
HAL Id: tel-02106854
https://theses.hal.science/tel-02106854

Submitted on 23 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Model-based Approaches for Software Reverse
Engineering and Comprehension

Hugo Bruneliere

To cite this version:
Hugo Bruneliere. Generic Model-based Approaches for Software Reverse Engineering and Compre-
hension. Software Engineering [cs.SE]. Université de Nantes, 2018. English. �NNT : 2018NANT4040�.
�tel-02106854�

https://theses.hal.science/tel-02106854
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'UNIVERSITE DE NANTES

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601

Mathématiques et Sciences et Technologies

de l'Information et de la Communication

Spécialité : Informatique

Generic Model-based Approaches for Software
Reverse Engineering and Comprehension

Thèse présentée et soutenue à Nantes le jeudi 20 décembre 2018

Unité de recherche : IMT Atlantique Bretagne-Pays de la Loire, Ecole Mines-Télécom
 Laboratoire des Sciences du Numérique de Nantes – LS2N (CNRS, UMR 6004)

Par

Hugo BRUNELIERE

Rapporteurs avant soutenance :

Richard Paige Professeur – University of York, York (United Kingdom)
Benoit Baudry Professeur – KTH Royal Institute of Technology, Stockholm (Sweden)

Composition du Jury :

Président : Jordi Cabot Professeur – ICREA & Open University of Catalonia, Barcelona (Spain)

Examinateurs : Richard Paige Professeur – University of York, York (United Kingdom)

Benoit Baudry Professeur – KTH Royal Institute of Technology, Stockholm (Sweden)
Corinne Miral Maître de conférences HDR – Université de Nantes, Nantes (France)

Référent : Gerson Sunye Maître de conférences HDR – Université de Nantes, Nantes (France)

Note :
Les travaux scientifiques présentés dans ce manuscrit de thèse ont été réalisés
sous la supervision du Professeur Jordi Cabot, également membre du jury.

Acknowledgement

Foremost, I would like to express my sincere gratitude to Dr. Gerson Sunye and Prof.
Jordi Cabot for their precious advices and feedback when writing down this Ph.D. thesis
manuscript that summarizes a significant part of my professional life. This has been
quite a constructive experience for me. I also would like to thank Prof. Jordi Cabot for
mentoring me during his years in Nantes, and I hope we can continue having more good
collaborations in the future.

Besides them, I would like to thank Prof. Richard Paige and Prof. Benoit Baudry for
reviewing the present manuscript and providing their insightful comments on this work.
In addition, I would like to thank Dr. Corinne Miral for also taking part in my thesis
committee.

I thank all the so-called AtlanMod & Friends (and now NaoMod folks) for the stimu-
lating, international and fun working environment in which I have the chance to evolve
since more than 12 years. Notably, I would like to give extra thanks to the project engi-
neers that did a great job on the implementation of MoDisco & EMF Views: people from
Mia-Software (Frédéric Madiot, Grégoire Dupé, Fabien Giquel and others), Guillaume
Doux, Juan David Villa Calle, Jokin García Pérez and Florent Marchand de Kerchove.

More generally, I thank everyone I had the chance to meet, discuss and work with all
along these years in the context of various projects or conferences/events, here in Nantes
or elsewhere in Europe and the rest of the world. It has been a long enriching journey!

Last but not least, I would like to give very special thanks to Prof. Jean Bézivin for
convincing me to work in a research environment in the first place. I am grateful for this
great opportunity he offered me back then.

3

4

To my wife and little boy

To my parents and younger sister

To my entire family, and to the new Brazilian one

To my other family: friends from my hometown, from here and elsewhere

Résumé Français

Introduction

Avec l’avènement des technologies de l’information dans notre société, les organi-
sations entreprennent de plus en plus de projets de migration et/ou de modernisation lo-
giciel. De nombreuses entreprises, indépendamment de leur taille et secteur d’activité,
font désormais face au problème bien connu de devoir gérer, maintenir, faire évoluer ou
remplacer leurs systèmes logiciel existants [135]. Une telle situation est principalement
due aux fréquentes et rapides modifications dans le paysage technologique. Cependant,
les raisons sont généralement multiples: nouveaux besoins utilisateurs, stratégies métiers
en évolution, aspects organisationnels en mouvement, législations changeantes, etc. Dans
tous les cas, la motivation principale derrière les projets de migration/modernisation est
habituellement économique [130].

En raison de cela, les entreprises sont régulièrement poussées à faire évoluer (au
moins en partie) leurs systèmes logiciel déjà existants avant que ceux-ci ne deviennent
véritablement obsolètes ou ne commencent à dysfonctionner. Ces systèmes patrimo-
niaux sont souvent de grandes applications jouant un rôle critique au sein du système
d’information de l’entreprise [15]. De plus, ils ont habituellement un impact non-négli-
geable sur son fonctionnement au quotidien.

Les projets de migration/modernisation associés ne peuvent donc pas être pris à la
légère, puisqu’ils ne viennent jamais sans d’importants challenges associés [122]. Dans
le cas idéal, ils ne devraient pas débuter en raison de modes passagères mais plutôt car
fortement motivés par de réels limitations technologiques ou en anticipation de problè-
mes à venir. Cependant, en pratique, les décideurs et ingénieurs ont seulement une vision
limitée et partielle de la complexité et des potentielles conséquences de leurs projets lo-
giciel [80]. Ainsi, améliorer la compréhension globale des systèmes logiciel concernés
(e.g. en termes d’architecture, de fonctionnalités fournies, de règles métierimposées ou
de données manipulées) est un point crucial [208].

L’Ingénierie Dirigée par les Modèles (IDM) [182], souvent plus généralement ap-
pelée Modélisation, est un paradigme du Génie Logiciel reposant sur la création, la ma-
nipulation et l’utilisation intensive de modèles de natures diverses et variées. Elle repose
largement sur l’hypothèse de base que tout est un modèle [19]. Ces modèles peuvent
décrire différents (et possiblement tous les) aspects complémentaires à la fois des systè-
mes modélisés et des activités d’ingénierie associées. Par conséquent, dans les approches
basées sur les modèles, ceux-ci sont considérés comme des entités de première classe
au sein des processus de conception, développement, déploiement, maintenance et évo-
lution. La communauté scientifique de l’IDM est soutenue par un écosystème solide et

5

6

riche en pratiques, outils et cas d’utilisation provenant à la fois des mondes académique et
industriel [24]. Des études relativement récentes sur l’application concrète de l’IDM dans
l’industrie [110, 210] ont montré que l’IDM a déjà engendré des bénéfices intéréssants
dans le cadre de différents types de projets ou d’activités à forte composante logiciel.

Description de la Problématique

Un projet de migration et/ou modernisation est habituellement constitué de trois pha-
ses consécutives distinctes :

1. Le processus complexe d’obtention de représentations utiles et de plus haut niveau
d’un système (patrimonial) donné est appelé rétro-ingénierie [43]. Son objectif
ultime est de fournir une meilleure compréhension du but et de l’état actuel du
système concerné.

2. L’ingénierie avancée analyse ensuite ces modèles et les transforment (lorsque né-
cessaire) en des spécifications de la nouvelle version du système [14].

3. Les développeurs ou des techniques de génération automatique de code (ou une
combinaison des deux) utilisent finalement ces modèles pour produire le code
correspondant à la plateforme ciblée [107].

Des assemblages de différentes solutions et technologies peuvent aider à la réalisation de
quelques unes des tâches nécessaires. Par exemple, c’est le cas d’outils qui produisent
automatiquement différents types de modèles à partir de code source logiciel déjà exis-
tant. C’est aussi le cas de générateurs de code ciblant divers langages de programmation
et plateformes techniques. Cependant, à notre connaissance, il n’existe pas actuellement
de méthodologie globale qui permette de guider les décideurs, les architectes logiciel et
les ingénieurs tout au long d’un processus de migration/modernisation.

Ceci est particulièrement vrai dans le contexte de la phase de rétro-ingénierie, qui
constitue le focus du travail présenté dans cette thèse. Les challenges importants asso-
ciés [38] incluent notamment :

— Le support générique à des technologies logiciel hétérogènes (e.g. différents langa-
ges de programmation).

— L’aptitude à extraire des données utiles à partir du système (e.g. allant plus loin
que l’arbre de syntaxe abstraite).

— La couverture à la fois des dimensions statiques et dynamiques du système (e.g. in-
cluant les données d’exécution).

— La capacité à obtenir des vues pertinentes du système et à gérer des liens de tra-
cabilité entre elles.

Ce dernier point est même considéré comme une activité et un objectif fondamental de la
rétro-ingénierie et compréhension du logiciel.

Assez récemment (comparé à l’histoire de la rétro-ingénierie), la Rétro-Ingénierie Di-
rigée par les Modèles (RIDM) [181] a été proposée afin d’améliorer les processus de
rétro-ingénierie plus traditionnels. La RIDM peut être définie comme l’application des
principes et techniques de l’IDM dans le contexte d’activités de rétro-ingénierie. Les
approches RIDM dépendent notamment des techniques basées sur les modèles existan-
tes pour obtenir des modèles représentant les systèmes étudiés en fonction de différents
aspects et à différents niveaux d’abstraction. Les diagrammes de classe UML (Unified

7

Modeling Languages) [167], les machines à états ou les workflows sont des exemples
bien-connus de tels modèles (pour en citer seulement quelques uns).

En s’appuyant sur ces différents modèles obtenus, il est ensuite possible d’analyser
plus en profondeur et de comprendre le système faisant l’objet d’un processus de rétro-
ingénierie. Dans ce but, les résultats attendus incluent la fourniture de vues (basées sur
ces modèles) cohérentes et complémentaires décrivant ce système [27]. De telles vues sur
des modèles permettent de fédérer l’information pertinente provenant de divers modèles
souvent interdépendants, notamment ceux précedemment obtenu par RIDM. Ces vues
doivent être spécifiées et calculées en fonction de points de vue qui sont appropriés aux
différentes parties prenantes.

Cependant, une limitation importante des approches RIDM existantes ainsi que des
approaches de fédération/vue sur des modèles est qu’elles reposent assez souvent sur des
intégrations sur-mesure et spécifiques de différents outils [201]. De plus, leurs implé-
mentations techniques peuvent parfois s’avérer (très) hétérogènes et coûteuses. Cela peut
compliquer encore davantage la situation, et peut à terme entraver leurs bons déploie-
ments et utilisations pratiques.

Dans cette thèse, nous argumentons que des solutions génériques et extensibles com-
plémentaires sont toujours manquantes (ou tout du moins fournissent un support incom-
plet) afin d’être en mesure de combiner la RIDM avec des capacités avancées de fédéra-
tion/vue sur les modèles. Plus particulièrement, de telles solutions doivent permettre
d’adresser plusieurs types de scenarios de rétro-ingénierie et compréhension du logiciel,
s’appuyant possiblement sur différentes plateformes techniques. De plus, fournir des im-
plémentations en logiciel libre des approches proposées doit permettre de favoriser leur
intéropérabilité avec l’existant ainsi que leur dissémination à plus large échelle.

Approche Mise en Oeuvre

L’objectif de cette thèse est donc de progresser vers l’amélioration du support réu-
tilisable pour des cas d’utilisation possiblement hétérogènes de rétro-ingénierie et com-
préhension du logiciel. Notre proposition est de s’appuyer sur deux approches com-
plémentaires, génériques, extensibles et basées sur les modèles dans le but de faciliter
l’élaboration de solutions à ce problème.

Rétro-Ingénierie Dirigée par les Modèles (RIDM). Nous avons commencé par ca-
pitaliser à la fois sur les différentes pratiques existantes (provenant de l’état de l’art) et
sur nos propres expériences passées (e.g. de collaboration avec des entreprises dans le
contexte de vrais projets de modernisation). À partir de cette connaissance scientifique et
pratique acquise au fil des ans, nous avons été en mesure de spécifier un processus global
ainsi qu’une architecture support pour une approche de RIDM générique et extensible.
Nous avons également travaillé sur une implémentation concrète de cette approche con-
ceptuelle sous la forme d’un premier framework en logiciel libre, en partenariat direct
avec une entreprise experte du domaine. Initialement, la solution conçue se focalisait
principalement sur la rétro-ingénierie des aspects structurels (i.e. statiques) des systèmes
logiciel. Nous avons par la suite complété ce framework avec des travaux de recherche
supplémentaires sur la rétro-ingénierie d’aspects comportementaux (i.e. dynamiques).

8

Compréhension via Fédération/Vue sur des Modèles. De manière complémentaire
à la RIDM, des capacités de fédération de modèles sont attendues afin d’améliorer les
activités de compréhension (basée sur les modèles) du logiciel. Ainsi, nous avons pro-
posé une approche générique (i.e. indépendante des types de modèles concernés) pour
la construction et la manipulation transparente de vues sur des modèles. De telles vues
peuvent possiblement fédérer divers ensembles de modèles hétérogènes, en fonction de
différents points de vue exprimant les aspects à partir desquels le système concerné doit
être observé. Basé sur la notion de virtualisation de modèles, nous avons dévelopé une
implémentation non-intrusive de cette approche conceptuelle. Il en a résulté un second
framework en logiciel libre, qui peut notamment consommer des modèles produits par
notre premier framework dédié à la RIDM (parmi d’autres modèles provenant de diffé-
rentes sources).

S’appuyant toutes les deux sur les mêmes principes et techniques de base de l’IDM,
les deux approches conceptuelles proposées peuvent être combinées et chaînées ensem-
ble de manière naturelle. L’intégration pratique des deux frameworks correspondants est
rendue possible grâce à l’utilisation d’un environnement de modélisation commun et par-
tagé. Basées sur ces deux approches et frameworks, des solutions plus élaborées de rétro-
ingénierie et de compréhension du logiciel peuvent être conçues dans le but d’adresser
des scénarios potentiellement complexes. De plus, les approches proposées peuvent éga-
lement être réutilisées (de manière indépendante ou conjointe) en collaboration avec des
approaches basées sur les modèles adressant d’autres problématiques, toujours dans un
contexte de Génie Logiciel ou bien associé à d’autres types d’activités.

Contributions

Comme représenté graphiquement dans la Figure 1, les contributions principales de
cette thèse sont les suivantes :

— MODISCO propose une approche de RIDM globale, générique et extensible ayant
pour objectif de faciliter l’élaboration de solutions de RIDM dans de nombreux
contextes différents. Elle est réalisée en pratique par un framework technique étant
un projet officiel Eclipse construit au dessus de l’environnement Eclipse et son
Eclipse Modeling Framework (EMF). Parmi d’autres possible sorties (e.g. code
source généré, rétro-documentation), ce framework permet notamment d’obtenir
différents types de modèles à partir de systèmes existants et des divers éléments
qui les composent (code source, données, etc.). Les modèles obtenus peuvent
ensuite être réutilisés lors des activités de fédération et compréhension, e.g. en
utilisant EMF VIEWS tel qu’introduit juste après.
— FREX propose un framework ouvert et extensible, basé sur l’approche MO-

DISCO , qui est capable de générer automatiquement et d’exécuter des mo-
dèles comportementaux exprimés en fUML (Foundational UML Subset). Il
fournit également un mapping de base initial entre les diagrammes de clas-
ses/activités d’UML (i.e. fUML) et des éléments noyaux du langage de pro-
grammation Java.

— EMF VIEWS propose une approche générique et extensible ayant pour objectif
de spécifier, construire et manipuler des vues sur des ensembles de modèles exis-
tants divers et variés. Ces vues peuvent être pertinentes pour différents types de

9

parties prenantes (e.g. ingénieurs et architectes logiciel, décideurs). La solution
proposée peut notamment consommer les modèles produits précédemment grâce
à MODISCO , mais peut également réutiliser des modèles provenant d’autres sour-
ces (e.g. définis manuellement par des ingénieurs). Elle repose sur un backend de
virtualisation de modèles qui permet de renvoyer au contenu de tels modèles de
manière transparente et non-intrusive. Elle est également réalisée en pratique par
un framework dédié implémenté au dessus de l’environnement Eclipse/EMF.
— En complément de l’approche EMF VIEWS et de son framework d’implémen-

tation, nous contribuons une étude détaillée de l’état-de-l’art sur les approches
de vue sur des modèles. Grâce à ce travail étendu, un feature model est proposé
afin d’aider à caractériser les différentes solutions disponibles et à sélectionner
la/les plus appropriée(s) dans des contextes donnés.

Model Driven
Reverse Engineering

 MoDisco (fREX)

Model Federation
and Comprehension

 EMF Views

Source code

Data

Configuration
files

Models

Others

Views

Decision-maker

Architect

Engineer

Others

Figure 1 – Un écosystème basé sur les modèles pour la rétro-ingénierie et compréhension
des systèmes logiciel.

Outils et Résultats

Les approches et frameworks présentés dans cette thèse sont tous implémentés sous
la forme de plugins Eclipse en logiciel libre. L’intégralité de leur code source, leur do-

10

cumentation ainsi que les différentes autres resources de développement et d’utilisation
associées sont disponibles en ligne via des sites ou dépôts dédiés (MODISCO 1, FREX 2,
EMF VIEWS 3). Tous ces frameworks techniques implémentant les approches conceptu-
elles proposées sont construits au-dessus d’EMF, l’environnement de modélisation stan-
dard dans l’écosystème Eclipse, afin de favoriser leur interopérabilité avec d’autres solu-
tions déjà existantes par ailleurs.

Dans cette thèse, nous évaluons notamment le passage à l’échelle de nos solutions
dans le contexte de différents cas d’utilisation réels (i.e. provenant directement d’entre-
prises partenaires) ou réalistes (i.e. simulant des besoins réels remontés par des entreprises
partenaires). Par exemple, nous montrons en pratique que nous sommes en mesure de fa-
ciliter de manière effective la création de solutions techniques répondant à des besoins de
rétro-ingénierie variés (refonte d’applications existantes, qualité du logiciel). Nous mon-
trons aussi comment nous rendons possible la fédération de divers modèles hétérogènes
(dont certains provenant de la rétro-ingénierie) dans un contexte industriel nécessitant une
solution de traçabilité entre conception et exécution d’un système.

En complément de ces applications concrètes et pratiques, nous réalisons des tests
de performance poussés concernant plus spécifiquement certains des composants clés de
nos solutions. Notamment, nous évaluons dans le détail les capacités de notre solution
de RIDM (i.e. MODISCO) en termes de découverte automatique de modèles à partir de
code source Java. Nous testons également la scalabilité de notre solution de fédération/-
vue (i.e. EMF VIEWS) sur des modèles très volumineux décrivant des aspects compor-
tementaux (dynamiques) d’un système. Les résultats obtenus dans les deux cas montrent
que les solutions proposées sont d’ores-et-déjà déployables et utilisables dans des projets
industriels à moyenne échelle. Cependant il reste encore des challenges scientifiques à
adresser, notamment en ce qui concerne la découverte automatique de modèles compor-
tementaux ou bien la vérification/validation et la mise-à-jour de vues sur des modèles à
grande échelle.

Enfin, l’ensemble du travail de recherche présenté dans cette thèse a été réalisé et ap-
pliqué dans le cadre de plusieurs projets collaboratifs nationaux et européens impliquant
à la fois des laboratoires académiques et des entreprises. De ces expériences passées
et présentes, nous tirons des leçons pouvant intéresser toute personne engagée dans des
activités de création, conception, développement et promotion d’approches et d’outils
basés sur les modèles. De manière plus générale, certains des facteurs clés de réussite (ou
d’échec) que nous identifions peuvent également s’avérer pertinents dans le contexte de
n’importe quel projet logiciel.

1. https://www.eclipse.org/MoDisco
2. https://github.com/atlanmod/fREX
3. http://www.atlanmod.org/emfviews

https://www.eclipse.org/MoDisco
https://github.com/atlanmod/fREX
http://www.atlanmod.org/emfviews

Abstract

Nowadays, companies undertake more and more software migration and/or moderni-
zation projects for different reasons (economical, business-related, organizational, techni-
cal, legal, etc.). Independently of their size and activity, they all face the problem of
managing, maintaining, evolving or replacing their existing software systems. The first
phase of any project of this kind is called Reverse Engineering: the complex process of
obtaining various representations of an existing system, with the main objective to pro-
vide a better comprehension of its purpose and state.

Model Driven Engineering (MDE) / Modeling is a software engineering paradigm
relying on intensive model creation, manipulation and use. These models can describe
different complementary aspects of the modeled systems and related engineering activi-
ties. Thus, in model-based approaches, models are considered as first-class entities in
design, development, deployment, integration, maintenance and evolution tasks.

Model Driven Reverse Engineering (MDRE) has been proposed to enhance more tra-
ditional reverse engineering processes. MDRE can be defined as the application of MDE
in the context of reverse engineering activities, in order to obtain models representing an
existing system according to various aspects. It is then possible to further comprehend
this system via coherent views federating these different models.

However, existing MDRE and model view/federation solutions are limited as they
quite often rely on custom or case-specific integrations of different tools. Moreover, they
can sometimes be (very) heterogeneous which may hinder their practical deployments
and usages. Generic and extensible solutions are still missing (or providing incomplete
support) for MDRE to be combined with advanced model view/federation capabilities.

In this thesis, we propose to rely on two complementary model-based approaches: (i)
A generic and extensible approach intending to facilitate the elaboration of MDRE so-
lutions in many different contexts. It notably allows to obtain different kinds of models
out of existing systems and the various artifacts composing them (e.g. source code, data).
(ii) A generic and extensible approach intending to specify, build and manipulate views
federating different existing models (e.g. the ones resulting from our MDRE approach).
Such views can be relevant to different kinds of stakeholders (e.g. software engineers/ar-
chitects, decision-makers) according to comprehension objectives.

The corresponding implementations are open source and rely on the Eclipse-EMF de-
facto standard modeling framework. They have been designed, developed and evaluated
within collaborative projects involving several companies and their realistic use cases.

11

1
Introduction and Context

1.1 Introduction

With the advent of Information Technology in our society, organizations undertake
more and more software migration and/or modernization projects every day. Many com-
panies, independently of their size and activity type, are now facing the well-known
problem of managing, maintaining, evolving or replacing their existing software sys-
tems [135]. Such a situation is principally due to frequent and rapid modifications in the
technological landscape. However, the reasons are generally multiple: new user require-
ments, evolving business strategies, moving organizational aspects, changing legislation,
etc. In any case, the main rationale behind migration/modernization projects is usually
economical [130].

Because of that, companies are regularly pushed to evolve (at least part of) their al-
ready existing software systems before these systems actually become obsolete or start
to malfunction. These legacy systems are often large applications playing a critical role
in the information system of the company [15]. Moreover, they usually still have a non-
negligible impact on its daily operations.

The related migration/modernization projects cannot be taken too lightly, as they ne-
ver come without significant associated challenges [122]. In the ideal case, they should
not start because of passing fads but rather because strongly motivated by real technologi-
cal limitations or forthcoming system issues. However, in practice, decision-makers and
engineers have only a limited and partial vision over the complexity and potential con-
sequences of their software projects [80]. Thus, improving the overall comprehension of
the concerned software systems (e.g. in terms of architecture, provided features, enforced
rules or handled data) is a crucial point [208].

Model Driven Engineering (MDE) [182], often more generally referred to as Mo-
deling, is a software engineering paradigm relying on the intensive creation, manipula-

13

14 CHAPTER 1. INTRODUCTION AND CONTEXT

tion and use of models having various and varied natures. It is largely based on the core
assumption that everything is a model [19]. These models can describe different (and pos-
sibly all) complementary aspects of both the modeled systems and the related engineer-
ing activities. As a consequence, in model-based approaches, models are considered as
first-class entities within design, development, deployment, integration, maintenance and
evolution processes. The MDE scientific community is backed by a solid ecosystem of
existing practices, tools and use cases coming both from academics and industrials [24].
Relatively recent studies on the practical application of MDE to the industry [110, 210]
have shown that it has already brought interesting benefits to different kinds of software-
intensive projects and activities.

1.2 Problem Statement

A software migration and/or modernization project usually has three distinct and con-
secutive phases, as shown in Figure 1.1:

1. The complex process of obtaining useful higher-level representations of a given
(legacy) system is called reverse engineering [43]. Its main final objective is to
provide a better comprehension of the purpose and current state of the concerned
system.

2. Forward engineering then analyzes those models and transforms them (when ne-
cessary) into the specification of the new version of the system [14].

3. Developers or automated code generation techniques (or a combination of both)
use these models to produce the corresponding code for the targeted platform [107].

Legacy
Software System

New
Software System

Reverse Engineering

Forward Engineering

Comprehension1

23

Figure 1.1 – The three phases of a software modernization and/or migration project.

Combinations of different existing solutions and technologies can help realizing some
of the necessary tasks. For example, this is the case of tools that automatically produce
different kinds of models from already existing software source code. This is also the case
of code generators targeting various programming languages and technical platforms.

1.2. PROBLEM STATEMENT 15

However, to the best of our knowledge, there is currently no global methodology that can
guide decision makers, software architects and engineers through the whole process.

This is particularly true in the context of the previously introduced reverse engineering
phase, which is the focus of the work presented in this manuscript. Related important
challenges [38] notably include:

— The generic support for heterogeneous software technologies (e.g. different pro-
gramming languages).

— The ability to extract useful data from the system (e.g. going further than the
abstract syntax tree).

— The coverage of both the static and dynamic dimensions of the system (e.g. inclu-
ding runtime data).

— The capability to obtain relevant views of this system and to deal with the tracea-
bility between them.

The latter is even considered as a fundamental activity and goal of software reverse engi-
neering and comprehension.

Quite recently (compared to the global history of reverse engineering), Model Driven
Reverse Engineering (MDRE) [181] has been proposed to enhance more traditional re-
verse engineering processes. MDRE can be defined as the application of MDE principles
and techniques in the context of reverse engineering activities. Supporting approaches no-
tably depend on existing model-based techniques in order to obtain models representing
the system according to different aspects and at different abstraction levels. Well-known
examples of such models are Unified Modeling Language (UML) [167] class diagrams,
state machines or workflows (just to cite a few).

Relying on these different obtained models, it is then possible to further analyze and
comprehend the reverse engineered system. To this intent, expected outcomes include the
provisioning of coherent and complementary model-based views over this system [27].
Such model views allow federating relevant information coming from various interrelated
models, notably the ones previously obtained by MDRE. These model views have to be
specified and computed according to viewpoints which are appropriate to the different
stakeholders involved in the process.

However, an important limitation of the existing MDRE and related model view/fe-
deration approaches is that they quite often rely on custom and case-specific integrations
of different tools [201]. Moreover, the corresponding technical solutions can sometimes
be (very) heterogeneous or costly. This can complicate even more the situation and may
hinder their actual deployments and practical usages.

In this thesis, we argue that complementary generic and extensible solutions are still
missing (or providing an incomplete support) for MDRE to be combined with advan-
ced model view/federation capabilities. More specifically, such solutions should allow
addressing several kinds of reverse engineering and comprehension scenarios which pos-
sibly rely on different legacy technologies and platforms. Additionally, providing open
source technical implementations of the proposed approaches should allow fostering their
interoperability as well as their dissemination.

16 CHAPTER 1. INTRODUCTION AND CONTEXT

1.3 Global Approach

The objective of this thesis is to improve the reusable support for possibly heteroge-
neous reverse engineering and comprehension use cases. We notably intend to facilitate
the elaboration of conceptual and technical solutions to this kind of problems. In order
to achieve this, our proposition is to rely on two complementary, generic and extensible
model-based approaches.

We started by capitalizing on both the different existing practices (from the state-of-
the-art) and our own past experiences (e.g. collaborating with companies in the context of
real software modernization projects). From this scientific and practical knowledge gai-
ned over the years, we were able to specify the overall process and supporting architecture
of a generic and extensible MDRE approach. We also worked on a concrete implemen-
tation of this conceptual approach as a first open source framework, in direct partnership
with a company expert in the area. Initially, the designed solution was mostly focusing
on the reverse engineering of the structural (i.e. static) aspects of software systems. We
then complemented this framework with further research and related developments on the
reverse engineering of the behavioral (i.e. dynamic) aspects of these systems.

Complementary to MDRE, and as introduced before in Section 1.2, model federa-
tion capabilities are expected in order to improve software (model-based) comprehension
activities. Thus, we proposed a generic (in the sense of metamodel-independent) appro-
ach for building and handling model views in a transparent way. Such model views can
possibly federate together various sets of heterogeneous models, according to different
viewpoints expressing the aspects from which the reverse engineered system has to be
observed. Based on the notion of model virtualization, we have also developed a non-
intrusive implementation of this conceptual approach. This has resulted in a second open
source framework, that can notably consume models produced by our first framework
dedicated to MDRE (among other models coming from different sources).

As both relying on the same MDE base principles and techniques, the two proposed
conceptual approaches can be naturally combined or chained together. The practical in-
tegration of the two corresponding open source frameworks is made possible thanks to
the use of a commonly shared modeling environment. Based on these two approaches
and frameworks, more elaborated software reverse engineering and comprehension solu-
tions can be designed in order to address potentially complex scenarios. Moreover, it is
important to notice that the proposed contributions can also be reused (independently or
not) in collaboration with model-based approaches addressing other issues, in a software
engineering context or related to other kinds of activities.

1.4 Proposed Contributions

In this section, we summarize the contributions of this thesis and introduce how they
can be combined together to provide support for software reverse engineering and com-
prehension activities. As mentioned before, the technical frameworks implementing the
proposed conceptual approaches are all built on top of the Eclipse Modeling Framework
(EMF). EMF is the de-facto standard modeling framework and environment in the Eclipse
ecosystem (cf. Section 2.3). Note that all the presented technical solutions are fully open

1.4. PROPOSED CONTRIBUTIONS 17

Model Driven
Reverse Engineering

 MoDisco (fREX)

Model Federation
and Comprehension

 EMF Views

Source code

Data

Configuration
files

Models

Others

Views

Decision-maker

Architect

Engineer

Others

Figure 1.2 – An ecosystem for the model-based reverse engineering and comprehension
of existing Software systems.

source, their source code is available online through their respective websites (cf. also
corresponding Chapter 3 and Chapter 4 for more resources on them).

As depicted in Figure 1.2, the thesis contributions are the following:
— MODISCO proposes a generic, extensible and global MDRE approach intending

to facilitate the elaboration of MDRE solutions in many different contexts. It
is realized as a ready-to-use framework being an official Eclipse project on top
of the Eclipse/EMF environment. Among other possible outputs (e.g. generated
source code, retro-documentation), this framework notably allows to obtain diffe-
rent kinds of models out of existing systems and the various artifacts composing
them (source code, data, etc.). Such obtained models can then be reused for furt-
her federation and comprehension, e.g. using EMF VIEWS as introduced right
after.
— FREX proposes an open and extensible framework, based on the MODISCO ap-

proach, that is capable of automatically generating and executing behavioral
models expressed in Foundational UML Subset (fUML). It also provides an
initial base mapping between UML activity/class diagrams (i.e. fUML) and
the core language features of Java.

18 CHAPTER 1. INTRODUCTION AND CONTEXT

— EMF VIEWS proposes a generic and extensible approach intending to specify,
build and manipulate views over sets of various and varied already existing mo-
dels. Such views can be relevant to different kinds of stakeholders (e.g. software
engineers or architects, decision-makers). The proposed approach can notably
consume the models previously produced thanks to MODISCO , but can also reuse
models coming from other sources (e.g. manually defined by some engineers). It
relies on a model virtualization backend that allows referring to the content of such
models in a transparent and non-intrusive way. It is also realized as a dedicated
framework implemented on top of the Eclipse/EMF environment.
— Complementary to the EMF VIEWS approach and implementing framework,

we also contribute a detailed survey on model view approaches. Thanks to this
extended study of the state-of-the-art, a feature model is notably proposed in
order to help characterizing the different available solutions and selecting the
one(s) more appropriate in given contexts.

It is important to mention that these contributions can also be used individually in
other contexts than the one described as the main motivation and scope of this thesis. This
is notably the case for the second contribution that provides general model federation and
integration capabilities via a model-based view support.

1.5 Thesis Context

I have been working as a research engineer in the NaoMod research group (formerly
part of the ATLAS team, and then known as the AtlanMod team) for more than 12 years.
This has allowed me to gain a solid research experience in Modeling/MDE principles and
techniques as well as their possible applications to different problems. Thus, during all
these years I have been able to conduct various research works in the Software Engineer-
ing area. The topics I had the opportunity to work on notably include global model ma-
nagement (also known as megamodeling) [205], tool and language interoperability [28],
reverse engineering [30], viewpoint/view approaches [27], Cloud Computing [26, 2] or
Cyber-Physical System (CPS) [1].

The thesis presented in this manuscript has been written in the context of the Valida-
tion of Professional Experience and Knowledge program (known under the VAE acronym
in France) that is proposed by French universities. At PhD-level, this graduation program
is dedicated to persons already having a long-term research experience and significant
corresponding scientific results. It offers them the possibility to validate such previously
obtained results via the writing and official defense of a PhD thesis, under the supervision
and evaluation of habilitated professors.

In the present case, as the concerned working period is quite long and spans over more
than a decade, I decided to put the focus on its second half and more particularly on the
last 4-to-5 years (voluntarily excluding some of my work on other topics than the ones
addressed in this manuscript). This also corresponds to a period in which I have been acti-
vely doing research (i.e. studying the state-of-the-art, designing conceptual approaches,
architectures and related technical solutions, specifying required metamodels and/or lan-
guages, writing research papers accordingly) while supervising and collaborating with
engineers that dealt with the associated implementation work.

1.6. SCIENTIFIC PRODUCTION 19

Thus, as previously introduced in Section 1.3 and Section 1.4 (respectively), the ap-
proach and contributions proposed in this thesis relate to a restricted set of my publica-
tions coming mostly from this period of time. These publications, listed in next Section
1.6, are the ones particularly relevant in the context of the scientific problem described in
Section 1.2.

1.6 Scientific Production

As introduced in the previous section, the present thesis focuses on a coherent subset
of the research work I conducted during the last decade or so. The contributions descri-
bed in this manuscript (cf. Section 1.4) correspond to a number of publications selected
among the ones I have been first-authoring (for most of them) or involved in (for a few
of them) during this period of time. Thus, in the particular context of this thesis, we
have considered the following 11 papers that have been peer-reviewed and published in
different venues: 5 international journals, 4 international conferences and 2 international
(selective) workshops.

— Journals

1. Afzal, W., Bruneliere, H., Di Ruscio, D., Sadovykh, A., Mazzini, S., Cariou,
E., Truscan, D., Cabot, J, Gomez, A., Gorronogoitia, Y., Pomante, L. & Smrz,
P. The MegaM@Rt2 ECSEL Project MegaModelling at Runtime - Scalable
Model-based Framework for Continuous Development and Runtime Valida-
tion of Complex Systems. In Journal of Microprocessors and Microsystems
(MICPRO), 2018. Elsevier.
— https://hal.archives-ouvertes.fr/hal-01810002

2. Bruneliere, H., Burger, E., Cabot, J. & Wimmer, M. A Feature-based Survey
of Model View Approaches. In Journal on Software and Systems Modeling
(SoSyM), 2017. Springer. SoSyM 2018 Best Paper Award, also published
and presented at the ACM/IEEE 21st International Conference on Model Dri-
ven Engineering Languages and Systems (MODELS 2018).
— https://hal.inria.fr/hal-01590674

3. Bruneliere, H., Cabot, J., Canovas Izquierdo, J.L., Orue-Echevarria, L., Strauss,
O. & Wimmer, M. Software Modernization Revisited: Challenges and Pro-
spects. In Computer Magazine, 2015. IEEE.
— https://hal.inria.fr/hal-01186371

4. Bruneliere, H., Cabot, J., Dupe, G. & Madiot, F. MoDisco: a Model Driven
Reverse Engineering Framework. In Information and Software Technology
(IST), 2014. Elsevier.
— https://hal.inria.fr/hal-00972632

5. Menychtas, A., Konstanteli, K., Alonso, J., Orue-Echevarria, L., Gorronogoi-
tia, J., Kousiouris, G., Santzaridou, C., Bruneliere, H., Pellens, B., Stuer, P.,
Strauss, O., Senkova, T. & Varvarigou, T. Software Modernization and Clou-
dification Using the ARTIST Migration Methodology and Framework. In Sca-
lable Computing: Practice and Experience (SCPE), 2014. West University of
Timisoara.
— https://hal.inria.fr/hal-01021002

https://hal.archives-ouvertes.fr/hal-01810002
https://hal.inria.fr/hal-01590674
https://hal.inria.fr/hal-01186371
https://hal.inria.fr/hal-00972632
https://hal.inria.fr/hal-01021002

20 CHAPTER 1. INTRODUCTION AND CONTEXT

— International Conferences

1. Bruneliere, H., Marchand de Kerchove, F., Daniel, G. & Cabot, J. Towards
Scalable Model Views on Heterogeneous Model Resources. In ACM/IEEE
21st International Conference on Model Driven Engineering Languages and
Systems (MODELS 2018), 2018. ACM.
— https://hal.archives-ouvertes.fr/hal-01845976

2. Bruneliere, H., Garcia, J., Wimmer, M. & Cabot, J. EMF Views: A View Me-
chanism for Integrating Heterogeneous Models. In 34th International Confe-
rence on Conceptual Modeling (ER 2015), 2015. Springer.
— https://hal.inria.fr/hal-01159205

3. Bruneliere, H., Garcia, J., Desfray, P., Khelladi, D.E., Hebig, R., Bendraou,
R. & Cabot, J. On Lightweight Metamodel Extension to Support Modeling
Tools Agility. In 11th European Conference on Modelling Foundations and
Applications (ECMFA 2015) (a STAF 2015 conference), 2015. Springer.
— https://hal.inria.fr/hal-01146802

4. Bergmayr, A., Bruneliere, H., Canovas Izquierdo, J.L., Gorronogoitia, J.,
Kousiouris, G., Kyriazis, D., Langer, P., Menychtas, A., Orue-Echevarria, L.,
Pezuela, C. & Wimmer, M. Migrating Legacy Software to the Cloud with
ARTIST. In 17th European Conference on Software Maintenance and Reen-
gineering (CSMR 2013), 2013. IEEE.
— https://hal.inria.fr/hal-00869268

— International Workshops

1. Bergmayr, A., Bruneliere, H., Cabot, J., Garcia, J., Mayerhofer, T. & Wim-
mer, M. fREX: fUML-based Reverse Engineering of Executable Behavior for
Software Dynamic Analysis. In 8th Workshop on Modelling in Software Engi-
neering (MiSE 2016), co-located with the ACM/IEEE 38th International Con-
ference on Software Engineering (ICSE 2016), 2016. IEEE.
— https://hal.inria.fr/hal-01280484

2. Bruneliere, H., Cabot, J., Drapeau, S., Somda, F., Piers, W., Villa Calle, J.D.
& Lafaurie, J.C. MDE Support for Enterprise Architecture in an Industrial
Context: the TEAP Framework Experience. In TowArds the Model DrIveN
Organization (AMINO 2013) workshop - co-located with the ACM/IEEE 16th
International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2013), 2013. CEUR-WS.
— https://hal.inria.fr/hal-00869282

1.7 Outline

The rest of this thesis manuscript is structured as follows.

Chapter 2 introduces the basic model-based principles and techniques that are requi-
red to properly understand the remaining content of this thesis. This notably includes
general knowledge on MDE core definitions and concepts, on some related modeling
standards and techniques as well as on the Eclipse modeling ecosystem.

https://hal.archives-ouvertes.fr/hal-01845976
https://hal.inria.fr/hal-01159205
https://hal.inria.fr/hal-01146802
https://hal.inria.fr/hal-00869268
https://hal.inria.fr/hal-01280484
https://hal.inria.fr/hal-00869282

1.7. OUTLINE 21

Then, chapter 3 presents our generic and extensible solution that intends to provide
support for MDRE. This includes the presentation of both the proposed conceptual ap-
proach and the MoDisco implementing framework. The chapter also provides a detailed
description of the state-of-the-art in the MDRE area, as well as a real evaluation of the
contributed approach and tooling on industrial use cases.

Chapter 4 describes our generic solution that aims at offering support for Model Fe-
deration and Comprehension via the use of model views. This includes the presentation
of both the proposed conceptual approach and the EMF Views implementing framework.
The chapter also provides a detailed description of the state-of-the-art in the model view
area, as well as a practical evaluation of the contributed approach and tooling via large-
scale performance benchmarks.

Finally, Chapter 5 concludes this thesis by summarizing the key contributions. It also
presents the main impact of the obtained results via the (industrial) collaborative projects
in which these contributions have been actually developed and applied. Moreover, it
provides our main general lessons learned as well as our perspectives and related future
work concerning the proposed contributions.

2
Background

In this chapter, we introduce the background knowledge that is relevant in order to
properly understand the contributions presented later in this manuscript. We start by
describing the Modeling/MDE core principles, concepts and current related challenges.
Then, we continue by giving an overview of some important modeling standards and
technologies. Finally we present the Eclipse open source project and platform, notably
EMF as the main technical basis behind the work described in this thesis.

2.1 Modeling and Model Driven Engineering (MDE)

As introduced before, the contributions presented in this manuscript take part in the
Modeling/MDE area. Thus, in what follows, we provide its general definition (Section
2.1.1), explain its core concepts (Section 2.1.2) and summarize its current main challenges
(Section 2.1.3).

2.1.1 General Definition

MDE [120, 182, 20] is a software engineering paradigm relying on the intensive crea-
tion, manipulation and use of models having various and varied natures. Even though they
may differ in terms of scope, MDE and its frequently encountered siblings (Model-based
Engineering [82], Model-driven Development [207], etc.) can be all grouped together
under the generic name Modeling [24]. They all state that many benefits can be gained by
moving from traditional code-centric approaches to model-based or model-driven ones,
thus raising the considered level of abstraction. In any case, the main big objectives can
be summarized as follows:

1. Capitalize on the already existing generic knowledge (e.g. on concerned domains,
processes, technologies, data) in order to foster extensibility and reusability.

23

24 CHAPTER 2. BACKGROUND

2. Increase problem and/or system comprehension in order to better manage the
complexity, and thus facilitate the integration, maintenance or evolution phases.

3. Improve the overall efficiency of the different software engineering activities, no-
tably by (semi-)automating certain tasks whenever relevant and possible.

Metamodel
MMa

conforms to

Model
M1 System s

represents

Figure 2.1 – System, model and metamodel.

As depicted in Figure 2.1, a model can be defined as the result of the observation of
a system considering a given metamodel that specifies particular concerns or purposes
(from which this system is observed) [9]. Depending on the situation, such a model can
be obtained manually, automatically or via a combination of approaches requiring both.
Modeling is largely based on the assumption that everything is a model [19]: models can
describe different (potentially all) complementary aspects/dimensions of both the mo-
deled systems and the related engineering activities. Thus, in model-based approaches,
models are considered as first-class entities within design, development, deployment/in-
tegration, maintenance and evolution processes. This concerns the software systems to
be produced, but also their environments as well as their handled data.

2.1.2 Core Concepts

The Three-level Modeling Stack

Several slightly different Modeling definitions coexist in the state-of-the-art [146].
They usually come with associated frameworks allowing to design and relate together
models that can deal with various abstraction or hierarchical levels (cf. multilevel meta-
modeling for instance [8, 204]). However, it is generally admitted in the community to
rely on a fixed three-level modeling stack [20]. As shown from Figure 2.2, this stack
is based on three main concepts at three different levels of abstraction: metametamodel,
metamodel and model.

In order to facilitate comprehension, we can make the analogy between the MDE
technical space and two others technical spaces having a similar global structuring:

— MDE: models, metamodels and the metametamodel.
— Extended Backus-Naur Form (EBNF) [112]: programs, grammars and the gram-

mar of EBNF.
— EXtensible Markup Language (XML) [215]: documents, schemas and the schema

of XML Schema.
A metametamodel (corresponding to the M3 level) defines the minimal set of meta-

elements required in order to allow the specification of metamodels. Similarly to the

2.1. MODELING AND MODEL DRIVEN ENGINEERING (MDE) 25

Metamodel
(M2)

conforms to

Model
(M1)

Metametamodel
(M3)

conforms to

conforms to

UML2
metamodel

conforms to

UML2 Class
model

MOF (or Ecore)

conforms to

conforms to

Java Language
grammar

conforms to

Java
program

EBNF

conforms to

conforms to

MathML
schema

conforms to

MathML
document

XML Schema

conforms to

conforms to

Figure 2.2 – The three-level Modeling stack and similar structuring in the EBNF & XML
technical spaces.

grammar of EBNF or to the schema of XML Schema, it is reflexive: it can also be expres-
sed using these same meta-elements it defines. In other words, it conforms to itself. There
are various existing metametamodels, e.g. in different modeling environments [121]. For
example, MetaObject Facility (MOF) is a well-known standard metametamodel specifica-
tion and Eclipse Modeling Framework (EMF) (meta)metamodel (Ecore) is often conside-
red as its de-facto reference implementation (cf. Section 2.2 and Section 2.3 respectively).

