent years,
di�erent techniques have been presented to overcome the per-
formance of the traditional algorithms, in particular spectral
analysis techniques. It is widely known that these techniques
can be used for data partitioning and image segmentation [Shi
and Malik, 2000, Perona and Freeman, 1998, Weiss, 1999, Meila
and Shi, 2001] and they outperform the traditional approaches.
Above that, they are simple to implement and can be solved
e�ciently by standard linear algebra methods [Von Luxburg,
2007]. In the next section we will describe the spectral cluster-
ing algorithm used in the numerical simulations.

7.2.2.1 Spectral Clustering Technique

Di�erent algorithms based on the theory of graphs have been
proposed to perform clustering. In [Perona and Freeman, 1998]
it has been shown how the edge weights {aij }i ,j=1,...n of a weighted
graph describe an a�nity matrix A. This matrix contains infor-
mation about the correct segmentation and will identify per-
ceptual units in the scene, where the salient objects will corre-
spond to the eigenvectors with the highest eigenvalues. Even
though it works successfully in many examples, in Weiss [1999]
it has been demonstrated that this algorithm also can lead to
clustering errors. In Von Luxburg [2007] and Meila and Shi
[2001] the algorithm is improved considering the normalized
a�nity matrix. In particular we will use the normalization de-
scribed in Meila and Shi [2001]. De�ning the diagonal matrix D
as formed by the sum of the edge weights (representing the de-
grees of the nodes,di =

∑n
j=1 aij), the normalized a�nity matrix

is obtained as:
P = D−1A. (7.2.1)

This stochastic matrix P represents the transition probability
of a random walk in a graph. It has real eigenvalues {λj }j=1,...n
where 0 ≤ λj ≤ 1, and its eigenvectors {ui }i=1,...K , related to
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the K largest eigenvalues λ1 ≥ λ2 ≥ ... ≥ λK , represent a solu-
tion of the clustering problem [Von Luxburg, 2007]. The value
of K determines the number of eigenvalues and eigenvectors
considered informative.

The important step is selecting the best value of K, which
can be done by de�ning an a-priori signi�cance threshold ϵ

for the decreasingly ordered eigenvalues λi , so that λi > 1 −
ϵ ,∀ 1 ≤ i ≤ K . However, selecting the best ϵ value is not al-
ways trivial and the clustering results get very sensitive to this
parameter in many cases. Hence, considering the di�usion map
approach of Coifman and Lafon [2006] and following the idea
of Cocci et al. [2015], using an auxiliary di�usion parameter
(τ , big positive integer value) to obtain the exponentiated spec-
trum {λτi }i=1,...n, the gap between exponentiated eigenvalues in-
creases and sensitivity to the threshold value decreases very
much. Using this new spectrum, yields to the stochastic matrix
Pτ , that represents the transition matrix of a random walk in
de�ned τ steps. The di�erence between thresholding the eigen-
values directly or the exponentiated spectrum is shown in an
example in Figure 7.12.

Figure 7.12: A sample image
patch at a crossing (a), its
a�nity matrix (A) built upon
a connectivity measure (b),
the eigenvalues (λi , i = 1, ...n)
of the normalized a�nity
matrix (P ) and the threshold
value (1 − ϵ = 0.7), rep-
resented in red (c). The
exponentiated spectrum
(λτi , i = 1, ...n) with τ = 150
and threshold value of 0.7 in
red (d).

As seen in this �gure, selecting the best discriminative thresh-
old value for the eigenvectors (Figure 7.12 (c)) is not easy, while
with the exponentiated spectrum (Figure 7.12 (d)) the threshold
value can be selected in a wide range (e.g. 0.05 ≤ 1 − ϵ ≤ 0.9).
The value of τ needs to be selected as a large positive integer
number (e.g. 150).

After selecting the value of K, the number of clusters is au-
tomatically determined using Algorithm ??.

Possible neural implementations of the algorithm are dis-
cussed in Cocci et al. [2015]. Particularly, in Bresslo� et al.
[2002], Faugeras et al. [2009] an implementation of the spec-
tral analysis is described as a mean-�eld neural computation.
Principal eigenvectors emerge as symmetry breaking of the sta-
tionary solutions of mean �eld equations. In addition, in Sarti
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Algorithm 1 Spectral clustering algorithm
1: De�ne the a�nity matrix Ai ,j from the connectivity kernel.
2: Evaluate the normalized a�nity matrix: P = D−1A.
3: Solve the eigenvalue problem Pui = λiui , where the order of i is such

that λi is decreasing.
4: De�ne the thresholds ϵ , τ and evaluate the largest integer K such that
λτi > 1 − ϵ , i = 1, . . . ,K .

5: Let U be the matrix containing the vectors u1, . . . ,uK as columns.
6: De�ne the clusters k = arg maxj {uj (i )} with j ∈ {1, . . . ,K } and i =

1, . . . ,n.
7: Find and remove the clusters that contain less than a minimum cluster

size elements.
??.

and Citti [2015] it is shown that in the presence of a visual stim-
ulus the emerging eigenvectors are linked to visual perceptual
units, obtained from a spectral clustering on excited connectiv-
ity kernels. In the next section the application of this algorithm
in obtaining the vessel clustering in retinal images will be pre-
sented.

7.2.3 Proposed Technique

In order to prove the reliability of the method in retrieving the
connectivity information in 2D retinal images, several challeng-
ing and problematic image patches around junctions were se-
lected. First step before detecting the junctions and selecting
the image patches around them, is to apply preconditioning
on the green channel (I ) of a color fundus retinal image. The
green channel provides a higher contrast between vessels and
background and it is widely used in retinal image analysis. The
preconditioning includes: a) removing the non-uniform lumi-
nosity and contrast variability using the method proposed by
Foracchia et al. [2005]; b) removing the high frequency con-
tents; and c) denoising using the non-linear enhancement in
SE(2) as proposed by Abbasi-Sureshjani et al. [2015] . A sample
color image before and after preconditioning (Ienh) are shown
in Figure 7.13 (a) and (b) respectively.

In next step, soft (Iso f t ) and hard (Ihard ) segmentations are ob-
tained using the BIMSO (biologically-inspired multi-scale and
multi-orientation) method for segmenting Ienh as proposed by [Abbasi-
Sureshjani et al., 2015]. These images are shown in Figure 7.13
(c) and (d) respectively. The hard segmentation is used for de-
tecting the junctions and selecting several patches with di�er-
ent sizes around them; while soft segmentation is used later in
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connectivity analysis.

Figure 7.13: The di�erent
steps applied for select-
ing several image patches
around junctions, (a) origi-
nal RGB image, (b) enhanced
image (Ienh), (c) soft seg-
mentation (Iso f t ), (d) hard
segmentation (Ihard ), (e)
detected junctions and the
skeleton of the segmentation
overlaid on color image, (f)
selected patches overlaid on
artery/vein ground truth.

In order to �nd the junction locations automatically, the
skeleton of Ihard is produced using the morphological skele-
tonization technique. Then the method proposed by Olsen et al.
[2011] is applied on this skeleton and the junction locations
are determined as shown in Figure 7.13 (e). Using the deter-
mined locations, several image patches with similar sizes (s =
10 pixels) are selected at �rst stage. However, as seen in Fig-
ure 7.13 (e), some of the junctions are very close to each other
and their distances are smaller than s/2. For these junctions, a
new patch including both nearby junctions (with a size equal
to three times the distance between them) is considered, and its
centre is used for �nding the distance of this new patch with
the other ones. These steps are repeated until no more merg-
ing is possible or the patch size reaches the maximum possible
size (we assumed 100 as the maximum possible value). Thus, all
nearby junctions are grouped in order to decrease the number
of patches that overlap in a great extent. This results in having
di�erent patch sizes (0 ≤ spi ≤ 100, 1 ≤ i ≤ m) that could in-
clude more than one junction all over the image. Figure 7.13
(f) shows the junction locations and the corresponding selected
patches overlaying on artery/vein ground truth.

In order to analyze the vessel connectivities for each image
patch (Ipi ), we need to extract the location (x ,y), orientation (θ )
and intensity (f (x ,y)) of vessel pixels in these patches. Hence
for each group of junctions (i) with the size si , two patches from
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Ienh and Iso f t are selected, called Ienh,pi and Iso f t ,pi respectively.
Then Iso f t ,pi is thresholded locally to obtain a new hard seg-
mented image patch (called Ihard ,pi ). This new segmented im-
age patch is di�erent from selecting the corresponding patch
from Ihard , because Ihard was obtained by thresholding the en-
tire Iso f t using one global threshold value, but this is not appro-
priate at all regions. If there are regions with very small ves-
sels with a low contrast (often they get a very low probability
of being vessel pixels), they are normally removed in the global
thresholding approach. Accordingly, wrong thresholding leads
into wrong tracking results e.g. C1, C2, C6 in Figure 7.11 are
some instance patches with missing small vessels. In this work,
we selected one threshold value for each patch speci�cally us-
ing Otsu’s method [Otsu, 1975], to keep more information and
cover a wider range of vessel pixels. Consequently, thicker ves-
sels will be created in Ihard ,pi and the results will be more accu-
rate.

By knowing the vessel locations (x ,y) other information
could be extracted for these locations using Ienh,pi . So f (x ,y)
equals the intensity value in Ienh,pi at location (x ,y). Moreover,
by lifting Ienh,pi using cake wavelets, at each location the an-
gle corresponding to the maximum of the negative orientation
response (real part) in the lifted domain is considered as the
dominant orientation (θd ) as equation (7.2.2):

θd = arg max
θ∈[0,π ]

Re (−U f (x ,y,θ )) (7.2.2)

The negative response is considered because the blood vessels
in retinal images are darker than background. Next step is ap-
proximating the connectivity kernels as shown in Section 6.1.
The �rst kernel (ω1), was calculated numerically, so the fun-
damental solution Γ1 was estimated using the Markov Chain
Monte Carlo method [Robert and Casella, 2013]. This �nite dif-
ference equation is solved for n (typically 105) times, so n paths
are created. Then the estimated kernel is obtained by averag-
ing all the solutions [Higham, 2001, Sarti and Citti, 2015]. An
overview of di�erent possible numerical methods to compute
the kernel is explained in Zhang et al. [2016], where compar-
isons are done with the exact solutions derived in Duits and
Franken [2010a], Duits and Van Almsick [2008]. From these
comparisons it follows that the stochastic Monte-Carlo imple-
mentation is a fair and accurate method. The intensity-based
kernel (ω2), the �nal connectivity kernel (ω f ) and the a�nity
matrix (A), were calculated using equations (6.1.6), (6.1.7) and
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(6.1.8) respectively. Finally, by applying the proposed spectral
clustering step in Section 7.2.2, the �nal perceptual units (indi-
vidual vessels) were obtained for each patch.

The above-mentioned steps for a sample crossing in a 21 ×
21 image patch are presented in Figure 7.14.

Figure 7.14: A sample 21× 21
image patch at a crossing: (a)
Ienh,pi , (b) Iso f t ,pi , (c) Ihard ,pi ,
(d) the di�erences in intensi-
ties are shown in color, (e)
each oriented line represents
the orientation at its posi-
tion, (f) �nal perceptual units
shown in di�erent colors (g)
the ground truth artery and
vein labels, (h) lifted image
in SE (2), (i) connectivity ker-
nel (ω2), (j) a�nity matrix
(A) obtained using both ori-
entation and intensity infor-
mation, (k) thresholding the
eigenvalues of the normal-
ized a�nity matrix.

After enhancing the image (Figure 7.14 (a)), obtaining soft
segmentation (Figure 7.14 (b)) and thresholding it locally (Fig-
ure 7.14 (c)), the vessel locations, intensity and orientation have
been extracted. As shown in Figure 7.14 (d) arteries and veins
have di�erent intensities and this di�erence helps in discrimi-
nating between them. Though, orientation information is the
most discriminative one. The lifted image in SE (2) using the π -
periodic cake wavelets in 24 di�erent orientations is shown in
Figure 7.14 (h). The disentanglement of two crossing vessels at
the junction point can be seen clearly in this �gure. The domi-
nant orientations (θd ) for the vessel pixels are also depicted in
Figure 7.14 (e), using line segments oriented according to the
corresponding orientation at each pixel.

