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Résumé

Cette thèse se concentre sur l'étude numérique de l'interaction laser ultrabref avec les diélectriques
transparents. En particulier, le phénomène d'auto-organisation des nanoréseaux dans la silice est
discuté et un modèle multiphysique est proposé pour expliquer le mécanisme de leur formation. Les
nanoréseaux en volume sont des nanostructures périodiques de périodicité sub-longueur d'onde, qui
consistent en un matériau moins dense et sont générés par une irradiation laser multi-impulsionnelle
femtoseconde dans certains verres, cristaux et semiconducteurs. Leur origine physique ainsi que les
conditions d'irradiation laser pour leur formation et leur e�acement sont investiguées dans ce travail
théorique.

Pour simuler la propagation nonlinéaire dans les verres, les équations de Maxwell sont couplées
avec l'équation d'évolution de la densité électronique. Il est démontré que les nanoplasmas périodiques
3D sont formés pendant l'interaction laser ultrabref avec les inhomogénéités de la silice fondue. Les
nanopores induits par laser sont supposés jouer le rôle de centres inhomogènes de di�usion. La péri-
odicité sub-longueur d'onde et l'orientation des nanoplasmas dependante de la polarization, révélées
dans cette thèse, font d'eux un excellent candidat pour expliquer la formation des nanoréseaux en
volume. En plus, il est demontré que les nano-ripples sur la surface de silice fondue et les nanoréseaux
en volume ont des mécanismes de formation similaires.

Pour justi�er la présence de nanopores dans la silice fondue irradiée par laser, les processus de
décomposition du verre sont étudiés. Premièrement, les pro�ls de température sont calculés sur la base
d'un modèle électron-ion. Ensuite, à partir des températures calculées, des critères de cavitation et de
nucléation dans le verre ainsi que des équations hydrodynamiques de Rayleigh-Plesset, les conditions
pour la formation des nanopores et la survie des nanoréseaux en volume sont élucidées.

Pour établir les dependences des paramètres du laser de formation et d'e�acement des nanoréseaux
en volume, l'approche multiphysique est developpée comprenant la propagation du laser ultrabref
dans le verre, les processus d'excitation/relaxation électroniques et le modèle à deux températures.
Les résultats numériques fournissent les paramètres du laser en fonction de l'énergie de l'impulsion,
sa durée et le taux de répétition pour induire des nanoréseaux en volume, en bon accord avec les
expériences nombreuses et indépendantes de la littérature.

Le travail réalisé a non seulement permis de déterminer les mécanismes de formation des nanos-
tructures périodiques mais améliore également notre connaissance du contrôle optimal des paramètres
du laser sur la réponse ultrarapide du matériau, en ouvrant des nouvelles opportunités de traitement
des diélectriques par laser ultrabref.
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Abstract

This thesis is focused on the numerical modeling of ultrashort laser interaction with transparent
dielectrics. More particularly, the phenomenon of self-organized volume nanogratings in fused silica
bulk is discussed and a multiphysical model is proposed to explain the mechanism of their formation.
Volume nanogratings are sub-wavelength periodic nanostructures, consisting of less dense material,
which are commonly induced by multipulse femtosecond laser irradiation in some glasses, crystals
and indirect semiconductors. Their physical origin as well as the laser irradiation conditions for their
formation and erasure are investigated in this theoretical work.

To model the nonlinear propagation inside glass, Maxwell's equations are coupled with rate equa-
tion. It is shown that three-dimensional periodic nanoplasmas are formed during ultrashort laser
interaction with fused silica inhomogeneities. Laser-induced nanopores are proposed to play the role
of inhomogeneous scattering centers. Subwavelength periodicity and polarization-dependent orienta-
tion of the nanoplasmas, revealed in this thesis, make them a strong candidate for explaining volume
nanogratings formation. Additionally, it is demonstrated that the nanoripples on fused silica surface
and volume nanogratings have similar formation mechanisms.

To justify the presence of nanopores in laser-irradiated fused silica bulk, glass decomposition pro-
cesses are investigated. Firstly, the temperature pro�les are found by incorporating the electron-ion
temperature model. Then, based on the calculated temperatures, criteria for cavitation and nucleation
in glass and also hydrodynamic Rayleigh-Plesset equation, the conditions for nanopores formation and
for volume nanogratings survival are elucidated.

