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Résumé

Dans la communauté robotique aérienne, un croissant intérêt pour les systèmes multi-
robot (SMR) est apparu ces dernières années. Cela a été motivé par i) les progrès tech-
nologiques, tels que de meilleures capacités de traitement à bord des robots et des per-
formances de communication plus élevées, et ii) les résultats prometteurs du déploiement
de SMR tels que l’augmentation de la zone de couverture en un minimum de temps. Le
développement d’une flotte de véhicules aériens sans pilote (UAV: Unmanned Aerial Ve-
hicle) et de véhicules aériens de petite taille (MAV: Micro Aerial Vehicle) a ouvert la voie
à de nouvelles applications à grande échelle nécessitant les caractéristiques de tel système
de systèmes dans des domaines tels que la sécurité, la surveillance des catastrophes et
des inondations, la recherche et le sauvetage, l’inspection des infrastructures, et ainsi de
suite. De telles applications nécessitent que les robots identifient leur environnement et se
localisent. Ces tâches fondamentales peuvent être assurées par la mission d’exploration.
Dans ce contexte, cette thèse aborde l’exploration coopérative d’un environnement in-
connu en utilisant une équipe de drones avec vision intégrée. Nous avons proposé un
système multi-robot où le but est de choisir des régions spécifiques de l’environnement à
explorer et à cartographier simultanément par chaque robot de manière optimisée, afin
de réduire le temps d’exploration et, par conséquent, la consommation d’énergie. Chaque
UAV est capable d’effectuer une localisation et une cartographie simultanées (SLAM: Si-
multaneous Localization And Mapping) à l’aide d’un capteur visuel comme principale
modalité de perception. Pour explorer les régions inconnues, les cibles – choisies parmi les
points frontière situés entre les zones libres et les zones inconnues – sont assignées aux
robots en considérant un compromis entre l’exploration rapide et l’obtention d’une carte
détaillée. À des fins de prise de décision, les UAVs échangent habituellement une copie
de leur carte locale, mais la nouveauté dans ce travail est d’échanger les points frontière
de cette carte, ce qui permet d’économiser la bande passante de communication. L’un
des points les plus difficiles du SMR est la communication inter-robot. Nous étudions
cette partie sous les aspects topologiques et typologiques. Nous proposons également des
stratégies pour faire face à l’abandon ou à l’échec de la communication. Des validations
basées sur des simulations étendues et des bancs d’essai sont présentées.

Mots Clés : coordination de système multi-robot , exploration autonome , exploration
basée sur les frontières , SLAM , communication inter-robot.
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Abstract

In the aerial robotic community, a growing interest for Multi-Robot Systems (MRS) ap-
peared in the last years. This is thanks to i) the technological advances, such as better on-
board processing capabilities and higher communication performances, and ii) the promis-
ing results of MRS deployment, such as increased area coverage in minimum time. The
development of highly efficient and affordable fleet of Unmanned Aerial Vehicles (UAVs)
and Micro Aerial Vehicles (MAVs) of small size has paved the way to new large-scale
applications, that demand such System of Systems (SoS) features in areas like security,
disaster surveillance, inundation monitoring, search and rescue, infrastructure inspection,
and so on. Such applications require the robots to identify their environment and localize
themselves. These fundamental tasks can be ensured by the exploration mission. In this
context, this thesis addresses the cooperative exploration of an unknown environment
sensed by a team of UAVs with embedded vision. We propose a multi-robot framework
where the key problem is to cooperatively choose specific regions of the environment to be
simultaneously explored and mapped by each robot in an optimized manner in order to
reduce exploration time and, consequently, energy consumption. Each UAV is able to per-
form Simultaneous Localization And Mapping (SLAM) with a visual sensor as the main
input sensor. To explore the unknown regions, the targets – selected from the computed
frontier points lying between free and unknown areas – are assigned to robots by consid-
ering a trade-off between fast exploration and getting detailed grid maps. For the sake of
decision making, UAVs usually exchange a copy of their local map; however, the novelty in
this work is to exchange map frontier points instead, which allow to save communication
bandwidth. One of the most challenging points in MRS is the inter-robot communication.
We study this part in both topological and typological aspects. We also propose some
strategies to cope with communication drop-out or failure. Validations based on extensive
simulations and testbeds are presented.

Keywords: coordinated multi-robot, autonomous exploration, frontier-based exploration,
SLAM, inter-robot communication.
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1 Background

Unmanned Aerial Vehicles (UAVs) are flying robots or aircraft without a pilot or
passengers. They can be remotely controlled by human or fully automated (drones).
The history of UAVs, more generally robots, is closely linked to the technological feat.
Historically, robots’ usage has been limited to factory, that is for industrial use. In the early
20th century, the notion of using robots for other purposes arise. Indeed, the military field
starts showing an interest for robotics and more particularly, for pilot-less Aerial Vehicles.
One of the first radio controlled model has been developed and tested successfully by the
US army during the first World War (See figure 1). Development and testing of radio-
controlled aircraft increase significantly since 1935, and the term of drone starts to be used.
One among the first enduring drone prototype was developed in 1946. It successfully flew
remotely from Hilo Naval Air Station in Hawaii to Muroc Army Air Field in California.

Figure 1 – Drone proto-
type10.

Since that, drones have become popular and started being
used in the civilian applications. Consequently, the drone’s
size has considerably reduced. In early 1990, miniature
UAVs, also called Micro Aerial Vehicles (MAV), have be-
come available. From their introduction, these small sized
flying robots have experienced a great and an increasing
interest until now. There are several types of drones with
a different typology for each. The type is defined with the
number of rotors. A drone with one rotor is called helicopter;
whereas, multicopters are those that are equipped with one

10Source: https://www.iwm.org.uk/history/a-brief-history-of-drones
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or more rotors. Among them, let’s cite the Bicopter with two rotors, the Tricopter with
three rotors in "T" or "Y" shapes, the famous and mainly used Quadcopter composed of
four rotors in "+" or "x" configurations, the Hexacopter with six rotors, the Octocopter
with eight rotors, and so on. The drones are equipped with on-board sensors to sense
their environment. These sensors can be exteroceptive such as camera and radar, or
proprioceptive such as Global Positioning System (GPS) and Inertial Measurement Unit
(IMU).

2 Motivation

Having made a great progress in finding solutions for basic problems related to single
robot, the research community is now interested in studying coordinated multi-robot
systems. Cooperative multiple UAVs can remarkably increase the fleet’s performances
compared to a single UAV. In addition, several large scale applications require such system
features in areas like security, disaster surveillance, inundation monitoring, search and
rescue, infrastructure inspection, and so on.

Nevertheless, although the important advances in the deployment of a team of UAVs,
such operations still present some challenges. Indeed, in the past few years multi-robot
exploration state of the art focused on motion planning and collision avoidance [Latombe,
1991, Fujimura and Singh, 1996, Bennewitz and Burgard, 2000]. More recently, however,
the emphasis in multi-robot exploration has been on coordination, cooperation and inter-
robot communication [Yan et al., 2013, Dai et al., 2018, Min et al., 2018].

The first challenge in an unknown environment is to map the surrounding areas and to
know the localization of the robots. Hence, an embedded simultaneous localization and
mapping (SLAM) algorithm where i) no global positioning system is used [Andre et al.,
2014, Heng et al., 2015] and ii) no initial known pose assumption is done [Yan et al.,
2014], has to be adopted. Also, adequate embedded sensors have to be chosen to get
reliable results.

Furthermore, when it comes to multi-UAV exploration mission, robots have to avoid
to sense already explored areas, or to visit the same area at the same time. Hence, an
exploration strategy has to be set up to coordinate between fleet members in order to
simultaneously explore different areas in an optimized manner. Exploration strategies use
mostly frontier based approaches introduced in [Burgard et al., 2000]. They consist on
assigning a target – selected from the computed frontier points lying between free and
unknown areas – taking into account the utility of reaching it. The utility function is
defined in different manner depending on the mission’s purpose.

Moreover, the target assignment process may be performed on-board by each robot [Sheng
et al., 2006, Yuan et al., 2010] or on-board by a server/robot with enhanced capabilities,
which makes decisions for the other robots in the fleet [Burgard et al., 2000, Schmuck,
2017].

To be able to have a cooperative behavior, fleet members have to collect information
about each others while maintaining reliable wireless communications [Rooker and Birk,
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2007]. Compared to a group of robots that do not involve communication, inter-robot
data exchange is beneficial even if it is limited. However, communication is often subject
to drop-out or failure, so the exploration strategy has to overcome these limitations. Still,
mostly, literature [Burgard et al., 2005, Schuster et al., 2015] deals with MRS deployment
while assuming an ideal communication or aims at keeping team members within range
of one another in order to focus their attention on higher level problems. But considering
communication losses and/or limited bandwidth help to prevent from mission failure and
ensure a more realistic scenario.

Briefly, the main motivation for this thesis is to answer this question: How to efficiently
coordinate a multi-UAV system in order to explore a bounded unknown environment
while taking into account communication constraints?

3 Problem statement/Approach

In this thesis, an algorithm for coordinating a UAV fleet is presented in order to efficiently
explore an unknown environment using an unknown number of potentially heterogeneous
robots. The purpose is to investigate the following research directions:

• Using a multi-robot system for an efficient exploration.

• Performing localization and mapping.

• Improving area coverage using specific exploration strategies.

• Coordinating the fleet by using inter-robot communication.

• Treating the considered system as a System of Systems (SoS) to handle fleet
scalability.

Multi-robot systems have shown their effectiveness to cooperatively explore an unknown
environment. Though, some challenges arise to enhance the system performances such as:
i) using a local localization algorithm, ii) choosing the right information to exchange, iii)
making the robot-to-target assignment iv) taking into account communication network
limitations.

In the context of a multi-robot system, this work proposes a Multi-UAV framework for
cooperative exploration of an unknown environment. Each UAV is equipped with an
embedded RGB-D sensor to perform grid-based Simultaneous Localization And Mapping
(SLAM). The exploration strategy, based on the group-leader decision making, uses a
novel utility function that takes into account the distance of each robot in the group from
the unexplored set of targets, and permits to simultaneously explore the environment
and get a detailed grid map of specific areas in an optimized manner. Usually, in a
cooperative map construction task, robots exchange the whole copy of their individual
maps. Whereas, in this work, the proposed novelty is to exchange only the frontier points
of the computed local map to reduce the shared data volume, and, consequently, memory
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consumption. Still, communication limitations have to be taken into account to ensure
the accomplishment of the mission. The proposed strategy is designed to cope with
communication drop-outs and failures.

Definitions and Assumptions

• The robots, throughout the thesis, are defined as flying robots with an on-board
computation capacity and a visual sensor. They are potentially heterogeneous.

• The number of robots used for evaluation is limited to three, however, the proposed
system architecture is not constrained to a fixed number of robots.

• The robots could be ground-based or aerial. They evolve in a 3D environment
while maintaining a fixed z altitude which leads to a 2D exploration and navigation
problem.

• The proposed system architecture is distributed and embedded over all fleet
members. All robots in the fleet have the same computational capabilities.

• The robots in the fleet are autonomous. Each one is able to perform Simultaneous
Localization And Mapping (SLAM), to plan a path to a target and to attempt to
reach it.

• A group-leader is responsible for assigning tasks to others. The selected leader is
not previously predefined.

• For exploration, a bounded simulated environment with no prior knowledge is used.

• Each robot has its own local reference frame.

• A global reference frame is defined such that it coincides with the first group-leader ’s
local reference frame.

• The inter-robot communication, available only in a specific range, is not assumed
to be perfect.

4 Contributions and publications

The main contributions of this work are the following:

• To introduce a fully distributed Multi-UAV system architecture that does not exploit
any global information (neither map nor GPS).

• To address the simultaneous Localization and Mapping problem using a monocular
and an RGB-D cameras.
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• To propose a novel utility function that takes into account the distance of each robot
in the group from the unexplored set of targets. This function also makes a trade-off
between fast exploration and getting a detailed grid map.

• To detail a coordinated exploration strategy, based on the group-leader decision
making, that minimizes both the global exploration time and the average traveled
distance by each UAV.

• To analyze the topology and typology of inter-UAV communication to cope with
network limitations and failures.

• To present a technological solution that uses only a limited information exchange
among UAVs. To the best of our knowledge, we are the first to propose to exchange
frontier points instead of a whole copy of the local map.

Parts of the content presented in these chapters are the subject of the following
publications:

• N. Mahdoui, E. Natalizio, and V. Frémont, "Multi-uavs network communication
study for distributed visual simultaneous localization and mapping," in 2016
International Conference on Computing, Networking and Communications (ICNC).
Kauai, Hawaii, USA : IEEE, Feb. 15-18, 2016, pp. 1 - 5.

• N. Mahdoui, V. Frémont, and E. Natalizio, "Cooperative exploration strategy for
micro-aerial vehicles fleet," in 2017 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2017). Daegu, Korea: IEEE,
Nov. 16-18, 2017, pp. 1 - 6.

• N. Mahdoui, V. Frémont, and E. Natalizio, "Cooperative frontier-based exploration
strategy for multi-robot system," in 2018 IEEE 13th System of Systems Engineering
Conference (SoSE 2018). Paris, France: IEEE, Jun. 19-22, 2018, pp. 1 - 8.

5 Thesis pipeline

The rest of this thesis is organized as follows:

• Chapter 1: This chapter introduces an overview of a fully distributed Muti-UAV
system architecture that does not exploit any global information. This framework
is mainly composed of the following parts: SLAM, cooperative exploration strategy,
and inter-robot communication. A more detailed description of each topic is
addressed throughout chapters of this work.

• Chapter 2: This chapter considers the SLAM problem. The discussion is focused on
using the visual sensor as the main perception modality. For the 3D pose estimation,
two approaches are proposed: A graph-based inertial SLAM that fuses a monocular
camera with an IMU; and a feature-based RGB-D SLAM. For each approach,
simulation results are presented.
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• Chapter 3: This chapter details relevant aspects related to exploration strat-
egy, utility function, and robot-to-target assignment. A cooperative multi-robot
exploration strategy, based on the group-leader decision making, is proposed. This
strategy uses a novel utility function that makes a trade-off between fast exploration
and getting a detailed grid map, and also takes into account the distance of other
robots to the set of unexplored targets. Results are presented based on simulations.

• Chapter 4: The last chapter analyses the inter-robot communication problem for
different topologies. It also studies strategies to face some communication limitations
and proposes a solution that uses only limited information exchange among UAVs.
Results based on testbeds are presented.
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1 Introduction

In the recent years, researchers have become interested in using coordinated Multi-Robot
System (MRS). Taking advantage of the great progress done in finding solutions for
basic problems related to single robot, nowadays, studies are oriented to MRSs. The
MRS is capable of implementing new features and executing new tasks over large scale
environments such as disaster surveillance, inundation monitoring, environment discovery,
infrastructure inspection, etc. One of the challenging problem for MRSs is to design an
appropriate architecture for an efficient coordination of the fleet.

In this chapter, we study the state of the art of MRSs, and propose and detail a distributed
multi-robot framework for unknown an environment exploration.

2 Related works

2.1 System of Systems

The term System of Systems (SoS) has been used since 1950s. The SoS concept is
defined as "the arrangement of theoretical systems and constructs in a hierarchy of

7
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complexity" [Boulding, 1956]. The term SoS was used to describe a set of independent
and organized elements that interact with each other. These components act jointly to
achieve a common goal. To distinguish SoS from conventional systems, more precise
definition using characteristics are proposed. In [Maier, 1998], the SoS is identified
by their Operational Independence, Managerial Independence, Geographic Distribution,
Evolutionary Development, and Emergent Behavior. In [Boardman and Sauser, 2006],
five features define a SoS: Autonomy, Belonging, Connectivity, Diversity, and Emerging.
Since there is no single definition for SoS in the literature, authors in [Nielsen et al.,
2015] classify the state of the art characterization of SoS in eight dimensions including:
Autonomy, Independence, Distribution, Evolution, Dynamic reconfiguration, Emergence
of behavior, Interdependence, and Interoperability. The definition of each characteristic
may differ from one another. Autonomy in [Boardman and Sauser, 2006] refers to the
capacity of a constituent system to pursue a specific purpose. While, according to [Maier,
1998], autonomy entails that constituents perform their own functions in accordance with
their own rules. These classifications show that some dimensions are more frequent to use
than others such as Emergence Behavior and Evolution. Also, in reality, these criteria are
not totally satisfied.

According to the mentioned literature featuring, the multi-robot system is a SoS
characterized by its:

• Autonomy: Achieving a specific task.

• Independence: Acting while being detached from the rest of the SoS.

• Distribution: Physical separation and network distribution.

• Evolution: Adapting itself to the surrounding environment.

• Dynamic behavior: Dynamic reconfiguration (modification of architecture) to ensure
resilience of a SoS to faults.

• Emergent behavior: Resulting behavior from the SoS collaboration.

• Interdependence: Mutual dependencies are needed to meet the requirements of SoS
since it is a trade of between Independence and interdependence where agents and
their relations are interdependent.

• Interoperability: Incorporating a range of heterogeneous constituent systems and
protocols.

2.2 Multi-robot system classification

MRS are characterized by their mission type, objective, behavior, environment, and so
on. Thus MRS can be classified in different manner with no arbitrary characteristic. They
can also be classified according to their degree of cooperation, coordination, robot type,
inter-robot communication, and system architecture [Iocchi et al., 2000, Farinelli et al.,
2004, Yan et al., 2013]. This list of classification axis is not exhaustive.
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2.2.1 Degrees of cooperation

A system is said cooperative if its members operate with each other in order to achieve
a common task. A classification of MRS, based on cooperation, is proposed in [Farinelli
et al., 2004]. Depending on the knowledge that a robot may have about its neighbors
when operating with them, a cooperative MRS can be aware or not. Indeed, a robot can
be cooperative when it sends information or follows simple tasks that were defined before
the beginning of the mission, while being unaware of what is going on around it. But it
can also be directly or indirectly aware by dynamically adapting its behavior depending
on other robots information.

2.2.2 Degrees of coordination

At a coordination level point of view, authors in [Yan et al., 2013] classify MRS into static
or deliberative, if instructions are defined before the mission begin; and dynamic or active,
if instructions are given during the execution of the task.

Authors in [Farinelli et al., 2004] define a coordinated system as a system where each
robot takes into account the actions executed by the other robots. They proposed to
classify the system’s coordination level to strongly coordinated, weakly coordinated, and
not coordinated at all; depending on the existence of a coordination protocol. This protocol
defines a set of rules to follow in order to perform robot-to-robot and robot-to-environment
interaction.

2.2.3 Robot types

In [Iocchi et al., 2000, Yan et al., 2013] two types of MRS are distinguished: Those
composed of heterogeneous robots, with different capabilities, and those composed of
homogeneous robots, with identical capabilities.

2.2.4 Inter-robot communication

The communication between robots is one of the most important feature that characterizes
a MRS. Inter-robot communication in [Iocchi et al., 2000, Yan et al., 2013] is classified
into direct or explicit, if robot shares explicitly information; and indirect or implicit, if
the information is indirectly shared by altering the sensor or the environment. Authors
in [Dudek et al., 1996] classified the communication in different axis including range,
topology, and bandwidth.

2.2.5 System architecture

Regarding the MRS architecture and decision making, authors in [Yan et al., 2013] classify
system architecture into centralized, those with a central server; and decentralized, those
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with no central agent, including distributed and hierarchical architecture. In [Farinelli
et al., 2004], MRS are distributed if agents are completely autonomous in their decision
making, and centralized if one robot is in charge of organizing the work. Centralized
approaches are also divided into weakly centralized, if more than one agent is allowed to
become a leader; and strongly centralized if only one leader is designed to be the same
during the mission.

These architectures present several advantages and disadvantages that are summarized
in Table 1.1. The centralized architectures consider one robot/central server [Rocha
et al., 2005] to manage all the computations and tasks assignment.However, they are
subject to stranded mission when they do not take into account communications or robot
failures. The distributed approaches use fully autonomous robots [Yuan et al., 2010, Sheng
et al., 2006]. These approaches require robots with increased resources to exchange and
process an important amount of information in order to synchronize agents and achieve
a cooperative mission. Authors in [Wu and Zhang, 2012] propose a hybrid approach that
consists in switching from individual to cooperative exploration behavior when agents
are not able to converge to a local minimum at a satisfying rate. Important computation
requirements are used for this later approach.

Table 1.1 – Multi-robot system architecture comparison.

Approach Centralized Decentralized
(distributed or hierarchical)

Advantages - Optimal solution.
- Simple and lightweight processing
on-board robots.

- Robustness in dynamic environ-
ment.
- Reliability in case of other robots
failure.
- Adaptability and flexibility.
- Decision making autonomy.

Disadvantages - Weakness in dynamic environ-
ment.
- Important network requirement.
- System vulnerability in front of
central control agent.
- Additional computational require-
ments.
- Unsuitable for large scale systems.

- Suboptimal solution.
- Complex on-board processing.
- Important amount of information
to exchange.

Authors in [Scherer et al., 2015] suggest a system architecture with the following modules
:

• Coordination/Planning module: It exchanges information and provides high level
coordination.

• Plan Execution module: It controls the behavior of other modules by sending control
commands.
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• UAV Control module: It receives and forwards control commands.

• WIFI Control module: It receives command to change the behavior of the underlying
network module and delivers information about the current connection quality.

• Streaming Control module: It starts or stops the streaming and can autonomously
change and adjust the quality of the streamed video.

• Image/Video Streaming module: It encodes or decodes the images and video.

• Image Data Analysis module: It analyses the images.

• Image/Video Acquisition module: It provides images and video to the other modules.

Authors in this work propose to use centralized as well as decentralized decision making.

Taking into account the advantage of solution optimality from the centralized approach,
and the advantage of mission reliability and adaptability from the decentralized approach;
a leader-based approach has been proposed in our work [Mahdoui et al., 2017]. The fleet
is subdivided into subgroups – called clusters – such that one robot in each subgroup is
responsible for target assignment.

3 Applications

In the recent years, drones have become more and more available for general public thanks
to the huge amount of advantages that they introduce, such that a small size (to reach
inaccessible places), an ability to a Vertical Taking off And Landing (VTAL), on-board
sensors to sense the environment, a low cost, etc. Furthermore, several new large scale
applications require such SoS features to face and accommodate to extreme situations
caused by human or nature. Indeed, UAVs are exploited in the military missions as well
as in the civilian missions to encompass research and innovation activities such as:

• Civil and commercial: Disaster surveillance, inundation monitoring, traffic moni-
toring, search and rescue, infrastructure inspection, data collection, video images
sharing, packet delivery, security, and so on.

• Military: Reconnaissance, surveillance, night operations, damage assessment, disas-
ter evaluation, border security operations, drones with attack capabilities, target
simulations of enemy aircraft or missile, and so on.

3.1 Search and rescue applications

Search and rescue are among the most serious social applications for robotic community. It
consists in helping humans in searching victims by deploying UAVs after a disaster occurs
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[Erdelj et al., 2017b, Erdelj et al., 2017a] in urban or rural zones such as earthquake (See
Figure 1.1), landslide, fire, and so on.