In the next step, this contextual information (intensity and
orientation) is used for calculating the connectivity kernel (Fig-
ure 7.14 (i)) and the a�nity matrix (Figure 7.14 (j)). For this
numerical simulation, H , n, σ and σ2 have been set to 7, 100000,
0.05 and 0.1 respectively. Next, by applying the spectral clus-
tering on the normalized a�nity matrix using ϵ and τ as 0.1
and 150, only two eigenvalues above the threshold will remain
(Figure 7.14 (k)). This means that there are two main salient per-
ceptual units in this image as it was expected. These two units
are color coded in Figure 7.14 (f). The corresponding artery and
vein labels are also depicted in Figure 7.14 (g) which approve
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the correctness of the obtained clustering results.

7.2.4 Validation

To validate the method, the proposed steps were applied on
several image patches of the DRIVE [Staal et al., 2004] dataset.
This public dataset contains 40 color images with a resolution
of 565 × 584 (∼ 25µm/px ) and a 45◦ �eld of view. The se-
lected patches from each image were manually categorized into
the following groups: simple crossing (category A), simple bi-
furcation (category B), nearby parallel vessels with bifurcation
(category C), bifurcation next to a crossing (category D) and
multiple bifurcations (category E), and each category narrowed
down to 20 image patches. These patches have di�erent com-
plexities, number of junctions and sizes and they could contain
broken lines, missing small vessels and vessels with high cur-
vature. The parameters used in the numerical simulation of the
a�nity matrix and spectral clustering step (including σ , H , n,
σ , σ2, ϵ and τ ) are chosen for each patch di�erently, with the
aim of achieving the optimal results for each case. Automatic
parameter selection remains a challenging task and will be in-
vestigated in future work.

Some sample �gures of these cases are depicted in Figure
7.15. For each example, the original gray scale enhanced image,
hard segmentation (locally thresholded), orientation and inten-
sity information, and �nally the clustering result together with
artery/vein labels are depicted (Figure 7.15 (a)-(f) respectively).
Although the complexity of these patches is quite di�erent in
all cases, the salient groups are detected successfully. All the
vessel pixels grouped as one unit have similarity in their orien-
tations and intensities, and they follow the law of good contin-
uation. Therefore, at each bifurcation or crossover point, two
groups have been detected.

In this �gure, G1 is a good example of a crossing with a
small angle. The method not only di�erentiates well between
vessels crossing each other even with a small crossing angle,
but it also determines the order of vessels, being at the bottom
or passing over in crossover regions. The image patch in G2 is a
good example showing the strength of the method in detecting
small vessels. The detected small vessel in this image is even
not annotated in the artery/vein ground truth. However, this
detection is highly dependent on the soft segmented image and
the threshold value used for obtaining the hard segmentation.
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If the small vessel is not detected in the soft segmentation or
if a hight threshold value is selected, then it also will not be
available in the �nal result.

Figure 7.15: Sample image
patches selected from the
DRIVE dataset. Columns
from left to right present
the image patch at the green
channel, segmented image,
extracted orientation and in-
tensity, clustering result and
the artery/vein labels.

Other cases in this �gure are good representations of the
robustness of the method against the presence of a central ves-
sel re�ex (as in G3), interrupted lines (as in G10) or even noise
(as in G9). In G9, noisy pixels are detected as individual units
which are not similar to the other groups. They can be di�er-
entiated from others based on their sizes. If there are very few
pixels in one group, then it can be considered as noise and re-
moved. There are also several cases with complex junctions
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in this �gure. Presence of multiple bifurcations in one image
patch, or presence of several bifurcations close to the crossing
points does not lead to wrong grouping results (as seen in G5,
G6, G7, G8 and G10).

The parameters used during the numerical simulations of
the image patches shown in Figure 7.15 and their correspond-
ing sizes are presented in Table 7.1. For all experiments the
values of n, ϵ and τ were set to 100000, 0.1 and 150 respectively
and they remained constant.

Name size H σ σ2

G1 21 × 21 7 0.02 0.3
G2 21 × 21 8 0.03 0.3
G3 41 × 41 10 0.03 0.1
G4 39 × 39 9 0.03 0.3
G5 33 × 33 8 0.03 0.3
G6 51 × 51 20 0.03 0.3
G7 71 × 71 17 0.07 0.3
G8 73 × 73 24 0.03 0.3
G9 89 × 89 30 0.03 0.3
G10 97 × 97 24 0.03 0.3

Table 7.1: The parameters
used in numerical simulation
of the image patches shown
in Figure 7.15 and their cor-
responding sizes

The key parameters which are very e�ective in the �nal re-
sults areH , σ andσ2. H andσ determine the shape of the kernel.
Based on the experiments, the appropriate value for the num-
ber of steps of the random path generation is approximately
1/3 of the image width. Selecting this parameter correctly is
very important in connecting the interrupted lines. The param-
eters σ and σ2 which determine the propagation variance in
the θ direction and the e�ect of the intensity-based similarity
term do not have a large sensitivity to variation. To quantify
this, the mean and variance of these two parameters for each of
the above-mentioned categories are calculated and presented
in Table 7.2. Since the selected patches have varying sizes and
H is dependent on that, this parameter is not presented in this
table. Moreover, to evaluate the performance of the method, we
introduced the correct detection rate (CDR) as the percentage
of correctly grouped image patches for each category. These
values are presented in Table 7.2. By considering higher num-
ber of image patches per category theCDR values will be more
realistic.

7.2.5 Discussion

The proposed method allows �nding accurate junction posi-
tions, which is the position where two groups meet or cross
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2*Category 2*CDR% σ σ2
mean variance mean variance

A 85 0.032 0.0001 0.28 0.0039
B 95 0.033 ' 0 0.3 ' 0
C 85 0.0269 ' 0 0.22 0.01
D 75 0.035 0.00013 0.248 0.0125
E 95 0.03 ' 0 0.3 ' 0

Table 7.2: The correct detec-
tion rate and the mean and
variance of σ and σ2 used
in numerical simulation for
each category

each other. The main application of these connectivity analy-
ses would be in modeling the retinal vasculature as a set of tree
networks. Our method represents some limitations at blood
vessels with high curvature: if there are some high curvature
vessels, then depending on their curvature increasing σ might
help in preserving the continuity of the vessel. As an exam-
ple, G4 in Figure 7.15 is relatively more curved compared to
the other cases, but the clustering works perfectly in this case.
However, for some cases it does not solve the problem totally,
and other kernels need to be considered for preserving the con-
tinuity. An example 49 × 49 image patch with a highly curved
vessel is shown in Figure 7.16, where the method fails in clus-
tering the vessels correctly. The parameters used for this case
are H = 16, σ = 0.03 and σ2 = 0.3

Figure 7.16: Failure of clus-
tering in presence of highly
curved vessels. Columns
from left to right: (a) en-
hanced image; (b) its segmen-
tation; (c) orientation and
(d) intensity information; (e)
clustering result and (f) the
artery/vein labels.

Even though the intensities of arteries and veins in the gray
scale enhanced image are very close to each other in some im-
ages, adding the intensity term in calculating the �nal a�nity
matrix is crucial. By decreasing the value of σ2, the distance be-
tween intensities gets a higher value and it helps in di�erentiat-
ing better between the groups. Figure 7.17 represents a sample
67 × 67 image patch, which includes two nearby parallel ves-
sels with similar orientations. Figure 7.17 (e) and (f) show the
correct and wrong clustering results obtained by changing σ2
from 0.3 to 1. All other parameters have not changed (H = 24,
σ = 0.02 and n = 100000). The other important di�erence
between these two results is that the noisy pixels close to the
thicker vessel have been totally removed in the correct result.
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Although they seem to be oriented with the thick vessel their
intensities are totally di�erent. Therefore, by increasing the ef-
fect of intensity, they are clustered as several small groups and
removed in the �nal step of the spectral clustering algorithm.

Figure 7.17: The e�ect of in-
cluding intensity term in cal-
culating the connectivity ker-
nel. Columns from left to
right: (a) enhanced image;
(b) its segmentation; (c) ori-
entation and (d) intensity in-
formation; (e) correct and (f)
wrong clustering results; and
(g) the artery/vein labels.

In the next Section we will propose a solution to the limita-
tions described, showing kernels that take into account the cur-
vature of structures in addition to positions and orientations.

7.3 Analysis of vessel connectivities in retinal images -
Curvature Integration

In Section 7.2, following Favali et al. [2016a], we have inves-
tigated the connectivity analysis in retinal images speci�cally
at junction points, inspired by the mathematical modeling of
the geometry of the primary visual cortex (V1). In contrast to
the state-of-the-art techniques, the proposed approach was ca-
pable of grouping and separating the blood vessels as individ-
ual perceptual units, even though there was some information
missing due to poor segmentations. It could �nd the right con-
nections between small vessels and their parents, which are
usually missing in the literature and removed during prepro-
cessing, segmentation or a skeleton pruning step. It also indi-
viduated nearby parallel vessels, even with presence of a cen-
tral vessel re�ection. The bottleneck of this method was that
it was not data-adaptive and it could not follow some of the
highly curved vessels, because the introduced kernel was elon-
gated and could not bend as much as the vessel bends at these
points.

7.3.1 Cortically-inspired Spectral Clustering

In this Section we show the results presented in Abbasi-Sureshjani
et al. [2016a], where we introduce three main novelties:

1) we introduce a new feature detection lifting process to se-
lect curvature, extending the curvature extraction technique
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to a multiscale approach making it suitable for analysis of
multiscale blood vessels;

2) we describe the �ve-dimensional kernel and the a�nity ma-
trix in the lifted space of position, curvature, orientation and
intensity;

3) we apply a very e�cient second generation clustering algo-
rithm, able to automatically estimate the optimal number of
cluster in the grouping process.

7.3.1.1 Features extraction and li�ing

In presence of an image, we need to extract the features of ori-
entation and curvature. Orientation at every point can be com-
puted as described in Section 4.1.2.2. It can be selected using
Gabor �lters, or a family of �lters with similar properties, called
cake wavelets and introduced by Bekkers et al. [2014]. Calling
UI the output of the �lters:

−UI (x ,y,θ ) =
∫

ϕx ,y,θ (x
′,y′)I (x′,y′),

the orientation at which the maximum response is obtained is
assigned to each location. It means the dominant orientation
θd at location (x ,y) is de�ned as

θ (x ,y) = arg max
θ∈[0,π ]

Re (−UI (x ,y,θ )).

Figure 7.18: The intensity
of a sample image patch (I ′i ,
shown in the xy plane) is pro-
jected to the z coordinate to
depict the Gaussian pro�le of
a sample blood vessel.

In order to evaluate the curvature map for each location
κ (x ,y) we generalize a curvature measurement used by [Bekkers
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et al., 2015]. This is based is based on the eigensystem analysis
of the Gaussian Hessian in the lifted domain. The method per-
forms the best when the scale of the Gaussian �lters σ matches
the vessel width. By using a single scale, the curvature values
are accurate only for the vessels which their width match the
used scale. Since the blood vessels in retinal images have dif-
ferent widths, we modify the algorithm and introduce a multi-
scale approach which helps in covering various vessel widths
available in the image and getting more accurate results. The
idea is similar to the multi-scale feature extraction step of the
BIMSO segmentation method [Abbasi-Sureshjani et al., 2015],
since there the Gaussian �lters have been used in the lifted
domain as well. Therefore, we altered the method to a multi-
scale approach. To do so, con�dence and curvature maps have
been obtained for several scales (sσi (x ,y,θ ) and κσi (x ,y,θ ), i =
1, . . . ,n). Then the curvature map is constructed by assigning
to each pixel the curvature value that corresponds to the scale
at which the largest con�dence value has been obtained, i.e.
∀(x ,y,θ ) ∈ R2 × S1:

κ (x ,y,θ ) =
{κσmax (x ,y,θ ) |σmax = arg max

σi∈{σ1....σn }
sσi (x ,y,θ )}. (7.3.1)

Finally we add the feature of intensity, which is independent
of the previous ones.

This curvature map is used in Step 3 of Algorithm 2.

7.3.1.2 The new a�inity matrix

We can de�ne a new a�nity matrix starting from the cortical
connectivity kernel. In Sections 4.4 and 6.1, following Favali
et al. [2016b,a], Sarti and Citti [2015] we used 3D and 4D con-
nectivity kernels to de�ne corresponding a�nity matrices. Sim-
ilarly, the 5D kernel de�ned in section 6.2.3 will be used here
for de�ning a 5D a�nity matrix.

