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Introduction

The objective of this thesis is to develop mathematical models of visual perception based on cortical architectures and to apply them to reproduce phenomenological experiments as well as to process natural images. We primarly focus on low level vision tasks and in particular we are interested in the problem of grouping and of individuation of perceptual units. In this setting we will face the problem of the reconstruction of illusory gures and the detection of retinal vessels in optical images. Then we consider the problem of encoding and decoding of the fMRI signal from in vivo acquired brain activity of visual cortex. This allows to estimate the structure of the cortex of a speci c human patient and eventually to reconstruct the visual stimulus from fMRI activity, in a so called "brain reading" strategy. The di erence between our approach and the state of the art literature consists in using previously de ned neuromathematical models of the cortices as a-priori knowledge to regularise the in vivo estimated structure. Even if it is a long term objective, we propose a rst approach to improve the results in this eld.

The entire work of this thesis has been developed taking into account results from phenomenology of perception on one hand and results of neurophysiology on the other.

In the eld of the phenomenology of perception, at the beginning of the last century, the theory of the Gestalt psychology [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF][START_REF] Kohler | Gestalt psychology[END_REF][START_REF] Ko | Principles of gestalt psychology[END_REF] de ned the integration of contours and in particular they de ned grouping laws underlying perception. These are crucial in the construction of visual objects: points with characteristics in common can be grouped together to form a new, larger visual object. Many psychophysical experiments have been proposed to measure the quantitative parameters of these laws. A particular interest of this thesis is the concept of association elds introduced by [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF] which encodes di erent Gestalt principles (for example, good continuation and proximity). They showed that stimulus co-linearity and co-circularity play an important role for the feature of grouping. Their study showed how chances of perceiving the curvilinear path were high if the orientation of its features was the one tangent at that point and collapsed as their relative orientation deviated from being tangent.

On the other hand, in neurophysiology, an impressive amount of experiments con rm that the problem of grouping and of boundary detection is performed by the primary visual cortex (V1). The fundamental structures of V1 implemented in the neural circuitry are closely related to contour grouping [START_REF] David | Eye, brain, and vision[END_REF].

A mathematical framework, based on di erential instruments, has been introduced to formalize these ndings. The rst geometrical models are due to [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF], who underlined the di erential action of perceptual mechanisms, and by Ho man [1989], who described V1 as a ber bundle equipped with a contact structure. This ber bundle is the mathematical structure ideally modelling both the retinotopic and hypercolumnar structure. More recently, [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF], reconsidering the ber bundle model of Ho man, proved that it is coherent with contemporary psychophysical and neurophysiological ndings, and it is able to describe the association elds from one side and the functionality of simple cell from the other. Other model that considered a di erential geometry approach was introduced by [START_REF] Zucker | Di erential geometry from the frenet point of view: boundary detection, stereo, texture and color[END_REF]. In [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], Citti and Sarti reconsidered this cortical structure as a Lie group equipped with a sub-Riemannian metric. They proposed to model the functional architecture as Lie groups, showing the relation between geometric integral curves, association elds, and cortical properties. This method has been implemented in [START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF] and [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic di usion[END_REF]. Exact solution of the Fokker-Planck equation has been provided by [START_REF] Duits | The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d euclidean motion group[END_REF] and their results have been applied by [START_REF] Duits | Line enhancement and completion via linear left invariant scale spaces on se (2)[END_REF] to image processing.

These di erential models are local, hence insu cient to explain the problems of grouping and constitution of a percept, since a perceived form is characterized by a global consistency.

Di erent authors qualitatively de ned this consistency as pregnancy or global saliency [START_REF] Merleau | Phenomenology of perception[END_REF], but only a few quantitative models have been proposed [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF]. In particular spectral approaches for image processing were proposed by [START_REF] Perona | A factorization approach to grouping[END_REF], [START_REF] Shi | Normalized cuts and image segmentation[END_REF], [START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF], [START_REF] Ronald R Coifman | Di usion maps[END_REF]. In [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] it is shown how this spectral mechanism is implemented in the neural morphodynamics, in terms of symmetry breaking of mean eld neural equations. In that sense, [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] can be considered as an extension of Bresslo et al. [2002].

Our results fall within this approach and in particular the one introduced in Sarti and Citti [2015], but the main original contributions of the thesis can be described as follows:

• quantitative tting between the computed kernels and the experimental ones is performed, in order to validate the model;

• the model is enriched exploiting the role of the polarity feature;

• the model is extended; including the feature of intensity and curvature, nally considering a 5-dimensional kernel;

• these models of cortical connectivity are applied to the problems of identi cation and reconstruction of natural images from human brain activity, adding into this analysis neurophysiological constraints.

The thesis is organized as follows:

Chapter 3 starts by brie y reviewing the Gestalt theory and some of its basic laws, that describe how elements tend to be perceptually grouped and made salient. The chapter continues by describing one key psychophysical experiment related to contour organization which inspired the concept of association elds: it is the classical result of Field et al. [1993]. The chapter ends by describing the visual cortex, introducing the visual pathways, the receptive elds and receptive pro les. The main structures implemented by neural circuitry are described: the layered, the retinotopic, the hypercolumnar structure. Finally, the pinwheel structure, that is the real topological implementation of the hypercolumns, and the horizontal connectivity are introduced. These structures will be relevant to the models presented in the following Chapters.

Chapter 4 reviews several di erential models of the visual cortex, particularly focuses on the models of [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] in the Heisenberg group and of [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] in the Rototranslation group. A di erential structure is considered, in order to model the long range horizontal connections between hypercolumns. The structure is formalized as the Lie algebra of the SE(2) with a Sub-Riemannian structure. The integral curves of its generating vector elds model the association elds. Then stochastic models of cortical connectivity are presented [START_REF] Mumford | Elastica and computer vision[END_REF], Williams and Jacobs, 1997b[START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF][START_REF] Petitot | The neurogeometry of pinwheels as a sub-riemannian contact structure[END_REF], de ning the connectivity kernels.

We underline our contribution to the model, clarifying how it is neurally implemented in the cortex, extending it in high generality and providing a solid numerical implementation.

We conclude the chapter describing the problem of individuation of perceptual units.

In Chapter 5 we perform a quantitative validation of the model of cortical connectivity comparing the proposed kernels with neurophysiological data of horizontal connectivity [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF][START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF]. We make a comparison between the fundamental solution of the Fokker Planck equation with experimental data of [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF], [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF] and [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF], showing how the stochastic paths are implemented in the neural network. In particular, we consider the distribution of a tracer through lateral connection modeling each injection with stochastic paths. The bouton distributions are realizations of a stochastic process, in particular of a random walk in R 2 xS 1 space. We show how the probability density obtained as a combination of Fokker Plank is an integration of stochastic paths. Moreover we propose to use also the Subelliptic Laplacian kernel, in order to account for the variability of connectivity patterns.

The chapter ends with a quantitative validation of these kernels, comparing to an experiment of [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF]. The link between the connectivity kernel and cell's response is underlined. This work is published in Favali et al. [2016b].

Chapter 6 is devoted to the generalization of the model of cortical connectivity. As de ned in Chapter 4, the visual cortex has a modular structure and its cells are capable to extract several features. We present here the inclusion in the model of cortical connectivity of the feature of intensity and an extension to a 5 dimensional kernel in the lifted space of positions, orien-tations, intensities and curvatures. The results in this chapter are published in Favali et al. [2016a], Abbasi-Sureshjani et al. [2016a].

Chapter 7 presents applications of these models to the problem of individuation of perceptual units. The rst application is in the analysis of illusory gures: we present the identi cation of perceptual units in experiments similar to the ones of [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF] and in Kanizsa gures, underlying the role of polarity and comparing the behavior of the di erent kernels previously presented. Then, the method is applied to the analysis of retinal images, to face the problem of grouping during the tracking of blood vessels. We underline how the features of intensity and curvature become relevant to correctly identify the perceptual units in these images. These works represent original contributions of this thesis and are published in Favali et al. [2016b,a], Abbasi-Sureshjani et al. [2016a].

Chapter 8 describes how to combine the theory of cortical models with encoding and decoding techniques. The chapter starts recalling the functional MRI and describing an overview of brain encoding and decoding results in fMRI analysis [START_REF] Mo Chen | Survey of encoding and decoding of visual stimulus via fmri: an image analysis perspective[END_REF]. The problem of identi cation of natural images from human brain activity and the results of [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] on this topic are presented. A modi ed version of the encoding model is described, adding sparsity of the representation, a nonlinearity of logaritmic type to consider the structure of the cortex and a regularization in the subriemannian cortical structure. This represents an original contribution in the thesis. Image identi cation performances with our method are then described. The chapter continues by considering the problem of reconstruction of the stimulus, primarily using simple and arti cial images. The inverse mapping is described and the fMRI response is represented from the attened cortex to the retinal coordinates. Then, the reconstruction of images from Gabor wavelets and from the contrast energy is presented, underlying how the representation provided by a population of complex cells encodes the phase information that is needed for object recognition. The chapter ends de ning the reconstruction of images from fMRI activity, comparing our method and the results obtained by [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF].

The last Section is devoted to the conclusions.

Résumé

L'objectif de cette thèse est de développer des modèles mathématiques de perception visuelle basés sur des architectures corticales et de les appliquer pour reproduire des expériences phénoménologiques ainsi que pour traiter des images naturelles. Nous nous concentrons principalement sur les tâches de vision de bas niveau et en particulier nous sommes intéressés par le problème du groupement et de l'individuation des unités perceptives. Dans ce contexte, nous ferons face au problème de la reconstruction des gures illusoires et de la détection des vaisseaux rétiniens dans les images optiques. Ensuite, nous considérerons le problème du codage et du décodage de l'activité cérébrale du cortex visuel obtenue par Imagerie par Résonance Magnétique fonctionnelle (IRMf). Ceci permet d'estimer la structure du cortex d'un patient spéci que et éventuellement de reconstruire le stimulus visuel de l'activité IRMf, dans une stratégie "de lecture du cerveau" (brain reading). La distinction entre notre approche et l'état de la littérature consiste à utiliser des modèles neuromathématiques du cortex comme connaissance a priori pour régulariser la structure estimée.

Même si c'est un objectif à long terme, nous proposons une première approche pour améliorer les résultats dans ce domaine. L'ensemble du travail de cette thèse a été développé en tenant compte des résultats de la phénoménologie de la perception d'une part et des résultats de la neurophysiologie de l'autre.

Dans le domaine de la phénoménologie de la perception, au début du siècle dernier, la théorie de la psychologie de la Gestalt a dé ni l'intégration des contours et en particulier [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF], [START_REF] Kohler | Gestalt psychology[END_REF], [START_REF] Ko | Principles of gestalt psychology[END_REF] ont dé ni le regroupement des lois de la perception.

Celles-ci sont cruciales dans la construction d'objets visuels : les éléments avec des caractéristiques en commun peuvent être regroupés pour former un nouvel objet visuel plus grand. De nombreuses expériences psychophysiques ont été proposées pour mesurer les paramètres quantitatifs de ces lois. Un intérêt particulier de cette thèse est le concept de champ d'association introduit par [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF] lequel code di érents principes de la Gestalt (par exemple, la bonne continuation et la proximité).

Ces auteurs ont montré que la co-linéarité de stimulus et la co-circularité jouent un rôle important dans la caractéristique du groupement. Leur étude a montré comment les chances de percevoir un chemin curviligne étaient élevées si l'orientation de ses éléments était tangente à ce chemin. D'autre part, en neurophysiologie, une grande quantité d'expériences con rment que le problème du groupement et de détection des contours est e ectué par le cortex visuel primaire (V1) [START_REF] David | Eye, brain, and vision[END_REF].

Un cadre mathématique, basé sur les instruments di érentiels, a été introduit pour formaliser ces résultats. Les premiers modèles géométriques sont dus à [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF], qui ont souligné l'action di érentielle des mécanismes perceptifs, et à Ho man [1989], qui a décrit V1 comme un faisceau de bres équipé d'une structure de contact. Ce faisceau de bres est la modélisation mathématique de la structure rétinotopique et de l'organisation en hypercolonnes. Plus récemment [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] reconsidèrent le modèle de faisceau de bres de Ho man, et prouvent qu'il est cohérent avec les résultats psychophysiques et neurophysiologiques contemporains, et qu'il est capable de décrire les champs d'association et la fonctionnalité des cellules simples.

Une autre modèle examiné dans l'approche de la géométrie di érentielle a été introduit par [START_REF] Zucker | Di erential geometry from the frenet point of view: boundary detection, stereo, texture and color[END_REF]. Dans [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], Citti et Sarti reconsidérés cette structure corticale en tant que groupe de Lie équipé avec une métrique sous-riemannienn. Ils ont proposé de modéliser l'architecture fonctionnelle en tant que groupes de Lie, en montrant la relation entre les courbes intégrales géométriques, les champs d'association et les propriétés corticales. Cette méthode a été implémentée dans [START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF] et [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic di usion[END_REF]. La solution exacte de l'équation de Fokker-Planck a été fournie par [START_REF] Duits | The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d euclidean motion group[END_REF] et leurs résultats ont été appliqués par [START_REF] Duits | Line enhancement and completion via linear left invariant scale spaces on se (2)[END_REF] au traitement d'image.

Ces modèles di érentiels sont locaux, donc insu sants pour expliquer les problèmes de groupement et de constitution d'une perception, car une forme perçue est caractérisée par une cohérence globale. Di érents auteurs ont qualitativement dé ni cette cohérence comme la saillance globale [START_REF] Merleau | Phenomenology of perception[END_REF], mais seuls quelques modèles quantitatifs ont été proposés [START_REF] Koch | Shifts in selective visual attention: towards the underlying neural circuitry[END_REF]. En particulier, l'approche spectrale pour le traitement d'image a été proposée par [START_REF] Perona | A factorization approach to grouping[END_REF], [START_REF] Shi | Normalized cuts and image segmentation[END_REF], [START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF], [START_REF] Ronald R Coifman | Di usion maps[END_REF]. [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] montrent comment ce mécanisme spectral est implémenté dans la morphodynamique neuronale, en termes de rupture de symétrie des équations neuronales de champ moyen. Dans ce sens, le modèle de Sarti and Citti [2015] peut être considéré comme une extension de Bresslo et al. [2002].

Nos résultats s'inscrivent dans cette approche et en particulier celle introduite dans [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] et les principales contributions originales de la thèse peut être décrit comme suit:

• un ajustement quantitatif entre les noyaux calculés et les essais expérimentaux est e ectué, a n de valider le modèle;

• le modèle est étendu en exploitant le rôle de la caractéristique de polarité;

• le modèle est étendu y compris la caractéristique d'intensité et de courbure, en considérant un noyau à 5 dimensions;

• ces modèles de connectivité corticale sont appliqués aux problèmes d'identi cation et de reconstruction d'images naturelles à partir de l'activité cérébrale humaine, en ajoutant à cette analyse des contraintes neurophysiologiques.

La thèse est organisée comme suit:

Le chapitre 3 commence par une brève revue de la théorie de la Gestalt et de quelques-unes de ses lois fondamentales, qui décrivent comment les éléments tendent à être perceptivement groupés et faits saillants. Le chapitre continue en décrivant une expérience psychophysique clé liée à l'organisation du contour qui a inspiré le concept des champs d'association : c'est le résultat classique de Field et al. [1993]. Le chapitre se termine par la description du cortex visuel, en introduisant les voies visuelles, les champs récepteurs et les pro ls récepteurs. Les structures principales des circuits neuronaux sont décrites : les couches, l'organisation rétinotopique, les hypercolonnes. En n, la structure "pinwheels" et la connectivité horizontale sont introduites. Ces structures seront importantes pour les modèles présentés dans les chapitres suivants.

Le chapitre 4 examine plusieurs modèles di érentiels du cortex visuel, puis se concentre sur les modèles de Petitot and Tondut [1999] dans le groupe de Heisenberg et de Citti and Sarti [2006] dans le groupe Rototranslation. Ces modèles considerent une structure di érentielle, a n de modéliser les connexions horizontales entre hypercolonnes. La structure est formalisée comme l'algèbre de Lie de la SE(2) avec une structure Sub-Riemannienne. Les courbes intégrales de ces champs vectoriels générateurs modélisent les champs d'association. Les modèles stochastiques de connectivité corticale sont alors présentés [START_REF] Mumford | Elastica and computer vision[END_REF], Williams and Jacobs, 1997b[START_REF] August | The curve indicator random eld: Curve organization via edge correlation[END_REF][START_REF] Petitot | The neurogeometry of pinwheels as a sub-riemannian contact structure[END_REF], dé nissant les noyaux de connectivité.

Nous soulignons notre contribution au modèle, en précisant comment il est implémenté neuralement dans le cortex, en fournissant une exécution numérique solide.

Nous concluons le chapitre avec une présentation du problème de l'individuation des unités perceptuelles.

Dans le chapitre 5 nous e ectuons une validation quantitative du modèle de la connectivité corticale comparant les noyaux avec des données neurophysiologiques de connectivité horizontale [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF][START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF].

Nous faisons une comparaison entre la solution fondamentale de l'équation de Fokker Planck avec les données expérimentales de [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF], [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF] et [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF], montrant comment les chemins stochastiques sont implémentès dans le réseau neuronal.

Nous considérons la distribution d'un traceur à travers la connexion latérale avec la modélisation stochastique de chacun des chemins d'injection.

Les distributions des boutons sont des réalisations de processus stochastique, en particulier d'une marche aléatoire dans l'espace R 2 xS 1 .

Nous montrons comment la densité de probabilité obtenu sous la forme d'une combinaison de Fokker Planck est une intégration de trajectoires aléatoires. De plus, nous proposons d'utiliser également le noyau Laplacien-elliptique, a n de tenir compte de la variabilité des modèles de connectivité.

Le chapitre se termine par une validation quantitative de ces noyaux, comparé à une expérience de [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF]. Le lien entre le noyau de la connectivité et de la réponse cellulaire est soulignée. Ce travail est publié dans Favali et al. [2016b].

Le chapitre 6 introduit la généralisation du modèle de connectivité corticale. Comme dé ni au chapitre 4, le cortex visuel a une structure modulaire et ses cellules sont capables d'extraire plusieurs caractéristiques. Nous présentons ici l'inclusion dans le modèle de connectivité corticale de la caractéristique d' intensité et une extension à un noyau à 5 dimensions dans l'espace des positions (2 dimensions), des orientations, des intensités et des courbures.

Les résultats de ce chapitre sont publiés dans Favali et al. [2016a], Abbasi-Sureshjani et al. [2016a].

Le chapitre 7 présente les applications de ces modèles au problème de l'individuation des unités perceptuelles. La première application est dans l'analyse de gures illusoires : nous présentons l'identi cation d'unités perceptives dans des expériences similaires à celles de Field et al. [1993] et de Kanizsa, en considérant le rôle de la polarité et en comparant le comportement des di érents noyaux présentés précédemment.

Ensuite, la méthode est appliquée à l'analyse des images rétiniennes, a n d'examiner le problème du groupement des vaisseaux sanguins. Nous soulignons comment les caractéristiques d'intensité et de courbure deviennent fondamentales pour identi er correctement les unités perceptives dans ces images.

Ces travaux représentent des contributions originales de cette thèse et sont publiés dans Favali et al. [2016b,a], Abbasi-Sureshjani et al. [2016a].

Le chapitre 8 décrit comment combiner la théorie des modèles corticaux avec les techniques de codage et de décodage. Le chapitre commence avec une description de l'IRM fonctionnelle et il décrit une vue d'ensemble des résultats de codage et de décodage du cerveau dans l'analyse IRMf [START_REF] Mo Chen | Survey of encoding and decoding of visual stimulus via fmri: an image analysis perspective[END_REF]. Le problème de l'identi cation des images naturelles à partir de l'activité du cerveau humain et les résultats de [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] sur ce sujet sont présentés.

Une version modi ée du modèle d'encodage y est décrite, en ajoutant la sparsité de la représentation, une non linéarité de type logarithmique pour considérer la structure du cortex et une régularisation dans la structure cortical subriemannienne. Cela représente une contribution originale dans la thèse. Les performances d'identi cation d'image avec notre méthode sont ensuite décrites. Le chapitre continue en considérant le problème de la reconstruction du stimulus, principalement avec des images simples et arti cielles. La méthode de "mapping inverse" est décrite, pour laquelle la réponse IRMf est représentée à partir du cortex jusqu'aux coordonnées rétiniennes. La reconstruction des images à partir du ltre de Gabor et de l'énergie de contraste est ensuite proposée.

Le chapitre présente en n la reconstruction des images à partir de l'activité IRMf, en comparant notre méthode et les résultats obtenus par [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF].

La dernière section conclut par un discussion generale.

3 Phenomenology of perception and neurophysiology of the visual cortex

Phenomenology of perception

W recalling the main rules of the Gestalt psychology, one of the most classical school of phenomenology of vision, which expressed local and global laws at the basis of grouping and constitution of percepts. Another crucial element which can contribute to the explanation of segmentation is the association eld, introduced by Field, Hayes and Hess to describe which parts of the stimuli can be associated to the same perceptual unit. A detailed analysis of phenomenology of perception or of the visual cortex is out of the aim of this Chapter, but we will focus on the structures relevant to the models presented in the following ones. The neurological basis of these perceptual phenomena have to be searched in the functional architecture of the primary visual cortex (V1). We introduce the visual pathways, the receptive elds and receptive pro les and the layered, retinotopic and the hypercolumnar structure. Finally, the pinwheel structure and the horizontal connectivity will be described.

Gestalt Theory

An important process in visual perception is represented by perceptual grouping. Since the beginning of the last century, Gestalt theory began to de ne laws of perception, according to which distinct visual stimuli can be perceived as a single perceptual unit. It formulated both local and global laws which can explain the grouping process (see for example [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF][START_REF] Kohler | Gestalt psychology[END_REF][START_REF] Ko | Principles of gestalt psychology[END_REF] and for a recent review we quote: [START_REF] Wagemans | A century of gestalt psychology in visual perception: I. perceptual grouping and gure-ground organization[END_REF]). This process is fundamental in visual perception, when points have one or several charac-teristics in common they form a new and larger visual object. Gestalt psychologists formulated rules for perceptually signicant image structure and describe how elements tend to be grouped together. The idea is that complex phenomena can be understood considering the idea of structure more than a single element. In particular, in order to individuate perceptual units, gestalt theory has introduced local and global laws, that describe the in uence of global context in the perception of local features. Among the local laws we recall here the principle of good continuation, similarity and proximity:

• good continuation: elements aligned (or with comparable alignment) tend to form a continuous curve. As an example, in Figure 3.1 we clearly perceive an unique curve of dots crossing a black rectangle and not two distinct curves; Adapted from: [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].

• similarity: elements similar in color, texture, shape or orientation are grouped together (see Figure 3.2); Figure 3.2: Examples of similarity Gestalt laws. Adapted from: [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].

• proximity: elements that are close to each other and apart enough from the rest of the elements form a group or a cluster (see Figure 3.3).

Figure 3.3: Examples of proximity Gestalt laws. Adapted from: [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].

These properties describe how elements tend to be perceptually grouped and made salient. More than one grouping laws can play a role to the perception of a complex object. At local level, the central idea of the Gestalt psychology is that continuity is essential in perception. For example phenomena in which there is a phenomenological presence of boundaries without a physical stimulus describe the mechanisms of boundary completion. These local laws of good continuation and alignment have a central role in phenomena as the modal completion of Kanizsa presented in the next Section, but can not be sucient to completely justify them. Indeed, in Figure 3.4 (left) we clearly perceive the square if we x at the center of the gure, but the subjective countours completely disappear if we try to x them, or if we focus on a packman inducer. As a consequence global laws are necessary to explain the perception. In the construction of percepts and in particular in the gureground articulation it is crucial a notion of saliency which denotes the relevance of a form with respect of a contextual frame, the power of an object to be present in the visual eld.

Due to the perceptual grouping process the scenes are perceived as constituted by a nite number of gures and the saliency assigns a discrete value to each of them. In particular the most salient con guration pops up from the ground and becomes a gure [START_REF] Merleau | Phenomenology of perception[END_REF]. Note that in case of continuous deformation of the visual stimulus, the salient gures can change abruptly from one percept to a di erent one [START_REF] Merleau | Phenomenology of perception[END_REF]]. This happens for example in Figure 3.4 where a regular deformation is applied to the Kanizsa square: we progressively perceive a more curved square, until it suddenly disappears and the 4 inducers are perceived as stand alone (see for example [START_REF] Sing | Dynamics of subjective contour formation in the early visual cortex[END_REF][START_REF] Pillow | Perceptual completion across the vertical meridian and the role of early visual cortex[END_REF][START_REF] Petitot | Neurogéométrie de la vision: modeles mathematiques et physiques des architectures fonctionnelles[END_REF]). From the previous example, we can observe that the perceptual reality is composed by a discrete number of objects that do not necessarily depend on the existence of the correspondent physical objects. These phycological concepts are based on how the perception can in uence the human behavior. Indeed, the visual stimulus is composed by indipendent points, but the process performed by the visual system induces the perception of perceptual units and objects, and a gure-ground segmentation, described in the following section. The gure is de ned as the elements delimited by a boundary that attracts our attention; the background is everything that appears distant and acts as a "frame" of the picture. Between the gure-ground segmentation laws we recall:

• inclusion: at the same conditions, the regions of the image that are enclosed or surrounded are perceived as the gure;

• relative area: regions that are smaller in area are more likely to be seen as gure;

• orientation: observers are more likely to perceive the gure on the side of the edge where the familiar object lies.

Summarizing, regions that are convex, symmetric, smaller in area, enclosed, or surrounded are more likely to be seen as gure than contiguous regions that are concave, asymmetric, larger in area, or surrounding. The Gestalt psychologists held that these properties for gure-ground perception were largely innate and did not depend upon an individual's past experience [START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF].

When none of these conditions allow to distinguish what is salient in the gure, the perception becomes ambiguous. In the case of ambiguous gures the problem of the selection of gure-ground is particularly evident, as visualized in Figure 3.5. This optical illusion may be perceived either as a vase or as two human pro les facing each other, so it is not possible to perceive a more salient object in the scene.

The black regions in Figure 3.5 appear shapeless when they are seen as grounds to the white vase, while they appear shaped like pro les of faces when seen as gures. In a similar way, the white region appears shapeless when it is seen as the ground to the black pro le faces, while appears to be a vase when it is seen as gure. Thus, regions appear shapeless when they are seen as grounds even though the same regions appear shaped when they are perceived to be gures.

Perceptual Completion

Kanizsa in [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF][START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF] underlined that visual perception represents a complex process which involves both the physical stimuli and their phenomenological organization, which in general do not concide. This happens in a very clear way in the subjective completion process, which, for this reason, can be considered a rst crucial tool for understanding visual perception. Kanizsa de ned in particular two modality of completion: modal and amodal completion.

In the rst one, that is present for example in the famous Kanizsa square (see Figure 3.4 (left)), we perceive an image whose boundaries are not present in the physical stimulus with the full modality of vision: the square pops up from the background and we perceive it with a gray level di erent from the background. Another example is presented in Figure 3.6 (left), where a Kanizsa triangle is phenomenologically perceived even if the boundaries are not present in the image. There is an apparent contour separating the triangle from the gure, indeed the interior looks whiter than the background. This modal completion gives rise to the well known phenomenon of illusory boundaries or subjective contours. The amodal completion (see Figure 3.6 (right)) is much more common, since it is caused by any partially occluded objects. The gure perceived is a black circle occluded by the gray square. The circle is present in the visual eld but its completion is performed without an illusory contour. In this case we perceive a completion without the modality of vision. Adapted from: [START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].

Good continuation and association fields

In the previous Section it is described how in the problem of perceptual grouping the local law of good continuation plays a central role.