A metamodel (corresponding to the M2 level) defines the possible model element
types (i.e. their structure) and relationship types in order to allow the specification of
models. In the same way than a grammar (e.g. for Java [170]) in the EBNF technical
space or a schema (e.g. for MathML [216]) in the XML one, a metamodel is expressed
based on the higher-level reference model: it conforms to a metametamodel. There is
an infinity of possible metamodels, some of them being general-purpose (e.g. UML for
software engineering, as described in Section 2.2) while some others being more domain-
specific (i.e. for particular application domains such as the automotive industry [94] or
the manufacturing industry [56]).

A model (corresponding to the M1 level) defines the actual model elements descri-
bing the observed system according to the element and relationship types, as provided by
the metamodel it conforms to (cf. also Section 2.1.1). As a program in a given language
conforms to the grammar of this language, or an XML document conforms to an XML
schema, a model conforms to a metamodel. There is also an infinite number of possible
models, depending on the metamodels they conform to and the systems which are obser-
ved/modeled. For example, a UML Class model describes a given set of classes (as well
as associations between them) according to the UML metamodel specification.

Model Transformation

Model transformation is another fundamental concept in MDE [186, 142, 47]. Accor-
ding to the state-of-the-art in this area, there are two main types of model transformation:
model-to-model transformations and model-to-text transformations. While the first type
is commonly referred to as model transformation, the second one is very often called
code generation and more particularly in the industry [107, 119].

26 CHAPTER 2. BACKGROUND

Metamodel
MMa

conforms to

Model
source

Metamodel
MMb

conforms to

Model
target

Metamodel
MMtransfo

conforms to

Model
transformation

refers to refers to

Figure 2.3 – Model-to-model transformation.

A model-to-model transformation specifies a mapping from a source metamodel to
a target metamodel, as shown on Figure 2.3. When executed on an actual source model
(as input) that conforms to the source metamodel, the defined transformation produces
a new target model (as output) that conforms to the target metamodel. Some transfor-
mation languages can support multiple (meta)models as possible inputs and outputs. In
this case, the specified mapping at metamodel-level can be one-to-one but also one-to-
many, many-to-one or many-to-many. Moreover, some transformation languages can be
bidirectional [108]. In these cases, a single mapping definition between two metamodels
can allow performing (at least partially) transformations on corresponding models in both
directions, i.e. from one metamodel to the other and vice-versa.

As depicted in Figure 2.3, a transformation can be itself expressed as a model that
refers to the source and target metamodels it maps together. This transformation model
thus conforms to a transformation metamodel that specifies the transformation language
used to express the transformation. Interestingly, such a transformation model can be ge-
nerated automatically as an output of a model-to-model transformation or can be taken as
input of another model-to-model (or model-to-text) transformation. This particular kind
of transformation, and its interesting characteristics, is known as Higher-Order Transfor-
mation (HOT) in the community [197].

Metamodel
MMa

conforms to

Model
source

Grammar
Gb

conforms to

Textual File
target

Metamodel
MMtransfo

conforms to

Model
transformation

refers to

Figure 2.4 – Model-to-text Transformation, also commonly known as Code Generation

A model-to-text transformation, or code generator, usually specifies a mapping from
a source metamodel to a target grammar, as shown on Figure 2.4. When executed on

2.1. MODELING AND MODEL DRIVEN ENGINEERING (MDE) 27

an actual source model (as input) that conforms to the source metamodel, the defined
transformation produces a new target textual file (as output) that conforms to the target
grammar. Theoretically, the underlying conceptual approach is very similar to the one
of model-to-model transformation: only the nature of the target differs in the case of
model-to-text transformation. However, in practice, model-to-text (or code generation)
techniques are quite different. They are often based on template languages that do not
directly refer to the target grammar, but rather express explicitly the actual strings to be
printed out in the target textual file.

2.1.3 Challenges

Since more than a decade, there is an active international research community in the
Modeling/MDE domain that is already rich of principles and approaches. This comes
with many related scientific challenges [92] concerning notably:

— Modeling languages themselves, i.e. their proper design, development or rigorous
analysis.

— Separation of concerns, e.g. heterogeneity and integration of multiple models and
modeled systems.

— Model management, e.g. model transformation, traceability, evolution, consis-
tency or versioning.

In addition to these vertical research problems, practitioners have also regularly emp-
hasized on important horizontal issues such as scalability, efficiency, quality of models
or integration with other technologies [184]. In order to address all these challenges,
the community is backed by an already solid ecosystem of existing practices, tools and
concrete use cases coming both from academics and industrials [24].

Over the past years, there have been several extended studies intending to assess the
general level of maturity of Modeling/MDE principles and techniques, more particularly
within the industry. Initial ones were showing interesting benefits at a small- or medium-
scale but also a lack of empirical evidences of the success of MDE at a large-scale [145].
More recent ones [110, 210] have been able to measure more accurately its real impact
in terms of productivity, portability, maintenance, etc. One of the main findings is that
MDE is already quite widespread, but many times hidden behind technical solutions or
languages (notably Domain Specific Language (DSL)). Another important claim is that
raising the level of abstraction has a cost, e.g. in terms of training or evolution of the
legacy. Thus MDE appears to be more suitable when introduced progressively, starting
by well-identified projects in which significant gains can be easily observed. This ge-
nerally facilitates the faster and wider acceptance of model-based approaches, even in
organizations not traditionally dealing with software.

Among the most frequently encountered practical usages of MDE, we can notably
mention (i) (semi-)automated software development (e.g. via code generation techni-
ques), (ii) the support for system, data or language interoperability (e.g. via a combination
of metamodeling and model transformation), (iii) reverse engineering from existing soft-
ware (e.g. via model discovery and understanding techniques, cf. Chapter 3 of this ma-
nuscript) or (iv) overall software and system comprehension (e.g. via model federation
techniques, cf. Chapter 4). In addition to these, and since already several years, one of
the most prominent areas concerns the support for DSL design, development and use [90].

28 CHAPTER 2. BACKGROUND

Finally, the growing development of more and more complex CPSs in different sectors
of the industry has created new needs in terms of Modeling [55]. This notably implies
to take into account not only design models (generally static), as in the case of traditi-
onal Modeling approaches, but also more dynamic models at runtime [22]. Moreover,
this concerns not only software models but also complementary physical models (re-
presenting relevant aspects of the hardware parts of the modeled CPSs). In this sense,
Modeling/MDE has a role to play within the various initiatives related to the “Industry
4.0” [97] or “Industrie du Futur” [93] for example.

2.2 Modeling Standards and Techniques

Along the years, Modeling/MDE has been largely implemented and disseminated by
relying on different related standards and techniques. In what follows, we introduce the
Model Driven Architecture (MDA) initiative and vision as a key long-term actor in this
domain (Section 2.2.1). We also provide insights on modeling standards which are rele-
vant to the overall context of this manuscript (Section 2.2.2).

2.2.1 OMG’s Model Driven Architecture (MDA)

In the early 2000s, Modeling has been largely popularized by the Object Management
Group (OMG) under the MDA trademark [158]. Probably because of that, there has been
many confusions over the years when it comes to the actual similarities and differences
between MDA and MDE. To make it simple and concise, MDA can be considered as
a particular subset of MDE [24] that proposes a global modeling approach based on a
standardized set of generic modeling language specifications [21] (cf. Section 2.2.2 for
details on some of these standards).

The main principle behind the MDA approach is to create and maintain a clear sepa-
ration between 1) the business and application logic (i.e. the domain) and 2) the platform
technologies on which the system is intended to be finally deployed. This approach has
been designed having two main concerns in mind:

— Portability of the approach and related (meta)models in different contexts (vendor-
neutrality).

— Interoperability between different technology platforms and tools.
As already introduced in Section 2.1.1, these concerns directly relate to the overall MDE
objectives of capitalizing on existing knowledge and on fostering its reusability within
the various software engineering activities. Figure 2.5 shows that the global MDA vision
principally relies on three kinds of models [123].

The Computation Independent Model (CIM) is the higher-abstraction model that re-
presents the business view of the solution to be produced. Its objective is to describe
the requirements for the final application(s) in a way that is fully independent from how
it/they will be actually implemented. Then each Platform Independent Model (PIM) pro-
vides a description of the algorithms and handled data for a given technological paradigm,
but still independently from any concrete implementation technology. Finally, each Plat-
form Specific Model (PSM) is a lower-level model representing the detailed information
about the real implementation on a given technical platform.

2.2. MODELING STANDARDS AND TECHNIQUES 29

Source Code

PIM
Object-Oriented

PIM
Relational

PSM
Java

PSM
.NET

PSM
MySQL

PSM
SQL Server

CIM
Application

Source Code Source Code Source Code

transformation transformation

transformation transformation transformation transformation

code generation code generation code generation

Figure 2.5 – MDA vision: CIM, PIM and PSM.

In terms of process, a single CIM (defined manually) can be first transformed into
different PIMs, each one of them being then transformed into different PSMs. From
these various PSMs, the source code of distinct implementations of the same solution
can be generated targeting different implementation platforms. Theoretically, by previ-
ously building or retrieving the needed PIM and PSM metamodels as well as the related
model transformations and code generators, the whole process could be completely au-
tomated. However this vision is very complicated to fully realize for various reasons, cf.
the challenges presented in Section 2.1.3 for example. In practice, the different metamo-
dels, models and related artifacts (transformations, generators) are often partial and the
automatically generated code has to be completed manually.

2.2.2 Related Standard Specifications

As introduced in the previous section, MDA relies on a set of standard modeling
languages to be used together in order to materialize its vision. Among all the available
standard specifications provided by the OMG, we can notably list the following ones.
These correspond to well-known or widely used standards which are also relevant in the
context of this manuscript:

— MOF [157], a base metametamodel that defines the reference types for specifying
various metamodels (including those listed right after).

— Object Constraint Language (OCL) [160], a declarative textual language that al-
lows to define constraints and queries (and thus to navigate) over any MOF-based
metamodel or model.

— XML Metadata Interchange (XMI) [168], a common model interchange format
that is used to serialize and then share in an uniform way all the MOF-based
metamodels and models.

30 CHAPTER 2. BACKGROUND

— General-purpose modeling languages including more particularly
— UML [167], a modeling language dedicated to software engineering and the

design of software systems (covering both the structural and behavioral as-
pects of such systems).

— Systems Modeling Language (SysML) [165], a modeling language (defined
as an extension of UML via its profile mechanism) dedicated to system engi-
neering and the design of complex system or systems-of-systems,

— Generic (in the sense of metamodel-independent) and complementary transforma-
tion languages
— Query/View/Transformation (QVT) [161], three model-to-model transforma-

tion languages named QVT-Operational (imperative, for unidirectional trans-
formation only), QVT-Relations (declarative, for both unidirectional and bidi-
rectional transformation) and QVT-Core (declarative, a target simple executa-
ble language for QVT-Relations).

— MOF Model to Text Transformation Language (MOF2Text) [159], a model-
to-text transformation language for generating source code or documentation
from MOF-based models (e.g. from PSMs as introduced in Section 2.2.1).

We have decided not to present individually within this manuscript each one of the
previously mentioned standards/metamodels, as the details can be obtained from the la-
test versions of the corresponding OMG specifications. An important point to mention
is that, as a vendor-neutral industrial standardization organization, the OMG does not
provide any (reference) implementation of their published specifications. However they
do recognize compliant formats and modeling tools in addition to de-facto standard mo-
deling environments, cf. Section 2.3 introducing the Eclipse platform and its EMF for
instance.

In addition to the MDA initiative, which is still a significant part of its activity and
visibility, the OMG also works on and promotes other modeling standards addressing dif-
ferent target communities. Some of these standards are already well-established such as
the Business Process Model and Notation (BPMN) [155] (in the Business Process Ma-
nagement (BPM) domain), while others are the result of more recent work such as the
Unified Architecture Framework (UAF) [166] (in the Enterprise Architecture (EA) dom-
ain). Another OMG initiative that is of particular interest in the context of this thesis is
the Architecture Driven Modernization (ADM) [154] task force. Indeed, this working
group focuses on specifying standard metamodels useful in the context of (software) sy-
stem modernization activities. This directly relates to the thesis contribution presented in
Chapter 3, that notably provides detailed insights on the topic of MDRE.

2.3 Modeling in/with Eclipse

Eclipse is an international and industrially-supported open source community organi-
zed around the independent not-for-profit Eclipse Foundation [61]. It has the particula-
rity of being commercial-friendly: its Eclipse Public License (EPL) [66] allows building
either open source or proprietary software on top of components licensed under EPL.
Eclipse plays an important role regarding the contributions of this thesis, as providing the
required technical basis for the implementation of the presented work. It is at the same
time an open source community/foundation but also an open source platform for building

2.3. MODELING IN/WITH ECLIPSE 31

new tools (Section 2.3.1) and a well-recognized modeling environment (Section 2.3.2 and
Section 2.3.3).

2.3.1 The Eclipse Open Source Platform

Eclipse is a well-known Integrated Development Environment (IDE) that provides
development tooling (i.e. wizards, editors, views, debuggers, builders, etc.) for several
widely used programming languages, for example Java, C/C++ or PHP (and now many
others) [211]. The Eclipse Project [65] is a core project in Eclipse. It acts as the top-level
umbrella for the following important projects (also including the modeling ones described
further in Section 2.3.2 and Section 2.3.3):

— Platform - the set of common frameworks and features that make it possible to
build and integrate within Eclipse various tooling for different purposes, or to
produce standalone Rich Client Platform (RCP) applications [140]. This includes
the base customizable Eclipse workbench, its user interface, resource management
and versioning capabilities, a language-independent debugging infrastructure, etc.

— Eclipse Java Development Tools (JDT) - the complete Java IDE in Eclipse, coming
with the related Java project nature, perspective, views, editors, builders, debug-
ging facilities, etc. It directly relies on the Platform project mentioned before and
is notably used to develop Eclipse plugins as mentioned right after.

— Plug-in Development Environment (PDE) - the tooling for plugin building and
deployment in Eclipse (plugin description and extensions, related views and edi-
tors, etc.). Similarly to the Eclipse overall architecture, it implements the prin-
ciples of Open Services Gateway Initiative (OSGI) [171] since the version 3 of
Eclipse [104].

These three core projects, along with the Eclipse Modeling Project (EMP) and EMF
ones introduced in next Section 2.3.2 and Section 2.3.3 (respectively), have been used in
order to implement the Eclipse tooling realizing the scientific contributions presented in
this manuscript.

2.3.2 The Eclipse Modeling Project (EMP)

EMP [64] is the top-level Eclipse project in charge of gathering and promoting model-
based technologies both inside and outside the Eclipse community [103]. Thus, EMP
hosts several Eclipse modeling projects offering important expected capabilities when
elaborating on model-based solutions, as previously described in Section 2.1. Note that
the following list is voluntarily non-exhaustive and focuses on the most widely-recognized
projects as well as the ones particularly relevant in the context of this thesis:

— Model Storage - In addition to the default XMI file-based model serialization pro-
vided by EMF, there are complementary frameworks allowing to store, retrieve
and version models into/from various kinds of databases (Connected Data Objects
(CDO) [60] or model-specific repositories (EMFStore [68]).

— Model Transformation - The two main types of model transformation, as introdu-
ced in Section 2.1.2, are supported by tools such as ATL [59, 116] for model-to-
model transformation (a QVT-like language, cf. Section 2.2.2), Acceleo [58] for
code generation (an implementation of the MOF2Text standard, cf. also Section

32 CHAPTER 2. BACKGROUND

2.2.2) or Epsilon [69] that provides a family of model transformation and mani-
pulation languages.

— Textual Modeling - The support for the design, development and deployment of
textual DSLs in Eclipse is ensured by the Xtext project [77].

— Graphical Modeling - Complementary to the support for textual DSLs, the Si-
rius project [74] enables the specification of graphical modeling workbenches
(i.e. graphical DSLs and corresponding diagrams).

— Modeling Tools - There are also frameworks or tools for the creation and editing of
different kinds of EMF-based models. This includes reference implementations
of some OMG MDA standard metamodels (namely UML, OCL or BPMN, cf.
Section 2.2.2), a UML/SysML modeling environment named Papyrus [72] or the
MDRE framework MoDisco [71, 29] (cf. the thesis contribution described in
Chapter 3).

All these EMP tools, frameworks or standard implementations are based on and uni-
fied by the use of EMF (cf. Section 2.3.3). This way, they can be more easily integrated
together and combined in order to provide practical support for different model-based
activities.

2.3.3 The Eclipse Modeling Framework (EMF)

As introduced in previous Section 2.3.2, EMF [63] is the reference modeling frame-
work in Eclipse. It is used and shared between all the Eclipse model-based solutions, and
comes with core complementary facilities for base model querying, transaction manage-
ment or validation [194]. It basically consists in two main components:

— Ecore which is the EMF metametamodel commonly considered as the de-facto
reference implementation of MOF (actually of Essential MOF (EMOF), the mini-
mal subset of MOF, cf. Section 2.2.2) in the Eclipse community. It comes with a
default XMI serialization support as well as a reflective model manipulation API
(i.e. metamodel-independent).

— Code generators to automatically produce 1) the (extensible) Java manipulation
APIs for the metamodels previously specified using Ecore and 2) (extensible) base
editors to display and manipulate the corresponding models.

As a key element in order to understand the contributions presented in this manuscript,
Figure 2.6 shows a simplified version of the Ecore metametamodel provided by EMF.

A metamodel defined in Ecore has a named root model element that is an EPackage.
In such a package, two main kinds of (EClassifier) named elements are contained:

— EClass elements that specify the various concepts of the metamodel.
— EDataType elements that specify the base data types to be used in this metamodel.

A given data type can be either a primitive one (e.g. named String, Integer, Boolean,
etc.) or an enumeration (EEnum). An enumeration provides a specific set of literals
(EEnumLiterals) to be used as values of corresponding attributes (cf. next paragraph).

Each EClass/concept of the metamodel contains a set of named structural features
(EStructuralFeature). An EClass can inherit from one of several other EClass elements,
then also inheriting their structural features. There are two types of structural features:

— EAttribute elements that describe simple attributes having base data types.
— EReference elements that describe references to another EClass/concept of the

2.4. CONCLUSION 33

EModelElement

ETypedElement

-lowerBound : int
-upperBound : int

ENamedElement

-name : String

EClassifier EPackage EEnumLiteral

EStructuralFeature EClass

-abstract : boolean

EAttribute

EReference

-containment : boolean

EDataType

EEnum

-ePackage1

0..*

-eClassifiers0..1

-eType

0..1 -eOpposite

-eContainingClass

1

0..*

-eStructuralFeatures

-eEnum

1

0..* -eLiterals

Figure 2.6 – Simplified version of the Ecore metametamodel from EMF.

metamodel.
A given reference has specific multiplicities (i.e. its lowerBound and upperBound). It can
be either a standard reference or a composition (in this case containment is set to true).
Finally it can also have an opposite reference, thus allowing navigation in both directions.

2.4 Conclusion

In this chapter, we have introduced the main principles, concepts, standards and
technologies that we have used as a basis of the work presented in this manuscript.

We first described Modeling/MDE as our main background domain and defined its
core concepts (metamodels, models, model transformations). We also discussed major
scientific challenges in this area, directly connected to the problems we are addressing
via the contributions of this manuscript.

Then, we provided an overview of the OMG’s MDA vision and corresponding mo-
deling standards. This particular realization of MDE, and more specifically several of
the standards we introduced, have been used in the different contributions of this ma-
nuscript (as part of the proposed approaches or to evaluate our solutions on realistic sets
of models).

Finally we presented the Eclipse open source project, platform and Modeling project
as the main technical basis of the work presented in the coming chapters. We notably

34 CHAPTER 2. BACKGROUND

put a focus on EMF as a de-facto reference modeling environment in the Modeling/MDE
community.

Note that the details concerning the proposed contributions can be found from the
corresponding chapters of this manuscript (namely Chapter 3 and Chapter 4). For each
contribution, this notably includes a description of the state of the art in the related area(s)
as well as a discussion on main current problems and challenges.

3
Model Driven Reverse Engineering

Reverse engineering is almost as old as computer science itself. Initially targeting har-
dware analysis [178], it quickly extended its scope to also focus on software systems [43].
Then, following the spectacular expansion and advent of software from the end of the 80s,
Reverse Engineering has been usually regarded in the context of dealing with legacy sy-
stems (i.e. already existing applications) which are often still running critical operations
for companies.

In contrast with forward engineering, reverse engineering is commonly defined as the
process of examining an already implemented software system in order to represent it in
a different form or formalism and at a higher abstraction level [43]. The key notion here
is the one of representation, that can be associated to the concept of model as defined in
previous Section 2.1.

The overall objective of such representations is to have a better comprehension of the
current state of a software system, for instance to correct it (e.g. to fix bugs or ensure re-
gular maintenance), update it (e.g. to align it with the constantly evolving organizational
policies and rules), upgrade it (e.g. to add new features or additional capabilities), reuse
parts of it in other systems, or even completely re-engineer it. These evolutions are hap-
pening more and more for various reasons. This is notably due to the need for not only
satisfying new user requirements and expectations but also for adapting legacy systems
to emerging business models, adhering to changing legislation, coping with technology
innovation (in terms of used environments, frameworks, libraries, etc.) and preserving
the system structure from deteriorating [38].

Given that reverse engineering is a time-consuming and error-prone process, any re-
verse engineering solution that could (semi)automate the process would bring precious
help to users (e.g. software architects or engineers) and thus facilitate its larger adop-
tion. Previous attempts in the 90s to build (semi-)automated solutions were first based on
object-oriented technologies [40]. Several proposals and tools in that area, e.g. aimed at
program comprehension [149], appeared around at that time. Among the many propo-

35

36 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

sals, some focused on the extraction and analysis of relevant information from existing
source code or software components in general [37] whereas others focused on relatio-
nal databases [175], compiled code or binary files [79], etc. However, these efforts were
quite specific to a particular legacy technology or a given reverse engineering scenario
(e.g. technical migration, software analysis).

With the emergence of MDE (cf. Chapter 2), MDE principles and core techniques
have been used in order to build effective reverse engineering solutions: this is called
MDRE (cf. Section 3.1). MDRE formalizes the representations (i.e. models) derived
from legacy systems to ensure a common interpretation of their contents. These models
are then used as the starting point of all the reverse engineering activities: MDRE can
then directly benefit from the various capabilities of MDE as introduced in Section 2.1.
Nevertheless, there is still a lack of complete solutions intended to cover full MDRE
processes.

In this chapter we present MoDisco (and its child fREX), as the first main contribution
of this thesis (cf. Section 1.4), that is both:

1. A generic, extensible and global MDRE approach to facilitate the elaboration of
MDRE solutions in many different contexts.

2. A ready-to-use framework, implementing this approach as an official Eclipse pro-
ject on top of the Eclipse/EMF environment.

Our proposed approach is based on a modular architecture which has been created to ad-
dress different types of legacy systems and to target different (model driven) reverse engi-
neering processes such as technical/functional migration, refactoring, retro-documentation,
quality assurance, etc.

The rest of this chapter is structured as follows. Section 3.1 provides the current state
of the art and main challenges related to MDRE. Section 3.2 describes in details the pro-
posed conceptual approach and its two main phases, namely Model Discovery and Model
Understanding. Section 3.3 presents the MoDisco technical framework implementing
this approach, i.e. its overall architecture and different provided components. Section 3.4
explains how we evaluated the approach and related Eclipse/EMF-based framework, via
both concrete use cases and performance benchmarks. Section 3.5 introduces the fREX
component, as the initial result of further research work on applying the proposed ap-
proach (and MoDisco framework) to target the reverse engineering of system executable
behaviors. Section 3.6 concludes this chapter by summarizing the main realizations as
well as their current limitations.

3.1 State of the Art and Challenges

As introduced before, MDRE is commonly defined as the application of MDE princi-
ples and techniques to Reverse Engineering challenges. MDE and its main related techni-
ques and standards have already been presented in Chapter 2. Thus, in what follows, we
start by giving an overview of MDRE (in Section 3.1.1) before describing specific Re-
verse Engineering solutions (in Section 3.1.2) as well as generic Reverse Engineering
platforms and frameworks (in Section 3.1.3). We end this section by presenting some
important challenges regarding Reverse Engineering and MDRE (in Section 3.1.4) that
we intend to address via the contribution presented in this Chapter.

3.1. STATE OF THE ART AND CHALLENGES 37

3.1.1 Overview

The application of MDE to Reverse Engineering (i.e. MDRE) is relatively recent [181].
At the beginning, models (in the MDE sense) were mainly used to specify systems prior to
their implementation (in other words, for forward engineering activities). Instead MDRE
proposes to build and use models from the system implementation, thus directly bene-
fiting from these higher-level views of the system (e.g. design models) or of its domain
(e.g. application domain models) in order to improve the maintenance and evolution pro-
cesses. MDRE is considered a fundamental application of MDE [83]. There is an inherent
complementarity between forward engineering and reverse engineering, especially when
homogeneously treated and combined using models. This integration notably enables a
continuous re-engineering of the systems.

The growing interest in MDRE motivated the OMG to launch the ADM Task For-
ce [154] with the main objective to propose a set of standard metamodels useful for mo-
dernization projects, i.e. technical migrations from old or obsolete technologies to more
recent ones. Based on this, various proposals combine these standards in a methodo-
logical framework [84] . MDRE is also useful for software analysis purposes (e.g. as
proposed by the Moose platform [99]). More generally, MDRE is required when dealing
with Model Driven Software Evolution [202], i.e. global scenarios including any kind of
possible modification on legacy systems (structural, functional, maintenance, etc.) and
not only pure (technical) modernization. In all cases, a MDRE phase is needed first in
order to obtain the required models from the considered systems so that they can then be
analyzed, modified or evolved.

Language workbenches (also sometimes referred as metamodeling tools) have paved
the way for generic and extensible MDE approaches like ours, by facilitating the creation
of new metamodels such as the ones we used. Nevertheless, these initiatives (such as Me-
taEdit [187] and then MetaEdit+ [199]), GME [51] or MetaEnv [13] were more focused
on the creation of a modeling environment for new metamodels and on providing some
related support for typical forward engineering activities, i.e. code generation to some
popular languages.

When it comes to approaches supporting reverse engineering, we first distinguish
two main families: specific solutions and general-purpose solutions. This is determined
depending on whether they aim to reverse engineer the system from a single technology
and/or with a predefined scenario in mind (e.g. a concrete kind of analysis), or to be the
basis for any other type of manipulation in later steps of the reverse engineering process.
Of course, both lists are not completely disjoint and sometimes it can be argued that a
tool could go either way.

Within Table 3.1 and Table 3.2, we provide some representative examples for each one
of these two families of solutions. We also classify these different solutions according to
simple high-level categories depending on their family. As expected, none of the specific
solutions covers all the mentioned MDRE capabilities (note that we just considered the
most common MDRE objectives, we did not intend to be exhaustive). Moreover, apart
from the generic software modeling tools also providing some MDRE capabilities as part
of their long feature lists, there are only a few general-purpose MDRE solutions in the
current state-of-the-art. In next Section 3.1.2 and Section 3.1.3, we give more insights
on the different solutions listed in Table 3.1 and Table 3.2 (respectively). In these same

38 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

D
is

co
ve

ry

M
ig

ra
tio

n

In
te

gr
at

io
n

A
na

ly
si

s/
co

m
pr

eh
en

si
on

Columbus [86] 3

JaMoPP [106] 3

Spoon [173] 3

Briand et al. [25] 3

Sun et al. [195] 3

Sneed [188] [189] 3 3

Barbier et al. [12] 3 3

Fleurey et al. [89] 3 3

Clavreul et al. [45] 3 3

Alnusair et al. [3] 3 3

Ramon et al. [177] 3 3

ConQAT [53] 3 3

GUPRO [57] 3 3

SWAG Kit [180] 3 3

CodeCrawler [133],CodeCity [209] 3 3

Pacione et al.[172] 3 3

Olsson et al.[169] 3 3

Fradet et al.[91] 3

Table 3.1 – An overview of existing MDRE approaches - Specific solutions.

Si
ng

le
co

re
-

m
et

am
od

el
ap

pr
oa

ch
es

M
ul

tip
le

-
m

et
am

od
el

ap
pr

ao
ch

es

G
en

er
al

so
ft

w
ar

e
m

od
el

in
g

to
ol

s

CORUM-II [118] 3

Moose [99] 3

Our approach [29] 3

Garces et al. [95],[96] 3

Rational Software Architect [111] 3

MagicDraw [151] 3

Enterprise Architect [193] 3

Modelio [191] 3

Visual Paradigm [206] 3

Table 3.2 – An overview of existing MDRE approaches - General-purpose solutions

3.1. STATE OF THE ART AND CHALLENGES 39

sections, we also explain the rationale behind the provided classification as well as how
we positioned our proposed solution.

3.1.2 Specific Reverse Engineering Solutions

There exist several specific tools allowing to discover different types of models out of
legacy artifacts. Columbus [86] is offering parsing capabilities from C/C++ source code
and allows serializing the obtained information using different formats (e.g. XML, UML
XMI). JaMoPP [106] or Spoon [173] are providing alternative (complete) Java metamo-
dels and corresponding model discovery features from Java source code. Complementary
to this, some other kinds of software artifacts can also be relevant as inputs of MDRE
processes. For example, execution traces captured during the running of a given system
have been used to generate UML sequence diagrams showing dynamic views on this sy-
stem [25]. In other experiments, available Web service descriptions have been expressed
as UML models to be able to compose them for future integration in a different frame-
work [195]. All these components can be seen as potential model discovers that could be
used either jointly with our approach (cf. Section 3.2) or adapted to be plugged into our
implementing framework (cf. Section 3.3).

Past works have already described how to migrate from a particular technology to
another one using dedicated components and mappings, e.g. from procedural COBOL to
object-oriented COBOL [188], from COBOL to Java [189], from COBOL to Java EE [12]
or from Mainframe to Java EE [89]. All these tools use specific (and also sometimes
proprietary) parsers, grammars, metamodels, etc. Contrary to our intent, their genericity
and reusability in other contexts (e.g. in other paradigms, for different legacy technologies
or target environments) is quite limited. Moreover, we are clearly differentiating from
them by being fully open and relying on generic components.

MDE has also been applied in the context of legacy system integration [45], inclu-
ding the reverse engineering of API concepts and interfaces as high-level models. The
main focus of such work was on the mapping definition between different APIs and the
generation of corresponding wrappers. We could consider the obtained API models as
useful inputs of more general MDRE processes, but our approach go much more beyond
this specific scenario. Other particular examples of applications are automated design
patterns detection using ontologies [3] or graphical interfaces separation and later reusa-
bility [177], that can also be potentially adaptable in our approach if some models can be
exchanged between the solutions.

More related to software analysis, the ConQAT tool [53] is dedicated to the analysis
of the source code and also of related models, textual specifications, etc. Its objective is to
perform quality assessment activities such as clone detection, architecture conformance or
dashboard generation. However, our goal is not to address specifically software or quality
analysis problems. It is rather to provide more generic components for helping people
elaborating on solutions to various MDRE scenarios, potentially including software or
quality analysis but not only.

Some other works are more focused on the related problem of software/program com-
prehension [208]. At code-level, GUPRO [57] is a solution, based on a central graph repo-
sitory plus related queries and algorithms, that offers different visualizations over a given
program (via tables, code excerpts, etc.). SWAG Kit [180] is another tool that addresses

40 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

the graphical visualization of complex C/C++ systems. The CodeCrawler visualization
tool [133] and more recently CodeCity [209], an advanced 3D graphical visualization
tool (both based on the Moose platform, cf. Section 3.1.3), allow deeper analyzing the
legacy code. There are also solutions that go further and propose a more generic soft-
ware visualization model [172]. However, the purpose of our approach is not to address
the problem of advanced visualizations. It is rather to provide relevant representations of
legacy artifacts as models that could feed such visualization solutions if needed.

At artifact-level, some solutions provide the capability of extracting key information
from software artifacts (based on a generic artifact description metamodel) and supports
traceability and consistency checking between them [169]. Our approach also offers re-
presentations of such artifacts and their relationships, as models that could complement
the ones obtained from the application of such solutions. The other way around, the in-
formation models produced by these solutions could be used as valuable inputs in our
approach.

At the architecture level, a framework has been proposed [91] providing a formal de-
finitions of architectural views (as diagrams/models) and an algorithm to perform consis-
tency checks over these views. However there is no support for the automated discovery
of such views/models, which is one of the main objectives of our approach. Similarly
than before, our approach is not specifically intended to provide tooling for consistency
checking issues (as this could be brought by other solutions such as this one).

3.1.3 Generic Reverse Engineering Platforms and Frameworks

Contrary to specific Reverse Engineering solutions/tools addressing particular acti-
vities or scenarios, there have been fewer research initiatives providing more generic
integrated environments that could be extended and adapted to different application sce-
narios.

One of the first to appear was CORUM-II [118] which tried to integrate together
various architecture and code re-engineering tools It is based on a common inter-operation
schema called CORUM to be considered as a reference for the different tool providers in
the area. The path our approach is following is relatively similar, i.e. using an horseshoe-
like approach (that has been adapted to the MDE domain in our case). However, we are
not proposing to systematically conform to such a standard representation schema. We
rather provide different base metamodels (e.g. from the OMG ADM Task Force[154] but
not only) and we also allow plugging other ones into the framework if required by a given
MDRE scenario.

Moose [99] is a well-recognized platform providing a toolbox dedicated to the buil-
ding of various software and data analysis solutions. Thus the Moose Suite proposes a
set of tools built-up around this same platform, all relying on a common fixed core na-
med FAMIX that is dedicated to the representation of object-oriented systems. The main
difference with our approach is that we are not relying on a single common core, but on
a more open solution where technology-specific metamodels (for object-oriented techno-
logies or others) are used to avoid information loss during the initial discovery phase. A
more generic metamodel, e.g. to reuse already existing capabilities, could be used later
on by transforming the specific models to such a generic single one.

3.1. STATE OF THE ART AND CHALLENGES 41

Recently, a generic white-box solution has been developed in order to support the
semi-automated modernization of legacy applications [95]. It proposes to use open and
iterative model transformation processes that rely on technology-agnostic metamodels
adapted to the targeted architectures. This solution has notably been applied and eva-
luated in the particular context of database forms (graphical interfaces) migration [96].
Interestingly, its underlying approach directly inspires from our overall MDRE approach
and could quite naturally extend or reuse some of the components from our implementing
framework (e.g. model discoverers, standard metamodels).

In parallel with the previously mentioned research initiatives, there are several exis-
ting commercial tools providing some reverse engineering features covering the most
common programming languages (e.g. Java, C/C++, C#, VB.NET, etc. .) and stan-
dard modeling languages (e.g. UML, SysML, BPMN). Well-know examples of such
tools are Rational Software Architect - RSA (by IBM) [111], MagicDraw (by NoMa-
gic/3DS) [151] or Enterprise Architect (by Sparx Systems) [193]. Some tools also come
with a base open source or free version to be then completed with specific extensions to
be bought, such as Modelio (by Softeam) [191] or Visual Paradigm (by Visual Paradigm
International) [206].

However, all these commercial solutions are not particularly dedicated to MDRE but
rather intend to support the full software development life-cycle in terms of modeling.
This goes from higher-level business process and architecture specification to lower-level
forward engineering (e.g. code generation), also dealing with regular project management
activities for instance. In any case, the reverse engineering features these tools provide
(e.g. model discoverers) could be integrated to MDRE solutions based on our proposed
approach and could be combined with components from our implementing framework
when needed.

3.1.4 Challenges

As introduced at the very beginning of this Chapter 3, Reverse Engineering is a com-
plex process that can take many different forms. Thus any solution that could (semi-
)automate its design, implementation and execution would bring very valuable support
to the different kinds of Reverse Engineering actors. Nevertheless, such a Reverse Engi-
neering solution would need to face several important problems:

— Technical heterogeneity of the legacy systems.
— Structural complexity of these legacy systems.
— Scalability of the developed solution.
— Adaptability/portability of this solution.
As described in Section 2.1, MDE provides useful capabilities for supporting gene-

ricity, extensibility, reusability, integration or automation. Inheriting of these characte-
ristics from MDE, we believe MDRE has interesting capabilities allowing to address the
Reverse Engineering problems mentioned before.

As a consequence, taking into account the state-of-the-art presented in this Section
3.1 and also our experiments on concretely applying MDRE in real projects (both from
a research and industrial perspective, cf. Section 3.4 for instance), the main challenges
MDRE solutions must be able to overcome are the following ones:

— To avoid information loss due to the heterogeneity of legacy systems. To ens-

42 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

ure the quality of the overall MDRE process, and thus to validate its actual rele-
vance, it is very important to be able to retrieve as much information as possible
from legacy systems that are often technically heterogeneous.

— To improve understanding of the typically complex legacy systems. The goal
of MDRE is also to facilitate the understanding of structurally complex legacy sy-
stems by their users and developers. This requires going beyond the provisioning
of simple low-level representations, and deriving efficiently higher abstract views
with the most relevant information.

— To manage scalability. Legacy systems are usually huge and complex systems.
Scalability of MDRE techniques must be improved to be able to load, query and
transform in a suitable way the very large models usually involved in MDRE
processes.

— To adapt/port existing solutions to different needs. Many MDRE solutions are
still technology- or scenario- dependent, meaning that they target a very concrete
legacy technology or reverse engineering scenario. Progress must be done in the
development of generic MDRE solutions that, even if they still keep some specific
components, are largely reusable in various contexts and for a minimized cost.

By proposing a generic and extensible approach to facilitate the elaboration of MDRE
solutions, we aim at providing support targeting these previous challenges. As stated be-
fore, our approach itself is not intended to be a complete solution for all specific scena-
rios, even though its default components can be used as such for particular technologies.
Its goal is rather to provide the basic (interconnected) building blocks to construct other
MDRE solutions on top of it.

3.2 Proposed Conceptual Approach

This section presents the global MDRE approach we propose in order to treat as ho-
mogeneously as possible all potential reverse engineering scenarios. Intending to over-
come the MDRE challenges that have been identified in previous Section 3.1.4, our ob-
jective is:

1. To identify the main steps and components commonly used in MDRE solutions.

2. To assemble them coherently as a generic and extensible approach.

In what follows, we start by providing an overview of our approach in Section 3.2.1.
Then, we go more into the details of its first main phase Model Discovery in Section
3.2.2. We also explain its second main phase Model Understanding in Section 3.2.3.
Finally, we end by summarizing the main benefits of our proposed approach in Section
3.2.4.

3.2.1 Overall Approach

Based on our previous analysis of the state-of-the-art in the area (cf. Section 3.2),
we believe a full MDRE approach must provide the following characteristics in order to
fulfill the expressed requirements:

— Genericity based on technology-independent standards (i.e. metamodels) and cu-
stomizable model-based components where specific technology support is ensu-

3.2. PROPOSED CONCEPTUAL APPROACH 43

red by additional dedicated features that can be plugged into the generic ones.
— Extensibility relying on a clear decoupling of both the represented information

(as models) and the different consecutive steps of the process (as MDE operation
workflows).

— Full coverage (if necessary) of the source artifacts based on complementary inter-
related representations of the same system at different abstraction levels and using
different perspectives (i.e. metamodels).

— Direct (re)use and integration of both the provided components and possibly
external ones, but also of all the obtained results (i.e. models).

— Facilitated automation of (at least parts of) the process thanks to the already avai-
lable MDE techniques, notably by chaining predefined sets of model transforma-
tions.

To achieve them in our approach, we followed the strategy of switching very early
from the heterogeneous world of legacy systems to the more homogeneous world of mo-
dels. Thus, we can directly benefit as soon as possible from the interesting properties of
MDE as well as of the full set of already available standards and technologies (cf. Chapter
2).

The main principle is to quickly get initial models representing the artifacts of the
legacy system without losing any of the information required for the process. These raw
models are sufficiently accurate to be used as a starting point of the considered MDRE
scenario, but do not represent any real increase of the abstraction or detail levels. They
can be seen as (full or partial) abstract syntax graphs that bridge the syntactic gap between
the worlds (i.e. the technical spaces) of source code, configuration files, etc. and the world
of models. From this point on, any reverse engineering task to be performed on the system
can be done with the expected result using these models as a valid input representation.
Therefore, we have reduced the heterogeneity of the reverse engineering process to a
modeling problem.

The models can then be used as inputs for chains of MDE operations, e.g. model
transformations, in order to navigate, identify and extract the relevant information. These
processed models obtained at the end of the chain, called derived models, are then finally
used to generate and/or display the expected representations of the reverse engineered
legacy system.

As presented in Section 3.1.1, MDRE is the application of MDE in a Reverse En-
gineering context. In order to realize it, the two main steps mentioned right before are
summarized by this simple equation:

Model Driven Reverse Engineering
=

Model Discovery + Model Understanding

Model Discovery is a metamodel-driven phase in charge of representing the legacy
system as a set of models with no loss of required information (cf. Section 3.2.2 for
more details on this first phase). The Model Understanding phase is completely model-
based: it takes as input the models from the previous phase and generates the required
output (models) thanks to a chain of model transformations (cf. Section 3.2.3 for more
details on this second phase). While the components to use in the model discovery phase
largely depend on the source technology to analyze (i.e. the metamodels to employ are
for instance adapted to the legacy system programming languages), the components in

44 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

the model understanding phase are more related to the actual objective of the overall re-
verse engineering process itself. Such a goal could be system comprehension (e.g. of
its architecture or implemented functionalities), further analysis (e.g. business rule ex-
traction, non-functional property verification), re-engineering (e.g. technical refactoring
or migration), etc.

To structure these phases and components in practice, we propose the global archi-
tecture depicted in Figure 3.1. It is composed of three vertical complementary layers that
favor the five main characteristics described before:

MDRE Framework

Infrastructure

Technologies

Use Cases

Figure 3.1 – MDRE framework architecture.

The Infrastructure layer provides genericity and automation via a set of basic bricks
totally independent from any legacy technology and reverse engineering scenario. Such
components offer for instance generic metamodels and model transformations. They also
propose extensible model navigation, model customization and model orchestration ca-
pabilities (manual via dedicated user interfaces and/or programmatic via specific APIs).
They often come with the corresponding generic interfaces and extension features requi-
red for the components from the other layers to be plugged in.

The Technologies layer is built on top of the Infrastructure one. It offers (partial
or full) coverage for some legacy technologies and also gives the chance to extend this
coverage to other ones. Its goal is to provide technology-dedicated components which
however stay independent from any specific reverse engineering scenario. Such compo-
nents can be either technology-specific metamodels or their corresponding model disco-
verers (cf. Section 3.2.2), as well as related transformations (cf. Section 3.2.3). They are
the concrete bricks addressing the different (kinds of) legacy systems to be potentially
reverse engineered.

Finally the Use Cases layer provides some reuse and integration examples, which
are either relatively simple demonstrators or more complete ready-to-use components
implementing a given reverse engineering process. Such components are mostly intended
to realize the actual integration between components from the two other layers, and can
be either reuse as-is or extended/customized for a different scenario.

According to these principles and architecture, the next sections details the two main
MDRE phases we propose, namely Model Discovery and Model Understanding.

3.2. PROPOSED CONCEPTUAL APPROACH 45

3.2.2 Model Discovery

Model Discovery can be defined as the fundamental action of automatically obtai-
ning raw model(s) from the legacy system to be reverse engineered. Note that, even if
some models were created during the development process, they could already be out-
dated compared to its actual state. In that case, model discovery can provide a useful
complementary support to validate the relevance of such already existing models.

These models are initial models because they have a direct correspondence with the
elements of the legacy system: they can be considered as (full or partial) abstract syntax
graphs as they do not imply any deeper analysis, interpretation or computation at this
stage. To be able to represent the legacy system without losing any information, the
metamodels employed at this stage are often metamodels of a low abstraction level and
that closely resemble the source technology such as a general programming language
(e.g. Java, C#, C++), a DSL (e.g. SQL, HTML), a file format (e.g. Microsoft Word or
Excel), etc.