Figure 1.1 – Search and rescue1.

In the early 1990s, researchers began to tackle search and rescue missions while deploying
MRS [Jennings et al., 1997, Kitano et al., 1999]. Rescue robotics is now widespread and
several platforms for those missions are developed for a faster deployment, a more efficient
on-board sensors, a more important line of sight for communication [Waharte and Trigoni,
2010, Tomic et al., 2012, Scherer et al., 2015], and so on.

The rescue task is a very difficult mission since robots need to be sufficiently mobile and
small to avoid obstacles and access complex environments.

3.2 Reconnaissance and surveillance

Reconnaissance and surveillance were mostly used in the military domain. But, recently,
they are adapted especially for civilian applications (See Figure 1.2). Those applications
consist on identifying and tracking a target during critical situations such as hostage
taking, intruder detection, and so on.

Figure 1.2 – Reconnaissance and surveillance2.

In [Hougen et al., 2000], the MRS, that is used for reconnaissance and surveillance, is
divided into two groups of scout: Miniature robots with limited capability for autonomous
actions, and rangers consisting on a larger vehicles controlled by humans. Authors in
[Hegazy et al., 2005] propose to optimally locate robots, and identify and track potential

1Source: http://www.onyxstar.net/search-and-rescue-by-drone/
2Source: http://www.directindustry.fr/prod/riegl-lms/product-15822-1937769.html

http://www.onyxstar.net/search-and-rescue-by-drone/
http://www.directindustry.fr/prod/riegl-lms/product-15822-1937769.html
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ground targets using a particle filtering framework in an urban environment. In [Oh and
Green, 2004], a robot prototype for reconnaissance, surveillance and target acquisition
tasks is proposed to ensure small, safe, and slow flying.

Reconnaissance and surveillance are tasks that need precision. Consequently, they need
features, for both visual reconnaissance (for the target), and localization and mapping
(for the environment).

3.3 Infrastructure inspection

As far as inspection is concerned, it focuses on the identification and tracking of an
environment instead of a human target as done by reconnaissance and surveillance [Erdelj
et al., 2017c] (See Figure 1.3).

Figure 1.3 – Infrastructure inspection3.

Early inspection applications began in 1990s in [Stone and Edmonds, 1992] in order to
localize and characterize incidents including toxic ones. Researches on inspection increased
[Kuo et al., 2014, Máthé and Buşoniu, 2015, Eudes et al., 2018] and frameworks for
infrastructure inspection were proposed in indoor as well as outdoor environment such as
warehouse, railway, power line inspections, etc. Firms are interested in the infrastructure
inspection so projects are created such as AIRMES4 in France that includes SNCF,
EDF, Aerosurveillance, and Heudiasyc partners. It aims at deploying heterogeneous UAVs
cooperating within a fleet for infrastructures surveillance.

3.4 Exploration

Exploration is one of the most popular application in the robotic community [Marie et al.,
2014, Matignon and Simonin, 2018]. It consists in using robots in order to explore and
map a hostile or difficult environment (See Figure 1.4). The challenge in this mission is to
perform a fast and robust exploration while taking into account some delicate challenges

3Source: https://uavamerica.com/infrastructure-inspection-a-customer-perspective/
4AIRMES - Heterogeneous UAVs cooperating within a fleet, funded by FUI. Single Inter-ministerial

Funding, s linked to the "Investments for the future" Program supported by Heudiasyc: Labex MS2T and
equipment excellence "Equipex Robotex".

https://uavamerica.com/infrastructure-inspection-a-customer-perspective/
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such as limited payload capacity and computational power. However the absence of reliable
maps and the employment of low speed robots may hinder the process.

Figure 1.4 – Exploration5.

Early exploration mission were conducted by robots of the National Aeronautics and Space
Administration (NASA) – called Mars rovers – such as Curiosity, Spirit and Opportunity6.
Since the first mission launched in 1997 using a small rover called Sojourner in the
Pathfinder mission (See Figure 1.5), exploration performances are still always improved
and several missions are planned 7.

Figure 1.5 – NASA’s rover called Sojourner for Pathfinder mission8.

In addition to space, exploration missions take place on earth such as underwater or on
land areas. The challenge in underwater missions is to guarantee a good signal propagation
for data transmission despite the water absorption [Cui et al., 2006]. Ongoing researches
about autonomous underwater vehicles and deep oceans exploration [Whitcomb et al.,
2000, Fairfield et al., 2007, Kunz et al., 2008] are used to monitor pollution in marine
environments, to study marine life, and to create and maintain underwater projects. More
popular, land exploration missions are conducted in indoor spaces as well as outdoor
spaces. Exploration in sensible areas such as mines and caves is risky. Those underground
missions [Siles and Walker, 2009, Sahl et al., 2010, Maity et al., 2013] are used to collect
and discover biological diversity, to detect chemicals and gazes, and to map these hostile
environments.

5Source: http://www.geologyin.com/2014/08/drones-for-geology.html
6Source: https://spaceplace.nasa.gov/space-robots/en/
7Source: https://mars.jpl.nasa.gov/mer/mission/status.html
8Source: NASA/JPL-Caltech

http://www.geologyin.com/2014/08/drones-for-geology.html
https://mars.jpl.nasa.gov/mer/mission/status.html
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3.5 Discussions

These applications need some additional features in the fleet of robots to complete their
mission including robustness and fault tolerance, localization and mapping, autonomous
navigation, etc. When multiple robots are involved, some aspects become very important,
even essential, such as autonomy, reliable communication, and coordination. Among these
applications, the exploration and mapping of unknown environment is a challenging and
active area of research. This very useful application can be used as a tool for other missions’
success.

This thesis addresses the multi-robot exploration problem for a bounded unknown
environment using limited communication capabilities and a visual sensor as the main
perception modality. We also consider that neither global information nor map or GPS
are available.

4 Advantages of multiple UAVs deployment

UAV and particularly MAV, with their small size and high mobility, are often deployed
in sensitive missions. A notable progress have been done in basic problems related to
single robot deployment. Hence, recently in the robotic community, the emphasis has
been on MRS deployment. The use of a fleet of UAVs instead of a single robot has several
advantages identified from the literature [Burgard et al., 2005, De Hoog et al., 2009, Yan
et al., 2013] such as:

• Accomplishing better overall system performances.

• Covering more areas in less time.

• Implementing simpler on-board processing.

• Reducing energy consumption for each robot.

• Tolerating failure due to redundancy and robustness from data fusion.

• Sensing the environment from multiple point of view (better spacial distribution).

• Ensuring flexibility in complex missions.

• Collaborating to achieve the mission’s purpose.

Following the growing interest for MRS, many challenges arise such as coordination
especially when using limited sensor range, processing capabilities and energy. Hence, the
aforementioned MRS deployment benefits are taken into account only if the coordination
condition is verified. The coordination includes inter-robots communication, efficient
exploration strategy, cooperative decision making, and so on. Previous multi-robot
exploration researches focused on motion planning and collision avoidance [Latombe,
1991, Fujimura and Singh, 1996, Bennewitz and Burgard, 2000]. More recently, the
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emphasis in multi-robot exploration has been on coordination and cooperation [Simonin
et al., 2014, Benavides et al., 2016, Schmuck, 2017].

5 Multi-robot system overview

Using potentially heterogeneous UAVs, the main objective of cooperative exploration is
to achieve a full coverage of an unknown environment in minimum time. Multi-robot
systems are mainly composed of three complementary components – perception [Yang
et al., 2017], planning and control [Beard and McLain, 2003], and communication [Min
et al., 2018] – that interact together to get a consistent and robust system. One of the
main challenges of the perception component is the SLAM where no GPS is used. For
the planning and control component, cooperative exploration represents one of the main
problems. Thus, in the literature, cooperative exploration strategies have been proposed.
Usually, these strategies are based on a utility function to assign a robot to a target.
The target assignment decision is done using specific information exchanged among
robots. Therefore, communication is a fundamental component for the multi-robot system.
Moreover, communication issues must be taken into account. In fact, MRS have to cope
with communication failures in order to ensure the mission continuity.

Therefore, in this work, we address each of the three components’ challenges towards the
definition of a system, which is able to provide robots with precise localization, to improve
robots area coverage and to coordinate the fleet.

5.1 Architecture block diagram

The proposed framework in Figure 1.6 is an overview of the software architecture used for
Multi-UAV system. It presents the different modules and data flows among them. This
block diagram is distributed and embedded over all fleet members. The fleet is composed
n UAVs where each one is equipped with a visual sensor.

To maintain an accurate estimate of the UAV’s pose in the environment, a simultaneous
localization (block 1) and mapping (block 3) is performed. Block 3 in the mapping layer is
responsible for constructing a detailed grid map of the explored regions and keeping track
of them. In the data processing block (block 4), some specific information are picked out
and exchanged using the communication layer where the network (block 7) is in charge of
maintaining data flow among UAVs. The collected data are then locally processed in the
same block 4 to get exploitable information for exploration. Thereafter, block 5 performs
targets selection. Planning the path and reaching it are the roles of block 6.

Block 2 is used to visually detect other UAVs in the environment, then estimate their
relative transformation using visual fiducial markers or tags. These identifiers are mounted
on-board UAVs (See Figure 1.7). Different types of tags exist such as WhyCon [Nitsche
et al., 2015, Krajník et al., 2014], ARTags [Higashino et al., 2016], AprilTag [Olson, 2011]
or WhyCode [Lightbody et al., 2017]. By visually detecting tags, the framework precisely
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Figure 1.6 – Architecture block diagram.

computes the 3D position, the orientation, and the identity of the tags w.r.t. the camera
frame of the robot.

(a) MRS used in [Olson, 2011]. (b) MRS used in [Schuster et al., 2015]

Figure 1.7 – Apriltags: Visual Fiducial System mounted on robots.

The software architecture, on-board each UAV, is composed of four layers that interact
with each other:

• Localization: It estimates robot poses using measurements gathered from visual
sensor (See Chapter 2 for more details). This layer contains two blocks: Visual
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odometry (block 1) which is used to estimate the UAVi’s own pose, and the detection
and pose estimation of other robots block (block 2) which is used to estimate the
neighbors’ relative transformation w.r.t. the considered UAVi.

• Mapping: It creates, in different metric representation, a map of the environment
using visual measurements and estimated robot transformation (See Chapter 2 for
more details). This layer contains the local map creation process (block 3) that, using
measurement information along with robot estimated pose from block 1, creates a
sparse 3D point cloud representation and a 3D grid map of the environment.

• Planning: It collects information about other robots in the fleet and about the
environment, selects a target, plans a path and attempts to reach it (See Chapter
3 for more details). This layer ensures the cooperation between robots. It contains
the data processing block (block 4) where specific information are picked out to
be exchanged. These local and received information are fused and processed within
this block. The goal selection process (block 5) uses the processed information from
block 4, and the exchanged robot pose from block 7 to select – to itself or assign to
others – a target to reach. Given a final and an initial pose, and also the mapped
environment, the robot plans a path and attempts to reach the selected target using
the path planning and control block (block 6).

• Communication: It ensures a data exchange flow between robots in order to
share data used for cooperation (See Chapter 4 for more details). The exchanged
information contain relative transformation of detected robot w.r.t. the global
reference frame from block 2, specific information from block 4, and assigned targets
from block 5. These information are exchanged at different steps of the exploration
process.

5.2 System coordinate frames

In this thesis, we assume that the UAV fleet explores a 3D bounded unknown environment
with a global reference frame 0W (See Figure 1.8). Each robot (UAVi, with i ∈ [1..n], n ∈

N
∗), maintains a relative motion matrix Fi

[

R t
]

UAVi

w.r.t. its corresponding local

reference frame W Fi, and a global transformation W
[

R t
]

UAVi

w.r.t. the global reference

frame 0W.

During the mission, the information computed within local frames W Fi of all the UAVs
are processed in parallel. Before that, however, those information need to be converted in
the global reference frame 0W by knowing the UAV’s local reference frame transformation
w.r.t. 0W (W

[

R t
]

Fi

). Thereby, UAV’s initial pose in 0W needs to be known. To do that,

the UAV, with the lowest id number in the fleet (UAV1 in Figure 1.8), is considered as a
marker. The global frame is defined such that it coincides with the marker’s local frame
such that Eq.1.1 is verified.

W
[

R t
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]

, (1.1)
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Figure 1.8 – Multi-robot coordinate system.

Using block 2 in Figure 1.6, the relative transformations UAV1

[
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with i ∈ [1..n]
are estimated. Knowing the latter information and assuming that the transformations
Fi
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are provided by the SLAM algorithm, the transformation W
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computed by applying Eq.1.2.
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The transformation W
[

R t
]

Fi

(equivalent to F1

[

R t
]

Fi

) that describes UAVi’s initial

pose w.r.t. the global reference frame 0W ≡ F1, is deduced.

5.3 Roles and team hierarchy

Cooperation in Multi-UAV systems often goes through the exchange of data [Yan et al.,
2013]. In a limited communication ability, the data sharing link cannot always be correctly
established due to the limited communication range, the data loss, the obstacles, the
traffic congestion, and so on. In the proposed work, each group of robots which may
communicate with one another, form a cluster C. The fleet is composed of, at least, one
cluster (if n = nc). Figure 1.9 shows a fleet composed of n = 8 UAVs, and three clusters
composed of nc = 1, nc = 2, and nc = 5 UAVs, respectively.
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Figure 1.9 – Fleet of UAVs containing four clusters.

In each cluster C, one robot takes the role of leader. It is in charge of making cooperative
decision for all the other robots in C that have the role of explorers, based on some specific
shared information. The decision making process relies completely on the leader, which can
lead to mission interruption; especially when the leader-to-explorer communication link
is lost, or the leader is out of order. To overcome these problems, the roles are constantly
updated by running the role selection process (See Figure 1.10), in order to select a leader
if the current one experienced any issue.

Figure 1.10 – Role selection process.

The roles are not previously defined but are adapted depending on the fleet topology
changes. All UAVs’ roles are initialized to leader. Then, as soon as UAVs start to
exchange their identification number id, clusters are formed and then each UAV chooses
its appropriate role. The leader ’s role is taken by the UAV with the lowest id number in
the cluster C.
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6 Conclusion

In this chapter, we presented a state of the art about the multi-robot SoS aspect. We also
cited some SoS literature classifications. Furthermore, we mentioned a non exhaustive
list of applications used for fleet of UAVs deployment. Still, the main challenge in MRS
deployment is to make a cooperative framework. Thus, we detailed a distributed multi-
robot architecture (shown in Figure 1.6) used for an unknown environment exploration.
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1 Introduction

This chapter concerns camera-based pose estimation study. This task is often required
in several applications where, typically, the environment is unknown such as exploration,
search and rescue, or surveillance. In these situations, the environment is mostly GPS-
denied which inducts a challenging navigation for UAVs. Hence, we are interested in using
a visual sensor as the main perception modality to map the surrounding environment and
to perform localization within it.

In this chapter, a brief state of the art on pose estimation including Visual Odometry
(VO) and Simultaneous Localization And Mapping (SLAM) systems is presented. We
also introduce some commonly used metric map representation. After that, we propose
and evaluate two approaches for SLAM systems, using both a monocular sensor and a
RGB-D sensor.

23
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2 Pose estimation

In this chapter, we focus on the use of an embedded visual sensor for pose estimation.
These sensors1, mounted on-board moving robots, are used to gather information to map
the environment and to estimate the robot’s trajectory. To this end, VO and SLAM
methods are dominant.

2.1 Visual Odometry

2.1.1 Overview

The visual odometry process consists in incrementally estimating the pose of a vehicle by
examining the changes that motion induces on the images taken from its on-board rigidly
attached camera [Scaramuzza and Fraundorfer, 2011]. VO is a 3D motion estimation
(translation + rotation) computed from sequential optical sensors data such as images
(See Figure 2.1).

(a) Consecutive images correspondences.

(b) Consecutive images motion estimation.

Figure 2.1 – The VO working principle. Images from [Schöps et al., 2014].

Assuming static scenes, two consecutive images at time k and k − 1 are related by a rigid

1The used visual sensors are supposed to be calibrated.
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• To optimize the estimated transformation.

These steps may slightly differ depending on the adopted method. For example, the bundle
adjustment-based approach is a commonly used feature-based method where the main
steps [Sibley et al., 2010, Shade and Newman, 2011] are:

• Image processing: To remove the distortion in lens and to filter the images to allow
faster matching of features.

• Image alignment: To make an initial estimate of a 3D rotation using a gradient
descent method-based on image intensity.

• Feature match in time: To project the 3D features into the left and the right images
and match them using a sum-absolute-difference error metric.

• Initialize new features: To track about 100 to 150 features and to ensure a spatial
distribution using a quad-tree.

Results, presented in [Shade and Newman, 2011], have shown that these estimations
are robust even under difficult conditions. They are mostly adapted for large scale
environments.

The direct methods [Schöps et al., 2014] perform tracking directly on the image intensity
(instead of extracting and matching features). This allows to achieve a higher accuracy
and robustness, especially in indoor environments where only few features are available.
But, this method requires a powerful Graphic Processing Unit (GPU) to run in real time.

According to [Fang and Scherer, 2014, Fang and Zhang, 2015], the VO for RGB-D sensor
can be classified within three categories:

• The image-based category [Huang et al., 2011, Kerl et al., 2013b, Endres et al.,
2014, Li et al., 2015] that uses RGB-D and depth data. It is mostly adapted when
there is a good gray image value or visual features.

• The depth-based category [Wang et al., 2017] that uses point cloud and is commonly
used in featureless or dark environment.

• The hybrid category [Zhang et al., 2014] that uses point cloud and RGB-D.

The Fovis presented in [Huang et al., 2011], is a feature-based VO method that provides
consistent motion estimation but needs to work at high frequencies for a correct
estimation.

The Dense VO method (DVO), introduced in [Steinbrücker et al., 2011], estimates dense
VO directly from the RGB-D frame by minimizing the difference between the previous
image and the back-projected current RGB-D image. This approach is optimized in [Kerl
et al., 2013b] by a probabilistic derivation and the possibility of prior integration of the
motion and the sensor noise. It has been extended by adding weight to each pixel and
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by incorporating a motion prior. Actually, this method is based on the photo-consistency
assumption that assumes that if a point is observed by two cameras, it has the same
brightness in both images.

Authors in [Zhang et al., 2014] propose the Depth Enhanced Monocular Odometry method
(DEMO) to enhance VO from monocular images by the assistance of depth information
even if it is sparsely or locally unavailable. According to [Fang and Scherer, 2014, Zhang
et al., 2014, Fang and Zhang, 2015], DVO is adapted for environment with relatively dark
illumination and DEMO [Zhang et al., 2014] for areas with no sufficient depth information.

A Fast Semi-Direct Monocular Visual Odometry called SVO is proposed in [Forster et al.,
2014]. The algorithm operates directly on pixel intensities. The 3D points are estimated
using probabilistic mapping method that allows to reduce the outliers (false matching
points) and get more reliable points. Results show that the proposed method is robust,
and faster than current state-of-the-art methods.

In some works, authors use Structure From Motion (SFM) term as a synonym of VO.
Actually, VO is a particular case of SFM [Scaramuzza and Fraundorfer, 2011]. In fact,
SFM is a more general process that treats both 3D problem of camera pose estimation and
structure from images set that can even be unordered. They are generally refined with an
off-line optimization known as bundle adjustment. The SFM’s computation time grows
when the image number grows too. Compared to the SFM, VO focuses on 3D sequential
pose estimation in real time. In VO, the trajectory estimation optimization is optional.

2.2 Simultaneous Localization And Mapping (SLAM)

2.2.1 Overview

The SLAM problem is one of the most important topics in the robotic community. It
consists in answering simultaneously two important questions: Where is the robot? And
what does the world looks like? Let’s consider a robot with a visual sensor mounted on
it. It is moving in an a priori unknown environment and is collecting information about
relative observations of landmarks. Figure 2.4 shows the evolution of the robot poses
and landmarks during a short time of navigation [Durrant-Whyte and Bailey, 2006]. The
following sets are then introduced:

• P0:k = {p0, p1, .., pk} represents the set of poses of robot. Each pose includes the
position and the orientation of the robot.

• U0:k = {u1, u2, .., uk} represents the set of control vectors used to drive the robot
from state l − 1 to state l at time l with l ∈ [1..k].

• M0:k = {m1, m2, .., mk} represents the set of vectors that defines the states of
landmarks. These locations are considered as time invariant.

• Z0:k,i={z1,i, z2,i, .., zk,i} represents the set of observations of the landmark i made
at times [0..k].
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Figure 2.4 – SLAM problem formulation.

The formulation of a probabilistic SLAM can be written in a probabilistic form as
expressed in Eq.2.3. This probability distribution has to be computed at each time k,
knowing the observed landmarks, the control vectors, and the initial robot pose.

P (pk, m | Z0:k, U0:k, p0) (2.3)

Generally, the SLAM problem is resolved through a recursive solution that requires a
motion model and an observation model. By far, the most commonly used approaches for
these model representations are:

• The Extended Kalman Filter (EKF) for an EKF-SLAM solution.

• The Rao-Blackwellised particle filter for a Fast-SLAM solution.
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Some other solutions, explained in the next section, are proposed to attempt to solve the
SLAM problem [Cadena et al., 2016].

2.2.2 Related work

The VO’s main objective is to ensure a local consistency while SLAM aims at a global
consistency of the map [Renaudeau et al., 2018] and the trajectory [Mur-Artal and Tardós,
2017a]. Indeed, SLAM is used to obtain a global and consistent estimate of the robot path
based on loop closure. It allows the algorithm to apply a global optimization to reduce drift
on both the trajectory and the map. Whereas, VO aims at estimating the trajectory pose
after pose, and applying optimization after a certain number of poses called windowed
optimization. The choice between using VO and Visual SLAM is based on a trade-off
between performance and consistency, and simplicity of implementation.

The Parallel Tracking and Mapping (PTAM) proposed in [Klein and Murray, 2007] is a
monocular SLAM based on a parallel framework that includes a tracker and a mapper,
in order to increase the responsiveness and robustness of the whole system. The tracker
enables fast camera localization in real time; whereas keyframe based mapper builds
the global map. Authors in [Ta et al., 2013] modified PTAM – originally designed for
augmented reality – making it more suitable for robot navigation. Instead of using a
motion model, odometry and visual measurements are fused into the framework to deal
with the lack of visual features and the lack of motion in the environment. In addition, a
loop closer mechanism is performed.

Authors in [Cunningham et al., 2010] use an extending Smoothing And Mapping (SAM)
approach consisting on a graphical model approach that introduces the Constrained Factor
Graph (CFG). A Decentralized Data Fusion-SAM (DDF-SAM), that satisfies the DDF
requirements while taking into account the benefits of naive approach, is proposed. The
framework is composed of three modules:

• The Local Optimizer Module performs the SLAM for one robot in its local
environment and produces its local map and condensed local graph.