To de�ne the laser parameter dependencies on the volume nanogratings formation/erasure, a self-
consistent multiphysical approach is developed including ultrafast laser propagation in glass, multiple
rate equation to take into account excitation/relaxation processes and two-temperature model. The
numerical results provide a laser parameter window as a function of laser pulse energy, laser pulse du-
ration and repetition rate for volume nanogratings consistent with numerous independent experiments.

The performed work not only provides new insights into the formation mechanisms of periodic
nanostructures but also improves our knowledge of the optimal laser parameter control over ultrafast
material response, opening new opportunities in ultrashort laser processing of dielectrics.
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Table 1: Electromagnetic symbols

(x, y, z)/(r, θ, ϕ) Cartesian/Spherical coordinates (m, m, m)/(m, -, -)
∆t Time step s
∆x Space step m
~E Electric �eld V/m
~B Magnetic �eld N/(m·A)
~H Magnetizing �eld A/m
~D Displacement current A·s/m2

~J
( ~JD, ~JL, ~Jpi,
~JKerr, ~JPM )

Electric current density
(due to heating, photoionization depletion,

Kerr e�ect, ponderomotive force) V/m
~P Polarization current A·s/m2

I Laser intensity W/m2

θ Pulse duration s
ϕ Time delay s
ε, ε∞ Material permittivity (at in�nite frequency) without unity
ω Frequency s−1

k Wave number m−1

ωp Plasma frequency s−1

R Repetition rate s−1

N Number of pulses without unity
Σ Laser pulse energy J
F Laser �uence J/m2

λ (λ1) Laser wavelength (in the media) m
ω0 Beam waist m
zR Rayleigh range m
ζ Gouy phase shift without unity
Gj Oscillator strength without unity
γj Damping factor s−1

q Size parameter without unity
Be

1 First order electric moment V·m2

Bm
1 First order magnetic moment V·m

ne Electron density m−3

ncr, na Critical/saturation electron density m−3

m∗ E�ective mass kg
νe Electron collision frequency s−1

χ Susceptibility without unity
χ3 Third-order material susceptibility m2/V2

χPM Ponderomotive force susceptibility m2/V2

n Refractive index without unity
αabs, labs Absorption coe�cient/Average absorption depth without unity
k Extinction coe�cient without unity
Eg Electron band gap eV
nKerr Kerr nonlinear refractive index m2/W
τrec Electron recombination time s
wpi Photo-ionization rate m−3s−1

σ6 Six-photon ionization coe�cient m9W−6s−1

σ3 Three-photon ionization coe�cient m3W−3s−1

Wav Avalanche ionization rate m−3s−1

α Avalanche ionization coe�cient m2/(W·s)
ᾱ Avalanche parameter s−1
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Table 2: Thermo-mechanical symbols

Ce Electron heat capacity J·K−1m−3

ke Electron thermal conductivity W/(m·K)
D Di�usion coe�cient m2/s
V Thermal velocity m/s
µ Electron mobility m2/(V·s)
Ci Lattice heat capacity J/(kg·K)
ki Lattice thermal conductivity W/(m·K)
Te Electron temperature K
Ti Lattice temperature K
Tanneal, Tmelt, Tcr Annealing/softening/critical temperatures K
γei Electron-lattice coupling factor W·K−1m−2

~u Displacement vector m
ρ Material density kg/m3

η Viscosity Pa·s
τM Maxwell's relaxation time s
σ Surface tension N/m
ζ Strain rate s−1

Pdyn Dynamic tensile strength Pa
R Characteristic radius m
rcr Critical radius of nucleus m
W Free energy J
∆P Di�erence in free energy per unit volume Pa
M Molar mass kg/mole
β Thermal expansion coe�cient K−1

Y Young's modulus Pa
B Bulk modulus Pa
G Shear modulus Pa
CL Longitudinal sound velocity m/s
ν Poisson ratio without unity
σij Stress tensor Pa
σtens Tensile strength Pa
pij Photo-elastic coe�cients without unity
α, ξ Accumulation rates without unity

