
HAL Id: tel-02105743
https://theses.hal.science/tel-02105743v1
Submitted on 21 Apr 2019 (v1), last revised 26 Oct 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A communication-efficient causal broadcast
publish/subscribe system

João Paulo de Araujo

To cite this version:
João Paulo de Araujo. A communication-efficient causal broadcast publish/subscribe system.
Distributed, Parallel, and Cluster Computing [cs.DC]. Sorbonne Université; LIP6 - Laboratoire
d’Informatique de Paris 6, 2019. English. �NNT : �. �tel-02105743v1�

https://theses.hal.science/tel-02105743v1
https://hal.archives-ouvertes.fr

i

Thèse présentée pour obtenir le grade de docteur
Sorbonne Université

Laboratoire d’Informatique de Paris 6
École Doctorale Informatique, Télécommunications et Électronique (ED130)

Discipline : Informatique

A Communication-Efficient Causal Broadcast
Publish/Subscribe System

Par : João Paulo de Araujo

Sous la direction de Pierre Sens

et encadrée par Luciana Arantes
et par Luiz Antonio Rodrigues

Rapporteurs : François Taïani

Matthieu Roy

Examinateurs : Béatrice Bérard

Christophe Cérin

Date de soutenance : le 05 avril 2019

To my mother, Teresa Aparecida Paulino.

Acknowledgements

First of all, I want thank Pierre Sens and Luciana Arantes for accepting to advise me and
for the support since the very first day I arrived in France. I am very grateful for their guidance,
assistance, and availability. Working close to them has been a very rewarding experience.

I would like to thank Béatrice Bérard, Christophe Cérin, Matthieu Roy, and François Taïani
for accepting to be part of my thesis jury. Additionally I thank Matthieu Roy and François
Taïani for accepting to review this manuscript.

I also thank Elias Procópio Duarte Jr. and Luiz Antonio Rodrigues. Their support has been
of great importance for this research and I am grateful for the opportunity of having worked in
collaboration with them.

Charlotte Lemasson deserves special thanks. Her patience, support, and caring were ex-
tremely important to me throughout this period. I am really pleased to have such a wonderful
person by my side.

I could not forget to mention Gilson Miranda Jr. and Jaime Daniel Corrêa Mendes who,
despite several thousand kilometers away, are friends that are always present just like in the
good old times.

I also thank the colleagues at LIP6, specially the members of the DELYS team, for such a
great environment, for the friendship, and everything else.

Finally, I gratefully thank the Brazilian National Council for Scientific and Technological
Development (CNPq) for the scholarship they provided, which allowed me to undertake this
research.

Abstract

Widely applied by many approaches, the Publish/Subscribe (Pub/Sub) paradigm enables
nodes of a distributed system to disseminate information asynchronously. However, several
existing Pub/Sub solutions present some limitations such as network contention of published
messages or do not ensure causal order of delivered messages.

This thesis investigates how to provide a communication-efficient Pub/Sub system, that re-
spects causal order of delivered messages within the same topic and copes with problems of
traffic overhead and message contention that exist in several tree-based solutions. Contrarily to
several existing tree-based broadcast protocols, the contributions presented in this thesis build
distributed spanning trees on top of a hypercube-like topology, such that trees rooted at different
nodes are differently organized.

The first contribution of the thesis consists of a causal broadcast protocol which reduces
network traffic by aggregating messages without the use of timers. It exploits causal order of
messages and common paths between different broadcast trees: the forwarding of some messages
can be delayed and then combined with others, reducing message traffic. Different from existing
timer-based approaches, it does not increase delivery latency.

The second contribution is a new topic-based Pub/Sub system, the VCube-PS, which ensures
causal delivery order for messages published to the same topic. While several other tree-based
Pub/Sub approaches use one tree per topic and rendezvous points, VCube-PS creates a new
spanning tree rooted on the source of every message that is published. Such a per-publisher tree
approach reduces node contention when compared to the single tree one, specially in scenarios
with “hot topics”, i.e., topics with high publication rates. Furthermore, the spanning tree built
to disseminate a message associated to a given topic is composed only by known subscribers of
the topic.

Both contributions were implemented on top of the event-driven simulator PeerSim and
were assessed according to different metrics and scenarios. Results confirm that the proposed
causal aggregation protocol reduces both network traffic and delivery latencies. Moreover, it also
reduces the number of non-deliverable messages that are kept in nodes’ buffers. Concerning the
proposed Pub/Sub system, when compared to approaches with one single tree per topic, VCube-
PS presented the lowest latency results when in presence of “hot topics”, since it intrinsically
provides load balancing of dissemination paths. Moreover, VCube-PS generates less message
traffic than the former and the extra delay necessary to ensure causal delivery order represents
only a small percentage of the end-to-end latency.

Keywords: Publish/Subscribe; Message Aggregation; Causal Broadcast; Hypercube Topology;
Distributed Spanning Tree

Résumé

Largement utilisé par de nombreuses approches, le paradigme de Publication/Abonnement
(Publish/Subscribe, Pub/Sub) permet aux nœuds d’un système distribué de diffuser des informa-
tions de manière asynchrone. Cependant plusieurs solutions de Pub/Sub existantes présentent
certaines limitations, telles que la contention des messages publiés ou la non garantie de l’ordre
causal des messages délivrés.

Cette thèse propose un système de Pub/Sub efficace, qui respecte l’ordre causal des messages
publiés dans le même sujet (topic). Le système résout les problèmes d’overhead de trafic et de
conflits de messages existant dans plusieurs solutions basées sur des arbres couvrants. Contraire-
ment à plusieurs protocoles de diffusion existants basés sur des arbres, les contributions présentées
dans cette thèse construisent des arbres couvrants répartis sur une topologie en hypercube, de
telle sorte que les arbres avec différentes racines soient organisés différemment.

La première contribution de la thèse est un protocole de diffusion causale qui réduit le trafic
réseau en agrégeant des messages sans utiliser de temporisateur. Ce protocole exploite l’ordre
causal des messages et les chemins communs entre différents arbres couvrants pour agréger des
messages. À la différence des approches existantes basées sur des temporisateurs, ce protocole
n’augmente pas le temps d’attente avant la livraison des messages.

La deuxième contribution est un nouveau système de Pub/Sub basé sur des sujets, le VCube-
PS, qui assure l’ordre de livraison causal des messages publiés sur le même sujet. Tandis que
plusieurs autres approches utilisent un arbre par sujet, VCube-PS crée un nouvel arbre couvrant
pour chaque message publié, où la racine de l’arbre est la source du message. Cette approche
permet de réduire le problème de contention par rapport à des solutions avec un seul arbre par
sujet, en particulier dans les scénarios comportant des “hot topics”, c’est-à-dire des sujets avec
des taux de publication élevés. De plus, l’arbre couvrant construit pour diffuser un message
associé à un sujet donné est composé uniquement par les abonnés du sujet.

Les deux contributions ont été simulées avec PeerSim et ont été évaluées selon différents
paramètres et scénarios. Les résultats confirment que le protocole d’agrégation causale proposé
réduit à la fois le trafic réseau et les latences de livraison. En outre, cela réduit également le
nombre de messages non livrables conservés dans les buffers des nœuds. En ce qui concerne
le système de Pub/Sub proposé, VCube-PS présente les résultats de latence les plus faibles en
présence de “hot topics” par rapport aux approches avec un seul arbre par sujet, car il fournit
intrinsèquement une répartition de charge des chemins de diffusion. De plus, VCube-PS génère
moins de trafic de messages et le délai supplémentaire nécessaire pour garantir l’ordre de livraison
causal ne représente qu’un faible pourcentage de la latence.

Mots-clés: Publication/Abonnement; Agrégation de Messages; Diffusion Causale; Topologie
en Hypercube; Arbre Couvrant Distribué

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Causal Aggregation Broadcast . 3
1.1.2 VCube-PS: A Topic-based Publish/Subscribe System 3

1.2 Publications . 4
1.2.1 Papers in International Conferences . 4
1.2.2 Papers in International Journals . 4

1.3 Organization of the Manuscript . 4

2 Background 7
2.1 Introduction . 7
2.2 Causality in Distributed Systems . 8

2.2.1 Logical Clocks . 9
2.2.1.1 Scalar Clocks . 10
2.2.1.2 Vector clocks . 10

2.2.2 Causal Order of Messages . 11
2.2.3 Causal Barrier . 12

2.3 Broadcast . 13
2.3.1 Broadcast Basic Specifications . 13
2.3.2 Message Ordering . 14
2.3.3 Reliability . 14

2.4 VCube . 15
2.4.1 Spanning Trees Over VCube . 16

2.5 Publish/Subscribe Systems . 19
2.5.1 Message Dissemination and Delivery . 20

2.6 Conclusion . 21

3 Related Work 23
3.1 Introduction . 23
3.2 Spanning Trees Over Hypercubes . 24
3.3 Causal Broadcast . 25

3.3.1 Message History . 25
3.3.2 Vector Clocks . 26
3.3.3 Reducing Message Size . 26

vii

viii

3.3.4 FIFO Channels – Small/No Control Information 28
3.3.5 Probabilistic Approaches . 29
3.3.6 Application-defined Causality . 30

3.4 Bundling Messages . 30
3.4.1 Parallel discrete event simulators . 31
3.4.2 Reduction of Energy Consumption in Wireless Sensor Networks 31
3.4.3 Application Layer Bundling . 32
3.4.4 Bundling Over Peer-to-Peer Overlays . 32
3.4.5 Timer-based Bundling Over VCube . 33

3.5 Publish/Subscribe Systems . 34
3.5.1 Topic-based Publish/Subscribe . 34

3.5.1.1 Tree-based Approaches Over Peer-to-Peer Overlays 34
3.5.1.2 Clustering Solutions . 37
3.5.1.3 Other Topologies . 38

3.5.2 Tree-based Content Publish/Subscribe . 38
3.5.3 Message Ordering . 39

3.6 Conclusion . 43

4 Causal Aggregation Broadcast 45
4.1 Introduction . 45
4.2 System Model and Definitions . 47
4.3 Aggregating Causally Related Messages . 47
4.4 Causal Aggregation Algorithm . 49

4.4.1 Broadcast . 49
4.4.2 Reception . 49
4.4.3 Aggregation / Forwarding . 51

4.5 Experimental Results . 51
4.5.1 Simulation Setup . 52
4.5.2 Number of Packets . 53
4.5.3 Size of Messages and Packets . 54
4.5.4 Reception and Delivery Latencies . 56
4.5.5 Distribution of Pending Messages . 58
4.5.6 One Tree Versus Multiple Trees . 59

4.6 Conclusion . 61

5 VCube-PS: A Topic-based Publish/Subscribe System 63
5.1 Introduction . 63
5.2 System Model and Definitions . 65
5.3 Per-source Spanning Trees . 65
5.4 Causal and Per-source FIFO Reception Ordering 66

5.4.1 Causal Ordering . 66
5.4.2 Per-source FIFO Reception Ordering . 68

Contents ix

5.5 Algorithms . 68
5.5.1 Types of Messages, Local Variables, and Auxiliary Functions 68
5.5.2 Application (User Interface) Functions . 70
5.5.3 Propagation of a Message . 70
5.5.4 Reception and Delivery of Messages . 75
5.5.5 Membership Management . 75

5.6 Experimental Results . 76
5.6.1 Simulation Setup . 76
5.6.2 A Single Publisher . 77
5.6.3 Several Publishers . 79
5.6.4 Message Order . 80
5.6.5 Multiple Topics . 81
5.6.6 Churn Evaluation . 82
5.6.7 Broker-based SRPT . 84

5.7 Conclusion . 85

6 Conclusion 87
6.1 Contributions . 88
6.2 Perspectives . 89

6.2.1 Short Term . 89
6.2.2 Long Term . 89

6.2.2.1 Node Failure . 89
6.2.2.2 Causal Aggregation and Timer-based Aggregation 90
6.2.2.3 Extension of VCube-PS to Geo-localization 90

Bibliography 91

x

Chapter 1

Introduction

Contents
1.1 Contributions . 2

1.1.1 Causal Aggregation Broadcast . 3

1.1.2 VCube-PS: A Topic-based Publish/Subscribe System 3

1.2 Publications . 4

1.2.1 Papers in International Conferences . 4

1.2.2 Papers in International Journals . 4

1.3 Organization of the Manuscript . 4

Asynchronous dissemination of information is a key feature in many recent distributed ap-
plications. The Publish/Subscribe (Pub/Sub) paradigm has emerged as a suitable middleware
solution for this challenge due to its decoupling properties and scalability (Astley et al., 2004;
Esposito et al., 2013).

In a Pub/Sub system, one or more publisher nodes produce messages that are consumed by
subscriber nodes. Communication between these two types of participants is conducted using
an overlay infrastructure, which ensures the delivery of published messages to all subscribers
interested in those messages.

In order to receive publications, subscribers must inform the Pub/Sub system about its
interests. Basically, there exist two Pub/Sub models, with respect to the way subscribers express
their interests: topic-based and content-based. In the first one, nodes share a common knowledge
about a set of topics and every message is labeled with one of these topics. Differently, in
content-based systems, messages are classified according to attributes regarding the content of the
message and subscribers express their interests by specifying constraints over the values of these
attributes. Even if content-based Pub/Sub systems provide more flexibility for subscribers for
defining their interests, the topic-based approach is exploited by a great number of applications
such as notification frameworks, chat systems, distributed multi-player online games, among
others. Commercial solutions (e.g., Firebase/Google Cloud Messaging, IBM MQ, Apache Kafka,
etc.) also apply this model. Finally, online services such as Twitter can also be modeled as a
topic-based Pub/Sub system.

This thesis addresses topic-based Pub/Sub systems by proposing a solution that efficiently

1

2 Chapter 1. Introduction

broadcasts publications to subscribers of a given topic by dynamically building spanning trees,
rooted on the publisher and spread over those subscribers. Such a solution particularly focuses
applications where some topics are highly popular (“hot topics”).

Many existing topic-based Pub/Sub solutions organize subscribers of each topic in a tree, i.e.,
all messages of a given topic are broadcast using the same spanning tree, which can become a
bottleneck (e.g., Scribe (Castro et al., 2002) and DYNATOPS (Zhao et al., 2013)). Furthermore,
nodes which are not subscribers may also take part in the tree as relay nodes, increasing latency
of message delivery. In applications that use topic-based Pub/Sub systems, it is known that
publications are not evenly distributed among existing topics. For instance, in social networks
like Twitter, most users tend to publish on a small number of topics (Sanli and Lambiotte,
2015). Thus, in Pub/Sub systems that use a unique per-topic tree to broadcast publications,
highly demanded topics suffer from contention, due to the limited capacity of tree root nodes in
dealing with publication frequency.

Many applications require that the delivery of publications to subscribers respect causal order
of publication broadcast. In this case, if a node publishes a message after it has delivered another
message, then no node delivers the latter after the former. For instance, if an online discussion
system uses a topic-based Pub/Sub system in which each discussion group is represented by
a topic, a question published on a group should never be delivered to any subscriber after an
answer to that question which was also published in the same group, as the answer is causally
related to the question. However, as far as our knowledge, despite its application usefulness, few
existing Pub/Sub implement causal ordering of publications. Moreover, most of these works do
not ensure causal order for messages published to the same topic (e.g., (Nakayama et al., 2016;
Yamamoto and Hayashibara, 2017)). When provided (e.g., (Cugola et al., 2001)), the solution
is not scalable because it induces message traffic due to extra acknowledgment messages.

1.1 Contributions

The first contribution of this thesis (Chapter 4) aims at providing a communication-efficient
causal broadcast protocol that exploits causal order of messages and common paths between
different broadcast trees: the forwarding of some messages can be delayed and then combined
with others, without incurring any overhead and reducing message traffic. The second one
(Chapter 5) presents a topic-based Pub/Sub system, VCube-PS , which ensures causal delivery
order for messages published to the same topic and efficiently supports publication of messages
to “hot topics”, i.e., topics with high publication rates.

Contrarily to several existing tree-based broadcast protocols, the two contributions build
spanning trees on top of VCube (Duarte et al., 2014), a diagnostic algorithm that organizes
nodes of the system in a logical hypercube and presents logarithmic properties. Trees rooted on
different nodes are differently organized.

Simulations for both contributions were implemented on top of the event-driven peer-to-
peer simulator PeerSim (Montresor and Jelasity, 2009) and performance evaluation results are
presented and discussed.

1.1. Contributions 3

1.1.1 Causal Aggregation Broadcast

An issue concerning the performance of broadcast protocols is related to the amount of messages
that are sent through the network. In Chetlur et al. (1998), the authors state that the cost of
sending several small messages is higher than the cost of sending the same amount of data inside
a single message.

Several existing approaches try to reduce message traffic by bundling messages into a single
one. However, they usually apply timers for buffering messages, which increases end-to-end
latencies.

This thesis proposes a tree-based causal broadcast protocol for bundling messages in which
no timer is necessary. The protocol combines messages into a single one by taking advantage
of the extra delivery delay that is imposed to a node when messages are received out of causal
order. In other words, one of the criteria for bundling messages is based on the principle that,
if a message is received before its causal dependencies at a node, the former will be necessarily
delayed until the dependencies are received.

The algorithm for implementing the message aggregation approach relies on the inference
rules of VCube (see Section 2.4) which allow a node to deduce, using only local information,
every other node’s spanning tree organization. Roughly, a node can delay the forwarding of
a message to a child node in the spanning tree whenever it knows that this child has missing
dependencies and it is also the responsible for forwarding the latter to this child node. Thus,
based on the causal relation and path intersections, a node can decide to bundle causal related
messages, without increasing end-to-end delivery latency.

Experimental results show that the proposed aggregation protocol reduces message traffic
while not degrading delivery latency. In some high load scenarios, delivery latency is even re-
duced, due to the lower traffic-induced delay. Finally, average use of buffers for delayed messages
also decreases because the number of nodes that can immediately deliver a message upon recep-
tion increases with the causal aggregation approach.

1.1.2 VCube-PS: A Topic-based Publish/Subscribe System

The new topic-based Pub/Sub system, VCube-PS , proposed in this thesis ensures that messages
published to the same topic are delivered in causal order of their publications. While several
existing approaches create a single tree per topic, VCube-PS dynamically creates, on top of
VCube, trees rooted on the source of every published message.

By using per publisher spanning trees, VCube-PS alleviates the problem of contention that
can occur in approaches where there exists only one single tree per topic (e.g., Scribe (Castro
et al., 2002)). Thereby, it enables the efficient publication of high loads of publications to the
same topic.

Differently from many existing approaches in which non subscribers may take part in a topic’s
publication diffusion tree, in VCube-PS , trees are built using only current subscribers. Those
that unsubscribe from a topic will eventually not take part anymore in any spanning tree of this
topic.

4 Chapter 1. Introduction

Evaluation results from simulation experiments confirm that VCube-PS performs better than
single rooted tree-based Pub/Sub systems when there is a high publication rate per topic, since
it provides load balancing. Moreover, decentralized broadcast of publications reduces delivery
latencies. Finally, even if some publications are sent for a while to nodes that unsubscribe from
the topic in question, such a scenario lasts temporarily and has an impact on the performance
of only a small percentage of the overall number of publications.

1.2 Publications

The following articles were published during the development of this thesis.

1.2.1 Papers in International Conferences

• de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2018). A
communication-efficient causal broadcast protocol. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, pages 74:1–74:10, Eugène, OR, USA;

• Rodrigues, L. A., Duarte, E. P., de Araujo, J. P., Arantes, L., and Sens, P. (2018). Bundling
messages to reduce the cost of tree-based broadcast algorithms. In Proceedings of the 8th
Latin-American Symposium on Dependable Computing, LADC 2018, pages 115–124, Foz
do Iguaçu, PR, Brazil;

• de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2017). A
publish/subscribe system using causal broadcast over dynamically built spanning trees.
In Proceedings of the 29th International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD 2017, pages 161–168, Campinas, SP, Brazil.

1.2.2 Papers in International Journals

• de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2019). Vcube-
ps: A causal broadcast topic-based publish/subscribe system. Journal of Parallel and
Distributed Computing, 125:18–30.

1.3 Organization of the Manuscript

The rest of this thesis is organized as follows.
Chapter 2 presents some background knowledge on the different principles exploited through-

out this thesis. It covers some important concepts in distributed systems such as causality of
events, existing structures to track causality, causal order of messages, broadcast, and Pub/Sub
systems. The virtual hypercube-like topology (VCube) and the algorithm used for building dis-
tributed spanning trees over it, which are used by both contributions of the thesis, are also
presented in this chapter.

1.3. Organization of the Manuscript 5

Chapter 3 summarizes some related work on the construction of spanning trees over hyper-
cubes, causal broadcast, message bundling in dissemination protocols, and Publish/Subscribe
systems.

Chapters 4 and 5 cover the two contributions of the thesis. The first one presents the
causal aggregation protocol, while the second one presents VCube-PS . Both of them include
the respective algorithms and their descriptions as well as evaluation performance results from
experiments conducted on top of PeerSim.

Finally, Chapter 6 concludes this thesis and proposes some future research directions.

6 Chapter 1. Introduction

Chapter 2

Background

Contents
2.1 Introduction . 7

2.2 Causality in Distributed Systems . 8

2.2.1 Logical Clocks . 9

2.2.1.1 Scalar Clocks . 10

2.2.1.2 Vector clocks . 10

2.2.2 Causal Order of Messages . 11

2.2.3 Causal Barrier . 12

2.3 Broadcast . 13

2.3.1 Broadcast Basic Specifications . 13

2.3.2 Message Ordering . 14

2.3.3 Reliability . 14

2.4 VCube . 15

2.4.1 Spanning Trees Over VCube . 16

2.5 Publish/Subscribe Systems . 19

2.5.1 Message Dissemination and Delivery . 20

2.6 Conclusion . 21

2.1 Introduction

This chapter presents some concepts and existing approaches aiming at a better understanding
of the thesis. It begins by discussing the impossibility of keeping track of time in a distributed
system where a global clock is not available. In distributed applications, processes cooperate
among themselves to perform tasks, often requiring to communicate with each other as a single
group. Therefore, a communication service which offers a message broadcast primitive that
enables a node to send a message to all others ensuring some order of message delivery is extremely
important for those applications. It is worth remarking to remark that in this chapter and
throughout the remaining of the thesis, the words nodes and process are interchangeable.

7

8 Chapter 2. Background

Thereby, initially, Section 2.2 introduces the notion of causality, through which it is possible to
establish a relation of cause and effect between events, and classical approaches used to timestamp
logical time. Section 2.3 summarizes the different types of broadcast related to message ordering.
Both contributions of this thesis involve tree-based broadcast which respect the causal order of
broadcast messages. These trees are built on top of a virtual hypercube-like topology called
VCube. Section 2.4 presents the main characteristics of VCube and also shows how to build
distributed spanning trees on top of VCube.

Lastly, Section 2.5 presents the principle of Publish/Subscribe, which is the subject of the
second contribution of the thesis.

2.2 Causality in Distributed Systems

The idea of time is one of the basis of our way of thinking. It helps us to organize our daily
activities by assigning to them duration and an execution order. The notion of temporal order is
particularly useful in computer systems as well. In daily life, humans keep track of the physical
time using loosely synchronized clocks (e.g. wrist watches) while centralized computer systems
have physcical clocks. On the other hand, when it comes to distributed systems, it is impossible,
due to clock drift, to ensure that machines’ physical clocks are always perfectly synchronized.

A distributed system can be modeled as a set of N processes (p0, p1, ..., pN−1) which com-
municate by message-passing and where each process performs a sequence of events. Events are
considered to be atomic and they can be classified in three types: send, receive, and internal
events. The latter affect only the process where they occur, and events at a same process are
totally ordered by program order. Differently, send and receive events result in information
exchanged between processes (Raynal and Singhal, 1996).

Let e and e′ be two events. The relation between events in distributed systems was introduced
by Lamport (1978), resulting in the well-known “happened-before” relation, denoted by →, the
smallest transitive relation on the set of events of a system which satisfies the following conditions:

• if e and e′ occur in the same process and e comes before e′, then e→ e′;

• if e is the send event of a message m and e′ is the receive event of m, then e→ e′;

• if e→ e′ and ∃ e′′ : e′ → e′′, then e→ e′′ (transitive relation).

The “happened-before” relation can also be seen as a relation of cause and effect between
events, for instance, if e→ e′, we also say that event e causally precedes event e′. On the other
hand, if neither e→ e′ nor e′ → e hold, then neither of them causally affects the other (Schwarz
and Mattern, 1994). In this case, considering no global time, it is impossible to say which event
occurs before the other. The events are said to be concurrent (e′ ‖ e′′). Note that the above
relations define only a partial ordering of events, because for concurrent ones it is impossible to
state which one happened first.

Figure 2.1 shows the causality (“happened-before”) relation between events in a system with
three processes. Global time increases from left to right, each dot represent an event ei,j (the

2.2. Causality in Distributed Systems 9

Figure 2.1: Relation between events in a distributed computation with three processes.

jth event that took place in process pi), and the transmission of a message is given by an arrow
connecting a send event at a process with its corresponding receive event at another process. In
the figure, event e0,1 from process p0 causally precedes e0,2 and e0,3, since e0,1 occurred earlier
in the same process. It is also straightforward to see that e0,1 causally affects e1,1, since they
represent the sending and the corresponding reception of a message. Moreover, because e1,1
causally affects e1,2, e0,1 also causally affects e1,2 (transitive property). As a general observation,
an event e causally precedes another event e′ if, in the figure, there exists a left-to-right path
starting in e and ending at e′ (Mattern, 1989). Thus, even if in the figure event e0,2 takes place
earlier than e2,2 regarding the global time, they are considered concurrent (e0,2 ‖ e2,2).

2.2.1 Logical Clocks

Several authors have then proposed the use of logical time to detect causal precedence relation
between events (Mattern, 1989; Fidge, 1988; Schwarz and Mattern, 1994). From an abstract
point of view, a logical clock is just a way of timestamping. The concept of logical clocks was
initially proposed by Lamport (1978) with the goal of partially ordering events in distributed
systems.

Formally, a system of logical clocks consists of a time domain T and a logical clock C. The
elements of T are partially ordered over a relation <. The logical clock C is a monotonic function
that maps an event e of the set of events E to a timestamp C(e) of T , such that the following
condition holds:

Let e, e′ ∈ E be two distinct events of a distributed computation, timestamped by C(e) and
C(e′) respectively, then:

e→ e′ ⇒ C(e) < C(e′)

When the system of logical clock C satisfies the above condition, it is said to be consistent with
causality (Schwarz and Mattern, 1994). On the other hand, it is said to characterize causality,
if the following condition holds:

e→ e′ ⇔ C(e) < C(e′)

10 Chapter 2. Background

2.2.1.1 Scalar Clocks

Basically, scalar logical clock, proposed by Lamport (1978), associates an event with a scalar
value. Every process pi keeps a scalar variable Ci which represents pi’s logical clock. The
following rules must be respected by scalar clocks:

R1 - Before executing an internal or send event, process pi increments its local clock:
• Ci ← Ci + d (d > 0, although generally d = 1)

R2 - When pi executes a send event, the sent message is piggybacked with the current value
of Ci.

R3 - Upon execution of a receive event where a message with timestamp Cj is received,
process pi does the following:

1. Ci ← max(Ci, Cj);
2. Execute R1.

Scalar clocks do not detect concurrence, thus two events may seem to be ordered even if they
are in fact concurrent. Hence, if C(e) < C(e′), it is impossible to say whether the events are
causally related or not. In order words, Lamport clocks are consistent with causality, but they
do not characterize it.

Figure 2.2: Example of a scalar (Lamport) clock for three processes.

Figure 2.2 depicts the evolution of scalar clocks in a distributed computation with three
processes. To this end, each message from pa to pb also contains the value Ca. In the figure,
events e0,2 and e1,3 are an example in which scalar clocks fail to characterize causality. Even if
C(e0,2) < C(e1,3), these two events are in fact concurrent.

2.2.1.2 Vector clocks

The concept of vector clocks was independently proposed by Mattern (1989) and Fidge (1988).
Differently from Lamport (scalar) clocks which use a single scalar variable to logical time, the
logical clock of a process pi consists of a vector Vi of size N , where N is the number of processes
in the system. Entry Vi[i] corresponds to the local clock of pi, while for j 6= i, Vi[j] is the
knowledge pi has of the local time of pj .

All entries Vi are initially reset and they are updated according to the following rules:
R1 - Before executing an internal or send event, pi increments its own local clock:

1. Vi[i]← Vi[i] + d (d > 0, although generally d = 1)
R2 - When pi executes a send event, the sent message is piggybacked with a copy of Vi.