According to the teoretical description this matrix will be
found in two step: �rst we work in the 4D position, orientation
and curvature space. Then we add intensity. In other words
we de�ne an additional a�nity matrix in order to include the
intensity of vessel pixels as a Gaussian weighting. The values
of this a�nity matrix for each pair of pixels (ϵi and ϵj) in patch
k is calculated as follows:

A′ij = e
−(fi−fj )

2

σint 2 (7.3.2)
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where the intensity values (fi and fj) are obtained from the pre-
processed image patch (I ′

k
) at corresponding locations and the

σint parameter controls the e�ectiveness of the intensity simi-
larity. This a�nity matrix is normalized (between 0 and 1) and
then it is included in the �nal a�nity matrix at Step 6 of Algo-
rithm 2.

As explained above, this cortically inspired kernels and a�n-
ity matrices could be potentially augmented with other a�nity
kernels or matrices including information about other features
(width, color), as long as these depend on independent vari-
ables.

A summary of the method is presented in Algorithm 2.

Algorithm 2 Proposed perceptual grouping technique for a given image
I∈ R2

1: Lift the image I (x ,y) ∈ R2 to UI (x ,y,θ ) ∈ R2 × S1 by orientation score
transform.

2: Calculate the curvature map κmap (x ,y,θ ) for each point in UI (x ,y,θ )
using the method proposed by Bekkers et al. [2015].

3: Lift the image to R2 × S1 × R so that U ′I (x ,y,θ ,κ) =

UI (x ,y,θ ) if kmap (x ,y,θ ) = κ, ∀(x ,y,θ ) ∈ R2 × S1.
4: Calculate all the fundamental solutions of

equation 6.2.13, Γ′κ ((x ,y,θ ), (x ′,y ′,θ ′)) and
Γ′κ′ ((x

′,y ′,θ ′), (x ,y,θ )) ∀ {(x ,y,θ ,κ), (x ′,y ′,θ ′,κ ′)} ∈ U ′I stochasti-
cally.

5: Calculate the connectivity kernel w ((x ,y,θ ,κ), (x ′,y ′,θ ′,κ ′))
for all pairs of points in U ′I and the 5D connectivity kernel
ω5 ((x ,y,θ , f ,κ), (x ′,y ′,θ ′, f ′,κ ′)) using Eq. 6.2.15.

6: Create the a�nity matrix based on Eq. 7.3.2.

The numerical approximations of the 4-D kernel is presented
in Section 6.2.3.

7.3.1.3 The optimal clustering algorithm

After de�ning a suitable a�nity matrix we apply now a clus-
tering method. Many algorithms have been proposed in this
area [Shi and Malik, 2000, Perona and Freeman, 1998, Weiss,
1999, Meila and Shi, 2001, Ng et al., 2002]). Unlike more basic
clustering methods, as k-means, where the number of clusters
must be assumed a priori, spectral clustering algorithms select
from an a�nity matrix all eigenvectors whose eigenvalues are
su�ciently large. In order to avoid an a priori �xed treshold
(as we did in our previous paper [Favali et al., 2016a]), we fol-
low the method proposed by Zelnik-Manor and Perona [2005],
which algorithm automatically estimates the number of cluster
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which optimize grouping. In this algorithm, which is explained
step by step in Algorithm 3, we use the a�nity matrix de�ned
in Algorithm 2. The structure of the eigenvectors is used to
determine the number of groups. The cost function is evalu-
ated from the alignment of the eigenvectors (Step 5). The best
number of clusters is considered as the one which minimizes
the cost function (Jmin ). Correspondingly, the best clustering
quality Qclust , that has a reverse relation to the alignment cost,
is obtained in Step 6. In the �nal step, the noisy elements, that
construct small sized groups, are removed.

Algorithm 3 Self-tuning spectral clustering algorithm: Given a set of points
S = s1, ..., sn∈ Rl to cluster

1: De�ne the a�nity matrix Ai ,j .
2: De�ne the diagonal matrix D with Di ,i =

n∑
j=1

Ai ,j and construct the

symmetric normalized graph Laplacian L = D−1/2AD−1/2.
3: Find the C largest eigenvectors of L x1, ...,xC and construct the matrix

X = [x1, ...,xC ] where C is the highest possible group number.
4: Use a gradient descent scheme to recover the rotation R which best

aligns X ’s columns with the canonical coordinate system.
5: Let Z be the matrix obtained after rotating the eigenvector matrix X and

Mi =max jZi ,j . The cost function is de�ned as: J =
n∑
i=1

C∑
j=1

Z 2
i ,j
M2
i

.

6: Classify the cost of alignment for each group number and set the �-
nal group number Cbest to be the largest group number that provides
the minimal cost Jmin . Correspondingly, the best clustering quality is
calculated as: Qclust = 1 − (Jmin/n−1)

Cbest
.

7: Consider the alignment result Z of the topCbest eigenvectors and assign
the points si to cluster c if and only ifmax j (Z

2
i ,j ) = Z 2

i ,c .
8: Find and remove the clusters that contain less than a minimum number

of cluster elements.

The scales we used for our SLO images are {1.5, 2.5, 3.5} in
pixels. Figure 7.20 represents the color-coded orientation (e),
con�dence (f) and curvature (g) maps of a sample SLO image
of the IOSTAR dataset. Note that the depicted con�dence and
curvature maps are related to one single scale σ = 1.5, and the
absolute curvature value is shown.

Figure 7.19 depicts a sample application of the proposed method
for clustering the perceptual units in both an arti�cial image
(the �rst row) and a small patch of retinal images (the second
row). The synthetic image includes three crossing circles with
di�erent radii and corresponding curvatures, and the retinal
patch includes two crossing vessels. For each case, the orienta-
tion and curvature of the lifted images are shown in the column
(b) and (c) respectively. The intensity value for the synthetic
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image is constant all over the circles and for the retinal patch,
it is color-coded in (a). A sample level set of corresponding
5D kernels (while keeping two dimensions (κ and f ) �xed) has
been shown in each row (d). Finally, (e) shows the three de-
tected groups in the synthetic image and three vessels in the
retinal image in di�erent colors. The implementation details,
validation and application of this proposed method using a set
of arti�cial and retinal images are presented in the next section.

Figure 7.19: A synthetic
image consisted of three
crossing circles (�rst row)
and a sample retinal image
patch including two crossing
vessels (the second row).
The columns represent the
original image, the orienta-
tion score, the 3D curvature
maps, a level set of the 5D
kernel while keeping two
dimensions �xed and the
�nal detected clusters in
di�erent colors, respectively.

7.3.2 Experiments

In this section, we present a potential application of the pro-
posed connectivity analysis for solving the aforementioned prob-
lems in curvilinear structure tracking methods for retinal vas-
culature analysis. After explaining the material used for vali-
dating the method, the details of numerical simulation are de-
scribed. Then the quantitative and qualitative results of the
proposed technique are presented and discussed in detail. Two
datasets have been used for validating the method. The speci�-
cations and the preparation steps of each dataset are explained
in detail as follows.

7.3.2.1 Phantom images

The set of phantom images (201× 201) has been generated to in-
clude various rotated, curved and interrupted vessel-like struc-
tures. The orientation and curvature values in these phantom
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images are known. Five di�erent groups are created to mimic
possible structures that could be present in retinal images, simi-
lar to the categories proposed in Favali et al. [2016a]. These cat-
egories are (A) crossings; (B) bifurcations; (C) parallel vessels;
(D) bifurcations and crossings; and (E) vessels with multiple
nearby bifurcations. Each of these categories may also include
challenging structures. For instance, they may be interrupted
or highly curved or include small junction (crossing/ bifurca-
tion) angles. In order to di�erentiate between the simple and
the challenging cases for each category, we name group X as
X1 if it is challenging. Figure 7.21 depicts ten di�erent phan-
tom images (�rst column), two per category, together with their
color-coded orientation and curvature maps (second and third
columns).

The basic element used for creating these phantom images
is a sine wave-like structure, which is generated with several
frequencies and amplitudes and it is rotated and located at dif-
ferent positions depending on the target shape. By adjusting
the frequency and amplitude of the waves, di�erent curvature
values can be created. In addition to the vessel-like structures,
other challenging structures such as dashing and the Euler spi-
ral have been also used to examine the strength of the method
in grouping these curved structures (e.g. Figure 7.21, A1).

7.3.2.2 Retinal images

This set contains several image patches selected around junc-
tions in the public IOSTAR1 dataset. The IOSTAR dataset con- 1 Available at:

http://www.retinacheck.org/datasetstains images captured using scanning electron ophthalmoscope
(SLO) technology. These high contrast images have a resolu-
tion of 1024 × 1024 with 45◦ FOV. The blood vessels, junctions
and artery/vein labels have been annotated for 24 images and
corrected by two di�erent experts in order to decrease the inter-
user variability.

The strength of the method is its ability to individuate junc-
tion or crossing where most of the previous methods in the lit-
erature have di�culties. Therefore, �ve images and their anno-
tations are downsampled to half size 512 × 512 and all patches
of 51 × 51 pixels with these type of problems have been auto-
matically selected from them. A total of 272 patches have been
extracted and classi�ed. As for phantom images, these patches
are also manually categorized in �ve di�erent groups (similar
to the phantom images) depending on their structure and com-
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plexity, with the scope of validation of the method.
The proposed method used for creating these patches is ex-

plained step by step in Section 7.2.3. The �rst step is the pre-
processing applied on original image (I◦ ∈ R2), so that the
luminosity and contrast are normalized, the noise is removed
and the blood vessels are enhanced. The same pre-processing
technique proposed by [Abbasi-Sureshjani et al., 2015] for the
SLO images has been applied on the green (I◦,д) and red (I◦,r )
channels separately and then they are combined as I (x ,y) =√
I 2
◦,д (x ,y) + I 2

◦,r (x ,y), for all the (x ,y) positions in the image
I◦. This increases the di�erence between the intensity of ar-
teries and veins. The next step is the blood vessel segmenta-
tion which provides an initial estimation of the location of the
blood vessels. The outcome of segmentation can be a deter-
ministic binary map, in which each pixel is labeled as a vessel
(with label 1) or background (label 0). The binary map is often
obtained by thresholding the probability map globally. None
of the segmentations are perfect and they may contain vessel
disconnections or wrongly detected vessel pixels. In this work,
the binary segmentations obtained by the BIMSO method pro-
posed by Abbasi-Sureshjani et al. [2015] is used, speci�cally for
the SLO images.

Later a set of junction locations (ϵi = {xi ,yi }, i = 1, . . . ,M) is
obtained using the BICROS method proposed by Abbasi-Sureshjani
et al. [2016b], whereM is the number of detected junctions. The
obtained segmentation (Iseд) is also used as the input to the hy-
brid step of the BICROS method. Both these methods (BIMSO
and BICROS) have been validated before using the IOSTAR
dataset. The detected locations are then considered as the cen-
tre of patches with a �xed size of 51× 51 (s◦ = 25). For an image
H ∈ R2 the patch (H ′i ) centred around junction ϵi is selected as:

H ′i = {H (x ,y) |xi − s◦ ≤ x ≤ xi + s◦,yi − s◦ ≤ y ≤ yi + s◦}.
(7.3.3)

The same operation is applied on the enhanced (I ), segmented
(Iseд) and ground truth (G) images and the corresponding patches
are called I ′i , I ′seд,i and G′i (for all i , 1 ≤ i ≤ M) respectively. Fig-
ure 7.20 represents a sample SLO image (I◦), its artery/vein
ground truth G (the arteries in red and the veins in blue), en-
hanced (I ) and vessel segmented (Iseд) images, and the detected
junctions (ϵ). The 51× 51 selected patches overlaid on the hard
segmentation are shown as well.
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Figure 7.20: A sample SLO
image, (a) original image
(Io), (b) detected junctions
overlaid on the enhanced
image (Ienh), (c) selected
patches overlaid on the ves-
sel segmentation (Iseд), (d)
the artery/vein ground truth
(G), the color-coded (e) ori-
entation, (f) con�dence and
(g) and absolute curvature
maps of this SLO image.

By obtaining the I ′seд,i it is possible to perform the connec-
tivity analysis (Algorithm 2) only for pixels labeled as vessels.
This helps in reducing the size of the a�nity matrix and corre-
spondingly the computational complexity of the spectral clus-
tering step. The vessel locations are found as:

vi = {(x ,y) |I ′seд,i (x ,y) = 1}, i = 1, . . . ,M . (7.3.4)

Therefore, for each image patch (I ′i ) only at vessel pixel loca-
tions (vi ) the groups are obtained and the resulting clusters are
compared with the vessel labels in G′i . If the detected units
in the image patch match the individual vessel labels in the
ground truth, then it is perceived as a correct result. It is worth
mentioning, in case two vessels have the same label (artery or
vein) but they do not belong to the same vessel tree, they are
considered as separate units during the comparison.