Table 3: Physical universal constants

µ0 Permeability in free space 4π · 107 N·A−2

ε0 Permittivity in free space 8.854 · 10−12 s4A2m−3kg−1

~ Reduced Plank constant 1.055 · 10−34 J·s
c Speed velocity 3 · 108 m/s
me Electron mass 9.1 · 10−31 kg
e Electron charge 1.6 · 10−19 A·s
Na Avogadro number 6.022 · 1023

kB Boltzmann constant 1.38 · 10−23 m2kg·K−1s−2
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Table 4: Acronyms

VNG Volume nanogratings
LFNG Low-frequency nanogratings
HFNG High-frequency nanogratings
LIPSS Laser-induced periodic surface structures
LSFL Low spatial frequency LIPSS
HSFL High spatial frequency LIPSS
FDTD Finite-di�erence Time-domain
ADE Auxiliary di�erential equation
ABS Absorbing boundary conditions
PML Perfect matched layers
UPML Uniaxial perfect matched layers
CFS Complex-frequency-shifted
CPML CFS perfect matched layers
FWHM Full width at half maximum
MPI Message passing interface
GPU Graphics-processing-units
NLSE Nonlinear Schrödinger equation
CNT Classical nucleation theory
NA Numerical aperture
SEM Secondary electron image
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Chapter 1

Introduction

Femtosecond laser interactions have attracted increasing interest due to new possibilities for the
e�cient nanostructuring of di�erent materials [1]. Nano- and microprocessing of transparent dielectrics
are particularly promising since they enable writing optical waveguides, nanovoid arrays, polarization-
dependent periodic surface structures and volume nanogratings [2, 3].

Figure 1.1: a) Ultrashort laser-induced modi�cations in fused silica taken from Refs. [4, 5]. b) Com-
position of self-organized nanogratings (illustration from Ref. [6]). c) [taken from Ref. [7]] shows
nanogratings consisting of nanopores.

The progress in ultrashort laser processing and the ability to control over the laser-induced modi�ca-
tions have already paved the way towards a wide range of applications in three-dimensional nanofabrica-
tion, biomedicine, data storage and development of polarization-sensitive and opto�uidic devices [1,8].
Depending on the laser irradiation conditions, di�erent types of permanent material modi�cation could
be induced in glasses by ultrashort laser pulses. Thus, single pulse irradiation is known to lead either to
smooth modi�cation characterized by positive index change or more dense material (often referred to
as type I) or to void-like rarefaction regions characterized by negative index change (type II) [2,9�11].
The densi�cation was attributed either to defect-assisted structural changes in glass (bond breaking)
or to pressure compaction mechanisms [5], whereas the rarefaction was related to glass decomposition
processes, i. e. mechanically induced cavitation or thermally induced phase explosion [12]. In addition,
self-organized nanogratings were found to be formed as a result of multi-pulse laser irradiation of fused
silica glass [4,13�18], few other glasses [7,19�23], and several indirect bandgap semiconductors [24�26].
Fig. 1.1(a) shows the ultrashort laser-induced modi�cations induced by applying N = 50000 number
of pulses with focusing conditions NA = 0.4 and for laser irradiation wavelength λ = 800 nm in fused
silica. For low laser pulse energy Σ = 0.1µJ , the modi�cation is characterized by positive refractive in-
dex change indicated by black color (densi�cation, type-I). For higher laser pulse energies, nanogratings
are formed in the regions of negative refractive index change indicated by white color (void, type-II).
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Fig. 1.1(b) demonstrates that the modi�cation consists of more dense layers of ≈ 250 nm, associated
with nanogratings period, and ≈ 20 nm of less dense layers associated with nanogratings thickness.
Fig. 1.1(c) shows that the void-like layers consist of nanometric pores of radius r = 10− 20 nm.