2.2. Causality in Distributed Systems 11

R3 - Upon executing a receive event corresponding to the reception of a message from pj ,
process pi updates its own local vector clock Vi with the vector Vj received with the message:

1. ∀k ∈ [0, N − 1] : Vi[k]← max(Vi[k], Vj [k]);
2. Execute R1.

In order to compare two vectors, the following relations are defined: Let Ve and Ve′ be the vec-
tor clocks associated with the events e and e′ respectively. The following relations hold (Schwarz
and Mattern, 1994):

• Ve ≤ Ve′ ⇔ ∀k ∈ [0, N − 1] : Ve[k] ≤ Ve′ [k]

• Ve < Ve′ ⇔ Ve ≤ Ve′ and ∃k ∈ [0, N − 1] : Ve[k] < Ve′ [k]

• Ve ‖ Ve′ ⇔ ¬(Ve < Ve′) and ¬(Ve′ < Ve)

Schwarz and Mattern (1994) proved that vector clocks characterize causality of events with
which they are associated. Thus, for two events e and e′ with vector clocks Ve and Ve′ respectively:

• e→ e′ ⇔ Ve < Ve′

• e ‖ e′ ⇔ Ve ‖ Ve′

Figure 2.3 shows the same time diagram of Figure 2.2. Contrarily to scalar clocks, by com-
paring the value of the vector clocks of p0 and p1, it is possible to know that e0,2 ‖ e1,3, i.e., they
are concurrent.

Figure 2.3: Example of vector clocks used to keep logical time of three processes.

Charron-Bost (1991) proved that the causality of events of a distributed system with N

processes can only be characterized by using a vector of at least N entries. Therefore, vector
clocks are not scalable.

2.2.2 Causal Order of Messages

When processes exchange messages by means of send and receive events, the communication
network may assume one of the three existing models: FIFO (First-In First-Out), Non-FIFO,
or Causal Ordering (CO) (Kshemkalyani and Singhal, 2008). In the FIFO model, the channel
between any two processes pi and pj acts as a FIFO message queue and, in this case, message
ordering is preserved by the channel. Differently, in the Non-FIFO model, channels do not
guarantee that reception order of messages will be the same as their respective sending order.

12 Chapter 2. Background

The causal ordering model comes from Lamport’s “happened-before” relation (Section 2.2).
Hence, in order to support this model, it is necessary to satisfy the following property:

• Assuming send(m) and receive(m) as the send and receive events of a message m re-
spectively, if send(m′) → send(m′′) and m and m′ have the same destination, then
receive(m′)→ receive(m′′) (Raynal et al., 1991).

This property guarantees that the reception order of causally related messages arriving at the
same destination process is consistent with the causality relation between the messages. Both
contributions presented in this thesis apply causal order.

According to this definition, causal order is also transitive. Thus, a message can directly or
indirectly precede another. For two messages m and m′ sent to the same destination, message
m directly (immediately) precedes message m′ (denoted m ≺im m′) if (1) the send event of m
causally precedes the send event of m′ and (2) there exists no message m′′ such that the send
event ofm causally precedes the send event ofm′′, and the send event ofm′′ causally precedes the
send event of m′ (Prakash et al., 1996). On the other hand, an indirect dependency is obtained
applying the transitive property.

Figure 2.4: Example of transmission of messages and how they are related with respect to the
causal order.

Figure 2.4 shows the possible relations between messages with respect to the causal order.
On the left side of the figure, there is a timing diagram for a system with three processes (p0,
p1, and p2) with the sending and reception of some messages and, on the right, the graph
with message dependencies. Initially, it is possible to observe that messages m0 and m2 are
concurrent (m0 ‖ m2) because neither m0 → m2 nor m2 → m0 hold. Due to the transitive
property, there is an indirect dependency between m0 and m3 (m0 → m1 → m3), while there is
a direct (immediate) dependency between m0 and m1 (m0 ≺im m1) and m3 is directly preceded
by both m2 and m1 (m2,m1 ≺im m3). Lastly, the figure presents an example of causal order
violation: although m0 → m1, at process p2, m1 is received before m0.

2.2.3 Causal Barrier

Causal barriers (Prakash et al., 1996) do not present the constraint of having a structure pro-
portional in size to the number of processes as vector clocks do. Compared to vector clocks,
causal barriers are a weaker way of representing causality, since the latter keeps less information
about the causal history of a message. The advantage of the causal barrier approach is that it

2.3. Broadcast 13

does not control causality based on nodes’ identity but by using direct dependencies of messages
which also renders the algorithm more suitable for dynamic environments. Only if a message
is directly preceded by messages received from every other process in the system (worst case),
causal barrier and vector clock have the same size.

The causal barrier of m (cbm) consists of the set of messages that directly precedes m. In the
example of Figure 2.4, cbm1 = {m0} and cbm3 = {m2,m1}. Note that since m0 precedes m1 that
precedes m3, m0 is an indirect dependency of m3, not included, therefore, in cbm3 . Therefore,
compared to vector clocks, causal barriers lose information about causality. By using vectors, it
is possible to know that m0 → m3, but causal barriers do not keep this information because m0

is not a direct dependency of m3.

2.3 Broadcast

Many distributed applications, such as Publish/Subscribe systems, parallel applications, client-
replicated servers, etc., require group communication support (service) where a process, by calling
a single primitive, can send a message to all (broadcast) or to many (multicast) processes of
the system.

Although some systems provide the broadcast and multicast primitives at network layer,
they can be emulated by applying multiple one-to-one message transmissions in upper layers.
However, in both cases, there are issues concerning the order in which messages are received and
the reliability of the primitive in presence of failures.

As both contributions of this thesis are based on broadcast, in particular the causal one, in
the following, some basic concepts are summarized.

2.3.1 Broadcast Basic Specifications

Basically, a broadcast communication support should offer to the application two primitives:

• Broadcast(m): allows a process to send a message m to all processes of the system
including itself. It is implemented by sending m to all processes by using point-to-point
communication primitives.

• Delivery(m) is the event at which a message m is given to the application by process pi.

After the reception of a message, its delivery to the application may be delayed in order
to satisfy some condition (e.g., ordering) (Birman et al., 1991). Thus, the receive event of a
message m (receive(m)), defined in Section 2.2.2, represents the arrival of message m from pj

at pi through the channel between pi and pj and Delivery(m) is executed once all necessary
conditions to render the message to the application are satisfied. It is worth highlighting that
the delivery of message m by pi is causally preceded by m’s reception at pi, i.e., receive(m) at
pi → Delivery(m) by pi.

These primitives are non-blocking: upon calling Broadcast(m), pi is not blocked waiting
for all the processes to receive m, while Delivery(m) is called by pi only upon notification that
it received m (receive(m)) and that all necessary conditions for delivery were satisfied.

14 Chapter 2. Background

A process is said to be correct or fault-free if it has not crashed during the whole execution,
otherwise it is faulty. Considering that channels are reliable and there is no failure, a broadcast
service must ensure the following properties:

• Validity : every broadcast message is eventually delivered by all processes.

• Integrity : no message is delivered to a process more than once (no duplication), and only
if it has been previously broadcast by some process (no creation).

2.3.2 Message Ordering

In a distributed system, a set of broadcast messages may reach each destination in a different
order due to, for instance, latency variations or processing of participating processes. Hence, it
is important to provide mechanisms that ensure that messages will respect a consistent delivery
order with regard to the broadcast order of these messages. Basically, there exist three broadcast
ordering of messages in the literature (Figure 2.5):

• FIFO Order : it requires that messages broadcast by the same source process to be
delivered in the order they were broadcast.

Formally, if a process broadcasts m1 before m2, then no process in the system delivers m1

after m2.

• Total Order : it requires messages to be delivered in the same order by all destination
processes, no matter the sender (Défago et al., 2004).

Formally, for any messages m1 and m2, if a process pi delivers m1 before m2, then no
process pj delivers m2 before m1.

• Causal Order : all processes must deliver messages by respecting the causal order of
broadcast messages (see Section 2.2.2). Note that, causal delivery order implies FIFO
order.

Formally, if a process broadcasts message m2 after it has delivered another message m1,
then no other process in the system can deliver m1 after m2.

2.3.3 Reliability

In a distributed system prone to node failures or message loss, a broadcast service as defined
previously cannot guarantee that all processes will deliver all the broadcast messages.

As mentioned in Section 2.3.1, a basic broadcast service must satisfy the properties of validity
and integrity. A reliable broadcast should satisfy the following three properties:

• Validity : if a correct process broadcasts m, then it eventually delivers m.

• Integrity : no message is delivered to a process more than once (no duplication), and only
if it has been previously broadcast by some process (no creation).

2.4. VCube 15

Figure 2.5: Examples of broadcast of messages with respect to the three ordering.

• Agreement : if a correct process delivers m, then m is eventually delivered by all correct
processes.

A reliable broadcast sets no condition on messages delivered by faulty processes, contrarily to
uniform reliable broadcast which modifies the agreement property in order to state the expected
behavior in presence of faulty processes:

• Uniform Agreement : if a process deliversm, thenm is eventually delivered by all correct
processes.

Different broadcast properties may be combined in order to comply with an application spec-
ification. For instance, an atomic broadcast (ABCAST) is a reliable broadcast which guarantees
the total order of delivered messages (Birman et al., 1991).

The system models of the two contributions of this thesis consider that processes do not fail
and channels are reliable. Thus, the proposed solutions do not include reliability.

2.4 VCube

VCube (Duarte et al., 2014) is a distributed diagnosis algorithm. In a system consisting of N
processes, unique identified from 0 to N − 1, the identity of all processes is globally known,
and the network is fully connected (complete graph). VCube organizes the correct processes of
the system in a virtual hypercube-like topology, presenting, thus, logarithmic properties for the
distance between nodes and node degree. A process i (also called pi) groups the other N − 1

processes in d = log2N clusters forming a d-VCube, such that each cluster s (s = 1, .., d) has
size 2s−1. The ordered list of processes in each cluster s is denoted by ci,s as follows, in which ⊕
denotes the bitwise exclusive or operator (xor).

ci,s = i⊕ 2s−1 ‖ ci⊕2s−1,k | k = 1, . . . , s− 1

A process i tests another process in the ci,s to check whether it is correct or faulty. It executes
a test procedure and waits for a reply. If a reply is received within an expected time interval,

16 Chapter 2. Background

the monitored process is considered to be alive. Otherwise, it is considered to be faulty. If later
it detects its mistake, it corrects it.

The ci,s table for 8 nodes

s c0,s c1,s c2,s c3,s c4,s c5,s c6,s c7,s

1 1 0 3 2 5 4 7 6
2 2 3 3 2 0 1 1 0 6 7 7 6 4 5 5 4
3 4 5 6 7 5 4 7 6 6 7 4 5 7 6 5 4 0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0

Figure 2.6: VCube hierarchical organization.

Figure 2.6 shows the hierarchical cluster-based logical organization of N = 8 processes con-
nected by a 3-VCube topology as well as a table which contains the composition of all ci,s of the
3-VCube.

Let’s consider process p0 and that there are no failures. The clusters of p0 are shown in the
same figure and, in this case, they are organized as a perfect hypercube. Each cluster c0,1, c0,2,
and c0,3 is tested once, i.e., p0 only performs tests on nodes 1, 2, 4 which will then inform p0

about the state of the other nodes of the respective cluster.
In order to avoid that several processes test the same processes in a given cluster, process i

executes a test on process j ∈ ci,s only if process j is the first fault-free process in ci,s. Thus, any
process (faulty or fault-free) is tested at most once per round, and the latency, i.e., the number of
rounds required for all fault-free processes to identify that a process has become faulty is log2N

in average and log22N rounds in the worst case.

2.4.1 Spanning Trees Over VCube

Besides providing a diagnosis algorithm, the logical hypercube organization of VCube can be
exploited to dynamically buid spanning trees over which messages are broadcast. VCube’s cluster
hierarchy enables the construction and use of distributed spanning trees which comprise all
correct nodes. More importantly, for the same set of correct nodes, trees can be organized
differently, depending on the process that is chosen to be the root of the tree. It is also important
to note that when the tree is built using all nodes of a complete hypercube, the tree is a binomial
one (Vuillemin, 1978).

In order to send a message over VCube, the procedure is similar to the one used for failure
detection. It uses first fault-free processes and sender’s information to choose the next hop of a
message. The resulting tree keeps the logarithmic properties of VCube, having maximum height
equals to log2N , and up to log2N children per process.

Let’s consider d = log2N the dimension of VCube which is also the height (h = d) of the
related spanning tree. For broadcasting a message m, node i sends m to the first correct node

2.4. VCube 17

of each of its clusters ci,s, ∀s ≤ h, to which i is linked. Upon receiving m, each of these nodes j
becomes the root of a sub-tree whose height is h = s − 1. Therefore, if j is not a leaf (h 6= 0),
it applies the same sending procedure of i’s and so on. For instance, based on the VCube of
Figure 2.6, the spanning tree over which m0 will travel due to its broadcast by node 0 is shown
in Figure 2.8(a).

Auxiliary functions: by exploiting the cluster organization of VCube’s virtual hypercube topol-
ogy, it is possible to express some inference rules regarding the relation between nodes. Thereby,
in order to easily build spanning trees, the following functions are offered to each node i:

Cluster(j, k): returns the index s of the cluster of node j that contains node k, (1 ≤ s ≤
log2N). For instance, in Figure 2.6, Cluster(0, 1) = 1, Cluster(0, 2) = Cluster(0, 3) = 2,
and Cluster(0, 4) = Cluster(0, 5) = Cluster(0, 6) = Cluster(0, 7) = 3.

FirstChild(j, s): returns the first correct node in cj,s (Figure 2.6), i.e., the first node of
cj , s which is linked to j. For example, FirstChild(0, 1) = 1, FirstChild(1, 2) = 3, and
FirstChild(1, 3) = FirstChild(7, 2) = FirstChild(4, 1) = 5. On the other hand, if for
instance, node 5 fails FirstChild(1, 3) = FirstChild(7, 2) = 4, and FirstChild(4, 1) = ⊥
(null).

Children(r, h): used by the broadcast protocol to either (1) obtain the children of node i in
the spanning tree rooted at node r whose height is h or (2) to build spanning trees. The function
returns the first correct child of each cluster ci,s of i, ∀s ≤ h′, where h′ is the height of the
sub-tree of i in the tree of r (see Algorithm 1).

Algorithm 1 Children of i in r’s tree

1: function Children(node r, height h)
2: if i = r then
3: return FirstChild(i, s) | 1 < s ≤ h
4: else
5: return Children(FirstChild(r,Cluster(r, i)),Cluster(r, i)− 1)

When i is equal to r, Children(r, h) simply returns its h children. Otherwise, the function
recursively searches node i in the tree of r using the cluster of r where i is present. When the
sub-tree rooted in i (i = r) is found, its respective children are returned. For example, if node
4 wants to know its children in the tree rooted in node 2, it invokes Children(2, 3) which will
recursively call Children(6, 2)→ Children(4, 1) = {5} (see Figure 2.7).

Children(r, h) function is also used for the construction of spanning trees. In order to broad-
cast message m, node i becomes the root of the spanning tree and sends m to its log2N children
(Children(i, log2N)). Upon the reception of m, j, a child of i, becomes the root of a sub-tree of
i’s tree with height Cluster(i, j)−1. Note that the number of children of a node also decreases
by one in relation to its parent’s cluster. Hence, every node k ∈ Children(j,Cluster(j, i)−1),
i.e., every child of j in relation to a tree where j′s parent is i, receives m from j and this proce-

18 Chapter 2. Background

2

3 0 6

1 7 4

5

Figure 2.7: Function Children used to find the children of node 4 in the tree rooted at node 2
(fault-free system).

dure continues until m is received by all nodes that do not have children (leaves of the spanning
tree).

For instance, in order to broadcast message m0 in a fault-free system (Figure 2.8(a)), node 0

calls Children(0, log2N) = {1, 2, 4} and sendsm0 to them. Upon receivingm0, node 1 does not
forward m0 since Children(1, 0) = ∅, node 2 forwards it to Children(2, 1) = {3}, and node
4 to Children(4, 2) = {5, 6}; Node 5 does not forward m0 since Children(5, 0) = ∅. Node 6

forwards it to Children(6, 1) = {7} while node 7 does not forward it since Children(7, 0) =

∅. Considering a second example in which nodes 2, 4, 6 are faulty, node 0 forwards m0 to
Children(0, log2N) = {1, 3, 5}. Node 3 is a leaf node (Children(3, 1) = ∅), and node 5
sends the m0 to Children(5, 2) = {7}. The resulting spanning tree is shown in Figure 2.8(b).
Lastly, in order to depict the differences in the organization of trees rooted at different nodes,
the spanning tree (without failures) rooted at node 2 is shown in Figure 2.8(c).

0

1 3 5

7

0

1 2 4

3 5 6

7

2

3 0 6

1 7 4

5

(a) (b) (c)

Figure 2.8: Function Children used to build a complete tree (without failures) rooted on node
0 (a) and with nodes 2, 4, and 6 faulty (b). The complete spanning tree for node 2 is presented
in (c).

The approach of building spanning trees rooted at the broadcast source node presents better
scalability when compared to single rooted approaches like (Kim et al., 2010; Wang et al., 2012),
that organize the nodes of the system in a single static distributed spanning tree. The latter
has the drawback that the root can become a bottleneck since all message broadcasts start from
it. Figure 2.9, where all nodes of the system broadcast messages at a given rate, confirms the
scalability of both approaches. In the case of a single tree, for a number of nodes greater than

2.5. Publish/Subscribe Systems 19

128, the root of the tree starts queuing messages because it cannot process all of them as fast as
the input broadcast request rate. On the other hand, if each node has its own broadcast tree, the
load of messages is better distributed among the nodes. Furthermore, reception latency scales
well for an increasing number of nodes/messages.

 128

 256

 512

 1024

 2048

 4096

 8192

 8 16 32 64 128 256 512 1024A
v
g
.

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

One tree per source
One tree for all

Figure 2.9: Reception latency for systems with different number of nodes using two different tree
approaches: one single tree or multiple trees (one per source node) (de Araujo et al., 2017).

2.5 Publish/Subscribe Systems

Asynchronous dissemination of information is a key feature in many recent distributed appli-
cations. The Publish/Subscribe (Pub/Sub) paradigm has emerged as a suitable middleware
solution for this challenge due to its decoupling properties and scalability (Astley et al., 2004;
Esposito et al., 2013). A Pub/Sub system consists of distributed nodes in which one or more
publishers produce messages that are consumed by subscribers. It is necessary to point out that
in the literature, messages may also be denoted “events”.

Communication between publishers and subscribers is conducted on an overlay infrastructure,
which is generally composed by a set of nodes that organize themselves for ensuring the delivery
of published messages to all (preferably only) interested subscribers. Therefore, publishers and
subscribers exchange information asynchronously, without interacting directly (Baldoni et al.,
2005; Esposito et al., 2013). They might even not know each other. Publishers do not get
blocked while publishing messages, and similarly, subscribers are asynchronously notified about
an incoming message, while performing some other concurrent activity.

According to Eugster et al. (2003), the decoupled production and consumption of events is a
desirable characteristics because it removes explicit dependencies between different parts of the
systems. Moreover, it reduces the necessary coordination and the resulting system is well suited
for distributed environments since they are asynchronous by nature.

In order to receive messages, subscribers must inform the system about its interests. There
are different ways of doing it, leading to different levels of expressiveness, as well as necessary
processing to match messages. Two of the most widely used models are the topic-based (Castro

20 Chapter 2. Background

et al., 2002; Zhuang et al., 2001; Gascon-Samson et al., 2015; Zhao et al., 2013) and content-
based (Cugola et al., 2001; Bianchi et al., 2010; Eugster et al., 2003) ones.

In the topic-based model, subscribers share a common knowledge on a set of available topics
and every published message is labeled with one of these topics. A subscriber can register its
interest in one or more topics, and thus she/he receives all published messages related to these
topics. The concept of topics is close to the idea of “group communications” as exploited, for
instance, by Birman et al. (1991). On the other hand, in the content-based model, messages are
composed of multiple attributes, and subscribers express their interests by specifying constraints
over the values of these attributes (Eugster et al., 2003).

The advantage of the topic-based model is that events/messages can be statically grouped
into topics, the diffusion of messages to subscribers is usually based on multicast groups, and
the interface offered to the user is simple. Even if it offers limited expressiveness for subscribers
(Baldoni et al., 2005), the topic-based approach is widely used by applications such as chat
message systems, Twitter, mobile devices notification frameworks (e.g. Google Cloud Messaging),
and many others.

A topic-based system basically offers an interface consisting of three function associated to
a topic t: Subscribe(t), Unsubscribe(t), and Publish(t,m). While the first ones are used
by a node to register and unregister its interest in messages related to t respectively, the latter
is invoked by a node to publish a new message to the subscribers of t. The Pub/Sub system
presented in Chapter 5 of this thesis is a topic-based one.

2.5.1 Message Dissemination and Delivery

A simple, but not always effective, way to disseminate messages to subscribers is flooding, through
which messages are sent to the entire system, no matter the node (Baldoni et al., 2005). This
approach needs a minimal amount of routing information, however it does not scale in terms of
message overhead (number of messages transversing the network). Carzaniga et al. (2001) show
that flooding is not a feasible strategy when the system presents a high churn rate because all
membership modification needs to be informed to all nodes.

A more effective approach is to organize the nodes in a logical dissemination topology
such as open cube, rings, tree, etc., and broadcast messages by exploiting such topology (e.g.,
HOMED (Choi et al., 2004)). Another solution is to build dissemination logical structures over
a structured overlay infrastructure, where physical nodes are mapped into virtual keys obtained
from a virtual key space, such as Pastry (Rowstron and Druschel, 2001) and Chord (Stoica et al.,
2001) distributed hash tables (DHTs). These virtual keys are used to form a structured graph
that is used to transmit messages and membership information. For instance, Scribe (Castro
et al., 2002) is a topic-based Pub/Sub that builds dissemination trees over Pastry.

Examples of Pub/Sub systems for both approaches are introduced in the next chapters.
Some Pub/Sub systems (Cugola and Picco, 2006; Zhao et al., 2013) build an overlay with

nodes denoted brokers, which behave like servers, and are responsible for disseminating messages
and keeping information about subscriptions. Publishers and subscribers are connected to bro-
kers. Publishers send messages to brokers which are responsible for forwarding these messages

2.6. Conclusion 21

to the interested subscribers. Furthermore, in order to optimize the organization of the system
and reduce inter-broker communication, each broker may store just a subset of the subscriptions
trying, for instance, to group subscriptions of a given topic in the same broker or organize sub-
scriptions geographically. However, the topology formed by the brokers is generally assumed to
be managed by an administrator, limiting its application to scenarios where topology changes
are assumed to be rare (Baldoni et al., 2005).

Logical topologies and structured overlays tolerate system dynamics better than broker ap-
proach. In the former, a path between any two virtual nodes is supposed to exist despite the
possibility of continuous arrival/departure of nodes (node churn).

The Pub/Sub system proposed in Chapter 5 of this thesis, the VCube-PS , exploits the hy-
percube logical organization of nodes provided by VCube. For broadcasting published messages,
spanning trees composed only by subscribers and rooted at the publisher node are dynamically
built. Due to dynamics of nodes, the spanning trees may temporarily have relay nodes.

Messages must be delivered only by interested subscribers. However, it might happen that
non-subscriber nodes receive published messages, depending on the dissemination structure. In
this case, the Pub/Sub support must filter those messages, not delivering them to the applica-
tion. In this thesis, these non-subscribers nodes are called relays. Although relay nodes do not
deliver messages, they are responsible for providing paths between subscribers. For instance,
in Scribe (Castro et al., 2002), a dissemination tree of a topic may be composed by relays and
subscriber nodes.

2.6 Conclusion

This chapter presented some important existing concepts which are exploited by this thesis.
Both contributions use distributed spanning trees built on top of the virtual topology provided
by VCube. Vector clocks are used in Chapter 4 to implement a new causal broadcast protocol
where causally related messages are combined within a single message with no overhead, when
their dissemination paths intersect. Chapter 5 presents a new topic-based Pub/Sub system that
dynamically builds per-publisher spanning trees and that uses causal barriers to implement causal
order. Works related to both causal broadcast and Pub/Sub systems are discussed in Chapter 3.

22 Chapter 2. Background

Chapter 3

Related Work

Contents
3.1 Introduction . 23

3.2 Spanning Trees Over Hypercubes . 24

3.3 Causal Broadcast . 25

3.3.1 Message History . 25

3.3.2 Vector Clocks . 26

3.3.3 Reducing Message Size . 26

3.3.4 FIFO Channels – Small/No Control Information 28

3.3.5 Probabilistic Approaches . 29

3.3.6 Application-defined Causality . 30

3.4 Bundling Messages . 30

3.4.1 Parallel discrete event simulators . 31

3.4.2 Reduction of Energy Consumption in Wireless Sensor Networks 31

3.4.3 Application Layer Bundling . 32

3.4.4 Bundling Over Peer-to-Peer Overlays . 32

3.4.5 Timer-based Bundling Over VCube . 33

3.5 Publish/Subscribe Systems . 34

3.5.1 Topic-based Publish/Subscribe . 34

3.5.1.1 Tree-based Approaches Over Peer-to-Peer Overlays 34

3.5.1.2 Clustering Solutions . 37

3.5.1.3 Other Topologies . 38

3.5.2 Tree-based Content Publish/Subscribe 38

3.5.3 Message Ordering . 39

3.6 Conclusion . 43

3.1 Introduction

This chapter focuses on some existing works that are related to this thesis. Initially, works
related to both contributions of this thesis are discussed: Section 3.2 contains some works that

23

24 Chapter 3. Related Work

build distributed spanning trees on top of hypercube topologies, followed by different solutions
for causal broadcast, organized according to the type of structure they use to enforce causal
order (Section 3.3).

Different forms of reducing communication overhead by bundling messages are presented in
Section 3.4, since this is the principle of the contribution of Chapter 4. Lastly, Section 3.5
presents some existing publish/subscribe systems, classified in terms of dissemination structure
or message ordering feature.

3.2 Spanning Trees Over Hypercubes

In order to provide a broadcast mechanism, different strategies may be employed, such as or-
ganizing nodes in logical overlay (Rowstron and Druschel, 2001; Stoica et al., 2001) or using
gossiping (Kim and Ahn, 2006), for instance. In this thesis, nodes are logically organized in
a hypercube-like overlay and, on top of it, distributed spanning trees are built to broadcast
messages.

In (Chang, 1982), the authors propose a tree structure for asynchronous communication on
top of a general graph. Any node that initiates the broadcast of a message is the root of its
broadcast tree and reply messages are sent from leaves towards the root to confirm the reception
of the message. The author presents a set of rules for transversing the graph without creating
loops and also a synchronization mechanism through which a node waits for reply messages for
every message it has forwarded before sending its own reply.

Hélary and Mostefaoui (1993) exploit open cubes which are basically hypercubes where some
edges are removed in order to obtain a binomial tree (Vuillemin, 1978). In case of failure, positions
of nodes in the binomial tree are reorganized keeping logarithmic properties. Such a structure
is used to propose a token-based fault tolerant algorithm where the root of the tree is the node
which keeps the token and, by reorganizing the tree, the less a node requests to enter the critical
section, the further it is from the root of the tree. Differently, in this thesis, every time a message
is broadcast, a tree rooted on the broadcasting node is dynamically created whose organization
is different for each root node. It is worth remarking that spanning trees built over VCube (see
Section 2.4) have the structure of open cubes (binomial trees).

In (Wu, 1996), nodes are organized in a hypercube and a fault-tolerant binomial spanning
tree is built over it. A tree with faulty nodes can be recursively rebuilt but, in this case, a special
control message is used to notify the nodes about the tree reconstruction. During this process
of reconstruction, other messages are not treated. In the Pub/Sub system presented in Chapter
5 of this thesis, although the system is considered to be fault-free, changes in topics membership
require recontruction of the tree.