After this preprocessing, the algorithm presented in the pre-
vious section can be applied.

7.3.3 Validation

7.3.3.1 Phantom images

To validate the method using the phantom images, the method
presented in Algorithm 2 is directly applied on the lifted im-
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ages, starting from Step 4. The orientation and curvature val-
ues of these images are available from the beginning. The last
two columns of Figure 7.21 represent two di�erent clustering
results per image (two images per category). For each image,
two kernels have been used for obtaining the a�nity matrix:
the new kernel (adaptive, based on the curvature at each point);
and the kernel used in Favali et al. [2016a]. This helps in high-
lighting the importance of including additional contextual in-
formation for connectivity analysis. In these phantom images
the intensity was constant, so that the contribution of this fea-
ture is always 1. Each color in the �nal results represents one
detected unit. The parameter σκ used in these simulations is
0.01 for the 4D kernel [Favali et al., 2016a] and 0.001 for the
5D one. As seen in this �gure, the new method is capable of
grouping the elongated, rotated and curved structures despite
disconnections, high curvature points or small crossing angles.
It not only di�erentiates well between curved crossing struc-
tures, but also groups the bifurcations within the main parent
structure so that they construct one unique unit.

7.3.3.2 Retinal patches

To validate the method on retinal image patches, 272 image
patches with a �xed size of 51 × 51 pixels have been exam-
ined semi-automatically. The number of patches processed per
group is presented in the second column of Table 7.3.

The group labels are automatically compared with the clus-
tering results. In case two vessels with similar labels in the
ground truth image (artery or vein) belong to separate vessel
trees (parents), they get a di�erent label. In addition, we per-
form a �nal check to control the �nal results. Two criteria are
used to evaluate the performance. One is the Correct Detec-
tion Rate (CDR%) as de�ned in Section 7.2.4 and in Favali et al.
[2016a]. This criterion represents the percentages of correctly
grouped patches among all examined cases. The second crite-
rion is Qclust de�ned in Step 6, which measures the alignment
quality of Algorithm 3. As mentioned in Algorithm 3, the best
number of clusters is the one which minimizes the de�ned cost
function or maximizes the quality (0 ≤ Qclust ≤ 1). This cri-
terion represents how well aligned the elements of each group
are. These two performance values have been measured for all
the patches and presented in the last two columns of Table 7.3
for each category separately.
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Figure 7.21: Samples of phan-
tom images in di�erent cat-
egories. From left to right,
the images in each category
represent: stimulus, the ori-
entation map, the curvature
map and the clustering re-
sult with the previous [Favali
et al., 2016a] and the new ker-
nel. The color of the curva-
ture maps are scaled between
the maximum and minimum
values of the curvature in
each image.

During the experiments the parameters used in numerical
simulations and the calculation time of di�erent parts of the
experiments (excluding the patch preparation steps) have been
recorded. Several parameters are involved in creating the ker-
nel. Some of them are determined automatically based on the
available information in the data and others need to be set man-
ually. The �rst set includes the size of the kernel in x and y di-
mension (nx and ny respectively). The other one is the number
of discrete curvature values (nκ), which for each the 3D kernel
is created. Considering the step size as 1 pixel, nx and ny are
determined by the di�erence between maximum and minimum
coordinates of the vessel locations in x and y directions. Sim-
ilarly, considering the step size of 0.05 for discrete curvature
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values, nκ is obtained by division of the di�erence between
maximum and minimum of the available curvature values in
the patch over the step size. Moreover, the number of steps
H used in generating the random paths is set automatically as
one third of the patch size. The second set of parameters is set
manually. The number of discrete orientations (no), number of
iterations in the Monte-Carlo simulation (n) and σκ (used in
equation 6.2.15) were set to 18, 100000 and 1 respectively and
kept constant for all the cases. The other parameters are pre-
sented in Table 7.3 for each category separately and for all the
cases (in mean ± standard deviation format).

2*Group 2*Size Parameters Performance
σκ σint CDR% Qclust

A 16 0.0079 ± 0.0247 0.2532 ± 0.0013 0.8125 0.9866
B 42 0.0011 ± 0.0027 0.2996 ± 0.0026 0.7143 0.9979
C 48 0.0031 ± 0.0044 0.2512 ± 0.0093 0.8542 0.9978
D 31 0.0038 ± 0.0047 0.2578 ± 0.0016 0.7742 0.9974
E 19 0.0025 ± 0.0041 0.2699 ± 0.0046 0.7368 0.9967

A1 9 0.0018 ± 0.0024 0.2574 ± 0.0037 0.6667 0.9756
B1 23 0.0004 ± 0.0010 0.2951 ± 0.0054 0.6522 0.9987
C1 41 0.0030 ± 0.0044 0.2993 ± 0.0078 0.8537 0.9975
D1 27 0.0040 ± 0.0048 0.2552 ± 0.0018 0.8148 0.9974
E1 18 0.0021 ± 0.0038 0.2926 ± 0.0018 0.7222 0.9967

All 274 0.0031 ± 0.0087 0.2750 ± 0.0072 0.7602 0.9942

Table 7.3: The number of an-
alyzed patches, the parame-
ters used during numerical
simulation and the measured
performance values per cate-
gory and in total.

For recording the calculation times the whole process has
been divided into four steps: the discretization step before cre-
ating the kernel; creating the kernel for several curvature val-
ues; creating the a�nity matrix and the spectral clustering step.
The times are called tdisc , tkernel , taf f inity and tclust , respectively,
and they are a�ected by several parameters including the num-
ber of vessel pixels in each patch (|vi | , i = 1, . . . ,M), the num-
ber of discrete orientations (no), curvatures (nκ) and the dimen-
sion of the kernel inx andy dimensions (nx andny). To consider
these e�ects, the weighted average of calculation times for each
image patch is obtained, so that the weight for each timing is
de�ned as the product of the a�ecting parameters. It worths
mentioning that since the �nal number of clusters (Cbest ) is de-
termined by comparison among the clustering costs of several
cluster sizes (C), tclust is additionally a�ected by the number of
examined cluster sizes (nc = 20 for all the cases), so the �nal
clustering time is divided by nc . Thus weighted timings are
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calculated as:

tdisc =
N∑
i=1

tdisc ,inx ,iny,ino,i/
N∑
i=1

nx ,iny,ino,i

tkernel =
N∑
i=1

tkernel ,inx ,iny,ino,inκ,i/
N∑
i=1

nx ,iny,ino,inκ,i

taf f inity =
N∑
i=1

taf f inity,i |vi |
2/

N∑
i=1
|vi |

2

tclust = 1/nc
N∑
i=1

(tclust ,i ) |vi |
2/

N∑
i=1
|vi |

2

(7.3.5)

where i and N indicate the patch number and total number of
patches respectively. It is worth mentioning that the size of the
a�nity matrix for patch i is |v2

i |. These weighted times and
their normal average over all patches per step are presented in
Table 7.4.

tdisc tkernel taf f inity tclust

mean(s) 0.06 43.26 17.86 0.86
weighted mean (s) 0.06 60.64 17.73 1.06

Table 7.4: The weighted and
normal mean of the process-
ing time of each step in ana-
lyzing retinal patches.A set of sample results for various kinds of patches is de-

picted in Figure 7.22. In this �gure, the �rst column shows the
cropped patch from the artery/vein ground truth image. The
second column depicts the color-coded normalized intensity
values taken from the pre-processed image. As seen in these
�gures, the variation of intensity is too much even for small
children vessels belonging to one parent vessel. The third and
fourth columns represent the color-coded orientations and cur-
vature values. Finally, the last column represents the clusters
found in each patch, each shown in an individual color.

The presented results, parameters and timings are discussed
in the next section.

7.3.4 Discussion

Based on the results presented, the main advantage of the new
method is that by including the curvature information as an
additional contextual information, the kernel adapts itself nat-
urally according to the available data. If the curvature is high,
the kernel rotates as well, otherwise it �nds a closer path to the
points which are collinear with respect to the reference point.
In both datasets, the bifurcations are grouped with the parent
vessel, but at crossovers with small crossing angles, despite
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Figure 7.22: Samples of reti-
nal patches in di�erent cat-
egories. From left to right,
the images in each cate-
gory represent: artery/vein
vessel ground truth, inten-
sity, orientation, curvature
and clustering results. The
color of the curvature maps
are scaled between the maxi-
mum and minimum values of
the curvature in each image
patch.

their similar appearance to junctions, the vessels are totally
separated. The main reason is that the curvature at junction
points is high (because of sudden change of orientation), while
for crossings the orientation for individual vessels changes only
slightly (in most of the cases). This is advantageous not only in
di�erentiating between junctions and crossings, but also in sep-
aration of arteries from veins or crossing tree structures from
each other. Figure 7.23 shows the clustering results for two reti-
nal patches obtained using the new kernel and the previously
introduced kernel by Favali et al. [2016a]. This helps in depict-
ing the di�erences between the two methods visually.

As presented in Figure 7.22, the intensity is a less informa-
tive feature compared to the geometrical features because of its
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Figure 7.23: Clustering re-
sults obtained using the con-
nectivity kernel introduced
here and the one proposed
in Section 6.1 [Favali et al.,
2016a]. From left to right:
artery/vein vessel ground
truth, intensity, orientation,
curvature and clustering
results with the previous
and the new kernels.

large variation within a small neighborhood; however, in some
cases, it is a good local criterion di�erentiating arteries from
veins. Thus it is also included in the �nal a�nity matrix with
a smaller e�ect (using a relatively large σint ).

Some examples of the limitations of the method in cluster-
ing the phantom and retinal patches are represented in Figure
7.24 and 7.25 respectively. For phantom cases, the presence of
very high curvature combined with the co-circularity and co-
linearity of vessels does not allow to obtain a good clustering
result. Considering other features, as the intensity, could be
helpful in solving this problem. However, as shown in the top
row of Figure 7.25, the feature of intensity is not useful for cor-
rect clustering. In this image, one of the bifurcations has been
assigned as a vessel crossing the other one because it is almost
orthogonal to its parent vessel; while the other crossing vessel
has been wrongly clustered as a bifurcation. In the bottom row,
one of the small bifurcations is totally missing in the segmen-
tation and the other small one is not clustered with its parent
vessel because of lack of information.

Figure 7.24: From left to
right: the stimuli (a), the ori-
entation maps (b), the curva-
ture maps (c) and the cluster-
ing results with the new ker-
nel (d).

The statistical analysis on the parameters used during nu-
merical simulations is presented in Table 7.3. Based on these
results the curvature di�usion constant parameter (σκ) changes
in a small range for simple and challenging cases per group, ex-
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Figure 7.25: Wrong cluster-
ing results on two retinal
patches. From left to right:
the artery/vein ground truth,
vessel intensity, orientation,
curvature and clustering re-
sults.

cept for category A and A1, considering the fact that the num-
ber of available challenging patches in category A is small com-
pared to the others. The σint parameter has a small variation as
well. Therefore, it is reasonable to use the mean value in gen-
eral for examining new patches in each group. It is worth men-
tioning that all the patches examined in this work have been
selected from retinal images with the same resolution and re-
spective pixel size. If the pixel size increases or decreases, the
σκ controlling the size of the 3D kernel needs to be increased or
decreased accordingly. It is also important to mention that com-
pared to previous work, the eigensystem analysis is fully auto-
matic in this work, due to the use of self-tuning spectral clus-
tering. Therefore, no additional parameters need to be tuned
for this step.

Qualitative and quantitative results indicate the better per-
formance of the method on all kinds of retinal patches and chal-
lenging structures. Compared to Favali et al. [2016a], theCDR%
performance values have changed for some groups. There are
two main reasons. On one hand, in the previous work, the
CDR% was calculated for 20 patches per group; while in this
work each group is categorized into two groups depending on
the available structure and also the number of patches per group
is di�erent. On the other hand, in this work we evaluated the
performance with the assumption that the bifurcations need
to be grouped with the main parent vessel, while in previous
work, due to use of one elongated kernel, the assumption was
to have at least two separate units depending on the bifurca-
tion angle. Another minor di�erence is that the dataset has
changed and the patches have been selected from a di�erent
set of retinal images. Therefore, it is not fair to make a one-by-
one comparison to the previous results.

