
HAL Id: tel-02106924
https://theses.hal.science/tel-02106924

Submitted on 23 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An overview on systems of systems control : general
discussions and application to multiple autonomous

vehicles
Mohamad Ali Assaad

To cite this version:
Mohamad Ali Assaad. An overview on systems of systems control : general discussions and application
to multiple autonomous vehicles. Other [cs.OH]. Université de Technologie de Compiègne, 2019.
English. �NNT : 2019COMP2466�. �tel-02106924�

https://theses.hal.science/tel-02106924
https://hal.archives-ouvertes.fr

Par Mohamad Ali ASSAAD

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

An overview on systems of systems control: general
discussions and application to multiple autonomous
vehicles

Soutenue le 21 janvier 2019
Spécialité : Sciences et Technologies de l’Information et des
Systèmes : Unité de recherche Heudyasic (UMR-7253)
 D2466

An overview on Systems of Systems
Control: General discussions and

application to multiple autonomous
vehicles

Mohamad Ali ASSAAD
PhD defense on January 21, 2019 in front of the jury composed of :

Rapporteurs:
Eric BONJOUR Dominique LUZEAUX

Professeur des universités Docteur HDR
ERPI – ENSGSI DIRISI

Université de Lorraine Ministère des Armées

Examinateurs:
Isabelle FANTONI Robert PLANA

Directrice de Recherche CNRS ‘Chief Technology Officer’
LS2N, Nantes Groupe Assystem

Bernard DUBUISSON
Professeur des universités Emérite

Heudiasyc, UTC

Directeurs de Thèse:
Ali CHARARA Reine TALJ-KFOURY

Professeur des universités Chargée de Recherche CNRS
Heudiasyc, UTC Heudiasyc, UTC

Université de technologie de Compiègne

Laboratoire Heudiasyc UMR CNRS 7253

prevotla
Texte tapé à la machine

prevotla
Texte tapé à la machine
Spécialité : Sciences et Technologies de l'Information et des Systèmes

prevotla
Texte tapé à la machine

prevotla
Texte tapé à la machine

prevotla
Texte tapé à la machine

prevotla
Texte tapé à la machine

Abstract

This thesis focuses on System of Systems (SoS) control, and how to build adaptable
and reliable SoS. This work is part of the Labex MS2T laboratory of excellence on
technological SoS development.

SoS are complex systems that consist of multiple independent systems that work
together to achieve a common goal. SoS Engineering is an approach that focuses on
how to build and design reliable SoS that can adapt to the dynamic environment in
which they operate. Given the importance of controlling constituent systems (CS)
in order to achieve SoS objectives, the first part of this thesis involved a literature
study about the subject of SoS control. Some control methods exist for large-scale
systems and multi-agent systems, namely, hierarchical, distributed, and decentral-
ized control might be useful and are used to control SoS. These methods are not
suitable for controlling SoS in its whole, because of the independence of their CS;
whereas, multi-views frameworks are more suitable for this objective. A general
framework approach is proposed to model and manage the interactions between CS
in a SoS.

The second part of our work consisted of contributing to Intelligent Transportation
Systems. For this purpose, we have proposed the Cooperative Maneuvers Manager
for Autonomous Vehicles (CMMAV), a framework that guides the development of
cooperative applications in autonomous vehicles. To validate the CMMAV, we have
developed the Cooperative Lateral Maneuvers Manager (CLMM), an application
on the autonomous vehicles that enables equipped vehicles to exchange requests in
order to cooperate during overtaking maneuvers on highways. It was validated by
formal scenarios, computer simulations, and tested on the autonomous vehicles of
the Equipex Robotex in Heudiasyc laboratory.

Keywords: Architecture Frameworks, Autonomous Vehicles, Intelligent Trans-
portation Systems, System of Systems, System of Systems Engineering, System
of Systems Control.

Résumé

La thèse porte sur le contrôle des systèmes de systèmes (SdS) et , sur la manière
de construire des SdS adaptables et fiables. Ce travail fait partie du laboratoire
d’excellence Labex MS2T sur le développement des SdS technologiques.
Les SdS sont des systèmes complexes constitués de plusieurs systèmes indépendants
qui fonctionnent ensemble pour atteindre un objectif commun. L’ingénierie des SdS
est une approche qui se concentre sur la manière de construire et de concevoir des
SdS fiables capables de s’adapter à l’environnement dynamique dans lequel ils évolu-
ent. Compte tenu de l’importance du contrôle des systèmes constituants (SC) pour
atteindre les objectifs du SdS , la première partie de cette thèse a consisté en une
étude bibliographique sur le sujet du contrôle des SdS. Certaines méthodes de con-
trôle existent pour les systèmes à grande échelle et les systèmes multi-agents , à
savoir , le contrôle hiérarchique , distribué et décentralisé peuvent être utiles et sont
utilisés pour contrôler les SdS. Ces méthodes ne conviennent pas pour contrôler un
SdS dans sa globalité et son évolution , en raison de l’indépendance de leur SC ; alors
que les “frameworks” multi-vues conviennent mieux à cet objectif. Une approche de
”framework” générale est proposée pour modéliser et gérer les interactions entre les
SC dans un SdS.

La deuxième partie de notre travail a consisté à contribuer aux systèmes de trans-
port intelligent. À cette fin , nous avons proposé le gestionnaire de manœuvres
coopératives pour les véhicules autonomes (CMMAV) , un “framework” qui guide
le développement des applications coopératives dans les véhicules autonomes. Pour
valider le CMMAV , nous avons développé le gestionnaire de manœuvres latérales
coopératives (CLMM) , une application sur les véhicules autonomes qui permet
d’échanger des demandes afin de coopérer lors de manœuvres de dépassement sur
autoroute. Cette application a été validée par des scénarios formels , des simula-
tions informatiques , et testée sur les véhicules autonomes du projet Robotex au
laboratoire Heudiasyc.

Mots clés: Architecture Frameworks , Contrôle des Systèmes de Systèmes , In-
génierie des Systèmes de Systèmes , Systèmes de Transport Intelligent , Système de
Systèmes , Véhicules Autonomes.

Acknowledgment

First and foremost I want to thank my advisors Dr. Reine TALJ and Prof. Ali
CHARARA for their patience, trust, and their kindness, and also for their time and
guidance throughout the thesis. Secondly, I want to thank the jury members: Dr.
Dominique LUZEAUX and Prof. Eric BONJOUR for their detailed and insightful
reports, Prof. Bernard DUBUISSON, Prof. Robert PLANA, & Prof. Isabelle FAN-
TONI for their interesting questions and comments. I want also to thank Heudiasyc
laboratory as well as Université de technologie de Compiègne for giving me the op-
portunity and the means to perform this thesis with success. Most notably, I want
to thank all their staff for their support in the various aspect of my thesis. I would
like to thank my family for all their love and encouragement. For my parents who
raised me with love and supported me in all my pursuits. I could not wish for a
better family. Also special thanks go to my friends, whom trusted me and helped
me go through rough times. I am blessed for having such people in my life. Lastly,
I thank GOD for everything.
Thank You.

List of Publications

International Conferences:

1 M. Assaad, R. Talj, A. Charara, “Cooperative Lateral Maneuvers Manager
for Multi-Autonomous Vehicles”, in IEEE Systems, Man, And Cybernetics
(SMC), Miyazaki, Japan, Oct. 2018.

2 M. Assaad, R. Talj, A. Charara, “Case study on systems of systems: Coop-
erative Maneuvers Manager for Autonomous Vehicles”, in 13th IEEE Inter-
national Conference on System of Systems Engineering (SoSE), Paris, June
2018.

3 M. Assaad, R. Talj, A. Charara, “A view on Systems of Systems (SoS)”, 20th
World Congress of the International Federation of Automatic Control (IFAC
WC 2017) - special session, Toulouse, France, Jul. 2016.

Journal Papers:

4 M. Assaad, R. Talj, A. Charara, “An overview of technological systems of
systems: general discussions and a case study on intelligent transport”, in
IEEE Systems Engineering Journal, second revision.

Contents

1 Introduction 7
1.1 Thesis Organization . 9

2 Systems of Systems 10
2.1 Introduction . 10
2.2 Systems . 11

2.2.1 Objective vs. Purpose . 12
2.2.2 Systems Functionalities . 13

2.3 Complex Systems . 13
2.3.1 Emergent Behavior . 14

2.4 System of Systems . 15
2.4.1 SoS Historical Background . 16
2.4.2 SoS Definition . 18
2.4.3 SoS Adopted Definition . 19
2.4.4 Independent Systems . 19
2.4.5 Other Characteristics . 20
2.4.6 Cyber-Physical Systems and SoS 20
2.4.7 Discussion . 21

2.5 SoS Taxonomy . 22
2.5.1 SoS Management taxonomies 22
2.5.2 Other Taxonomies . 24
2.5.3 Discussion . 25

2.6 SoS Examples . 26
2.6.1 U.S. Next Generation Air Transportation System 26
2.6.2 SWIFT and Secure Financial Messaging 27
2.6.3 Discussion . 29

2.7 SoS Engineering (SoSE) vs. Systems Engineering (SE) 29
2.7.1 SoS Challenges . 30
2.7.2 Discussion . 31

2.8 Conclusion . 31
2.9 What’s Next? . 32

3 Traditional Systems & SoS Control 33
3.1 Introduction . 33
3.2 Traditional Systems Control . 33

3.2.1 Levels of Control . 35
3.3 Control Paradigms . 36

3.3.1 Centralized Control Paradigm 37

i

CONTENTS

3.3.2 Non-Centralized Control Paradigm 39
3.4 SoS Control . 51
3.5 Conclusion . 56

4 Modeling & Frameworks 58
4.1 Introduction . 58
4.2 What is a model? . 59

4.2.1 Types of Models . 59
4.2.2 Modeling and Simulation . 61
4.2.3 Model-Based Systems Engineering (MBSE) 62

4.3 SoS Modeling . 63
4.3.1 Architecture Frameworks . 64
4.3.2 Systems Modeling Language (SysML) 65
4.3.3 SoS-ACRE Framework . 66

4.4 Conclusion . 68

5 Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV) 74
5.1 Introduction . 74
5.2 Motivations . 75
5.3 CMMAV Description . 77
5.4 CMMAV & Intelligent Transportation Systems 78

5.4.1 Intelligent Transportation Systems (ITS) 79
5.4.2 ITS Stakeholders . 79
5.4.3 ITS Categories . 79
5.4.4 CMMAV in ITS . 81

5.5 CMMAV & SoS . 81
5.6 CMMAV: Constituent Systems . 82
5.7 CMMAV: Stakeholders . 83

5.7.1 Constraining Stakeholders . 84
5.7.2 User Stakeholders . 84
5.7.3 Maintaining Stakeholders . 84

5.8 Incentives for cooperation . 84
5.8.1 Cooperation Decision-Making 85
5.8.2 Examples of Incentives . 85

5.9 Use Cases . 86
5.9.1 Use Case Examples . 86

5.10 Emergent Behaviors . 86
5.11 The Framework . 87

5.11.1 Use-Cases View . 89
5.11.2 Organizational View . 90
5.11.3 Sources View . 91
5.11.4 Requirements View . 91
5.11.5 Functionalities View . 91
5.11.6 Verification View . 92
5.11.7 Traceability View . 94

5.12 CMMAV Horizons . 95
5.13 Conclusion . 95

ii

CONTENTS

6 Application: Cooperative Lateral Maneuvers Manager (CLMM) 97
6.1 Introduction . 97
6.2 CLMM Objectives . 98

6.2.1 CLMM Evaluation . 99
6.3 Overtaking On Highways . 100

6.3.1 Subject Vehicle, CMMAV Vehicle, and other terms 100
6.3.2 Distances . 101
6.3.3 Relative Positioning . 102
6.3.4 Strategy Overview . 102
6.3.5 Cooperation in Overtaking . 106
6.3.6 Cooperation Constraints . 110

6.4 CLMM architecture . 111
6.4.1 Nodes . 112
6.4.2 Messages . 114

6.5 CLMM Validation . 115
6.5.1 Validation by Formal Scenarios 115
6.5.2 Validation by Simulation . 118
6.5.3 Validation by Experimentation 120

6.6 CLMM Challenges . 122
6.7 Conclusion . 125

7 Conclusion 128
7.1 Perspectives . 130
7.2 Final thought . 131

A Appendix 142
A.1 Overtaking Use Case submission document 142

A.1.1 Template . 142
A.1.2 Overtaking on Highways use case submission 145

A.2 CMMAV Framework Views . 148
A.2.1 Organizational View (Fig. A.1) 148
A.2.2 Sources View (Fig. A.2) . 148
A.2.3 Requirements View (Fig. A.3) 148
A.2.4 Capabilities View (Fig. A.4) 148
A.2.5 Validation View (Fig. A.5) 148

A.3 CMMAV Framework - Detailed Forms 148
A.3.1 Organizational View Forms (Fig. A.6) 148
A.3.2 Sources View Forms (Fig. A.7) 148
A.3.3 Requirements View Forms (Fig. A.8, A.9) 148
A.3.4 Capabilities View Forms (Fig. A.10) 148

iii

List of Figures

1.1 Labex MS2T Project Scheme: 4 Axes of research, with 4 laboratories
involved. 8

2.1 Emergent behavior classification (Furrer 2017). 14
2.2 Managerial Independence: From completely independent to depen-

dent systems. 21
2.3 An independent system consists of its operational part and its man-

agerial part together in the system. 22
2.4 Objectives, governance, and inter-relationship between CS are the 3

attributes that could be used to separate management taxonomies(Collins,
Doskey, and Moreland 2016). 24

2.5 U.S. NextGen ATS as SoS: Multiple levels of operations, and a lot of
stakeholders and regulations (credit: NASA) 27

2.6 International Money Transfer: banks transfer funds between sender
and receiver. 28

2.7 Systems Engineering vs. SoS Engineering (Gorod, Brian Sauser, and
John Boardman 2008) . 30

3.1 Typical system control: a controller computes the system input based
on the error between the measured system output and the reference. . 34

3.2 Water Heater Scheme1. 35
3.3 Boiler-Room system: room sends high-level controls to boiler, which

are then translated into low-level controls inside the boiler. 37
3.4 Boiler-Room control chain: from high-level to low-level control. . . . 38
3.5 Centralized Paradigm: one controller and multiple actuators. 38
3.6 Transaction recording system: centralized vs. non-centralized paradigm. 40
3.7 Hierarchical Systems: different levels of authority, no communication

occurs on the same level. 41
3.8 The states xi of the simulated system. 43
3.9 The inputs ui, and the evolution of the error throughout the iterations. 44
3.10 Distributed Systems: Same level of authority, different tasks for each

part, and communication between parts. 46
3.11 The paths followed by each robot: initial positions are depicted with

circles in the first figure, and the destinations with an x mark. 48
3.12 Decentralized Paradigm: multiple controllers that do not communi-

cate perform individual tasks, the overall result is the aggregation of
each controller’s result. 49

3.13 Fleet of drones moving in a triangular formation adopting leader-
follower strategy. 50

1

LIST OF FIGURES

3.14 Fleet of drones moving in a triangular formation adopting distributed
paradigm. 51

3.15 Simplified SoS Architectural Model: Generic Form. 52
3.16 Simplified SoS Architectural Model: Virtual SoS. 53
3.17 Simplified SoS Architectural Model: Collaborative SoS. 53
3.18 Simplified SoS Architectural Model: Acknowledged and Directed SoS. 54
3.19 Crisis prevention and intervention SoS. 55
3.20 Crisis prevention and intervention SoS: each CS knows their role and

how they relate to other CS in the SoS. 56

4.1 A descriptive model that describes the structure of stakeholders in
CubeSat domain (Kaslow et al. 2015). 60

4.2 A production line that consists of 3 machines, related to linear rela-
tionships. 61

4.3 A model that describes the relationships between different agents in
a SoS. 63

4.4 SysML diagram taxonomy 2. 66
4.5 ACRE Ontology (Holt, S. Perry, et al. 2015). 70
4.6 ACRE Framework (Holt, S. Perry, et al. 2015). 71
4.7 COMPASS Ontology (Holt, S. Perry, et al. 2015). 72
4.8 SoS-ACRE Framework (Holt, S. Perry, et al. 2015). 73

5.1 Functionalities types: base, environment, and collective. 76
5.2 CMMAV development process: use-case based. 77
5.3 Intelligent Transportation Systems: a global SoS (ITS 2008). 78
5.4 Intelligent Transportation Systems: Stakeholders. 80
5.5 Autonomous vehicles ecosystem: different stakeholders and resources. 82
5.6 Autonomous Vehicle as an independent system: management, func-

tionalities, resources, external factors, and constraints. 83
5.7 CMMAV framework process. 88
5.8 Use Case: Cooperative Overtaking. 89
5.9 Actor Details: name, type, and related use cases. 90
5.10 Requirements source form. 91
5.11 Requirement form. 92
5.12 Functionality Form: several attributes to describe a functionality. . . 92
5.13 Functionality example: Neighbor CS identification. 93
5.14 “CMMAV respects traffic laws” verification element. 93
5.15 Speed Monitoring Verification element. 94
5.16 Validates, Requires, and Provides relations. 95

6.1 Overtaking configurations addressed in the CLMM: two or more lanes
and same traffic flow direction. 100

6.2 Two Measures of Interest: security distance, and communication radius.101
6.3 Neighborhood Degree: a measure that reflects the degree of proximity

of different vehicles. 103
6.4 Neighborhood map: the different possible existing neighbors on a

3-lane highway. 104
6.5 Neighborhood relative map: the labels used to identify different neigh-

bors. 105

2

LIST OF FIGURES

6.6 A single overtaking maneuver flowchart. 106
6.7 Rear-end collision. 106
6.8 Multiple overtaking maneuver flowchart. 107
6.9 CLMM’s architecture: information flow between different nodes. . . . 111
6.10 Scenario 1: front neighbor and top-front neighbor. 119
6.11 Scenario 2: front neighbor and 2 top-rear neighbors. 119
6.12 Inter-agent links show which agents are neighbors. 119
6.13 The state chart that describes the logic given to agents in Anylogic. . 120
6.14 Citröen 5c: Carmen. 121
6.15 Renault Zoé: Apache. 122
6.16 Graphical Interface for Monitoring Vehicles’ states. 123
6.17 Vehicles’ initial positions with respect to lanes. 124
6.18 Vehicles’ initial positions approximation. 124
6.19 Vehicles’ positions during the first test. 125
6.20 Vehicles’ speeds during the first test. 126
6.21 Vehicles’ positions during the second test. 127
6.22 Vehicles’ speeds during the second test. 127

7.1 Graphical interface in an autonomous vehicle. 132

A.1 Organizational View: Maintainers, Stakeholders, and Constituents. . 148
A.2 Sources View: Every stakeholder provides sources for its requirements.149
A.3 Requirements View: different requirements from different sources. . . 150
A.4 Capabilities View: base, environment, and collective capabilities. . . . 151
A.5 Validation View . 152
A.6 Organizational Forms . 152
A.7 Requirements Sources Forms . 153
A.8 Requirements Forms - part 1 . 154
A.9 Requirements Forms - part 2 . 155
A.10 Capabilities Forms - part 1 . 156

3

List of Tables

5.1 Traceability view relation: a name, source, destination, and description. 94

6.1 Different cooperation levels and involved actions. 110
6.2 laneChangeStatus Message Definition. 114
6.3 egoLane Message Definition. 115
6.4 Vehicle’s high level state Message Definition. 116
6.5 Vehicle’s Meta Data Message Definition. 117
6.6 Neighbors List Message Definition. 118
6.7 Decision Message Definition. 118

4

Acronyms

ACRE Approach to Context-based Requirements Engineering
AGN Autonomous Ground Navigation
APTS Advanced Public Transportation Systems
ARTS Advanced Rural Transports Systems
ATIS Advanced Travelers Information Systems
ATMS Advanced Traffic Management Systems
ATS Air Transportation System
AVCS Advanced Vehicles Control Systems
CLMM Cooperative Lateral Maneuvers Manager
CMMAV Cooperative Maneuvers Manager for Autonomous Vehicles
CSP Customer Security Program
CS Constituent Systems
CVO Commercial Vehicles Operation
DODAF Department of Defense Architecture Framework
DoD Department of Defense
ETSI European Telecommunications Standards Institute
FAA Federal Aviation Administration
GPS Global Positioning System
GV Ground Vehicles
ICC Incentive Compatibility Constraint
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
INCOSE International Council on Systems Engineering
ISO International Organization for Standardization
ITS Intelligent Transportation Systems
IT Information Technology
LSS Large-Scale Systems
MAS Multi-Agent Systems
MBRE Model-Based Requirements Engineering
MBSE Model-based Systems Engineering
MODAF Ministry of Defense Architecture Framework
MoE Measures of Effectiveness
NAF NATO Architecture Framework
NATCA National Air Traffic Controllers Association
NATO North Atlantic Treaty Organization
OMG Object Management Group
PID Proportional-Integral-Derivative
RFP Request for Proposal
ROS Robot Operating System

5

SE Systems Engineering
SoI System of Interest
SoSE System of Systems Engineering
SoS System of Systems
SV Subject Vehicle
SWIFT Society of Worldwide Interbank Financial Telecommunication
SysML Systems Modeling Language
TOGAF The Open Group Architecture Framework
TTC Time-To-Collision
UAV Unmanned Aerial Vehicles
UDP User Datagram Protocol
UID Unique Identifier
UML Unified Modeling Language
V2V Vehicle-to-Vehicle
V2X Vehicle-to-X

6

Chapter 1

Introduction

Humans build systems to solve a problem or fulfill a need. Sometimes these prob-
lems or needs are not complicated in nature, or their solution is rather simple, so
simple systems may do the job. But sometimes, they are complicated, so we need
complex systems to get us through. The nature of a system, however, does not
depend only on the problem that we want to solve, or the need we want to fulfill,
but it also depends on our requirements from that system, and the environment of
that system. Interacting with the environment does not only affect the system itself,
but also may affect other systems in that environment as well. In an environment
that contains large numbers of systems affecting and interacting with each other, a
global system emerges that displays behaviors that could not be traced back to a
single or set of parts (e.g. a global transportation system). For a long time, such
systems were either unknown to exist, or when such system is identified, it is studied
as a specific case. Recently, these systems are getting famous, and they are knows
as Systems of Systems (SoS). SoS are dynamic systems in which parts are by them-
selves independent systems, and work together either because they share the same
objectives or because working together gives them benefits they could not achieve
alone.
This thesis is part of the Labex MS2T1 “Control of Technological Systems-of-
Systems”, a multi-disciplinary scientific program that targets a scope of applications
that may be very large. This program focuses on 4 main axes of research (Fig. 1.1):
interaction and cooperation between systems, uncertainty management, optimized
design of technological SoSs, and dynamics of SoS: emergence and agility. The main
focus of this thesis is the subject treated by the first axis: “interaction and coopera-
tion between systems”. Most notably, in the context of SoS control, we explore the
approaches used for control in SoS, and similar systems such as large-scale systems
(LSS) and multi-agent systems (MAS), in order to answer to the following question:
how does SoS authority control the constituent systems (CS) in order to achieve the
global goals of the SoS?
The first part of the thesis consisted of a detailed study of SoS in the literature. Due
to the diversity of domains of applications of SoS, there exist large number of def-
initions that define SoS in the context of a specific domain of applications, whereas
other generic definitions that ignore the domain of application and focus on SoS as
systems tend to give characteristics that describe SoS as well as its CS. This litera-

1www.labexms2t.fr
2www.labexms2t.fr/presentation/overview.html

7

Chapter 1 - Introduction

Figure 1.1: Labex MS2T Project Scheme: 4 Axes of research, with 4 laboratories
involved 2.

ture study consisted also of studying the different types of SoS, which are regrouped
based upon several attributes such as the management type, or the role of CS in
the SoS. The most pertinent types are the directed, acknowledged, collaborative,
and virtual SoS, where SoS are grouped based upon the management style adopted
within. The dynamic and evolutionary nature of SoS led to the emergence of a new
engineering discipline that builds upon traditions systems engineering, in order to
address the unique challenges that face SoS, namely, SoS Engineering. There is an
identified research gap that exists in SoS engineering in subjects such as SoS inte-
gration, emergent behaviors in SoS, and SoS control.
The first contribution of this thesis is in the subject of SoS control, and most no-
tably, the control methods that are used to control similar systems such as LSS
and MAS. When systems become large and complex, the conventional centralized
control methods become insufficient, and non-centralized methods such as hierar-
chical and distributed control are used to overcome the shortcoming of centralized
control. There are cases where these methods are used in the context of controlling
SoS. However, the study of these methods showed that they are not suitable to be
adapted in SoS because of their dynamic nature, and the independence of their CS.
To capture the complexity of SoS, and the numerous interrelationships that exist
inside SoS, and to put rules that guide CS so that their individual behavior results in
the achievement of SoS objectives, multi-views framework are a suitable tool that is
used to build SoS. Multi-view frameworks give us the ability to represent a complex
SoS, and assign rules and guides for CS. They also support high-level analysis and
validation which are important decision-making aiding tools during the design and
development of SoS.
After the literature study, and to apply what we have learned, our second contri-
bution, in the context of Intelligent Transportation Systems, is a framework that
guides the development of cooperative applications in autonomous vehicles (such as
cooperative overtaking, shared parking, etc.). The Cooperative Maneuvers Man-

8

1.1 - Thesis Organization

ager for Autonomous Vehicles (CMMAV) uses SoS principles and is based on the
COMPASS’s SoS-ACRE framework (Holt, S. Perry, et al. 2015), but uses slightly
different viewpoints and methodology.
The first application that uses the CMMAV is the Cooperative Lateral Maneuvers
Manager (CLMM), which uses the recommendations of the CMMAV in order to al-
low autonomous vehicles to overtake on highways in a cooperative manner. Formal
scenarios, computer simulations, and experimentation on the autonomous vehicles of
the Heudiasyc laboratory, within the “the equipment of excellence” Equipex Robo-
tex3 project, were used to validate the CLMM, and the results showed that the
CLMM respects the requirements of its CS and the different entities that are inter-
ested in it, and that the behavior of the SoS also matches the predefined desired
behavior.

1.1 Thesis Organization
This thesis is organized as follows: Chapter 2 contains the state of the art of SoS in
the literature, existing definitions of SoS, the different taxonomies used to describe
different types of SoS, and some of the challenges that face SoS development and
engineering. The topic of SoS engineering opens the door to questions about SoS
control, and how SoS authority must handle its CS in order to achieve the desired
operation within the SoS. This topic is the subject of Chapter 3, where we look at
control paradigms and methods used in complex systems similar to SoS, and discuss
how we can apply such methods (if they are applicable) to SoS control. Chapter 4
tackles the subject of modeling in SoS, most precisely, architecture frameworks that
are used to model and analyze SoS during design and operation phases. Inspired by
this approach, and by the ACRE-SoS framework, Chapter 5 describes our approach
to cooperative autonomous driving: the CMMAV. This Chapter describes the dif-
ferent views contained in the CMMAV, as well as the use-case based methodology
adopted in its development. Chapter 6 introduces the first application that was built
using the CMMAV framework that caters for the cooperative overtaking maneuvers.
The Cooperative Lateral Maneuvers Manager (CLMM) is the application developed
for this purpose, and is the subject of this Chapter. Finally, to end it all, Chapter
7 concludes this work, and gives some future perspectives.

3httt://equipex-robotex.fr/

9

Chapter 2

Systems of Systems

2.1 Introduction
Humans build systems to solve a problem or fulfill a need. When we need drinking
water, we build systems to extract water from mountains or distill seawater, and
when we want to enjoy the beauty of the ocean, we build yachts and boats. Some-
times these problems or needs are not so complicated in nature or their solution is
rather simple, so simple systems may do the job, for example a mercury thermome-
ter to measure the temperature of a room, but sometimes, they are complicated,
so we need complex systems to get us through, like for example an airport with
all its buildings and staff to manage different air trips. The nature of a system
however does not depend only on the problem that we want to solve, or the need
we want to fulfill, as we can measure the temperature of a room with a simple mer-
cury thermometer, and we can do it with a very advanced temperature sensor that
is much more advanced and complex. What changes here is our requirements of
the system. In the first case, we wanted only to measure the temperature of the
room, while in the second case, we wanted a very precise measurement that could
not be achieved by the simple measurement tool. Furthermore, another factor that
affects the nature of a system is its environment, or the physical place in which a
system operates. Since systems interact with the world, the environment in which
they operate might constraint the system: a robot that is designed to move on a
closed rail with no obstacles is different than a robot that is designed to move in a
factory, where it should perceive its environment to avoid collision with objects, for
example. Interacting with the environment does not only affect the system itself,
but also may affect other systems as well. A vehicle moving on a road might affect
its neighbor vehicles, when for instance it changes its speed, this behavior may lead
to other vehicles changing their speeds or their lanes. This interaction lead to an im-
plicit relation between different systems that emerged because they share the same
environment. In an environment that contains large numbers of systems affecting
and interacting with each other, a global system emerges that shows behaviors that
could not be traced back to a single or set of parts (e.g. a global transportation
system). For a long time, such systems were either unknown to exist, or when such
system is identified, it is studied as a specific case, but recently, these systems are
getting famous, and they are known as System of Systems (SoS). SoS are dynamic
systems in which parts are by themselves independent systems, and work together
either because they share the same objectives or because working together gives

10

2.2 - Systems

them benefits they could not achieve alone. Studying SoS is very important because
it gives us insights about how to build them, how to improve them, and thus use
the advantages they provide.
The objectives of this chapter are the following:

1. Introduce SoS and their different types;

2. Provide examples that are helpful to fully understand SoS;

3. Introduce the set of challenges facing SoS;

2.2 Systems
The word “system” has multiple meanings depending on the context. The most
pertinent definition for us here is “a regularly interacting or interdependent group of
items forming a unified whole” 1. This definition contains two important statements:

• Regularly interacting or interdependent group of items;

• Forming a unified whole.

The first statement tells us that there is a group of items that are working together
with a constant or definite pattern, they might be interdependent (they are de-
pendent upon one another), or just interacting (they influence one another). The
second statement tells us that this group of items is not regarded as simply a group
of items, but rather as a unified whole, which act together to achieve this group’s
or the whole’s goals, even if this means some items might sacrifice for it. More pre-
cisely, in systems engineering (SE) field, the definition of “system” is more adapted
to the cases treated by SE. Let us take a look on some of these definitions:

• A “system” is the combination of elements that function together to produce
the capability required to meet a need. The elements include all hardware,
software, equipment, facilities, personnel, processes, and procedures needed
for this purpose (NASA 2016).

• Combination of interacting elements organized to achieve one or more stated
purposes 2.

• Homogeneous entity that exhibits predefined behavior in the real world and is
composed of heterogeneous parts that do not individually exhibit that behavior
and an integrated configuration of components and/or subsystems (INCOSE
2015).

These definitions are more specific in defining a system from SE perspective, by
providing boundaries to the more general definitions. An airplane with its different
parts alongside the crew, achieving the purpose of transporting passengers from
point A to point B is a system, and a water boiler system boiling water is a system
as well. From the previous definitions we can extract two important points: A
system always has an objective (or set of objectives), and its behavior to achieve its
objectives is predefined.

1www.merriam-webster.com/dictionary/system
2ISO/IEC/IEEE 15288:2015 Systems and software engineering — System life cycle processes,

4.1.46.

11

Chapter 2 - Systems of Systems

System Objectives: Every system is built to solve a problem, or to achieve an
objective: a car is built to transport its passengers from a source to a desti-
nation, and a weather satellite is built to make specific measurements of the
atmosphere. The objectives of these systems are defined by their owners or
operators, and all the parts must work together to achieve them. It should
be noted that system objectives and functionalities are not same, as will be
discussed later on.

System Behavior: To achieve its objectives, a system must be able to perform
a series of tasks or processes, and it must perform them in a predefined way.
This is important for many reasons: if the behavior is predefined, any problem
is easier to be identified and solved, also a predefined behavior is easier to
test prior to the system deployment to avoid any operational surprises. For
example, to heat water to precisely 85.5◦C using a water heater, if its behavior
is not predefined, it might heat water sometimes to 70◦C, and sometimes to
110◦C. The behavior of a system is defined by its operators or owners.

Systems are not limited to machines though, societies are systems in which people
work together to achieve the common goal of well being. A company with its em-
ployees, management, and assets is a system in which all parts work together to
maintain and grow it is a system as well. In biology, every living being is a sys-
tem that is composed of many organs and cells that work to preserve that being.
Systems exist everywhere, and in every domain of science. Going back to human
built systems, which are the focus of this thesis, an airplane and a water boiler are
both systems based upon the previous definitions, they both have objectives, and
their behavior is predefined. However, there is an important difference that exists
between those two systems, namely their complexity. An airplane is a complex sys-
tem, whereas a boiler is a simple system, but what is a complexity? And what is a
complex system? The answers to these questions are the topic of the next section.

2.2.1 Objective vs. Purpose
In this thesis we treat the subject of SoS, wherein the subject of systems management
is pertinent as we will see later on. For this reason, we are going to use the terms
“objective” and “purpose” multiple times referring to the system objectives and
purposes. These two terms differ slightly in meaning, that is why we are going now
to highlight the difference between them.

2.2.1.1 Purpose
Purpose describes the reason why something exists. The purpose of a mobile phone
is to give its owner the ability to communicate with other people. A system’s
purpose is the reason why this system was created, the overall vision or mission for
this system. It is abstract and intangible.

2.2.1.2 Objective
The objective is more specific than purpose. It is a concrete action that will lead
to achievement for purposes. A mobile phone has multiple objectives that lead to
achieve its purpose, such as enabling internet connectivity, and making vocal calls,
for example. While a system’s purpose represents the why, its objective represents
the how. The objective is specific, and tangible, and can be measured and validated.

12

2.3 - Complex Systems

2.2.2 Systems Functionalities

A functionality is an action performed by a system. System functionalities are any
action that the system is capable of doing, whether it be gathering some type of
information, or moving an object. Some functionalities in a system are mandatory
to have, which represent the minimum set of actions a system must do in order to
achieve its objectives, and consequently, fulfill its purpose. However, there are some
functionalities that are added to systems to improve their operation. For example,
a fingerprint scanner on a desktop computer can store passwords. This saves five
minutes every time the user forgets a password and has to look it up or reset it, it also
makes the computer more secure. A desktop computer can function very well even
without having the functionality to store passwords, but having this functionality is
beneficial since it improves the user experience.

Functionalities are all the actions a system can do, and objectives are the actions
that a system must do.

2.3 Complex Systems

Before discussing complex systems, let us discuss complexity itself. Complexity
is a very complex term to define, since it is very context dependent. The origin
of complexity comes from the Latin word complexus, and it translates literally to
“woven together” or “entwined”. Complexity in systems is used to describe the state
of a system that has many parts, which have intricate, or nonlinear relationships.
To understand this, let us look at a simple system, in which the parts have linear
relationships. Let us reconsider the boiler: it has a cold water feed, a tank that
contains the water, a coil that transforms electricity into heat, and gauges the adjust
the flow of water. The relationship between the let us say the coil and water and
the effects they have on each other are known, the coil heats the water. If the
water is not boiling as expected, we can trace that to the coil, if the coil is not
damaged, then there is a problem in the electrical circuit, and so on. In such systems,
namely simple systems, the cause and effect relations between parts are known and
relatively simple, which is not the case in complex systems. In complex systems, a
modern passenger cars for instance, which consists of large number of components
working together to enable the car to go from a source to a destination. Different
sensors acquire different inputs like speed and acceleration, actual weight and other
measurements which are used to control the behavior of the car. If we consider the
lateral acceleration measurement, it affects speed control, slip control, and steering
control, which are affected themselves by a number of variables. Finding the cause
of an issue in a car is not trivial, even though some causes are more likely the reason
behind a specific issue (for example eroded fuel filter is likely the reason behind
increased fuel consumption), often when an issue appears in a car, it needs to be
checked up to identify the exact reason. In summary, complex systems are systems
that consist of a large number of components which have nonlinear relationships.
Large number of components and nonlinear relationships are not enough to identify
a complex system alone, however, when they exist in a system, this system shows
interesting behavior called “emergent behavior”, that might be a good indicator of
the complexity of the system (Boccara 2010).