One of the major issues in large scale multicast applications is the amount of control in-
formation. For instance, ACK messages might lead to the ACK implosion problem (Crowcroft
and Paliwoda, 1988), where the system is flooded by acknowledgement messages. Aiming at
avoiding such a problem, Liebeherr and Beam (1999) present HyperCast, a protocol which uses
a logical hypercube topology to disseminate control messages of multicast groups. Note that

3.3. Causal Broadcast 25

HyperCast is not used for data transmission, even if this could be easily implemented. By using
a hypercube topology, every node needs to keep only a partial membership knowledge (up to
dlogme neighbors, where m is the number of nodes in the membership group). Messages are
disseminated through binomial spanning trees built on top of the hypercube, such that the root
of the tree is the sender of the control message. Every node notifies its neighbors about its
presence by periodically sending ping messages. However, in case of failures or joins/leaves, the
procedure used to keep the mapping between physical and logical address can temporarily lead
the hypercube to an unstable state, where more than one node is associated to a same logical
address.

Rodrigues et al. (2014) propose a reliable broadcast service for an overlay based on a hypercube-
like topology. In this approach, an underlying service monitors the nodes and, in case of failure,
the topology self-reorganizes itself. Spanning trees are dynamically built on top of the overlay,
such that, analogous to the approach presented in this thesis, the source of each message is the
root of its own broadcast tree. If failures happen, spanning trees may change during a broadcast.
However, the last received message from each source must be locally stored by each node, because
in the case of failures, retransmissions may be necessary in order to ensure that all correct nodes
will receive a given message. Moreover, every node except the root sends and ACK message to
its parent in the tree to confirm that all its children have received a message, which increases
message overhead.

Properties of multiple rooted spanning trees built over hypercube-like topologies are also
discussed by Yang et al. (2015), where the authors highlight its applicability in fault-tolerant
broadcast. They exploit enhanced hypercubes (Tzeng and Wei, 1991), which are hypercubes
with complementary edges used to improve distance between nodes and provide extra links in
case of failure. On top of this topology, the authors build multiple spanning trees rooted at a
given node r, such that for any other node v, the paths from r to v in different trees have no
common intermediary node.

3.3 Causal Broadcast

This section discusses some causal broadcast protocols existing in the literature. Different so-
lutions have been proposed in order to ensure causal order of broadcast messages and many of
them aim at reducing the amount of control information sent in messages.

3.3.1 Message History

The first causal broadcast protocols of the literature use a trivial strategy to ensure causal order:
every messagem broadcast by a node p also includes a message history comprising all messages
received by p since its last broadcast (Birman and Joseph, 1987). Upon reception, since m
contains its causal preceding messages, the receiver can deliver, in order, all deliverable messages
that precede m and then m itself. This approach has the advantage of delivering messages as
soon as they are received. However, each node must keep a buffer of received messages between
two broadcasts and the size of messages can be very large, becoming unpractical.

26 Chapter 3. Related Work

3.3.2 Vector Clocks

Instead of piggybacking message histories, Schiper et al. (1989) present an implementation of
causal broadcast based on vector clocks (Fidge, 1988; Mattern, 1989), which is later applied
by Birman et al. (1991). In this approach, every process pi has a local vector clock Vi and
every message carries a copy of its sender’s vector clock (m.vc). Before sending a message m, pi
increments Vi[i] and attaches Vi to the message. Upon reception of m from process pj , process
pi must delay the delivery of m until (1) it has delivered all messages from pj that precede m,
and (2) it has delivered all messages delivered by pj before the latter sends m. Formally:

∀k

(1) m.vc[k] = Vi[k] + 1, if k = j

(2) m.vc[k] ≤ Vi[k], otherwise

When process pi delivers the messagem sent by pj , it updates its vector clock: Vi[j] = Vi[j]+1.
By applying vector clocks, all causal dependencies among broadcast messages can be easily
tracked. However, the size of a vector clock depends on the number of processes in the system
(or the number of nodes participating in the communication, in the case of multicast). Thus,
vector clocks are not scalable and may take a large amount of space in messages.

3.3.3 Reducing Message Size

In order to reduce the size of vector clocks sent within broadcast messages, several works propose
approaches to reduce the amount of causal information (Birman et al., 1991; Prakash et al.,
1996; Baldoni et al., 1996; Cai et al., 2002; Evropeytsev et al., 2017). Besides proposing causal
broadcast implementation using vector clocks, Birman et al. (1991) also show that, it is not
always necessary to send the entire vector along with every message. They show that for a
process pi that broadcasts a message m, the latter needs to carry only the entries of vector clock
Vi that were modified since the last broadcast by pi. Each process pi must have an extra data
structure to keep track of the modified entries of Vi. In the case where only some processes
broadcast the majority of the messages, this compression technique can reduce substantially the
size of the transmitted vector timestamp. However, in the worst case, if all nodes frequently
broadcast messages, few or no compression will be possible. Thus, the compression technique is
not always advantageous, since it depends on the locality and frequency of broadcasts. The first
contribution of this thesis applies such a compression strategy.

Causal barriers (Section 2.2.3) exploit the transitive property of vector clocks for reducing
the amount of causality information transmitted within a message. The advantage of the causal
barrier approach is that it does not control causality based on processes’ identifiers (per process
vector entry) but by using direct dependencies of messages. The first broadcast protocol that
employs this type of structure was proposed by Prakash et al. (1996) and later optimized
for multicast environments by Cai et al. (2002). Basically, they use local structures to track
dependency information and include in the messages only direct dependencies. In the case of
the solution presented by Prakash et al. (1996), each process locally applies a matrix to store
information about the last messages delivered by other processes, while in (Cai et al., 2002),

3.3. Causal Broadcast 27

vector clocks keep information about messages that the process has already delivered.
Figure 3.1 shows the difference in the amount of causal information carried by each message

using Birman’s compressed vector clock or causal barriers. In the experiment, messages are
broadcast at a given rate and the source of each message is selected according to a uniform
distribution. In the case of vector clocks, compared to causal barriers, several entries of the
vector clock are likely to change between consecutive broadcasts of the same node, resulting in
larger overhead (in average 47 entries per message, in a system with 1024 nodes). On the other
hand, causal barriers keep only direct dependencies, which is, in average, less than 6 entries per
message in a system with 1024 nodes. However, it is important to remark that, at the cost of a
larger message size overhead, vector clocks carry more information about the causal history of a
message because it takes into account indirect dependencies. For the same data presented in the
figure, results also show that vector clocks carried up to 31 indirect dependencies for the same
message (in the scenario with 1024 nodes).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 8 16 32 64 128 256 512 1024

A
v
g
.

#

o
f

C
a
u
s
a
l

I
n
f
.

P
e
r

M
s
g

Number of nodes

Compressed VC
Causal Barrier

Figure 3.1: Average amount of the causal information carried by messages when using causal
barriers and Birman’s compressed vector clocks. Results obtained using data from (de Araujo
et al., 2017, 2018).

Several types of applications (e.g. distributed multimedia services) need information to be
delivered in causal order and within an expected time. Motivated by this observation, Baldoni
et al. (1996) propose a causal broadcast with time constraints (∆-causal ordering). In the
protocol, any message received after an interval ∆ from its creation is considered lost. A message
is delivered only if all its direct causal dependencies are either (1) delivered or (2) lost (creation
time + ∆ > receive time). Although this work results in a ∆-causal ordering protocol with
reduced communication overhead, it relies on a global clock to control delivery time constraints.
Since the size of a message is one of the parameters that has an impact in latency for message
delivery, the authors apply causal barriers in order to reduce the amount of causal information
carried by a message.

The work presented by Evropeytsev et al. (2017) aims at reducing the amount of control
information carried by messages in hierarchical networks where powerful nodes, denoted “super
nodes”, communicate among themselves while the others are connected to a super node. A
group is a set of nodes connected to a same super node and nodes only communicate to each

28 Chapter 3. Related Work

other through super nodes. Based on such an architecture and assuming non-FIFO channels,
the authors propose a protocol where the size of a causal barrier is limited to either the size g of
a group (in the case of group communication) or to n − g (inter-group communication), where
N is the number of nodes in the system. Although this approach reduces the size of messages,
the hierarchical architecture requires nodes with heterogeneous power.

3.3.4 FIFO Channels – Small/No Control Information

The work presented by Friedman and Manor (2004) guarantees causal broadcast by flooding
messages through reliable FIFO channels of network overlays. The idea is that whenever a
process pi receives a message m for the first time, pi forwards m to all its neighbors in the overlay
excluding the process from which it received m. Since channels are FIFO, this dissemination
strategy ensures that messages traveling over the same channel respect causal order. Thus,
messages do not need to carry any control information and they can be delivered as soon as they
are received. It is important to remark that the causal delivery order can be violated if new links
are dynamically added in the system due to the arrival of new processes.

Nédelec et al. (2018a) extend the above work of Friedman and Manor (2004) in order to cope
with dynamics. In their approach, messages only travel through safe links, i.e., the ones which
messages are already known to have arrived in causal order. New links are assumed to be unsafe
and become safe after a ping phase: when process pi adds a new (unsafe) link eij to process
pj , pi sends a ping message to pj through a path composed by safe links. Upon reception, pj
replies to pi through the unsafe link eij . As channels are FIFO, when pi receives the reply from
pj , pi knows that no message sent before the ping phase will be received by pj . However, no
assumption can be made about the messages sent after the ping, and if pi sends a new message
through eij , it might lead to a violation of causal order by pj . In order to solve this issue, pi
buffers the messages it delivers during a ping phase and, after the reception of the reply from pj ,
pi sends all buffered messages to pj through the link eij . After this procedure, eij is safe, i.e.,
no message from pi to pj will arrive out of causal order. Compared to (Friedman and Manor,
2004), this approach presents the extra cost of using one buffer for each unsafe link but, on the
other hand, it tolerates dynamics such as mobility of nodes.

In approaches that use vector clocks, all processes need to keep information about all other
processes all the time. Nédelec et al. (2018b) observes that, since the amount of information
stored per process increases linearly with the number of processes, this kind of solution becomes
unpractical when dealing with very large systems. Therefore, they propose an approach based
on reliable FIFO channels where any process knows the number of copies of a given message
that it can receive. A message m is considered active for a process pi between the first and
last reception of m at pi. As soon as m becomes inactive, pi removes all control information
related to m. When m is received for the first time at pi, the latter delivers it and then keeps
a temporary register which informs from each input neighbors it will still receive another copy
of m. This solution works for static networks, but in order to cope with dynamics, the protocol
also uses a set of control messages exchanged between processes that establish new links. By
receiving these control messages, processes are aware about when the links is safe to receive new

3.3. Causal Broadcast 29

messages, avoiding therefore, duplicated message delivery. Compared to Nédelec et al. (2018a),
this approach increases the number of control messages, but it reduces local information per
process from O(N) to O(I · A), where n is the number of processes, I is the number of input
links, and A is the number of active messages.

Bravo et al. (2017) proposed Saturn, a service for implementing causal consistency in geo-
replicated systems where metadata used to track causality and payload are decoupled. This
approach only considers metadata dissemination, assuming that any other mechanism can be
used to propagate the payload itself. Clients are associated to datacenters and a datacenter
knows the causal past of its clients. For a given operation (e.g. a data update that must be
replicated to other datacenters) there exists a unique label, which is a fixed-size structure that
identifies the operation. Propagation of labels generated at a same datacenter is managed by a
logically centralized component, which collects labels and transmits them in a serialized order
that is consistent with causal order. Trees are used to propagate labels through FIFO channels,
where a node that initiates a broadcast is the root of its own tree. However, the process of
serializing labels can induce false dependencies due to concurrent operations. Thus, the authors
propose an optimization to define serialization strategies, such that the order of the labels is
compliant with causality and false dependencies do not affect delivery latency. In the Chapter 4
of this thesis, trees rooted at the source of messages are also used for broadcast. However, different
from (Bravo et al., 2017), we use causality information sent with the payload to calculate, at
each hop, if it is possible to bundle causally related messages in order to reduce message size and
network congestion.

3.3.5 Probabilistic Approaches

Motivated by the observation that, for some scenarios, a system can deliver most of messages in
the causal order without any explicit control, Mostéfaoui and Weiss (2017) propose a probabilistic
approach using reliable broadcast where, at the cost of a small rate of violations in the causal
delivery order, it is possible to reduce the size of vector clocks. To this end, the authors extended
the concept of Plausible Clocks (Torres-Rojas and Ahamad, 1999), a logical time structure of
constant size. These clocks basically consist in associating several processes to the same entry
of a vector clock and, although they do not characterize causality, they are scalable due to their
constant size. On the other hand, in the work of Mostéfaoui and Weiss (2017), each process can
also be associated to several entries of the vector clock.

Probabilistic causal broadcast protocol is suitable for applications where the missing of some
causal relation information does not lead to lack of correctness, although there exists a trade-off
between the size of the vector clock and the rate of causal order violations. Moreover, the size of
the system not necessarily needs to be known, making it more suitable for dynamic environments.
On the other hand, a probabilistic causal broadcast is not suitable for the implementation of the
causal aggregation broadcast protocol presented in Chapter 4 of this thesis because the proposed
aggregation mechanism aims at combining as much as possible causally related messages into
a single message, thus requiring precise knowledge about the chain of causal dependencies of a
received message, and not incomplete or partial ones.

30 Chapter 3. Related Work

3.3.6 Application-defined Causality

Bailis et al. (2012) discuss some scalability issues associated to traditional mechanisms used to
track causal dependencies in terms of number of dependencies and the time necessary to check
them. Differently from the traditional concept of causality, where the entire history of preceding
messages may affect a new one, they propose the use of explicit or application-defined causality:
a sub-set of the causal history which reflects only the causality in application level. For instance,
in a public discussion group, even if a message causally depends on much older ones, in fact it
depends only on those associated to its subject (from the point of view of application).

Blessing et al. (2017) exploit the idea of application-defined causality and propose a causal
broadcast protocol where messages carry no causal information. They organize the actors (pro-
cesses) of an application into a tree topology that guarantees (explicit) causal order delivery.
Thus, the path used by the “causing” message must somehow be included in the path of the
“caused” ones. However, FIFO channels are necessary and the organization of the tree is time-
costly and application-dependent.

Table 3.1: Characteristics of several causal broadcast solutions.

Article C.O. Structure Channels Dynamics Msg. Overhead Local Mem.

Birman et al. (1991) Vector Clock Reliable 3 O(N) O(N)

Prakash et al. (1996) Causal Barrier Reliable 3 O(N) O(N2)

Cai et al. (2002) Causal Barrier Reliable 3 O(N) O(N)

Baldoni et al. (1996) Causal Barrier Unreliable 7 O(N) O(N)

Blessing et al. (2017) Application-defined FIFO 7 - -

Mostéfaoui and Weiss (2017) Probabilistic Reliable 3 O(R) O(R)

Friedman and Manor (2004) - Reliable FIFO 7 O(1) O(N)

Nédelec et al. (2018a) - Reliable FIFO 3 O(1) O(N)

Nédelec et al. (2018b) - Reliable FIFO 3 O(1) O(I ·A)

Bravo et al. (2017) Labels Reliable FIFO 3 O(1) O(1)

R < N , I is the number of input links, and A is the number of active messages.

Table 3.1 summarizes some of the causal broadcast approaches discussed in this section in
terms of network characteristics, structure used to capture the causal relation between messages,
and amount of information stored by the processes and transmitted within the messages.

3.4 Bundling Messages

This section discusses some approaches for optimizing communication by aggregating/bundling
messages.

An important feature in broadcast algorithms is communication overhead. According to Chetlur

3.4. Bundling Messages 31

et al. (1998), the number of messages has a higher impact than the size of the messages in such
an overhead. They show that the communication cost of one packet involves mainly (1) a com-
ponent that varies with the size of the message (w · c, where w is the size of the message and c
is the cost for sending each unit of the message size) and (2) a static overhead cost s which is
generally up to two times bigger than c. Following this metric, in order to send two messages of
size w1 and w2 separately, the overall communication cost is 2s + c · (w1 + w2). On the other
hand, if the contents of the two messages are bundled into a single message of size w1 + w2,
communication cost drops to s+ c · (w1 +w2). Hence, it is more efficient to communicate two or
more data items using a single messages. However, the majority of existing approaches delays
the sending of a message using timers in order to wait for more messages which induces message
delivery delays.

3.4.1 Parallel discrete event simulators

Chetlur et al. (1998) argue that there exists a trade-off between the gain associated to less fre-
quent communication and the potential problems that message delivery can suffer when delaying
messages in order to bundle them within a single message. They present a new approach that
is applied to parallel discrete event simulators, which suffer from high overhead due to frequent
communication. In this case, messages with the same destination that must be sent in close
temporal proximity can be bundled/aggregated and, in order to cope with delay issues, they
compare two different policies to adapt the buffering time for bundling between a same source
and receiver. The first policy simply considers a fixed time window for bundling messages with
destination to a same source and, whenever it expires and there exist buffered messages, the
latter are bundled and then sent. A second one dynamically adapts the time window according
to the rate of arriving messages, better supporting burst communication, for instance.

Another work which aims at reducing communicating overhead at parallel discrete event
simulators is presented by Wang et al. (2013). They show that on cluster of multi-core nodes,
communication latency between nodes is much higher than intra-node communication, no matter
the size of the message. They propose that events from different local threads of one node should
be grouped before transmission to another node. Differently from (Chetlur et al., 1998), which
bundles messages with respect to one specific destination, this approach creates one thread that
is responsible for bundling messages from one multi-core node addressed to another multi-core
node.

3.4.2 Reduction of Energy Consumption in Wireless Sensor Networks

Aggregation strategies can also be used to maximize lifetime of energy-limited networks, such
as Wireless Sensor Networks (WSNs), in which intense communication leads to rapid energy
depletion (Akkaya et al., 2008). In such networks, generally a tree rooted at a sink node (or
base station) is used to gather information from leaf nodes. However, in case of sink failure, the
entire network becomes unavailable. In order to make the network more reliable, Yestemirova
and Saginbekov (2018) present an approach for using aggregation in WSNs with multiple sinks,

32 Chapter 3. Related Work

where the same set of aggregated information is sent to several sink nodes. They organize the
network in the form of a spanning tree, in which the root node also takes part of a backbone that
connects all sinks. Data is aggregated from leaves towards the root of the tree, with respect to
known sensing intervals and the root node is responsible for sending all aggregated data to the
sinks through the backbone. As a result, the number of transmissions is close to the number of
original messages.

3.4.3 Application Layer Bundling

According to Sianati et al. (2015), even if powerful devices are used, large scale cloud environ-
ments present undesirable end-to-end delivery time. Since the cloud is deployed over an under-
lying distributed infrastructure, one possibility would be optimize the communication service of
such infrastructure. However, the authors argue that such an optimization is not possible in
public clouds. In this case, they propose a message bundling approach applied to the application
layer, such that no modification is necessary in the underlying network. In this protocol, instead
of sending messages directly to the underlying network, application processes send messages to
special bundler processes, which buffer messages according to their destination and use timers.
When the timer of a bundler process expires, it bundles the buffered messagse within a single
one and sends it to their respective destination.

3.4.4 Bundling Over Peer-to-Peer Overlays

Structured peer-to-peer overlay (P2P) networks such as Distributed Hash Tables (DHTs) can
also take advantage of message aggregation/bundling in order to enhance performance. Saroiu
et al. (2002) show that in a P2P network the average session time of a node is quite short,
which leads to a huge amount of membership modification events being transmitted through
the overlay. Gupta et al. (2004) present an aggregation-based solution to such a problem. In
their approach, the circular logical identifier space of the P2P system is divided into slices, each
of them coordinated by a leader node. The latter collects all membership change notifications
sent from the nodes of its slice during a period of time and then aggregates them into a single
message before sending them to the other slice leaders. Similarly, a leader can aggregate messages
it received from other leaders before routing them to the other nodes of its slice.

Hidalgo et al. (2010) propose an aggregation protocol for P2P for scenarios where nodes may
dispatch several look-up operations at a short period of time. One example of this scenario
is given by routers constantly connected to the overlay and portable devices that connect to
a router in order to access the overlay. In this case, the router is responsible for handling all
requests of its connected devices. The authors modify Pastry (Rowstron and Druschel, 2001) in
order to support aggregation, such that a messageM is actually composed of k look-up messages.
Messages are aggregated taking into account their logical proximity in the logical ring, such that,
in the ordered set represented by M , the first message is the one whose destination is the closest
one to the aggregating node. Like Gupta et al. (2004), they also propose a multi-slice mechanism
but, in this case, the logical space defined by the interval between the key of the first and the last

3.4. Bundling Messages 33

message of M is divided in S slices. Thereby, message M itself is split in S messages Ms and all
messages Ms are dispatched in parallel. However there exists a trade-off between the number of
slices and the impact of aggregation: more slices reduce the transmission delay and overlay hops,
since messages are sent to addresses closer to their destinations, but increases network traffic
because fewer messages will be aggregated.

Another bundling approach designed for structured overlays is presented by Shudo (2017).
The author states that it is possible to reduce forwarding cost by bundling messages whose paths
overlap. A node that wants to dispatch a bundle of messages chooses as the next hop the node
that is part of the common path of all messages in the bundle. If such a common node does not
exist, the message is split and re-bundled into smaller ones, according to their common paths.
The process of splitting a larger bundle according to their paths is repeated until messages reach
the destination nodes, resulting in a dissemination tree in which the root is the node that initiates
the transmission. The closer a node is to the root, the higher the bundles it performs. Unlike this
work, in the protocol presented in Chapter 4 of this thesis, messages are initially sent individually
and, during propagation, are bundled based on causal order.

3.4.5 Timer-based Bundling Over VCube

Rodrigues et al. (2018) propose a tree-based best-effort broadcast protocol using dynamically
built spanning trees rooted at the source of each message, on top of VCube (see Section 2.4) where
messages that must be sent to the same destination are grouped into a single message. Although
messages broadcast by different source will have trees organized differently, there may exist path
overlaps. Messages that share a common path at some moment during their dissemination are
bundled within a single message. The protocol uses timers to wait for such messages. When a
node i receives a message m, a copy of m is stored at a buffer bj for each children j of i in m’s
spanning tree. The timer tj associated to each buffer bj starts when bj stores a first message.
Buffer bj is sent sent to j when (1) no more messages can be bundled due to the maximum limit
size or (2) tj expires. In the order to implement the best-effort protocol, every broadcast message
also induces an ascending wave of acknowledgement messages (ACKs). These ACK messages can
also be bundled following the same path overlap approach. Despite its performance improvement
compared to a version of the protocol without message bundling, this solution still requires timers
that should be fine-tuned according to the application load in order to present good performance.
The causal aggregation protocol proposed in Chapter 4 of this thesis uses the same tree structure
on top of VCube, but bundles messages without the use of timers. A message m stays in buffer
bj just the time necessary to receive all m’s causal preceding messages with which m can be
aggregated and sent to node j. Hence, a message is delayed only the time it would anyway need
to wait before being delivered at the destination j if no aggregation approach was used.

Table 3.2 summarizes some characteristics of the bundling approaches presented in this sec-
tion, in terms of organization of the network, nodes that perform bundling/aggregation of mes-
sages, and policies used for bundling. Note that all works use timers, differently from the new
approach presented in Chapter 4.

34 Chapter 3. Related Work

Table 3.2: Characteristics of presented bundling approaches.

Article Organization Timer Aggregator Policy

Chetlur et al. (1998) Cluster of nodes 3 Every node From node to node with
fixed or dynamic timers

Wang et al. (2013) Cluster of multi-
core nodes

3 Leader of a core From threads of a core to an-
other core

Yestemirova and
Saginbekov (2018) Tree over WSN 3 Every node

Bottom-up tree aggregation
with copies of bundled mes-
sage to multiple sink nodes

Sianati et al. (2015) Application layer
aggregation 3 Bundler processes One bundle per destination

process

Gupta et al. (2004) Multi-slice P2P 3
One bundler node
per slice

Bundle membership change
notifications from one slice
to another

Hidalgo et al. (2010) Multi-slice P2P 3 Every node
Bundle look-up messages
from one node to a same des-
tination slice

Shudo (2017) Tree over Struc-
ture Overlay 3 Every node

Top-down split of bundled
messages according to path
intersections

Rodrigues et al. (2018) Tree over Hyper-
cube Topology 3 Every node

Nodes bundle received mes-
sages before forwarding ac-
cording to path intersections

3.5 Publish/Subscribe Systems

This section initially discusses, in Section 3.5.1.1, some topic-based Publish/Subscribe (Pub/Sub)
systems which use trees, since VCube-PS , the system proposed in Chapter 5 uses trees to dis-
seminate messages. Next, Sections 3.5.1.2 and 3.5.1.3 present some existing topic-based systems
in the literature that rely on clustering subscriptions or gossiping algorithms to enhance delivery
of messages, respectively. Trees are also used in content-based approaches, as shown in Sec-
tion 3.5.2. Lastly, knowing that delivery order of messages is an important feature for many
types of applications, Section 3.5.3 discusses Pub/Sub works that implement different ordering
solutions.

3.5.1 Topic-based Publish/Subscribe

Even if the process of filtering messages is simpler in topic-based systems, reducing the existence
of unnecessary hops and consequently delivery latency is the goal of different works, which exploit
different topologies or dissemination algorithms.

3.5.1.1 Tree-based Approaches Over Peer-to-Peer Overlays

Many tree-based Pub/Sub system have been implemented on top of logical overlays, being
Bayeux (Zhuang et al., 2001) one of the first proposed solutions. It is built on top of Tapestry (Zhao
et al., 2001), a structured overlay which implements a Distributed Hash Table (DHT), and it is
a rendezvous-based system, where each topic has a single multicast tree. In Bayeux, every node
that joins a topic sends a message that is propagated all the way to the root of the topic’s tree,

3.5. Publish/Subscribe Systems 35

which keeps a list of all subscribed nodes. Unsubscriptions are similar and messages must be sent
to the root which is responsible for their propagation. However, the root node is a scalability
bottleneck because it must store a potentially huge amount of subscription information, it is
responsible for all publications of its topic, and it is also a single point of failure. In order to
cope with these issues, Bayeux splits the root into several replicas that receive a disjoint partition
of the membership set, selected according to logical locality.

Scribe (Castro et al., 2002) is a well-known decentralized topic-based Pub/Sub that con-
structs multicast trees on top of Pastry (Rowstron and Druschel, 2001) DHT. Among other
characteristics, it uses less local information and creates less control information traffic when
compared to Bayeux. Every node in Scribe is mapped to an address (nid) from Pastry’s circular
key-space. Similarly, each topic also has its own identifier gid, generally obtained by hashing the
name of the topic. A node whose nid is numerically the closest to a group’s gid becomes the
rendezvous point for the group, which is the single root of the multicast tree of the group.

The operations provided by Scribe work as it follows: in order to subscribe to a topic t,
a node s must join t’s multicast tree. In this case, node s uses Pastry’s routing function to
forward a subscription message towards t’s rendezvous point. During the routing process of a
subscription message, at each hop through the overlay, there exist two possibilities: (1) if the
current node h is already part of t’s tree, it adds s as its child table and the forwarding process
finishes or (2) node h will register node s as its child in t’s tree and then h will forward a new
join message to the next hop towards the rendezvous point. In this case, although node h is not
actually interested in t’s messages, it becomes a relay member of t’s tree because it is a node
whose logical address is in the path between s and the root of the tree. Similarly, unsubscriptions
are propagated towards the root, because once a node u unsubscribes from a topic, other nodes
that were relays of u may also be removed from the tree. However, if node u has some children in
the topic, it will continue to participate in the topic’s multicast tree as a relay node. Whenever
a node publishes a new message to a topic t, the former forwards the message to t’s rendezvous
node and then, starting the rendezvous node, every node that receives the message will forward
it to the nodes in its child table that are also part of t’s tree. It is important to note that during
the multicast process there may exist false positives induced by the relay nodes that take part
of the tree only to connect a subscriber to the rest of the tree.

In terms of reliability, in Scribe, children can detect a faulty parent due to missing heart-
beat messages and then rejoin the the tree using the same subscription process discussed above.
Scribe also copes with failures in rendezvous points by replicating them to nodes logically close.
However, it is worth remarking that Scribe specifies no particular message delivery order. Dif-
ferently from Scribe, the Pub/Sub presented in Chapter 5 of this thesis ensures the causal order
for messages published to the same topic and, instead of a single root per topic, it dynamically
builds trees rooted on the source of every message. Moreover, in the absence of node churn,
there is no relay node, i.e., all nodes of a tree are subscribed to the tree’s topic. Otherwise, in
presence of subscription dynamics, there might exist some temporary relays.