The metamodel-driven software components allowing to generate these raw models
are called model discoverers, where each discoverer targets a specific technology. The
overall principle of a model discoverer is shown on Figure 3.2.

Discovery

Legacy

System

co
n

fo
rm

s
to

representation of

Metamodel-driven

Discoverer
Initial Model

Metamodel
 Lower level

Figure 3.2 – General principle of Model Discovery.

Firstly, the metamodel (defining the perspective the system will be observed from)
has to be designed depending on the kind of legacy system that is concerned. For some
well-known technologies like Java/JEE, appropriate metamodels can already be available
(e.g. cf. the ones included in our MoDisco implementation as presented in Section 3.3).
This metamodel is the main factor ensuring the quality and completeness of the discovery
phase. This phase is in charge of creating instances of this metamodel from the legacy
system. Thus, the model resulting from the execution of the built discoverer will conform
to this base metamodel.

In some cases, the discovery process can be split up into two complementary steps as
shown in Figure 3.3:

46 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

1. Injection - focusing on bridging between the technical spaces of the legacy system
and the MDE technical space, e.g. using parsers or APIs to access the content of
legacy artifact(s) and then create the corresponding model accordingly.

2. Transformation - an additional syntactic (or structural) mapping, already inside
the MDE technical space, to produce the actual initial model from the result (i.e. a
model) of the previous injection step if required.

Injection
Legacy

System

co
n

fo
rm

s
to

Initial Model

Metamodel
 Lower level

representation of

co
n

fo
rm

s
to

Intermediate

Model

Intermediate

Metamodel

Transformation

representation of

Two-step

Discovery

Process

Figure 3.3 – Two-step approach for Model Discovery.

These two steps are not necessarily atomic operations performed at once. They can
rather be composed of several sub-operations possibly iterative and interactive, notably
chains of model transformations. The length of this chain depends on the complexity of
the discovery process. It can also vary according to the availability of some intermediate
metamodels that can be used to simplify it.

For instance, considering the case of discovering the model corresponding to a set of
source code files in Java, the discovery process implementation can differ:

— The two-step approach can be strictly applied: a generic (intermediate) model of
the abstract syntax tree can be obtained first from the program (based on a generic
metamodel for instance [39]) and then transformed into a language-specific lower-
level model (i.e. a Java model).

— A more direct approach can be considered: visit the abstract syntax tree of the
program (e.g. using a dedicated API or the result of a previous parsing) in order
to build directly the language-specific lower-level model (i.e. the Java model), the
transformation step being directly integrated within the injection one.

There are different arguments to help deciding between these two implementation op-
tions. In the first case, considering such a two-step process usually allows reducing the
complexity of each individual step and thus can facilitate the global discoverer implemen-
tation. The first part of the discoverer (the injector) becomes generic and can be directly
reused by similar model discoverers. Nevertheless, these benefits can sometimes be not
so relevant for the reverse engineering scenarios interesting for the user. In such cases,
one can decide to go for the second option which involves less artifacts to think about

3.2. PROPOSED CONCEPTUAL APPROACH 47

and offers better performance. Anyway, the initial models obtained at the end of both
alternatives have to represent the same system at the same level of details.

3.2.3 Model Understanding

The initial models discovered in the previous phase can be exploited in different ways
in order to obtain the final expected representations of the reverse engineered system.
Thus, the Model Understanding phase as described in Figure 3.4 is mainly transformation-
based: it largely relies on (chains of) model transformations to perform semantic map-
pings (in the data sense) that generate a set of derived models. This is realized accor-
ding to the information/structure expected by the reverse engineer from the initial models
obtained in the previous step. The outputs can be the derived models themselves or the
result of extracting these models into some external tools (e.g. for specific purposes such
as visualization, cf. Section 3.1.2).

External Tool

Legacy

System
Derived

Model a

Metamodel A
 Higher level

representation of

Transformation

Model

Understanding

representation of

co
n

fo
rm

s
to

Initial Model

Metamodel
 Lower level

co
n

fo
rm

s
to

File a

Metamodel-driven

Exploration

Identification

Computation

Retrieval

E
x

tr
a

c
ti

o
n

Figure 3.4 – General principle of Model Understanding.

Several derived models, temporary or final, can be obtained from the same initial
models. This is done by using different automated (chains of) model-to-model transfor-
mations depending on the goal of the reverse engineering process. It is an important
benefit of such a two-phase approach, as reusing the discovery phase facilitates a lot the
exploitation and analysis of the legacy system. Each one of these derived models con-
forms to a metamodel of (usually) a higher abstraction level. This metamodel is tailored
to the required representation of the system or to the targeted external tool. Note that
an exception would be a re-engineering scenario where the goal is to re-implement the

48 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

system using a new technology. In this case, lower level models (representing the system
in this new technology) are required for a final model-to-text transformation to actually
generate the corresponding source code.

As shown on Figure 3.4, a Model Understanding process generally includes the follo-
wing main actions, all performed by/within model transformations and usually executed
in an iterative process that refines the results until the desired derived models are obtained:

1. Legacy system exploration via its initial models (model navigation).
2. Required information identification via these models (model querying).
3. Derived model computation using the identified information as source (model

computation).
4. Representation retrieval into derived models (model building).

The legacy system exploration is performed on the initial models of that system rather
than directly on it. Thus, extended model navigation capabilities (e.g. the ones provided
in model transformation via dedicated languages such as OCL for instance, cf. Section
2.2.2), are required to browse them efficiently. This implies notably navigating inside
these models at all detail levels and so returning as a result different sets of model ele-
ments, structural features (i.e. attributes and references), annotations, etc. These results
are then queried, often iteratively, in order to select/filter and obtain only the information
strictly needed. This information is used in order to perform the actual computation of
the expected derived models over the system represented by the initial models.

As said before, all these steps can be implemented by model transformations speci-
fying the corresponding refinements. As introduced in Section 2.1.2, such transforma-
tions can be defined using different languages that can be declarative (e.g. QVT [161]),
imperative (e.g. Java, Kermeta [115]) or hybrid (e.g. ATL [116]). Basically, they take as
input(s) the navigated/queried model(s) and generate as output(s) the computed model(s)
that can conform to the same metamodel, its augmented or reduced version, or a totally
different one.

The target models (or representations) are built as the final results from the various
obtained derived models (i.e. refinements). Thanks again to other model transformations
(e.g. targeting visualization formats such as SVG or DOT) but also sometimes to external
tools (e.g. being able to render models graphically), these last refinements are actually
used to retrieve the expected representations of the initial legacy system.

As an example, Figure 3.5 shows a possible reverse engineering scenario from Java
source code. The initial model is the complete Java model previously discovered from a
given Java EE application. This model can be then used to generate different representati-
ons of the system, like the dependency graph of the Java classes according to the internal
method calls or a set of metrics on the complexity of the code such as the number of
classes per package, the average number of methods per class, etc. These metrics can be
finally sent to an external reporting tool able to provide analytical graphical visualizations
for the provided data.

3.2.4 Main Benefits

A clear separation of concerns in our approach has been combined with the generali-
zed use of MDE during the two consecutive phases of a full MDRE process: Model Dis-

3.2. PROPOSED CONCEPTUAL APPROACH 49

External Tool

J2EE

Application

Derived

Model b

Dependency

graph

Metamodel

Transformation

J2EE/Java

Example

representation of

co
n

fo
rm

s
to

Initial Model

a

Java

Metamodel

co
n

fo
rm

s
to

Extraction

File c

Derived

Model c

Metrics

Metamodel

co
n

fo
rm

s
to

Transformation

Figure 3.5 – A J2EE/Java example of a Model Understanding phase.

covery and Model Understanding. This allows answering to the four MDRE challenges
previously identified in Section 3.1.4. For each one of them, next paragraphs respectively
explain how.

Firstly, the explicit distinction in the proposed architecture between technology and
scenario-independent (Infrastructure layer), technology-specific (Technologies layer) and
scenario-specific (Use Cases layer) components can provide a high adaptability at two
different levels:

1. The nature of the legacy system technology.
2. The kind of reverse engineering scenario.
Secondly, the metamodel-driven approach followed in our proposition can enable co-

vering different levels of abstraction and satisfying several degrees of detail depending on
the needs of the reverse engineering scenario. All the required information can be actually
represented as models so that there is no information loss during the MDRE processes.
Only those details that the user explicitly wants to left out, as part of a transformation
process of the initial discovered models, can be ignored.

Thirdly, the use of MDE techniques can allow the decomposition and automation of
the reverse engineering processes. They can be divided in smaller steps focusing on spe-
cific tasks, and be largely automated thanks to the appropriate chaining of corresponding
MDE operations (notably model transformations). They can also directly benefit from the
model exploration and extraction capabilities provided by these MDE techniques in order
to improve legacy systems overall comprehension. All the involved modeling artifacts
(models, metamodels, transformations, etc.) can be homogeneously re-used, modified
for maintenance and evolution reasons, or extended for other purposes. Moreover, new
transformations can be developed and plugged adding more capabilities without altering
the already implemented features.

Finally, the treatment of the potentially huge amount of concerned data can be sim-
plified. This is because the models of the systems are the elements actually processed

50 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

(thanks to the available modeling techniques) rather than directly the systems themselves
(which are not modified during the process). We have observed the performance of key
components of our MoDisco implementation of the approach we propose, as described in
next Section 3.3. We have been able to conclude that they are already acceptable for an
industrial use in several concrete scenarios (cf. Section 3.4.2 for instance).

3.3 The MODISCO framework

This section describes the MoDisco framework implementing the generic and ex-
tensible MDRE approach described in previous Section 3.2. The goal of MoDisco is
to facilitate the development of model-based and model-driven solutions targeting diffe-
rent reverse engineering scenarios and legacy technologies. In what follows, we start by
providing an overview of the MoDisco project (in Section 3.3.1). Then, we give more
insights on the content of the MoDisco infrastructure and technology layers as supporting
both the Model Discovery and Model Understanding phases (in Section 3.3.2 and Section
3.3.3 respectively). Finally, we briefly describe the MoDisco use case layer (in Section
3.3.4) before we end with base indications on how to extend the framework (in Section
3.3.5).

3.3.1 Project Overview

MoDisco is an open source project which is officially part of the Eclipse Founda-
tion [71] and is integrated in the Modeling top-level project promoting MDE techniques
and their development within the Eclipse community (cf. Section 2.3). Several years
ago, it was officially recognized by the OMG as providing relevant implementations for
several of the ADM task force industry standards [154]:

— Knowledge Discovery Metamodel (KDM) [156], a metamodel offering a com-
mon intermediate representation for modeling existing software systems and their
environments independently from any particular technological platform.

— Structured Metrics Metamodel (SMM) [164], a metamodel offering an extensible
representation for modeling (and exchanging) any kind of measurement informa-
tion related to software systems, their design and operation.

— Abstract Syntax Tree Metamodel (ASTM) [153], a metamodel offering a com-
mon representation for modeling abstract syntax trees of programs implemented
in various different languages (imperative, object-oriented, etc.).

Initially created as an experimental research framework, it has now evolved into an in-
dustrialized project thanks to a long-term collaboration with the MIA-Software company
(Sodifrance Group) [190] (which is still maintaining the official project releases, cf. next
paragraph). It is important to note that most of the components presented in this section
have been developed by members of this company based on the research work, approach
and architecture we proposed. These components are in a stable state since several years
already: they are now mostly maintained (e.g. bug fixing, documentation updating) and
no totally new features have been recently added to the project.

Indeed, the MoDisco framework has been integrated in the Eclipse Simultaneous Re-
leases since several years (including the latest Mars, Neon, Oxygen and Photon ones).

3.3. THE MODISCO FRAMEWORK 51

This year again, it will be part of the coming Eclipse Simultaneous Release (to be rele-
ased by June 2019) along with other Eclipse Modeling projects. These releases provide
several ready-to-use Eclipse bundles targeting different families of user, and notably the
MDE engineers via the Eclipse Modeling Tools bundle MoDisco is part of. MoDisco is
structurally delivered as a set of Eclipse features and related plug-ins whose builds are
directly downloadable via the MoDisco update sites. Each MoDisco component is actu-
ally composed of one or more plug-ins and can be classified according to the previously
described three-layer architecture (cf. Section 3.2.1).

Support for multiple

legacy technologies
•Documentation

•Impact analysis

•Models

•Viewpoints

•Upgrade

•Migration

•Metrics

•Quality Assurance

Eclipse Modeling

Source code

Databases

Configuration

files

MoDisco
Other sources

Support for multiple

scenarios/results

Models of the

system(s)

D
is

c
o
v
e
re

rs

G
e
n
e
ra

to
rs

Transformations

Figure 3.6 – Overview of the Eclipse MoDisco project.

As shown on Figure 3.6, from all kinds of possible legacy artifacts (e.g. source code,
databases, configuration files, documentation, etc.) MoDisco aims at providing the requi-
red capabilities for creating the corresponding model representations and allowing their
handling, analysis and use. Relying on EMP and notably on EMF (cf. Section 2.3), it of-
fers various kinds of components such as discoverers, transformations, generators, etc. to
implement this support. As output, the framework targets the production of different arti-
facts on/from the considered legacy systems, depending on the expected usage of the re-
verse engineering results (e.g. software modernization, refactoring, retro-documentation,
quality analysis, etc.). One of the main goals of MoDisco is to remain adaptable to many
different scenarios, thus facilitating its adoption by a potentially larger user base.

The overall architecture of MoDisco is summarized in Figure 3.7, and detailed further
in the next subsections. Together with generic components (i.e. the infrastructure) allo-
wing to create dedicated MDRE solutions, MoDisco also provides predefined technology-
specific components that allow users to directly target some types of legacy artifacts and
use cases. It is worth to note that some MoDisco components have been deemed use-
ful beyond a strictly reverse engineering context and are now being externalized to fa-
cilitate their reuse in other projects, e.g. EMF Facet [67] as explained in Section 3.3.2.
Apart from these components, the MoDisco project is also equipped with all the standard
Eclipse tooling to support its development and the relation with its user community.

52 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

MoDisco – “Technologies” layer

MoDisco – “Infrastructure” layer

Java
Metamodel
Discoverer
Generator
Transfo. to KDM/UML

XML
Metamodel
Discoverer
Generator

…

Querying,
Customization

Definition of
specific viewpoints

Discovery
Manager, Workflow

Plug and orchestrate
transformations

Eclipse Modeling projects

JSP
Metamodel
Discoverer
Generator

OMG/ADM
Standards

Pivot metamodels
(KDM, ASTM, SMM)

Model
Browser

Navigation through
complex models

MoDisco – “Use Cases” layer

Sample MDRE Process 1
Java application design recovery

Sample MDRE Process 2
Java source code refactoring

…

Figure 3.7 – Architecture of the MoDisco framework.

3.3.2 Infrastructure Layer

As part of its infrastructure layer, MoDisco currently provides a set of generic compo-
nents that are relevant independently from the concerned legacy technologies or reverse
engineering scenarios.

OMG ADM Standard Implementations

From a standardization perspective, concrete implementations of three OMG ADM
standard metamodels are available, namely KDM, SMM and ASTM as introduced in
Section 3.3.1. KDM allows representing the entire software system and all its entities at
both structural and behavioral levels. It deals with the legacy system metadata, artifacts
and higher level structure of the code in a generic way. As for ASTM, it focuses more on
the lower level abstract syntax tree of the sources (independently from the used language).
SMM is used to both specify any kind of measure/metric on legacy software and express
the obtained results (measurements). All of them come with an EMF Ecore version of the
metamodel in addition to the generated model handling API.

Moreover, there is a more advanced support for KDM. A corresponding model disco-
verer, using a model transformation to KDM as explained in subsection 3.3.3, allows the
automated analysis and representation of the file hierarchy of applications as so-called
KDM Source models (using a subset of KDM). A predefined transformation also allows
obtaining UML models (class diagrams in that case) from KDM Code models (using

3.3. THE MODISCO FRAMEWORK 53

another subset of KDM). Moreover, a small framework has been developed based on
the KDM metamodel to facilitate the future building of new model discoverers mixing
both physical resource metadata (KDM models) and code content information (e.g. Java
models).

Discovery Manager and Workflow

To globally manage all the model discoverers registered within the MoDisco environ-
ment, a Discovery Manager is provided. It comes along with the simple generic interface
a discoverer should implement in order to be plugged into the framework (plus the cor-
responding extension point). It also comes with a Discoverers View providing a quick
Eclipse view over all registered discoverers. In addition, the MoDisco Workflow enables
the chaining and launching of a set of registered discoverers, transformations, scripts,
etc. as part of larger MDRE processes (cf. Section 3.3.4).

Model Browser and Navigation

One of the most powerful MoDisco component is the Model Browser. It has been
designed to make the navigation through complex models much easier by providing ad-
vanced features such as full exploration of all model elements, infinite navigation (as
being a graph, the model is fully navigable and not restricted by a tree representation),
filtering, sorting, searching, etc. It is mainly composed of two panels: the left panel is
displaying the possible element types (i.e. the concepts from the concerned metamodel)
while the right panel is showing the model elements themselves. It is also completely
metamodel-independent and customizable (via the definition of specific customization
models). For instance the icons and global formatting of the displayed information can
be specialized for a given metamodel, as shown with UML in Figure 3.8.

Querying and Customization

MoDisco is also equipped with model querying capabilities that are particularly rele-
vant when elaborating on MDRE processes. Thus, the component named Query Manager
allows registering, gathering and executing model queries over any kind of model. A de-
dicated metamodel has been designed, along with the corresponding tooling, for the users
to be able to describe their query sets as models. The key point is that the offered me-
chanism is fully query language-independent: queries can currently be written in Java or
OCL and new drivers for other languages can be added in the future (cf. section 3.3.5).

As also part of this Infrastructure layer and complementary to these model querying
facilities, MoDisco integrates the use of dynamic metamodel extension capabilities. This
is particularly relevant during the Model Understanding phase (cf; Section 3.2.3) when
aiming to retrieve and represent useful extra-information on discovered models. These
extensions, called facets, are computed at runtime and allow adding useful information
to already existing models without actually modifying them. Initially developed within
MoDisco, the Facet mechanism and tooling have been externalized and are now provided
by the dedicated EMF Facet project [67].

54 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

Figure 3.8 – The generic MoDisco Model Browser, customized for the UML metamodel.

3.3.3 Technology Layer

As part of its legacy technology dedicated support, MoDisco already provides a set
of useful deployable components. These components can be directly combined (by ex-
changing models via the Discovery Manager and Workflow for instance, cf. Section 3.3.2)
with the ones from the infrastructure in order to address concrete reverse engineering sce-
narios. However, they are themselves independent from any specific use case. MoDisco
currently offers ready-to-use support for three different legacy technologies, namely Java,
Java Platform, Enterprise Edition (JavaEE) (including JavaServer Pages (JSP)) and XML.
This list could be extended in the future by new research or industrial contributions cove-
ring other languages (e.g. C#) or technologies (e.g. databases).

The Java dedicated features show the capabilities of the generic MoDisco framework
by applying them in the context of a widely used technology such as Java. A complete
Java metamodel based on the JDT [62] is offered by the framework. It covers the full
abstract syntax tree of Java programs from the package and class declarations to the met-
hod bodies, expressions and statements (that are also modeled in detail). Relying on this
metamodel (cf. some examples of the metamodel concepts in the left panel of the model
browser on Figure 3.9), a corresponding discoverer is available allowing to automatically
obtain complete Java models out of any Java projects (cf. also Figure 3.9). As previously
introduced in Section 3.2.2 when describing the injection step, the Java model discoverer
uses a dedicated technology, JDT and more particularly its in-memory representation of
the Java sources, as the technical solution to navigate the program abstract syntax tree
(an associated visitor implementing the actual building of the Java model). The auto-
mated regeneration of the Java source code from these handled (and in the meantime
possibly modified) Java models is also ensured thanks to a specific code generator im-

3.3. THE MODISCO FRAMEWORK 55

Figure 3.9 – Example of a discovered Java model opened in the MoDisco Model Browser.

plemented with a model-to-text dedicated technology (Acceleo [58]). A complementary
model transformation allows the KDM discoverer directly producing generic KDM Code
models (cf. Section 3.3.2) from such Java models. Still related to KDM, an additional
discoverer is provided to automatically get composite (trace) models integrating both the
Java and KDM “Source” elements (cf. Section 3.3.2) from any Java project.

Given the widespread use of XML documents in (legacy) software systems, a full and
generic XML support is natively provided by MoDisco. A complete XML metamodel
has been implemented conforming to the subset of the related World Wide Web Con-
sortium (W3C) specification defining the XML core concepts: root, elements, attributes,
etc. Thus, this metamodel is schema-independent and can be used to model any XML
file, i.e. both XML documents and XML schema definitions. To concretely allow this,
the associated model discoverer is made available. This notably prevents from having to
implement a particular discoverer for each XML-based file type, thus saving some use-
ful effort. If really needed, an additional model transformation can still be built quite
systematically from this generic XML metamodel to a given specific metamodel (cf. the
Model Discovery two-step approach as introduced in Section 3.2.2).

A specific support for JavaEE technologies has also been developed. This includes
notably a metamodel for the JSP language (extending some core concepts from the XML
one) as well as the corresponding discoverer allowing to get complete JSP models out of
JSP source code. In addition to this JSP support, the JavaEE dedicated components co-
ver the automated modeling of the most common JavaEE Web application configuration
files (namely web.xml and ejb-jar.xml) via specific model discoverers. Finally, there is a
predefined set of ready-to-use queries and facets for either highlighting existing JavaEE-
specific information or extracting new JavaEE-related data from previously discovered
Java models.

56 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

3.3.4 Use Cases Layer

Complementary to all these components and to illustrate their actual use in MDRE
processes, the MoDisco Use Cases layer offers some more features for specific reverse
engineering scenarios.

Figure 3.10 – The generic MoDisco Workflow, used for a sample Java refactoring process.

MDRE processes have the natural capability to be largely automated. Thus, the dif-
ferent MoDisco components can be combined together to address particular reverse en-
gineering use cases. As mentioned before in Section 3.3.2, MoDisco offers a dedicated
workflow support specifically intended to the chaining of model discoveries with con-
secutive model transformations, related scripts, final code generations, other programs,
etc. This comes with a dedicated window to select and order the operations (calling to
MoDisco components or others) to be part of the given MDRE workflow.

As concrete examples, complete automated MDRE workflows are provided for in-
stance to recover the design of Java applications or to perform some refactoring on Java
code. The example in Figure 3.10 shows such a workflow composed of an initial Java
model discover, three consecutive refining (model) transformations and a final Java code
(re-)generation.

3.3.5 Extending MoDisco

MoDisco has been designed as a generic and extensible framework. There are diffe-
rent ways of extending it in order to allow a more in-depth or specific support to some
MDRE scenarios or legacy technologies. Notably, as an Eclipse-based solution, the gene-
ric components come with extension points [217] and related interfaces that can be used
to implement these more particular features.

The most straight-forward manner is to simply complement the Use Cases layer (cf.

3.4. EVALUATION 57

Section 3.3.4) with other examples of MoDisco component combinations (e.g. defining
different workflows chaining these components) to address a given MDRE process.

Another direct way is to complement the Technologies layer (cf. Section 3.3.3) by ad-
ding the support for another (legacy) language, framework, file format, etc. This implies
first developing the corresponding metamodels (in EMF Ecore [63]), model discoverers,
browser customizations, associated queries (e.g. in Java or OCL [160]) or transformations
(e.g. in ATL [59]), generators (e.g. in Acceleo [58]), etc. For instance, for new model dis-
coverers, a generic interface (IDiscoverer) has to be implemented and a specific extension
point (org.eclipse.modisco.infra.discovery.core.discoverer) used so that the Infrastructure
(the Discovery Manager in the present case) can then automatically identify and declare
the component as part of the MoDisco environment. After that, such a newly added dis-
coverer can be considered identically to other similar components provided with the base
version of the framework.

The other way is to directly work on the Infrastructure level (cf. Section 3.3.2). Apart
from the addition of a new implementation of a standard metamodel, this is generally
more complex and requires a deeper knowledge of the MoDisco internals and generic
component APIs. For instance, advanced browser customizations (e.g. add new options,
contextual actions or a different viewer) have to be implemented using the Model Browser
specific API. Moreover, in addition to Java or OCL as already offered, new languages
support can also be developed and plugged into the Query Manager. Another example of
infrastructure extension is the possibility of supporting different workflow engines (than
the provided base one) via the use of a dedicated extension point.

For getting more insights on all these technical aspects, please refer to the MoDisco
Developer Documentation as available with any official Eclipse MoDisco release [70].

3.4 Evaluation

This section explains how we have evaluated the proposed conceptual approach and
its implementing MoDisco framework. In order to provide a relevant evaluation covering
some of the general challenges introduced in Section 3.1.4, this has been made using both
qualitative and quantitative ways. In Section 3.4.1, we start by summarizing the research
questions / challenges we intended to evaluate. In Section 3.4.2, we describe two real use
cases in which MoDisco has been practically applied. In Section 3.4.3, we also present
additional performance benchmarks addressing more specifically the scalability aspects.

3.4.1 Research Questions (RQs)

The evaluation described in what follows in this section was performed to both qua-
litatively and quantitatively assess the relevance and usefulness of our approach when
applied to real-world scenarios. More specifically, we aimed to answer the following
research questions and underlying MDRE challenges (cf. Section 3.1.4):

1. RQ1 - Technical heterogeneity. Are we able to deploy the MoDisco conceptual
approach and/or its implementing components in practical scenarios of various

58 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

technical natures (e.g. as far as the input legacy system is concerned)? To evalu-
ate this, we have been able to work on two practical use cases from our partner
company Mia-Software (cf. Section 3.4.2).

2. RQ2 - Adaptability and portability. Are we able to adapt and reuse the Mo-
Disco conceptual approach and/or its implementing components as part of other
(MDRE) solutions? To evaluate this, we have been able to work on a particular
integration use case from our partner company Mia-Software (cf. Section 3.4.2).

3. RQ3 - Scalability. Are we able to use the MoDisco conceptual approach and/or
its implementing components in the context of large-scale scenarios? To evaluate
this, we have worked on dedicated scalability benchmarks intending to measure
different scalability aspects of our solution (cf. Section 3.4.3).

4. RQ4 - Structural and behavioral complexity. Are we able to use the MoDisco
conceptual approach and/or its implementing components in order to deal with all
levels of structural and behavioral complexity in legacy systems? To evaluate this,
we can consider the two practical and quite complex use cases from our partner
company Mia-Software (cf. Section 3.4.2). However, this evaluation is currently
limited as far as structural complexity is concerned and not really relevant as far
as behavioral complexity is concerned.

Of course the presented evaluation could still be extended in the context of future
work, e.g. to cover (many) more different MDRE scenarios as well as to consider even
(much) larger legacy systems as inputs. Nevertheless, we believe it already allows provi-
ding interesting insights on the actual capabilities of our approach and its current imple-
mentation in a real-world context.

3.4.2 MDRE Concrete Use Cases

Industrial reverse engineering scenarios typically involve different types of input ar-
tifacts like source code, documentation or raw data. They also involve different kinds
of resulting outputs such as new/modified source code, documentation, models, metrics,
etc. . The proposed approach and MoDisco framework have already been applied and
deployed in several of such real use cases with the underlying objectives of:

1. Ensuring its actual usability in various technical scenarios (cf. RQ1 in Section
3.4.1).

2. Collect feedback from developers/users integrating MoDisco into another solution
(cf. RQ2 in Section 3.4.1).

3. Validate its capacity to manage the complexity of some particular scenarios (cf. RQ4
in Section 3.4.1).

The various MoDisco components can be used by combining, chaining or integrating one
or more of them into the MDRE solutions to be built. Thanks to the characteristics of
the used EPL license [66], in all cases the elaborated solutions can be fully open source,
fully proprietary or follow an hybrid approach. To illustrate qualitatively the suitability
of MoDisco in industrial scenarios, this section presents a couple of projects where our
partner company Mia-Software built a MoDisco-based solution to address real customer
problems.

3.4. EVALUATION 59

Use Case 1: Java Application Refactoring

MoDisco has been used to handle a critical project concerning a legacy system of a
big car rental company. The idea was to automate massive refactoring tasks on a large
Java application (approximately 1000K Lines of Code (LOC)) in order to improve both
its performances (notably in terms of memory usage) and code readability.

Process Overview. To be able to refactor the Java legacy system, specific patterns first
needed to be identified in its source code. As a consequence, an initial reverse engineering
phase was required in order to obtain an exploitable model of this system. Based on the
discovered representation, the code upgrades have then been automatically performed at
the model level (cf. Figure 3.11) by means of in-place model transformations. As a last
step, the (upgraded) source code of the refactored Java application has been automatically
generated from the modified models.

Figure 3.11 – Java model before (left) and after (right) refactoring, using the MoDisco
Model Browser to show the effects of the first refactoring.

To perform the refactoring, three model transformations were used with the aim to:
— Replace the use of Java wrapping types (Integer, Double, Float, Long) by Java

primitive types (int, double, float, long) in some identified parts of the code, as
visible on Figure 3.11 (cf. also Figure 3.12 for an excerpt of the corresponding
transformation rule).

— Clean the useless code calling to log (based on the Apache Commons Logging
framework).

— Delete some abusive uses of a specific client class (named ValueHolder, that was
simulating some kind of C++ like pointers).

Note that these refactoring rules had to be applied on each of the different application
releases.

This model driven refactoring process is an adaptation of the well-known Horse-
shoe model. Figure 3.13 depicts its three main steps:

1. Reverse engineering from the input Java application by using the MoDisco Java
metamodel and corresponding model discoverer (MoDisco Technology layer)).

60 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

Figure 3.12 – An example of Java application refactoring rule for type replacement.

2. Restructuring of the obtained application model thanks to model transformations
in Java implementing the previously described rules (that could be positioned as
part of the MoDisco Use Cases layer).

3. Forward engineering of the output (refactored) Java application from this modi-
fied model by running the MoDisco Java generator (MoDisco Technology layer)).

Car rental

Java system

re
p

re
se

n
ta

ti
o

n
 o

f

R
e

v
e

rs
e

e
n

g
in

e
e

ri
n

g

conform
s t

o

Discovered

model

Java

metamodel

Refactored

Java system

Restructuring

F
o

rw
a

rd

e
n

g
in

e
e

ri
n

g

Modified

model

conforms to

re
p

re
se

n
ta

ti
o

n
 o

f

Figure 3.13 – Overall process of the model driven Java application refactoring.

The choice of Java for implementing the model transformations (rather than using
a dedicated model transformation language like ATL) has been made by Mia-Software
because of the Java expertise of their engineers. The MoDisco Model Browser (and Java
metamodel specific customization) has been used for manual verification and testing at
each step of the process and on of the several application model versions. The overall

3.4. EVALUATION 61

integration of the three different steps has been realized thanks to the provided MoDisco
workflow facilities.

Observations. Globally, the use of MoDisco in the context of this refactoring use case
has been a success. As a result of the process, approximately 60K LOC from the whole
application were concerned and so automatically refactored (Figure 3.14). An effective
performance gain on the regenerated application has been observed by Mia-Software.
They also noticed an overall readability improvement of the modified source code parts.

Figure 3.14 – Sample Java code before (top) and after (bottom) refactoring.

According to the Mia-Software engineers working on this project, discovering inter-
mediate model-based representations of the source code really improved their compre-
hension of the application and also largely facilitated the elaboration of the transforma-
tions implementing the different modifications. Indeed, only 1 person/month has been
required for realizing the full project, i.e. internally developing, then deploying and fi-
nally applying the MoDisco-based solution. In contrast, Mia-Software evaluated that fol-
lowing a semi-manual approach based on textual regular expressions (which is for them
less reliable than a model-based approach) would have been more costly. It would have
required at least 1 person/month simply for realizing a study phase to identify the con-
cerned parts of the application as well as needed expressions, and then again more to set
up and perform the actual refactorings themselves. According to their effort calculation
scheme (study phase + 500 LOC/day/person for a manual processing), following a fully
manual approach could have cost up to 7 person/months for the same project.

Due to the relatively important size of the targeted legacy system, the main problem

62 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

encountered during the process was scalability-related. This was linked to the use of
the single EMF framework without other complementary (scalability) solutions at the
time. A specific parameterization of the model discovery to filter out some Java packages
that were not involved in the refactoring (via the corresponding Java model discoverer
parameters), as well as the split of the loaded model into several derived models, helped
solving this issue.

To summarize, using available MoDisco to implement the MDRE solution to this
use case has allowed the company saving time and resources (and therefore reducing the
project costs) for the following main reasons:

— The Java metamodel, corresponding injector and extractor were already provided
for free and directly reusable. This permitted really focusing on the transformation
part which is the core part in a refactoring process.

— The comprehension of the handled application and writing of the model transfor-
mation rules (in Java in that case) have been practically facilitated and accelerated
by both the well-structured Java metamodel and the model navigation capabilities
the MoDisco Model Browser is offering.

— The general automation of the solution (including the developed transformations)
has been made easier thanks to the MoDisco integrated framework and correspon-
ding MDRE workflow support.

Use Case 2: Code Quality Evaluation

The use of MoDisco has been integrated in the Mia-Quality solution [144] which
is dedicated to the quality monitoring of existing applications. This software system
has already been deployed several times, e.g. to verify the main product of an insurance
management software provider.

Process Overview. To efficiently evaluate the quality of a given legacy application,
an automated quality analysis process has to be put in place. However, all the (often
heterogeneous) technologies combined in the input system have to be covered to obtain
relevant results. This means that the quality solution to be designed and implemented has
to be completely technology-agnostic, and to potentially deal with any kind of quality
measures/metrics.

Thus, the solution needs to be parameterizable by both the measurements to be actu-
ally performed and the software to be monitored. Mia-Quality is a commercial product
offering such a generic solution benefiting from the reuse and integration of several Mo-
Disco components.

This model driven quality evaluation process is composed of three main steps (Fi-
gure 3.15):

1. Measurement by analyzing models of reverse engineered applications. These
models can be potentially obtained thanks to MoDisco model discoverers (for
Java, JavaEE, XML) and related transformations for instance, or via provided
import capabilities compatible with other existing tools such as Checkstyle [42].

2. Consolidation by connecting external quality analysis tools and aggregating the
data coming from these different tools in a unique quality measurement model.

3.4. EVALUATION 63

This integration is realized by using a copy of the MoDisco SMM metamodel, as
the pivot metamodel in the quality solution, with related model transformations.

3. Presentation by displaying the quality analysis results in the specified formats
according to user requirements. For instance, the external tool Sonar [192] has
been plugged to the solution and customized for showing these results (i.e. the
measurements model) in a graphical way.

Insurance

management

system

Measurements

model (initial)

SMM

metamodel

Measurement

P
re

s
e

n
ta

ti
o

n

External Tool

Sonar

File(s)

Quality

model

re
p

re
se

n
ta

ti
o

n
 o

f

R
e

v
e

rs
e

e
n

g
in

e
e

ri
n

g
co

n
fo

rm
s

to

Discovered

model

Java

metamodel

Consolidation

Measurements

model

(upgraded)

co
n

fo
rm

s
to

conforms to

conforms to

Figure 3.15 – Overall process of the model driven code quality evaluation.

The MoDisco SMM metamodel is largely used in the solution for both specifying
homogeneously the measures and representing the results of their computation on the
application models. The data exchanged between the three steps of the process are al-
most exclusively SMM models. They are treated either automatically via Java code or
manually thanks to a dedicated editor (Figure 3.16). This editor is based on parts of the
MoDisco Model Browser completed with additional specific customizations for the SMM
metamodel.

Observations. In the context of this use case, several MoDisco components have been
successfully combined as part of an automated quality evaluation solution. The built
solution fits the expressed needs in terms of genericity and automation, and has also been
concretely applied on the initially targeted insurance management software (as well as
in other projects). Figure 3.17 shows samples of concrete final results as graphically
displayed in Sonar.

Mia-Software clearly benefited from the use of MoDisco (and some of its preexisting
components) in order to build faster the Mia-Quality solution. Moreover, although it is
quite difficult to precisely evaluate actual benefits for end-users, Mia-Quality users also

64 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

Figure 3.16 – The MoDisco-based Mia-Quality model editor.

reported a positive feedback regarding the productivity and flexibility of the tool (thanks
to the use of the MoDisco SMM Metamodel and the integration of several MoDisco
Model Browser graphical features).

This use case has demonstrated the ability of MoDisco to be considered not only as
an integrated framework (cf. Section 3.4.2), but also as an interesting provider of automa-
tically reusable MDRE components. Thus, their genericity and customizability largely
facilitate their integration both within and with other existing solutions.

To summarize, using (parts of) MoDisco to implement the MDRE solution to this use
case was valuable for the following main reasons:

— The SMM metamodel, used as both the core metamodel inside the solution and
the pivot one for integration with external tools, was already provided for free and
directly usable. SMM is also a recognized interoperability standard promoted by
the OMG.

— The various MoDisco model discoverers can be reused to provide different kinds
of input to the code quality evaluation solution (model discovery phase). It is
important to note that only some importers from external tools are distributed in
the commercial version so far.

— Several graphical components from the Model Browser (e.g. tree viewer, customi-
zation support) have been used as the basis for building the solution quality model
editor (model understanding phase) as shown on Figure 3.16, allowing considera-
bly reducing the required development effort.

3.4. EVALUATION 65

Figure 3.17 – Some quality measurements obtained as output of Mia-Quality.

3.4.3 Performance Benchmarks

Scalability is one of the MDRE main challenges as stated in Section 3.1.4. Thus, this
section presents quantitative performance evaluations (cf. RQ3 in Section 3.4.1). Their
objective is to highlight the ability of our approach and implementing MoDisco frame-
work to be useful in industrial scenarios where models go far beyond the toy examples
sometimes used in research papers. To this intent, we evaluated this overall performance
according to several fundamental criteria: execution time, memory footprint, model size,
etc. The results show that our approach is one of the suitable candidates for engineers
looking for reusable components to build their own MDRE solutions.

The evaluations focus on one of the key components in any MDRE solution when
facing scalability issues, i.e. the model discoverer as introduced in Section 3.2.2. In par-
ticular, we analyze the results obtained from the automated tests realized on the MoDisco
Java model discoverer. Note that different implementations have already been provided
in MoDisco for the Java discoverer, all based on EMF. One implementation just uses the
standard EMF API while another relies in addition on the CDO framework [60] dedicated
to the handling of very big models. However, the evaluations presented here only concern
the standard MDE-based implementation of the Java discoverer.

To emphasize on the sufficient scalability of our approach, the experiments presented
in this section have been voluntarily realized on a basic development machine. It had the
following limited configuration: Quad Core processor at 2.40GHz (Intel), 4GB of RAM,
x86 architecture (Windows 7 OS). The measurement components have been implemen-

66 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

ted by using the Java standard API. The used memory is computed as the difference at a
given time between the total memory (Runtime.getRuntime().totalMemory()) and the still
free one (Runtime.getRuntime().freeMemory()). The required time is obtained via calls to
System.getTime() at both the beginning and end of (the part of) the process to be measu-
red. Due to some system or Java internals, a measurement overhead can be sometimes
observed. However, it can be considered as not significant in the context of the realized
experiments.

Globally, the following four performance indicators have been considered by the exe-
cuted evaluations:

— Size of the discovered Java models.
— Memory footprint during the discovery process.
— CPU time needed for performing this same process.
— Internal repartition of effort inside this process.

Experiment 1: Discovered Models Size

As input for this experiment, we have used several Java legacy systems (plug-ins
from the Eclipse Platform in this case) of increasing sizes measured in number of LOC.
Note that the first (small) systems have been considered only for evaluation purposes,
MDRE and MoDisco becoming actually valuable when applied on systems of medium
size or more. Also, the computation of a comment rate in the code could have allowed
to evaluate a bit more precisely their actual size. However, the raw number of LOC has
been retained as a sufficient indicator for the evaluation.

Figure 3.18 shows the results of evaluating the size of the discovered Java models for
each plug-in. The number of model elements (in this context objects in the model) and
the memory used on hard drive disk after XMI serialization [168] have been computed
for each of them.

org.eclipse.jdt.apt.pluggable.core 781 3,449 0.807

org.eclipse.jdt.apt.ui 2,113 10,217 2.541

org.eclipse.jdt.compiler.tool 2,195 10,187 2.476

org.eclipse.jdt.compiler.apt 6,885 29,444 7.639

org.eclipse.jdt.launching 12,172 52,205 12.801

org.eclipse.jdt.apt.core 13,854 59,270 14.723

org.eclipse.jdt.junit 14,744 66,411 16.206

org.eclipse.jdt.debug 39,411 156,374 38.432

org.eclipse.jdt.debug.ui 39,526 159,028 42.326

org.eclipse.jdt.core 278,045 1,430,345 367.828

org.eclipse.jdt.ui 325,657 1,444,753 393.959

Lines of

code

Number of model

elements
Eclipse Plug-ins

XMI model size in

Megabytes

Figure 3.18 – Benchmark on the size of discovered Java models.

As expected, both the number of model elements and the size of the serialized models
grow quite fast when the input application gets larger (in LOC). Nevertheless, the disco-
vered models size stays relatively proportional to the input legacy systems size (with a
multiplier between 4 and 5 for the number of model elements, and between 0.0010 and
0.0013 for the XMI size). With a small input project of less than 800 LOC, the generated

3.4. EVALUATION 67

model contains only 3,500 model elements for a size inferior to 1MB when serialized. A
more consistent application of around 40,000 LOC is already represented by more than
155,000 model elements and 42MB of XMI data. Obviously, when considering a larger
project (325,000 LOC), the number of model elements becomes huge (almost 1,450,000)
as well as the size of the corresponding XMI file (almost 400MB).

This behavior highlights the predictable scalability issues when dealing with even
larger legacy systems and their models. The number of model elements is very impor-
tant because it implies that the available memory could not be sufficient in some case
to actually load the full models. Thus, we could explore the possible use of optimi-
zation techniques such as the lazy loading of elements at the model manipulation time
(e.g. during a transformation). The serialization (or more generally storing) size is also
fundamental since it may limit the loading and saving of big models. Several alternatives
(e.g. in the Eclipse world) have been proposed relying on different storage environments,
and notably databases (cf. Section 3.6).

Experiment 2: Time vs. Memory Footprint of a Discovery Process

This evaluation and the next one focus on the two largest Java projects from Figure
3.18. They are actually the most relevant inputs according to the size of the applications
to be normally tackled with MoDisco in realistic MDRE scenarios. Thus, the required
time and memory footprint (i.e. used RAM) have been evaluated while executing full
Java discovery processes on these two examples. Note that the evaluation itself is also
using some memory during the discovery process. Nevertheless, this amount of memory
is not significant compared to the total memory used, and so can be voluntarily ignored
when analyzing the obtained results as graphically displayed on Figure 3.19.

The full discovery from the org.eclipse.jdt.core Java project takes more than 250,000ms
(i.e. nearly 4 minutes) and needs at most 350MB in memory. The discovery from the lar-
ger org.eclipse.jdt.ui project has been performed in around 400,000ms (almost 7 minutes)
and has used more than 500MB of memory. Considering the nature and frequency of a
classical discovery process, the total execution times are in both cases reasonable accor-
ding to the inputs size.

The potentially important memory footprint (notably at the end of the process) could
imply scalability issues when using standard computers. However, this in-memory foot-
print is interestingly proportional to the time. This could allow anticipating the amount of
dynamically allocated memory for a given discovery process. Such an optimization could
be realized according to the input legacy application size and also the current process run-
ning time. This knowledge could be particularly useful when working on optimizing long
discovery processes from very large legacy systems.

Experiment 3: Time Repartition During a Discovery Process

Finally, a last experiment on the two same examples has focused on the internal effort
repartition during a full Java discovery process. The objective was to collect interesting
information on the required time per different subtask inside such a discovery process. In
that specific case, these subtasks are:

1. Creation of the abstract syntax tree from the Java program.

68 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

Figure 3.19 – Benchmark on the time and memory footprint of a Java discovery process.

2. Visit of this tree to generate the corresponding model elements.
3. Resolution of the references between the different created model elements.
4. Redefinition of some methods when required.
5. Serialization in XMI of the built model.

Note that the provided total discovery times are approximations, advanced reference reso-
lutions having been voluntarily skipped. In any case, the time allocated to this reference
resolution largely depends on the needed degree of details. This could allow interesting
scenario-specific performance optimizations. The obtained results are graphically pre-
sented in Figure 3.20.