A number of results have been provided in order to re ne the principles of psychology of form and assess neural correlates of the good continuation law. In particular, [START_REF] Grossberg | Neural dynamics of form perception: boundary completion, illusory gures, and neon color spreading[END_REF] introduced a "cooperation eld" to model illusory contour formation. Similar elds of association and perceptual grouping have been produced by [START_REF] Parent | Trace inference, curvature consistency, and curve detection[END_REF]. In this contest, in the 1990s Kellman and Shipley provided a theory of object perception that speci cally adressed perception of partially occluded objects and illusory contours [START_REF] Philip | A theory of visual interpolation in object perception[END_REF][START_REF] Thomas | Perception of partly occluded objects and illusory gures: Evidence for an identity hypothesis[END_REF][START_REF] Mumford | Elastica and computer vision[END_REF]. [START_REF] Von | Perception of occluding contours: Neural mechanisms and a computational model[END_REF] provided a theory of gural completion which can be applied to both illusory contour gures (as the Kanizsa triangle) and real images.

In the same years Field et al. [1993] introduced through psychophysical experiments the notion of association elds, to formalize the Gestalt principle of good continuation. [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF].

In this way they were able to describe the whole set of points and orientations which can be mutually connected. Through a series of similar experiments (see Figure 3.9), they constructed an association eld, that describes the pattern of position -orientation elements of stimuli that can be associated to the same perceptual unit and represents the elements in the path which can be associated to the central point (see Figure 3.8 (c)). The stimulus in the central position can be joined with other stimula tangent to the lines in the gure but can not be joined with stimula with a di erent direction (see Figure 3.7 (middle)).

Based upon these results, they suggested that local interactions between contour elements follow speci c rules and represent the basis for contour integration in humans.

The visual cortex

The origin of the previous described perceptual phenomena has to be found in the functionality of the primary visual cortex and its structures, which we describe here. The visual system has dedicated pathways through the multiple visual areas, that are related to separate functional measured properties as shape, color, motion and disparity [Hubel andWiesel, 1977, 1962].

The cerebral cortex is the outermost layer of neural tissue in the two cerebral hemispheres and plays a central role in cognitive and sensory processing. It is composed by sensory, motor and association areas. The parts of the cortex that receive sensory inputs are the sensorial areas and the one that serves the sense of vision and receives the information from the visual path is the visual cortex. The visual pathway is represented in Figure 3.9: Test images of psychophysical experiments, used by [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF]. The experiment consists of showing to subjects a grid made of oriented Gabor patches (left). In some images, the grid contains elements aligned over a path and other similar patches randomly distributed. In the other cases, each oriented element is placed randomly. The task for the participant is to detect whether there are or not aligned elements in the grid (right).

Figure 3.10, where the left visual eld is processed in the right half of the brain and viceversa [START_REF] Zeki | A Vision of the Brain[END_REF].

Figure 3.10: The visual pathway. The left visual eld is processed in the right half of the brain. Source: [START_REF] Zeki | A Vision of the Brain[END_REF].

From the retina, the optic nerve runs into the central brain area and makes a connection in the Lateral Geniculate Nucleus (LGN), a specialized area of the thalamus. The LGN is the primary processing center for visual information received from the retina of the eye; in this area all incoming perceptual informations come together, as the visual, the tactile and the auditory ones.

The LGN consist of 6 layers; the top four layers have small cell bodies and form the parvo-cellular layers (Latin: parvus = small). The bottom layers have larger cell bodies and form the magno-cellular layers (Latin: magnus = big). The parvocellular layers contain shape and color information; the magnocellular layers are involved in mediating motion information. The mapping from the retina to the LGN is very precise, each layer is a retinotopic map of the retina.

Then, the axons of the cells of the LGN project the visual signal to the primary visual cortex (V1), also known as the striate cortex, a region in the calcarine sulcus in Brodmann area 17 (see Figure 3.11, left). LGN project to sublayer 4C. Source: [START_REF] Cocci | Spatio-temporal models of the functional architecture of the visual cortex[END_REF]. The visual cortex is composed by 6 layers in a retinotopic structure. Layer 4, which receives most visual input from the LGN, is further divided into 4 layers, labeled 4A, 4B, 4Cα, and 4Cβ. Sub-lamina 4Cα receives most magnocellular input from the LGN, while layer 4Cβ receives input from parvocellular pathways. The sublayer 4C is where most of the axons from the LGN arrive and where the concentration of oriented cells is higher as represented in Figure 3.11 (right).

From V1 projections go to the higher visual layers of the cortex as visual area V2, V3, V4 that correspond to Brodmann area 18 and 19 visualized in Figure 3.11 (left) and the mediotemporal (MT) layer [START_REF] Robert | Central visual pathways[END_REF] as represented in Figure 3.12.

Simple cells in V1

The primary visual cortex processes the orientation of contours by means of the simple cells and other features of the visual signal (as estimation of motion direction) by means of complex cells. Every simple cell is characterized by its receptive eld, classically de ned as the domain of the retina to which the neuron is sensitive. The shape of the response of the cell in presence of a visual input is called receptive pro le (RP) and can be reconstructed by electrophysiological recordings [START_REF] Ringach | Spatial structure and symmetry of simple-cell receptive elds in macaque primary visual cortex[END_REF]. In particular, Hubel and Wiesel rst provided the char-Figure 3.12: Diagram of the visual pathways. Adapted from [Kandel et al., 2000]. acterization of receptive elds in V1 based on their responses [START_REF] David | Receptive elds, binocular interaction and functional architecture in the cat's visual cortex[END_REF].

Simple cells of V1 are sensitive to orientation and are strongly oriented. Most of the V1 simple cells are functionally involved in visual processing as orientation detectors. As was rst noted by [START_REF] Koenderink | The structure of images[END_REF], the receptive eld pro les of simple cells have a remarkable resemblance to Gaussian derivative kernels. Daugman proposed the use of Gabor lters in the modeling of the receptive elds of simple cells in the visual cortex of some mammals [START_REF] John G Daugman | Two-dimensional spectral analysis of cortical receptive eld pro les[END_REF]. Hence their RPs are interpreted as Gabor patches [Daugman, 1985, Jones and[START_REF] Jones | An evaluation of the two-dimensional gabor lter model of simple receptive elds in cat striate cortex[END_REF]. Precisely they are constituted by two coupled families of cells: an even and an odd-symmetric one (see Figure 3.13).

Figure 3.13: Receptive prole of a simple cell and its representation as a even-symmetric and oddsymmetric Gabor lters. Source: [START_REF] Sarti | On the origin and nature of neurogeometry[END_REF].

The Gabor lter is a sinusoid modulated Gaussian (see The imaginary part of the Gabor lter models an odd-symmetric RP while the real part models an even one.

The functional architecture of V1

The functional architecture is de ned as the spatial organization and as the connectivity between neurons in a cortical area. In V1 it is possible to identify the following structures:

• the layered structure: the cortex is formed by 6 horizontal layers and a number of sublayers (see Figure 3.11 (right));

• the retinotopic structure: what is near in the retina is near in the cortex. This is due to a topographic organization implying that the mapping from the retina to the cortex is preserved (see Figure 3.15). It is mathematically described by a logarithmic conformal mapping, as described in Section 3.2.2.1;

• the hypercolumnar structure: it organizes the cortical cells in columns corresponding to di erent parameters (like orientation, color) (see Figure 3.18). This is described in details in Section 3.2.2.2. • the horizontal connectivity: it connects cells with the same orientation belonging to di erent hypercolumns, as described in Section 3.2.3.

The retino-cortical mapping

In this section, we describe the deformation that a signal on the retina obtains when represented on the cortex, estimating a model for the retino-cortical mapping.

The notion of retinotopy based on the anatomy of the visual cortex was rst suggested by [START_REF] Stephen | The retina: the anatomy and the histology of the retina in man, ape, and monkey, including the consideration of visual functions, the history of physiological optics, and the histological laboratory technique[END_REF], then [START_REF] Talbot | Physiological studies on neural mechanisms of visual localization and discrimination[END_REF] con rmed the hypothesis of the existence of a mathematical projection of the retina on the cortex using physiological methods. The study of [START_REF] Daniel | The representation of the visual eld on the cerebral cortex in monkeys[END_REF] provided a source of quantitative data and a mathematical analysis of the retinotopic mapping has been presented in [START_REF] Schwartz | Spatial mapping in the primate sensory projection: analytic structure and relevance to perception[END_REF]. In [START_REF] Schwartz | Spatial mapping in the primate sensory projection: analytic structure and relevance to perception[END_REF] the retinotopic mapping of the striate cortex is mathematically described as a complex logarithmic mapping.

The principal quantitative measure of the structure of the cortical map is the magni cation factor introduced by [START_REF] Daniel | The representation of the visual eld on the cerebral cortex in monkeys[END_REF]. The representation of an image on the visual cortex is characterized by this factor: the portion of the image closer to the center of the eld of view (the fovea) is strongly enlarged when mapped on the cortex [START_REF] Robert B Tootell | Functional anatomy of macaque striate cortex. ii. retinotopic organization[END_REF]. This factor decreases when the distance from the fovea (that is the retinal eccentricity) increases as represented in Figure 3.16. Figure 3.16: A visual stimulus (top left) and a portion of the cortex with corresponding activated regions (top right) [START_REF] Robert B Tootell | Functional anatomy of macaque striate cortex. ii. retinotopic organization[END_REF]. A schematic representation of the magni cation factor property is visualized at the bottom.

De ned ρ the eccentricity, the magni cation factor is determined as:

M a,k (ρ) := k ρ + a (3.4)
where (a, k ) ∈ (0, 1] x R + are two constants which determine the t. In [START_REF] Schwartz | Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding[END_REF][START_REF] Schwartz | Spatial mapping in the primate sensory projection: analytic structure and relevance to perception[END_REF] this mapping was evaluated as a complex logarithmic function:

l a,k (z) := klo (z + a), (a, k ) ∈ (0, 1]xR + and z ∈ C (3.5)
and near the fovea the equation becomes:

l a,k (z) ≈ klo (a) + k z a . (3.6)
The motivation for considering a logarithmic function for the cortical mapping is based on noting that the magnitude of the cortical magni cation factor is roughly inversely proportional to retinal eccentricity. In these equations, k is a normalization factor and a allows to discriminate between the linear (|z| « a) and the logarithmic (|z| » a) map. Thus the complex logarithm of a linear function of eccentricity provides a map from a linear foveal representation to a complex logaritmic surround (see Figure 3.17).

Figure 3.17: The retinotopic mapping under the logarithm function. Concentric circles and radial straight lines are mapped in equidistant cartesian grid on the cortex. Source: [START_REF] Schwartz | Spatial mapping in the primate sensory projection: analytic structure and relevance to perception[END_REF].

A comparison of Figure 3.17 with the experimental evidence displayed in Figure 3.16 suggests that this function provides a good model for the retino-cortical mapping.

In [START_REF] Montobbio | Variational techniques in encoding fmri data for cortical architecture modeling[END_REF] it is shown a procedure designed in order to estimate suitable values for the constants a and k of the two-parameter logarithmic function l a,k as a model for the retino-cortical mapping.

The hypercolumnar structure

In the 70s Hubel and Wiesel discovered that the primary visual cortex is organized in the so called hypercolumnar structure [Hubel andWiesel, 1962, 1977]. This means that for each retinal point (x, ) there is an entire set of cells each one sensitive to a speci c orientation θ of the stimulus.

Figure 3.18: The classical Hubel and Wiesel cube scheme of V1. Cells belonging to the same column share similar receptive pro le characteristics, the orientation hypercolumns are arranged tangentially to the cortical sheet. Source [START_REF] David | Eye, brain, and vision[END_REF].

Since ideally the position on the retina takes values in the plane R 2 and the orientation preference in the circle S 1 , the visual cortex domain can be locally modelled as the product space R 2 xS 1 . At a certain scale and resolution, for each point of the retina (x, ) there exists a whole set of neurons in V1 maximally responding to every possible orientation θ . Each point (x, , θ ) of this 3D space, represents a column of cells in the cortex associated to a retinal position (x, ), all tuned to the orientation given by the angle θ .

In other words, simple cells extract the orientation information at all locations and send a multi-orientation eld to higher levels in the brain. Via the retinotopy, the retinal plane can be identi ed with the 2-dimensional plane R 2 . A visual stimuli I at the retinal point (x, ) activates the whole hypercolumnar structure over that point. All cells re, but the cell with the same orientation of the stimulus is maximally activated, giving rise to orientation selectivity, as visualized in Figure 3.19.

Figure 3.19: The maximal activity is observed for the simple cell sensitives to the direction of the boundary of the visual stimulus. Adapted from [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF]. In presence of a visual stimulus I (x, ), the output of simple cells is computed as the integral of the receptive pro le with the image:

h(x, , θ ) = ψ x, ,θ (x , )I (x , )dx d . (3.7)
The cortex is equipped with a neural circuitry, called the intracortical circuitry, that is able to keep the direction of maximal response of the output of simple cells, achieved at a value θ . The lifted set is discrete and corresponds to the maximal activity of the output of simple cells. It selects the hypercolumns orientation of maximum output in response to a visual stimulus and to suppress all the others. The maximal activity is observed for the simple cell sensitive to the direction of the boundary of the visual stimulus.

In particular, in the hypercolumnar structure, it is possible to identify two types of connectivity between neurons. The intracortical circuitry is able to select the hypercolumns of orientation with maximum output in response to a visual stimulus. Cells with the same orientation belonging to di erent hypercolumns are connected by the horizontal connectivity.

The horizontal connections connect cells with the same orientation belonging to di erent hypercolumns. Correlation techniques have been used [START_REF] Daniel Y Ts'o | Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis[END_REF] to estimate the relation between connectivity and orientation of cells; recently techniques of optical imaging allowed to study the propagation of the neural signal via cortico-cortical connectivity [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. This connectivity allows to obtain the integration process, that is at the base of the formation of illusory contours [Petitot andTondut, 1999, Citti and[START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF].

The pinwheel structure

Optical imaging techniques were developed by [START_REF] Bonhoe | Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns[END_REF] to study the layout of the orientation domains of the cortex. This in-vivo intrinsic-signal technique allowed to obtain the global map of orientations through the acquisition of activity from cells of the super cial layers of V1 (see Figure 3.20 (left)). It is possible to notice in the iso-orientation maps, that contain the areas that best respond to one orientation, the presence of singular points where all colors appear once. These points are arranged like spokes of a wheel and are called pinwheels see Figure 3.20 (right) [START_REF] Petitot | The neurogeometry of pinwheels as a sub-riemannian contact structure[END_REF]. They found that the orientation centres from which the pinwheel-like organization of orientation preference originates are an important feature for organizing the representation of orientation in cortical area.

In Figure 3.20 two features of the orientation centres are shown: in all pinwheels each orientation appears once around the centre; the pinwheels exist in two forms, a clockwise (top right) and a counter-clockwise (top down) Figure 3.20: Left: colourcoded orientation preference map found by [START_REF] Bonhoe | Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns[END_REF]. The preferred orientation for every location is coded according to the scheme shown on the right, where the yellow represents area responding best to a horizontal bar. Source: [START_REF] Bonhoe | Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns[END_REF].

Each orientation map can be obtained using a color scale where the color corresponds to the best orientation stimulus.

Orientation preference map of tree shrew's visual cortex is visualized in Figure 3. 21 [Bosking et al., 1997].

The orientation preference maps contain both linear zones, which correspond to the orientation hypercolumns recorded with the electrodes, and pinwheel structure (see Figure 3.21).

Figure 3.21: Left: orientation preference maps of tree shrew's visual cortex. Orientation preference of each location is color-coded. Right: the orientation preference maps contain both linear zones and pinwheel structure. Source: [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. Since conventional optical imaging is not capable of resolving the ne scale structure of the pinwheel centers, [START_REF] Ohki | Highly ordered arrangement of single neurons in orientation pinwheels[END_REF] used the two-photon calcium imaging technique based on confocal microscopy to con rm that pinwheels exist as a real neurophysiological structure.

The horizontal connectivity

The 3D cortical structure is implemented in the 2D cortical layer as a pinwheel structure, which codes for position and orientations (see Figure 3.21 (left)).

From the neurophysiological point of view, there is experimental evidence of the existence of connectivity between simple cells of di erent hypercolumns. It is the so called long range horizontal connectivity, that is responsible for the cortico-cortical propagation of the neural activity between hypercolumns. These experiments revealed that the linked cells of di erent hypercolumns not only share the angle of tuning, but also the axis corresponding to the orientation is roughly the same. [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] clari ed properties of horizontal connections on V1 of the tree shrew, measuring the cortico-cortical or horizontal connectivity by injecting a tracer (biocytin) in a simple cell and recording the trajectory of the tracer. In Figure 3.22 the propagation through the lateral connections is represented by black points. On the left, the bouton distribution shown over orientation preference maps after an injection into a site with a preferred orientation of 80 degree. The white symbols indicate the location of cells that took up the tracer. In black the boutons, found at sites with all orientation preferences near the injection site, but preferentially at sites with the same orientation preference as the injection site at longer distances. On the right, the results from an experiment in which an injection was made into a site with an orientation preference of 160 degree.

Bosking found that the propagation of the tracer is strongly directional and the direction of propagation coincides with the preferential direction of the activated cells. Moreover, he found a large variability of injections, which however have common stochastic properties as the direction of propagation. Combining the image of the propagation of a tracer through the lateral connections with the orientation maps obtained with optical imaging, they observed that nearby each neuron the connections are relatively isotropic but over larger distances they follow the orientation preferences.

Figure 3.22: Left: bouton distribution shown over orientation preference maps after an injection into a site with a preferred orientation of 80 degree. Right: results after an injection into a site with an orientation preference of 160 degree. Source: [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF] experimentally measured the lateral or horizontal connections of macaques, which is represented in Figure 3.23, showing a very isotropic morphology. Indeed, primates appear to have approximately isotropic horizontal connections (once ocular dominance is taken into account).

These experiments have shown that the propagation of a tracer is collinear to the preferred orientation of cells.

In the next Chapter we present a model for the functional structures described, showing that these are the basis of perceptual completion of contours.

Figure 3.23: The isotropic connectivity map found by [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF] on macaques. The connectivity pattern is almost isotropic. Source: [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF].

I

we recall several models of the functional architecture of the visual cortex expressed in terms of di erential geometry.

We focus in particular on the models of the visual cortex of [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] in the Heisenberg group and of [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] in the Rototranslation group.

We will see how the functional organization of V1 implemented by long-range horizontal connections naturally induces a Sub-Riemannian structure within the Lie group of simple cells. In particular the position/orientation association elds are modelled with a family of horizontal integral curves in the R 2 × S 1 domain.

The propagation along the cortical connectivity is modelled by the propagation kernel of the structure, which are the fundamental solutions of Fokker Planck, Sub-Riemannian Laplacian and isotropic Laplacian equations.

It is well known that the fundamental solution of second order di erential operators is expressed as the probability density of a suitable stochastic di erential equation. This point of view will be considered here and the density kernel will be estimated with the e cient numerical technique of Markov Chain Monte Carlo methods (MCMC).

The classical mean eld equation of Wilson and Cowan can be endowed with these geometric connectivity kernels. In [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF], instruments of spectral analysis have been applied to this modi cated activity equation and they proved that the corresponding stable states coincide with the eigenvectors of the connectivity matrices, obtained by the density kernels. In this way the authors provide a model of grouping and gure ground segmentation, which will be further studied here.

The first di erential models of V1

The term neurogeometry was introduced by Jean Petitot in [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] to indicate the intrinsic geometry immanent to neural connectivity, to be clearly distinguished by the geometry of the connectivity in the external ambient space. This term is at the base of a large class of models, which use instruments of di erential geometry or group theory to model the behavior of the visual cortex starting from its functional architecture.

It is well known since the fundamental studies of Hubel and Wiesel [1962,1977]) that V1 is one of the rst physiological layers along the visual pathway to carry out geometrical measurements on the visual stimulus, decomposing it in a series of local feature components.

The rst geometrical models of the functional architecture of the visual cortex in terms of di erential geometry are due to [START_REF] Koenderink | Representation of local geometry in the visual system[END_REF] and Ho man [1989]. The rst author underlined the di erential action of perceptual mechanisms, in particular with respect to jet spaces arising from linear lters, while the second author proposed to model the hypercolumnar structure de ning ber bundle structure and pointed out the central role of symmetries in perception expressing them in terms of Lie groups. In the ber bundle the retinal plane (x, ) is the basis, while the ber concides with the hypercolumnar variable θ . This ber bundle is the mathematical structure ideally modelling both the retinotopic and hypercolumnar structure.

A variational approach to describe smooth edges was proposed by [START_REF] Mumford | Elastica and computer vision[END_REF], in terms of the elastica functional and stochastic path with random curvature at any point. His model produces a probability distributions in the space R 2 × S 1 of positions and orientations whose probability peaks follow elastica curves.

After that the studies mainly focused on the set of simple cells, responsible for the detection of position and orientation.

Williams and Jacobs [1997b] introduced a stochastic completion algorithm based on suitable probability kernel in the space of positions and orientations associated to the neural representation of images.

In the same 3D space, instruments of di erential geometry and frame theory have been used by [START_REF] Zucker | Di erential geometry from the frenet point of view: boundary detection, stereo, texture and color[END_REF] to propose models of boundary completion.

More recently [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] described the set of simple cells as a ber bundle, relating the association elds of [START_REF] David | Contour integration by the human visual system: Evidence for a local "association eld[END_REF] with the contact geometry introduced by Ho man [1989] and the elastica of [START_REF] Mumford | Elastica and computer vision[END_REF]. They identi ed the structure of this layer of cortical cells with the Heisenberg group, and performed contour completion in this structure minimizing a suitable Lagrangian functional. We will described their model in detail Section 4.1.1.

Then the problem of edge organization in images was addressed in terms of a stochastic process of the type of Mumford, introducing nonlinearities in order to take into account the role of curvature, by August andZucker [2003, 2000]. [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] and [START_REF] Sarti | The symplectic structure of the primary visual cortex[END_REF], proposed to describe the structure of the visual cortex as a Lie group with a Sub-Riemannian metric. We will describe their model in the Section 4.1.2.

In [START_REF] Chossat | Hyperbolic planforms in relation to visual edges and textures perception[END_REF] it is proposed that the cortex is modelled as a space of 2D symmetric tensor and the hypercolumns of orientations encode the structure tensors. The evolution of the activity in the cortex is governed by a Wilson-Cowan equation type [START_REF] Chossat | Hyperbolic planforms in relation to visual edges and textures perception[END_REF] operating under the appropriate mathematical space which takes into account the rotation and translation symmetries.

Finally we recall the work of [START_REF] Van Almsick | From stochastic completion elds to tensor voting[END_REF], Franken et al. [2007], who proposed new models in the same Lie group and the results of Duits andFranken [2009, 2010a,b], [START_REF] Duits | The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d euclidean motion group[END_REF]. They de ned suitable lters, inspired by the shape of cells, which transform any image, de ned in R 2 , into a function de ned on SE(2) or on an higher dimensional Lie group of features. In this way an invertible map, called orientation score, W : 2)) of functions de ned on SE (2). Enhancement of boundary, segmentation and completion are performed in L 2 (SE (2)) and induced on the initial image I via the inverse of the map W . The work of Petitot and Tondut in [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] can be considered as a problem of naturalizing phenomenological models, since they tried to justify the phenomenological model on the basis of the neurophysiological evidence. They described the retinal structure with a plane R and called M the cortical layer, they described the retinotopy by an isomorphism q : R → M. They modelled the hypercolumn over each retinal position (x, ) ∈ R as a full bre of possible orientation u at (x, ), where u ∈ R represents the direction of a boundary of an image mapped on the retina at the point (x, ) and so it is the angular coe cient of the tangent to the boundaries. Formally, if the boundary is described by a 2D curve (x, (x )), then:

L 2 (R 2 ) → L 2 (SE (2)) is derived from the set L 2 (R 2 ) of functions de ned on R 2 to the set L 2 (SE(
u = d dx . (4.1)
In presence of a visual stimulus, all the hypercolumn over a retinal point (x, ) is activated and the simple cell sensible to the direction u has the maximal response. The retinal point (x, ) is lifted to the cortical point (x, , u) and the whole curve is lifted to (x, , u) in the 3-dimensional space R 3 . By condition (4.1), follows d = udx so that all the lifted curves lie in the kernel of the 1-form:

d -udx = 0 (4.2)
This 1-forms is the contact form which de nes the Heisenberg contact structure. This model allows to lift only level lines or boundaries expressed in the form = (x ). In the next Section we will see how to overcome this limitation.

The visual cortex as the Rototranslation group

We will show that the visual cortex is naturally modelled as the Rototranslation group. This group, also known as the 2D Euclidean motion group SE(2), is the group of rotations and translations.

The group law

In Section 3.2.2 we modeled the set of simple cells as a set of lters ψ x, ,θ , where (x, ) ∈ R, represents the position on the retina and the orientation preference θ takes values in S 1 . Hence this family of cells can be identi ed by the product space R 2 × S 1 . A representation of this space is illustrated in Figure 4.1: the half-white/half-black circles represent oriented receptive pro les of odd simple cells, where the angle of the axis is the angle θ of tuning. Given their retinotopic position (x 1 , 1 ) every possible receptive pro le is obtained from a mother kernel by translating it of the vector (x 1 , 1 ) and rotating over itself by an angle θ . It has been noted by [START_REF] John G Daugman | Two-dimensional spectral analysis of cortical receptive eld pro les[END_REF] and [START_REF] Paul | The functional geometry of local and horizontal connections in a model of v1[END_REF] that this set of cells forms a group. Indeed, de ned T x 1 , 1 the translation of the vector (x 1 , 1 ) and R θ the rotation matrix of angle θ :

R θ = cos(θ ) -sin(θ ) sin(θ ) cos(θ ) (4.3)
a general element of the Rototranslation group is de ned as the composition A x 1 , 1 ,θ = T x 1 , 1 • R θ and its application to a point (x, ) brings to:

A x 1 , 1 ,θ x = x + R θ 1 x 1 1 . (4.4) Proposition 1. The set of all parameters { = (x, , θ ) ∈ R 2 × S 1
} forms a group with the operation induced by the composition of elements

A x 1 , 1 ,θ 1 • A x 2 , 2 ,θ 2 : 1 • 2 = (x 1 , 1 , θ ) + R (x 2 , 2 , θ 2 ) = = x 1 1 + R θ 1 x 2 2 T , θ 1 + θ 2 (4.5)
Indeed the + R veri es the group operation axioms.

De nition 1. The set R 2 × S 1 with the group law operation + R form a group called SE(2).

The li ing process

Due to the hypercolumnar structure, over each point (x, ) there is a whole ipercolumn of cells each with a di erent preferred orientation θ .

In presence of a visual stimulus I , characterized by edges or level lines, the whole hypercolumn res, but the maximal response is provided by the cell whose characteristic orientation θ coincides with the angle θ = -arctan(∂ 1 I , ∂ 2 I ) where θ ∈ [0, π ]. We call θ the orientation of the level line. This means that the vector eld de ned as:

X θ = cos(θ (x, ))∂ 1 + sin(θ (x, ))∂ 2 (4.6)
is tangent to the level lines of I at (x, ).

Note that this representation, introduced in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], allows to remove the assumption that all level lines are expressed in the form = (x ), formulated in [START_REF] Petitot | Vers une neurogéométrie. brations corticales, structures de contact et contours subjectifs modaux[END_REF] (see Section 4.1.1).

This process associates to each retinal point (x, ) a cortical point identi ed by the variables (x, , θ (x, )):

(x, ) → (x, , θ ).
(4.7)

In this way every two dimensional curve is lifted to a new curve in the 3D space, as shown in Figure 4.2. In blue it is represented a 2D curve and in red is shown its 3D cortical lifting in the Rototranslation group. It has been proved in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] that each lifted curve can be considered as integral curves of the vector elds:

X 1 = (cos θ , sin θ , 0), X 2 = (0, 0, 1). (4.1.8)
In particular the tangent vector of a lifted curve can not have component in the direction of the orthogonal vector X 3 :

X 3 = (-sin θ , cos θ , 0) (4.1.9)
As a consequence we will call admissible, the curves which are integral curves of these two vector elds with non vanish-ing coe cient in the direction X 1 :

γ (t ) = ( ẋ (t ), ˙ (t ), θ (t )) = X 1 (t ) + k X 2 (t ) (4.1.10) γ (0) = (x 0 , 0 , θ 0 ). (4.1.11)
It has been noted in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] that these curves, projected on the 2D cortical plane are a good model of the association elds (see Figure 4.3). In blue the projections of the integral curves on the x plane. Right: the distribution of the integral curves, modeling the connectivity between points. Adapted from: [START_REF] Sarti | On the origin and nature of neurogeometry[END_REF].