Multicast tree built on top of peer-to-peer networks must be continuously updated because
peers join and leave the overlay. Therefore, there exists a maintenance cost that increases both

36 Chapter 3. Related Work

the time necessary to deliver messages to subscribers and the network traffic. Motivated by
this observation, Li et al. (2011) proposed a system based on Scribe called DRScribe, which
aims at reducing costs by optimizing the routing procedure and then minimizing the number
of relay nodes. Contrarily to Scribe, in which the next hop of a subscription message is the
neighbor with the closest address to the one of the rendezvous point, DRScribe takes into account
the subscriptions of neighbors. However, since propagating all subscriptions to all neighbors is
costly in terms of traffic and space, DRScribe exploits a probabilistic data structure, called
Bloom filter (Bloom, 1970), which is a fixed-size bit vector that uses a set of hash functions to
map elements into the vector. Thereby, every node keeps a Bloom filter representing its own
subscriptions and a set of filters for its neighbors in the overlay. Filters are updated when new
neighbors’ subscriptions are issued, but since there is no way to remove elements from such filters,
they must periodically be re-initiated.

Girdzijauskas et al. (2010) observe that most of the existing DHTs implement node mapping
following a uniform hashing process in order to provide load balancing and keep connectivity.
However, as discussed previously for the case of Scribe, this uniform distribution of nodes in the
logical space may induce the presence of relay nodes in multicast trees. Therefore, Girdzijauskas
et al. (2010) propose Magnet, a Pub/Sub system built on top of a small-world DHT named
Oscar (Girdzijauskas et al., 2007). In this system, nodes with similar interests have logical
addresses close to each other and, in order to implement such an interest-aware mapping, it
uses a distributed membership service that periodically samples interests of some subscribers.
When a node first joins Magnet or when it joins/leaves a topic, it invokes the membership
service informing its interests in order to receive its new position in the logical space. Message
dissemination and tree maintenance are similar to Scribe, with the difference that the number
of relays is reduced.

Motivated by the subscription management overhead that occurs when a topic’s tree is up-
dated due to subscription dynamics, Zhao et al. (2013) propose DYNATOPS, a tree-based
Pub/Sub whose trees are composed of brokers instead of nodes. Trees are built on top of
Chord (Stoica et al., 2001), in which, similarly to Scribe, each topic is assigned a rendezvous
point. DYNATOPS tries to reduce communication among different brokers by assigning to the
same set of brokers those users that share similar interests. In this way, a broker is said to
subscribe to a topic’s tree if at least one of its members is subscribed to the topic. Similarly,
it can be removed from the tree, when none of its members is subscriber. However, similarly
to Scribe, there may exist relay brokers that take part of a tree just to provide a logical path
between other brokers. Thus, in order to reduce or eliminate them, logical positions of brokers
can be changed. However, in order to decide when and where to move brokers, the system relies
on a logically centralized control that periodically monitors the system and, if necessary, assigns
new logical addresses to the brokers.

Another approach that also reinforces the locality of nodes with similar interests in topic-
based Pub/Sub is called Rappel (Patel et al., 2009). This solution uses two decentralized
structures built on top of a peer-to-peer overlay: one manages the relationships between nodes
and the second one corresponds to dissemination trees. Nodes use a gossiping algorithm to

3.5. Publish/Subscribe Systems 37

propagate Bloom Filters that encode their interests and, based on these filters and logical network
proximity, they choose neighbors that share common interests. Each topic has its own single-
rooted dissemination tree, which does not contain relay nodes. Differently, the new solution
proposed in Chapter 5 uses the same dissemination structure to send both publications and
control information and load balancing is improved by dynamically building differently organized
trees rooted on the source of each message.

3.5.1.2 Clustering Solutions

TERA is a topic-based Pub/Sub proposed by Baldoni et al. (2007) built on top of a peer-to-peer
system which clusters peers subscribed to the same topic. The system uses, at a lower layer,
a global overlay network that connects all nodes. On top of it, several topic overlays (clusters)
are built, such that each of them is a subset of the global overlay and connects all subscribers
of the same topic. The goal of TERA is to propose an approach for the routing of messages
to their target clusters, considering that non-subscribers can publish to a topic. Each cluster is
assigned an access point, i.e., a node responsible for communicating with other cluster’s access
points. The latter is chosen according to a uniform probability and each node has a table where
it stores the identifers of known access points. Whenever a message is published, if the access
point of the topic is not yet known, the message is routed following a random walk through the
global overlay until it finds the identifier of the access point of its topic and, once the message is
received by the access point, it is disseminate to the other members of the cluster by flooding the
topic overlay. However, because of the limited size of the table where nodes store the identifiers
of known access points, it is possible that it will not store the identifier of every single topic.
Thus, the table is updated according to the popularity of the topics: the access points of clusters
whose topics receive frequently new subscriptions are less likely to leave nodes’ tables. As a
consequence, inactive topics will disappear. The authors also propose a solution for merging
topic overlays that belong to the same topic. This situation can happen when more than one
node subscribes to a topic which has no access point (or the topic does not exist).

Similarly, Chen et al. (2016) present OMen, a DHT-based solution for clustering subscrip-
tions in topic-based Pub/Subs deployed in datacenters with low churn rate. This approach also
follows the principle that each topic must induce the creation of a connected sub-overlay compris-
ing all subscribers of the topic. In this system, the authors tackle the problem of the maintenance
of topic-connectivity in the overlay in the case of node churn (join, leave, or crash) and mainly
in case of concurrent churns. OMen uses coordinator nodes that are responsible for proactively
building backup sets that are used to restore topic overlay connectivity in case of churn. These
sets are built using gossiping to gather information about the partial view of other nodes and
must contain enough information about the network to be able to reestablish connectivity and,
at the same type, ensure the existence of a sub-overlay per topic comprising only the subscribers
of the topic.

BeaConvey (Chen et al., 2018) is topic-based system that uses small world topologies to
devise a solution for keeping users with similar interests logically close. This system targets
datacenter applications with infrequent churn and it relies on a centralized control which is

38 Chapter 3. Related Work

responsible for the maintenance of the overlay and keeping global knowledge of subscriptions.
Nodes maintain only partial topology knowledge and the size of the path covered by any message
is limited by logN (nodes in the overlay). Message dissemination is performed by dividing, at
each hop, the address range a message must be delivered to, such that each sub-range is reached
by a hop chosen by finding the sound balance between small routing overhead (no relay nodes)
and reduced latency (exploit connectivity of the small world topology).

3.5.1.3 Other Topologies

Instead of using trees, PolderCast, presented by Setty et al. (2012), uses an epidemic-based
algorithm to create and maintain disseminating rings on top of a Peer-to-Peer Network. It is
assumed a fully connected network in which nodes’ identifiers are obtained from an ordered
circular space. For every topic in the system there exists a ring (i.e., a sub-set of the network’s
circular space) connecting only the subscribers of the topic. Rings also contain some extra
random links, in order to both accelerate propagation of messages in large rings and to cope with
partitioning in case of node churn. Since every publisher of a topic must also be a subscriber
of the topic, the entire forwarding of a message involves only interested nodes. Any node that
receives a message for the first time (or creates it) forwards it to its neighbors and possibly
some other random subscribers. New subscribers join a topic’s ring by gossiping a subscription
message through the network. Crashes and unsubscriptions are detected the same way by using
ping messages. Unlike this approach, in VCube-PS , every node receives only one copy of each
published message, which, compared to PolderCast, reduces message traffic.

Aiming at providing an intuitive subscription language, Cañas et al. (2015) propose a system
called GraPS in which subscriptions are expressed using some connectivity criteria over a graph.
For instance, considering an application where nodes represent partitions of a geographic area,
the authors state that a classic topic-based system would use several subscriptions to cover an
area, while GraPS could use a single one, with a distance metric in the graph to define area
boundaries. The decentralized version of the solution is built on top of a fully connected network
of brokers which filter and disseminate messages. An interest graph among the brokers is formed
by exchanging information about subscriptions of the nodes connected to the brokers. Thus,
when a message is published, it is sent to a broker, and the latter sends the message to its local
interested nodes and to other interested brokers.

3.5.2 Tree-based Content Publish/Subscribe

HOMED is a content-based Pub/Sub proposed by Choi et al. (2004) that maps nodes to a logical
hypercube and builds binomial trees to disseminate messages. In order to avoid unnecessary hops
(relay nodes), nodes with similar interests should be neighbors in the hypercube. In this case, the
interests of a subscriber are used to decide its position in the hypercube. The forwarding process
of published messages is composed of two steps: first, the message is routed to any node whose
interests matches the message and then, this node acts as the root of the binomial tree used to
disseminate the message. Subscription is performed by choosing the position of the node and

3.5. Publish/Subscribe Systems 39

informing its new neighbors while unsubscriptions are treated locally. Differently from VCube-PS
(Chapter 5), delivery of messages does not respect causal order of published message broadcast.

The location or geometrical mapping of subscriptions can also be taken into account in the
construction of dissemination structures for content-based systems. Bianchi et al. (2010) pre-
sented DR-Tree, an approach where subscriptions and messages of a content-based Pub/Sub
are represented geometrically and the tree itself acts as a spatial filter. The tree is based on
R-Trees (Guttman, 1984), which are balanced trees where every non-leaf node keeps a minimum
bounding rectangle (MBR) such that all children of a node fit in the node’s MBR. By construc-
tion, this kind of tree does not present false negatives and false positives occur when a node’s
MBR is larger the its children’s. DR-Tree is built on top of a peer-to-peer network, such that
each node of the tree is under the responsibility of a peer and and each peer represents at least
one subscription which is stored in leaf nodes. The root of the tree is the node with the largest
MBR and internal nodes are created as MBRs for groups of subscriptions. Messages do not need
to be sent to the root of the tree in order to be disseminated: a message created by a node n is
sent downwards for the sub-trees whose MBR overlaps with the message’s and upwards in order
to find other nodes whose sub-trees are also interested in the message. The authors also present
algorithms for the maintenance of the tree, in order to periodically recalculate MBRs and, if nec-
essary, reorganize the tree. Later, in order to reduce delivery latency of DR-Tree, Arantes et al.
(2010) add extra links to the tree to exploit interest proximity or enhance parallelism. Links
are between brothers (nodes that share the same parent), to ancestors, and/or to the root node
and, during dissemination, a node can forward messages directly to these extra linked nodes.
In VCube-PS (Chapter 5), parallelism is achieved through the different organization of multiple
trees, such that messages published by different sources will follow different paths.

Another approach called AP-Tree, proposed by Wang et al. (2015), uses both textual and
spatial information to organize subscriptions in a tree. This work targets subscriptions that
consist of keywords and spatial information (e.g. cellphone discount within a 1 km radius from
home) and subscription organization is adaptable according to their distribution: for subscrip-
tions that are heavily overlapped in space, it is easier to filter them textually and, on the other
hand, if they are scattered throughout the space, it is easier to primarily distinguish them by
spatial coordinates. Moreover, AP-Tree also copes with moving subscriptions, i.e. if a user issues
a subscription to some event close to the user’s position, if the user moves, the subscription must
be updated.

Table 3.3 summarizes some of the characteristics of the discussed Pub/Sub systems. None
of them enforces causal delivery order for published messages. The table also shows the name of
the simulator used for implementation or the structure used for deployment. Some systems that
implement ordering of messages are discussed in the next section.

3.5.3 Message Ordering

Lumezanu et al. (2006) presented an ordering solution for topic-based Pub/Sub system that
ensures the total order of messages sent to topics whose membership overlap. In the case of
messages that are sent to unrelated topics, they may be delivered in any (potentially inconsistent)

40 Chapter 3. Related Work

Table 3.3: Characteristics of several publish subscribe systems.

System Type Topology Dissemination Relay Implement.

Bayeux Topic DHT (Tapestry) RV / Tree 3 -

Scribe Topic DHT (Pastry) RV / Tree 3 -

DRScribe Topic DHT (Chord) RV / Tree Reduced
Sgaosim
(Li and Gao, 2011)

Magnet Topic
Small World DHT
(Oscar) RV / Tree Reduced -

DYNATOPS Topic
Brokers over DHT
(Chord) RV / Tree Reduced Open Chord1

Rappel Topic Connected P2P Tree (messages)
Gossiping (control) 7

PlanetLab2

(deploy)

TERA Topic Global Overlay (GO)
Topic Overlays (TOs)

Random Walk (GO)
Flooding (TO) 3

PeerSim (Montresor
and Jelasity, 2009)

BeaConvey Topic
Small World / Cen-
tral Overlay Coordi-
nator

Tree 7 PeerSim

PolderCast Topic Fully Connected P2P Epidemic / Rings 7 PeerSim

GraPS Topic Brokers over
Connected Overlay Graph 7

Padres (Fidler et al.,
2010)
(deploy)

HOMED Content Logical Hypercube Tree 3 -

DR-Tree Content Connected P2P Distributed R-Tree Reduced -

AP-Tree Content /
Location

Centralized Spatial-Textual
Tree

7 -

RV: rendezvous node. Reduced: the approach tries to reduce the number of relays.

order. The key feature of the approach is the presence of sequencers, which are logical nodes
that assign sequence numbers to messages addressed to topics that share subscribers. New
membership intersections between unrelated topics induce the creation of new sequencers and
a group of sequencers forms a single loop-free path that connects all related sequencers. It
is assumed FIFO channels between sequencers and the task of defining the sequence number
of a message is distributed among the sequencers according to the last message sent to each
intersecting topic. Thereafter, the message is sent to a dissemination tree and nodes use the
sequence number of a message to decide when to deliver it. Furthermore, nodes of the same
group see messages in the same order, which is consistent with the causal order provided that
publishers are also members of the group.

By using Scribe (Castro et al., 2002) without inducing any message ordering, Baldoni et al.
(2012) performed some experiments considering different topics, publishers, and subscribers.
Results show that only 35% of the received messages follow the same sequence order. Instead of
proposing a solution to guarantee a consistent delivery order to 100% of messages, they present
a topic-basic Pub/Sub system where messages published on different topics are either delivered

1https://sourceforge.net/projects/open-chord/
2https://www.planet-lab.org/

3.5. Publish/Subscribe Systems 41

in the same order to all subscribers or tagged as out-of-order (weak total order). The system
uses reliable FIFO channels and the out-of-order detection algorithm uses logical timestamps.
Although a simple solution for ordering messages would be the use of a special sequencer to
timestamp all messages, this approach presents both a scalability bottleneck and a single point
of failure. Therefore, they assumed that each topic is assigned a node that acts as its “topic
manager”, i.e., the sequencer of the topic. Moreover, topics identifiers should be totally ordered.
The idea is that a group of sequencers comprising all sequencers of topics whose subscriber set
intersect with the one of the published message will be responsible for creating the timestamp
of the message, i.e., a table with an entry per sequencer. Upon reception, subscribers check if
the message is in a coherent order according to its own local subscription clock (a structure that
stores the timestamp of the last received message from each topic) and decides whether or not
to tag the message as out-of-order. It is important to note that this approach could be extended
to reorder messages by using buffers at reception.

A distributed total order protocol for a content-based Pub/Sub system is presented by Zhang
et al. (2012). Differently from topic-based Pub/Sub systems, in content-based ones there is no
explicit group where messages can be assumed as already ordered. The proposed solution consists
of a detection phase, in which a broker determines if a message needs to be reordered and, if it
is necessary, a group of brokers settles a consistent delivery order for the message. The simplest
solution for a fault-free scenario is to use FIFO channels and, if publishers have a common broker
in the path to all interested subscribers, total order is guaranteed. Otherwise, sequence numbers
per publisher and information exchanged between brokers are used to decide if it is necessary to
delay messages in order to ensure total order.

In (Malekpour et al., 2011), the variations of end-to-end delay of messages in a content-based
Pub/Sub, directly related to out-of-order FIFO delivery, are measured. Values show that for
most cases, FIFO order violations happen when sending interval of messages by the same sender
is small and that end-to-end delay follows a hypoexponential distribution. Thus, based on such
an analysis, the authors propose a probabilistic solution in which subscribers should decide to
delay or not the delivery of a message in order to wait for some missing message previously sent
by the same publisher. Nodes keep track of the messages sent per publisher using vector clocks.
Thus, upon reception, if there is a gap between the sequence number of the message and the
corresponding local vector clock entry, the receiver should wait for missing messages. However,
this simple solution may lead to unnecessary delays, because some messages may not match the
receiver’s interests. In order to mitigate this problem, every message carries a history encoded
in a Bloom filter which contains matching information about messages previously sent by the
same publisher. Upon reception of message m from p, a subscriber s decides, using the filter if
it will possibly receive another message sent by p before m and the waiting time is given by the
hypoexponential distribution.

There exist some works like (Nakayama et al., 2016; Yamamoto and Hayashibara, 2017) that
consider, as assumption, causal delivery of published messages, although neither of them provide
solutions for specifically ensuring causal delivery order of messages of the same topic, as proposed
by VCube-PS in Chapter 5 of this thesis. Nakayama et al. (2016) assume a topic-based system

42 Chapter 3. Related Work

where messages associated to the same topic are automatically delivered in causal order and
that the same message can be sent to subscribers of several topics. In their proposal, messages
from different topics are reordered at a subscriber s if they are causally related and if there
exist intersecting elements between the topic set of each message and the subscriptions of s. For
scalability sake, vector clocks are not included in messages, but only a similar “topic vector” that
represents the number of messages sent per topic. The authors propose ordering rules based on
this “topic vector” and using synchronized physical clock. The work presented by Yamamoto and
Hayashibara (2017) merges partitions of a topic in a dynamic network, assuming that messages
published in each partition are already causally ordered. This is the case for a scenario where an
unstructured network is split due to, for instance, link problems and, therefore, subscribers of a
given a topic can form disjoint partitions. Since nodes of different partitions continue to publish
messages independently, the idea is that when a link between disjoint partitions is reestablished,
messages published during the partitioning time will be exchanged. Then, in order to ensure
causal order between partitions, each node must consider the vector clocks of messages of both
partitions.

JEDI (Cugola et al., 2001) is an infrastructure for developing broker-based Pub/Sub solutions
that ensure causal order. Published messages are acknowledged: an acknowledgement is sent by
the receiver to the sender of a message in order to inform that the message was correctly delivered.
After receiving such an acknowledgment, the sender can send the next message. Since publishers
communicate with other clients through brokers, the latter inform publishers about the number
of acknowledgments to wait for. Differently from this solution, which induces message traffic
overhead, VCube-PS (Chapter 5) does not require these extra acknowledgments since direct
causal dependencies of a message are included in the message itself using causal barriers.

Table 3.4 shows some of the characteristics of the ordering solutions discussed above. It is
important to note that, among them, JEDI is the only one that ensures a delivery order that
respects causality of published messages.

Table 3.4: Ordering characteristics of some publish subscribe systems.

Article Type Topology Channels C.O. Structure Delivery Order

Lumezanu et al. (2006) Topic DHT FIFO between
sequencers Sequencers Total if topics

overlap

Baldoni et al. (2012) Topic - Reliable FIFO
Sequencers /
Logical times-
tamps

Total or / tag
out-of-order)

Zhang et al. (2012) Content Broker net. FIFO Broker commu-
nication

Total if interests
overlap

Malekpour et al. (2011) Content - - Message history Probabilistic FIFO

Nakayama et al. (2016) Topic - - Logical and
physical times

Causal for over-
lapping groups

Yamamoto and
Hayashibara (2017) Topic Unstructured - Vector clocks Causal for merg-

ing partitions

JEDI (Cugola et al., 2001) Content Broker net. FIFO Confirmation
messages Causal

3.6. Conclusion 43

3.6 Conclusion

This chapter presented some existing works in the literature that are related to the contributions
proposed by this thesis.

Initially, it was shown that hypercubes present logarithmic properties which are interesting
for the construction and maintenance of spanning trees and that causal broadcast approaches
have evolved trying to reduce the amount of information necessary to guarantee causal broadcast
order.

Such causal broadcast protocols include probabilistic approaches, where a small rate of causal
order violations can happen. Other protocols eliminate or reduce the inclusion of causal infor-
mation in broadcast messages by exploiting characteristics of the underlying topology such as
FIFO channels. By considering the point of view of the application, Bailis et al. (2012) redefine
the concept of causal dependency, such that only a sub-set of the causal history is used.

Concerning the reduction of communication overhead in broadcast protocols, several solutions
have proposed to bundle messages using timers that, at the cost of increasing latency, reduce
message traffic.

Lastly, this chapter discusses several Publish/Subscribe systems that, among other character-
istics, try to reduce or eliminate nodes that participate in the forwarding of a published message
which are not interested in the message. Some Pub/Sub systems ensure some coherent message
delivery order. However, even if a few works address causal order, as far as our knowledge, only
JEDI (Cugola et al., 2001) actually guarantees causal delivery order to all published messages.

Unlike the bundling approaches presented in this chapter, the causal aggregation broadcast
presented in Chapter 4 does not user timers. It exploits the causal relation between messages
and common destination nodes to decide which messages can delayed for bundling. Furthermore,
it delivers messages in causal order.

The new Pub/Sub system, VCube-PS (Chapter 5), ensures causal delivery order for messages
published to the same topic. It also mitigates the impact of root bottleneck presented in spanning
trees used by several topic-based systems presented in this chapter. While several systems use
a unique tree per topic, VCube-PS dynamically builds trees rooted on the source node of each
published message. Furthermore, in the absence of subscriptions dynamics, a tree built to publish
a message contains only the subscribers of the message’s topic. Otherwise, nodes that unsubscribe
from a topic may behave for a while as relay nodes, but eventually they will not take part of the
topic tree anymore.

44 Chapter 3. Related Work

Chapter 4

Causal Aggregation Broadcast

Contents
4.1 Introduction . 45

4.2 System Model and Definitions . 47

4.3 Aggregating Causally Related Messages 47

4.4 Causal Aggregation Algorithm . 49

4.4.1 Broadcast . 49

4.4.2 Reception . 49

4.4.3 Aggregation / Forwarding . 51

4.5 Experimental Results . 51

4.5.1 Simulation Setup . 52

4.5.2 Number of Packets . 53

4.5.3 Size of Messages and Packets . 54

4.5.4 Reception and Delivery Latencies . 56

4.5.5 Distribution of Pending Messages . 58

4.5.6 One Tree Versus Multiple Trees . 59

4.6 Conclusion . 61

4.1 Introduction

As discussed in Section 3.4, the performance of communication protocols is particularly associated
with the number of messages and not necessarily with their sizes. Several works try to optimize
communication by delaying the forward of messages in order to bundle several of them before
transmission. Although, even if this kind of approach reduces traffic, it increases end-to-end
message delay.

Based on such a consideration, this chapter presents a new causal broadcast protocol which
combines causally related messages into a single message, such that a message is delayed only
when it is known that such a message can be bundled with causally preceding ones with no extra
delivery delay. Moreover, the protocol guarantees causal delivery order.

45

46 Chapter 4. Causal Aggregation Broadcast

The idea behind this protocol is to exploit how causal order violations happen and, at the
same time, take advantage of such violations in order to bundle messages. In other words,
the protocol exploits execution scenarios where indirect communication (messages relayed via
intermediate nodes) is faster than direct communication. Known as Triangle Inequality Violation
(TIV) (Adelstein and Singhal, 1995; Plesca et al., 2006), this kind of violation happens due to
disparities in channels and network congestion. Existing studies on TIV show that this is a
widespread and frequent problem (Lumezanu et al., 2009; Wang et al., 2007).

Figure 4.1 shows a case of TIV (channel delay tc > ta + tb), such that node 2 receives
messages out of the causal order and, therefore, some delay and additional treatment are imposed
before delivering them to the application in the correct order. Let’s also assume that node 2 is
responsible for forwarding both messages m0 and m1 (m0 → m1) to node 3 (not in the figure).
Therefore, we can ask the question: What is the difference in delivery latency at node 3 if node 2
waits to receive both m0 and m1 and then send them into a single message compared to sending
m1 as soon as it is received and, later, m0? There is no difference, since node 3 would have
to wait for m0 anyway to deliver both messages. However, by sending them together, node 2
reduces network traffic.

Figure 4.1: Example of TIV. Although m0 → m1, m0 is received first at node 2.

In order to delay the forwarding of m1 to node 3, node 2 needs to know that node 3 will not
receive m0 through another path. In the proposed causal broadcast protocol, such a knowledge is
acquired by exploiting inference rules to build spanning trees over VCube (see Section 2.4), used to
disseminate messages to all nodes. When a node broadcasts a message, the protocol dynamically
builds a VCube spanning tree rooted at that node. On the other hand, even if the organization
of a tree depends on its root node, part of the paths of different trees intersect. Moreover, thanks
to the above mentioned rules, every node knows how every other tree is constructed and it can,
therefore, deduce intersections of different trees. Consequently, a node can delay the forwarding,
to one or more of its tree’s children, of those messages whose causal dependencies it knows that
these children cannot satisfy them yet, since it is the responsible for forwarding these missing
messages to them. Upon receiving the missing messages, the node aggregates all the messages
and send them within a single message to those children.

Differently from some approaches discussed in Section 3.4, where messages are aggregated
during a waiting time (implemented with timers), entailing extra delays to delivery latency, the
proposed aggregation approach does not induce any overhead neither degrades performance as it
is based on the principle that the sending of a message to a node is worthless if the latter will not
be able to deliver it. Interestingly, due to such a reduction in the number of messages over the
network, the average delivery latency can also be improved since there is less node contention.

4.2. System Model and Definitions 47

Section 4.2 presents the system model adopted for the development of this protocol, followed
by a detailed description of the protocol (Section 4.3) and its algorithm (Section 4.4). Comparison
experiments with and without the proposed aggregation approach were conducted on top of
PeerSim and Section 4.5 presents some evaluation results.

4.2 System Model and Definitions

The model used by the protocol presented in this chapter considers a distributed system composed
of a finite set of Π = {0, .., N − 1} nodes with N = 2d, where d > 0 is the dimension of VCube
(see Section 2.4). Each node has an unique identifier (id) and may be called by its id or by
pid. Each single node executes a task (process) and a user of the system corresponds to a node.
Therefore, the terms node, user, and process are interchangeable.

Nodes communicate by message passing through bidirectional channels. The topology of
the connected (not necessarily fully) network must allow nodes to be logically organized as an
hypercube interconnection network. Nodes do not fail and links are reliable. Thus, messages
exchanged between any two processes are never lost, corrupted nor duplicated. The system is
asynchronous, i.e., relative processor speeds and message transmission delays are unbounded.

The source of a message is the id of the node that broadcasts a message. As discussed in the
basic specifications of broadcast protocols (Section 2.3.1), this model also distinguishes between
the arrival of a message (reception) at a process and the event at which the message is given
to the application (delivery). Note that only the latter respects the causal order of broadcast
messages.

For sake of clarity, this chapter considers message the data message of the application/user
to be broadcast and packet the message of the broadcast protocol. A packet can, thus, aggregate
several messages. Moreover, throughout the text, the terms bundling, aggregating, and combin-
ing are interchangeable. They represent the act of creating a new packet which groups a set of
messages. No modification is applied to the original messages.

4.3 Aggregating Causally Related Messages

The spanning trees used in this approach are built on top of VCube, as presented in Section 2.4.1.
For every broadcast message, a distributed spanning tree rooted on the source of the message is
created. Although for different root nodes, spanning trees are organized differently, their nodes
may have some common children, i.e., some parts of the paths of two messages may intersect at
a node. By exploiting this spanning trees intersection feature, a node can delay, to one or more
of its children, the forwarding of the messages whose some causal dependencies it knows that
the children in question cannot satisfy yet. In other words, node i will postpone sending m to a
child node k if the following conditions are satisfied:

• ∃ message m′ : m′ → m;

• Node i is responsible for forwarding both m and m′ to node k;

48 Chapter 4. Causal Aggregation Broadcast

• Node i knows that m will not be able to be delivered by node k because node i has not
received/delivered m′ yet.

Thus, according the above conditions, node i will send all the missing messages m′ and m to
node k aggregated into a single packet only after receiving the former. It is important to remark
that even if the forwarding of m to k was delayed, such a postponement does not cause any extra
delay in m′s delivery by k.

0

1 2 4

3 5 6

7

2

3 0 6

1 7 4

5

2

30

6

1

74

5

Figure 4.2: Example of spanning trees and intersection of tree paths

Let’s consider Figure 4.2(a) where m2 → m1 → m0. The broadcast of these messages by
nodes 0, 2, and 1 dynamically builds different spanning trees, as shown in Figure 4.2(b,c,d), in
a system with 8 nodes. In order to analyze how the protocol bundles messages, let’s focus on
node 4. Upon the reception of m0, node 4 verifies that it has not received either m2 or m1 yet,
as shown in Figure 4.2(a). Without the aggregation approach, node 4 would simply forward m0

to its children in relation to the tree rooted in m0’s source (node 0), i.e., nodes 5 and 6 (see
Figure 4.2(b)). However, as observed in Figure 4.2(b,c), node 5 is child of node 4 in both m0’s
and m2’s trees and node 4 knows it because of VCube’s inference rules (by means of the function
Children, defined in Section 2.4.1, page 17). Thereby, by applying the proposed aggregation
approach, node 4 takes the following actions:

• m0 is forwarded immediately to node 6 because the latter is not a common child of node
4 in the spanning trees of both m0 and m1;

• the forwarding of m0 to 5 is delayed because m2 precedes m0 and node 4 has not received
m2 yet.