• The Communication Module shares the previous condensed local graph so that each
robot maintains its local graph and a cache of neighboring robots’ condensed graphs.

• The Neighborhood Optimizer Module merges the condensed graphs to obtain a
neighborhood graph that can be used to build the map.

By applying loop closing process along with DVO method, authors in [Kerl et al., 2013a]
propose a SLAM method that applies a global optimization to reduce drift on both the
trajectory and the map. Yet, many implementation issues of this SLAM method rise due
to versions incompatibility.

Authors in [Forster et al., 2013a] propose a distributed monocular SLAM for a multi-
robot system. To determine each robot’s individual motion, measurements from an on-
board camera and Inertial Measurement Unit (IMU) are combined together. Specific data
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such as image coordinates, descriptors as features of selected keyframes, and relative pose
estimation are streamed to a ground station – called Collaborative Structure From Motion
(CSFM) – where a map for each robot is created and merged if there is an overlap among
them.

A software architecture is proposed in [Brand et al., 2014] to perform a distributed SLAM.
The on-board stereo-vision based mapping system proves its effectiveness in indoor,
unstructured outdoor as well as mixed environment.

A novel direct and feature-less Large-Scale Direct monocular SLAM (LSD-SLAM) method
is proposed in [Engel et al., 2014]. It performs an accurate pose estimation using direct
image alignment along with filtering-based estimation of semi-dense depth maps. A 3D
reconstruction of the environment is represented as a pose graph where keyframes are
vertices.

The OKVIS SLAM [Leutenegger et al., 2015] proposes a non-linear optimization approach
that tightly fuses visual measurements along with readings from an IMU. This allows to
significant advantages in quality of performance and computational complexity.

A novel tightly coupled visual-inertial SLAM system is proposed in [Mur-Artal and
Tardós, 2017b]. This system is able to be applied to monocular as well as stereo and
RGB-D sensors. It performs loop closing to attempt a zero-drift localization in already
mapped areas.

Authors in [Mur-Artal and Tardós, 2017a] propose a lightweight RGB-D feature-based
SLAM method called ORB-SLAM2. It is adapted for monocular (depth triangulated
from different view), stereo and RGB-D sensors. Using the TUM RGB-D data-set [Sturm
et al., 2012], in most cases, ORB-SLAM2 performs better than Elastic-Fusion [Whelan
et al., 2016], kintinuous [Whelan et al., 2015], DVO SLAM [Kerl et al., 2013a] and RGB-
D SLAM [Endres et al., 2014] in terms of Root Mean Square Error (RMSE) translation
error.

A new open framework for research in Visual Inertial (VI) mapping and localization
– called Maplab – is proposed in [Schneider et al., 2018]. It contains a RObust Visual
Inertial Odometry (ROVIO) with Localization Integration (ROVIOLI) and an off-line
Maplab-console. ROVIOLI, composed of an on-line Visual-Inertial Odometry (VIO) and
a localization front-end [Bloesch et al., 2017], is used for pose estimation and visual-inertial
map building. The Maplab-console is used to apply algorithms on map in an off-line batch
fashion such as map alignment and merging, VI optimization, loop closure detection, etc.
Using EuRoC data-sets for comparison, ROVIOLI outperforms ORB-SLAM2 which itself
outperforms in its tern ROVIO in terms of position and orientation RMSE. Nonetheless,
ROVIOLI requires a global shutter camera and an IMU to work. It also does not make
any use of depth information which makes it not optimal when using a RGB-D camera.
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3 Metric map representation

The map reflects the environment by representing its model using either topological or
metric method. A topological map is a graph data structure composed of vertices that
represent the locations in the map, and edges to show the connection/link between them.
Whereas, a metric map is a geometric representation of the environment. Figure 2.5 shows
an example of different map-structure representations.

(a) (b)

(c) (d)

Figure 2.5 – Examples of a map represented in different structures. (a) Point cloud map.
(b) Elevation map. (c) Multi-level surface map. (d) Occupancy grid map based on an
octree. Image from [Hornung et al., 2013].

3.1 Point cloud representation

The point cloud is one of the simplest metric map representation of the environment
(see Figure 2.5a). The points gathered from a range sensor are transformed into a global
coordinate frame. But, this representation is not adapted for dynamic environment and
does not cope with sensor noise.
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3.2 Occupancy grid representation

The occupancy grid map is a discretization of the environment in regularly sized 2D
squares – called cells – or 3D cubic volumes – called voxels – (See Figure 2.5d). The
occupancy grid map is based on a hierarchical data structure – called Octree – which
represents a 3D space that is recursively subdivided until attending a minimum voxel size
– called resolution –(See Figure 2.6). By increasing the resolution, the map becomes less
coarser.

Figure 2.6 – Examples of an occupancy grid map with resolutions of 0.08m, 0.64m , and
1.28m, respectively. Image from [Hornung et al., 2013].

The occupancy grid representation introduces several advantages [Hornung et al., 2013]
such as:

• Arbitrary environment representation without prior assumptions.

• Fast data access.

• Flexibility in extending and combining different maps with different resolutions.

• Updatability in adding new informations or sensor readings.

• Compact memory storage.

• Obstacle distinction for safe robot navigation.

Using the sensor measurements, the cells of the 2D (or the voxels of the 3D) occupancy
grid map are labeled as unknown, free or occupied as shown in Figure 2.7.
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Figure 2.7 – 2D occupancy grid example.

Occupancy grid matching

We propose and implement a simple map matching process in order to evaluate and
illustrate the global map during the mission. Suppose that we have two maps M1 and M2

(See Figure 2.8) with the following assumptions:

• Belonging to the same global frame.

• Having the same resolution.

Figure 2.8 – Map matching of M1 and M2.

Each map is composed of:
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• Header : It contains the sequence ID that is consecutively increasing, the stamp that
defines the seconds and nanoseconds, and the frame this data is associated with.

• Meta data: It contains the time load map, which is the time at which the map hasd
been loaded, the map resolution (Mi.resolution) that defines the metric size of the
cells, the map width (Mi.width) and height (Mi.heigth) in number of cells, and the
origin of the map (Mi.origin).

• Data: It contains the probability of occupancy of the cells in a row-major order.

Algorithm 2.1 describes the pipeline to match M1 and M2 where the steps can be
summarized as follows:

• Steps 1 to 5: The meta data of the fused map are defined.

• Steps 6 to 7: Each cell in the fused map (grid(Mg)) is initialized to lu (cell labeled
as UNKNOWN).

• Steps 8 to 17: Each unknown cell of the grid (grid(Mg) = lu) is filled in using the
value of either grid(M1) or grid(M2).

• Step 18: Return the fused map Mg

Algorithm 2.1: Map matching.
Input: Maps Mi with i ∈ nc.
Output: Fused map Mg.

1: Mg.origin = argmini∈nc
(Mi.origin);

2: δ(Mi).x = (Mg .origin.x−Mi.origin.x)
Mi.resolution

;

3: δ(Mi).y = (Mg .origin.y−Mi.origin.y)
Mi.resolution

;
4: Mg.width = argmaxi∈nc

(Mi.width + δ(Mi).x);
5: Mg.height=argmaxi∈nc

(Mi.height + δ(Mi).y);
6: for all grids in Mg do
7: grid(Mg) = lu.
8: for i = 0; i < nc; i + + do
9: for j = 0; j < Mi.width; j + + do

10: for k = 0; k < Mi.height; k + + do
11: if grid(Mi)[j + k ∗ Mi.width]! = lu then
12: grid(Mg)[(j−δ(Mi).x)+(k+δ(Mi).y)∗Mg.width] = grid[j+k∗Mi.width].
13: end if
14: end for
15: end for
16: end for
17: end for
18: return Mg.

The proposed algorithm is a basic map matching approach used to merge two maps. It
can be adapted to merge more than two maps at a time. This algorithm deals only with
simple rectangular shape maps (This can be improved in our future work.).
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4 Monocular SLAM

4.1 Monocular sensor

Monocular sensors are those where the only sensing device is a single camera. This sensor
provides a set of images taken at discrete times k = [0..n] (See Eq.2.4).

I0:n = {I0, ..., In} (2.4)

Each image Ik is a set of pixels – also called color components – that are stored in a
h × w × 3 matrix where the height h and width w of the image correspond to the matrix’s
number of rows and columns, respectively (See Figure 2.9). The element of (u, v) index
in the matrix represents the pixels’ RGB value.

Figure 2.9 – Image2pixels representation.

2This image was taken in Kauai island, Hawaii.
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4.2 Visual SLAM

Monocular sensors do not provide neither depth measurements (RGB-D camera example)
nor two images of the same scene at the same time (stereo camera example) to compute
these depth measurements. This leads to the inherent problem of scale ambiguity which
consists in computing the scale factor. Despite the great progress in problems related to
monocular SLAM, the main challenge is still the metric scale estimation. The scale3 defines
the relationship between sizes of the world and the created map. As a single camera cannot
compute the scale factor, another sensor is added to be able to measure metrics from the
environment. In the literature [Forster et al., 2015, Concha et al., 2016, Mur-Artal and
Tardós, 2017b, Spaenlehauer et al., 2017], this additional sensor is mostly chosen to be
an IMU due to its light weight, small size, and easiness to be mounted on an UAV.

An architecture for visual inertial SLAM system is proposed in Figure 2.10. It uses a
monocular camera and an IMU as sensors. Similarly to the PTAM approach [Klein and
Murray, 2007], two threads are used: A tracker for a fast response to changes in the
environment and a mapper to build a high quality map of the environment. The only
difference is that the proposed approach uses odometry measurements instead of a motion
model.

Figure 2.10 – Visual inertial SLAM outline. It represent the images input sets from the
camera. αt and ωt are, respectively, the acceleration and angular measurements from the
IMU sensor. pc and pIMU are the estimated states from the camera and the IMU sensors,
respectively. F is the generated 2D factor graph.

The monocular visual odometry is computed by detecting and tracking features of images
coming from an extrinsic camera sensor. Additional inertial odometry is computed using
the acceleration (αt) and the angular velocities (ωt) measurements from an intrinsic IMU
sensor. Both are then fused in the mapper thread where a factor graph is created. An
optimized pose estimation is then generated from this graph. For the map creation, a
sparse nonlinear incremental optimization approach – called iSAM2 – [Kaess et al., 2012] is
used. It allows to provide updated pose estimations when new measurements are available.

The proposed architecture allows not only to overcome the scale ambiguity but also to
reduce the accumulated drift from the estimated trajectory.

3Source: https://www.kudan.eu/kudan-news/scale-simultaneous-localisation-mapping/

https://www.kudan.eu/kudan-news/scale-simultaneous-localisation-mapping/
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4.2.1 Problem formulation

The proposed system is a graph-based SLAM problem that can be formulated in a factor
graph. The graph is a factorization of a function F(θ) described in Eq.2.5.

F(θ) =
∏

i

F(θi), (2.5)

with θi is a variable node i.

The purpose is to find the variable θ∗ that maximizes the function F(θ):

θ∗ = argmaxθF(θ), (2.6)

The factor graph, presented in Figure 2.11, is composed of:

• P0:n={p0, p1, .., pn}: The set of unknown poses.

• M0:m={m0, m1, .., mm}: The set of landmarks.

• Zi=cste,j=0:m={zi0, zi1, .., zim}: The set of visual measurements.

• B0:n−1={b0, b1, .., bn−1}: The set of odometry measurements. bi is the odometry
between the pose pi and pi+1.

Figure 2.11 – Factor graph for monocular SLAM. F0(p0) and mi are the variable nodes.
F(0) is the prior density factor. F i(pi+1, pi, bi) is the odometry factor between the pose
pi and F ij(mj, pi, zij) is the measurement likelihood model between the pose pi and its
landmark mi.

This bipartite factor graph is composed of:

• Variable nodes:

⋄ Camera pose pi.

⋄ Landmarks mj.

• Factor nodes:



4. MONOCULAR SLAM 39

⋄ Prior densities on the variable nodes F0(p0) = p(p0).

⋄ The motion models between two camera poses F i(pi+1, pi, bi) = p(pi+1|pi, bi)
given the odometry measurement bi.

⋄ The measurement likelihood models F ij(mj, pi, zij) = p(mj|pi, zij) between
the pose pi and the landmark mj given the visual measurement zij.

4.2.2 Incremental Smoothing and Mapping 2 (iSAM2)

To resolve the factor graph and estimate the poses, the iSAM2 approach [Kaess et al.,
2012] is used. The estimation problem is based on three graphical models (See Figure
2.12):

• Explicit factor graph.

• Implicit chordal Bayes net.

• Bayes tree.

Therefore, the iSAM2 algorithm can incrementally obtain an estimate of unknown
variables (such as UAV poses and landmarks) given a set of non linear factors (such
as odometry) to finally construct the UAV’s map.

Figure 2.12 – iSAM2 graphical models.

When a new factor is taken into account, the affected part of the Bayes Tree is isolated.
From it, data are formulated as a factor graph and an associated Jacobian matrix. Then,
the factor graph is transformed into a chordal Bayes net and a square root information
matrix using a specific variable order elimination. The last one eliminated is called the
root. Finally, based on the clique structure in the chordal Bayes net, a Bayes tree is
formed with the square root information matrix. Based on these models, the incremental
resolution and update of the iSAM2 are resumed in five important steps presented in
Figure 2.13.
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Figure 2.13 – The iSAM2 steps.

Taking into account the available new factors, variables are initialized and added to
the variable nodes. Thereafter, the process performs a fluid relinearization for marked
variables in order to track the validity of the linearization point for each variable when
needed. These marked variables are chosen according to a threshold between its current
estimate and the linearization point. Then, the Bayes tree is partially updated starting
from the cliques involved by the marked variables and the variables affected by new factors,
up to the top of the tree. Using the obtained new Bayes tree, an update of the current
estimate is performed.

4.3 Results and discussions

The SLAM algorithm was implemented with the Georgia Tech Smoothing And Mapping
toolbox4 (GTSAM) using the factor graph implementation. The experimental code is
written in MATLAB5 and includes MEX functions6 of the c++ library. Tests were
performed on a 2.50GHz i5 Linux machine. To validate the SLAM algorithm, the
measurements were simulated with raw data from the Kitti vision data-set [Geiger et al.,

4Source: https://borg.cc.gatech.edu/index.html
5Source: https://fr.mathworks.com/
6Source: https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.

html

https://borg.cc.gatech.edu/index.html
https://fr.mathworks.com/
https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
https://fr.mathworks.com/help/matlab/matlab_external/introducing-mex-files.html
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2013]. These data contain IMU measurements used for dead reckoning, and images used
for the visual features. To compute the inter frame visual odometry, the libviso2 library7

is used. Hence, given the set of non linear factors including IMU and visual odometry
measurements, the iSAM2 estimates and optimizes poses and landmarks.

To see the improvement performed with the proposed approach, the estimated trajectory
from iSAM2 is compared to those from IMU, libviso2 and GPS, in Figure 2.14.

Figure 2.14 – Trajectory results (2D projection) using IMU, libviso2, iSAM2 and GPS.

The GPS trajectory is obtained using Eq. 2.7:

x = R ∗ cos(latitude) ∗ cos(longitude),

y = R ∗ cos(latitude) ∗ sin(longitude),

z = R ∗ sin(latitude), (2.7)

with R the radius of the earth.

Results show that combining the IMU and the libviso2 trajectory using the iSAM2 helps to
improve the poses estimation, and to reduce the IMU drift compared to the ground truth.
Consequently, by obtaining a graph to exchange data instead of images, the data size
is considerably reduced. Indeed, theoretically, sending images require about 1.843 Mbps
(assuming that an image is encoded in 24 bits); whereas sending poses and landmarks
needs about 0.323 Mbps (assuming that an IEEE standard encodes reals under 32 bits).
Hence, thanks to the graph-based SLAM, we manage to reduce data size by about 5 times.

5 RGB-D SLAM

The RGB-D SLAM uses an RGB-D camera as a visual sensor to sense the environment.
This sensor avoids the scale estimation problem thanks to the depth information.

7Source: http://www.cvlibs.net/software/libviso/

http://www.cvlibs.net/software/libviso/
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5.1 RGB-D sensor

The RGB-D camera is composed of a digital camera for colored images Ct, and another
device for the depth image Dt. The colored image Ct is a 3D matrix encoded in the
RGB space where each color represents a dimension with a number of raws and columns
corresponding to the image resolution (See section 4.1 on monocular sensor). The depth
image Dt is a 2D matrix where Dt(u, v) is the depth of the pixel of column u and row v.
The depth measurements can be computed by different technologies (e.g. camera, infrared)
where the RGB-D sensor can be classified as follows:

• Active: It is composed of a camera and a projector. The projector emits known
patterns that are compared with the camera to get the correspondences. The depth
is computed from these correspondences and the known transformation between the
camera and the projector.

• Passive: It represents stereo sensors composed of two RGB cameras. The depth is
computed by knowing the transformation between them.

RGB-D sensor Comparison

Different types of RGB-D camera exist. One of the most famous is the kinect8 camera
(See Figure 2.15a). Other relatively new technologies are available such as DUO MLX9

(See Figure 2.15b), ZED10 stereo (See Figure 2.15c), and Intel RealSense ZR30011 (See
Figure 2.15d).

(a) Kinect camera. (b) DUO MLX camera. (c) ZED camera. (d) ZR300 camera.

Figure 2.15 – Examples of RGB-D sensors.

A brief comparison is summarized in Table 2.1. The ZED camera have the higher
resolution and range compared to DUO and Kinect. However, this camera requires a
powerful processor to work properly. DUO MLX is a lightweight camera with a good
resolution, small dimensions but a small range and a relatively high price. The ZR300

8Source: https://msdn.microsoft.com/en-us/library/hh438998.aspx
9Source: https://duo3d.com/product/duo-minilx-lv1

10Source: https://www.stereolabs.com/zed/specs/
11Source: https://software.intel.com/en-us/realsense/zr300
122018

https://msdn.microsoft.com/en-us/library/hh438998.aspx
https://duo3d.com/product/duo-minilx-lv1
https://www.stereolabs.com/zed/specs/
https://software.intel.com/en-us/realsense/zr300
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Table 2.1 – RGB-D sensors comparison.

Characteristic kinect xbox
360

DUO MLX
(integrated
IMU)

ZED ZR300

Output Resolu-
tion

640 x 480 x 24
bpp 4:3 RGB
@ 30fps
640 x 480 x 16
bpp 4:3 YUV
@ 15fps

752 x 480 @ 56
fps

2x (1920 x
1080) @ 30fps

2 x VGA @ 60
fps

Depth Range
(m)

0.8 to 4.0 0.23 to 2.5 1 to 15 0.4 to 2.8

Baseline (mm) 75 30 120 20
Dimensions
(mm) (w×d×h)

279 × 50,8 ×
25

52×24×13 175×30×33 9.5 × 101.56 ×
3.8

Weight (grams) 750 12.5 159 -
System
requirements

1.9 GHz CPU
4GB RAM

Modern
Processor
Intel i5/i7,
AMD or ARM
Minimum 4GB
RAM

Dual-core
2,4GHz
or faster
processor
Minimum 4GB
RAM
Nvidia GPU
with compute
capability >
3.0

Intel Joule
compute
module with
Ubuntu 16.04

price12($) 33 595 449 129

has a small size and a good resolution but it is more expensive than the kinect. Despite
its bigger dimension and weight, the kinect is the cheaper and the easiest to use. Taking
into account the UAVs’ mission requirements and purpose, we make the choice to use the
kinect. Yet, the SLAM algorithm is not restricted to a defined type of a RGB-D sensor.

5.2 Proposed approach

The exploration task requires the UAV to implicitly maintain an accurate estimate of its
pose in addition to a map of the observed environment. Figure 2.16 shows the outline
of the localization and mapping processes. Ct and Dt represent, respectively, the colored
and depth measurements gathered from the RGB-D sensor. pi is the robot’s estimated
pose, PS represents the 3D point cloud computed by the SLAM system, and O and L
contain the 3D and 2D grid map, respectively.
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Figure 2.16 – Localization and Mapping layers outline.

5.2.1 SLAM module

The SLAM module in Figure 2.16 provides an estimate of the robot’s 3D coordinates pi

w.r.t. the local reference frame W Fi (See Eq.2.8).

pi = [x, y, z, qx, qy, qz, qw]⊤ (2.8)

A sparse reconstruction of the environment is created using XYZ 3D point cloud. For
pose estimation and map construction, among the existing RGB-D SLAM approaches,
the ORB-SLAM2 vision-based framework [Mur-Artal and Tardós, 2017a] is used. This
approach has shown promising results for pose estimation. The ORB-SLAM2 architecture
is composed of threads and modules as represented in Figure 2.17. It mainly contains:

• Tracking thread for localization: To find and to match ORB feature, and to minimize
the re-projection error.

• Local mapping thread for mapping: To optimize map using Bundle Adjustment.

• Loop closing thread in charge of detecting loops: To correct the accumulated drift
using a pose graph optimization. This thread calls another thread in charge of
performing full Bundle Adjustment (BA) to compute the optimal structure and the
motion solution.

These three main threads work in parallel. A place recognition module is used for re-
localization and loop detection.

5.2.2 Grid-based mapping module

Using the estimated motion and the point cloud from the RGB-D sensor, a 3D occupancy
grid is built during the grid-based mapping process (See Figure 2.16). For that, the
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Figure 2.19 – Map structure evolution during the SLAM process: From point cloud in the
environment to 3D voxels O to 2D cells L.

The visual sensor provides 3D point cloud to represent the environment. A 3D occupancy
grid is then constructed by applying the SLAM approach and the occupancy grid mapping
framework to the point cloud. Using the sensor measurements, voxels of the 3D occupancy
grid map are labeled to unknown ou, free of or occupied oo. This 3D occupancy grid O is
down-projected onto the plane z = 0 of the local frame W Fi to get a 2D cell grid L (See
Equation 2.9).

L = proj(z=0)(O) (2.9)

The cells are occupied as soon as there is an occupied voxel in the z cell range. And, they
are free if all voxels in the z cell range are so. Indeed, in a z cell range, if there is occupied
and unknown or free cells (See Equation 2.10), the 2D projected cell will be occupied;
now if there is unknown and free cells (See Equation 2.11), the 2D projected cell will be
unknown; and if there is only free cells (See Equation 2.12), the 2D projected cell will be
free.

lo(x, y) = oo(x, y, z) ∧ (ou(x, y, z) ∨ of (x, y, z)), (2.10)

lu(x, y) = ou(x, y, z) ∧ of (x, y, z), (2.11)

lf (x, y) = of (x, y, z), (2.12)

Where ∧ and ∨ represent AND (conjunction) and OR (disjunction) boolean operations,
respectively.
Figure 2.20 shows the evolution of the map structure of an UAV that is executing a
mission within a simulated environment. A Kinect camera is mounted on-board the UAV.
These maps represent the sensed environment in the view frustum of the sensor at t = 0s,
that is, at the beginning of the mission.



http://www.ros.org/
http://wiki.ros.org/ardrone_autonomy
http://gazebosim.org/
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5.3.2 Simulation results

The ORB-SLAM2 approach [Mur-Artal and Tardós, 2017a] has been implemented and
evaluated during an exploration mission16. Each robot runs its own ORB-SLAM2 within
its local reference frame W Fi. Using the Gazebo virtual environment and despite the need
of structure and texture, the ORB-SLAM2 has been able to perform localization in a
simulated area.