The Sub Riemannian structure

Generalizing De nition 1 considering the application to more than one feature, we will assume to have m vector elds in R n × S 1 . The points of the space will be denoted = (x 1 , • • • , x n , θ ). The vector elds will be denoted as:

X 1 , • • • X m .
Clearly in the present setting m = 2 and n = 2. We call horizontal curves the integral curves of the vector elds

X 1 , • • • X m : γ (t ) = α 1 X 1 (t ) + • • • + α m X m (t ).
(4.1.12)

This condition de nes a choice of planes, subset of the tangent plane at every point:

De nition 2. We call horizontal plane at the point = (x 1 , • • • , x n , θ ) the subspace of the tangent space, generated by X 1 , • • • , X m : H = {α 1 X 1 + • • • + α m X m : α 1 , • • • , α m ∈ R} .
In R 2 × S 1 with our choice of horizontal plane reduces to: A norm can be de ned on the elements of this plane:

H = {α 1 X 1 + α 2 X 2 : α 1 , α 2 ∈ R} .
||α 1 X 1 + • • • + α m X m || = α 2 1 + • • • + α 2 m . (4.1.13)
Consequently we can de ne the length of an admissible curve as the integral:

1 0 ||γ (t )||dt. (4.1.14)
These notions will lead to the de nition of distance as the length of the shortest admissible path connecting two given points. However before giving this de nition it is necessary to prove that couple of points can be indeed connected by admissible curve. This is a consequence of some properties of the horizontal planes. In this sense we will say that the horizontal planes (visualized in Figure 4.5) in each point of the Rototranslation group determine the di erential structure of the space.

Let us now introduce rst order di erential operators with the same coe cients as the vector elds X i . In the speci c 3D model we will have:

X 1 = cos(θ )∂ 1 + sin(θ )∂ 2 , X 2 = ∂ 2 , X 3 = -sin(θ )∂ 1 + cos(θ )∂ 2 . (4.1.15) In general, if X = ( 1 , • • • , n )
for suitable coe cients j we will call:

X = 1 ∂ 1 + • • • + n ∂ n . (4.1.16)
We can de ne an operation of bracket between vector elds as following.

De nition 3. Given two smooth vector elds X , Y we call bracket or commutator:

[X , Y ] = XY -YX . (4.1.17) It is important to note that [Y , Z
] is a st order derivative from the Euclidean point of view, even though it is obtained as di erence of second order derivative.

In the special 3D setting, a direct computation shows that: Source: [START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].

X 3 = [X 2 , X 1 ] (4.1.18)
Note that we have now endowed the set of vector eld with a new operation, which allows to de ne a Lie algebra.

De nition 4. The Lie algebra generated by X 1 , • • • , X m is the set of all directional derivatives, represented as a linear combination of X 1 , • • • , X m and their commutators.

In the 3D model, even if the Lie algebra has 2 generators it contains X 3 = [X 2 , X 1 ], so that it also contains the whole 3 dimensional tangent space at every point [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] (see Figure 4.6).

We say that the Hörmander condition is satis ed if X 1 , • • • , X m and their commutators of any order span the Euclidean tangent space at every given point. In the present case X 1 , X 2 and their commutator X 3 are linearly independent and span the tangent space to R 2 × S 1 at each point.

Hörmander condition is satis ed, then the connectivity condition, that is the possibility of connecting each couple of points with an admissible curve, also holds [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] (see Figure 4.7).

Theorem 1. (Chow theorem, see [START_REF] Bellaïche | The tangent space in sub-riemannian geometry[END_REF]) If X 1 , • • • , X m satisfy the Hörmander condition at every point, for each couple of points , ¯ there exists an horizontal curve γ which connects them [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]. Source: [START_REF] Citti | Harmonic and Geometric Analysis[END_REF].

This Theorem 1 can be applied in R 2 × S 1 . As a consequence a distance between two points (x, , θ ), ( x, ¯ , θ ) can be de ned as the length of the shortest path connecting them. The choice of a family of planes at every point which satis es the Hörmander condition and the de nition of a distance induced by the horizontal paths, de nes a Sub-Riemannian structure on the space.

Stochastic models of cortical connectivity

4.2.1 Subelliptic di erential operators and stochastic differential equations

As a consequence of the Hörmander condition, we can de ne second order operators in terms of the directional derivatives X 1 , • • • , X m instead of the standard partial derivatives. To this end we will de ne the subelliptic gradient as:

∇ R = (X 1 , • • • , X m ). (4.2.1)
Under the assumption that the vector elds X i are self adjoint, we will call subelliptic (or subriemannian) Laplacian:

∆ SR = X 2 1 + • • • + X 2 m , (4.2.2)
where X 2 1 denotes the second directional derivatives in the direction X 1 . Analogously, we call subelliptic heat operator:

H SR = ∂ t -∆ SR . (4.2.3) More generally, if α 1 , • • • , α m ,, σ 1 , • • • , σ m are constants we call
Fokker Plank equation:

L SR,n = ∂ t + α 1 X 1 + • • • + α m X m -σ 2 1 X 11 -• • • -σ 2 m X mm .
(4.2.4)

If the vector elds X i satisfy the Hörmander condition, then each of these operator have a smooth fundamental solution. This condition is strictly related to the connectivity result, since the fundamental solution with pole at a point is smooth and positive on the set of points which can be connected to with an admissible path.

It is well known that the fundamental solution can be obtained as a solution of the Langevin equation. The m-dimensional Langeving equation has the general form:

γ =α 1 X 1 + • • • + α m X m +N (0, σ 2 1 ) X 1 + • • • + N (0, σ 2 m ) X m (4.2.5)
where N (0, σ i 2 ) is a normally distributed variable with zero mean and variance equal to σ 2 i . We refer to [START_REF] Oksendal | Stochastic di erential equations: an introduction with applications[END_REF] for the following classical theorem:

Theorem 2. If p is the transition probability of the stochastic process de ned by the Langevin equation, from the initial state 0 at time 0, then p is the fundamental solution of the Fokker Planck equation with pole at 0 .

Overview of stochastical cortical models present in literature

A stochastical approach to continuation of boundaries was proposed by [START_REF] Mumford | Elastica and computer vision[END_REF]. In his model edges of natural images are represented as planar curves whose the curvature is expressed as white noise and the direction function as a one dimensional Brownian motion. In this way contours can be dened by the stochastic process:

             dx = cos (θ )dt d = sin(θ )dt dθ = σdW (t ) (4.2.6)
where σ de nes the amount of deviation of the particle from the straight path. When σ = 0 particles never deviate from straight paths, when σ → ∞ the motion is completely random. In Figure 4.8 examples of di erent random paths (8, 16, 32) resulting from simulating the process in the system (4.2.6) for two di erent values of σ . When σ is higher the deviation of the particle from the straight path is more evident. Called p the probability of transition p(x, , t ) of the random paths, by Theorem 2 the deterministic partial di erential equation modeling the evolution in the time of p(x, , t ) is the Fokker-Planck equation:

∂ t p = -cos (θ ) ∂ ∂x p -sin(θ ) ∂ ∂ p + σ 2 2 ∂ 2 ∂θ 2 p. (4.2.7)
This is a probability distribution in the space R 2 × S 1 of positions (x, ) ∈ R 2 and orientation θ ∈ S 1 whose probability peaks follow elastica curves. Following Mumford's ideas that contour continuation can be modelled by stochastic process Williams and Jacobs [1997b,a] used the stochastic processes to implement a mechanism of stochastic completion. In their approach of stochastic completion elds [Williams andJacobs, 1997b,a, Thornber and[START_REF] Karvel | Analytic solution of stochastic completion elds[END_REF] they computed the likelihood that a completion joining two contour fragments passes through any given position and orientation within the image plane. This likelihood represents a measure of the saliency of a possible contour.

They also provided a stable nite di erence scheme for solving the underlying Fokker-Planck equation (4.2.7) identi ed by Mumford. In particular, in Williams and Jacobs [1997b] were computed by large kernel convolution with lter generated by Monte Carlo simulation. In Figure 4.9 an example of the stochastic completion eld applied to a Kanizsa example of illusory contours, the Kanizsa triangle. A generalization of the stochastic process of by Mumford, was proposed by August andZucker [2003, 2000], who took in consideration also curvature, and will be described in detail in the next section.

Connectivity kernels as models of cortical connectivity

From the neurophysiological point of view, there is experimental evidence of the existence of connectivity between simple cells belonging to di erent hypercolumns. Hence connectivity can be summarized as preferentially linking neurons with cocircularly aligned receptive elds.

The propagation along the connectivity can be modeled as the stochastic counter part of the deterministic curves de ned in equation (4.1.10) for the description of the output of simple cells. If we assume a deterministic component in direction X 1 (which describes the long range connectivity) and stochastic component along X 2 (the direction of intracolumnar connectivity), the equation can be written as follows:

(x , , θ ) = X 1 + N (0, σ 2 ) X 2 (4.2.8)
where N (0, σ 2 ) is a normally distributed variable with zero mean and variance equal to σ 2 . By Theorem 2 the probability density of this process, denoted by p, is the solution of the time dependent Fokker Planck operator:

L SR = ∂ t -X 1 -σ 2 X 22 .
(4.2.9)

In [START_REF] Cocci | Spatio-temporal models of the functional architecture of the visual cortex[END_REF] it has been proposed to integrate this kernel in time, in order to obtain a model of cortical connectivity. Integrating in time the density p 1 , we obtain a time independent kernel:

Γ 1 (x, , θ ) = +∞ 0 p 1 (x, , θ , t )dt (4.2.10)
which is the fundamental solution of the Fokker Planck operator

F P SR = X 1 + σ 2 X 22 . (4.2.11)
The kernel Γ 1 is strongly biased in direction X 1 and not symmetric; a new symmetric kernel can be obtained as following:

ω 1 ((x, , θ ), (x , , θ )) = 1 2 Γ 1 ((x, , θ ), (x , , θ )) + 1 2 Γ 1 ((x , , θ ), (x, , θ ).
(4.2.12)

In Figure 4.10 (a) it is visualized an isosurface of the simmetrized kernel ω 1 , showing its typical twisted butter y shape. The kernel ω 1 has been proposed in [START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF] as a model of the statistical distribution of edge co-occurrence in natural images, as described in [START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF]. The similarity between the two is proved both at a qualitative and at a quantitative level (see [START_REF] Sanguinetti | A model of natural image edge co-occurrence in the rototranslation group[END_REF]) (see also If we assume that intracolumnar and long range connections have comparable strength, the stochastic equation equation (4.2.8) reduces to: where N (0, σ i 2 ) are normally distributed variables with zero mean and variance equal to σ 2 i . In this case the speed of propagation in directions X 1 and X 2 is comparable. The associated probability density is the fundamental solution of the Sub-Riemannian Heat equation [START_REF] David | Estimates for the heat kernel for a sum of squares of vector elds[END_REF]. The integral in time of this probability density:

(x , , θ ) = N (0, σ 2 1 ) X 1 + N (0, σ 2 2 ) X 2 (4.2.13)
Γ 2 (x, , θ ) = +∞ 0 p 2 (x, , θ , t )dt (4.2.14)
is the fundamental solution of the Sub-Riemannian Laplacian, de ned in (4.2.2).

It is a symmetric kernel, so that we do not need to symmetrize it and we use it as a model of the connectivity kernel:

ω 2 ((x, , θ ), (x , , θ )) = Γ 2 ((x, , θ ), (x , , θ )).
(4.2.15)

In Figure 4.11 (a) it is shown an isosurface of the connectivity kernel ω 2 .

Let us nally note that the kernel introduced here have a strongly anysotropic behavior, if compared with the standard Riemannian kernel, fundamental solution of the operator:

L = σ 2 1 X 11 + σ 2 2 X 22 + σ 2 3 X 33 .
As it is well known this kernel is associated to an isotropic stochastic equation:

(x , , θ ) = N (0, σ 2 1 ) X 1 + N (0, σ 2 2 ) X 2 + N (0, σ 2 3 ) X 3 , (4.2.16)
where N (0, σ i 2 ) are normally distributed variables with zero mean and variance equal to σ 2 i . One of its level sets is represented in 

Our contribution to the model

Even though the stochastic approach was already applied to the visual cortex, here we provide a new contribution to the model, clarifying how it is neurally implemented in the cortex, extending it in high generality and providing a solid numerical implementation.

Propagation, stochastic paths and connectivity kernels

The propagation of each visual signal in the cortical architecture will be described as a realization of stochastic sample functions. In particular if a tracer is injected in the cortex, each single injection can be described with stochastic paths. The probability density obtained as a combination of Fokker Plank is an integration of stochastic paths and describes the connectivity kernel.

General time independent kernels

The technique we have presented here is very general and can be applied to obtain fundamental solutions of general time independent operators.

If X 1 , • • • X m are di erential operators in R n × S 1 , α 1 , • • • , α m σ 1 , • • • , σ m are constants, we call: F P SR,n = α 1 X 1 + • • • + α m X m -σ 2 1 X 11 -• • • -σ 2 m X mm . (4.3.1)
the time independent Fokker Planck operator associated to the time dependent operator L SR,n de ned in (4.2.4).

Proposition 2. Let us denote = (x 1 , x n , θ ) the points of R n × S 1 . If p is the fundamental solution of the operator L SR de ned in (4.2.4) and:

Γ( , 0 ) = +∞ 0 p( , 0 , t )dt,
then Γ is the fundamental solution of the operator (4.3.1).

Numerical approximations of the kernels

In this section we numerically approximate the connectivity kernels ω i , de ned in Section 4.2, with a technique partially inspired by [Williams and Jacobs, 1997b] .

We obtain the discrete fundamental solution Γ 1 of equation ( 4.2.10) by developing random paths from the numerical solution of the system (4.2.8), that can be approximated by:

             x s+∆s -x s = ∆s cos(θ ) s+∆s -s = ∆s sin(θ ), s ∈ 0, ..., H θ s+∆s -θ s = ∆sN (σ , 0) (4.3.2)
where H is the number of steps of the random path and N (σ , 0) is a generator of numbers taken from a normal distribution with mean 0 and variance σ . In that way, the kernel is numerically estimated with Markov Chain Monte Carlo methods (MCMC) [START_REF] Robert | Monte Carlo statistical methods[END_REF]. Various realizations n of the stochastic path will be given solving this nite di erence equation n times; the estimated kernel is obtained averaging their passages over discrete volume elements, as described in detail in Higham [2001], [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF]. In particular, we rst x a discretization step ∆s = 1 without loss of generality; then we simulate n several discrete-times random paths, assigning a value between 0 and 1 corresponding to the number of paths that passed through it, divided by n. This provides a distribution over the cells that, for a large value of n, gives a discrete approximation of the connectivity kernel [START_REF] Cocci | Cortical spatiotemporal dimensionality reduction for visual grouping[END_REF]. Proceeding with the same methodology the numerical evaluation of fundamental solution Γ 2 of the hypoelliptic Laplacian (equation (4.2.14)) is obtained and the system (4.2.13) discretized:

             x s+∆s -x s = ∆sN (σ 1 , 0) cos(θ ) s+∆s -s = ∆sN (σ 1 , 0) sin(θ ), s ∈ 0, ..., H θ s+∆s -θ s = ∆sN (σ 3 , 0) (4.3.3)
where and σ 3 is the variance in the θ direction. The kernel represented in Figure 4.11 (a) is obtained by the numerical integration of that system and averaging as before the resulting paths.

Finally, the same technique can be potentially adapted to study the fundamental solution of general operators of the form (4.3.1).

The cortical activity equation

The most classical equation describing the cortical activity is the classical mean eld equation of Ermentrout and Cowan [START_REF] Bard | Large scale spatially organized activity in neural nets[END_REF] and Bresslo and Cowan [START_REF] Paul C Bresslo | What geometric visual hallucinations tell us about the visual cortex[END_REF][START_REF] Paul | The functional geometry of local and horizontal connections in a model of v1[END_REF]. This equation describes the evolution of the cortical activity and depends on a connectivity kernel. In [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] the relation between the stable states of these equation and perceptual units of the input has been established. The discrete output h of the simple cells, selects in the cortical space (x, , θ ) the set of active cells and the cortical connectivity, restricted on this set, de nes a neural a nity matrix. The eigenvectors of this matrix describe the stationary states of the mean eld equation hence the emergent perceptual units. The system will tend to the eigenvector associated to the highest eigenvalue, which corresponds to the most important object in that scene. Mathematically the approach is strongly linked to spectral analysis techniques for localitypreserving embeddings of large data sets [START_REF] Ronald R Coifman | Di usion maps[END_REF][START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF][START_REF] Sam | Nonlinear dimensionality reduction by locally linear embedding[END_REF], for data segregation and partitioning [START_REF] Perona | A factorization approach to grouping[END_REF][START_REF] Meila | A random walks view of spectral segmentation[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF], grouping process in real images [START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF].

We have described in Section 4.1 that in presence of a visual stimulus cells aligned to its boundary give the maximal response. We will assume that a discrete number of cells N are maximally activated and we will denote them (x i , i , θ i ) for i = 1, ..., N .

In Figure 4.12 we show as an example the cells responding to a Kanizsa gure, represented with their Gabor-like receptive pro les.

Following [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] the cortical connectivity is restricted to this discrete set and reduces to a matrix A:

A i,j = ω ((x i , i , θ i ), (x j , j , θ j )).
(4.4.1)

Figure 4.12: The Kanizsa triangle (left) and the maximally responding odd lters (right).

In this discrete setting the mean eld equation for the cortical activity reduces to:

du dt = -λu (i) + s N j=1 A(i, j)u (j) (4.4.2)
where s is a sigmoidal function and λ is a physiological parameter. The solution tends to its stationary states, which are the eigenvectors of the associated linearized equation:

N j=1 A i,j u j = λ s (0) u i (4.4.3)
Hence these are the emergent states of the cortical activity, that individuate the coherent perceptual unit in the scene and allow to segment it. This is why we will assign to the eigenvalues of the a nity matrix the meaning of a saliency index of the objects. Since we have de ned three di erent kernels di erent a nity matrices will be de ned. However all kernels are real and symmetric, so that the matrix A is a real symmetric matrix A i,j = A j,i . Their eigenvalues are real and the highest eigenvalue is de ned. The associated principal eigenvectors emerge as symmetry breaking of the stationary solutions of mean elds equations and they pop up abruptly as emergent solutions. The rst eigenvalue will correspond to the most salient object in the image.

Individuation of perceptual units

Since the three di erent kernels described in Section 4.2 assign di erent role to di erent direction of connectivity, the di erent a nity matrices and their spectrum will re ect these di erent behavior. Consequently the resulting data set partitioning will be stronger in the straight direction using the Fokker Planck ω 1 kernel, or will allow rotation using the ω 2 kernel (see also [START_REF] Cocci | Cortical spatiotemporal dimensionality reduction for visual grouping[END_REF] for a deeper analysis). Using the kernel ω 3 we expect an equal grouping capability in the collinear direction and in the ladder direction.

In Figure 4.13 we visualize the a nity matrix of the image presented in Figure 4.12. It is a square matrix with dimensions NxN, where N is exactly the number of active patches. It represents the a nity of each patch with respect to all the others.

The structure of the a nity matrix is composed by blocks and the principal ones corresponds to coherent objects. On the right we visualize the complete set of eigenvalues in a graph: (eigenvalue number, eigenvalues). 12, that contains informations about the a nity of an active patch with respect to all the others. On the right the set of its sorted eigenvalues.

The rst eigenvector can be recognized as the emergent perceptual unit, but here we also study the role of the other eigenvectors. They do not describe an ordered sequence of gures with di erent rank. However, their presence is important, above all when two eigenvalues have similar values. In this case, small deformation of the stimulus can induce a change in the order of the eigenvalues and produce a sudden emergence of the correspondent eigenvector with an abroupt change in the perceived image.

This is in good agreement with the perceptual characteristics of salient gures of temporal and spatial discontinuity, since they pop up abruptly from the background, while the background is perceived as indi erentiated [START_REF] Merleau | Phenomenology of perception[END_REF]. Spectral approaches give reason to the discontinuous character of gure-ground articulation better than continuous models, who instead introduce a graduality in the perception of gure and background [START_REF] Lorenceau | Form constraints in motion binding[END_REF]. To nd the remaining objects in the image, the process is then repeated on the vector space orthogonal to p, the second and the following eigenvectors can be found, until the associated eigenvalue is su ciently small. In this way only n eigenvectors are selected, with n < N , this procedure reduces the dimensionality of the description. This procedure neurally reinterprets the process introduced by Perona and Freeman in [START_REF] Perona | A factorization approach to grouping[END_REF].

antitative kernel validation

I

we will compare kernels previously described with neurophysiological data of horizontal connectivity [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF][START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF]. We also perform a quantitative validation of the kernel considering the experiment of Gilbert et al. [1996], showing the link between the connectivity kernel and cell's response. This work has been published in Favali et al. [2016b].

Validation of the model of connectivity

As described in Favali et al. [2016b], we will introduce here various substantial di erences from the techniques in literature in the de nition of a mathematical model of gure-ground segmentation. The Fokker Planck and the Laplacian kernel in the motion group are already largely used for the description of the connectivity, since they qualitatively t the experimental data [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF]. We perform a quantitative tting between the computed kernels and the experimental ones, in order to validate the model. We show that the cortical architecture is a realization of stochastic sample functions and how through this realization we can construct the connectivity kernel. We make a comparison between the fundamental solution of the Fokker Planck equation with experimental data of [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF], [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF], and Gilbert et al. [1996], showing how the stochastic paths are implemented in the neural network. In particular, we consider the distribution of a tracer through lateral connection modeling each injection with stochastic paths. The bouton distributions are realizations of a stochastic process, in particular of a random walk in R 2 xS 1 space. We will show how the probability density obtained as a combination of Fokker Plank is an integration of stochastic paths. Moreover we propose to use also the Subelliptic Laplacian kernel, in order to account for the variability of connectivity patterns.

Stochastic paths and cortical connectivity

In this section, we describe the cortical architecture as a realization of stochastic sample functions, in particular we will see how the connectivity is associated to random paths. We will show that the position of presynaptic boutons in the images of [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] can be seen as the realization of stochastic paths via the anatomy. Every single random walk starts from the injection site of a tracer and gives the position of a set of boutons, as visualized in Figure 5.2 (a). Finally, the probability density, that is described as a kernel, is obtained as the integration of all the random paths. From the neural point of view this integration can be interpreted as the action of a columnar population and provides an estimation of the density of the boutons.

Let's consider an hypercolumn of the ice cube of visual cortex, it is composed by approximately 100 neurons. In the connectivity map in Figure 5.2 (a) we notice the presence of an average of 6 boutons. In this way, the number of possible connections in the visual cortex is 100 6 and in our model we use a number of paths compatible with this data. Now we make a comparison between the connectivity kernel previously dened and the experiments of Bosking et al. [1997] and [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF].

In Figure 5.1 we can see the results of [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF]. On the left the mean and standard deviation of the distribution of long-range connections of 7 injection sites considering the data of [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF], in the middle the expected median distribution for 7 cells from the curve model described in [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF]. They noticed that the standard deviation is nonmonotonic, nding two local minima at approximately +30 and -30 degrees. Con rming their results, we show that our model implies a nonmonotonically changing variance as the orientation di erence increases. In particular, on the right of Figure 5.1 it is visualized the mean and the standard deviation of 7 random paths, at a xed orientation. We notice the presence of the nonmonotonicity of the standard deviation and that the two local minima at almost 30 degrees are preserved.

Moreover the fact that the mean and the variance of the model are similar to the experimental data suggests that the choice of the normal distribution allows to nd physiological values. For these reasons, the connectivity represents the anatomical implementation of random paths.

Figure 5.1: From left to right: the mean connection distribution computed in [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF] from [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF], the expected median distribution for seven cells and the results of our model considering 7 di erent random paths. It is evident that also in our model the standard deviation is nonmonotonic with two local minima at +30 and -30 degrees.

We will now study in which extent kernels ω i , i = 1, 2 are models of connectivity. The kernel ω 3 is used for comparison and to show that an uniform Euclidean kernel does not capture the anysotropic structure of the cortex. Random paths that we compute through MCM are implemented in the functional architectures in terms of horizontal connectivity of a single cell. On the other hand the connectivity of an entire population of cells corresponds to the set of all single cells connectivities, then to the Fokker Planck fundamental solution.

A rst qualitative comparison between the kernels ω 1 , ω 2 and the connectivity pattern has been provided in [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF]. Here we follow the same framework, but we propose a more accurate, quantitative comparison.

As described in 3.2.2.3, the 3D cortical structure is implemented in the 2D cortical layer as a pinwheel structure (see Figure 5.2 (b)). The pinwheel structure has a large variability from one subject to one other, but within each species common statistical properties have been obtained. Cortico-cortical connectivity has been measured by [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] by injecting a tracer in a simple cell and recording the trajectory of the tracer, represented by black points in Figure 5.2 (a). Bosking found a large variability of injections, which however have common stochastic properties as the direction of propagation, a patchy structure with small blobs at approximately xed distance and the decay of the density of tracer along the injection site.

We model each injection with stochastic paths solutions of equation (4.2.8). Then we evaluate the stochastic paths on the pinwheel structure.

Due to the stochastic nature of the problem, we do not compare pointwise the image of the tracer and the stochastic paths but we average them on the pinwheels. We partition both the images of the tracer and of the stochastic paths in M regions corresponding to the pinwheels:

I = ∪ i R i (5.1.1)
and for every R i we compute the density of tracer DT i and the density of the stochastic paths DP i . The two vectors DT i and DP i are then rescaled in such a way to have unitary L 2 -norm and the mean square error is computed:

E = 1 M M i=1 DP i -DT i 2 (5.1.2)
The free parameters of the model are the value of the standard deviation, the number of paths, the number of steps, appearing in equation (4.2.8) and in the system (4.3.2). The best t between the experimental and simulated distributions has been accomplished by minimizing the mean square error by varying these parameters.

Due to the di erent role of the directions X 1 and X 2 in the de nition of these kernels, the Sub-Riemannian Laplacian paths and the Fokker Planck paths have di erent structure.

The Subriemannian Laplacian allows di usion in direction X 2 , allows the changement of the angle and it can be used to describe short range connectivity. Hence it is responsible for the central blob, in a neighborhood of the injection points (see Figure 5.2 (c)). The Fokker Planck kernel produces an elogated, patchy structure and seems responsible for the long range connection (see Figure 5.2 (d)). We apply our quantitative t only to the long range connectivity, hence discarding the tracer in a neighborhood of the injection. For this reason the Sub-Riemannian Laplacian is not involved in the validation of the model.

The method is rst applied to t the image of the tracer taken by [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] (see Figure 5.2 (a)). All the kernels are evaluated on the pinwheels provided in the same paper (see gure 5.2 (b)), to obtain a patchy structure. In order to apply the formula (5.1.1), we cover both the image of the tracer and the Fokker Planck with a regular distribution of rectangles, with edges equal to the mean distances between pinwheels (see Figure 5.2 (c),(d)) (clearly we do not cover the central zone, where we can not t the Fokker Planck kernel). The resulting error value is E < 8%, showing that the model accurately represents the experimental distribution.

A similar procedure has been applied to the image of the tracer provided in [START_REF] Angelucci | Circuits for local and global signal integration in primary visual cortex[END_REF] (see Figure 5.3 (a)). The result of Angelucci is obtained with various injections in a neighborhood of a pinwheel, so that all orientations are present, and the tracer propagates in all directions. In this case we do not have natural pinwheels, hence we use arti cial pinwheels, obtained with the algorithm presented in [START_REF] Barbieri | An uncertainty principle underlying the functional architecture of v1[END_REF] (see Figure 5.3 (b)), with the constraint that the mean distance between the arti cial pinwheels is equal to the mean distance between the blobs produced by the tracer. Here we consider Fokker Planck paths with all directions, to obtain the apparent isotropic di usion. Also in this case we cover with rectangles and perform a best t and the minimum error value is E < 8%, (see gure 5.3 (c), (d). In his paper [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] showed a famous image, with the tracer superimposed to the piwheel structure (see Figure 5.4 (a)). In particular in this case we have the tracer and the pinwheel of the same animal. This allows to go below the scale of the pinwheel and we correctly recover the orientation with the pinwheel (see Figure 5.4 (b)). The estimated kernel is again a combination of Fokker Plank. As before, we focus on orientations, hence we only model the long range part of the image, discarding the central blob. The evaluation of the error is made with squared regions at a scale smaller that the pinwheel and the error goes below E < 9%.