Upon reception of m2, node 4 aggregates m0 and m2 within a single packet and sends it to
node 5. Note that node 4 does not wait for m1 before sending the packet to 5 because the latter
is not a child of 4 in m1’s tree (see Figure 4.2(d)). In fact, due to the different organization of
trees with different root nodes, node 5 is the parent of node 4 in m1’s tree.

When messages that could be aggregated due to intersecting paths are received in causal
order, aggregation is unnecessary. For instance, if node 4 had receivedm2 beforem0, the messages
would not be aggregated to 5 since, in this case, upon reception of m2, node 5 would be able to
deliver it without depending on the reception of m0.

4.4. Causal Aggregation Algorithm 49

Even if the forwarding of messages can be delayed for certain nodes and not to others, it is
important to observe that, every message broadcast by a given process is received only once by
each other process. No matter whether the message was bundled with others or not, it crosses
only once each of the N − 1 links of the corresponding spanning tree.

4.4 Causal Aggregation Algorithm

In the proposed system, every message m carries information used to ensure causal ordering. It
uses vector clocks (Section 2.2.1.2) instead of causal barriers (Section 2.2.3) because the latter
keep only direct dependencies. Therefore, causal barriers limit the amount of messages that
could be bundled, reducing the performance of the system. For instance, let’s consider messages
m0, m1 and m2, such that m2 → m1 → m0, are received at node i at the order m0, m1, and
finally m2. The three messages must be sent by node i to the same node j. If the proposed
causal broadcast aggregation protocol used causal barriers, after receiving m0, node i would wait
only for m1 before bundling and sending to node j, because m2 is an indirect dependency of m0.
As a result, the destination node j would have to wait for m2 before delivering the messages in
causal order. On the other hand, as shown in Section 3.3.3, with vector clocks it is possible to
obtain more information about the causal history of a message due to transitive causality and,
by using it, in the example, node 0 would wait for message m2 before sending a bundled message
to node j.

Every message m contains the identifier of its source (m.s) and the vector clock of the source
at the moment of the broadcast (m.vc). Every node i keeps the following local variables:

• vector_clock: vector of size N used to store information about delivered messages;

• vector_max: vector of size N that keeps information about messages that can be for-
warded. Each entry l of the vector keeps the sequence number of the last received message
m′ from l, such that all messages sent by l that precedes m′ have also been received;

• pending: the set of messages which were received but have not been delivered yet.

Algorithm 2 presents, in details, the proposed causal broadcast protocol. It can be interpreted
according to the following stages:

4.4.1 Broadcast

When node i wants to broadcast message m, it calls the function CO_Broadcast(m) (lines
6-13), which increments i’s own entry in the local vector clock (line 7), assigns the identifier of
i and the value of its local vector clock to m, delivers m to itself, and forwards a new packet
containing m (represented as m) to i’s log2N children.

4.4.2 Reception

Due to aggregation of messages, a node receives a packet representing a set with one or more
messages sent by its parent j in the tree (line 14). Each message m in the packet is handled

50 Chapter 4. Causal Aggregation Broadcast

Algorithm 2 Causal aggregation broadcast at node i

1: Init
2: ∀l ∈ [0, N − 1] :

3: vector_clock[l]← 0

4: vector_max[l]← 0

5: pending ← ∅

6: procedure CO_Broadcast(message m)
7: vector_clock[i]← vector_clock[i] + 1

8: vector_max[i]← vector_clock[i]

9: m.s← i

10: m.vc← vector_clock
11: CO_Deliver(m)

12: for all k ∈ Children(i, log2N) do
13: Send({m}) to k

14: upon receive mSet from j

15: for all m ∈ mSet do
16: pending ← pending ∪ {m}
17: while (∃ m′ ∈ pending | m′.vc[m′.s] = vector_max[m′.s] + 1) do
18: vector_max[m′.s]← vector_max[m′.s] + 1

19: for all k ∈ Children(i,Cluster(j, i)− 1) do
20: agg ← CheckAgg(k,m)

21: if agg 6= ∅ then
22: Send(agg) to k

23: CheckDelivery()

24: function CheckAgg(node k, message m)
25: agg ← ∅
26: for all m′ ∈ pending | k ∈ Children(m′.s, log2N) do

27: if m′.vc[m.s] ≥ m.vc[m.s] and @l :

(
m′.vc[l] > vector_max[l]

and k ∈ Children(l, log2N)

)
then

28: agg ← agg ∪ {m′}
29: return agg

30: procedure CheckDelivery()

31: while

(
∃ m′ ∈ pending |

(
(m′.vc[m′.s] = vector_clock[m′.s] + 1)

and (m′.vc[k] ≤ vector_clock[k],∀k 6= s)

))
do

32: CO_Deliver(m′)

33: vector_clock[m′.s]← vector_clock[m′.s] + 1

34: pending ← pending r {m′}

independently by the receiver i and included in the pending set (line 16).
Node i keeps track of message receptions from each other node, by maintaining the vector

vector_max (lines 17-18).

4.5. Experimental Results 51

4.4.3 Aggregation / Forwarding

Considering the reception of m, i calls, for each of its child k in regard with m’s spanning tree
(line 19), the function CheckAgg(k,m) (lines 24-29) in order to aggregate all the messages
in pending (including m), which do not have any missing pending causal precedence related to
messages that must be sent to k by i (i.e., i is the parent of k with respect to the spanning tree
of these messages): for every pending message m′ where i is the parent of k in the spanning tree
of m′ (line 26), if m precedes m′ (first condition of line 27) and i received all dependencies of m′

to which i is responsible to forward to k (second condition of line 27), m′ is added to the agg
set. Otherwise, the forward of m′ (which can be equal to m since the latter was added to the
pending set) is postponed. If not empty (line 21), the set of aggregated message, which can be
just m in the case of no possible aggregation, is then sent to k (line 22).

Considering mi,j the jth message broadcast by node i, the VCube of Figure 2.6 (page 16), and
spanning trees equal to the ones depicted in Figure 4.2(b,c), let’s suppose that node 2 broadcasts
3 messages and node 0 broadcasts 1 message such that: broadcast m2,1 → broadcast m2,2 →
broadcast m2,3 → broadcast m0,1 and all messages have been received by 4, except m2,2. In
this case, for node 4, vector_max[2] = 1 even if m2,3 was received. Since m0,1.vc[2] = 3, the
conditions of line 27 are satisfied only to m2,1, that will be sent to node 5. On the other hand,
upon reception of m2,2, vector_max[2] = 3, the conditions will be true for m2,2, m2,3, and m0,1

which will be aggregated into a single packet and sent to node 5. Such an aggregation takes
place only for node 5. Node 4 directly sends m0 to node 6 upon its reception.

The first condition of line 27 of CheckAgg(k,m) function is necessary in order avoid sending
twice the same message. Let’s take a second example where broadcast m2,1 → broadcast m0,1

→ broadcast m0,2 and that node 4 receives m0,1, m0,2, m2,1 in this order. Upon reception of
m0,1, node 4 forwards it to 6 but not to 5 and, thus, m0,1 is held in (pending = {m0,1}). The
same happens upon reception m0,2 (pending = {m0,1,m0,2}). However, if the first condition was
not included in line 27, m0,1 would be sent again to node 6 since the second condition is satisfied.
Upon reception of m2,1, node 4 will send the 3 messages aggregated into a single one to node 5.

Lastly, for each message m′ ∈ pending, i delivers all messages whose delivery is possible
following the reception ofm (function CheckDelivery, lines 30-34). A message can be delivered
provided that the two conditions for ensuring causal delivery order using vector clocks (Section
3.3.2) are satisfied. Once a message is delivered, it is removed from pending. Note that the
delivery of one message can trigger the delivery of other messages. This explains why all current
remaining messages in pending are re-checked until no more message is delivered (line 31).

4.5 Experimental Results

In this section, the proposed protocol is evaluated through simulations and the obtained results
are compared to a version of the protocol without the aggregation feature.

52 Chapter 4. Causal Aggregation Broadcast

4.5.1 Simulation Setup

The proposed causal aggregation broadcast algorithm was implemented on the top of an event-
driven Java framework for simulation of peer-to-peer system called PeerSim (Montresor and
Jelasity, 2009). The choice of such a simulation environment is due to its extensive use in
different works found in the literature. Some of them are highlighted in Table 3.3 (page 40) of
Chapter 3.

For the simulations, it is considered the packet-switched network delay model presented by
Kurose and Ross (2012), where each packet sent by a node to another consumes tpc + tq + tt + tpp

units of time (u.t.):

• tpc accounts for the processing time of a message by a node, e.g., checksum verification,
aggregation and routing decisions;

• tq is the time a message must wait in the sending queue (buffer) before being transmitted;

• tt is the time necessary to transmit all bits of the packet to the link;

• tpp expresses how long it takes for a packet to transverse the link and reach the destination
node.

It is also assumed that there is no broadcast mechanism available in the system. Thus, if a
message is sent to multiple destinations, a copy of it is inserted in the sending queue for each of
the destinations.

Each packet has a maximum transmission unit (MTU) of 1500 bytes, where 20 bytes represent
the packet header (the minimum value used by the Internet Protocol (Postel, 1981)). The size
of a message was set to 50 bytes, similarly to the payload size of control messages or messages
carrying monitoring information. Therefore, as messages are gradually aggregated into a packet,
the current size of the packet can reach MTU size without aggregating all messages. In this case,
the protocol sends the packet and continues to aggregate the missing messages in new packets,
always respecting MTU size.

The number of nodes N vary from 8 up to 1024, in a power of two, and no assumption
is made about the mapping between physical and logical topologies. Nodes broadcast a new
message in random time given by a Poisson distribution with interval rate λ = 1000 u.t. while
the propagation time tpp of a message follows a normal distribution with mean value µ = 100 u.t.

and standard deviation σ = 25 u.t. Still, based on Ramaswamy et al. (2004), tpc = tt = 1 u.t.,
whereas the time a message stays queued (tq) is a function of the rate of incoming/outgoing
messages and can vary for each message. Each simulation was executed 30 times and their
average values are presented.

The following metrics are considered for evaluation of the results:

• Number of packets: the overall number of packets exchanged between nodes;

• Number of messages per packet: maximum number of messages that nodes aggregate into
a single packet;

4.5. Experimental Results 53

• Size of packets: size of the packet header plus the size of each composing message, whose
size is given by its vector clock plus the payload itself;

• Reception latency: the time a message takes from its broadcast till it is received by a node;

• Delivery latency: the time a message takes from its broadcast till it is delivered by a node;

• Number of buffered messages: number of messages, received by a node, which are held in
before being delivered to the application.

Without loss of correctness in capturing causal order, Birman’s compression algorithm, in-
troduced in Section 3.3.3, was used for implementing logical clock. By using this approach, when
broadcasting a new message, instead of including in it the N entry values of its current vector
clock, a node includes just the values of those entries that have been modified since the last broad-
cast by the node. Nodes continue to have information about direct and indirect dependencies of
received messages.

4.5.2 Number of Packets

A straightforward consequence of message aggregation is the reduction in the number of packets
that transverse the links. In the simulations, for each execution, each node broadcasts one
message (i.e., all the nodes are source). Hence, for a system with N nodes with no aggregation,
the total number of packets sent over the network is N × (N − 1), as each spanning tree has
N − 1 links. The number of packets is also supposed to have an impact on other metrics, such
as header size and the time a packet waits before being transmitted.

Table 4.1 shows the number of sent packets with and without aggregation, where “% of ag-
gregation” represents the percentage of all packets that, when using aggregation, have more than
one message. With aggregation, the greater the number of source nodes, the longer the paths
and the higher the number of different paths (due to the organization of the trees), path intersec-
tions, and the possibility of causal relation between messages. Therefore, the number of message
aggregations increases as well, leading, for instance, to in average 28.8% less transmissions (“%
of reduction” in the table) with 1024 nodes.

Table 4.1: Average number of sent packets.

Nodes No aggr. Aggr. % of reduction % of aggregation

16 240 232 3.33 3.02
32 992 919 7.36 5.77
64 4032 3513 12.87 9.05
128 16256 13759 15.36 11.04
256 65280 49262 24.54 15.41
512 261632 191528 26.79 16.70
1024 1047552 745943 28.79 19.14

Even if a great number of messages are not combined to others into a packet, the percentage
of aggregation causes a substantial reduction in the number of packets traveling through the

54 Chapter 4. Causal Aggregation Broadcast

network, specially with 1024 nodes. This fact impacts other metrics, as discussed hereafter in
this section.

Another interesting metric to evaluate is the number of packets that actually contain more
than one message. The last column of Table 4.1 shows that from 3% up to 19% of the packets
have more than one message while Table 4.2 gives, for a scenario with 256 nodes, the percentage
of the overall packets (second column) that have a given number of messages. As it is possible
to observe in Table 4.2, 84.59% of the packets have just one message and those with two and
three represent 9.16% and 3.12% of the transmitted packets, respectively. On the other hand,
only 1.2% of all packets carries more than 5 messages (up to the limit where four packets have
aggregated 15 messages each). Differently, considering only the distribution of the packets with
more than one message (third column), those with two or three messages account for almost 80%
(59.46 + 20.25) of these packets.

Table 4.2: Distribution of the number of messages per packet for a 256 node scenario.

Messages per packet % of all packets % of aggregated packets
1 84.59 Not applicable
2 9.16 59.46
3 3.12 20.25
4 1.26 8.18
5 0.66 4.31

(5,15] 1.2 7.8

4.5.3 Size of Messages and Packets

Besides the 20-byte header of a packet, every message included in the packet is associated with
a vector clock. By applying Birman’s compression algorithm in order to reduce the size of the
vector clock, a message sent by i includes only the tuples (k, vector_clock[k]), 0 ≤ k < N such
that vector_clock[k] has changed since the last broadcast of i. Each modified entry is represented
by 4 bytes (2 per item of the tuple).

In the following, the size of messages’ vector clocks and the number of bytes sent over the
network in a scenario with 256 nodes were evaluated. Remember that since the size of a packet
is bounded to 1500 bytes, a set of messages that can be bundled together may require more than
one packet (each one with a 20-byte header). Message size is given by its payload (50 bytes),
source’s identifier (2 bytes), and vector clock (4 bytes per entry).

Initially, when it comes to messages, each of them has its size heavily affected by its number
of causal dependencies. Considering the aggregated approach, Figure 4.3 shows the percentage
of messages whose vector clock carries a given number of dependencies. With no aggregation,
the simulation presented the same behavior with a variation of up to 2.73% in the results.

In Figure 4.3, it is possible to observe that 27% of the messages have no causal precedence,
i.e., each of them carries only its own entry in the vector clock. However, despite the small size
of their respective vector clocks, these messages cannot be aggregated by our approach since the
latter only combines causally related messages. For the remaining messages, 28.5% (resp., 16.8%)
of them contain no more than 4 (resp., 9) causal dependencies, and this percentage continues

4.5. Experimental Results 55

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

1 5 10 15 20 25 30 35 40 45 50 55

P
e
r
c
e
n
t
a
g
e

o
f

m
e
s
s
a
g
e
s

Number of causal dependencies

AGG

Figure 4.3: Distribution of the number of causal dependencies of a message in a scenario with
256 nodes with aggregation.

to drop till only 1 message which depends on 54 others. As each entry requires 4 bytes, 23%

of the messages (those with more than 12 causal dependencies) spend more space for storing
vector clock entries than the actual data from the application whose size is 50 bytes. On the
other hand, the greater the number of vector clock entries, the more information gathered about
causal order, which can result in more message aggregation.

Table 4.3: Distribution of the packets according to their size in bytes, for a scenario with 256
nodes.

Size (bytes) % of packets (No Agg.) % of packets (Aggr.)

< 100 63.67 52.66
(100,200] 30.30 31.28
(200,300] 6.03 7.62
(300,400] 0.00 3.91
> 400 0.00 4.54

Another consequence of message aggregation is the reduction in the overall number of bytes
sent through the links. Since each packet has a 20-byte header, the greater the number of packets,
the greater the number of headers. With no aggregation, every message is sent individually while
with aggregation, the header of a packet is “shared” by several messages. Thus, the variation
in the size of the packet when no aggregation is used is due only to the number of causal
dependencies of its single message.

Table 4.3 shows the distribution of different packet sizes in the same 256 node scenarios with
versions of the protocol without (No Aggr.) and with (Aggr.) support to aggregation. Every
packet with less than 136 bytes contains necessary only one message, since in order to store two
messages it is necessary, besides the payloads (100 bytes), one message with at least one causal
dependency (4 bytes), vector clock entry for the source of each message (2× 4 bytes), id for the
source of each message (2× 2 bytes), and the packet header (20 bytes).

The main observation from the table is that when aggregation is used by the protocol, 8.45%

(3.91 + 4.54) of the packets are bigger than all packets when aggregation is not used. With
aggregation there is also a reduction in the number of packets of small sizes (< 100 bytes),

56 Chapter 4. Causal Aggregation Broadcast

specially because some messages which would be sent alone are grouped with others causally
related ones into a single packet. Closer to the maximum packet size, aggregation presents only
0.29% of the packets with more than 1400 bytes. The reason for this low percentage is that a
packet is forwarded whenever it is not possible to include one more message in it due to lack of
space, which happened to 117 out of 49262 packets in the simulation analyzed in the table.

4.5.4 Reception and Delivery Latencies

The reduction in the number of sent packets also impacts latency. Thus, two different latency
metrics are considered for evaluation:

• Reception latency : the time interval comprised from the broadcast of the message until
it arrives at the destination node;

• Delivery latency : reception latency plus the queuing time, i.e., the additional time a
message is held in at the destination node from its reception time until it is delivered to
the application.

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800

A N A N A N A N A N A N A N A N

A
V
G

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes
(A = Aggregation, N = No Aggregation)

Reception
Queuing

10245122561286432168

Figure 4.4: Average reception and delivery latencies.

For the experiments, every node broadcasts one message at a time chosen using a Poisson
distribution. Figure 4.4 depicts the average reception and delivery latencies with and without
aggregation. A first observation concerns the variation in the reception latency when the number
of nodes increases. Even if the number of nodes increases 128-times (from 8 up to 1024), the
average reception latency is just 2.1 times higher with aggregation and 2.2 times without it
(maximum increase of 3.9 and 4.1 times, respectively). This near-logarithmic behavior can
mainly be explained by the use of spanning trees to broadcast messages.

As expected, the postponement of the forwarding of messages whose dependencies are missing
leads to higher reception latencies. Therefore, the same figure shows that reception latency is
higher with aggregation when compared to no aggregation (except for 1024 nodes) and, as the
number of nodes increases, so does the average reception latency. Furthermore, as discussed in
Section 4.5.2, aggregation rate increases with the number of nodes. For instance, with 256 nodes,

4.5. Experimental Results 57

aggregation poses a reception latency in average 8.1% higher compared to the same scenario with
no aggregation. The different behavior with 1024 nodes is related to the number of messages
that the system must deal with. In such a scenario, average reception latency with aggregation
is 7.4% smaller because the average time of message forwarding postponement becomes smaller
than the overhead in time necessary to send packets containing a single message. On the other
hand, with no aggregation, packets stay in average 53.4% more time in the sending queue before
their sending request is processed. Such a waiting time is around 50 u.t., which is compliant
with the difference in the same figure for the reception latency of the two approaches with 1024
nodes.

Relating to delivery latency, the results of the figure confirm our statement that delaying the
forwarding of causal related messages does not degrade delivery latency but, actually, reduces it
when compared to no aggregation. In networks up to 512 nodes, delivery latency difference with
and without aggregation varies up to 3.2% (32 nodes), explained by the normally distributed
tpp (propagation time per hop). Hence, the only difference in time that aggregated messages
can suffer from when compared to no aggregated messages is related to propagation or queuing
times of the packets which contain them. In the scenario with 1024 nodes, there exists a greater
difference between the two approaches: our causal aggregation broadcast delivers messages in
average 12.2% faster. The reason is that, as previously discussed, messages are received faster
with aggregation, and possibly several messages in one packet.

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800

A N A N A N A N A N A N A N A N

A
V
G

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes
(A = Aggregation, N = No Aggregation)

Reception
Queuing

10245122561286432168

Figure 4.5: Average reception and delivery latencies for messages of aggregated messages

Another remark about Figure 4.4 concerns the queuing time that messages are held in (pend-
ing) before being delivered to the application. This waiting time is an effect of causal order but
it is linked to the space a node will use to store messages as well. It can pose a bottleneck if the
incoming rate of messages is high and so is the average waiting time. Regardless the number of
nodes, messages are, in average, held in longer with no aggregation than with aggregation. This
difference ranges from 5% (16 nodes) up to 53.4% (1024 nodes) since, with aggregation, upon the
reception, more messages can be delivered immediately, reducing, therefore, the time messages
are held.

It is necessary to remark that Figure 4.4 considers all messages no matter whether they

58 Chapter 4. Causal Aggregation Broadcast

were aggregated with others or not. Thus, in order to profile the impact of message aggregation
in latency, for different network sizes, Figure 4.5 considers only those packets that have two
aggregated messages and compared them to the individual transmissions of the corresponding
messages without aggregation, in exactly same scenarios. In Figure 4.5, for networks with 8
nodes, there is no message aggregation. However, for other network sizes, delivery latencies
are the same (except for 1024 nodes for the reasons discussed before) since, for the aggregation
approach, the reception latency increases (in average up to 13.6%) but the delay (queuing time)
to deliver a message decreases (59% for 512 nodes, reaching up 74% for 64 nodes).

4.5.5 Distribution of Pending Messages

By having different trees for each source node, the proposed causal aggregation broadcast protocol
does not present the bottleneck imposed by a single-rooted approach. However, before forwarding
messages, every node also stores them temporarily. After a message is received at a node, it is
possible that it will stay in buffer for a given time until its causal dependencies are satisfied,
i.e., until all its causally preceding messages are delivered. If only a few nodes participate in
the process of aggregating messages, such nodes could become a new type of bottleneck to the
system, in terms of number of pending messages and capacity of processing/sending them.

Figure 4.6 shows the number of buffered messages by each node (pending set of Algorithm 2)
in a scenario with 1024 nodes, each of them broadcasting one message. With aggregation, more
than 50% of the nodes (569) buffer at most only 50 messages, while with no aggregation the
ratio drops to less than 25% of the nodes. On the other hand, there exist only 24 nodes, in the
aggregation case, and 212 nodes, without it, that keep at some moment more than 250 messages,
Such a difference is due to the aggregation approach that avoids unnecessary buffering.

 0
 30
 60
 90

 120
 150
 180
 210
 240
 270
 300
 330
 360
 390
 420
 450
 480
 510
 540
 570

25 50 75 10
0
12
5
15
0
17
5
20
0
22
5
25
0
27
5
30
0
32
5
35
0
37
5
40
0
42
5
45
0
47
5

N
u
m
b
e
r

o
f

n
o
d
e
s

Maximum number of buffered messages at a time

AGG
No-AGG

Figure 4.6: Distribution of the maximum number of messages buffered per node, with and
without aggregation.

It is necessary to take into account that even if aggregation exploits only necessarily buffered
messages, there exists a processing cost for carrying it out. In Figure 4.7, it is shown how each
node collaborates in the aggregation process in a simulation with 1024 nodes, for two message
sizes: 50 and 5 bytes. For both sizes, the distribution of the maximum number of messages

4.5. Experimental Results 59

aggregated in a packet per node seems to follow a normal distribution although, for the 5-byte
size, there are more nodes which have aggregated a higher number of messages per packet. The
reason for such a difference is the limitation in the number of messages that a packet can hold:
the smaller the size of the message, the greater the number of messages that it can keep. Every
node participates in the aggregation process and most of them with a close maximum aggregation
size. For the 50-byte size, 95.5% of the nodes have aggregated at some moment between 7 and 11
messages while no node has aggregated more than 14 messages. For the 5-byte size, 833 nodes
(81.3%) have aggregated between 8 and 12 messages.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

N
u
m
b
e
r

o
f

n
o
d
e
s

Maximum number of aggregated messages at a time

Payload 5
Payload 50

Figure 4.7: Distribution of the maximum number of messages aggregated per node for messages
of size 5 and 50 bytes.

4.5.6 One Tree Versus Multiple Trees

The approach of building spanning trees rooted at the broadcast source node presents better
scalability when compared to single rooted approaches like (Kim et al., 2010; Wang et al., 2012),
that organize the nodes of the system in a single static distributed spanning tree. The latter has
the drawback that the root can become a bottleneck since all message broadcasts start from it.

 128

 256

 512

 1024

 2048

 4096

 8192

 8 16 32 64 128 256 512 1024A
v
g
.

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

One tree per source
One tree for all

Figure 4.8: Reception latency for systems with different number of nodes using two different tree
approaches: one single tree or multiple trees (one per source node) (de Araujo et al., 2017).

60 Chapter 4. Causal Aggregation Broadcast

In Section 2.4.1, in order to justify the choice of using one tree per source instead of a
single tree, it was discussed the existence of a bottleneck when a unique tree is used and its
negative impact on latency. Figure 4.8 shows a comparison between a single rooted approach
and another with one tree per source. All nodes of the system broadcast messages at a given
rate. In the case of a single tree, for a number of nodes greater than 128, the root of the tree
starts queuing messages because it cannot process all of them as fast as the input broadcast
request rate. On the other hand, if each node has its own broadcast tree, the load of messages is
better distributed among the nodes. Furthermore, reception latency scales well for an increasing
number of nodes/messages.

Some simulations were also conducted in order to show how causal aggregation performs
when all nodes broadcast messages through the same single spanning tree rooted at node 0.

In order to simulate out-of-order message receptions, latency at the links of the spanning tree
of node 0 varies each time a link is used, following a Gaussian distribution, as if messages took
differently routes at each broadcast. The first remark is that node 0 becomes a bottleneck and
reception latencies have the same behavior of Figure 4.8. The average number of aggregated
messages and number of delayed messages (in buffer waiting for delivery) for both approaches
(unique and multi trees) were also evaluated. The results are gathered in Figure 4.9. With a
unique tree, there are at least 86% (resp., 84%) fewer aggregations (resp., delayed messages),
performed by 32 nodes (resp., 128 nodes). Such results confirm that our aggregation approach
performs better with one tree per source compared to a single one because the former naturally
exploits existing delays induced by different paths. The smaller number of aggregations for single
tree is due to the fact that out-of-order message receptions at nodes is limited, in this case, only
to latency variations of the common links over which all messages travel, which also justifies the
reduced (queuing) time messages are held in before delivery. For unique tree with 1024, the
number of aggregations decrease due to contention in the root of the tree.

20
21
22
23
24
25
26
27
28
29
210
211
212
213
214
215
216
217
218

 8 16 32 64 128 256 512 1024

N
u
m
b
e
r

o
f

m
e
s
s
a
g
e
s

Number of nodes

Aggregated - Multi
Aggregated - Unique

Delayed - Multi
Delayed - Unique

Figure 4.9: Number of aggregated and delayed messages with one spanning tree per source and
a single rooted spanning tree (logarithmic scale).

4.6. Conclusion 61

4.6 Conclusion

Variations in the transmission time of messages through the links and/or network congestion
can lead to a problem called triangle inequality violation (TIV), in which indirect transmission
is faster than direct one. The protocol presented in this chapter exploits both the TIV problem
and intersecting paths of per-source spanning trees built on top of VCube to reduce traffic and
message size overheads. Therefore, a node may buffer received messages which are out of causal
order and forward them to common child (or children) only when they become deliverable. Such
an aggregation mechanism does not induce any overhead since the sending of a message to a
child node is worthless if the latter will not be able to deliver it upon reception due to causal
delivery order violation.

Results from experiments implemented on top of PeerSim show that the proposed aggregation
protocol reduces packet traffic while keeping average delivery latency. Moreover, average buffer
use is also reduced, because with the causal aggregation approach more messages are received
ready to be delivered.