5.3.2.1 Parameters setting When using a relative localization, the motion is
estimated by comparing the features in the current and previous frame. If the UAV’s
speed is too high, the tracking of these features is lost. Thus, some parameters related to
the UAV’s motion have been tuned. Table 2.2 resumes tests to set some of the required
parameters (linear velocity vi and angular velocity ωi) to perform visual SLAM without
tracking loss or – at least – a fast re-localization. For a tracking loss SLAM, the linear
velocity vi is set to [0.1, 0.2]m.s−1 and the angular velocity ωi to 0.1rad.s−1

Table 2.2 – SLAM behavior while modifying linear and angular velocity. T.L: Tracking
Loss; RL: Re-Localization.

❵
❵
❵

❵
❵
❵
❵
❵
❵
❵
❵
❵

❵
❵❵

vi(m.s−1)
ωi(rad.s−1)

0.1 0.2 0.3

0.1 No T.L. No T.L. T.L., R.L.
0.2 No T.L. T.L., R.L. T.L.
0.3 T.L., R.L. T.L. T.L.

5.3.2.2 SLAM performances using one UAV Figure 2.22 shows the SLAM system
performances during one robot exploration. The drift as well as the trajectory errors are
limited due to the loop-closure algorithm performed within ORB-SLAM2.

5.3.2.3 SLAM performances using two UAVs Results for exploration mission,
using a fleet composed of two UAVs running each one the SLAM algorithm, are presented
in Figure 2.23. As expected, the exploration time using one UAV is greater than using
two UAVs. An important drift occurs at the end of the UAV2’s trajectory because it did
not visit a known place and therefore it could not rectify its trajectory with a loop closure
optimization.

Figure 2.22a and Figure 2.23a contain a 3D sparse point cloud along with robot trajectories
computed by SLAM. The sparse representation of the environment is only used for
illustration, not for exploration nor for navigation.

16Source: https://github.com/raulmur/ORB_SLAM2

https://github.com/raulmur/ORB_SLAM2
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6 Conclusion

This chapter has addressed the problem of simultaneously determining the robot’s location
and mapping the environment, while the robot moves. For that, a brief state of the art on
the existing approaches have been presented. Then, we detailed two approaches for the
SLAM problem.

A first approach was an inertial SLAM where a monocular camera was fused with an
IMU. Results have shown that combining these two sensors improves the pose estimation
and reduces the drift.

The second approach consists in using an RGB-D camera as the main sensor for SLAM.
For that, the ORB-SLAM2 approach was implemented and evaluated using one and two
UAVs in an exploration mission. Results has shown that the adopted approach allows to
minimize the drift and consequently reduce the pose estimation error.

The RGB-D SLAM will be used in the next chapter as the relative localization algorithm
for each UAV during the cooperative exploration missions.
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Coordinated exploration
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1 Introduction

The exploration and mapping of large areas is an active field of research in aerial
robotics. It consists in constructing a 3D model representation of the workspace as robots
progress within it. Recently, the key subject in the exploration problem is the cooperative
deployment of fleet of robots that promise enhanced performances compared to single
robot exploration.

In this chapter, we address the problem of cooperative exploration strategies with no a-
priori knowledge of the environment. We will try to answer the question: Where should
each robot move next?

2 Related work

Recently, several works have proposed solutions for exploration using multi-robot teams
to reduce the mission time and to increase the scalability [Bautin et al., 2012, Jensen and
Gini, 2013, Yan et al., 2014]. Hence, the challenge is to have an efficient cooperation among
the agents in the fleet while maintaining communication [Rooker and Birk, 2007]. For that,
existing approaches can be centralized, that is, one robot in the fleet is responsible for
assigning targets [Burgard et al., 2000]. In [Schmuck, 2017], a central server with increased
computational resources is adopted to receive, treat, optimize and send back information
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to other robots. Other works, such as [Yuan et al., 2010, Sheng et al., 2006], use distributed
approaches where each robot chooses its own target. Another trend is to switch from
individual to cooperative exploration behavior when robots are not able to converge to a
local minimum at a satisfying rate [Wu and Zhang, 2012]. In [Konolige et al., 2003], authors
propose to consider four possibilities taking into account robots’ interactions in order to
construct a distributed map. The situations involved are: no interaction (robots are not
within each others’ communication range), hypothesis generation (there is an interaction
between the robots but they do not know their respective location), hypothesis verification
(there is an interaction between the robots and they propose an hypothesis about their
location), and coordinated exploration (there is an interaction between robots and they
do share their maps).

2.1 Robot-to-target assignment

The mapping algorithm is performed while a robot attempts to reach a target. So, for
an effective environment mapping, the target should be chosen carefully. There is a wide
variety of goal assignment strategies to affect one robot to a target. The majority of them
are centralized and use a cost function to compute the utility of reaching a target.

In the greedy assignment [Yamauchi, 1998], each robot chooses a target depending on its
cost function without coordinating with other robots. Hence, one target can be visited by
different robots. To solve this issue, already chosen targets can be discarded before being
considered for assignment by others using Broadcast of Local Eligibility (BLE) [Werger
and Matarić, 2000] also called Iterative Assignment. But, this method does not necessarily
produce the optimal solution since it depends on the order of robots.

The K-means method [Solanas and Garcia, 2004] consists in dividing the environment to
explore into regions of the same number of robots, then, assigning one robot to the closest
region where it will choose a target from the frontiers depending on a cost function.

The Hungarian method [Pal et al., 2011] proposed by [Kuhn, 1955], solves the worker-
task assignment written in the form of n × n matrix C where ci,j is the cost of the
task j assigned to the worker i. The optimal assignment is found with time complexity
O(n3). This algorithm requires that the number of workers is equal to the number of tasks
which cannot be guaranteed. Else, imaginary robots or targets can be added to satisfy
the assumption, and skipped later in the selection.

Authors in [Nanjanath and Gini, 2006] present an auction-based method to assign tasks
to a group of robots. The distribution of tasks is accomplished by means of a first-price
reverse auction which means that the auctioneer is the buyer. One task is auctioned one
at a time by priority. Then, the auctioneer selects the best bid and assigns the task to
the corresponding bidder. The algorithm is well adapted to dynamic environments, where
unexpected obstacles might prevent a robot from reaching its target.

In [Zhao et al., 1996, Leigh et al., 2007], a genetic algorithm is used to optimally assign
robot to tasks. It is an NP-hard problem since it is considered as a generalized two-
dimensional multi-type bin packing problem.
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Authors in [Faigl et al., 2012] present a new approach called Multiple Traveling Salesman
Problem (MTSP) for robot-to-target assignment in multi-robot exploration problem. It
consists in clustering an environment, determining the cost of TSP distance for each pair
of robot cluster, assigning goals from non empty cluster, and finally fixing goals for empty
clusters. This approach was compared with greedy, iterative and Hungarian method. The
MTSP presents competitive results regarding the total computational requirements and
the increasing number of robots.

In [Kulich et al., 2015], a comparison of some assignment strategy used for multi-
robot system is done. The compared strategies include Hungarian method, Greedy, BLE
method and K-means clustering. Results show that Hungarian method outperforms other
approaches in majority of cases. Unlike the Hungarian method, the iterative assignment
can be implemented in a distributed environment. Also the Hungarian methods are
computationally heavy compared with the simple greedy algorithm which is preferred
in applicable scenario.

2.2 Utility function

Most of the robot-to-target assignments are based on an utility function that defines
the benefits that a robot have to reach this target, taking into account the mission’s
aim [Burgard et al., 2000]. The work proposed in [Benavides et al., 2016] presents a new
utility function that takes into account the traveling cost to the target and the connectivity
utility. This allows a trade off between minimizing the amount of exploration time and
the connectivity. To speed up velocity, authors in [Cieslewski et al., 2017] propose a rapid
frontier selection technique to select goals from the robot’s field of view. This approach
minimizes the overall mission time by minimizing the change in velocity of the robot.
Nonetheless, this approach increases the total path length traveled. In [Heng et al., 2015],
maximizing the reconstructed model is favored over the mission time. Furthermore, the
proposed approach solves simultaneously exploration and coverage problems in order to
maximize the completeness of the reconstructed model. Whereas in [Simmons et al., 2000],
the aim is the maximization of the utility of targets that minimizes the potential for
overlap in information gain amongst members of the fleet. The utility of reaching a target
depends basically on the aim of the mission while taking into account some additional
constraints such as time, completeness of the map, limited sensor and communication
range, or number of robots.

3 Proposed exploration strategy

3.1 Overview

In a Multi-UAV system, the exploration strategy needs to be cooperative to maximize the
efficiency. The main objective proposed here, is to cooperatively choose specific regions
to be simultaneously explored using a frontier-based approach. Commonly, this is done
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by selecting candidate targets and assigning them to each robot in an optimized manner.
Figure 3.1 shows the proposed pipeline exploration process performed by each UAV.

Figure 3.1 – Proposed exploration process pipeline.

Each UAV selects the frontier points of its constructed local map during the SLAM step.
Then, it computes the corresponding information gain of these points. If the UAV’s role is
an explorer, it would passively wait until receiving instructions; else, if it acts as a leader,
it would process the collected frontier points, and would assign a target to each robot in
the group. Given a target, UAVs will plan a specific path to reach it.

During these steps, the map structure evolves from a projected 2D grid map obtained
from the localization and mapping module, through frontier points during the frontier
selection process, then candidate targets during the frontier processing step, to a final set
of selected targets to reach. The evolution of the map structure is illustrated in Figure
3.2. Algorithm 3.1 describes the main steps performed during the exploration.

Algorithm 3.1: Exploration strategy for coordinated Multi-UAV.
1: From cells ll ∈ L, select frontier points fi,j ∈ F and compute their respective

information gain I (fi,j).
2: Process frontier points fi,j to get candidate goals tk ∈ G (See Algorithm 3.2).
3: Assign UAVi with target k (See Algorithm 3.5).
4: Send targets to the corresponding robots.
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Figure 3.2 – Map structure evolution during the exploration process: From 2D cells L to
2D frontier cells F to candidate frontier cells/points G (candidate targets) to 2D target
cells/points T .

3.2 Frontier points selection

The frontier selection process is used to define the frontiers of regions bounded by obstacles
or unknown spaces (See Figure 3.3).

Figure 3.3 – Frontier cells/points selection of a 2D occupancy grid map.

The frontier cells fi,j ∈ F are selected from the set of cells L (F ⊂ L) such that they are
either:

• Free lf and adjacent to unknown.

• Labeled as occupied lo. The Occupied cells lo are considered as frontier cells to be
able to perform frontier processing in the next step. They could not be chosen as
target and will be discarded later.
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In Figure 3.2, the frontier cells are: lf (2, 1), lf (2, 2), lo(2, 3), and lo(3, 3). Thus, for a cluster
C containing UAVi, the frontiers are:

F = {fi,1(2, 1), fi,2(2, 2), fi,3(2, 3), fi,4(3, 3)}, (3.1)

3.3 Information gain computation

In frontier-based exploration approaches, only cells adjacent to unknown ones may be
defined as candidate frontier points and are likely to be chosen as targets. Thereby, the
information gain is associated to each of them in order to estimate the utility of reaching
each frontier. This corresponding information gain can be defined in different manners
depending on the mission purpose. Authors in [Burgard et al., 2005] propose to use a
probability function to reduce an assigned constant value taking into account the relative
distance to the UAV’s pose. This strategy is general and does not take into account
the updated explored cells. The approach proposed in [Heng et al., 2015] affects, to the
information gain, the number of unknown and not occluded cells in the view frustum of
the target. This method depends on the real estimate of information gained when visiting
the considered pose. However, it requires more computation.

In the proposed strategy, the information gain is allocated so that it defines the amount
of unknown cells surrounding the target (See Figure 3.4). It is a non-metric value that
counts the number of cells labeled as unknown lu from the 48 cells around the frontier
point.

Figure 3.4 – The information gain computation of a frontier point x (in red). The hatched
cells represent the 48 surrounding cells of the frontier point x. The information gain of x
is: I (x) = 25.
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3.4 Frontier points processing

All frontier points fi,j ∈ F of UAVi in the cluster C with i ∈ [1..nc], are col-
lected. Points in F are then processed using Algorithm 3.2 to get candidate frontier
points considered as candidate targets tk ∈ G with k ∈ [1..ng] (See Figure 3.2)

Algorithm 3.2: Frontier processing algorithm.
Input: Frontier points fi,j ∈ F of UAVi with i ∈ [1..nc].

Output: Candidate targets G.

1: pu =
⋃nc

i=1 fi,j.

2: pi =
⋂nc

i=1 fi,j.

3: G = pu \ pi.

4: Delete the obstacle frontier points fi,j(x, y) = lo(x, y) from G.

5: return G.

Figure 3.5 shows an example of frontier processing with two UAVs’ map to get the
candidate targets. The obstacle frontier points fi,j(x, y) = lo(x, y) – labeled as occupied –
are only kept to compute the intersection of frontier points. Only the free frontier cells lf

can be considered as candidate target.

When using local frontier points instead of local maps, the frontier process replaces the
map matching process where the aim is to clear overlapping areas. Hence, in the frontier
processing step, the frontier points that belong to overlapping areas are cleared. Therefore,
using frontier points allows important memory saving. To compute the frontier points
that belong to the overlapped areas (Steps 1, 2 and 3 in Algorithm 3.2), we propose two
approaches with convex shapes and concave shapes assumptions.

3.4.1 First approach: Convex shape map

In this approach, map shapes are considered convex, which simplifies the intersection
computation in Algorithm 3.3. Figure 3.6 shows two examples of applying frontier
processing algorithm while assuming convex shapes with two and three UAVs’ map.

This algorithm is relatively easy to apply, but results show that it does not perform well.
The convex assumption leads to some false overlapped frontier points. Consequently, some
unknown areas will not be visited since their corresponding points are removed and, thus,
will not be assigned as a target.

3.4.2 Second approach: Concave shape map

In the second approach, we make the assumption of concave shapes for the UAVs’ map to
compute their intersection in Algorithm 3.4. Figure 3.7 shows two examples of applying
frontier processing algorithm while assuming convex shapes with two and three UAVs’
map.
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Algorithm 3.3: Intersection computation algorithm with convex shapes assumption.
Input: V ect1, V ect2
Output: V ect_Final

1: for i ∈ V ect1 do
2: inf = 0, sup = 0;
3: for j ∈ V ect2 do
4: if V ect1(i).x < V ect2(i).x then
5: inf + +;
6: else
7: sup + +;
8: end if
9: end for

10: if inf > 0 and sup > 0 then
11: V ect_inter.push_back(V ect1(i))
12: end if
13: end for
14: for i ∈ V ect_inter do
15: inf = 0, sup = 0;
16: for j ∈ V ect2 do
17: if |V ect_inter(i).x − V ect2(i).x| < 0.5 then
18: inf + +;
19: else
20: sup + +;
21: end if
22: end for
23: if inf > 0 and sup > 0 then
24: V ect_Final.push_back(V ect_inter(i))
25: end if
26: end for
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(a) (b) (c)

(d) (e) (f)

Figure 3.6 – Frontier points processing wile assuming two convex map shapes in the first
line and three in the second line. (a) and (d) represent two and three convex map shapes,
respectively; (b) and (e) represent the frontier points in overlap (intersection); and (c)
and (f) represent the obtained frontier points after processing (final shape).
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Algorithm 3.4: Intersection computation algorithm with concave shapes assumption.
Input: V ect1, V ect2
Output: V ect_Final

1: for i ∈ V ect1 do
2: inf = 0, sup = 0, eq = 0;
3: for j ∈ V ect2 do
4: if V ect1(i).x < V ect2(i).x − 0.5 then
5: inf + +;
6: else if V ect1(i).x > V ect2(i).x + 0.5 then
7: sup + +;
8: else
9: eq + +;

10: end if
11: end for
12: if (inf > 0 and sup > 0) or eq > 0 then
13: V ect_inter.push_back(V ect1(i))
14: end if
15: end for
16: for i ∈ V ect_inter do
17: inf = 0, sup = 0, eq = 0;
18: for j ∈ V ect2 do
19: if |V ect_inter(i).y − V ect2(i).y| < 0.5 then
20: if V ect_inter(i).x < V ect2(i).x − 0.5 then
21: inf + +;
22: else if V ect1(i).x > V ect2(i).x + 0.5 then
23: sup + +;
24: else
25: eq + +;
26: end if
27: end if
28: end for
29: if (inf > 0 and sup > 0) or eq > 0 then
30: V ect_Final.push_back(V ect_inter(i))
31: end if
32: end for
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(a) (b) (c)

(d) (e) (f)

Figure 3.7 – Frontier points processing wile assuming two concave map shapes in the first
line and three in the second line. (a) and (d) represent two and three convex map shapes,
respectively; (b) and (e) represent the frontier points in overlap (intersection); and (c)
and (f) represent the obtained frontier points after processing (final shape).
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Results show that only the frontier points within overlapping areas are removed. Even
if some ambiguous frontier points are located within/inside the global shape – which
can be confusing –, they are not deleted. This algorithm, assuming concave shapes,
performs better than the previous one that assumes convex shapes. Hence, for the frontier
processing, the shape of local maps are assumed concave.

3.5 Utility function

The proposed utility function in Eq. 3.2 aims to simultaneously increase the explored area
rate and to reduce the distance of each UAV to its corresponding target. The function
also considers the average of distances between each robot in the group and this target in
order to maximize distances among robots.

U (UAVi, tj) = I (tj) exp(−λ.(dmin(Pi, tj) +
nc − 1

dtot

)), (3.2)

where UAVi is the considered robot, tj ∈ G and I (tj) are respectively the candidate
target and its corresponding information gain, λ ∈ [0, 1] is a trade-off parameter, nc is
the number of UAVs in the cluster C, and dtot =

∑nc

k=1,k 6=i(dmin(Pk, tj)) is the sum of
the minimum distance from UAVk’s pose Pk to the candidate target j. The proposed
utility function is inspired from [Heng et al., 2015] and it has been presented in our works
[Mahdoui et al., 2017, Mahdoui et al., 2018]. This function performs a trade-off between
rapid exploration and a precise filling the map using a tuning parameter λ. From Figure
3.8, we can notice that the larger λ, the less important the distance dtot. Thus, a precise
filling is favored over rapid exploration and vice versa.

Regarding the Multi-UAV case, the utility function is based on the average of neighbors
distances. As shown in Figure 3.8, with an information gain of I (tj) = 25 and three UAVs
in the cluster (nc = 3); an increasing distance of UAV to the target will reduce the utility
function. Whereas, the larger the average distance from other UAVs w.r.t. to the target,
the more the utility. So the function tends to choose the closest target to the considered
UAV; but at the same time, the farthest one from the others.

In the case of a single UAV, the utility function (See Eq. 3.3) tends to choose the closest
target with the maximum of information gain:

U (UAVi, tj) = I (tj) exp(−λ.(dmin(Pi, tj))), (3.3)

The parameter dtot =
∑nc

k=1,k 6=i(dmin(Pk, tj)) represents the sum of the minimum distance
between the target tj and the neighbors’ poses Pk with k ∈ [1..nc]\i. So, if tj has
neighboring UAVs that are too far, the utility function will increase, so tj is more likely
to be chosen.

The aim in the utility function is to maximize dtot. We distinguish two cases where dtot

can be too close to zero or equal to it:
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(a) λ = 0.2 (b) λ = 0.4

(c) λ = 0.6 (d) λ = 0.8

Figure 3.8 – Utility function behavior: I (tj) = 25 , nc = 3, dtot =
∑nc

k=1,k 6=i(dmin(Pk, tj)).
The average distance of other UAVs dtot has a minimum value different from zero since nc

is different from zero too.

• There are no neighbors. In this case, there is one UAV in the fleet: nC = 1. The
utility function in Eq. 3.3 is used.

• The candidate target tj and the neighbors’ poses Pk with k ∈ [1..nc]\i are almost
confused (too close to each others). In this case tj is less likely to be chosen.

Yet, this parameter dtot could have a high value when:

• There is one UAV too far from tj.

• There are several UAVs with relatively short distance from tj.

So, in order to avoid these ambiguous situations, the average of dtot is considered by using
nc

dtot
.

3.6 Goal assignment process

In order to make appropriate UAV-to-target assignment, the utility of reaching each
candidate frontier is considered. The goal assignment process is described in Algo. 3.5.

For each UAVi, the utilities of reaching all the candidate targets are computed. The target
tg that maximizes the utility is computed and, the assignment θ(UAVi, tg) is performed.
Then, the remaining candidate targets G \ T are scheduled in order to avoid to select a
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Algorithm 3.5: Goal assignment algorithm.
Input: Candidate targets tk ∈ G, k ∈ [1..ng] and their respective information gain

U (tk), poses Pi of all robots in the considered cluster C.
Output: θ(UAVi, tg) assignment of UAVi with target g.

1: T = ∅.
2: while no goal for UAVi do
3: Compute its corresponding utility of reaching each remaining candidate goal

U (UAVi, tk) with tk ∈ G \ T .
4: tg= argmaxtk∈G\T U (UAVi, tk).
5: Schedule the information gain of the remaining candidates tk ∈ G \ T .
6: T = T ∪ tg.
7: end while
8: return θ(UAVi, tg) assignment.

target too close to tg, in the next iteration. Also, tg is removed from G to prevent from
assigning the same target to different robots. This assignment process is performed for
the available UAVs in C in a sequential manner until getting all assigned targets tg ∈ T
with g ∈ [1..nt] (See Figure 3.2)

3.6.1 Stop condition

The goal selection process is realized by each cluster/group-leader (if n > nc) or the Fleet-
leader (if n = nc). This assignment aims to, cooperatively, distribute the robots in the
environment to explore simultaneously different unknown regions. As long as candidate
frontier points are still available, the leader continues to assign targets to explorers and
they attempt to reach their assigned goals. When the leader notices that no candidate
targets are left, that means that all the environment has been explored successfully and
the mission is accomplished. Thus, it has to send back to the explorers an acknowledgment
to prevent them assuming a communication loss.

3.6.2 Loop rate

The target assignment process is performed at each loop. The frequency of assigning
targets impacts the duration and the efficiency of the mission. In a distributed approach,
as soon as the UAV reaches its current target, it selects a new one without consulting the
others. In a centralized approach, the first UAV to reach its current target has to wait
until the others reach their respective targets. This can be a problem as soon as one of
them fails or leaves the mission. Another possibility is to begin to assign targets once one
UAV reaches its target. But this may generate incomplete tasks. In the proposed strategy,
the frequency of assignment or loop rate r is predefined depending on the average of time
to reach a target (See Eq. 3.4).

r ∈
[ s

vi,max

,
s

vi,min

]

(3.4)
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where s is the maximum sensor range and vi is the UAV’s velocity.