To control over the laser-induced processing, the resulting modi�cations were experimentally in-
vestigated as a function of laser pulse energy [10, 13, 27�30], pulse duration [13, 15, 31, 32], numerical
aperture [10], laser wavelength [10,16], polarization [5,10,20,33,34], repetition rate [16,23,35�37], and
number of applied pulses [5,16,18]. In particular, it was shown that by varying pulse energy, focusing
conditions or temporal pulse envelope, completely di�erent types of modi�cations from positive index
change to negative can be induced in fused silica glass [2,10,11,27,28]. Pulse duration is also found to be
a crucial parameter in the formation of self-organized nanogratings, in�uencing laser pulse energy con-
ditions for their formation [13], periodicity (spacing decreases with the increasing pulse duration) [15],
and refractive index contrast of the nanostructures [38]. Furthermore, a choice of the convenient repe-
tition rate allows a better control over the heat accumulation e�ects playing an important role in the
multi-pulse laser irradiation [16,23,35]. A better understanding of the di�erences between the distinct
laser-irradiation regimes and the resulting laser-induced modi�cations is still lacking.

Volume nanogratings formation regime is of particular interest, because of numerous unique ap-
plications illustrated in Fig. 1.2, including highly survivable and long lifetime rewritable data stor-
age [39�41](a, b), recent development of phase elements for polarization control and computer-generated
holography [5,42] (c, d), as well as fabrication of nano�uidic channels for biomedicine and DNA molec-
ular analysis [39, 43](e, f). These applications became realizable owing to several unique features of
the nanogratings revealed by experimental investigations.

Figure 1.2: Examples of potential applications of VNGs.

First observed in 2003 by using a tightly focused femtosecond laser beam [4], these nanoplanes
were found to be oriented perpendicular to the laser polarization. In particular, it was revealed that
the orientation of the nanostructures depended on the local laser polarization [33, 44] (see Fig. 1.3(c,
d)). For instance, it is possible to rotate the nanoplanes imprinted in fused silica bulk in space [45]
and to inscribe the nanogratings and the nanoripples of the designable spatial structure [46]. Up to
now, several experimental works have been devoted to reveal nanostructures created by radial and
azimuthal polarizations [33,47], circular polarization [46,48], and even spiral polarization [49�51].

Remarkably, nowadays, the VNGs are still considered to be the smallest embedded structures ever
created by light. Liao et al. reported that a single grating with transverse width as small as 40 nm
could be inscribed in fused silica [18], opening the opportunities for nano�uidics (Fig. 1.2(e)).

The nanoplanes are typically spaced by the half of the wavelength in the medium [16, 20, 44].
However, the period was shown to decrease continuously with the number of the applied pulses
[4, 16, 19, 52�54] as shown in Fig. 1.3(e). It was also demonstrated that the periodicity could be
controlled by changing the temporal pulse envelope in Fig. 1.3(f), where the period decreases with the
increasing pulse duration [15]. The dependence of the laser pulse energy on the nanoplanes spacing
is controversially discussed in the literature [4, 44, 55�57]. Firstly, it was proposed by Shimotsuma et
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Figure 1.3: a) Laser parameter window as a function of laser pulse energy and laser pulse duration de-
�ned by Taylor et al. [39]. b) Laser parameter window as a function of laser pulse energy and repetition
rate de�ned by Richter et al. [16]. c) Nanogratings inscribed by radial polarization [33]. d) Nanograt-
ings inscribed by di�erent angle orientation to laser polarization [44]. e) Control of nanogratings period
and size by changing the number of applied pulses [39]. f) Control of nanogratings period by changing
the temporal pulse envelope [15]. g) Nanogratings observed in ULE and boro�oat glasses [38].

al. that the periodicity would increase with the deposited laser pulse energy. However, Bhardwaj et
al. demonstrated that it didn't considerably change for large pulse energy interval from Σ = 200 nJ
to Σ = 1µJ and di�erent laser polarizations. The decreasing trend of the nanogratings spacing with
the increasing pulse energy deposition for di�erent number of applied pulses was also reported [55].
Liang et al. emphasized that the spacing decreased not with the increasing pulse nergy, but with
the increasing laser pulse �uence [56]. In contrast, Ahsan et al. found that the periodicity increased
with the increasing laser pulse energy and �xed pulse duration and also with the increasing laser pulse
duration but �xed laser pulse energy [57].