62 Chapter 4. Causal Aggregation Broadcast

Chapter 5

VCube-PS: A Topic-based
Publish/Subscribe System

Contents
5.1 Introduction . 63

5.2 System Model and Definitions . 65

5.3 Per-source Spanning Trees . 65

5.4 Causal and Per-source FIFO Reception Ordering 66

5.4.1 Causal Ordering . 66

5.4.2 Per-source FIFO Reception Ordering . 68

5.5 Algorithms . 68

5.5.1 Types of Messages, Local Variables, and Auxiliary Functions 68

5.5.2 Application (User Interface) Functions 70

5.5.3 Propagation of a Message . 70

5.5.4 Reception and Delivery of Messages . 75

5.5.5 Membership Management . 75

5.6 Experimental Results . 76

5.6.1 Simulation Setup . 76

5.6.2 A Single Publisher . 77

5.6.3 Several Publishers . 79

5.6.4 Message Order . 80

5.6.5 Multiple Topics . 81

5.6.6 Churn Evaluation . 82

5.6.7 Broker-based SRPT . 84

5.7 Conclusion . 85

5.1 Introduction

As discussed in Section 2.5, even if topic-based Pub/Sub systems are simpler when compared
to content-based ones, they are widely applied by popular applications and services including

63

64 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

Twitter, Firebase/Google Cloud Messaging1, IBM MQ2, Apache Kafka3, distributed multi-player
online games, chat systems, mobile device notification frameworks, etc.

Concerning the construction of topic-based Pub/Sub systems, several of them found in the
literature are based on per topic broadcast trees built over P2P DHTs (see Section 3.5). They
use a single multicast tree which is associated to each topic composed by both subscribers (resp.,
brokers) and relays, i.e., non-subscribers (resp., non-brokers) of the topic that are in the logical
path between subscribers. Therefore, all published messages related to a topic are broadcast
through the same tree. Throughout this chapter, this kind of approach is called SRPT (Single
Root Per Topic). As these systems are built over P2P DHTs, they are scalable in terms of
the number of subscribers. However, relay nodes present in SRPT induce a higher latency and
the root of a tree can become a performance bottleneck, in the case of skewed distribution of
messages per topic.

 1
 11
 21
 31
 41
 51
 61
 71
 81
 91
 101
 111
 121
 131
 141
 151
 161
 171
 181

 1 5 10 15 20 25 30 35 40

M
e
s
s
a
g
e
s

p
e
r

t
o
p
i
c

(
x

1
0
0
0
)

Ranking

Figure 5.1: Ranking of popular topics (hashtags) in Twitter according to Sanli and Lambiotte
(2015).

Such a skewed distribution of messages per topic was studied by Sanli and Lambiotte (2015),
where the authors show that in applications like Twitter most of the publications are concentrated
in few topics. Experiments show that roughly 83% of the more than 200,000 considered topics
(hashtags) have up to 5 published messages and only 0.15% of the topics (“hot topics”) are
related to more than 1,000 publishing messages. The behavior of this distribution of messages is
shown in Figure 5.1. Another example of such applications are multi-player online combat games
where locations are mapped to topics (Gascon-Samson et al., 2015; Arantes et al., 2010). During
the game, players move towards the same location increasing the publishing load for the topic
corresponding to the location, i.e., the location becomes a “hot topic”. Figure 2.9 (19) showed
that SRPT -based systems may not be suitable for handling high publishing loads to the same
root node due to contention constraints, i.e., the single root node broadcasts publications at a
lower rate than the requests it receives to broadcast them.

Many applications that apply topic-based Pub/Sub also require that the delivery of publica-
1https://firebase.google.com/products/cloud-messaging/
2https://www.ibm.com/products/mq
3https://kafka.apache.org/

5.2. System Model and Definitions 65

tions to subscribers respect causal order of publication broadcast. As example, we can mention
online discussion systems, where users participating in the same group must see messages in
causal order. However, as it was observed in the literature, this feature is provided by few
existing Pub/Sub systems.

Considering the above points, the contribution presented in this chapter is a non-DHT
Pub/Sub system named VCube-PS , that ensures low latency, and load balancing for publish-
ing messages. It also respects the causal delivery order of published messages of a given topic.
In the absence of churn, VCube-PS does not present relay nodes and, in the presence of churn,
relays are temporary. Furthermore, it is important to highlight that, contrarily to many SRPT
systems, the target of the proposed Pub/Sub system is applications that present “hot topics”,
i.e., high concentration of messages in few topics.

Section 5.2 presents the system model considered by VCube-PS , followed by the description
of how spanning trees are built in VCube-PS (Section 5.3) and of how it implements causal
broadcast (Section 5.4). The algorithms of the proposed system are presented and described in
Section 5.5. Finally, in Section 5.6, evaluation results from simulations conducted on PeerSim,
comparing VCube-PS with two SRPT -like Pub/Sub systems, are presented and discussed. One
SRPT Pub/Sub is subscriber-based (e.g., Scribe, Magnet, DRScribe) while the second one is
broker-based (e.g., DYNATOPS).

5.2 System Model and Definitions

The model considered for the development of VCube-PS is similar to the one used in Chapter 4
for the proposal of a causal aggregation broadcast protocol. It consists of a finite set of Π =

{0, .., N − 1} nodes with N = 2d, d > 0, such that each node has a unique identifier (id) and
nodes communicate only by message passing. A user of the Pub/Sub system corresponds to a
node. Nodes are organized in a logical hypercube.

Nodes do not fail and links are reliable. Thus, messages exchanged between any two processes
are never lost, corrupted nor duplicated. The system is asynchronous, i.e., relative processor
speeds and message transmission delays are unbounded. However, differently from Chapter 4.1,
for the proposed Pub/Sub system, the network is fully connected, i.e., each pair of nodes is
connected by a bidirectional point-to-point channel and there is no network partitioning.

The source of a given message is the id of the node that publishes the message and causal
delivery order is ensured for messages published to the same topic.

5.3 Per-source Spanning Trees

Contrarily to topic-based systems that use one single tree per topic, VCube-PS implements a
different approach: multiple spanning trees are built on top of VCube, which is extended to cope
with multiple groups (topics). Messages related to a given topic are broadcast through dynamic
spanning trees rooted at the publisher composed ideally only by subscribers of the topic, i.e.,
when choosing its children at a given tree, a node also takes into account the subscriptions of the

66 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

child nodes. Relay nodes may take part in spanning trees, but it is only a temporary situation
that happens during the propagation of unsubscription messages. Membership information (sub-
scriptions and unsubscriptions) are also propagated using the same tree solution, thus keeping
the same logarithmic properties as messages.

Figure 5.2(a) shows the difference in the trees rooted at node 0 built by VCube-PS and SRPT
(also built using the same VCube’s topology), where a topic t is subscribed by nodes 0, 1, 3,
5, and 6. While VCube-PS considers only known subscribers for the construction of spanning
trees, SRPT uses nodes 2 and 4 as relays, i.e., non-subscribers in the path between subscribers.
The presence of relays in SRPT is equivalent to relays in DHT-based Pub/Sub (e.g., Scribe)
and messages received by these nodes are called false positives. Concerning the publication of
messages, in Figure 5.2(b), VCube-PS builds a tree with lower average degree and no relay node,
while SRPT uses an additional hop to forward messages from the publisher to the root of the
topic and two false positives happen (at nodes 2 and 4).

(a) Construction of spanning trees rooted at node 0.

Publisher

Publisher

False
Positives

(b) Publication. For SRPT , node 0 is the root of the
topic.

Figure 5.2: Example of broadcast tree for VCube-PS and SRPT . White nodes are subscribers
and the gray ones are relays.

5.4 Causal and Per-source FIFO Reception Ordering

For each topic, VCube-PS enforces the causal order of published messages, implementing, thus,
causal broadcast. It also implicitly ensures that for a single publisher, nodes will receive messages
in the order they were published. It is considered that, since messages from different topics are
generally not related in application level, it is not necessary to ensure causal delivery order of
messages between different topics.

5.4.1 Causal Ordering

In order to implement the causal order of published messages, it is necessary to consider the
subscription dynamics present in Pub/Sub systems. Subscribers may receive messages whose
causal dependencies it will never receive because the latter were broadcast before the subscriber
joins the topic. In this case, the subscriber must decide whether it has to wait for causal preceding
messages or not before delivering a received message.

5.4. Causal and Per-source FIFO Reception Ordering 67

Formally, in VCube-PS , for the same topic t, if a node publishes a message m′ after it has
delivered a message m, then no node in the system will deliver m after m′. Note that if a node
i never delivers m′ (i.e., i leaves the topic before delivering m′) or delivers m′ but never delivers
m (i.e., i was not subscribed to t when m was published), the causal order of published messages
is not violated.

VCube-PS uses causal barriers, introduced in Section 2.2.3, to ensure causal delivery order.
Compared to implementations of causal broadcast that use vector clocks such as Birman and
Joseph (1987) (see Section 3.3.2), the key advantage of using an approach based on causal barrier
is that the latter does not enforce the causal order based on the identifiers of the nodes but by
using immediate/direct message dependencies. Thereby, causal barriers render the algorithm
more suitable for dealing with the node dynamics (subscriptions and unsubscriptions) present in
Pub/Sub systems.

Figure 5.3 shows an example of the application of causal barriers in VCube-PS to ensure per
topic causal delivery order. Let’s consider a distributed system with three nodes (p0, p1, and
p2) that have subscribed to the same topic t. Message ms,t,c is the message published by s with
sequence number c for topic t. On the left, a timing diagram shows messages being published
and delivered; the graph with message dependencies is shown on the right side. It is possible
to observer that the delivery of m1,t,1 is conditioned by the delivery of m0,t,1 (m0,t,1 ≺im m1,t,1)
since p1 delivered m0,t,1 before publishing m1,t,1, (i.e., cbm1,t,1 = {m0,t,1}). On the other hand,
m1,t,2 directly depends on m2,t,1 and m1,t,1 (i.e., cbm1,t,2 = {m2,t,1,m1,t,1}). Note that since
m0,t,1 precedes m1,t,1 that precedes m1,t,2, m0,t,1 is an indirect dependency of m1,t,2, and was not
included, therefore, in cbm1,t,2 .

Figure 5.3: Example of causal barrier.

Now let’s suppose a scenario with dynamics. In the same system shown in Figure 5.3, p3
subscribes to t after messages m0,t,1 and m2,t,1 were published to the other nodes, i.e., node p3
did not take part in the spanning trees that broadcast m0,t,1 and m2,t,1 and, consequently, in this
case, node p3 will neither receive nor deliver them. Let’s focus particularly on the case of m2,t,1:
because it will never be received/delivered by p3, after having delivered m1,t,1, p3 can deliver
m1,t,2 even if the latter also causally depends on m2,t,1. Since nodes can dynamically subscribe
to or unsubscribe from a topic in VCube-PS , the proposed implementation of causal order must
distinguish between the case in which a message will be delivered (e.g., m1,t,1) from the one that
it will never be delivered (e.g., m2,t,1 by p3). To this end, VCube-PS guarantees per-source FIFO

68 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

reception order of messages published on a given topic.

5.4.2 Per-source FIFO Reception Ordering

Messages published by a same publisher are received by subscribers in the same order as they
were produced. This order allows a subscriber of t to know that it will never receive some
messages previously published, i.e., if m′s,t,c′ is the first message that node i receives from s on
topic t after it joined t’s group, i will never receive ms,t,c, ∀c < c′. Since no assumption can
be made about the first reception of a message from a given node j, in order to avoid blocking,
node i waits for messages from node j associated with topic t only after receiving a first message
m′j,t,c′ . In Figure 5.3, since no message associated to t from p2 has been received by p3, the latter
does not wait for m2,t,1 before delivering m1,t,2.

In VCube-PS , per-source FIFO reception order is ensured by the acknowledgment of pub-
lished messages: a source node broadcasts a new message only after having received all the
acknowledgments for the previous message it broadcast. Note that the per-source FIFO recep-
tion order is defined in regard to the reception of messages and not delivery, as in the traditional
FIFO order definition presented in Section 2.3.2.

5.5 Algorithms

This section presents VCube-PS ’s algorithms. VCube has been extended to satisfy VCube-PS ’s
needs. Thus, similarly to VCube, VCube-PS organizes its nodes in a logical hypercube-like
topology. However, since in the used model nodes do not fail, VCube-PS exploits VCube’s
organization but not its failure detection functionality. Even though it is possible to draw the
analogy in which a node that has not subscribed to a topic t is considered to be faulty in relation
to t. Therefore, in VCube-PS , the first correct node of each cluster s in ci,s in relation to topic t
should also be a subscriber of t.

5.5.1 Types of Messages, Local Variables, and Auxiliary Functions

Each messagem is uniquely identified by the source (s) and a sequence counter (c). It also carries
information about the topic t. Messages can be of type SUB (subscription), UNS (unsubscribe),
PUB (publication), and ACK (acknowledge). The value of the data field depends on the type of
the message: for SUB and UNS messages, it holds no information while for PUB it carries the
application message itself. In the case of an ACK message, if it is an acknowledge for a PUB or
UNS message, the data field holds no information, but if it is associated to a SUB message, this
field is used to gather membership information. PUB messages also carry the causal barrier (cb)
for the published message.

The following local variables are kept by every node i, where MAX_TOPICS is a constant
value that limits how many topics the system supports:

• counter: it is a local counter of node i which is incremented at every subscription, unsub-
scription, or publishing of a message by node i;

5.5. Algorithms 69

• bcast_queue[MAX_TOPICS]: each bcast_queue[t] is a set of pending messages (PUB,
SUB, or UNS) related to the topic t waiting to be broadcast;

• view[MAX_TOPICS]: set of the last subscription and unsubscription operations of which
node i is aware. Each entry view[t] has format 〈n, o, rc〉 where n is the identity of the node
that has joined or left the topic t; o is equal to SUB or UNS and rc stores the value of the
counter of n at the moment the subscription or unsubscription took place;

• causal_barrier[MAX_TOPICS]: each causal_barrier[t] keeps information on all mes-
sages that are immediate predecessors of the next message that will be published by node
i for topic t; the causal barrier consists thus of a set of message identifiers of format 〈s, c〉
(source and sequence counter).

• acks: set of pending ACK messages for which i waits confirmation. For each message
propagation to its nb children in the spanning tree of a message m identified by 〈s, t, c〉
received from j, i adds the element 〈j, nb, 〈s, t, c,mem〉〉 to the acks set. When the ACK is
a response for a SUB message, the set mem gathers membership information;

• msgs: set of messages that are being temporarily kept by i because they have not been
delivered yet. Upon delivering m, identified by 〈s, t, c〉, the latter can be removed from
msgs;

• not_delvs[MAX_TOPICS]: each not_delvs[t] contains a set of tuples that identify mes-
sages received by node i for topic t and not yet delivered because their respective causal
barrier has not been satisfied. Each element has format 〈s, c, cb〉 where s is the identity of
the source node that broadcast the message whose counter is c, and cb corresponds to the
causal barrier of the message.

• last_delvs[MAX_TOPICS]: each last_delvs[t] keeps the identifiers of the last message
from each publisher node delivered by node i for topic t. Each element of the set is the
tuple 〈s, c〉 where s is the source identity of the message whose counter is c;

• first_rec[MAX_TOPICS]: each first_rec[t] keeps the identifiers of the first message
received from each publisher for a topic t. Each element of the set is a tuple 〈s, c〉, where
s is the identity of the source of the message and c is the counter of the message.

In the algorithms, the symbol ⊥ represents a null element while the underscore (_) is used
to indicate any element. Function #(x) returns the number of elements in a set x and, for a
given node i, i may be used to represent the identifier of node i or the node itself, depending on
the context.

The algorithm used to build distributed spanning trees extends the one presented in Sec-
tion 2.4.1. Therefore, function that returns the children of a node i has been modified to take
into account the topic t for which node i is building the tree:

• Children(i, t, h): A child of i is the first node of a cluster ci,s which is also a subscriber of
topic t; or the first node in ci,s in case of no topic (t = ‘ ∗ ’). The parameter h can range

70 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

from 1 to log2N . If h = log2N , the result set contains the i’s children where each child is in
ci,s, 1 ≤ s ≤ log2N . For any other value of h < log2N , the function returns only a subset
of i’s children, i.e., those children whose respective cluster number s is smaller or equal to
h (s ≤ h). For instance, in Figure 2.6 (page 15), if t = ‘ ∗ ’, Children(0, ∗, 3) = {1, 2, 4},
Children(0, ∗, 2) = {1, 2}, and Children(4, ∗, 2) = {5, 6}. On the other hand, if only nodes
0, 3, and 4 have joined topic t1, Children(0, t1, 3) = {3, 4} and Children(4, t1, 2) = ∅.

5.5.2 Application (User Interface) Functions

VCube-PS offers an interface consisting of functions Subscribe(t), Unsubscribe(t), and Publish(t,m),
all presented in Algorithm 3, which allow a node to subscribe to topic t, unsubscribe from t, and
publish a message to all subscribers of t, respectively. A node can publish a message related
to a topic if it is currently a subscriber of this topic (line 17). These functions generate mes-
sages of types SUB, UNS, or PUB, respectively, which are sent using function CO_Broadcast

(Algorithm 4) to all nodes, in case of subscription, or all subscribers of topic t, otherwise.

Algorithm 3 Functions offered as the interface to the application of every node i
1: Init
2: counter ← 0

3: ∀t ∈MAX_TOPICS : view[t]← ∅

4: function Subscribe(topic t)
5: if 〈i, SUB,_〉 /∈ view[t] then
6: view[t]← {〈i, SUB, counter〉}
7: Co_Broadcast(SUB, t,_)

8: return OK
9: return NOK

10: function Unsubscribe(topic t)
11: if 〈i, SUB,_〉 ∈ view[t] then
12: view[t]← view[t] r {〈i, SUB,_〉} . removes subscription for t
13: Co_Broadcast(UNS, t,_)

14: return OK
15: return NOK

16: function Publish(topic t, message data)
17: if 〈i, SUB,_〉 ∈ view[t] then . only subscribers of t can publish at t
18: Co_Broadcast(PUB, t, data)

19: return OK
20: return NOK

5.5.3 Propagation of a Message

When node i invokes one of the application functions (Algorithm 3) for topic t, the procedure
CO_Broadcast (line 5 of Algorithm 4) is called, generating a new message of the corresponding
type (PUB, SUB, or UNS) which is inserted in the queue of t. Then, a task related to t (Task

5.5. Algorithms 71

Algorithm 4 Causal broadcast algorithm and delivery executed by node i
1: Init
2: ∀t ∈MAX_TOPICS: view[t]← ∅; first_rec[t]← ∅;

not_delvs[t]← ∅; delv[t]← ∅; bcast_queue[t]← ∅
3: msg ← ∅
4: create task HANDLE_RECEIV ED_MSG

5: procedure Co_Broadcast(message_type type, topic t, message data)
6: New(m)

7: m.type← type

8: m.s← i

9: m.t← t

10: m.c← counter

11: m.data← data

12: counter ← counter + 1

13: if type = SUB then
14: create task START_MSG_PROPAGATION(t)

15: bcast_queue[t].insert(m)

16: Task START_MSG_PROPAGATION(topic t)
17: loop
18: m← bcast_queue[t].first() . block if queue is empty
19: if m.type = PUB then
20: if 〈i,_〉 /∈ first_rec[t] then
21: first_rec[t]← first_rec[t] ∪ {〈i,m.c〉}
22: Co_Deliver(m)
23: last_delvs[t]← last_delvs[t] r {〈i,_〉} ∪ {〈i,m.c〉}
24: m.cb← causal_barrier[t]
25: causal_barrier[t]← {〈i,m.c〉}
26: if m.type = SUB then
27: chd← Children(i, ∗, log2N)

28: else
29: chd← Children(i, t, log2N)

30: for all k ∈ chd do
31: Send(m) to k

32: if chd 6= ∅ then
33: acks← acks ∪ {〈⊥,#(chd), 〈i, t,m.c, ∅〉〉}
34: wait until (acks ∩ {〈⊥,_ , 〈m.s,m.t,m.c,_ 〉〉} = ∅)
35: if m.type = UNS then
36: msg ← msg r {m | m.t = t}; not_delvs[t]← ∅
37: first_rec[t]← ∅; delv[t]← ∅
38: if bcast_queue[t] = ∅ then
39: exit

72 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

40: Task HANDLE_RECEIV ED_MSG

41: loop
42: upon receive m from j . block if no message
43: if m.type 6= ACK then
44: if m.type = SUB then
45: chd← Children(i, ∗,Cluster(j, i)− 1)

46: else
47: chd← Children(i,m.t,Cluster(j, i)− 1)

48: if chd = ∅ then . leaf node
49: New(m′)

50: m′.type← ACK

51: m′.s← m.s

52: m′.t← m.t

53: m′.c← m.c

54: m.data← ∅
55: SendACKs(j,m′)

56: else . propagate m
57: acks← acks ∪ {〈j,#(chd), 〈m.s,m.t,m.c, ∅〉〉}
58: for all k ∈ chd do
59: Send(m) to k

60: else . m.type = ACK

61: k, nb,mem← k′, nb′,mem′ : 〈k′, nb′, 〈m.s,m.c,m.t,mem′〉〉 ∈ acks
62: acks← acksr 〈k, nb, 〈m.s,m.c,m.t,mem〉〉
63: m.data← m.data ∪mem
64: if nb > 1 then
65: acks← acks ∪ 〈k, nb− 1, 〈m.s,m.c,m.t,m.data〉〉
66: else if k 6= ⊥ then . All pending ACKs were received
67: SendACKs(k,m)

68: if 〈i, SUB,_ 〉 ∈ view[m.t] then . i is subscribed to m.t
69: if m.type = PUB then
70: if (@〈m.s,_〉 ∈ first_rec[m.t]) then
71: first_rec[m.t]← first_rec[m.t] ∪ {〈m.s,m.c〉}
72: not_delvs[m.t]← not_delvs[m.t] ∪ {〈m.s,m.c,m.cb〉}
73: msgs← msgs ∪ {m}
74: CheckDelivery(m.t) . received messages may be delivered
75: else if m.type = ACK then
76: view[m.t]← Update(view[m.t],m.data)

77: else . SUB or UNS message
78: view[m.t]← Update(view[m.t], {〈m.s,m.type,m.c〉})
79: if m.type = UNS then
80: first_rec[m.t]← first_rec[m.t] r {〈m.s,_〉}

5.5. Algorithms 73

81: function Update(view set1, view set2)
82: for all 〈n1,_, rc1〉 ∈ set1 do
83: if (∃ 〈n1,_, rc2〉 ∈ set2) then
84: if rc2 > rc1 then
85: set1 ← set1 r {〈n1,_, rc1〉}
86: else
87: set2 ← set2 r {〈n1,_, rc2〉}

return set1 ∪ set2

88: procedure CheckDelivery(topic t)
89: while (∃ 〈s, c, cb〉 ∈ not_delvs[t] : CheckCB(t, cb) = true) do
90: Co_Deliver(m),m ∈ msgs: m.s = s, m.t = t, and m.c = c

91: not_delvs[t]← not_delvs[t] r {〈s, c, cb〉}
92: msgs← msgsr {m}
93: last_delvs[t]← last_delvs[t] r {〈s,_〉} ∪ {〈s, c〉}
94: causal_barrier[t]← causal_barrier[t] r cb ∪ {〈s, c〉}

95: function CheckCB(topic t, causal barrier cb)
96: for all 〈s, c〉 ∈ cb do

97: if
(

(∃ 〈s′, c′〉 ∈ last_delvs[t]: s = s′ and c′ ≥ c)
or(∃ 〈s′, c′〉 ∈ first_rec[t]: s = s′ and c′ > c)

)
then

98: cb← cbr {〈s, c〉}
return (cb = ∅)

99: procedure SendACKs(node j, message m)
100: if (〈i, SUB,_ 〉 ∈ view[m.t] and @〈m.s,_〉 ∈ first_rec[m.t]) then
101: m.data← m.data ∪ {〈i, SUB, c〉 : 〈i, SUB, c〉 ∈ view[m.t]}
102: Send(m) to j

START_MSG_PROPAGATION) continuously removes the first message from this queue
and starts the broadcast. The next message is removed from the queue only after the reception
of acknowledge (message ACK) from all current subscribers (per-source FIFO reception order) to
whom node i sent the previous message (line 34). The task associated with t is created when
node i becomes a new subscriber of the group of topic t (line 14).

In Algorithm 4, task START_MSG_PROPAGATION for topic t starts the propagation
of m, the first message removed from the queue (line 18), by dynamically building a hierarchical
spanning tree, rooted at i, whose composition depends on the type of the message (lines 26-31):

• PUB or UNS: when a node sends messages of these types, it is already member of the
associated topic t, i.e. the node has membership information about t. Thus, the spanning
tree is composed only by the subscribers of t.

• SUB: upon subscription to topic t, a node does not know the current set of subscribers of t.
Thus, spanning trees used to propagate SUB message are composed by all nodes.

For this purpose, node i calls function Children(i, t, log2N) which renders, for PUB and UNS

74 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

messages, the set of the first subscriber nodes of t for each of its clusters (line 29) or the first
node of each of i’s clusters (line 27) in the case of a SUB message (t = ‘∗ ’). These nodes become
i’s children in the spanning tree and m is sent to them. Upon receiving m from a node j, by
calling function Cluster (line 45 or 47 depending on the type of message), every child of node
i sends m to its own children in the first s− 1 clusters, in relation to topic t and the cluster s of
j to which i belongs. These nodes then become j’s children and the process continues until m is
received by all leaf nodes.

Figure 5.4: Broadcast trees for two different sources and topics.

For instance, consider the left side of Figure 5.4, that all nodes are subscribers of t1, and
that node p0, subscriber of t1, wants to publish a message m0 related to t1 (PUB messages).
p0 is the root of the respective spanning tree: m0 will be sent to the log2N = 3 children of
p0 (Children(0, t1, 3) = {1, 2, 4}). Upon the reception of message m0, p1 does not forward it
since Children(1, t1, 0) = ∅, while p2 forwards it to its child p3, the first subscriber of cluster
c2,1 (Children(2, t1, 1) = {3}). When p3 receives m0, as Children(3, t1, 0) = ∅, p3 does not
forward m0 to any node. However, in the case of p4 (Children(4, t1, 2) = {5, 6}), it forwards
m0 to its children p5 ∈ c4,1 and p6 ∈ c4,2. Finally, p6 sends m0 to p7.

Consider now a second example, on the right side of Figure 5.4, where only p0, p2, p3, p5, and
p7 are subscribers of t2 and p2 publishes m2 related to t2. In this case, p2 sends m2 to each of its
child of its log2N = 3 clusters that are also subscribers of t2: Children(2, t2, 3) = {3, 0, 7} (p6
is the first node in c2,3 but it is not subscribed to t2). Upon receiving m0, p3 does not forward
it, because it is already a leaf node in the tree. Node p0 does not forward it to p1 since the
latter is not a subscriber of t2. On the other hand, p7 verifies that in cluster c7,2 = (5, 4), p5 is a
subscriber of t2 (Children(7, t2, 2) = {5}), and therefore sends m2 to p5 which on its turn does
not send it to p4, because even if p4 is the first and only node in c5,1, it is not a subscriber of t2.

After forwarding a message m to a child k, node i waits for an ACK message from k, which
confirms the reception and propagation of m by k. In order to control pending ACKs, whenever
node i publishes a new message to its children, it adds to the set acks a tuple that identifies m
and the number of pending ACKs it is waiting for (line 33). If i is not the source of the message
(i.e., it is forwarding m in the tree), this tuple also contains the node j from which it received
the message (line 57). After the reception of m, a node will send an ACK to its parent node
only after it receives itself ACK messages from all its current children related to the topic in
question (lines 64-67). ACK messages will, thus, be propagated to the root, the source node of m.

5.5. Algorithms 75

Eventually the latter receives all the ACK messages it waits for and, in this case, the task related
to t removes the next message to be published from the queue associated to the topic t, if there
is one. These sequences of SUB, UNS, or PUB and then ACK messages from/to the source ensure the
per-source FIFO reception order of published messages of the topic, described in Section 5.4.2.

5.5.4 Reception and Delivery of Messages

When receiving a PUB message m of topic t from s (lines 69-74), if node i is a subscriber of t and
has not delivered m yet, it keeps m in set msgs and both its identification and causal barrier in
set not_delvs[t]. If m is the first message received from s to t, i registers it in first_rec[t], in
order to enforce the causal dependencies even under the dynamics of subscriptions. Then, node
i verifies, based on direct causal dependencies, which of the previously received messages can
be delivered to the application. To this end, node i invokes the function CheckDelivery(t)

(lines 88-94) which, in it its turn, calls CheckCB(t, cb) in order to check direct dependencies
(line 95-98). A messagem can be delivered by i only when every messagem′ on whichm causally
depends either (1) has already been delivered to i or (2) will never be received by i because VCube-
PS has not considered i as a subscriber of t during the construction of the spanning tree that
broadcast m′. In other words, for the second case, the first PUB message received from s on topic
t by i has a higher sequence number than the sequence number of m′. Such a detection of the
first message is possible thanks to the first_reci[t] set and the fact that, for the same source,
publications of messages of the same topic respect per-source FIFO reception order.