3.6.3 Scheduling the information gain

The information gain of each remaining candidate target I (tk)t−1 at time t−1 with tk ∈ G
\{tg}, that belongs to the threshold range [rmin, rmax], is scheduled at time t depending
on its distance w.r.t. the target tg, using Eq. 3.5. Figure 3.9 represents an example of
the function shape used to schedule the information gain. The example shows a Gaussian
function with an amplitude that corresponds to the information gain maximum value; a
center that corresponds to the target position (tg(x), tg(y)); and σx and σy that spread
the blob in x and y axis, respectively.

Figure 3.9 – Example of the shape function to schedule the information gain(I (tk)t−1 = 29,
(tg(x), tg(y)) = (1.125, −0.275), σx = σy = 3 ).

I (tk)t = I (tk)t−1(1 − exp(−(
(tk(x) − tg(x))2

2.σ2
x

+
(tk(y) − tg(y))2

2.σ2
y

))), (3.5)

where tk(x) and tk(y) are the remaining candidate target coordinates; tg(x) and tg(y)
are the target coordinates; and σx and σy are the spreads of the blob. The smaller the
distance of the frontier point tk w.r.t. the target tg, the smaller the information gain.
When reducing the information gain, the candidate targets are less likely to be chosen
and thus, robots ensure a certain distance among their future targets.

3.7 Path planning and control

As explained in Section 5.2 of Chapter 1, UAVs are assumed to navigate in a simplified
2D environment with a fixed z value. Block 6 in Figure 1.6 is responsible for planning a
path to the selected target and attempting to reach it. These tasks are ensured by the
move base1 package.

1Source: http://wiki.ros.org/move_base

http://wiki.ros.org/move_base
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For the navigation task, each UAV maintains a local and a global planner along with a
local and a global costmap, respectively. The costmap is a 2D cell grid L with additional
inflation that consists in propagating cost values out from occupied cells and decreasing
them with distance. The global costmap has the size of the UAV’s map whereas, the local
costmap has a fixed size moving window. Given a starting point – the current pose – and
an endpoint – the assigned target – in the global costmap, the global planner produces
a plan using a navigation function computed with Dijkstra algorithm [Dijkstra, 1959].
It consists in following the adjacent free cells until reaching the goal. Then taking into
account the local costmap, the local planner generates velocity commands for the UAV’s
mobile base. A recovery rotational behavior is also performed when needed in order to
clear the robot’s field of view.

The target assigned by the leader is ensured to belong to an unknown area using the
exploration strategy. The trajectory planning process is performed locally on each robot.
And since the UAVs do not exchange their local maps nor fuse them, they are likely
to revisit already explored areas while following the planned path. To minimize these
overlapped regions during navigation, a priority is given to frontier points fi,j to be a
target for UAVi over UAVk with k 6= i. This helps the UAV to maintain the same direction
during exploration. The move base package is a 2D navigation stack. However, to avoid
drifting on the z axis, a control command is added to keep a static z altitude (See Figure
3.10).

Figure 3.10 – From 2D (left) to 3D (right) navigation stack. The navigation z is a ROS
process developed to provide a control command on the z axis.

4 Results and discussions

Simulations have been performed to evaluate the proposed exploration strategy. Ad-
ditional tests while using relative localization have been done to measure the system
performances. The simulations are performed using Robot Operating System (ROS)
running on a 2.60GHz i7 Linux machine. For the quad-rotor simulation, the AR-drone
model2 equipped with an RGB-D camera in a forward-looking configuration, is used.
A bounded unknown environment is generated using Gazebo simulator. The number of

2Source: http://wiki.ros.org/ardrone_autonomy

http://wiki.ros.org/ardrone_autonomy
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robots used for evaluation is limited to three, however, the proposed system architecture
is not constrained to a fixed number of robots.

4.1 Parameters tuning

For an effective evaluation of the exploration strategy, we run some tests to set the most
adequate parameters configuration.

4.1.1 Trade-off parameter λ

The utility function (See Eq. 3.2) used in the exploration strategy can be tuned, using a
trade off parameter λ, between fast exploration and filling in details the map.

Figure 3.11 shows different runs while varying this parameter. By increasing λ, the
information gained when reaching the goal is favored over the distance and thus, the
cost to it, and vice versa. So, when λ is small, the traveled distance is small and so the
exploration time. Though, some times during the mission, high values of λ are noticed to
reach higher exploration rate than smaller ones.

Figure 3.11 – The impact of varying the trade off parameter λ over exploration time.

4.1.2 Loop rate r

The frequency or loop rate r of target assignment may also affect exploration time
performance. The values of r vary to take into account the robot velocity vi and the
sensor’s maximum range s. The impact of varying the loop rate is evaluated in Figure
3.12.
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Figure 3.12 – Exploration time while varying the loop rate r.

Given a robot velocity vi = {0.1, 0.3} m.s−1 and a maximum sensor range s = 4 m,
the loop rate variates in r ∈ [10, 40]. This parameter should not be too small to allow
the robot to reach its target; nor too big to prevent long waiting times for the next goal
assignment.

4.1.3 Common parameters

Depending on results in Figure 3.11 and Figure 3.12, respectively, λ is set to 0.2 and r to
20s in order to maximize the explored area rate while minimizing the mission time. The
simulation parameters are summarized in Table 3.1.

Table 3.1 – Common parameters.

Parameter Value
RGB-D horizental FoV π/3
Trade-off parameter λ 0.2
RGB-D maximum range s
(m)

4

Min distance among fron-
tiers d (m)

0.3

Occupancy grid resolution
(m)

0.05

Range to schedule the Ig
[σx, σy] (m)

[3, 3]

Loop rate l (s) 20
Environment dimension
(m2)

8 × 8

Linear velocity vi (m.s−1) [0.1, 0.3]
Angular velocity ωi

(rad.s−1)
[0.1, 0.3]
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4.2 Exploration strategy performances

The proposed exploration strategy has been evaluated in terms of distribution of the
robots in the environment, overlap rate, exploration time, and total traveled distance by
each robot.

4.2.1 Maps evolution during the mission

While reaching their respective assigned goals, each robot is in charge of creating a detailed
grid map of the visited area in order to get a global map of the environment. Figure 3.13
illustrates the growth of the reconstructed 3D occupancy grid map at different times
during the mission. Note that to reach 99% of coverage, a lot of time is spent.

Figure 3.14 shows the evolution of the respective projected 2D local grid map of two
robots during a cooperative exploration mission. The global projected 2D grid map is also
created and represented for evaluation (the occupancy grid matching process introduced
in Algorithm 2.1 in Chapter 2 is used). The robots’ initial positions are (1,0,0) for UAV1

and (1,-3,0) for UAV2. Despite a relatively close initial position, the proposed strategy
effectively spreads the robots so that UAV1 is in charge of the left side of the environment
and UAV2 of the right one.

4.2.2 Frontier points evolution during the mission

The target is chosen from the candidate frontier points that define the edges of an
environment not previously explored. These candidates are selected from the final frontier
points of each UAV in the fleet (See Figure 3.15). During the exploration mission, the
local map size increases, which leads to an increasing number of local frontier points. At
the beginning of the exploration, the number of candidate frontier points increases, but as
soon as the exploration evolves in time, their number decreases. At the end of the mission,
when all the environment is explored, no candidate frontier points should be left.

4.2.3 UAVs’ trajectories during the mission

Figure 3.16 shows the explored map with the trajectories using one, two and three UAVs.
The UAVs try to explore the full environment while avoiding already explored areas. In
a cooperative way, each UAV is in charge of visiting an area by reaching a target that
belongs to a non-explored environment. These targets are assigned by the Leader which,
even if the initial poses of the UAVs are relatively close, effectively spreads them into
unknown areas. The global map is composed of the superposition of all UAVs’ local maps.
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(a) One UAV.

(b) Two cooperative UAVs.

(c) Three cooperative UAVs.

Figure 3.15 – The evolution of candidate and final frontier points numbers during
cooperative exploration.
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4.2.4 Goal assignment evaluation: Distribution of the robots in the environ-

ment

The goal assignment process is performed according to the algorithm described in Section
3.6. Nevertheless, after assigning a target to the first robot in the list, the same target
or another one close to it may be assigned to the second robot in the list. To overcome
these issues, the information gains of the remaining candidate targets are scheduled. This
allows to discard an already assigned target and keep a certain distance between the new
target and the previous one assigned.

Suppose that a target is assigned to the first robot in the cluster list. Figure 3.17 shows
the goal selected for the second robot when a sequential assignment is performed:

• Without further frontier points processing (See Figure 3.17b). Consequently, the
same target is assigned to two different robots.

• While removing the assigned target from the remaining candidate frontier points
(See Figure 3.17c). Consequently, the second target is relatively close to the first
one assigned.

• While scheduling the information gain after each target assignment (See Figure
3.17d). Consequently, the assigned targets are spaced out into the environment.
The information gain is scheduled following Eq. 3.5. The information gain value
increases with distance to the candidate target tg.

The goal assignment process may sometimes be not optimal since it depends on the robots’
order in the list. For example, suppose that robots UAVi and UAVj have the same best
target assignment tk such that it offers the maximum utility over candidate frontier points
where Eq. 3.6 and Eq. 3.7 are verified.

tk = argmaxtm
U (UAVi, tm) (3.6)

with tm ∈ G

tk = argmaxtn
U (UAVj, tn) (3.7)

with tn ∈ G.

UAVi have another candidate frontier point tl with:

U (UAVi, tk) > U (UAVi, tl) > U (UAVj, tk) (3.8)

So the optimal solution would be to assign tl to UAVi and tk to UAVj. But, if UAVi is the
first in the list, tk is assigned to it and another candidate frontier point with less utility
than tk, is assigned to UAVj. Thus, the solution with sequential goal assignment is not
always optimal.
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(a) Candidate targets.

(b) Case 1.

(c) Case 2.

(d) Case 3.

Figure 3.17 – Goal assignment: After assigning a target to UAV1, a target is assigned
in a sequential manner to UAV2. (a) represents the candidate frontier points with
their respective information gain. (b), (c), and (d) represent, respectively, the targets
assignment when: No further process is performed for the remaining candidate targets;
UAV1’s target is removed from the remaining candidate targets and; the information gain
of the remained candidate targets are scheduled.
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To overcome this problem, all the numbers of possible combination ng !
ng ! (ng−nc)!

with ng

the number of candidate targets and nc the number of robots, need to be considered.
This increases considerably the computation time by increasing the number of robots.
Therefore, in the proposed algorithm, sequential assignment is favored over computing all
possible permutations.

4.2.5 Explored space rate evaluation

This evaluation aims at quantifying the amount of explored spaces during the mission.
Figure 3.18 shows the explored space rate performed by each UAV in the fleet. The more
UAVs in the environment, the less the exploration rate demanded by each one. A robot
has no need to continue exploring an area if it has already been explored by another one.
Thus, the mission time is considerably reduced.

4.2.6 Overlap rate evaluation

The use of an effective goal assignment process should limit the generated overlap. In
Figure 3.19, the time evolution of overlap is evaluated using two cooperative robots. The
overlap undergoes a significant increase at the end of the exploration to reach 33%. This
is explained by the closeness of the local maps at the end of the mission to precisely fill
the global grid map.

Figure 3.19 – Explored and overlapped area rate using two cooperative UAVs.

4.2.7 Traveled distance evaluation

To effectively evaluate the exploration strategy performance in terms of distance traveled
by each UAV, different runs with one, two and three UAVs have been conducted where
explored area rate reaches almost 99%. Figure 3.20 shows the distance traveled by each
UAV in the fleet during the mission.
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(a) One UAV.

(b) Two cooperative UAVs.

(c) Three cooperative UAVs.

Figure 3.18 – Explored space rate with one, two and three UAVs.
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(a) One UAV.

(b) Two cooperative UAVs.

(c) Three cooperative UAVs.

Figure 3.20 – Traveled distance by each UAV with one, two and three cooperative UAVs.
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The distances traveled by each UAV using one, two and three UAVs in the fleet are
compared in Figure 3.21. This distance decreases with the number of UAVs. The average
distance traveled by each UAV is reduced by 55% for 2 UAVs and by 62% for 3 UAVs.
The error of the traveled distance is slightly reduced from one to two and three UAVs.

Figure 3.21 – Traveled distance evaluation.

4.2.8 Exploration time evaluation

For the exploration time evaluation, different runs have been performed using 1, 2 and 3
UAVs. Figure 3.22 shows that the average of exploration time decreases when the number
of robots in the fleet increases. The computed error decreases as well. The time is reduced
by 25% for 2 UAVs and by 30% for 3 UAVs. The exploration time and distance are not
divided by 2 or 3 when multiplying by 2 or 3 the number of robots, respectively. During
these simulations, the robots’ initial positions are: (1,0,0) for one UAV; (1,0,0) and (1,-3,0)
for two UAVs; and (1,1,0), (1,-1,0) and (1,-3,0) for three UAVs.

Figure 3.22 – Average exploration time.

The results presented in Section4.2 were evaluated without a relative localization. So, for
a more challenging realistic scenario, runs with relative localization algorithm have been
performed to evaluate system performances using SLAM.
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4.3 Exploration mission using relative localization algorithm

Toward a more realistic scenario, the ORB-SLAM2 approach (introduced in Section 5 of
Chapter 2) has been implemented to perform relative localization (See Figure 3.23).

Figure 3.23 – Two UAVs navigation using ORB-SLAM2. Rviz image (left) shows, for
each UAV, the constructed 2D occupancy grid map, its estimated trajectory and the
corresponding ground truth. The point cloud (middle) represent the sparse reconstruction
of the environment made by each UAV. And, the green markers (right) represent the
features computed by each UAV to perform localization.

Each robot performs SLAM where it constructs its map in its local reference frame W Fi,
and estimates its relative pose pi within it. Then, the fleet performs cooperative explo-
ration using some specific information exchanged among UAVs. But, these information
have to be in a common reference frame. Therefore, information such as the pose pi

and the frontier points fi,j are necessarily transformed into the global reference frame
0W before being exchanged. Hence, the leader makes all the needed computation and
sends back to the explorers the targets in 0W. When a robot receives its assigned goal, it
transforms it into W Fi to plan a path to it.

To perform a transformation from local reference W Fi to global one 0W, the robot has
to know – at least – its initial pose w.r.t. 0W. As explained in Section 5.2 of Chapter 1,
the global reference frame of the environment is initialized such that it coincides with the
local reference frame of the first group-leader in the fleet which is UAV1 in the considered
example of Equation 3.9.

0W ≡ W F1, (3.9)

Then, by detecting this robot using tags mounted on it, the other robots are able
to estimate their respective transform to it Fj

[

R t
]

F1

, j ∈ [2..nc]. For simulation
evaluations, the information of transform – computed while detecting the tag – are
assumed to be known. Figure 3.24 shows the exploration rate evolution during the
exploration mission while using ORB-SLAM2 as the relative localization approach. The
mission time using ORB-SLAM2 is reduced by 43% for 2 UAVs instead of 1 UAV.
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Figure 3.24 – Explored area rate evolution during exploration mission with one and two
UAVs while performing ORB-SLAM2 by each UAV.

The exploration time when using a relative localization (See Figure 3.24) is relatively
important compared to the exploration without SLAM (See Figure 3.18) since the velocity
has been considerably reduced.

5 Conclusion

In this chapter, we presented a state of the art of multi-robot exploration mission including
the strategy used to assign a robot to a target and an utility function adopted to estimate
the interest of reaching it. Then, we introduced an exploration strategy based on the
group-leader decision making. The robot-to-target assignment is performed using a novel
utility function. This function makes a trade-off between fast exploration and getting a
detailed grid map, and also takes into account the distance of each robot in the group
from the unexplored set of targets. Also, we propose to schedule the information gain in
order to efficiently spread the UAVs into the environment. Moreover, the strategy adopted
exchanges the frontier points instead of a whole copy of the local map.

Results show that the proposed cooperative exploration strategy minimizes the global
exploration time by 25% for 2 UAVs and by 30% for 3 UAVs, while minimizing the average
traveled distance by each UAV by 55% for 2 UAVs and by 62% for 3 UAVs. Furthermore,
the strategy was evaluated using a relative localization algorithm where the exploration
time was reduced by 43% for 2 UAVs instead of 1 UAV.
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1 Introduction

A critical subject in multi-robot systems is the communication among robots. This feature
is used for coordination and to share specific information. A fleet can be deployed in several
missions within relatively difficult and hostile areas. But, these environments may have
no pre-existing network infrastructure, in addition to non ideal communication links.

This chapter highlights one of the most challenging points in MRS, which is the inter-
robot communication. This problem can be addressed from different perspectives; but,
we have chosen to study two sub-problems, which are: network typology, and network
topology and strategy for MRS robustness.

2 Network classification

The network is used to link between different entities and to establish possible communi-
cation between them. Several network types exist and can be classified in different ways.

2.1 Infrastructure versus infrastructureless mode

To manage network infrastructure, the existed modes can be classified into two major
categories [Äřlker Bekmezci et al., 2013, Hayat et al., 2015]. The first kind is the

85
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infrastructure mode, which can be called Access Point (AP) mode, and the second kind is
the infrastructureless mode named Ad Hoc mode (See Figure 4.1). In the AP mode, the

Figure 4.1 – Infrastructure (left) and infrastructureless (right) mode.

UAV-to-UAV communication is realized through the infrastructure (AP, routers, etc.),
unlike the Ad Hoc mode in which nodes communicate directly with each other. The Ad
Hoc mode is also called peer to peer mode. The Ad Hoc network can grow into another
peer to peer mode called mesh network by enabling multi-hop capability. Indeed, the Ad-
Hoc networks do not have any inherent capability for multi-hop. Nodes communicate with
each other when they are within one another’s communication range. Whereas, in mesh
networks, nodes are able to communicate directly or through one or more intermediate
nodes.

Table 4.1 – Infrastructure versus Infrastructureless mode.

Infrastructure mode Infrastructureless mode
Advantages Reliability of communication. Direct connection to each other,

easy to set up, robust to node fail-
ure, allow expansion and modifica-
tion in network topology.

Disadvantages Expensive, complicated hardware,
range restriction.

Redundancy in network connection,
difficult maintenance.

Standard 802.11 802.11, 802.15, 802.16

Originally, robots have to perform their tasks in environments without network infras-
tructure. In fact, they exchange information when they act as routers and as APs. So, the
MRS system can be seen as a mobile Ad Hoc network in a communication point of view.

2.2 Ad Hoc network classification

Ad Hoc Network is the commonly used network to manage multi-robot communication.
With this network, each robot can move freely and forward packets to and from each
other depending on the mode of distribution of data [Bouachir, 2014]. This network is
characterized by sophisticated quality of service in which routing protocol determines the
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optimal path of the information taking into account the frequent change of the topology.
Added to that, it is cheaper to realize this kind of network instead of others (satellite,
cellular, etc.).

The Ad Hoc network can be classified into three main categories which are Mobile Ah
doc NETwork (MANET), Vehicular Ah doc NETwork (VANET), and Flying Ad hoc
NETworks (FANET). For multi-UAV system, generally, the FANET model is adopted.
Table 4.2 details each category’s characteristics [Äřlker Bekmezci et al., 2013, Maistrenko
et al., 2016] and also analyses our model’s expectations.

Table 4.2 – Comparison between MANET, VANET, FANET and our model’s network
expectation.

Characteristics MANET VANET FANET Our model’s
expectation

Mobility Men in certain
terrain

Vehicle in high-
way

Plane in 3D plan 3D

Mobility
degree

+ + ++ ++

Mobility
model

Random
way points
with random
direction and
speed

Highly
predictable
in roads

Not
predetermined
(random UAV
movement
model,
pheromone
based model)

Predictable

Topology
changes

+ + ++ ++

Distance
between nodes

+ + ++ +

Node density ++ ++ + +
Radio propa-
gation model

Rare presence of
line of sight

Rare presence of
line of sight

Frequent
presence of
line of sight

Always presence
of line sight

Power
consumption
and life time
computational
power

+ + ++ ++

Standard IEEE 802.11,
802.15, 802.15.4,
802.16 and
802.20

IEEE 802.11p IEEE 802.11 ?

The comparison shows that FANET is the closest network to our model’s expectations.
Hence, among the available standards for this kind of network, IEEE 802.11b and IEEE
802.11g provide high data rates and are typically used for multi-robot systems.
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3.1 Related work

MRS communication is a critical problem to tackle in the robotics community. In the
last decade, the great progress in wireless technologies and MRS has created a growing
interest for inter-robot communication. Hence, different methods have been proposed.

To face disaster scenarios such as fire in an industrial warehouse, authors in [Witkowski
et al., 2008] propose to use Wireless LAN, Bluetooth and ZigBee to form an Ad-
Hoc network. Some robots of the fleet form the network infrastructure to support
communication.

Authors in [Morgenthaler et al., 2012] use two network standards to build a multi-UAV
system. A IEEE 802.11s wireless mesh network is build using UAVs carrying mesh nodes
directly connected to the flight electronics. Each of these mesh nodes acts as an AP in
order to form an IEEE 802.11g.

A methodology that profiles the wireless links for Linux-based networked aerial vehicles
is presented in [Kuschnig et al., 2012]. The approach includes two options to collect link
quality information and to monitor the 802.11 wireless interface.

An evaluation of the standard 802.11a used between an UAV and an AP is performed
in [Kuschnig et al., 2012]. Results show that the Received Signal Strength (RSS) for the
downlink decreases with the distance to the AP but remains at an acceptable level as well
as the throughput.

Knowing that the visible light spectrum is much wider than the Radio Frequency
spectrum, it seems interesting to uptake Visible Light Communication (VLC) based on
Light Emitting Diodes (LEDs). IEEE has developed the 802.15.7 standard for short range
communication using visible light. Authors in [Wang et al., 2014] introduce a bidirectional
communication using Open VLC. This solution hardware needs a Beagle Bone Black
(BBB) board and a font transceiver that employs a single LED to both transmit and
receive. The solution is implemented on Linux driver that communicates directly with the
LED front-end and the Linux networking stack. The main idea to reuse the same LED
for both Transmitting (TX mode) and Receiving Light signal (RX mode) is that when a
node is transmitting data, the other node can expect the LOW symbol of the bit 0 and
makes use of this time to switch his mode from RX to TX and transmit data.

The Zigbee – based on IEEE 802.15.4 – is a protocol of high level which is particularly
useful for short communication range and low consumption. Several UAVs’ application use
this network [Asadpour et al., 2014]. Communication can be made under three frequency
bands depending on the chipset type: 868MHz for a bit rate of 20 kbps, 915MHz for 40
kbps and 2.4GHz for 250 kbps.

Authors in [Vidal et al., 2015] adopt different sized groups composed of tactical UAVs
and UAVs moving in delimited geographical areas. Virtualization techniques are used to
adapt the upgrade of any function, which allows the flexibility in heterogeneous services.