Last but not least point is about the computation times. The
codes are implemented in Matlab and the times are measured
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on an Apple Macbook Air, Intel Core i7, 1.7 GHz processor and
8GB of memory. The most time consuming step as presented
in Table 7.4 is the calculation of several 3D kernels. The num-
ber of kernels depends on the number of discrete curvature
values (nκ) existing in the data, and the computation time as
mentioned before depend on its size. The next most time con-
suming part is the calculation of the a�nity matrix which is
performed per pair of points. The weighted average times are
good indicators of the complexity of each step. Although they
are still relatively small, they can be improved both from hard-
ware and implementation points of view.

Concluding, this method allows to analyze the connectivities
in images containing elongated, rotated and curved structures.
One limitation of the method arises when wrong information
is provided as the input of the method, then the failure is natu-
ral. If the measured curvature or orientations are not accurate
enough, then the method fails. Therefore, it is essential to val-
idate the curvature and orientation measurement methods in
advance.

The proposed method has a great potential in discrimination
and separation of arteries from veins in retinal images and, in a
general view, separation of all the tree structures crossing each
other in the vasculature network. Most of the segmentation
or artery/vein separation methods are local, pixel based tech-
niques which do not take into account the global connectivity
of the blood vessels in the network. By including this global
connectivity criterion, most of the errors and wrong detections
will be eliminated and the problem of missing information will
be handled appropriately.
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8 Theory of the cortical model in encoding-decoding

techniques

In this section we apply the geometrical models of the cor-
tex to identi�cation and reconstruction of images from human
brain activity [Kay et al., 2008].

Following Kay et al. [2008], the �rst problem can be stated
as follows:

“Let us considered a large, arbitrary set of images. The observer
picks an image from the set and views it while brain activity is
measured. Is it possible to use the measured brain activity to iden-
tify which speci�c image was seen?”

Even more challenging is the second problem:
“Is it possible to reconstruct the image seen from the measured

brain activity?”

Every image can be represented in term of receptive pro�les
and we develop a decoding method based on quantitative recep-
tive �elds models that characterize the relationship between
visual stimuli and fMRI activity in early visual area. We will
obtain optimal identi�cation performances, while low spatial
resolution of available fMRI data is a serious obstacle to recon-
struction.

8.1 Introduction to Functional MRI

The problem of linking a cognitive function to di�erent anatom-
ical structures of the brain represents one of the oldest debates
in neuroscience. Several brain imaging techniques are avail-
able today, in this section we introduce one of the principal,
the functional MRI (fMRI), that represents the most powerful
tool available for measuring human brain activity.
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The functional MRI provides an indirect and nonlinear mea-
sure of neuronal activity, because it does not measure neuronal
activity directly, but rather measures changes in blood oxy-
genation caused by metabolic processes in neurons.

Functional imaging techniques detects physiological activ-
ities such as blood �ow. Due to its good spatial resolution
(1mm3), the fMRI is used to localize the brain activity in re-
sponse to a given task or experimental condition. Moreover,
it allows to study the whole brain coverage and not only pre-
de�ned regions or layers. The spatial resolution is determined
by the physical constraints of the fMRI scanner (as the limits
on the strength of the magnetic �elds that can be produced and
limits on the power of the radio frequency energy that can be
deposited safely in the tissue).

The �rst fMRI method developed, which is also the one used
to record the data that we will consider, measures the oxygen
change in blood �ow and is known as BOLD (Blood-oxygen-
level dependent) contrast. It is well known that blood oxygena-
tion in the brain is closely linked to neural activity. The BOLD
contrast can be explained considering the function of an oxy-
gen carrier in the blood cells, the hemoglobin. The principle
behind its functioning is that oxygenated and deoxygenated
hemoglobin yield di�erent reactions to an externally applied
magnetic �eld, giving distinct magnetic resonance responses
[Ogawa et al., 1990, Thulborn et al., 1982]. This allows to trace
the presence or the absence of neural activity, as shown in Fig-
ure 8.1.

Figure 8.1: Functional
magnetic resonance of the
monkey brain under visual
stimulation. Blood Oxygen
Level Dependence (BOLD)
technique, �eld strength 4.7
Tesla. Left: Clearly a marked
activity is measured in V1.
Right: di�erent cut-away
views from the brain of
the anesthetized monkey.
Source: [Romeny, 2008].

The spatial resolution of fMRI is given by the size of a voxel,
a 3-D cuboid given by a measure of the scanner. Its size is be-
tween 4mm to 1mm; smaller voxels have fewer neurons on av-
erage, include less blood �ow and have less signal to noise ra-
tio than the larger ones. fMRI data are collected in the form of
slices, which are then projected onto a standardized anatomi-
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cal volume. Datasets are commonly measured using repeated
2D imaging methods, resulting in a temporal o�set between
slices and the time resolution is given by the repetition time of
successive image acquisitions [Pedregosa-Izquierdo, 2015].

In our example we will consider data from Kay et al. [2008],
where functional BOLD data were recorded from occipital cor-
tex at a spatial resolution of 2mm x 2mm x 2.5mm and a tem-
poral resolution of 1 Hz.

8.2 Encoding and decoding model in the problem of
identification of images from fMRI activity

8.2.1 Overview of encoding and decoding results in fMRI
analysis

Several scienti�c achievements have been made in the last few
decades in brain encoding and decoding using fMRI. The goal
of many fMRI studies is to understand what sensory, cognitive
or motor information is represented in some speci�c region of
the brain.

Functional magnetic resonance imaging studies have decoded
orientation [Haynes and Rees, 2005, Kamitani and Tong, 2005],
position [Thirion et al., 2006] and object category [Cox and
Savoy, 2003, Haxby et al., 2001] from activity in visual cortex.

While encoding uses external stimuli to predict brain activ-
ity, decoding uses brain activity to predict information about
external stimuli. In particular, encoding models goal is to un-
derstand how well the brain activity can be predicted from
the modeled external stimuli. Decoding models aim at study-
ing how much of the external stimuli can be learned consid-
ering the brain activity [Haxby et al., 2001, Kay et al., 2008,
Miyawaki et al., 2008, Naselaris et al., 2011]. In this sense, en-
coding and decoding can be seen as complementary methods to
understand the fundamental mechanisms of brain functions via
neural codes ([Dayan et al., 2001, Gerstner et al., 1997, Haynes
and Rees, 2006, Trappenberg, 2009].

In this �eld, Haynes and Rees [2006] discussed the general re-
search problem of brain reading, focusing on visual perception
and other types of mental state. Kay and Gallant [2009] sum-
marized several advancements of brain decoders of visual stim-
uli via fMRI including the ones in Kay et al. [2008], Miyawaki
et al. [2008], Thirion et al. [2007]. They provided analysis on
the future research direction and potential application of brain
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decoding. Existing studies have been reviewed by Hasson et al.
[2010] that examined the reliability of cortical activity within
or between human subjects in response to natural visual stimu-
lation. An extensive overview of recent experimental method-
ology advancements in voxel-based decoding models of visual
stimuli has been provided by Naselaris et al. [2011], where it is
described an estimate of encoding model for every voxel in an
fMRI scan. The estimated encoding model is used to perform
decoding.

This voxel-based methods for brain decoding have been widely
used in the literature due to its simplicity and e�ectiveness.
In several voxel-based encoding models [Naselaris et al., 2011,
Mitchell et al., 2008, Thirion et al., 2007], authors tried to pre-
dict the functional activity in single voxels, evoked by di�er-
ent stimuli. Those models contain a quantitative description of
how stimulus information is represented in the functional activ-
ity of individual voxels. In Kay et al. [2008] several thousands
of voxels located in the V1, V2 and V3 areas of the visual cor-
tex were used for learning the predictive receptive-�eld models.
We will be inspired by these results in the following Sections.

In order to study the fMRI signals and informations, researchers
have also tried to extract fMRI BOLD signals from the region
of interest (ROI) [Cox and Savoy, 2003, Walther et al., 2009, Hu
et al., 2012].

Because of the remarkable structural and functional varia-
tion across individual brains, neuroimage registration algorithms
are still insu�cient to accurately establish correspondences in
di�erent brains [Liu, 2011]. For these reasons, both these meth-
ods have limitations [Liu, 2011]. To overcome the limitations,
solution have been proposed by Zhu et al. [2012b,a], to repre-
sent structural and functional brain architectures by a set of
reproducible and consistent brain landmarks that can be accu-
rately and reliably localized in each individual brain. Moreover,
in recent years, works that employed connectivity-based mea-
surements for quanti�cation of the brain’s responses have been
presented [Hu et al., 2010, Ji et al., 2011, Richiardi et al., 2011,
Pantazatos et al., 2012]. In this way, functional connectivity
can be used for measurements of functional brain responses,
potentially used for brain decoders. This method represents a
promising opportunities for the advancements of brain encod-
ing and decoding applications in the near future.

A summarization of these brain encoding and decoding stud-
ies is presented more in details in Chen et al. [2014].
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8.2.2 Identifying natural images from human brain ac-
tivity

We will be particularly inspired by the results in Kay et al. [2008].
In his paper the authors develop a decoding method based on
receptive-�eld models that characterize the relation between
visual stimuli and fMRI activity in early visual areas.

The original analysis of Kay et al. [2008] is composed by two
stages (see Figure 7.2). The �rst one is model estimation, where
fMRI data are recorded while subjects viewed 1750 training im-
ages. These data are used to estimate a receptive-�eld model
for each voxel. The second stage is image identi�cation and
fMRI data are recorded while subjects viewed a collection of
120 novel images, that form the validation set. By using the en-
coding model evaluated at the �rst stage, the goal was to iden-
tify which image had been seen by the subjects, comparing the
measured fMRI activity with the predicted signal in response
to the presentation of these images.

The model estimation scheme is represented in Figure 8.2.

Figure 8.2: The two stage of
the experiment described in
Kay et al. [2008]: model es-
timation and image identi�-
cation. Source: [Kay et al.,
2008].

8.2.2.1 Visual stimulus description

Visual stimulus consist of grayscale images I of size 128 × 128
pixels. The model in Kay et al. [2008] is based on a representa-
tion of the images in terms of a Gabor wavelet pyramid (GWP)
[Jones and Palmer, 1987, Daugman, 1985, Lee, 1996] and de-
scribe tuning along the dimensions of space, orientation and
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spatial frequency (Figure 8.3).

Figure 8.3: Simple cell re-
ceptive �elds of the GWP
model. Each square is of size
128x128 pixels and shows
an even-symmetric Gabor
wavelet. The receptive �elds
spanned eight orientations
and six spatial frequencies.
Source: [Vu et al., 2011]

Concretely, the GWP model is a hand-designed population
of quadrature-phase Gabor wavelets that spanned a range of
locations, orientations and spatial frequencies as shown in Fig-
ure 8.3. Each wavelet is fully connected to the input stimuli. A
receptive-�eld model is estimated for each voxel based on its re-
sponses to the training images; fMRI encoding model predicts
voxel responses.

Let’s consider the 2D Gabor �lters:

ψдk (x ,y) = e
−

(x̃2+ỹ2 )
2σ 2
k e2πiωỹ (8.2.1)

where дk denotes, as in Section 3.2.1, the discrete choice of pa-
rameters de�ning the Gabor �lter дk = (xk ,yk ,θk ,σk ):

x̃ = (x − xk ) cos(θk ) + (y −yk ) sin(θk )
ỹ = −(x − xk ) sin(θk ) + (y −yk ) cos(θk ).

(8.2.2)

For every image Ii the Gabor energy associated to a Gabor pair
ψдk is computed as :

Ẽki = |

∫
Ii (x ,y)ψдk (x ,y)dxdy | (8.2.3)

and is called contrast energy. A total of n Gabor �lters have
been considered. Hence the contrast energy is represented as
a matrix Ẽki , where the index i identi�es the image i = 1 · · ·N ,
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with N = 1750, while the index k , with k = 1, · · · ,n identi�es
the coe�cient of the k Gabor �lter in the representation.

8.2.2.2 The fMRI measurement

We use the estimated responses evaluated in Kay et al. [2008]
where peak BOLD responses to each of the training and valida-
tion images were estimated from the preprocessed data.