Several experimental studies revealed an existence of a laser parameter window required for nanos-
tructure formation and erasure. Among these parameters, the major ones are laser pulse energy, pulse
duration and repetition rate [10,11,13,16]. A rigorous study of the phenomenon was performed by Tay-
lor et al., where three regimes of femtosecond laser dielectric modi�cation at di�erent laser conditions
were underlined [39]: (i) smooth modi�cation, (ii) birefringent modi�cation enabling nanogratings self-
organization and (iii) disruptive modi�cation at higher pulse energy and longer pulse duration (Fig.
1.3(a)). Furthermore, the role of the local temperature and heat accumulation in the multi-pulse ul-
trashort laser irradiation has been recently demonstrated leading to nanogratings in the case of low
repetition rates and to melted disrupted regions at high repetition rates [23,58] (Fig. 1.3(b)).

Apart from the direct observations of the �nal laser-induced modi�cations, a rigorous experimental
works were devoted to analyze the temporal dynamics of the laser-a�ected zone.

The electron dynamics was investigated in di�erent laser irradiation regimes in order to de�ne the
average values of laser-induced electron densities as well as the lifetime of plasma in fused silica and
borosilicate glasses [2,28,59,60]. It was found that the electrons have sub-picosecond trapping time in
the regimes of low laser pulse energies and sub-picosecond pulse durations in fused silica [61, 62] and
up to hundreds of picoseconds in borosilicate and soda-lime glasses [60, 62]. In the regimes of higher
laser pulse energies, picosecond pulse durations and the electron densities approaching to the critical
value, the electron plasma was shown to survive up to nanoseconds [2, 59,60].

The temperature dynamics was also investigated in few recent works in case of a single pulse
irradiation [29] and multipulse irradiation [37], indicating the temperatures exceeding the melting point.
The time-resolved measurements revealed the launch of pressure waves on nanosecond timescales in
di�erent glasses [2,17,63�65], as well as the void formation on nanosecond/microsecond timescales [66].

Several studies were devoted to the multi-physical analysis of laser-induced modi�cations in glass.
Rigorous calculations were performed to investigate ultrafast free-electron dynamics in dielectrics
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by nonlinear Schrödinger (NLSE), Boltzmann and Maxwell's equations [67�73]. On one side, the
NLSE, being an asymptotic parabolic approximation of Maxwell's equations, requires the unidirec-
tionality of the light beam and cannot describe cases where dense electron plasma is generated causing
light scattering to large angles [74, 75]. On the other side, NLSE is advantageous as the solution for
the electromagnetic propagation on microscale distances signi�cantly larger than the laser irradiation
wavelength, on which solving Maxwell's equations coupled with the rate equation is the problem requir-
ing enormous computer time and memory resources. A quantum-kinetic approach based on Boltzmann
equations is an alternative way to investigate the electron dynamics during ultrashort laser propaga-
tion and is the method which avoids the application of phenomenological models such as Drude model
for electron heating and takes into account a wide range of non-equilibrium processes in the laser
interactions [73]. The main disadvantage of this method is its numerical complexity. The mentioned
approaches were used to investigate the competition between nonlinear processes in dielectrics, such as
Kerr e�ect, photoionization and impact ionization [71,73] and connect the laser irradiation conditions
with the resulting electron density spatial distributions [69�71]. Note, that the mentioned approaches
treated the material as a homogeneous media and, therefore, took account for a single pulse irradiation,
whereas in case of multipulse irradiation the propagation and, therefore, the electron density distribu-
tion is in�uenced by already created inhomogeneous modi�cation. In order to consider the ultrashort
laser interaction with inhomogeneities, Maxwell's equations coupled with rate equation seem to be the
most appropriate as this approach treats the propagation of media with the given three-dimensional
spatial discretization.