This evaluation generally emphasizes that the Java program abstract syntax tree cre-
ation and discovered Java models serialization are very time consuming tasks. It also
denotes that the actual visit of the tree (including both the navigation and production of
model elements) is relatively fast compared to them. This highlights two main disco-
very process parts where considerable performance gains could be obtained. This last
experiment provides precious indications on where to significantly improve the overall
discovery process scalability (cf. Section 3.6).

3.5. THE FREX COMPONENT 69

Figure 3.20 – Benchmark on the time repartition during a Java discovery process.

3.5 The FREX Component

As previously introduced in Section 3.1.4, there are different MDRE challenges to be
tackled. The proposed conceptual approach and MoDisco framework described in this
chapter intend to address them. However, the presented work has mainly focused on
providing support for reverse engineering with an emphasis on design elements. Properly
reverse engineering the runtime execution of existing software has not been explored a lot
so far. More generally, while there has been a strong focus on static analysis techniques
for structural aspects of software, there have been (much) less attempts to target their
behavioral aspects by dynamic analysis techniques.

In this section, we introduce the fREX component as the initial result of further re-
search work on applying our proposed approach to the reverse engineering of system
executable behaviors. Instead of letting users re-implement such a feature from scratch
whenever needed, we decided to contribute a first basic solution to this complex problem.
This way, it acts as a complementary solution to the already provided MoDisco reverse
engineering support for structural aspects. The fREX contribution is actually twofold:

1. An simple open and extensible framework that is capable of automatically gene-
rating and executing fUML models from existing applications.

2. A base mapping between UML activity/class diagrams (i.e. fUML) and the core
language features of Java, putting the focus on behavioral aspects and their exe-
cution at model-level. To obtain the required runtime information, fUML comes
with a dedicated Virtual Machine (VM) that has been extended to provide execu-
tion traces as a runtime model [137].

We start by motivating further the need for fREX (in Section 3.5.1 and by providing
an overview of the proposed framework as another instantiation of our MDRE approach
(in Section 3.5.2). Then, we describe a concrete example in order to illustrate the initial
Java-to-fUML mapping that has been designed and implemented (in Section 3.5.3). We
end by opening on interesting future application scenarios for our fREX framework (in
Section 3.5.4).

70 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

3.5.1 Motivation

As mentioned before, there are already significant results as far as modeling structural
aspects of software is concerned. However, there has been less initiatives really focusing
on modeling precisely software behaviors.

Background

In UML, application behavior can be defined either interaction-oriented by using se-
quence diagrams or state-oriented by using state machine diagrams. The behavior trig-
gered by such interactions and states can be represented in details by means of activity
diagrams. fUML [163] corresponds to the core subset of UML that has been identified
as relevant for representing software behavior with the main purpose of executing it. In
particular, fUML makes explicit the semantics of both class and activity diagrams for a
dedicated VM to interpret them. Thus, similarly to existing object-oriented programming
languages (e.g. Java or C#), fUML provides concepts for defining classes with attributes
and operations, abstract classes, multiple inheritance, enumerations as well as an exten-
sible type system. Operation bodies are implemented by activities and via the action
language provided by UML, enabling the expression of manipulations and other compu-
tations. As a consequence, fUML appears to be a potential language for capturing the
behavior of source code at model-level. As it is capable to represent the behavior in exe-
cutable form, it enables dynamic analysis to be carried out directly at model-level instead
of code-level.

In addition to fUML, Micro-KDM [174] is also capable of representing application
behavior in a language-independent way at model-level. However, it currently does not
come with an explicit semantic specification and execution engine. Another possibility
would be to extend other languages used for measurement and metric calculation like
FAMIX [54] with an action language such as the one already provided by fUML. In all
mentioned cases, more reverse engineering support is still required in order to automati-
cally obtain relevant and valid behavioral models from already existing source code.

Generally, the elaboration of mappings between programming and modeling langua-
ges such as Java and UML is not new [81, 105, 150, 124]. However, only a few appro-
aches [88, 98] have been considering UML activity diagrams for expressing application
behavior at model-level. These approaches focus on forward engineering as they use
Java as the output language and their mapping (from UML) is encoded by code gene-
rators. The base of such mappings may also be reusable in a reverse engineering con-
text such as ours, but they would have to be complemented to express concepts such as
ControlFlow and ObjectFlow that are not explicitly represented in the application
code. The difference between existing approaches that deal with reverse engineering of
activity diagrams from application code [129] and our approach is that their proposed
tooling is strongly language and visualization-oriented, while we follow a more generic
approach targeting model execution. In our case models are to be discovered solely by
static analysis as we aim at obtaining a representation of the overall behavior indepen-
dently from any execution scenario.

Finally, there is already a significant body of software analysis work covering dif-
ferent techniques and tools [46] . Existing approaches that support dynamic analysis

3.5. THE FREX COMPONENT 71

typically gather runtime information directly at code-level, based on which the analysis
is then carried out. Many of these approaches use UML(-like) representations to capture
actual analysis results in terms of models. For instance, the UML sequence diagram is
often used in the context of execution trace analysis. Our approach is different as we
aim at performing the full dynamic analysis at model-level, in particular on top of previ-
ously discovered fUML models. Such models are more expressive compared to program
code in several respects (e.g. different kinds of relationships, precise multiplicities, expli-
cit control flow and data flow) which is beneficial for realizing more powerful dynamic
analysis tools. Analysis tools working at this model-level can directly benefit from these
richer representations as well as from the large ecosystem of modeling techniques and
tools.

Illustration

A practical illustration of the need for reverse engineering capabilities for executable
behaviors is the ARTIST initiative. It has resulted in both an overall methodology and
the related tooling aimed at providing a global model-based re-engineering approach for
migrating existing software more easily to novel cloud offerings [17, 143]. Notably, this
involves selecting a cloud storage solution given a set of persistence requirements derived
from software implemented in a variety of programming languages. This in turn requires
at least (i) to obtain a precise data model and (ii) to understand how application data is
persisted and retrieved. However, statically producing a representation allowing to reason
on structural aspects is not enough. On the contrary, it is highly required to dynamically
analyze the behavioral aspects of the system for deriving improvements concerning non-
functional aspects. Dealing with such a scenario highlighted the practical need for a
dynamic/behavioral reverse engineering support, as well as the effort required to realize it
separately for several different programming languages (e.g. Java or C# that were both in
the scope of the project). This would imply duplicating the work, e.g. to instrument source
code and produce the runtime information in terms of machine-interpretable execution
traces.

Among the different paradigms and corresponding solutions available, the global
MDRE approach proposed in this chapter is the one that has been applied in the AR-
TIST context. This has notably required to use the Java and UML [167] model discovery
support provided by MoDisco in order to obtain models representing the applications in
a programming language-independent way. Studying such mappings between program-
ming and modeling languages (e.g. Java and UML) has a long tradition in both reverse
and forward engineering. The work in this area focuses mainly on UML class diagram to
capture structural aspects of an application, while behavioral aspects are typically expres-
sed (mostly partially) in terms of sequence and state diagrams. With the relatively recent
emergence of the fUML [163], UML activity diagrams appear to be more appropriate for
capturing behavioral aspects in a way that they can be executed directly at model-level.

3.5.2 Proposed Framework

A fundamental idea of the proposed fREX framework is the central use of a common
representation format for all behavioral concerns. fUML, as a subset of UML focusing

72 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

on executability aspects, plays the essential role of a pivot language in our solution.

Architecture

The fREX framework is intended to facilitate the construction of several structural
and behavioral models on a given software, and this at different levels of abstraction
depending on the reverse engineering needs. It follows the two-phase process as proposed
by our MDRE approach:

— Model Discovery generates from the software artifacts and/or their executions the
needed initial models representing the raw behavior of the considered software.
In our present case, base fUML models are automatically discovered from Java
source code.

— Model Understanding further analyzes the previously obtained fUML models
by producing derived traces and/or models proposing different additional relevant
views. In our present case, we employ a fUML VM to execute these models and
test the produced traces.

The overall architecture of fREX and its current Java support is presented in Figure 3.21.

defined forJava
code

Java
Model

Extended
fUML VM

fUML
Model

Runtime
Model

Test
Case

Java Model
Discoverer

Java2fUML
Transformer

executes

produces

refers to proves assertions against

invokes

Model-based
Analysis

exploits

Code
level

Model
level

exploits

Model / code artifacts Tools

translated into

translated into

Legend

Figure 3.21 – Overall architecture of the fREX framework.

Model Discovery

Producing fUML-based representations from source code requires both overcoming
different encodings and resolving language heterogeneities. Thus, instead of directly
translating plain code into fUML, a two-step approach is preferable for the fUML model
discovery phase. Firstly, the source code is translated into a code model (a Java model
in the present case) using a low-level specific model discoverer. The obtained model
conforms to a metamodel of the programming language that precisely describes its ter-
minology and structures. Secondly, this code model is translated into a fUML model

3.5. THE FREX COMPONENT 73

that resolves language heterogeneities by relying on the correspondences between the
given language (here Java) and fUML metamodels. This is implemented as a so-called
transformer.

Model Understanding

Having obtained a proper fUML model, it can then be directly executed by the fUML
VM in a model understanding phase. In previous work, some additional tracing support
has already been integrated into an existing fUML VM [137]. In particular, a metamodel
has been designed allowing to capture the runtime behavior of fUML models in terms of
execution traces and to extend the fUML VM for recording execution traces as instan-
ces of this metamodel. Hence, as a result of the model execution onto the fUML VM,
a runtime model is produced capturing execution traces referring to the executed fUML
model. They provide information on executed activities and their actions including infor-
mation about their call hierarchy, the chronological and logical order of their execution,
and information on the runtime states of the model during the execution. The generated
runtime model along with the previously discovered fUML model can then be exploited
by model-based analysis techniques. These include model refinement, slicing or view
generation for instance (cf. Section 3.5.4 for possible application scenarios).

In addition, in order to check the validity of the produced fUML models, we apply a
test-driven approach. The base idea is to define and run unit tests for asserting that the dis-
covered fUML models actually capture the original behavior of the Java code. Actually,
we compare for a given input the result of a given fUML model execution (i.e. a run-
time model) against the result of running the corresponding piece of code. Note that the
code-level test cases are for now manually translated into model-level test cases imple-
mented with Java. However, an automated translation of test cases is in principle possible
if all programming language constructs needed for defining test cases are supported by
the model discoverer. We apply such a test-driven approach to allow continuously vali-
dating new language correspondences that are implemented by the available transformers
(e.g. the Java-to-fUML one, cf. Section 3.5.3).

Tooling Support

The current implementation of the fREX framework relies on the combined use and
integration of several components from the EMP. The initial low-level Java model disco-
very step (from a source Java project) is automatically performed by reusing the corre-
sponding MoDisco component. Then, the previously introduced Java-to-fUML mapping
is currently implemented using AtlanMod Transformation Language (ATL). As menti-
oned before, the extended fUML VM developed in the Moliz project [36] is used to
provide the required model execution capabilities. Finally, JUnit test cases have been im-
plemented to ensure that the produced fUML models behave (i.e. execute) as expected. In
addition to these core aspects, a couple of UI plugins providing fREX-specific contextual
actions have also been implemented. They offer to users simple ways of launching the
different steps of the reverse engineering process from the Eclipse workbench they are
familiar with.

We checked the completeness and correctness of our implementation, concerning both

74 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

the model discovery/mapping and the model understanding/execution steps, with the fol-
lowing practical testing methodology:

1. Develop Java examples that use the aforementioned Java structures.

2. Discover Java models from them.

3. Transform these Java models into fUML ones.

4. Execute these fUML models and the original Java code via unit tests.

5. Compare the outputs produced by executing the fUML models and the original
Java code.

The source code of the fREX implementation as well as a corresponding demo/video
(applying our testing methodology on a concrete example), is publicly available [147].

Expected Benefits

The proposed fREX architecture (including notably the use of fUML as a pivot re-
presentation format) comes with several interesting benefits from a reverse engineering
perspective.

— Extensibility is allowed from the model discovery side, as new model discovery
components targeting fUML can be implemented from various kinds of software
inputs. For instance, different fUML model discoverers could be built for suppor-
ting behavioral reverse engineering from both Java and C# source code.

— Genericity and reusability are permitted from the model understanding and ana-
lysis side, as existing components consuming fUML models can be reused inde-
pendently from the original nature of the treated software. This way, the same
execution capabilities and/or analysis transformations can be used indifferently
on all fUML models.

— Non-intrusiveness is supported because only (fUML) models are considered for
execution and analysis. Hence no modifications (e.g. for code instrumentation
purposes) are required at source-level anymore, as everything can be performed at
model-level (e.g. via the used fUML VM).

3.5.3 The Java-to-fUML Example

To demonstrate the capabilities of fREX for an extensively used programming lan-
guage, we decided to start working on the Java case. As an example, Figure 3.22 gives an
overview of the different artifacts and models considered and produced by fREX from a
given piece of Java code.

Notably, some Java code and a corresponding (reverse engineered) fUML model are
depicted there. Application structure and behavior are captured by a class diagram and
activity diagram, respectively. An excerpt of the traces resulting from the execution of the
illustrated activity (i.e. the runtime model) is shown beneath the diagrams. Due to the high
complexity of a complete mapping between Java and fUML, we started by addressing a
subset of Java called MiniJava [179]. Thus, we decided to voluntarily delay the treatment
of some other aspects of the language. Our current Java-to-fUML mapping is inspired
from initial work within the standard fUML specification which we refined, extended and
implemented in terms of a Java-to-fUML model transformation.

3.5. THE FREX COMPONENT 75

UniversityIS::createStudentdata : Data

student : Student

student :
Student

Data::
getDetails

details : Details

students

«AddStructural
FeatureValue»

uis :
UniversityIS

«CallOperation»

FUML: Behavior

nodeExecutions
trace :
Trace

initial :
InitialNodeExecution

Student :
ActionExecution

getDetails :
CallActionExecution

getDetails :
ActivityExecution

createStudent :
ActivityExecution

activity
Executions chronological

Successor
logicalSuccessor

Trace: Runtime Information

UniversityIS

+ createStudent(data : Data) : Student

Student

+ initialize(details : Details) : void

FUML: Structure
public class UniversityIS {
 private Student[] students;
 private int index;
 public UniversityIS() { /* init */ }
 public Student createStudent(Data data) {
 Student student = new Student();
 student.initialize(data.getDetails());
 /* resize students array if required */
 this.students[index++] = student;
 return student;
 }
 ...

Java Code

Student

«CreateObject»
this

«ReadSelf»
Student::
initialize

«CallOperation»

- students *

chronological
Successor

Figure 3.22 – Java code expressed and executed by means of fUML.

Table 3.3 introduces the conceptual mapping required to discover an fUML model
form the Java code of Figure 3.22. It shows the rules for translating the statements of
the createStudent method into corresponding fUML model elements. The concepts

76 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

on the left hand side of the table refer to the terminology of the Java Language Specifi-
cation [102], whereas in the right hand side are corresponding concepts defined by the
fUML metamodel [163]. In this present work, the focus is set on behavioral aspects by
capitalizing on the structural mapping realized in JUMP [18] and by complementing it
with new behavioral elements.

 Java Concept fUML Concept
 MethodDeclaration md add Activity a
 a.name = md.name
 a.specification = -- infer respective Operation from structural part
 ReturnType rt add ActivityParameterNode rapn
 rapn.name = "return"
 rapn.type = rt.type
 rapn.parameter = -- infer respective Paramter from structural part
 FormalParamter fp add ActivityParameterNode fapn
 fapn.name = fp.name
 fapn.type = fp.type
 fapn.paramter = -- infer respective Paramter from structural part
 Block b add InitialNode in, FinalNode fn, StructuredActivityNode san
 -- infer control flow from b.statements
 VariableDeclaration vd,

 ClassInstanceCreation cic
 add CreateObjectAction createOA

 createOA.name = vd.type.name
 createOA.classifier = vd.type
 add OutputPin op, ObjectFlow of, ForkNode fn
 of.source = op, of.target = fn
 MethodInvocation mi add CallOperationAction callOA
 callOA.name = mi.method.name
 callOA.operation = mi.method
 add InputPin ip, ObjectFlow of -- for target object, e.g., student
 add InputPin ip, ObjectFlow of foreach
 FormalParameter fp in mi.method
 -- infer source and target of ObjectFlows
 add OutputPin op for ReturnType rt in mi.method
 Assignment a

 switch(a.leftHandSide)
 case: ArrayAccess

 add AddStructuralFeatureValueAction asfva
 asfva.name = -- infer name from left hand side
 asfva.structuralFeature = -- infer feature from left hand side
 add InputPin ip, ObjectFlow of for a.leftHandSide
 add InputPin ip, ObjectFlow of for a.rightHandSide
 -- infer source and target of ObjectFlows
 ThisExpression add ReadSelfAction rsa
 rsa.name = "this"
 add OutputPin op

Table 3.3 – Mapping between MiniJava and fUML.

From a structural perspective, a method declared in Java corresponds to an operation
in UML. In order to capture its behavioral elements at model-level, it is also mapped to
an activity that is linked to the operation (see specification property). The name
of the activity is derived from the method signature. Furthermore, formal parameters and

3.5. THE FREX COMPONENT 77

the return type defined by the method signature are mapped to parameter nodes of the cor-
responding activity. As an activity explicitly defines control nodes at which the execution
starts and ends when it is invoked, those nodes, i.e. InitialNode and FinalNode,
are created by default for each activity. If a FinalNode has been executed, the activity
execution terminates. The activity also terminates if no activity node is enabled anymore.
After the termination, the activity execution collects the object tokens residing on output
activity parameter nodes and provides them as output (see the student object).

A created instance variable (see the student instance) is mapped to an fUML action
that creates an object (i.e. CreateObjectAction). The action name and classifier
are derived from the type (Java class) that is instantiated. Additionally, an output pin is
created at which the action puts the instantiated object at runtime. The instantiated object
is distributed to possibly several other actions via a fork node. It is connected to the
action’s output pin via an object flow edge. The latter ensures that the objects are offered
to the successor activity nodes once the current node has been executed.

A method invocation is mapped to an fUML action for calling operations (i.e. Call-
OperationAction). Its main properties (i.e. name and operation) are derived
from the signature of the method that is invoked. Input pins and the respective object
flow edges are created for the target object of the invocation and for the values passed
to the parameters of the invoked method. Also, an output pin is created if the invoked
method returns a value.

A value assignment to a multi-valued Java variable (e.g. an array of students) is map-
ped to a named fUML action that adds a value to a structural feature (the upper value of
its multiplicity is assumed to be unbounded, i.e. 0..*): i.e. AddStructuralFeature-
Action. The latter is referenced accordingly by the action (see its structural-
Feature property). Again, input pins and the respective object flow edges are created
for the left hand side as well as the right hand side of the assignment statement.

Finally, a ReadSelfAction along with an output pin are created when Java this
keyword is used to refer to the member of the current object from within an instance
method. The this keyword may not only be used in the context of a method declaration
but also a constructor declaration.

3.5.4 Possible Applications

Having fUML models that represent behavioral aspects of existing software, the way
is paved for further software comprehension and analysis carried out directly at model-
level. In order to give an initial impression of the applicability of our fREX framework,
we consider hereafter three main families of model-based analysis techniques that could
(re)use the produced fUML models.

Model Refinement

A first way of dealing with the obtained fUML models is to refine them using one or
several model transformations. One of the objectives may be to insert additional informa-
tion into the fUML models, possibly computed and/or coming from other models. Thus,
in the proposed framework we are able to complement the initially generated fUML mo-

78 CHAPTER 3. MODEL DRIVEN REVERSE ENGINEERING

dels by using runtime information coming from the trace models produced by the fUML
VM (cf. the one from our example in Figure 3.22). Other interesting refinements could
be achieved too at fUML-level. For example, transformations could be proposed in order
to explore automatically, based on model executions, the refinement of associations into
bi-directional associations or compositions with more accurate multiplicity constraints in
the fUML models. This requires an analysis of the execution traces to observe if changes
on one of the two potential unidirectional associations are always replicated on the other,
suggesting that they are indeed representing the same concept. We have already imple-
mented a first version of such a fUML model-to-model transformation for exploration
purposes.

Model Slicing

The obtained models convey many types of information that are more explicit than in
source code, e.g. associations between classes as discussed before. However they may not
scale well in some cases, notably when the volume of represented information becomes
too large. Thus, model-based slicing techniques [4] can help in capturing only relevant
parts of a larger model for a given purpose. The class diagram depicted in our example
can already be considered as a slice because it shows a reduced part of the whole uni-
versity information system. With the dynamic approach in our framework, slices can be
produced that contain only model elements required for a specific execution, e.g. creating
a student entity, facilitating the comprehension of the parts of the model behavior rele-
vant to specific functionalities. Complementary to this, model slicing could be extended
by chaining different transformations computing distinct slices. For instance, in a first
step, models capturing behavioral aspects are sliced according to a given slicing criterion.
Then, in a second step, the structure influenced by the execution of the sliced behavior
may be obtained. The latter can be achieved by computing a model slice according to
the type information of the produced objects. Additionally, these slices may be propa-
gated again to other UML models such as architectural ones (e.g. in UML component
diagrams).

View Generation

Generating different useful views on existing software is one of the major purposes in
reverse engineering [38]. A view enables turning the focus on certain concerns where a
pertinent viewpoint specifies the conventions for representing such a view. As our appro-
ach relies on fUML and as its parent (i.e. UML) can be considered as a multi-viewpoint
language, several interesting views are naturally conceivable for our example. For in-
stance, in order to represent high-level interactions relevant in the context of creating a
student in the university information system, a dedicated view based on UML sequence
diagrams may be produced using trace analysis techniques [25]. Deriving partial (and
usually more abstract) representations of the software behavior would allow the right
amount of information to be conveyed to each stakeholder involved in the system. Fi-
nally, we also foresee the potential application of domain-specific languages for behavio-
ral analysis, highlighting aspects which are not straightforward to represent in pure UML
models. To this intent, more generic (in the sense of metamodel-independent) model view
approaches that allow relating together models which conform to different metamodels

3.6. CONCLUSION 79

could be reused (cf. next Chapter 4).

3.6 Conclusion

The number of software systems to be maintained, extended or generally evolved
has grown considerably during the last decades and will continue to do so. In order
to deal with all this legacy software, both economically and technologically speaking,
reliable (semi-)automated reverse engineering solutions must be provided. To reach this
objective, integrating MDE techniques in reverse engineering solutions shows promising
and innovative results.

In this Chapter, we have presented a generic and extensible MDRE conceptual ap-
proach and an implementing framework named MoDisco. They intended to facilitate the
elaboration of MDRE solutions actually deployable within industrial scenarios. The pro-
vided description includes the overall underlying approach, architecture, available com-
ponents and the detail of its two main reverse engineering phases, namely Model Dis-
covery and Model Understanding. Real applications of our approach and the MoDisco
framework on concrete industrial use cases have also been presented as well as perfor-
mance benchmark results. We have also introduced the fREX component resulting from
initial further research work. Its goal is to target the reverse engineering of system execu-
table behaviors, complementary to the reverse engineering support for system structural
aspects as already provided by MoDisco.

On one hand, MoDisco as a project has developed significantly since its creation.
Thanks notably to the active support of Mia-Software (Sodifrance) [190], it has grown
from a research initiative to an industrialized project having a user base and regular stable
releases. The project is continuously open to requests, enhancements or new contribu-
tions either by using the Eclipse infrastructure tools such as the forum, Bugzilla, etc. or
by directly contacting the project team. But getting external people or new partners to
actually join in such an open source project, with the long-term involvement that this
implies (e.g. maintenance or release engineering tasks during several years), is not so-
mething easy as we see later in Section 5.3. As a consequence, and despite our efforts,
we have observed a progressive diminution of the activity around the project since some
years (e.g. in terms of number of posts on the forum or of bug submissions).

On the other hand, the conceptual approach and MoDisco framework as such has been
successfully deployed or reused in different industrial MDRE scenarios (cf. Section 3.4
for some concrete examples). It has shown in practice its capabilities in terms of adap-
tability/portability and no loss of required information. However, we continued testing
the extensibility and improving the coverage of the framework by applying it on other
technologies. Some preliminary experiments around the migration of C#/.NET systems
have been performed within the context of the ARTIST FP7-ICT European project fo-
cusing on software migration to the Cloud [30, 143] (cf. Section 5.2.1). Finally, some
MoDisco components are being progressively externalized to facilitate their reuse in ot-
her projects (which are not necessarily dealing with reverse engineering). A remarkable
example of this has been the creation of the Eclipse EMF Facet project [67] as a spin-off
from MoDisco.

4
Model Federation and Comprehension

As described before in Chapter 3, when reverse engineering software systems, models
that conform to different modeling languages (i.e. metamodels) are used by engineers and
architects to describe the concerned system from various perspectives. This often leads to
scattering of information across (possibly many) heterogeneous models, and to overlap-
pings/redundancies that can create inconsistencies in the system description [87]. Thus,
engineers may have difficulties to comprehend efficiently the complete system description
by looking at all these models (and their relationships) in full detail.

This is even a major concern when dealing with systems of systems or CPS [55],
e.g. especially in an industrial context where multi-disciplinary engineering takes pla-
ce [85]. In such cases, models actually need to cover hardware infrastructure (i.e. physical
entities such as energy grids, networks, production plants or IoT devices), deployment,
usage scenarios as well as non/functional properties of the system (e.g. performance, reli-
ability, maintainability). All these elements are also important from a general migration/-
modernization perspective (cf. Section 1.2). The different involved models have strong
dependencies and interconnections to the software models we are familiar with. They
are generally combined altogether in order to better monitor and analyze these systems,
e.g. at design time and/or runtime.

View-based approaches in software engineering have been proposed and used to tackle
these issues [87]. Initially, they mostly followed a strategy of proposing a fixed set of
predefined viewpoints to be used in different application domains or scenarios. This hap-
pens for instance with most architectural frameworks such as Zachman [219] or RM-
ODP [136], each viewpoint targeting particular perspectives of the system to be conside-
red. It offers several advantages such as improved comprehension or a more integrated
and user-friendly tool support. However, these approaches generally lack the flexibility
required in many scenarios. This is notably the case when the useful model views go
beyond a limited set of viewpoints and may change over time.

Recent advances in MDE/Modeling have fostered the possibility of having more flex-

81

82 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

ible view-based approaches, based on metamodeling and model transformation techni-
ques notably (cf. Section 2.1.2). The notion of ad hoc views computed via queries has
been studied intensively in past decades. While the metaphor helps engineers to get the
meaning of these concepts, similar problems such as (incremental) view updates arise.
These model view approaches usually allow creating custom (semi-)automatically gene-
rated views over possibly heterogeneous models. Such a capability can help reducing
accidental complexity in any software- and system-based processes.

There are many real-world use cases in which the direct support for such model views
can be required. In addition, there are also a lot of scenarios in which the use of mo-
del views can be beneficial as part of a larger model-based solution to a given complex
problem. From our own practical experiences within various collaborative industrial pro-
jects in the past years, we have already observed relevant applications in areas such as
(meta-)model federation/integration [33], reverse engineering [143] or language mainte-
nance and evolution [31]. However, each scenario requires a different trade-off in terms
of model view capabilities. For instance, a good expressivity of the view definition and an
efficient data synchronization support are fundamental to model federation or language
evolution cases. In the context of reverse engineering, scalability in the computation
appears to be important due to the potential handling of very large models.

In this chapter we present EMF Views (and our general survey on model view appro-
aches), as the second main contribution of this thesis (cf. Section 1.4), that is both:

1. A generic, extensible and global model view approach to facilitate the building
and handling of model-based views in various contexts.

2. A ready-to-use framework, implementing this approach as an Eclipse tooling on
top of the Eclipse/EMF environment.

The rest of this chapter is structured as follows. Section 4.1 provides our extended
survey detailing the current state-of-the-art and main challenges related to model view
approaches in general. Section 4.2 describes the proposed conceptual approach, relying
notably on a model virtualization backend and two DSLs for expressing viewpoints and
views in different contexts. Section 4.3 presents the EMF Views technical framework im-
plementing this approach and languages, i.e. its overall architecture and different provided
features. Section 4.4 explains how we evaluated the approach and related Eclipse/EMF-
based framework, via both concrete use cases and performance benchmarks. Section
4.5 concludes this chapter by summarizing the main realizations as well as their current
limitations.

4.1 State of the Art and Challenges

Given the number of existing approaches, most of them only providing partial solu-
tions, it is quite difficult to know how each approach compares to the others. From such
scattered information, it is also complicated to identify which one(s) may be better sui-
ted for given needs, e.g. in a reverse engineering context as presented in Chapter 3. In
this section, we contribute a detailed study of the state-of-the-art that intends to provide
orientation in this area. Thus, in what follows, we start by giving some general definition
related to model view approaches (in Section 4.1.1). We also describe what we believe to
be the main characteristics of model view approaches, via a dedicated feature model we

4.1. STATE OF THE ART AND CHALLENGES 83

propose (in Section 4.1.2). Then, we evaluate a selected set of relevant approaches accor-
ding to this feature model (in Section 4.1.3). Note that the complete methodology used in
order to perform this selection is available from our original journal publication [27]. We
end this section by presenting some important challenges regarding model view approa-
ches, and Model Federation and Comprehension in general (in Section 4.1.4).

4.1.1 General Definitions

In the MDE/Modeling domain, the terms view, viewpoint or viewtype have been used
in several different ways. From the very early viewpoint approaches [214, 87] up to the
ISO standard 42010 [113], various definitions for these terms have been given. In this
thesis, we have decided to consider the definitions summarized in the next paragraph as
particularly relevant in our MDE/Modeling context [100].

A view is usually a special kind of model. A view contains information that is related
to and coming from other models, which can also be themselves other views. A view is
always a view on something. Thus, in an engineering context, the set of physical and/or
logical entities that a view represents is called a system. Such a system can be observed
from different viewpoints, each of them providing different perspectives over it. The
relation between views and other models is specified by various means such as (model)
transformations, rules, queries, or other formalisms. As any model, a view conforms to
a metamodel which is usually called viewtype. This viewtype can be defined a-priori,
or can be sometimes deduced from the specification of the view itself. This is however
not the case in general, as viewpoint/viewtype and view specifications are usually clearly
separated. Such a situation can be practically observed in many of the approaches that we
present later in this section.

Figure 4.1 – A terminology for model view approaches.

We propose some general definitions for the most frequently encountered terms while
searching for and studying solutions for views/viewpoints on models. These main terms
are graphically summarized in Figure 4.1 and textually explained in the following:

— A system is a unit consisting of multiple interdependent components, which are
designed and implemented by engineers. A system encompasses software, har-
dware, requirements, as well as all other artifacts created during its development
process.

— A viewpoint is the description of a combination, partitioning and/or restriction
of concerns from which systems can be observed. In our modeling context, it
consists of a set of concepts coming from one or more metamodels, eventually
complemented with some new interconnections between them and newly added
features (cf. viewtype definition).

84 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

— A viewtype is a metamodel that describes the types of elements that can appear
in a view, i.e. the formalism/language actually used. An element in a viewtype
may be part of one of the base metamodels, or may be specifically defined for
the viewtype. A given viewtype can be relevant for several viewpoints, and a
viewpoint usually defines several viewtypes.

— A view is a representation of a specific system from the perspective of a given
viewpoint. In our modeling context, it is an instance of a particular viewtype and
consists of a set of elements coming from one or more base models. It is eventually
complemented with some new interconnections between them and additional data,
that are manually entered and/or computed automatically (usually via one or more
model transformations).

— A base metamodel is a metamodel that contributed to a given viewtype definition.
Depending on the approaches, a viewtype specification can possibly have one or
several different base metamodels.

— A base model is a model that contributes to a given view. Depending on approa-
ches and on the corresponding defined viewpoint (and related viewtypes), a view
can possibly gather elements coming from one or more base models.

4.1.2 Characterization of Model View Approaches

Based on our own experiences working on/with model views in the past years, and
on a deep study of the related state-of-the-art (cf. our original journal publication [27] for
more details on the used methodology), we propose a feature model describing what we
consider to be the main characteristics of a model view mechanism. This feature model
is depicted in Figure 4.2 and will be used in Section 4.1.3 to better describe and compare
the model view approaches we have identified and selected. Note that the symbols (#, @,
*, etc.) used in the top diagram from this figure, at the right of some proposed features,
are meant to point to the corresponding bottom sub-diagrams that detail further these
features.

We have identified three main categories of features that model view mechanisms
can potentially cover. The first one gathers capabilities which concern the general type
structure of the mechanism. The two others distinguish between design time and runtime
aspects of the view/viewtype specification, computation and handling. We describe each
one of these categories and the sub-features they contain in the following subsections.

Type Structure

— Metamodel/Model Arity: A fundamental aspect of a model view mechanism
is its arity at both metamodel/ and model-level. Some mechanisms allow spe-
cifying viewpoints/viewtypes over a single metamodel only, while others allow
combining several metamodels together in a same viewpoint/viewtype specifica-
tion. Similarly, depending on the considered mechanism, corresponding views can
be computed over a single model and/or combining several distinct ones. In the
latter case, the involved models can potentially conform to different metamodels
(as used in the related viewpoint/viewtype specification).

— Closedness: In addition to arity, we can differentiate two main families of me-
chanisms regarding their closedness. The first one limits the definition of views as

4.1. STATE OF THE ART AND CHALLENGES 85

Figure 4.2 – A feature model for model view approaches.

86 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

subsets of the base model(s). The second one allows for views in which the con-
tent coming from the base model(s) can be augmented, e.g. with newly computed
or manually entered data. Thus, the closedness is also related to the operations
supported by the used viewtype and query languages (cf. the corresponding des-
criptions of these features). For instance a viewtype language can provide (or not)
add operations, and a query language can come with some aggregate functions.

Design Time Features

As far as design time is concerned, we explicitly distinguish between two main kinds
of languages (though they quite frequently appear mixed together in practice). The first
kind of language is used to specify the viewpoints and build corresponding viewtypes,
i.e. , to specify the metamodel for a new viewtype. We call it the View Type Language.
The second kind of language is used for corresponding computation at view-level, i.e. to
populate the view with the expected data. We call it the Query Language. We describe
the properties of these language kinds in the following.

— Viewtype Language: It has an abstract syntax that can be either based on an
already existing standard and/or general-purpose modeling language (e.g. , UML),
or be implemented as a domain-specific modeling language (e.g. addressing more
particularly a given set of concepts). As usual, its concrete syntax can be textual,
graphical or eventually a mix of both. As said before, the viewtype definition itself
can be directly connected to the used Query Language (cf. the explanation of this
particular feature) or somehow independent from it.
Any given viewtype language globally follows a particular paradigm for expres-
sing viewpoints: definitions can be made either extensionally or intensionally (and
explicitly or implicitly in the latter case). A definition is considered extensional
when the actual element types to be part of the corresponding view are listed
exhaustively. On the contrary, it is intensional when it rather provides the pro-
perties/conditions needed for inferring the corresponding view (elements). When
the viewtype definition is intensional and explicit, it typically uses a combination
of core add/modify/filter operations to be applied on the base metamodels. In
the case of an intensional and implicit definition, some underlying operations or
conditions can be applied by default/systematically.

— Query Language: This same extensional vs. intentional distinction also applies
to the Query Language. Indeed, queries can be defined (extensionally) by provi-
ding a fixed set of expected values or elements. They can also use (intentionally)
more complex expressions, explicitly stated or implicitly called, implying further
computations in order to retrieve the targeted elements.
In addition to that, and similarly to the viewtype language, a given query language
can be based on a standard query language or equivalent (e.g. Structured Query
Language (SQL) or OCL) or be a domain-specific query language targeting a par-
ticular domain or range of applications. The main capabilities of a given query
language are provided by the operations it actually supports. Differently from the
viewtype language, its operations focus on how the model-level data is selected
and manipulated to be integrated into the resulting view (in a way that conform
to the viewtype definition). Therefore, a first set of operations consists in redu-
cing the scope of the original metamodel(s) by selecting and/or projecting only

4.1. STATE OF THE ART AND CHALLENGES 87

some of the model elements in the produced view. A second set of operations is
about complementing the view data by adding extra-information that can be deri-
ved from corresponding model elements (by join or aggregation) and/or manually
added by a user (rename).

— Static Checks: Finally, different kinds of static checks can be performed at de-
sign time on the specified viewtypes and related queries. In some cases, they may
concern the application of a given viewtype specification on the concerned base
metamodel(s). In others, the pre-execution or parsing of the corresponding defi-
ned queries may be of interest. Two key properties of viewtypes arise here: (i)
applicability (will the view computation ever return a non-empty set?) and (ii)
executability (will the resulting view be ever consistent with the possible con-
straints defined at the viewtype-level?).

Runtime Features

From a runtime perspective, there are also different interesting aspects to consider for
a model view mechanism. We describe them in the following.

— Runtime Consistency: There are several important consistency features to be
considered when views are actually computed and handled. On one hand, syn-
chronization can be supported in two main directions: from the model(s) to the
view and from the view to the model(s). On the other hand, consistency verifica-
tion can be more or less automated, following check or enforce strategies notably.
The way the recomputation is performed can also vary. It can be made incremen-
tally by updating only the concerned elements in the view, e.g. putting the full
content of the view in this case.
The point in time when the recomputation is performed is described by the Fre-
quency feature. Immediate recomputation means that the synchronization is trig-
gered directly after each change to a view (or to one of its base models). Deferred
computation means that synchronization is performed at defined points in time,
but can span several editing steps.

— View/Viewtype Manifestation: There are two manifestation dimensions to be
possibly taken into account: a given mechanism can provide support at viewtype-
level (i.e. metamodel-level), at view-level (i.e. model-level), or at both levels
of course. In all cases, the results can be actually realized differently. They
can be concretely materialized, e.g. with the creation/duplication of actually new
(meta)model elements, or virtual in the sense of only relying on proxies to already
existing (meta)model elements. The used type of manifestation can have a direct
impact on the the way the viewpoints/viewtypes and views are computed (cf. the
description of the Runtime Consistency feature). For instance, synchronization
can be made easier when using a virtualization approach instead of a duplication-
based approach.

— Intrusiveness: Finally, a model view mechanism can also have different intru-
siveness strategies, depending on whether or not it actually allows the alteration
of the concerned base metamodels and models. Indeed some approaches do not
modify the original (meta)models that can thus continue to have their own living,
while some others do and directly impact the actual (meta)models content.

88 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

C
ic

ch
et

ti

E
M

F
Fa

ce
t

E
M

F
Pr

ofi
le

s

E
M

F
V

ie
w

s

E
ps

ilo
n

M
er

ge

E
ps

ilo
n

D
ec

or
at

io
n

Fa
ca

de
M

et
am

od
el

K
ita

lp
ha

M
od

el
Jo

in

O
pe

nF
le

xo

O
SM

Si
ri

us

T
G

G
m

v

T
G

G
vv

V
IA

T
R

A
V

ie
w

er
s

V
U

M
L

Type Structure
Model Arity Single Model 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Multiple Models 3 3 3 3 3 3 3 3
MM Arity Single MM 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Multiple MMs 3 3 3 3 3 3 3
Closedness Subsetting 3 3 3 3 3 3 3 3 3 3 3 3

Augmenting 3 3 3 3 3 3 3 3 3 3 3

Design Time Features ∅
Query Language QL Operations Selecting 3 3 3 3 3 3 3 3 3 3 3

Projecting 3 3 3 3 3 3 3 3 3 3 3
Joining 3 3 3 3 3 3 3 3 3 3
Rename 3 3 3 3 3 3 3 3 3 3
Aggregation 3 3 3 3 3 3 3 3 3 3

QL Paradigm Extensional 3 3
Intensional Implicit 3

Explicit 3 3 3 3 3 3 3 3 3 3 3
QL Definition Abs. Syntax Standard 3 3 3

DSL 3 3 3 3 3 3 3 3 3 3
Con. Syntax Textual 3 3 3 3 3 3 3 3 3

Graphical w 3 3 3
VT Language VTL Operations Add 3 3 3 3 3 3 3 3 3

Modify 3 3 3 3
Filter 3 3 3 3

VTL Paradigm Extensional 3 3 3 3 3 3 3 3 3 3 3 3 3
Intensional Implicit

Explicit 3 3
VTL Definition Abs. Syntax Standard 3 3 3 3 3 3

DSL 3 3 3 3 3 3 3 3 3
Con. Syntax Textual 3 3 3 3 3 3

Graphical w 3 3 3 3 3 3 3 3 3
Static Checks Application 3 3 3 3 3

Execution 3 3 3 3 3 3 3 3 3 3 3

Runtime Features
Consistency Direction Model→View 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

View→Model 3 3 3 3 3 3 3 3 3 3 3 3 3
Automation Check 3 3 3 3

Enforce 3 3 3 3 3 3 3 3 3 3 3 3 3
Recomputation Batch 3 3 3 3 3 3 3 3 3

Incremental 3 3 3 3 3 3 3 3
Frequency Immediate 3 3 3 3 3 3 3 3 3 3 3 3

Deferred 3 3 3 3
VT Manifest. Materialized 3 ∅ 3 ∅ 3 3 3 3 3 3 3 3 3

Virtual 3 ∅ 3 ∅ 3
View Manifest. Materialized 3 3 3 3 3 3 3 3 3

Virtual 3 3 3 3 3 3 3
Intrusiveness Intrusive 3 3 3

Non-Intrusive 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 4.1 – A comparison of existing model view approaches (3=feature
supported,∅=not applicable,w=Wizard).

4.1.3 Description of Model View Approaches

Applying the methodology detailed in the original journal publication [27], we se-
lected a number of model view approaches which are particularly relevant in the context
of our study. They are used as our basis for presenting the current state-of-the-art in this
area. We describe each one of these approaches and summarize their main characteristics
in what follows. To realize this, we notably relied on the terminology and feature model
we introduced in earlier in this manuscript. Table 4.1 summarizes the overall results of
our detailed study.

Cicchetti. This hybrid multi-view modeling approach [44] can be used to create sub-
metamodels of existing Ecore metamodels and use them as customized view types. It is
a hybrid approach in the sense that it uses the base models for the synchronization of the
views (i.e. a projective approach [113]) and offers the creation of stand-alone models as
views (i.e. a synthetic approach [113]).

The sub-metamodels, which are to be used as view types, are defined using a wizard

4.1. STATE OF THE ART AND CHALLENGES 89

in the Eclipse development platform. These view types have to be consistent with the
base metamodel in such a way that instances of the view types, i.e. the views, are also
valid instances of the original metamodel. Thus, the approach is strictly closed. Synchro-
nization mechanisms for maintaining consistency among the views are then generated
automatically using a combination of Eclipse-based technologies. The mechanisms are
based on model differencing. A difference metamodel is created automatically from the
base metamodel and the viewtype metamodel. From these difference metamodels, model
transformations are generated that synchronize the views with the models. Finally, an
Eclipse plug-in is generated automatically, which provides an editor for the creation and
manipulation of the views.

EMF Facet. EMF Facet [67] is an open source Eclipse/EMF-based tool, initially de-
veloped in the context of MoDisco (cf. Chapter 3.3) and then externalized. It provides
a generic lightweight extension mechanism for existing EMF models. In particular, it
allows to define so-called facets on given metamodels (i.e. Ecore models) in order to
complement them with new computed types (concepts), attributes and references (pro-
perties). Modification and filtering of existing elements are not possible in the current
version. The definition of a facet is stored in a specific and separate Facet model. If
available for a given metamodel, a facet can then be applied on its corresponding models
(e.g. within a model browser) in order to dynamically extend them at runtime. A facet can
thus be seen as a view type that is specified over a single metamodel with the objective to
extend it with newly computed information. When applied to given models, it allows to
obtain corresponding views on them (i.e. extended models).

A core aspect of the approach is that it relies on a query abstraction framework that
gives the possibility to plug any type of query (e.g. Java, OCL) to the facet so that the
newly added elements can be computed automatically. In addition, another specificity of
the approach is that everything is performed at runtime, meaning that the extended model
(i.e. a view) is dynamically computed when the facet is applied on. The original model
is not modified and the elements added in the view are only stored virtually in memory
until the facet is unloaded or the model is closed.

EMF Profiles. EMF Profiles [132] is an approach and corresponding Eclipse/EMF-
based prototype that provides another generic lightweight extension mechanism for EMF
models. Directly inspired from what is already widely used in the UML world, it basi-
cally generalizes the concept of profiles to be used with all possible (meta)models. Thus,
instead of allowing to extend only the UML metamodel, profiles can be defined on top
of any Ecore model (i.e. any metamodel) and then applied on any corresponding instance
(i.e. any corresponding model). A profile specifies a set of named stereotypes applicable
only to selected types of elements and that come with their own additional properties.
A profile can thus be seen as a viewpoint that is specified over a single metamodel with
the objective to extend it with annotations on existing elements. When applied to given
models, it allows to obtain corresponding views on them (i.e. extended models).