For every image Ii the corresponding fMRI signal is mea-
sured. This is represented as 3-D cuboid given by a measure of
the scanner. In the present case it is a 64× 64× 18 volume. Also,
of the 73,728 (64 × 64 × 18) voxels recorded for each scan, only
∼ 25, 000 voxels in or near the cortex were selected for each sub-
ject. For simplicity we will identify each voxel in the volume
with an index v , varying from 1 to M ∼ 25, 000. Hence the full
set of measured fMRI signal will be a matrix yi ,v , i = 1, · · · ,N ,
v = 1, · · · ,M , where the index i identi�es the stimulus image i
and the index v identi�es the voxel.

8.2.2.3 Encoding procedure

In Kay et al. [2008] the authors assume this relation between
energies Ẽki and measured activities yiv :

yiv =
n∑

k=1
Ẽkiβkv + β0v (8.2.4)

where the matrix β and the vector β0 are unknown. In the ma-
trix βдv the index д varies from 1 to n and identi�es the Gabor
�lter, the index v varies from 1 to M and identi�es the voxel.
The vector β0 only depends on the voxel v .

This model assumes that the measured activities are a weighted
sum of a �xed transformation of the local contrast energy fea-
tures. They are interested in �nding β such that the linear com-
bination with coe�cients of the contrast energy of a set of im-
ages should approximate in the closest way the fMRI measured
responses to those images. For every voxelv , this is formalized
through the minimization problem:

min
β

F1,v (β ) (8.2.5)

where

F1,v (β ) =
N∑
i=1

(yiv −
n∑

k=1
Ẽkiβkv − β0v )

2 (8.2.6)

is the mean square error between the measured and the pre-
dicted response. Gradient descent with early stopping is used
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in Kay et al. [2008] to learn a predictor of voxel activity on the
training set. Early stopping is a form of regularization used
to avoid over�tting, which occurs when a model describes the
noise rather than the underlying relationships that one aims to
characterize.

For every voxel the corresponding receptive-�eld model can
be evaluated as:

RFv =
n∑

k=1
βkv |ψдk | (8.2.7)

where ψдk is the Gabor �lter de�ned in (8.2.1). An example is
shown in Figure 8.4.

Figure 8.4: Receptive-�eld
model for a representative
voxel from Kay et al. [2008].
The intensity of each pixel in-
dicates the sensitivity of the
receptive �eld to that loca-
tion. The white circle delin-
eates the bounds of the stim-
ulus.

8.2.2.4 Decoding and image identification

In the second stage, the image identi�cation, they use the en-
coding model estimated in the �rst stage to predict the voxel
activity pattern evoked by each of the images (see Figure 8.2).
From the stimuli in the validation set they predict the activa-
tion coe�cients that they then use to identify the correct image.
The image whose predicted voxel activity pattern is most corre-
lated (Pearson’s correlation) with the measured one is selected.
The Pearson correlation coe�cient is a measure of the linear
dependence (correlation) between two variables and it is evalu-
ated as their covariance divided by the product of the standard
deviation of the two responses. It has a value between +1 and
−1 inclusive, where +1 is total positive linear correlation, 0 is
no linear correlation, and−1 is total negative linear correlation.

To optimize the performance of the identi�cation algorithm,
they �rst select voxels whose receptive �eld models have the
highest predictive power. This predictive power is evaluated as
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the Pearson’s correlation between measured ym and predicted
yp responses for the images used in the image identi�cation
runs:

ρyp ,ym =
σypym

σypσym
. (8.2.8)

In their experiment approximately 5000 voxels are located in
the stimulated portions of visual areas V1, V2 and V3; the pre-
dictive power of the receptive-�eld models is signi�cantly vari-
ant for di�erent voxels. Optimal performance is achieved using
the �rst 500 voxels whose receptive-�eld models had highest
predictive power; most of these voxels are located in area V1,
where predictive power is higher.

Identi�cation performances for both subjects are illustrated
in Figure 8.5. For subject S1 they obtain 92% (110/120) of the im-
ages correctly identi�ed, whereas chance performance is just
0.8% (1/120). For subject S2, 72% (86/120) of the images are iden-
ti�ed correctly.

.
Figure 8.5: Identi�cation per-
formances for subjects S1
and S2. Source: [Kay et al.,
2008]

These high performance levels demonstrate the validity of
their decoding approach and indicate that their receptive-�eld
models accurately characterize the selectivity of individual vox-
els to natural images.

8.2.3 A modified version of the encoding model

The aim of this section is to provide a modi�ed and more ef-
�cient model of encoding. We start from the Gabor Wavelet
Pyramid model of Figure 8.3 composed by 6 spatial frequencies
and 8 possible orientations θ , for a total of (12 + 22 + 42 + 82 +



138

162 + 322) × 8 = 10, 920 phase-invariant complex cells [Kay
et al., 2008]. Variants of this model were used in a series of
seminal encoding and decoding studies [Nishimoto et al., 2011,
Naselaris et al., 2009, Kay et al., 2013]. We will provide a new
model, with the following main features:

• following the idea of Vu et al. [2011], we will add a L1 penal-
ization, called Lasso model, in order to ensure sparsity of the
representation and we will add a nonlinearity of logaritmic
type in order to better model the structure of the cortex;

• we will add a regularization in the subriemannian cortical
structure.

We will see that our new encoding model has better identi�-
cation performances compared to the model described in Kay
et al. [2008].

8.2.3.1 The Lasso method

The main property of each voxel is to have receptive �elds lo-
calized around a very precise location in the visual �eld. The
model in Kay et al. [2008] has already this property, however,
following Vu et al. [2009, 2011] we propose here a modi�ed ver-
sion of the model based on a di�erent method of evaluation of
coe�cients. It is based on the so called Lasso method [Tibshi-
rani, 1996]. This is a popular method that uses an L1 penalty to
achieve a sparse solution. That is, the minimizer of the Lasso
problem we will have has many vanishing components βj = 0
as it is possible and the solutions will be more localized. This
would not be true with ridge regression, that penalizes with
the L2 norm instead of the L1 norm, due to the strong regular-
izing e�ect of the L2 norm. Moreover, while ridge regression
improves prediction error by shrinking large regression coef-
�cients to reduce over�tting but it does not perform covariate
selection, Lasso is able to achieve both of these goals by forcing
the sum of the absolute value of the regression coe�cients to
be less than a �xed value.

Let us consider to have predictors Ẽki , i = 1, ...,N k = 1, · · · ,n
and outcome valuesyiv for the ith observation, for i = 1, 2, ..,N .
We �x the value v of the voxel, and use the same notation of
the previous section. The Lasso solves the problem:

min
β

F1,v subject to
n∑

k=1
|βkv | ≤ s . (8.2.9)
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Proposition 4. By convexity, for each s , there is always at least
one solution in equation (8.2.9).

Note that the solution is not necessarly unique if, for exam-
ple, Ẽ has not maximum rank. The bound s is usually chosen by
a model selection procedure as cross validation. By Lagrange
multiplier Theorem, the solution of equation (8.2.9) also mini-
mizes the following functional, generally called Lagrangian of
the system:

F2,v (β , λ) = 1
2

N∑
i=1

(yi −
n∑

k=1
Ẽikβkv − β0,v )

2 + λ
n∑

k=1
|βkv | (8.2.10)

where λ ≥ 0.
Precisely the following proposition holds:

Proposition 5. If β̂ minimizes equation (8.2.9) there is a value
λ such that β̂ minimizes equation (8.2.10). If β̂ (λ) minimizes
equation (8.2.10) then it also solves equation (8.2.9) with s =
n∑

k=1
|β̂k (λ) |.

In other words, studying equation (8.2.10) we introduce a
new variable λ but we study an unconstraint optimization prob-
lem, instead of a constraint one.

Di�erent algorithms have been proposed for solving this prob-
lem [Efron et al., 2004, Friedman et al., 2007]. Considering
uncorrelated multiple predictors, the Lasso solutions are soft-
thresholded versions of the individual least squares estimates
[Friedman et al., 2007]. For λ �xed a coordinate-wise optimiza-
tion methods is applied and the equation is iteratively solved
for every �xed component βj .

At each iteration step we denote β̂k (λ) the values of the pa-
rameters found at the previous iteration step. Then we �x each
component β̂k with k , j and consider F as function of βj alone.
Then equation (8.2.10) becomes:

f2,v (βj , λ) =
1
2

N∑
i=1

(yi −
∑
k,j

Ẽki β̂k − Ẽjiβj )
2 + λ

∑
k,j

|β̂k | + λ |βj |.

(8.2.11)
For every component j the minimum is computed and at the
end of the iteration step the values β̂k (λ) of minimizers are up-
dated. For the �xed value of λ the convergence of the method
to the minimum β̂ (λ) of F2,v (·, λ) is guaranteed.
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The next step is to minimize with respect to λ. To do so, we
apply a cross-validation technique, which is a technique that
uses di�erent subsets of the data to �t the model in order to
limit problems like over�tting [Hastie et al., 2011]. A good es-
timator estimated from a training set should perform well on
a new, independent set of data. Hence the available data are
organized into both training and test sets. Here use K−fold
cross-validation, i.e. we partition the training data into K = 5
separate sets Sh of equal size N/K , h = 1, · · · 5. For each of
these subset Sh of data we minimize F2,v on the training set ex-
cluding the elements of Sh:

F2,v (β , λ) = 1
2
∑
i<Sh

(yi −
n∑

k=1
Ẽikβkv − β0v )

2 + λ
n∑

k=1
|βkv |. (8.2.12)

If β̂h (λ) is the minimizer, we evaluate the prediction error of
the model on the elements of Sh:

CV (h, λ) = K

N
(
∑
i∈Sh

(yi −
n∑

k=1
Ẽik β̂

h
kv − β̂

h
0v )

2 + λ
n∑

k=1
|β̂hkv |).

(8.2.13)
The overall cross-validation error of the model is then:

CV (λ) =
1
K

K∑
h=1

CV (h, λ). (8.2.14)

The optimal paramenter λ is the one which minimizes the over-
all CV error.

8.2.3.2 A nonlinear model

In Vu et al. [2011] it is underlined how the model described in
Kay et al. [2008] didn’t take into account systematic nonlinear-
ity across voxels. Following their idea, who analysed encoding
and decoding V1 fMRI responses to natural images using sparse
nonparametric models, and the work of Güçlü and van Gerven
[2014] we consider a variation of the model described in Kay
et al. [2008] adding a non linearity in the computation of the
energy term.

In particular, considering the contrast energy equation (8.2.3)
we evaluate a logarithmic version of the model:

loд(1 + Ẽki ) (8.2.15)

that was used by Naselaris et al. [2009] to analyze the same
data set; this additional nonlinear transformation could absorb
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Figure 8.6: Modi�ed model
estimation stage. Adapted
from: [Kay et al., 2008].

some of the residual nonlinearity in the model of Kay et al.
[2008].

The new model estimation scheme is represented in Figure
8.6, where fMRI images are codi�ed by a matrix yiv .

We assume the same relation between energies de�ned in
equation (8.2.4) and measured activities:

y = loд(1 + Ẽ)β + β0 (8.2.16)

where the coe�cients β = βkv and the vector β0v are unknown.
We use Lasso method [Tibshirani, 1996], described in Section
8.2.3.1, in order to achieve a sparse solution.

Let us consider a single voxel v . In our case, the functional
we consider is:

F3,v (β ) = (
1

2N

N∑
i=1

(yiv − β0v −
n∑

k=1
loд(1+ Ẽki )βkv )2+λ

n∑
k=1
|βkv |)

(8.2.17)
and we minimize it:

minβ ,β0F3,v (β ) (8.2.18)

where β and β0 are p-vector and scalar components and λ ≥ 0
is a regularization parameter.

As clari�ed in the previous section, when λ increases the
number of nonzero components of β decreases. The �rst term
of equation (8.2.17) is called �ducial term, because its minimiza-
tion brings to the evaluation of coe�cients and allows to obtain
data closest to the measured ones.
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8.2.3.3 Encoding with cortical connectivity

The encoding model presented here is a minimization in the
L2 space. However, we have seen in Section 4.1.2.3 that the
functional geometry of the space of simple cells receptive pro-
�les is endowed by the cortical connectivity with a di�erential
structure of Subriemannian type. Hence we will introduce this
physiological term in the model.

For any �xed voxel v , the unknown β of the minimization
problem is a function of the variable k , which is induced by a
discretization of the group parameters дk = (xk ,yk ,θk ,σk ). For
very �xed value of σk we have that βvk = βvσk (xk ,yk ,θk ). If
we consider to begin with a continuous model in the variables
(x ,y,θ ), the unknowns βvσ are de�ned on R2 × S1. The metric
of the space has been de�ned in Section 4.1.2.3, and the gradient
of the space is de�ned as:

∇SRβvσ (x ,y,θ ) = (X1βvσ (x ,y,θ ),X2βvσ (x ,y,θ )). (8.2.19)

The Dirichlet functional in this space will be represented as:

| |∇SRβv ,σ | |
2
2 =

∫
( |X1βvσ (x ,y,θ ) |2 + |X2βvσ (x ,y,θ ) |2)dxdydθ .