13

Chapter 2 - Systems of Systems

2.3.1 Emergent Behavior
Emergence occurs when a group of parts, namely the whole shows properties (or
behaviors) that could not be explained beforehand with the simple knowledge of the
properties (or behaviors) of the parts. Emergence exists in all disciplines that deal
with systems: biology, cosmology, engineering, etc. Emergence occurs in systems
that are composed two or more parts, that lead, when they interact, to one or more
behaviors on the whole’s level that does not reside in any individual part. From
biology, birds are an example of a system that has an emergent behavior, namely
flying: none of the parts or organs of a bird can fly by itself. However the whole,
or the bird flies. We might try to trace the flying behavior to the wings, however,
if take two wings and flapped them, it is very unlikely that we could fly. The flying
property, or the emergent behavior in a bird is the result of all the parts working
together. Continuing with our previous examples, the car and boiler: if we are to
trace the “moving upwards” behavior of a passenger car to its parts, the closest
behavior that exists to moving is in its wheels, however, alone, the wheels move
downwards on an uphill road. On the other hand, all properties and behaviors
that exist in the boiler could be traced to its parts: boiling is a property of water
when heated, and heating is a property of the coil when an electrical current passes
through. Emergence is one of the most important properties in complex systems,
and often systems are built for their emergent behaviors: vehicles to move stuff,
airplanes to fly, etc. These types of behaviors are desired known behaviors, we
know that when we build a car it will move, and we build it to do so, however,
emergent behaviors might sometimes be undesirable: a car slipping on a wet road,
for example. It is known that a car might slip on a road if certain conditions are
met, and so we equip cars with systems that have the objectives of making sure
that the car does not slip. Emergent behaviors could be classified into 4 categories
based on these two criteria (Fig. 2.1): desirability and predictability. Usually system

Figure 2.1: Emergent behavior classification (Furrer 2017).

builders focus on improving known desirable emergent behaviors, and limiting known
undesired emergent behaviors from appearing in the system. Known behaviors are
identified in systems either by experience (a certain behavior appeared before in

14

2.4 - System of Systems

a similar system), or by studying the system before its deployment, however, the
problem is with unknown emergent behaviors. The problem with unknown behaviors
is that they appear when a complex system is operating, if we are lucky, these
behaviors might be desirable, like flying airplanes, or undesirable but not critical
to the operation of the system (such as temporal overheating of a component in
the system), but if unfortunately we are unlucky, such behaviors might lead to the
destruction of the system (e.g. the destruction of a power plant).

2.4 System of Systems
So far we have discussed systems as separated entities that are built to solve a
problem or to achieve an objective, and we showed that a system might be simple
or complex, based on its parts and their inter-relationships, and their emergent
behaviors. However, in reality, systems are rarely separated when they operate, and
they often have several types of relations with the world through their environments.
These relations with the world might take two forms: explicit relations and implicit
relations.

Explicit Relations: This form of relations is known and accounted for before de-
ploying the system, for example a car running on fuel will interact with gas
stations in order to get the resources it needs to operate, or a power plant
that uses fuel to produce energy which takes fuel as a resource and produces
energy as a product.

Implicit Relations: This form of relations is either unknown or unaccounted for
before deploying the system, for example a car slowing down will force the car
behind to slow down as well to avoid collision.

Regardless of the environment in which a system operates in, explicit relations exist
in all systems because all systems require some type of resources to operate, and/or
produce a product. On the other hand, implicit relations are often observed in sys-
tems that share their environment with other unrelated systems. Implicit relations
are not limited to forced relations, and they extend as well to conscious decisions
made during the operation of the system.
To demonstrate the previous types of relations, consider the following scenario: a
company LCA wants to transport goods overseas at the time tA, pays a transporta-
tion company TC to move its goods. It happens that around the same time, another
company LCB also needs to transport goods to the same destination as LCA but at
time tB, and pays TC to transport them. Assume that the time difference between
both orders is δT = tA − tB = 1day. To reduce the number of trips, TC contacts
both companies in order to reach a possible agreement on a single date for the trans-
portation, and informs them that they will pay less if they ship their goods at the
same time. Obviously LCA, LCB, and TC are three systems that have each separate
objectives. The relations that exist between LCA and LCB, on one hand, and TC,
on the other hand, are explicit relations since both LCA and LCB know that they
will be using another company to move their products when building the system,
and in consequence achieve their objectives. However, the relation between LCA

and LCB is implicit, since it was not thought beforehand, but rather it is the result
of the 3 systems sharing the same operation environment, and it affects them since
either LCA, or LCB or both might change their transportation date to benefit from

15

Chapter 2 - Systems of Systems

TC’s offer. The 3 systems now share a single objective, which is transporting the
goods, and according to the definition of systems and complex systems mentioned
in Section 2.2 and in Section 2.3, during the period of shared operation, they could
be seen as a single system. This system, which consists of multiple systems that
operate together to achieve the now shared objective, is what we call a System of
Systems (SoS).

2.4.1 SoS Historical Background
SoS is a concept that describes a specific type of systems that form from two or
more systems, that are related to explicit or implicit relations, or both. If we trace
SoS in the literature, it was first mentioned in the year 1956, when (Boulding 1956)
used SoS to describe the objective of a general system’s theory, that seeks to create
a spectrum of theories that use the similarities between disciplines in system the-
ory. This spectrum, which they called “System of Systems”, perform the function
of a “gestalt” in theoretical construction. A “gestalt” is a German word for form or
shape3, and is used to describe a whole which is greater than the sum of its parts. In
contrast with emergence and complex systems, this definition describes a complex
system more than a SoS as we will see later.
Later on, SoS was used by (Ackoff 1971), (Jacob 1974), and (Jackson and Keys
1984), to in the domains of organization’s management, biology, and operational
research respectively. Ackoff used the term SoS in an attempt to organize different
types of systems into a system that highlight their differences and similarities. Ja-
cob described SoS as “every object that biology studies” (Jacob 1974), and Jackson
& Keys used “SoS Methodologies” that use the relations between problem-solving
methodologies and systems-based problem-solving methodologies to solve opera-
tional research problems.
In the 4 previous papers, the term SoS was used to describe an object, an idea,
or a set of methodologies, rather than describing what is a SoS. We should note,
however, that since the first mention of SoS, it was always related to emergence,
which is an integral part of SoS. The first attempt at describing SoS as a concept
was by (Eisner, Marciniak, and McMillan 1991) where they described SoS as a group
of multiple independent systems acquired independently. These systems, when op-
erating together, form a multifunctional solution for a global “coherent mission”.
They further note that the optimization of individual systems in a SoS does not
guarantee the optimization of the SoS. This first definition of SoS introduced the
notions of independent systems, and the global mission. Another view on SoS comes
from (Shenhar 1994), where they considered SoS as a “large collection or a network
of systems functioning together to realize a common task”. While the last 2 defini-
tions describe a whole that is formed from multiple systems, the way these systems
are put together to form the whole, or the SoS, differs between the two definitions:
Eisner et al. talk about SoS as if they are built by an entity to solve a problem
(systems are acquired), while Shehnar considers only the result.
Adaptation, or evolutionary development was introduced by (Holland 1995) in 1995,
where they view SoS as constantly adaptive systems. This adaptation is the result of
different local rules that reside in the parts, and their capacity of auto-organization.
In the same year (Owens 1996) used this same concept to introduce SoS in the mil-
itary domain.

3https://en. wikipedia.org /wiki/Gestalt

16

2.4 - System of Systems

In 1996, SoS and military domain witnessed the second important association when
(Manthorpe 1996) introduced the concepts of command, control, computation, com-
munication, and information (C4I), and intelligence, surveillance, and reconnais-
sance (ISR) to SoS in military applications. The same year witnessed what would
be considered later the most accepted definition of SoS in (Maier 1996). Unlike
previous attempts at defining SoS using a textual description, Maier described SoS
using a set of 5 characteristics that when respected in a system, this system could
be considered a SoS. Moreover, the parts that form the SoS are now described as
constituent systems (CS) rather than parts or subsystems. These characteristics are

• operational independence of CS,

• managerial independence of CS,

• geographical distribution of CS,

• emergent behavior in the SoS,

• evolutionary development of the SoS.

The detailed description of each characteristic will be given in the next section. The
importance of this definition is that it did not impose any limits on the way SoS
forms, and it removed a lot of ambiguities that existed in the previous definitions.
For example, using Shenhar’s definition, a power plant is considered as a SoS, as
well as a network of sensors deployed in a large field is also a SoS, but if we apply
Maier’s characteristics, both the power plant and the network of sensors are not
SoS (see Section 2.4.3). This is because Shenhar’s definition does not impose any
specific conditions on the CS, whereas Maier’s definition does.
In 1997 (Kotov 1997) defined SoS in the context of information-intensive systems
as distributed, large-scale systems, in which components are complex systems by
themselves, where the main emphasize is on communication between CS. Kotov did
not only define SoS, by he also proposed the first approach to model and analyze
SoS that considers CS as nodes in a hierarchical structure using a C++ based li-
brary called CSL, and applied this tool to a case study of a global transportation
company. The emphasize on communication in SoS is further supported by (Maier
1998), where he considered that communication and CS interfaces are the most im-
portant aspect in SoS.
The use of SoS in military domain was considered again in the year 2000 by (Pei
2000) where he introduced integration systems in SoS. Integration systems are sys-
tems that are added to SoS for the purpose of coordinating between different CS in
military SoS. The years that follows witnessed a huge increase in the use of SoS ap-
proach in several fields of applications, and on different levels as well. From generic
architecture frameworks that are intended to serve as blue prints for SoS design
and analysis [(Partners 2005), (Ballagny, Hameurlain, and Barbier 2009), (Officer
2010)], to SoS development processes and models [(Shams et al. 2008), (Kewley Jr
and Tolk 2009), (Acheson, C. Dagli, and Kilicay-Ergin 2013)]. SoS specific appli-
cations in domains such as defense applications [(D. L. Farroha and B. S. Farroha
2011), (Sanduka and Obermaisser 2014)], transportation [(DeLaurentis 2005), (Far-
cas et al. 2010)], and cyber security (D. L. Farroha and B. S. Farroha 2011) to cite
a few. In 2005, the first international conference dedicated to SoSE was launched:

17

Chapter 2 - Systems of Systems

IEEE Systems of Systems Engineering Conference4, which is a yearly conference
that has the objectives of gathering the SoS community to improve the state of SoS
development. Several European studies addressed SoS as well: T-Area-SoS5 which
is a collaboration between organizations from the United States and Europe for the
purpose of creating a SoS roadmap for SoS development, Road2SoS6 which also
focuses on creating a roadmap for SoS development in the energy, manufacturing,
crisis management, and traffic control sectors, and Compass7 which is a European
study that focuses on model-based approaches applied to SoS development.
With all the interest surrounding SoS, we wonder what is a SoS? And why are they
so important to study? The next section will answer these questions.

2.4.2 SoS Definition
In the literature, we observe two different types of definitions for SoS. The first type
is domain-based, this means that definitions of this type try to define the use of SoS
in a specific domain:

Definition 2.4.1. Enterprise systems of systems engineering is focused on cou-
pling traditional systems engineering activities with enterprise activities of strategic
planning and investment analysis. (Carlock and Fenton 2001)

Definition 2.4.2. SoS integration is a method to pursue development, integration,
interoperability, and optimization of systems to enhance performance in future bat-
tlefield scenarios. (Pei 2000)

Definition 2.4.3. SoS is every object that biology studies. (Jacob 1974)

The second type of definitions are those that try to define SoS regardless of the
domain. They try to give indications that can be used to identify a system as a SoS:

Definition 2.4.4. A set of several independently acquired systems, each under a
nominal systems engineering process; these systems are interdependent and form in
their combined operation a multi-functional solution to an overall coherent mission.
(Eisner, Marciniak, and McMillan 1991)

Definition 2.4.5. A large widespread collection or network of systems functioning
together to achieve a common purpose. (Shenhar 1994)

Definition 2.4.6. SoS are large-scale integrated systems which are heterogeneous
and independently operable on their own, but are networked together for a common
goal. (Mo Jamshidi 2008)

Definition 2.4.7. SoS brings together a set of systems for a task that none of
the systems can accomplish on its own. Each constituent system keeps its own
management, goals, and resources while coordinating within the SoS and adapting
to meet SoS goals. 8

4http://sosengineering.org
5www.tareasos.eu
6http://www.road2sos-project.eu/
7http://www.compass-research.eu/
8ISO/IEC/IEEE 15288:2015(E), Annex G.

18

2.4 - System of Systems

2.4.3 SoS Adopted Definition
For the first part of this thesis, where we discuss SoS, control and modeling, we
are interested in them as systems in general, and we do not have any preference
to any application domain. Thus, the second group of definition which defines SoS
regardless of its domain is more pertinent for us. The different definitions contained
in this group share different characteristics that describe either the SoS as a system
or its CS: definition 2.4.4 talks about independent CS, and that they work for an
overall coherent mission, a point shared by all other definitions. Definition 2.4.5
mentions the widespread of CS, while definition 2.4.6 focuses on their heterogeneity
and independence. Using these similarities in definitions, and studying existing SoS,
Maier (Maier 1998) provides a definition based on characteristics that should exist
in a system, in order to be classified as a SoS:

Definition 2.4.8. SoS is an assemblage of components which individually may be
regarded as systems, and which possesses two additional properties: operational and
managerial independence.

Three other characteristics are often used alongside the previous 2 when describ-
ing SoS (Maier 1996): emergent behavior, geographic distribution, and evolutionary
development. In fact these 3 are the natural consequences of independent systems
working together as we will show later on. But before that, let us define operationally
independent, and managerially independent systems.

2.4.4 Independent Systems
The notion of independence in SoS is important and often used to describe CS that
constitutes the SoS. In (DiMario, J. T. Boardman, and B. J. Sauser 2009) authors use
autonomy as a characteristic to describe CS in SoS as a substitute for independence.
Independence can be used to describe multiple aspects of a system: a system might
be resource independent, human independent, and so on. Autonomy, in (DiMario,
J. T. Boardman, and B. J. Sauser 2009), is described as “the ability to exhibit
autonomic properties” such as self-configuring, self-optimizing, self-healing, and self-
protecting. All of the previous properties exist in any operationally and managerially
independent system, and therefore we will discuss only these 2 characteristics in this
section.

2.4.4.1 Operational Independence
A system that has its operational independence is a system that can operate by
itself, without the need for other systems. For example, consider a drone controlled
by a human operator: while the drone itself is a system, it is not an operational
independent system because to operate it needs the human operator. However, if
we consider the whole system, drone + operator, this system might be operationally
independent.

An operationally independent system is a system that is capable of achieving its
objectives by itself.

In the previous example, if the drone’s objective is to go from point A to point
B, both the human operator and the drone must operate together to achieve this
objective, since the drone is not capable of navigating itself. On the other hand,

19

Chapter 2 - Systems of Systems

an autonomous vehicle is an operationally independent system because once an
objective is assigned, it is capable of achieving it.
2.4.4.2 Managerial Independence
Systems management is an umbrella term that includes monitoring, design, resource
allocation, etc. of a particular system. Managerial independence of a system means
that all decisions related to any aspect of a system within a defined scope are made
within the system. The management of a system might change during its life-
cycle: during design cycle, the management is responsible for design decisions such
as system architecture, technology used and its intended behavior. During the
operation cycle, the management tasks consist of resource management, setting
the system’s objectives, choosing the right operational mode, etc. Reconsider the
drone from the previous section, if it has the capability to set objectives without
the operator’s interference, then we could consider it managerially independent,
whereas if the operator is the one that sets its objectives, then the drone by itself is
not managerially independent.

2.4.5 Other Characteristics
Autonomy, belonging, diversity, connectivity, and emergence are used in the liter-
ature as defining characteristics of SoS [(J. Boardman and B. Sauser 2006), (John
Boardman and Brian Sauser 2008)]. Autonomy is the ability of a CS to make inde-
pendent choices, while belonging means that CS choose to belong to the SoS, and
that they could leave it whenever they desire, and diversity represent the hetero-
geneity of CS in SoS. These 3 characteristics could be traced directly to the manage-
rial independence of the CS, because managerial independence means the ability to
make independent choices, one of which is the belonging to the SoS. Having multiple
managerially independent systems working together implies the diversity in a SoS,
because each system might have different technologies, or different objectives. As
for connectivity, when multiple independent systems work together, they must com-
municate in order to cooperate, this means that connectivity is implicitly included
in the previous definition. Finally, emergence as we have seen in the Section 2.3.1,
is the natural result of independent complex systems interacting. That is why, in
what follows, to justify the classification of a system as a SoS we will only prove
the operational and managerial independence of its CS. This does not mean, how-
ever, that the other characteristics could be neglected, since they are key points to
be thought of when designing a SoS: what are the emergent behaviors that might
raise? How to ensure the connectivity of heterogeneous CS? etc.

2.4.6 Cyber-Physical Systems and SoS
Cyber-physical systems (CPS), are systems which “consist of a computing device
interacting with the physical world in a feedback loop” (Alur 2015). This means
that a CPS is any system in which a software controls a real world physical entity.
In this modern era, almost all systems are considered as CPS: power plant, electric
vehicles, smart lights, etc. When a system of interest consists of multiple CPS, it
is referred to as cyber-physical SoS (CPSoS) (Elshenawy, Abdulhai, and El-Darieby
2018). It is important to keep this special category in mind when working with SoS,
because even if the SoS of interest is not CPSoS, it would most likely have multiple
CPS as CS. Recognizing this beforehand, we could anticipate a lot of challenges that
are inherent in CPS, such as system security, and we could take advantage of such

20

2.4 - System of Systems

systems.

2.4.7 Discussion
SoS were, are, and will always exist, because they are the natural consequence of
independent systems interacting because they share the same environment and/or
objectives. This led as we have seen to the numerous and diverse definitions that
try to define SoS. Understanding SoS is important because it enables us to achieve 2
objectives: Learning how to build a robust and reliable SoS, and improving existing
SoS. One challenge that we face in this regard is the fact that operational and man-
agerial independence are qualitative criteria, which means that there are no values
to measure the degree of independence a system has in contrast to some quantita-
tive criterion. However, let us put independence on a scale ranging from completely
independent to completely dependent, and assuming that complete independence
means that all decisions are made within the system, and complete dependence
means that no decisions are made within the system, and they all come from out-
side the system. To make things clearer, let us build an operational and managerial
independence scales and place some systems on them. In Fig. 2.2 we show 3 system
examples placed on the managerial independence scale: a power plant, drone, and
human-driven vehicle without the driver. A human-driven vehicle without its driver
might be considered a managerially dependent system because all decisions regard-
ing objectives, operations and so on are made by the driver, who is an outsider to
the system. In contrast, in a power plant where all decisions are made by its man-
agement, which resides inside the system, we could say that this is a managerially
independent system. In between the two edges of the scale, systems such as the
drone that receives its objectives let us say from someone outside, but also has the
ability to take decisions on resource management for example is a typical example
of a system that is neither managerially dependent nor independent, but rather in
between. In reality, before joining the SoS, CS are operationally and managerially

Figure 2.2: Managerial Independence: From completely independent to dependent
systems.

independent: all decisions are made within the system, and it can operate without
the need of any other external system. However after joining the SoS, CS usually
compromise some of their independence in order to benefit from their belonging to
the SoS.
To summarize, Fig. 2.3 represents the boundaries of what we consider an indepen-
dent system. An independent system is a system that consists of its operational
part, i.e. the part that does what the system is built to do, and a managerial part,
which is responsible for deciding what the system has to do. Since independent
systems operate in an environment shared between different independent systems,
there are several constraints that apply to the managerial level such as regulations,

21

Chapter 2 - Systems of Systems

or the requirements of other stakeholders, while the operational part uses resources
to achieve its functionalities, while at the same time accounting for the external
factors that might affect it.

Figure 2.3: An independent system consists of its operational part and its man-
agerial part together in the system.

2.5 SoS Taxonomy
Regardless of the their diversity either in their domain of applications, or the type
and nature of the systems involved (CS), SoS face globally the same challenges, such
as the possibility of undesired behaviors due to emergence, their fragility towards
the surrounding environment, the dynamic nature of SoS due to CS joining/leaving
the SoS virtually whenever they desire, etc. However, if we look at SoS management
on a global level, i.e. who sets its objectives, how it is governed, who is responsible
for managing resources, etc. we could find a clear distinction to be made between
SoS. This distinction in the way SoS is managed led to multiple taxonomies used
to classify different SoS: directed, acknowledged, collaborative, and virtual [(Maier
1998), (Dahmann and K. J. Baldwin 2008)]. Later on, three attributes were iden-
tified by (Collins, Doskey, and Moreland 2016) to further explain the differences
between these 4 types. So let us first define each type, and then introduce the 3
attributes that we could use to better classify SoS. Finally, we will introduce some of
the newer proposed taxonomies that use different attributes than SoS management
to classify them.

2.5.1 SoS Management taxonomies
When comparing the management style between different SoS, authors came up with
4 different taxonomies in order to group different SoS with similar management style.
Directed, acknowledged, collaborative, and virtual are the 4 groups that are used
to distinguish between “single complex systems”-like SoS, namely directed SoS, and
“chaotic complex systems”-like SoS. At first, 3 out of the 4 types were proposed by
(Maier 1998):

22

2.5 - SoS Taxonomy

2.5.1.1 Directed SoS

It is SoS which is built for specific predefined purposes, and is centrally managed
throughout its operation to fulfill these purposes. The normal operation mode for
CS in such SoS is subordinated to the SoS’s central management, however, CS retain
the ability to operate independently within the SoS. Organizations such as research
laboratories, and communities such as AirBnb and Waze9 are examples of directed
SoS because the management is what defines all the rules that must be respected
by their CS.

2.5.1.2 Collaborative SoS

It is SoS which consists of a group of CS that work together voluntarily, mainly
because they share the same objectives, or because they share the same purposes.
In this type of SoS, the rules that guide the evolution of the SoS, as well as the overall
objectives are defined on the CS level collectively. An example of a collaborative SoS
is the internet, where there are several independent organizations (internet suppliers,
technology developers, etc.) that work together to make sure that the internet is
operating and serving its users.

2.5.1.3 Virtual SoS

Emerge when different CS are related via implicit relations (Section 2.4) due to
them sharing the same operation environment. These relations may be known or
unknown, however, they lead to the emergence of SoS. The objectives of such SoS
are relatively unknown, as well as the knowledge of all the CS that are part of
this SoS. An example of a virtual SoS would be the global stock market, where the
majority of factors that affects it are unknown. This leads to some unpredictability
in the market, and sometimes to undesired behaviors such as market recessions in
late 2000s and early 2010s.
Later on, the United States Department of Defense (U.S. DoD), a major contributor
to the field of SoS Engineering, proposed the acknowledged taxonomy, in which SoS
shares attributes from both directed and collaborative SoS. Acknowledged SoS were
found to be more suitable to be applied in the DoD’s applications.

2.5.1.4 Acknowledged SoS

These systems have a central management and resources for the SoS, but CS re-
tain their full independence, and they are sharing the responsibility of the changes
in the SoS alongside the SoS management. These SoS, however, has recognized
objectives and management similar to directed SoS. Very large organizations such
as governments and multinational companies are acknowledged systems, since the
overall management is responsible only for defining the SoS objectives, and CS are
responsible for their own management and rules.

2.5.1.5 Attributes to Distinguish Between Different Management Tax-
onomies

The 4 taxonomies used in the management taxonomies group are separated based
on the following three attributes (Fig. 2.4): SoS Objectives, Governance, and the
inter-relationship between CS (Collins, Doskey, and Moreland 2016). On one side,
when CS collaborate for their interest, the overall objectives emerge alongside the

9https://www.waze.com

23

Chapter 2 - Systems of Systems

collaboration, they are rarely known beforehand. In this case, the resulting SoS is
virtual, and it is a result of the interaction between its CS. On the other side, a
SoS that is built from several independent systems, to serve a specific client, with
well known objectives and management, that governs the interactions of its CS, is a
directed system. Note that at any time SoS can change from one group to the other
once a change happens to the management style adopted within.

Figure 2.4: Objectives, governance, and inter-relationship between CS are the 3
attributes that could be used to separate management taxonomies(Collins, Doskey,
and Moreland 2016).

2.5.2 Other Taxonomies
Other than management taxonomies which describe the management style used in
a specific SoS, there are 2 other groups of taxonomies that may be used to describe
a SoS (Garnier 2018): anticipation taxonomies, and contracting taxonomies. The
first group describes the degree of anticipation of engineering activities in the SoS,
and the second describes the degree of integration of CS in the SoS.
2.5.2.1 Anticipation Taxonomies
The different taxonomies in this group describe the degree of anticipation of en-
gineering activities such as refinement and maintenance in the SoS during its life
cycle. 4 terms are used in this group: permanent, episodic, prepared, and phased
SoS.
Permanent SoS, such as smart cities, are SoS that exist and are not expected to
end, and they evolve during operations. The engineering effort in such SoS is more
focused towards integrating new systems and technologies in a preexisting SoS.
Episodic SoS such as crisis management SoS, is SoS that gets deployed on demand,
where the CS are prepared for typical scenarios, in such SoS, engineering activities
such as monitoring are needed only when the SoS is deployed, and feedback and
refinement when the SoS finishes its task.
The third type is prepared SoS, which is similar to the permanent SoS in that
they both do not end, however, in this case, a prepared SoS does not exist before the
engineering activities begin. After deployment, these SoS evolve and is maintained
during operations. Air traffic management is an example of a prepared SoS.
The final type in the anticipation taxonomies group is the phased SoS. In contrast
to episodic SoS, phased SoS are operational and do not get deployed on demand,
however, there are several operational configurations that exist in the SoS, which
is instantiated when required. A search and rescue SoS is a phased SoS where the

24

2.5 - SoS Taxonomy

involved CS choose the operational configuration based on the mission they want to
perform.

2.5.2.2 Contracting Taxonomies
Contracting taxonomies are separated based on the way CS perform operations
within the SoS. Similar to the 2 previous groups, there are 4 elements in the contract-
ing taxonomies group: capability-based, function-based, service-based, and resource-
based SoS.
Capability-based SoS function through capabilities provided by the CS. In large
organization for example, companies contract other companies to provide capabil-
ities instead of developing their own capabilities (hiring capabilities for example).
This means that a particular CS will provide particular capability in the SoS as long
as this capability is required. Whereas function-based SoS are SoS in which CS
provides functions to the SoS/other CS. Just as with application-based configured
systems (mainly heavy IT systems), different CS are contracted for specific functions
they provide to the SoS, while at the same may be providing functions to other SoS.
The third taxonomy in this category is the service-based SoS, where just as the
previous 2 taxonomies, CS are provided as services to the SoS/other CS.
It might seem that the 3 taxonomies are similar since the terms capability, function,
and service are similar and refer to something provided from a provider entity to
a receiver entity. However, these 3 terms are not synonyms, and there is a slight
difference between them: a capability is the ability to do something, whereas a func-
tion is what something does or is used for, and finally a service is doing the work
for somebody.
The fourth and last taxonomy in this group is resource-based SoS, in which the
interaction between CS is done by producing and consuming resources. These re-
sources could be tangible (e.g. smart electric grids), or intangible (e.g. data). In this
case, the most of the effort is focused towards enabling the exchange mechanisms
between SoS/CS.

2.5.3 Discussion
The different taxonomies used to describe SoS are grouped into separate groups
based on the aspects they describe: Management taxonomies describe the manage-
ment style used to manage a particular SoS (Section 2.5.1), whereas participation
taxonomies describe how CS participate in the SoS’s operations. Regardless of what
group of taxonomies we are interested in, it is important to identify the taxonomy
that describes a SoS of interest accurately, because every taxonomy offers different
approaches that must be followed in this SoS. To explain this we will describe the
case of disqualifying SoS in the management taxonomies group. Consider the case
of the internet. The internet is a collaborative SoS, in which the Internet Engineer-
ing Task Force10 (IETF) is responsible for placing standards, but it has no power
over applying these standards. It is up to the players (service providers, equipment
manufacturers, etc.) to accept or reject a specific standard. A misclassification of
the internet as a directed SoS for instance, gives the IETF an illusionary level of
control that is much higher than the real control it exercises over the SoS, and in
consequence its failure in attaining its objectives. The same goes to the other groups
of taxonomies that may be used to describe a SoS.

10https://www.ietf.org

25

Chapter 2 - Systems of Systems

2.6 SoS Examples
Adopting an SoS approach to a certain situation is beneficial, and it could be seen
from the diversity of application domains in which SoS approaches are used. SoS
approaches are being used in healthcare [(Whittington and Dogan 2016), (Grigor-
oudis, Kouikoglou, and Phillis 2012)], in environmental applications (Butterfield,
Pearlman, and Vickroy 2008), in infrastructure management (Otto et al. 2016),
emergency and security management [(Liu 2011), (Mauss et al. 2015), (Daniel et al.
2009)], and power management and the use of smart grids [(Marvasti et al. 2014),
(Arnautovic, Svetinovic, and Diabat 2012)]. Below we detail 2 examples of existing
and underdevelopment SoS, from 2 domains: transportation, and economics.

2.6.1 U.S. Next Generation Air Transportation System
The Next Generation (NextGen) (Fig. 2.5) Air Transportation System (ATS)11 is
a project led by the U.S. Federal Aviation Administration’s (FAA) that seeks to
modernize the U.S. ATS, and it has the following 6 objectives (Planning and Office
2007): (1) Retain US leadership in global aviation, (2) expand capacity, (3) ensure
safety, (4) protect the environment, (5) ensure US national defense, and (6) secure
the nation. There are multiple reasons that motivated this project: congestion prob-
lems in the most frequented airports that are gonna worsen with increased demand,
security issues that arose after 2001 events and led to tighten security procedures
on travelers, which also contributed to the congestion and delays problems. Fur-
thermore, environmental concerns from CO2 emissions, urban pollution and noise
resulting from increasing the capacity of airports; and lastly, the need to preserve
the leading position of the US ATS in the world, were all reasons behind the need
for a new ATS that could achieve the previously stated objectives. Achieving those
objectives is a very complex and time consuming task for a lot of reasons, including:

• ATS is governed by several national and international organizations (i.e. air-
port authorities and International Civil Aviation Organization) that have each
different goals and objectives.

• Technologies intended to be used in NextGen are new technologies that need
to be integrated into the existing systems (the shift from ground controllers
to ADS-B12 technology for example).

• The different constraints that must be taken into account such as environmen-
tal constraints and security constraints.

So how should the FAA approach the situation in order to reach a reliable and
sustainable ATS? The first step would be to understand the type of system and
environment in which they plan to integrate NextGen. The ATS is composed of
airports, national organizations such as the National Air Traffic Controllers Asso-
ciation (NATCA) and different airlines to cite a few. All of these organizations,
unions, airports and so on are very independent systems, which have their own
management, resources and operations. They are operationally and managerially
independent, geographically distributed, and in constant evolution. However, even
with this independence, they choose to work together because they recognize that by

11for a more detailed case study of NextGen see (Gorod, White, et al. 2014)
12Automatic Dependent Surveillance - Broadcast.

26

2.6 - SoS Examples

cooperating, they could achieve more (this is the case for example of airline alliances
such as skyteam13 and star alliance14). So according to Maier’s characteristics and
most of the definitions, US ATS is a SoS. Furthermore, since every player in the sys-
tem has its own funding, decision-making process, and goals, and since they share
some of the objectives and goals which were not imposed by any single authority,
this SoS is a collaborative SoS.
Let us suppose now that the FAA, in the face of this SoS, disregarded its type, and
intended to treat this system as a directed SoS, in which they ignored all the players
and proceeded to impose regulations and rules, without consulting those players.
What would happen is that players will choose to ignore all regulations that do not
suit them, and they might as well oppose to those regulations (by union strikes for
example), and in the end, the NextGen project would not see the light. On the
other hand, if the FAA recognizes that the ATS is a collaborative SoS, and that it
has limited power over the players, it would approach the situation in another way
(and that is in fact what has happened), and it would devise solutions and come
up with regulations that help achieve the NextGen project, while at the same time
satisfying all interested parties.

Figure 2.5: U.S. NextGen ATS as SoS: Multiple levels of operations, and a lot of
stakeholders and regulations (credit: NASA)

2.6.2 SWIFT and Secure Financial Messaging
The majority of financial exchanges happens via banks both nationally and world-
wide. A typical money transfers via banks (also known as wire transfer) process
happens as follows (Fig. 2.6):

13www.skyteam.com/en
14www.staralliance.com/en/home

27

Chapter 2 - Systems of Systems

1. An initiator (sender) initiates a request at their bank (Bank 1) providing the
receiver’s bank account details, and the amount of the transfer;

2. Bank 1 asks an intermediary bank (Bank X) to debit their account and credit
the receiver’s bank (Bank 2) account;

3. Bank 2 receives funds from Bank X and credit it to the receiver’s account;

4. Finally, the receiver gets the transferred money.

Figure 2.6: International Money Transfer: banks transfer funds between sender
and receiver.

Notice that this exchange involved no actual money transfer between Bank 1, Bank
X, and Bank 2, but rather the process involved digital messages exchanged online
between them. In this example we are going to focus on this part of the process:
financial communication between banks. In order to reach a successful exchange,
the involved banks must use a common language and secure communication means.
And this is where SWIFT comes to the picture. The Society of Worldwide Inter-
bank Financial Telecommunication or SWIFT is a cooperative society owned and
controlled by its shareholders , which operates a global network to facilitate the
transfer of financial messaging15. SWIFT also provides standards together with ISO
for message types used in financial exchanges (ISO 15022), for assigning bank iden-
tifiers (ISO 9362), and on a separate effort, the Costumer Security Program (CSP)
which defines the security mechanisms that must be adopted in banks to be allowed
to use SWIFT network. What is important from a SoS perspective about SWIFT is
analyzing the SoS that emerged from this society. SWIFT was founded in Brussels
in 1973, by 239 banks from 15 countries in the purpose of solving the communication
problem mentioned previously. This is the first evidence of collaborative SoS that
has formed to improve the state of financial messaging between its different CS.

15https://www.swift.com

28

2.7 - SoS Engineering (SoSE) vs. Systems Engineering (SE)

Each CS (member bank) is an independent system, that serves its clients. Working
in an isolated environment, a bank would not need to implement systems and tech-
nologies that allow them to communicate with other banks. However, banks do not
work in an isolated environment for a number of reasons, one of which, the implicit
relation that exists between different bank clients, where a client of Bank 1 wants
to transfer funds to clients of Bank 2.
Furthermore, over the years, SWIFT has also become an important player in secu-
rity measures used in member banks, because security is an important requirement
of financial messaging. This new objective to this SoS led to the emergence of a
new SoS, which involves companies that provide security solutions. These compa-
nies develop security solutions using SWIFT standards, and are allowed to generate
certifications on behalf of SWIFT to certify that a certain bank respects SWIFT
recommendations, and thus, it is allowed to use its network.

2.6.3 Discussion
It is very important to identify and study existing SoS because it gives us insights on
how to better design, build, and maintain future SoS. The most important decisions
regarding SoS under development are made during design time. During that time,
the majority of emergent behaviors that might show in the SoS during operations
are unknown, and there are several different design choices that are available to
choose from (management style, technologies to be used, the nature of the relation
between the SoS and its CS, etc.). Often simulations are the go-to solution used
to make decisions during design time, but the accuracy of simulations depends on
the accuracy of the model used to simulate the SoS, which is often incomplete. But
having a live example to learn from and extract guidelines and lessons is invaluable,
which is why studying existing SoS is important. However, one should be careful
when doing this as not to miss classify their SoS and study the wrong SoS, because
as we have seen misclassification is a serious issue in SoS.

2.7 SoS Engineering (SoSE) vs. Systems Engi-
neering (SE)

So far we have seen that SoS are systems, but they possess some characteristics
that separate them from other types of systems. The differences between SoS and
other types of systems are so radical that the traditional systems engineering (SE)
discipline is not enough to engineer SoS. The differences between traditional SE and
SoSE are shown in Table 2.7 (Gorod, Brian Sauser, and John Boardman 2008). In
a system, the parts are chosen as to achieve one objective (or set of objectives).
These objectives are specific to this system, and all parts of the system will work to
achieve these objectives. Whereas in SoS, CS have already their proper objectives.
They belong to the SoS because of the common goal, but whenever the conditions
of belonging to the SoS conflict with their interests, they might leave the SoS, thus,
when we build a SoS, one important aspect is to assure that CS have reasons to
work in this SoS, i.e. they share the same objectives. In traditional SE, this is
not the case, because the CS are only parts, their only purpose is to work inside
the system. The evolutionary development characteristic of SoS is also a source of
major difference. Traditional systems have a specific life cycle that is well defined
during the developments of the system, with clear information about the boundaries

29

Chapter 2 - Systems of Systems

SE SoSE

Focus
Single

Complex
System

Multiple
Integrated
Complex
Systems

Objective Optimization
Satisfaction,
Sustainment

Boundaries Static Dynamic
Problem Defined Emergent
Structure Hierarchical Network
Goals Unitary Pluralistic
Approach Process Methodology

Timeframe
System Life

Cycle
Continuous

Centricity Platform Network
Tools Many Few
Management
Framework

Established ?