After delivering m, node i removes it from its pending messages (lines 90-93) and updates
its local causal barrier variable (line 94). Function CO_Deliver just renders the message to
the application. Note that, since the delivery of one message m can enable the delivery of other
messages that causally depend on m, all remaining non delivered messages are re-checked by the
CheckDelivery(t) until no more message can be delivered.

5.5.5 Membership Management

In VCube-PS , distributed spanning trees are also used to notify membership changes. When
a node i subscribes to a topic t, a broadcast SUB message will be received by all subscribers
of t. Differently, when node i unsubscribes from a topic t, only the current subscribers of
of t will receive the broadcast UNS message. Upon receiving either a SUB or UNS message, a
subscriber of t updates its view of the membership related to t (line 78) by calling function
Update(view set1,view set2) (lines 81-87) which merges two membership sets, keeping only the
current subscribers.

When a node i subscribes to a topic t, the ACK messages related to the SUB messages will also
gather information about t’s membership. Function SendACKs (lines 99-102) is responsible for
sending ACK messages. Before forwarding a received ACK message to its parent, each subscriber
of t includes in the message its current view of t’s membership (line 101) merged with the partial
membership information coming from its own children (line 63). Upon receiving all ACK messages
from its children, the new subscriber i is aware of t’s membership. Figure 5.5 presents, from left

76 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

to right, an example of the ascending wave of ACK messages as response to the new subscription
of node 0 to a given topic whose subscribers are nodes 1, 4, 5, and 6. Note that if a node is not
subscribed to the topic, it has no knowledge about the topic’s membership and, thus, adds no
new element to the ACK.

{4,5,6}

{6}

{1,4,5,6}

Figure 5.5: ACK messages sent in response to the subscription of node 0 to a topic whose sub-
scribers are nodes 1, 4, 5, and 6.

If node i unsubscribes from topic t, it no longer delivers messages related to the topic (line 36).
On the other hand, i can continue to forward messages related to t to the other subscribers of t
in the spanning tree if one of the following situations occurs: (1) there exist subscribers of t that
are not aware of i’s unsubscription, i.e., they have not received the corresponding UNS message
from i yet or (2) there are messages queued in i’s bcast_queue[t] waiting to be forwarded. Node
i also sends ACK messages to its parent node in the respective spanning tree. These ACK messages
are related to published messages that i received and forwarded before leaving t or to messages
that satisfy the above-mentioned situations. However, eventually all ACK messages will be sent
and, thereafter, node i will no more take part in the broadcast of messages related to t. When
a subscriber of t receives an UNS message related to node i, it removes i from its view of t’s
membership (line 78) as well as the information about the first message received from i with
regard to t (line 80). The latter will be renewed if i rejoins t later.

5.6 Experimental Results

In this section, VCube-PS is evaluated according to several metrics and, in the majority of the
scenarios, compared SRPT approaches.

5.6.1 Simulation Setup

The simulation environment (PeerSim), as well the model used for describing the different com-
ponents of time considered for the simulations, are the same as used in Section 4.5.1. Thus,
tpc (processing time) = tt (transmission time) = 1 u.t. and tpp (propagation time) = 100 u.t.

It is considered that there is no broadcast mechanism available in the system. Thus, if a
message is sent to multiple destinations, a copy of it is inserted in the sending queue for each of
the destinations.

5.6. Experimental Results 77

For most experiments, the number of nodes N varies from 8 up to 4096, in a power of two,
and each experiment was executed 40 times. The following metrics are used for comparison
between VCube-PS and SRPT -based approaches:

• Latency: the time that a published message takes to be received and delivered by all
subscribers;

• Number of messages: overall number of PUB messages;

• Number of messages to be processed by a node: size of the queue of each node;

• Size of PUB messages: characterizes the number of direct causal dependencies that PUB

messages hold;

• Number of false positives: number of messages received by nodes that act as relay nodes of
messages of type PUB.

When using a SRPT -based system, for each topic, a node is randomly selected to act as the
root of the single broadcast tree of the topic and SRPT trees are also built according to VCube’s
topology.

5.6.2 A Single Publisher

This experiment evaluates the impact of the logarithmic properties of VCube-PS , where a single
publisher publishes one message. Hence, when a subscriber receives the message, there is no delay
for delivery because there is no causal ordering treatment. Figure 5.6(a) shows the delivery
latency when the number of nodes of the system varies and either 25% or 100% of them are
subscribers. For the first case, the set of subscribers is randomly chosen following a uniform
distribution. In the case of 4096 nodes with 25% of subscribers uniformly distributed, latency
in VCube-PS is on average 533 units of time, 26% less compared to the one presented by SRPT
in the same scenario (720 u.t.). It is important to remark that when 100% of the nodes are
subscribers, SRPT has no relay and, therefore, the latency of both Pub/Sub systems is always
proportional to log2N . The only difference in this case is that SRPT has an additional hop as
the message to be published must be sent to the root of the single tree.

The average number of PUB messages follows the same behavior as shown in Figure 5.6(b).
In the figure, for the two approaches with 25% of the nodes as subscribers, the number of PUB
messages used by VCube-PS corresponds always to the number of nodes, since there is no relay
node in the tree. On the other hand, relays in SRPT are responsible for, for instance, 1.79 times
more messages (for 4096 nodes) compared to VCube-PS . As the number of nodes increases, this
difference is reduced, although VCube-PS generates, on average, at least 43% fewer messages
than SRPT (4096 nodes).

Figure 5.7 provides a more detailed analysis of the impact of the number of subscribers in
VCube-PS and SRPT performance. The system has 4096 nodes and the number of subscribers,
uniformly distributed, varies from 10% up to 100%. In Figure 5.7(a), VCube-PS performs loga-
rithmically with respect to the number of subscribers while SRPT does not. A tenfold increase

78 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

 0

 100

 200

 300

 400

 500

 600

 700

 800

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

A
V
G

D
e
l
i
v
e
r
y

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

(a) Average latency.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

A
v
e
r
a
g
e

N
u
m
b
e
r

o
f

P
U
B

M
e
s
s
a
g
e
s

Number of nodes

VCube-PS
SRPT

(b) PUB messages with 25% of subscribers.

Figure 5.6: Average latency and number of PUB messages for VCube-PS and SRPT with different
number of subscribers.

 460
 480
 500
 520
 540
 560
 580
 600
 620
 640
 660
 680
 700
 720
 740
 760

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00

A
v
e
r
a
g
e

l
a
t
e
n
c
y

(
u
.
t
.
)

Percentage of subscribers for 4096 nodes

VCube-PS
SRPT

(a) Average latency.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
00
 6.85

 6.9

 6.95

 7

 7.05

 7.1

 7.15

 7.2

 7.25

 7.3

A
v
e
r
a
g
e

n
u
m
b
e
r

o
f

r
e
l
a
y

n
o
d
e
s

A
v
e
r
a
g
e

p
a
t
h

s
i
z
e

Percentage of subscribers for 4096 nodes

Relays
Path Size

(b) Average number of relays and path size for SRPT .

Figure 5.7: The impact of different numbers of subscribers on a network with 8192 nodes.

of the number of subscribers induces just a 36% increase of the average latency of VCube-PS .
On the other hand, even if the average latency of SRPT varies up to approximately only 2.7%,
it is always higher compared to VCube-PS . The minimum difference between the two approaches
is observed when all nodes are subscribers, and such a difference corresponds to the additional
hop used by SRPT to send the message to the tree root (on average close to 100 u.t.).

Figure 5.7(b) helps to better understand the behavior of SRPT . Considering all the 4096
nodes of the system, the tree can have up to 12 (log2 4096) levels. If a subscriber is a leaf node,
the tree will have a branch with 12 levels, even if no other node in the branch is a subscriber.
When 30% of the nodes are subscribers (i.e., around 1228 nodes), there exist, on average, 779

relays, resulting in a tree with almost 50% of the nodes of the system. However, as the number
of subscribers increases, they replace relay nodes in the tree. Naturally, the number of relays
tends to 0 as the number of subscribers increases. Despite of this behavior, due to the uniform

5.6. Experimental Results 79

distribution of subscribers, the average path size that the message travels over the tree follows
a constant pattern (around 7 hops) no matter the percentage of subscribers. Thus, the quasi-
constant latency of SRPT in Figure 5.7(a) is related to the position of relay nodes instead of
their amount, because their position affect the average path size.

5.6.3 Several Publishers

This experiment analyzes the behavior of both approaches in the presence of multiple publishers.
All nodes are subscribers of a single topic and the number of publishers varies. Each publisher i
sends one message at time ti which is uniformly distributed between [0, 1000] units of time. By
having multiple publishers of the same topic, differences in latency will arise from the distribution
of the load among the nodes when using one root per publisher (VCube-PS) or one root per topic
(SRPT).

 128

 256

 512

 1024

 2048

 4096

 8192

 16364

 32728

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02
4

 2
04
8

 4
09
6A

v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

(a) 1/100 ratio (tpp = 100).

 128

 256

 512

 1024

 2048

 4096

 8192

 16364

 32728

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02
4

 2
04
8

 4
09
6A

v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of nodes

VCube-PS - 25%
VCube-PS - 100%

SRPT - 25%
SRPT - 100%

(b) 1/1000 ratio (tpp = 1000).

Figure 5.8: Average reception latency with 25% and 100% of publishers (log. scale).

Figure 5.8 shows in logarithmic scale the average reception latency when the number of nodes
of the system varies and either 25% or 100% of them are publishers. Here it is important to
recall that the ratio between the processing time (tpc) and the propagation time (tpp) has an
impact on the load contention, since it represents the difference between the input and output
rates of messages. In Figure 5.8(a), it is considered a the ratio 1/100 (which is used in all other
evaluations of this work) and Figure 5.8(b) uses a propagation time which is ten times greater,
(tpp = 1000 u.t.), leading to a ratio 1/1000, i.e. messages are less prone to contention but will,
at the same time, take longer to be received by the subscribers.

In Figure 5.8(a), VCube-PS has a load distribution with a maximum increase of 38.8% (4096
nodes and 100% of publishers) when compared to VCube-PS with 4096 nodes and 25% of pub-
lishers. It happens because even though there are 4 times more messages, they traverse different
paths in the network. This result corroborates that the use of one tree per publisher helps to
distribute the load, since each message traverses a different path in the network. On the other
hand, as SRPT imposes a unique tree for disseminating messages to subscribers of a topic, if
several messages arrive at the root of the tree at the same time they will be queued before trans-

80 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

Table 5.1: Average size of the queue per group of nodes.

of messages # of nodes (VCube-PS) # of nodes (SRPT)

0 0 512
(0, 2] 0 448
(2, 4] 0 60
(4, 8] 495 3
(8, 16] 510 0
(16, 32] 19 0

(32, 4096] 0 0
(4096, 8192] 0 1

mission, increasing, thus, the reception latency. For up to 128 nodes, SRPT latencies are on
average one hop in time higher compared to VCube-PS , because in these cases the arrival and
output rates of messages are close, leading to no contention. Beyond this number of nodes, the
root receives more messages than it can process and transmit per interval of time and starts to
saturate. For instance, in comparison with VCube-PS with 256 nodes and 100% of publishers,
SRPT has an average latency 2.48 times greater, and this ratio grows linearly after this point.

Comparing Figure 5.8(b) to Figure 5.8(a), the average reception latency increases less in
SRPT in relation to VCube-PS because, with a 1/1000 ratio, it takes longer to receive messages,
although the output throughput remains the same.

Table 5.1 shows the distribution of nodes according to the average size of their sending queues,
in a scenario with 1024 nodes, 1/100 ratio, and where all nodes are publishers and subscribers.

The size of the sending queue has a direct impact in the reception latency. The load dis-
tribution on the nodes in SRPT is uneven when compared to VCube-PS : 98% of the nodes in
VCube-PS have an average load between (4, 16] messages, while 44% of the nodes in SRPT have
on average between (0, 2] messages in their buffers. In SRPT , 50% of the nodes simply do not
participate in the routing of any message, because they are leaf nodes of the single tree of the
topic and one node (the root) has an average load of 9240 (σ = 4617) messages, which incurs in
high reception latencies.

5.6.4 Message Order

Besides the published message itself, every PUB message contains its causal barrier, i.e., a list with
direct causal dependencies of the published message. Thus, the size of a PUB message increases
depending on the number of elements in this list. In order to evaluate the size of such a list and
the latency due to message ordering in VCube-PS , this experiment considers that one node s,
chosen randomly, publishes a first messagems. Upon receiving it, each node k waits for a random
time (tw) before broadcasting message mk, similarly to a message discussion group service where
all members of the group answer publicly to a question posted by one of them. For N nodes,
there will be N2 − N messages. Additionally, this scenario is extended for the case in which a
node k has to wait for at least p messages before broadcasting its own. To this end, there are
p ≥ 1 nodes that independently broadcast a message, each in the beginning of the experiment.
Just after receiving all these initial messages, any node can publish a message.

Figure 5.9 groups messages according to the size interval of their causal barriers for VCube-

5.6. Experimental Results 81

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

P
e
r
c
e
n
t
a
g
e

o
f

m
e
s
s
a
g
e
s

Number of causal dependencies

Wait 1 message
Wait 10 messages

Figure 5.9: Frequency distribution for the number of causal dependencies of a message in a
network running VCube-PS with 256 nodes.

PS . When it is necessary to wait for just one message before a node broadcasts its own message,
51.6% of the messages generated in the system have less than 5 preceding messages. More
precisely, 19.9% of them have just one causal dependency. On the other hand, if a node waits
for more messages (10 in the case of the figure) before broadcasting its own, a larger number of
nodes will have 10 or more direct dependencies. In this case, 35.2% of the messages have size
10 (10 direct dependencies) and 79.7% of them have fewer than 15. However, in both cases, the
number of direct dependencies keeps a reasonable size.

The additional delay imposed by causal barriers before delivering a message to the application
was also evaluated. When a node waits for 1 message before broadcasting its own, about 95.1%

of the messages are delivered in less than 10 u.t. after the message is received (87.2% are delivered
with no delay). Only 81 messages (out of 65280) have a delay higher than 50 u.t., with an upper
limit of 150 units of time. Increasing the number of the waiting messages to 10, 457 messages
wait more than 50 u.t. to be delivered (maximum 187), although the number of messages with
no delay remains high (84.2%).

5.6.5 Multiple Topics

As discussed in Sanli and Lambiotte (2015), in real world applications like Twitter, a few topics
are related to most of the messages. The authors show that in Twitter, roughly 60% of the topics
have only one message published, 83% of them have no more than 5, only 0.15% of the topics
are related to more than 1000 messages each. This behavior follows a Zipf-like distribution with
a coefficient of 0.825 according to the data provided in the reference. In this experiment, VCube-
PS and SRPT are evaluated in a scenario with multiple topics. Messages are assigned following
both the Zipf-like and uniform distributions. Figure 5.10 depicts the results for 256 nodes, 128
topics, and a varying number of messages. Each node publishes a new message on average every
500 u.t. for a topic, randomly chosen. Therefore, messages are uniformly distributed among the
publishers, but not necessarily among the topics.

No matter the distribution of messages among the topics, VCube-PS always relies on the

82 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

 400
 420
 440
 460
 480
 500
 520
 540
 560
 580
 600
 620
 640
 660
 680
 700

27 28 29 210 211 212 213 214

A
v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
u
.
t
.
)

Number of messages

VCube-PS - Uniform
VCube-PS - Zipf
SRPT - Uniform

SRPT - Zipf

Figure 5.10: Average reception latency with 256 nodes and 128 topics for two distribution of
messages per topic.

same root for a given publisher, while SRPT does not. This is the reason why the behavior of
SRPT is the same as VCube-PS ’s for a uniform distribution of messages. However, when the
number of messages sent per node increases beyond a threshold, VCube-PS increases the latency
due to contention at the source of the messages, i.e., the root of the tree. On the other hand,
for the Zipf distribution, SRPT has an average reception latency 30.6% higher compared to the
uniform distribution (for 214 messages). VCube-PS increases latency, on average, only 9.2%.

These results confirm that VCube-PS is scalable in terms of publishers, while SRPT is scalable
in terms of topics. However, in real scenarios, most of the messages are concentrated on a small
number of topics.

5.6.6 Churn Evaluation

This set of experiments evaluates how SRPT and VCube-PS tolerate membership changes. The
parameters used for the evaluation are those proposed by Rhea et al. (2004), which considers
that the time a node stays connected to a P2P system (session time) is heterogeneous and that
the average time ranges from a few minutes up to hours, following a Poisson process. For every
node that leaves a given topic, another randomly selected node joins that topic, thus, always
keeping the number of subscribers equals to Ns nodes4.

For the experiments, it it assumed one topic and each unit of time represents 1ms. Every
500ms, a new message is published by a randomly selected node (uniform distribution). Each
simulation corresponds to a network running for 120 minutes. Figure 5.11 presents the average
reception latency and standard deviation. It is worth reminding that in VCube-PS , every mem-
bership change (subscription or unsubscription) generates a new message which is broadcast to
all nodes of the system, similarly to a publishing message, while SRPT needs to rebuild its per
topic single trees. Furthermore, SRPT trees often have relay nodes (non-subscriber nodes) while
in VCube-PS , when a node i unsubscribes, it can still receive and forward publications related
to the topic for a while (temporary relay node, see Section 5.5.5).

4Ns is smaller than the total number of nodes of the simulation in order to have a pool of candidates for new
subscriptions and, at the same time, keep the same hypercube dimension throughout the experiment.

5.6. Experimental Results 83

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

500 1000 2000 4000

A
V
G

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
m
s
)

Number of subscribers

VCube-PS - 1min
SRPT - 1min

VCube-PS - 30min
SRPT - 30min

VCube-PS - 60min
SRPT - 60min

VCube-PS - Static
SRPT - Static

(a) Different numbers of subscribers and churn rates.

 512

 1024

 2048

 4096

 8192

 16384

 1 2 3 4 5 6 7 8 9 10

A
v
e
r
a
g
e

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

(
m
s
)

% of join/leave per min (103 subscribers)

VCube-PS
SRPT

(b) 1000 subscribers and a varying churn rate.

Figure 5.11: Average reception latency under churn.

Figure 5.11(a) summarizes the results with 500, 1000, 2000, and 4000 subscribers. The
dynamics of subscriptions were simulated for three different average session times (tmed): 1, 30,
and 60 minutes. For baseline comparison sake, along with the scenarios with churn, the figure
also shows results with static membership. Standard deviation values, although small, are also
depicted.

Comparing VCube-PS with churn to the static baseline, the former presents average latencies
up to 10% higher. In other words, to some extent, VCube-PS is sensitive to churn since static
membership does not induce false-positives while, with churn, VCube-PS has temporary relay
nodes, responsible for the 10% latency increase. On the other hand, except for 4000 subscribers,
SRPT latencies vary only up to 1.4% compared to the corresponding static baseline. This stable
behavior can be explained as, even in scenarios with no churn, SRPT trees have usually non-
subscribers (relays) and, therefore, the size of their branches does not vary with churn. However,
these relays are also responsible for the longer SRPT tree branches when compared to VCube-
PS ones, justifying why, for a given churn rate, SRPT presents higher latency than VCube-PS ,
independently of the number of subscribers. The highest impact of the churn is observed in
SRPT with 4000 subscribers and tmed = 1min, with approximately 46 unsubscriptions and 46
new subscriptions per minute. In this case (high churn rate), the average latency is much higher
than the static one (3.56 times), not only because of the presence of false-positives (2.74% of
all received PUB messages), but also due to contention caused by SUB and UNS messages. A last
interesting observation is that, except for SRPT with 4000 subscribers and tmed = 1min, average
latency values of both approaches keep the same behavior and close values for both static and
dynamic scenarios.

For the results presented in Figure 5.11(b) with Ns = 1000, churn rate increases beyond
usual values, i.e., it varies from 1% up 10% of the subscribers per minute. In this case, tmed

varies from 69s to 7s. Note that for the experiments shown in Figure 5.11(a) with Ns = 1000

and tmed = 1min, the churn rate is approximately 1.1% of the subscribers per minute. Although
the higher the churn rate, the greater the number of messages over the network, it is possible to

84 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

observe that, in Figure 5.11(b), even if latency increases, VCube-PS tolerates well the increase
in the number of messages: when the churn rate increases 10 times, latency grows in average
2.55 times, false positives represent in average 2.2% (σ = 0.15%) of the PUB messages, and, in
average, messages wait in queue no more than 28.36ms (σ = 0.66ms) before being forwarded.
On the other hand, when the churn rate increases, SRPT ’s single tree is not able to treat and
send all the messages in time in order to avoid contention. In SRPT , with churn rate of 4%
per minute (tmed = 17s) and 1000 subscribers, the overall number of sent messages is slightly
smaller than that of the scenario with 4000 subscribers and tmed = 1min (Figure 5.11(a)). In
both cases, this is the point where SRPT ’s reception latency starts to suffer from contention.
Beyond this point, SRPT ’s single root is unable to treat and forward messages without queuing
them for long periods. For 5% churn rate per minute, messages are kept in queue, in average,
468ms (σ = 185ms) while for 10% churn rate up to 10s (σ = 451ms).

5.6.7 Broker-based SRPT

For the results presented in this section, it is also considered a SRPT Pub/Sub system based
on brokers (e.g., DYNATOPS Zhao et al. (2013), see Section 3.5.1.1). Here, the broker-based
approach is called SRPT -B and the previous subscriber-based one is renamed to SRPT -S. In
SRPT -B, the single broadcast tree per topic is composed by nodes that are either brokers (instead
of subscribers) or relays. Subscribers are directly connected to brokers, according to their locality
and/or interests. Each published message for this topic is transmitted over this tree and each
broker, upon reception, directly sends the message to the subscribers connected to it.

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

SR
PT
-B
-3
2

SR
PT
-B
-2
56

SR
PT
-B
-2
04
8

SR
PT
-S

VC
ub
e-
PS

A
V
G

R
e
c
e
p
t
i
o
n

L
a
t
e
n
c
y

Tree
Broker to Subs. (B-S)

Figure 5.12: Average reception latency for different approaches and 4096 nodes.

Figure 5.12 shows the average reception latency for SRPT -S, SRPT -B, and VCube-PS . Pub-
lishers are randomly chosen among the subscribers of the topic and send a new message on
average every 500 u.t., up to a limit of 128 messages.

Three configurations for SRPT -B with different number of brokers were defined: 32, 256,
and 2048. The other nodes are subscribers evenly distributed among the brokers: 127, 15, and 1
subscribers per broker, respectively. Note that, in this experiment, for both SRPT -B and SRPT -
S, there is no relay node, i.e., trees are composed only by the respective numbers of brokers or
by 4096 subscribers, respectively.

5.7. Conclusion 85

In SRPT -B, average reception latency is composed by the time to send the message to the
brokers (Tree in the figure) plus the time for the broker to send the message to the connected
subscribers (B-S in the figure). On the one hand, it is possible to in the figure that the fewer
the number of brokers, the lower the Tree reception latency. On the other hand, the fewer the
number of brokers, the higher the number of messages per broker forwarded to the subscribers,
inducing broker-level contention (like the root in SRPT) and, therefore, the higher the B-S

reception latency. In the configuration with 32 brokers, it is clear to see the high broker-level
contention while, with 256 nodes, the load is better distributed.

It is also important to point out that even if VCube-PS builds trees with bigger height com-
pared to SRPT -B’s, it presents lower average reception latency than all SRPT -B configurations
(22% better for SRPT -B with 256 brokers) since it avoids contention by exploiting multiple
paths. A last observation is that SRPT -B with 2048 brokers has lower reception latency than
SRPT -S since the latter presents more contention in the root of the tree, which is composed by
4096 subscribers.

5.7 Conclusion

Several existing topic-based approaches in the literature use trees to disseminate messages, where
for each topic there exists a single broadcast tree. However, in case of high concentration of
publications at the same topic (a “hot topic”), the root of the tree’s topic can become a bottleneck.
While several tree-based approaches use a single tree per topic, where a node is chosen as its
root (rendezvous point), the proposed system builds, on top of a virtual hypercube-like topology,
a distributed spanning tree rooted on the source of the broadcast node. Such trees are used to
both propagate information about membership changes and disseminate published messages to
subscribers. Furthermore, there is no permanent relay node, but, due to subscription dynamics,
there may exist temporary ones.

Causal delivery order for messages published to the same topic is also ensured by the proposed
system by using causal barriers. The latter is a structure that, instead of carrying per node infor-
mation, carries only the identifiers of direct causally preceding messages. Besides the possibility
of carrying less information when compared to vector-based approaches, causal barriers are also
suitable for the subscription dynamics present in Pub/Sub systems because its implementation
does not require knowledge about the number of participating nodes.

Simulations were implemented on top of PeerSim, comparing VCube-PS and single rooted
approaches. Experimental results confirm that VCube-PS performs better when there is a high
publication rate per topic, since it provides publication load balancing. Moreover, the decentral-
ized broadcast of messages helps the causal dependencies to be delivered in a reasonable time.
Finally, even if some messages can be delivered to nodes that are no longer subscribed to the
message’s topic, this is a temporary situation that affects only a small percentage of the overall
number of messages.

86 Chapter 5. VCube-PS: A Topic-based Publish/Subscribe System

Chapter 6

Conclusion

Contents
6.1 Contributions . 88

6.2 Perspectives . 89

6.2.1 Short Term . 89

6.2.2 Long Term . 89

6.2.2.1 Node Failure . 89

6.2.2.2 Causal Aggregation and Timer-based Aggregation 90

6.2.2.3 Extension of VCube-PS to Geo-localization 90

The notion of temporal order is an important concept in many computer systems. However,
considering distributed systems where global clock is not available, the task of detecting such an
order relies on a relation of cause and effect between events of a distributed computation known
as the “happened-before” relation. Thereby, several works have used the concept of causality to
devise logical time structures that keep track of the order of events.

Likewise, many distributed applications require group communication services that enable
their processes to exchange messages respecting the “happened-before” relation of messages. One
particularly important type of message ordering is the causal order, which is crucial to different
types of applications, such as messaging services and distributed databases.

Besides the importance of offering services that respect causal order of messages, there exists
a constant need for communication-efficient broadcast communication protocols. Several works
have proposed to organize the nodes of the system in logical trees, in order to exploit the well-
known logarithmic properties of the latter. However, these approaches use a single broadcast
tree, which can induce root bottleneck due to message contention with, therefore, performance
degradation.

A second issue related to broadcast protocols is the number of messages sent over the network.
Studies have shown that the number of messages has a more significant impact on network
performance than their sizes. Such a problem has been tackled by several existing solutions of
the literature that, at the cost of increasing end-to-end message latencies, use timers to buffer
several messages and then send them into a single one.

This thesis investigated how to provide a communication-efficient Publish/Subscribe (Pub/Sub)
system. Particularly, this thesis focused on the topic-based model of Pub/Sub systems, through

87

88 Chapter 6. Conclusion

which messages are classified according to known topics (e.g., keywords), and some topics present
higher request rate than others (“hot topics”).

6.1 Contributions

Both contributions of this thesis were built on top of a hypercube-like topology called VCube
which presents strong logarithmic properties. By using such a topology, broadcast trees are
dynamically built, rooted on the source of every broadcast message.

In Chapter 4, a new causal broadcast protocol was proposed, which reduces the traffic of
messages through the network by aggregating messages without the use of timers. To this
end, the algorithm considers variations in latencies of network links, causal relation between
messages, and intersections that might exist in broadcast trees to decide whether messages can
be aggregated or not. The idea is that the forwarding of a message can be delayed in order to
be aggregated with another message, only if both messages will be forwarded by the node to
the same child (children) and the first message causally depends on the second one. Such an
aggregation mechanism does not induce any overhead since the sending of a message to a child
node is worthless if this node will not be able to deliver it upon reception. In other words, the
only messages that can be aggregated are those whose delivery latency would not be increased
by the aggregation approach.

The causal aggregation broadcast protocol uses vector clocks to ensure causal order. Although
other approaches presented in Section 3.3.3 (e.g. causal barriers) are more scalable than vector
clocks, the latter enables the exploitation of the transitive property of causal order to deduce
possible message aggregations.