A core aspect of the approach is that it is intended to be used in a semi-automatic
manner: a profile application is not computed automatically by default, instead the user
triggers the application of stereotypes and many times the additional information stored
in the view is added directly by the user. A given profile application is persisted as a

90 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

separate model in addition to the base model (in contrast to UML profiles). Thus, it can
also be potentially computed by a model transformation if required and/or relevant in
particular cases. Another interesting aspect of the approach is its capacity to define meta-
profiles, i.e. profiles that are defined at meta-metamodel level. Thus, they are applicable
on all models (independently from the metamodel they conform to) and allow to represent
viewpoints which are directly reusable for different modeling languages.

EMF Views. EMF Views [33, 31] is an approach and corresponding Eclipse/EMF-
based prototype that provides capabilities for specifying and obtaining views on top of
models which potentially conform to different metamodels (cf Sections 4.2 and 4.3 for
more details on this other main contribution from this manuscript).

Epsilon Merge. There is a first Epsilon-based approach [126] which provides a hybrid
rule-based language (i.e. declarative rules with imperative bodies) for combining both
homogeneous and heterogeneous models. As a merging approach, it allows to produce a
new (merged) model out of several original models. Such a merged model can be consi-
dered as a view gathering elements coming from several different models, the merge spe-
cification in the Epsilon Merging Language (EML) thus acting as the viewpoint definition
(of the merged metamodel) in this case. The overall merge process and its four consecu-
tive steps (comparison, conformance checking, merging, reconciliation/restructuring) are
actually realized thanks to the combined used of several Epsilon languages (respectively
the Epsilon Comparison Language (ECL), Epsilon Validation Language (EVL) and EML
for the last two steps).

A core aspect of this approach according to our present study is that it is merge-based.
Thus, it covers only partially the set of capabilities generally expected when dealing with
model views. For instance, basic synchronization between the original models and the
generated merged model (i.e. the view) is not provided by default (even if some support
can be implemented based on the merge trace model produced during the merge process).

Epsilon Decoration. There is a second Epsilon-based approach [128] that introduces
a model decoration support enabling the annotation of models with additional informa-
tion that is not necessarily supported by existing metamodel(s). A decorated model can be
considered as a view on the original model complemented with some new manually added
information. In the proposed solution, which differs from most other approaches, there
is no explicit viewpoint definition and decorations are simply represented in a generic
way, namely as tag/value pairs. Interestingly, the approach also proposes a bi-directional
support for covering both automated decoration extraction from a previously annotated
model (via its diagram) and decoration injection (or application) to a non-annotated mo-
del. This model decoration approach is implemented on top of the Epsilon framework,
notably by reusing its Epsilon Model Connectivity (EMC) layer. The idea of having such
a layer providing generic model loading, storing, querying and updating capabilities has
been be directly inspired by existing relational database connectivity layers.

A core aspect of the approach is that it has the following two main characteristics: (i)
non-intrusive as the original model is not modified and decorations are stored in a sepa-
rate decorator model, and (ii) transparent from a usage perspective as decorations can be

4.1. STATE OF THE ART AND CHALLENGES 91

handled manually and programmatically as if they were parts of the original model. Ho-
wever, the trade-off is that specific decoration injection and/or extraction transformations
have to be specified for each decoration alternative (i.e. expressing a particular viewpoint).

FacadeMetamodel. The FacadeMetamodel [152] benefits from the realization that most
DSLs are often just subsets of UML itself. It presents an approach to build new modeling
languages by generating a kind of facade that looks like a pure DSL to the modeler.
However, it actually uses UML in the back thus allowing full reuse of the UML infra-
structure.

Given the extensibility and ease of use of this approach, the FacadeMetamodel may
be used to build views on top of UML models by aliasing (renaming), refining, pruning
and extending (using the UML profile mechanism) the UML language. The approach
takes this customization model and generates an Ecore metamodel representing the new
language/viewtype that can then be used to generate a custom user interface (e.g. in Pa-
pyrus [72]).

The new language appears as a complete pure DSL to end-users. Therefore, all mo-
deling tools can use it transparently and it is automatically populated from the base UML
models. Updates on the DSL level are propagated back to UML and stored as normal
UML models. Updating those same models with standard UML tools is not recommen-
ded due to the possibility of inconsistent modifications.

Kitalpha. In the context of the PolarSys project [73], Kitalpha [78] is proposed as a
framework to define model views inspired from the use of viewpoints in architectural
modeling. Thus, the notion of view is very general in Kitalpha and covers the following
points: abstract syntax, notations (such as icons), concrete syntax (textual and graphical),
rules (e.g. check, transformation), services and tools. Furthermore, Kitalpha focuses also
on reusing views by providing inheritance and aggregation for viewpoints.

A textual domain-specific language is provided to define these general building blocks
of a viewpoint in Kitalpha. In addition, dedicated DSLs are provided to define the inter-
nals of the different building blocks. For instance, a language for defining the abstract
syntax of viewpoints is available. With this language, metaclasses from base metamo-
dels may be extended with more specific classes, new classes may be introduced, and
additional references may be added as well.

ModelJoin. ModelJoin [34] is a DSL and tool for the creation of views on heteroge-
neous models (i.e. models that are instances of different metamodels). ModelJoin is a
declarative language with a human-readable textual concrete syntax that bears similari-
ties to that of SQL. The language is used to describe the desired properties of a view. It
abstracts from the technical details of how views are created.

In relational databases, the table schema of the result of a query is dependent on the
columns chosen by the projection operators. Transferred to modeling, this means that
such a query not only defines the elements in a view, but also the kinds of elements which
can be in a view, i.e. the metamodel of a view (or view type, cf. Section 4.1.1). Thus,
the implementation of ModelJoin generates both a target metamodel and transformations
that create target models from the input (base) models.

92 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

ModelJoin has been extended to support editability inside the views. For this pur-
pose, OCL constraints that limit view editability are generated together with the views.
These constraints define the possible edit operations for which the resulting views can be
translated back to a valid base model. If no such translation is possible, the view may be
adapted automatically with an automatic fix so that the resulting view is translatable. The
prototypical implementation is based on Eclipse technologies such as Xtext/Xtend [77],
and uses QVT-O [161] as the target language into which the transformations for the syn-
chronization between base models and view are generated.

OpenFlexo. OpenFlexo [101] is a generic solution allowing to assemble and relate,
without duplication, data coming from various kinds of data sources. Its main goal is to
support the federation of data from heterogeneous technical spaces (EMF, XML, Web
Ontology Language (OWL), Microsoft Excel, etc.) into the same conceptual space rea-
lized as a kind of virtual view. It comes with several components, including notably the
Viewpoint Modeler and ViewEditor. The former is for specifying viewpoints that indicate
how to mix together the different types of data. The latter intends to provide regular view
visualization and editing capabilities, depending on previously specified viewpoints. To
integrate these components, the solution also comes with an underlying model federation
framework. This allows for homogeneous handling of data as models.

A core aspect of the approach is that it also provides the ability to define synchronized
views on models, e.g. stored as EMF models. As soon as a virtual view is computed
(from potentially multiple different models), the view is connected with the different
base models. The other way round, there is a mechanism for indirectly connecting the
different base models to the view. For instance, this allows propagating changes from one
base model to other base model(s) via the common view. Furthermore, changes on the
view elements can be propagated back to the corresponding base models.

OSM. The Orthographic Software Modeling (OSM) approach [10] aims at establishing
views as first-class entities of the software engineering process. In the envisioned view-
centric development process, all information about a system is represented in a Single
Underlying Model (SUM). Even source code is treated as a special textual view. The
OSM concept is based on three main principles: dynamic view generation, dimension-
based view navigation, and view-oriented methods.

User-specific custom views are generated dynamically based on transformations from
and to the SUM. These views are organized in independent (orthogonal) dimensions.
Technically, a view is a model of its own, which also has a metamodel. Model-to-model
transformations allow to create the views dynamically from the SUM. However, this re-
quires that bi-directional transformations exist for every view type. Such transformations
can provide the synchronization of the views with the SUM. In addition, edit operations
can be propagated back to the SUM likewise. The complexity of a hub-and-spoke ar-
chitecture like OSM is linear in terms of the number of transformations that have to be
written and maintained. This notably contrasts with the quadratic number of transforma-
tions in a peer-to-peer synchronization scenario for views.

OSM also encompasses a development process with a developer role, who uses the ge-
nerated views, and a role called methodologist, who creates the different view types along
the orthogonal dimensions. A prototypical implementation of the OSM approach based

4.1. STATE OF THE ART AND CHALLENGES 93

on KobrA has been developed [7]. It relies on UML and OCL, and offers the dimensi-
ons abstraction (defined by notions of model-driven development), variability (defined by
notions of product line engineering), compositionality (defined by notions of component-
based development), encapsulation (e.g., public/private) and projection (structural/opera-
tional/behavioral).

Sirius. As mentioned in Chapter 2.3, Sirius [74] is an open source Eclipse/EMF based
tool that is intended to facilitate and speed up the construction of industrial graphical
modeling solutions. Considering the domain metamodels which are key assets inside
companies, and thus, cannot be changed or modified easily, it allows to specify different
concrete representations on top of them expressing different viewpoints (for different
stakeholders). Within Sirius, a given Viewpoint Specification Model (VSM) defines a
set of logically organized representations which are graphical constructions to represent
the actual data (i.e. the original model). Such representations can be diagrams, tables,
matrices or trees. A viewpoint specification also describes how the different elements
from the original metamodel(s) should be actually mapped to the various representations.
These mappings can go from basic ones (e.g., one concept/one box in a diagram) to
complex ones (resulting from complex query computations, e.g. defined in the Acceleo
Query Language (AQL)). Thus, applying such a viewpoint, different graphical views on
the same model(s) can be provided to different types of users/stakeholders.

A core aspect of the approach is the clear separation between the metamodel that is
conceptual and the viewpoint that is considered as a purely representation asset (mostly
in the sense of graphical representation). Another aspect is that the provided views can be
made completely editable if needed, the required editing capabilities being also specified
within the Viewpoint Specification Model. In this respect, Obeo Designer Team (as a
commercial extension of Sirius) comes with more powerful additional features dealing
with collaborative editing of such views and the management of related conflicts.

TGG-based approaches. Triple Graph Grammars (TGGs) [183] have been proposed
as a means of specifying a consistency relation between two graph languages. TGGs
are a well-studied formalism to define bi-directional transformations including not only
the back and forth translation of models, but also the comparison of models and their
synchronization. Thus, they are also applicable as a base mechanism to solve model view
problems. In particular, two TGGs-based approaches have been presented in the past
for defining views. Both TGGvv (virtualized view) and TGGmv (materialized view) are
supported by the EMF-based, bootstrapped eMoflon model synchronization tool [134].
In the following, we summarize both approaches.

A first approach of using TGGs for model views (TGGvv) has already been propo-
sed [114]. In this approach, the base metamodel is aligned with the viewtype by defining
a correspondence model between them. Based on these three models, models conforming
to the base metamodel can be filtered to yield virtual views conforming to the viewtype.
The advantage of this approach is that the views are virtual in the sense that elements of
the base model are simply interpreted as elements of a view. This simplifies synchroni-
zation tasks in many cases. The approach, however, requires non-trivial changes to the
base metamodels and has not been fully formalized for complex metamodels or multiple
views on the same base metamodel.

94 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

TGGvv has been complemented by a recent TGGs-based approach for materialized
views (TGGmv) [5]. It notably allows for separate view models without requiring any
changes to the base metamodels. This approach provides a formalization of View TGGs,
as a restriction of existing TGGs theory to the special asymmetric case of view specifi-
cation (as TGGs are symmetric in general). It shows that the chosen restrictions can be
suitably exploited to enable highly efficient view synchronization.

VIATRA Viewers. The VIATRA Viewers [75] approach emerged from EMF IncQue-
ry [200], a framework for performing incremental model querying based on the RETE
algorithm. The main advantage of EMF IncQuery, compared to many other model query
approaches, is that queries do not have to be entirely evaluated in case model changes
happen (but only queries which are actually concerned by the changes). Of course, this
capability plays also an important role for model view approaches. Thus, EMF IncQuery
can be extended for dealing with model views [52]. In particular, the EMF IncQuery
language is extended by so-called derivation rules which are defined with annotations to
EMF IncQuery query patterns. Via the annotation of derivation rules, the viewtypes are
defined and the query patterns are used to populate the views by simply reusing the EMF
IncQuery support.

In addition to the views, trace models are computed between the views and the base
models. These trace models are used to reason about changes of query pattern matches
which allows to build synchronization support. In particular, if changes to the base mo-
dels are performed, the query pattern matches are changed. This stimulates incremental
updates in the view models. In recent work, the propagation of view change to the base
models is also considered [185]. Finally, it has to be mentioned that VIATRA Viewers
allows to build chain views, i.e. to build views on views.

VUML. VUML [148] is a UML profile that supports view-based modeling for the UML
family of modeling languages. The proposed methodology includes the definition of ac-
tors, which all possess a unique viewpoint, and a design process that supports the actor
concept. The design process is aligned with the OMG MDA approach [158]. The vie-
wpoint models which are tied to these viewpoints are UML class diagrams. They are
composed into a VUML system model. The composition algorithms have been imple-
mented in a composition metamodel and transformations in ATL [116].

The application of a viewpoint on a specific system is called a view. VUML provides
the concept of Multiviews Components, which consist of both default base views (that
can be used by all actors) and actor-specific views (that are connected to the base view
via an extension relation). The actor concept can be used to structure the views and
to implement access control. The semantics of VUML are described by a metamodel
and textual descriptions. The views of a MultiView Component can have dependencies
between each other, which are expressed with OCL constraints.

4.1.4 General Challenges for the Community

Several interesting findings can be made from the aggregated Table 4.1 resulting from
our previous evaluation of different model view solutions. There are some commonly

4.1. STATE OF THE ART AND CHALLENGES 95

shared aspects: for instance, all evaluated approaches require an explicit definition of
the viewtype, and do not offer the possibility of deriving it on the fly when computing
the view. Also, for each feature there is at least one approach covering it, showing the
variety of existing solutions. Still, most of these solutions focus on a reduced set of
features. Thus, we are still missing more general solutions that can be applicable in a
broad number of scenarios.

Moreover, from what we have been able to observe so far, there are currently not
many proofs that the existing solutions do scale up in the context of very large models.
This can be considered as an important issue in this model view area, as scalability is
a key element in related challenges such as view update or incremental maintenance for
instance (as further explained in the remaining of this section).

Table 4.1 presents some features that seem to be more challenging since very few ap-
proaches provide support for them. A typical missing feature is the verification support
for viewpoint/view definitions. Most approaches do not support designers in the speci-
fication of the viewpoints and underlying viewtypes. For instance, they do not alert the
users regarding the applicability or executability of these definitions to build actual views.
The few that somehow ensure these properties are doing it more as a side-effect, because
the underlying view mechanism itself is strict enough to prevent from some possible is-
sues. Moreover, graphical languages to express queries are rarely used, while they could
be useful to allow less technical users defining their own viewpoints/views (as tools like
graphical query builders for databases have proved to be). All these potential features
open doors for more interesting research in the future.

Beyond these mentioned features, we would like to highlight a few more research
challenges worth to be investigated in the coming years within our community. We plan
to address some of them in the context of our model view solution as presented in this
Chapter (cf. also Section 5.4.2 for more information on possible related future work).
Some of these challenges are actually well-known recurring problems in any technical
space where views are used in practice (e.g. in the database domain). Some others are
more specifically related to our modeling context and have been identified by studying
deeper the content of Table 4.1.

— Terminology inconsistencies. A different vocabulary is employed within the pa-
pers from the literature we studied for this review. For instance, there has been ap-
proaches defining model composition as the combination of two successive map-
pings into one [141]. In other cases [41], model composition refers to a specific
model integration scenario where models with running interacting features are as-
sembled. This also causes comparisons and building on top of existing approaches
to become more difficult. This is especially evident for papers targeting different
levels in the modeling stack (cf. Section 2.1.2). Even papers that use the same
type of techniques and share a similar conceptual goal may use a very different
terminology (e.g. DSL combination vs model merging). This makes them quite
often ignorant of each other.

— View updating problem. In the general case, fully updating a view is not always
possible [138]. This will notably depend on the kind of modifications applied, and
on the operators used to compute the view. Indeed, some combinations may not
result in a deterministic translation of the view update into a set of modifications
on the base model elements. As a simple example, imagine a model view that

96 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

displays the average value of a certain attribute from a given class. An update
of this average value does not have a single way to be propagated back to the
individual values from the base models: Should we proportionally increase all of
them? Or rather assign the whole increment to a single one? A pragmatic solution
would be to provide a uniform way to support several different model view update
strategies. For instance, a listener on the model view could capture the update
events and deals with them according to the instructions provided by the designer
(e.g. similarly to the concept of INSTEAD-OF triggers as available in SQL). As
we have observed, current solutions follow a more conservative approach where
they basically restrict the changes as soon as they become complex to handle.

— Incremental view maintenance. For those approaches where (some of) the mo-
del view elements are automatically computed, a major problem is to incremen-
tally update them after changes on the base models. As seen in Table 4.1, current
solutions typically ignore or provide very limited support to this feature. Always
completely recomputing the whole view may be too costly and/or trigger undesi-
rable side-effects in some cases. As introduced in the previous item, specific view
update strategies could be implemented to provide the needed incremental support
to deal with such scenarios. As a possible technical solution, they could rely on
incremental model transformation techniques [117].

— Concrete syntax generation. The (direct or indirect) definition of the abstract
syntax of the view type is a key element in most approaches. Nevertheless, most
of them do not offer explicit support to specify the concrete syntax part (as seen
from Table 4.1). To make model views more easily usable by end-users, we should
be able to display the view content graphically (and not just show it using default
tree-like browsers). In order to achieve this, we could generate a default concrete
syntax based on the concrete syntax(es) associated to the base metamodels/lan-
guages. We could also manually build one explicitly for a given viewtype. The
graphical-oriented approaches proposed by solutions such as Sirius or Kitalpha
are good examples to follow regarding these aspects.

— Security aspects. Views are typically used as a security mechanism to prevent
people from accessing data they are not authorized to see and/or modify. This
requires the availability of an access-control mechanism that enables designers
to give read/write permissions (on specific model views) to particular categories
of persons. Such a mechanism notably allows preventing them from accessing di-
rectly to the base models when not appropriate. As observed during our study, this
is in general a green area for the modeling community. However, it makes sense
to tackle related challenges once the specification of views/viewpoints on models
comes into play. For instance, many approaches provide profiles or DSLs to anno-
tate models with security characteristics of the system being modeled. Until now,
they do not allow assigning explicit permissions to the model access itself. This
could be possibly addressed by the use of model views in such contexts.

4.2 Proposed Conceptual Approach

This section presents the global model view approach we propose in order to support
the building and handling of views over different heterogeneous models. This approach
notably intends to potentially overcome some of the general challenges that have been

4.2. PROPOSED CONCEPTUAL APPROACH 97

identified in previous Section 4.1.4 (cf. what follows in this section, as well as Section
5.4.2 for more future work). Quite similarly to the process we followed in the context of
the first main contribution described in this manuscript (cf. Chapter 3), our objective is:

1. To identify the main steps and components commonly used in model view soluti-
ons.

2. To combine them coherently as a generic approach.

In what follows, we start by providing an overview of our approach in Section 4.2.1,
explaining both the viewpoint creation phase happening at Design Time and the view ini-
tialization phase occurring at Runtime. After that, we give in Section 4.2.2 more insights
on the core virtualization (weaving) metamodel our approach is based on. Then, we des-
cribe in Section 4.2.3 a couple of DSLs we defined on top of it in order to facilitate the
specification of model views in two different contexts. We also present in Section 4.2.4
how we propose to integrate existing model persistence solutions within our approach in
order to improve its overall scalability. Finally, we end by summarizing the main benefits
of our approach in Section 4.2.5.

4.2.1 Overall Approach

From our previous analysis of the state-of-the-art in the area (cf. Section 4.1), we
have been able to observe that there is no generic model view solution that can be easily
adapted to a broad number of scenarios (that could benefit from the use of model views).
This is particularly true when such scenarios may imply to consider many different sets
of possibly heterogeneous and (very) large models. To this sense, we believe an ideal
model view approach must provide the following characteristics:

— Genericity: the view mechanism should be applicable for all modeling languages
(i.e. metamodels and models), possibly combining several of them in a single
view.

— Expressivity: a user-friendly interface should be provided to support the view
specification, e.g. via a select-project-join-like syntax or DSLs relevant in the tar-
geted contexts.

— Non-intrusiveness: the view mechanism should be applicable without requiring
to change the modeling languages used in the already existing processes or archi-
tectures to be tooled.

— Interoperability: a view should be perceived and possibly (re)used as any regular
model, both from the user and tool perspectives.

— Modifiability: a view should be changeable as any regular model is (eventually
depending on corresponding access control policies already in place).

— Synchronization: changes in base models should be directly reflected in the
views, and vice versa (eventually according to some view update strategies to
be defined and/or just reused).

— Scalability: the view creation and manipulation time should be sufficiently limi-
ted (from a usability perspective), this should also be true for the corresponding
memory usage (from a technical resource perspective).

Intending to fulfill such characteristics (partially for some of them at the current state,
cf. Section 4.2.5), our approach targets the definition and building of views on any pos-
sible set of interrelated models that conform to potentially different metamodels. To this

98 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

end, we have been able to generally observe two main complementary phases in (model)
view solutions:

— Viewpoint Creation at Design Time: a specification is provided and allows to
obtain a corresponding viewpoint/viewtype (according to the nature of the appro-
ach).

— View Initialization at Runtime: the previously obtained viewpoint/viewtype is
used in order to (at least semi-)automatically compute a version of the view.

As a consequence, our generic approach quite naturally also relies on such a two-step
approach. However, unlike other approaches, we propose:

1. To explicitly separate the specification of viewpoints from the realization/handling
of corresponding views.

2. To apply a same building mechanism at both levels.
We decided to rely on the unification power of models and on the capabilities offered

by the related model-based techniques (cf. Chapter 2). Notably, in what follows we emp-
hasize on two particular kinds of models that are fundamental in our approach. These
also complement the general terminology already presented in Section 4.1.1:

— A virtual model is a model whose (virtual) elements are just proxies to actual
elements contained in other models. The same approach is also applicable at
metamodel-level, i.e. a virtual metamodel is a metamodel whose (virtual) ele-
ments are just proxies to actual elements contained in other metamodels.

— A weaving model is a model that describes links between and/or pointing to ele-
ments coming from other different models. It conforms to a weaving metamodel
that specifies the types of relation that can be represented at (weaving) model-
level. Such a weaving model can also be used at metamodel-level, i.e. it can
describe links between and/or pointing to elements coming from other different
metamodels.

Motivating Example

Figure 4.3 provides a basic illustration of viewpoint and view, considering two easy-
to-understand metamodels (named Book and Publication) as well as two corresponding
models that conform to them (respectively). We want to define a viewpoint relating to-
gether these two metamodels via a new bookChapters relationship from any Publication
(from the Publication metamodel) to associated Chapters (from the Book metamodel).
In addition, we also want to filter the nbPages property in these Chapters (still from the
Book metamodel). Using this viewpoint, we then want to obtain a view that combines
corresponding Book and Publication models accordingly. Thanks to such a view, from
any given Publication (e.g. ATL in Depth in our example) we can transparently access to
the related Chapters as if all these elements were actually coming from the same model,
and see only the authorized properties (e.g. title from Chapter in our example).

Overview of the Approach

In order to realize the previous simple example, a model view can be considered as
a set of proxy elements, which point to concrete elements from the base models refe-
renced in the view, plus some newly added relationships between them (and eventually

4.2. PROPOSED CONCEPTUAL APPROACH 99

conforms to conforms to

Viewpoint

View

conforms to

Figure 4.3 – A simple example of model viewpoint and view.

other new elements or filtered information). We base our solution on a model virtuali-
zation approach that is deployed similarly at both metamodel- and model-levels. Thus,
views are actually virtual models that act transparently as regular models via proxies to
these interrelated models, but do not duplicate any of the already available data. Each
view “conforms to” a particular viewpoint, which has been previously specified from one
or several corresponding metamodels (interconnected together) as a virtual metamodel.
Interestingly, the fact that both viewpoints and views are actually virtual (meta)models
behaving as normal (meta)models allows for easier viewpoint/view handling and reuse.
An overview of the proposed approach is shown on Figure 4.4.

At design time, designers may specify a new viewpoint by choosing the concerned
metamodel(s), listing the relations she/he wants to represent between them (as well as
indicating how to eventually compute them at view-level, see hereafter), and identifying
the concepts and properties to be selected. This required information is directly collected
from the designer/architect, either manually or using a DSL (cf. Section 4.2.1). This
input data is stored in a weaving model that is then used by the virtualization mechanism
to obtain the actual viewpoint. Therefore, the original metamodel(s) are not modified
or polluted by the viewpoint definition. This results in a virtual metamodel, represen-
ting the viewpoint, that aggregates several different metamodels according to the given
specification.

Similar to the select-project-join operations in relational algebra, the viewpoint defi-
nition mostly specifies what types/attributes from the contributing metamodels should be
part of (or, conversely, filtered out from) the view (projection), what conditions model
elements will need to satisfy in order to appear as a result in the view query (selection)
and how the elements from different models should be linked when computing the actual
view (join).

100 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

View Builder

(Virtualization)

Viewpoint Builder

(Virtualization)

 Model c
 Model b

Metamodel C

Runtime

Design time 1

2

Viewpoint

(Metamodel)

View

(Model)

Metamodel B

Metamodel A

Model a

Conforms to

Conforms to

Weaving

model

DSL file Designer

Weaving

model

User

Figure 4.4 – Overview of the Model View approach.

At runtime, once the viewpoint is specified, the user can work on querying and hand-
ling views that “conform to” it. To obtain such a view, she/he can choose the set of input
models to be used as input data for the view (and that “conform to” their respective meta-
models, themselves used to create the given viewpoint). With those models and the input
viewpoint, the proposed approach can build up the corresponding view. As described
before, the view is represented as a virtual model. In order to create the view, new links
have to be established between the underlying models. These links are computed and
initialized from the rules expressing the combination of the corresponding metamodels at
the viewpoint-level (though a manual modification by the user is also possible when nee-
ded) by means of a matching engine (cf. Section 4.2.1). The links are stored in a separate
weaving model associated with the view, without altering the original models neither.

An important point of our approach is that a same virtualization technique has been
adapted slightly differently at design time and runtime. More details on these two le-
vels can be found in what follows in this section. Another fundamental aspect is the use
of weaving models in order to create and store the viewpoint/view-specific information.
Thus, our approach heavily relies on a common and generic virtualization (weaving) me-
tamodel we propose in Section 4.2.2. From a usability perspective, it is needed to provide
proper interfaces for designers/users of our solution. As a consequence, we contribute
in Section 4.2.3 two DSLs covering two different applications of model views (as well
as two corresponding subsets of our core virtualization metamodel). Finally, from a sca-
lability perspective, it is required to be able to load, store and access to all the involved
metamodels and models (i.e. contributing ones, weaving ones) in a efficient way. Section
4.2.4 describes how we propose to realize this by integrating the use of existing model
persistence solutions.

4.2. PROPOSED CONCEPTUAL APPROACH 101

Viewpoint Creation at Design Time

At design time as shown on Figure 4.5 (i.e. when specifying the viewpoint), the de-
signer or architect first needs to provide the viewpoint definition data.

m2t

Viewpoint

Builder

(Virtualization)

Weaving model

Viewpoint file

DSL file

Designer

Matching file

Refers to

Metamodel C

Metamodel B

Metamodel A

Figure 4.5 – Viewpoint creation at design time.

To this intent, he/she can use one of the provided DSLs (cf. Section 4.2.3). From
the collected information, our approach can produce (by means of model-to-model or
model-to-text transformation) three different artifacts:

— A Viewpoint file that lists general information about the viewpoint, i.e. contribu-
ting metamodel(s), weaving model, matching file.

— A Weaving model that contains the links between the connected elements from
different metamodels, links to filtered elements, etc.

— A Matching file that expresses the matching rules to be applied at view-level in
order to compute inter-model links (cf. Section 4.2.1).

Both these Viewpoint file and Weaving model (in addition to the contributing metamo-
dels of course) are actually used as inputs for the virtualization mechanism to create the
(virtual) metamodel representing the defined viewpoint.

View Initialization at Runtime

At runtime as shown on Figure 4.6 (i.e. for the view to be actually realized), the user
also needs to provide some additional information.

He/she has to list the contributing models to be used to produce the view according to
the chosen viewpoint. These models have to conform to the contributing metamodels of
the viewpoint. From this information, our approach can produce two different artifacts:

— A View file that lists general information about the view, i.e. contributing models,
weaving model, viewpoint definition (i.e. Viewpoint file).

— A Weaving model that contains the actual links between the connected elements
from different models, the links to filtered elements, etc.

The weaving model can be initialized automatically using a matching engine that reads
the viewpoint definition and uses the content of the referenced Matching file to decide
how to join the elements in the different models. In this case, it may exist only in me-
mory and may not be serialized as an actual file. However, this weaving model may also

102 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

View

 Builder

(Virtualization)

Weaving model

User

View file

generation

Viewpoint file

(+ Matching file)

Refers to

 Model c
 Model b

Model a

Figure 4.6 – View initialization at runtime

be completed manually or via other tools if needed (e.g. from the execution of a model
transformation). Both the View file and the Weaving model (in addition to the contribu-
ting models of course) are used as inputs for the virtualization mechanism to produce the
resulting view as a virtual model.

4.2.2 Core Virtualization (Weaving) Metamodel

As described before in Section 4.2.1, our approach relies on the use of weaving mo-
dels in order to represent and store the required viewpoint/view-specific information.
These weaving models are then consumed to produce the defined viewpoints and views
as virtual metamodels and models (respectively). Thus, a dedicated metamodel is needed
in order to specify the nature of the data these weaving models have to deal with. As said
earlier, we intend to use a similar building mechanism at both viewpoint (i.e. metamo-
del) and view (i.e. model) levels. As a consequence, we made the choice of designing a
generic core virtualization metamodel for our approach, as depicted in Figure 4.7 1.

VirtualLinks are the core elements of our metamodel. They actually represent the
viewpoint/view-specific information that cannot be obtained from the base metamodels/-
models. There are four different types of VirtualLink:

— A VirtualConcept is a concept that only exists in the viewpoint/view. As any
regular concept , it can inherit from other concepts (also virtual or concrete).

— A VirtuaProperty is a property that only exists in the viewpoint/view. It is attached
to the concept (virtual or concrete) it belongs to and can be set as optional. As any
regular property, it has a primitive type (integer, boolean, string, etc.).

— A VirtuaAssociation is an association that only exists in the viewpoint/view. As
any regular association, it connects together source and target concepts (virtual
or concrete). It also has a cardinality that can be determined by setting its upper

1. The complete Ecore version of this metamodel is available from
https://github.com/atlanmod/emfviews/blob/master/plugins/
org.atlanmod.emfviews.virtuallinks/resource/VirtualLinks.ecore

https://github.com/atlanmod/emfviews/blob/master/plugins/org.atlanmod.emfviews.virtuallinks/resource/VirtualLinks.ecore
https://github.com/atlanmod/emfviews/blob/master/plugins/org.atlanmod.emfviews.virtuallinks/resource/VirtualLinks.ecore

4.2. PROPOSED CONCEPTUAL APPROACH 103

VirtualLink

name: String

WeavingModel

name: String
whitelist: bool

ContributingModel

URI: String

ConcreteConcept

VirtualElement

Element

0..*

parent

superConcepts

0..*

0..*

subConcepts

0..*

so
ur

ce
tar

ge
t

0..*
targetopposite

0..1

Concept

VirtualAssociation

lowerBound: int
upperBound: int
composition: bool

FilterVirtualConcept VirtualProperty

type: String
optional: bool

Association ConcreteElement

path: String (FQN)

ConcreteAssociation

Figure 4.7 – Core virtualization metamodel of our approach.

and lower bounds. It can be a standard association or a composition one, thus
introducing a containment notion between the connected concepts. Finally, it can
have an opposite association that allows for bi-directional navigation between the
connected concepts.

— A Filter is a declaration of inclusion or exclusion of concrete elements coming
from the base metamodels/models (cf. the explanations on the WeavingModel and
attached filtering strategy in the next paragraphs).

VirtualLinks all have a name which is used for the corresponding virtual feature name in
the resulting viewpoint/view, except for Filters where the name is ignored as not neces-
sary.

ContributingModels are proxies to the metamodels or models that are considered in
the viewpoint or view (respectively). A ContributingModel aims at holding the Con-
creteElements that are required by the different VirtualLinks in the viewpoint/view. It
has a URI that always refers to the corresponding metamodel namespace (even if at
view/model-level).

ConcreteElements are proxies to elements coming from the base metamodels/models

104 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

contributing to the viewpoint/view. They all have a path that allows pointing to and retrie-
ving the actual metamodel/model elements. At viewpoint-level, it is the fully qualified
name of the corresponding element (not including the metamodel name as already gi-
ven by its container ContributingModel). At view-level, it is an implementation-specific
identifier (e.g. in our EMF-based implementation described in Section 4.3, it is obtained
by a call to the Resource.getURIFragment method). In addition, ConcreteElements can
be more precisely characterized as ConcreteConcepts or ConcreteAssociations. The dis-
tinction is needed in these two cases (and not in the case of concrete properties) because
a VirtuaProperty can be attached to a ConcreteConcept and a VirtuaAssociation can have
a ConcreteAssociation as an opposite.

All the VirtualLinks, ContributingModels and ConcreteElements (via their respective
ContributingModel) are contained in a WeavingModel root element. This root can have
a name that is used at viewpoint level (only) in order to specify the namespace URI. The
filtering strategy is also specified at viewpoint level via the whitelist boolean property. If
the flag is set to false (default value, i.e. blacklist), the view will include all the elements
coming from the contributing models unless they are explicitly filtered out. If the flag is
explicitly set to true, the view will include no element unless they are explicitly filtered
in.

4.2.3 Viewpoint/View Specification DSLs

We want to show in practice the genericity and expressivity of our approach (as pre-
sented in Section 4.2.1) as well as of its core virtualization metamodel (as presented in
Section 4.2.2). Thus, we studied a couple of possible contexts where the use of model
views can be particularly relevant:

1. The basic specification of views on models, in a similar way to what can be done
in the database world.

2. The definition of metamodel extensions, as viewpoints on existing metamodels.
In what follows in this section, we describe the two DSLs resulting from this first work.
These two DSLs, covering two different applications of model views, also correspond
to two different subsets of our core virtualization metamodel. For instance, the latter
allows to add new concepts in the built views (i.e. concepts not coming from any of the
contributing models) while the former does not. For both languages, we present the main
provided operations as well as their respective concrete textual syntaxes. It is interesting
to note that, in each case, the semantics of the language is provided by a direct mapping to
our core virtualization metamodel (abstract syntax) and related viewpoint/view building
mechanism.

ViewPoint Description Language (VPDL)

In order to facilitate the definition of viewpoints and related views, we proposed a
first DSL directly inspired from the very well-known SQL language. This DSL is named
ViewPoint Description Language (VPDL). The choice of an SQL-like language was quite
natural since SQL has already proved its relevance to deal with similar view problems in
the database community. It notably also allows expressing the main needed operations in
our model view context, i.e. SELECT, PROJECT, and JOIN. Moreover, considering such

4.2. PROPOSED CONCEPTUAL APPROACH 105

a widespread language as a base language for our DSL intends to facilitate its adoption
by potential future users.

Listing 1 – Grammar of the ViewPoint Definition Language (VPDL).
View : K_CREATE K_VIEW name=ID K_AS

select=Select
from=From
where=Where ? ;

Select : K_SELECT features+=SelectFeature (’,’ features+=SelectFeature) * ’,’ ? ;

SelectFeature : metamodel=[Metamodel] ’.’ class=[Concept] rest=SelectFeatureRest ;

Concept : name=ID ;

SelectFeatureRest : ’.’ features+=Attribute
| features+=Relation
| ’[’ features+=Feature (’,’ features+=Feature) * ’,’? ’]’
| features+=AllAttributes ;

Feature : Attribute | Relation ;

Attribute : name=ID ;

Relation : K_JOIN metamodelRight=[Metamodel] ’.’ classRight=[Concept] K_AS name=ID ;

AllAttributes : wildcard=’.*’ ;

From : K_FROM metamodels+=Metamodel (’,’metamodels+=Metamodel) * ’,’ ? ;

Metamodel : nsURI=STRING K_AS name=ID ;

Where : K_WHERE rules+=Rule (’,’rules+=Rule) * ’,’ ? ;

Rule : condition=STRING K_FOR relation=[Relation] ;

K_CREATE : ’create’ | ’CREATE’ ;
K_VIEW : ’view’ | ’VIEW’ ;
K_AS : ’as’ | ’AS’ ;
K_FOR : ’for’ | ’FOR’ ;
K_JOIN : ’join’ | ’JOIN’ ;
K_FROM : ’from’ | ’FROM’ ;
K_WHERE : ’where’ | ’WHERE’ ;
K_SELECT : ’select’ | ’SELECT’ ;

Listing 1 presents the grammar of our textual DSL and highlights its four main lan-
guage features 2:

— Create view (mandatory): It defines the name of the viewpoint.
— Select (mandatory): It specifies the contributing metamodel(s)’ features (i.e. pro-

perties or associations) to be included in the viewpoint, as well as the new virtual
associations to be created if any (using a Join). To include all features of a se-
lected concept, * is used. Note that this DSL realizes a whitelist filtering strategy
(cf. Section 4.2.2).

— From (mandatory): It enumerates the different contributing metamodels as well
as their respective aliases to be used in the remainder of the viewpoint definition.

— Where (optional): It expresses the rules used for populating new virtual associati-
ons by navigating the contributing models at view-level only (contrary to the three
other clauses that also operate at viewpoint-level). For genericity reasons, the cur-
rent version of the language simply considers rules as full strings (expressed in

2. The complete Xtext version of this grammar is available from https://
raw.githubusercontent.com/atlanmod/emfviews/master/dsls/vpdl/
org.atlanmod.emfviews.vpdl/src/org/atlanmod/emfviews/vpdl/Vpdl.xtext

https://raw.githubusercontent.com/atlanmod/emfviews/master/dsls/vpdl/org.atlanmod.emfviews.vpdl/src/org/atlanmod/emfviews/vpdl/Vpdl.xtext
https://raw.githubusercontent.com/atlanmod/emfviews/master/dsls/vpdl/org.atlanmod.emfviews.vpdl/src/org/atlanmod/emfviews/vpdl/Vpdl.xtext
https://raw.githubusercontent.com/atlanmod/emfviews/master/dsls/vpdl/org.atlanmod.emfviews.vpdl/src/org/atlanmod/emfviews/vpdl/Vpdl.xtext

106 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

any relevant querying/matching language). It does not parse or interpret any of
these rules at VPDL-level, they are just copied into a Matching file associated to
the Viewpoint file (cf. Section 4.2.1).

Listing 2 – Example of viewpoint specification in VPDL.
CREATE VIEW EntrepriseArchitectureExample AS

SELECT
togaf .Requirement [statementOfRequirement , acceptanceCriteria] ,
togaf .Process .isAutomated ,
togaf .Element .name ,
togaf .EnterpriseArchitecture .architectures ,
togaf .StrategicArchitecture .strategicElements ,
togaf .BusinessArchitecture .processes ,

bpmn .Definitions [name , rootElements] ,
bpmn .CallableElement .name ,
bpmn .Process [isClosed , isExecutable , processType] ,

reqif .ReqIFContent .specObjects ,
reqif .SpecObject .type ,
reqif .ReqIF .coreContent ,
reqif .Identifiable [desc , longName] ,

togaf .Requirement JOIN reqif .SpecObject AS detailedRequirement ,
togaf .Process JOIN bpmn .Process AS detailedProcess

FROM
’http://www.obeonetwork.org/dsl/togaf/contentfwk/9.0.0’ AS togaf ,
’http://www.omg.org/spec/BPMN/20100524/MODEL-XMI’ AS bpmn ,
’http://www.omg.org/spec/ReqIF/20110401/reqif.xsd’ AS reqif

WHERE ’s.name=t.name and s.isAutomated = false’ FOR detailedProcess ,
’t.values.exists(v | v.theValue=s.name)’ FOR detailedRequirement

To illustrate better VPDL, Listing 2 shows a simple example of a viewpoint specifica-
tion (from the TEAP collaborative project, cf. . Section 5.2.2). It selects and aggregates
some elements (SELECT part) from base metamodels (FROM part) and establishes new
associations between them (WHERE part).

Metamodel Extension Language (MEL)

In order to make easier the definition of metamodel extension, we provided another
textual DSL that offers an initial list of extension operators. This DSL is named Meta-
model Extension Language (MEL). The proposed syntax is intended to be intuitive and
easy-to-learn for people already familiar with (meta)modeling. Having genericity and
portability in mind, it has also been defined independently from any particular metamo-
del or modeling framework/environment.

Listing 3 – Grammar of the Metamodel Extension Language (MEL).
Model :

(’import’ imports+=Metamodel) *
’define’ extensionName=ID ’extending’ metamodels+=[Metamodel]
("," metamodels+=[Metamodel]) * ’{’ extensions+=Extension* ’}’ ;

Metamodel : name=ID ’from’ nsURI=STRING ;

Extension : AddClass | ModifyVirtualClass | ModifyClass | FilterClass ;

AddClass :
’add’ ’class’ name=ID
(’specializing’ parents+=TargetClass ("," parents+=TargetClass) *) ?
(’supertyping’ children+=TargetClass ("," children+=TargetClass) *) ? ;

4.2. PROPOSED CONCEPTUAL APPROACH 107

TargetClass : ConcreteClass | VirtualClass ;

ConcreteClass : metamodel=[Metamodel] ’.’ class=[ecore : : EClass] ;

VirtualClass : class=[AddClass] ;

ModifyVirtualClass :
’modify’ ’class’ class=VirtualClass ’{’

operators+=ModifyVirtualClassOperator*
’}’ ;

ModifyClass :
’modify’ ’class’ class=ConcreteClass ’{’

operators+=ModifyConcreteClassOperator*
’}’ ;

ModifyVirtualClassOperator : AddAttribute | AddReference | AddConstraint ;

ModifyConcreteClassOperator :
AddAttribute | AddReference | ModifyAttribute | ModifyReference | FilterProperty |
AddConstraint | FilterConstraint ;

AddAttribute : ’add’ ’property’ name=ID ’:’ type=[ecore : : EDataType]
(cardinality=AttributeCardinality) ? ;

AddReference : ’add’ relationType=RelationType name=ID ’:’ type=TargetClass
(cardinality=ReferenceCardinality) ? ;

ModifyAttribute :
’modify’ ’property’ property=[ecore : : EAttribute] ’{’

((’name’ newName=ID) ?
& (’type’ type=[ecore : : EDataType]) ?
& (’cardinality’ cardinality=AttributeCardinality) ?)

’}’ ;

ModifyReference :
’modify’ ’association’ property=[ecore : : EReference] ’{’

((’name’ newName=ID) ?
& (’type’ type=TargetClass) ?
& (’cardinality’ cardinality=ReferenceCardinality) ?
& (’relation-type’ relationType=RelationType) ?)

’}’ ;

FilterProperty : ’filter’ ’property’ property=[ecore : : EStructuralFeature] ;

FilterClass : ’filter’ ’class’ class=ConcreteClass ;

AddConstraint : ’add’ ’constraint’ constraint=ID value=EString ;

FilterConstraint : ’filter’ ’constraint’ constraint=EString ;

enum AttributeCardinality : MANDATORY = ’1’ | OPTIONAL = ’0’ ;

ReferenceCardinality hidden (ML_COMMENT) :
lowerBound=CardinalityBound ’..’ upperBound=CardinalityBound ;

enum CardinalityBound : ZERO = ’0’ | ONE = ’1’ | STAR = ’*’ ;

enum RelationType : composition | association ;

EString returns ecore : : EString : STRING | ID ;

The overall structure to declare a metamodel extension includes its name, the metamo-
del(s) it extends and the list of applied operators (as well as the metamodel elements they
are applied to). Listing 3 presents the full grammar of our textual DSL, thus highlighting
its main concepts and operations 3:

3. The complete Xtext version of this grammar is available from https://raw.githubusercontent.com/atlanmod/

emfviews/master/dsls/mel/org.atlanmod.emfviews.mel/src/org/atlanmod/emfviews/mel/Mel.xtext

https://raw.githubusercontent.com/atlanmod/emfviews/master/dsls/mel/org.atlanmod.emfviews.mel/src/org/atlanmod/emfviews/mel/Mel.xtext
https://raw.githubusercontent.com/atlanmod/emfviews/master/dsls/mel/org.atlanmod.emfviews.mel/src/org/atlanmod/emfviews/mel/Mel.xtext

108 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

— ADD (a new concept to the metamodel)
— Create from scratch a completely new concept.
— Specialize (subtype) a concept.
— Generalize (supertype) one or several concept(s).