Figure 2.7: Systems Engineering vs. SoS Engineering (Gorod, Brian Sauser, and
John Boardman 2008)

in which this system can operate. The response of the system to any changes in the
environment is simulated and known. In SoS, the system faces two types of changes,
exterior changes from the environment in which the SoS works, and interior changes
that occur whenever systems join or leave the SoS, or whenever the objectives of
the SoS change. Those changes usually can’t be accounted for when constructing
the SoS, and so, instead of focusing on the response of the SoS to changes in the
environment, just like in traditional SE, SoS constructors must take interior changes
into account as well. Comparisons between traditional systems and SoS, in (Gorod,
Brian Sauser, and John Boardman 2008), (Mo Jamshidi 2008), and in (U.S. DoD
2008), show that SoS, with their differences over traditional systems, require a new
engineering approach to address the challenges that face SoS. This new approach,
which is starting to gain more and more attraction in the field, should take the
different challenges that face SoS into account (discussed in the next Section 2.7.1).

2.7.1 SoS Challenges
The development of reliable and durable SoS must take into account the eventual
challenges that will face these SoS during design and deployment. Some of these
challenges come from the fact that SoS are complex systems and thus inherit the
same challenges, others are specific to SoS due to their nature and their close in-
teraction with their environment. Here we list some of these challenges to highlight

30

2.8 - Conclusion

the difference between SoSE and SE.
2.7.1.1 Social technical Equilibrium (Maier 2005)
SoS involves beside the technology, a human factor that plays a very important
role in the SoS. The majority of CS are managed by humans, and in other cases,
humans are the clients that will use the technology of the SoS. Designing a SoS,
means studying the technology and choose the best option that suits SoS objectives.
That is why it is very important to study the social factors that affect the SoS.
2.7.1.2 SoS Management (U.S. DoD 2008)
The managers of SoS do not have control over the CS, and stakeholders in the SoS
have interests beyond the SoS. Despite all of that, SoS managers have to manage
the SoS in a way that satisfies all stakeholders, and still achieve the SoS objectives.
Note that CS are the systems that belong to the SoS, while stakeholders are all
systems that do not belong to the SoS, but they are either affecting it or affected
by it.
2.7.1.3 Emergence (U.S. DoD 2008)
Emergence is a key characteristic of SoS and was discussed in the Section 2.3.1.
All SoS are built for their emergent behavior, but emergent behaviors in SoS are
not always desirable. The challenge with emergence behaviors in SoS is to treat
predictable undesired behaviors, and to predict unpredictable undesired behaviors
in the system before deployment, to prevent system failures and even destruction.

2.7.2 Discussion
SoSE is a rising discipline that aims to guide the development of SoS just as SE
guides the development of traditional systems. The development of this discipline is
a process that involves people from both the academic and industrial worlds. IEEE
Systems of Systems Engineering Conference16 is a yearly conference dedicated to
showcasing the SoS community’s effort towards establishing SoSE discipline, which
involves researchers from universities and research centers, as well as managers from
a wide range of industries. On a parallel effort, the International Council on Systems
Engineering (INCOSE) has dedicated a working group for this purpose (Systems of
Systems Working Group17), to advance and promote SoSE. Furthermore, several
books have been published that were either fully dedicated to SoSE, or tackle the
subject as part of the SE discipline [(Mo Jamshidi 2008), (Luzeaux and Jean-René
Ruault 2010), (Sage 2011), (Luzeaux, Jean-Rene Ruault, and Wippler 2013), (Dick-
erson and Mavris 2016)].

2.8 Conclusion
SoS are large complex systems, that result from the interactions between different
independent systems. In our connected world, SoS emerge naturally due to the in-
creasing interactions between independent systems, and the service-based business
models adopted by various systems. Since they are the result of complex systems
interacting, SoS are themselves complex systems, and thus they inhibit emergent
behaviors just as any complex system does. SoS are dynamic systems in the sense

16http://sosengineering.org
17https://www.incose.org/incose-member-resources/working-groups/analytic/system-of-

systems

31

Chapter 2 - Systems of Systems

that CS might join or leave the SoS during operation time, add to that their ex-
posure and close interactions they have with their operational environment, and
we are in front of complex systems that face challenges typically not observed in
traditional systems. And that is why developing a SoSE discipline is important to
engineer and build better and more resilient SoS. Several taxonomies might be used
to group different SoS, depending on what aspects of the SoS are we interested in:
management taxonomies group SoS based on their management style, whereas an-
ticipation taxonomies describe the degree of anticipation of engineering activities in
the SoS during operations, and finally contracting taxonomies refer to the way SoS
acquire their CS, and how the CS contribute to the SoS. The importance of SoS can
be proven by looking at the diversity of SoS applications across different domains:
SoS could be found in healthcare applications, economics, defense and security, and
in weather monitoring, etc. And that is not shocking since SoS the natural result of
different systems operating in the same environment.

2.9 What’s Next?
The key aspect to achieving a reliable SoS is by acquiring CS, and controlling them
in a way that the local actions on the CS level combined, result in a desired and
predictable behavior on the SoS. This means that CS must know what to do, how
to do it, and when to do it. The engineering branch that deals with this aspect
of system is systems control, but since SoS requires a new engineering discipline to
extend the traditional SE, does they also require the same thing regarding control?
This will be the subject of the next chapter entitled: Traditional Systems & SoS
Control.

32

Chapter 3

Traditional Systems & SoS
Control

3.1 Introduction
We have touched a little bit about the topic of system management in the previous
chapter, and how do systems know what they should do. We have also mentioned
that systems have a predefined behavior that is set to tell systems how to do what
they should do. In this chapter, we are going to talk in detail about this behavior,
and how systems control their parts in order to achieve the overall desired behavior.
In the context of systems control, we make the distinction between control law and
control paradigm. A control law is the mechanism used inside a controller to make a
decision based upon its knowledge of the environment, whereas a control paradigm
is how the controllers will be distributed in the system in order to achieve the de-
sired behavior while respecting the requirements of the system. After discussing the
problem of control for independent systems, we are going to tackle the problem of
control in SoS: how does SoS authority control the CS in order to achieve the global
goals of the SoS?
This chapter is divided as follows: Section 3.2 introduces the problem of systems
control in traditional systems, and the concepts of low and high level control. In
Section 3.3 centralized and non-centralized paradigms are explained, with the differ-
ent approaches adopted in the non-centralized paradigms, alongside some examples
illustrating key points. Later on, Section 3.4 describes the problem of control in SoS,
and highlights the difference between traditional systems control and SoS control.
Finally, Section 3.5 concludes the chapter with a conclusion.

3.2 Traditional Systems Control
Systems are formed of multiple different parts, where each part is responsible for
performing a task (or series of tasks) that is essential to the operation of the whole
system, these tasks might be physical, i.e. moving something from point A to point
B, or immaterial, i.e. computing certain values. Every part has parameters that
describe its current states, a model that describes the relation between the different
states, and describes their evolution over time, it has also inputs and outputs: inputs
are sent to this part in order to produce desired outputs. The outputs of a part are
then transmitted to others connected parts and play the role of either inputs or
values that are used to produce inputs. Outputs are computed in what is called

33

Chapter 3 - Traditional Systems & SoS Control

controllers. Figure 3.1 represents a typical controller system. Controllers usually

Figure 3.1: Typical system control: a controller computes the system input based
on the error between the measured system output and the reference.

integrate mathematical models of the parts they control, and they compute the
outputs of the parts using their models and the reference values on the outputs,
or what we call also desired outputs. The content of controllers, or their logic in
producing their outputs is what we call the control law. There are a myriad of
control laws that are used to produce the desired outputs such as proportional-
integral-derivative control (PID control) (Åström, Hägglund, and Astrom 2006),
sliding mode contol [(Shtessel et al. 2014), (Azar and Zhu 2015)], optimal control
[(Macki and Strauss 2012), (Bryson 2018)], etc. The choice of a particular control
law to be used in a controller depends on the dynamics of the system, the desired
behavior, and other factors.
On the other hand, the distribution of controllers in parts, how they communicate,
and what information is shared between different controllers is what we call control
paradigm. Sometimes a single controller controls all parts, and sends their inputs
which are then transformed into outputs, in other cases, a system may have multiple
controllers where each controller is responsible for a specific task in the system.
There are numerous factors that define the choice of a particular paradigm in a
system: the nature of the system, its size, the required computational capacity ,
etc. Systems control is a task that has two layers, defining the control paradigm in
the system, and/or defining control methods that will be used inside controllers so
that the system achieves its objectives, while having the desired behavior as well.
The following example (example 3.2.1) illustrates the problem that we try to solve
in control:

Example 3.2.1. The system in Fig. 3.2 is a water boiling system, the objective of
this system is to heat water to a certain desired temperature Twater/desired to achieve
a desired radiator temperature Tdesired. It is composed of a burner, pipes in which
water flows, and a radiator. To describe the behavior of this system, we need
to measure the following properties, or states: the quantity of fuel burnt in a time
δtburn, the amount of air used to feed the fire in a time δtair, and the temperature of
water inside the tubes in the radiator Twater/radiator. Using these 3 measurements, we
could say that using x amount of fuel per δtburn, and y amount of air per δtair , we
could expect to reach a temperature of Tdesired in the radiator for z period of time.
First question: what control method is the most adapted to this particular system in
order to control its different states and achieve the desired behavior?
Furthermore, this system contains multiple actuators that translates controls into

1www.microgreening.com

34

3.2 - Traditional Systems Control

Figure 3.2: Water Heater Scheme1.

actions in the parts. A fuel valve is responsible for controlling fuel intake into the
burner, an air valve that controls the air flow into the burner, and a gate motor that
controls the opening of the radiator from which we take the heat. There are multiple
possible ways that this system could be controlled; We could control both valves (fuel
and air) with a single controller, and the radiators opening with another one, or we
could control the 3 actuators using 1 controller. Second question: what is the best
paradigm to be adopted in this system to achieve the desired behavior?

The answers to the previous questions are provided by the discipline of systems
control. Systems control in systems engineering is the application of automatic
control theory to produce systems with desired behavior in control environment
(Kilian 2006). In other words, systems control tells us what is the best control law to
use in order to control a specific system, and what controller-actuator architecture
is best suited to this system. The focus of this chapter is the different control
paradigms that may be adopted in a system, however, before discussing paradigms,
there are some notions that we must explain: low and high level control.

3.2.1 Levels of Control
3.2.1.1 Low-Level Control
Usually systems control is treated from the point of view of controllers, i.e. what are
the states that we want to control and how to design controllers to do so. So in the
previous example (example 3.2.1), when we tackle the subject of control, we think
about the models of parts, how they are connected, and what is the best control
method to be used in order to achieve the best performance from the system. This

35

Chapter 3 - Traditional Systems & SoS Control

part of control is what we call “low-level control”, i.e. the final control boundary
between the management of the system and its operations. If we go back to the
figure 2.3 from chapter 2 which represents a generic representation of an independent
system (operationally and managerially), low-level control is what occurs in the
operational level, where the controllers get their reference values, or the desired
mode of operation and translate it to commands sent to the actuators. However,
the operational boundaries of systems are wider than the actual operation a system
performs; the boiler in the previous example is used to boil water. However, it is
capable of heating the water to a specific temperature as well. So even though the
normal mode of operation of this boiler is when water is 100◦C, it could very well
operate in the range of 10◦C → 120◦C. But who decides on the desired operational
mode at time t? Well, this is where high-level control comes into play.

3.2.1.2 High-Level Control

High-level control is the process of choosing the best operation mode of a system,
which occurs in the managerial level of figure 2.3. In high-level control, the op-
erational level is regarded as a black box, which accepts the desired operational
mode as input, and provides the required capabilities as outputs. In order to better
understand the differences between high and low-level controls, let us expand our
previous example of the water boiler and consider its use in a room heating system
where the heat of the water is used to heat a room via the radiator (Fig. 3.3). In
this case, the occupants of the room control the desired temperature of the room,
which then translates into a desired temperature of the radiator, to arrive finally to
the flow of fuel and air in the burner (fig 3.4). In this chain of relations, the choice
of the room temperature is the reference value to the whole boiler system, and this
is what we call high-level control. As far as it concerns the room occupants, the
whole heating system is a black box, they do not know what are its parts, neither
how it works. For them to control the room temperature (and the heating system
in consequence), they need to provide the desired room temperature only, and the
system will take care of the rest. In short, low-level control is what is applied to the
actuators in order to translate the commands into actions, and high-level control is
when the objectives of the system (or the parts) are defined.

3.3 Control Paradigms

Systems contain multiple parts that have similar or diverse sets of tasks to be per-
formed in order to achieve the desired behavior of the system. Each part (or group
of parts) is controlled via one or multiple controllers that send their inputs, which
are then transformed into outputs (physical or immaterial). Before choosing the
right control law that will be used inside each controller, system architectures must
first choose the number of controllers, the responsibilities of each controller, and
how these controllers are coupled, or what is called the control paradigm that the
system will adopt throughout its operation. There exist two categories of control
paradigms: centralized and non-centralized paradigms. As clear from their names,
in centralized paradigms systems use a single controller to control all the parts, while
in non-centralized paradigms systems use 2 or more controllers to do so.

36

3.3 - Control Paradigms

Figure 3.3: Boiler-Room system: room sends high-level controls to boiler, which
are then translated into low-level controls inside the boiler.

3.3.1 Centralized Control Paradigm
A centralized control paradigm is adopted when the needs of the system on the
control level could be met by using a single controller [(Dı́az et al. 2017), (Zhou
et al. 2017)]. In this case, the controller is connected to the different actuators and
sensors in the system, it gathers all sensors readings, and adds to them reference
values that are required by the system’s management, in order to compute different
inputs for different parts. This paradigm is usually adopted in small-scale systems,
where the required computational capacity is moderate. Systems like the previously
mentioned water heater, dish washers, and refrigerators all use centralized paradigms
to control their parts to achieve their objectives. A centralized paradigm could be
represented as shown in Fig. 3.5: a single controller C is responsible for gathering
reference values and all sensors measurements (y1 · · · yn) from the different parts, and
it computes the different inputs (u1 · · ·un) which are then used by the respective
actuator Ax in order to achieve the desired operational behavior of the system. To
demonstrate this paradigm let us take a close look on the water heater from the
previous section (example 3.2.1 and fig 3.2). We are interested in its parts for now,
of which we have the burner, the pipes, and the air flow intake. The actuators
of each part are respectively a valve that controls the flow of fuel to the burner,
another valve that controls the flow of water in the pipes, and a third valve that
controls the air flow to the intake. In order to reach a certain temperature at the

37

Chapter 3 - Traditional Systems & SoS Control

Figure 3.4: Boiler-Room control chain: from high-level to low-level control.

radiator each valve must be open in a precise value. According to what we said
earlier, and assuming a centralized paradigm has been adopted, we could expect a
single controller connected to each valve, connected as well to the thermometer at
the radiator, and several other sensors in the system. This controller uses the model
of the system, i.e. the different models of the different parts together, to compute
for each valve an opening value that will be respected by the valve.

Figure 3.5: Centralized Paradigm: one controller and multiple actuators.

3.3.1.1 Discussion - Centralized Paradigm
Just as the same as everything else in life, this paradigm has advantages and dis-
advantages. On the plus side, since in this paradigm a single controller is used to
control the whole system, cost-wise this is a more affordable solution than to use 2 or
more controllers. This depends, of course, on the computational capacity required
by the system, which up to a certain limit, favors one controller. Above this limit,
using single controller actually is not efficient cost-wise, since a single controller that
could handle this load would cost much more than multiple smaller controllers, and
therefore distributing the load on multiple controllers eventually leads to a lower
overall cost. Another advantage is that by using one controller we are able to better
control the system since we have all the needed values at one place. On the other
hand, using a single controller may lead eventually in the case this controller stopped

38

3.3 - Control Paradigms

working for the failure of the system. This risk, also called a single point failure
risk is very important to take into account when the failure of the system leads to
disastrous consequences (nuclear power plant for example).

3.3.2 Non-Centralized Control Paradigm
Non-centralized control paradigms are adopted in systems either because they are
non-centralized in nature, or to overcome some of the centralized paradigm. Decen-
tralization is in the process of moving the authority from central to local2. A non-
centralized system is a system in which parts have local authorities by themselves,
in other words, parts take decisions based on local information without knowing the
actual state of the global system. Systems that contain fleets of vehicles[(Vander-
meulen, Guay, and McLellan 2018), (Dimarogonas, Frazzoli, and Johansson 2012)],
or smart infrastructure [(Mahmud and Zahedi 2016), (Ruiz-Romero et al. 2014)] are
decentralized systems in nature, whereas systems that use blockchains (Swan 2015)
to secure transactions are decentralized by design to overcome the single failure
point problem that we discussed in the centralized approach. In all of these sys-
tems, the central authority has delegated decision-making to the different parts that
constitutes the system. Instead of having a central command center that has the
knowledge of the states of the overall system, and issuing commands for every part
like in centralized systems, in non-centralized systems parts integrate local rules or
functions that they used to take decisions. The information available to the parts
are local and they do not provide them with a global view of the state of the sys-
tem, therefore the overall behavior of the system is an aggregation of the different
behaviors of its parts. Whether a system is decentralized in nature or by design,
a non-centralized control paradigm is adopted for controlling the system. To illus-
trate the difference between a centralized and a non-centralized paradigm, consider
a simplified version of the transaction recording system used to record transactions
in example 3.3.1.

Example 3.3.1. A transaction recording system is used in banks to record trans-
actions made by their customers. Every transaction made must be recorded and
stored in a secure log to prevent any modification of the data. Every transaction is
labeled with the amount, account number, and a transaction code indicating if its
debit, credit, or other kind of transaction, and then it is added to the transactions
log. The transactions log is used later-on to generate financial statements and for
other important purposes. In this system, it is required that the logs are stored in a
secure storage where they are safe from destruction or alternation. Figure 3.6 shows
the two paradigms that the bank could adopt within the system (Fig. 3.6a and Fig.
3.6b). Centralized paradigm in Fig. 3.6a is adopted in which all transactions made
by users are logged in a single central storage, whereas non-centralized paradigm in
Fig. 3.6b is adopted in which transactions are sent to all data storage units or what
is called a blockchain. Cost-wise, the centralized approach is more efficient than
non-centralized approach because in the latter all storage units have the same copy
of the transactions log, and therefore the amount of storage units present in the
non-centralized approach is always higher than in centralized approach. However,
if the system’s designers value security and safety of the data more than cost, the
non-centralized approach is a more secure architecture, because in order to alter data

2en.wikipedia.org/wiki/Decentralization

39

Chapter 3 - Traditional Systems & SoS Control

(a) Centralized Paradigm (b) Decentralized Paradigm

Figure 3.6: Transaction recording system: centralized vs. non-centralized
paradigm.

for example, one must change the data in all different copies, whereas in centralized
approach it is enough to alter the data in the only storage unit.

There are mainly 4 different organizational shapes a non-centralized system may
take [(Šiljak and Zečević 2005), (Scattolini 2009)]: hierarchical, distributed, and
decentralized organizations. The fourth shape is a hybrid of two or more of the
previous shapes. In hierarchical organizations, there are multiple levels of authority
in a top to bottom distribution, where top level authority has more knowledge of the
system and is responsible for more tasks than lower level authorities. Distributed
systems are systems in which all parts have partial knowledge of the system, they
share the same level of authority, and they communicate specific information to per-
form their tasks. The last shape, namely the decentralized organizations distribute
tasks on parts in a way that gives each part a local role within the system, every
part has a partial knowledge of the overall system, but unlike the previous shape,
parts do not communicate information. In a hybrid organizational shape, the or-
ganization of parts is a combination of two or more shapes that were mentioned
earlier, for example a hierarchical shape in which parts are grouped in a hierarchy,
and inside each level groups of parts might use distributed or decentralized shapes.
3.3.2.1 Hierarchical Paradigm
Hierarchical systems get their names from the hierarchy they adopt in distributing
tasks on parts of the system. In the top-down direction there are 2 or more levels in
which parts belonging to a higher level have more authority and therefore knowledge
of the system than parts belonging to lower levels. Parts belonging to the same level
do not communicate, however, they are interconnected through an input/output re-
lations: outputs of subsystems are input to other subsystems (Findeisen et al. 1980).
Systems such as power plants and microgrids [(Vermillion et al. 2014), (Palizban,
Kauhaniemi, and Guerrero 2014)], and enterprises (Vargas 2016) are examples of
systems that adopt hierarchical organizational shapes. As illustrated in Fig. 3.7,
on the lowest level of authority n, reside parts labeled as Ax which are responsible
for the smallest tasks within the system. The knowledge of each part Ax is limited
to what it is supposed to do. Going one level higher to level n + 1, we could see
that parts on this level (Cx as in coordinator) have more authority in that they
are responsible for sending reference values or objectives to their corresponding sys-
tems in the level n, and therefore they have larger knowledge of the system. At the

40

3.3 - Control Paradigms

highest level, level n + 2, the supreme coordinator SC resides, which has author-
ity and complete knowledge of the overall system. The process of distribution of
tasks in the system, and which part is responsible for what task is very important
and depends on the nature of the system itself as well as the architecture’s deci-
sion in the system. In a factory for example, the choice of assigning the authority
of the production line and product storage to the same authority is the choice of
the system’s architecture, on the other hand, on the production line itself, the task
of filling the product is separated from the task of preparing the container since
each task is performed physically by a different machine. The following example

Figure 3.7: Hierarchical Systems: different levels of authority, no communication
occurs on the same level.

shows how hierarchical control is applied to a large-scale system, which consists of
multiple interacting subsystems. The method used (Rezaei and Jabehdar-Maralani
2012) is an improvement of the “Model Coordination Method”, proposed initially
by (Mesarovic, Macko, and Takahara 1970). This method consists of decomposing
the global system into multiple subsystems, where the interactions between subsys-
tems are parameterized on the subsystem level, where the objective is to find the
optimal solution under those circumstances. The following example (Mo Jamshidi
1997) shows an application to this method on a 12 states large-scale system, which
consists of 2 6-states subsystems.

Example 3.3.2. Consider the following large-scale system, described by equation
3.1,

x(k + 1) = Gx(k) +Hu(k); k = 0, · · · , N − 1 (3.1)

where

G =

[
G11 G12

G21 G22

]
(3.2)

H =

[
H11 H12

H21 H22

]
(3.3)

with

G11 =

1 0.1 0.005 0 0 0

−0.015 1 0.1 0 0 0
−0.3 −0.2 0.9 0 0 0
0 0 0 1 0.1 0.005

0.005 0 0 −0.005 1 0.1
0.1 0.005 0 −0.1 −0.275 0.8

 (3.4)

41

Chapter 3 - Traditional Systems & SoS Control

G12 =

0 0 0 0 0 0
0 0 0 0.005 0 0
0 0 0 0.095 0.005 0
0 0 0 0 0 0
0 0.005 0 0 0 0
0 0.09 0.004 0 0 0

 (3.5)

G21 =

0 0 0 0 0 0
0 0 0 0 0.0045 0
0 0 0 0 0.085 0.004
0 0 0 0 0 0
0 0.005 0 0 0 0
0 0.1 0.0047 0 0 0

 (3.6)

G22 =

1 0.1 0.0045 0 0 0

−0.0045 1 0.086 0 0 0
−0.086 −0.176 0.732 0 0 0

0 0 0 1 0.1 0.005
0.005 0 0 −0.0145 1 0.1
0.1 0.005 0 −0.284 −0.204 0.895

 (3.7)

and
H11 =

[
0 0.005 0.1 0 0 0

]T (3.8)

H22 =
[
0 0.005 0.09 0 0 0

]T (3.9)

H12 = H21 =
[
0 0 0 0 0 0

]T (3.10)

The vector x(k) is the state vector at step k, and u(k) is the input vector at step k.
The matrices Gii represent the dynamic of each subsystem i, i = 1, 2, whereas Gij

represent the interaction matrices that describe the relationship between subsystems
i and j (i 6= j). The method used control this system is taken from (Rezaei and
Jabehdar-Maralani 2012), which uses the interaction prediction principle, and the
model coordination method proposed by (Mesarovic, Macko, and Takahara 1970).
The idea is to parameterize the interactions between subsystems on the subsystems
level, where each subsystem computes the optimal solution for those parameterized
interactions. Afterwards, the coordinator computes the real interactions between
subsystems using their results. This process is then repeated until the error between
the predicted and real interactions is less than a certain threshold ε. The algorithm
that describes this method is the following (algorithm 1): For the final time Tf = 80s,
sampling time of Ts = 0.1s, error threshold ε = 0.01, Qi = I(6×6), Ri = 1, and
Si = 0.5×I(6×6); with i = 1, · · · , 6, the results of the simulation using hierarchical and
centralized methods are shown in figures 3.8a to 3.9b. As we can see, in some cases
(Fig. 3.8a and 3.8b) the states reach equilibrium more smoothly in the hierarchical
method, while other in other cases (Fig. 3.8c and 3.8d), the centralized method led
to smoother transition state. However, it took 0.060295 seconds for the centralized
controller to stabilize the system, whereas it took 0.095766 seconds for the hierarchical
controller to do so. Even though hierarchical control was slower to reach the overall
stability, we should keep in mind that the computation load was distributed over two
controllers in the hierarchical case, which have less capacity than the single controller
of the centralized method.

42

3.3 - Control Paradigms

(a) State x1 (b) State x2

(c) State x3 (d) State x4

(e) State x5 (f) State x6

Figure 3.8: The states xi of the simulated system.

43

Chapter 3 - Traditional Systems & SoS Control

(a) Inputs u1 and u2

(b) The error between the predicted interactions
and the real interactions throughout the itera-
tions.

Figure 3.9: The inputs ui, and the evolution of the error throughout the iterations.

44

3.3 - Control Paradigms

Algorithm 1 Two-level hierarchical control of a large-scale systems using interac-
tion prediction principle.

1: compute Ki(k) and Pi(k) with final condition Pi(kf) = Si using:
Ki(k) = R−1

i HT
ii

(
GT

ii

)−1(
Pi(k)−Qi

)
Pi(k) = Qi −GT

iiPi(k + 1)
(
I+HiiR

−1
i HT

iiPi(k + 1)
)−1

Gii

2: store Ki(k) for k = 0 → kf
3: initialize the predicted interactions vector zpi(k)
4: compute inputs ui(k) and states xi(k) for each subsystem using:

ui(k) = −Ki(k)xi(k)− (HT
iiHii)

−1HT
ii zpi(k)

xi(k + 1) = Giixi(k)−HiiKi(k)xi(k)
5: compute the real interactions using:

zi(k) =
∑N

j=1
j 6=i

(
Gijxj(k) +Hijxj(k)

)
6: evaluate the overall error e = Z − Zp with:

SE = 1
2
eT e, where

Z = [zT1 (k) · · · zTN] and Zp = [zTp1(k) · · · z
T
pN
(k)]

7: if |SE| ≤ ε then
8: stop
9: else

10: update the predicted interactions and repeat from step 4

3.3.2.2 Distributed Paradigm

Unlike hierarchical systems, distributed systems do not have different levels of au-
thority, but rather parts take decisions based on their perception of the environment,
and the information they get from other parts in the system (Christofides et al. 2013).
The majority of Multi-agent Systems (MAS) (Olfati-Saber, Fax, and Murray 2007)
adopt this organization: a surveillance fleet of drones and a fleet of autonomous
delivery vehicles are examples of such systems. Information systems that perform
huge computations or tasks might also adopt such paradigm (Hashem et al. 2015),
where the main task is distributed over multiple computation units, and the over-
all result is an aggregation of the different results obtained by the different parts.
In this paradigm, the global task is decomposed and distributed over the different
parts just as in hierarchical paradigm, however, unlike hierarchical paradigms, in
distributed paradigms controllers share some information with other controllers in
order to make decisions. In distributed paradigms each part has partial knowledge
of the global system that is sufficient for it to make decisions and perform its tasks.
What differentiates this paradigm from the other two non-centralized paradigms is
the communication that occurs between parts. Whereas in hierarchical paradigms,
no communication occurs horizontally (between parts of the same level), and in
decentralized paradigm parts do not communicate at all, in distributed paradigm
parts communicate. The distribution of tasks and the design of controllers in such
paradigm is done in such a way that parts will use information from other parts
in order to make better decisions, and so communication is key in this paradigm.
Which part share which information to which other part(s) depends on the nature
of the system and the distribution of tasks. Figure 3.10 shows an example of a dis-
tributed system, composed of parts A1 → A6 . The unidirectional arrows indicate a
unidirectional communication while the bidirectional arrows indicate a bidirectional

45

Chapter 3 - Traditional Systems & SoS Control

communication. For example, communication that occurs between A1 and A4 is
unidirectional, where A1 sends information to A4 which are later on used by A4

alongside other information to make a decision, whereas between A3 and A4 a uni-
directional communication occurs, in which both parts send and receive information
from/to the other part. The stability of such systems is often studied using graph
theories, where parts are represented by nodes, and communications by connec-
tors between nodes. A lot of applications use distributed paradigms, most notably,

Figure 3.10: Distributed Systems: Same level of authority, different tasks for each
part, and communication between parts.

consensus-based missions (Ren, Beard, and Atkins 2007), and vehicle navigation
problems (Yuan and Li 2017) in MAS. Example 3.3.3 from (Assaad 2015), demon-
strates how distributed control is applied on a system that consists of 4 holonomic
robots, each has an objective of reaching a destination, while avoiding collision with
other robots. The robots share their positions with other neighbors, but do not share
their objectives (their destination). The control law used in each robot is based on
a potential gradient function that attracts the robot towards its destination, and
repulse it from other neighbors.

Example 3.3.3. Consider 4 robots, ri, i = 1, 2, 3, 4, with state vectors qi ∈ R2

(equation 3.11), which represents the position vector of robot i.

qi =

[
xi

yi

]
(3.11)

The potential gradient function ϕi in each robot i is depicted in equation 3.12

ϕi = ϕai +
∑
l

ϕri,l , l 6= i, l = 0, 4 (3.12)

where ϕai and ϕri,l are the potential attractive and repulsive potential gradients, given
in equations 3.13 and 3.14 respectively.

ϕai = ||qi − qdi||2 (3.13)

ϕri,l =

{
S2
l −γi,l

S2
l +γi,l

if S2
l ≥ γi,l

0 otherwise
(3.14)

46

3.3 - Control Paradigms

where γi,l is the distance between robots i and l (equation 3.15), and Sl is the safety
area of robot l, which is constant.

γi,l = ||qi − ql||2 (3.15)

The control input for each robot i is the vector ui ∈ R2 (equation 3.16), that represents
a velocity input to the robot.

ui =

[
vxi

vyi

]
(3.16)

Since ϕi is a function that is null at the destination of robot i, therefore, the first-order
gradient of this function represents a velocity vector pointing in the destination’s
direction. And in consequence, the control law that governs each robot’s movement
is

ui = −kai
∂ϕai

∂qi
− kri

∂ϕri,l

∂qi
(3.17)

Assuming that the initial positions of robots are

q1 =

[
1
1

]
q2 =

[
−1
2

]
q3 =

[
0
1

]
q4 =

[
1
−3

]
(3.18)

and their destinations are

qd1 =

[
−1
−1

]
qd2 =

[
1
−1

]
qd3 =

[
0
−1

]
qd4 =

[
0
2

]
(3.19)

For a safe area of Si = 0.75, time-step of T = 0.1s, gains ka = 0.2 for attractive
term and kr = 1 for the repulsive term, simulating the system of Simulink gives us
the behavior shown in Fig. 3.11.

3.3.2.3 Decentralized Paradigm
Just as with any other non-centralized paradigm, the global task of the overall
system is decomposed to smaller tasks, which are then distributed to the different
parts. The parts of decentralized paradigms are all on the same level of authority,
where each is responsible for a specific task (or set of tasks), and makes decisions
using partial knowledge of the overall system. Unlike distributed paradigm where
parts communicate, in this paradigm parts do not communicate, and therefore the
tasks are decomposed in a way that each task may be performed without using
information from another part [(Siljak 2011), (Kariwala 2007)]. This paradigm is
useful when the parts in the system are distributed in a way that does not favor
communication, or when communication is impossible to achieve. For example,
a group of airline booking agencies that sell tickets for the same flight without
communicating and coordinating their sales (Cai and Lim 2011). In Fig. 3.12, the
overall process P is controlled via 3 controllers Ci, each has its input ui and outputs
yi, i = 1, 2, 3. Applications that use decentralized control involve a formation of
robots in which robot do not communicate while they try keep a formation and avoid
collision [(Ray et al. 2009), (Dimarogonas, Zavlanos, et al. 2003)]. One decentralized
method proposed (Mohammad Jamshidi 1996), called stabilization via multilevel
control, consists of separating inputs in such a way that each local input contains 2
terms: a local term that has the responsibility of stabilizing that specific controller,
while the second term contributes to the stabilization of the overall system.

47

Chapter 3 - Traditional Systems & SoS Control

Figure 3.11: The paths followed by each robot: initial positions are depicted with
circles in the first figure, and the destinations with an x mark.

Example 3.3.4. Consider a large-scale system with N local control stations with
the following model, in its input-decentralized form:

ẋi(t) = Aixi(t) + biui(t) +
N∑
j=1
j 6=i

Gijxj(t) (3.20)

Where Ai represents the model of subsystem i, bi is the relation between the input
ui and subsystem i, and Gij is the interaction matrix of subsystems i and j. We
assume that all (Ai, bi) pairs are controllable for all i.
The objective of decentralizing this system is to find N independent controllers for
each control station, where each controller is responsible for finding a local solution
based upon its local inputs, and such that the overall stabilization is achieved for the
whole system. Therefore, the decentralized multilevel control input for each subsystem
i is

ui(t) = ul
i(t) + ug

i (t) (3.21)

where ul
i(t) is the input responsible for stabilizing subsystem i, and ug

i (t) is the input
that contributes to the overall stability of the system. Since (Ai, bi) are controllable,
the ith local control law may be written as

ul
i(t) = −KT

i xi(t) (3.22)

48

3.3 - Control Paradigms

Figure 3.12: Decentralized Paradigm: multiple controllers that do not communi-
cate perform individual tasks, the overall result is the aggregation of each controller’s
result.

Suppose that the global term ug
i (t) could be written as

ug
i (t) = −

N∑
j=1
j 6=i

kT
ijxj(t) (3.23)

If the subsystems are decoupled, therefore no global terms exist in the control inputs
ui(t), and since we assume that the pairs (Ai, bi) are controllable, then the local
stability of each subsystem is achieved using the local control law ul

i(t). As for the
global stability, we have to make sure that the aggregation of the global inputs for
each subsystem will lead to the overall stability of the system.
Replacing the values of ui(t) into the input-decentralized form of the global system
(equation 3.20), we get the following model:

ẋi(t) =
(
Ai − biK

T
i

)
xi(t) +

N∑
j=1
j 6=i

(
Gij − bik

T
ij

)
xj(t), i = 1, · · · , N (3.24)

Consider the overall system’s model to be given by

˙̂x(t) = Λix̂(t) (3.25)

The new system’s equation is given by transforming each subsystem’s equations using
Mi matrices such that

xi(t) = Mix̂i(t) (3.26)
Λi = M−1

i ÂiMi (3.27)

where
Âi = (Ai − biK

T
i) (3.28)

After obtaining the transformation matrices Mi, and transforming matrices Gij, and
bi, we can evaluate the interconnection gains k0

ij using

k̂0
ij =

[(
b̂Ti b̂i

)−1
b̂Ti Ĝij

]T
(3.29)

49

Chapter 3 - Traditional Systems & SoS Control

and finally the new transformed system, in addition to the aggregation of the trans-
formed interactions gives the new transformed overall system’s equation by

ˆ̇xi(t) = Λix̂(t) +
N∑
j=1
j 6=i

(
Ĝij − b̂ik̂

T
ij

)
x̂j(t) (3.30)

with Ĝij = M−1
i GijMj, b̂i = M−1

i bi, and k̂T
ij = kT

ijMj.