Figure 5.4: In (a) the tracer superimposed to the piwheel structure found by [START_REF] William H Bosking | Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex[END_REF] and in (b) the isocontours obtained from a combination of Fokker Planck.

Perceptual facilitation and density kernels

In order to obtain a stable and deterministic estimate of this stochastic model, we use the density kernel, which is a regular deterministic function, coding the main properties of the process. We perform in Favali et al. [2016b] a quantitative validation of these regular kernel comparing to an experiment of [START_REF] Charles D Gilbert | Spatial integration and cortical dynamics[END_REF].

This work studies the capability of cells to integrate information out of the single receptive eld of the cells. This integration process is due to the long-range horizontal connections, hence it can be used to validate our model of long range connectivity. As we have recognized in the previous section it is the Fokker Planck kernel which can be considered as a model for long range connectivity, hence we use here this kernel.

Figure 5.5: The experiment of Gilbert et al. [1996], with the stimulus composed by randomly placed and oriented lines (left) and the black histogram of cell's response (middle). On the right the histogram evaluated from the probability density in response to the same distribution of lines.

In Figure 5.5 (left) it is shown the results of Gilbert et al. [1996], where it is visualized the cell's response to randomly placed and oriented lines in a black histogram (middle). A ver-tical line is present in the receptive eld of a cell selective to this orientation and the intensity of its response is represented in the rst column of the histograms. If the stimulus is surrounded by random elements aligned with the rst one, the cell's response increases (respectively in the second, third and the last column of the histograms). When the other random elements are not aligned with the xed one (as in the fth, sixth, seventh columns), the cell's response decreases because it reects an inhibitory e ect.

On the right in the blue histogram we evaluate the probability density modelled by the kernel in equation (4.2.12) in presence of the same con guration of elements. The same trend is obtained considering the probability density distribution, as visualized in Figure 5.5 (right). In order to consider the inhibitory e ect we evaluate the kernel with 0 mean. A quantitative analysis of the di erences between them have been evaluated considering the mean square error between the two normalized histograms. The error of 8% underlines how this connectivity kernel well represents neural connections.

6 Generalization of the model of cortical connectivity to R n × S 1 I C 4 we presented a cortical model in R 2 × S 1 , and recognized that the theoretical instruments, which support the model, can be extended to a general space R n × S 1 . This remark has an interest which goes beyond the theoretical content of the theorems we stated. Indeed the visual cortex has a modular structure and its cells are capable to extract other features, as contrast, curvature, scale. This is why we will now include in the model of cortical connectivity and of individuation of perceptual units other features. We present how to consider in the model of connectivity the feature of intensity [Favali et al., 2016a] and an extension to a 5 dimensional kernel in the lifted space of positions, orientations, intensities and curvatures [Abbasi-Sureshjani et al., 2016a].

In chapter 7 we will present applications of these models to the problem of individuation of perceptual units in illusory gures and to the analysis of retinal vessel, for which these features are relevant.

4-D kernel -intensity integration

In order to include the intensity term in the model of cortical connectivity, we use the Euclidean distance between the intensities of two corresponding points. If f (x, ) represents the image intensity at position (x, ) the stimulus is lifted to the extended 4-dimensional feature space:

(x, , θ ) → (x, , θ , f (x, )).
An admissible curve in this space is de ned as the solution of the following di erential equation:

γ (s) = (k 1 (s) X 1 + k 2 (s) X 2 + k 4 (s) X 4 )(γ (s)) γ (0) = (x 1 , 1 , θ 1 , f 1 ), γ (1) = (x 2 , 2 , θ 2 , f 2 ) (6.1.1)
where the vector elds are:

X 1 = (cos θ , sin θ , 0, 0), X 2 = (0, 0, 1, 0),

X 4 = (0, 0, 0, 1) (6.1.2)
and the coe cients k 1 and k 2 represent a distance in the (x, , θ ) domain and k 4 is an Euclidean distance. Starting from these vector elds we can model the cortical connectivity, that can be described as the probability of connecting two points in the cortex, directly applying the theory developed in Section 3.

The stochastic counterpart of the curves in equation ( 6.1.1) can be represented as:

(x , , θ , f ) = X 1 + N (0, σ 2 1 ) X 2 + N (0, σ 2 2 ) X 4 (6.1.3)
where N (0, σ 2 1 ), N (0, σ 2 2 ) are normally distributed variable with zero mean and variance equal to σ 2 i . It is a particular case of equation (4.2.5), so that Theorem 2 and Proposition 2 can be applied and we could use our general theory to nd the fundamental solution of the operators L SR,4 and F P SR,4 in R 3 × S 1 and the 4D symmetrized kernel ω 4 in R 3 × S 1 . Note that these operators are:

L SR,4 = ∂ t + X 1 -σ 2 2 X 22 -σ 2 4 X 44 (6.1.4)
and:

F P SR,4 = X 1 -σ 2 2 X 22 -σ 2 4 X 44 . (6.1.5)
Let us explicitly note that the vector elds X 1 , X 2 , X 3 from one side and X 4 depend on completely di erent variables. This allows to simplify the study when considering the kernel associated to the operator L SR,4 .

Its fundamental solution satis es the following property:

Proposition 3. The fundamental solution p 4 of the operator L SR,4 can be explicitly written as:

p 4 = p 1 p f ,
where p 1 is the fundamental solution of the operator L SR de ned in (4.2.9) and p f is the fundamental solution of the operator ∂ t -X 44 , which is a Gaussian bell.

Proof. For the sake of simplicity we make the computation only far from the pole:

∂ t (p 4 ) = ∂ t (p 1 p f ) = ∂ t (p 1 )p f + p 1 ∂ t (p f ) = = (-X 1 + X 22 )p 1 p f + p 1 X 44 p f = (-X 1 + X 22 + X 44 )(p 1 p f ).
Hence L SR,4 (p 1 p f ) = 0 far from the pole, which proves the assertion.

As a consequence, applying Proposition 2 the fundamental solution Γ 4 of the operator F P SR,4 can be computed as:

Γ 4 = ∞ 0 p 4 (x, , θ , f , t )dt,
and the associated connectivity kernel ω 4 can be obtained by symmetrization.

In order to simplify, we will approximate the connectivity kernel ω 4 as the product of the connectivity kernel ω 1 obtained by symmetrization of the 3D Fokker Planck fundamental solution in equation (4.2.12) with a Gaussian bell in the variables f :

ω f ( f i , f j ) = e (-1 2 ( f i -f j σ 2 )) 2 . (6.1.6)
The nal connectivity kernel can be written as the product (as these are probabilities) of the two components:

ω 4 ((x i , i , θ i , f i ), (x j , j , θ j , f j )) = ω 1 ((x i , i , θ i ), (x j , j , θ j ))ω f ( f i , f j ). (6.1.7)
Starting from the connectivity kernel de ned previously, it is possible to extract perceptual units from images by means of spectral analysis of suitable a nity matrices. The eigenvectors with the highest eigenvalues are linked to the most salient objects in the scene [START_REF] Perona | A factorization approach to grouping[END_REF]]. The connectivity is represented by a real symmetric matrix A i,j :

A i,j = ω 4 ((x i , i , θ i , f i ), (x j , j , θ j , f j )) (6.1.8)
that contains the connectivity information between all the lifted points. The eigenvectors of the a nity matrix are interpreted as perceptual units [Sarti andCitti, 2015, Favali et al., 2016b]. This approximation allows us to use the kernel ω 1 , already numerically computed in Section 4.3.3. The intensity-based kernel ω f , the nal connectivity kernel ω 4 and the a nity matrix A, were calculated using equations (6.1.6), (6.1.7), (6.1.8) respectively.

6.2 5-D kernel -curvature integration 6.2.1 Review of Curvature models According to the experiments of [START_REF] Dobbins | Endstopped neurons in the visual cortex as a substrate for calculating curvature[END_REF][START_REF] Dobbins | Endstopping and curvature[END_REF], the primary visual cortex not only includes the orientation selective cells, but it is also sensitive to the curvature at each point. According to this conjecture it is the role of the endstopping cell to detect curvature. The role of curvature within the problem of edge organization in images was also addressed by August andZucker [2003, 2000]. Their main idea was to use the positions orientations space and Mumford's Fokker-Planck equation de ned in (4.2.7) for the propagation of the direction information. Including the curvature, leads to the representation of the image in the space R 2 × S 1 × R. It is worthwhile to note that this 4D space does not coincide with the 4D one studied in the previous section, since the role of the variables is not the same. When the curvature of the structures present in the image is high, this method allows to obtain better results as visualized in Figure 6.1. In [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF] is given a justi cation based on biological evidence for the consideration of the term of curvature. This framework leaves the curve model as a free parameter, allowing to introduce a new stochastic model for the detection of curvature to better capture the shape of the curves. Source: [START_REF] August | Sketches with curvature: The curve indicator random eld and markov processes[END_REF].

In computer vision and more speci cally in retinal image analysis, several methods have been introduced for measuring the curvatures of curvilinear structures (i.e. blood vessels) [START_REF] Angelos A Kalitzeos | Retinal vessel tortuosity measures and their applications[END_REF]. The classical methods that measure the curvatures locally need an initial segmentation, centreline extraction, and separation of segments located between junctions. It is then followed by tting curves to the segments and by curvature measurement using equation (6.2.3) [START_REF] William E Hart | Measurement and classi cation of retinal vascular tortuosity[END_REF], Annun-ziata et al., 2016[START_REF] Clare M Wilson | Computerized analysis of retinal vessel width and tortuosity in premature infants[END_REF]. The drawback of all these methods is their dependency to initial preprocessing and segmentation steps, which may contain errors and missing information. More importantly, the curvature information is not available for junction points because it is not possible to t a curve to these points where more than one elongated structure meets.

To solve these problems, [START_REF] Bekkers | Curvature based biomarkers for diabetic retinopathy via exponential curve ts in se (2)[END_REF] proposed a local curvature measurement technique by locally tting exponential curves [START_REF] Duits | Locally adaptive frames in the rototranslation group and their applications in medical imaging[END_REF] to the lifted image in SE(2). The exponential curves in SE(2) are interpreted as straight lines considering the curved geometry of SE (2) and they have constant tangent vectors relative to the rotating frame { X 1 , X 2 , X 3 }. The tangent vectors of the exponential curve that best t the data in the lifted image are obtained by eigensystem analysis of the Gaussian Hessian (expressed in the rotating frame). Then they directly de ne the curvature value of their spatial projections [START_REF] Franken | Crossing-preserving coherence-enhancing di usion on invertible orientation scores[END_REF]. This approach makes it possible to assign to each location and orientation in the lifted image a curvature value, without needing explicit curve parameterizations. Such curvature maps (on SE(2)) can be projected on the plane whereby only one value of curvature value is assigned to each spatial location in the image. Finally, these 2D curvature maps can be ltered in a later stage by a vessel con dence map (as a Laplacian ridge detector) [START_REF] Franken | Crossing-preserving coherence-enhancing di usion on invertible orientation scores[END_REF] or any other vessel enhancement methods.

The neurogeometry of the curvature space

A regular curve in the two-dimensional plane can always parametrized by arch length, so that then the tangent vector becomes unitary and can be represented in the form:

( ẋ (t ), ˙ (t )) = (cos (θ (t )), sin(θ (t ))).
(6.2.1)

By di erentiating x and once more in equation (6.2.1), we then have:

( ẍ, ¨ ) = (-sin(θ (t )) θ (t ), cos(θ (t )) θ (t )). (6.2.2)
So the curvature can be computed as:

κ = θ = ẋ ¨ -ẍ ˙ ( ẋ2 + ˙ 2 ) 3/2 . (6.2.3)
We assume that the two-dimensional curve in cortical plane (R 2 ) is lifted to a 5D space of positions, orientations, intensity and curvature (R 2 × S 1 × R × R). Thus, the lifted curve may be written as:

γ 2D = (x (t ), (t )) → γ (t ) = (x (t ), (t ), θ (t ), f (t ), κ (t )).
(6.2.4) According to equations (6.2.1) and (6.2.3), we will have:

γ (t ) = ( ẋ (t ), ˙ (t ), θ (t ), ḟ (t ), κ (t )) (6.2.5)
where ( ẋ (t ), ˙ (t )) = (cos(θ ), sin(θ )) and θ (t ) = κ (t ). Hence:

γ (t ) = (cos(θ ), sin(θ ), κ (t ), ḟ (t ), κ (t )). (6.2.6)
By de ning new vectors in the 5D space as:

Y 1 =(cos( θ ), sin( θ ), κ, 0, 0) Y 5 =(0, 0, 0, 0, 1) Y 4 = (0, 0, 0, 1, 0) (6.2.7)
we are able to write γ (t ) in terms of these vectors:

γ (t ) = Y 1 (t ) + ḟ (t ) Y 4 + κ (t ) Y 5 (t ). (6.2.8)
Let us explicitly note that this expression is a generalization of the lifted curve used by [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] in equation (4.1.10). In general, we will call horizontal curve the solution of the following di erential equation:

γ (t ) = (α 1 (t ) Y 1 (t ) + α 5 (t ) Y 5 (t ) + α 4 (t ) Y 4 (t ))(γ (t )) γ (0) = (x 0 , 0 , θ 0 , f 0 , κ 0 ), γ (1) = (x 1 , 1 , θ 1 , f 1 , κ 1 ).
(6.2.9)

The horizontal distribution of planes is now Span{ Y 1 , Y 5 , Y 4 } and the Lie algebra is generated by these three vector elds. For the sake of simplicity, we will call Y 2 = X 2 , Y 3 = X 3 . Following the same notation as in (4.1.16) we denote Y i the directional derivatives in the direction of the vectors Y i :

Y 1 = cos(θ )∂ x + sin(θ )∂ + κ∂ θ Y 2 =∂ θ Y 3 = -sin(θ )∂ x + cos(θ )∂ Y 5 =∂ k Y 4 = ∂ f (6.2.10)
Therefore, the commutators of these vectors are as follows:

[Y 1 , Y 5 ] = -∂ θ = -X 2 = -Y 2 [[Y 1 , Y 5 ], Y 1 ] = sin(θ )∂ x -cos(θ )∂ = -X 3 = -Y 3 [[Y 1 , Y 5 ], Y 5 ] = 0.
[Y i , Y 4 ] = 0 for every i.

(6.2.11)

In particular the Hörmander condition (see Theorem 1) is satis ed by the vector elds Y 1 , Y 4 , Y 5 . Figure 6.2 represents the fan of integral curves of equation (6.2.8) in the SE (2) group for similar number of κ values changing with two di erent κ rates. This gure shows how the shape of curves is dependent on the curvature value (κ) and its rate of change ( κ). The projection of both curves on 2D cortical plane represents a good model of the association elds introduced by Field et al. [1993] for modeling the cortical connectivity. The association elds (or connectivity patterns) are considered as the basis for the creation of connected boundaries in visual perception, imposing the Gestalt law of good continuation [START_REF] Wagemans | A century of gestalt psychology in visual perception: I. perceptual grouping and gure-ground organization[END_REF][START_REF] Wertheimer | Laws of organization in perceptual forms[END_REF].

Figure 6.2: The fan of integral curves of equation (6.2.8), visualized in R 2 × S 1 and their projection on the x plane. The blue curves have a higher rate of curvature change ( κ).

The cortical connectivity can also be modeled by a stochastic counterpart of equation (6.2.8), which follows in the general framework stated in equation (4.2.5). The Markov process that results from the Brownian motion with randomly curved paths has been introduced by [START_REF] August | Sketches with curvature: The curve indicator random eld and markov processes[END_REF]. The process is represented by the following di erential equations:

γ = α 1 Y 1 + N (0, σ 2 1 ) Y 4 + N (0, σ 2 2 ) Y 5 (6.2.12)
where N (0, σ i 2 ) is a normally distributed variable with zero mean and variance equal to σ 2 i . If p 5 denotes the probability density to nd a particle at a point (x, ) with a certain direction θ , intensity f and curvature κ, at a speci c time t, then the Fokker-Planck equation describing the di usion of the particle density will be according to Theorem 2:

∂ t p 5 = σ 2 5 2 Y 55 p 5 + σ 2 4 2 Y 44 p 5 -Y 1 p 5 (6.2.13) so that Y 44 = ∂ 2 /∂ f 2 and Y 55 = ∂ 2 /∂κ 2 .
This partial di erential equation means that a particle at a point (x, , θ , f , κ) transports in the direction of (cos(θ ), sin(θ ), κ, 0, 0) in the 5D space. There is no transport in the f or κ direction, but the diffusion in the κ direction indicates the rate of transport in the θ direction. The di usion in direction f is independent from the other variables.

Integrating in time, we obtain thanks to Proposition 2 the fundamental solution Γ 5 of the following equation:

σ 2 4 2 Y 44 Γ 5 ((x, , θ , f , κ), (x , , θ , f , κ )) + σ 2 5 2 Y 55 Γ 5 ((x, , θ , f , κ), (x , , θ , f , κ ))- Y 1 Γ 5 ((x, , θ , f , κ), (x , , θ , f , κ )) = δ (x, , θ , f , κ).
(6.2.14)

In order to compute an estimate of the fundamental solution we rst restrict as in the previous section to a fundamental solution Γ k of the Fokker Planck operator independent of f :

σ 2 2 Y 55 + σ 2 2 Y 44 -Y 1 .
We recall that this is possible because the vector eld Y 4 is independent of all the other variables. Let us explicitly note that we can not perform the same simple restriction to the variable k, since the vectors Y 1 and Y 5 do not commmute. The restriction in this case is more delicate. Then we restrict the fundamental solution to a 3D kernel, with κ xed:

Γ κ ((x, , θ ), (x , , θ )) = Γ k ((x, , θ , k ), (x , , θ , k ))
, symmetrized and multiplied by an exponential term which considers the closeness between two points located in the different intensity planes, times an exponential term in the curvature planes. Hence, this new connectivity kernel is presented as: As seen in these gures, by increasing the absolute value of curvature, the shape of the kernel also changes and it deviates from the elongated shape. This new kernel can be used for de ning the a nity matrix as:

ω 5 ((x, , θ , f , κ), (x , , θ , f , κ )) = e -(κ-κ ) 2 σ 2 κ × e - (f -f ) 2 σ 2 int × 1 2 Γ κ ((x, , θ ), (x , , θ )) + Γ κ ((x , , θ ), (x, , θ )) (6.2.15)
A i,j = ω 5 ((x i , i , θ i , f i , κ i ), (x j , j , θ j , f j , κ j )).

(6.2.16)

By this de nition, considering the fact that this matrix includes information about the correct grouping, this problem has been presented in terms of dimensionality reduction of this matrix [Favali et al., 2016b, Sarti andCitti, 2015], often done by eigensystem analysis.

Numerical approximation of the 5-D kernel

The kernel is numerically estimated using the general Markov Chain Monte Carlo method technique recalled in section 4.3.3. We say a few words on how to adapt it to the 5D case for reader convenience. The system in equation (6.2.12) can be approxi-mated by:

                   x s+∆s -x s = ∆s cos(θ ) s+∆s -s = ∆s sin(θ ), s ∈ 1, ..., H θ s+∆s -θ s = ∆sκ κ s+∆s -κ s = ∆sN (0, σ 5 ) (6.2.17)
where H is the number of steps of the random path and N (0, σ 5 ) is a generator of numbers taken from a normal distribution with mean 0 and standard deviation of σ κ . The stochastic path is obtained from the estimate of the kernel as the average of their passages over discrete volume elements, solving thisnite di erence equation n times [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF]. The a nity matrix described in equation (6.2.16) is evaluated from this kernel.

Product of normalized a inity matrices

We have introduced a quite general setting which generates an a nity matrix starting from a set of vector elds X 1 , • • • , X m , satisfying an Hörmander condition in R n × S 1 . In general the a nity matrix A does not have a probabilistic meaning. It can be normalized by columns to recover this meaning. De ning the diagonal matrix D as the sum d i = j a ij , the normalized a nity matrix is obtained as: P = D -1 A where P represents the transition probability. In case di erent normalized a nity matrices A 1 , A 2 , are used to describe the measured connectivity in di erent cortical areas, their product A 1 A 2 describes the joint action of the two probability measures.

7 Individuation of perceptual units W in Chapter 4 and 5 the cortical connectivity kernels. Here we describe the results of simulations presented in Favali et al. [2016b]: we will identify perceptual units in di erent Kanizsa gures, highlighting the role of polarity, discussing and comparing the behavior of the di erent kernels.

We will also apply the presented method to the analysis of retinal images [Abbasi-Sureshjani et al., 2016a, Favali et al., 2016a], to a ord the problem of grouping during the tracking of blood vessel, highlighting the role of the feature of intensity and curvature. These works have been developed in collaboration with the Eindhoven Univesity of Technology (TU/e).

Phenomenological experiments: emergence of percepts in illusory images

In the following experiments some numerical simulations will be performed in order to test the reliability of the method presented in Section 4.2 for performing grouping and detection of perceptual units in images. The kernel considered here only depends on orientation. Hence it can be applied to detect the saliency of geometrical gures, which can be very well described using this feature.

Proposed technique

The purpose is to select the perceptual units from visual images, using the following algorithm:

1) de ne the a nity matrix A i,j from the connectivity kernel;

2) solve the eigenvalue problem A i,j u i = λ i u i , where the order of i is such that λ i is decreasing;

3) nd and project on the segments the eigenvector u 1 associated to the largest eigenvalue.

The parameters used are: 1000000 random paths with σ = 0.15 in the system (4.3.2), σ 1 = 1.2, σ 3 = 0.11 in the system (4.3.3), σ , ρ = 0.15 in the discretization of (4.2.16). The value of H is de ned as follows: H = 1 3 d max , where d max is the maximum distance between the inducers of the stimulus. Similar parameters have been used for all the experiments. In this section we consider some experiments similar to the ones of Field et al. [1993], where a subset of elements organized in a coherent way is presented out of a ground formed by a random distribution of elements. A rst stimulus of this type is represented in Figure 7.1 (left). The connectivity among these elements is de ned as in equations (4.2.10) and (4.2.14).

After the a nity matrix and its eigenvalues, the eigenvector corresponding to the highest eigenvalue is visualized in red. The results show that the stimulus is well segmented with the fundamental solutions of Fokker Planck and Sub-Riemannian Laplacian equations (Figure 7.1 (right)). [1993]. The stimulus containing a perceptual unit is segmented with Fokker Planck and Sub-Riemannian Laplacian (right), using the rst eigenvector of the a nity matrix. Now we consider a similar experiment proposed in Field et al. [1993], where the orientation of successive elements differs by 15, 30, 45, 60 and 90 degrees and the ability of the observer to detect the path was measured experimentally. It was proved that the path can be identi ed when the successive elements di er by 60 deg or less. With our method, we obtain similar results: if the angle between successive elements is less than 60 degree (Figure 7.2 (a), (b),(c)), the identi cation of the unit is correctly performed. With an angle equal to 60 degree (Figure 7.2 (d)) only a part of the curve is correctly detected: this can be interpreted as the increasing observer's di culty to detect the path. Considering higher angles (Figure 7.2 (e)) the rst eigenvector of the a nity matrix corresponds to random inducers, con rming the results. Finally we present an example where there are two units in the scene with roughly-equal salience, they have roughlyequal eigenvalues. In the rst and in the second row of Figure 7.3 the stimuli are composed by a curve and a line in a background of random elements. In the stimulus (a) represented in the rst row, the elements composing the curve are perfectly aligned and very nearby, so that this has the highest saliency and it represents the eigenvector associated to the rst eigenvalue (as shown in red in Figure 7.3 (b)). The second eigenvalue in this case is sligtly smaller. After the computation of the rst eigenvector, the stimulus is updated (Figure 7.3 (c)), the rst eigenvector of the new a nity matrix is computed and it corresponds to the inducers of the line (Figure 7.3 (d)). In the second row (e) we slightly modify the stimuli, in particular the alignement of the element forming the curve (e.g. an angle of pi/18). As a consequence, the line becomes the most salient perceptual unit and the rst eigenvector (Figure 7.3 (f)). The stimulus is updated (Figure 7.3 (g)) and the rst eigenvec-tor of the new a nity matrix corresponds to the inducers of the curve (Figure 7.3 (h)). It is notable that in this case a small changement of the eigenvalues corresponds to small changement of the eigenvectors, but the rst eigenvalue swaps with the second one and consequently we obtain an abrupt change in the perceved object.

In the previous examples we have considered all contours with almost the same length. We show here that this length does not a ect the faeture of saliency. In Figure 7.4 (a), (e) are visualized two perceptual units with di erent length. The results underline how the proximity of contours is stronger than lenght: the shortest units with nearer segments are the rst perceptual units, associated to the most salient eigenvectors (Figure 7.4 (b), (f)). Then the stimuli are updated (Figure 7.4 (c), (g)) and the second eigenvectors are visualized in Figure 7.4 (d), (h). In this analysis di erent features can be considered. In particular also the distances between the segments play a central role. Let's consider for example the straight line in Figure 7.4 (a). If one or more segments is missing from the contour we could obtain a less accurate segmentation (a similar e ect is noticed in the case of not-aligned segments). A similar analysis considering small or disconnected contours has been considered in Favali et al. [2016a], applied to the study of vessel connectivities.

The role of polarity

The term of polarity leads to insert in the model the feature of contrast: contours with the same orientation but opposite contrast are referred to opposite angles. For this reason we assume that the orientation θ takes values in [0, 2π ) when we consider the odd lters and in [0, π ) while studying the even ones. The response of the odd lters in presence of a cartoon image is schematically represented in Figure 7.5. At every boundary point the maximally activated cell is the one with the same direction of the boundary. Then the maximally ring cells are aligned with the boundary (Figure 7.5, top right).

In order to clarify the role of polarity we consider an image in Figure 7.5 (a), that has been studied by [START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF], in the contest of a study of convexity in perception. In this case, if we consider only orientation of the boundaries without polarity, we completely loose any contrast information and we obtain the grouping in Figure 7.5 (b). Here the upper edge of the square is grouped as an unique perceptual unit. On the other side, while inserting polarity, the Gabor patches on the upper edge boundary of the black or white region have opposite contrast and detect values of θ which di ers of π (see Figure 7.5 (c)). In this way, there is no a nity between these patches, and the rst eigenvector of the a nity matrix represented in red correctly detects the unit present in the image and corresponds to the inducers of the semicircle (see Figure 7.5 (d)). This underlines the important role of polarity in perceptual individuation and segmentation. We also note that the st perceptual unit detected is the convex one, as predicted by the gestalt law (see [START_REF] Kanizsa | Grammatica del vedere: saggi su percezione e gestalt[END_REF]).

The Kanizsa illusory figures

We consider here stimuli formed by Kanizsa gures, represented by oriented segments that simulate the output of simple cells. In Lee [2001] it is described that completion of Kanizsa gures takes place in V1.

We rst consider the stimulus of Figure 7.6 (a). The connectivity among its elements will be analysed with the kernels de ned in equations (4.2.10), (4.2.14).

The results of simulations with the fundamental solutions of Fokker Planck and Sub-Riemannian Laplacian equations are shown in Figure 7.6. In (c) it is shown the rst eigenvector of the a nity matrix, using the fundamental solutions of Fokker Planck (4.2.10,6.2.17) and Sub-Riemannian Laplacian equations (4.2.14,4.3.3). After this computation, the a nity matrix is updated removing the detected perceptual unit; the rst eigenvector of the new matrix is visualized (d).