In a search and rescue mission, for example, authors in [Scherer et al., 2015] propose to do
real-time streaming between UAVs over a large distance. The mission is divided into five
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principle phases: The pre-planning to define the best paths in the search area allowing
to reduce the time of the mission then searching by just following the predefined way-
points; the detection of the target and sending the new plans to the others, followed by
the repositioning by setting a multi hop link to evaluate the situation by the base station
and finally, the streaming of the video.

The multi-UAV, moving in a three dimensional space, need sophisticated transmission
systems to ensure flexibility. In [Scherer et al., 2015], an omni-directional isotropic antenna
is fixed on the base station and on all the deployed heterogeneous UAVs. For data
exchange, the standard IEEE 802.11s mesh technology is used.

Authors in [Hayat et al., 2015] present a performances comparison between the stan-
dard IEEE 802.11n and the IEEE 802.11ac in a multi hop network. Both networks
were experimented in indoor and outdoor environment, and in two mode, the access
point mode (AP)/infrastructure mode and the mesh mode regarding throughput and
fairness. In indoor experiments, for an infrastructure mode, the 802.11ac shows improved
performances in both TCP and UDP throughput, and packet loss for UDP traffic. In
outdoor experiments, for infrastructure mode, the throughput of 802.11n is three time
higher than that of 802.11a however, the link quality drops more steeply. For mesh mode,
802.11n achieves higher throughput at close range but drops faster as soon as date rate
gets higher and the range longer. The recorded throughput for mesh network is lower than
infrastructure mode due to the longer inter-packet transmission times.

To face issues of maintenance connectivity, collision avoidance, robustness to failure and
area coverage improvement, authors in [Ghedini et al., 2018] propose a novel model that
provides more efficient network topologies.

In [Harms et al., 2018], a new communication layer is proposed to deal with networks
that requires a high bandwidth. For that, some mechanism are used to buffer messages,
to compress data or to react to unexpected situations.

Table 4.3 lists some standards used in multi-robot systems. For each standard, we detail
the concerned layer in the OSI model, its characteristics, the resulting performances, and
the hardware and software used for experiments.
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Table 4.3 – Examples of some standards used in MRS.

Work Standard Layer Characteristics Performances Hardware Software

[Scherer

et al., 2015]

IEEE

802.11s mesh

technology

Network

layer

Compatible with

mesh mode and

AP mode

Range: 100m,

communication delay:

5ms, Throughput:

10-20Mbit/s

Heterogeneous UAVs

+ laptop BS + wifi

module

Middleware

Robot Operating

System ROS

[Hayat

et al., 2015]

IEEE

802.11n

PHY and

MAC layer

High throughput

in both mode (AP

and mesh), ac-

ceptable degree of

fairness

Outdoor + mesh

mode + single hop;

Range: 500m; TCP

throughput: 35Mbit/s

(50m); FB: 40Mhz

Two Pelican UAVs

+ laptop BS +

Compex WLE300NX

802.11abgn mini PCIe

modules

Ubuntu Linux

Kernel 3.2. with

ath9k driver

IEEE

802.11ac

PHY and

MAC layer

Do not support

mesh mode

Outdoor + mesh

mode + single hop;

Range: 500m; TCP

throughput: 10Mbit/s

(50m); FB: 80Mhz

Two Pelican UAVs

+ laptop BS +

Compex WLE900N5-

18 802.11ac 5Ghz

miniPCIe modules

Ubuntu Linux

Kernel 3.2. with

ath10k driver
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[Kuschnig

et al., 2012]

IEEE

802.11a

PHY and

MAC layer

RSS and

throughput

decreases with

the distance

but still at an

acceptable level

Outdoor over campus

150m*150m; Range:

10m; Throughput:

54Mbit/s (theo) and

27Mbit/s (prac); FB:

5Ghz

AP: Netgear

WNDR3700 +

Atheros AR9280-

based wireless cards

+ UAV with Intel

Atom Processor +

SparkLAN WPEA-

110N wireless card

+ antenna WIMO

18720.11 for UAV and

AP

Linux-based

OpenWRT

Backfire 10.03.1-

RC5

[Asadpour

et al., 2014]

IEEE

802.11n

multi hop

PHY and

MAC layer

Long convergence

time and high

routing overhead

(with BATMAN

protocol for

Network Layer)

In-flight experiment;

Throughput for 200m

:5.95Mbit/s; Conver-

gence time (20-100m):

28s; Routing overhead

(20-100m): 10msg/s

Two Arducopter

+ GB + WLAN

IEEE 802.11n +

XBEE-PRO
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[Morgenthaler

et al., 2012]

IEEE 802.11s

mesh nodes

for UAV

to UAV

and IEEE

802.11g for

UAV to AP

network layer In single hop,

flying UAVs

reach higher

throughput

than UAVs in

the ground.

These results

are performed

with the location

based position

mode which

are lower than

those with the

signal strength

positioning

mode. These

performances are

higher than in

multi-hop.

Single hop (1UAV

altitude 3-5m and AP-

AP = 75m) in location

positioning mode;

TCP throughput

=6.5Mbit/s + in

signal strength

positioning mode:

TCP throughput

=8.1Mbit/s

One UAVNet

quadcopters

Professional Mesh

OM1P + two

notebooks

Linux 2.6.37.6

Kernel generated

by ADAM

(embedded Linux

distribution) +

driver ath5k

[Muzaffar

and

Yanmaz,

2014]

IEEE

802.11ab

PHY and

MAC layer

Throughput

decreases with

the increase of

the number of

nodes

Range: up to

1000m×1000m×50m;

Throughput:

54Mbit/s (prac);

FB: 5Ghz

Simulation: UAVs +

Groung Station

Omnet++
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2014]

IEEE

802.15.7

PHY and

MAC layer

Bidirectional

transmission,

matching filtering

and timing error

recovery can

increase the

communication

range and

stability

One hop: throughput:

1.6kb/s, packet loss

ratio 5%; Two hop:

throughput 0.65kb/s,

packet loss ratio 15%

Embedded BBB

board + LED front

end

Linux Kernel

3.8.13
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3.2 Network standards and protocols

Since the exchange of information is necessary for coordination, the network used
for multi-UAV communication has to ensure that the information circulates properly
throughout nodes. Consequently, we have to overcome some issues such as:

• Node failure: When the link is broken or defected, the network must find a path to
reach the node.

• Topology changes: Nodes move in the environment and generate changes in the
topology that the network have to deal with rapidly.

• Communication bandwidth: UAVs possess certain information to exchange with
other and need some bandwidth that supports the data exchange.

Taking into account the above cited issues, and to ensure agood integration between
the visual SLAM and the communication, the distributed and cooperative wireless mesh
network seems to be the most adequate network typology. It allows to introduce the
following advantages:

• Improving the network reliability because infrastructureless network offers several
paths, so that information may reach the destination even if only one link is broken.

• Allowing self scalability of the network by a quick adaptation to topology changes.

• Enabling rapid deployment with lower cost back-haul.

• Providing easily coverage in areas which have difficult access.

• Saving battery life due to its lower power consumption.

• Enabling to face a growing number of UAVs in the fleet.

Among the existing mesh network standards, the 802.11s amendment, related to the
MAC layer, is interesting for MRS applications. It is an Extended Service Set network
that supports broadcast, multicast and unicast communication. It contains the Hybrid
Wireless Mesh Protocol (HWMP) as the default routing protocol. The HWMP is a
hybrid routing protocol inspired by the AODV (Ad-hoc On-demand Distance Vector:
an on demand and reactive portion) and the tree based protocol (a proactive portion).
Thereby, it contains the advantages of the reactive protocol since it prepares the routing
table when nodes change their position, and thus provides the safer path. On the other
hand, it contains the advantages of the proactive protocol since the routing table is
ready which allow to save time when needed. In addition to the default routing protocol
HWMP, the 802.11s mesh network supports other protocols like Optimized Link State
Routing (OLSR), Better Approach to Mobile Ad hoc Networking (BATMAN), Wireless
Distribution System (WDS), Open Shortest Path First (OSPF) and BABEL. According
to [Wang et al., 2010], BATMAN proved better performances than HWMP and OLSR.
Thus, experiments using HWMP and BATMAN have been performed to point out the
saved data.



96 CHAPTER 4. INTER-ROBOT COMMUNICATION

BATMAN protocol definition

The BATMAN2 is a proactive routing protocol inspired by AODV and OLSR. It is
supported by multi-hop Ad Hoc mesh networks. It uses different approaches to route
selection node by periodically sending OriGinator Messages (OGM) to neighbors with
node information to next hop and destination because the routing decisions are distributed
on nodes. In this protocol, each node decides for the next hop and not for the whole route
so nodes do not use or even know the topology of the network. In the case of detecting
other nodes, BATMAN protocol finds the best route to them. It also keeps track of new
nodes and informs its neighbors about their existence.

3.3 Results and discussion

For the evaluation of the networked system using BATMAN3 protocol, we use heteroge-
neous nodes composed of three laptops: 2.40GHz dual core Linux machine, 2.27GHz i3
Linux machine, 2.50GHz i5 Linux machine and a Parrot AR-Drone 2.0 (See Figure 4.3).

Figure 4.3 – Mesh network illustration between three laptops and one drone.

We simulate the broadcast of data between nodes in both Ad Hoc and mesh network with
BATMAN protocol to underline the saved data. The drone was controlled from the laptop
using a cross compilation. First, we perform an Ad Hoc network between endpoints and
broadcast the data from node A to node B, C and D in the network. Then, we broadcast
– in the same conditions – from node A to B, C and D with the BATMAN mesh network
protocol. Results in Figure 4.4 show that the throughput achieved an average of 0.4
Mbits/s; whereas, the throughput evaluated in mesh network with BATMAN protocol,
achieved an average of 0.65 Mbits/s. The BATMAN mesh network protocol improves by
1, 5 times the throughput of the network compared to a basic Ad Hoc network.

2Source: https://www.open-mesh.org/projects/open-mesh/wiki
3The BATMAN-adv version used for the testbed is available since 2013

https://www.open-mesh.org/projects/open-mesh/wiki
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Most works deal with the problem of communication while assuming an ideal network or
aim at keeping team members within range of one another in order to focus their attention
on higher level problems [Schuster et al., 2015, Burgard et al., 2005].

Considering communication loss and/or limited bandwidth helps to prevent from mission
failure and to ensure a more realistic scenario. Indeed, in real scenarios, many issues can
arise such as having a distance among robots that exceeds the communication range,
losing major information in a broken communication link, losing precious time in sending
information due to limited bandwidth, etc. The exploration strategy has to take into
account the mentioned issues to avoid mission failure in real world scenario. Some works
began to tackle the exploration problem while considering communication limitations
[Couceiro et al., 2014, Schmuck, 2017].

In [Dai et al., 2018], the aim is to sense a geometrically complex environment by assigning
targets to robots when the spatial and temporal resolutions are satisfied. This approach
uses a min-max energy path planning algorithm that obeys to a deadline time.

In this work, we make the choice to let UAVs exchange with each other only frontier
points, robot poses, and assigned targets. This exchange happens at each iteration while
considering UAVs’ role, which are adapted according to the network topology. This
adaptation allows also to cope with communication limitations.

4.2 Inter-robot communication approach

Interactions among members of the fleet are important especially in the exploration
missions in order to prevent UAVs to explore the same regions, and to allow them to
cooperatively discover the unknown areas more rapidly and in an optimized manner.
However, inter-UAV communication is a challenging issue that requires to answer some
practical questions: Which kind of data nodes must exchange? How often data should
be shared? Should we consider a multi-hop data exchange? If so, how to identify the
endpoints of the data exchange? How to cope with communication limitations? These
questions are addressed in the following subsections.

4.2.1 Multi-UAV interaction and data exchange

In the proposed cooperative exploration strategy, local frontier points fi,j ∈ F , current
pose pi, and current target point tm are exchanged instead of the whole copy of the local
map. This is expected to produce a considerable reduction of exchanged data volume, and,
consequently, memory consumption. The sequence diagram4 in Figure 4.5 details (timing
and information) the messages exchanged between two UAVs. UAVi, with i ∈ [1..nc] and
UAVj with j ∈ [2..nc] (i < j) are robots in the cluster C. They forward their respective
id number and current poses pi and pj. Since i < j, the explorer UAVj sends to the
selected leader UAVi its local frontier points fj,k during the frontier processing (FP) step.

4This diagram uses Unified Modeling Language’s sequence diagram notation.
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j; pj

i; pi

fj,k

θ(UAVj , tk)

UAV i UAV j

[GA]

i < j

[FP]

Figure 4.5 – Data flow between two robots. The FP and GA stand, respectively, for frontier
processing and goal assignment.

Then, the leader performs the goal assignment process (GA) and sends back to UAVj

the selected target point tm. The cited example represents two UAVs in the cluster C. In
case of multiple UAVs in C, the same sequences will be performed among one leader and
multiple explorers.

4.2.2 Exploration strategy to face communication loss

In the proposed system, considering the communication limitations is important to ensure
the mission continuity. In case of losing contact with the leader due to communication
failure or UAV getting stuck, another leader is self-selected in the next iteration so that
the mission can continue. In Figure 4.6, at t = tn, the fleet is composed of one cluster
where UAVs are able to communicate with each other. One leader handles the decisions
for others. At t = tn+1, the communication link fails between UAV3 and UAV4. The fleet
is divided into two clusters with one leader each.

Particular case In case of losing contact with the leader and before another one is
selected, explorers let a timer τ expires while waiting for target assignment. If no target
is received, the explorer selects its own target according to local information.

Using this strategy, as long as – at least – one UAV exists in the fleet, the mission will
continue until all the bounded environment is explored (no candidate frontier points are
left).

4.2.3 Data exchange strategy discussion

In the proposed strategy, data flow exchange is repeated at each iteration while taking into
account network topology changes to define clusters. The starting points and endpoints
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Figure 4.6 – Role evolution in limited communication range.

are defined according to these roles. The UAV’s role also specifies the type of exchanged
data. In addition to the exchanged current pose pi and id number i, if the UAVi is an
explorer, it would passively share information about itself and its surrounding environment
with the leader (frontier points fi,j ∈ F); else, its role would be to send targets to visit to
the explorers (target points tk ∈ G).
The proposed strategy ensures a mission continuity in case of communication loss.
Nevertheless, the UAV may explore regions already explored by other nodes, since
no local maps are exchanged nor fused to keep track of visited areas. Thus, in
case of communication loss, the mission accomplishment is favored over consumption
minimization of resources, such as time and battery.

4.3 Results and discussion

As UAVs are equipped with IEEE 802.11b,g wireless card, we set up an infrastructureless
network within the set of robots to quantify the data exchange among members of the fleet,
as well as, to determine the performance of the robot network. Runs with 2 and 3 UAVs
were performed (See Figure 4.7). The network was composed of two 2.60GHz i7 Linux
machines and a 2.50GHz i7 Linux machine. The number of robots used for evaluation is
limited to three, however, the proposed system architecture is not constrained to a fixed
number of robots.

4.3.1 Network setting: From one to multiple machines

When running multiple UAVs on a single machine (like in previous simulations in chapter
3), one ROS master is responsible of managing the intra and inter-processes communi-
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(a) Two UAVs (Laptops)

(b) Three UAVs (Laptops).

Figure 4.7 – Ad Hoc network illustration during exploration mission.

cation using publisher/subscriber. In case of multiple machines, two configurations are
possible:

• One ROS core for multiple machines (See Figure 4.8a): Even with multi-UAV
on different machines, one ROS master/core can be adopted by specifying the
machine running the ROS core. In this case, the SoS will manage inter-processes
communication the same way as if they are on the same machine. The exception is
that a real world communication is used instead of a shared memory for a multi-UAV
running on a single machine.

• Multiple ROS cores for multiple machines (See Figure 4.8b): when running different
ROS cores on different machines, each UAV manages its own master. In this multi-
cores system – also called multi-master system –, a synchronization among these
masters needs to be done.

Nonetheless for both cases, the virtual environment to be explored in Gazebo has to be
the same so that UAVs explore the same environment at the same time. Specifically, this
means that the IP client of Gazebo has to match the IP server of the machine running
the Gazebo world by setting GAZEBO_MASTER_URI.

When running a single ROS core for multiple UAVs, a reliable network is needed, else
ROS processes would not work properly when the network connection is unstable. Also,
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(a) One ROS core for multiple machines. (b) Multiple ROS cores for multiple machines.

Figure 4.8 – Two ROS configurations in multiple machines case. Image from [Andre et al.,
2014].

running multi-master system is more realistic because in real world, each UAV has to be
functional, independent and cooperative to achieve the mission objectives, which is, in
this work, the exploration of an unknown environment. A multi-master system represents
a distributed system configuration, which has different advantages such as scalability to
fault tolerance.

Multi-master systems require synchronization. For this, different packages exist such as the
multi-master fkie package5 which allows unicast as well as multicast transmissions using
UDP protocol. The wifi_comm package6 implements the Optimized Link State Routing
(OLSR), but can be used with different routing algorithms. The recon_multimaster
package7 is a centralized multi-master system that implements building blocks around the
ROS communication layer but do not implement communication itself. Authors in [Andre
et al., 2014] propose a distributed approach where each robot runs a master managing its
local communication using the Adhoc_communication package8 where AODV protocol
is implemented. Another multi-master package is the Nimbro_network package9 which
offers a robust transport of ROS topics and services over unreliable networks. The above
cited multi-master packages are not an exhaustive list and other synchronization packages
exist.

For simplicity and as a first approach, the multi-master fkie package10 is used to run the
adopted multi-core system. This package allows us to both use and synchronize multiple
cores using the default protocol UDP. For ROS topics data exchange, TCP protocol is
used. For an effective evaluation especially concerning the time, clock synchronization
needs to be ensured. Network Time Protocol (NTP) is used to synchronize laptops within
a few milliseconds of Coordinated Universal Time (UTC).

5Source: http://wiki.ros.org/multimaster_fkie
6Source: http://wiki.ros.org/wifi_comm
7Source: http://wiki.ros.org/rocon
8Source: http://wiki.ros.org/adhoc_communication
9Source: https://github.com/AIS-Bonn/nimbro_network

10Source: http://wiki.ros.org/multimaster_fkie

http://wiki.ros.org/multimaster_fkie
http://wiki.ros.org/wifi_comm
http://wiki.ros.org/rocon
http://wiki.ros.org/adhoc_communication
https://github.com/AIS-Bonn/nimbro_network
http://wiki.ros.org/multimaster_fkie
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4.3.2 Exchanged data size evaluation

The first evaluation aims at pointing out the amount of exchanged data by sharing local
frontier points instead of local grid maps (See Figure 4.9).

(a) Evolution of the amount of exchanged data during the mission.

(b) Average of the amount of exchanged data during the mission.

Figure 4.9 – Data size when UAVs exchange a whole copy of their local grid map versus
frontier points of it.

Figure 4.9a shows that the size of grid maps increases consequently in time compared to
the size of frontier points that is almost constant during the mission. According to results
in Figure 4.9b, the size of data saved, when exchanging frontier points instead of grip
maps, is almost divided by 10.

4.3.3 Exchanged data average time evaluation

Depending on the size and frequency of the exchanged data, the time allocated for
communication may increase with the increasing number of robots. Thus, evaluations
of time behavior and its potential impact on the exploration performances have been
conducted. Figure 4.10 shows the network topology evolution during data exchange.
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Figure 4.10 – Network topology evolution during a loop with three cooperative UAVs.

The information is exchanged in three stages and they are the following:

• Stage 1: The id number and current poses pi with i ∈ [1..nc].

• Stage 2: The frontier points fi,j with i ∈ [1..nc] and j ∈ [1..ni].

• Stage 3: The target points assignment θ(UAVi, tk) with i ∈ [1..nc] and k ∈ [1..nc].

Table 4.4 shows the average time spent in data exchange during exploration. A slight
increase in the computed average time occurs when increasing the number of robots.
The time spent in communication is relatively negligible compared to the total time of
exploration.

Table 4.4 – Communication module timings.

UAVs Time spent
in stage 1 (s)

Time spent in
stage 2 (s)

Time spent in
stage 3 (s)

Time
for
explo-
ration
(s)

UAV1 UAV2 UAV3 UAV1 UAV2 UAV3 UAV1 UAV2 UAV3

Two
UAVs

UAV1 ∅ 0.136±
0.139

∅ ∅ ∅ 0.022±
0.017

120,1

UAV2 0.065±
0.068

∅ 0.026±
0.008

∅ ∅ ∅

Three
UAVs

UAV1 ∅ 0.056±
0.065

0.575±
0.769

∅ ∅ ∅ ∅ 0.335±
0.407

0.765±
0.678

86

UAV2 0.107±
0.111

∅ 0.483±
0.678

0.185±
0.244

∅ ∅ ∅ ∅ ∅

UAV3 0.267±
0.165

0.616±
0.549

∅ 0.251±
0.109

∅ ∅ ∅ ∅ ∅
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4.3.4 Network interruption evaluation

To evaluate the system behavior during communication failure, the network connectivity
has been voluntarily interrupted during the exploration. Figure 4.11 shows the robot’s
role and the exploration rate performance when the network connectivity is interrupted
and then recovered.
The system performs neighbor discovering, role selection and target assignment at each
loop of ti+1 = ti + i.r with t0 = 0s and r = 20s. In Figure 4.11a, at t = t0, both robots
begin with a leader role. When discovering each other (at t = t1), UAV1 selects itself as
leader and UAV2 becomes explorer. Consequently, UAV1 assigns a target to UAV2. UAV2

receives the target and attempts to reach it. At t = t2 + δ, the connectivity is voluntarily
interrupted, just after the role selection but before the target information is assigned to
UAV2. After a time period τ , UAV2 selects a target taking into account its own local
data. In the next loop (at t = t3), since the connectivity is still interrupted, UAV2 finds
no neighbors and selects itself as a leader. Both robots perform exploration independently,
that is, without cooperation. Shortly after t = t3, the connectivity is re-established. Thus,
robots are able to cooperate again and UAV2 takes over the role of explorer.
In Figure 4.11b, even after the network connectivity is interrupted, the exploration
continues to be performed by both UAVs. When the connectivity is re-established, the
leader collects the frontier points and performs frontier processing where it finds that no
candidates targets are remaining, that is, all the environment is now explored. Therefore,
the mission is accomplished.

(a) UAV’s role along with network connectivity.

(b) Exploration rate along with network connectivity.

Figure 4.11 – Two cooperative robots exploration along with network connectivity.
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The typology of the proposed network is based on adopting a mesh network along with
BATMAN protocol. Results of broadcasting data performed in testbed with heterogeneous
nodes including three laptops and one AR-Drone show that BATMAN mesh network
protocol improves the throughput by 1.5 times compared to basic Ad Hoc network.

In a limited communication range, the topology of the network varies during the mission.
Consequently, the UAVs’ behaviors are adapted by always updating their roles to leader
or explorer during the mission. Even with an explorer role, the UAV is able to continue its
mission if the network experiences some issues. Furthermore, we propose to exchange the
frontier points of the local map instead of the whole copy of it, which allows to reduce the
shared data volume, and consequently memory consumption. The results of the testbed
performed with three UAVs, show that the proposed communication module is able to
cope with network limitations. They also show that the proposed strategy uses 10 times
less data than a strategy that makes the robots exchange the whole local map.