3.3.2.4 Hybrid Paradigms

A system is controlled with a hybrid paradigm is a system that uses a combination
of 2 or more paradigms. In real life systems, often we witness a combination of
hierarchical and decentralized/distributed paradigm in work [(Xin et al. 2016), (Lu
et al. 2014)]. This is the case with a fleet of drones that adopts the leader-follower
strategy (Hou and Fantoni 2015), where hierarchical paradigm is mixed with dis-
tributed paradigm, and a power plant in which hierarchical paradigm is used with
decentralized paradigm. Consider the case of the fleet of drones, where the objective
is moving in a triangular formation as shown in Fig. 3.13. In this system, the leader
(black drone in the middle-front) gathers the positions and speeds of the followers
drones, it proceeds then to computing the next inputs for each follower drone in a
way that all the drones preserve the formation while moving. This adopted paradigm
is a combination of hierarchical and decentralized paradigms. Hierarchical paradigm
exists here since the leader has more knowledge about the system than other drones,
and since it sends them objectives that they must achieve to preserve the formation,
while decentralized paradigm exists on the lower level between followers, where each
has the task of achieving the objectives sent by the leader, without communicating
with any other follower drone.

Figure 3.13: Fleet of drones moving in a triangular formation adopting leader-
follower strategy.

50

3.4 - SoS Control

3.3.2.5 Discussion - Non-Centralized Paradigms
Although non-centralized paradigms are more robust than centralized paradigms
because they do not suffer from the single point failure problem, however, analyz-
ing and predicting the behavior of the system in systems that use non-centralized
paradigms is much more challenging. In centralized paradigm, the system is con-
trolled by a single authority that has the knowledge of the state of the whole system
and controls all of it, whereas here the tasks are distributed in a way that the global
behavior is controlled by controlling the separated tasks in each part of the sys-
tem. For example, how to make sure that vehicles in a fleet will move according
to a predefined formation when each vehicle is partially blind to the state overall
system? In such systems, simulation and lessons learned help a lot in defining the
right distribution of tasks, and the information shared between parts if any. As for
the choice of the best paradigm that suits a specific system, multiple factors affect
this choice: the nature of the system, the physical distribution of parts, the tasks
to be performed in the system, etc. are all factors that must be taken into account
when choosing the paradigm. Furthermore, the requirements that system owners or
users require from the system also affect this choice. Let us go back to the drones
example from the Hybrid Paradigms Section 3.3.2.4 where a mix of hierarchical and
decentralized paradigms was used to control the system. If the owners of this system
require that they do not want to use the leader-follower strategy, another way to
achieve the objectives of this system (moving in a triangular formation) is by using a
distributed paradigm, where drones share speeds and positions with neighbors, and
choose the next objective by their own (Fig. 3.14). Here we have the same system,
with the same objectives, but with different requirements, which leads to adopting
a different control paradigm.

Figure 3.14: Fleet of drones moving in a triangular formation adopting distributed
paradigm.

3.4 SoS Control
So far we have discussed control for single systems, whether they are small or large
in scale, but what about SoS control? How are we going to use the previous infor-

51

Chapter 3 - Traditional Systems & SoS Control

mation to control CS in SoS in order to achieve the desired performance from the
overall SoS?
Our objective is to find a control law that could be used to control CS in SoS to
achieve a certain objective. If we use the traditional SE approach, we must formulate
a model that describes the relationship between different states in the SoS, and how
they evolve over time, and another model that describes the architecture of the SoS
and how its CS are integrated. These two models will than be compared to models
of single systems, and hopefully we get a control law that could be used as a starting
point to control the SoS. A generic architectural model for SoS is given in Fig. 3.15,
where CSx depicts the xth CS, the solid arrows indicate uni- or bi-directional com-
munication between CS. The node SoSA indicates the presence of an authority for
this SoS that communicates with all CS. This node along-side its communications
do not always exist in SoS, that is why they are represented using dashed lines.
Furthermore, by using the different taxonomies of SoS given in the previous chapter

Figure 3.15: Simplified SoS Architectural Model: Generic Form.

(Section 2.5), we could refine this architectural model by providing different models
for each different type of SoS. Starting from virtual SoS, we know that there exists
no SoS authority, and that CS do not recognize the presence of other CS in the SoS,
and consequently we assume that no communication occurs between them for the
SoS. Using this information, we could eliminate SoSA and all communication from
the previous model to get Fig. 3.16. As for collaborative SoS, CS are aware of the
presence of other CS in the SoS and therefore they communicate information, on the
other hand, there exist no SoS authority in this type of SoS. Applying this to our
previous generic model, we get the model in Fig. 3.17. Regarding acknowledged and
directed SoS, this model becomes similar, where CS communicate, and SoSA exists
(Fig. 3.18). The reason why both acknowledged and directed SoS are represented in
the same way is that this representation that we used to represent the architectural
model of SoS does not show the difference between the different types of communi-
cation that might occur in the system, or the different relations that exist between
CS, and between CS and SoS authority. In the current context, namely operational
context, the differences between directed and acknowledged SoS are irrelevant, as
they mainly occur during acquisition or development stages of either SoS or its CS.
Let us analyze the two levels of control that we have mentioned earlier: low and high

52

3.4 - SoS Control

Figure 3.16: Simplified SoS Architectural Model: Virtual SoS.

Figure 3.17: Simplified SoS Architectural Model: Collaborative SoS.

control levels. We have said that low-level control means controlling the states of
the system so that it operates as expected, and high-level control means controlling
the objectives of a system, or setting the reference values on its states. Each level of
control is treated separately in SoS and in different ways. low-level control requires
SoS authority to have complete knowledge of the different states in its CS, and how
do they affect each other. Furthermore, this level of control requires access to the
CS’s actuators, and the internal real time values of its states. In SoS, these types
of information are rarely accessible to SoS authority, furthermore, low-level control
means controlling how the system does what it has to do, something outside the
scope of SoS authority since CS are operationally and managerially independent.
Let us remember some specific characteristics of CS in SoS: CS are operationally
independent and they belong to the SoS because this belonging offers them some
kind of advantages. This means that CS know how to do what they want/have to
do, and that they might leave the SoS in case they do not consider their belonging
beneficial. Moreover, CS exist in SoS (or they are added to it) for a capability (or
set of capabilities) that they offer to the SoS. There are several possible ways a

53

Chapter 3 - Traditional Systems & SoS Control

Figure 3.18: Simplified SoS Architectural Model: Acknowledged and Directed SoS.

CS could join a SoS, and they depend on the type of SoS in question. In directed
and acknowledged SoS, CS are contracted either for the whole life-time of the SoS,
or for specific missions that they carry on for the SoS. In this case, the questions
of belonging and incentives are answered when the CS is contracted, and it must
perform what it is asked by the SoS. In collaborative SoS on the other side, CS
belong to the SoS as long as the reasons that they join it for are valid, and serve
this particular CS. Furthermore, CS are not required to perform actions for the SoS
even when they belong to it, so in this case, incentive must be thought of even after
CS join the SoS.
In a SoS, control is the question of providing incentives to and requesting services
from CS. Consider a crisis prevention and intervention SoS in a city (Fig. 3.19).
Assuming that CS of such system are the police department, fire department, a
surveillance center, the mayor and the city council, and lastly the citizens of this
city. The objective of this SoS is to “predict and handle any crisis that might arise
in the city before it happens, and if not possible, intervene and solve the crisis in the
least amount of time possible”. This SoS operates as follows: the surveillance center,
police department and fire department are always evaluating the situation in the city
to predict any possible crisis that might arise. In case they decide that a crisis is
coming and they should act on it, the mayor and city council give the necessary
permission and if needed, to provide logistical support. Citizens have 2 roles in this
SoS: in case they detect any unfamiliarity they could report it to authorities, and in
the case of a crisis, they might help authorities in some situations. Let us zoom on
the citizens’ first role in this SoS: report unfamiliar events for authority. Providing
that the incentive of the well-being of the city is enough for citizens to report such
events, and an event occurs, the question to be asked is: to whom citizens should
report this event? And is there a format that must be respected in order to report
this event?
The job of SoS authority is to inform its CS about what they should do, and to
think about the communication methods to be used between CS in order to achieve
the desired operations from the SoS. In the case of the previous example, SoS au-
thority informs citizens that they should call a particular phone number to report
an event, and informs the surveillance center that in case they detect something

54

3.4 - SoS Control

Figure 3.19: Crisis prevention and intervention SoS.

crisis related, they should contact the police department to investigate closely, and
that all departments for example must be in direct contact with the city council
when they operate in the SoS. The problem of control in a SoS is to manage the
relationship between CS, and between CS and SoS, and to inform CS of what they
should/must do, and when to do it when it comes to SoS.
Next chapter will discuss architectural frameworks, which are a tool for managing
the relationships between different entities in a system, and which describes the
behavior of said entities, as long as the overall system behavior.

3.4.0.1 Discussion - SoS control

Unlike control in traditional systems, control in SoS faces different challenges, and
is still identified as part of the research gap in SoSE (DeLaurentis and Callaway
2004). Managing emergent behaviors when thinking about the interactions between
CS is a challenging task, so is the task of verifying that the system would still be
operational even if some CS do not perform what the SoS requested from them.
Another important point that differentiates SoS control from traditional systems
control is the fact that CS are operationally and managerially independent. The
operational independence of CS means that SoS authority could only apply high-level
control on them, and their managerial independence means that SoS authority may
only influence CS management and is unable to apply rigid control over CS (Fang,
Davendralingam, and DeLaurentis 2018), if we consider that control in systems range
“from rigid control by one system over another to simply influence of one system over

55

Chapter 3 - Traditional Systems & SoS Control

Figure 3.20: Crisis prevention and intervention SoS: each CS knows their role and
how they relate to other CS in the SoS.

another” (Henshaw et al. 2013). In contrast, in traditional systems, parts could be
operationally independent or not. However, they are not managerially independent,
and that is the way we assume that parts will perform exactly what is requested
from them, since they all share the same management.

3.5 Conclusion
Systems control is the discipline of systems engineering that handle the problem of
controlling the parts of a system in order for it to respect the predefined behavior
defined by its authority. Depending on the nature and requirements of systems, con-
trol may be applied in systems using a centralized or a non-centralized paradigms.
In centralized paradigms a single controller is responsible for knowing the states of
the overall system and for sending inputs to the different actuators in the system,
whereas in non-centralized paradigms, whether be it hierarchical, distributed or de-
centralized, the task of control is decentralized and no single controller is able to
control the whole system. Hierarchical paradigm contains different levels of parts,
distributed based upon the authority each part has, no horizontal communication
is allowed. Distributed paradigm lacks the vertical distribution of tasks, and it uses
inter-part communication to obtain better performance from the system. Decen-
tralized paradigm is similar to distributed paradigm in that it has no vertical levels
of authority, and similar to hierarchical paradigm in that no communication occurs
between parts, but rather each part is responsible over a local role that it must
perform.
There are similarities between SoS and traditional systems on the organizational
level, directed and acknowledged SoS often have certain hierarchy between CS, and

56

3.5 - Conclusion

on the same level we might find communication between CS. Collaborative SoS are
so much similar in organization to a graph of nodes, where nodes share information
and each node is responsible for making its own decisions. Virtual SoS, on the other
hand, are similar to a decentralized paradigm, where CS are not aware of the pres-
ence of other CS that exists in the same system. These similarities inspired us to
study the control problem in SoS to conclude that in SoS, control is the process of
defining the different relations between CS, and what actions should CS do in order
to achieve a desired behavior on the SoS level. Finally, we have mentioned that
frameworks (the focus of the next chapter 4) might be the solution for controlling
CS in SoS.

57

Chapter 4

Modeling & Frameworks

4.1 Introduction
To describe an object, whether it exists or still an idea, we might use drawings to
describe its form, equations, and charts to describe some behavioral aspect, and
any other means that help us convey the correct idea. Combined together, these
means of communication are called models. In systems engineering, models are used
to describe the behavior of the system, its form, the data it retains, etc. For any
particular aspect of a system, a model could be developed to describe this aspect.
Models vary in types, mathematical models use equations to describe the modeled
system, while conceptual models use concepts, shapes, and arrows to describe the
modeled system. The terms modeling and simulation often come together in the
literature [(Cantot and Luzeaux 2013), (Rainey and Tolk 2015), (Ouyang 2014)],
and the reason is the ability to integrate mechanisms into models that dictate how
a model evolves over time, and in result we could simulate the behavior of a system
for whatever purpose. The life cycle of any system consists of a series of cycles
which involve each a model or set of models, from the initial conception model that
describes the initial idea of the system, to the different models that describe its
behavior and architecture. Models are a powerful tool to convey ideas in a clear and
non-ambiguous manner, if created right that is!
SoS are systems, and thus they are also represented using models that describe their
different aspects. As we have seen earlier, SoS are different from other types of sys-
tems on different levels, and the same goes for modeling as well. Each SoS requires
the cooperation of multiple interdisciplinary teams either of its constituents or the
entity building and maintaining this SoS. To account for this, several models must
be created to describe different aspects of the SoS, aspects like its architecture, be-
havior, and objectives must have models that describe them in a clear way in order
to have a shared knowledge about the SoS in all interested parties. Frameworks are
a good tool to achieve this objective, in particular, multi-view frameworks consists
of views that describe whatever aspect we want in a system. As we will see later on,
in addition to modeling, when using frameworks we can simulate certain aspects of
a system, and most importantly we can perform traceability on different elements
of the different views.
This chapter continues as follows: Section 4.2 describes models, their different types,
and presents some best practices adopted in modeling systems, and the relationship
between models that describe systems and simulations that use these models to

58

4.2 - What is a model?

simulate the behavior of a system. Afterwards, in Section 4.3 we describe how mod-
eling SoS differs from modeling traditional systems to account for our specific needs,
which leads us to multi-view frameworks, where we provide some examples used in
SoS, and of course, different modeling languages used to build models. Finally, we
end with a conclusion in Section 4.4.

4.2 What is a model?
A model is a human construct that represents our understanding of a concept,
relationship, structure, system, or any aspect of the real world. In general, models
are abstractions, which allow model makers to eliminate unnecessary details for the
purpose of clarity and simplicity, while at the same time preserving a high degree of
validity regarding the modeled aspect. The objectives of models are numerous, and
include:

1. To facilitate the understanding of ideas and objects;

2. To aid in decision-making by simulating “what it” scenarios;

3. To aid in communicating complicated and complex ideas about something of
interest;

4. To control systems, estimate unmeasured states, and predict their behavior.

4.2.1 Types of Models
The aspects described within a system are diverse in type, such as describing the
architecture of a system, or its behavior, and therefore different modeling techniques
are required to model different aspects of a system. Since different aspects require
different representations, models come in 3 types: descriptive models, analytical
models, and hybrid models. Descriptive models use drawings, charts and other
graphical representations to describe how are things in a system, while analytical
models use mathematical equations in order to describe mathematical relations in
the system, whereas hybrid models contain both descriptive and analytical tools.

4.2.1.1 Descriptive Models

A descriptive model is a “model that describe things as they are”(Turban, Sharda,
and Delen 2010). This type of model is used to describe aspects of systems such
as their architectures, objectives, requirements, etc. Examples such as cubesat ref-
erence model (Kaslow et al. 2015) which describes a recommended architecture for
building cubesats, and the architecture for industry 4.0-based manufacturing sys-
tems (J. Lee, Bagheri, and Kao 2015) which intends to guide the development of
cyber-physical systems in support for industry 4.0 manufacturing systems. Charts,
diagrams, and other graphical representations may be used in this type of model
to convey the ideas. The purpose of descriptive models is to answer questions such
as “what does it look like?” or “what does it do?”, which may be either a drawing
for the first question, or a text for the second one. Fig. 4.1 represents the model
that describes the structure of stakeholders in the CubeSat reference model. Shapes
and connectors are arranged in a hierarchical representation that shows the different
stakeholders, and why each one exists.

59

Chapter 4 - Modeling & Frameworks

Figure 4.1: A descriptive model that describes the structure of stakeholders in
CubeSat domain (Kaslow et al. 2015).

4.2.1.2 Analytical Models

While descriptive models describe objects, analytical models give us the ability to
analyze different aspects of a system by using mathematical equations. Analytical
models may be dynamic if they describe a time-varying state of a system, e.g. a
model developed to describe the behavior of a vehicle over time (Jazar 2017), or
static, in which case the model represents a time-invariant aspect of a system, e.g.
a model that describes the capacity of railway lines (Weik, Niebel, and Nießen
2016) in order to perform analysis on the railway network. This type of model
provides insights about performance, cost, and any other quantifiable parameter
of the system, and as we will see later, analytical models are the corner stone of
simulations in systems engineering. For example, the equation system 4.1 (Ren
2008) is a model that describes the dynamics of 2 objects of mass m, connected
with a damper with coefficient b, and attached each to a fixed support by identical
springs with spring constant k. This model describes the relation between position,
speed, and acceleration of both masses. If we solve it for the time variable t, we
could predict the different behaviors of the system with a certain degree of accuracy.

mẍ1 + kx1 + b(ẋ1 − ẋ2) = 0 (4.1)
mẍ2 + kx2 + b(ẋ2 − ẋ1) = 0

4.2.1.3 Hybrid Models

In hybrid models, descriptive and analytical models are coupled together to make
logical analysis on a certain aspect of a system. Usually such models involve higher
levels of abstractions than the previous types, and they provide a higher level of
description of the modeled system. For example, consider a system that consists of
agents that choose to stay in the system or leave it based upon the evaluation of a
certain cost function. To model the structure of that system at any given moment,
we are going to need a descriptive model to describe the system’s structure, as
well as an integrated analytical model which describes the state of each agent at
any moment, and whether they will stay in the system or leave it based upon the
evaluation of the cost function. In contrast, if we are interested in modeling the
behavior of agents at a given moment, without looking at the structure of the overall
system, an analytical model is enough to do so.

60

4.2 - What is a model?

4.2.2 Modeling and Simulation
During the process of designing and building a system, decisions about the system’s
structure, its behavior, the technologies to be used, etc. are in the majority made
when the system is still a concept. Some of these decisions are made based upon
previous experiences and lessons learned, other decisions are based upon standards
and best practices. However, there are decisions that must be made in each system
that need to consider that system’s own environment, most precisely, how the system
must act towards its environment, and how it must react to it. Such decisions are
made after examining the system’s structure, understanding the behavior of its
parts, and predicting the system’s behavior based upon the relationship between its
parts and their behaviors.

Example 4.2.1. Consider a manufacturing line, which consists of several machines
(Fig. 4.2), and the decision about how many machines we must install in order to
achieve a certain quantity of the product in a certain period. First, we have to identify
the parts involved in this process, which are the machines and the belts connecting
them. Then we have to know the behavior of these parts, so for machines, we are
interested in knowing how many products they can produce in a period of time, and
for transportation belts we have to know their capacity based upon their dimensions.
After identifying the parts involved in our process, and understanding their behaviors,
we then have to identify the relationship between them, and how each part contributes
to the global outcome. Assuming that the machines are arranged in parallel, so that
the overall outcome is the sum of the individual outcomes of those machines, then
we could say that the relationship between the parts is linear, and therefore, we could
choose the number of machines, as well as belt so that the total outcome is equal to
the desired outcome.

Figure 4.2: A production line that consists of 3 machines, related to linear rela-
tionships.

Example 4.2.1 shows a simple case where the relationship between the parts is
linear, and the overall behavior may be predicted by performing a simple thought
experiment that imitates the real system once it is deployed, to make a design
decision about the system. This process of imitating the system is called simulation
(Banks et al. 2004), and it is a very powerful tool in system design and verification.
Simulation helps us predict the behavior of a system under different circumstances
to a certain degree of accuracy, without the high cost affiliated with performing
the test in real-life. For example, if we want to understand how a certain bridge
reacts to a certain load, instead of applying that load to the bridge and risking its
destruction, we could develop a detailed model that models the structure of the
bridge, and create a computer simulation that imitates the bridge, and observe its
reaction to that load, and any other load. Since simulation uses system model, its

61

Chapter 4 - Modeling & Frameworks

results depend heavily on the validity of that model. Therefore, before simulating
a system and using the results to make decisions, we have to make sure that the
model used in that simulation is valid and reflects the true nature of the system.
When we wish to simulate a system that already exists, we can make sure that our
model is valid by using it to simulate the system under known circumstances, and
comparing the results with the observed state of the system: if the results and the
real behavior match, then we can proceed to simulate the system under unknown
circumstances, and use the results. However, when the system does not exist, this
comparison cannot be made, and we should be very careful about the validity of our
model that we used to simulate the system.

4.2.3 Model-Based Systems Engineering (MBSE)
Systems engineering processes include a variety of documents and models that de-
scribe the system of interest, from design to analysis and verification. Every docu-
ment could be considered as a model that describes a certain aspect of the system
in question, and therefore technically speaking, systems engineering discipline was
and still a model-based approach. However, the tools used to build these models are
textual documents, informal drawings, and spreadsheets in general. When numerous
teams are involved in developing a specific aspect of a system, communication is a
key factor for achieving reliable results. When using the traditional document-based
approach, the tools mentioned earlier suffer from inconsistencies, and are difficult
to maintain and be reused again. For example, when providing requirements us-
ing text, the specific meaning of words matters. Consider the following text which
describes a hypothetical requirement of a system:

The system’s response to external requests must be quick in order to meet stake-
holders’ expectations.

The use of the word quick is ambiguous as it does not provide any time frame, and
it represents a subjective opinion of the person who used it. This is an example
of one of the various problems that we face when using documents as references in
systems development. The objective of MBSE is to transition from document-based
systems engineering, where the emphasis is on developing documentation of the
system, to a process that emphasizes the use of models from the initial conceptual
design, throughout all later life cycle phases (INCOSE 2015). In other words, MBSE
tells us that models are no longer simply a good idea, but rather an integral part of
the whole engineering process of engineering a system. In the world of traditional
system engineering, there are an increasing number of approaches that address this
topic [(Dickerson and Mavris 2016),(Estefan et al. 2007)], however, in the world of
SoS engineering, there is a scarcity of such approaches on the SoS level (Lewis et al.
2009). In order to realize the full potential benefits of MBSE, there are 3 areas that
must be addressed (Holt, S. A. Perry, and Brownsword 2011):

1. People: There must be properly educated, trained, and experienced people
available who hold the appropriate competence for their roles;

2. Process: In order to realize MBSE capability, there must be an effective set of
processes in place, which is properly deployed and available to all people;

3. Tools: Tools are required, particularly for automation, such as computer-aided

62

4.3 - SoS Modeling

system engineering tools, notations tools, architectural frameworks, and so on.

4.3 SoS Modeling
The process of designing and developing SoS involves multiple teams that elicit re-
quirements from the different stakeholders, and provide design solutions to achieve
the SoS goals. During this process, numerous models are exchanged between all
members working on the development of that SoS (Belkadi, Bonjour, and Dulmet
2004), as well as any interested stakeholder, where each model describes a specific
aspect of the SoS in question. MBSE is being applied nowadays to the SoS devel-
opment process since it provides a more efficient and viable solution: models that
use specific and unambiguous elements to describe a certain aspect of the SoS, and
that can be extended to allow for the integration of analysis in the model. For
example, if we agree that a triangle represents a drone, a rectangle represents a car,
and a line that connects 2 shapes represents a communication link, we can easily
understand the relationships between agents in a SoS that consists of 3 drones and
2 cars if we look at Fig. 4.3. Furthermore, any person who is interested in this
aspect of that SoS can understand these relationships simply by understanding the
meanings of the semantics used in the model. The development of SoS is evolution-

Figure 4.3: A model that describes the relationships between different agents in a
SoS.

ary over time, because SoS are characterized by increasing complexity, emergent
behavior, and uncertainty in requirements and context (e.g. evolving technologies.,
changing environment) (Andary and Sage 2010). Furthermore, for each aspect of
the SoS, a model may be developed that addresses that specific aspect. A structural
model may describe the structure of the SoS, whereas a behavioral model may be
used to describe its behavior. Therefore, any tool that may be used to model SoS
must have the ability to integrate the rationale behind every element that exists in
every model, so that any change that happens in that SoS, whether it is an inter-
nal change (e.g. CS joining or leaving), or an external change (e.g. environment or
stakeholders), may be taken into consideration in the overall model of that SoS. The
complexity of SoS is somewhat similar to that of enterprises or large information
systems, where the different models that describe a system in those categories are
usually a part of a framework that contains all the necessary information needed
in the system. A framework is a group of analytical and descriptive models that

63

Chapter 4 - Modeling & Frameworks

describe the components of a system, their objectives and behaviors, as well as their
inter-relationships.

4.3.1 Architecture Frameworks
According to the ISO/IEC/IEEE 42010:2011 standard definition, an architecture
framework is all “conventions, principles, and practices for the description of ar-
chitectures established within a specific domain of application and/or community
of stakeholders”. They provide some conventions, rules, and practices for develop-
ing the architectural descriptions of SoS from multiple perspectives and on varying
levels of abstraction, thereby allowing stakeholders to focus on specific aspects of
interest, while keeping sight of the whole system (ISO 2011). In other words, an
architecture framework is a set of models, which describes each an aspect of the SoS
while abstracting the other aspects of interest in that SoS, and when looked at all
together, they contribute to the understanding of the whole.
Many different architecture frameworks have been established over the last decades.
One of the earliest and most well-known architecture frameworks, the Zachman
Framework, published in 1987, defines an enterprise in a formal and highly struc-
tured way using a 2-dimensional classification matrix. The matrix is based on the
intersection of six basic communication interrogatives (What, Where, Who, When,
Why, and How) with six rows (contextual, conceptual, logical, physical, as built, and
functioning). However, defense organizations were the main contributor to the de-
velopment of architecture frameworks in the last two decades (Ota and Gerz 2011).
The US Department of Defense (DoD) views architecture as the mechanism for the
transformation of capabilities in the information age and, therefore, has issued a
series of architecture frameworks, such as the Command, Control, Communications,
Computers, Intelligence, Surveillance, and Reconnaissance Architecture Framework
(C4ISRAF) and DoDAF (Wagenhals and Levis 2009). C4ISRAF and DoDAF are
also the baselines of other mature and formally adopted defense frameworks, such
as the UK Ministry of Defense Architecture Framework (MODAF) (Partners 2005),
and NATO Architecture Framework (NAF) (Handley and Smillie 2008). Moreover,
civil organizations have employed these defense frameworks for designing architec-
tures, and developed their own frameworks, like the Unified Architectural Frame-
work (UAF)1 of the OMG, The Open Group Architecture Framework (TOGAF)
(Haren 2011), and the System of Systems Operational Management Matrix (So-
SOMM) (Gorod, Gove, et al. 2007).
An architecture framework should contain a detailed description of the objectives of
SoS, the components, the inter-relationship between them, and the rules that govern
the SoS in question (the invariant). In addition, due to the complexity of SoS and
the detailed description needed from a framework, it is hard to describe all the as-
pects of a SoS in a single-view framework (Cole 2008), that’s why a good framework
for SoS should use a multiview approach. A view (or viewpoint) in architecture
frameworks context is a set of models that describe a specific aspect of a SoS. For
example, one of the viewpoints in the DoDAF is the capability viewpoint, which
consists of a set of models that address capabilities in the SoS of interest (Capabil-
ity Taxonomy, Capability Phasing, Capability Dependencies, etc.), however, due to
the complexity of SoS and the different aspects that must be addressed, architec-
ture frameworks that describe SoS consists of multi-viewpoints. Even though the

1www.omg.org/uaf/index.htm

64

4.3 - SoS Modeling

viewpoints that consist a specific framework vary depending on the modeled SoS,
however, there are some major viewpoints that are usually in a SoS architecture
framework such as the purpose view, which describes the objectives of that SoS, the
form view, which describes the physical form of that SoS (CS, their relationships,
etc.), and the behavioral view, which describes what the SoS does.
Another reason why frameworks are important in the development of SoS, and any
other complex system, is their reusability (Zhang et al. 2012), in the sense that once
a framework is developed for a particular SoS, it may be modified and adapted to
another SoS in case both SoS have similarities between them. This enables the SoS
designers to focus on the content, and saves a lot of architecture and design time,
especially since frameworks are usually built using a dedicated language that is both
human and machine readable, which uses defined semantics. For example, if we were
to develop a framework for a SoS for an earth observation application, instead of
starting from scratch, if we use the framework proposed in (Durbha et al. 2006) for
instance, we start with multiple advantages:

1. We can use the knowledge presented in the mentioned framework to improve
the design of our SoS;

2. We can add the capability for cooperation between our new SoS and the
reference SoS, which increases the scope of the operation of both systems (in
case both systems have similar domain of applications).

4.3.2 Systems Modeling Language (SysML)
Frameworks are not only a representation of a SoS, and they are not the end goal
(Maier 2006). Although frameworks capture a static description of the SoS, it is
essential that they are built in such a way that enables them to be used to perform
dynamic analysis of how the CS interact with each other, and whether the SoS ex-
hibits the desired behavior as modeled (Wang and C. H. Dagli 2011). To do so,
frameworks must be built using specific languages that allow this kind of analysis to
be performed. There exist multiple languages that support this type of operations2,
but in this section we will focus on a specific language: Systems Modeling Language
(SysML) because of its widespread use in the industry, extensive tool support, and
flexibility of use (Holt, S. Perry, et al. 2015). SysML is a general-purpose architec-
ture modeling language for SE applications, it supports the specification, analysis,
design, verification and validation of a broad range of systems and SoS. It was devel-
oped by the Object Management Group3 (OMG), as an extention of a subset of the
Unified Modeling Language 2 (UML2) which was built to support the development
of software systems, as an effort to promote MBSE, and to move from document-
centric to model-centric in systems engineering. SysML specification was developed
based on the UML for SE request for proposal (RFP), which was developed jointly
by the OMG and INCOSE4. SysML contains 9 type of diagrams, distributed into 3
categories (Fig. 4.4): structure diagrams, behavior diagrams, and requirement dia-
grams. Structure diagrams are used to represent all information about the structure
of the system, as well as the relationships between components, whereas behavior di-
agrams are used to represent behaviors in the system such as activities, interactions

2www.compass-research.eu/Project/Deliverables/D22.6.pdf
3www.omg.org
4www.omgsysml.org

65

Chapter 4 - Modeling & Frameworks

(using sequence diagrams), and life cycles (using state machine diagrams), finally,
requirement diagrams are used to represent text based requirements.
There exist a lot of software that supports the use of SysML for modeling and anal-
ysis of systems, such as No Magic5, and Visual Paradigm6. By using software that
enables SysML support, we can focus on modeling the system, and perform more
detailed analysis, while at the same time making sure that the model we are devel-
oping may be reused and shared with any entity interested in that system: another
witness on the benefits of MBSE approach in engineering systems. For detailed

Figure 4.4: SysML diagram taxonomy 7.

information about SysML, readers may read the tutorial provided by the OMG at
www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf

4.3.3 SoS-ACRE Framework
To illustrate how frameworks are developed and used, in this section we are going
to describe a framework built on the basis of MBSE, that uses requirements from
the different stakeholders, SoS authority, and CS to build a SoS framework on the
basis of Model-Based Requirements Engineering (MBRE) (Holt, S. A. Perry, and
Brownsword 2011). This framework was adopted by the COMPASS8 project, and
has been used successfully on a number of industrial projects and on the European
projects OPENCOSS9 and iFEST10. The Approach to Context-based Requirements
Engineering (ACRE) is a MBSE approach that describes requirements ontology that
is used to generate the different needed requirements (Holt, S. Perry, et al. 2015).
SoS-ACRE was built on top of the ACRE approach, in order to benefit from its best
practices.

4.3.3.1 ACRE Ontology
The first element of this approach is its ontology, or the set of concepts, termi-
nology, and the relations between the different concepts. Figure 4.5 represents the
ACRE ontology using SySML block definition diagram, where each block represents

5www.nomagic.com
6www.visual-paradigm.com/features/sysml-diagram-tool
7www.sysml.org
8www.compass-research.eu
9www.opencoss-project.eu

10www.artemis-ifest.eu

66

www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf

4.3 - SoS Modeling

a concept. For example, the concept “Need” has three types: requirement, goal, or
capability. The relationship between “Need” and “source element” is noted on top
of the connector that connects two blocks, and it states that one or more “need”
is elicited from one or more “source element”, and the connector between “need”
and “rule” tells us that rules constrain requirements. On the other side, we have
two “context” types: “system context”, which represents the need for its source sys-
tem, and “stakeholder context”, which represents the context of a stakeholder. A
“Use case” describes the context of each need, and it is validated via one or more
“scenario”, which might be “formal” or “semi-formal”.
4.3.3.2 ACRE Framework
After presenting the ontology, now we present the ACRE framework, using SySML
block diagram, in Fig. 4.6. The ACRE framework consists of 7 views described
briefly below:

Source Element View: which contains all the information source required to spec-
ify the system requirement. This view records all the origins of requirement
sources in the system.

Requirement Description View: contains structured descriptions of each need
(requirement, goal, capability) elicited from the source elements.

Definition Rule Set View: contains all the rules that may be applied to the needs
in the previous view.

Requirement Context View: contextualizes requirements by looking at them
from a specific point of view.

Context Definition View: identifies the different points of view that may be
choosen to look at certain requirements.

Validation View: contains all validations that are needed to ensure that all needs
are met in the system.

Traceability View: contains all the relations that exist between elements of dif-
ferent views.

4.3.3.3 SoS-ACRE Framework
The previous ontology and framework does not contain any mention of SoS, because
ACRE approach was originally developed to be used in a single system. To expand
this approach so that it may be applied to SoS, first the ontology had to be expanded,
to what is called COMPASS ontology (Fig. 4.7), which builds upon the ACRE
ontology and adds SoS to the system context. The idea behind this is that a context
may represent a system from a specific point of view, and that SoS is a higher level
of a point of view that looks at multiple systems (namely CS) together. Using this
extended ontology, finally we could present the SoS-ACRE framework (Fig. 4.8,
which is also an extension to the ACRE framework, and contains 2 extra views
in addition to the previous 7 views: the validation interaction view, and context
interaction view.

Context Interaction View: contains the interactions between the different con-
texts (CS context and SoS context).

67

Chapter 4 - Modeling & Frameworks

Validation Interaction View: represents the relations that exist between the set
of validation on SoS level, with validations on the CS level.

4.3.3.4 Discussion
This description of this framework was extracted from (Holt, S. Perry, et al. 2015).
A more detailed description of this framework and other related information could
be found on the COMPASS website11. In the next chapter, we are going to use this
framework as a basis to build our own framework. There are 2 reasons behind this
decision:

1. It is compatible to be applied on relatively small scale SoS (Holt, S. Perry,
et al. 2015);

2. It is intuitive and easy to understand, and in consequence, we can modify it
to suit our purposes.

4.4 Conclusion
Modeling is a process that we use in order to understand a certain aspect of a
concept or an object. By abstracting the aspects that are of no interest to us, we
are able to focus on the aspect that interests us without dealing with the overall
complexity of the modeled entity. Models are the result of the modeling process,
and they are used as means of communication, analysis, and decision-making aiding
tools. When dealing with systems, there are 3 types of models: first descriptive
models which consist of drawings, charts, etc. are used to answer logical questions
about the modeled system, such as questions about its structure, objectives, etc.
The second type of models is the analytical models, which use mainly mathematical
tools in order to answer quantitative questions about the modeled system, such as
performance, cost, etc. And finally, the third type is hybrid models, which represent
a combination of the two previous types, and they provide a higher level description
of the system.
When we want to predict the behavior of a system, or understand the outcome of
a certain action in a complex system where the overall outcome is not the sum of
the outcomes of the parts, models are very helpful because they give us the ability
to perform computer simulations by using them as inputs, coupled with the rules
and mechanisms adopted in the system, to predict and analyze behaviors. Due to
the complexity and dynamic nature of SoS, frameworks which consist of multiple
models, grouped in viewpoints based upon what aspect they describe in SoS, are a
tool that is very useful in the context of designing reliable evolutionary SoS. They
provide us with the ability to represent all the different aspects that we wish to
describe in SoS, and to perform computer simulations to test the adopted solutions,
especially when in the case of SoS, it is very complicated, and often unfeasible to
perform the tests in the real world. Of course this process of simulating the SoS by
using its framework is possible when it is built (the framework) using a language
that enables this simulation, such as SySML, ArchiMate, etc.
After understanding what are SoS, their definitions, different types, how to control
their CS in order to realize their objectives, and how to model and analyze them, it
is now the time to apply that to a real use cases, by developing a SoS that enables

11www.compass-research.eu/Project/Deliverables/D211.pdf

68

4.4 - Conclusion

cooperation between autonomous vehicles in different types of maneuvers, called the
Cooperative Maneuvers Manager for Autonomous Vehicles (CMMAV), which is the
focus of the next chapter.

69

Chapter 4 - Modeling & Frameworks

F
igure

4.5:
A

C
R

E
O

ntology
(H

olt,S.Perry,et
al.2015).