— MODIFY (an existing concept, in the metamodel or added by the extension)
— Add property (or reference/association) to an existing concept.
— Filter property (or reference/association) from an existing concept.
— Modify property (or reference/association) of an existing concept (equivalent

to Filter + Add).
— Add constraint to an existing concept or one of its properties/associations.
— Filter constraint from an existing concept or one of its properties/associati-

ons.
— FILTER (an existing concept in the metamodel). Note that this DSL realizes a

blacklist filtering strategy (cf. Section 4.2.2). We are voluntarily using the term
FILTER and not DELETE as we do not want to actually delete elements but rather
hide them. Filtering is applied on cascade (i.e. in the case of generalizations or
derived properties)

Listing 4 – Example of metamodel extension specification in MEL.
import TOGAF from ’TOGAFmetamodelURI’

d e f i n e EnterpriseArchitectureExtension ex tend ing TOGAF {

add c l a s s FinancialBusinessArchitecture s p e c i a l i z i n g TOGAF .BusinessArchitecture

modify c l a s s FinancialBusinessArchitecture {
add property currency : S t r i n g
add a s s o c i a t i o n financialbusinessprocesses : TOGAF .Process 0 . . *
f i l t e r property name

}

f i l t e r c l a s s TOGAF .StrategicArchitecture

}

Listing 4 shows a simple metamodel extension illustrating the defined concrete syn-
tax (using an example from the MoNoGe collaborative project, cf. . Section 5.2.2). It
extends a base metamodel by adding a new concept (add class part) and then modifying
it (i.e. adding a property/association and filtering an inherited property, cf. modify class
part) as well as by filtering another existing concept (filter class part).

4.2.4 Integration With Model Persistence Solutions

As said in Section 4.2.1, scalability is a fundamental challenge to be addressed as far
as model view solutions are concerned. In this section, we describe our general appro-
ach to support scalable model views on heterogeneous model sources [32]. The overall
objective is to be able to build views that do scale up in practice: views that are built on
top of several models where some are too large to be loaded, handled and stored only
in memory (e.g. using the base EMF features such as XML/XMI serialization). This is
made possible notably by relying on models that can be persisted and manipulated, when
necessary, using appropriate database backends. The general approach we consider is
depicted in Figure 4.8.

A Modeling Framework is usually composed of two main parts: a Core component

4.2. PROPOSED CONCEPTUAL APPROACH 109

Modeling Framework (Core)

Database Persistence Framework

Relational
DB Connector

Graph
DB Connector

Other
DB Connector

File Persistence Framework

XMI/XML
File Connector

Other
File Connector

Model View Framework

Model-based Tools / Solutions

Modeling Framework (Generic API)

Figure 4.8 – A conceptual approach for integrating model view and model persistence
capabilities.

providing the inner behavior (i.e. model manipulation facilities) and a Generic API as
the interface provided externally for (re)use by Model-based Tools. The Modeling Fra-
mework also often provides a base File Persistence Framework relying on the local file
system, coming with some file import/export capabilities in different serialization for-
mats.

Database Persistence Frameworks have been proposed to connect the modeling fra-
mework to databases of various kinds (relational-based, graph-based, etc.). These solu-
tions are typically used to store large models with a reduced memory footprint.

In the general case, the Model View Framework must be correctly integrated with the
Modeling Framework and comply with its Generic API. This allows client applications
to query views as regular models. Moreover, for model views to scale with large models,
the Model View Framework has to leverage the characteristics of the Database Persis-
tence Frameworks. This notably requires various refinements and optimizations from
both sides. The next subsections describe the important goals we have identified in order
to realize such a scalable integration.

Building Views on Heterogeneous Model Sources

This goal is of primary importance in the context of our generic approach and is a
prerequisite to the three subsequent ones. As said earlier, most (if not all) modeling
frameworks provide a default file serialization support, usually relying on XML-based
format(s). However, they are very often not supporting other data sources. This is no-
tably the case when needed to load/store models from/into different kinds of databases

110 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

(e.g. relational, graph). Such databases can be existing ones, e.g. handled by external
applications, or can be created just for the sake of modeling.

Model view approaches generally rely on the model persistence support provided by
their underlying modeling framework. Thus, they usually lack of support for scalable
model persistence solutions, e.g. relying on databases. As a consequence, it is required
to perform the integration of the model view framework with such database persistence
framework(s). This way, depending on the nature of the contributing models, different
persistence backends can be selected and combined in the context of a same view.

Such an integration can be performed in different ways. In some cases, it can be
realized indirectly. The considered modeling framework can be first refined to be able
to use the database persistence framework. Then, the view framework can simply rely
on the general interface of the modeling framework in order to access transparently the
underlying database resources. In some other situations, a direct connection can be re-
quired between the model view framework and the persistence framework. This notably
allows implementing particular optimizations that could not be realized if passing by the
modeling framework.

Persisting the View Information in a Scalable Way

Depending on the viewpoint/view specification, additional data can also be required
in order to be able to fully compute it. For instance, this is the case when a given view
provides new relationships between elements coming from different models, or when it
adds new properties to elements from one of the involved models.

When initializing such a view, this view-specific information has to be obtained in
some way. One possibility is to compute it at runtime when loading the view. This can be
based on the data available from the contributing models and on some predefined queries
executed on top of them. Another option is to collect it from an existing data source or a
dedicated additional model. Such a model can come from manual inputs from the view
users. It can also be the result of the running of an external application. In either cases,
the view mechanism has to be able to retrieve the appropriate information in order to build
the view.

Related scalability problems can occur when this view-specific data is too large to
be handled correctly by the default support from the used modeling framework. Indeed,
depending on the nature of the view, this extra data can be even larger than some of
the contributing models themselves. In these cases, it is required to be able to persist
a view-specific model (storing this data) by using a more scalable database persistence
framework. Adopting such a strategy can reduce significantly the memory footprint of
given views, thus allowing to manipulate views that could not be loaded otherwise.

Optimizing the View Loading and Element Access

With very large views, some operations can rapidly become heavy in terms of execu-
tion time and memory consumption. This can even go to a point where the view is not
really usable anymore. For example, this is the case when the response time is too long
(e.g. when the user navigates the view) or when the view simply ends by crashing. The

4.2. PROPOSED CONCEPTUAL APPROACH 111

situation is notably critical during the process of initializing/loading the view, as it can
require a significant number of model element accesses.

Relevant performance gains can be obtained by applying various lazy loading techni-
ques at different levels. In the general case, any hit to an actual model element has to be
delayed as much as possible and must only occurs when strictly needed. Such optimizati-
ons also concern accesses to both the various contributing models (cf. Section 4.2.4) and
the view-specific elements (cf. Section 4.2.4). Ideally, all these accesses must be delayed
without impacting the overall correctness of the view.

Moreover, depending on the used persistence framework(s), the model view frame-
work can be refined differently. For given model element accesses, the view framework
can directly benefit from specific capabilities provided by a database type (e.g. graph).
For instance, the view framework can leverage the database API to turn full traversals
of models into more selective requests, as traversals are time- and memory-intensive for
large models.

Optimizing the View Querying

Once a view has been correctly created and loaded (cf. Section 4.2.4), it can be navi-
gated and queried as any regular model according to the needs of the engineering activity
it supports. As said earlier, the view framework usually relies on a generic interface provi-
ded by a modeling framework and shared between different tools from a same ecosystem.
This way, it also natively supports the execution of queries defined in languages supported
by this modeling framework.

However, when implementing this in practice, performance issues can arise. For in-
stance, some models can be serialized in standard XML-based files while others can be
stored in databases (cf. Section 4.2.4). In this situation, using the default querying sup-
port might not take advantage of backend-specific optimizations. Thus, more elaborated
schemes have to be considered.

Base operations (e.g. allInstances in OCL) can be costly to execute with the
default behavior of the modeling framework. For better efficiency, such operations could
be delegated to the various persistence frameworks used in a view. This is illustrated in
Figure 4.9 where an OCL query navigates a given view and returns the number of design
requirements that are impacted by a specified runtime event, captured as a log from an
execution trace. This query can be optimized by delegating the allInstances call to
the database persistence framework that contains the related elements, thus bypassing the
default (less efficient) implementation of the modeling framework.

More generally, large performance gains are possible by splitting a query (on a given
view) into a request plan that is better suited to the underlying persistence frameworks.
This requires the model view framework to be able to split any query, delegate its exe-
cution and collect its results by leveraging the specificities of the different persistence
backends.

112 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

query::Log.allInstances()

->any(l | l.message.startsWith('CaptchaValidateFilter'))

 .javaClass._'package'.component.requirements->size()

Modeling Framework (Core)

Database Persistence
Framework File Persistence Framework

 Model View Framework

Modeling Framework (Generic API)

Runtime Log
model

Source Code
model

Component
model

Requirement
model

Runtime - Design Time
view (model)

Querying Tool (OCL)

delegate

Figure 4.9 – Optimizing model view querying by delegating to model persistence bac-
kends.

4.2.5 Main Benefits

To the best of our knowledge, none of the available model view approaches fully
satisfies all the characteristics introduced in Section 4.2.1. There is always a trade-off
between the offered capabilities and some of these properties, such as scalability or syn-
chronization more particularly. Moreover, no approach currently appears to provide both
inter-model view support and the expected expressivity in terms of viewpoint/view defini-
tion. In what follows, we summarize how our approach intends to tackle these properties
and also indicate to which degree of completeness or coverage this can be done.

Genericity can be ensured as any metamodels or models can be considered to build
viewpoints and views respectively. Our proposed approach is completely modeling lan-
guage-agnostic and allows combining several models (that possibly conform to different
metamodels) into a single view.

The provided DSLs and our core virtualization metamodel also allow to offer an in-
teresting level of expressivity. We have been able to observe that this is already sufficient
in some commonly encountered contexts (cf. Section 4.2.3). However, more DSLs could
still be built on top of our approach in order to target different purposes and eventually

4.3. THE EMF VIEWS FRAMEWORK 113

identify a few missing elements in our core metamodel.

Non-intrusiveness can be naturally achieved in our solution since the base metamo-
dels/models contributing to the viewpoints/views are not modified at all. This is a direct
consequence of the model virtualization approach, and its underlying proxy mechanism
(i.e. original model elements are only accessed but never duplicated), we directly rely on
at both viewpoint and view levels.

As mentioned earlier, interoperability (at least under a same modeling environment)
can be guaranteed as model views can be used wherever regular models can be. For
example, this is the case of model transformations or code generators for which they
can be used as inputs. However, it is important to note that the current implementation
(cf. Section 4.3) mostly works in a read-only mode: views cannot be fully updated, as
explained in the next paragraph.

Indeed, modifiability is only partially supported in the current implementation, even
though it could be fully supported by our conceptual approach. Thus, only changes in
attribute values from the view are automatically propagated back to the original models
so far. However, since views and actual models do share the same real instances via a
proxy mechanism, synchronization at view-level is directly obtained by default.

In the case of scalability, the most suitable way of measuring it is via empirical expe-
riments on model data sets of large sizes. To this intent, more detailed benchmarks have
been performed and are presented later in this manuscript (cf. Section 4.4). We have no-
tably been able to benefit from the integration approach with model persistence solutions,
as introduced before in Section 4.2.4.

4.3 The EMF VIEWS framework

This section describes the EMF Views framework implementing the generic model
view approach described in previous Section 4.2. The goal of EMF Views is to facilitate
the creation and handling of viewpoints/views on top of possibly heterogeneous meta-
models/models. In what follows, we start by providing an overview of the EMF Views
implementation in Section 4.3.1. Then, we give more information on the currently availa-
ble tooling support in Section 4.3.2. Finally, we present the practical integration we have
realized with database backends such as NeoEMF [49] and CDO [60] in Section 4.3.3.

4.3.1 Implementation Overview

EMF Views has been implemented on top of several existing technologies, reused an-
d/or refined when needed, coming from the lively open source ecosystem around Eclipse
and its well-known modeling framework EMF (cf. Section 2.3). Thanks to EMF notably,
we have been able to directly rely on general model creation and handling capabilities.
Based on that, the current implementation of EMF Views as depicted in Figure 4.10 and
Figure 4.11 mainly consists in the following components:

— Viewpoint and View builders as described in Section 4.2.1, implemented as Eclipse
plugins in Java and offering a standard integration with the Eclipse workbench and
its different components (workspace explorer, editors and viewers, etc.).

114 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

m2t

Viewpoint

Builder

(Virtualization)

Weaving model

Viewpoint file

DSL file

Designer

Matching file

Refers to

Metamodel C

Metamodel B

Metamodel A

ECL

Model View

API

Figure 4.10 – Current implementation of EMF Views (design time).

ECL

View

 Builder

(Virtualization)

Weaving model

User

View file

generation

Viewpoint file

(+ Matching file)

Refers to

 Model c
 Model b

Model a

Model View

API

Figure 4.11 – Current implementation of EMF Views (runtime).

— A Model View API, deriving from the EMF standard model access API for in-
teroperability/integration purposes, that supports model virtualization in order
to be able to handle viewpoints and views transparently as any regular EMF
metamodels and models (respectively).

— A Linking API that has for main role to initiate inter-model virtual associati-
ons when required, and has notably been connected to the mapping engine of
ECL [125] in order to automatically compute such links at view-level. Note
that the implementation of this API is generic and other matching languages
could be plugged in to replace ECL whenever relevant.

— DSLs as described in Section 4.2.3, developed with Xtext [77] and then integrated
using Xtend [76] model-to-text and ATL [116] model-to-model transformations.
For user convenience, the DSL notably comes with a proper editor as well as
syntax highlighting and some content-assist (e.g. displaying the classes or attribu-
tes/references which are applicable in the context of a given metamodel or class).

The open source tool as well as its complete source code, update sites, the related

4.3. THE EMF VIEWS FRAMEWORK 115

documentation and some screencasts are all available online [11].

4.3.2 Tooling Support

As mentioned before in Section 4.3.1, the EMF Views tooling is well integrated within
the Eclipse workbench. It comes as a set of Eclipse plugins offering the previously pre-
sented EMF Views components. Thus, the use of the provided features is completely
transparent for the users that are already familiar with Eclipse and its graphical interface.
A concrete example of the deployment and application of EMF Views inside Eclipse can
be seen from Figure 4.12.

Indeed, once the EMF Views plugins installed, users can directly specify their own
viewpoint definition using the textual editor coming along with VPDL. For instance, in
the screenshot from Figure 4.12, a given user created a viewpoint definition that refers to
the TOGAF, BPMN and REQIF metamodels as loaded into its workbench’s EMF meta-
model registry.

Then, from this threeModelComposition viewpoint definition in VPDL, EMF Views
automatically generated the corresponding Viewpoint file (.eviewpoint), Weaving model
(.xmi) and Matching file (.ecl) (cf. Section 4.2.1 for more details on the underlying ap-
proach). It also allowed selecting the models that actually contributed to a corresponding
threeModelComposition view. In this case, the concerned models are stored in the 3 .xmi
files from the models folder.

Based on this, users can create different View files (.eview) listing the actual contri-
buting models and pointing to the corresponding Viewpoint file. EMF Views can then
automatically initialize an associated Weaving model based on the matching information
provided at Viewpoint-level by the Matching file (if available). In this case, this Weaving
model is only loaded in memory and not serialized in a file (cf. Section 4.2.1 for more
explanations). When directly opening this View file with the generic MoDisco Model
Browser (cf. Section 3.3.2), the view behaves and can be navigated as any regular EMF
model.

In Figure 4.12 we can see that, from the Booking Trip process in the TOGAF model,
we can now access to the corresponding process in the BPMN model as if they were both
part of the same model. The same is also true for the TOGAF Requirement elements to
the corresponding REQIF SpecObject elements (i.e. equivalent to a process in the REQIF
terminology). In both cases, the navigation can possibly continue back and forth between
the 3 models interconnected in the view.

4.3.3 Integration With Model Persistence Solutions

We have concretely implemented the conceptual integration approach described in
Section 4.2.4 by relying on EMF as our core Modeling Framework and EMF Views as
our Model View Framework. Concerning the Persistence Frameworks, we used both Ne-
oEMF [49] and CDO [60] as supporting graph and relational database backends (respecti-
vely). In what follows, we detail how all these technical solutions have been combined
together in practice to address the four different key points identified in our conceptual
approach. Our current implementation is freely available from a particular branch of the

116 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

Figure 4.12 – Screenshot of an Eclipse workbench with EMF Views installed.

4.3. THE EMF VIEWS FRAMEWORK 117

EMF Views source code repository 4.

Building Views with EMF Views on Models stored in NeoEMF and CDO

CDO and NeoEMF for Model Persistence CDO [60] is a model persistence frame-
work designed to handle large EMF models by relying on a client-server repository struc-
ture. A CDO application can connect to a CDO server using a specialized interface, and
a dedicated implementation of the EMF API is provided to manipulate the model. CDO
is based on a lazy-loading mechanism and supports transactions, access control policies
as well as concurrent model editing. Its default implementation uses a relational database
connector to serialize models into SQL compatible databases. However, the modular ar-
chitecture of the frameworks can be extended to support different data storage solutions
(even if, in practice, only relational connectors are used and regularly maintained).

NeoEMF [49] is a complementary model persistence framework that relies on the
scalable nature of NoSQL databases to store and manipulate large models. NeoEMF sup-
ports three model-to-database mappings, i.e. graph, key-value and column stores. Each
one of them is adapted to a specific modeling scenario, such as atomic element acces-
ses (key-value) or complex navigations (graph). As other persistence solutions, NeoEMF
provides a lazy-loading mechanism that allows to obtain significant gains in terms of
performances.

Since CDO and NeoEMF are two of the main actors in the field of scalable model
persistence, we chose to rely on them in our implementation.

Integration Since EMF Views, NeoEMF and CDO are all part of the EMF ecosystem,
integrating them together is a relatively straightforward task since they all implement the
same EMF model handling API. It is mostly a matter of telling EMF Views how to re-
trieve and load the right model resources. However, CDO and NeoEMF resources require
platform-specific initialization code (such as specific URI schemes, resource factory im-
plementations and data store configurations) that had to be integrated into EMF Views.
Note that this code is also available from the EMF Views/NeoEMF integration reposi-
tory (cf. the URL indicated earlier in this section). Once loaded, all the model resources
are navigated through the standard modeling API. This way, the persistence frameworks
transparently delegate the operations to the databases in a scalable manner

Persisting the View Information with NeoEMF

As explained before in Section 4.2.1, EMF Views uses a weaving model that repre-
sent the view-specific information. This model can potentially contain entries for many
elements coming from the different contributing models. Thus, it can get as large or even
larger (depending on the view) than the contributing models themselves. In order to im-
prove the scalability of our approach on large-scale views, we chose to persist this model
using NeoEMF instead of using the default XMI serialization.

Since the weaving model is also defined as a standard EMF model, its migration to
NeoEMF has been done quite transparently by changing the model serialization behavior

4. https://github.com/atlanmod/emfviews/tree/integrate-neoemf

https://github.com/atlanmod/emfviews/tree/integrate-neoemf

118 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

(and initializing the corresponding database backend). Persisting the weaving model in
NeoEMF allows us to handle views that cannot fit in memory otherwise.

Optimizing the View Loading and Element Access in EMF Views

When dealing with large database resources, many EMF API operations having little
to no overhead with small in-memory resources now potentially bear high costs in exe-
cution time and memory consumption. So we have to pay extra attention to minimize the
impact of such operations. For instance, checking whether a reference has any contents
can be done by calling the EList.isEmpty operation. A naive implementation of this ope-
ration compares the size of the collection against zero, where getting the size is an O(n)
operation. On small in-memory resources, n is small and a call to the isEmpty operation
triggers no issue. On large database resources, n is large and the overhead of hitting the
database can become a bottleneck. A better implementation of isEmpty rather checks if at
least one element exists, and thus exits early when this is not the case. Similarly, getting a
given element of a multi-valued reference by using the EList.get operation can be costly.
This is the case when the implementation first builds a list containing all the elements of
the reference, regardless of the index requested. If, instead, the implementation navigates
to the index and looks no further, then we make less hits to the database and the operation
has a minimal cost.

We significantly improved EMF Views for large model resources by following these
ideas. As introduced in Section 4.2.4, one of our key tenets was: delay actual hits to the
resource as much as possible.

Another important improvement of EMF Views concerned the view loading process.
As said previously, weaving models can be large depending on the number (and contents)
of virtual associations. Previously, EMF Views eagerly populated these virtual associ-
ations when loading the view. Each virtual association thus delayed loading the view
further: for larger weaving models, this meant several seconds or even minutes. Here
again, the optimization lies in laziness: delaying work that can be done later. In this case,
we have to populate virtual associations only when they are first accessed. If some virtual
associations are never looked up then we never have to load them from the weaving mo-
del, thus avoiding the loading cost. Making this change to EMF Views enabled loading
views with large weaving models with no overhead in terms of time.

A third point of optimization was to tweak the way the data is stored into the graph
database handled by NeoEMF. In some cases, large models can be (very) flat ones (e.g. log
files). They can contain a top-level element holding a large collection of sub-elements
(some of which have also children). We have observed that this flat structure was reducing
the performances of NeoEMF. To solve this issue, we developed a new mapping from
model to graph for NeoEMF, using in-database linked lists. This mapping, dedicated to
large collections, allowed us to speed up the creation of the runtime log model and the
access to its elements by a factor of 30.

Optimizing the View Querying in OCL

Since views are regular EMF models, querying tools like OCL [160] or transformation
tools like ATL [59] can be applied transparently on views (regardless of the underlying

4.4. EVALUATION 119

persistence framework used by the contributing models). However, relying only on the
EMF API can have a cost in terms of performances. For example, it has been widely ob-
served that some base operations, like allInstances in OCL, can be quite costly to
execute naively using the EMF API. On the contrary, persistence backends may provide
more efficient ways to execute such operations. For example, NeoEMF resources ex-
pose a getAllInstances method which can compute the set of instances of a given
classifier. This method is around 40 times faster than using the EMF API directly.

We extended the standard OCL interpreter in order to specialize some operations ac-
cording to the data store they target. In the following paragraph we detail our implemen-
tation of the allInstances operation, but other native operation implementations can
be easily defined to enhance query computation performances. However, our implemen-
tation still needs a generic operation delegation mechanism that, along with the support
for other query languages, is currently left for future work.

The OCL API provides a way to customize the behavior of the allInstances
operation through a Model Manager (or Extents Map in the legacy implementation). We
define a custom extents map that allows to specialize the allInstances call according
to the concrete data stores used in a given view. When instances of a classifier are looked
up, the extents map redirects the call to the view that fetches instances—using native
database calls—from each contributing model and them combines these instances as the
result. Compared to the standard OCL implementation that iterates the entire model to
match elements of a given type, this approach benefits from the low-level optimizations
of the databases (such as built-in indexes and caches).

4.4 Evaluation

This section explains how we have evaluated the proposed conceptual approach and its
implementing EMF Views framework. In order to provide a relevant evaluation covering
some of the general challenges introduced in Section 4.1.4, this has been made using
quantitative ways. In Section 3.4.1, we start by summarizing the research questions /
challenges we intended to evaluate. Then, Section 4.4.2 introduces a practical use case
involving the use of both large and heterogeneous models in a same view. Section 4.4.3
presents the main objectives we are trying to achieve with this particular use case. Section
4.4.4 describes the general process we followed, while Section 4.4.5 details the performed
benchmarks as well as the obtained results.

4.4.1 Research Questions (RQs)

The evaluation described in what follows in this section was performed to quanti-
tatively assess the relevance and usefulness of our approach when applied to realistic
scenarios. More specifically, we aimed to answer the following research questions and
underlying Model View challenges (cf. Section 4.1.4):

1. RQ5 - Scalability. Are we able to use the EMF Views conceptual approach and/or
its implementing components in the context of large-scale scenarios? To evaluate
this, we have worked on dedicated scalability benchmarks intending to measure

120 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

different scalability aspects of our solution (cf. Section 4.4.5).

2. RQ6 - View maintenance. Using the EMF Views conceptual approach and/or its
implementing components, are we able to ensure a regular synchronization from
the contributing models to the built views? We have not explicitly evaluated this
so far. However, this capability is ensured by default as provided by the model
virtualization approach which EMF Views relies on (cf. Section 4.2.1).

3. RQ7 - View update. Using the EMF Views conceptual approach and/or its im-
plementing components, are we able to ensure a regular synchronization from the
built views to the contributing models? We have not explicitly evaluated this so
far. The current EMF Views implementation (cf. Section 4.3) already provides
some base update capabilities (e.g. when a given attribute value is updated in a
view, this change can be reflected back to the corresponding contributing model).
However, a lot of work remains to be done in order to be able to support more
complex kinds of updates.

Of course the presented evaluation could still be extended in the context of future
work, e.g. to cover (many) more different Model View scenarios as well as to consider
even (much) larger contributing models in views. We could notably try to evaluate more
precisely the view maintenance and update features (to be) provided by EMF Views.
Nevertheless, we believe the current evaluation already allows providing some interesting
insights on the actual capabilities of our approach and its current implementation in a
realistic context.

4.4.2 Practical Use Case

From the MegaM@Rt2 collaborative project we are involved in (cf. Section 5.2.1),
and notably from the description of the industrial requirements and case studies, we have
been able to extract a general scenario that concretely illustrates the need for scalable mo-
del views and their persistence. Thus, let us consider the realization of a runtime ↔ design
time feedback loop via a view gathering 4 different models covering both runtime and de-
sign time aspects of a given system in the project. As shown on Figure 4.13, this view
relies on a runtime log model (that conforms to a simple trace metamodel), a Java code
model (that conforms to the Java metamodel from MoDisco [29]), a component model
(that conforms to OMG UML [167]) and a requirement model (that conforms to OMG
ReqIF [162]).

On the one hand, the runtime log model and (to a lesser extent) the Java model can
be considered as runtime models. They can potentially be very large, especially the run-
time log model which represents actual system execution traces. Thus, a typical solu-
tion to store and access them in a scalable way is to rely on database model persistence
frameworks. The used technical solution then depends on the nature of the model, its
access/handling scenario or the required features.

On the other hand, the component model and requirement model can be considered
as design models. They are generally of a reasonable size compared to the runtime ones,
because they are very often manually specified. Hence, they can be handled by standard
modeling frameworks relying on in-memory constructs and/or XML-based files.

A concrete example of the view from Figure 4.13 is given in Figure 4.14. By using

4.4. EVALUATION 121

Requirement
model

OMG ReqIF
metamodel

conforms to

Component
model

OMG UML
metamodel

conforms to

Source Code
model

MoDisco Java
metamodel

conforms to

Runtime Log
model

Custom Trace
metamodel

conforms to

System
Engineer

representsRuntime - Design Time
view (model)

refers to

defines

Figure 4.13 – Running use case from the MegaM@Rt2 industrial project.

Figure 4.14 – Concrete example of a view in MegaM@Rt2 (based on the use case from
Figure 4.13).

this view, an engineer can navigate transparently within and between the four contribu-
ting models as if they were all part of the same single model. Thus, from a particu-
lar runtime information collected at system execution (here a trace.Log element), one
can move back to the originating Java code instructions (here java.ClassDeclaration ele-
ments). One can then follow links to the components (here uml.Component elements)
the code implements, and up to the actual requirements these components fulfill (here

122 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

reqif10.SpecObject elements).

Such a view combining different models can also be queried as any regular model, in
order to extract relevant data out of it. For example, one can obtain all the requirements
that are related to a given execution trace (runtime to design time traceability). Or, the
other way around, one can get all the execution traces that correspond to a particular
requirement (design time to runtime traceability). We could imagine many other similar
queries also relevant in the context of MegaM@Rt2, according to different needs of the
industrial partners.

To summarize, the main benefit of using a view is to collect in a transparent way
information that is spread among different models. Without such a view, the engineer
has to query the different models one by one and then aggregate the obtained results by
herself. This includes recreating the mappings between related elements from different
models in the view. Instead, using a view, queries traversing several contributing models
(such as the queries mentioned previously) can be expressed and computed naturally as
if dealing with a single model.

4.4.3 Objectives

In the MegaM@Rt2 context, it is not sufficient to be able to build model views: the
view mechanism must scale up when aggregating very large models provided by the
industrial partners. More generally, the need for scalable modeling solutions has been
observed in several industrial contexts [210, 109], and is also recognized as a long-term
challenge from a research perspective [127]. However, existing model view solutions do
not handle large and very large models well, if at all (cf. Section 4.2.1).

With this experiment, we target the building, handling and querying of scalable model
views over heterogeneous model resources (cf. RQ5 in Section 4.4.1). We consider here
heterogeneity in terms of both the used modeling languages (i.e. metamodels) and the
underlying persistence solutions. As introduced before in Section 4.2.4 and Section 4.3.3,
we intend to evaluate the four following challenges:

1. Refining the model view framework to model resources using different persistence
solutions.

2. Persisting any view-specific information in a scalable way.

3. Loading views and accessing view elements with a reasonably low overhead.

4. Querying views efficiently, e.g. by leveraging persistence-specific optimizations.

At the time of writing, we have successfully tackled (1), (2) and (3), and partially addres-
sed (4). The details are provided in what follows.

4.4.4 Process

To evaluate our integration approach and its current implementation, we applied them
in the context of the use case introduced earlier (cf. Section 4.4.2). We focused on me-
asuring the time overhead of our current implementation, because it directly impacts the
interactive user experience (as opposed to batch processing). However, as dealing with
on-disk resources is inevitably (one to two orders of magnitude) slower than dealing with

4.4. EVALUATION 123

in-memory resources, matching the speed of in-memory resources is not a realistic goal.
Thus, we rather insisted on the asymptotic behavior of our approach and on gains made
by our optimizations. For reproducibility, the complete source code of the performed ben-
chmarks (including the models and views) as well as more detailed results are available
online 5 6.

All the benchmarks have been realized on a laptop with an i7-7600 (2.80GHz) pro-
cessor, 32GB of RAM, and M.2 PCIe SSD, using OpenJDK 64-bit 1.8.0. We built two
versions of the same view answering to the MegaM@Rt2 use case.

The first version is fully file-based: all four contributing models and the view-specific
information (i.e. the weaving model) are serialized using standard EMF-XMI. Thus, once
loaded, the view resides fully in memory.

The second version demonstrates our capability to build views over heterogeneous
model resources. It uses a mix of file-based and database resources as contributing mo-
dels. More precisely, the Runtime Log model and the weaving model are persisted in a
Neo4j graph database handled by NeoEMF, using our mapping developed for optimizing
flat models (cf. Section 4.3.3). The Java Source Code model is persisted in a relational
database handled by CDO. Only the two remaining models, namely the UML Compo-
nent model and the ReqIF Requirement model, are serialized as XMI files handled by the
standard EMF implementation.

Furthermore, we also evaluated the scalability of both versions of the view. To this
intent, for each version we considered different sizes for the Runtime Log model, going
from 101 to 106 elements. This way, we have been able to measure the performance
of the view creation, loading and querying up to large-scale models, as required in our
MegaM@Rt2 context.

4.4.5 Scalability Benchmarks

Benchmark 1: Creating the View-specific Information

The first benchmark evaluates the creation of the view-specific data, stored as a we-
aving model, that is needed by the view in order to be loaded. This benchmark notably
measures the overhead of navigating and populating such databases resources, compared
to in-memory EMF resources.

The weaving model contains the new (virtual) links between the different models
composing the view. In Figure 4.14, we created three virtual links: (1) we connect a
given execution Log to the Java ClassDeclaration that emitted it; (2) we relate the Java
Package this ClassDeclaration is part of to the UML Component that represents it at
design level; (3) we link this UML Component to the corresponding ReqIF SpecObject,
i.e. the requirement the UML Component is supposed to support.

As a consequence, creating the weaving model implies checking different matches
between two elements coming from two contributing models. For large models, such
as the Runtime Log one from the MegaM@Rt2 scenario, these matches can be very

5. https://github.com/atlanmod/scalable-views-heterogeneous-models
6. http://remodd.org/content/towards-scalable-views-heterogeneous-

model-resources

https://github.com/atlanmod/scalable-views-heterogeneous-models
http://remodd.org/content/towards-scalable-views-heterogeneous-model-resources
http://remodd.org/content/towards-scalable-views-heterogeneous-model-resources

124 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

Size XMI Hetero. Overhead
101 0.001 0.051 38
102 0.001 0.028 23
103 0.001 0.058 52
104 0.004 0.293 81
105 0.098 1.778 18
106 8.460 22.556 3

Table 4.2 – Time (in minutes) to create the view-specific models (weaving models).

Size XMI Hetero. Overhead
101 0.011 0.704 64
102 0.036 1.828 51
103 0.285 13.284 47
104 2.799 130.736 47
105 28.112 1316.776 47
106 282.994 13263.500 47

Table 4.3 – Size (in megabytes) of the view-specific models (weaving models) on disk.

numerous. In these cases, the whole matching process can take a significant amount of
time. Table 4.2 compares the time it takes to create the weaving model using the two
versions of our view, while Table 4.3 compares the sizes of the persisted weaving models
on disk. The Size column in both tables refers to the number of log elements in the
Runtime Log model.

A first observation is that, while models stored in databases are, as expected, slower to
create than models serialized in XMI, the overhead for the heterogeneous views diminis-
hes when models get larger. This is possibly indicating a better asymptotic performance.
A second observation is that the weaving models persisted in databases are overall 50 ti-
mes larger than the ones persisted in XMI, and this factor is constant across model sizes.
The large size of the persistence format used by the database backend can be explained
by the creation of many indexes and logs when initializing the resource. Even though
the heterogeneous resources are larger on disk, the compromise is made in favor of faster
lookup as we will see in next two benchmarks.

Benchmark 2: Loading the View

In the second benchmark, we evaluate both the loading of a view and the iteration
over all its contents. Again, we perform this on the two versions of the view (full XMI
vs. databases + XMI). This benchmark measures the overhead of accessing the content
of the different models contributing to the view. Table 4.4 compares the time it takes to
load the two versions of the view, while Table 4.5 compares the time required to iterate
over the full content of the view.

A first point is that loading the heterogeneous view takes a relatively low and constant
time (between 1 and 4 seconds), regardless of the size of the Runtime Log model (i.e. the
largest one) contributing to the view. For the largest model size, it takes four times longer
to load the first view compared to the similar heterogeneous view which uses our appro-

4.4. EVALUATION 125

Size XMI Hetero. Overhead
101 0.788 2.265 2.87
102 0.257 0.870 3.39
103 0.245 0.750 3.06
104 0.389 0.811 2.08
105 0.921 2.482 2.69
106 12.214 3.006 0.25

Table 4.4 – Time (in seconds) to load the view.

Size XMI Hetero. Overhead
101 1.468 5.049 3
102 0.641 3.029 5
103 0.469 2.222 5
104 0.623 2.833 5
105 0.948 6.795 7
106 1.946 82.323 42

Table 4.5 – Time (in seconds) to iterate over the full content of the view.

ach. This difference can be explained by the lazy loading of our approach, where most of
the actual loading takes place when navigating model elements.

When iterating over the full content of the view, the overhead remains relatively small,
but slightly increases as the Runtime Log model gets larger. For the largest size, the
heterogeneous view is 42 times slower to navigate, which is around the expected speed
difference between RAM and disk. This large increase in time can be partly explained by
the data model of the underlying database, for which exhaustive iteration is a very costly
operation due to numerous loads/unloads between database and memory. While a full
iteration scenario may not be very common in practice, it is a useful reminder that the
choice of data representation can have a strong impact on performance.

Benchmark 3: Querying the View

In the third benchmark, we measure the time it took to successfully run three different
OCL queries on top of our view. The considered OCL queries are the following:

1. Log.allInstances()->size()

2. Log.allInstances()

->any(l| l.message.startsWith(’CaptchaValidateFilter’))

.javaClass._’package’.component.requirements

->size()

3. SpecObject.allInstances()

->any(r| r.values->selectByType(AttributeValueString)

->exists(v| v.theValue.startsWith(’Controller’)))

.components->collect(c| c.javaPackages)

->collect(p| p.ownedElements)->selectByType(ClassDeclaration)

->collect(c| c.traces)->size()

126 CHAPTER 4. MODEL FEDERATION AND COMPREHENSION

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 1.083 0.049 5.655 4.722
102 0.683 0.025 2.694 3.000
103 0.477 0.019 2.087 1.744
104 0.433 0.022 2.707 1.905
105 0.872 0.576 7.777 2.309
106 5.485 0.752 85.030 14.544

Table 4.6 – Time (in seconds) to run the OCL query (1).

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 1.093 0.116 5.075 4.043
102 0.711 0.031 3.478 2.563
103 0.527 0.033 3.256 2.087
104 0.570 0.068 5.336 3.173
105 1.050 0.241 16.604 9.626
106 6.294 4.008 178.444 114.733

Table 4.7 – Time (in seconds) to run the OCL query (2).

The first query simply counts all the instances of Log elements in the view, and thus only
accesses the Runtime Log model via the view. The other two traverse the complete view,
i.e. they access to elements from all of the four contributing models.

Table 4.6 compares the time it takes to execute query (1) on the two versions of our
view. Tables 4.7 and 4.8 do the same for queries (2) and (3), respectively. In these three
tables, the two additional (Opt.) columns refer to optimized views that use the custom
extents map we described in Section 4.3.3.

One observation is that, on the heterogeneous view, the queries can be 11 to 30 times
slower than on the XMI view, which is still lower than the expected speed difference
between RAM and disk. The optimized versions are a 2- to 6-fold improvement, which
brings the overhead down to 3 to 30 times slower, as the optimizations also benefit the
XMI view. The effect of the specialization of the allInstances operation on the Runtime
Log model stored in database is the most evident on the last line of Table 4.6. For the
other two queries, the improvement is lower, but still significant. Some further gains may
lie in fully specializing the queries into backend-specific request plans, as proposed in
Section 4.2.4.

Size XMI XMI (Opt.) Hetero. Hetero. (Opt.)
101 1.133 0.186 4.473 3.860
102 0.664 0.026 2.575 2.270
103 0.688 0.046 2.148 1.869
104 0.691 0.248 5.138 3.147
105 1.757 0.857 18.518 12.843
106 12.722 7.647 251.451 154.621

Table 4.8 – Time (in seconds) to run the OCL query (3).

4.5. CONCLUSION 127

4.5 Conclusion

When (reverse) engineering complex systems, many different models are used to re-
present various system aspects. These models are often heterogeneous in terms of mo-
deling language, provenance, number or scale. Because of this situation, the information
relevant to engineers is usually split into several interrelated models. As a consequence,
model view approaches are required in order to properly federate such models together.
The objective is to provide global views improving the comprehension of the system un-
der study (possibly from different perspectives).

In this Chapter, we first described an extended state-of-the-art on existing model view
solutions (coming from both the academic and industrial worlds). The obtained results
can be considered as a first step in the direction of clarifying the terminology and si-
tuation in terms of views/viewpoints on models. Then, we presented a generic model
view conceptual approach and a corresponding implementation framework named EMF
Views. They intend to facilitate the specification, creation and handling of viewpoints
and views over possible heterogeneous large metamodels and models (respectively). The
provided description notably includes the overall underlying approach, a core virtualiza-
tion metamodel, a couple of connected DSLs and an integration approach with existing
persistence solutions. We also presented a realistic application of our approach and the
EMF Views framework on a practical use case. In addition, we discussed the results of
different related scalability benchmarks.

EMF Views, as a project and technical solution, is relatively far from being as mature
as our MoDisco contribution to MDRE (cf. Chapter 3). We are still at an early phase,
even if a significant development and consolidation effort has been realized in the context
of various collaborative projects (cf. Section 5.2). Nevertheless, all the related resour-
ces (source code, examples, documentation) have already been made available in open
source. Thanks to this, we hope to trigger more interest from the community on both our
model view approach and the associated technical solution in the coming years.

A positive signal is that we have already been able to deploy and apply our conceptual
approach and EMF Views framework in the context of a concrete use case coming from
real industrial needs (cf. 4.4.2). It has shown in practice that it can actually scale up if a
sufficient research and development effort is made. It has also proved its capabilities in
terms of genericity, expressivity, non-intrusiveness or interoperability with other existing
solutions. However there are still many open challenges, for instance as far as view
modifiability and synchronization are concerned. This gives room for more interesting
research on these topics in the future.

5
Conclusion

5.1 Summary

In this manuscript, we have drawn the basis of a modeling infrastructure that aims at
improving the support for software reverse engineering and comprehension in the context
of possibly complex and heterogeneous systems. More specifically, we have proposed
and described a couple of complementary and reusable model-based approaches. These
two model-based approaches (and their respective implementation frameworks) allow
dealing with model discovery, model understanding and model federation (via model
views) activities in a scalable way.

Firstly, we have presented MODISCO as a generic and extensible MDRE approach
intending to facilitate the elaboration of MDRE solutions in many different contexts. Our
approach is realized as a ready-to-use framework that is also an official Eclipse project
on top of the Eclipse/EMF modeling environment. The framework comes with a set
of MDRE components that can be taken, reused and assembled as wished in order to
build a final solution. We have shown the relevance and applicability of MODISCO on
different real industrial scenarios. It notably allows discovering different kinds of models
(mostly structural ones at first, but also behavioral ones thanks to latest research work on
FREX) out of already existing software systems. The obtained sets of various and varied
discovered models can then be reused for further model federation and comprehension,
e.g. using EMF VIEWS as mentioned in the next paragraph.

Secondly, we have described EMF VIEWS as a complementary generic and extensi-
ble approach intending to specify, build and manipulate views over sets of existing (and
potentially large) models. It is also realized as a dedicated framework implemented on top
of the Eclipse/EMF modeling environment. We have shown the relevance and scalability
of EMF VIEWS by applying it in the context of a realistic scenario coming from an in-
dustrial collaborative project. The framework notably comes with a model virtualization
backend that allows, in a given view, referring to different contributing models in a trans-

129

130 CHAPTER 5. CONCLUSION

parent and non-intrusive way. It can be used to define and obtain views federating models
that conform to any metamodel(s). Such views can then be navigated and/or queried, as
any regular models, in order to get a better comprehension of the modeled systems. In
addition, EMF VIEWS also provides a couple of DSLs (in its current version) intending
to facilitate the specification of viewpoints and views.

All the presented solutions have been implemented as sets of open source Eclipse
plugins released under the EPL [66] license, and are fully available online.

5.2 Impact of the Results

The research work presented all along this manuscript has been conducted mostly
within different collaborative projects, involving both academic partners and industrial
ones (ranging from large international companies to local Small and Medium-sized En-
terprises (SMEs)). As a consequence, the proposed contributions are deeply anchored in
real world concerns. In what follows, we introduce 4 of our collaborative projects that are
particularly relevant in the context of this manuscript and in which we have been (or still
are) strongly involved. For each one of them, we provide a short presentation of the pro-
ject and its scope, as well as a summarized description of our specific realizations in this
project. Notably, we insist on the direct relation with the research contributions proposed
in the manuscript. Section 5.2.1 gives an overview of 2 European projects while Section
5.2.2 briefly presents 2 French national projects.

5.2.1 European Collaborative Projects

The ARTIST FP7 Project

The Advanced Software-based Service Provisioning and Migration of Legacy Soft-
ware (ARTIST) collaborative project 1 is an industrially-supported European initiative
(FP7) that started in October 2012 and finished in September 2015 (for a whole duration
of 3 years). It was coordinated by ATOS Spain and is consortium was composed of 9 other
partners: TECNALIA (Spain), Inria/us (France), Fraunhofer (Germany), TU Wien (Au-
stria), Engineering (Italy), ICCS (Greece), Sparx Systems (Austria), ATC (Greece) and
Spikes (Belgium). ARTIST aimed at proposing a software modernization approach based
on model-based techniques in order to automate the reverse and forward engineering of
legacy applications to the Cloud [143, 30]. To prove the validity of the proposed solution,
the project also comes with 4 case studies covering a significant variety of technological
environments (Java vs. .NET) and of application domains (environmental hazards, news
publication, business process management, public administration).