(8.2.20)
While restricting to the discrete space (xk ,yk ,θk ), we substi-

tute the derivatives with �nite di�erences. This discretization
brings to the de�nition of the discrete subriemannian gradient
DSRβvk , which norm will be ∑

k |DSRβvk |
2.

As a consequence, the functional taking into account these
terms will be:

F4,v (β ) = λ3
∑
k

|DSRβvk |
2+ (

1
2N

N∑
i=1

(yiv − β0v −
n∑

k=1
loд(1+ Ẽki )βkv )2+λ

n∑
k=1
|βkv |)

(8.2.21)
and the �nal model is the minimization of the functional F4,v :

minF4,v (β ). (8.2.22)

As described in Section 8.2.3.1, the minimum is evaluated using
the Lasso method with cross validation, considering both the
regularization term in equation (8.2.10) and the discrete sub-
riemannian gradient DSRβv ,k (equation 8.2.21). In this case, for
simplicity, we use λ3 = 1 but this parameter can be evaluated
more precisely, as λ, using cross validation. We will see that
the �rst term of equation (8.2.21) helps in the problem of recon-
struction of images, while the others play a central role in the
problem of identi�cation from fMRI.
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8.2.3.4 Our receptive field model

Minimizing the functional F4,v , we are interested in �nding β

such that the linear combination with coe�cients of the con-
trast energy of a set of images should approximate in the closest
way the fMRI measured responses to those images, taking into
account in the minimization the regularization term. In this
sense, the coe�cients β should give a measure of how much the
receptive pro�leψдk is relevant in representing the neuronal re-
sponse to an image.

In this sense the receptive pro�le will be reconstructed as:

RFv =
n∑

k=1
βkv |ψдk | (8.2.23)

An example of receptive-�eld model for a representative voxel
is shown in Figure 8.7 and it is possible to notice the similar-
ity between our (right) and the model described in [Kay et al.,
2008] (left). Moreover, in our case, the Lasso term allows to
obtain sparse receptive-�eld models.

Figure 8.7: Receptive-�eld
model for a representative
voxel from Kay et al. [2008]
(left) and our model (right).
The intensity of each pixel in-
dicates the sensitivity of the
receptive �eld to that loca-
tion. The white circle delin-
eates the bounds of the stim-
ulus.

8.2.3.5 Image identification performances

In the image identi�cation stage, we use the new encoding
model estimated to predict the voxel activity pattern evoked by
the images in the validation set. The second and the third term
of equation (8.2.21) play a central role to solve this problem.

The predicted image is the one yielding the highest corre-
lation with the measured activity, using maximum likelihood
and covariance matrix regularization as described in Naselaris
et al. [2009]. In order to optimize the performance of the identi-
�cation algorithm, we �rst select voxels whose receptive �eld
models have the minimun mean square error calculated during
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cross validation. As in Kay et al. [2008], optimal performances
are achieved using about 500 voxels; most of these voxels are
located in area V1 and V2, where predictive power is higher
(see Figure 8.8).

Figure 8.8: Histogram of dis-
tribution of the �rst 500 sig-
ni�cative voxels. On the x
axis the Region of interest (0:
other, 1: V1, 2: V2, 3: V3, 4:
V3A, 5: V3B, 6: V4, 7: Lateral
Occipital area), on the y axis
the number of voxels in that
area.

To do that, we de�ne p (y |i ) as the likelihood of the observed
response given a sampled image:

p (y |i ) ∝ exp[−
1
2 (y − ŷ (i ))Λ

−1(y − ŷ (i ))T ] (8.2.24)

where Λ is a covariance matrix, obtained as the covariance of
the residuals, evaluated as the di�erence between the measured
and the predicted response in the training set:

Λ = 〈(y − ŷ (i ))T (y − ŷ (i ))〉. (8.2.25)

In most cases the covariance matrix is singular or close to
singular and it is not possible to calculate the inverse of Λ in a
stable manner. To overcome this problem a Tikhonov regular-
ization is used to estimate the inverse [Nishimoto et al., 2011].

The image whose predicted voxel activity pattern is most
correlated (highest p(y|i)) with the measured one is selected.

Identi�cation performances for both subjects are illustrated
in Figure 8.9, comparing our results with the ones of Kay et al.
[2008]. For subject S1 they obtained 92% (110/120) of the im-
ages correctly identi�ed, whereas chance performance is just
0.8% (1/120). For subject S2, 72% (86/120) of the images were
identi�ed correctly. In our case, we obtain 99.2% of identi�ca-
tion performances for subject S1 and 92.5% for subject S1.

The validity of our decoding method is underlined by these
high performances, showing how our receptive-�eld models
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Figure 8.9: Identi�cation per-
formances for subjects S1
and S2, comparing Kay et al.
[2008] (left) and our (right)
results.

characterize the selectivity of individual voxels to natural im-
ages.

8.2.4 Analysis of fMRI data

In order to a�ord the problem of reconstruction of images, we
�rst analyze fMRI data, projecting them on a standardized anatom-
ical 3D space. For this analysis, we use FreeSurfer, a software
for the elaboration and visualization of neuroimaging data [Fis-
chl, 2012] (see Figure 8.10).

Figure 8.10: A visualiza-
tion of the right hemish-
pere of a subject with su-
perimposed the feature of
curvature obtained through
FreeSurfer. On the left the
main and on the right the in-
�ated surface.

An example of fMRI activity projected on the right hemi-
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sphere of a subject is represented in Figure 8.11.

Figure 8.11: Example of fMRI
activity represented on the
right hemisphere of a sub-
ject.

As visualized in Figure 8.10 (left), regions which are close to-
gether in the volume may be relatively far apart along the cor-
tical surface due to the folded structure of the brain. In order to
overcome this limitation, a set of procedures for modifying the
shape of the surface to obtain a more suitable representation of
the cortical surface has been designed by Dale et al. [1999].

In Dale et al. [1999] it has been developed a general proce-
dure for minimizing metric distortion in a variety of contexts,
such as surface in�ation, �attening, as well as mapping to other
parameterizable surfaces such as a sphere. Constructing this
type of mapping is a di�cult task due to the complex and highly
folded nature of the original surface. To obtain a 2D representa-
tion of the occipital area of the cortex and to visualize the corti-
cal activity on it, it has been considered the �attening technique
described in Fischl et al. [1999]. In particular, it is possible to
�atten both the full surface and only a portion of it.

In our case we consider the occiput surface shown in Figure
8.12, this cortical patch is particularly useful for displaying the
results of visual experiments. In particular we represent on this
surface the informations of voxels of the primary visual cortex.

8.2.4.1 Parameters estimation of the retino-cortical model

In order to evaluate suitable values for the constants a and k

of equation (3.5) (page 35) we consider the method described
in Montobbio [2016]. We �rst create a set of representative
stimuli, evaluating their contrast energy and deforming their
energy images applying the coordinate change given by equa-
tion (3.5).
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Figure 8.12: A cutting
scheme for occipital �atten-
ing (left) and a visualization
of the �attened left occipital
lobe (right). The algorithm
implemented in FreeSurfer
follows the procedure de-
scribed in Fischl et al. [1999].

The set of arti�cial stimuli is represented in Figure 8.13; grayscale
images with a resolution of 128x128 pixels, as the stimuli in Kay
et al. [2008].

Figure 8.13: The set of arti�-
cial stimuli used in the simu-
lation.

We used these stimuli because the result of their transforma-
tion in the cortex considering the logarithmic model is clear.
Two examples of simulated fMRI responses compared with the
complex logarithm mapping are visualized in Figure 8.14. Since
we worked with one brain hemisphere at a time, we splitted the
images in two, separating the left and right hemi�elds of view.
The stimuli are represented on the left, where the yellow boxes
correspond to the right half of the stimuli as we were consid-
ering the projection of the response on the left hemisphere of
the brain, visualized in blue to yellow values in the middle of
Figure 8.14. On the right the complex logarithm mapping. The
red lines in the stimuli represented a contrast in the image that
can be identi�ed in the projection on the cortical surface; the
same line are also visualized in the logarithm mapping.

Starting from the stimuli, we evaluate their energy consider-
ing a family of Gabor �lters. Applying the coordinate change
given by la,k , the deformed energy images are visualized. We
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Figure 8.14: From left to
right: the stimuli, the pro-
jections of the fMRI simu-
lated activity in response to
these stimuli on the left hemi-
sphere and the complex loga-
rithm mapping.

use the encoding model presented in Section 8.2.3 to simulate
the fMRI responses to the stimuli and after selecting the voxels
corresponding to V1, we represent their response on the �at-
tened surface. In this case adding the term of regularization
in the subriemannian cortical structure allows to obtain better
reconstruction results.

Finally comparing the simulated fMRI activation maps with
the deformed energy images, it is possible to evaluate the best
�tting parameters for the constantsa andk of the two-parameter
logarithmic function la,k (equation (3.5)). An example of this
method applied to one image is shown in Figure 8.15.

To do this, it is necessary the �attening of the cortical sur-
face and its representation in 2D coordinates. This step is per-
formed using FreeSurfer and allows to obtain a visualization of
the simulated fMRI activity on the �attened cortex.

8.2.5 Inverse mapping: reconstruction of the stimulus

We have seen in Section 8.2.2.4 and 8.2.3.5 the great perfor-
mances achieved in the problem of identi�cation of images from
human brain activity. The approach presented here is an ex-
tension to the problem of reconstruction of images from fMRI
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Figure 8.15: Top: on the left
one of the stimuli, in the mid-
dle the energy and on the
right the energy relative to
its right half. Bottom: on
the left the energy of the
half stimulus in cortex coor-
dinates, on the right the sim-
ulated fMRI activity on the
�attened cortex.

activity, trying to reproduce the image seen by the observer
knowing only its fMRI response. This still unsolved problem
is called inverse mapping. The idea consists of representing
the fMRI response from the �attened cortex to the retinal co-
ordinates. In this method, the fMRI activity obtained on the
�attened V1 is interpreted as the image of the logarithmic func-
tion. In order to obtain the inverse mapping and so the fMRI re-
sponse in retinal coordinates, we make a coordinate change us-
ing the exponential function. In Figure 8.16 are visualized two
examples: on the left the stimulus and its energy, in the middle
the simulated fMRI responses to the stimuli projected on the
�attened primary visual cortex, on the right the fMRI response
in retinal coordinates, after applying the inverse mapping l−1

a,k .
In red are represented the marked contrasts of the stimuli; the
white lines on the right underline the activation areas. It is pos-
sible to notice the correspondence between the original energy
image and the fMRI responses; in both the examples we can
notice the presence of a circle almost tangent to the borders of
the stimuli and this is due to the contrast with the gray mask
applied to every stimulus.

The results considering simple and arti�cial images seem
very promising, the similarity with the original energy image
is visible. For the moment, we have considered for simplicity
this arti�cial images but the purpose is to improve the retino-
cortical model in order to reproduce with this technique also
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Figure 8.16: Two examples
of stimuli and their energy,
the fMRI responses in the
�attened V1 and the fMRI
responses in retinal coordi-
nates.

natural ones.
Before considering the problem of reconstruction of natural

images, we consider the 2D retinal coordinates and we project
on it the Receptive Pro�les of voxels of V1 and V2, each one
weighted for the corresponding Pearson correlation coe�cients
evaluated in Section 8.2.2.4.

In this mapping pixels related to voxels with higher predic-
tive power are represented in yellow, where most of the infor-
mation is contained, while the ones related to voxels with lower
predictive power are represented in blue. This will allow us to
predict which part of the image can be better reconstructed.

8.3 Reconstruction of images

In this Section we a�ord the problem of reconstruction of im-
ages from Gabor wavelts, from the contrast energy and �nally
from the human brain activity. We compare the results, show-
ing the increasing di�culty in the resolution of this problem.
We will present a model for the retinal receptive �elds show-
ing the reconstruction of images obtained considering a simi-
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Figure 8.17: Projection of
the Pearson correlation co-
e�cients in retinal coordi-
nates.

lar distribution of wavelets and underlying how the neurophys-
iological constraints about the distribution of wavelets in the
retina can represent a limit in the reconstruction of images. We
will also see how a di�erent positions of wavelets in the image
determin a good reconstruction nearby that area.