70

4.4 - Conclusion

F
ig

ur
e

4.
6:

A
C

R
E

Fr
am

ew
or

k
(H

ol
t,

S.
Pe

rr
y,

et
al

.2
01

5)
.

71

Chapter 4 - Modeling & Frameworks

F
igure

4.7:
C

O
M

PA
SS

O
ntology

(H
olt,S.Perry,et

al.2015).

72

4.4 - Conclusion

F
ig

ur
e

4.
8:

So
S-

A
C

R
E

Fr
am

ew
or

k
(H

ol
t,

S.
Pe

rr
y,

et
al

.2
01

5)
.

73

Chapter 5

Application: Cooperative
Maneuvers Manager for
Autonomous Vehicles (CMMAV)

5.1 Introduction
Autonomous cars have been studied since at least the 1920’s, with the “phantom
auto” was promised to tour the city of Milwaukee in the US 1. They showed up in
science fiction movies and stories long time ago as well. The idea of a car driving
itself while the driver is free to do something else is compelling. It gives us the
feeling of importance and for some people security. On the other side, some people
fear this kind of technology, either because they do not trust machines enough for
performing this type of tasks, or simply because they like to drive by themselves
and they enjoy doing it. Regardless of this, autonomous driving is the subject of
many academic studies, as well as commercial development. Autonomous driving
(or navigation) is not exclusive to cars or ground vehicles, aerial vehicles, such as
Unmanned Aerial Vehicles (UAV), even though most of them are controlled from
the ground, are a technology that exists for a long time now. Satellites and space
probes usually have several components for autonomous navigation. As for ground
transportation, autonomous trains are now the focus of different manufacturers and
railway network operators, and even autonomous bicycles are a thing now!
Autonomous navigation in each of the previous domains differ in the degree of ma-
turity: we could find a fully autonomous commercial UAV, while there exist no com-
mercial fully autonomous cars, for example. This difference in maturity levels could
be attributed to the complexity of the environment in which a particular system
operates. While any vehicle would need to self-locate and perceive the surround-
ing environment, among other functionalities, the safety requirements for different
vehicles are different (in case of a failure, an autonomous UAV might be allowed
to crash in an inhabitable area, whereas an autonomous car crashing in an inhab-
itable area might not be allowed, since there are passengers on board). Moreover,
the surrounding environment in the case of a UAV is usually empty from any type
of valuable assets that it would need to conserve, which is not the case for cars,
where they share the same environment with pedestrians, other cars, even store and
markets in the case of urban navigation. To complicate things further, a car would

1https://news.google.com/newspapers?id=unBQAAAAIBAJ&sjid=QQ8EAAAAIBAJ&pg=7304,3766749

74

5.2 - Motivations

not only need to account for the safety of other entities in its surroundings, but it
should as well be able to cooperate with them. For example, cooperative adaptive
cruising on a road increases its capacity (throughput) and decreases fuel consump-
tion in participating vehicles (Vander Werf et al. 2002).
In this context, and as a contribution to the autonomous navigation of ground
vehicles, in particular, autonomous cars, this chapter introduces the Cooperative
Maneuvers Manager for Autonomous Vehicles (CMMAV). CMMAV is a framework
that defines the logical structure to any user that would like to develop a coopera-
tive maneuvers manager in an autonomous vehicle. However it does not impose any
implementation or technological constraints. CMMAV uses Systems of Systems Ap-
proach to Context-Based Requirements Engineering (SoS-ACRE) (Holt, S. Perry, et
al. 2015), in which the needs (requirements, goals, functionalities) of all constituent
systems and stakeholders are the source of the different logical elements presented
in the framework. It uses use cases as a starting point to identify stakeholders, uses
these stakeholders to develop the framework, and then uses user feedback to refine
it. The objectives of this chapter are:

1. Present the CMMAV: Motivations behind it, and its objectives;

2. Justify the relation between CMMAV and SoS, as well as ITS;

3. Explain the framework;

4. Present a general discussion about CMMAV, different possible use-cases, and
SoS challenges that it might face.

5.2 Motivations
In order to achieve reliable autonomous ground navigation (AGN) for commer-
cial cars, they must have different functionalities such as self-localization, self-
monitoring, etc. We have identified 3 groups of functionalities that need to exist in
Ground Vehicles (GV) (Fig. 5.1):

Base Functionalities, a set of functionalities that enable the subject vehicle to
navigate autonomously, in a closed, static, and controlled environment. This
type includes self-localization and cruise control, for example.

Environment Functionalities, a set of functionalities added to the subject vehi-
cle in order to safely operate in a dynamic, uncontrolled environment. Func-
tionalities such as detecting obstacles, and vehicle-to-X (V2X) communications
belong to this type.

Collective Functionalities, a set of functionalities that improve the performance
of one or more previous functionalities, or the aggregation of which gives birth
to new functionalities for the overall system. An example is cooperative forma-
tion driving where vehicles decide on a specific formation in their movement.

Base and environment functionalities are studied, developed, and some of them
are commercialized. However, there is a gap in applications that target collective
functionalities. The ability for autonomous cars to communicate requests and to ex-
change services are not well established, and not many studies on the subject exist.

75

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

Figure 5.1: Functionalities types: base, environment, and collective.

This is due to the fragility of such functionalities towards the surrounding environ-
ment. For example, the presence of a human-driven car, with the unpredictability
of the driver alongside autonomous vehicles might affect the operation of such func-
tionalities. Moreover, to safely enable collective functionalities, we must ensure the
resilience of both environmental and base functionalities. One more reason is the het-
erogeneity of the players in the system: there are different car manufacturers, where
each uses different technologies and methods to enable the different functionalities
in their vehicles. One more challenge that faces these functionalities is the different
objectives of the autonomous cars that share the same road. Each car has its objec-
tives set by its owner, which might be in conflict with neighbor cars. This subject
is treated by game theory studies [(Jaramillo and Srikant 2010), (Su et al. 2007)],
which contributes to the development of such functionalities. The deployment of
such functionalities is the natural next step after developing robust environment
and base functionalities. There are several projects2 that use autonomous vehicles
to prove and refine the technology, such as Autonomy3 and AutoC-ITS project4.
On the other hand, standards have proven their importance in environments that
contain divers technologies, actors, and systems interacting all together. Standards
are a way to harmonize these types of environments, while at the same time respect
the nature of its environment. For example, in the mobile phone’s world, there are
numerous manufacturers that each uses different parts, and different software, while
at the same time they offer the ability to work with routers, reception towers, and
phones from other manufacturers. The reason why they are capable of doing this is
because they follow standards. On this aspect, transportation world is very similar
to mobile phones world, and not surprisingly, there are standards that guide things
in it as well.
The majority of the challenges that face collective functionalities are similar to some
of the challenges that face SoS: different constituent systems, with conflicting ob-
jectives, that operate in a dynamic environment that they share with other systems

2imovecrc.com/smart-mobility-projects-trials-list/
3www.autonomy.paris
4project.inria.fr/autocits

76

5.3 - CMMAV Description

that are also independent and have different objectives. This similarity inspired us
to use SoS approach, to develop the CMMAV, as a standard, or framework that
guides the development of collective functionalities in autonomous vehicles.

5.3 CMMAV Description
CMMAV is a framework that proposes a logical architecture which could be used
by any entity that might be interested in developing cooperative functionalities in
autonomous vehicles. The importance of a unified architecture is proven by the
presence of the diverse organizations that set standards in different domains (ETSI
standards5, IEEE standards, ISO standards, etc.). CMMAV could be considered
as the first step towards a standard that guides the development of cooperative
functionalities for autonomous vehicles. Being a logical architecture, it does not
set implementation constraints either on the software or the hardware used to pro-
vide these functionalities. For example, CMMAV requires that CS must be able to
locate nearby vehicles. However it does not mention how they must achieve that.
Consider the users U1 and U2 who are developing the functionalities C1 and C2 for
their CS respectively. By using the CMMAV, they could focus on developing their
own functionalities, while at the same time, if later on they decide to develop a
third functionality C3 which allows their CS to cooperate, their systems are already
compatible for integrating C3.

CMMAV is a framework that guides the development of collective
functionalities in autonomous vehicles.

CMMAV treats mainly two points: providing incentive for cooperation, and ad-
dressing emergent behaviors resulting from potential cooperation. More detailed
discussion around these points will be provided later in this chapter. Three types of
stakeholders exist in the CMMAV: maintainers, constraining stakeholders and users
stakeholders (Section 5.7). Maintainers are responsible for developing and maintain-
ing the CMMAV, constraining stakeholder such as the state and car manufacturers
provide rules that must be respected by CMMAV, while user stakeholders are any
entity interested in using CMMAV for a specific use case, this type might include
universities, logistics companies, or transportation companies. CMMAV uses users
use-cases as the starting point in its drafts. Use-cases provide stakeholders, which
mainly provide requirements and feedback for the entity maintaining the CMMAV
development in order to refine it and improve it. The process of developing CM-
MAV is described in Fig. 5.2: For each new identified use case (see Section 5.9),

Figure 5.2: CMMAV development process: use-case based.

different involved stakeholders are identified, which are then used as an input to the
5The European Telecommunications Standards Institute

77

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

second process, to generate the different views of the CMMAV (see 5.11). We chose
the “overtaking on high ways” (see appendix A.1.2) use case as a starting point to
develop the first draft of this framework. The logical blocks proposed by this draft,
however, may not be suited to be applied to another use case, such as “multi-vehicle
delivery systems” for example. Later on, when new use cases are provided, CM-
MAV maintainers integrate its newly added stakeholders and/or requirements to
refine it. The loops shown on each process represent the feedback that could hap-
pen at any stage of development: use cases, stakeholders and requirements might
change, and for each change, the process itself as well as the subsequent processes
must be reviewed to ensure that the CMMAV is up-to-date.

5.4 CMMAV & Intelligent Transportation Sys-
tems

CMMAV is designed to standardize the development of collective functionalities in
ground vehicles or systems in their environment. When working with any trans-
portation system, it is very important to understand the placement of this system
in a larger, global SoS, called the Intelligent Transportation Systems (ITS). This
is important because it provides us with a very important knowledge about the
ecosystem of the systems that we are dealing with, and boundaries about what we
should respect and follow during the development of the CMMAV. The world is con-

Figure 5.3: Intelligent Transportation Systems: a global SoS (ITS 2008).

nected by a large transportation network. Everyday, thousands of trips are made to
transport goods or people from a place to place on water, ground, and in air. All
the trips made have the same objective: deliver something from point A to point B.
However, each trip has different stakeholders that have different requirements: when
transporting goods often safety is required, while when transporting people, comfort

78

5.4 - CMMAV & Intelligent Transportation Systems

is required in addition to safety. The mode of transportation (train, airplane, etc.)
also affects the trip: traveling by plane is faster than doing so in a train for example.
Furthermore, the source and destination of a trip may constrain the trip as well,
because every place has different laws and regulations that must be respected by
the trip (the transported thing and/or the transporting entity).
Every stakeholder has a different interest in transportation systems, and affect it
in a certain way. Countries have regulations on transportation systems, manufac-
turers produce transportation vehicles, travelers use the system to travel, service
providers develop technologies to improve the system and gain profits, employees
work in transportation systems. The list of stakeholders is very big and diverse, but
since they all share the same objective, and each has different other set of objectives
that might be conflict, a global transportation SoS emerged that they all form part
in.

5.4.1 Intelligent Transportation Systems (ITS)
One particular SoS that belongs to the global transportation SoS is ITS. ITS are
any system, technology, service, or organization that has the objective of improving
the state of any transportation system. ITS by itself is not a system, but it is the
placeholder of myriads of applications, infrastructure, standards, and technologies,
that seek to make more intelligent roads and vehicles [Figueiredo et al. 2001].

Example 5.4.1. Mobile applications that use the positions and speeds of differ-
ent vehicles in an area to deduce the state of traffic in that area, and to provide
suggestions to users about best routes belong to ITS.

5.4.2 ITS Stakeholders
The stakeholders of ITS include mobile app developers, transportation companies,
vehicle manufacturers, governments, syndicates, citizens, standardization organiza-
tions, etc. (Figure 5.4). Each stakeholder involved has different objectives, incen-
tives, and requirements, and different types of relation to ITS. While a mobile app
developer develop an app to provide routing services for travelers, a government
sets traffic laws to guarantee the safety of its citizens, laws that must be respected
by travelers and manufacturers in the ITS. Recognizing stakeholders of the ITS is
important during identifying the stakeholders of the CMMAV (see Section 5.7).

5.4.3 ITS Categories
The systems that belong to ITS seek to improve transportation by targeting different
parts of the system. Some systems target vehicles by developing technologies and
applications to improve localization or control of vehicles for instance, while others
target users by providing routing services. This allows us to separate ITS into 6
major categories (Wu and P.-J. Lee 2007):

Advanced Traffic Management Systems (ATMS): The focus of this category
is to provide the necessary information about traffic to the infrastructure sys-
tems that can be used to better control traffic flow.

Advanced Travelers Information Systems (ATIS): This category provides real-
time traffic information to the travelers, to enable them to make better deci-
sions regarding routing, which help in the reduction of congestion.

79

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

Figure 5.4: Intelligent Transportation Systems: Stakeholders.

Commercial Vehicles Operation (CVO): CVO’s main beneficiaries are mainly
logistics companies, and any entity that has commercial fleets. CVO systems
allow these entities to better control their fleets, which results in better goods
deliveries.

Advanced Public Transportation Systems (APTS): This category uses the
ATMS and ATIS systems in order to optimize public transportation such as
buses and trains.

Advanced Vehicles Control Systems (AVCS): AVCS is where in-vehicle sen-
sors are used to assist drivers either by informing them, or by taking control
over some functionalities in the vehicle.

Advanced Rural Transports Systems (ARTS): ARTS use different services from
the previous categories in order to solve some problems in rural zones (alerting
the driver about a blind curve for example).

80

5.5 - CMMAV & SoS

5.4.4 CMMAV in ITS
Based on the previous Section 5.4.3, to locate CMMAV in the ITS, we can identify its
potential users. CMMAV guides the development of applications that could be used
to provide collective or cooperative functionalities in a system of interest (SoI). Just
as any standard that exists in the ITS and guides the development of a particular
group of products that might be used in several categories, the products developed by
following CMMAV’s recommendations might belong as well to different categories.
In its current format, CMMAV targets AVCS, since it only takes passenger cars into
consideration during its development (see Section 5.6). However, if a use case was to
be added that involves a public transportation system for example, CMMAV then
could be classified as CVO system as well. This placement helps us identify the
practices used in that category, which will provide us with verification, deployment,
and operational requirements.

5.5 CMMAV & SoS
We have mentioned in the motivations that CMMAV faces a lot of the challenges
faced by SoS: from a wide range of different stakeholders, to constituents that have
conflicted objectives. In fact we consider the CMMAV to be a case study on the
development of such systems. By considering this, we enrich ourselves with lessons
learned from this domain, and we seek to give back by contributing to the devel-
opment of SoS. Sharing the same challenges is not enough to classify the CMMAV
as a SoS though, but proving that Maeir’s characteristics apply to the CMMAV is
enough (Mostafavi et al. 2011): prove the operational and managerial independence
of the CS.
As discussed in Chapter 2, Maier’s characteristics contain two primary and three
secondary characteristics. Starting with primary characteristics, in CMMAV every
CS is an independent system that operates by itself: every AV operates without
the need to rely on any other system. Thus CS are operationally independent. As
for managerial independence, every AV is managed by two parties: the owner, who
manages the logistical part (providing the vehicle with energy, choosing a destination
and route, etc.), and the manufacturer, who manages the technical part (automated
parking, adaptive cruise control, etc.). Based on the way we intend to deploy our
system, it is up to the owner/provider of the vehicle to install this software in the
vehicle. It is true that by doing so, the owner loses some managerial independence
for the SoS, but this loss is covered by the gains from belonging to the SoS. So CS
in CMMAV are operationally and managerially independent, thus the CMMAV can
be classified as SoS. As for the secondary characteristics, another distinction that
helps CMMAV development is defining its type in SoS, since this gives an insight
about the best type of relation the CMMAV must use with its different stakeholders
in order to succeed. CS cooperate using sensing information as well as communi-
cations, and thus, the system is geographically distributed. As for the evolutionary
development, CS, namely autonomous vehicles in our case, and the environment in
which the SoS exists (infrastructure, ITS services, etc.) all evolve independently of
the SoS, and thus the SoS should be in constant evolution to keep up with these
changes. The second important classification is the category to which our SoS be-
longs. We classify our system to be a collaborative SoS because the objectives are
shared between the SoS and its CS, and the SoS is the result of the collaboration

81

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

between its CS.

5.6 CMMAV: Constituent Systems
CS are any physical system that contains software developed based on the CMMAV,
and they are defined in use cases. They are important to the CMMAV because
different types of CS have different stakeholders (passenger cars and commercial
cars for example), and because they are the physical representation of the CMMAV.
From “cooperative overtaking” (see appendix A.1.2) use-case, CS are identified as
vehicles that use highways and perform overtaking maneuvers, which will be mainly
autonomous electrical passenger cars. Let’s take a closer look on the ecosystem
of such vehicle (Fig. 5.5): AVs use infrastructure (e.g. roads and road signal),

Figure 5.5: Autonomous vehicles ecosystem: different stakeholders and resources.

services (e.g. GPS, cloud services), and recharge stations. By using these resources,
they are abiding the constraints and rules set by these resources providers, hence
the dashed lines relations, which show a second degree relation to the AVs. For
example, the relationship between the state and autonomous vehicles is indirect and
it materializes through traffic laws. One relation of interest in this section is the
citizens/Autonomous Vehicle relation, described by “own/use”. There are multiple
scenarios that could define this relation, we consider here two: ownership, and pay-
per-use.

Ownership: the vehicle is owned by the person who uses it, namely the owner.
The owner decides what kind of applications, services, and resources he/she
wants to use in their vehicle, as well as setting the objectives for road trips.

Pay-per-use: the vehicle is owned by an entity (company, organization, etc.),
namely the provider. The provider decides what kind of applications, and

82

5.7 - CMMAV: Stakeholders

resources they use in their vehicle. However, the entity that pays to use the
vehicle, namely the user, is the one responsible of setting the objectives for
road trips.

The reason behind this distinction between the two types is that since each vehicle is
a system, it is important to identify the different entities that manage that vehicle,
which will be useful later (defining incentive mechanisms, identifying stakeholders,
etc.).
Finally, if we apply the representation from 2.3 to an AV as a SoI, using Fig. 5.5, and
different functionalities types from Section 5.2, we get Fig. 5.6. Note that we do not

Figure 5.6: Autonomous Vehicle as an independent system: management, func-
tionalities, resources, external factors, and constraints.

consider the operational part of the AV, but rather the functionalities it provides.
Furthermore, we consider that the AV does not have any collective functionalities,
since this is the objective of this framework (or have some of them but they were
not CMMAV based). As for other types of functionalities, CMMAV contains a list
of the different base and environment functionalities it requires to operate (Section
5.11.5).

5.7 CMMAV: Stakeholders
Figure 5.5 contains the different stakeholders involved in AV’s ecosystem: the state,
manufacturers, service providers, etc. Some of them have direct relation to the AV
(manufacturer, owner), others have indirect relation with the AV (service providers).
We separate stakeholders into 3 different groups: constraining stakeholders, user
stakeholders, and maintaining stakeholders. This separation is based on the types
of relationship each stakeholder has with the CMMAV: CMMAV is developed and
maintained by its maintainers, it respects the requirements of both user and con-
straining stakeholders, and it is used by user stakeholders to produce a product or
a service. Stakeholders can move from one category to another, for example, if a
constraining stakeholder developed a product based on the CMMAV, it becomes
a user stakeholder (e.g. a standardization organization adapted the CMMAV in its

83

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

standards, it moves from constraining stakeholders to user stakeholders). CMMAV’s
stakeholders are not limited to those of its CS. Since the CMMAV is intended to
be a standard, it should respect the requirements of the specific standardization
organization that might adopt it, and being based on the MBSE discipline, it has to
include its requirements (verification and validation for example) in its development,
and of course, belonging to SoS means it uses SoSE guidelines as well. The complete
list of current stakeholders in CMMAV may be found in Appendix (Fig. A.1).

5.7.1 Constraining Stakeholders
Constraining stakeholders are any stakeholder that does not use the CMMAV. Car
manufacturers are constraining stakeholders since they produce cars that use appli-
cations developed based on the CMMAV, and therefore, they affect the deployment,
and operation of those applications. CMMAV uses the requirements of these stake-
holders either as guidelines and indications, or as rules that must be followed. For
example, using ETSI6 standards in communication is recommended in applications
that run on European soil, but users may not use these standards depending on their
use case, however, in some use cases users must follow traffic laws of their country.

5.7.2 User Stakeholders
User stakeholders are any entity that uses the CMMAV to produce a product or
a service. For example, a logistics company that deploy software based on the
CMMAV in its vehicles to perform a mission is a user stakeholder that affects the
CMMAV by providing requirements related to their use case, but at the same time
gets affected by it through adopting its guidelines. User stakeholders differ from
constraining stakeholders in that in addition to affecting the CMMAV, they are
affected by it as well. They have a special relation with the maintainers stakeholders
in that they help the latter refine the CMMAV throughout its constant development
cycle by providing feedback about the performance of their applications (Fig. 5.2).
User stakeholders are usually added with every new use case, as they are mainly the
ones providing those use cases. A user stakeholder may provide multiple use cases.

5.7.3 Maintaining Stakeholders
Maintaining stakeholders are any entity that develops and reviews the CMMAV.
Upon any change in the requirements of one or more of the previously mentioned
stakeholders, and in case any new use case was submitted, the job of maintainers
is to modify and refine the CMMAV to ensure that it meets its requirements at
all time. Right now the only maintainer stakeholder in the CMMAV is the Heudi-
asyc Laboratory. If any other organization collaborated with the maintainers in
developing the CMMAV, they become maintainers as well.

5.8 Incentives for cooperation
The distinction we made between ownership and pay-per-use of the CS in Section
5.6 is very useful when thinking about inciting cooperation between CS. CS are
independently managed. By using CMMAV based functionalities for cooperation,
they are expected to ask for and provide services from/to other CS. They are not,
however, obliged to do so. To incite cooperation between CS, incentives for cooper-
ation must be provided. To cooperate, a CS sends a request to another CS, asking

6www.etsi.org

84

5.8 - Incentives for cooperation

for a service. The second CS responds by either acceptance or refusal of the request.
Incentives are given to favorite the acceptance of a request (or set of requests). They
might be in the form of points gained for each accepted request from a CS that could
be spent by the owner on goods, or that could be used by other CS to define their
responses to the requesting CS (cooperating more with others means others will
cooperate more with you). Incentives are very important in any cooperation, and
therefore CMMAV maintainers require users to prove that the incentive mechanisms
they have chosen are valid (see more in emergent behavior Section 5.10.

5.8.1 Cooperation Decision-Making
The decision that defines the acceptance or refusal of a request in CS might have
different sources in different systems. In AGV, the decision is expected to be made
inside the vehicle, while in a UAV, it might come from a ground control center. The
position of this source in a system differs from system to system. However it always
comes from the owner of the system. For example, an AGV driver who owns their
vehicle might decide to take each decision by themselves, or let the vehicle take
the decision via a specific application they installed. Think mobile phone users,
by allowing different apps to know the position of their phones, they are providing
services to these applications (whether they know it or not). The allowance to a
certain app to access the position of the mobile phone and denying this access from
another by the owner of the phone is similar to the driver taking each decision by
themselves. However, when the phone’s owner chooses a predefined mode in their
phones that automatically grant or deny access to applications based on the chosen
mode, this is similar to the driver letting the vehicle take the decision by either
setting a predefined mode (very cooperative, cooperative, selfish for example), or
installing applications that take this decision based on their preferences.

5.8.2 Examples of Incentives
There are several incentive mechanisms that might be used to favorite cooperation
between systems. Stakeholders in the system play an important role in defining
those mechanisms. Here are some examples to make things clearer.

• In cooperation between different civilians AV, consider some sort of “social
points” system between vehicles, where a profile that represents the vehicle is
accessible to all neighbors. This profile mirror the level of cooperation of a
certain CS. More cooperation means better profile, which consequently means
more chances that other CS will collaborate with you.

• In cooperation between vehicles owned by a logistics company and a service
provider company when the first company pays a fee to the latter. CS do not
need incentives as they are required to cooperate by their respective owners.
The incentive of cooperation in this case resides within the owners, and takes
the form of a paid fee in exchange for this cooperation.

• In the “shared parking” use case, incentive is given in the form of points to
parking owners in exchange for the services they provide, that could be spent
to gain services from service providers (charging stations, cloud access, etc.).

The marketing domain contains a lot of incentive mechanisms that could be used
that are well studied and applied (Gao et al. 2015). More information on this subject
is provided in Section 5.10.

85

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

5.9 Use Cases
As discussed earlier in Section 5.3, use cases are the source of CMMAV’s require-
ments and stakeholders. A use case provides stakeholders, as well as requirements
to the CMMAV. Use cases are provided to the CMMAV by users who decide to
adopt its guidelines in the development of some of their functionalities. A user who
wishes to submit a use case fills out the specific template provided by the CMMAV,
and sends it to CMMAV maintainers. Maintainers verify that the submitted use
case requirements are not treated in the CMMAV, and then proceed to perform
the steps described in Section 5.11 to adopt this new use case. The first use case
treated in this framework is the overtaking use case (described in “Overtaking use
case submission document” in the Appendix A.1). It consists of enabling AGV to
perform cooperative overtaking on high ways.

5.9.1 Use Case Examples
Here we list some of the potential use cases of the CMMAV.

5.9.1.1 Localization of a vehicle not transmitting its proprioceptive in-
formation

Communicating through wireless communication mechanisms face the problems of
packet loss. Sometimes vehicles might lose the functionality of communicating im-
portant information about their location and speed. However, using the different
positions and speeds estimated by neighbor vehicles and possibly infrastructure, the
position and speed of the non-communicating vehicle could be estimated by a mar-
gin of error. This use case requires the vehicles to be able to identify neighbors,
estimate their positions and speeds, and share this information.

5.9.1.2 Shared Parking

Consider an urban area, where private parking places are empty during day time
(owners are at work). An empty AV (does not have any passenger) which is searching
for a place to park while their owner is doing something else, could search for an
empty parking spot. Based on different potential incentive criteria (social points,
pay-per-use, etc.), private parking places accept to let the empty AV park for a
period of time. User stakeholders in this use case might include parking spot owners,
vehicle owners, commercial stores, service providers, etc.

5.9.1.3 Framework Process Use Case

This example is different than the above. This is a use case that uses the process of
developing the CMMAV to develop a framework that caters to a specific system’s
needs. Consider a project to build a system that involves different teams, each is
responsible of the development of a part of the system. By using tasks as use cases,
and developing the framework by adopting the process described in this chapter, the
managers of this system and all involved stakeholders will have concrete and clear
knowledge about their system.

5.10 Emergent Behaviors
By considering SoS approach while building the CMMAV, one important aspect
must be taken into account during conceiving, building, and deploying it: Emergent

86

5.11 - The Framework

Behaviors. This topic is discussed earlier in Chapter 2, and here we address its man-
ifestation in CMMAV. By using the CMMAV to develop and deploy collaborative
functionalities in CS (AV, infrastructure, etc..), rather than creating new interac-
tions in the environment, we are refining them. Consider for example the overtaking
use case, overtaking happens everywhere between human-driven cars, and sometimes
there is cooperation between drivers: when we signal the intention to change a lane,
often drivers on the other lane slow down a little bit or keep constant speed to
allow us to execute the maneuver. What we are really doing, is changing the coop-
eration decision-making process, or rather providing standard mechanisms for this
cooperation to happen. Since this type of cooperation happens already, it is very
important to study the existing emergent behaviors in such ecosystem to account for
it when developing these collaborative functionalities. In the current version of the
CMMAV, we have identified two emergent behaviors that must be treated: Traffic
shocks due to the accordion effect, and incentive compatibility. Emergent behaviors
are required to be treated in CMMAV based applications by their maintainers, us-
ing verifications from the verification view (Section 5.11.6) that users must respect.
The first behavior is related to the physical manifestation of the cooperation desired
by the users, while the second is related to the incentive mechanisms used in such
applications.

Traffic shocks and the accordion effect: This effect happens in any physical
system that contains flowing elements. In traffic, it manifests when in traffic
flow, a vehicle slows down, which leads to the following vehicle slowing down as
well. This creates a backward ripple of vehicles slowing down, each more than
the previous, which is similar to the accordion, and usually leads to congestion
in the back of the traffic flow.

Incentive compatibility: In economics, incentive compatibility constraint (ICC)
is considered in problems where an agent is expected to provide a service to
other agents (Mehta and Vazirani 2018). ICC ensures that the expected utility
of exerting high effort is higher or equal to the expected utility of exerting
low effort. This is related to the CMMAV since it considers the interactions
between CS as services exchanged. The problem is how to incite CS to provide
services to other CS, and the incentive compatibility behavior might occur if
there exist no incentives for cooperation for example, then it is expected that
all CS will request services, but none will provide them.

5.11 The Framework
Using SoS approach, the best way to represent or model a SoS is by developing
a framework with different views that provide each stakeholder with the necessary
information regarding the SoI. Using the same approach, we have decided to use
SoS-ACRE, the framework proposed by (Holt, S. Perry, et al. 2015) as a basis for
CMMAV: Using a model-based approach for requirements engineering, we build a
multi-view framework that maps the requirements of different stakeholders involved
in a SoI. The use of this framework comes after choosing the stakeholders (second
part in Fig. 5.2), which are used to populate the needed views. The CMMAV
contains 7 views:

1. Use-Cases View

87

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

2. Organizational View

3. Sources View

4. Requirements View

5. Functionalities View

6. Verification View

7. Traceability View

These views are related together via a set of different relations. Each view (or set
of views) is responsible for populating a subsequent view (or set of views). “Use
Cases View” provides the “Organizational View” with stakeholders, which in turn
gives sources to “Sources View”. The complete process of populating and refining
the CMMAV is shown in Fig. 5.7. At the end, the first six views provide relations to
the traceability view to create the different trees representing the different relations.
Two main models are used to represent the different views: SysML diagrams and

Figure 5.7: CMMAV framework process.

forms. SysML diagrams are used to give a high-level view of an aspect of the
system, particularly to show relations between different elements of a view, while
forms are used to provide a detailed description of each element of a view. In the

88

5.11 - The Framework

high-level view, elements in dashed boxes are not considered in the current version
of the CMMAV, but added to highlight potential use. In each view, elements are
represented in a form defined by a template specific to that view, which contains
several attributes used to describe these elements. One of the uses of the feedback
mechanism shown in Fig. 5.2 is that user stakeholders may suggest modifications not
only to the content of CMMAV, but to the templates as well, by adding or removing
specific attributes from specific view(s). In addition to the different views, CMMAV
contains a document that describes the purpose of each view, and the template
used to represent elements in that view, and another document that contains all the
acronyms used within with their meanings.

5.11.1 Use-Cases View
CMMAV is based on use cases. They provide it with requirements that come with
the different stakeholders involved in a use case. The use cases view contains all
use cases that were used to build the CMMAV. A use case describes how a certain
user stakeholder intends to use the CMMAV. Each use case is described by a form
that has the following attributes: a unique identifier, a description, and specific
stakeholders. The first use case, “overtaking on highways” is shown in Fig. 5.8, as
an example of a use case in this view. More potential use cases are presented in
Section 5.9.

Figure 5.8: Use Case: Cooperative Overtaking.

5.11.1.1 Unique identifier

This unique identifier (UID) is added for the purpose of enabling better traceability
in the CMMAV. It is used to link any source, requirement, rule, or view of the
CMMAV to the specific use case it is related to.

5.11.1.2 Description

Every use case must have a description that describes the intended use of CMMAV
by a user stakeholder. This objective of this description is to explain the use case
in a general way, so it must be short and it must convey the general idea of the use
case.

89

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

5.11.1.3 Specific Stakeholders
Specific stakeholders are any stakeholder that relates to the CMMAV through this
use case. This is added mainly because whenever a use case is modified, it might be
useful to know which stakeholders are affected, and if needed, should be consulted.
5.11.1.4 Meaures of Effectiveness
Measures of Effectiveness (MoE) are all the criteria that define the success of the use
case. They are usually defined by specific stakeholders of the use case, they might
be formulas or formal conditions.

5.11.2 Organizational View
This view describes the architecture of CMMAV from an organizational point of
view: maintaining organizations, constraining stakeholders, user stakeholders, and
CS. The maintaining organizations are the group of organizations that are respon-
sible for developing and evaluating the CMMAV, stakeholders include constraining
and user stakeholders, and CS are any physical system that deploy software based
on the CMMAV. Each element in this view has a UID, a name, a type (CS; User
Stakeholder; Constraining Stakeholder; Maintaining Organization), and use case
field containing UID of all of the use cases that this element is involved in. Figure
A.1 (Appendix) is the current version of the organizational view, and Fig. A.1 shows
the detailed forms of the different stakeholders. Figure 5.9 shows an example of an
element of this view. These stakeholders were chosen for the following reasons:

Figure 5.9: Actor Details: name, type, and related use cases.

User Stakeholders: The Heudiasyc laboratory, by providing the use case used to
build the current version of the CMMAV, is considered as user stakeholders.

State: Considered because the use case requires the respect of state laws during all
maneuvers, and so the state becomes a constraining stakeholder.

ETSI: By adopting ETSI standards for telecommunication between CS (for appli-
cations operating in Europe), ETSI becomes a constraining stakeholder.

Maintainers: By developing the CMMAV, Heudiasyc is considered maintainers
stakeholders.

CS: AVs are considered as CS as described in Section 5.6.

Service Providers: Added to highlight incentive potential, see Section 5.8. Not
considered in the current version.

Manufacturers: Added to highlight potential deployment requirements from man-
ufacturers. Not considered in the current version.

90

5.11 - The Framework

5.11.3 Sources View
This view provides the sources of all requirements in the CMMAV. Each source
provides the requirement(s) of an element of the previous view (Section 5.11.2),
which may have multiple sources in this view. A source has a UID, a name, and the
UID of the corresponding stakeholder, and a link to the document (or website, or
email exchange) that this source represents (Fig. 5.10). The complete list of sources
is in Section A.2.2 (Appendix). Traffic laws define the requirements of the state.
ETSI EN 302 637-2 V1.3.2 (2014-11) defines the requirements of ETSI concerning
communication between CS. User stakeholders provide the CMMAV with a use case
document that contains their requirements (Appendix A.1). Exchanges represent
any communication that might occur between users and maintainers concerning
adding or modifying requirements. Maintainers provide requirement document that
contains their requirements to the CMMAV. Figure A.2 (Appendix) is the current
version of the sources view, and Fig. A.7 (Appendix) shows the detailed forms of
the different sources.

Figure 5.10: Requirements source form.

5.11.4 Requirements View
After identifying the sources of requirements from each element in the organizational
view, this view contains all the requirements in the CMMAV. Each requirement
has a UID, a description, a UID of the corresponding source from the requirements
sources view (Section 5.11.3), and the requirement’s level of importance (mandatory
or recommended). The last attribute defines whether this requirement must be
respected (e.g. state laws) by a user stakeholder, or it is up to them to respect it
or not (using incentive to incite cooperation for example). Fig. 5.11 is an example
of a requirement that comes from traffic laws that constrain the speeds of CS, it is
mandatory for CS that use state’s infrastructures.

5.11.5 Functionalities View
The functionalities view consists of a set of elements that describe the logical archi-
tecture proposed by the CMMAV to its users. This architecture consists of a set of
recommended and required functionalities that need to exist in CS in order for it to
cooperate with other CS. For Users interested only in using the CMMAV and not
in its development, it is sufficient to look at both this view, and Verification View
(Section 5.11.6) in order to develop their applications. The full functionalities view
is in the Appendix (Fig. A.4). Base and environment functionalities are required
to ensure that the CS is capable of performing the basic tasks, they are expected to
exist on all CS before adding CMMAV based functionalities, they show in this view

91

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

Figure 5.11: Requirement form.

because they are the requirements of CMMAV maintainers. On the other hand,
CS are not expected to have collective functionalities, or have them but not to the
CMMAV standards, they are necessary to ensure cooperation between CS. Each
element in this view (functionality) is described in detail in a separate form (Fig.
5.12). Figure 5.13 is an example of the “Neighbor CS identification” functionality
from collective functionalities. The full list of descriptions of all functionalities could
be found in the Appendix (Section A.3.4).