The rst eigenvector is visualized in red and it corresponds to the inducers of the Kanizsa triangle (Figure 7.6 (c)). In this example, after the computation of the rst eigenvector of the a nity matrix, this matrix is updated removing the identi ed perceptual unit and then the rst eigenvector of the new matrix is computed (Figure 7.6 (d)): these simulations show that circles are associated to the less salient eigenvectors. In that way, the rst eigenvalue can be considered as a quantitative measure of saliency, because it allows to segment the most important object in the scene and the results of simulations con rm the visual grouping.

When the a nity matrix is formed by di erent eigenvectors with almost the same eigenvalues, as in Figure 7.6 (d), it is not possibile to recognize a most salient object, because they all have the same in uence. We choose here to show just one inducer in red. The other two have the same eigenvalue. That also happens, for example, when the inducers are not co-circularly aligned or they are rotated. Now we consider as stimulus the Kanizsa square and then we change the angle between the inducers, so that the subjective contours become curved (Figure 7.7 (a), (b), (c), (d)). The fact that illusory gures are perceived depends on a limit cur-vature. Indeed we perceive a square in the rst three cases, but not in the last one. The results of simulations with the fundamental solutions of Fokker Planck and Sub-Riemannian Laplacian equations con rm the visual grouping (Figure 7.7 (a), (b), (c), (d), second row): when the angle between the inducers is not too high (cases (a), (b), (c)) the rst eigenvector corresponds to the inducers that form the square, otherwise (case (d)) the pacman becomes the most salient objects in the image. In this case, we obtain 4 eigenvectors with almost the same eigenvalue. Now we consider a Kanizsa bar (Figure 7.7 (e)), that is perceived only if the inducers are aligned. Also in that case, the result of simulation con rms the visual perception if we use the fundamental solutions of the Fokker-Planck and the Sub-Riemannian Laplacian equations (Figure 7.7 (e), second row). When the inducers are not aligned, all the kernels con rm the visual perception, showing two di erent perceptual units (Figure 7.8 (a)).

Considering a stimulus composed of rotated or not-aligned inducers, as in Figure 7.8 (b), (c) it is not possible to perceive it and the results of simulations, using all the connectivity kernels described, con rm the visual grouping. In that case, the a nity matrix is decomposed in 3 eigenvectors with almost the same eigenvalues, which represent the 3 perceptual units in the scene.

Sub-Riemannian Fokker Planck versus Sub-Riemannian Laplacian

The two kernels we are going to analyze are not mutually exclusive and they can be implemented in di erent cells. The presence of di erent population of cells in relation with mathematical models has been also studied in [START_REF] Ben | Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex[END_REF]. We have outlined in Sections 4.2.3 and 5.1.1 that the Fokker Planck kernel accounts for long range connectivity, while Sub-Riemannian Laplacian for short range. In the previous examples we obtain good results with both kernels, but this difference emerges while we suitable change the parameters. In Figure 7.9 we compare the action of these two kernels.

Figure 7.9: In the rst row a few aligned segments, which are correctly grouped by the Fokker Planck and the Sub-Riemannian Laplacian (a), (b). When we separate the inducers, the perceptual unit is correctly detected using the Fokker Planck kernel (c), while the Sub-Riemannian Laplacian is not able to perform the grouping (d). In the second row we consider an angle. In this case the Fokker Planck is unable to perform the grouping (e), while the Sub-Riemannian Laplacian can correctly perform the grouping (f).

In the rst row we see some segments, which form an unique perceptual unit. If they are not too far, the grouping is correctly performed both by the Fokker Planck and the Sub-Riemannian Laplacian (Figure 7.9 (a),(b)). When we separate the inducers, the perceptual unit is correctly detected by the Fokker Planck kernel (Figure 7.9 (c)), while the Sub-Riemannian Laplacian is not able to perform the grouping (Figure 7.9 (d)). This con rms that the Fokker Planck kernel is responsible for long range con-nectivity. In the second row we consider an example with segments disposed to form an angle. When the angle is su ciently high, the Fokker Planck becomes unable to perform the grouping (Figure 7.9 (e)), while the Sub-Riemannian Laplacian, correctly performs the grouping of the perceptual unit (Figure 7.9 (f)). This con rms that the Sub-Riemannian Laplacian can be used as a model of short range connectivity.

Sub-Riemannian versus Riemannian kernels

In order to further validate the Sub-Riemannian model we show that the model applied with the isotropic Laplacian kernel does not perform correctly. As shown in Figure 7.10 ( rst row) the visual perception is not correctly modeled: the rst eigenvectors coincide with one of the inducers and the squares are not recognized. That also happens for the stimulus of Figure 10 (a) and when the inducers are not co-circularly aligned or they are rotated. 

Discussion

We have presented a neurally based model for gure-ground segmentation using spectral methods, where segmentation has been performed by computing eigenvectors of a nity matrices. Di erent connectivity kernels that are compatible with the functional architecture of the primary visual cortex have been used. We have modelled them as fundamental solution of Fokker-Planck, Sub-Riemannian Laplacian and isotropic Laplacian equations and compared their properties. With this model we have identi ed perceptual units of di erent Kanizsa gures, showing that this can be considered a good quantitative model for the constitution of perceptual units equipped by their saliency.

We have also shown that the fundamental solutions of Fokker-Planck and Sub-Riemannian Laplacian equations are good models for the good continuation law, while the isotropic Laplacian equation is less representative for this gestalt law. However it retrieves information about ladder parallelism, a feature that can be analysed in the future. All the three kernels are able to accomplish boundary completion with a preference for the operators Fokker Planck and the Sub-Riemannian Laplacian. The proposed mathematical model is then able to integrate local and global gestalt laws as a process implemented in the functional architecture of the visual cortex. The kernel considered here only depends on orientation. Hence it can be applied to detect the saliency of geometrical gures which can be very well described using this feature.

Similar method can be applied to natural images if their main features are related to orientations, as presented in the Section 7.2 and 7.3. However for general images we can not rely on this simple geometric method, since di erent cortical areas can be involved in the de nition of the saliency, with a modulatory e ect on the connectivity of V1.

Application to medical images: emergence of percepts in retinal images

Retinal images provide early signs of diabetic retinopathy, glaucoma and hypertension. These signs can be investigated based on microaneurysms or smaller vessels. The diagnostic biomarkers are the change of vessel widths and angles especially at junctions, which are investigated using the vessel segmentation or tracking. Vessel paths may also be interrupted; crossings and bifurcations may be disconnected.

Here we apply the method presented in Section 6.1 based on the geometry of the primary visual cortex (V1) to study these di culties. The proposed method represents an engineering application of segmenting and representing blood vessels inspired by the modeling of the visual cortex. This shows how these models can be applied to the analysis of medical images and how these two elds can be reciprocally used to better understand and reinforce each other. We have analysed the speci c problems at junctions with a connectivity kernel obtained as the fundamental solution of the Fokker-Planck equation, which is usually used to represent the geometrical structure of multi-orientation cortical connectivity. By using the spectral clustering on a large local a nity matrix constructed by both the connectivity kernel and the feature of intensity, the vessels are identi ed successfully in a hierarchical topology each representing an individual perceptual unit.

Vessel extraction and its di iculties

The vasculature can be extracted by means of either pixel classi cation or vessel tracking. Several segmentation and tracking methods have been proposed in the literature [START_REF] Fraz | Blood vessel segmentation methodologies in retinal images -a survey[END_REF][START_REF] Bühler | Geometric methods for vessel visualization and quanti cation-a survey[END_REF][START_REF] Felkel | Vessel tracking in peripheral CTA datasetsan overview[END_REF]. In pixel classication approaches image pixels are labeled either as vessel or non-vessel pixels. Therefore, a vessel likelihood (soft segmentation) or binary map (hard segmentation) is created for the retinal image. Although the vessel locations are estimated in these approaches, they do not provide any information about vessel connectivities. On the contrary, in tracking based approaches, several seed points are selected and the best connecting paths between them are found [START_REF] Al-Diri | An active contour model for segmenting and measuring retinal vessels[END_REF][START_REF] Chutatape | Retinal blood vessel detection and tracking by matched Gaussian and Kalman lters[END_REF][START_REF] Poon | Live-vessel: Extending livewire for simultaneous extraction of optimal medial and boundary paths in vascular images[END_REF][START_REF] Francis | Vessel extraction in medical images by wave-propagation and traceback[END_REF][START_REF] Xu | Vessel boundary delineation on fundus images using graph-based approach[END_REF][START_REF] Can | Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms[END_REF][START_REF] De | Tracing retinal vessel trees by transductive inference[END_REF][START_REF] Oksendal | Stochastic di erential equations: an introduction with applications[END_REF][START_REF] Konstantinos K Delibasis | Automatic model-based tracing algorithm for vessel segmentation and diameter estimation[END_REF][START_REF] González | Delineating trees in noisy 2D images and 3D image-stacks[END_REF]. The main bene t of vessel tracking approaches is that they work at the level of a single vessel rather than a single pixel and they try to nd the best path that matches the vessel pro le. Therefore, the information extracted from each vessel segment (e.g. diameter and tortuosity) is more accurate and reliable.

There are several di culties for both vessel segmentation and tracking approaches. Depending on imaging technology and conditions, these images could be a ected by noise in several degrees. Moreover, non-uniform luminosity, drift in image intensity, low contrast regions and also central vessel re ex make the vessel detection and tracking complicated. Several image enhancement, normalization and denoising techniques have been developed to tackle these complications (e.g. [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF][START_REF] Foracchia | Luminosity and contrast normalization in retinal images[END_REF][START_REF] Narasimha-Iyer | Improved detection of the central re ex in retinal vessels using a generalized dual-Gaussian model and robust hypothesis testing[END_REF]).

The tracking methods are often performed exploiting the skeleton of the segmented images. Thus, non-perfect segmentation or wrong skeleton extraction results in topological tracing errors e.g. disconnections and non-complete subtrees as discussed in several methods proposed in the literature [START_REF] Vinayak | Automated method for the identi cation and analysis of vascular tree structures in retinal vessel network[END_REF][START_REF] Al-Diri | An active contour model for segmenting and measuring retinal vessels[END_REF][START_REF] De | Automated tracing of retinal blood vessels using graphical models[END_REF][START_REF] Cocci | Spatio-temporal models of the functional architecture of the visual cortex[END_REF][START_REF] González | Delineating trees in noisy 2D images and 3D image-stacks[END_REF]. Typical non-perfections include missing small vessels, wrongly merged parallel vessels, disconnected or broken up vessel segments and the presence of spur branches in thinning. Moreover, the greater di culty arises at junctions and crossovers: small arteriovenous crossing angles, complex junctions when several junctions are close together, or presence of a bifurcation next to a crossing makes the centreline extraction and tracing challenging. These di culties are mentioned as the tracking limitations in the literature. Some of these challenging cases are depicted in Figure 7.11 with their corresponding artery/vein ground truth labels. Arteries and veins are annotated in red and blue colors respectively. The green color represents the crossing and the types of the white vessels are not known. A sample image from the DRIVE dataset [START_REF] Staal | Ridge-based vessel segmentation in color images of the retina[END_REF] (top left) and its corresponding artery/vein ground truth from the RITE dataset [START_REF] Hu | Automated separation of binary overlapping trees in low-contrast color retinal images[END_REF] (top right). Several di cult cases are shown. C1: complex junction (bifurcation and crossing with narrow crossing angle); C2: interrupted lines and missing small vessels; C3: high curvature vessel; C4: complex junction; C5: two nearby parallel vessels; C6: missing small vessel, merged parallel vessels and interrupted segment. Our method, which is not dependent on centerline extraction, is based on the fact that in arteriovenous crossings there is a continuity in orientation and intensity of the artery and vein, respectively, i.e., the local variation of orientation and intensity of individual vessels is very low. The proposed method models the connectivity as the fundamental solution of the Fokker-Planck equation, which matches the statistical distribution of edge cooccurrence in natural images and is a good model of the cortical connectivity [START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF].

Spectral Analysis

The goal of clustering is to divide the data points into several groups such that points in the same group are similar and points in di erent groups are dissimilar to each other. The cognitive task of visual grouping can be considered as a form of clustering, with which it is possible to separate points in different groups according to their similarities. In order to perform visual grouping, we will use the spectral clustering algorithm. Traditional clustering algorithms, such as K-means, are not able to resolve this problem [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF]. In recent years, di erent techniques have been presented to overcome the performance of the traditional algorithms, in particular spectral analysis techniques. It is widely known that these techniques can be used for data partitioning and image segmentation [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Perona | A factorization approach to grouping[END_REF][START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF][START_REF] Meila | A random walks view of spectral segmentation[END_REF] and they outperform the traditional approaches. Above that, they are simple to implement and can be solved e ciently by standard linear algebra methods [START_REF] Von | A tutorial on spectral clustering[END_REF]. In the next section we will describe the spectral clustering algorithm used in the numerical simulations.

Spectral Clustering Technique

Di erent algorithms based on the theory of graphs have been proposed to perform clustering. In [START_REF] Perona | A factorization approach to grouping[END_REF]] it has been shown how the edge weights {a ij } i,j=1,...n of a weighted graph describe an a nity matrix A. This matrix contains information about the correct segmentation and will identify perceptual units in the scene, where the salient objects will correspond to the eigenvectors with the highest eigenvalues. Even though it works successfully in many examples, in [START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF] it has been demonstrated that this algorithm also can lead to clustering errors. [START_REF] Von | A tutorial on spectral clustering[END_REF] and [START_REF] Meila | A random walks view of spectral segmentation[END_REF] the algorithm is improved considering the normalized a nity matrix. In particular we will use the normalization described in [START_REF] Meila | A random walks view of spectral segmentation[END_REF]. De ning the diagonal matrix D as formed by the sum of the edge weights (representing the degrees of the nodes, d i = n j=1 a ij ), the normalized a nity matrix is obtained as:

P = D -1 A. (7.2.1)
This stochastic matrix P represents the transition probability of a random walk in a graph. It has real eigenvalues {λ j } j=1,...n where 0 ≤ λ j ≤ 1, and its eigenvectors {u i } i=1,...K , related to the K largest eigenvalues λ 1 ≥ λ 2 ≥ ... ≥ λ K , represent a solution of the clustering problem [START_REF] Von | A tutorial on spectral clustering[END_REF]. The value of K determines the number of eigenvalues and eigenvectors considered informative. The important step is selecting the best value of K, which can be done by de ning an a-priori signi cance threshold ϵ for the decreasingly ordered eigenvalues λ i , so that λ i > 1ϵ, ∀ 1 ≤ i ≤ K. However, selecting the best ϵ value is not always trivial and the clustering results get very sensitive to this parameter in many cases. Hence, considering the di usion map approach of Coifman and Lafon [2006] and following the idea of [START_REF] Cocci | Cortical spatiotemporal dimensionality reduction for visual grouping[END_REF], using an auxiliary di usion parameter (τ , big positive integer value) to obtain the exponentiated spectrum {λ τ i } i=1,...n , the gap between exponentiated eigenvalues increases and sensitivity to the threshold value decreases very much. Using this new spectrum, yields to the stochastic matrix P τ , that represents the transition matrix of a random walk in de ned τ steps. The di erence between thresholding the eigenvalues directly or the exponentiated spectrum is shown in an example in Figure 7.12. As seen in this gure, selecting the best discriminative threshold value for the eigenvectors (Figure 7.12 (c)) is not easy, while with the exponentiated spectrum (Figure 7.12 (d)) the threshold value can be selected in a wide range (e.g. 0.05 ≤ 1 -ϵ ≤ 0.9). The value of τ needs to be selected as a large positive integer number (e.g. 150).

After selecting the value of K, the number of clusters is automatically determined using Algorithm ??.

Possible neural implementations of the algorithm are discussed in [START_REF] Cocci | Cortical spatiotemporal dimensionality reduction for visual grouping[END_REF]. Particularly, in Bresslo et al. [2002], [START_REF] Faugeras | Persistent neural states: stationary localized activity patterns in nonlinear continuous n-population, q-dimensional neural networks[END_REF] an implementation of the spectral analysis is described as a mean-eld neural computation. Principal eigenvectors emerge as symmetry breaking of the stationary solutions of mean eld equations. In addition, in Sarti Algorithm 1 Spectral clustering algorithm 1: De ne the a nity matrix A i,j from the connectivity kernel. 2: Evaluate the normalized a nity matrix: P = D -1 A.

3: Solve the eigenvalue problem Pu i = λ i u i , where the order of i is such that λ i is decreasing.

4: De ne the thresholds ϵ, τ and evaluate the largest integer K such that λ τ i > 1 -ϵ, i = 1, . . . , K. 5: Let U be the matrix containing the vectors u 1 , . . . , u K as columns. 6: De ne the clusters k = arg max j {u j (i)} with j ∈ {1, . . . , K } and i = 1, . . . , n.

7: Find and remove the clusters that contain less than a minimum cluster size elements.

??.

and Citti [2015] it is shown that in the presence of a visual stimulus the emerging eigenvectors are linked to visual perceptual units, obtained from a spectral clustering on excited connectivity kernels. In the next section the application of this algorithm in obtaining the vessel clustering in retinal images will be presented.

Proposed Technique

In order to prove the reliability of the method in retrieving the connectivity information in 2D retinal images, several challenging and problematic image patches around junctions were selected. First step before detecting the junctions and selecting the image patches around them, is to apply preconditioning on the green channel (I ) of a color fundus retinal image. The green channel provides a higher contrast between vessels and background and it is widely used in retinal image analysis. The preconditioning includes: a) removing the non-uniform luminosity and contrast variability using the method proposed by [START_REF] Foracchia | Luminosity and contrast normalization in retinal images[END_REF]; b) removing the high frequency contents; and c) denoising using the non-linear enhancement in SE(2) as proposed by [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF] . A sample color image before and after preconditioning (I enh ) are shown in Figure 7.13 (a) and (b) respectively. In next step, soft (I so f t ) and hard (I hard ) segmentations are obtained using the BIMSO (biologically-inspired multi-scale and multi-orientation) method for segmenting I enh as proposed by [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF]. These images are shown in Figure 7.13 (c) and (d) respectively. The hard segmentation is used for detecting the junctions and selecting several patches with di erent sizes around them; while soft segmentation is used later in connectivity analysis. In order to nd the junction locations automatically, the skeleton of I hard is produced using the morphological skeletonization technique. Then the method proposed by Olsen et al.

[2011] is applied on this skeleton and the junction locations are determined as shown in Figure 7.13 (e). Using the determined locations, several image patches with similar sizes (s = 10 pixels) are selected at rst stage. However, as seen in Figure 7.13 (e), some of the junctions are very close to each other and their distances are smaller than s/2. For these junctions, a new patch including both nearby junctions (with a size equal to three times the distance between them) is considered, and its centre is used for nding the distance of this new patch with the other ones. These steps are repeated until no more merging is possible or the patch size reaches the maximum possible size (we assumed 100 as the maximum possible value). Thus, all nearby junctions are grouped in order to decrease the number of patches that overlap in a great extent. This results in having di erent patch sizes (0 ≤ s p i ≤ 100, 1 ≤ i ≤ m) that could include more than one junction all over the image. Figure 7.13 (f) shows the junction locations and the corresponding selected patches overlaying on artery/vein ground truth.

In order to analyze the vessel connectivities for each image patch (I p i ), we need to extract the location (x, ), orientation (θ ) and intensity (f (x, )) of vessel pixels in these patches. Hence for each group of junctions (i) with the size s i , two patches from I enh and I so f t are selected, called I enh,p i and I so f t,p i respectively. Then I so f t,p i is thresholded locally to obtain a new hard segmented image patch (called I hard,p i ). This new segmented image patch is di erent from selecting the corresponding patch from I hard , because I hard was obtained by thresholding the entire I so f t using one global threshold value, but this is not appropriate at all regions. If there are regions with very small vessels with a low contrast (often they get a very low probability of being vessel pixels), they are normally removed in the global thresholding approach. Accordingly, wrong thresholding leads into wrong tracking results e.g. C1, C2, C6 in Figure 7.11 are some instance patches with missing small vessels. In this work, we selected one threshold value for each patch speci cally using Otsu's method [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF], to keep more information and cover a wider range of vessel pixels. Consequently, thicker vessels will be created in I hard,p i and the results will be more accurate.

By knowing the vessel locations (x, ) other information could be extracted for these locations using I enh,p i . So f (x, ) equals the intensity value in I enh,p i at location (x, ). Moreover, by lifting I enh,p i using cake wavelets, at each location the angle corresponding to the maximum of the negative orientation response (real part) in the lifted domain is considered as the dominant orientation (θ d ) as equation (7.2.2):

θ d = arg max θ ∈[0,π ] Re (-U f (x, , θ )) (7.2.2)
The negative response is considered because the blood vessels in retinal images are darker than background. Next step is approximating the connectivity kernels as shown in Section 6.1. The rst kernel (ω 1 ), was calculated numerically, so the fundamental solution Γ 1 was estimated using the Markov Chain Monte Carlo method [START_REF] Robert | Monte Carlo statistical methods[END_REF]. This nite difference equation is solved for n (typically 10 5 ) times, so n paths are created. Then the estimated kernel is obtained by averaging all the solutions [Higham, 2001, Sarti andCitti, 2015]. An overview of di erent possible numerical methods to compute the kernel is explained in [START_REF] Zhang | Numerical approaches for linear left-invariant di usions on se (2), their comparison to exact solutions, and their applications in retinal imaging[END_REF], where comparisons are done with the exact solutions derived in Duits and Franken [2010a], [START_REF] Duits | The explicit solutions of linear left-invariant second order stochastic evolution equations on the 2d euclidean motion group[END_REF]. From these comparisons it follows that the stochastic Monte-Carlo implementation is a fair and accurate method. The intensity-based kernel (ω 2 ), the nal connectivity kernel (ω f ) and the a nity matrix (A), were calculated using equations (6.1.6), (6.1.7) and (6.1.8) respectively. Finally, by applying the proposed spectral clustering step in Section 7.2.2, the nal perceptual units (individual vessels) were obtained for each patch. The above-mentioned steps for a sample crossing in a 21 × 21 image patch are presented in Figure 7.14. 2) using the πperiodic cake wavelets in 24 di erent orientations is shown in Figure 7.14 (h). The disentanglement of two crossing vessels at the junction point can be seen clearly in this gure. The dominant orientations (θ d ) for the vessel pixels are also depicted in Figure 7.14 (e), using line segments oriented according to the corresponding orientation at each pixel.

In the next step, this contextual information (intensity and orientation) is used for calculating the connectivity kernel (Figure 7.14 (i)) and the a nity matrix (Figure 7.14 (j)). For this numerical simulation, H , n, σ and σ 2 have been set to 7, 100000, 0.05 and 0.1 respectively. Next, by applying the spectral clustering on the normalized a nity matrix using ϵ and τ as 0.1 and 150, only two eigenvalues above the threshold will remain (Figure 7.14 (k)). This means that there are two main salient perceptual units in this image as it was expected. These two units are color coded in Figure 7.14 (f). The corresponding artery and vein labels are also depicted in Figure 7.14 (g) which approve the correctness of the obtained clustering results.

Validation

To validate the method, the proposed steps were applied on several image patches of the DRIVE [START_REF] Staal | Ridge-based vessel segmentation in color images of the retina[END_REF] dataset. This public dataset contains 40 color images with a resolution of 565 × 584 (∼ 25µm/px) and a 45 • eld of view. The selected patches from each image were manually categorized into the following groups: simple crossing (category A), simple bifurcation (category B), nearby parallel vessels with bifurcation (category C), bifurcation next to a crossing (category D) and multiple bifurcations (category E), and each category narrowed down to 20 image patches. These patches have di erent complexities, number of junctions and sizes and they could contain broken lines, missing small vessels and vessels with high curvature. The parameters used in the numerical simulation of the a nity matrix and spectral clustering step (including σ , H , n, σ , σ 2 , ϵ and τ ) are chosen for each patch di erently, with the aim of achieving the optimal results for each case. Automatic parameter selection remains a challenging task and will be investigated in future work.

Some sample gures of these cases are depicted in Figure 7.15. For each example, the original gray scale enhanced image, hard segmentation (locally thresholded), orientation and intensity information, and nally the clustering result together with artery/vein labels are depicted (Figure 7.15 (a)-(f) respectively). Although the complexity of these patches is quite di erent in all cases, the salient groups are detected successfully. All the vessel pixels grouped as one unit have similarity in their orientations and intensities, and they follow the law of good continuation. Therefore, at each bifurcation or crossover point, two groups have been detected.

In this gure, G1 is a good example of a crossing with a small angle. The method not only di erentiates well between vessels crossing each other even with a small crossing angle, but it also determines the order of vessels, being at the bottom or passing over in crossover regions. The image patch in G2 is a good example showing the strength of the method in detecting small vessels. The detected small vessel in this image is even not annotated in the artery/vein ground truth. However, this detection is highly dependent on the soft segmented image and the threshold value used for obtaining the hard segmentation.

If the small vessel is not detected in the soft segmentation or if a hight threshold value is selected, then it also will not be available in the nal result. Other cases in this gure are good representations of the robustness of the method against the presence of a central vessel re ex (as in G3), interrupted lines (as in G10) or even noise (as in G9). In G9, noisy pixels are detected as individual units which are not similar to the other groups. They can be di erentiated from others based on their sizes. If there are very few pixels in one group, then it can be considered as noise and removed. There are also several cases with complex junctions in this gure. Presence of multiple bifurcations in one image patch, or presence of several bifurcations close to the crossing points does not lead to wrong grouping results (as seen in G5, G6, G7, G8 and G10).

The parameters used during the numerical simulations of the image patches shown in Figure 7.15 and their corresponding sizes are presented in Table 7.1. For all experiments the values of n, ϵ and τ were set to 100000, 0.1 and 150 respectively and they remained constant. The key parameters which are very e ective in the nal results are H , σ and σ 2 . H and σ determine the shape of the kernel. Based on the experiments, the appropriate value for the number of steps of the random path generation is approximately 1/3 of the image width. Selecting this parameter correctly is very important in connecting the interrupted lines. The parameters σ and σ 2 which determine the propagation variance in the θ direction and the e ect of the intensity-based similarity term do not have a large sensitivity to variation. To quantify this, the mean and variance of these two parameters for each of the above-mentioned categories are calculated and presented in Table 7.2. Since the selected patches have varying sizes and H is dependent on that, this parameter is not presented in this table. Moreover, to evaluate the performance of the method, we introduced the correct detection rate (CDR) as the percentage of correctly grouped image patches for each category. These values are presented in Table 7.2. By considering higher number of image patches per category the CDR values will be more realistic.

Discussion

The proposed method allows nding accurate junction positions, which is the position where two groups meet or cross each other. The main application of these connectivity analyses would be in modeling the retinal vasculature as a set of tree networks. Our method represents some limitations at blood vessels with high curvature: if there are some high curvature vessels, then depending on their curvature increasing σ might help in preserving the continuity of the vessel. As an example, G4 in Figure 7.15 is relatively more curved compared to the other cases, but the clustering works perfectly in this case. However, for some cases it does not solve the problem totally, and other kernels need to be considered for preserving the continuity. An example 49 × 49 image patch with a highly curved vessel is shown in Even though the intensities of arteries and veins in the gray scale enhanced image are very close to each other in some images, adding the intensity term in calculating the nal a nity matrix is crucial. By decreasing the value of σ 2 , the distance between intensities gets a higher value and it helps in di erentiating better between the groups. Figure 7.17 represents a sample 67 × 67 image patch, which includes two nearby parallel vessels with similar orientations. Figure 7.17 (e) and (f) show the correct and wrong clustering results obtained by changing σ 2 from 0.3 to 1. All other parameters have not changed (H = 24, σ = 0.02 and n = 100000). The other important di erence between these two results is that the noisy pixels close to the thicker vessel have been totally removed in the correct result.

Although they seem to be oriented with the thick vessel their intensities are totally di erent. Therefore, by increasing the effect of intensity, they are clustered as several small groups and removed in the nal step of the spectral clustering algorithm. In the next Section we will propose a solution to the limitations described, showing kernels that take into account the curvature of structures in addition to positions and orientations.