Conclusions and future work

Contents

1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

1 Summary

In this thesis, we introduced a new distributed multi-UAV system framework for
cooperative unknown environment exploration. Equipped with an embedded visual sensor,
each UAV is able to localize itself, to discover its neighbors, and to create a 3D grid map
of its environment. UAVs are also able to communicate and to exchange specific data for
coordinated exploration purpose. Each of the main topics of SLAM, exploration strategy,
and inter-robot communication was studied throughout this work.

We started this dissertation by introducing a software architecture for multi-UAV system
(See Figure 1.6). This block diagram aims at managing the different modules and the
data flows between them. We proposed to divide the fleet into clusters, where each cluster
defines UAVs within each others’ communication range. Each cluster selects the UAV with
the lowest id number as the leader that is in charge of making decisions, based on some
specific shared information, for all the other robots in the group that have the role of
explorers. An overview on the UAVs’ system coordinate frames was also presented.

In the second chapter, we studied two approaches for the SLAM problem. The first
approach was using a monocular camera for an inertial graph-based SLAM system.
Results show that the fusion of these sensors reduces the trajectory drift. The second
approach used an RGB-D camera as input for a feature based SLAM approach. Simulation
results show that the RGB-D SLAM is able to make an efficient pose estimate in difficult
conditions such as simulated environment. Using these SLAM approaches, we consider
that neither global information nor map or GPS are available. Also, no global frame is
predefined. Only an arbitrary frame, that coincides with the leader ’s reference frame, is
set. However, the time of the mission increased since the speed of the robot was reduced
to avoid the tracking loss.

Also, we proposed an exploration strategy to coordinate the UAVs in the fleet. This
strategy is based on a novel utility function that takes into account the distance of each
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UAV in the group from the unexplored set of targets, and makes a trade-off between
fast exploration and getting a detailed grid map. Using the group-leader decision making,
targets are assigned to UAVs in order to simultaneously explore different regions of the
environment in an optimized manner. Results show that the strategy adopted minimizes
the mission time by 25% for 2 UAVs and by 30% for 3 UAVs, while decreasing the average
traveled distance by each UAV in the fleet by 55% for 2 UAVs and by 62% for 3 UAVs . In
addition, by scheduling information, UAVs are efficiently spread out into the environment
while avoiding to select the same target or another one close to it. Furthermore, the
previously proposed RGB-D SLAM (in Chapter 2) was used as the relative localization
system for each UAV in the fleet during a cooperative exploration mission.

Moreover, we studied and evaluated the inter-UAV communication from two aspects: the
typology and the topology of the network. We first analyzed the network requirements for
a multi-UAV system. Then, based on this study, we proposed to use the mesh network
with the BATMAN protocol. Testbed results show that the throughput of the network
is improved. For the second aspect, we addressed the strategies adopted to cope with
communication limitations during an exploration mission. we also evaluated the amount
of data exchanged during the mission. Testbed results show that by exchanging frontier
points, local poses and assigned targets, the adopted strategy uses 10 times less data
than a strategy that makes the robots exchange the whole local map. Furthermore, the
group-leader decision making allows to take into account the communication drop-out or
failure by adapting the UAV’s role according to the network topology changes.

2 Future research

Several aspects of this project can be improved: First, how to deal with the map tracking
when the communication is lost? Indeed, when the network is interrupted, the main goal
of each robot is to finish the exploration mission regardless of the rest of the fleet because
local maps are neither exchanged nor fused. Thus, with the proposed exploration strategy,
we aim to investigate the possibility of keeping track of other UAVs’ explored area using
the frontier points. Each robot receives all other robots’ local frontier points, stores them
and process them to get the frontier points of the global map. For achieving this purpose,
the frontier points are broadcasted to all the robots in the fleet.

Second, we plan to include more complex environments in our experiments with more
obstacles (the simulated environment in this work is free from obstacles). This assumption
is due to the adopted frontier points processing approach that needs maps that are
bounded and without obstacles inside (other frontier points). Also, the utility function
takes into account the distance of the robot from the target. This can cause false target
choice if an obstacle exists between this target and the actual robot pose. Instead of the
robot-to-target distance, we can consider the path or even the energy to spend to reach
the future target.

Third, an important point is to improve the environment to a 3D one. In this case,
the frontier points will be computed from the 3D occupancy grid map. We also need to
consider a 3D path planning and control approach.
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Fourth, another aspect is the large scale evaluation. The proposed system architecture
is not limited to a fixed number of robots. We aim at increasing the size of the fleet
for a quantitative performance evaluation. By increasing the number of UAVs, we aim
to evaluate not only the exploration time curve evolution, but also the processing time
performances.

Furthermore, we plan to implement the framework on a quad-rotor fleets. Hence, the
UAV chosen for the experiments have to support the kinect’s payload, and the developed
ROS packages. This experiment will be conducted in an indoor environment with a global
localization (OptiTrack: motion capture system) to evaluate the exploration performances.
Then, the SLAM approach will be implemented to test the overall mission with a relative
localization approach.

And last but not the least, we aim at mounting visual fiducial markers on each UAV
in order to estimate the relative transformation among robots by detecting these tags.
The markers have to be mounted all around the robot with different unique identifiers to
recognize its orientation. At first, this experiment can be tested using static robots and
then be used during the exploration mission.

This list is not exhaustive and continuation of this work may address many other aspects.
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1 Robot Operating System

1.1 Overview

The Robot Operating System (ROS) [Quigley et al., 2009] is an open source (BSD
license) project, that accumulates a significant number of community developed
drivers and packages. As its name suggests, ROS is not only a middleware,
but it is a complete operating system that aids to the development of various
robot software. It supplies low-level drivers, communication layer, and high-level
recognition and planning applications. ROS contains a set of individual package
executable entities written using mainly the following client libraries roscpp (C++
library) or rospy (Python library). ROS is continually updated and improved with
different distributions. In our work, we adopt the ROS indigo distribution which
is compatible with Ubuntu 14.04 that we use.

1.2 Framework

ROS1 is a flexible framework composed of a group of processes that communicate
with each other. For that, it offers a message passing interface that provides
inter-process communication, commonly called middleware. This middleware is
composed of:

1Source: http://www.ros.org
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1.3.2 Graph Qt-based framework: Rqt_graph

Rqt_graph5 is a GUI plug-in to visualize the inter-process communication graph.
It allows to keep track of the different interaction between ROS modules. Mainly,
we use this tool to visualize the interaction between the nodes and topics. As an
example, Figure A.4 shows the ROS topics involved during an exploration mission
with two cooperative UAVs where each one performs ORB-SLAM2 (See Section
4.3 in Chapter 3).

5Source: http://wiki.ros.org/rqt_graph

http://wiki.ros.org/rqt_graph
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1.3.3 Transform libraby: Tf

Tf6 is an important package in ROS that is used to visualize the relationship
between coordinate frames. This package has been very useful for us to see the
tree structure of the frames. Figure A.5 shows the frames related to each UAV
w.r.t. the world frame using ROS TF tool (See Section 5.3.2 in Chapter 2).

6Source: http://wiki.ros.org/tf

http://wiki.ros.org/tf
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Figure A.5 – ROS TF tree showing the relative frames of two UAVs w.r.t. the world frame. The figure contains frames related to the
global localization in the red box (left), frames related to the relative localization computed by ORB-SLAM2 in th two blue boxes
(the second box starting from the left and the box on the right), and frames related to the local maps in the green box (the third box
starting from the left).
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1.3.4 Bag tools

Bag7 files are used to store some information by subscribing to topics. The recorded
information are played back using the rosbag tool in on-line or off-line manners.
To visualize the content of a bag file, the rqt bag tool is used.

Retrieve information from bag files In this work, we use bag files to record
results from cooperative UAVs exploration such as pose pi, frontier point fi,j, and
2D occupancy grid map L. Then, to evaluate the proposed strategy’s performances,
we use Matlab8. We retrieve the information from the bag files using the rosbag
function from the Robotic System Toolbox9.

1.4 Important ROS packages

ROS supplies several open source packages to assist in the development of robotic
applications. These packages are always updated with the latest releases. Each
package commonly provides topics to subscribe to, topics where the information
will be published, and some tuning parameters (e.g. frequency, time, etc.) to be
able to adapt the package to the application. These popular packages are used for
visualization, path planning, navigation, communication, and so on.

1.4.1 Move base package

The move base is a freely available node used for two dimensional navigation.
Actually, the move base node is the major component of the navigation stack. It
allows to plan a path to a target and to attempt to reach it. In addition to the
assigned target, it takes into account inputs such as sensor measurements (e.g.
point cloud and laser scans), odometry, 2D map, etc. Using these information, it
provides a path to be followed by giving velocity commands to the base controller.
The move base framework is described in Figure A.6.

The move base constructs a global and a local costmap with their corresponding
global and local planner. The costmap is a representation of the environment
with inflated obstacles. The global costmap represents a model of the whole
environment whereas the local costmap represents a part of the global costmap
that is moving with the robot. Based on these costmaps, the node computes the
global and local plan, respectively. The global planner is based on the Navfn11

planner which provides a fast interpolated navigation function – computed with
Dijkstra’s algorithm [Dijkstra, 1959] – that can be used to create plans. For the

7Source: http://wiki.ros.org/Bags
8Source: https://fr.mathworks.com/products/matlab.html
9Source: https://fr.mathworks.com/products/robotics.html

10Source: http://wiki.ros.org/move_base
11Source: http://wiki.ros.org/navfn

http://wiki.ros.org/Bags
https://fr.mathworks.com/products/matlab.html
https://fr.mathworks.com/products/robotics.html
http://wiki.ros.org/move_base
http://wiki.ros.org/navfn


http://wiki.ros.org/base_local_planner
http://wiki.ros.org/multimaster_fkie


http://wiki.ros.org/ardrone_autonomy
http://ardrone-autonomy.readthedocs.io/en/latest/


http://gazebosim.org/
https://github.com/arpg/Gazebo/tree/master/worlds
https://bitbucket.org/osrf/gazebo_models
http://gazebosim.org/tutorials?tut=building_editor
https://3dwarehouse.sketchup.com




Bibliography

[Andre et al., 2014] Andre, T., Neuhold, D., and Bettstetter, C. (2014). Coordi-
nated multi-robot exploration: Out of the box packages for ros. In Globecom
Workshops (GC Wkshps), 2014, pages 1457–1462. IEEE.

[Asadpour et al., 2014] Asadpour, M., Egli, S., Hummel, K. A., and Giustiniano,
D. (2014). Routing in a fleet of micro aerial vehicles: First experimental
insights. In Proceedings of the Third ACM Workshop on Airborne Networks and
Communications, AIRBORNE ’14, pages 9–10, New York, NY, USA. ACM.

[Bautin et al., 2012] Bautin, A., Simonin, O., and Charpillet, F. (2012). Stratégie
d’exploration multirobot fondée sur les champs de potentiels artificiels. Revue
des Sciences et Technologies de l’Information-Série RIA: Revue d’Intelligence
Artificielle, 26(5):523–542.

[Beard and McLain, 2003] Beard, R. W. and McLain, T. W. (2003). Multiple uav
cooperative search under collision avoidance and limited range communication
constraints. In 42nd IEEE International Conference on Decision and Control,
volume 1, pages 25–30.

[Benavides et al., 2016] Benavides, F., Monzón, P., Chanel, C. P. C., and Gram-
pín, E. (2016). Multi-robot cooperative systems for exploration: Advances in
dealing with constrained communication environments. In Robotics Symposium
and IV Brazilian Robotics Symposium (LARS/SBR), 2016 XIII Latin American,
pages 181–186. IEEE.

[Bennewitz and Burgard, 2000] Bennewitz, M. and Burgard, W. (2000). An
experimental comparison of path planning techniques for teams of mobile robots.
In Autonome Mobile Systeme 2000, pages 175–182. Springer.

[Bloesch et al., 2017] Bloesch, M., Burri, M., Omari, S., Hutter, M., and Siegwart,
R. (2017). Iterated extended kalman filter based visual-inertial odometry using
direct photometric feedback. The International Journal of Robotics Research,
36(10):1053–1072.

[Boardman and Sauser, 2006] Boardman, J. and Sauser, B. (2006). System of
systems - the meaning of of. In 2006 IEEE/SMC International Conference
on System of Systems Engineering, pages 6 pp.–.

125



126 Bibliography

[Bouachir, 2014] Bouachir, O. (2014). Design and implementation of communi-
cation architecture for civil mini-UAVs. Theses, Université Toulouse 3 Paul
Sabatier (UT3 Paul Sabatier).

[Boulding, 1956] Boulding, K. E. (1956). General systems theory - the skeleton of
science. Management Science, 2(3):197–208.

[Brand et al., 2014] Brand, C., Schuster, M. J., Hirschmüller, H., and Suppa, M.
(2014). Stereo-vision based obstacle mapping for indoor/outdoor slam. In 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1846–1853.

[Bresson et al., 2015] Bresson, G., Aufrère, R., and Chapuis, R. (2015). A
general consistent decentralized simultaneous localization and mapping solution.
Robotics and Autonomous Systems, 74:128 – 147.

[Burgard et al., 2000] Burgard, W., Moors, M., Fox, D., Simmons, R., and Thrun,
S. (2000). Collaborative multi-robot exploration. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, volume 1,
pages 476–481. IEEE.

[Burgard et al., 2005] Burgard, W., Moors, M., Stachniss, C., and Schneider, F. E.
(2005). Coordinated multi-robot exploration. IEEE Transactions on robotics,
21(3):376–386.

[Cadena et al., 2016] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza,
D., Neira, J., Reid, I., and Leonard, J. J. (2016). Past, present, and future
of simultaneous localization and mapping: Toward the robust-perception age.
IEEE Transactions on Robotics, 32(6):1309–1332.

[Cameron and Trigoni, 2009] Cameron, S. and Trigoni, N. (2009). Collaborative
sensing by unmanned aerial vehicles. In 3rd International Workshop on Agent
Technology for Sensor Networks (ATSN 09).

[Cieslewski et al., 2017] Cieslewski, T., Kaufmann, E., and Scaramuzza, D. (2017).
Rapid exploration with multi-rotors: A frontier selection method for high speed
flight. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

[Concha et al., 2016] Concha, A., Loianno, G., Kumar, V., and Civera, J. (2016).
Visual-inertial direct slam. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 1331–1338.

[Couceiro et al., 2014] Couceiro, M. S., Figueiredo, C. M., Rocha, R. P., and
Ferreira, N. M. (2014). Darwinian swarm exploration under communication
constraints: Initial deployment and fault-tolerance assessment. Robotics and
Autonomous Systems, 62(4):528 – 544.



Bibliography 127

[Cui et al., 2006] Cui, J.-H., Kong, J., Gerla, M., and Zhou, S. (2006). The chal-
lenges of building mobile underwater wireless networks for aquatic applications.
IEEE Network, 20(3):12–18.

[Cunningham et al., 2010] Cunningham, A., Paluri, M., and Dellaert, F. (2010).
Ddf-sam: Fully distributed slam using constrained factor graphs. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference. IEEE.

[Dai et al., 2018] Dai, R., Fotedar, S., Radmanesh, M., and Kumar, M. (2018).
Quality-aware uav coverage and path planning in geometrically complex envi-
ronments. Ad Hoc Networks.

[De Hoog et al., 2009] De Hoog, J., Cameron, S., and Visser, A. (2009). Role-
based autonomous multi-robot exploration. In Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, 2009. COMPUTATION-
WORLD’09. Computation World:, pages 482–487. IEEE.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271.

[Dudek et al., 1996] Dudek, G., Jenkin, M. R. M., Milios, E., and Wilkes, D.
(1996). A taxonomy for multi-agent robotics. Autonomous Robots, 3(4):375–397.

[Durrant-Whyte and Bailey, 2006] Durrant-Whyte, H. and Bailey, T. (2006). Si-
multaneous localization and mapping: part i. IEEE Robotics Automation
Magazine, 13(2):99–110.

[Endres et al., 2014] Endres, F., Hess, J., Sturm, J., Cremers, D., and Burgard,
W. (2014). 3-d mapping with an rgb-d camera. Robotics, IEEE Transactions
on, 30(1):177–187.

[Engel et al., 2016] Engel, J., Koltun, V., and Cremers, D. (2016). Direct sparse
odometry. CoRR, abs/1607.02565.

[Engel et al., 2014] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam:
Large-scale direct monocular slam. In Computer Vision–ECCV 2014, pages
834–849. Springer.

[Erdelj et al., 2017a] Erdelj, M., KrÃşl, M., and Natalizio, E. (2017a). Wireless
sensor networks and multi-uav systems for natural disaster management.
Computer Networks, 124:72 – 86.

[Erdelj et al., 2017b] Erdelj, M., Natalizio, E., Chowdhury, K. R., and Akyildiz,
I. F. (2017b). Help from the sky: Leveraging uavs for disaster management.
IEEE Pervasive Computing, 16:24–32.



128 Bibliography

[Erdelj et al., 2017c] Erdelj, M., Saif, O., Natalizio, E., and Fantoni, I. (2017c).
Uavs that fly forever: Uninterrupted structural inspection through automatic
uav replacement. Ad Hoc Networks.

[Eudes et al., 2018] Eudes, A., Marzat, J., Sanfourche, M., Moras, J., and
Bertrand, S. (2018). Autonomous and safe inspection of an industrial warehouse
by a multi-rotor mav. In Field and Service Robotics, pages 221–235. Springer.

[Faigl et al., 2012] Faigl, J., Kulich, M., and Přeučil, L. (2012). Goal assignment
using distance cost in multi-robot exploration. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 3741–3746. IEEE.

[Fairfield et al., 2007] Fairfield, N., Kantor, G., and Wettergreen, D. (2007). Real-
time slam with octree evidence grids for exploration in underwater tunnels.
Journal of Field Robotics, 24:03–21.

[Fang and Scherer, 2014] Fang, Z. and Scherer, S. (2014). Experimental study of
odometry estimation methods using rgb-d cameras. In Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages 680–
687. IEEE.

[Fang and Zhang, 2015] Fang, Z. and Zhang, Y. (2015). Experimental evaluation
of rgb-d visual odometry methods. International Journal of Advanced Robotic
Systems, 12.

[Farinelli et al., 2004] Farinelli, A., Iocchi, L., and Nardi, D. (2004). Multi robot
systems: A classification focused on coordination. IEEE Transactions on System
Man and Cybernetics, part B, 34(5):2015–2028. New York, (USA).

[Forster et al., 2015] Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D.
(2015). Imu preintegration on manifold for efficient visual-inertial maximum-a-
posteriori estimation. In Robotics: Science and Systems.

[Forster et al., 2013a] Forster, C., Lynen, S., Kneip, L., and Scaramuzza, D.
(2013a). Collaborative monocular slam with multiple micro aerial vehicles. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3962–3970.

[Forster et al., 2013b] Forster, C., Lynen, S., Kneip, L., and Scaramuzza, D.
(2013b). Collaborative monocular slam with multiple micro aerial vehicles.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference. IEEE.

[Forster et al., 2014] Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo: Fast
semi-direct monocular visual odometry. In 2014 IEEE International Conference
on Robotics and Automation (ICRA), pages 15–22.



Bibliography 129

[Fox et al., 2006] Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., and
Stewart, B. (2006). Distributed multirobot exploration and mapping. Proceed-
ings of the IEEE, 94(7):1325–1339.

[Fox et al., 2003] Fox, K. K. D., Limketkai, B., Ko, J., and Stewart, B. (2003). Map
merging for distributed robot navigation. In Intelligent Robots and Systems.
IEEE.

[Fujimura and Singh, 1996] Fujimura, K. and Singh, K. (1996). Planning coopera-
tive motion for distributed mobile agents. Journal of Robotics and Mechatronics,
8:75–80.

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The kitti dataset. International Journal of Robotics
Research (IJRR).

[Ghedini et al., 2018] Ghedini, C., Ribeiro, C. H., and Sabattini, L. (2018).
Toward efficient adaptive ad-hoc multi-robot network topologies. Ad Hoc
Networks, 74:57–70.

[Gupta et al., 2016] Gupta, L., Jain, R., and Vaszkun, G. (2016). Survey of
important issues in uav communication networks. IEEE Communications
Surveys Tutorials, 18(2):1123–1152.

[Harms et al., 2018] Harms, H., Schmiemann, J., Schattenberg, J., and Frerichs, L.
(2018). Development of an adaptable communication layer with qos capabilities
for a multi-robot system. In Ollero, A., Sanfeliu, A., Montano, L., Lau, N., and
Cardeira, C., editors, ROBOT 2017: Third Iberian Robotics Conference, pages
782–793, Cham. Springer International Publishing.

[Hayat et al., 2015] Hayat, S., Yanmaz, E., and Bettstetter, C. (2015). Exper-
imental analysis of multipoint-to-point uav communications with ieee 802.11n
and 802.11ac. In 2015 IEEE 26th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC), pages 1991–1996.

[Hegazy et al., 2005] Hegazy, T., Ludington, B., and Vachtsevanos, G. (2005).
Reconnaissance and surveillance in urban terrain with unmanned aerial vehicles.
IFAC Proceedings Volumes, 38(1):103–108. 16th IFAC World Congress.

[Heng et al., 2015] Heng, L., Gotovos, A., Krause, A., and Pollefeys, M. (2015).
Efficient visual exploration and coverage with a micro aerial vehicle in unknown
environments. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), pages 1071–1078. IEEE.

[Higashino et al., 2016] Higashino, S., Nishi, S., and Sakamoto, R. (2016). Arttag:
Aesthetic fiducial markers based on circle pairs. In ACM SIGGRAPH 2016
Posters, SIGGRAPH ’16, pages 38:1–38:2, New York, NY, USA. ACM.



130 Bibliography

[Hornung et al., 2013] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,
and Burgard, W. (2013). Octomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous Robots, 34(3):189–206.

[Hougen et al., 2000] Hougen, D. F., Benjaafar, S., Bonney, J. C., Budenske,
J. R., Dvorak, M., Gini, M., French, H., Krantz, D. G., Li, P. Y., Malver,
F., Nelson, B., Papanikolopoulos, N., Rybski, P. E., Stoeter, S. A., Voyles,
R., and Yesin, K. B. (2000). A miniature robotic system for reconnaissance
and surveillance. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings,
volume 1, pages 501–507 vol.1.

[Huang et al., 2011] Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Fox, D.,
and Roy, N. (2011). Visual odometry and mapping for autonomous flight using
an rgb-d camera. In In Proc. of the Intl. Sym. of Robot. Research.

[Iocchi et al., 2000] Iocchi, L., Nardi, D., and Salerno, M. (2000). Reactivity
and deliberation: a survey on multi-robot systems. In Workshop on Balancing
Reactivity and Social Deliberation in Multi-Agent Systems, pages 9–32. Springer.