Figure 5.12: Functionality Form: several attributes to describe a functionality.

5.11.6 Verification View
The verification view describes the necessary set of verification tests, or indicators
that, when validated by a user in its CMMAV based application, the application is
safe to be used. User stakeholders provide elements as well through MoE included
in the submitted use case. Regulations of such applications are expected to arise
in the future, and they could be added when the CMMAV is revised to refine it.
For Users interested only in using the CMMAV and not in its development, it is
sufficient to look at both this view, and Functionalities View (Section 5.11.5) in
order to develop their applications. Each element (or set of elements) relates to a
functionality, or a requirement. There are two types of verification that exist in

92

5.11 - The Framework

Figure 5.13: Functionality example: Neighbor CS identification.

the CMMAV: CMMAV verification and functionalities verification. The complete
verification view is in the Appendix A.5.

5.11.6.1 CMMAV Verification

These are the necessary verification elements that are related to the CMMAV, they
exist to ensure that CMMAV related requirements are respected. For example,
verifying that a certain functionality or requirement exists in the system. Fig. 5.14
shows the verification element that validates the respect of law requirements. It
validates the requirement that comes from the “overtaking on highways” use case
about respecting French traffic laws.

Figure 5.14: “CMMAV respects traffic laws” verification element.

5.11.6.2 Functionalities Verification

These are the verification elements that are used by users to validate that a certain
functionality they developed respects the CMMAV. For example, “Speed monitoring
Verification” (Fig. 5.15) describes the expected outcome and behavior from the
“Speed monitoring” functionality. By looking at this element, users are able to
identify whether what they develop respects the CMMAV or not.

93

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

Figure 5.15: Speed Monitoring Verification element.

5.11.7 Traceability View
Every view in the framework is related to one or more views, use cases view provides
the organizational view with actors, and sources view provides requirements views
with requirements. To users that only develop applications based on the CMMAV,
these relations are most likely irrelevant, as they are only interested in functionalities
and verification views. But to stakeholders that are interested in the development
of the CMMAV (e.g. maintainers), it is very important to understand the rationale
behind the elements it contains. It is important to know which source is related to
which functionality, and which stakeholder provided a certain verification require-
ment. The only objective of the traceability view is to provide all the relations that
exist in the CMMAV. The complete view is not provided in this document due to its
size. Each relation is unidirectional, has a type, a source element, and a destination
element (Table 5.1). We have identified 4 types of relations in the CMMAV:

Table 5.1: Traceability view relation: a name, source, destination, and description.

Attribute Description
Type The type of the relation. Possible types: satisfies, re-

quires, provides, and refines.
Source Ele-
ment

A source element is the element from which the arrow
starts in the view. Each type of relations has a set of
permitted elements.

Destination
Element

A destination element is the element to which the arrow
arrives in the view. Each type of relations has a set of
permitted elements.

Satisfies: The source element ensures that the destination element is respected in
the CMMAV. Speed monitoring functionality ensures that speed traffic laws
are respected, which in turn ensures that the source element from Sources
View is respected, and so on (Fig. 5.16).

Requires: The source element requires the respect of the destination element in
the CMMAV. Continuing with the previous example, maximum speed on high
ways requires the presence of speed monitoring functionality (Fig. 5.16).

94

5.12 - CMMAV Horizons

Provides: The source element provides the destination element to the CMMAV.
This relation exists between organizational elements and sources elements, and
between sources elements and requirements. For example, speed traffic laws
provide the maximum speed of high ways requirements (Fig. 5.16).

Refines: The destination element is refined and then used as a requirement. For
example, RQ005 states that drivers should advertise their intentions, but does
not specify how. RQ015 which states that CS must advertise their intentions to
neighbors using communication and light signals refines RQ005 to be suitable
to its source use case.

Figure 5.16: Validates, Requires, and Provides relations.

Any element might have several types of relations with different elements of the
CMMAV at the same time.

5.12 CMMAV Horizons
The CMMAV is designed and built to cater for different users building different
collective functionalities, while at the same time being able to inter-cooperate. Since
different actors in transportation systems are connected via use cases, it is expected
that each use case will be related to another one via its stakeholders. For example,
an AV-cloud use case that consists of vehicles using cloud services is related to
overtaking use case by having AV in common as CS. This relation means that these
use cases might benefit from each other in the incentive mechanisms, for example:
points gained from providing services in the overtaking use case could be spent in
the cloud requesting services. This is a new use case that might be added to the
CMMAV, but requires, however, eliciting new requirements from both stakeholders.
Furthermore, the framework contains different views and relations. Stakeholders
who wish to look at the framework might be interested in one type of relation,
or elements related to a specific stakeholder. To make full use of the CMMAV
potential, we propose the development of a tool that consists of 2 parts: a backlog
that contains the data of the different sources and views, and a user interface that
provides each user with the tools to look at and interact with the CMMAV. The
backlog contains use cases, sources, and views that form the CMMAV. It is populated
by the CMMAV maintainers and partly users who submit use cases. While the user
interface is used by users to view the CMMAV on different levels, or based on
different filters: elements that are related to provided relation, elements that trace
to a specific stakeholder, requirements under reviewing, etc.

5.13 Conclusion
The development of collective functionalities in transportation systems is one of the
main benefits of achieving commercial autonomous driving. Even though they are
not required at the start, it is important to think about them beforehand, to build

95

Chapter 5 - Application: Cooperative Maneuvers Manager for Autonomous
Vehicles (CMMAV)

systems in a way that support cooperation between different CS. This chapter in-
troduced the CMMAV, a framework conceived to guide the development of such
functionalities in different transportation systems. To account for the dynamic en-
vironment of CMMAV, and the diversity of stakeholders and CS, CMMAV process
is based on use cases that define the stakeholders and CS of a specific use case, and
a SoS approach to map the requirements of different stakeholders into a set of func-
tionalities and verification requirements that may be used by any user who wishes
to develop CMMAV based functionalities in their systems. To represent the system,
a seven view framework was derived from SoS-ACRE: use case view, organizational
view, sources view, requirements view, functionalities view, verification view, and
traceability view. Each view contains a high-level representation that uses a hi-
erarchical tree to represent the different relations within this view, and a detailed
view via forms that describe each element in this view, and is used to generate the
relations that exist between different views in the traceability view.
Besides developing CMMAV based functionalities, several potential uses for the CM-
MAV may arise: it could be considered by a specific standardization organization
to produce a standard related to cooperation between vehicles for example. In this
case, it is up to its maintainers to ensure that the requirements of this organization
are met, and to include this organization into its user stakeholders. Another use
case comes from users who might be interested in adopting the CMMAV process to
manage projects that have diverse independent stakeholders that need to cooperate
in order to achieve their goals.
The first use case that was adopted to build the actual draft of the CMMAV is
also considered to validate it, and that is what we are going to discuss in the next
chapter: The Cooperative Lateral Maneuvers Manager (CLMM), which is the first
application that uses the CMMAV framework in its development.

96

Chapter 6

Application: Cooperative Lateral
Maneuvers Manager (CLMM)

6.1 Introduction
Overtaking, lane changing, platooning and merging are all different types of ma-
neuvers constantly performed by vehicles on roads. These maneuvers are very com-
plex in that they require the driver to perform multiple tasks in a short period of
time, from the perception of the surrounding vehicles, to the estimation of speeds
and distances, etc. The main benefit of driving automation is to perform these
tasks in a safer manner, and to eliminate human errors from the process of driving
and decision-making. Cooperation using Vehicle-to-X (V2X) communications was
proven to be useful in the literature (Guériau et al. 2016), as well as in live demon-
strations (Englund et al. 2016). Acquiring an accurate knowledge about the states
and intentions of the surrounding vehicles enables a better decision-making process
about the next action for a vehicle.
Studies concerning lateral maneuvers such as overtaking and lane changing treat
the topic from different points of view. From the modeling aspect, Zheng (Zheng
2014) reviews studies about lane-changing models, and distinguishes two groups of
models: models that capture the lane-changing decision making process, and oth-
ers that study the influence of lane-changing on nearby traffic flow. Always in the
modeling aspect, Hidas (Hidas 2002) introduces SITRAS, a multi-agent simulation
system that could be used to evaluate ITS applications, and studied models treating
lane-changing and merging. Petrov et al. (Petrov and Nashashibi 2014) modeled
autonomous vehicle overtaking, and proposed a nonlinear control scheme that uses
only the relative position and orientation with respect to the overtaken vehicle ac-
quired from onboard sensors. Other studies such as (Satzoda and Trivedi 2014)
contributed to the subject by proposing a vehicle detection assistance system, that
uses appearances to detect overtaking and receding vehicles. Concerning the actual
maneuvers themselves, different control laws were proposed to govern the maneu-
vers in autonomous vehicles [(Murgovski and Sjöberg 2015), (Nguyen et al. 2017)].
The former studies deal with the maneuvers from the subject vehicle’s perspective,
and do not treat the cooperative aspect. Vehicle to X communications (vehicle to
infrastructure, vehicle to vehicle) opened new potential to automated driving appli-
cations, and notably cooperative applications such as platooning and cooperative
merging applications, which benefit from the increased accuracy of information ac-

97

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

quired by vehicles. Luo et al. (Luo et al. 2016) proposed a trajectory planning
method that uses vehicle-to-vehicle (V2V) communication to plan a reference ma-
neuver trajectory that avoid collisions, while Nie et al. (Nie et al. 2016) proposed a
decentralized approach to the lane-changing maneuver, where V2V communication
is used to make decisions about lane-changing in autonomous vehicles. While the
last two studies use V2V communication for planning trajectories, they do not con-
sider the cooperation aspect and how to exchange services between communicating
vehicles.
In the previous chapter, we introduced the CMMAV, a SoS framework that aims
to enable cooperation between autonomous vehicles (chapter 5). The purpose of
the CMMAV is to be used to build applications on autonomous vehicles that aim
to enable cooperation in certain situations between multiple vehicles, and the first
use-case that was used to populate the framework was the overtaking maneuver on
highways. This chapter introduces the first application that was built using the
CMMAV framework that caters for the overtaking maneuvers. The Cooperative
Lateral Maneuvers Manager (CLMM) is the application developed for this purpose,
and is the subject of this chapter. The objective of the CLMM is to allow equipped
vehicles to perform actions for one another in order to ease the execution of over-
taking maneuvers. CLMM does not tell the vehicle how to perform the overtaking
maneuver, but rather it tells it when to do it, and if this maneuver could not be
performed due to conflict with another CLMM equipped vehicle, it enables the co-
operation between the 2 vehicles in order to enable that maneuver.

The objectives of this chapter are:

1. Explain the procedure and the strategy we use to perform overtaking maneu-
vers;

2. Describe the adopted architecture of the CLMM, and the developed applica-
tion in the autonomous vehicles;

3. Provide the different validations performed to validate the approach.

6.2 CLMM Objectives
Similar to mobile phone applications that exchange messages and services (e.g. auto-
matic reservation applications), the vehicles equipped with the CLMM, i.e. CMMAV
vehicles, exchange messages in a request/response mechanism in order to cooperate
during overtaking maneuvers. The CLMM gathers information from the subject
vehicle about its environment, messages broadcasted by its neighbors, and informa-
tion related to the subject vehicle itself (such as speed and position). Whenever the
initial conditions are met, the CLMM takes control over the decision making of the
subject vehicle in order to perform the overtaking. In the cases where the presence of
neighbor vehicles obstruct the execution of the maneuver, for example, performing
the maneuver entails a collision risk with the top-front neighbor, in such cases, and
when these neighbors are also CMMAV vehicles, the CLMM establishes connection
with that specific neighbor, requesting it to perform a certain action that enables
the subject vehicle to execute the maneuver with less waiting time. If the request
is accepted by the neighbor vehicle, its CLMM tells the subject vehicle’s decision
making center the action it must perform for the subject vehicle. After that, the

98

6.2 - CLMM Objectives

subject vehicle may overtake its front neighbor, and eventually continues its tra-
jectory. Furthermore, on SoS design aspect, the CLMM is based on the CMMAV,
which is a SoS framework. An important assumption that we make implicitly in
the CMMAV is the assumption that regardless of the methods used by the different
CS to perform the overtaking maneuvers, and that with the different technologies
they use, we are still able to achieve cooperation and a safe operating SoS just by
applying high level control over the CS. In summary, the objectives of the CLMM
are:

1. Enable vehicles to perform overtaking maneuvers on highways in cooperative
manner;

2. Validate the CMMAV, and in consequence that the method used to develop
it is valid.

6.2.1 CLMM Evaluation
To evaluate the CLMM, we have to make sure that its objectives are attained.
In other words, does the performance of the CLMM meet our expectations of the
system? The CLMM has two objectives, and therefore two evaluations must be
performed.

6.2.1.1 Evaluating the Performance
This first evaluation step is necessary in order to guarantee that the CLMM does
what it is supposed to do, which validates the first objective. This evaluation is
done using the three validation techniques presented in Section 6.5, where we test
it and we observe the behavior of the system. The first criterion we use to evaluate
the CLMM is the “no collision” criterion, which is a trivial requirement that states
that there must be no collisions between vehicles during the operation of the CLMM
(i.e. during overtaking maneuvers).
The objective of the CLMM is to enable cooperation between vehicles under the
assumption that this cooperation will lead to less overall maneuver time from the
moment a vehicle decides to perform the maneuver until it is finished. In consequence
of this cooperation, the vehicles that perform actions for the subject vehicle are
changing their trajectory speeds for the period of the maneuver. It is interesting to
compare the overall time gained by the vehicles performing the maneuvers, with the
overall time gained or lost by the vehicles performing the actions, to evaluate the
behavior on the SoS level. Also it is interesting to compare the same values for each
vehicle individually, to study that effect on the CS level. However, this evaluation
requires long period studies to capture the effect on a meaningful scale, and could
be performed in simulation.

6.2.1.2 Evaluating the CMMAV
As we will see later, the analysis that we present when we present our strategy for
cooperation (Section 6.3.5), and when we validate the CLMM using formal scenarios
(Section 6.5.1), the knowledge about the way the CMMAV vehicles perform certain
maneuvers will not show up, whereas relative speeds, distances, and intentions will
show up. This is an indicator that when we assume that CS know how to do what
they are supposed to do. For example, CS know how to change the lane when the
decision is made, we can achieve cooperation only by making decisions, rather than

99

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

also providing operational constraints on the CS (in the case where we define the
way CS must change lanes during cooperation for example), which validates our
claim in Section 6.2.
Furthermore, if we develop the functionalities required by the CMMAV, and perform
the necessary verifications, we can observe if all the requirements of stakeholders
are considered in the CMMAV, and that there are no requirements left unfulfilled.
For example, if the maneuvers performed by the CLMM are uncomfortable to the
passengers, this means that the comfort requirement of the passengers is either not
well implemented in the CLMM, or is not mentioned in the CMMAV.

6.3 Overtaking On Highways
This section introduces our view on overtaking maneuvers addressed in the CLMM,
and the strategy adopted to handle such maneuvers, and introduces the coopera-
tion aspect into the process. More precisely, the overtaking maneuvers addressed
throughout this chapter are the maneuvers executed on 2-lane or more, one-way
highways. Fig. 6.1 represents the environment in which the overtaking maneuvers
addressed herein take place, the arrows on the far right represent the direction of
the traffic flow on the different lanes which in our case are the same on all lanes.
The red vehicle is the subject vehicle, which is the vehicle that intends to overtake
its front neighbor, the teal vehicle.

Figure 6.1: Overtaking configurations addressed in the CLMM: two or more lanes
and same traffic flow direction.

6.3.1 Subject Vehicle, CMMAV Vehicle, and other terms
Throughout this chapter, we will mention the term vehicles a lot to refer to the
different vehicles involved in an overtaking maneuver. For this reason, different
names are going to be used to refer to different types of vehicles, and below the list
of different names that we are going to use:
Subject Vehicle: The vehicle performing the overtaking;

Neighbor Vehicle: Any vehicle surrounding the subject vehicle directly; i.e. the
front neighbor or any side neighbor;

Adjacent Vehicle: Is any vehicle situated at the first right or first left lane of the
subject vehicle;

100

6.3 - Overtaking On Highways

CMMAV Vehicle: Is any vehicle equipped with the CLMM and able to exchange
messages with neighbors using the CLMM format; A CMMAV vehicle could be
the subject vehicle, or any neighbor; All CMMAV vehicles are communicating
vehicles;

Communicating Vehicle: Is any vehicle able to communicate with other vehicles
using wireless communication;

Non-Communicating Vehicle: Is any vehicle that is not able to communicate
with other vehicles; No non-communicating vehicle may be a CMMAV vehicle;

Human-Driven Vehicle: Is any vehicle driven by a human driver, it could be
communicating or non-communicating vehicle;

Autonomous Vehicle: Is any vehicle that uses software to drive itself to move
from position A to position B; All autonomous vehicles are communicating
vehicles;

6.3.2 Distances
Figure 6.2 represents two distances that we use in the CLMM: the communication
radius, and the security distance. Here we explain what they represent.

Figure 6.2: Two Measures of Interest: security distance, and communication ra-
dius.

6.3.2.1 Communication Radius
It is the maximum distance between two vehicles, beyond which, vehicles are not
able to communicate anymore. Any neighbor vehicle identified by the subject vehicle
is necessarily at a distance smaller than the communication radius from the subject
vehicle. The communication radius in the CLMM is 800 meters in open areas,
and is equal to the range of wireless network coverage of the antenna used inside
the vehicle, a Cohda modem that serves as an UDP IPv4 to 802.11p gateway for
sending and receiving messages (Xu et al. 2018).

101

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

6.3.2.2 Security Distance
It is the minimum permitted distance between the subject vehicle and its neighbor
vehicle situated in the front, and on the same lane. Unlike communication radius
which is defined by the range of the wireless antenna used by the vehicle, the security
distance is variable and depends on the actual speed of the subject vehicle. At any
moment, it is the responsibility of the subject vehicle to keep a distance with its
front neighbor that is greater or equal to the security distance. Currently we use
the formula in equation 6.1, to compute the desired value of the security distance,
which is a requirement that comes from traffic laws (requirement RQ004 in A.3.3),
which states that the minimal distance between two consecutive vehicles must equal
the distance traveled by the subject vehicle in 2 seconds.

ds = 2 ∗ Vsv (6.1)

Where ds is the security distance, Vsv is the subject vehicle’s speed, and 2 is the
reaction time factor. Note that this law was made for human-driven vehicles and
accounts for the reaction time of a human driver (McGehee, Mazzae, and G. S.
Baldwin 2000). In the future, different laws may come out for autonomous vehicles,
and therefore the formula used to compute the security distance may change as well.

6.3.3 Relative Positioning
At any given moment on a highway, let the “neighborhood degree” be the number
of vehicles that separate 2 vehicles assumed on the same lane, so for example in
Fig. 6.3, the neighborhood degree of the green vehicle with respect to the red
vehicle is 0, that is, if we assume that the red and the green vehicles share the
same lane, there are 0 vehicles that separate them. The neighborhood degree of
the blue vehicle with respect to the red vehicle is 1, and the orange’s is 2. In
the CLMM, we only consider vehicles that have 0 neighborhood degree with the
subject vehicle (see Section 5.10). Therefore, if we combine this with the previously
mentioned distances (Section 6.3.2), we could obtain what we call a relative map
that shows the possible different neighbors for a 3-lane highway (Fig. 6.4). In this
map, there are 8 possible relative positions that might be occupied by a neighbor
vehicle, represented by the blue vehicles. Figure 6.5 is a grid that represents the
labels used to label neighbors, with F, R, T, and B representing respectively the
front, rear, top, and bottom directions with respect to the subject vehicle. TF,
TR, BF, and BR represent respectively the top-front, top-rear, bottom-front, and
bottom-rear neighbors. A neighbor is considered top-front neighbor if it is on the left
lane of the subject vehicle, in front of it, and on a longitudinal distance bigger than
the security distance, while the top neighbor is the neighbor to the left of the subject
vehicle, but on a longitudinal distance smaller than the security distance. Since we
consider only neighbor vehicles with a neighborhood degree of 0 with respect to the
subject vehicle, on a 4 or more lanes, as far as the CLMM is concerned, the subject
vehicle may have at most 8 neighbors, which are represented in Fig. 6.5. Whereas
on 2-lane highway, this map may be reduced to match that specific case. That is
why in what follows, all our work uses figure 6.5 when referring to neighbors.

6.3.4 Strategy Overview
The whole overtaking maneuver is represented using a flowchart in Fig. 6.6. The
maneuver starts with the subject vehicle cruising on a trajectory lane with a trajec-

102

6.3 - Overtaking On Highways

Figure 6.3: Neighborhood Degree: a measure that reflects the degree of proximity
of different vehicles.

tory speed. Whenever the initial condition and the first safety conditions are met, it
then proceeds to the first lane change, where it waits until the second safety condi-
tions are met. When that happens, the subject vehicle may go back to its trajectory
lane by performing a second lane change. The decision to perform an overtaking
is made when the subject vehicle, which is moving at a speed which we call “tra-
jectory speed” denoted by Vsv, encounters a front neighbor which is moving at a
speed Vfn, where Vfn < Vsv, and that is not performing any overtaking maneuver
itself. When this enabling condition is met, the subject vehicle intends to overtake
its front neighbor. In principle, the subject vehicle could overtake its front neighbor
either on its right or its left (that is changing lane to the left or right lane) if these
lanes exist (i.e. the subject vehicle is on neither the far right nor far left lane), but
since we adopt the french traffic laws, requirement RQ010 (Fig. A.8, Appendix)
tells us that the subject vehicle is only allowed to overtake on the left side of the
front neighbor (with one exception in requirement RQ011 in Fig. A.8, Appendix).
Therefore, before making the overtaking decision, the subject vehicle must make
sure that it is safe to move to the left lane, and this is done by verifying that there
are no risk of collision with any neighbor that occupies its left lane, and that there is
a left lane to change to it. More precisely, if we consider the three possible neighbors
positions from Fig. 6.5, TR, T, and TF, the first safety conditions that must be
met are:
First Safety Conditions:

1. There is no vehicle in the T position;

2. There is no vehicle in the TF position, OR there is a vehicle there but the
time-to-collision (TTC) between it and the subject vehicle is bigger than a
certain threshold;

3. There is no vehicle in the TR position, OR there is a vehicle there but the
TTC between it and the subject vehicle is bigger than a certain threshold;

When these three conditions are met, the subject vehicle may start the overtaking
maneuver, where it performs the first lane change maneuver. According to require-
ment RQ014 (Fig. A.8, Appendix), there should be a speed difference sufficient

103

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.4: Neighborhood map: the different possible existing neighbors on a
3-lane highway.

enough so that the overtaking maneuver takes time in a relatively short time. We
chose this speed difference to be at least 20km/h in this version of the CLMM.
When the subject vehicle finishes the first lane changing maneuver, there is a period
of time where it is cruising beside the overtaken vehicle. At the end of this cruising
period, it must perform another lane changing, but this time to the right lane, to go
back to the initial lane. This second lane changing maneuver is considered as the
same as the first one, but in the opposite direction, however this time, the neighbors
of interest are the bottom neighbors. Therefore, the second safety conditions that
must be met in order to perform the second lane changing are:
Second Safety Conditions:

1. There is no vehicle in the B position;

2. There is no vehicle in the BF position, OR there is a vehicle there but the
TTC between it and the subject vehicle is bigger than a certain threshold;

3. There is no vehicle in the BR position, OR there is a vehicle there but the
TTC between it and the subject vehicle is bigger than a certain threshold;

Whenever these conditions are met, the subject vehicle may perform the second lane
changing to go back to its initial lane, where it also goes back to its trajectory speed
as well.
6.3.4.1 Time-To-Collision (TTC)
The time-to-collision (TTC) is an important measure that the majority of safety
conditions depend on (equation 6.2). It is defined as the time required for two
vehicles to collide if they continue at their present speed and along the same path
(Hayward 1971). In (Laureshyn, Svensson, and Hydén 2010), several methods for
computing TTC between two vehicles were presented, depending on the type of the

104

6.3 - Overtaking On Highways

Figure 6.5: Neighborhood relative map: the labels used to identify different neigh-
bors.

anticipated collision (right angle collision, head-on collision, etc.). In our case, the
collision (if happened) would be a rear-end collision, meaning that a vehicle will
collide to the rear-end of another moving vehicle, where both vehicles are moving in
the same direction. In this case, TTC is calculated as

TTC =
d12

v2 − v1
, if v2 > v1 (6.2)

Where v2 − v1 represents the speed difference between the two vehicles, with v1
and v2 representing the speeds of the front and rear vehicles respectively, and d12
represents the distance between the front-end of the rear vehicle, and the rear-end
of the front vehicle (Fig. 6.7). The first thing to notice about the TTC is that it is
unnecessary to consider it if v1 ≥ v2, since in this case, the two vehicles will never
meet. However, when v1 < v2, TTC will be a positive value that represents the
remaining time until both vehicles collide, that is, if they are moving in the same
lane. All this section discusses TTC under the assumption that the two vehicles
are moving at a constant speed, which is a reasonable assumption to make when we
consider vehicles moving on highways. The TTC is considered in the CLMM as we
will see later on to check if it is safe to perform lane changing maneuvers.

6.3.4.2 Double Overtaking Maneuvers, and More

Highways are a dynamic environment, therefore the subject vehicle’s neighbors are
changing constantly. Sometimes during an overtaking maneuver, on 3-lane or more
highways, when the subject vehicle performs the first lane change, it encounters a
new front neighbor on the new lane which is moving at a lower speed. In this case,
the subject vehicle must overtake this new front neighbor in order to complete the
first overtaking, and this is what we call a double overtaking maneuver. This process
could repeat itself multiple times depending on the number of lanes, so the way we
handle this type of overtaking maneuvers is the following:
During the second cruising process in the single overtaking flowchart, the subject

105

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.6: A single overtaking maneuver flowchart.

Figure 6.7: Rear-end collision.

vehicle checks constantly for the initial condition. When this condition is met, it re-
peats the single overtaking process until it overtakes the new front neighbor and gets
back to its lane, only then it could resume performing the first overtaking maneuver
and returning to its trajectory lane. In this case, the flowchart of a double overtaking
maneuver becomes as follows (Fig. 6.8), where the H symbol represents a history
element that stores the number of overtaking maneuvers performed alongside their
different parameters. This way, several overtaking maneuvers may be performed in
a recursive manner.

6.3.5 Cooperation in Overtaking
As we have discussed in the overtaking strategy Section 6.3.4, a typical overtaking
maneuver may involve multiple neighbors. Neighbors appear in the different condi-
tions that are examined before transitioning from a process to another one in the
overtaking maneuver flowchart, and therefore they play an important role in the
maneuver’s execution time and even its execution in general. For example, the front
neighbor shows in the initial condition, whereas the top neighbor shows in the first
safety conditions. In order to achieve cooperation between the different vehicles, let
us explore what are the possible actions neighbors may perform in order to help the
subject vehicle performing the overtaking:

106

6.3 - Overtaking On Highways

Figure 6.8: Multiple overtaking maneuver flowchart.

6.3.5.1 Subject Vehicle - Front Neighbor

The decision to overtake is taken when the subject vehicle encounters a front neigh-
bor moving at a less speed than the subject vehicle (Section 6.3.4). This tells us that
in order to avoid overtaking, the front neighbor has to change its lane, or speed up
to match the speed of the subject vehicle. Let An

i be the action i that the neighbor
vehicle with label n may perform for the subject vehicle, therefore the two possible
actions the neighbor F may perform to the subject vehicle are:

AF
1 : speed up to match the speed of the subject vehicle during the whole shared

trajectory;

AF
2 : change lane until the subject vehicle is in front;

AF
3 : do nothing;

6.3.5.2 Subject Vehicle - Rear Neighbor

The rear neighbor does not show in any condition throughout the overtaking maneu-
ver flowchart, and that is because the rear neighbor has no relation with the subject
vehicle during the overtaking maneuver. The rear neighbor is responsible of keeping
a distance higher than the security distance mentioned in Section 6.3.2.2 if it does
not intend to overtake the subject vehicle. As long as the rear neighbor respects
this distance, the subject vehicle may overtake its front neighbor. However, in the
case where the rear vehicle intends to overtake the subject vehicle, it becomes the
subject vehicle, and the subject vehicle becomes its front neighbor, which takes us
back to the first relation (subject vehicle-front neighbor relation in Section 6.3.5.1).

107

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

6.3.5.3 Subject Vehicle - Top-Front Neighbor

The top-front neighbor shows in the first safety conditions. To allow the subject
vehicle to perform the first lane change in the overtaking maneuver, the subject
vehicle must have a TTC with its top-front neighbor which is bigger than the time
necessary for the overtaking maneuver to be fully executed Tovertaking. Using the
TTC formula provided in Section 6.3.4.1, we get the following relation (equation
6.3):

dsn
Vs − Vn

≥ Tovertaking (6.3)

This equation gives us the minimum speed difference between the subject vehicle
and its top-front neighbor required in order to meet the safety condition. At any
given moment, for each distance dsn between the subject vehicle and its top-front
neighbor, the speed difference between the two vehicles must be higher or equal to
a speed difference threshold. In other words, for any given distance, if the subject
vehicle’s speed is higher than that of its top-front by a certain threshold that depends
on that given distance, the subject vehicle will collide with its top-front neighbor.
So to avoid this, the subject vehicle’s speed must be less or equal than that of its
top-front neighbor. That being said, the possible actions the top-front neighbor
might perform for the subject vehicle in order to meet the conditions and perform
the overtaking are:

ATF
1 : change lane until the subject vehicle is finished from its overtaking;

ATF
2 : speed up until the speed difference between both vehicles is higher or equal

to the speed difference threshold;

ATF
3 : do nothing;

6.3.5.4 Subject Vehicle - Top Neighbor

The top neighbor is by definition the vehicle that occupies the left lane of the subject
vehicle, and is inside the security distance discussed in Section 6.3.2.2. It shows in
the first safety conditions set, and is required to not exist so that the subject vehicle
may perform the overtaking maneuver. This requirement is made because without
cooperation, the subject vehicle must wait until its top neighbor passes it, or it
passes it. However, when we introduce cooperation, the subject vehicle is able to
ask its top neighbor to either speed up and passes it, or slow down and let it pass.
So the actions available to the top neighbor to perform are:

AT
1 : change lane to allow the subject vehicle to overtake, then go back to lane;

AT
2 : speed up so that its speed is higher than that of the subject vehicle’s, until it

becomes a top-front neighbor;

AT
3 : slow down so that its speed is lower than that of the subject vehicle’s, until it

becomes a top-rear neighbor;

AT
3 : do nothing;

108

6.3 - Overtaking On Highways

6.3.5.5 Subject Vehicle - Top-Rear Neighbor
The relation between the subject vehicle and its top-rear neighbor is very similar
to that with its top-front neighbor, in that the subject vehicle avoids collision with
those neighbors. The difference is that the top-rear neighbor is behind the subject
vehicle, which means that instead of having a higher speed than that of the subject
vehicle, the top-rear neighbor must have a lower or equal speed. Therefore, the
possible actions that may be performed by the top-rear neighbor in order to enable
the overtaking maneuver of the subject vehicle are:

ATR
1 : change lane until the subject vehicle is finished from its overtaking;

ATR
2 : slow down until the speed difference between both vehicles is higher or equal

to the speed difference threshold;

ATR
3 : do nothing;

6.3.5.6 Subject Vehicle - Bottom-Front Neighbor
Bottom neighbors in general show in the second safety conditions set. Assuming
that both lane change maneuvers performed are symmetric, meaning that they are
literally the same, but they have opposite directions, we could apply the same anal-
ysis of top neighbors to bottom neighbors, since the analysis did not involve the
direction of the lane change the subject vehicle intends to perform. Therefore, the
possible actions the bottom-front neighbor may perform are the same as the one
that the top-front neighbor may perform and they are:

ABF
1 : change lane until the subject vehicle is finished from its overtaking;

ABF
2 : speed up so that its speed until the speed difference between both vehicles is

higher or equal to the speed difference threshold;

ABF
3 : do nothing;

6.3.5.7 Subject Vehicle - Bottom Vehicle
Applying the analysis made to the “subject vehicle - top vehicle” relation in Section
6.3.5.5, the possible actions available to the bottom neighbor are:

AB
1 : change lane to allow the subject vehicle to overtake, then go back to lane;

AB
2 : speed up so that its speed is higher than that of the subject vehicle’s, until it

becomes a bottom-front neighbor;

AB
3 : slow down so that its speed is lower than that of the subject vehicle’s, until it

becomes a bottom-rear neighbor;

AB
3 : do nothing;

6.3.5.8 Subject Vehicle - Bottom-Rear Vehicle
The same analysis performed on the top-rear neighbor may be performed on the
bottom-rear neighbor, since we assumed the symmetry of the lane change maneuvers.
Therefore, the possible actions of the bottom-rear neighbor are:

ABR
1 : change lane until the subject vehicle is finished from its overtaking;

109

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

ABR
2 : slow down until the speed difference between both vehicles is higher or equal

to the speed difference threshold;

ABR
3 : do nothing;

6.3.6 Cooperation Constraints
So far we have listed all the possible actions that may be performed by neighbor
vehicles, so that the subject vehicle may perform the desired overtaking maneuver.
However, since the subject vehicle and its neighbors up to this point are all consid-
ered to be CMMAV vehicles, the actual actions they may perform to one another
are constrained by the level of cooperation chosen inside each vehicle. So for ex-
ample, if the top-front neighbor vehicle’s owner had set the cooperation level to
non-cooperative for a period of time, the only possible action it may perform for the
subject vehicle is doing nothing. Building on this point, the first factor that affects
the actions that a CMMAV vehicle might perform to another CMMAV vehicle is
the cooperation level chosen by its owner/operator.
6.3.6.1 Cooperation Levels
In the CLMM, there are four cooperation levels available to choose from, denoted
CLi where i is the cooperation level, and 1 ≤ i ≤ 4. CL1 is the non-cooperative level,
where the only action a CMMAV vehicle might perform is the “do nothing” action;
CL2 is the second level, which involved only speed actions (speeding up or slowing
down) that require a speed change less than 10km/h, that is, the speed difference
between the actual vehicle’s speed and the speed difference threshold is less than
10km/h; CL3 is a higher cooperation level which involves speed actions (same as the
previous level), however, vehicles will accept to change their speeds up to 20km/h
difference; and lastly CL4 is the higher cooperation level, where CMMAV vehicles
may change their speeds, and/or their lanes for other CMMAV vehicles. Table 6.1
represents each cooperation level alongside the actions involved in each level.

Table 6.1: Different cooperation levels and involved actions.

Cooperation Level: Involved Actions
Level 1 no action
Level 2 speed actions up to 10km/h speed difference
Level 3 speed actions up to 20km/h speed difference
Level 4 speed actions up to 20km/h speed difference, and lane

change

6.3.6.2 Chain Reactions
We have mentioned the traffic shock wave behavior in Section 5.10. The reason traffic
shock wave happens is that a vehicle changed its speed, which forces the trailing
vehicles to change their speed to avoid collision. This leads to chain reaction in the
traffic flow, and eventually to the formation of a traffic shock wave. In our case
of cooperation, suppose that the top-rear neighbor slows down to allow the subject
vehicle to perform the overtaking maneuver, and that this top-rear neighbor has
also a rear neighbor. This act of slowing down will force its rear neighbor to slow
down to keep the security distance between the 2 vehicles, and if the conditions are

110

6.4 - CLMM architecture

right (i.e. the rear neighbor also has a rear neighbor, and so on) then the first action
performed by the top-rear neighbor might lead to a traffic shock wave. Therefore,
to avoid this, we limit the cooperation between CMMAV vehicles to vehicles that
have a neighborhood degree of 0. This means that a CMMAV vehicle is not allowed
to ask for cooperation from another CMMAV vehicle in order to perform an action
for a third CMMAV vehicle, and is not allowed to cooperate in case this cooperation
affects another vehicle.

6.4 CLMM architecture
To describe the architecture CLMM (Fig. 6.9), we are going to use the Robot
Operating System (ROS)1 notations (node, topic, etc.) because we believe that
this is a very intuitive and clear way to describe the architecture of such systems.
The standard unit of information is a message, which is a structure of data that
contains relevant information. For example, a message could contain kinematics
data related to the vehicle, or high level states such as the current action a vehicle
is performing. Each type of messages is transmitted on what is called topics. Nodes
are blocks of code that perform each a specific function. Nodes receive necessary
data by subscribing to specific topics, and return the result of the function that
they perform by publishing on specific topics as well. With these 3 notions in mind,
message, topic, and node, we can describe the architecture of the CLMM, and the
logic behind by separating the different functions it performs into nodes.
In summary, each node is responsible for a certain function, which takes messages as
inputs by subscribing to topics, and returns messages by publishing them to specific
topics as well.
The CLMM consists of 5 nodes, and 6 different message types, which are described
in details in the following subsections.