8.3.1 Reconstruction of images from Gabor wavelets

Gabor �lters provide the most famous example of continuous
wavelet decomposition. The basis idea is to reconstruct a func-
tion I in L2 from its Gabor transform, which is nothing but the
action of Gabor �lters de�ned on Section 3.2.1.

De�nition 5. If I ∈ L2 we call Gabor Transform of the function
f the lifted function de�ned as:

hI (д) =

∫
ψд (x ,y)I (x ,y)dxdy,

where д = (x ,y,θ ,σ ).

[Lee, 1996] derives the conditions under which a set of con-
tinuous 2D Gabor wavelets will provide a complete represen-
tation of any image and how it is possible to obtain their re-
construction. Precisely a function I ∈ L2 can be reconstructed
from its Gabor transform.

Proposition 6. Any function I ∈ L2 can be represented as:

I (x ,y) =
∫

hI (д)ψ̄д (x ,y)dд
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where д = (x ,y,θ ,σ ).

The same result is valid for a discretized family of Gabor �l-
ters, if the choosen �lters are correctly overlapping. In this
section we describe this result applied to our dataset.

In particular we use the following algorithm:

• let I (i ) be an image andψдk a Gabor pair;

• evaluate the Gabor wavelet transform as the integral hI (дk )
between the image I (i ) and the Gabor �ltersψдk ,

hI (дk ) =
∑
i

I (i )ψдk (i ).

• apply the Inverse Gabor wavelet transform to obtain the re-
constructed image, using the result of proposition

I (i ) =
∑
k

hI (дk )ψ̄дk (i ).

Naturally, the reconstruction of images depends on the size,
the position and the orientation of the Gabor wavelets used. In
our case we used the Gabor wavelet pyramid represented in
Figure 8.3.

Figure 8.18 illustrates 4 examples of original images (left) and
their reconstructions from Gabor wavelets (right). These re-
sults show how it is possible to reconstruct images using Direct
and Inverse Gabor wavelet transform.
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Figure 8.18: Examples of
images (left) and their re-
constructions from Gabor
wavelets (right).
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8.3.2 Reconstruction of images from the contrast energy

In Shams and Von Der Malsburg [2002] it is shown the role
of complex cells in object recognition, in particular it is under-
lined how population responses contain su�cient information
to capture the perceptual essence of images. Formally this re-
duces to reconstruct images from the contrast energy de�ned
in equation (8.2.3).

Formally they proved the following Theorem, called “Gabor
Magnitude Theorem”.

Theorem 3. If I1, I2 are images with the same Gabor Energy
EI1 = EI2 then it follows that I1 = ±I2.

Figure 8.19 illustrates a diagram of the reconstruction algo-
rithm.

Figure 8.19: The iterative al-
gorithm used to reconstruct
target image I from the con-
trast energy. Adapted from:
[Shams and Von Der Mals-
burg, 2002].

As a consequence, following Shams and Von Der Malsburg
[2002], we use this algorithm to recover an image from its Ga-
bor Energy:

• let Ii be an image and Eki the Gabor energy associated to a
Gabor pairψдk ;

• starting with an arbitrary seed image, iteratively compute a
sequence of images Îi whose energies Êki approximate those
of Ii with higher accuracy;

• compute the mean squared error between the squared mag-
nitudes of the target and trial image transforms respectively,
using the gradient descent method: minÎi

∑
k (E

2
ki
− Ê2

ki
)2;

• de�ned ϵ a parameter to scale the update speed, update ∆Îi
to the trial image, where:

∆Îi = ϵ (E
2
ki
− Ê2

ki
) (
∑

k ψдk Îiψдk )
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• stop the iteration when the median error e = (Eki − Êki )
Eki

falls
below a threshold.

In particular, considering the starting image Î evaluated as:

Î =
∑
k

Eki
2 (Re (ψдk ) + Im(ψдk )), (8.3.1)

we obtain the reconstructions shown in Figure 8.20.
The target images are shown in the �rst column. For each

target image two reconstructions are displayed (in the second
and in the third column). Starting from the contrast energy,
that contains both the real and the imaginary part of the Gabor
�lter, it is not possible to discriminate between them and this
is underlined in the reconstruction results visualized in Figure
8.20: we can obtain with the same probability the reconstruc-
tion visualized in the second column or its inverse, represented
in the third column.

These results show how the representation provided by a
population of complex cells implicitly encodes the phase infor-
mation that is needed for object recognition.
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Figure 8.20: Reconstruction
from the energy: the target
images are shown in the �rst
column, for each target im-
age one reconstruction and
its inverse are displayed in
the second and third column.
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8.3.3 Reconstruction of images from fMRI activity

8.3.3.1 Overview of previous results

Although the goal of both identi�cation and reconstruction of
images from human brain activity is to determine the speci�c
image that produced a given activity pattern, in the identi�ca-
tion a set of images is provided, in the recostruction no set is
provided.

Previous fMRI decoding papers presented algorithms for re-
constructing the spatial layout of simple geometrical patterns
composed of high-contrast �icker patches [Thirion et al., 2006,
Miyawaki et al., 2008]. In Naselaris et al. [2009] it is shown
how combining a structural encoding model that characterizes
responses in early visual areas, a semantic encoding model that
characterizes responses in anterior visual areas and prior infor-
mation about the structure and semantic content of natural im-
ages, it is possible to obtain a decoder that produces reconstruc-
tions. Reconstructions with structural encoding model and two
di�erent types of prior information are visualized in Figure 8.21.
In the �rst columns, two target images are shown; column two
shows reconstructions obtained using a �at prior that does not
bias reconstructions. Flat prior assigns the same probability to
all possible images. Regions of the target images that have low
texture contrast are depicted as smooth gray patches, while re-
gions that have substantial texture contrast are depicted as tex-
tured patches. The �at prior reconstructions reveal the distribu-
tion of texture contrast in the target images but cannot readily
be interpreted. Reconstructions obtained using a sparse Gabor
prior are shown in the third column. This ensures that recon-
structions possess the lower-order statistical properties of nat-
ural images. These reconstructions appear to be smoothed ver-
sions of those obtained with the �at prior and they also cannot
be readily interpreted (numbers in bottom right corner of the
second row of image reconstructions indicate structural accu-
racy, see Naselaris et al. [2009] for details).

Moreover, in Nishimoto et al. [2011] they constructed a Bayesian
decoder that provides remarkable reconstruction of the viewed
movies from BOLD signals.

In Section 8.2.5 it is presented an approach to solve the prob-
lem of inverse mapping, applied to arti�cial and simple stimuli.
Starting from the encoding model presented in Section 8.2.3,
we study in Section 8.3.3.2 the problem of reconstruction of im-
ages from human brain activity.
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Figure 8.21: Two target im-
ages are shown in the �rst
column. The second and the
third columns show recon-
structions obtained using the
structural encoding model
and two di�erent types of
prior information. Source:
[Naselaris et al., 2009].

8.3.3.2 An approach to a new functional

Considering a starting image I0 evaluated as the mean of 10
images of the dataset, we evaluate the distance between the
fMRI measured activity and the predicted one as:

f (I ) =
1
2

N∑
v=1

(yiv −
n∑

k=1
loд(1 + Ẽki (I ))βkv )2 (8.3.2)

where the coe�cients βkv have been evaluated with the Lasso
method described in Section 8.2.3 and Eik is the logarithm ver-
sion of the contrast energy de�ned in equation (8.2.15).

Considering the derivative of equation (8.3.2), we minimize
with the help of gradient descent and we obtain:

∂ f

∂Eki
=

N∑
v=1

βvk (yiv − loд(1 + Ẽki )βkv )
1 + loд(1 + Ẽki )

(8.3.3)

and the reconstructed image can be written as:

∇f (I ) =
∑
k

∂ f

∂Eik
(Re (ψдk ) + Im(ψдk )). (8.3.4)
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De�ned the reconstructed image as:




∂I
∂t = ∇f (I );
I (0) = I0;

(8.3.5)

we add a regularization term:




∂I
∂t = ∇f (I ) + λs∆(I );
I (0) = I0;

(8.3.6)

where ∆(I ) is the Laplacian of the image, that allows to reg-
ularize in the 2D domain and where λs = 0.002 is a constant
that contains the speed of convergence of the algorithm. This
process is then iterated until it converges and we obtain the re-
sults of simulation visualized in Figure 8.22.
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Figure 8.22: Reconstruction
from fMRI. From �rst to third
column: the target images,
the starting image and for
each target image I0 one re-
construction is displayed.
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A comparison betweenthe results obtained by Naselaris et al.
[2009] and our method is represented in Figure 8.23, where the
�rst and the third target images of Figure 8.22 have been con-
sidered. It is possible to notice that both methods contain in-
formations about the stimuli. In particular they are both able
to determine the regions of the image in which the informa-
tions are. Moreover with our model we notice the presence of
more distinct informations regarding the stimuli: in the �rst re-
construction it is possible to notice the details of the face (the
monkey’s eyes, nose and mouth), in the second the presence of
arcs of the bridge, in the third the contour delimiting the sea
and in the last the 5-point of the star.

Figure 8.23: Comparison be-
tween the results of Nase-
laris et al. [2009] and our
method for the �rst and the
third target images visual-
ized in Figure 8.22.

The map in Figure 8.17, that contains pixels related to voxels
with higher predictive power, is in good agreement with the
reconstructions obtained in Figure 8.22: the parts of the images
correctly reconstructed correspond to the pixels with higher
predictive power.

Even if it is not a trial and already solved problem, we think
that this could be a �rst step to improve the results in the �eld
of reconstruction of images from fMRI activity and we guess
that considering fMRI data with higher resolution could help
in these reconstructions.
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9 Conclusions

The aim of this thesis is to develop mathematical models of
visual perception based on cortical architecture and to apply
them both on phenomenological experiments and on natural
images.

In this work we have presented a neurally based model for
�gure-ground segmentation and grouping of di�erent percep-
tual units using spectral methods, where segmentation has been
performed by computing eigenvectors of a�nity matrices. Our
objective was to model these experimental data with a suit-
able mathematical framework and di�erent connectivity ker-
nels that are compatible with the functional architecture of the
primary visual cortex have been presented. We have modelled
them as fundamental solution of Fokker-Planck, Sub-Riemannian
Laplacian and isotropic Laplacian equations and compared their
properties. With this model we have identi�ed perceptual units
of di�erent illusory Kanizsa �gures [Favali et al., 2016b]d, show-
ing that this can be considered a good quantitative model for
the constitution of perceptual units equipped by their saliency.
The proposed mathematical model was then able to integrate
local and global gestalt laws as a process implemented in the
functional architecture of the visual cortex.

The same method has been applied to retinal images [Favali
et al., 2016a]. An extension to more general kernels able to
detect geometrical features di�erent from orientation as curva-
ture [Abbasi-Sureshjani et al., 2016a] has been described. Based
on the results shown in the numerical simulations, we were
able to detect the salient groups in retinal images and this can
be considered as an excellent quantitative model for the consti-
tution of perceptual units.

Finally we have considered the problem of identi�cation and
reconstruction of natural images from human brain activity
and we have integrated the structure of the cortex, described
through the cortical models previously de�ned, with fMRI data.
In particular we have proposed a �rst approach to improve
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these results adding into the analysis neurophysiological fea-
tures, even if it is not an already solved problem.

This thesis leaves more than one open questions:

• concerning the connectivity kernels, an extension to other
parts of the visual cortex (like V2) can be analysed, simulat-
ing the behaviour of cells in subsequent processing stages of
the neural visual path;

• new experiments, as bistable illusory �gures, could be eval-
uated to test some aspect of the model and to a�ord more
complicated cases;

• another interesting application of these models is the possi-
bility to train the connectivity kernels on the basis of past
experience, including this feature in the connections to ac-
count for a priori knowledge;

• considering retinal images, the method has been examined
only on small patches to reduce the computational complex-
ity. However, this can easily be improved from implementa-
tion and hardware points of view and full retinal images can
be analyzed;

• considering fMRI data with higher resolution and bigger dataset
could help in the problem of identi�cation of images from
fMRI activity;

• improving the retino cortical mapping and considering the
�attened V2, could bring to better reconstruction of images
from arti�cial stimuli and from fMRI activity.

We hope that this is just the beginning of a fruitful �eld of
new researches.
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