Initially, numerical approaches based on Maxwell's equations were developed to study the elec-
tromagnetic interaction of ultrashort laser irradiation with a rough surface [76�79]. It was suggested
that the interference patterns left by the inhomogeneous absorption of linear polarized laser radiation
below a rough surface corresponded to the localized surface ripples which could be organized within
single laser shot [76]. The simulations based on the developed approaches supported the conclusions
drawn by previously proposed analytical solution for electromagnetic propagation through rough in-
terface between two media, often referred to as Sipe theory [80]. According to this theory, the light
interaction with dielectric rough surface results in the formation of the interference patterns prefer-
entially oriented parallel to laser polarization and spaced by laser wavelength in media, whereas the
light interaction with metallic rough surface induces radiation remnants preferentially perpendicular
to laser polarization and spaced by laser wavelength. In fact, the orientation and the spacing were
found consistent with the experimentally observed classical low spatial frequency ripples on the surface
of dielectrics, semiconductors and metals [76]. Skolski et al. proposed then that high spatial frequency
ripples with sub-wavelength periodicity could be also explained by the electromagnetic approach [77].
The method was further expanded to take into account the interpulse positive and negative feedback
mechanisms to explain the formation of grooves with spacing larger than laser wavelength, low spatial
frequency parallel oriented ripples on metals with typical laser in wavelength spacing [77,79,81]. More-
over, Maxwell's equations were coupled with electron density equation to investigate the dynamics
of the interaction with randomly distributed inhomogeneities in fused silica glass to explain the self-
organization of nanogratings which require multiple pulse evolution related to multiphoton ionization
memory feedback [82]. Buschlinger et al. demonstrated that the irradiation of randomly distributed
inhomogeneities could also lead to quasi-periodic organization of polarization-dependent nanoplas-
mas [82]. Despite numerous previous studies, the sub-wavelength periodicity of the nanostructures has
not been clearly explained.

Thermo-elastoplastic wave equations were further incorporated to study the mechanisms of re-
fractive index change [31, 75, 83]. The propagation of the pressure wave as well as stress-induced
compaction and rarefaction were explained by the combined approaches [31, 60]. The �nal modi�ca-
tion structure was found to be imprinted in fused silica on sub-nanosecond scales [75]. The in�uence
of laser irradiation parameters on the transient refractive changes was also investigated [83].

A comprehensive thermo-mechanical modeling was performed for CO2 laser heating [84, 85] and
laser-induced structural relaxation of glass [86]. The approaches were also developed for femtosecond
laser interaction with fused silica, where the nonlinear propagation equations were coupled with two-
temperature model [83, 87, 88]. Romanova et al. proposed that type-I modi�cation (more dense
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material) took place, where the glass transition temperature was exceeded based on the numerical
calculations [87]. Doualle et al. predicted the depth of the crater after CO2 irradiation of fused silica
surface [85]. The ablation threshold of fused silica surface ultrashort irradiation were also derived
taking into account the air ionization [88].

Hydrodynamic simulations based on the equation of state were also done to investigate the cavity
formation under tight focusing laser irradiation conditions [89,90]. The calculated size of the void-like
modi�cation was found in a good agreement with the experimental results.

Heat accumulation in glass was studied by models based on the heat equation [23, 35�37]. In
multipulse picosecond irradiation regime, Sun et al. proposed that the thermal damage took place
when the melting temperature T = 1051 K was exceeded, whereas the electronic damage, referred
to a certain electron density threshold above which the electronic accumulation plays a crucial role
in plasma generation and expansion by consequent pulses, required the temperatures greater than
T ≈ 3600 K for borosilicate glass [35]. Caulier et al. derived that the permanent modi�cation in
soda-lime glass took place, when the annealing temperature T ≈ 800 K was exceeded [36].

Note, that in most cases, ultrafast propagation and thermo-mechanical processes were not cou-
pled and, therefore, the results do not connect directly the laser parameters with �nal modi�cations.
Di�erent electron density and temperature criteria were used for de�ning numerically laser-induced
modi�cations, however, none of them are su�ciently general to be applied as the thresholds for various
laser irradiation conditions. The mechanisms of void-like modi�cation remain to be investigated.

Figure 1.4: Alternative scenarios of nanogratings formation.