Figure 6.9: CLMM’s architecture: information flow between different nodes.

1http://www.ros.org/

111

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

6.4.1 Nodes
In this section, we explain the different nodes in the CLMM package. For each node,
we describe what it does, what it takes as inputs, and what it generates as outputs,
and we give an algorithm that describes how this node do what it does.
6.4.1.1 Change Lane Status
This node verifies periodically the possibility for the subject vehicle to change its
lane to the right or to the left. It uses the list of neighbors to compute the time-to-
collision (TTC) with each neighbor on the adjacent lanes, it also checks the position
of the current lane (far left or far right). It then returns for each possible lane change
a Boolean flag, which is used later for verifying if a particular lane change is possible
or not. Algorithm 2 explains the logic behind generating the right_lane_status
flag, whereas the left_lane_status flag generation follows the same logic, but with
neighbors to the left.

Inputs: neighbList, egoSpeed

Outputs: laneChangeStatus

Algorithm 2 Set right_lane_status flag
1: read egoMetaData
2: read neighbsList
3: if currentLane is far right lane then
4: return false
5: else if no neighbors to the right then
6: return true
7: else
8: for each neighbor to the right do
9: compute TTC

10: if TTC ≤ ttcThreshold then
11: return false

6.4.1.2 Lane Discovery
This node provides the CLMM with all necessary information about the occupied
lane (see egoLane message definition in Section 6.4.2.2): identifier, maximum al-
lowed speed, the lateral displacement from the middle of lane, two values that define
its equation in the global frame of reference, and a Boolean that indicates whether
this lane is the trajectory lane or not. The input and output messages for this node
are:

Inputs: vehicleHighLevelState, egoCoord

Outputs: currentLaneInfo

6.4.1.3 Vehicle Meta Data
The objective of this node is to gather the different information about the subject
vehicle state (see vehicleMetaData message definition in Section 6.4.2.4): its iden-
tifier, current pose, speed, steering wheel angle, the occupied lane information, its

112

6.4 - CLMM architecture

length and width, and its high level state (Section 6.4.2.3). This message is period-
ically broadcasted to all neighbors, and is used in different CLMM modules. The
toDistance and timeToCollision elements of this message are set to -1 in the
broadcasted message, and are calculated in the subject vehicle for each neighbor.
This node’s inputs and outputs are:

Inputs: currentLaneInfo, vehicleHighLevelState, egoCoord, kinematics, wheel an-
gle

Outputs: vehicleMetaData

6.4.1.4 Neighbors Discovery
This node is responsible for assigning each neighbor a relative position with respect
to the subject vehicle (Section 6.3.3). It transmits then a list of neighbors to be used
in the different nodes of the CLMM. It also computes the TTC for each neighbor, as
well as the relative distance. These two values are computed in the local reference
frame of the subject vehicle, and consider only the x-axis distance. Inputs and
outputs to and from this node are:

Inputs: egoMetaData, neighbMetaData

Outputs: neighbsList

The logic behind this node is explained in the following algorithm (algorithm 3):

Algorithm 3 Generating the neighbors list in the subject vehicle
1: read egoMetaData
2: read neighbsList
3: get new neighbor data
4: transform new_neighbor position to local reference
5: compute new_toDistance
6: compute new_TTC
7: detect relative lane of new_neighbor
8: find new_relative_position of new_neighbor in the neighbor map
9: if old_neighbor is in new_relative_position then

10: compare new_toDistance to old_toDistance
11: if |new_toDistance|> |old_toDistance| then
12: replace old_neighbor in neighbsList at position

old_relative_position with new_neighbor
13: return neighbsList

6.4.1.5 Decision Node
This node is the heart of CLMM. It gathers all the necessary information about
the subject vehicle states, and all neighbors’ states, and decides on whether or
not a specific maneuver should be performed, and the time to perform it. In case
cooperation is needed from one or several neighbors, this node generates the request,
and handles the response. Moreover, when a neighbor requests cooperation from the
subject vehicle, this node will handle this request, and generate the proper response.
In addition to that, this node updates regularly the high level state of the vehicle
(see vehicleHighLevelState message definition in Section 6.4.2.3).

113

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Inputs: egoMetaData, neighbMetaData, laneChangeStatus

Outputs: vehicleHighLevelState, decision

This node works as follows (algorithm 4):

Algorithm 4 Decision Node gathers all necessary information in order to make a
decision about cooperation or overtaking.

1: read egoMetaData
2: read neighbsList
3: read laneChangeStatus
4: if current_lane is trajectory_lane then
5: if front_neighbor exists and VfrontNeighbor < VsubjectV ehicle then
6: if safe_to_change_left then
7: Change lane to the left
8: else
9: change to distance following mode and follow front neighbor

10: send requests to top_neighbors
11: while response is not accepted do
12: stay in distance following mode
13: else
14: if safe_to_change_right then
15: Change lane to the right
16: else
17: send requests to top_neighbors
18: while response is not accepted do
19: stay in the current_lane

6.4.2 Messages
In this section, we describe each message used in the CLMM: the fields that consti-
tute each message, what is the purpose of each field, and the topic name on which
this message is transmitted. Every name that ends by “.msg” represents a message
type.

6.4.2.1 laneChangeStatus.msg (Table 6.2)

Table 6.2: laneChangeStatus Message Definition.

Message Name: laneChangeStatus
Transmitted on: ChangeLaneStatus
Field Name: Field Type: Field Description:
safeToChangeRight Boolean True if a right lane change might be

performed safely, False otherwise
safeToChangeLeft Boolean True if a left lane change might be per-

formed safely, False otherwise

114

6.5 - CLMM Validation

Table 6.3: egoLane Message Definition.

Message Name: egoLane
Transmitted on: currentLaneInfo
Field Name: Field Type: Field Description:
laneId Integer Unique lane Identifier
MaxSpeed Double Current occupied lane’s maximum au-

thorized speed
isTrajectory Boolean True if the current occupied lane is the

trajectory lane of the subject vehicle,
false otherwise

lateralError Double The distance between the vehicle and
the middle of the occupied lane

aValue Double The slope of the lane’s equation
bValue Double Second parameter of the lane’s equa-

tion

6.4.2.2 egoLane.msg (Table 6.3)
6.4.2.3 vehicleHighLevelState.msg (Table 6.4)
6.4.2.4 vehicleMetaData.msg (Table 6.5)
6.4.2.5 neighList.msg (Table 6.6)
6.4.2.6 decision.msg (Table 6.7)

6.5 CLMM Validation
6.5.1 Validation by Formal Scenarios
Formal scenarios are scenarios that are used in the context of validation (Heymans
and Dubois 1998) to explore the behavior of a system in certain conditions. In our
case, we use those to verify the behavior of the CLMM in the most typical ways to
make sure that its architecture and the logic behind it are sufficient, and will lead
to the expected behavior, and that we are ready to proceed to other, more in depth
validation techniques such as simulation and experimentation. Each scenario starts
with a specific configuration, where the subject vehicle is surrounded by certain
number of agents, and then uses the logic explained in the CLMM architecture
section (Section 6.4.1) to predict the expected behavior of the involved vehicles. In
these scenarios, we consider TTC threshold to be TTCthresh = 12s.
6.5.1.1 Scenario 1
This scenario explores a simple overtaking case where the subject vehicle requires
cooperation from only a single neighbor, which is the top-front neighbor. Fig-
ure 6.10 represents the initial configuration of this scenario. The subject vehicle
(red vehicle) encounters a front neighbor (green vehicle), and detects a top-front
neighbor (orange vehicle) through communication. The speeds of the subject ve-
hicle, its front neighbor, and top-front neighbor respectively are: V1 = 70km/h,
V2 = 60km/h, V3 = 60km/h. Since the speed of the subject vehicle is higher than
its front neighbor’s which is also not performing any overtaking maneuver, then the
initial condition applies and the subject vehicle intends to overtake its front neigh-

115

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Table 6.4: Vehicle’s high level state Message Definition.

Message Name: vehicleHighLevelState
Transmitted on: HighState
Field Name: Field Type: Field Description:
isChangingLane Boolean True if the subject vehicle is in the pro-

cess of changing its lane, False other-
wise

isOvertaking Boolean True if the subject vehicle is in the
process of overtaking, i.e. during both
lane changes and cruising. False oth-
erwise

SpeedFollowing Boolean True if subject vehicle is cruising with
no preceding neighbor, False when
subject vehicle is following a neighbor

DistanceFollowing Boolean True if subject vehicle is keeping a
fixed distance from a neighbor, False
otherwise

DepartureLane Integer In case of lane changing, this variable
contains the ID of the lane at which
the subject vehicle started the maneu-
ver

ArrivalLane Integer In case of lane changing, this variable
contains the ID of the lane to which
the subject vehicle is changing

trajectoryLaneId Integer The ID of the trajectory lane of the
subject vehicle

trajectorySpeed Double The initial speed of the subject vehicle
before performing any maneuver

bor. Since there are no top and top-rear neighbors, the first safety conditions are
met if and only if the TTC between the subject vehicle and its front-top neighbor
TTCS−TF is higher than TTCthresh when the subject vehicle is overtaking. But
when overtaking, the difference between its speed and its front neighbor speed is
at least 20km/h, which is V overtaking

1 = 80km/h, and therefore, the speed difference
between the subject vehicle and its top-front neighbor during overtaking would be
∆VS−TF = 20km/h = 5.55m/s, which gives us a TTCs−TF = 9s (equation 6.4).

TTCS−TF =
d2

V1 − V3

= 50/5.55 = 9s

(6.4)

Since TTCS−TF < TTCthresh, then the subject vehicle risks collision with its top-
front neighbor if it performs the overtaking maneuver, and therefore cooperation
is needed in order to meet the first safety conditions. Since cooperation level is
set to 1, the top-front neighbor may only change its speed by up to 10km/h. To
reach TTCthresh, the speed difference between the subject vehicle and its top-front
neighbor must be at most ∆V ∗

S−TF = 15km/h = 4.16m/s, which gives TTC∗
S−TF =

50/4.16 = 12s. Therefore, the top-front neighbor must speed up to V ∗
3 = 65km/h

116

6.5 - CLMM Validation

Table 6.5: Vehicle’s Meta Data Message Definition.

Message Name: vehicleMetaData
Transmitted on: EgoMetaData, NeighborsMetaData
Field Name: Field Type: Field Description:
VehicleID Integer A unique identifier of the subject ve-

hicle
EgoCoord PoseStamped2 The subject vehicle’s pose in the global

frame of reference
LaneInfo egoLane 6.3 All lane information of the occupied

lane
length Double The length of the subject vehicle
width Double The width of the subject vehicle
vehicleSpeed Double The current speed in m/s
wheelAngle Double The current wheel angle in rad
highLevelState vehicleHigh-

LevelState
6.4

The current high level states of the
subject vehicle

toDistance Double The inter distance between the subject
vehicle and a neighbor vehicles, this
parameter is set inside the subject ve-
hicle for each neighbor in the neigh-
bors list

timeToCollision Double the TTC between the subject vehicle
and another specific neighbor, this pa-
rameter is set inside the subject vehicle
for each neighbor in the neighbors list

so that the subject vehicle may perform the first part of the overtaking safely. Since
cooperation level is set to 1, and ∆V ∗

3 = 5km/h, the top-front neighbor will co-
operate and speed up to 65km/h until the subject vehicle finishes the overtaking
maneuver.

6.5.1.2 Scenario 2

In this scenario we will work on the configuration of Fig. 6.11. Just as with the
first scenario, the subject vehicle encounters a front neighbor which is moving at a
lower speed, and therefore intends to overtake it. Besides the front neighbor, the
subject vehicle also detects a top-rear neighbor throughout communication. The
TTC between the subject vehicle and its top-rear neighbor is TTCS−TR = 60/5.55 =
10.9s < TTCthresh, therefore the subject vehicle may not overtake its front neighbor
unless its top-rear neighbor cooperates. The speed at which the top-rear neighbor
must be moving could be computed from TTC∗

S−TR = 12s, which yields ∆V ∗
S−TR =

5m/s = 18km/h. Finally, assuming cooperation level is set to 2, the top-rear
neighbor must slow down to V ∗

TR = 82km, which is less than the 20km/h speed
limit difference in cooperation level 2. However, in order to slow down to this speed,
the rear neighbor of the top-rear neighbor of the subject vehicle will have to slow
down as well, otherwise the 2 vehicles will collide. Since vehicles cannot cooperate if
that cooperation affects other vehicles, the top-rear neighbor cannot cooperate with

117

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Table 6.6: Neighbors List Message Definition.

Message Name: neighbList
Transmitted on: NeighborsList
Field Name: Field Type: Field Description:
neighbMetaData vehicleMeta-

Data
An array that contains the data of all
neighbor vehicles

Table 6.7: Decision Message Definition.

Message Name: decision
Transmitted on: Decision
Field Name: Field Type: Field Description:
speedRef Double The reference speed sent by the

CLMM to the subject vehicle’s speed
control unit

LaneRef Integer The target lane that the vehicle must
change to, sent by the CLMM to the
vehicle’s trajectory control unit

the subject vehicle. In this case, the subject vehicle will be forced to slow down to
60km/h and follow its front neighbor until it is possible to overtake.

6.5.2 Validation by Simulation
The second method we used to validate the CLMM is validation by simulations.
Since we assume that each CS is an independent system (operationally and man-
agerially), we have decided to use a simulation software that allows us to integrate
the logic in each CS into what is called agents, and perform agent-based simulation.
Furthermore, we consider visualizing the behavior of the system as more important
than just performing numerical simulations and analyzing the outputs, since nu-
merical simulations are most useful when we know what we are searching for in a
simulation. However, when there is a potential emergent behavior that might rise in
the system, visualizing the simulation provides us with a more general understand-
ing to the effect of the system on the environment. With these two points in mind,
we have decided to use Anylogic3, a simulation software that offers the possibilities
to perform graphical simulations, and that is adapted for agent-based simulations.
The first step in building the simulation is building the environment. As we have dis-
cussed in Section 6.3, the environment that interests us is 2-lanes or more highways
with all lanes having the same direction. Therefore, our environment consists of a
3-lanes single direction highway. The second step is to develop the agents. Each
CMMAV vehicle is considered as an independent agent, therefore vehicles have a
trajectory lane, and a trajectory speed. The logic behind each decision an agent
makes is explained earlier in Section 6.3.4, and presented in Fig. 6.8. The state
chart that contains the logic agents use to perform a lane changing maneuver, in
the Anylogic software, is shown in Fig. 6.13. Agents establish communication when
they identify each others as neighbors. In Fig. 6.12, the last vehicle from the right
of the figure only considers the second vehicle from the right of the figure (both are

3www.anylogic.com

118

6.5 - CLMM Validation

Figure 6.10: Scenario 1: front neighbor and top-front neighbor.

Figure 6.11: Scenario 2: front neighbor and 2 top-rear neighbors.

in the middle lane) as front neighbor (depicted by the black connector), and does
not consider the first vehicle from the right of the figure (also in the middle lane) to
be a front neighbor since they have a neighborhood degree of 2, and the vehicle in
the bottom lane only considers the second vehicle from the right of the figure to be
its top-front neighbor, depicted by the red connector.
At a random time between 2− 5 seconds, an agent is generated on either the bot-

Figure 6.12: Inter-agent links show which agents are neighbors.

tom or the middle lane, with a random speed between the lower and higher speeds
allowed on that specific lane, on the left of Fig. 6.12, and moves to the right of the
Figure on that lane using that speed, until it reaches the end of the lane where it
is destroyed. During this time, whenever an agent encounters a front neighbor, and

119

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.13: The state chart that describes the logic given to agents in Anylogic.

the situation allows it, it overtakes its front neighbor in order to maximize the time
it spends on its trajectory lane moving at its trajectory speed. Because otherwise, it
must slow down to match its front neighbor’s speed and keep that speed until that
neighbor changes its lane or speeds.
The first objective of the simulation was to study the global behavior of the system
by observing any collision or congestion that might occur. The second objective was
to ensure that all security distances are respected, and that no maneuver led to any
violation to that distance. Multiple simulations were performed, and as a sample, in
one case where 142 vehicles were generated, 32 overtaking maneuvers took place, 3
of which were double overtaking maneuvers. During these maneuvers, no collisions,
congestion, or violation of the security gap were observed. Since the CLMM only
apply high level control over CS during the maneuvers, and since we do not consider
the way vehicles perform those maneuvers, we assume that the CLMM met the first
objective.

6.5.2.1 Simulation Drawbacks
In the simulations performed, all agents perform lane changing maneuvers in the
same way, because we introduced the same logic to all agents, including the way they
perform lane changing. Even though this logic is independent from other agents,
that is, the way agents change lane does not take into consideration neighbors, we are
not sure about the effect this has on the system. That is why in future simulations,
we will use multiple different ways that agents could use to change their lanes, to
compare the behavior of the system under that condition, with its behavior when
all agents perform the maneuvers in the same manner.

6.5.3 Validation by Experimentation
The third step of validation is the validation by experimentation. In this validation
step, we have implemented the CLMM on three autonomous vehicles of the Heudi-

120

6.5 - CLMM Validation

asyc Laboratory: Carmen (Fig. 6.14), and tow Renault Zoé vehicles of the platform
APACHE (Fig. 6.15). The two Zoé vehicles are equipped with autonomous driving,
and the three vehicles are equipped with communication functionalities. For further
details about the architecture of each Zoé vehicle, readers are invited to see (Xu
et al. 2018).

Vehicles are labeled “Vehicle i”, where i = 1, 2, 3, where the subject vehicle is

Figure 6.14: Citröen 5c: Carmen.

“Vehicle 2” (red color), the front neighbor is “Vehicle 3” (blue color), and the top
neighbor is “Vehicle 1” (green color). Figure 6.16 shows the graphical interface that
is used to monitor the states of the subject vehicle (left side of the interface), as
well as the states of the different neighbors when they are detected (right side of the
interface). The initial positions of the 3 vehicles are shown in Fig. 6.17 as colored
circles, whereas lanes are shown in black lines, annotated with their respective lane
number, as well as in Fig. 6.18, which shows an approximation of the initial config-
uration. Two cases were explored in these tests: a case where “Vehicle 1” is always
in the top position (Section 6.5.3.1), and another case where it is in the top-rear
position (Section 6.5.3.2).
6.5.3.1 Case 1
In this case, the subject vehicle was forced to slow down and follow its front neighbor
since it was not allowed to change its lane due to the presence of the top neighbor.
Figure 6.19 shows the positions of the 3 vehicles during this test, where we can
observe that the subject vehicle (“Vehicle 2”) is always behind its front neighbor,
and no lane changing or overtaking maneuver were performed. Figure 6.20 shows
the speeds of the 3 vehicles, as we can see, the speed of the subject vehicle decreased
around sample 130 in order to avoid collision with its front neighbor since it was

121

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.15: Renault Zoé: Apache.

not allowed to overtake it.
6.5.3.2 Case 2
In this case, unlike the previous case, “Vehicle 1” was in the top-rear position with
respect to the subject vehicle. As we can see in Fig. 6.21, the subject vehicle
overtook its front neighbor while its top-rear neighbor was behind it. In Fig. 6.22,
we can see that the subject vehicle’s speed increased at around sample 100, where
it started to perform the overtaking maneuver.
6.5.3.3 Experimentation Drawbacks
Even though the overall behavior during these tests was close to the desired behav-
ior, however, more real-life validations must be performed. Due to the limited space
for performing the experiments, it is hard to see the effect of parameters such as
the time-to-collision threshold, and how it affects the behavior of the system when
operating in the intended environment (highways). Furthermore, the experiments
did not involve requests from and to different vehicles, but rather it involved com-
munication of information between the different vehicles, and in consequence, the
decision to overtake or not (based upon the situation). Further experiments must be
performed in order to observe the behavior of the CLMM in an environment similar
to the intended, and to study the effect of various parameters, and explore more
complex scenarios.

6.6 CLMM Challenges
Similar to any SoS, the CLMM faces different challenges because of the intercon-
nected dynamic of its environment. The current architecture and design supports an
environment which consists only of autonomous vehicles, because the ultimate ob-
jective is to create a SoS that can strive in that specific environment when its ready.
However, the transition from the current environment (human-driven vehicles) to

122

6.6 - CLMM Challenges

Figure 6.16: Graphical Interface for Monitoring Vehicles’ states.

the future environment (fully autonomous vehicles) is gradual, and it is expected
that at some point, autonomous vehicles might share the roads with human-driven
vehicles. Furthermore, in the future environment, we assume that not all vehicles
will be equipped with the CLMM, and that there will be other applications that
achieve the same objectives, so sometimes the subject vehicle might have conflict
with a neighbor vehicle that is autonomous, but is equipped with another system
that is incompatible with the CLMM. To account for these challenges, several solu-
tions might be proposed. In the first case, one solution is to refine the CLMM so that
in human-driven communicating vehicles it behaves as a driving assistance system,
where the drivers receive the results of the negotiation done by the CLMM in both
vehicles, so that they can perform the action that allows the neighbor to perform
the overtaking. Whereas in the second case, the solution would be on a higher level,
where the maintainers of the incompatible applications refine their applications so
that vehicles equipped with those applications are able to cooperate.
Another challenge that faces the CLMM is the V2V communication technology it
self. While V2V communication is a good solution for vehicles discovery and infor-
mation sharing, it still faces several problems, one of which is the reliability of this
solution. When the number of the vehicles increases in an area, the wireless network
they use to exchange messages might get overwhelmed, which leads to packet losses.
In the CLMM, we suppose that the communication is reliable, and that is to test
and validate the idea behind the CLMM itself. The problems communication might
be investigated later to study the consequences on the system.
When we introduce incentive into the equation, one of the technical challenges that

123

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.17: Vehicles’ initial positions with respect to lanes.

Figure 6.18: Vehicles’ initial positions approximation.

are expected is how to register the data related to the cooperation between CMMAV
vehicles. Data such as which vehicle requested cooperation, which vehicle cooper-
ated with that request, on which cooperation level the cooperation happened, etc.
These data are important because the principle behind incentive is to provide “re-
wards” to vehicles for their cooperation, and therefore they will be used to identify
vehicles that cooperate and to reward them based upon the chosen incentive mech-
anism. Our solution to this challenge would be to store each request and response a
CMMAV vehicle has over a period of time (let us say daily for example), at the end
of that period of time, all the stored information are then uploaded to cloud-based
application. Since cooperation in the CLMM involves 2 vehicles, then we have 2
sources of information that could be cross examined to verify the integrity of the
data. After verifying each cooperation log, the cloud-based application generate
rewards for each vehicle based upon a specific algorithm.
Connecting the vehicles to the internet to generate rewards, and the wireless com-
munication technology used in vehicles lead to a potential risk related to cyber
security. A malicious software altering the messages exchanged between vehicles,
or between vehicles and the cloud-based application, might lead to undesired con-
sequences. Similar to communication challenges, this challenge is inherited from
the technology used itself. There are numerous possible solutions to this challenge,

124

6.7 - Conclusion

Figure 6.19: Vehicles’ positions during the first test.

but they depend mainly on the adopted architecture in autonomous vehicles in the
future. The first architecture that we could think of is the one that says that the
vehicle’s main system itself is responsible for protecting the different messages it
sends and receives, whereas the second architecture is that any application installed
on the vehicle is responsible for protecting the messages, and that the vehicles re-
sponsibility is only sending and receiving messages, and then routing them to the
different applications. The first architecture does not entail any specific require-
ments for the CLMM, whereas the second architecture means that we need to add
the cyber security requirement to the CMMAV, and therefore to integrate that into
the CLMM.

6.7 Conclusion
The CLMM is the first application that uses the CMMAV recommendation in order
to enable cooperation during overtaking maneuvers on highways. When the subject
vehicle detects a front neighbor that is slower than itself, the CLMM handles the
decision making inside the subject vehicle in order to evaluate the situation and
send the appropriate requests to its neighbor vehicles. The CLMM uses wireless
communications to detect the different neighbors in the vicinity of the subject vehi-
cle, constructs a local map that shows the relative positions of the neighbors with
respect to the subject vehicle, and then evaluates the possibility of safely perform-
ing an overtaking. Otherwise, it sends the appropriate requests to the neighbors
in order to facilitate the maneuver. If no cooperation is possible, the subject ve-
hicle is then forced to follow its front neighbor at the same speed until either a
neighbor accepts to cooperate, or the situation allows an overtaking without coop-
eration. Since it uses the CMMAV recommendations, there are some constraints on
the way the maneuvers are executed, for example, in principle, autonomous vehicles
may overtake to the left, however the actual traffic law does not allow that and
therefore the subject vehicle may only overtake to the right. We used 3 methods to
perform the initial validations: formal scenarios, simulation, and experimentation
on autonomous vehicles. The first validation method, formal scenarios, was used

125

Chapter 6 - Application: Cooperative Lateral Maneuvers Manager (CLMM)

Figure 6.20: Vehicles’ speeds during the first test.

in order to validate initially that the way vehicles perform the maneuvers does not
affect the performance, and that by using relative speeds and distances we are able
to achieve our objectives. The simulations performed showed us that the CLMM
works as described in the formal scenarios, and that there are no undesirable ef-
fects (congestion, collisions) that resulted from its use. Finally, the experimentation
on autonomous vehicles of the Heudiasyc laboratory further assured that the idea
behind the CLMM is valid. Some shortcomings of the experimentation are to be
solved in future work, since the distances and speeds at which they were performed
are way less than the intended operational environment.
The CLMM is a SoS, and is affected by its environment and the technologies in-
volved in its operation just as any SoS is affected by its environment. The CLMM
depends heavily on wireless communication in order to acquire the necessary infor-
mation to perform, and therefore it is exposed to the same vulnerabilities wireless
communication has. Therefore, the wide spread and adoption of such SoS (SoS that
use collective functionalities) will not be achieved until those technologies are reli-
able.
To benefit from the simulation tool that we consider very useful, the case where
CMMAV vehicles share the roads with non CMMAV vehicles will be studied using
simulation to study the behavior of the SoS in such case. Because it is important
to identify if there is a CMMAV vehicle to non CMMAV vehicle ratio threshold at
which the CMMAV produces undesirable behaviors in the presence of non CMMAV
vehicles, and to study the behavior on different ratios of CMMAV vehicles to non
CMMAV vehicles sharing the roads.

126

6.7 - Conclusion

Figure 6.21: Vehicles’ positions during the second test.

Figure 6.22: Vehicles’ speeds during the second test.

127

Chapter 7

Conclusion

SoS are large complex systems, that result from the interactions between differ-
ent independent systems, namely CS, and they exist in the majority of domains of
applications. SoS emerge naturally due to the increasing interactions between inde-
pendent systems, and the service-based business models adopted by various systems,
or they are built and designed to serve a specific purpose. SoS are complex systems,
and thus they inhibit emergent behaviors just as any complex system does. Several
taxonomies might be used to group different SoS, depending on what aspects of the
SoS are we interested in: management taxonomies group SoS based on their man-
agement style, whereas anticipation taxonomies describe the degree of anticipation
of engineering activities in the SoS during the operation, and contracting taxonomies
refer to the way SoS acquire their CS, and how CS contribute to the SoS.
SoS are dynamic systems in the sense that CS might join or leave the SoS during
operation time, and they are closely interacting with their environment, which leads
to a number of challenges that face SoS that do not face traditional systems, and
therefore, traditional SE is not enough to address these challenges. That is why
developing a SoSE discipline is important to engineer and build better and more
resilient SoS.
In the context of systems control, control may be applied using a centralized or a
non-centralized paradigm. In centralized paradigms a single controller is responsible
for acquiring the states of the overall system and for sending inputs to the different
actuators, whereas in non-centralized paradigms, whether be it hierarchical, dis-
tributed or decentralized, the task of control is distributed over multiple controllers.
In hierarchical paradigm, multiple levels exist with authority going from bottom to
top, and no communication is allowed horizontally on the same level. Distributed
paradigm lacks the vertical distribution of tasks, and it uses inter-part communica-
tion to achieve the desired behavior. Decentralized paradigm is similar to distributed
paradigm in that it has no vertical levels of authority, and similar to the hierarchical
paradigm, no communication occurs between parts.
There are similarities between types of SoS and traditional complex systems on the
organizational level. Directed and acknowledged SoS often have a certain hierar-
chy between CS, and on the same level we might find communication between CS.
Collaborative SoS are so much similar in organization to a graph of nodes, where
nodes share information and each node is responsible for making its own decisions.
Virtual SoS, on the other hand, are similar to a decentralized paradigm, where CS
are not aware of the presence of other CS in the same SoS. However, unlike control

128

in traditional systems, control in SoS is the process of defining the different relations
between CS, and what actions should CS do in order to achieve a desired behavior
on the SoS level.
To do so, we are going to need a tool that can capture the complexity and dynamic
nature of SoS. Architecture frameworks, most notably multi-views frameworks, en-
ables us to represent SoS in a way that gives us the ability to understand SoS, and
to provide the rules for CS. Furthermore, they can be integrated into tools that may
be used to perform analysis on the performance and behavior of the SoS during
design time as well as during the run time, in order to aid in the decision-making
process concerning different aspects of the SoS.

To achieve reliable and commercial autonomous driving, the development of col-
lective capabilities is an important step. For this purpose, and using SoS principles,
and a contribution to ITS, the CMMAV, a framework conceived to guide the de-
velopment of such capabilities in different transportation systems was developed.
The main objective of the CMMAV is to provide recommendations and logical ar-
chitectures for any cooperative application that targets autonomous vehicles. To
account for the dynamic environment of CMMAV, and the diversity of stakeholders
and CS, CMMAV uses agile development process based on use-cases that define
the stakeholders and CS, and a SoS approach to map the requirements of different
stakeholders into a set of capabilities and validation requirements that may be used
by any user who wishes to develop CMMAV based capabilities in their systems. To
represent the system, a seven-views framework was derived from SoS-ACRE frame-
work, and consists of: use-case view, organizational view, sources view, requirements
view, capabilities view, validation view, and traceability view. Each view contains
a high-level representation that uses a hierarchical tree to represent the different
relations within this view, and a detailed view via forms that describes each element
in this view, and is used to generate the relations that exist between different views
in the traceability view.
The first use case that was adopted to build the current draft of the CMMAV is also
considered to validate it, is the “overtaking on highways” use-case. The CLMM is
the first application that uses CMMAV recommendations in order to enable cooper-
ation during overtaking maneuvers on highways. When the subject vehicle detects
a front neighbor that is slower than itself, the CLMM handles the decision-making
inside the subject vehicle in order to evaluate the situation and send the appropri-
ate requests to its neighbor vehicles. It uses wireless communication to detect the
different neighbors in the vicinity of the subject vehicle, constructs a local map that
shows the relative positions of the neighbors with respect to the subject vehicle, and
then evaluates the possibility of safely performing an overtaking, otherwise, it sends
the appropriate requests to the neighbors in order to facilitate the maneuver. If no
cooperation is possible, the subject vehicle is then forced to follow its front neigh-
bor at the same speed until either a neighbor accepts to cooperate, or the situation
allows an overtaking without cooperation.
Since it uses CMMAV recommendations, there are some constraints on the way
the maneuvers are executed, for example, in principle, autonomous vehicles may
overtake to the right. However, the actual traffic laws does not allow that and
therefore, the subject vehicle may only overtake to the left. We used three methods
to perform the initial validations: formal scenarios, simulation, and experimentation

129

Chapter 7 - Conclusion

on autonomous vehicles. Formal scenarios were used in order to validate initially
that the way vehicles perform the maneuvers does not affect the performance, and
that by using relative speeds and distances we are able to achieve our objectives.
The simulations performed showed us that the CLMM works as described in the
formal scenarios, and that there are no undesirable effects (congestion, collisions)
that resulted from its use. Finally, the experimentation on autonomous vehicles of
the Heudiasyc laboratory further assured that the idea behind the CLMM is valid.
Some shortcomings of the experimentation are to be solved in future work, since the
distances and speeds at which they were performed are way less than the intended
operational environment.
The CLMM is a SoS, and is affected by its environment and the technologies in-
volved in its operation just as any SoS is affected by its environment. The CLMM
depends heavily on wireless communication in order to acquire the necessary infor-
mation to perform, and therefore it is exposed to the same vulnerabilities wireless
communication has. Therefore, the wide spread and adoption of such SoS (SoS that
use collective capabilities) will not be achieved until those technologies are secure.

7.1 Perspectives
The work presented in this thesis opens the door to numerous potential applications
and studies in the context of autonomous vehicles and SoS architecture. Developing
collective capabilities in autonomous vehicles is very important towards achieving
reliable autonomous driving, since autonomous vehicles are part of a wider SoS that
contains many stakeholders and CS, with different types of interrelationships. By
modeling the environment of autonomous vehicles, we get to know the different
systems and stakeholders that are related to autonomous vehicles. By analyzing
the results, we can find new cooperation opportunities between autonomous vehi-
cles and other systems in their environment (e.g. infrastructure, service providers).
Furthermore, this allows us to come up with better incentive mechanisms to favor
cooperation between the different players.

The CMMAV as a framework, was developed with the idea to enable better com-
munication between the different stakeholders in order to elicit requirements in an
efficient and unambiguous way. It is also developed in a way that favors the evolu-
tion of the SoS, and enables constant refinement. However, to get the most from it,
it is best to be developed as a software, in order to benefit from traceability, and to
enable analysis. Another aspect of the CMMAV may also be the subject of further
studies, which is the process that was used to build it, which we think is suitable for
many SoS. For example, consider an entity which develops an autonomous vehicle.
This process involves the effort of various teams, with different disciplines, focuses,
and objectives. By using the process used to develop the CMMAV, we can develop a
framework that guides the different teams in their missions, while at the same time
preserving their independence.

As for the application of the CMMAV, they are not limited to the cases treated
by the CLMM, and there are numerous applications that may be developed using
the CMMAV recommendation. Shared parking, where autonomous vehicles com-
municate with infrastructure in order to find parking spots are another example of

130

7.2 - Final thought

applications that involve cooperation between autonomous vehicles and other sys-
tems in their environment. Another application is the cooperative traffic signals,
where light signals communicate with autonomous vehicles in order to make deci-
sions about timings.

The CLMM represents a proof of concept, and has so much room for improve-
ment. By considering acceleration during maneuvers, we increase the accuracy of the
maneuvers, and in consequence we improve the system. Furthermore, if we increase
the neighborhood degree to more than 0, the potential for cooperation increases,
but at the same time, so does the risk of having undesired behaviors such as con-
gestion and traffic shockwave. These are potential future works that will improve
the CLMM.

Finally, if the CMMAV is developed further, a challenge similar to the Grand
Cooperative Driving Challenge (GCDC) may be organized, where organizations that
work on the development of autonomous vehicles develop CMMAV-based applica-
tions, and compete in different scenarios that involve cooperation. This event offers
several benefits: it helps validate the idea behind collective capabilities on a large
scale, opens the eyes on the importance of such capabilities, which hopefully in-
creases the interest in this aspect of autonomous driving development.

7.2 Final thought
Autonomous driving is still in the development stage, and we are still far from having
fully autonomous vehicles commercially available. It is still unclear what type of
environment will emerge when we reach that stage. The driver-vehicle interaction
may take several forms: autonomous vehicles might become similar to what smart
phones are today, in the sense that driver might be able to install applications that
control the behavior of the vehicle to some extent, or they might not change in
that sense, and manufacturers will always be responsible for setting the behavior
of their vehicles. If we were to imagine each scenario, the second scenario will be
pretty much similar to the current state of the automobile, but with more advanced
technologies in vehicles, and more communicating infrastructure. So let us imagine
what it would be like in the first scenario.
First of all, there would be a dedicated network of V2V and V2X communication,
that enables vehicles and infrastructures to communicate based upon needs, rather
than proximity (the current state of communication). Then, there would be teams
developing applications that target specific types of needs, which could be installed
on vehicles, infrastructure, smart phones, etc. Examples of such applications are
shown in Fig. 7.1. The owner of an autonomous vehicle that wants to go to a
meeting can simply open the “Park me” application, chooses the park time and
duration, and leaves the car. This application searches the dedicated network for
available parking places, and based on proximity and availability of parking spots,
an automated reservation system chooses a parking spot, and the vehicle drives
itself to park at that location. In case the owner wishes to extend the parking
duration, he can simply do so using the application on his mobile phone, and the
reservation system either extends the parking time, or searches for another parking
spot available elsewhere.
There exist a lot of applications similar to the “Park Me” application that could

131

Chapter 7 - Conclusion

be thought of, which might be very useful. Depending on how the development of
autonomous driving and the environment around it proceed, the previous scenario
might occur naturally. However, instead of waiting for the future to unfold, and
adapting accordingly, it would be good if we anticipate it and guide its development.