The proposed causal aggregation broadcast protocol was implemented on top of the event-
driven simulator PeerSim, and results showed that the bundling of several messages into a single
one reduces message traffic as well as average delivery latencies since there is less node con-
tention. Moreover, when receiving a packet with more than one message, a node is more likely to
immediately deliver them to the application, reducing, therefore, the number of non deliverable
pending messages.

The second contribution of the thesis, presented in Chapter 5, is a topic-based Pub/Sub
system, VCube-PS which, unlike most existing solutions, also ensures per-topic causal broadcast
of messages. It also addresses the problem of contention due to high concentration of messages
transmitted through a same tree in Pub/Sub systems, in scenarios where most of the messages
are related to few topics (“hot topics”).

While most other tree-based Pub/Sub systems use a single tree and rendezvous points, VCube-
PS dynamically creates a new spanning tree rooted on the source of every message that is
published. By extending the tree construction algorithm (Chapter 2.4.1), the spanning tree built
to disseminate publications associated to a given topic is composed only by current subscribers
of the topic, thus reducing message traffic and latencies. Furthermore, this same tree structure
is used to propagate subscription membership changes.

In order to track causal order of published messages, contrarily to the other contribution of

6.2. Perspectives 89

this thesis, VCube-PS uses causal barriers which are suitable to tackle subscription dynamics.
Results from experiments on top of PeerSim confirmed that, when compared to approaches

with one single tree per topic, VCube-PS presents the lowest latency results under a high publica-
tion rate per topic, since it intrinsically provides load balancing. Moreover, VCube-PS generates
less message traffic and the extra delay necessary to ensure causal delivery order represents
only a small percentage of the end-to-end average message latencies. Finally, the presence of
temporarily relay nodes increases reception latency of only a small number of publications.

6.2 Perspectives

This section presents a guideline for future directions of this thesis. The evolution of this work
involves some activities that can be performed in a near future and others that demand further
time and development.

6.2.1 Short Term

The first task will be to provide a proof of correctness of the protocols of both contributions.
A second task will be to apply the causal aggregation approach to the causal broadcast

protocol of VCube-PS , which uses causal barriers to keep track of causal dependencies. On the
one hand, causal barriers are suitable for coping with subscription dynamics present in Pub/Sub
systems, because it is not dependent of the number of nodes in the system. On the other hand,
vector clocks store significantly more information about transitive causality of messages than
causal barriers. Therefore, the aggregation approach in VCube-PS could use either causal
barriers, but limited to direct dependencies, or vector clocks, at the expense of scalability.

Finally, in the experimental results presented in Chapters 4 and 5, no assumption is made
about the mapping between physical and logical nodes. It would be interesting to provide
strategies to map nodes according to, for instance, a latency matrix or communication locality.

6.2.2 Long Term

This thesis has been developed in the context of a French-Brazilian CNRS-INRIA-Fundação
Araucária project entitled “Autonomic and Scalable Algorithms for Building Resilient Distributed
Systems” whose members aim at keeping the cooperation, even if the project is over. Thus, the
following long term activities are proposed.

6.2.2.1 Node Failure

Chapters 4 and 5 assume a system model where nodes do not fail and channels are reliable.
Therefore, even if VCube is a distributed diagnosis algorithm, the contributions presented in this
thesis exploited only its topology organization.

VCube can also be used as an underlying failure detector. The algorithm presented in Sec-
tion 2.4.1 considers only correct nodes to construct spanning trees. However, upon detection

90 Chapter 6. Conclusion

of failures during the dissemination of a message, it would be necessary to repair the tree and
re-transmit messages.

Note that in VCube-PS (Chapter 5), it is possible to draw the analogy that when a node
unsubscribes from a given topic, it can be seen as “faulty” in relation to that topic. Therefore,
during the construction of a topic’s spanning tree, only the “correct” nodes (current subscribers)
of that topic are considered. However, in the proposed solution, when a node unsubscribes from
a topic, it temporarily continues to participate in the topic’s tree as a relay node. If node crashes
are taken into account, a faulty node is no longer member of the topic and cannot act as a relay
of messages, i.e., the tree must be reorganized and lost messages must be re-transmitted.

The causal aggregation broadcast protocol proposed in Chapter 4 deduces which received
messages can be aggregated by taking into account common children. In case of failure, upon de-
tection of it, broadcast trees should be reorganized and, consequently, path intersections change.

It is also worth pointing out that VCube considers a complete graph, detecting N−1 failures,
being N the number of nodes. For scalability sake, the ideal would be that a correct node
communicates only with its correct neighbors in the logical hypercube. On the other hand, in
this case, the maximum number of tolerated failures is reduced.

6.2.2.2 Causal Aggregation and Timer-based Aggregation

The timer-based reliable broadcast protocol presented by Rodrigues et al. (2018) builds spanning
trees as the one proposed in Chapter 4 but, unlike it, aggregates messages using timers. The two
protocols could be modified to provide both reliability and causal order of broadcast messages.

Another work would be a new hybrid approach. For instance, if few messages get to be
aggregated by using the causal approach because messages are not received out of causal order,
timers could be used by some nodes (at the cost of increasing latency). A second possibility is
to aggregate unrelated messages that are addressed to a same node (like Rodrigues et al. (2018))
but without using timers: if a node is waiting for some causal dependency of a message to be
aggregated before sending them to a given child node, any other unrelated message that is also
addressed to this child node could be aggregated during this waiting time.

6.2.2.3 Extension of VCube-PS to Geo-localization

In the proposed Pub/Sub system, topics are simply keywords. Another approach could consider
topics as subdivisions of a geographical area, enabling geo-localized subscriptions. The area
should be split into frames, each of them corresponding to a subscription unit, such as in R-
Trees (Guttman, 1984). Hence, a subscription to an area consists of subscriptions to all the
frames that compose (intersect) this area.

However, a new kind of false-positive appears: if a node subscribes to an area that is inside
one (or several) frames, it would actually subscribe to the entire area comprising the involved
frames. The Pub/Sub will need to apply filters to the published messages based on subscriber
interest areas before delivering the messages to them. Hence, there exists a trade-off between
subscription unit size (for coping with local filtering) and the cost of subscription management
(in terms of amount of control messages and stored membership information).

Bibliography

Adelstein, F. and Singhal, M. (1995). Real-time causal message ordering in multimedia systems.
In Proceedings of 15th International Conference on Distributed Computing Systems, pages 36–
43.

Akkaya, K., Demirbas, M., and Aygun, R. S. (2008). The impact of data aggregation on the
performance of wireless sensor networks. Wirel. Commun. Mob. Comput., 8(2):171–193.

Arantes, L., Potop-Butucaru, M. G., Sens, P., and Valero, M. (2010). Enhanced dr-tree for low
latency filtering in publish/subscribe systems. In 2010 24th IEEE International Conference
on Advanced Information Networking and Applications, pages 58–65.

Astley, M., Auerbach, J., Bhola, S., Buttner, G., Kaplan, M., Miller, K., Robert Saccone, J.,
Strom, R., Sturman, D. C., Ward, M. J., and Zhao, Y. (2004). Achieving scalability and
throughput in a publish/subscribe system. Technical Report RC23103, IBM.

Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I. (2012). The potential dangers
of causal consistency and an explicit solution. In Proceedings of the Third ACM Symposium
on Cloud Computing, SoCC ’12, pages 22:1–22:7, New York, NY, USA. ACM.

Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., and Tucci-Piergiovanni, S. (2007). Tera:
Topic-based event routing for peer-to-peer architectures. In Proceedings of the 2007 Inaugural
International Conference on Distributed Event-based Systems, DEBS ’07, pages 2–13, New
York, NY, USA. ACM.

Baldoni, R., Bonomi, S., Platania, M., and Querzoni, L. (2012). Dynamic message ordering
for topic-based publish/subscribe systems. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pages 909–920.

Baldoni, R., Querzoni, L., and Virgillito, A. (2005). Distributed event routing in pub-
lish/subscribe communication systems: a survey. Technical report.

Baldoni, R., Raynal, M., Prakash, R., and Singhal, M. (1996). Broadcast with time and causality
constraints for multimedia applications. In Proceedings of EUROMICRO 96. 22nd Euromicro
Conference. Beyond 2000: Hardware and Software Design Strategies, pages 617–624.

Bianchi, S., Felber, P., and Potop-Butucaru, M. G. (2010). Stabilizing distributed r-trees for peer-
to-peer content routing. IEEE Transactions on Parallel and Distributed Systems, 21(8):1175–
1187.

91

92

Birman, K., Schiper, A., and Stephenson, P. (1991). Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst., 9(3):272–314.

Birman, K. P. and Joseph, T. A. (1987). Reliable communication in the presence of failures.
ACM Trans. Comput. Syst., 5(1):47–76.

Blessing, S., Clebsch, S., and Drossopoulou, S. (2017). Tree topologies for causal message delivery.
In Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE 2017, pages 1–10, New York, NY, USA.
ACM.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426.

Bravo, M., Rodrigues, L., and Van Roy, P. (2017). Saturn: A distributed metadata service for
causal consistency. In Proceedings of the Twelfth European Conference on Computer Systems,
EuroSys ’17, pages 111–126, New York, NY, USA. ACM.

Cañas, C., Pacheco, E., Kemme, B., Kienzle, J., and Jacobsen, H.-A. (2015). Graps: A graph
publish/subscribe middleware. In Proceedings of the 16th Annual Middleware Conference,
Middleware ’15, pages 1–12, New York, NY, USA. ACM.

Cai, W., Lee, B.-S., and Zhou, J. (2002). Causal order delivery in a multicast environment. J.
Parallel Distrib. Comput., 62(1):111–131.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001). Design and evaluation of a wide-area
event notification service. ACM Trans. Comput. Syst., 19(3):332–383.

Castro, M., Druschel, P., Kermarrec, A. M., and Rowstron, A. I. T. (2002). Scribe: a large-scale
and decentralized application-level multicast infrastructure. IEEE Journal on Selected Areas
in Communications, 20(8):1489–1499.

Chang, E. J. H. (1982). Echo algorithms: Depth parallel operations on general graphs. IEEE
Transactions on Software Engineering, SE-8(4):391–401.

Charron-Bost, B. (1991). Concerning the size of logical clocks in distributed systems. Inf.
Process. Lett., 39(1):11–16.

Chen, C., Tock, Y., and Girdzijauskas, S. (2018). Beaconvey: Co-design of overlay and routing
for topic-based publish/subscribe on small-world networks. In Proceedings of the 12th ACM
International Conference on Distributed and Event-based Systems, DEBS ’18, pages 64–75,
New York, NY, USA. ACM.

Chen, C., Vitenberg, R., and Jacobsen, H.-A. (2016). Omen: Overlay mending for topic-based
publish/subscribe systems under churn. In Proceedings of the 10th ACM International Con-
ference on Distributed and Event-based Systems, DEBS ’16, pages 105–116, New York, NY,
USA. ACM.

Bibliography 93

Chetlur, M., Abu-Ghazaleh, N., Radhakrishnan, R., and Wilsey, P. A. (1998). Optimizing
communication in time-warp simulators. In Parallel and Distributed Simulation, 1998. PADS
98. Proceedings. Twelfth Workshop on, pages 64–71.

Choi, Y., Park, K., and Park, D. (2004). Homed: a peer-to-peer overlay architecture for large-
scale content-based publish/subscribe system. In Proceedings of the third International Work-
shop on Distributed Event-Based Systems (DEBS), pages 20–25, Edinburgh, Scotland.

Crowcroft, J. and Paliwoda, K. (1988). A multicast transport protocol. In Symposium Proceedings
on Communications Architectures and Protocols, SIGCOMM ’88, pages 247–256, New York,
NY, USA. ACM.

Cugola, G., Nitto, E. D., and Fuggetta, A. (2001). The jedi event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software Engineering,
27(9):827–850.

Cugola, G. and Picco, G. P. (2006). Reds: A reconfigurable dispatching system. In Proceedings
of the 6th International Workshop on Software Engineering and Middleware, SEM ’06, pages
9–16, New York, NY, USA. ACM.

de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2017). A pub-
lish/subscribe system using causal broadcast over dynamically built spanning trees. In Pro-
ceedings of the 29th International Symposium on Computer Architecture and High Performance
Computing, SBAC-PAD 2017, pages 161–168, Campinas, SP, Brazil.

de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2018). A
communication-efficient causal broadcast protocol. In Proceedings of the 47th International
Conference on Parallel Processing, ICPP 2018, pages 74:1–74:10, Eugène, OR, USA.

de Araujo, J. P., Arantes, L., Duarte, E. P., Rodrigues, L. A., and Sens, P. (2019). Vcube-ps:
A causal broadcast topic-based publish/subscribe system. Journal of Parallel and Distributed
Computing, 125:18–30.

Défago, X., Schiper, A., and Urbán, P. (2004). Total order broadcast and multicast algorithms.
ACM Computing Surveys, 36(4):372–421.

Duarte, E. P., Bona, L. C. E., and Ruoso, V. K. (2014). Vcube: A provably scalable distributed
diagnosis algorithm. In Proceedings of the 5th Workshop on Latest Advances in Scalable Algo-
rithms for Large-Scale Systems, ScalA ’14, pages 17–22, Piscataway, NJ, USA. IEEE Press.

Esposito, C., Cotroneo, D., and Russo, S. (2013). On reliability in publish/subscribe services.
Comput. Netw., 57(5):1318–1343.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many faces of
publish/subscribe. ACM Comput. Surv., 35(2):114–131.

94

Evropeytsev, G., Domínguez, E. L., Hernandez, S. E. P., Trinidad, M. A. L., and Cruz, J.
R. P. (2017). An efficient causal group communication protocol for p2p hierarchical overlay
networks. Journal of Parallel and Distributed Computing, 102:149 – 162.

Fidge, C. J. (1988). Timestamps in Message-Passing Systems that Preserve the Partial Order-
ing. In 11th Australian Computer Science Conference, pages 55–66, University of Queensland,
Australia.

Fidler, E., Jacobsen, H.-A., Li, G., and Mankovskii, S. (2010). The padres distributed pub-
lish/subscribe system. In Principles and Applications of Distributed Event-Based Systems,
page 164–205.

Friedman, R. and Manor, S. (2004). Causal ordering in deterministic overlay networks. Technical
report, Israel Institute of Technology, Haifa, Israel.

Gascon-Samson, J., Garcia, F., Kemme, B., and Kienzle, J. (2015). Dynamoth: A scalable
pub/sub middleware for latency-constrained applications in the cloud. In 35th IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2015, Columbus, OH, USA,
June 29 - July 2, 2015, pages 486–496.

Girdzijauskas, S., Chockler, G., Vigfusson, Y., Tock, Y., and Melamed, R. (2010). Magnet:
Practical subscription clustering for internet-scale publish/subscribe. In Proceedings of the
Fourth ACM International Conference on Distributed Event-Based Systems, DEBS ’10, pages
172–183, New York, NY, USA. ACM.

Girdzijauskas, S., Datta, A., and Aberer, K. (2007). Oscar: Small-world overlay for realistic
key distributions. In Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., and Ouksel, A. M.,
editors, Databases, Information Systems, and Peer-to-Peer Computing, pages 247–258, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Gupta, A., Liskov, B., and Rodrigues, R. (2004). Efficient routing for peer-to-peer overlays. In
Proceedings of the 1st Conference on Symposium on Networked Systems Design and Imple-
mentation - Volume 1, NSDI’04, Berkeley, CA, USA. USENIX Association.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD ’84,
pages 47–57, New York, NY, USA. ACM.

Hélary, J. and Mostefaoui, A. (1993). A O(log2n) Fault-tolerant Distributed Mutual Exclusion
Algorithm Based on Open-cube Structure. Publications internes: Institut de Recherche en
Informatique et Systèmes Aléatoires. sn.

Hidalgo, N., Arantes, L., Sens, P., and X. Bonnaire, X. (2010). An aggregation-based routing
protocol for structured peer to peer overlay networks. In AP2PS 2010 - 2nd International
Conference on Advances in P2P Systems, pages 76–81, Florence, Italy.

Bibliography 95

Kim, C. and Ahn, J. (2006). Epidemic-style causal order broadcasting only using partial view. In
Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications & Conference on Real-Time Computing Systems and Applications, PDPTA
2006, Las Vegas, Nevada, USA, June 26-29, 2006, Volume 1, pages 207–211.

Kim, K., Mehrotra, S., and Venkatasubramanian, N. (2010). Farecast: Fast, reliable applica-
tion layer multicast for flash dissemination. In Middleware, volume 6452 of Lecture Notes in
Computer Science, pages 169–190. Springer.

Kshemkalyani, A. D. and Singhal, M. (2008). Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, New York, NY, USA, 1 edition.

Kurose, J. F. and Ross, K. W. (2012). Computer Networking: A Top-Down Approach (6th
Edition). Pearson, 6th edition.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565.

Li, G. and Gao, S. (2011). Drscribe: An improved topic-based publish-subscribe system with
dynamic routing. In Proceedings of the 12th International Conference on Web-age Information
Management, WAIM’11, pages 226–237.

Li, M., Ye, F., Kim, M., Chen, H., and Lei, H. (2011). Bluedove - a scalable and elastic
publish/subscribe service. In Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS ’11, pages 1254–1265, Washington, DC, USA. IEEE Computer
Society.

Liebeherr, J. and Beam, T. K. (1999). Hypercast: A protocol for maintaining multicast group
members in a logical hypercube topology. In Rizzo, L. and Fdida, S., editors, Networked Group
Communication, pages 72–89, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lumezanu, C., Baden, R., Spring, N., and Bhattacharjee, B. (2009). Triangle inequality varia-
tions in the internet. In Internet Measurement Conference, pages 177–183. ACM.

Lumezanu, C., Spring, N., and Bhattacharjee, B. (2006). Decentralized message ordering for
publish/subscribe systems. In Proceedings of the ACM/IFIP/USENIX 2006 International
Conference on Middleware, Middleware ’06, pages 162–179, New York, NY, USA. Springer-
Verlag New York, Inc.

Malekpour, A., Carzaniga, A., Carughi, G. T., and Pedone, F. (2011). Probabilistic fifo order-
ing in publish/subscribe networks. In 2011 IEEE 10th International Symposium on Network
Computing and Applications, pages 33–40.

Mattern, F. (1989). Virtual time and global states of distributed systems. In Proceedings of the
Workshop on Parallel and Distributed Algorithms, pages 215–226. North-Holland.

Montresor, A. and Jelasity, M. (2009). Peersim: A scalable p2p simulator. In 2009 IEEE Ninth
International Conference on Peer-to-Peer Computing, pages 99–100.

96

Mostéfaoui, A. and Weiss, S. (2017). A Probabilistic Causal Message Ordering Mechanism, pages
315–326. Springer International Publishing, Cham.

Nakayama, H., Duolikun, D., Enokido, T., and Takizawa, M. (2016). Reduction of unnecessarily
ordered event messages in peer-to-peer model of topic-based publish/subscribe systems. In 2016
IEEE 30th International Conference on Advanced Information Networking and Applications
(AINA), pages 1160–1167.

Nédelec, B., Molli, P., and Mostéfaoui, A. (2018a). Breaking the scalability barrier of causal
broadcast for large and dynamic systems. CoRR, abs/1805.05201.

Nédelec, B., Molli, P., and Mostefaoui, A. (2018b). Causal Broadcast: How to Forget? In The
22nd International Conference on Principles of Distributed Systems (OPODIS), Hong Kong,
China.

Patel, J. A., Rivière, E., Gupta, I., and Kermarrec, A.-M. (2009). Rappel: Exploiting interest
and network locality to improve fairness in publish-subscribe systems. Computer Networks,
53(13):2304 – 2320. Gossiping in Distributed Systems.

Plesca, C., Grigoras, R., Queinnec, P., Padiou, G., and Fanchon, J. (2006). A coordination-
level middleware for supporting flexible consistency in cscw. In 14th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing (PDP’06), pages 6 pp.–.

Postel, J. (1981). Internet protocol. STD 5, RFC Editor.

Prakash, R., Raynal, M., and Singhal, M. (1996). An efficient causal ordering algorithm for mo-
bile computing environments. In Proceedings of 16th International Conference on Distributed
Computing Systems, pages 744–751.

Ramaswamy, R., Weng, N., and Wolf, T. (2004). Characterizing network processing delay. In
Global Telecommunications Conference, 2004. GLOBECOM ’04. IEEE, volume 3, pages 1629–
1634 Vol.3.

Raynal, M., Schiper, A., and Toueg, S. (1991). The causal ordering abstraction and a simple
way to implement it. Information Processing Letters, 39(6):343 – 350.

Raynal, M. and Singhal, M. (1996). Logical time: capturing causality in distributed systems.
Computer, 29(2):49–56.

Rhea, S., Geels, D., Roscoe, T., and Kubiatowicz, J. (2004). Handling churn in a dht. In
Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC ’04,
Berkeley, CA, USA. USENIX Association.

Rodrigues, L. A., Arantes, L., and Duarte, E. P. (2014). An autonomic implementation of reliable
broadcast based on dynamic spanning trees. In Dependable Computing Conference (EDCC),
2014 Tenth European, pages 1–12.

Bibliography 97

Rodrigues, L. A., Duarte, E. P., de Araujo, J. P., Arantes, L., and Sens, P. (2018). Bundling
messages to reduce the cost of tree-based broadcast algorithms. In Proceedings of the 8th
Latin-American Symposium on Dependable Computing, LADC 2018, pages 115–124, Foz do
Iguaçu, PR, Brazil.

Rowstron, A. I. T. and Druschel, P. (2001). Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms Heidelberg, Middleware ’01, pages 329–350, Lon-
don, UK, UK. Springer-Verlag.

Sanli, C. and Lambiotte, R. (2015). Local variation of hashtag spike trains and popularity in
twitter. PLOS ONE, 10(7):1–18.

Saroiu, S., Gummadi, K. P., and Gribble, S. D. (2002). A measurement study of peer-to-peer
file sharing systems. In Multimedia Computing and Networking (MMCN).

Schiper, A., Eggli, J., and Sandoz, A. (1989). A new algorithm to implement causal ordering.
In WDAG, volume 392 of Lecture Notes in Computer Science, pages 219–232. Springer.

Schwarz, R. and Mattern, F. (1994). Detecting causal relationships in distributed computations:
In search of the holy grail. Distrib. Comput., 7(3):149–174.

Setty, V., van Steen, M., Vitenberg, R., and Voulgaris, S. (2012). PolderCast: Fast, Robust, and
Scalable Architecture for P2P Topic-Based Pub/Sub, pages 271–291. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

Shudo, K. (2017). Message bundling on structured overlays. In 2017 IEEE Symposium on
Computers and Communications (ISCC), pages 424–431.

Sianati, A., Boukerche, A., and Grande, R. D. (2015). Bundling communication messages in
large scale cloud environments. In 2015 IEEE Symposium on Computers and Communication
(ISCC), volume 00, pages 788–795.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput. Commun.
Rev., 31(4):149–160.

Torres-Rojas, F. J. and Ahamad, M. (1999). Plausible clocks: constant size logical clocks for
distributed systems. Distributed Computing, 12(4):179–195.

Tzeng, N. . and Wei, S. (1991). Enhanced hypercubes. IEEE Transactions on Computers,
40(3):284–294.

Vuillemin, J. (1978). A data structure for manipulating priority queues. Commun. ACM,
21(4):309–315.

Wang, G., Zhang, B., and Ng, T. S. E. (2007). Towards network triangle inequality violation
aware distributed systems. In Internet Measurement Conference, pages 175–188. ACM.

98

Wang, J., Bahulkar, K., Ponomarev, D., and Abu-Ghazaleh, N. (2013). Can pdes scale in
environments with heterogeneous delays? In Proceedings of the 1st ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, SIGSIM PADS ’13, pages 35–46, New York,
NY, USA. ACM.

Wang, X., Zhang, Y., Zhang, W., Lin, X., and Wang, W. (2015). Ap-tree: efficiently support
location-aware publish/subscribe. The VLDB Journal, 24(6):823–848.

Wang, Y., Fan, J., Jia, X., and Huang, H. (2012). An algorithm to construct independent
spanning trees on parity cubes. Theor. Comput. Sci., 465:61–72.

Wu, J. (1996). Optimal broadcasting in hypercubes with link faults using limited global infor-
mation. Journal of Systems Architecture, 42(5):367 – 380.

Yamamoto, Y. and Hayashibara, N. (2017). Merging topic groups of a publish/subscribe system
in causal order. In 2017 31st International Conference on Advanced Information Networking
and Applications Workshops (WAINA), pages 172–177.

Yang, J., Chang, J., Pai, K., and Chan, H. (2015). Parallel construction of independent span-
ning trees on enhanced hypercubes. IEEE Transactions on Parallel and Distributed Systems,
26(11):3090–3098.

Yestemirova, G. and Saginbekov, S. (2018). Efficient data aggregation in wireless sensor networks
with multiple sinks. In 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA), pages 115–119.

Zhang, K., Muthusamy, V., and Jacobsen, H. A. (2012). Total order in content-based pub-
lish/subscribe systems. In 2012 IEEE 32nd International Conference on Distributed Comput-
ing Systems, pages 335–344.

Zhao, B. Y., Kubiatowicz, J. D., and Joseph, A. D. (2001). Tapestry: An infrastructure for
fault-tolerant wide-area location and. Technical report, Berkeley, CA, USA.

Zhao, Y., Kim, K., and Venkatasubramanian, N. (2013). Dynatops: A dynamic topic-based
publish/subscribe architecture. In Proceedings of the 7th ACM International Conference on
Distributed Event-based Systems, DEBS ’13, pages 75–86, New York, NY, USA. ACM.

Zhuang, S. Q., Zhao, B. Y., Joseph, A. D., Katz, R. H., and Kubiatowicz, J. D. (2001). Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemination. In Proc. 11th
Int’l Work. Net. Oper. Systems Support for Digital Audio and Video, NOSSDAV ’01, pages
11–20, New York, NY, USA. ACM.

	Introduction
	Contributions
	Causal Aggregation Broadcast
	VCube-PS: A Topic-based Publish/Subscribe System

	Publications
	Papers in International Conferences
	Papers in International Journals

	Organization of the Manuscript

	Background
	Introduction
	Causality in Distributed Systems
	Logical Clocks
	Scalar Clocks
	Vector clocks

	Causal Order of Messages
	Causal Barrier

	Broadcast
	Broadcast Basic Specifications
	Message Ordering
	Reliability

	VCube
	Spanning Trees Over VCube

	Publish/Subscribe Systems
	Message Dissemination and Delivery

	Conclusion

	Related Work
	Introduction
	Spanning Trees Over Hypercubes
	Causal Broadcast
	Message History
	Vector Clocks
	Reducing Message Size
	FIFO Channels – Small/No Control Information
	Probabilistic Approaches
	Application-defined Causality

	Bundling Messages
	Parallel discrete event simulators
	Reduction of Energy Consumption in Wireless Sensor Networks
	Application Layer Bundling
	Bundling Over Peer-to-Peer Overlays
	Timer-based Bundling Over VCube

	Publish/Subscribe Systems
	Topic-based Publish/Subscribe
	Tree-based Approaches Over Peer-to-Peer Overlays
	Clustering Solutions
	Other Topologies

	Tree-based Content Publish/Subscribe
	Message Ordering

	Conclusion

	Causal Aggregation Broadcast
	Introduction
	System Model and Definitions
	Aggregating Causally Related Messages
	Causal Aggregation Algorithm
	Broadcast
	Reception
	Aggregation / Forwarding

	Experimental Results
	Simulation Setup
	Number of Packets
	Size of Messages and Packets
	Reception and Delivery Latencies
	Distribution of Pending Messages
	One Tree Versus Multiple Trees

	Conclusion

	VCube-PS: A Topic-based Publish/Subscribe System
	Introduction
	System Model and Definitions
	Per-source Spanning Trees
	Causal and Per-source FIFO Reception Ordering
	Causal Ordering
	Per-source FIFO Reception Ordering

	Algorithms
	Types of Messages, Local Variables, and Auxiliary Functions
	Application (User Interface) Functions
	Propagation of a Message
	Reception and Delivery of Messages
	Membership Management

	Experimental Results
	Simulation Setup
	A Single Publisher
	Several Publishers
	Message Order
	Multiple Topics
	Churn Evaluation
	Broker-based SRPT

	Conclusion

	Conclusion
	Contributions
	Perspectives
	Short Term
	Long Term
	Node Failure
	Causal Aggregation and Timer-based Aggregation
	Extension of VCube-PS to Geo-localization

	Bibliography