One of the main expected contributions of ARTIST was notably to provide a MDRE
approach and supporting tooling. This has naturally allowed us working on applying our
MDRE approach and MoDisco framework as well as pursuing further research around it.
More specifically, in this ARTIST context, we were able to really consolidate and stabilize
our MDRE conceptual approach as presented in Section 3.2. Moreover, we also had the
chance to push further our work on the model discovery of some behavioral aspects of

1. www.artist-project.eu/

www.artist-project.eu/

5.2. IMPACT OF THE RESULTS 131

existing systems (complementary to the support for their structural aspects). Indeed, this
was expressed as an important need for the industrial partners in the project. This directly
led us to the research work realized around fREX as described in Section 3.5.

The MegaM@Rt2 ECSEL-H2020 Project

The MegaM@Rt2 collaborative project 2 is a large and industrially-supported Euro-
pean initiative (ECSEL-H2020) that officially started on April 2017 for a planned duration
of 3 years. It relies on a wide consortium composed of 27 partners from 6 different na-
tional clusters (Sweden, France, Spain, Italy, Finland & Czech Republic) including large
companies such as Atos, Thales, Nokia, Volvo and Bombardier. MegaM@Rt2 aims at
incorporating methods and tools in order to develop a continuous system engineering and
validation approach that can be practically deployed in various industrial domains [1]. To
prove the validity of the proposed solution, the project also comes with 9 case studies co-
vering a large variety of potential application areas: aeronautics, railway, warehouse, te-
lecommunication, etc. MegaM@Rt2 deliverables reporting the project’s progresses have
already been produced during the first year and a half of the project, and new ones are
currently being developed for future releases.

One of the main expected contributions of MegaM@Rt2 is notably to propose a run-
time ↔ design time feedback loop that is (re)usable in these different contexts. In order
to realize this, scalable model-based methods and tools are being considered to improve
the productivity, quality and predictability of the concerned large complex industrial sy-
stems. Notably, in this project we propose to refine, extend and apply our model view
approach presented in Section 4.2 in order to implement the previously mentioned feed-
back loop. The overall idea is to specify, build and then query/navigate views federating
together very large models representing both runtime and design time aspects of the stu-
died systems. In this context, we have already been able to improve significantly the
performances of the EMF Views tooling, as described in Section 4.3 and Section 4.4.

5.2.2 National Collaborative Projects

The TEAP FUI 13 Project

The TOGAF Enterprise Architecture Platform (TEAP) collaborative project was a
joint 3-year French collaboration between Capgemini (IT Consulting), DCNS (Naval de-
fense and energy), Obeo (Software company specialized in MDE) and our research team.
Its main objective was to provide an enhanced support for the governance of EA. In this
context, DCNS identified the need for specializing their EA toolkit to their particular case.
They wanted to complement TOGAF [196] in order to include both business process in-
formation and requirement specifications [33]. Besides the need for integration within
their overall EA solution, DCNS wanted to be able to interconnect the corresponding
models with the TOGAF models and to provide partial views depending on some DCNS
member profiles (with limited access to given model elements, e.g. for security reasons).
In order to do so, they had to specify several viewpoints notably linking EA, requirement
and business process metamodels altogether.

2. http://megamart2-ecsel.eu/

http://megamart2-ecsel.eu/

132 CHAPTER 5. CONCLUSION

The main expected contribution of TEAP was to propose a model federation me-
chanism allowing to combine heterogeneous models in order to facilitate their overall
comprehension by engineers. Thus, in this context, we were able to conduct the initial
research and first developments on our model view approach (cf. Section 4.2) and imple-
menting EMF Views framework (cf. Section 4.3). This effort was then continued within
the MoNoGe project as introduced in what follows. Associated to this initial work, we
notably designed and developed a first version of VPDL as described in Section 4.2.3. It
is important to notice that this language is still evolving, and has been enhanced recently
in the context of the previously introduced MegaM@Rt2 project (cf. Section 5.2.1).

The MoNoGe FUI 15 Project

The MoNoGe collaborative project was a joint 3-and-a-half-year French collabora-
tion between SOFTEAM (Tool Provider and IT Consulting), DCNS (Naval defense and
energy), the LIP6 laboratory (Academic Research) and our research team. Its main ob-
jective was to provide a generic lightweight metamodel extension approach to be de-
ployed in industrial environments where rapid and efficient adaptations of the used mo-
deling tools are required [31]. The term lightweight was important because the proposed
mechanism could not require any kind of model migration or transformation process.
Moreover, metamodel extension definitions had to be shareable between different mo-
deling tools supporting the proposed mechanism. In practice, DCNS wanted to extend
their reference EA (meta)model with data coming from other EA standards. They also
wanted to be able to exchange these metamodel extensions between different modeling
tools they use as part of their tool set.

The main expected contribution of MoNoGe was to propose a metamodel extension
mechanism and related language that could be applied on any already existing metamo-
del(s). As a consequence, we considered this project as a direct follow-up of the pre-
viously introduced TEAP project. It notably allowed us continuing our research effort
around our model view approach (cf. Section 4.2) and related EMF Views framework
(cf. Section 4.3). Associated to this work, we notably designed and developed a first ver-
sion of MEL as described in Section 4.2.3. This was an interesting experience that helped
us ensuring the genericity of our solution on a different application scenario (than the
TEAP one). At the same time, this allowed us to refine our core virtualization metamodel
accordingly (cf. Section 4.2.2).

5.3 Lessons Learned

Even in favorable contexts such as the collaborative projects introduced in Section 5.2,
there is no silver bullet when it comes to create, design, develop and promote successful
model-based approaches and tools. In our research team, we have a quite long-term expe-
rience in this area. From my personal perspective, this has been illustrated in practice by
the two technical solutions resulting from the research work presented in this manuscript.
These experiences with MoDisco and EMF Views have allowed us to identify several key
factors that could also be relevant in the context of other software research and develop-
ment projects (i.e. not only model-based ones). We share and detail them further in what
follows:

5.3. LESSONS LEARNED 133

— Using an open source license. The global choice of adopting an open source
approach for publishing our research tools, managing them and communicating
around the different project results has been fundamental. It simplifies a lot all
common actions among the partners, notably concerning legal aspects (such as
the intellectual property) or the transparent exploitation and dissemination of the
results (especially as a research team). The fact that the selected open source li-
cense, the EPL [66] in our case, allows commercial adaptations and redistributions
of the software is also a win-win situation. Indeed, it can help to convince com-
panies to participate and contribute to the open source code base while allowing
them to later on adapt the components for their commercial use.
Open source is gaining more and more credibility, particularly in the industrial
world. But there is sometimes reluctance, e.g. in some big companies, to really
integrate and invest on this relatively new business model (compared to the tra-
ditional proprietary model). In this context, innovative SMEs can be easier to
convince as open source provides some kind of flexibility that is quite interesting
for such lighter organizations.

— Relying on a reference framework (i.e. EMF). For a tool to be stable and re-
liable, it must be built on solid ground. Thus, being based on an already well-
established and recognized framework is a guarantee of a certain quality level.
Moreover, due to the shared use of a common framework, this also helps targeting
a more widespread audience and facilitate the interoperability with already ex-
isting solutions. In the context of MoDisco and EMF Views, the choice of using
EMF as the reference modeling framework has been quite obvious since EMF was
and is still today the most widely use (open source) framework of this type.
However, while capitalizing on the numerous benefits brought by EMF, we also
inherit from his drawbacks. Currently, EMF still has some scalability issues when
dealing with very big models and these are open spaces for research and experi-
ments. We have already faced some of these problems in the case of EMF Views
for instance, cf. Chapter 4. But globally, such drawbacks are balanced by the
advantages of relying on a mature common framework like EMF.

— Following structured development processes. When building complex soluti-
ons, a well-defined development process (milestones, bug tracking, version cont-
rol, tests, coding style guidelines, etc.) is recommended.
In the case of MoDisco, being part of Eclipse (with its well-structured procedu-
res [61]) really helped in this matter. We were not following all the best practices
at the beginning, but the growing complexity of the project and increasing number
of users forced us to adopt them. Also, the released code being open source, the
work of the development team had to be better and the reliability of the built solu-
tion improved. In addition, the Eclipse Simultaneous Release yearly cycle forced
the project team to release and update tool versions (and related documentation)
on a regular basis. However deploying such a process can be quite heavy and so
generally cannot be supported by a research group alone, making the partnership
with a company a requirement (this is what we did in the context of MoDisco,
cf. the next item on this topic).
In the case of EMF Views, we have not yet been as far as what we did with
MoDisco. This situation mostly comes from limitations in terms of available de-
velopment resources from our side. This is also reinforced by the fact that we
have not yet been able to find a partner company to collaborate with us on this

134 CHAPTER 5. CONCLUSION

solution. However, even if EMF Views is not an Eclipse official project (con-
trary to MoDisco), we try to reach a certain level of structure and organization by
following common best practices (development in branches, use of pull requests,
regular commits, continuous integration, documentation, etc.).

— Integrating a widely recognized community. Open source itself is not enough
to attract new users as many open source projects are half-dead, of relatively poor
quality or adopted by a very limited set of users. Instead, being an official project
within an acknowledged community can give a lot more visibility. For instance,
the Eclipse brand is well-known and considered as a guarantee of high-quality by
many practitioners.
Thus, the effective integration of MoDisco into such an industrially recognized
project/community had a very beneficial impact over the general perception of the
tool by IT professionals. We recommend to try identifying such a well-known
community in its domain to benefit from the visibility and interactions with its
members. However, this is a bidirectional effort: the research team also needs to
strongly invest on the community, which we still have not been able to do in the
case of EMF Views.
During many years, we regularly attended the Eclipse conferences and tried to
participate to and use other Eclipse projects beyond ours. For different reasons
(e.g. due to other time-consuming activities and to more limited resources), we
had to lower down this dissemination effort since a couple of years. We observed
that this directly impacted the activity level around the MoDisco project (which
also started to decrease progressively) as well as the dissemination level of EMF
Views (which is not as good as it could be).

— Collaborating with an industrial partner. Companies often consider too risky
to use research prototypes due to their lack of proper user interface, documenta-
tion, completeness, support, etc. The problem is that research groups generally
have limited resources that cannot be devoted to work on such non-core research
activities. As a consequence, research prototypes very often remain simple proofs-
of-concept. Because of this situation, research groups can miss the opportunity of
having a larger tool user base, along with its associated benefits (e.g. empirical
validation, feedback, visibility, collaboration opportunities).
To avoid this situation for MoDisco, we had the possibility to partner with a
technology provider (Mia-Software [190], part of the Sodifrance Group) to in-
dustrialize MoDisco. This allowed us to focus on doing research while staying
sure to work on actually relevant industrial challenges. Instead, the industrial
partner took over the traditional software development and maintenance tasks.
This strengthened its presence and visibility within the Eclipse community and
surrounding open source market, and has also been used at the time to create a
business network (e.g. for providing training or special consulting services).
Such a partnership has worked well so far in the case of MoDisco, even though
it is not easy to maintain in the long run. However, we have still not achieved
this as far as EMF Views is concerned (notably because of the different reasons
mentioned in the previous items). This highlights the real difficulty of finding the
appropriate company, setting up the proper process and, more than all, getting the
required initial funding to initiate and then support such a collaboration during
several years.

— Being supported and rewarded by a host laboratory or institution for the

5.4. PERSPECTIVES AND FUTURE WORK 135

technology transfer effort. It is necessary to benefit from dedicated resour-
ces/structures, offered by the hosting institution, in order to help the research team
during such an industrialization process. Indeed, this process requires significant
(and non-core research) additional effort and knowledge in legal, financial, logis-
tic or commercial aspects, which are not competences always found in research.
As an example in our case, IMT Atlantique (formerly Ecole des Mines de Nan-
tes) 3, the LS2N 4 and previously Inria 5 have been providing some base support to
their different research teams via Innovation and Technology Transfer entities.
However, despite of this, the required extra effort is not always rewarded at its real
value from a research career perspective, highlighting the more global problem of
current evaluation criteria in research organizations. Consequently (and mostly
due to time or resource limitations), many research teams voluntarily ignore this
aspect of what should also be part of their normal working activity.
In the case of MoDisco (mostly) and EMF Views (to a much lower extent so
far), we think the realized technology transfer effort has been somehow beneficial
in terms of how our research is globally perceived by our host laboratory and
institutions. This notably allowed us to be identified and advertized as a research
group having strong interactions with the industrial world, and notably with the
European and French/regional ecosystems. However, at more individual levels,
this has not been directly rewarded in terms of internal financial support (e.g. to
develop further research work) or academic recognition (e.g. to access to other
responsibilities) for instance.

To summarize, from a research perspective, the main challenge at the end is always
finding the right balance between the fundamental nature of the research activity and the
expected (and evaluated) results in terms of scientific publications, innovative concep-
tual solutions, corresponding prototypes, etc. In the short-term, spending a lot of effort
on technical developments may seem counterproductive compared to more immediate
results that can be obtained if focusing only on publishing scientific papers. However,
in the medium- or long-term, a successful open source tool may be one of the biggest
assets a research team may produce, which is particularly true in an engineering domain
such as Software Engineering. Later on, this can notably be the source of many benefits
for the team like getting more interesting contacts, collaboration opportunities (meaning
more projects/contracts) and so potential available resources for continuously exploring
different research lines.

5.4 Perspectives and Future Work

The study of the state-of-the-art in terms of research (cf. Section 3.1 and Section
4.1), as well as our past and present experiences of collaboration with industrial partners
(cf. Section 5.2), have shown that there is a real need for generic model-based solutions
dealing with software reverse engineering and comprehension problems. We have also
seen that developing and promoting such solutions is not a trivial activity and requires a
significant effort (cf. Section 5.3).

3. http://www.imt-atlantique.fr/en
4. https://www.ls2n.fr/?lang=en
5. https://www.inria.fr/en/centre/rennes

http://www.imt-atlantique.fr/en
https://www.ls2n.fr/?lang=en
https://www.inria.fr/en/centre/rennes

136 CHAPTER 5. CONCLUSION

Anyway, there are many interesting (and open) research challenges that could still
be addressed in the future related to these topics of MDRE and model federation/com-
prehension via model views. In this last section of the manuscript, we present some
perspectives and associated future work that could be explored regarding the two concep-
tual approaches and technical solutions we proposed (cf. Section 5.4.1 and Section 5.4.2,
respectively). Finally, we end by proposing a higher-level vision over possible future
applications and related challenges in this Software Engineering area (cf. Section 5.4.3).

5.4.1 Model Driven Reverse Engineering

The future work around our proposed MDRE approach and implementing framework
MoDisco includes the following:

— Scalability improvement. As far as MoDisco is concerned, a significant effort
has already been devoted to the general scalability challenge, notably from the
Model Discovery perspective. The objective is to efficiently deal with the very
large models typically obtained when reverse engineering large code bases. The
current version of MoDisco has already proved to work on real projects of small
and medium size (according to an industrial scale). However, more work has to
be done to improve the performance when tackling very large systems.
— Parallelization. For instance, we could rely on various existing paralleliza-

tion techniques such as the ones that are related to model transformation [198]
as particularly relevant in our case. We could directly benefit from them when
model-to-model transformations are required in the MDRE process, but also
adapt them to the context of initial model discovery (text-to-model). The ge-
neral execution time could be significantly reduced because some transfor-
mation/discovery rules/patterns could be executed in parallel when possible
(instead of being systematically executed sequentially).

— Lazy loading. Another relevant technique for improving the overall scalabi-
lity of our solution is lazy loading. It consists in minimizing the in-memory
footprint by loading a model element only when accessed or requested (e.g. by
a model discoverer or following model transformation). For example, soluti-
ons like NeoEMF [49] provide such a capability for efficiently loading/storing
models from/into various kinds of databases. Some related experiments have
already been performed, reusing the MoDisco Java metamodel and discoverer
in order to evaluate the use of advanced prefetching and caching techniques
on various Java models [50]. They could be used to refine the current version
of these MoDisco components

— Reverse engineering of system behavioral aspects. In addition to the base sup-
port for structural aspects of systems, the initial research work performed around
fREX (and the corresponding Java-to-fUML mapping) has revealed interesting
findings.
— fUML extension for Java (and others). From a fUML perspective, several

aspects of the Java language are currently challenging to be represented such
as dynamic dispatching, generics (for classes and interfaces), exceptions and
assertions, external libraries or corresponding reflection aspects. These con-

5.4. PERSPECTIVES AND FUTURE WORK 137

cepts, or equivalent ones in other programming languages, are currently not
directly supported by fUML. Thus, we could explore how fUML may be ex-
tended to provide a more complete set of concepts to be used to map more
programming language concepts directly to fUML. For instance, the Java-to-
fUML mapping and implementing model transformation still need to be im-
proved to support more and more (behavioral) aspects of the complete Java
language (and not be restricted to MiniJava anymore).

— Support for additional languages. From a more general perspective, the
current version of fREX only comes with a single language support for Java
via our proposed Java-to-fUML mapping. For validation purposes, it would
be very interesting to enlarge the scope of the framework by covering another
widely used object-oriented language, such as C# or C++ for instance. For
the sake of completeness, the study may also be extended to a few non object-
oriented programming languages (e.g. C, or even COBOL or FORTRAN as
quite frequently found by our industrial partners in modernization projects).
The capability to reverse engineer multiple programs written with different
languages into a single fUML model (i.e. at a same abstraction level) is another
relevant aspect that could be studied as well.

— Dynamic program analysis. In parallel to the work around fREX, a PhD
thesis recently started in our group on the topic of extending our MDRE ap-
proach for supporting dynamic program analysis. The initial objective was
to retrieve runtime information out of system execution traces (produced via
automated code instrumentation). Then, this data can be related to structu-
ral models of this same system (discovered thanks to MoDisco) in order to
perform some impact analysis. The proposed architecture and first obtained
results are promising [131]. However, interesting challenges also appeared in
terms of general scalability (cf. also the previously related item in this section)
or used code instrumentation techniques.

— Reverse engineering of system mixed aspects. When reverse engineering exis-
ting software systems, some aspects to be better comprehend actually require to
consider both structural (static) and behavioral (dynamic) information. This usu-
ally implies addressing complex problems because of complementary dimensions
to be properly recovered and then related together.
— Graphical User Interfaces. GUIs have an important structural part (e.g. a

combination of widgets) but are also strongly characterized by how they are
supposed to behave and react at runtime (e.g. caught events and triggered acti-
ons). Moreover, depending on the used language or framework as well as on
the quality of the source code, this distinction is not always easy to appreci-
ate. Thus, reverse engineering such GUIs in a fully automated way is quite
challenging. Currently, our solution focuses on generic components and does
not provide any features specific to GUIs. To overcome this, we could extend
our approach by relying on some already existing model-based work in this
area [177, 96].

— Non-Functional Properties. While most of the MDRE approaches intend to
address the reverse engineering of functional properties (i.e. what the systems
do or provide as features), non-functional properties (e.g. performance, qua-
lity, security, usability, etc.) appear to be more complicated to tackle in a sys-

138 CHAPTER 5. CONCLUSION

tematic way. To this intent, an existing approach proposes to reverse engineer
goal models from legacy code (notably from Java code, by exploiting relevant
information such as used names or available comments for instance) [218].
Such goal models are supposed to capture the initial requirements of the sy-
stem stakeholders, and so can then be used to (partially) derive some system
non-functional properties. This proposed reverse engineering process could
be adapted and refined in the context of our MDRE approach.

— Generic integration. In addition to the two particular cases from the two pre-
vious items, it could be interesting to try generalizing the problem. Thus, we
could work on extending our generic approach to also provide support for bet-
ter integrating the reverse engineering of such different system aspects. Mo-
reover, the needed information could come from various interrelated source
artifacts instead of single ones (e.g. the business logic of an application can be
scattered between the actual database and the forms built on top of it, instead
of coming from a single source code file). This requires to be able to combine
the different obtained models in a certain way in order to represent the com-
plete logic. To this intent, the ongoing work around our generic model view
approach and implementing framework EMF Views appears to be particularly
relevant (cf. also next Section 5.4.2).

— Additional technical developments. Finally, there are also some more technical
challenges that could be addressed in the future related to MoDisco.
— Ready-to-use sets of components. The current version of the MoDisco fra-

mework provides a set of generic reusable components that have to be com-
bined in different ways (eventually also with other external components) in
order to support particular MDRE scenarios. We could extend the framework
by proposing in addition some pre-configured sets of components addressing
common needs in terms of reverse engineering (e.g. chaining a given model
discoverer with related model transformations and other components, such as
what we did with fREX for instance).

— Programming style. The current version of the Java model discoverer pro-
duces Java models that do not contain any specific information related to the
coding styles used within the original source code. However, it does preserve
element names, comments as well as some base formatting data. Such data,
along with an additional code style model provided by the users (or even auto-
matically initialized from various code samples) for instance, could be reused
in order to configure the code generators [176]. This could be particularly inte-
resting when automatically migrating to new technologies while style keeping
a given company style for coding.

5.4.2 Model Federation and Comprehension

The future work around our proposed model view approach and implementing frame-
work EMF Views includes the following:

— Scalability improvement. As far as EMF Views is concerned, a significant effort
has already been devoted to improving the general scalability of the solution in

5.4. PERSPECTIVES AND FUTURE WORK 139

the context of views federating several large and heterogeneous models. Notably,
we obtained interesting results when computing/initializing the view-specific in-
formation and loading corresponding views by using several database backends.
However, there is still room for interesting improvements.
— Transformation techniques. In the next steps of our work, we will push

further our experiments on view querying by also testing well-known model
transformation tools on our views, such as ATL [116] or VIATRA [203]. We
could reuse information available from the view in order to delegate parts of
the transformation computations directly to the underlying database backends.
We plan to do this by integrating scalable query/transformation approaches
related to these transformation languages, such as Gremlin-ATL [48] for in-
stance.

— Integration with other environments. Another possible work is to extend
our approach to additional model querying environments, and then check the
possible impacts in terms of scalability for the overall solution. For instance,
we could experiment on using our model view solution with Epsilon [69], as
they both rely on EMF. Epsilon provides its own language for handling/que-
rying models, named Epsilon Object Language (EOL), and notably supports
many common OCL operations.

— Incrementality. Moreover, we could also study how incremental querying
techniques could be integrated in our approach (in addition to the reuse of
some already realized optimizations, at OCL-level for instance [212]). For
instance, we could experiment on combining our view solution with EMF-
IncQuery that provides capabilities for incremental pattern matching [16].
This way, we could potentially obtain significant performance gains when exe-
cuting several consecutive queries over a same view.

— Advanced features. Our approach and implementing tool already provide the
required base capabilities for defining, building and handling model views. Ho-
wever, EMF Views could be extended in different ways in order to support more
advanced model view features. To this intent, there are several interesting and
relevant directions in which we could experiment in the future. Note that some of
these research lines (e.g. view update or validation) could directly benefit from a
more formal specification of the different operations we provide (cf. the descrip-
tion of our core virtualization metamodel and provided DSLs in Chapter 4). This
is already work in progress from our side.
— View update strategies. As a next line of work, we could experiment on

an enhanced model view mechanism that would deal (at least partially in a
first attempt) with the well-known view update problem [139]. Quite recent
work allowed to provide some model view update capabilities in the particular
(transformation-based) context of the ModelJoin tool [35]. However, the cur-
rent EMF Views implementation is limited to basic updates only (e.g. when an
attribute value is modified in the view, the corresponding contributing model
can be updated accordingly). In the same vein, we could extend it by propo-
sing some base update strategies to be selected (and eventually combined) by
the engineers specifying or using the viewpoints/views.

— View validation support. Some more advanced validation support for the
specified viewpoints and views is also required. The current version of EMF

140 CHAPTER 5. CONCLUSION

Views already comes with syntactic validation at viewpoint/view definition-
level (when using the provided DSLs). However, there is no further validation
as far as the semantics of the underlying operators is concerned. For instance,
we should be able to ensure that views federating several different models are
not breaking any constraints that could be expressed at individual model-level.

— Alternative DSLs for views. Our proposed approach/tooling already provi-
des a couple of DSLs for specifying model viewpoints/views. We made the
choice of offering textual languages as they are usually well-suited to software
engineers or developers. However, we could explore other alternative langua-
ges for view definition and manipulation, notably graphical ones, to evaluate
which one would offer a better usability depending on the context. To go
further, we could also experiment on translating and/or composing such view
definitions when expressed using different languages.

— View snapshot persistence. Our model view approach has been designed to
be lightweight and as non-intrusive as possible. Thus, the data coming from
the various contributing models is never duplicated and only accessed via in-
memory proxies. In addition to this default behavior, we could also offer the
option to persist complete snapshots of model views at given points in time.
This could be relevant in case users want to export them to other tools (e.g. to
external modeling frameworks), or to avoid a costly recomputation when not
strictly needed.

— Additional technical developments. Finally, there are also some more technical
challenges that could be addressed in the future related to EMF Views.
— New practical applications from the industry. In the context of the Me-

gaM@Rt2 project (cf. Section 5.2.1), we already applied our model view ap-
proach to support a runtime-to-design time feedback loop at software level. In
the future we want to apply EMF Views in the context of other MegaM@Rt2
use cases, but this time to also cover aspects outside of the pure software
world. For example, we already have plans to build views in scenarios in-
volving CPSs. The objective would be to trace the architectural models of
an industrial system (including a software part, but also a hardware one) with
runtime models representing the configuration and running of corresponding
physical entities.

— Integration within Modeling tools. The current version of EMF Views is dis-
tributed as a set of Eclipse plugins that notably rely on EMF as its underlying
modeling framework. Thus, it can already be easily installed in an Eclipse
workbench and work along with other existing EMF-based components. As
of today, the EMF Views open source solution is designed and developed in an
independent way. However, in the medium or longer term, we could envision
a potential deeper integration within larger EMF-based modeling tools (such
as Papyrus [72] for instance). This could be relevant in the context of our rese-
arch work on several of the previously mentioned topics (e.g. scalability, view
update or validation). More generally, this could also help promoting the use
EMF Views and disseminate it outside of the academic world.

5.4. PERSPECTIVES AND FUTURE WORK 141

5.4.3 Overview

As already mentioned in Section 2.1.3, software systems and particularly CPSs (i.e. in-
volving both software and hardware elements communicating together) are becoming
more and more present/important within the industry. This is being reinforced by several
ongoing and industrially-supported initiatives under the Industry 4.0 [97] or Industrie du
Futur [93] umbrellas (for instance). With the current trends on Cloud Computing [6], Fog
Computing and Internet of Things (IoT) [23] or Big Data and Machine Learning [213],
we can envision (many) more and more complex industrial software systems to be de-
veloped, maintained and then evolved in the future. As shown in Figure 5.1, this is not
coming without great challenges that also directly concern reverse engineering and com-
prehension activities as treated all along this manuscript.

Cloud/Fog
Computing

Internet of
Things (IoT)

Big Data,
Machine
Learning

Future
trends...

Heterogeneity
/ Adaptability

Scalability

Runtime vs.
Design Time

Figure 5.1 – More and more software systems to be developed, maintained and evolved
in the future (e.g. Industry 4.0).

The deployment of large Cloud infrastructures inside factories, implying the handling
and analysis of possibly huge amounts of data, makes the supporting systems even bigger
and more complex to handle. Thus, scalability will be again critical when maintaining and
migrating both these supporting systems and their related data. In addition, multiple types
of devices (e.g. captors/sensors, actuators) interoperating via local heterogeneous (Fog)
networks are more and more frequently encountered both inside and outside factories.
The reverse engineering and comprehension support for the corresponding systems will
have to be able to adapt in order to cope with this new dimension of heterogeneity. Finally,
the physical parts of these industrial CPSs make temporality a key property to be taken
into account. Indeed, at any moment in time, what happens at the hardware level at
runtime is critical and has to be correctly reflected (and handled) at the software level.
As a consequence, when maintaining and evolving such systems, capabilities to deal with
their behavioral (runtime) aspects will be strongly relevant and needed.

Glossary

ADM Architecture Driven Modernization. 30, 37, 40, 50, 52

AQL Acceleo Query Language. 93

ASTM Abstract Syntax Tree Metamodel. 50, 52

ATL AtlanMod Transformation Language. 73, 118

BPM Business Process Management. 30

BPMN Business Process Model and Notation. 30, 32, 41

CDO Connected Data Objects. 31, 65, 115, 117, 123

CIM Computation Independent Model. 28

CPS Cyber-Physical System. 18, 27, 81, 140, 141

DSL Domain Specific Language. 27, 32, 45, 82, 91, 95, 96, 97, 100, 101, 104, 105,
106, 108, 112, 114, 127, 129, 139, 140

EA Enterprise Architecture. 30, 131, 132

EBNF Extended Backus-Naur Form. 24, 25

ECL Epsilon Comparison Language. 90, 114

Ecore Eclipse Modeling Framework (EMF) (meta)metamodel. 24, 32, 88, 89, 91

EMC Epsilon Model Connectivity. 90

EMF Eclipse Modeling Framework. 16, 17, 23, 30, 31, 32, 33, 36, 51, 52, 61, 65,
82, 89, 90, 92, 93, 108, 113, 115, 117, 118, 123, 129, 133, 139, 140

EML Epsilon Merging Language. 90

EMOF Essential MOF. 32

EMP Eclipse Modeling Project. 31, 32, 51, 73

EOL Epsilon Object Language. 139

EPL Eclipse Public License. 30, 58, 130, 132

EVL Epsilon Validation Language. 90

fUML Foundational UML Subset. 17, 69, 70, 71, 72, 73, 74, 77, 78, 136, 137

HOT Higher-Order Transformation. 26

IDE Integrated Development Environment. 31

143

144 Glossary

IoT Internet of Things. 140

JavaEE Java Platform, Enterprise Edition. 53, 55, 62

JDT Eclipse Java Development Tools. 31, 54

JSP JavaServer Pages. 53, 55

KDM Knowledge Discovery Metamodel. 50, 52, 54

LOC Lines of Code. 58, 61, 66

MDA Model Driven Architecture. 28, 29, 30, 32, 33, 94

MDE Model Driven Engineering. 13, 15, 16, 18, 20, 23, 24, 25, 27, 28, 33, 36, 37,
39, 40, 41, 43, 45, 46, 48, 49, 50, 65, 79, 81, 83, 131

MDRE Model Driven Reverse Engineering. 15, 16, 17, 20, 30, 32, 36, 37, 39, 40,
41, 42, 43, 44, 48, 49, 50, 51, 53, 55, 56, 57, 58, 62, 64, 65, 66, 67, 68, 69, 71, 72,
79, 127, 129, 130, 135, 136, 137, 138

MEL Metamodel Extension Language. 106, 132

MOF MetaObject Facility. 24, 29, 30, 32

MOF2Text MOF Model to Text Transformation Language. 30

OCL Object Constraint Language. 29, 32, 53, 57, 86, 89, 91, 92, 94, 111, 118, 119,
139

OMG Object Management Group. 28, 29, 30, 32, 33, 37, 40, 50, 52, 64, 94

OSGI Open Services Gateway Initiative. 31

OSM Orthographic Software Modeling. 92

OWL Web Ontology Language. 92

PDE Plug-in Development Environment. 31

PIM Platform Independent Model. 28

PSM Platform Specific Model. 28, 30

QVT Query/View/Transformation. 30

RCP Rich Client Platform. 31

SMEs Small and Medium-sized Enterprises. 130, 133

SMM Structured Metrics Metamodel. 50, 52, 62, 63, 64

SQL Structured Query Language. 86, 91, 95, 104, 117

SUM Single Underlying Model. 92

SysML Systems Modeling Language. 30, 32, 41

TGGs Triple Graph Grammars. 93

UAF Unified Architecture Framework. 30

Glossary 145

UML Unified Modeling Language. 15, 17, 25, 30, 32, 39, 41, 52, 53, 70, 71, 76, 78,
86, 89, 91, 92, 94

VM Virtual Machine. 69, 70, 72, 73, 74, 77

VPDL ViewPoint Description Language. 104, 105, 106, 115, 131

VSM Viewpoint Specification Model. 93

W3C World Wide Web Consortium. 55

XMI XML Metadata Interchange. 29, 31, 32, 39, 66, 68, 108, 117, 123, 124, 126

XML EXtensible Markup Language. 24, 25, 39, 53, 55, 62, 92, 108, 109

Contents

1 Introduction and Context 13

1.1 Introduction . 13

1.2 Problem Statement . 14

1.3 Global Approach . 16

1.4 Proposed Contributions . 16

1.5 Thesis Context . 18

1.6 Scientific Production . 19

1.7 Outline . 20

2 Background 23

2.1 Modeling and Model Driven Engineering (MDE) 23

2.1.1 General Definition . 23

2.1.2 Core Concepts . 24

2.1.3 Challenges . 27

2.2 Modeling Standards and Techniques . 28

2.2.1 OMG’s Model Driven Architecture (MDA) 28

2.2.2 Related Standard Specifications 29

2.3 Modeling in/with Eclipse . 30

2.3.1 The Eclipse Open Source Platform 31

2.3.2 The Eclipse Modeling Project (EMP) 31

2.3.3 The Eclipse Modeling Framework (EMF) 32

2.4 Conclusion . 33

3 Model Driven Reverse Engineering 35

3.1 State of the Art and Challenges . 36

3.1.1 Overview . 37

3.1.2 Specific Reverse Engineering Solutions 39

147

148 CONTENTS

3.1.3 Generic Reverse Engineering Platforms and Frameworks 40

3.1.4 Challenges . 41

3.2 Proposed Conceptual Approach . 42

3.2.1 Overall Approach . 42

3.2.2 Model Discovery . 45

3.2.3 Model Understanding . 47

3.2.4 Main Benefits . 48

3.3 The MODISCO framework . 50

3.3.1 Project Overview . 50

3.3.2 Infrastructure Layer . 52

3.3.3 Technology Layer . 54

3.3.4 Use Cases Layer . 56

3.3.5 Extending MoDisco . 56

3.4 Evaluation . 57

3.4.1 Research Questions (RQs) . 57

3.4.2 MDRE Concrete Use Cases . 58

3.4.3 Performance Benchmarks . 65

3.5 The FREX Component . 69

3.5.1 Motivation . 70

3.5.2 Proposed Framework . 71

3.5.3 The Java-to-fUML Example . 74

3.5.4 Possible Applications . 77

3.6 Conclusion . 79

4 Model Federation and Comprehension 81

4.1 State of the Art and Challenges . 82

4.1.1 General Definitions . 83

4.1.2 Characterization of Model View Approaches 84

4.1.3 Description of Model View Approaches 88

4.1.4 General Challenges for the Community 94

4.2 Proposed Conceptual Approach . 96

4.2.1 Overall Approach . 97

4.2.2 Core Virtualization (Weaving) Metamodel 102

4.2.3 Viewpoint/View Specification DSLs 104

4.2.4 Integration With Model Persistence Solutions 108

CONTENTS 149

4.2.5 Main Benefits . 112

4.3 The EMF VIEWS framework . 113

4.3.1 Implementation Overview . 113

4.3.2 Tooling Support . 115

4.3.3 Integration With Model Persistence Solutions 115

4.4 Evaluation . 119

4.4.1 Research Questions (RQs) . 119

4.4.2 Practical Use Case . 120

4.4.3 Objectives . 122

4.4.4 Process . 122

4.4.5 Scalability Benchmarks . 123

4.5 Conclusion . 127

5 Conclusion 129

5.1 Summary . 129

5.2 Impact of the Results . 130

5.2.1 European Collaborative Projects 130

5.2.2 National Collaborative Projects 131

5.3 Lessons Learned . 132

5.4 Perspectives and Future Work . 135

5.4.1 Model Driven Reverse Engineering 136

5.4.2 Model Federation and Comprehension 138

5.4.3 Overview . 141

List of Tables

3.1 An overview of existing MDRE approaches - Specific solutions. 38

3.2 An overview of existing MDRE approaches - General-purpose solutions . 38

3.3 Mapping between MiniJava and fUML. 76

4.1 A comparison of existing model view approaches (3=feature supported,∅=not
applicable,w=Wizard). 88

4.2 Time (in minutes) to create the view-specific models (weaving models). . 124

4.3 Size (in megabytes) of the view-specific models (weaving models) on disk. 124

4.4 Time (in seconds) to load the view. 125

4.5 Time (in seconds) to iterate over the full content of the view. 125

4.6 Time (in seconds) to run the OCL query (1). 126

4.7 Time (in seconds) to run the OCL query (2). 126

4.8 Time (in seconds) to run the OCL query (3). 126

151

List of Figures

1 Un écosystème basé sur les modèles pour la rétro-ingénierie et compré-
hension des systèmes logiciel. 9

1.1 The three phases of a software modernization and/or migration project. . . 14

1.2 An ecosystem for the model-based reverse engineering and comprehen-
sion of existing Software systems. 17

2.1 System, model and metamodel. 24

2.2 The three-level Modeling stack and similar structuring in the EBNF &
XML technical spaces. 25

2.3 Model-to-model transformation. 26

2.4 Model-to-text Transformation, also commonly known as Code Generation 26

2.5 MDA vision: CIM, PIM and PSM. 29

2.6 Simplified version of the Ecore metametamodel from EMF. 33

3.1 MDRE framework architecture. 44

3.2 General principle of Model Discovery. 45

3.3 Two-step approach for Model Discovery. 46

3.4 General principle of Model Understanding. 47

3.5 A J2EE/Java example of a Model Understanding phase. 49

3.6 Overview of the Eclipse MoDisco project. 51

3.7 Architecture of the MoDisco framework. 52

3.8 The generic MoDisco Model Browser, customized for the UML metamodel. 54

3.9 Example of a discovered Java model opened in the MoDisco Model Brow-
ser. 55

3.10 The generic MoDisco Workflow, used for a sample Java refactoring process. 56

3.11 Java model before (left) and after (right) refactoring, using the MoDisco
Model Browser to show the effects of the first refactoring. 59

3.12 An example of Java application refactoring rule for type replacement. . . 60

3.13 Overall process of the model driven Java application refactoring. 60

153

154 LIST OF FIGURES

3.14 Sample Java code before (top) and after (bottom) refactoring. 61

3.15 Overall process of the model driven code quality evaluation. 63

3.16 The MoDisco-based Mia-Quality model editor. 64

3.17 Some quality measurements obtained as output of Mia-Quality. 65

3.18 Benchmark on the size of discovered Java models. 66

3.19 Benchmark on the time and memory footprint of a Java discovery process. 68

3.20 Benchmark on the time repartition during a Java discovery process. 69

3.21 Overall architecture of the fREX framework. 72

3.22 Java code expressed and executed by means of fUML. 75

4.1 A terminology for model view approaches. 83

4.2 A feature model for model view approaches. 85

4.3 A simple example of model viewpoint and view. 99

4.4 Overview of the Model View approach. 100

4.5 Viewpoint creation at design time. 101

4.6 View initialization at runtime . 102

4.7 Core virtualization metamodel of our approach. 103

4.8 A conceptual approach for integrating model view and model persistence
capabilities. 109

4.9 Optimizing model view querying by delegating to model persistence bac-
kends. 112

4.10 Current implementation of EMF Views (design time). 114

4.11 Current implementation of EMF Views (runtime). 114

4.12 Screenshot of an Eclipse workbench with EMF Views installed. 116

4.13 Running use case from the MegaM@Rt2 industrial project. 121

4.14 Concrete example of a view in MegaM@Rt2 (based on the use case from
Figure 4.13). 121

5.1 More and more software systems to be developed, maintained and evol-
ved in the future (e.g. Industry 4.0). 141

Bibliography

[1] W. Afzal, H. Bruneliere, D. Di Ruscio, A. Sadovykh, S. Mazzini, E. Cariou,
D. Truscan, J. Cabot, A. Gómez, J. Gorroñogoitia, L. Pomante, and P. Smrz. The
MegaM@Rt2 ECSEL project: MegaModelling at Runtime - Scalable Model-based
Framework for Continuous Development and Runtime Validation of Complex Sy-
stems. Microprocessors and Microsystems, 61:86–95, 2018. 18, 131

[2] Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune, C. Prud Homme, and T. Le-
doux. CoMe4ACloud: An End-to-End Framework for Autonomic Cloud Systems.
Future Generation Computer Systems, 86:339–354, 2018. 18

[3] A. Alnusair and T. Zhao. Towards a Model-driven Approach for Reverse Engi-
neering Design Patterns. In 2nd International Workshop on Transforming and We-
aving Ontologies in MDE (TWOMDE 2009), co-located with the ACM/IEEE 12th
International Conference on Model Driven Engineering Languages and Systems
(MODELS2009), volume 531, page 16, 2009. 38, 39

[4] K. Androutsopoulos, D. Clark, M. Harman, J. Krinke, and L. Tratt. State-based
Model Slicing: A Survey. ACM Computing Surveys (CSUR), 45(4):53, 2013. 78

[5] A. Anjorin, S. Rose, F. Deckwerth, and A. Schürr. Efficient Model Synchronization
with View Triple Graph Grammars. In 10th European Conference on Modelling
Foundations and Applications (ECMFA 2014), pages 1–17. Springer, 2014. 94

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. A View of Cloud Computing. Communi-
cations of the ACM, 53(4):50–58, 2010. 141

[7] C. Atkinson, P. Bostan, D. Brenner, G. Falcone, M. Gutheil, O. Hummel, M. Ju-
hasz, and D. Stoll. Modeling Components and Component-Based Systems in
KobrA. In The Common Component Modeling Example, pages 54–84. Springer,
2008. 93

[8] C. Atkinson and T. Kühne. The Essence of Multilevel Metamodeling. In 4th
International Conference on the Unified Modeling Language (UML’01), pages 19–
33. Springer, 2001. 24

[9] C. Atkinson and T. Kuhne. Model-Driven Development: a Metamodeling Founda-
tion. IEEE Software, 20(5):36–41, 2003. 24

[10] C. Atkinson, D. Stoll, and P. Bostan. Orthographic Software Modeling: a Practical
Approach to View-based Development. In International Conference on Evalua-
tion of Novel Approaches to Software Engineering (ENASE 2008), pages 206–219.
Springer, 2008. 92

[11] Atlanmod.org. EMF Views, 2018. URL: http://www.atlanmod.org/
emfviews/. 115

155

http://www.atlanmod.org/emfviews/
http://www.atlanmod.org/emfviews/

156 BIBLIOGRAPHY

[12] F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, and E. Cariou. Model-
driven Reverse Engineering of COBOL-based Applications. In Information Sys-
tems Transformation, pages 283–299. Elsevier, 2010. 38, 39

[13] L. Baresi and M. Pezzè. A Toolbox for Automating Visual Software Engineering.
In International Conference on Fundamental Approaches to Software Engineering
(FASE 2002), pages 189–202. Springer, 2002. 37

[14] I. D. Baxter and M. Mehlich. Reverse Engineering is Reverse Forward Engineer-
ing. In 4th Working Conference on Reverse Engineering (WCRE 1997), pages
104–113. IEEE, 1997. 6, 14

[15] K. Bennett. Legacy Systems: Coping with Success. IEEE Software, 12(1):19–23,
1995. 5, 13

[16] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös.
Incremental Evaluation of Model Queries over EMF models. In ACM/IEEE 13th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2010), pages 76–90. Springer, 2010. 139

[17] A. Bergmayr, H. Bruneliere, J. L. C. Izquierdo, J. Gorronogoitia, G. Kousiouris,
D. Kyriazis, P. Langer, A. Menychtas, L. Orue-Echevarria, C. Pezuela, et al. Mi-
grating Legacy Software to the Cloud with ARTIST. In Software Maintenance
and Reengineering (CSMR), 2013 17th European Conference on, pages 465–468.
IEEE, 2013. 71

[18] A. Bergmayr, M. Grossniklaus, M. Wimmer, and G. Kappel. JUMP - From Java
Annotations to UML Profiles. In ACM/IEEE 17th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014), pages 552–
568. Springer, 2014. 76

[19] J. Bézivin. On the Unification Power of Models. Software & Systems Modeling,
4(2):171–188, 2005. 5, 14, 24

[20] J. Bézivin. Model Driven Engineering: An Emerging Technical Space. In Ge-
nerative and Transformational Techniques in Software Engineering, pages 36–64.
Springer, 2006. 23, 24