Analysis of vessel connectivities in retinal images -Curvature Integration

In Section 7.2, following Favali et al. [2016a], we have investigated the connectivity analysis in retinal images speci cally at junction points, inspired by the mathematical modeling of the geometry of the primary visual cortex (V1). In contrast to the state-of-the-art techniques, the proposed approach was capable of grouping and separating the blood vessels as individual perceptual units, even though there was some information missing due to poor segmentations. It could nd the right connections between small vessels and their parents, which are usually missing in the literature and removed during preprocessing, segmentation or a skeleton pruning step. It also individuated nearby parallel vessels, even with presence of a central vessel re ection. The bottleneck of this method was that it was not data-adaptive and it could not follow some of the highly curved vessels, because the introduced kernel was elongated and could not bend as much as the vessel bends at these points.

Cortically-inspired Spectral Clustering

In this Section we show the results presented in Abbasi-Sureshjani et al. [2016a], where we introduce three main novelties:

1) we introduce a new feature detection lifting process to select curvature, extending the curvature extraction technique to a multiscale approach making it suitable for analysis of multiscale blood vessels;

2) we describe the ve-dimensional kernel and the a nity matrix in the lifted space of position, curvature, orientation and intensity;

3) we apply a very e cient second generation clustering algorithm, able to automatically estimate the optimal number of cluster in the grouping process.

Features extraction and li ing

In presence of an image, we need to extract the features of orientation and curvature. Orientation at every point can be computed as described in Section 4.1.2.2. It can be selected using Gabor lters, or a family of lters with similar properties, called cake wavelets and introduced by [START_REF] Bekkers | A multi-orientation analysis approach to retinal vessel tracking[END_REF]. Calling U I the output of the lters:

-U I (x, , θ ) = ϕ x, ,θ (x , )I (x , ),
the orientation at which the maximum response is obtained is assigned to each location. It means the dominant orientation θ d at location (x, ) is de ned as

θ (x, ) = arg max θ ∈[0,π ]
Re (-U I (x, , θ )). In order to evaluate the curvature map for each location κ (x, ) we generalize a curvature measurement used by [START_REF] Bekkers | Curvature based biomarkers for diabetic retinopathy via exponential curve ts in se (2)[END_REF]. This is based is based on the eigensystem analysis of the Gaussian Hessian in the lifted domain. The method performs the best when the scale of the Gaussian lters σ matches the vessel width. By using a single scale, the curvature values are accurate only for the vessels which their width match the used scale. Since the blood vessels in retinal images have different widths, we modify the algorithm and introduce a multiscale approach which helps in covering various vessel widths available in the image and getting more accurate results. The idea is similar to the multi-scale feature extraction step of the BIMSO segmentation method [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF], since there the Gaussian lters have been used in the lifted domain as well. Therefore, we altered the method to a multiscale approach. To do so, con dence and curvature maps have been obtained for several scales (s σ i (x, , θ ) and κ σ i (x, , θ ), i = 1, . . . , n). Then the curvature map is constructed by assigning to each pixel the curvature value that corresponds to the scale at which the largest con dence value has been obtained, i.e.

∀(x, , θ ) ∈ R 2 × S 1 : κ (x, , θ ) = {κ σ max (x, , θ )|σ max = arg max σ i ∈{σ 1 ....σ n } s σ i (x, , θ )}. (7.3.1)
Finally we add the feature of intensity, which is independent of the previous ones.

This curvature map is used in Step 3 of Algorithm 2.

The new a inity matrix

We can de ne a new a nity matrix starting from the cortical connectivity kernel. In Sections 4.4 and 6.1, following Favali et al. [2016b,a], [START_REF] Sarti | The constitution of visual perceptual units in the functional architecture of v1[END_REF] we used 3D and 4D connectivity kernels to de ne corresponding a nity matrices. Similarly, the 5D kernel de ned in section 6.2.3 will be used here for de ning a 5D a nity matrix.

According to the teoretical description this matrix will be found in two step: rst we work in the 4D position, orientation and curvature space. Then we add intensity. In other words we de ne an additional a nity matrix in order to include the intensity of vessel pixels as a Gaussian weighting. The values of this a nity matrix for each pair of pixels (ϵ i and ϵ j ) in patch k is calculated as follows:

A ij = e -(f i -f j ) 2 σ int 2 (7.3.2)
where the intensity values (f i and f j ) are obtained from the preprocessed image patch (I k ) at corresponding locations and the σ int parameter controls the e ectiveness of the intensity similarity. This a nity matrix is normalized (between 0 and 1) and then it is included in the nal a nity matrix at Step 6 of Algorithm 2.

As explained above, this cortically inspired kernels and a nity matrices could be potentially augmented with other a nity kernels or matrices including information about other features (width, color), as long as these depend on independent variables.

A summary of the method is presented in Algorithm 2.

Algorithm 2 Proposed perceptual grouping technique for a given image

I ∈ R 2 1: Lift the image I (x, ) ∈ R 2 to U I (x, , θ ) ∈ R 2 × S 1
by orientation score transform.

2: Calculate the curvature map κ map (x, , θ ) for each point in U I (x, , θ ) using the method proposed by [START_REF] Bekkers | Curvature based biomarkers for diabetic retinopathy via exponential curve ts in se (2)[END_REF].

3: Lift the image to R 2 × S 1 × R so that U I (x, , θ , κ) = U I (x, , θ ) if k map (x, , θ ) = κ, ∀(x, , θ ) ∈ R 2 × S 1 . 4: Calculate all the fundamental solutions of equation 6.2.13, Γ κ ((x, , θ ), (x , , θ )) and Γ κ ((x , , θ ), (x, , θ )) ∀ {(x, , θ , κ), (x , , θ , κ )} ∈ U I stochasti- cally.
5: Calculate the connectivity kernel w ((x, , θ , κ), (x , , θ , κ ))

for all pairs of points in U I and the 5D connectivity kernel ω 5 ((x, , θ , f , κ), (x , , θ , f , κ )) using Eq. 6.2.15.

6: Create the a nity matrix based on Eq. 7.3.2.

The numerical approximations of the 4-D kernel is presented in Section 6.2.3.

The optimal clustering algorithm

After de ning a suitable a nity matrix we apply now a clustering method. Many algorithms have been proposed in this area [START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Perona | A factorization approach to grouping[END_REF][START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF][START_REF] Meila | A random walks view of spectral segmentation[END_REF][START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF]). Unlike more basic clustering methods, as k-means, where the number of clusters must be assumed a priori, spectral clustering algorithms select from an a nity matrix all eigenvectors whose eigenvalues are su ciently large. In order to avoid an a priori xed treshold (as we did in our previous paper [Favali et al., 2016a]), we follow the method proposed by [START_REF] Zelnik | Self-tuning spectral clustering[END_REF], which algorithm automatically estimates the number of cluster which optimize grouping. In this algorithm, which is explained step by step in Algorithm 3, we use the a nity matrix de ned in Algorithm 2. The structure of the eigenvectors is used to determine the number of groups. The cost function is evaluated from the alignment of the eigenvectors (Step 5). The best number of clusters is considered as the one which minimizes the cost function ( min ). Correspondingly, the best clustering quality Q clust , that has a reverse relation to the alignment cost, is obtained in Step 6. In the nal step, the noisy elements, that construct small sized groups, are removed.

Algorithm 3 Self-tuning spectral clustering algorithm: Given a set of points S = s 1 , ..., s n ∈ R l to cluster 1: De ne the a nity matrix A i,j .

2: De ne the diagonal matrix D with D i,i = n j=1

A i,j and construct the symmetric normalized graph Laplacian L = D -1/2 AD -1/2 .

3: Find the C largest eigenvectors of L x 1 , ..., x C and construct the matrix X = [x 1 , ..., x C ] where C is the highest possible group number. 4: Use a gradient descent scheme to recover the rotation R which best aligns X 's columns with the canonical coordinate system.

5: Let Z be the matrix obtained after rotating the eigenvector matrix X and

M i = max j Z i,j
. The cost function is de ned as:

= n i=1 C j=1 Z 2 i ,j M 2 i .
6: Classify the cost of alignment for each group number and set thenal group number C best to be the largest group number that provides the minimal cost min . Correspondingly, the best clustering quality is calculated as:

Q clust = 1 -( min /n-1)
C bes t .

7: Consider the alignment result Z of the top C best eigenvectors and assign the points s i to cluster c if and only if max j (Z 2 i,j ) = Z 2 i,c . 8: Find and remove the clusters that contain less than a minimum number of cluster elements.

The scales we used for our SLO images are {1.5, 2.5, 3.5} in pixels. Figure 7.20 represents the color-coded orientation (e), con dence (f) and curvature (g) maps of a sample SLO image of the IOSTAR dataset. Note that the depicted con dence and curvature maps are related to one single scale σ = 1.5, and the absolute curvature value is shown.

Figure 7.19 depicts a sample application of the proposed method for clustering the perceptual units in both an arti cial image (the rst row) and a small patch of retinal images (the second row). The synthetic image includes three crossing circles with di erent radii and corresponding curvatures, and the retinal patch includes two crossing vessels. For each case, the orientation and curvature of the lifted images are shown in the column (b) and (c) respectively. The intensity value for the synthetic image is constant all over the circles and for the retinal patch, it is color-coded in (a). A sample level set of corresponding 5D kernels (while keeping two dimensions (κ and f ) xed) has been shown in each row (d). Finally, (e) shows the three detected groups in the synthetic image and three vessels in the retinal image in di erent colors. The implementation details, validation and application of this proposed method using a set of arti cial and retinal images are presented in the next section. The columns represent the original image, the orientation score, the 3D curvature maps, a level set of the 5D kernel while keeping two dimensions xed and the nal detected clusters in di erent colors, respectively.

Experiments

In this section, we present a potential application of the proposed connectivity analysis for solving the aforementioned problems in curvilinear structure tracking methods for retinal vasculature analysis. After explaining the material used for validating the method, the details of numerical simulation are described. Then the quantitative and qualitative results of the proposed technique are presented and discussed in detail. Two datasets have been used for validating the method. The specications and the preparation steps of each dataset are explained in detail as follows.

Phantom images

The set of phantom images (201 × 201) has been generated to include various rotated, curved and interrupted vessel-like structures. The orientation and curvature values in these phantom images are known. Five di erent groups are created to mimic possible structures that could be present in retinal images, similar to the categories proposed in Favali et al. [2016a]. These categories are (A) crossings; (B) bifurcations; (C) parallel vessels; (D) bifurcations and crossings; and (E) vessels with multiple nearby bifurcations. Each of these categories may also include challenging structures. For instance, they may be interrupted or highly curved or include small junction (crossing/ bifurcation) angles. In order to di erentiate between the simple and the challenging cases for each category, we name group X as X 1 if it is challenging. Figure 7.21 depicts ten di erent phantom images ( rst column), two per category, together with their color-coded orientation and curvature maps (second and third columns).

The basic element used for creating these phantom images is a sine wave-like structure, which is generated with several frequencies and amplitudes and it is rotated and located at different positions depending on the target shape. By adjusting the frequency and amplitude of the waves, di erent curvature values can be created. In addition to the vessel-like structures, other challenging structures such as dashing and the Euler spiral have been also used to examine the strength of the method in grouping these curved structures (e.g. Figure 7.21, A1).

Retinal images

This set contains several image patches selected around junctions in the public IOSTAR1 dataset. The IOSTAR dataset contains images captured using scanning electron ophthalmoscope (SLO) technology. These high contrast images have a resolution of 1024 × 1024 with 45 • FOV. The blood vessels, junctions and artery/vein labels have been annotated for 24 images and corrected by two di erent experts in order to decrease the interuser variability.

The strength of the method is its ability to individuate junction or crossing where most of the previous methods in the literature have di culties. Therefore, ve images and their annotations are downsampled to half size 512 × 512 and all patches of 51 × 51 pixels with these type of problems have been automatically selected from them. A total of 272 patches have been extracted and classi ed. As for phantom images, these patches are also manually categorized in ve di erent groups (similar to the phantom images) depending on their structure and com-plexity, with the scope of validation of the method.

The proposed method used for creating these patches is explained step by step in Section 7.2.3. The rst step is the preprocessing applied on original image (I • ∈ R 2 ), so that the luminosity and contrast are normalized, the noise is removed and the blood vessels are enhanced. The same pre-processing technique proposed by [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF] for the SLO images has been applied on the green (I •, ) and red (I •,r ) channels separately and then they are combined as I (x, ) = I 2

•, (x, ) + I 2 •,r (x, ), for all the (x, ) positions in the image I • . This increases the di erence between the intensity of arteries and veins. The next step is the blood vessel segmentation which provides an initial estimation of the location of the blood vessels. The outcome of segmentation can be a deterministic binary map, in which each pixel is labeled as a vessel (with label 1) or background (label 0). The binary map is often obtained by thresholding the probability map globally. None of the segmentations are perfect and they may contain vessel disconnections or wrongly detected vessel pixels. In this work, the binary segmentations obtained by the BIMSO method proposed by [START_REF] Abbasi-Sureshjani | Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images[END_REF] is used, speci cally for the SLO images.

Later a set of junction locations (ϵ i = {x i , i }, i = 1, . . . , M) is obtained using the BICROS method proposed by Abbasi-Sureshjani et al. [2016b], where M is the number of detected junctions. The obtained segmentation (I se ) is also used as the input to the hybrid step of the BICROS method. Both these methods (BIMSO and BICROS) have been validated before using the IOSTAR dataset. The detected locations are then considered as the centre of patches with a xed size of 51 × 51 (s • = 25). For an image H ∈ R 2 the patch (H i ) centred around junction ϵ i is selected as:

H i = {H (x, )|x i -s • ≤ x ≤ x i + s • , i -s • ≤ ≤ i + s • }. (7.3.
3) The same operation is applied on the enhanced (I ), segmented (I se ) and ground truth (G) images and the corresponding patches are called I i , I se ,i and G i (for all i, 1 ≤ i ≤ M) respectively. By obtaining the I se ,i it is possible to perform the connectivity analysis (Algorithm 2) only for pixels labeled as vessels. This helps in reducing the size of the a nity matrix and correspondingly the computational complexity of the spectral clustering step. The vessel locations are found as:

i = {(x, )|I se ,i (x, ) = 1}, i = 1, . . . , M. (7.3.4)
Therefore, for each image patch (I i ) only at vessel pixel locations ( i ) the groups are obtained and the resulting clusters are compared with the vessel labels in G i . If the detected units in the image patch match the individual vessel labels in the ground truth, then it is perceived as a correct result. It is worth mentioning, in case two vessels have the same label (artery or vein) but they do not belong to the same vessel tree, they are considered as separate units during the comparison. After this preprocessing, the algorithm presented in the previous section can be applied.

Validation

Phantom images

To validate the method using the phantom images, the method presented in Algorithm 2 is directly applied on the lifted im-ages, starting from Step 4. The orientation and curvature values of these images are available from the beginning. The last two columns of Figure 7.21 represent two di erent clustering results per image (two images per category). For each image, two kernels have been used for obtaining the a nity matrix: the new kernel (adaptive, based on the curvature at each point); and the kernel used in Favali et al. [2016a]. This helps in highlighting the importance of including additional contextual information for connectivity analysis. In these phantom images the intensity was constant, so that the contribution of this feature is always 1. Each color in the nal results represents one detected unit. The parameter σ κ used in these simulations is 0.01 for the 4D kernel [Favali et al., 2016a] and 0.001 for the 5D one. As seen in this gure, the new method is capable of grouping the elongated, rotated and curved structures despite disconnections, high curvature points or small crossing angles. It not only di erentiates well between curved crossing structures, but also groups the bifurcations within the main parent structure so that they construct one unique unit.

Retinal patches

To validate the method on retinal image patches, 272 image patches with a xed size of 51 × 51 pixels have been examined semi-automatically. The number of patches processed per group is presented in the second column of Table 7.3.

The group labels are automatically compared with the clustering results. In case two vessels with similar labels in the ground truth image (artery or vein) belong to separate vessel trees (parents), they get a di erent label. In addition, we perform a nal check to control the nal results. Two criteria are used to evaluate the performance. One is the Correct Detection Rate (CDR%) as de ned in Section 7.2.4 and in Favali et al. [2016a]. This criterion represents the percentages of correctly grouped patches among all examined cases. The second criterion is Q clust de ned in Step 6, which measures the alignment quality of Algorithm 3. As mentioned in Algorithm 3, the best number of clusters is the one which minimizes the de ned cost function or maximizes the quality (0 ≤ Q clust ≤ 1). This criterion represents how well aligned the elements of each group are. These two performance values have been measured for all the patches and presented in the last two columns of Table 7.3 for each category separately.

Figure 7.21: Samples of phantom images in di erent categories. From left to right, the images in each category represent: stimulus, the orientation map, the curvature map and the clustering result with the previous [Favali et al., 2016a] and the new kernel. The color of the curvature maps are scaled between the maximum and minimum values of the curvature in each image.

During the experiments the parameters used in numerical simulations and the calculation time of di erent parts of the experiments (excluding the patch preparation steps) have been recorded. Several parameters are involved in creating the kernel. Some of them are determined automatically based on the available information in the data and others need to be set manually. The rst set includes the size of the kernel in x and dimension (n x and n respectively). The other one is the number of discrete curvature values (n κ ), which for each the 3D kernel is created. Considering the step size as 1 pixel, n x and n are determined by the di erence between maximum and minimum coordinates of the vessel locations in x and directions. Similarly, considering the step size of 0.05 for discrete curvature values, n κ is obtained by division of the di erence between maximum and minimum of the available curvature values in the patch over the step size. Moreover, the number of steps H used in generating the random paths is set automatically as one third of the patch size. The second set of parameters is set manually. The number of discrete orientations (n o ), number of iterations in the Monte-Carlo simulation (n) and σ κ (used in equation 6.2.15) were set to 18, 100000 and 1 respectively and kept constant for all the cases. The other parameters are presented in Table 7.3 for each category separately and for all the cases (in mean ± standard deviation format). For recording the calculation times the whole process has been divided into four steps: the discretization step before creating the kernel; creating the kernel for several curvature values; creating the a nity matrix and the spectral clustering step. The times are called t disc , t kernel , t a f f init and t clust , respectively, and they are a ected by several parameters including the number of vessel pixels in each patch (| i | , i = 1, . . . , M), the number of discrete orientations (n o ), curvatures (n κ ) and the dimension of the kernel in x and dimensions (n x and n ). To consider these e ects, the weighted average of calculation times for each image patch is obtained, so that the weight for each timing is de ned as the product of the a ecting parameters. It worths mentioning that since the nal number of clusters (C best ) is determined by comparison among the clustering costs of several cluster sizes (C), t clust is additionally a ected by the number of examined cluster sizes (n c = 20 for all the cases), so the nal clustering time is divided by n c . Thus weighted timings are calculated as:

t disc = N i=1 t disc,i n x,i n ,i n o,i / N i=1 n x,i n ,i n o,i t kernel = N i=1 t kernel,i n x,i n ,i n o,i n κ,i / N i=1 n x,i n ,i n o,i n κ,i t a f f init = N i=1 t a f f init ,i | i | 2 / N i=1 | i | 2 t clust = 1/n c N i=1 (t clust,i )| i | 2 / N i=1 | i | 2 (7.3.5)
where i and N indicate the patch number and total number of patches respectively. It is worth mentioning that the size of the a nity matrix for patch i is | 2 i |. These weighted times and their normal average over all patches per step are presented in Table 7.4. Table 7.4: The weighted and normal mean of the processing time of each step in analyzing retinal patches. A set of sample results for various kinds of patches is depicted in Figure 7.22. In this gure, the rst column shows the cropped patch from the artery/vein ground truth image. The second column depicts the color-coded normalized intensity values taken from the pre-processed image. As seen in these gures, the variation of intensity is too much even for small children vessels belonging to one parent vessel. The third and fourth columns represent the color-coded orientations and curvature values. Finally, the last column represents the clusters found in each patch, each shown in an individual color.

The presented results, parameters and timings are discussed in the next section.

Discussion

Based on the results presented, the main advantage of the new method is that by including the curvature information as an additional contextual information, the kernel adapts itself naturally according to the available data. If the curvature is high, the kernel rotates as well, otherwise it nds a closer path to the points which are collinear with respect to the reference point. In both datasets, the bifurcations are grouped with the parent vessel, but at crossovers with small crossing angles, despite their similar appearance to junctions, the vessels are totally separated. The main reason is that the curvature at junction points is high (because of sudden change of orientation), while for crossings the orientation for individual vessels changes only slightly (in most of the cases). This is advantageous not only in di erentiating between junctions and crossings, but also in separation of arteries from veins or crossing tree structures from each other. Figure 7.23 shows the clustering results for two retinal patches obtained using the new kernel and the previously introduced kernel by Favali et al. [2016a]. This helps in depicting the di erences between the two methods visually.

As presented in Figure 7.22, the intensity is a less informative feature compared to the geometrical features because of its Figure 7.23: Clustering results obtained using the connectivity kernel introduced here and the one proposed in Section 6.1 [Favali et al., 2016a]. From left to right: artery/vein vessel ground truth, intensity, orientation, curvature and clustering results with the previous and the new kernels. large variation within a small neighborhood; however, in some cases, it is a good local criterion di erentiating arteries from veins. Thus it is also included in the nal a nity matrix with a smaller e ect (using a relatively large σ int ).

Some examples of the limitations of the method in clustering the phantom and retinal patches are represented in Figure 7.24 and 7.25 respectively. For phantom cases, the presence of very high curvature combined with the co-circularity and colinearity of vessels does not allow to obtain a good clustering result. Considering other features, as the intensity, could be helpful in solving this problem. However, as shown in the top row of Figure 7.25, the feature of intensity is not useful for correct clustering. In this image, one of the bifurcations has been assigned as a vessel crossing the other one because it is almost orthogonal to its parent vessel; while the other crossing vessel has been wrongly clustered as a bifurcation. In the bottom row, one of the small bifurcations is totally missing in the segmentation and the other small one is not clustered with its parent vessel because of lack of information. The statistical analysis on the parameters used during numerical simulations is presented in Table 7.3. Based on these results the curvature di usion constant parameter (σ κ ) changes in a small range for simple and challenging cases per group, ex- cept for category A and A1, considering the fact that the number of available challenging patches in category A is small compared to the others. The σ int parameter has a small variation as well. Therefore, it is reasonable to use the mean value in general for examining new patches in each group. It is worth mentioning that all the patches examined in this work have been selected from retinal images with the same resolution and respective pixel size. If the pixel size increases or decreases, the σ κ controlling the size of the 3D kernel needs to be increased or decreased accordingly. It is also important to mention that compared to previous work, the eigensystem analysis is fully automatic in this work, due to the use of self-tuning spectral clustering. Therefore, no additional parameters need to be tuned for this step.

Qualitative and quantitative results indicate the better performance of the method on all kinds of retinal patches and challenging structures. Compared to Favali et al. [2016a], the CDR% performance values have changed for some groups. There are two main reasons. On one hand, in the previous work, the CDR% was calculated for 20 patches per group; while in this work each group is categorized into two groups depending on the available structure and also the number of patches per group is di erent. On the other hand, in this work we evaluated the performance with the assumption that the bifurcations need to be grouped with the main parent vessel, while in previous work, due to use of one elongated kernel, the assumption was to have at least two separate units depending on the bifurcation angle. Another minor di erence is that the dataset has changed and the patches have been selected from a di erent set of retinal images. Therefore, it is not fair to make a one-byone comparison to the previous results.

Last but not least point is about the computation times. The codes are implemented in Matlab and the times are measured on an Apple Macbook Air, Intel Core i7, 1.7 GHz processor and 8GB of memory. The most time consuming step as presented in Table 7.4 is the calculation of several 3D kernels. The number of kernels depends on the number of discrete curvature values (n κ ) existing in the data, and the computation time as mentioned before depend on its size. The next most time consuming part is the calculation of the a nity matrix which is performed per pair of points. The weighted average times are good indicators of the complexity of each step. Although they are still relatively small, they can be improved both from hardware and implementation points of view.

Concluding, this method allows to analyze the connectivities in images containing elongated, rotated and curved structures. One limitation of the method arises when wrong information is provided as the input of the method, then the failure is natural. If the measured curvature or orientations are not accurate enough, then the method fails. Therefore, it is essential to validate the curvature and orientation measurement methods in advance.

The proposed method has a great potential in discrimination and separation of arteries from veins in retinal images and, in a general view, separation of all the tree structures crossing each other in the vasculature network. Most of the segmentation or artery/vein separation methods are local, pixel based techniques which do not take into account the global connectivity of the blood vessels in the network. By including this global connectivity criterion, most of the errors and wrong detections will be eliminated and the problem of missing information will be handled appropriately.

8 Theory of the cortical model in encoding-decoding techniques I we apply the geometrical models of the cortex to identi cation and reconstruction of images from human brain activity [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF].

Following [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF], the rst problem can be stated as follows:

"Let us considered a large, arbitrary set of images. The observer picks an image from the set and views it while brain activity is measured. Is it possible to use the measured brain activity to identify which speci c image was seen?" Even more challenging is the second problem:

"Is it possible to reconstruct the image seen from the measured brain activity?" Every image can be represented in term of receptive pro les and we develop a decoding method based on quantitative receptive elds models that characterize the relationship between visual stimuli and fMRI activity in early visual area. We will obtain optimal identi cation performances, while low spatial resolution of available fMRI data is a serious obstacle to reconstruction.

Introduction to Functional MRI

The problem of linking a cognitive function to di erent anatomical structures of the brain represents one of the oldest debates in neuroscience. Several brain imaging techniques are available today, in this section we introduce one of the principal, the functional MRI (fMRI), that represents the most powerful tool available for measuring human brain activity.

The functional MRI provides an indirect and nonlinear measure of neuronal activity, because it does not measure neuronal activity directly, but rather measures changes in blood oxygenation caused by metabolic processes in neurons.

Functional imaging techniques detects physiological activities such as blood ow. Due to its good spatial resolution (1mm 3 ), the fMRI is used to localize the brain activity in response to a given task or experimental condition. Moreover, it allows to study the whole brain coverage and not only prede ned regions or layers. The spatial resolution is determined by the physical constraints of the fMRI scanner (as the limits on the strength of the magnetic elds that can be produced and limits on the power of the radio frequency energy that can be deposited safely in the tissue).

The rst fMRI method developed, which is also the one used to record the data that we will consider, measures the oxygen change in blood ow and is known as BOLD (Blood-oxygenlevel dependent) contrast. It is well known that blood oxygenation in the brain is closely linked to neural activity. The BOLD contrast can be explained considering the function of an oxygen carrier in the blood cells, the hemoglobin. The principle behind its functioning is that oxygenated and deoxygenated hemoglobin yield di erent reactions to an externally applied magnetic eld, giving distinct magnetic resonance responses [START_REF] Ogawa | Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic elds[END_REF][START_REF] Keith R Thulborn | Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high eld[END_REF]. This allows to trace the presence or the absence of neural activity, as shown in Source: [START_REF] Romeny | Front-end vision and multi-scale image analysis: multi-scale computer vision theory and applications[END_REF].

The spatial resolution of fMRI is given by the size of a voxel, a 3-D cuboid given by a measure of the scanner. Its size is between 4mm to 1mm; smaller voxels have fewer neurons on average, include less blood ow and have less signal to noise ratio than the larger ones. fMRI data are collected in the form of slices, which are then projected onto a standardized anatomi-cal volume. Datasets are commonly measured using repeated 2D imaging methods, resulting in a temporal o set between slices and the time resolution is given by the repetition time of successive image acquisitions [START_REF] Pedregosa-Izquierdo | Feature extraction and supervised learning on fMRI: from practice to theory[END_REF].

In our example we will consider data from [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF], where functional BOLD data were recorded from occipital cortex at a spatial resolution of 2mm x 2mm x 2.5mm and a temporal resolution of 1 Hz.

8.2 Encoding and decoding model in the problem of identification of images from fMRI activity 8.2.1 Overview of encoding and decoding results in fMRI analysis

Several scienti c achievements have been made in the last few decades in brain encoding and decoding using fMRI. The goal of many fMRI studies is to understand what sensory, cognitive or motor information is represented in some speci c region of the brain. Functional magnetic resonance imaging studies have decoded orientation [Haynes andRees, 2005, Kamitani and[START_REF] Kamitani | Decoding the visual and subjective contents of the human brain[END_REF], position [START_REF] Thirion | Inverse retinotopy: inferring the visual content of images from brain activation patterns[END_REF] and object category [START_REF] David | Functional magnetic resonance imaging (fmri)"brain reading": detecting and classifying distributed patterns of fmri activity in human visual cortex[END_REF]Savoy, 2003, Haxby et al., 2001] from activity in visual cortex.