Figure 7.1: Graphical interface in an autonomous vehicle.

132

Bibliography

Acheson, Paulette, Cihan Dagli, and Nil Kilicay-Ergin (2013). “Model based sys-
tems engineering for system of systems using agent-based modeling”. In: Procedia
Computer Science 16, pp. 11–19.

Ackoff, Russell L (1971). “Towards a system of systems concepts”. In: Management
science 17.11, pp. 661–671.

Alur, Rajeev (2015). Principles of cyber-physical systems. MIT Press.
Andary, James F and Andrew P Sage (2010). “The role of service oriented architec-

tures in systems engineering”. In: Information Knowledge Systems Management
9.1, pp. 47–74.

Arnautovic, E., D. Svetinovic, and A. Diabat (July 2012). “Business interactions
modeling for systems of systems engineering: Smart grid example”. In: 7th In-
ternational Conference on System of Systems Engineering (SoSE), pp. 107–112.

Assaad, Mohamad Ali (2015). Control of Systems of Systems: Case of several robots
in interaction. [Master Thesis]. Universié de Technologie de Compiègne.

Åström, Karl Johan, Tore Hägglund, and Karl J Astrom (2006). Advanced PID
control. ISA-The Instrumentation, Systems, and Automation Society Research
Triangle Park, NC.

Azar, Ahmad Taher and Quanmin Zhu (2015). Advances and applications in sliding
mode control systems. Springer.

Ballagny, Cyril, Nabil Hameurlain, and Franck Barbier (2009). “Mocas: A state-
based component model for self-adaptation”. In: Third IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO). Pp. 206–215.

Banks, Jerry et al. (2004). Discrete-event system simulation. Prentice Hall.
Belkadi, Farouk, Eric Bonjour, and Maryvonne Dulmet (2004). “Proposition of a

Situation Model in View to Improve collaborative design”. In: INCOM.
Boardman, J. and B. Sauser (Apr. 2006). “System of Systems - the meaning of of”.

In: IEEE/SMC International Conference on System of Systems Engineering.
Boardman, John and Brian Sauser (2008). Systems thinking: Coping with 21st cen-

tury problems. CRC Press.
Boccara, Nino (2010). Modeling complex systems. Springer Science & Business Me-

dia.
Boulding, Kenneth E (Apr. 1956). “General systems theory—the skeleton of science”.

In: Management science 2.3, pp. 197–208.
Bryson, Arthur Earl (2018). Applied optimal control: optimization, estimation and

control. Routledge.
Butterfield, M. L., J. S. Pearlman, and S. C. Vickroy (Sept. 2008). “A System-of-

Systems Engineering GEOSS: Architectural Approach”. In: IEEE Systems Jour-
nal 2.3, pp. 321–332.

133

BIBLIOGRAPHY

Cai, Huaning and Andrew EB Lim (2011). “Decentralized control of a multi-agent
stochastic dynamic resource allocation problem”. In: 50th IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC), pp. 6400–
6406.

Cantot, Pascal and Dominique Luzeaux (2013). Simulation and Modeling of Systems
of Systems. John Wiley & Sons.

Carlock, Paul G. and Robert E. Fenton (2001). “System of Systems (SoS) enter-
prise systems engineering for information-intensive organizations”. In: Systems
Engineering 4.4, pp. 242–261.

Christofides, Panagiotis D et al. (2013). “Distributed model predictive control: A
tutorial review and future research directions”. In: Computers & Chemical En-
gineering 51, pp. 21–41.

Cole, Reggie (2008). “SoS architecture”. In: Systems of systems engineering: princi-
ples and applications 37.

Collins, Bernie, Dr. Steve Doskey, and Dr. James Moreland (May 2016). Relative
Comparison of the Rate of Convergence of Collaborative Systems of Systems: A
Quantified Case Study. Presented to the Systems of Systems Engineering Col-
laborators Information Exchange, George Washington University.

Dahmann, J. S. and K. J. Baldwin (Apr. 2008). “Understanding the Current State of
US Defense Systems of Systems and the Implications for Systems Engineering”.
In: 2008 2nd Annual IEEE Systems Conference, pp. 1–7.

Daniel, K. et al. (Mar. 2009). “AirShield: A system-of-systems MUAV remote sensing
architecture for disaster response”. In: 3rd Annual IEEE Systems Conference,
pp. 196–200.

DeLaurentis, Daniel (2005). “Understanding transportation as a system-of-systems
design problem”. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, p. 123.

DeLaurentis, Daniel and Robert Callaway (2004). “A system-of-systems perspective
for public policy decisions”. In: Review of Policy research 21.6, pp. 829–837.

Dickerson, Charles and Dimitri N Mavris (2016). Architecture and principles of
systems engineering. CRC Press.

DiMario, M. J., J. T. Boardman, and B. J. Sauser (Sept. 2009). “System of Systems
Collaborative Formation”. In: IEEE Systems Journal 3.3, pp. 360–368.

Dimarogonas, Dimos V, Emilio Frazzoli, and Karl H Johansson (2012). “Distributed
event-triggered control for multi-agent systems”. In: IEEE Transactions on Au-
tomatic Control 57.5, pp. 1291–1297.

Dimarogonas, Dimos V, Michael M Zavlanos, et al. (2003). “Decentralized motion
control of multiple holonomic agents under input constraints”. In: 42nd IEEE
Conference on Decision and Control Proceedings. 4, pp. 3390–3395.

Dı́az, Nelson L et al. (2017). “Centralized control architecture for coordination of
distributed renewable generation and energy storage in islanded ac microgrids”.
In: IEEE Transactions on Power Electronics 32.7, pp. 5202–5213.

Durbha, S et al. (2006). “Semantics-enabled knowledge management for global earth
observation system of systems”. In: IEEE International Conference on Geoscience
and Remote Sensing Symposium (IGARSS), pp. 25–28.

Eisner, Howard, John Marciniak, and Ray McMillan (1991). “Computer-aided sys-
tem of systems (S2) engineering”. In: IEEE International Conference on Systems,
Man, and Cybernetics, 1991: Decision Aiding for Complex Systems, Conference
Proceedings, pp. 531–537.

134

BIBLIOGRAPHY

Elshenawy, Mohamed, Baher Abdulhai, and Mohamed El-Darieby (2018). “Towards
a service-oriented cyber–physical systems of systems for smart city mobility ap-
plications”. In: Future Generation Computer Systems 79, pp. 575–587.

Englund, Cristofer et al. (2016). “The grand cooperative driving challenge 2016:
boosting the introduction of cooperative automated vehicles”. In: IEEE Wireless
Communications 23.4, pp. 146–152.

Estefan, Jeff A et al. (2007). “Survey of model-based systems engineering (MBSE)
methodologies”. In: Incose MBSE Focus Group 25.8, pp. 1–12.

Fang, Zhemei, Navindran Davendralingam, and Daniel DeLaurentis (2018). “Multi-
stakeholder Dynamic Optimization for Acknowledged System-of-Systems Archi-
tecture Selection”. In: IEEE Systems Journal 99, pp. 1–12.

Farcas, Claudiu et al. (2010). “Addressing the integration challenge for avionics and
automotive systems—From components to rich services”. In: Proceedings of the
IEEE 98.4, pp. 562–583.

Farroha, Deborah L and Bassam S Farroha (2011). “Agile development for system of
systems: Cyber security integration into information repositories architecture”.
In: IEEE International on Systems Conference (SysCon), pp. 182–188.

Figueiredo, L. et al. (2001). “Towards the development of intelligent transporta-
tion systems”. In: 2001 IEEE Intelligent Transportation Systems. Proceedings,
pp. 1206–1211.

Findeisen, Wladyslaw et al. (1980). Control and coordination in hierarchical systems.
John Wiley & Sons.

Furrer, Frank J. (2017). Architecture for Cyber-Physical Systems-of-Systems. http:
//st.inf.tu-dresden.de/files/teaching/ws17/ring/TUD_Ringvorlesung-
WS1718_20180108-V11.pdf. [Online]. Presented at WS Conference, Technical
University of Dredsen.

Gao, Hui et al. (2015). “A Survey of Incentive Mechanisms for Participatory Sens-
ing.” In: IEEE Communications Surveys and Tutorials 17.2, pp. 918–943.

Garnier, Jean-Luc (2018). Investigating in SoS Taxonomies to improve Systems
Engineering. http : / / sosengineering . org / 2018 / wp - content / uploads /
2014 / 07 / Jean - Luc - Garnier - 180620 - IEEE - SoSE - SoS - Taxonomies - V0 .
2.pdf. [Online]. Presented at the 14th IEEE Systems of Systems Engineering
Conference, Paris, France.

Gorod, Alex, Ryan Gove, et al. (2007). “System of systems management: A network
management approach”. In: IEEE International Conference on System of Systems
Engineering (SoSE), pp. 1–5.

Gorod, Alex, Brian Sauser, and John Boardman (Dec. 2008). System-of-Systems
Engineering Management: A Review of Modern History and a Path Forward.

Gorod, Alex, Brian E White, et al. (2014). Case studies in system of systems, en-
terprise systems, and complex systems engineering. CRC Press.

Grigoroudis, E., V. S. Kouikoglou, and Y. A. Phillis (June 2012). “A System-of-
Systems approach for improving healthcare systems”. In: World Automation
Congress, pp. 1–6.

Guériau, Maxime et al. (2016). “How to assess the benefits of connected vehicles?
A simulation framework for the design of cooperative traffic management strate-
gies”. In: Transportation research part C: emerging technologies 67, pp. 266–279.

Handley, Holly AH and Robert J Smillie (2008). “Architecture framework human
view: The NATO approach”. In: Systems Engineering 11.2, pp. 156–164.

135

http://st.inf.tu-dresden.de/files/teaching/ws17/ring/TUD_Ringvorlesung-WS1718_20180108-V11.pdf
http://st.inf.tu-dresden.de/files/teaching/ws17/ring/TUD_Ringvorlesung-WS1718_20180108-V11.pdf
http://st.inf.tu-dresden.de/files/teaching/ws17/ring/TUD_Ringvorlesung-WS1718_20180108-V11.pdf
http://sosengineering.org/2018/wp-content/uploads/2014/07/Jean-Luc-Garnier-180620-IEEE-SoSE-SoS-Taxonomies-V0.2.pdf
http://sosengineering.org/2018/wp-content/uploads/2014/07/Jean-Luc-Garnier-180620-IEEE-SoSE-SoS-Taxonomies-V0.2.pdf
http://sosengineering.org/2018/wp-content/uploads/2014/07/Jean-Luc-Garnier-180620-IEEE-SoSE-SoS-Taxonomies-V0.2.pdf

BIBLIOGRAPHY

Haren, Van (2011). TOGAF Version 9.1. Van Haren Publishing.
Hashem, Ibrahim Abaker Targio et al. (2015). “The rise of “big data” on cloud

computing: Review and open research issues”. In: Information systems 47, pp. 98–
115.

Hayward, J (1971). Near misses as a measure of safety at urban intersections. Penn-
sylvania Transportation and Traffic Safety Center.

Henshaw, Michael et al. (2013). “Systems of systems engineering: a research impera-
tive”. In: International Conference on System Science and Engineering (ICSSE),
pp. 389–394.

Heymans, Patrick and Eric Dubois (Mar. 1998). “Scenario-Based Techniques for
Supporting the Elaboration and the Validation of Formal Requirements”. In:
Requirements Engineering 3.3, pp. 202–218.

Hidas, Peter (2002). “Modelling lane changing and merging in microscopic traffic
simulation”. In: Transportation Research Part C: Emerging Technologies 10.5-6,
pp. 351–371.

Holland, JH (1995). “Hidden order: how adaptation builds complexity”. In: Reading,
MA: Perseus.

Holt, Jon, Simon A Perry, and Mike Brownsword (2011). Model-based Requirements
Engineering. The Institution of Engineering and Technology.

Holt, Jon, Simon Perry, et al. (2015). “A Model-Based Approach for Requirements
Engineering for Systems of Systems.” In: IEEE Systems Journal 9.1, pp. 252–
262.

Hou, Zhicheng and Isabelle Fantoni (2015). “Distributed leader-follower formation
control for multiple quadrotors with weighted topology”. In: 10th System of Sys-
tems Engineering Conference (SoSE), pp. 256–261.

INCOSE (2015). INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities, 4th Edition. Hoboken, NJ, USA: Wiley.

ISO, May (2011). Systems and software engineering–architecture description. Tech.
rep. ISO/IEC/IEEE 42010.

ITS, ETSI (2008). Standards on the move. [Online]. Presented at the 7th European
Congress on ITS, Geneva.

Jackson, Michael C and Paul Keys (1984). “Towards a system of systems method-
ologies”. In: Journal of the operational research society 35.6, pp. 473–486.

Jacob, François (1974). The logic of living systems: a history of heredity. Lane.
Jamshidi, Mo (1997). Large-scale systems: Modeling, control and fuzzy logic. Prentice

Hall.
— (2008). Systems of systems engineering: principles and applications. CRC press.
Jamshidi, Mohammad (1996). Large-scale systems: modeling, control, and fuzzy logic.

Prentice-Hall, Inc.
Jaramillo, Juan José and R Srikant (2010). “A game theory based reputation mecha-

nism to incentivize cooperation in wireless ad hoc networks”. In: Ad Hoc Networks
8.4, pp. 416–429.

Jazar, Reza N (2017). Vehicle dynamics: theory and application. Springer.
Kariwala, Vinay (2007). “Fundamental limitation on achievable decentralized per-

formance”. In: Automatica 43.10, pp. 1849–1854.
Kaslow, David et al. (2015). “Developing a cubesat model-based system engineering

(mbse) reference model-interim status”. In: IEEE Aerospace Conference, pp. 1–
16.

136

BIBLIOGRAPHY

Kewley Jr, Robert H and Andreas Tolk (2009). “A systems engineering process
for development of federated simulations”. In: Proceedings of the 2009 Spring
Simulation Multiconference, p. 68.

Kilian, Christopher T (2006). Modern control technology: components and systems.
Delmar/Thomson Learning.

Kotov, Vadim (1997). Systems of systems as communicating structures. Vol. 119.
Hewlett Packard Laboratories.

Laureshyn, Aliaksei, Åse Svensson, and Christer Hydén (2010). “Evaluation of traffic
safety, based on micro-level behavioural data: Theoretical framework and first
implementation”. In: Accident Analysis & Prevention 42.6, pp. 1637–1646.

Lee, Jay, Behrad Bagheri, and Hung-An Kao (2015). “A Cyber-Physical Systems
architecture for Industry 4.0-based manufacturing systems”. In: Manufacturing
Letters 3, pp. 18–23.

Lewis, Grace A et al. (2009). “Requirements engineering for systems of systems”. In:
3rd Annual IEEE Systems Conference, pp. 247–252.

Liu, S. (June 2011). “Employing System of Systems Engineering in China’s Emer-
gency Management”. In: IEEE Systems Journal 5.2, pp. 298–308.

Lu, Xiaonan et al. (2014). “Hierarchical control of parallel AC-DC converter inter-
faces for hybrid microgrids”. In: IEEE Transactions on Smart Grid 5.2, pp. 683–
692.

Luo, Yugong et al. (2016). “A dynamic automated lane change maneuver based on
vehicle-to-vehicle communication”. In: Transportation Research Part C: Emerg-
ing Technologies 62, pp. 87–102.

Luzeaux, Dominique and Jean-René Ruault (2010). Systems of systems: concepts,
illustrations, standards and methods. John Wiley & Sons.

Luzeaux, Dominique, Jean-Rene Ruault, and Jean-Luc Wippler (2013). Large-scale
Complex System and Systems of Systems. John Wiley & Sons.

Macki, Jack and Aaron Strauss (2012). Introduction to optimal control theory. Springer
Science & Business Media.

Mahmud, Nasif and A Zahedi (2016). “Review of control strategies for voltage regu-
lation of the smart distribution network with high penetration of renewable dis-
tributed generation”. In: Renewable and Sustainable Energy Reviews 64, pp. 582–
595.

Maier, Mark W. (1996). “Architecting Principles for Systems-of-Systems”. In: IN-
COSE International Symposium 6.1, pp. 565–573.

— (1998). “Architecting principles for systems-of-systems”. In: Systems Engineer-
ing: The Journal of the International Council on Systems Engineering 1.4,
pp. 267–284.

— (Oct. 2005). “Research Challenges for Systems-of-Systems”. In: IEEE Interna-
tional Conference on Systems, Man and Cybernetics 4, pp. 3149–3154.

— (2006). “Disentangling modeling, architectures, and architecture descriptions”.
In: INSIGHT 8.2, pp. 24–25.

Manthorpe, William HJ (1996). “The emerging joint system of systems: A systems
engineering challenge and opportunity for APL”. In: Johns Hopkins APL Tech-
nical Digest 17.3, p. 305.

Marvasti, A. K. et al. (May 2014). “Optimal Operation of Active Distribution Grids:
A System of Systems Framework”. In: IEEE Transactions on Smart Grid 5.3,
pp. 1228–1237.

137

BIBLIOGRAPHY

Mauss, Fredrick et al. (2015). “System of Systems Approaches for Mobile Source
Transit Security”. In: INCOSE International Symposium 25.1, pp. 1278–1289.

McGehee, Daniel V, Elizabeth N Mazzae, and GH Scott Baldwin (2000). “Driver
reaction time in crash avoidance research: validation of a driving simulator study
on a test track”. In: Proceedings of the human factors and ergonomics society
annual meeting 44.20, pp. 3–320.

Mehta, Ruta and Vijay V Vazirani (2018). “An incentive compatible, efficient market
for air traffic flow management”. In: Theoretical Computer Science.

Mesarovic, Mihajlo D, D Macko, and Yasuhiko Takahara (1970). “Theory of multi-
level hierarchical systems”. In: New York, Academic.

Mostafavi, A. et al. (June 2011). “Exploring the Dimensions of Systems of Innova-
tion Analysis: A System of Systems Framework”. In: IEEE Systems Journal 5.2,
pp. 256–265.

Murgovski, Nikolce and Jonas Sjöberg (2015). “Predictive cruise control with au-
tonomous overtaking”. In: IEEE 54th Annual Conference on Decision and Control
(CDC), pp. 644–649.

NASA (2016). Systems Engineering Handbook - Rev 2. url: https://www.nasa.
gov / sites / default / files / atoms / files / nasa _ systems _ engineering _
handbook_0.pdf.

Nguyen, Ngoc Anh et al. (2017). “Autonomous overtaking using stochastic model
predictive control”. In: 11th Asian Control Conference (ASCC), pp. 1005–1010.

Nie, Jianqiang et al. (2016). “Decentralized cooperative lane-changing decision-
making for connected autonomous vehicles”. In: IEEE Access 4, pp. 9413–9420.

Officer, DoD Deputy Chief Information (2010). United states department of defense
architecture framework (DoDAF). Technical Report Version 2.02.

Olfati-Saber, Reza, J Alex Fax, and Richard M Murray (2007). “Consensus and
cooperation in networked multi-agent systems”. In: Proceedings of the IEEE 95.1,
pp. 215–233.

Ota, Daniel and Michael Gerz (2011). Benefits and challenges of architecture frame-
works. Tech. rep. Fraunhofer-FKIE Wachtberg (Germany).

Otto, A. et al. (June 2016). “A Quantified System-of-Systems Modeling Framework
for Robust National Infrastructure Planning”. In: IEEE Systems Journal 10.2,
pp. 385–396.

Ouyang, Min (2014). “Review on modeling and simulation of interdependent critical
infrastructure systems”. In: Reliability engineering & System safety 121, pp. 43–
60.

Owens, William A (1996). The emerging US system-of-systems. Tech. rep. National
Defense Univ. Washington DC. Inst. For National Strategic Studies.

Palizban, Omid, Kimmo Kauhaniemi, and Josep M Guerrero (2014). “Microgrids in
active network management—Part I: Hierarchical control, energy storage, virtual
power plants, and market participation”. In: Renewable and Sustainable Energy
Reviews 36, pp. 428–439.

Partners, MODAF (2005). British ministry of defense architecture framework (modaf):
Technical handbook. Technical Report Version 1.0.

Pei, Richard S (2000). “System of Systems Integration (SoSI)-A” SMART” Way of
Acquiring Army C412WS Systems”. In: Summer Computer Simulation Confer-
ence, pp. 574–579.

138

https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nasa_systems_engineering_handbook_0.pdf

BIBLIOGRAPHY

Petrov, Plamen and Fawzi Nashashibi (2014). “Modeling and Nonlinear Adaptive
Control for Autonomous Vehicle Overtaking.” In: IEEE Trans. Intelligent Trans-
portation Systems 15.4, pp. 1643–1656.

Planning, U.S. JPDO Joint and Development Office (2007). Concept of operations
for the next generation air transportation system. http://www.dtic.mil/dtic/
tr / fulltext / u2 / a535795 . pdf. [Online]. Joint Planning and Development
Office, Washington, DC.

Rainey, Larry B and Andreas Tolk (2015). Modeling and simulation support for
system of systems engineering applications. John Wiley & Sons.

Ray, Anjan Kumar et al. (2009). “Decentralized motion coordination for a formation
of rovers”. In: IEEE Systems Journal 3.3, pp. 369–381.

Ren, Wei (2008). “Synchronization of coupled harmonic oscillators with local inter-
action”. In: Automatica 44.12, pp. 3195–3200.

Ren, Wei, Randal W Beard, and Ella M Atkins (2007). “Information consensus in
multivehicle cooperative control”. In: IEEE Control Systems 27.2, pp. 71–82.

Rezaei, E Mohammad Hadi and Parviz Jabehdar-Maralani (2012). “Two-level hier-
archical optimal control based on interaction principle for large scale systems”.
In: 20th Iranian Conference on Electrical Engineering (ICEE), pp. 828–833.

Ruiz-Romero, Salvador et al. (2014). “Integration of distributed generation in the
power distribution network: The need for smart grid control systems, communi-
cation and equipment for a smart city—Use cases”. In: Renewable and sustainable
energy reviews 38, pp. 223–234.

Sage, Andrew P (2011). System of systems engineering: innovations for the 21st
century. Vol. 58. John Wiley & Sons.

Sanduka, Imad and Roman Obermaisser (2014). “Model-based development of systems-
of-systems with real-time requirements”. In: 12th IEEE International Conference
on Industrial Informatics (INDIN), pp. 188–194.

Satzoda, Ravi Kumar and Mohan M Trivedi (2014). “Overtaking & receding vehicle
detection for driver assistance and naturalistic driving studies”. In: IEEE 17th
International Conference on Intelligent Transportation Systems (ITSC), pp. 697–
702.

Scattolini, Riccardo (2009). “Architectures for distributed and hierarchical model
predictive control–a review”. In: Journal of process control 19.5, pp. 723–731.

Shams, Fereidoon et al. (2008). “A service driven development process (SDDP)
model for ultra large scale systems”. In: 2nd international workshop on Ultra-
large-scale software-intensive systems, pp. 37–40.

Shenhar, Aaron J. (1994). “2.5.1 A New Systems Engineering Taxonomy”. In: IN-
COSE International Symposium 5.1, pp. 723–732.

Shtessel, Yuri et al. (2014). Sliding Mode Control and Observation. Springer, pp. 105–
141.

Siljak, Dragoslav D (2011). Decentralized control of complex systems. Courier Cor-
poration.

Šiljak, Dragoslav D and AI Zečević (2005). “Control of large-scale systems: Beyond
decentralized feedback”. In: Annual Reviews in Control 29.2, pp. 169–179.

Su, BB et al. (2007). “A game theory model of urban public traffic networks”. In:
Physica A: Statistical Mechanics and its Applications 379.1, pp. 291–297.

Swan, Melanie (2015). Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc.

139

http://www.dtic.mil/dtic/tr/fulltext/u2/a535795.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a535795.pdf

BIBLIOGRAPHY

Turban, Efraim, Ramesh Sharda, and Dursun Delen (2010). Decision Support and
Business Intelligence Systems. 9th. Upper Saddle River, NJ, USA: Prentice Hall
Press.

U.S. DoD, The United States Department of Defense (2008). Systems Engineering
Guide for Systems of Systems. https://www.acq.osd.mil/se/docs/se-guide-
for-sos.pdf. [Online].

Vander Werf, Joel et al. (2002). “Effects of adaptive cruise control systems on high-
way traffic flow capacity”. In: Transportation Research Record: Journal of the
Transportation Research Board 1800, pp. 78–84.

Vandermeulen, Isaac, Martin Guay, and P James McLellan (2018). “Distributed con-
trol of high-altitude balloon formation by extremum-seeking control”. In: IEEE
Transactions on Control Systems Technology 26.3, pp. 857–873.

Vargas, Alix (2016). “Decision-Making System and Operational Risk Framework
for Hierarchical Production Planning”. In: Journal of Control Engineering and
Applied Informatics 18.3, pp. 72–81.

Vermillion, Chris et al. (2014). “Model-based plant design and hierarchical control
of a prototype lighter-than-air wind energy system, with experimental flight test
results”. In: IEEE Transactions on Control Systems Technology 22.2, pp. 531–
542.

Wagenhals, Lee W and Alexander H Levis (2009). “Service oriented architectures,
the DoD architecture framework 1.5, and executable architectures”. In: Systems
Engineering 12.4, pp. 312–343.

Wang, Renzhong and Cihan H Dagli (2011). “Executable system architecting using
systems modeling language in conjunction with colored Petri nets in a model-
driven systems development process”. In: Systems Engineering 14.4, pp. 383–
409.

Weik, Norman, Nora Niebel, and Nils Nießen (2016). “Capacity analysis of railway
lines in Germany – A rigorous discussion of the queueing based approach”. In:
Journal of Rail Transport Planning & Management 6.2, pp. 99–115.

Whittington, P. and H. Dogan (June 2016). “SmartDisability: A smart system of
systems approach to disability”. In: 11th System of Systems Engineering Confer-
ence (SoSE), pp. 1–6.

Wu, Yen-Chun Jim and Pi-Ju Lee (2007). “The use of patent analysis in assessing
ITS innovations: US, Europe and Japan”. In: Transportation Research Part A:
Policy and Practice 41.6, pp. 568–586.

Xin, Huanhai et al. (2016). “A Decentralized Hierarchical Control Structure and
Self-Optimizing Control Strategy for FP Type DGs in Islanded Microgrids.” In:
IEEE Trans. Smart Grid 7.1, pp. 3–5.

Xu, Philippe et al. (2018). “System Architecture of a Driverless Electric Car in
the Grand Cooperative Driving Challenge”. In: IEEE Intelligent Transportation
Systems Magazine 10.1, pp. 47–59.

Yuan, Wang and Zhijun Li (2017). “Navigation and collision avoidance for non-
holonomic robots using quadrupole potential function”. In: 2nd International
Conference on Advanced Robotics and Mechatronics (ICARM), pp. 47–52.

Zhang, Ying et al. (2012). “A Service-Oriented Method for System-of-Systems Re-
quirements Analysis and Architecture Design.” In: Journal of Software 7.2, pp. 358–
365.

140

https://www.acq.osd.mil/se/docs/se-guide-for-sos.pdf
https://www.acq.osd.mil/se/docs/se-guide-for-sos.pdf

BIBLIOGRAPHY

Zheng, Zuduo (2014). “Recent developments and research needs in modeling lane
changing”. In: Transportation research part B: methodological 60, pp. 16–32.

Zhou, Zhongbao et al. (2017). “Stochastic network DEA models for two-stage sys-
tems under the centralized control organization mechanism”. In: Computers &
Industrial Engineering 110, pp. 404–412.

141

Appendix A

Appendix

A.1 Overtaking Use Case submission document
A.1.1 Template
This is a template of the use case submission document. Any user who has a use
case that is not treated in the CMMAV or that has special requirements that are
not met by it may use this document to submit their specific use case to CMMAV
maintainers.

142

Use Case Submission Submission Number: xxxx

Use Case Name:
Submission Date:
Submitting Organization:

1 List of Accronyms

Abbreviation Description

2 Dictionary of Terms
(Add here all the description of all technical and specific terms used in this
submission document)

Term Description

3 General Description
(This description will be used in the framework to describe this use case,
please make it short and make sure it describes it well)

4 Detailed Description
(Describe here the detailed intended use case, do not hesitate to use figures,
tables, charts, or any means to describe it)

5 Relation with Constituent Systems
6 Requirements
(Requirements consist of your needs, goals, and constrains concerning your
use case. Please be concise and do not forget to refer to the Dictionary of

© CMMAV - 2018 Page 1 / 2

A.1 - Overtaking Use Case submission document

143

Use Case Submission Submission Number: xxxx

Terms 2)
Requirement #_:
Requirement #_:
Requirement #_:

7 Measures of Effectiveness (MoE)
(Measures to be used to evaluate the performance. Please be concise and do
not forget to refer to the Dictionary of Terms 2)
MoE #_:
MoE #_:
MoE #_:

© CMMAV - 2018 Page 2 / 2

Chapter A - Appendix

144

A.1 - Overtaking Use Case submission document

A.1.2 Overtaking on Highways use case submission
This is a the overtaking use case document submitted by Heudiasyc laboratory to
the CMMAV.

145

Use Case Submission Submission Number: 0001

Use Case Name: Overtaking on Highways
Submission Date: July 2017
Submitting Organization: Heudiasyc Laboratory

1 List of Accronyms

Abbreviation Description
EV Equipped Vehi-

cle

2 Dictionary of Terms

Term Description
Egoist Overtaking Is the overtaking that could be safely performed

without cooperation from any neighbor
Equipped Vehicle An autonomous or communicating vehicle

equipped with the application that guides this
cooperation

3 General Description
An EV requests from neighbor EVs cooperation in case an egoist overtaking
could not be performed.

4 Detailed Description
The objective of this use case is to enable EV to provide services to demanding
EV by slowing down or speeding up, to allow the demanding EV to perform
the desired overtaking maneuver.

5 Relation with Constituent Systems
The submitting organization owns its EV. It controls that deployment and
development of different capabilities and incentives.
The submitting organization does not operate its EV. Independent users
operate the EV and provide operation objectives (cooperation level, route
choices, etc..).

© CMMAV - 2018 Page 1 / 2

Chapter A - Appendix

146

Use Case Submission Submission Number: 0001

6 Requirements
Requirement #1: All maneuvers must respect french traffic laws.
Requirement #2: Human-driven neighbor vehicles must be considered and
respected.
Requirement #3: Maneuvers must ensure the comfort and safety of EV pas-
sengers.
Requirement #4: Speed difference between the overtaking and the overtaken
must be at least 10km/h.
Requirement #5: EV are prohibited from changing their lanes in respond to
a cooperation request from another EV.

7 Measures of Effectiveness
MoE #1: EV must, in the appropriate conditions, cooperate and exchange
services.
MoE #2: EV must not, in the inappropriate conditions, cooperate and ex-
change services.

© CMMAV - 2018 Page 2 / 2

A.1 - Overtaking Use Case submission document

147

Chapter A - Appendix

A.2 CMMAV Framework Views
A.2.1 Organizational View (Fig. A.1)

Figure A.1: Organizational View: Maintainers, Stakeholders, and Constituents.

A.2.2 Sources View (Fig. A.2)
A.2.3 Requirements View (Fig. A.3)
A.2.4 Capabilities View (Fig. A.4)
A.2.5 Validation View (Fig. A.5)

A.3 CMMAV Framework - Detailed Forms
A.3.1 Organizational View Forms (Fig. A.6)
A.3.2 Sources View Forms (Fig. A.7)
A.3.3 Requirements View Forms (Fig. A.8, A.9)
A.3.4 Capabilities View Forms (Fig. A.10)

148

A.3 - CMMAV Framework - Detailed Forms

F
ig

ur
e

A
.2

:
So

ur
ce

s
V

ie
w

:
Ev

er
y

st
ak

eh
ol

de
r

pr
ov

id
es

so
ur

ce
s

fo
r

its
re

qu
ire

m
en

ts
.

149

Chapter A - Appendix

F
igure

A
.3:

R
equirem

ents
V

iew
:

different
requirem

ents
from

different
sources.

150

A.3 - CMMAV Framework - Detailed Forms

F
ig

ur
e

A
.4

:
C

ap
ab

ili
tie

s
V

ie
w

:
ba

se
,e

nv
iro

nm
en

t,
an

d
co

lle
ct

iv
e

ca
pa

bi
lit

ie
s.

151

Chapter A - Appendix

Figure A.5: Validation View

Figure A.6: Organizational Forms

152

A.3 - CMMAV Framework - Detailed Forms

Figure A.7: Requirements Sources Forms

153

Chapter A - Appendix

F
igure

A
.8:

R
equirem

ents
Form

s
-part

1

154

A.3 - CMMAV Framework - Detailed Forms

F
ig

ur
e

A
.9

:
R

eq
ui

re
m

en
ts

Fo
rm

s
-p

ar
t

2

155

Chapter A - Appendix

F
igure

A
.10:

C
apabilities

Form
s

-part
1

156

	PDT ASSAADI
	mémoire MA Assaad main
	Introduction
	Thesis Organization

	Systems of Systems
	Introduction
	Systems
	Objective vs. Purpose
	Systems Functionalities

	Complex Systems
	Emergent Behavior

	System of Systems
	SoS Historical Background
	SoS Definition
	SoS Adopted Definition
	Independent Systems
	Other Characteristics
	Cyber-Physical Systems and SoS
	Discussion

	SoS Taxonomy
	SoS Management taxonomies
	Other Taxonomies
	Discussion

	SoS Examples
	U.S. Next Generation Air Transportation System
	SWIFT and Secure Financial Messaging
	Discussion

	SoS Engineering (SoSE) vs. Systems Engineering (SE)
	SoS Challenges
	Discussion

	Conclusion
	What's Next?

	Traditional Systems & SoS Control
	Introduction
	Traditional Systems Control
	Levels of Control

	Control Paradigms
	Centralized Control Paradigm
	Non-Centralized Control Paradigm

	SoS Control
	Conclusion

	Modeling & Frameworks
	Introduction
	What is a model?
	Types of Models
	Modeling and Simulation
	Model-Based Systems Engineering (MBSE)

	SoS Modeling
	Architecture Frameworks
	Systems Modeling Language (SysML)
	SoS-ACRE Framework

	Conclusion

	Application: Cooperative Maneuvers Manager for Autonomous Vehicles (CMMAV)
	Introduction
	Motivations
	CMMAV Description
	CMMAV & Intelligent Transportation Systems
	Intelligent Transportation Systems (ITS)
	ITS Stakeholders
	ITS Categories
	CMMAV in ITS

	CMMAV & SoS
	CMMAV: Constituent Systems
	CMMAV: Stakeholders
	Constraining Stakeholders
	User Stakeholders
	Maintaining Stakeholders

	Incentives for cooperation
	Cooperation Decision-Making
	Examples of Incentives

	Use Cases
	Use Case Examples

	Emergent Behaviors
	The Framework
	Use-Cases View
	Organizational View
	Sources View
	Requirements View
	Functionalities View
	Verification View
	Traceability View

	CMMAV Horizons
	Conclusion

	Application: Cooperative Lateral Maneuvers Manager (CLMM)
	Introduction
	CLMM Objectives
	CLMM Evaluation

	Overtaking On Highways
	Subject Vehicle, CMMAV Vehicle, and other terms
	Distances
	Relative Positioning
	Strategy Overview
	Cooperation in Overtaking
	Cooperation Constraints

	CLMM architecture
	Nodes
	Messages

	CLMM Validation
	Validation by Formal Scenarios
	Validation by Simulation
	Validation by Experimentation

	CLMM Challenges
	Conclusion

	Conclusion
	Perspectives
	Final thought

	Appendix
	Overtaking Use Case submission document
	Template
	Overtaking on Highways use case submission

	CMMAV Framework Views
	Organizational View (Fig. A.1)
	Sources View (Fig. A.2)
	Requirements View (Fig. A.3)
	Capabilities View (Fig. A.4)
	Validation View (Fig. A.5)

	CMMAV Framework - Detailed Forms
	Organizational View Forms (Fig. A.6)
	Sources View Forms (Fig. A.7)
	Requirements View Forms (Fig. A.8, A.9)
	Capabilities View Forms (Fig. A.10)