[Jennings et al., 1997] Jennings, J. S., Whelan, G., and Evans, W. F. (1997).
Cooperative search and rescue with a team of mobile robots. In Advanced
Robotics, 1997. ICAR ’97. Proceedings., 8th International Conference on, pages
193–200.

[Jensen and Gini, 2013] Jensen, E. A. and Gini, M. L. (2013). Rolling dispersion
for robot teams. In IJCAI. Citeseer.

[Kaess et al., 2012] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J.,
and Dellaert, F. (2012). isam2: Incremental smoothing and mapping using the
bayes tree. The International Journal of Robotics Research, 31(2):216–235.

[Kerl et al., 2013a] Kerl, C., Sturm, J., and Cremers, D. (2013a). Dense visual
slam for rgb-d cameras. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2100–2106.

[Kerl et al., 2013b] Kerl, C., Sturm, J., and Cremers, D. (2013b). Robust
odometry estimation for rgb-d cameras. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 3748–3754. IEEE.

[Kitano et al., 1999] Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi,
T., Shinjou, A., and Shimada, S. (1999). Robocup rescue: search and rescue in
large-scale disasters as a domain for autonomous agents research. In Systems,
Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Proceedings. 1999
IEEE International Conference on, volume 6, pages 739–743 vol.6.



Bibliography 131

[Klein and Murray, 2007] Klein, G. and Murray, D. (2007). Parallel tracking and
mapping for small ar workspaces. In 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, pages 225–234.

[Konolige et al., 2003] Konolige, K., Fox, D., Limketkai, B., Ko, J., and Stewart,
B. (2003). Map merging for distributed robot navigation. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2003), volume 1, pages 212–217 vol.1.

[Krajník et al., 2014] Krajník, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M.,
Přeučil, L., Duckett, T., and Mejail, M. (2014). A practical multirobot
localization system. Journal of Intelligent & Robotic Systems.

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment
problem. Naval Research Logistics (NRL), 2(1-2):83–97.

[Kulich et al., 2015] Kulich, M., Juchelka, T., and Přeučil, L. (2015). Comparison
of exploration strategies for multi-robot search. Acta Polytechnica, 55(3):162–
168.

[Kunz et al., 2008] Kunz, C., Murphy, C., Camilli, R., Singh, H., Bailey, J.,
Eustice, R., Jakuba, M., i. Nakamura, K., Roman, C., Sato, T., Sohn, R. A.,
and Willis, C. (2008). Deep sea underwater robotic exploration in the ice-
covered arctic ocean with auvs. In 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3654–3660.

[Kuo et al., 2014] Kuo, C.-H., Kanlanjan, S., Pagčs, L., Menzel, H., Power, S.,
Kuo, C.-M., Boller, C., and Grondel, S. (2014). Effects of enhanced image
quality in infrastructure monitoring through micro aerial vehicle stabilization.
In EWSHM-7th European Workshop on Structural Health Monitoring.

[Kuschnig et al., 2012] Kuschnig, R., Yanmaz, E., Kofler, I., Rinner, B., and
Hellwagner, H. (2012). Profiling ieee 802.11 performance on linux-based
networked aerial robots. In Proceedings of the Austrian Robotics Workshop,
Graz, Austria, page pp. 8.

[Latombe, 1991] Latombe, J.-C. (1991). Robot motion planning. Technical report,
Norwell, MA, USA.

[Leigh et al., 2007] Leigh, R., Louis, S. J., and Miles, C. (2007). Using a genetic
algorithm to explore a*-like pathfinding algorithms. In 2007 IEEE Symposium
on Computational Intelligence and Games, pages 72–79.

[Leutenegger et al., 2015] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and
Furgale, P. (2015). Keyframe-based visual–inertial odometry using nonlinear
optimization. The International Journal of Robotics Research, 34(3):314–334.



132 Bibliography

[Li et al., 2015] Li, D., Li, Q., Tang, L., Yang, S., Cheng, N., and Song, J.
(2015). Invariant observer-based state estimation for micro-aerial vehicles in gps-
denied indoor environments using an rgb-d camera and mems inertial sensors.
Micromachines, 6(4):487–522.

[Lightbody et al., 2017] Lightbody, P., Krajník, T., and Hanheide, M. (2017). A
versatile high-performance visual fiducial marker detection system with scalable
identity encoding. In Proceedings of the Symposium on Applied Computing,
pages 276–282. ACM.

[Mahdoui et al., 2017] Mahdoui, N., Fremont, V., and Natalizio, E. (2017). Co-
operative exploration strategy for micro-aerial vehicles fleet. In 2017 IEEE
International Conference on Multisensor Fusion and Integration for Intelligent
Systems (MFI 2017), pages 1–6, Daegu, Korea. IEEE.

[Mahdoui et al., 2018] Mahdoui, N., Fremont, V., and Natalizio, E. (2018). Co-
operative frontier-based exploration strategy for multi-robot system. In 2018
IEEE - 13th System of Systems Engineering Conference (SoSE 2018), pages
1–8, Paris, France. IEEE.

[Maier, 1998] Maier, M. W. (1998). Architecting principles for systems-of-systems.
Systems Engineering, 1(4):267–284.

[Maistrenko et al., 2016] Maistrenko, V. A., Alexey, L. V., and Danil, V. A. (2016).
Experimental estimate of using the ant colony optimization algorithm to solve
the routing problem in fanet. In 2016 International Siberian Conference on
Control and Communications (SIBCON), pages 1–10.

[Maity et al., 2013] Maity, A., Majumder, S., and Ray, D. N. (2013). Amphibian
subterranean robot for mine exploration. In 2013 International Conference on
Robotics, Biomimetics, Intelligent Computational Systems, pages 242–246.

[Marie et al., 2014] Marie, R., Labbani-Igbida, O., and Mouaddib, E. M. (2014).
Exploration autonome et cartographie topologique en environnement inconnu
référencées vision omnidirectionnelle. Traitement du Signal, 31(1):221–243.

[Máthé and Buşoniu, 2015] Máthé, K. and Buşoniu, L. (2015). Vision and control
for uavs: A survey of general methods and of inexpensive platforms for
infrastructure inspection. Sensors, 15(7):14887–14916.

[Matignon and Simonin, 2018] Matignon, L. and Simonin, O. (2018). Multi-robot
simultaneous coverage and mapping of complex scene-comparison of different
strategies. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 559–567. International Foundation for
Autonomous Agents and Multiagent Systems.



Bibliography 133

[Min et al., 2018] Min, B.-C., Parasuraman, R., Lee, S., Jung, J.-W., and Matson,
E. T. (2018). A directional antenna based leader-follower relay system for end-
to-end robot communications. Robotics and Autonomous Systems, 101:57 – 73.

[Mohanarajah et al., 2015] Mohanarajah, G., Usenko, V., Singh, M., D’Andrea,
R., and Waibel, M. (2015). Cloud-based collaborative 3d mapping in real-
time with low-cost robots. IEEE Transactions on Automation Science and
Engineering, 12(2):423–431.

[Morgenthaler et al., 2012] Morgenthaler, S., Braun, T., Zhao, Z., Staub, T., and
Anwander, M. (2012). Uavnet: A mobile wireless mesh network using unmanned
aerial vehicles. Globecom Workshops (GC Wkshps),IEEE.

[Mur-Artal and Tardós, 2017a] Mur-Artal, R. and Tardós, J. D. (2017a). ORB-
SLAM2: an open-source SLAM system for monocular, stereo and RGB-D
cameras. IEEE Transactions on Robotics, 33(5):1255–1262.

[Mur-Artal and Tardós, 2017b] Mur-Artal, R. and Tardós, J. D. (2017b). Visual-
inertial monocular slam with map reuse. IEEE Robotics and Automation Letters,
2(2):796–803.

[Muzaffar and Yanmaz, 2014] Muzaffar, R. and Yanmaz, E. (2014). Trajectory-
aware ad hoc routing protocol for micro aerial vehicle networks. In European
Conference on Networks and Communications (EuCNC 2014).

[Nanjanath and Gini, 2006] Nanjanath, M. and Gini, M. (2006). Dynamic task
allocation for robots via auctions. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, pages 2781–2786.
IEEE.

[Nielsen et al., 2015] Nielsen, C. B., Larsen, P. G., Fitzgerald, J. S., Woodcock, J.,
and Peleska, J. (2015). Systems of systems engineering: Basic concepts, model-
based techniques, and research directions. ACM Comput. Surv., 48:18:1–18:41.

[Nitsche et al., 2015] Nitsche, M., Krajník, T., Čížek, P., Mejail, M., and Duckett,
T. (2015). Whycon: An efficent, marker-based localization system. In IROS
Workshop on Open Source Aerial Robotics.

[Oh and Green, 2004] Oh, P. Y. and Green, W. E. (2004). Cqar: Closed quarter
aerial robot design for reconnaissance, surveillance and target acquisition tasks
in urban areas. International Journal of Computational Intelligence, 1(4):353–
360.

[Olson, 2011] Olson, E. (2011). AprilTag: A robust and flexible visual fiducial
system. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3400–3407. IEEE.



134 Bibliography

[Pal et al., 2011] Pal, A., Tiwari, R., and Shukla, A. (2011). Multi robot
exploration using a modified a* algorithm. In Asian Conference on Intelligent
Information and Database Systems, pages 506–516. Springer.

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote,
T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an open-source robot
operating system. In ICRA Workshop on Open Source Software.

[Renaudeau et al., 2018] Renaudeau, B., Labbani-Igbida, O., and Mourioux, G.
(2018). Hybrid map mosaicing: A novel approach for large area mapping. In 2018
IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, SIMPAR 2018, Brisbane, Australia, May 16-19, 2018,
pages 23–28.

[Rocha et al., 2005] Rocha, R., Dias, J., and Carvalho, A. (2005). Cooperative
multi-robot systems:: A study of vision-based 3-d mapping using information
theory. Robotics and Autonomous Systems, 53(3):282 – 311.

[Rooker and Birk, 2007] Rooker, M. N. and Birk, A. (2007). Multi-robot ex-
ploration under the constraints of wireless networking. Control Engineering
Practice, 15(4):435–445.

[Sahl et al., 2010] Sahl, J. W., Fairfield, N., Harris, J. K., Wettergreen, D., Stone,
W. C., and Spear, J. R. (2010). Novel microbial diversity retrieved by
autonomous robotic exploration of the world’s deepest vertical phreatic sinkhole.
Astrobiology, 10(2):201–213.

[Scaramuzza and Fraundorfer, 2011] Scaramuzza, D. and Fraundorfer, F. (2011).
Visual odometry [tutorial]. IEEE robotics & automation magazine, 18(4):80–92.

[Scherer et al., 2015] Scherer, J., Yahyanejad, S., Hayat, S., Yanmaz, E., Andre,
T., Khan, A., Vukadinovic, V., Bettstetter, C., Hellwagner, H., and Rinner,
B. (2015). An autonomous multi-uav system for search and rescue. In
Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems,
and Applications for Civilian Use, pages 33–38. ACM.

[Schmuck, 2017] Schmuck, P. (2017). Multi-uav collaborative monocular slam.
In Robotics and Automation (ICRA), 2017 IEEE International Conference on,
pages 3863–3870. IEEE.

[Schneider et al., 2018] Schneider, T., Dymczyk, M. T., Fehr, M., Egger, K.,
Lynen, S., Gilitschenski, I., and Siegwart, R. (2018). maplab: An open framework
for research in visual-inertial mapping and localization. IEEE Robotics and
Automation Letters.



Bibliography 135

[Schöps et al., 2014] Schöps, T., Engel, J., and Cremers, D. (2014). Semi-dense
visual odometry for ar on a smartphone. In 2014 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pages 145–150.

[Schuster et al., 2015] Schuster, M. J., Brand, C., HirschmÃĳller, H., Suppa, M.,
and Beetz, M. (2015). Multi-robot 6d graph slam connecting decoupled local
reference filters. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5093–5100.

[Shade and Newman, 2011] Shade, R. and Newman, P. (2011). Choosing where to
go: Complete 3d exploration with stereo. In 2011 IEEE International Conference
on Robotics and Automation, pages 2806–2811.

[Sheng et al., 2006] Sheng, W., Yang, Q., Tan, J., and Xi, N. (2006). Distributed
multi-robot coordination in area exploration. Robotics and Autonomous
Systems, 54(12):945–955.

[Sibley et al., 2010] Sibley, G., Mei, C., Reid, I., and Newman, P. (2010). Planes,
trains and automobiles – autonomy for the modern robot. In 2010 IEEE
International Conference on Robotics and Automation, pages 285–292.

[Siles and Walker, 2009] Siles, I. and Walker, I. D. (2009). Design, construction,
and testing of a new class of mobile robots for cave exploration. In 2009 IEEE
International Conference on Mechatronics, pages 1–6.

[Simmons et al., 2000] Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors,
M., Thrun, S., and Younes, H. (2000). Coordination for multi-robot exploration
and mapping. In AAAI/IAAI, pages 852–858.

[Simonin et al., 2014] Simonin, O., Charpillet, F., and Thierry, E. (2014). Re-
visiting wavefront construction with collective agents: an approach to foraging.
Swarm Intelligence, 8:113–138.

[Solanas and Garcia, 2004] Solanas, A. and Garcia, M. A. (2004). Coordinated
multi-robot exploration through unsupervised clustering of unknown space.
In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 1, pages 717–721. IEEE.

[Spaenlehauer et al., 2017] Spaenlehauer, A., Frémont, V., Sekercioglu, Y. A., and
Fantoni, I. (2017). A loosely-coupled approach for metric scale estimation in
monocular vision-inertial systems.

[Steinbrücker et al., 2011] Steinbrücker, F., Sturm, J., and Cremers, D. (2011).
Real-time visual odometry from dense rgb-d images. In Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages
719–722. IEEE.



136 Bibliography

[Stone and Edmonds, 1992] Stone, H. W. and Edmonds, G. (1992). Hazbot: a
hazardous materials emergency response mobile robot. In Proceedings 1992
IEEE International Conference on Robotics and Automation, pages 67–73.

[Sturm et al., 2012] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and
Cremers, D. (2012). A benchmark for the evaluation of rgb-d slam systems.
In Proc. of the International Conference on Intelligent Robot Systems (IROS).

[Ta et al., 2013] Ta, D.-N., Ok, K., and Dellaert, F. (2013). Monocular parallel
tracking and mapping with odometry fusion for mav navigation in feature-
lacking environments.

[Tomic et al., 2012] Tomic, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M.,
Mair, E., Grixa, I. L., Ruess, F., Suppa, M., and Burschka, D. (2012). Toward a
fully autonomous uav: Research platform for indoor and outdoor urban search
and rescue. IEEE Robotics Automation Magazine, 19(3):46–56.

[Vidal et al., 2015] Vidal, I., Valera, F., Diaz, M. A., Garcia, J., and Azcorra,
A. (2015). A multi-service multi-mav communication framework for future
secure societies. Technical report, University Carlos III of Madrid and IMDEA
Networks Institute.

[Waharte and Trigoni, 2010] Waharte, S. and Trigoni, N. (2010). Supporting
search and rescue operations with uavs. In 2010 International Conference on
Emerging Security Technologies, pages 142–147.

[Waharte et al., 2009] Waharte, S., Trigoni, N., and Julier, S. J. (2009). Coordi-
nated search with a swarm of uavs. Sensor, Mesh and Ad Hoc Communications
and Networks Workshops, 2009. SECON Workshops ’09. 6th Annual IEEE
Communications Society Conference on.

[Wang et al., 2010] Wang, J. C. P., Hagelstein, B., and Abolhasan, M. (2010).
Experimental evaluation of ieee 802.11s path selection protocols in a mesh
testbed. In 2010 4th International Conference on Signal Processing and
Communication Systems, pages 1–3.

[Wang et al., 2014] Wang, Q., Giustiniano, D., and Puccinelli, D. (2014). Openvlc:
Software-defined visible light embedded networks. In Proceedings of the 1st ACM
MobiCom Workshop on Visible Light Communication Systems, VLCS ’14, pages
15–20, New York, NY, USA. ACM.

[Wang et al., 2017] Wang, X., Sekercioglu, Y. A., Drummond, T., Frémont, V.,
Natalizio, E., and Fantoni, I. (2017). Relative pose based redundancy removal:
Collaborative RGB-D data transmission in mobile visual sensor networks.
CoRR.



Bibliography 137

[Werger and Matarić, 2000] Werger, B. B. and Matarić, M. J. (2000). Broadcast of
local eligibility for multi-target observation. In Distributed autonomous robotic
systems 4, pages 347–356. Springer.

[Whelan et al., 2015] Whelan, T., Kaess, M., Johannsson, H., Fallon, M., Leonard,
J. J., and McDonald, J. (2015). Real-time large-scale dense rgb-d slam with
volumetric fusion. The International Journal of Robotics Research, 34(4-5):598–
626.

[Whelan et al., 2016] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison,
A. J., and Leutenegger, S. (2016). Elasticfusion: Real-time dense slam and light
source estimation. The International Journal of Robotics Research, 35(14):1697–
1716.

[Whitcomb et al., 2000] Whitcomb, L., Yoerger, D. R., Singh, H., and Howland,
J. (2000). Advances in underwater robot vehicles for deep ocean exploration:
Navigation, control, and survey operations. In Hollerbach, J. M. and Koditschek,
D. E., editors, Robotics Research, pages 439–448, London. Springer London.

[Witkowski et al., 2008] Witkowski, U., El Habbal, M. A. M., Herbrechtsmeier,
S., Tanoto, A., Penders, J., Alboul, L., and Gazi, V. (2008). Ad-hoc Network
Communication Infrastructure for Multi-robot Systems in Disaster Scenarios.
In Proceedings of IARP/EURON Workshop on Robotics for Risky Interventions
and Environmental Surveillance (RISE 2008), Benicassim, Spain.

[Wu and Zhang, 2012] Wu, W. and Zhang, F. (2012). Robust cooperative explo-
ration with a switching strategy. IEEE Transactions on Robotics, 28(4):828–839.

[Yamauchi, 1998] Yamauchi, B. (1998). Frontier-based exploration using multiple
robots. In Proceedings of the second international conference on Autonomous
agents, pages 47–53. ACM.

[Yan et al., 2014] Yan, Z., Fabresse, L., Laval, J., and Bouraqadi, N. (2014). Team
size optimization for multi-robot exploration. In International Conference on
Simulation, Modeling, and Programming for Autonomous Robots, pages 438–
449. Springer.

[Yan et al., 2013] Yan, Z., Jouandeau, N., and Cherif, A. A. (2013). A survey and
analysis of multi-robot coordination. International Journal of Advanced Robotic
Systems, 10(12):399.

[Yang et al., 2017] Yang, S., Scherer, S. A., Yi, X., and Zell, A. (2017). Multi-
camera visual slam for autonomous navigation of micro aerial vehicles. Robotics
and Autonomous Systems, 93:116–134.



138 Bibliography

[Yuan et al., 2010] Yuan, J., Huang, Y., Tao, T., and Sun, F. (2010). A cooperative
approach for multi-robot area exploration. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on, pages 1390–1395. IEEE.

[Zhang et al., 2014] Zhang, J., Kaess, M., and Singh, S. (2014). Real-time depth
enhanced monocular odometry. In Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on, pages 4973–4980. IEEE.

[Zhao et al., 1996] Zhao, L., Tsujimura, Y., and Gen, M. (1996). Genetic algorithm
for robot selection and work station assignment problem. Computers &
Industrial Engineering, 31(3-4):599–602.

[Äřlker Bekmezci et al., 2013] Äřlker Bekmezci, Sahingoz, O. K., and Åđamil
Temel (2013). Flying ad-hoc networks (fanets): A survey. Ad Hoc Networks,
11(3):1254–1270.




	PDT MAHDOUI
	thesis Nesrine MAHDOUI CHEDLY
	Contents
	List of figures
	List of tables
	Acknowledgment
	List of symbols
	Acronyms
	Résumé
	Abstract
	Introduction
	Background
	Motivation
	Problem statement/Approach
	Contributions and publications
	Thesis pipeline

	Multi-robot System Model
	Introduction
	Related works
	System of Systems
	Multi-robot system classification
	Degrees of cooperation
	Degrees of coordination
	Robot types
	Inter-robot communication
	System architecture


	Applications
	Search and rescue applications
	Reconnaissance and surveillance
	Infrastructure inspection
	Exploration
	Discussions

	Advantages of multiple UAVs deployment
	Multi-robot system overview
	Architecture block diagram
	System coordinate frames
	Roles and team hierarchy

	Conclusion

	Simultaneous Localization And Mapping
	Introduction
	Pose estimation
	Visual Odometry
	Overview
	Related work

	Simultaneous Localization And Mapping (SLAM)
	Overview
	Related work


	Metric map representation
	Point cloud representation
	Occupancy grid representation

	Monocular SLAM
	Monocular sensor
	Visual SLAM
	Problem formulation
	Incremental Smoothing and Mapping 2 (iSAM2)

	Results and discussions

	RGB-D SLAM
	RGB-D sensor
	Proposed approach
	SLAM module
	Grid-based mapping module

	Results and discussions
	Implementation details
	Simulation results
	Parameters setting
	SLAM performances using one UAV
	SLAM performances using two UAVs



	Conclusion

	Coordinated exploration
	Introduction
	Related work
	Robot-to-target assignment
	Utility function

	Proposed exploration strategy
	Overview
	Frontier points selection
	Information gain computation
	Frontier points processing
	First approach: Convex shape map
	Second approach: Concave shape map

	Utility function
	Goal assignment process
	Stop condition
	Loop rate
	Scheduling the information gain

	Path planning and control

	Results and discussions
	Parameters tuning
	Trade-off parameter 
	Loop rate r
	Common parameters

	Exploration strategy performances
	Maps evolution during the mission
	Frontier points evolution during the mission
	UAVs' trajectories during the mission
	Goal assignment evaluation: Distribution of the robots in the environment
	Explored space rate evaluation
	Overlap rate evaluation
	Traveled distance evaluation
	Exploration time evaluation

	Exploration mission using relative localization algorithm

	Conclusion

	Inter-robot communication
	Introduction
	Network classification
	Infrastructure versus infrastructureless mode
	Ad Hoc network classification
	Network topology classification

	Network typology
	Related work
	Network standards and protocols
	Results and discussion

	Network topology and strategy for MRS robustness
	Related work
	Inter-robot communication approach
	Multi-UAV interaction and data exchange
	Exploration strategy to face communication loss
	Data exchange strategy discussion

	Results and discussion
	Network setting: From one to multiple machines
	Exchanged data size evaluation 
	Exchanged data average time evaluation 
	Network interruption evaluation 
	Global map evaluation


	Conclusion

	Conclusions and future work
	Summary
	Future research
	Development tools
	Robot Operating System
	Overview
	Framework
	ROS development tools
	Visualization tool: Rviz
	Graph Qt-based framework: Rqt_graph
	Transform libraby: Tf
	Bag tools

	Important ROS packages
	Move base package
	Fkie package
	Ardrone autonomy package


	Gazebo simulator

	Bibliography