Several scenarios were proposed to explain the organization of periodic structures illustrated in
Fig. 1.4. The �rst model for nanogratings formation was proposed by Shimotsuma et al. [4] based on
the interference of the laser �eld with the laser-induced plasma waves (Fig. 1.4(a)). In this model,
the nanogratings period depends on the optical properties of the plasma and on the local electron
temperatures. This approach becomes invalid at a high plasma density and does not agree with the
experimental observations denying the strong pulse energy and nonlinear wavelength dependencies of
the nanogratings period. The values of the electron temperatures as high as Te ≈ 1−5 ·107 K required
for the established nanometric grating periodicity are put in doubt by several research groups [7, 44].
Another scenario was proposed by Taylor et al. [39], describing the evolution of spherically-shaped
nanoplasmas from the hot-spots organized inhomogeneously around defects or color centers, leading
to anisotropic multiphoton ionization illustrated in Fig. 1.4(b). The periodicity is de�ned by the
lowest order optical mode of multiple nanoplasmas, which behave like planar metallic waveguides [44].
Buividas et al. proposed that nanoplanes were pinned to the smallest possible standing wave cavity
inside material [91] (Fig. 1.4(c)). Despite the predicted grating period of half the wavelength in the
media agrees with experimental results, the dependency of the period on the number of laser pulses
deviates from the above prediction. In fact, this dependency cannot be explained by corresponding
changes of the refractive index [92], which could increase not more than by ≈ 30% even for overcritical
electron densities [93]. It was also reported that longitudinal periodicity of nanogratings could be
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explained by interference of short-living exciton polaritons [94,95] (Fig. 1.4(d)). In contrast to plasma
wave [4] and nanoplasmonic models [39,44], this approach requires low electron densities, as at higher
densities ne > 1027 m−3 the exciton-polariton interaction is heavily screened by the electron plasma
when the plasma begins to e�ciently absorb laser energy [96]. Furthermore, the self-trapped excitons
are commonly created in the regime of lower laser pulse energies for waveguides fabrication (type
I) [2, 11]. In this regime, the nanogratings have not been revealed yet [39].

VNGs have similarities with femtosecond laser-induced ripples on the surface, sharing sub-wavelength
periodicity, polarization, wavelength and number of pulses dependencies. Additionally, the transition
between the surface ripples and the volume nanogratings was experimentally observed [97]. A closer
examination revealed that the periodically arranged nanoplanes were preferentially formed at the inter-
face between the regions a�ected and una�ected by the femtosecond laser irradiation [18]. Therefore,
it was proposed that the mechanisms of the nanostructure formation could be related [98]. Thus,
the generally accepted mechanisms of surface ripples formation such as the interference between the
incident light and the electromagnatic waves scattered at the rough surface with possible excitation
of surface plasmon polaritons [76] (Fig. 1.4(f,g)), hydrodynamic instability [99] (Fig. 1.4(h)) and
second harmonic generation [100], are worth mentioning. On one hand, Liao et al. and Makin et al.
suggested that excitation of standing plasma waves at the interfaces between modi�ed and unmodi�ed
areas played a crucial role in promoting the growth of periodic nanogratings [18, 101]. On the other
hand, it was further underlined that the evidence of the defect-assisted local �eld rearrangement ex-
cluded the scenario that the nanograting was a result of interference between the writing beam and
the surface plasma waves [102]. The surface plasmon excitation on the unexcited glass/metallic glass
or void/metallic glass requires the condition Re(ε) < −n2 to be ful�lled, where ε is the permittiv-
ity of the modi�ed material and n is the refractive index of the unexcited glass or air/void. The
possibility of plasmonic scenario for excited dielectrics has been controversially discussed in the litera-
ture [18,76,79,103]. Alternatively, a non-plasmonic scenario based on so-called radiation remnants or
non-propagating electronic modes close to the rough surface was proposed to explain the formation of
ripples [76,79,80].

Furthermore, the following scenarios have been recently discussed: ionization scattering instabilities
[74, 75, 104], a space-charge built from ponderomotive force [105] and Weibel instability [106], and
electron di�usion-induced instability [107].