While encoding uses external stimuli to predict brain activity, decoding uses brain activity to predict information about external stimuli. In particular, encoding models goal is to understand how well the brain activity can be predicted from the modeled external stimuli. Decoding models aim at studying how much of the external stimuli can be learned considering the brain activity [START_REF] James V Haxby | Distributed and overlapping representations of faces and objects in ventral temporal cortex[END_REF][START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF][START_REF] Miyawaki | Visual image reconstruction from human brain activity using a combination of multiscale local image decoders[END_REF], Naselaris et al., 2011]. In this sense, encoding and decoding can be seen as complementary methods to understand the fundamental mechanisms of brain functions via neural codes [START_REF] Peter Dayan | Theoretical neuroscience: computational and mathematical modeling of neural systems[END_REF][START_REF] Gerstner | Neural codes: ring rates and beyond[END_REF][START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF][START_REF] Trappenberg | Fundamentals of computational neuroscience[END_REF].

In this eld, [START_REF] Haynes | Decoding mental states from brain activity in humans[END_REF] discussed the general research problem of brain reading, focusing on visual perception and other types of mental state. Kay and Gallant [2009] summarized several advancements of brain decoders of visual stimuli via fMRI including the ones in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF], [START_REF] Miyawaki | Visual image reconstruction from human brain activity using a combination of multiscale local image decoders[END_REF], [START_REF] Thirion | Analysis of a large fmri cohort: Statistical and methodological issues for group analyses[END_REF]. They provided analysis on the future research direction and potential application of brain decoding. Existing studies have been reviewed by [START_REF] Hasson | Reliability of cortical activity during natural stimulation[END_REF] that examined the reliability of cortical activity within or between human subjects in response to natural visual stimulation. An extensive overview of recent experimental methodology advancements in voxel-based decoding models of visual stimuli has been provided by [START_REF] Naselaris | Encoding and decoding in fmri[END_REF], where it is described an estimate of encoding model for every voxel in an fMRI scan. The estimated encoding model is used to perform decoding.

This voxel-based methods for brain decoding have been widely used in the literature due to its simplicity and e ectiveness. In several voxel-based encoding models [START_REF] Naselaris | Encoding and decoding in fmri[END_REF][START_REF] Tom M Mitchell | Predicting human brain activity associated with the meanings of nouns[END_REF][START_REF] Thirion | Analysis of a large fmri cohort: Statistical and methodological issues for group analyses[END_REF], authors tried to predict the functional activity in single voxels, evoked by di erent stimuli. Those models contain a quantitative description of how stimulus information is represented in the functional activity of individual voxels. In [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] several thousands of voxels located in the V1, V2 and V3 areas of the visual cortex were used for learning the predictive receptive-eld models. We will be inspired by these results in the following Sections.

In order to study the fMRI signals and informations, researchers have also tried to extract fMRI BOLD signals from the region of interest (ROI) [START_REF] David | Functional magnetic resonance imaging (fmri)"brain reading": detecting and classifying distributed patterns of fmri activity in human visual cortex[END_REF][START_REF] Dirk B Walther | Natural scene categories revealed in distributed patterns of activity in the human brain[END_REF][START_REF] Hu | Bridging the semantic gap via functional brain imaging[END_REF].

Because of the remarkable structural and functional variation across individual brains, neuroimage registration algorithms are still insu cient to accurately establish correspondences in di erent brains [START_REF] Liu | A few thoughts on brain rois[END_REF]. For these reasons, both these methods have limitations [START_REF] Liu | A few thoughts on brain rois[END_REF]. To overcome the limitations, solution have been proposed by Zhu et al. [2012b,a], to represent structural and functional brain architectures by a set of reproducible and consistent brain landmarks that can be accurately and reliably localized in each individual brain. Moreover, in recent years, works that employed connectivity-based measurements for quanti cation of the brain's responses have been presented [START_REF] Hu | Bridging low-level features and high-level semantics via fmri brain imaging for video classi cation[END_REF][START_REF] Ji | Retrieving video shots in semantic brain imaging space using manifold-ranking[END_REF][START_REF] Richiardi | Decoding brain states from fmri connectivity graphs[END_REF][START_REF] Spiro P Pantazatos | Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity[END_REF]. In this way, functional connectivity can be used for measurements of functional brain responses, potentially used for brain decoders. This method represents a promising opportunities for the advancements of brain encoding and decoding applications in the near future.

A summarization of these brain encoding and decoding studies is presented more in details in Chen et al. [2014].

Identifying natural images from human brain activity

We will be particularly inspired by the results in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF].

In his paper the authors develop a decoding method based on receptive-eld models that characterize the relation between visual stimuli and fMRI activity in early visual areas. The original analysis of [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] is composed by two stages (see Figure 7.2). The rst one is model estimation, where fMRI data are recorded while subjects viewed 1750 training images. These data are used to estimate a receptive-eld model for each voxel. The second stage is image identi cation and fMRI data are recorded while subjects viewed a collection of 120 novel images, that form the validation set. By using the encoding model evaluated at the rst stage, the goal was to identify which image had been seen by the subjects, comparing the measured fMRI activity with the predicted signal in response to the presentation of these images.

The model estimation scheme is represented in Figure 8.2. [2008] is based on a representation of the images in terms of a Gabor wavelet pyramid (GWP) [START_REF] Jones | An evaluation of the two-dimensional gabor lter model of simple receptive elds in cat striate cortex[END_REF][START_REF] John G Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical lters[END_REF][START_REF] Sing | Image representation using 2d gabor wavelets[END_REF]] and describe tuning along the dimensions of space, orientation and spatial frequency (Figure 8.3). Let's consider the 2D Gabor lters:

ψ k (x, ) = e - ( x 2 + ˜ 2 ) 2σ 2 k e 2πiω ˜ (8.2.1)
where k denotes, as in Section 3.2.1, the discrete choice of parameters de ning the Gabor lter

k = (x k , k , θ k , σ k ): x = (x -x k ) cos(θ k ) + ( -k ) sin(θ k ) ˜ = -(x -x k ) sin(θ k ) + ( -k ) cos(θ k ). (8.2.2)
For every image I i the Gabor energy associated to a Gabor pair ψ k is computed as :

Ẽki = | I i (x, )ψ k (x, )dxd | (8.2.3)
and is called contrast energy. A total of n Gabor lters have been considered. Hence the contrast energy is represented as a matrix Ẽki , where the index i identi es the image i = 1 • • • N , with N = 1750, while the index k, with k = 1, • • • , n identi es the coe cient of the k Gabor lter in the representation.

The fMRI measurement

We use the estimated responses evaluated in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] where peak BOLD responses to each of the training and validation images were estimated from the preprocessed data.

For every image I i the corresponding fMRI signal is measured. This is represented as 3-D cuboid given by a measure of the scanner. In the present case it is a 64 × 64 × 18 volume. Also, of the 73,728 (64 × 64 × 18) voxels recorded for each scan, only ∼ 25, 000 voxels in or near the cortex were selected for each subject. For simplicity we will identify each voxel in the volume with an index , varying from 1 to M ∼ 25, 000. Hence the full set of measured fMRI signal will be a matrix

i, , i = 1, • • • , N , = 1, • • • , M
, where the index i identi es the stimulus image i and the index identi es the voxel.

Encoding procedure

In [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] the authors assume this relation between energies Ẽki and measured activities i :

i = n k=1 Ẽki β k + β 0 (8.2.4)
where the matrix β and the vector β 0 are unknown. In the matrix β the index varies from 1 to n and identi es the Gabor lter, the index varies from 1 to M and identi es the voxel. The vector β 0 only depends on the voxel . This model assumes that the measured activities are a weighted sum of a xed transformation of the local contrast energy features. They are interested in nding β such that the linear combination with coe cients of the contrast energy of a set of images should approximate in the closest way the fMRI measured responses to those images. For every voxel , this is formalized through the minimization problem:

min β F 1, (β ) (8.2.5)
where

F 1, (β ) = N i=1 ( i - n k=1 Ẽki β k -β 0 ) 2 (8.2.6)
is the mean square error between the measured and the predicted response. Gradient descent with early stopping is used in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] to learn a predictor of voxel activity on the training set. Early stopping is a form of regularization used to avoid over tting, which occurs when a model describes the noise rather than the underlying relationships that one aims to characterize.

For every voxel the corresponding receptive-eld model can be evaluated as:

RF = n k=1 β k |ψ k | (8.2.7)
where ψ k is the Gabor lter de ned in (8.2.1). An example is shown in Figure 8.4. The intensity of each pixel indicates the sensitivity of the receptive eld to that location. The white circle delineates the bounds of the stimulus.

Decoding and image identification

In the second stage, the image identi cation, they use the encoding model estimated in the rst stage to predict the voxel activity pattern evoked by each of the images (see Figure 8.2).

From the stimuli in the validation set they predict the activation coe cients that they then use to identify the correct image.

The image whose predicted voxel activity pattern is most correlated (Pearson's correlation) with the measured one is selected. The Pearson correlation coe cient is a measure of the linear dependence (correlation) between two variables and it is evaluated as their covariance divided by the product of the standard deviation of the two responses. It has a value between +1 and -1 inclusive, where +1 is total positive linear correlation, 0 is no linear correlation, and-1 is total negative linear correlation.

To optimize the performance of the identi cation algorithm, they rst select voxels whose receptive eld models have the highest predictive power. This predictive power is evaluated as the Pearson's correlation between measured m and predicted p responses for the images used in the image identi cation runs:

ρ p , m = σ p m σ p σ m . (8.2.8)
In their experiment approximately 5000 voxels are located in the stimulated portions of visual areas V1, V2 and V3; the predictive power of the receptive-eld models is signi cantly variant for di erent voxels. Optimal performance is achieved using the rst 500 voxels whose receptive-eld models had highest predictive power; most of these voxels are located in area V1, where predictive power is higher.

Identi cation performances for both subjects are illustrated in Figure 8.5. For subject S1 they obtain 92% (110/120) of the images correctly identi ed, whereas chance performance is just 0.8% (1/120). For subject S2, 72% (86/120) of the images are identi ed correctly. These high performance levels demonstrate the validity of their decoding approach and indicate that their receptive-eld models accurately characterize the selectivity of individual voxels to natural images.

A modified version of the encoding model

The aim of this section is to provide a modi ed and more efcient model of encoding. We start from the Gabor Wavelet Pyramid model of Figure 8.3 composed by 6 spatial frequencies and 8 possible orientations θ , for a total of (1 2 + 2 2 + 4 2 + 8 2 + 16 2 + 32 2 ) × 8 = 10, 920 phase-invariant complex cells [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF]. Variants of this model were used in a series of seminal encoding and decoding studies [START_REF] Nishimoto | Reconstructing visual experiences from brain activity evoked by natural movies[END_REF], Naselaris et al., 2009[START_REF] Kendrick N Kay | A twostage cascade model of bold responses in human visual cortex[END_REF]. We will provide a new model, with the following main features:

• following the idea of Vu et al. [2011], we will add a L 1 penalization, called Lasso model, in order to ensure sparsity of the representation and we will add a nonlinearity of logaritmic type in order to better model the structure of the cortex;

• we will add a regularization in the subriemannian cortical structure.

We will see that our new encoding model has better identication performances compared to the model described in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF].

The Lasso method

The main property of each voxel is to have receptive elds localized around a very precise location in the visual eld. The model in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] has already this property, however, following [START_REF] Vincent | Nonparametric sparse hierarchical models describe v1 fmri responses to natural images[END_REF]Vu et al. [ , 2011] ] we propose here a modi ed version of the model based on a di erent method of evaluation of coe cients. It is based on the so called Lasso method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. This is a popular method that uses an L 1 penalty to achieve a sparse solution. That is, the minimizer of the Lasso problem we will have has many vanishing components β j = 0 as it is possible and the solutions will be more localized. This would not be true with ridge regression, that penalizes with the L 2 norm instead of the L 1 norm, due to the strong regularizing e ect of the L 2 norm. Moreover, while ridge regression improves prediction error by shrinking large regression coefcients to reduce over tting but it does not perform covariate selection, Lasso is able to achieve both of these goals by forcing the sum of the absolute value of the regression coe cients to be less than a xed value.

Let us consider to have predictors Ẽki , i = 1, ..., N k = 1, • • • , n and outcome values i for the ith observation, for i = 1, 2, .., N . We x the value of the voxel, and use the same notation of the previous section. The Lasso solves the problem:

min β F 1, subject to n k=1 |β k | ≤ s.
(8.2.9) Proposition 4. By convexity, for each s, there is always at least one solution in equation (8.2.9).

Note that the solution is not necessarly unique if, for example, Ẽ has not maximum rank. The bound s is usually chosen by a model selection procedure as cross validation. By Lagrange multiplier Theorem, the solution of equation (8.2.9) also minimizes the following functional, generally called Lagrangian of the system: | βk (λ)|.

F 2, (β, λ) = 1 2 N i=1 ( i - n k=1 Ẽik β k -β 0, ) 2 + λ n k=1 |β k | (
In other words, studying equation (8.2.10) we introduce a new variable λ but we study an unconstraint optimization problem, instead of a constraint one.

Di erent algorithms have been proposed for solving this problem [START_REF] Efron | Least angle regression[END_REF][START_REF] Friedman | Pathwise coordinate optimization[END_REF]. Considering uncorrelated multiple predictors, the Lasso solutions are softthresholded versions of the individual least squares estimates [START_REF] Friedman | Pathwise coordinate optimization[END_REF]. For λ xed a coordinate-wise optimization methods is applied and the equation is iteratively solved for every xed component β j .

At each iteration step we denote βk (λ) the values of the parameters found at the previous iteration step. Then we x each component βk with k j and consider F as function of β j alone. Then equation (8.2.10) becomes:

f 2, (β j , λ) = 1 2 N i=1 ( i - k j Ẽki βk -Ẽji β j ) 2 + λ k j | βk | + λ|β j |.
(8.2.11) For every component j the minimum is computed and at the end of the iteration step the values βk (λ) of minimizers are updated. For the xed value of λ the convergence of the method to the minimum β (λ) of F 2, (•, λ) is guaranteed. The new model estimation scheme is represented in Figure 8.6, where fMRI images are codi ed by a matrix i .

We assume the same relation between energies de ned in equation (8.2.4) and measured activities:

= lo (1 + Ẽ)β + β 0 (8.2.16)
where the coe cients β = β k and the vector β 0 are unknown. We use Lasso method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], described in Section 8.2.3.1, in order to achieve a sparse solution.

Let us consider a single voxel . In our case, the functional we consider is:

F 3, (β ) = ( 1 2N N i=1 ( i -β 0 - n k=1 lo (1 + Ẽki )β k ) 2 + λ n k=1 |β k |)
(8.2.17) and we minimize it:

min β,β 0 F 3, (β ) (8.2.18)
where β and β 0 are p-vector and scalar components and λ ≥ 0 is a regularization parameter. As clari ed in the previous section, when λ increases the number of nonzero components of β decreases. The rst term of equation (8.2.17) is called ducial term, because its minimization brings to the evaluation of coe cients and allows to obtain data closest to the measured ones.

Encoding with cortical connectivity

The encoding model presented here is a minimization in the L 2 space. However, we have seen in Section 4.1.2.3 that the functional geometry of the space of simple cells receptive proles is endowed by the cortical connectivity with a di erential structure of Subriemannian type. Hence we will introduce this physiological term in the model.

For any xed voxel , the unknown β of the minimization problem is a function of the variable k, which is induced by a discretization of the group parameters

k = (x k , k , θ k , σ k ). For very xed value of σ k we have that β k = β σ k (x k , k , θ k ).
If we consider to begin with a continuous model in the variables (x, , θ ), the unknowns β σ are de ned on R 2 × S 1 . The metric of the space has been de ned in Section 4.1.2.3, and the gradient of the space is de ned as:

∇ SR β σ (x, , θ ) = (X 1 β σ (x, , θ ), X 2 β σ (x, , θ )). (8.2.19)
The Dirichlet functional in this space will be represented as:

||∇ SR β ,σ || 2 2 = (|X 1 β σ (x, , θ )| 2 + |X 2 β σ (x, , θ )| 2 )dxd dθ .
(8.2.20) While restricting to the discrete space (x k , k , θ k ), we substitute the derivatives with nite di erences. This discretization brings to the de nition of the discrete subriemannian gradient D SR β k , which norm will be k |D SR β k | 2 .

As a consequence, the functional taking into account these terms will be: In this sense the receptive pro le will be reconstructed as:

F 4, (β ) = λ 3 k |D SR β k | 2 + ( 1 2N N i=1 ( i -β 0 - n k=1 lo (1 + Ẽki )β k ) 2 + λ n k=1 |β k |) ( 
RF = n k=1 β k |ψ k | (8.2.23)
An example of receptive-eld model for a representative voxel is shown in Figure 8.7 and it is possible to notice the similarity between our (right) and the model described in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] (left). Moreover, in our case, the Lasso term allows to obtain sparse receptive-eld models. The predicted image is the one yielding the highest correlation with the measured activity, using maximum likelihood and covariance matrix regularization as described in [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF]. In order to optimize the performance of the identication algorithm, we rst select voxels whose receptive eld models have the minimun mean square error calculated during cross validation. As in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF], optimal performances are achieved using about 500 voxels; most of these voxels are located in area V1 and V2, where predictive power is higher (see Figure 8.8).

Figure 8.8: Histogram of distribution of the rst 500 signi cative voxels. On the x axis the Region of interest (0: other, 1: V1, 2: V2, 3: V3, 4: V3A, 5: V3B, 6: V4, 7: Lateral Occipital area), on the y axis the number of voxels in that area.

To do that, we de ne p( |i) as the likelihood of the observed response given a sampled image:

p( |i) ∝ exp[- 1 2 ( -ˆ (i))Λ -1 ( -ˆ (i)) T ] (8.2.24)
where Λ is a covariance matrix, obtained as the covariance of the residuals, evaluated as the di erence between the measured and the predicted response in the training set:

Λ = ( -ˆ (i)) T ( -ˆ (i)) . (8.2.25)
In most cases the covariance matrix is singular or close to singular and it is not possible to calculate the inverse of Λ in a stable manner. To overcome this problem a Tikhonov regularization is used to estimate the inverse [START_REF] Nishimoto | Reconstructing visual experiences from brain activity evoked by natural movies[END_REF].

The image whose predicted voxel activity pattern is most correlated (highest p(y|i)) with the measured one is selected.

Identi cation performances for both subjects are illustrated in Figure 8.9, comparing our results with the ones of [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF]. For subject S1 they obtained 92% (110/120) of the images correctly identi ed, whereas chance performance is just 0.8% (1/120). For subject S2, 72% (86/120) of the images were identi ed correctly. In our case, we obtain 99.2% of identi cation performances for subject S1 and 92.5% for subject S1.

The validity of our decoding method is underlined by these high performances, showing how our receptive-eld models characterize the selectivity of individual voxels to natural images.

Analysis of fMRI data

In order to a ord the problem of reconstruction of images, we rst analyze fMRI data, projecting them on a standardized anatomical 3D space. For this analysis, we use FreeSurfer, a software for the elaboration and visualization of neuroimaging data [Fischl, 2012] (see Figure 8.10). As visualized in Figure 8.10 (left), regions which are close together in the volume may be relatively far apart along the cortical surface due to the folded structure of the brain. In order to overcome this limitation, a set of procedures for modifying the shape of the surface to obtain a more suitable representation of the cortical surface has been designed by Dale et al. [1999].

In Dale et al. [1999] it has been developed a general procedure for minimizing metric distortion in a variety of contexts, such as surface in ation, attening, as well as mapping to other parameterizable surfaces such as a sphere. Constructing this type of mapping is a di cult task due to the complex and highly folded nature of the original surface. To obtain a 2D representation of the occipital area of the cortex and to visualize the cortical activity on it, it has been considered the attening technique described in [START_REF] Fischl | Cortical surface-based analysis: Ii: in ation, attening, and a surface-based coordinate system[END_REF]. In particular, it is possible to atten both the full surface and only a portion of it.

In our case we consider the occiput surface shown in Figure 8.12, this cortical patch is particularly useful for displaying the results of visual experiments. In particular we represent on this surface the informations of voxels of the primary visual cortex.

Parameters estimation of the retino-cortical model

In order to evaluate suitable values for the constants a and k of equation (3.5) (page 35) we consider the method described in [START_REF] Montobbio | Variational techniques in encoding fmri data for cortical architecture modeling[END_REF]. We rst create a set of representative stimuli, evaluating their contrast energy and deforming their energy images applying the coordinate change given by equation (3.5).

Figure 8.12:

A cutting scheme for occipital attening (left) and a visualization of the attened left occipital lobe (right). The algorithm implemented in FreeSurfer follows the procedure described in [START_REF] Fischl | Cortical surface-based analysis: Ii: in ation, attening, and a surface-based coordinate system[END_REF].

The set of arti cial stimuli is represented in Figure 8.13; grayscale images with a resolution of 128x128 pixels, as the stimuli in Kay et al. [2008]. We used these stimuli because the result of their transformation in the cortex considering the logarithmic model is clear. Two examples of simulated fMRI responses compared with the complex logarithm mapping are visualized in Figure 8.14. Since we worked with one brain hemisphere at a time, we splitted the images in two, separating the left and right hemi elds of view. The stimuli are represented on the left, where the yellow boxes correspond to the right half of the stimuli as we were considering the projection of the response on the left hemisphere of the brain, visualized in blue to yellow values in the middle of Figure 8.14. On the right the complex logarithm mapping. The red lines in the stimuli represented a contrast in the image that can be identi ed in the projection on the cortical surface; the same line are also visualized in the logarithm mapping.

Starting from the stimuli, we evaluate their energy considering a family of Gabor lters. Applying the coordinate change given by l a,k , the deformed energy images are visualized. We Figure 8.14: From left to right: the stimuli, the projections of the fMRI simulated activity in response to these stimuli on the left hemisphere and the complex logarithm mapping.

use the encoding model presented in Section 8.2.3 to simulate the fMRI responses to the stimuli and after selecting the voxels corresponding to V1, we represent their response on the attened surface. In this case adding the term of regularization in the subriemannian cortical structure allows to obtain better reconstruction results.

Finally comparing the simulated fMRI activation maps with the deformed energy images, it is possible to evaluate the best tting parameters for the constants a and k of the two-parameter logarithmic function l a,k (equation (3.5)). An example of this method applied to one image is shown in Figure 8.15.

To do this, it is necessary the attening of the cortical surface and its representation in 2D coordinates. This step is performed using FreeSurfer and allows to obtain a visualization of the simulated fMRI activity on the attened cortex.

Inverse mapping: reconstruction of the stimulus

We have seen in Section 8.2.2.4 and 8.2.3.5 the great performances achieved in the problem of identi cation of images from human brain activity. The approach presented here is an extension to the problem of reconstruction of images from fMRI activity, trying to reproduce the image seen by the observer knowing only its fMRI response. This still unsolved problem is called inverse mapping. The idea consists of representing the fMRI response from the attened cortex to the retinal coordinates. In this method, the fMRI activity obtained on the attened V1 is interpreted as the image of the logarithmic function. In order to obtain the inverse mapping and so the fMRI response in retinal coordinates, we make a coordinate change using the exponential function. In Figure 8.16 are visualized two examples: on the left the stimulus and its energy, in the middle the simulated fMRI responses to the stimuli projected on the attened primary visual cortex, on the right the fMRI response in retinal coordinates, after applying the inverse mapping l -1 a,k . In red are represented the marked contrasts of the stimuli; the white lines on the right underline the activation areas. It is possible to notice the correspondence between the original energy image and the fMRI responses; in both the examples we can notice the presence of a circle almost tangent to the borders of the stimuli and this is due to the contrast with the gray mask applied to every stimulus.

The results considering simple and arti cial images seem very promising, the similarity with the original energy image is visible. For the moment, we have considered for simplicity this arti cial images but the purpose is to improve the retinocortical model in order to reproduce with this technique also Before considering the problem of reconstruction of natural images, we consider the 2D retinal coordinates and we project on it the Receptive Pro les of voxels of V1 and V2, each one weighted for the corresponding Pearson correlation coe cients evaluated in Section 8.2.2.4.

In this mapping pixels related to voxels with higher predictive power are represented in yellow, where most of the information is contained, while the ones related to voxels with lower predictive power are represented in blue. This will allow us to predict which part of the image can be better reconstructed.

Reconstruction of images

In this Section we a ord the problem of reconstruction of images from Gabor wavelts, from the contrast energy and nally from the human brain activity. We compare the results, showing the increasing di culty in the resolution of this problem. We will present a model for the retinal receptive elds showing the reconstruction of images obtained considering a simi-Figure 8.17: Projection of the Pearson correlation coe cients in retinal coordinates. lar distribution of wavelets and underlying how the neurophysiological constraints about the distribution of wavelets in the retina can represent a limit in the reconstruction of images. We will also see how a di erent positions of wavelets in the image determin a good reconstruction nearby that area.

Reconstruction of images from Gabor wavelets

Gabor lters provide the most famous example of continuous wavelet decomposition. The basis idea is to reconstruct a function I in L 2 from its Gabor transform, which is nothing but the action of Gabor lters de ned on Section 3.2.1. [ [START_REF] Sing | Image representation using 2d gabor wavelets[END_REF] derives the conditions under which a set of continuous 2D Gabor wavelets will provide a complete representation of any image and how it is possible to obtain their reconstruction. Precisely a function I ∈ L 2 can be reconstructed from its Gabor transform. The same result is valid for a discretized family of Gabor lters, if the choosen lters are correctly overlapping. In this section we describe this result applied to our dataset.

In particular we use the following algorithm:

• let I (i) be an image and ψ k a Gabor pair;

• evaluate the Gabor wavelet transform as the integral h I ( k ) between the image I (i) and the Gabor lters ψ k ,

h I ( k ) = i I (i)ψ k (i).
• apply the Inverse Gabor wavelet transform to obtain the reconstructed image, using the result of proposition

I (i) = k h I ( k ) ψ k (i).
Naturally, the reconstruction of images depends on the size, the position and the orientation of the Gabor wavelets used. In our case we used the Gabor wavelet pyramid represented in Figure 8.3.

Figure 8.18 illustrates 4 examples of original images (left) and their reconstructions from Gabor wavelets (right). These results show how it is possible to reconstruct images using Direct and Inverse Gabor wavelet transform. In [START_REF] Shams | The role of complex cells in object recognition[END_REF] it is shown the role of complex cells in object recognition, in particular it is underlined how population responses contain su cient information to capture the perceptual essence of images. Formally this reduces to reconstruct images from the contrast energy de ned in equation (8.2.3).

Formally they proved the following Theorem, called "Gabor Magnitude Theorem". As a consequence, following [START_REF] Shams | The role of complex cells in object recognition[END_REF], we use this algorithm to recover an image from its Gabor Energy:

• let I i be an image and E ki the Gabor energy associated to a Gabor pair ψ k ;

• starting with an arbitrary seed image, iteratively compute a sequence of images Îi whose energies Êki approximate those of I i with higher accuracy;

• compute the mean squared error between the squared magnitudes of the target and trial image transforms respectively, using the gradient descent method: min Îi k (E 2 ki -Ê2 ki ) 2 ;

• de ned ϵ a parameter to scale the update speed, update ∆ Îi to the trial image, where:

∆ Îi = ϵ (E 2 ki -Ê2 ki )( k ψ k Îi ψ k )
• stop the iteration when the median error e = (E ki -Êki ) The target images are shown in the rst column. For each target image two reconstructions are displayed (in the second and in the third column). Starting from the contrast energy, that contains both the real and the imaginary part of the Gabor lter, it is not possible to discriminate between them and this is underlined in the reconstruction results visualized in Figure 8.20: we can obtain with the same probability the reconstruction visualized in the second column or its inverse, represented in the third column.