[21] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Frame-
work. In 16th Annual International Conference on Automated Software Engineer-
ing (ASE 2001), pages 273–280. IEEE, 2001. 28

[22] G. Blair, N. Bencomo, and R. B. France. Models@ Run. Time. IEEE Computer,
42(10), 2009. 28

[23] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu. Fog Computing: A Platform for
Internet of Things and Analytics. In Big Data and Internet of Things: A Roadmap
for Smart Environments, pages 169–186. Springer, 2014. 141

[24] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven Software Engineering in
Practice. Synthesis Lectures on Software Engineering, 3(1):1–207, 2017. 6, 14,
23, 27, 28

[25] L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse Engineering of UML
Sequence Diagrams for Distributed Java Software. IEEE Transactions on Software
Engineering, 32(9):642–663, 2006. 38, 39, 78

BIBLIOGRAPHY 157

[26] H. Bruneliere, Z. Al-Shara, F. Alvares, J. Lejeune, and T. Ledoux. A Model-based
Architecture for Autonomic and Heterogeneous Cloud Systems. In 8h Internatio-
nal Conference on Cloud Computing and Services Science (CLOSER 2018), 2018.
18

[27] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer. A Feature-based Survey of
Model View Approaches. Software & Systems Modeling, pages 1–22, 2017. 7, 15,
18, 83, 84, 88

[28] H. Bruneliere, J. Cabot, C. Clasen, F. Jouault, and J. Bézivin. Towards Model
Driven Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools. In
6th European Conference on Modelling Foundations and Applications (ECMFA
2010), pages 32–47. Springer, 2010. 18

[29] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A Model Driven Re-
verse Engineering Framework. Information and Software Technology, 56(8):1012–
1032, 2014. 32, 38, 120

[30] H. Bruneliere, J. Cabot, J. L. C. Izquierdo, L. Orue-Echevarria, O. Strauss, and
M. Wimmer. Software Modernization Revisited: Challenges and Prospects. Com-
puter, 48(8):76–80, 2015. 18, 79, 130

[31] H. Bruneliere, J. Garcia, P. Desfray, D. E. Khelladi, R. Hebig, R. Bendraou, and
J. Cabot. On Lightweight Metamodel Extension to Support Modeling Tools Agi-
lity. In 11th European Conference on Modelling Foundations and Applications
(ECMFA 2015), pages 62–74. Springer, 2015. 82, 90, 132

[32] H. Bruneliere, F. Marchand de Kerchove, G. Daniel, and J. Cabot. Towards Sca-
lable Model Views on Heterogeneous Model Resources. In ACM/IEEE 21st Inter-
national Conference on Model Driven Engineering Languages and Systems (MO-
DELS 2018), pages 334–344. Springer, 2018. 108

[33] H. Bruneliere, J. G. Perez, M. Wimmer, and J. Cabot. EMF Views: A View Mecha-
nism for Integrating Heterogeneous Models. In The 34th International Conference
on Conceptual Modeling (ER 2015), pages 317–325. Springer, 2015. 82, 90, 131

[34] E. Burger, J. Henss, M. Küster, S. Kruse, and L. Happe. View-based Model-
driven Software Development with ModelJoin. Software & Systems Modeling,
15(2):473–496, 2016. 91

[35] E. Burger and O. Schneider. Translatability and Translation of Updated Views in
ModelJoin. In International Conference on Theory and Practice of Model Trans-
formations (ICMT 2016), pages 55–69. Springer, 2016. 139

[36] Business Informatics Group - TU Wien. Moliz project, 2018. URL: http://
www.modelexecution.org. 73

[37] G. Canfora, A. Cimitile, and M. Munro. RE2: Reverse-Engineering and Reuse Re-
Engineering. Journal of Software Maintenance: Research and Practice, 6(2):53–
72, 1994. 36

[38] G. Canfora, M. Di Penta, and L. Cerulo. Achievements and Challenges in Software
Reverse Engineering. Communications of the ACM, 54(4):142–151, 2011. 6, 15,
35, 78

[39] J. Canovas and J. Molina. An Architecture-driven Modernization Tool for Calcu-
lating Metrics. IEEE Software, 27(4):37–43, 2010. 46

http://www.modelexecution.org
http://www.modelexecution.org

158 BIBLIOGRAPHY

[40] H. Chapman and P. A. Hall. Software Reuse and Reverse Engineering in Practice.
Chapman and Hall, Ltd. London, UK, 1992. 35

[41] M. Chechik, S. Nejati, and M. Sabetzadeh. A Relationship-based Approach to
Model Integration. Innovations in Systems and Software Engineering, 8(1):3–18,
2012. 95

[42] Checkstyle. Checkstyle development tool, 2018. URL: http://
checkstyle.sourceforge.net. 62

[43] E. J. Chikofsky and J. H. Cross. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1):13–17, 1990. 6, 14, 35

[44] A. Cicchetti, F. Ciccozzi, and T. Leveque. A Hybrid Approach for Multi-view
Modeling. Electronic Communications of the EASST, 50, 2011. 88

[45] M. Clavreul, O. Barais, and J.-M. Jézéquel. Integrating Legacy Systems with
MDE. In ACM/IEEE 32nd International Conference on Software Engineering
(ICSE 2010), volume 2, pages 69–78. IEEE, 2010. 38, 39

[46] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke. A
Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE
Transactions on Software Engineering, 35(5):684–702, 2009. 70

[47] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006. 25

[48] G. Daniel, F. Jouault, G. Sunyé, and J. Cabot. Gremlin-ATL: a Scalable Model
Transformation Framework. In 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2017), pages 462–472. IEEE, 2017. 139

[49] G. Daniel, G. Sunyé, A. Benelallam, M. Tisi, Y. Vernageau, A. Gómez, and J. Ca-
bot. NeoEMF: a Multi-database Model Persistence Framework for Very Large
Models. Science of Computer Programming, 149:9–14, 2017. 113, 115, 117, 136

[50] G. Daniel, G. Sunyé, and J. Cabot. PrefetchML: a Framework for Prefetching
and Caching Models. In ACM/IEEE 19th International Conference on Model Dri-
ven Engineering Languages and Systems (MODELS 2016), pages 318–328. ACM,
2016. 136

[51] J. Davis. GME: The Generic Modeling Environment. In 18th annual ACM SIG-
PLAN conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA 2003), pages 82–83. ACM, 2003. 37

[52] C. Debreceni, Á. Horváth, Á. Hegedüs, Z. Ujhelyi, I. Ráth, and D. Varró.
Query-driven Incremental Synchronization of View Models. In 2nd Workshop on
View-Based, Aspect-Oriented and Orthographic Software Modelling (VAO 2014),
page 31. ACM, 2014. 94

[53] F. Deissenboeck, L. Heinemann, B. Hummel, and E. Juergens. Flexible Archi-
tecture Ccnformance Assessment with ConQAT. In ACM/IEEE 32nd Internatio-
nal Conference on Software Engineering (ICSE 2010), volume 2, pages 247–250.
IEEE, 2010. 38, 39

[54] S. Demeyer, S. Ducasse, and E. Tichelaar. Why FAMIX and not UML? UML Shor-
tcomings for Coping with Round-trip Engineering. In 2nd International Confe-
rence on the Unified Modeling Language (UML’99), pages 28–30. Springer, 1999.
70

http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net

BIBLIOGRAPHY 159

[55] P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling Cyber–Physical Systems.
Proceedings of the IEEE, 100(1):13–28, 2012. 28, 81

[56] R. Drath, A. Luder, J. Peschke, and L. Hundt. AutomationML - The Glue for Se-
amless Automation Engineering. In IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA 2008), pages 616–623. IEEE, 2008.
25

[57] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPRO - Generic Understanding
of Programs - An Overview. Electronic Notes in Theoretical Computer Science,
72(2):47–56, 2002. 38, 39

[58] Eclipse Foundation. Acceleo, 2018. URL: https://www.eclipse.org/
acceleo/. 31, 55, 57

[59] Eclipse Foundation. ATL Transformation Language (ATL), 2018. URL: https:
//www.eclipse.org/atl/. 31, 57, 118

[60] Eclipse Foundation. Connected Data Objects (CDO), 2018. URL: https://
www.eclipse.org/cdo/. 31, 65, 113, 115, 117

[61] Eclipse Foundation. Eclipse and the Eclipse Foundation, 2018. URL: http:
//www.eclipse.org/org/. 30, 133

[62] Eclipse Foundation. Eclipse Java Development Tools (JDT), 2018. URL: https:
//www.eclipse.org/jdt/. 54

[63] Eclipse Foundation. Eclipse Modeling Framework (EMF), 2018. URL: https:
//www.eclipse.org/modeling/emf/. 32, 57

[64] Eclipse Foundation. Eclipse Modeling Project, 2018. URL: https://
www.eclipse.org/modeling/. 31

[65] Eclipse Foundation. Eclipse Project and Platform, 2018. URL: https://
www.eclipse.org/eclipse/. 31

[66] Eclipse Foundation. Eclipse Public License (EPL) - v2.0, 2018. URL: https:
//www.eclipse.org/legal/epl-v20.html. 30, 58, 130, 133

[67] Eclipse Foundation. EMF Facet, 2018. URL: https://www.eclipse.org/
facet/. 51, 53, 79, 89

[68] Eclipse Foundation. EMFStore, 2018. URL: https://www.eclipse.org/
emfstore/. 31

[69] Eclipse Foundation. Epsilon, 2018. URL: https://www.eclipse.org/
epsilon/. 32, 139

[70] Eclipse Foundation. Help - Eclipse Platform, 2018. URL: https://
www.help.eclipse.org. 57

[71] Eclipse Foundation. MoDisco, 2018. URL: https://www.eclipse.org/
MoDisco/. 32, 50

[72] Eclipse Foundation. Papyrus, 2018. URL: https://www.eclipse.org/
papyrus/. 32, 91, 140

[73] Eclipse Foundation. Polarsys, Open Source Solutions for Embedded Systems,
2018. URL: https://www.polarsys.org. 91

[74] Eclipse Foundation. Sirius, 2018. URL: https://www.eclipse.org/
sirius/. 32, 93

https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/
https://www.eclipse.org/cdo/
https://www.eclipse.org/cdo/
http://www.eclipse.org/org/
http://www.eclipse.org/org/
https://www.eclipse.org/jdt/
https://www.eclipse.org/jdt/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/
https://www.eclipse.org/modeling/
https://www.eclipse.org/eclipse/
https://www.eclipse.org/eclipse/
https://www.eclipse.org/legal/epl-v20.html
https://www.eclipse.org/legal/epl-v20.html
https://www.eclipse.org/facet/
https://www.eclipse.org/facet/
https://www.eclipse.org/emfstore/
https://www.eclipse.org/emfstore/
https://www.eclipse.org/epsilon/
https://www.eclipse.org/epsilon/
https://www.help.eclipse.org
https://www.help.eclipse.org
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/MoDisco/
https://www.eclipse.org/papyrus/
https://www.eclipse.org/papyrus/
https://www.polarsys.org
https://www.eclipse.org/sirius/
https://www.eclipse.org/sirius/

160 BIBLIOGRAPHY

[75] Eclipse Foundation. VIATRA Viewers, 2018. URL: https://
www.eclipse.org/viatra/documentation/addons.html. 94

[76] Eclipse Foundation. Xtend, 2018. URL: https://www.eclipse.org/
xtend/. 114

[77] Eclipse Foundation. Xtext, 2018. URL: https://www.eclipse.org/
Xtext/. 32, 92, 114

[78] Eclipse Foundation - Polarsys. Kitalpha, 2018. URL: https://
www.polarsys.org/projects/polarsys.kitalpha. 91

[79] E. Eilam. Reversing: Secrets of Reverse Engineering. John Wiley & Sons, 2011.
36

[80] K. El Emam and A. G. Koru. A Replicated Survey of IT Software Project Failures.
IEEE Software, 25(5), 2008. 5, 13

[81] G. Engels, R. Hücking, S. Sauer, and A. Wagner. UML Collaboration Diagrams
and their Transformation to Java. In 2nd International Conference on the Unified
Modeling Language (UML’99), pages 473–488. Springer, 1999. 70

[82] J. A. Estefan et al. Survey of model-based systems engineering (MBSE) methodo-
logies. Incose MBSE Focus Group, 25(8):1–12, 2007. 23

[83] J.-M. Favre. Foundations of Model (Driven) (Reverse) Engineering : Models -
Episode I: Stories of The Fidus Papyrus and of The Solarus. In J. Bezivin and
R. Heckel, editors, Language Engineering for Model-Driven Software Develop-
ment, number 04101 in Dagstuhl Seminar Proceedings. IBFI, 2005. 37

[84] L. Favre. Model Driven Architecture for Reverse Engineering Technologies: Stra-
tegic Directions and System Evolution. IGI Global - Premier Reference Source,
2010. 37

[85] S. Feldmann, M. Wimmer, K. Kernschmidt, and B. Vogel-Heuser. A Comprehen-
sive Approach for Managing Inter-model Inconsistencies in Automated Production
Systems Engineering. In 16th International Conference on Automation Science
and Engineering (CASE 2016), pages 1120–1127. IEEE, 2016. 81

[86] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy. Columbus - Reverse
Engineering Tool and Schema for C++. In International Conference on Software
Maintenance (ICSM 2002), pages 172–181. IEEE, 2002. 38, 39

[87] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Vie-
wpoints: A Framework for Integrating Multiple Perspectives in System Develop-
ment. International Journal of Software Engineering and Knowledge Engineering
(SEKE), 2(1):31–57, 1992. 81, 83

[88] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A New Graph
Rewrite Language Based on the Unified Modeling Language and Java. In Interna-
tional Workshop on Theory and Application of Graph Transformations (TAGT’98),
pages 296–309. Springer, 1998. 70

[89] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M. Jézéquel. Model-driven
Engineering for Software Migration in a Large Industrial Context. In ACM/IEEE
10th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2007), pages 482–497. Springer, 2007. 38, 39

[90] M. Fowler. Domain-specific Languages. Pearson Education, 2010. 27

https://www.eclipse.org/viatra/documentation/addons.html
https://www.eclipse.org/viatra/documentation/addons.html
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.polarsys.org/projects/polarsys.kitalpha
https://www.polarsys.org/projects/polarsys.kitalpha

BIBLIOGRAPHY 161

[91] P. Fradet, D. Le Métayer, and M. Périn. Consistency Checking for Multiple View
Software Architectures. In Software Engineering - ESEC/FSE’99, pages 410–428.
Springer, 1999. 38, 40

[92] R. France and B. Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. In Future of Software Engineering (FOSE’07), pages 37–54.
IEEE Computer Society, 2007. 27

[93] French public industrial association. Alliance Industrie du Futur, 2018. URL:
http://www.industrie-dufutur.org. 28, 141

[94] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper,
G. Kinkelin, K. Nishikawa, and K. Lange. AUTOSAR–A Worldwide Standard is
on the Road. In 14th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden, volume 62, page 5, 2009. 25

[95] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Melo, and J. M.
Soto. White-box Modernization of Legacy Applications. In 6th International Con-
ference on Model and Data Engineering (MEDI 2016), pages 274–287. Springer,
2016. 38, 41

[96] K. Garcés, R. Casallas, C. Álvarez, E. Sandoval, A. Salamanca, F. Viera, F. Melo,
and J. M. Soto. White-box Modernization of Legacy Applications: the Oracle
Forms Case Study. Computer Standards & Interfaces, 57:110–122, 2018. 38, 41,
137

[97] German public industrial association. Plattform Industry 4.0, 2018. URL: http:
//www.plattform-i40.de. 28, 141

[98] D. Gessenharter and M. Rauscher. Code Generation for UML2 Activity Diagrams.
In 7th European Conference on Modelling Foundations and Applications (ECMFA
2011), pages 205–220. Springer, 2011. 70

[99] T. Girba. The Moose Book. Self Published, 2010. 37, 38, 40

[100] T. Goldschmidt, S. Becker, and E. Burger. Towards a Tool-Oriented Taxonomy of
View-Based Modelling. In Modellierung, volume 201, pages 59–74, 2012. 83

[101] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, and C. Guychard. Addressing
Modularity for Heterogeneous Multi-model Systems Using Model Federation.
In Companion of the 15th International Conference on Modularity (Modularity
2016), pages 206–211. ACM, 2016. 92

[102] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The Java Language Spe-
cification, Java SE 8 Edition (Java Series). Addison-Wesley Professional, 2014.
76

[103] R. C. Gronback. Eclipse Modeling Project: a Domain-Specific Language (DSL)
Toolkit. Pearson Education, 2009. 31

[104] O. Gruber, B. Hargrave, J. McAffer, P. Rapicault, and T. Watson. The Eclipse
3.0 Platform: Adopting OSGi Technology. IBM Systems Journal, 44(2):289–299,
2005. 31

[105] W. Harrison, C. Barton, and M. Raghavachari. Mapping UML Designs to Java.
In 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’00). ACM, 2000. 70

http://www.industrie-dufutur.org
http://www.plattform-i40.de
http://www.plattform-i40.de

162 BIBLIOGRAPHY

[106] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende. Closing the Gap between
Modelling and Java. In International Conference on Software Language Engineer-
ing (SLE 2009), pages 374–383. Springer, 2009. 38, 39

[107] J. Herrington. Code Generation in Action. Manning Publications Co., 2003. 6, 14,
25

[108] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu. Feature-based Classification of Bidirecti-
onal Transformation Approaches. Software & Systems Modeling, 15(3):907–928,
2016. 26

[109] J. Hutchinson, J. Whittle, and M. Rouncefield. Model-Driven Engineering Practi-
ces in Industry: Social, Organizational and Managerial Factors that Lead to
Success or Failure. Science of Computer Programming, 89:144–161, 2014. 122

[110] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empirical As-
sessment of MDE in Industry. In ACM/IEEE 33rd International Conference on
Software Engineering (ICSE 2011), pages 471–480. IEEE, 2011. 6, 14, 27

[111] IBM. Rational software architect (rsa), 2018. URL: https://www.ibm.com/
developerworks/downloads/r/architect/. 38, 41

[112] International Organization for Standardization (ISO). Extended Backus-Naur
Form (EBNF), ISO/IEC 14977:1996, 2018. URL: https://www.iso.org/
standard/26153.html. 24

[113] ISO/IEC/IEEE. Standard 42010:2011, Systems and Software Engineering - Ar-
chitecture Description, 2018. URL: https://www.iso.org/standard/
50508.html. 83, 88

[114] J. Jakob and A. Schürr. View Creation of Meta Models by Using Modified Triple
Graph Grammars. Electronic Notes in Theoretical Computer Science, 211:181–
190, 2008. 93

[115] J.-M. Jézéquel, O. Barais, and F. Fleurey. Model Driven Language Engineering
with Kermeta. In International Summer School on Generative and Transformatio-
nal Techniques in Software Engineering, pages 201–221. Springer, 2009. 48

[116] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Science of Computer Programming, 72(1-2):31–39, 2008. 31, 48, 94, 114,
139

[117] F. Jouault and M. Tisi. Towards Incremental Execution of ATL Transformations.
In 3rd International Conference on Theory and Practice of Model Transformations
(ICMT 2010), pages 123–137. Springer, 2010. 96

[118] R. Kazman, S. G. Woods, and S. J. Carrière. Requirements for Integrating Software
Architecture and Reengineering Models: CORUM II. In 5th International Working
Conference on Reverse Engineering (WCRE 1998), pages 154–163. IEEE, 1998.
38, 40

[119] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full Code Ge-
neration. John Wiley & Sons, 2008. 25

[120] S. Kent. Model Driven Engineering. In International Conference on Integrated
Formal Methods (iFM 2002), pages 286–298. Springer, 2002. 23

[121] H. Kern, A. Hummel, and S. Kühne. Towards a Comparative Analysis of Meta-
metamodels. In Proceedings of the compilation of the co-located workshops on

https://www.ibm.com/developerworks/downloads/r/architect/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.iso.org/standard/26153.html
https://www.iso.org/standard/26153.html
https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html

BIBLIOGRAPHY 163

DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, pages 7–
12. ACM, 2011. 25

[122] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage. How do Pro-
fessionals Perceive Legacy Systems and Software Modernization? In ACM/IEEE
36th International Conference on Software Engineering (ICSE 2014), pages 36–
47. ACM, 2014. 5, 13

[123] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA Explained - the Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003. 28

[124] R. Kollmann, P. Selonen, E. Stroulia, T. Systa, and A. Zundorf. A Study on the
Current State of the Art in Tool-supported UML-based Static Reverse Engineering.
In 9th International Working Conference on Reverse Engineering (WCRE 2002),
pages 22–32. IEEE, 2002. 70

[125] D. S. Kolovos. Establishing Correspondences Between Models with the Epsilon
Comparison Language. In European Conference on Model Driven Architecture-
Foundations and Applications (ECMFA 2009), pages 146–157. Springer, 2009.
114

[126] D. S. Kolovos, R. F. Paige, and F. A. Polack. Merging Models with the Epsilon
Merging Language (EML). In ACM/IEEE 9th International Conference on Mo-
del Driven Engineering Languages and Systems (MoDELS 2006), pages 215–229.
Springer, 2006. 90

[127] D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. De Lara, I. Ráth, D. Varró, M. Tisi, et al. A Research Roadmap Towards Achie-
ving Scalability in Model Driven Engineering. In Proceedings of the Workshop
on Scalability in Model Driven Engineering (BigMDE’13), co-located with STAF
conferences, page 2. ACM, 2013. 122

[128] D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige, F. A. Polack, and K. J.
Fernandes. Constructing and Navigating Non-invasive Model Decorations. In
3rd International Conference on Theory and Practice of Model Transformations
(ICMT 2010), pages 138–152. Springer, 2010. 90

[129] E. Korshunova, M. Petkovic, M. Van Den Brand, and M. R. Mousavi. CPP2XMI:
Reverse engineering of UML Class, Sequence, and Activity Diagrams from C++
Source Code. In 13th International Working Conference on Reverse Engineering
(WCRE 2006), pages 297–298. IEEE, 2006. 70

[130] J. Koskinen, J. J. Ahonen, H. Sivula, T. Tilus, H. Lintinen, and I. Kankaanpaa.
Software Modernization Decision Criteria: An Empirical Study. In 9th European
Conference on Software Maintenance and Reengineering (CSMR 2005), pages
324–331. IEEE, 2005. 5, 13

[131] T. B. La Fosse, M. Tisi, and J.-M. Mottu. Injecting Execution Traces into a Model-
Driven Framework for Program Analysis. In Federation of International Conferen-
ces on Software Technologies: Applications and Foundations (STAF 2017), pages
3–13. Springer, 2017. 137

[132] P. Langer, K. Wieland, M. Wimmer, and J. Cabot. EMF Profiles: A Lightweight
Extension Approach for EMF Models. Journal of Object Technology, 11(1):1–29,
2012. 89

164 BIBLIOGRAPHY

[133] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. CodeCrawler: an Information
Visualization Tool for Program Comprehension. In ACM/IEEE 27th International
Conference on Software Engineering (ICSE 2005), pages 672–673. ACM, 2005.
38, 40

[134] E. Leblebici, A. Anjorin, and A. Schürr. Developing eMoflon with eMoflon. In 7th
International Conference on the Theory and Practice of Model Transformations
(ICMT 2014), pages 138–145. Springer, 2014. 93

[135] M. M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Procee-
dings of the IEEE, 68(9):1060–1076, 1980. 5, 13

[136] P. F. Linington. RM-ODP: The Architecture. In Open Distributed Processing,
pages 15–33. Springer, 1995. 81

[137] T. Mayerhofer, P. Langer, and G. Kappel. A Runtime Model for fUML. In 7th
Workshop on Modelsrun.time, co-located with the ACM/IEEE 15th Internatio-
nal Conference on Model Driven Engineering Languages and Systems (MODELS
2012), pages 53–58. ACM, 2012. 69, 73

[138] E. Mayol and E. Teniente. A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating. In Advances in Conceptual Modeling (ER’99):
Workshops on Evolution and Change in Data Management, Reverse Engineering
in Information Systems, and the World Wide Web and Conceptual Modeling, pages
62–73. Springer, 1999. 95

[139] E. Mayol and E. Teniente. A Survey of Current Methods for Integrity Constraint
Maintenance and View Updating. In 18th International Conference on Conceptual
Modeling (ER’99), pages 62–73. Springer, 1999. 139

[140] J. McAffer, J.-M. Lemieux, and C. Aniszczyk. Eclipse Rich Client Platform.
Addison-Wesley Professional, 2010. 31

[141] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Supporting Executable Map-
pings in Model Management. In ACM SIGMOD International Conference on Ma-
nagement of Data, pages 167–178. ACM, 2005. 95

[142] T. Mens and P. Van Gorp. A taxonomy of Model Transformation. Electronic Notes
in Theoretical Computer Science, 152:125–142, 2006. 25

[143] A. Menychtas, K. Konstanteli, J. Alonso, L. Orue-Echevarria, J. Gorronogoitia,
G. Kousiouris, C. Santzaridou, H. Bruneliere, B. Pellens, P. Stuer, et al. Software
Modernization and Cloudification Using the ARTIST Migration Methodology and
Framework. Scalable Computing: Practice and Experience, 15(2):131–152, 2014.
71, 79, 82, 130

[144] Mia-Software, Sodifrance Group. Mia-Quality, 2018. URL: http://www.mia-
software.com/produits/mia-quality/. 62

[145] P. Mohagheghi and V. Dehlen. Where is the Proof? A Review of Experien-
ces from Applying MDE in Industry. In European Conference on Model Driven
Architecture-Foundations and Applications (ECMFA 2008), pages 432–443. Sprin-
ger, 2008. 27

[146] P.-A. Muller, F. Fondement, B. Baudry, and B. Combemale. Modeling modeling
modeling. Software & Systems Modeling, 11(3):347–359, 2012. 24

[147] NaoMod Team. frex source code repository, 2018. URL: https://
github.com/atlanmod/fREX. 74

http://www.mia-software.com/produits/mia-quality/
http://www.mia-software.com/produits/mia-quality/
https://github.com/atlanmod/fREX
https://github.com/atlanmod/fREX

BIBLIOGRAPHY 165

[148] M. Nassar. VUML: a Viewpoint Oriented UML Extension. In ACM/IEEE 18th
International Conference on Automated Software Engineering (ASE 2003), pages
373–376. IEEE, 2003. 94

[149] M. L. Nelson. A Survey of Reverse Engineering and Program Comprehension.
arXiv preprint cs/0503068, 2005. 35

[150] U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In ACM/IEEE
22th International Conference on Software Engineering (ICSE 2000), pages 742–
745. ACM, 2000. 70

[151] NoMagic/3DS. Magicdraw, 2018. URL: https://www.nomagic.com/
products/magicdraw. 38, 41

[152] F. Noyrit, S. Gérard, and B. Selic. FacadeMetamodel: Masking UML. In
ACM/IEEE 15th International Conference on Model Driven Engineering Langua-
ges and Systems (MoDELS 2012), pages 20–35. Springer, 2012. 91

[153] Object Management Group (OMG). Abstract Syntax Tree Metamodel (ASTM),
2018. URL: https://www.omg.org/spec/ASTM. 50

[154] Object Management Group (OMG). Architecture Driven Modernization (ADM),
2018. URL: http://adm.omg.org. 30, 37, 40, 50

[155] Object Management Group (OMG). Business Process Model and Notation
(BPMN), 2018. URL: http://www.bpmn.org. 30

[156] Object Management Group (OMG). Knowledge Discovery Metamodel (KDM),
2018. URL: https://www.omg.org/spec/KDM. 50

[157] Object Management Group (OMG). Meta Object Facility (MOF), 2018. URL:
http://www.omg.org/mof. 29

[158] Object Management Group (OMG). Model Driven Architecture (MDA), 2018.
URL: http://www.omg.org/mda. 28, 94

[159] Object Management Group (OMG). MOF Model To Text Transformation Lan-
guage (MOFM2T), 2018. URL: urlhttp://www.omg.org/spec/MOFM2T. 30

[160] Object Management Group (OMG). Object Constraint Language (OCL), 2018.
URL: https://www.omg.org/spec/OCL. 29, 57, 118

[161] Object Management Group (OMG). Query/View/Transformation (QVT), 2018.
URL: http://www.omg.org/spec/QVT. 30, 48, 92

[162] Object Management Group (OMG). Requirements Interchange Format (ReqIF),
2018. URL: https://www.omg.org/spec/ReqIF. 120

[163] Object Management Group (OMG). Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML), 2018. URL: https://www.omg.org/spec/
FUML. 70, 71, 76

[164] Object Management Group (OMG). Structured Metrics Metamodel (SMM), 2018.
URL: https://www.omg.org/spec/SMM. 50

[165] Object Management Group (OMG). Systems Modeling Language (SysML), 2018.
URL: http://www.omgsysml.org. 30

[166] Object Management Group (OMG). Unified Architecture Framework (UAF),
2018. URL: https://www.omg.org/spec/UAF/. 30

[167] Object Management Group (OMG). Unified Modeling Language (UML), 2018.
URL: www.uml.org. 7, 15, 30, 71, 120

https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw
https://www.omg.org/spec/ASTM
http://adm.omg.org
http://www.bpmn.org
https://www.omg.org/spec/KDM
http://www.omg.org/mof
http://www.omg.org/mda
https://www.omg.org/spec/OCL
http://www.omg.org/spec/QVT
https://www.omg.org/spec/ReqIF
https://www.omg.org/spec/FUML
https://www.omg.org/spec/FUML
https://www.omg.org/spec/SMM
http://www.omgsysml.org
https://www.omg.org/spec/UAF/
www.uml.org

166 BIBLIOGRAPHY

[168] Object Management Group (OMG). XML Metadata Interchange (XMI), 2018.
URL: http://www.omg.org/spec/XMI. 29, 66

[169] T. Olsson and J. Grundy. Supporting Traceability and Inconsistency Management
between Software Artefacts. In International Conference on Software Engineering
and Applications (SEA 2002). IASTED, 2002. 38, 40

[170] Oracle. Java technology/language, 2018. URL: https://www.java.com. 25

[171] OSGI Alliance. Open Services Gateway initiative (OSGI), 2018. URL: https:
//www.osgi.org. 31

[172] M. J. Pacione, M. Roper, and M. Wood. A Novel Software Visualisation Model to
Support Software Comprehension. In 11th International Working Conference on
Reverse Engineering (WCRE 2004), pages 70–79. IEEE, 2004. 38, 40

[173] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier. Spoon:
A Library for Implementing Analyses and Transformations of Java Source Code.
Software: Practice and Experience, 46(9):1155–1179, 2016. 38, 39

[174] R. Pérez-Castillo, I. G.-R. De Guzman, and M. Piattini. Knowledge Discovery
Metamodel-ISO/IEC 19506: A Standard to Modernize Legacy Systems. Computer
Standards & Interfaces, 33(6):519–532, 2011. 70

[175] W. J. Premerlani and M. R. Blaha. An Approach for Reverse Engineering of Re-
lational Databases. In International Working Conference on Reverse Engineering
(WCRE 1993), pages 151–160. IEEE, 1993. 36

[176] A. Prout, J. M. Atlee, N. A. Day, and P. Shaker. Semantically Configurable Code
Generation. In ACM/IEEE 11th International Conference on Model Driven En-
gineering Languages and Systems (MODELS 20080), pages 705–720. Springer,
2008. 138

[177] Ó. S. Ramón, J. S. Cuadrado, and J. G. Molina. Model-driven Reverse Engineering
of Legacy Graphical User Interfaces. Automated Software Engineering, 21(2):147–
186, 2014. 38, 39, 137

[178] M. G. Rekoff. On Reverse Engineering. IEEE Transaction on Systems, Man and
Cybernetics, 15(2):13–17, 1985. 35

[179] E. Roberts. An Overview of MiniJava. ACM SIGCSE Bulletin, 33(1):1–5, 2001.
74

[180] B. Roy and T. N. Graham. An Iterative Framework for Software Architecture Re-
covery: An Experience Report. In European Conference on Software Architecture
(ECSA 2008), pages 210–224. Springer, 2008. 38, 39

[181] S. Rugaber and K. Stirewalt. Model Driven Reverse Engineering. IEEE Software,
21(4):45–53, 2004. 6, 15, 37

[182] D. C. Schmidt. Model-driven Engineering. IEEE Computer, 39(2):25, 2006. 5,
13, 23

[183] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
20th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 1994), pages 151–163. Springer, 1994. 93

[184] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software,
20(5):19–25, 2003. 27

http://www.omg.org/spec/XMI
https://www.java.com
https://www.osgi.org
https://www.osgi.org

BIBLIOGRAPHY 167

[185] O. Semeráth, C. Debreceni, Á. Horváth, and D. Varró. Incremental Backward
Change Propagation of View Models by Logic Solvers. In ACM/IEEE 19th Inter-
national Conference on Model Driven Engineering Languages and Systems (Mo-
DELS 2016), pages 306–316. ACM, 2016. 94

[186] S. Sendall and W. Kozaczynski. Model Transformation: The Heart and Soul of
Model-driven Software Development. IEEE Software, 20(5):42–45, 2003. 25

[187] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, and P. Marttiin. MetaEdit - A Flex-
ible Graphical Environment for Methodology Modelling. In International Confe-
rence on Advanced Information Systems Engineering (CAiSE 1991), pages 168–
193. Springer, 1991. 37

[188] H. M. Sneed. Migration of Procedurally Oriented COBOL Programs in an Object-
Oriented Architecture. In International Conference on Software Maintenance
(ICSM 1992), pages 105–116. IEEE, 1992. 38, 39

[189] H. M. Sneed. Migrating from COBOL to Java. In International Conference on
Software Maintenance (ICSM 2010), pages 1–7. IEEE, 2010. 38, 39

[190] Sodifrance Group. Mia-Software, 2018. URL: http://www.mia-
software.com. 50, 79, 134

[191] Softeam. Modelio, 2018. URL: https://www.modelio.org. 38, 41

[192] SonarQube. Sonarqube tool, 2018. URL: https://www.sonarqube.org. 63

[193] Sparx Systems. Enterprise architect, 2018. URL: http://
sparxsystems.com/products/ea/. 38, 41

[194] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF: Eclipse Modeling
Framework. Pearson Education, 2008. 32

[195] W. Sun, S. Li, D. Zhang, and Y. Yan. A Model-driven Reverse Engineering Appro-
ach for Semantic Web Services Composition. In WRI World Congress on Software
Engineering (WCSE 2009), volume 3, pages 101–105. IEEE, 2009. 38, 39

[196] The Open Group. The TOGAF standard, 2018. URL: http://
www.opengroup.org/subjectareas/enterprise/togaf. 131

[197] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of
Higher-Order Model Transformations. In European Conference on Model Driven
Architecture-Foundations and Applications (ECMFA 2009), pages 18–33. Sprin-
ger, 2009. 26

[198] M. Tisi, S. Martinez, and H. Choura. Parallel Execution of ATL Transformation
Rules. In ACM/IEEE 16th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2013), pages 656–672. Springer, 2013. 136

[199] J.-P. Tolvanen and M. Rossi. MetaEdit+: Defining and Using Domain-specific
Modeling Languages and Code Generators. In 18th annual ACM SIGPLAN con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2003), pages 92–93. ACM, 2003. 37

[200] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,
and D. Varró. EMF-IncQuery: An Integrated Development Environment for Live
Model Queries. Science of Computer Programming, 98:80–99, 2015. 94

[201] W. M. Ulrich and P. Newcomb. Information Systems Transformation: Architecture-
driven Modernization Case Studies. Morgan Kaufmann, 2010. 7, 15

http://www.mia-software.com
http://www.mia-software.com
https://www.modelio.org
https://www.sonarqube.org
http://sparxsystems.com/products/ea/
http://sparxsystems.com/products/ea/
http://www.opengroup.org/subjectareas/enterprise/togaf
http://www.opengroup.org/subjectareas/enterprise/togaf

168 BIBLIOGRAPHY

[202] A. Van Deursen, E. Visser, and J. Warmer. Model-driven Software Evolution:
A Research Agenda. In 1st international workshop on Model-driven Software
Evolution (MoDSE), pages 41–49. University of Nantes, 2007. 37

[203] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi. Road
to a Reactive and Incremental Model Transformation Platform: Three Generations
of the VIATRA Framework. Software & Systems Modeling, 15(3):609–629, 2016.
139

[204] D. Varró and A. Pataricza. VPM: A Visual, Precise and Multilevel Metamodeling
Framework for Describing Mathematical Domains and UML (The Mathematics
of Metamodeling is Metamodeling Mathematics). Software & Systems Modeling,
2(3):187–210, 2003. 24

[205] A. Vignaga, F. Jouault, M. C. Bastarrica, and H. Bruneliere. Typing Artifacts in
Megamodeling. Software & Systems Modeling, 12(1):105–119, 2013. 18

[206] Visual Paradigm International. Visual paradigm, 2018. URL: https://
www.visual-paradigm.com. 38, 41

[207] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen. Model-driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, 2013.
23

[208] A. Von Mayrhauser and A. M. Vans. Program Comprehension during Software
Maintenance and Evolution. IEEE Computer, 28(8):44–55, 1995. 5, 13, 39

[209] R. Wettel, M. Lanza, and R. Robbes. Software Systems as Cities: A Controlled Ex-
periment. In ACM/IEEE 33rd International Conference on Software Engineering
(ICSE 2011), pages 551–560. ACM, 2011. 38, 40

[210] J. Whittle, J. Hutchinson, and M. Rouncefield. The State of Practice in Model-
Driven Engineering. IEEE Software, 31(3):79–85, 2014. 6, 14, 27, 122

[211] J. Wiegand et al. Eclipse: A Platform for Integrating Development Tools. IBM
Systems Journal, 43(2):371–383, 2004. 31

[212] E. D. Willink. Deterministic Lazy Mutable OCL Collections. In Federation of In-
ternational Conferences on Software Technologies: Applications and Foundations
(STAF 2017), pages 340–355. Springer, 2017. 139

[213] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2016. 141

[214] A. T. Wood-Harper, L. Antill, and D. E. Avison. Information Systems Definition:
The Multiview Approach. Blackwell Scientific Publications, Ltd., 1985. 83

[215] World Wide Web Consortium (W3C). Extensible Markup Language (XML), 2018.
URL: https://www.w3.org/XML/. 24

[216] World Wide Web Consortium (W3C). Mathematical Markup Language
(MathML), 2018. URL: https://www.w3.org/Math/. 25

[217] Z. Yang and M. Jiang. Using Eclipse as a Tool-integration Platform for Software
Development. IEEE Software, 24(2), 2007. 56

[218] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and J. C. S.
do Prado Leite. Reverse Engineering Goal Models from Legacy Code. In 13th
IEEE International Conference on Requirements Engineering (RE’05), pages 363–
372. IEEE, 2005. 138

https://www.visual-paradigm.com
https://www.visual-paradigm.com
https://www.w3.org/XML/
https://www.w3.org/Math/

BIBLIOGRAPHY 169

[219] J. A. Zachman. A Framework for Information Systems Architecture. IBM Systems
Journal, 26(3):276–292, 1987. 81

Titre : Approches Génériques Basées sur les Modèles pour la Rétro-Ingénierie et Compréhension du Logiciel

Mots clés : Ingénierie Dirigée par les Modèles, Rétro-Ingénierie, Compréhension, Fédération, Vues

Résumé : De nos jours, les entreprises font souvent
face à des problèmes de gestion, maintenance,
évolution ou remplacement de leurs systèmes logiciel
existants. La Rétro-Ingénierie est la phase requise
d’obtention de diverses représentations de ces
systèmes pour une meilleure compréhension de leurs
buts / états.
L’Ingénierie Dirigée par les Modèles (IDM) est un
paradigme du Génie Logiciel reposant sur la création,
manipulation et utilisation intensive de modèles dans
les tâches de conception, développement,
déploiement, intégration, maintenance et évolution.
La Rétro-Ingénierie Dirigée par les Modèles (RIDM) a
été proposée afin d’améliorer les approches de
Rétro-Ingénierie traditionnelles. Elle vise à obtenir
des modèles à partir d’un système existant, puis à les
fédérer via des vues cohérentes pour une meilleure
compréhension.

Cependant, les solutions existantes sont limitées
car étant souvent des intégrations spécifiques
d’outils. Elles peuvent aussi être (très) hétérogènes,
entravant ainsi leurs déploiements. Il manque donc
de solutions pour que la RIDM puisse être
combinée avec des capacités de vue / fédération de
modèles.
Dans cette thèse, nous proposons deux approches
complémentaires, génériques et extensibles basées
sur les modèles ainsi que leurs implémentations en
open source basées sur Eclipse-EMF : (i) Pour
faciliter l’élaboration de solutions de RIDM dans des
contextes variés, en obtenant différents types de
modèles à partir de systèmes existants (e.g. leurs
codes source, données). (ii) Pour spécifier,
construire et manipuler des vues fédérant différents
modèles (e.g. résultant de la RIDM) selon des
objectifs de compréhension (e.g. pour diverses
parties prenantes).

Title: Generic Model-based Approaches for Software Reverse Engineering and Comprehension

Keywords: Model Driven Engineering, Reverse Engineering, Comprehension, Federation, Views

Abstract: Nowadays, companies face more and
more the problem of managing, maintaining, evolving
or replacing their existing software systems. Reverse
Engineering is the required phase of obtaining
various representations of these systems to provide a
better comprehension of their purposes / states.
Model Driven Engineering (MDE) is a Software
Engineering paradigm relying on intensive model
creation, manipulation and use within design,
development, deployment, integration, maintenance
and evolution tasks. Model Driven Reverse
Engineering (MDRE) has been proposed to enhance
traditional Reverse Engineering approaches via the
application of MDE. It aims at obtaining models from
an existing system according to various aspects, and
then possibly federating them via coherent views for
further comprehension.

However, existing solutions are limited as they quite
often rely on case-specific integrations of different
tools. Moreover, they can sometimes be (very)
heterogeneous which may hinder their practical
deployments. Generic and extensible solutions are
still missing for MDRE to be combined with model
view / federation capabilities.
In this thesis, we propose to rely on two
complementary, generic and extensible model-
based approaches and their Eclipse/EMF-based
implementations in open source: (i) To facilitate the
elaboration of MDRE solutions in many different
contexts, by obtaining different kinds of models from
existing systems (e.g. their source code, data). (ii)
To specify, build and manipulate views federating
different models (e.g. resulting from MDRE)
according to comprehension objectives (e.g. for
different stakeholders).

	Introduction and Context
	Introduction
	Problem Statement
	Global Approach
	Proposed Contributions
	Thesis Context
	Scientific Production
	Outline

	Background
	Modeling and Model Driven Engineering (MDE)
	General Definition
	Core Concepts
	Challenges

	Modeling Standards and Techniques
	OMG's Model Driven Architecture (MDA)
	Related Standard Specifications

	Modeling in/with Eclipse
	The Eclipse Open Source Platform
	The Eclipse Modeling Project (EMP)
	The Eclipse Modeling Framework (EMF)

	Conclusion

	Model Driven Reverse Engineering
	State of the Art and Challenges
	Overview
	Specific Reverse Engineering Solutions
	Generic Reverse Engineering Platforms and Frameworks
	Challenges

	Proposed Conceptual Approach
	Overall Approach
	Model Discovery
	Model Understanding
	Main Benefits

	The MoDisco framework
	Project Overview
	Infrastructure Layer
	Technology Layer
	Use Cases Layer
	Extending MoDisco

	Evaluation
	Research Questions (RQs)
	MDRE Concrete Use Cases
	Performance Benchmarks

	The fREX Component
	Motivation
	Proposed Framework
	The Java-to-fUML Example
	Possible Applications

	Conclusion

	Model Federation and Comprehension
	State of the Art and Challenges
	General Definitions
	Characterization of Model View Approaches
	Description of Model View Approaches
	General Challenges for the Community

	Proposed Conceptual Approach
	Overall Approach
	Core Virtualization (Weaving) Metamodel
	Viewpoint/View Specification DSLs
	Integration With Model Persistence Solutions
	Main Benefits

	The EMF Views framework
	Implementation Overview
	Tooling Support
	Integration With Model Persistence Solutions

	Evaluation
	Research Questions (RQs)
	Practical Use Case
	Objectives
	Process
	Scalability Benchmarks

	Conclusion

	Conclusion
	Summary
	Impact of the Results
	European Collaborative Projects
	National Collaborative Projects

	Lessons Learned
	Perspectives and Future Work
	Model Driven Reverse Engineering
	Model Federation and Comprehension
	Overview