These results show how the representation provided by a population of complex cells implicitly encodes the phase information that is needed for object recognition. Although the goal of both identi cation and reconstruction of images from human brain activity is to determine the speci c image that produced a given activity pattern, in the identi cation a set of images is provided, in the recostruction no set is provided.

Previous fMRI decoding papers presented algorithms for reconstructing the spatial layout of simple geometrical patterns composed of high-contrast icker patches [START_REF] Thirion | Inverse retinotopy: inferring the visual content of images from brain activation patterns[END_REF][START_REF] Miyawaki | Visual image reconstruction from human brain activity using a combination of multiscale local image decoders[END_REF]. In [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF] it is shown how combining a structural encoding model that characterizes responses in early visual areas, a semantic encoding model that characterizes responses in anterior visual areas and prior information about the structure and semantic content of natural images, it is possible to obtain a decoder that produces reconstructions. Reconstructions with structural encoding model and two di erent types of prior information are visualized in Figure 8.21. In the rst columns, two target images are shown; column two shows reconstructions obtained using a at prior that does not bias reconstructions. Flat prior assigns the same probability to all possible images. Regions of the target images that have low texture contrast are depicted as smooth gray patches, while regions that have substantial texture contrast are depicted as textured patches. The at prior reconstructions reveal the distribution of texture contrast in the target images but cannot readily be interpreted. Reconstructions obtained using a sparse Gabor prior are shown in the third column. This ensures that reconstructions possess the lower-order statistical properties of natural images. These reconstructions appear to be smoothed versions of those obtained with the at prior and they also cannot be readily interpreted (numbers in bottom right corner of the second row of image reconstructions indicate structural accuracy, see [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF] for details).

Moreover, in [START_REF] Nishimoto | Reconstructing visual experiences from brain activity evoked by natural movies[END_REF] they constructed a Bayesian decoder that provides remarkable reconstruction of the viewed movies from BOLD signals.

In Section 8.2.5 it is presented an approach to solve the problem of inverse mapping, applied to arti cial and simple stimuli. Starting from the encoding model presented in Section 8.2.3, we study in Section 8.3.3.2 the problem of reconstruction of images from human brain activity. where the coe cients β k have been evaluated with the Lasso method described in Section 8.2.3 and E ik is the logarithm version of the contrast energy de ned in equation (8.2.15).

Considering the derivative of equation (8.3.2), we minimize with the help of gradient descent and we obtain:

∂ f ∂E ki = N =1 β k ( i -lo (1 + Ẽki )β k ) 1 + lo (1 + Ẽki ) (8.3.3)
and the reconstructed image can be written as: (8.3.6) where ∆(I ) is the Laplacian of the image, that allows to regularize in the 2D domain and where λ s = 0.002 is a constant that contains the speed of convergence of the algorithm. This process is then iterated until it converges and we obtain the results of simulation visualized in Figure 8.22. A comparison betweenthe results obtained by [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF] and our method is represented in Figure 8.23, where the rst and the third target images of Figure 8.22 have been considered. It is possible to notice that both methods contain informations about the stimuli. In particular they are both able to determine the regions of the image in which the informations are. Moreover with our model we notice the presence of more distinct informations regarding the stimuli: in the rst reconstruction it is possible to notice the details of the face (the monkey's eyes, nose and mouth), in the second the presence of arcs of the bridge, in the third the contour delimiting the sea and in the last the 5-point of the star. The map in Figure 8.17, that contains pixels related to voxels with higher predictive power, is in good agreement with the reconstructions obtained in Figure 8.22: the parts of the images correctly reconstructed correspond to the pixels with higher predictive power.

Even if it is not a trial and already solved problem, we think that this could be a rst step to improve the results in the eld of reconstruction of images from fMRI activity and we guess that considering fMRI data with higher resolution could help in these reconstructions.

Conclusions

The aim of this thesis is to develop mathematical models of visual perception based on cortical architecture and to apply them both on phenomenological experiments and on natural images.

In this work we have presented a neurally based model for gure-ground segmentation and grouping of di erent perceptual units using spectral methods, where segmentation has been performed by computing eigenvectors of a nity matrices. Our objective was to model these experimental data with a suitable mathematical framework and di erent connectivity kernels that are compatible with the functional architecture of the primary visual cortex have been presented. We have modelled them as fundamental solution of Fokker-Planck, Sub-Riemannian Laplacian and isotropic Laplacian equations and compared their properties. With this model we have identi ed perceptual units of di erent illusory Kanizsa gures [Favali et al., 2016b]d, showing that this can be considered a good quantitative model for the constitution of perceptual units equipped by their saliency. The proposed mathematical model was then able to integrate local and global gestalt laws as a process implemented in the functional architecture of the visual cortex.

The same method has been applied to retinal images [Favali et al., 2016a]. An extension to more general kernels able to detect geometrical features di erent from orientation as curvature [Abbasi-Sureshjani et al., 2016a] has been described. Based on the results shown in the numerical simulations, we were able to detect the salient groups in retinal images and this can be considered as an excellent quantitative model for the constitution of perceptual units.

Finally we have considered the problem of identi cation and reconstruction of natural images from human brain activity and we have integrated the structure of the cortex, described through the cortical models previously de ned, with fMRI data. In particular we have proposed a rst approach to improve these results adding into the analysis neurophysiological features, even if it is not an already solved problem. This thesis leaves more than one open questions:

• concerning the connectivity kernels, an extension to other parts of the visual cortex (like V2) can be analysed, simulating the behaviour of cells in subsequent processing stages of the neural visual path;

• new experiments, as bistable illusory gures, could be evaluated to test some aspect of the model and to a ord more complicated cases;

• another interesting application of these models is the possibility to train the connectivity kernels on the basis of past experience, including this feature in the connections to account for a priori knowledge;

• considering retinal images, the method has been examined only on small patches to reduce the computational complexity. However, this can easily be improved from implementation and hardware points of view and full retinal images can be analyzed;

• considering fMRI data with higher resolution and bigger dataset could help in the problem of identi cation of images from fMRI activity;

• improving the retino cortical mapping and considering the attened V2, could bring to better reconstruction of images from arti cial stimuli and from fMRI activity.

We hope that this is just the beginning of a fruitful eld of new researches.

Figure 3

 3 Figure 3.1: Examples of good continuation Gestalt laws.Adapted from:[START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].

Figure 3

 3 Figure 3.4: Deformation of visual stimulus, represented by squares with di erent angles between the inducers: the angle regularly decreases and we perceive regular deformations of the subjective Kanizsa square up to a certain value of curvature, when the square suddenly disappears and the inducers are perceived.

  3.1.2 Figure-ground segmentation This articulation of the visual eld in gure and ground, representing the minimal structure of visual perception, is one of the fundamental process at the base of visual experience and of the concept formulated by the Gestalt theory. It represents the tendency of the perceptual eld to distinguish between what is primary and important in the gure and what it is secondary.

Figure

  Figure 3.5: The Rubin vase. This illusion was created by the Danish psychologist Edgar Rubin.

Figure 3

 3 Figure 3.6: Left: the Kanizsa triangle as an example of modal completion. Right: an example of amodal completion.Adapted from:[START_REF] Kanizsa | Organization in vision: Essays on Gestalt perception[END_REF].
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 37 Figure 3.7: Field through the ages: the cooperative eld of Grossberg and Mingolla [1985] (left), the association eld of Field et al. [1993] (middle) and the two grouping elds of opposite orientation of Von Der Heydt et al. [1993] (right).

  They developed a new approach to psychophysically investigate how the visual system codes contour continuity. The experiment introduced consists in showing to an observer an image composed by a small number of aligned Gabor patches (Figure3.8 (b)) in a background of a large number of the same patches randomly distributed (Figure3.8 (a)). The purpose was to test the ability of the subject to detect the perceptual units present in the visual stimulus and was repeated with di erent curves, changing the alignement of patches, their distances and their orientation.

Figure 3

 3 Figure 3.8: The stimulus proposed by Field, Hayes and Hess [Field et al., 1993] (a) and the perceptual unit present in it (b). In (c) the eld lines of the association eld [Field et al., 1993].

Figure 3 .

 3 Figure 3.11: On the left the Brodmann area 17 (primary visual cortex) represented in red. Area 18 and 19 are shown respectively in orange and yellow. On the right the layered structure of V1. Most of the axons ofLGN project to sublayer 4C. Source:[START_REF] Cocci | Spatio-temporal models of the functional architecture of the visual cortex[END_REF]. The visual cortex is composed by 6 layers in a retinotopic structure. Layer 4, which receives most visual input from the LGN, is further divided into 4 layers, labeled 4A, 4B, 4Cα, and 4Cβ. Sub-lamina 4Cα receives most magnocellular input from the LGN, while layer 4Cβ receives input from parvocellular pathways. The sublayer 4C is where most of the axons from the LGN arrive and where the concentration of oriented cells is higher as represented in Figure3.11 (right).From V1 projections go to the higher visual layers of the cortex as visual area V2, V3, V4 that correspond to Brodmann area 18 and 19 visualized in Figure3.11 (left) and the mediotemporal (MT) layer[START_REF] Robert | Central visual pathways[END_REF] as represented in Figure3.12.

  Figure 3.14: A Gabor lter (bottom) described as the product of a sinusoid (top left) and a Gaussian function (top right). Source: [Jones and Palmer, 1987].

Figure 3 .

 3 Figure 3.15: The retinotopic structure of the V1 recorded by fMRI. On the left is visualized the radial mapping while on the right is shown the polar angle (source: [Olman et al., 2010].

  visual cortex modeled in the Heisenberg contact structure

Figure 4 . 1 :

 41 Figure 4.1: The visual cortex modelled as the rototranslation group, invariant under translations and rotations. Sorce: [Sarti and Citti, 2011].

Figure 4

 4 Figure 4.2: A contour represented by the blue curve is lifted into the Rototranslation group obtaining the red curve. Adapted from: [Sanguinetti et al., 2010].

Figure 4

 4 Figure 4.3: Left: the integral curves of the vector elds X 1 and X 2 in the (x, , θ ) space.In blue the projections of the integral curves on the x plane. Right: the distribution of the integral curves, modeling the connectivity between points. Adapted from:[START_REF] Sarti | On the origin and nature of neurogeometry[END_REF].
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 4 Figure 4.4: The contact planes at every point in SE(2) and the orthogonal vector X 3 . Source:[START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF]].

Figure 4

 4 Figure 4.5: The horizontal tangent planes in each point of the rototranslation group is the span of the vectors X 1 , X 2 . Adapted from: [Sarti and Citti, 2015].
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 46 Figure 4.6: Schematic representation of a simple cell of V1 where the vectors X 1 , X 2 , X 3 are indicated.Source:[START_REF] Sanguinetti | Invariant models of vision between phenomenology, image statistics and neurosciences[END_REF].
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 47 Figure 4.7: Piecewise constant integral curves of the structure. Any couple of points can be connected by a piecewise reguale path.Source:[START_REF] Citti | Harmonic and Geometric Analysis[END_REF].
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 48 Figure 4.8: Examples of 8 (left), 16 (middle), 32 (right) random paths resulting from simulating the process in the system (4.2.6) for σ = 0.1 (top) and σ = 0.5 (bottom).
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 4 Figure 4.9: The Kanizsa triangle (left) and the stochastic completion elds applied to it (right). Source: [Williams and Jacobs, 1997a].
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 4 Figure 4.10: An isosurface of the connectivity kernel ω 1 obtained by symmetrization of the Fokker Planck fundamental solution equation (4.2.10) (a). The distribution of co-occurrence of edges in natural images (from [Sanguinetti et al., 2010]) (b).

  Figure 4.11 (b).

Figure 4 .

 4 Figure 4.11: Isosurface of the connectivity kernel ω 2 obtained from the fundamental solution Γ 2 of the Sub-Riemannian Laplacian equation equation (4.2.14) (a). An isosurface of the fundamental solution of the isotropic Laplacian equation (b).
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 4 Figure 4.13: On the left it is visualized the a nity matrix of the image presented in Figure 4.12, that contains informations about the a nity of an active patch with respect to all the others. On the right the set of its sorted eigenvalues.
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 5 Figure 5.2: The connectivity map measured by Bosking et al. [1997] (a), the pinwheel structure used for the estimate (b), the tracer partitioned according to rectangles with sides equal to the distance between pinwheels (c) and the best t results (d).

Figure 5

 5 Figure 5.3: The connectivity map measured by Angelucci et al. [2002] (a), the pinwheel structure used for the estimate (b), the tracer partitioned according to rectangles with sides equal to the distance between pinwheels (c) and the best t results (d).
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 61 Figure 6.1: Filtering an Euler spiral without noise (top) and with noise (bottom). The original images (left); the result after ltering using the curve indicator random eld based on Mumford's direction-based Markov process (center) and using curvature-based Markov process of August and Zucker [2003] (right).Source:[START_REF] August | Sketches with curvature: The curve indicator random eld and markov processes[END_REF].
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 6 Figure 6.3 represents two level sets of the 5D kernel by xing κ (a) and θ (b) dimensions. The 2D projection on R 2 by summation over all orientations of ve di erent 4D stochastic kernels having di erent curvature (κ) values is also presented by Figure 6.3 (c). The intensity term is kept constant for all gures.As seen in these gures, by increasing the absolute value of curvature, the shape of the kernel also changes and it deviates from the elongated shape.

Figure 6

 6 Figure 6.3: Visualizations of the 5D stochastic kernels in 3D and 2D. (a) and (b) the iso-surfaces of the kernel while keeping κ and θ xed respectively; (c) the 2D projection of the kernel over all orientations for several curvature values: κ = {-0.08, -0.04, 0, 0.04, 0.08} from left to right. Intensity is constant for all gures.

  7.1.2 The Field, Hayes and Hess experiment
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 71 Figure 7.1: Example of stimulus (left) similar to the experiments of Field et al.[1993]. The stimulus containing a perceptual unit is segmented with Fokker Planck and Sub-Riemannian Laplacian (right), using the rst eigenvector of the a nity matrix.
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 72 Figure 7.2: In red the rst eigenvector of the a nity matrix considering images containing paths in which the orientation of successive elements di ers by 15 (a), 30 (b), 45 (c), 60 (d) and 90 (f) degrees.
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 73 Figure 7.3: First and second rows. Examples (a,e) with two units in the scene, where a change in the angle leads to a change in the order of the eigenvalues (b,f), (c,g), (d,h).

Figure 7

 7 Figure 7.4: Examples (a,e) with two units in the scene with di erent length. In (b,f),(c,g) and (d,h) the results of simulation.
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 75 Figure 7.5: In the rst row schematic description of the whole hypercolumn of odd simple cells centered in a point (x, ). The maximal activity is observed for the simple cell sensitive to the direction of the boundary of the visual stimulus. The set of maximally ring cells are visualized in the last image. In the second row: a cartoon image (a), the rst eigenvector of the a nity matrix without polarity (b), its representation with polarity dependent Gabor patches (b) and the corresponding rst eigenvector (d).

Figure 7

 7 Figure 7.6: The Kanizsa triangle (a) and the maximally responding odd lters (b).In (c) it is shown the rst eigenvector of the a nity matrix, using the fundamental solutions of Fokker Planck (4.2.10,6.2.17) and Sub-Riemannian Laplacian equations (4.2.14,4.3.3). After this computation, the a nity matrix is updated removing the detected perceptual unit; the rst eigenvector of the new matrix is visualized (d).

Figure 7

 7 Figure 7.7: Examples of stimulus with aligned and not-aligned inducers. The rst eigenvectors of the a nity matrix using the fundamental solutions of Fokker Planck and Sub-Riemannian Laplacian are visualized in red (second row).

Figure 7 . 8 :

 78 Figure 7.8: Stimulus with rotated (a) and not-aligned (b), (c) inducers. The rst eigenvectors of the a nity matrix using the fundamental solutions of Fokker Planck and Sub-Riemannian Laplacian are visualized in red (second row).

Figure 7 .

 7 Figure 7.10: Stimulus of Figure 7.8. The results do not t the visual perception if we use the isotropic Laplacian equation (4.2.16) and con rm the necessity to use a Sub-Riemannian kernel to model the cortical connectivity.

  Figure 7.11:A sample image from the DRIVE dataset[START_REF] Staal | Ridge-based vessel segmentation in color images of the retina[END_REF] (top left) and its corresponding artery/vein ground truth from the RITE dataset[START_REF] Hu | Automated separation of binary overlapping trees in low-contrast color retinal images[END_REF] (top right). Several di cult cases are shown. C1: complex junction (bifurcation and crossing with narrow crossing angle); C2: interrupted lines and missing small vessels; C3: high curvature vessel; C4: complex junction; C5: two nearby parallel vessels; C6: missing small vessel, merged parallel vessels and interrupted segment. Our method, which is not dependent on centerline extraction, is based on the fact that in arteriovenous crossings there is a continuity in orientation and intensity of the artery and vein, respectively, i.e., the local variation of orientation and intensity of individual vessels is very low. The proposed method models the connectivity as the fundamental solution of the Fokker-Planck equation, which matches the statistical distribution of edge cooccurrence in natural images and is a good model of the cortical connectivity[START_REF] Sanguinetti | Image completion using a di usion driven mean curvature ow in a sub-riemannian space[END_REF].

Figure 7 .

 7 Figure 7.12: A sample image patch at a crossing (a), its a nity matrix (A) built upon a connectivity measure (b), the eigenvalues (λ i , i = 1, ...n) of the normalized a nity matrix (P) and the threshold value (1 -ϵ = 0.7), represented in red (c). The exponentiated spectrum (λ τ i , i = 1, ...n) with τ = 150 and threshold value of 0.7 in red (d).

Figure 7 .

 7 Figure 7.13: The di erent steps applied for selecting several image patches around junctions, (a) original RGB image, (b) enhanced image (I enh ), (c) soft segmentation (I so f t ), (d) hard segmentation (I hard ), (e) detected junctions and the skeleton of the segmentation overlaid on color image, (f) selected patches overlaid on artery/vein ground truth.

Figure 7 .

 7 Figure 7.14: A sample 21 × 21 image patch at a crossing: (a) I enh,p i , (b) I so f t,p i , (c) I hard,p i , (d) the di erences in intensities are shown in color, (e) each oriented line represents the orientation at its position, (f) nal perceptual units shown in di erent colors (g) the ground truth artery and vein labels, (h) lifted image in SE(2), (i) connectivity kernel (ω 2 ), (j) a nity matrix (A) obtained using both orientation and intensity information, (k) thresholding the eigenvalues of the normalized a nity matrix.

Figure 7 .

 7 Figure 7.15: Sample image patches selected from the DRIVE dataset. Columns from left to right present the image patch at the green channel, segmented image, extracted orientation and intensity, clustering result and the artery/vein labels.

  Figure 7.16: Failure of clustering in presence of highly curved vessels. Columns from left to right: (a) enhanced image; (b) its segmentation; (c) orientation and (d) intensity information; (e) clustering result and (f) the artery/vein labels.

Figure 7 .

 7 Figure 7.17: The e ect of including intensity term in calculating the connectivity kernel. Columns from left to right: (a) enhanced image; (b) its segmentation; (c) orientation and (d) intensity information; (e) correct and (f) wrong clustering results; and (g) the artery/vein labels.

Figure 7 .

 7 Figure 7.18: The intensity of a sample image patch (I i , shown in the x plane) is projected to the z coordinate to depict the Gaussian pro le of a sample blood vessel.

Figure 7 .

 7 Figure 7.19: A synthetic image consisted of three crossing circles ( rst row) and a sample retinal image patch including two crossing vessels (the second row). The columns represent the original image, the orientation score, the 3D curvature maps, a level set of the 5D kernel while keeping two dimensions xed and the nal detected clusters in di erent colors, respectively.

  .20 represents a sample SLO image (I • ), its artery/vein ground truth G (the arteries in red and the veins in blue), enhanced (I ) and vessel segmented (I se ) images, and the detected junctions (ϵ). The 51 × 51 selected patches overlaid on the hard segmentation are shown as well.

Figure 7 .

 7 Figure 7.20: A sample SLO image, (a) original image (I o ), (b) detected junctions overlaid on the enhanced image (I enh ), (c) selected patches overlaid on the vessel segmentation (I se ), (d) the artery/vein ground truth (G), the color-coded (e) orientation, (f) con dence and (g) and absolute curvature maps of this SLO image.

Figure 7 .

 7 Figure 7.22: Samples of retinal patches in di erent categories. From left to right, the images in each category represent: artery/vein vessel ground truth, intensity, orientation, curvature and clustering results. The color of the curvature maps are scaled between the maximum and minimum values of the curvature in each image patch.

Figure 7 .

 7 Figure 7.24: From left to right: the stimuli (a), the orientation maps (b), the curvature maps (c) and the clustering results with the new kernel (d).

Figure 7 .

 7 Figure 7.25: Wrong clustering results on two retinal patches. From left to right: the artery/vein ground truth, vessel intensity, orientation, curvature and clustering results.

Figure

  Figure 8.1: Functional magnetic resonance of the monkey brain under visual stimulation. Blood Oxygen Level Dependence (BOLD) technique, eld strength 4.7 Tesla. Left: Clearly a marked activity is measured in V1. Right: di erent cut-away views from the brain of the anesthetized monkey.Source:[START_REF] Romeny | Front-end vision and multi-scale image analysis: multi-scale computer vision theory and applications[END_REF].

Figure 8 . 2 :

 82 Figure 8.2: The two stage of the experiment described in Kay et al. [2008]: model estimation and image identication. Source: [Kay et al., 2008].

  stimulus description Visual stimulus consist of grayscale images I of size 128 × 128 pixels. The model in Kay et al.

Figure 8 . 3 :

 83 Figure 8.3: Simple cell receptive elds of the GWP model. Each square is of size 128x128 pixels and shows an even-symmetric Gabor wavelet. The receptive elds spanned eight orientations and six spatial frequencies.Source:[Vu et al., 2011] 

Figure 8 . 4 :

 84 Figure 8.4: Receptive-eld model for a representative voxel from Kay et al. [2008].The intensity of each pixel indicates the sensitivity of the receptive eld to that location. The white circle delineates the bounds of the stimulus.

.

  

Figure 8 . 5 :

 85 Figure 8.5: Identi cation performances for subjects S1 and S2. Source: [Kay et al., 2008]

Figure 8

 8 Figure 8.6: Modi ed model estimation stage. Adapted from: [Kay et al., 2008].

Figure 8 . 7 :

 87 Figure 8.7: Receptive-eld model for a representative voxel from Kay et al. [2008] (left) and our model (right).The intensity of each pixel indicates the sensitivity of the receptive eld to that location. The white circle delineates the bounds of the stimulus.

Figure 8 . 9 :

 89 Figure 8.9: Identi cation performances for subjects S1 and S2, comparing Kay et al. [2008] (left) and our (right) results.

Figure 8 .

 8 Figure 8.10: A visualization of the right hemishpere of a subject with superimposed the feature of curvature obtained through FreeSurfer. On the left the main and on the right the inated surface.

Figure 8 .

 8 Figure 8.11: Example of fMRI activity represented on the right hemisphere of a subject.

Figure 8 .

 8 Figure 8.13: The set of articial stimuli used in the simulation.

Figure 8 .

 8 Figure 8.15: Top: on the left one of the stimuli, in the middle the energy and on the right the energy relative to its right half. Bottom: on the left the energy of the half stimulus in cortex coordinates, on the right the simulated fMRI activity on the attened cortex.

Figure 8 .

 8 Figure 8.16: Two examples of stimuli and their energy, the fMRI responses in the attened V1 and the fMRI responses in retinal coordinates.

De nition 5 .

 5 If I ∈ L 2 we call Gabor Transform of the function f the lifted function de ned as: h I ( ) = ψ (x, )I (x, )dxd , where = (x, , θ , σ ).

Proposition 6 .

 6 Any function I ∈ L 2 can be represented as:I (x, ) = h I ( ) ψ (x, )dwhere = (x, , θ , σ ).

Figure 8 .

 8 Figure 8.18: Examples of images (left) and their reconstructions from Gabor wavelets (right).

  8.3.2 Reconstruction of images from the contrast energy

Theorem 3 .

 3 If I 1 , I 2 are images with the same Gabor Energy E I 1 = E I 2 then it follows that I 1 = ±I 2.

Figure 8 .

 8 Figure 8.19 illustrates a diagram of the reconstruction algorithm.

Figure 8 .

 8 Figure 8.19: The iterative algorithm used to reconstruct target image I from the contrast energy. Adapted from: [Shams and Von Der Malsburg, 2002].

  ψ k ) + Im(ψ k )), (8.3.1)we obtain the reconstructions shown in Figure8.20.

Figure 8 .

 8 Figure 8.20: Reconstruction from the energy: the target images are shown in the rst column, for each target image one reconstruction and its inverse are displayed in the second and third column.

Figure 8 .

 8 Figure 8.21: Two target images are shown in the rst column. The second and the third columns show reconstructions obtained using the structural encoding model and two di erent types of prior information. Source: [Naselaris et al., 2009].

  8.3.3.2 An approach to a new functionalConsidering a starting image I 0 evaluated as the mean of 10 images of the dataset, we evaluate the distance between the fMRI measured activity and the predicted one as:

  ∇f (I ) = k ∂ f ∂E ik (Re (ψ k ) + Im(ψ k )). (8.3.4)De ned the reconstructed image as: (I ) + λ s ∆(I ); I (0) = I 0 ;

Figure 8 .

 8 Figure 8.22: Reconstruction from fMRI. From rst to third column: the target images, the starting image and for each target image I 0 one reconstruction is displayed.

Figure 8 .

 8 Figure 8.23: Comparison between the results of Naselaris et al. [2009] and our method for the rst and the third target images visualized in Figure 8.22.

  

  

  

  

  

  

  

  

  

  8.2.21) and the nal model is the minimization of the functional F 4, : .2.3.4 Our receptive field model Minimizing the functional F 4, , we are interested in nding β such that the linear combination with coe cients of the contrast energy of a set of images should approximate in the closest way the fMRI measured responses to those images, taking into account in the minimization the regularization term. In this sense, the coe cients β should give a measure of how much the receptive pro le ψ k is relevant in representing the neuronal response to an image.

	minF 4, (β ).	(8.2.22)
	As described in Section 8.2.3.1, the minimum is evaluated using
	the Lasso method with cross validation, considering both the
	regularization term in equation (8.2.10) and the discrete sub-
	riemannian gradient D SR β ,k (equation 8.2.21). In this case, for
	simplicity, we use λ	

3 = 1 but this parameter can be evaluated more precisely, as λ, using cross validation. We will see that the rst term of equation (8.2.21) helps in the problem of reconstruction of images, while the others play a central role in the problem of identi cation from fMRI. 8

Résumé.

Available at: http://www.retinacheck.org/datasets
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The next step is to minimize with respect to λ. To do so, we apply a cross-validation technique, which is a technique that uses di erent subsets of the data to t the model in order to limit problems like over tting [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]. A good estimator estimated from a training set should perform well on a new, independent set of data. Hence the available data are organized into both training and test sets. Here use K-fold cross-validation, i.e. we partition the training data into K = 5 separate sets S h of equal size N /K, h = 1, • • • 5. For each of these subset S h of data we minimize F 2, on the training set excluding the elements of S h :

If βh (λ) is the minimizer, we evaluate the prediction error of the model on the elements of S h :

(8.2.13) The overall cross-validation error of the model is then:

The optimal paramenter λ is the one which minimizes the overall CV error.

A nonlinear model

In Vu et al. [2011] it is underlined how the model described in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] didn't take into account systematic nonlinearity across voxels. Following their idea, who analysed encoding and decoding V1 fMRI responses to natural images using sparse nonparametric models, and the work of [START_REF] Güçlü | Unsupervised feature learning improves prediction of human brain activity in response to natural images[END_REF] we consider a variation of the model described in [START_REF] Kendrick N Kay | Identifying natural images from human brain activity[END_REF] adding a non linearity in the computation of the energy term.

In particular, considering the contrast energy equation (8.2.3) we evaluate a logarithmic version of the model:

that was used by [START_REF] Naselaris | Bayesian reconstruction of natural images from human brain activity[END_REF] to analyze the same data set; this additional nonlinear transformation could absorb