One can note, that most of the proposed scenarios have an electromagnetic nature. This is justi�ed
by the experimental observation of strong dependence of the electric �eld polarization and wavelength
on the nanostructures three-dimensional orientation and spacing [16, 33, 44]. Furthermore, the inho-
mogeneities or the instabilities playing a key role of scattering centers are likely to be involved in
the initiation of nanoplasma formation [23, 39, 74, 76, 82]. Experimental investigation of nanogratings
evolution evidenced that pre-distributed nanogrooves and laser-induced defects strongly a�ected local
�eld arrangement [18, 54, 102, 108]. The doping elements and embedded nanoparticles in glasses were
found to signi�cantly improve the quality and the smoothness of the nanostructures and to facilitate
the accumulation processes responsible for the self-organization [43, 109�111]. Additionally, Lancry
et al. have reported that self-organized nanogratings consist of nanopores of few tens of nanometers,
which are at the root of refractive index contrast and permanent modi�cation [7]. The formation of
nanopores is then attributed to the glass decomposition, i. e. oxygen dissociation and formation of less
dense material [112]. It has been recently shown that the presence of such nanometric inhomogeneities
in glass leads to quasi-periodic polarization-dependent subwavelength nanoplasma formation during
irradiation by ultrashort laser pulses [82].

This way, the numerical model comprising the nonlinear electromagnetic interaction with randomly
distributed scattering centers or inhomogeneities is chosen in this thesis. The following model could
include automatically the processes, which were put in the basis of the proposed scenarios, such as the
interference between the incident light and the scattered waves from inhomogeneities/rough interfaces,
the nanoplasmonics scenario, the excitation of surface plasmon waves, the electromagnetic or the
nonlinear e�ect-driven instabilities.

Apart from the elucidation of the formation mechanisms of periodic nanostructures, the following
questions remain to be answered. First of all, the conditions for nanogratings formation and erasure
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are to be elucidated and de�ned as a function of laser irradiation parameters, such as laser pulse
energy, laser pulse duration and repetition rate. Secondly, the ability to control over the properties of
nanogratings, such as their size, orientation and periodicity, is to be discussed. And �nally, it is still
unclear whether it is possible to inscribe the nanostructures in any transparent materials or not. For
instance, it has been reported that the nanogratings can be created in fused silica [4, 39], borosilicate
glasses [21, 23], ULE glass [23, 113], soda-lime glasses [19], germanium-doped silicate glasses [23] or
germanium dioxide glasses [20], lithium-niobium silicate glass [114], sodium gallophosphate glass [115],
transparent crystals as 4H-SiC [24] or TeO2 [116], sapphire [117], indirect semiconductors such as c-Si
and GaP [25,26].

The experimentally revealed in�uence of laser parameters, such as pulse energy, pulse duration and
repetition rate, on nanogratings formation is still far from being clearly explained. Various controversial
values of the electron densities from ne = 1025 m−3 to ne = 1027 m−3 and electron temperatures from
Te = 3.5 · 105 K to Te = 5 · 107 K of di�erent orders of magnitude associated to this regime have
been previously reported [2, 4, 7, 17, 62, 75, 118]. This fact does not allow one to easily identify the
mechanism of their periodic organization. Finally, debates are still open regarding the ways of glass
decomposition and how the modi�cations can be permanently conserved in the form of nanogratings
[23, 75]. On one hand, cavities of one hundred nanometer sizes are typically formed after single pulse
irradiation [11,34,118]. On the other hand, the appearance of nanopores after multiple laser irradiation
points out that nucleation takes place in accumulation regime [7,23]. The nucleation followed by laser-
induced cavitation was reported in several experiments [119�121]. Up to now, the competition between
cavitation and nucleation processes in the regimes of ultrafast laser irradiation of fused silica, has not
been investigated previously. The conditions for nanopore formation, stability and growth also remain
to be elucidated.

To answer these questions, a multiphysical model is required which would be able not only to
describe the electronic modi�cations induced by ultrashort laser pulse, but also the further evolution
of laser-a�ected zone up to permanent glass modi�cation. Two-temperature model is of interest due
to the possibility to de�ne the spatial temperature distribution directly from the calculated electronic
modi�cation. Then, thermo-elastoplastic model could be helpful to obtain the spatio-temporal density
distributions. To connect the laser irradiation parameters with the �nal modi�cations, simple criteria
of glass decomposition are required. Finally, hydrodynamic approach is desirable to understand the
following evolution of the heat-a�ected zone after the modi�cation processes have already taken place.

Figure 1.5: Schematics of main physical processes involved in the ultrashort laser processing of fused
silica bulk.

Self-organization of periodic nanoporous structures in glass is shown to be a complex multi-physical
phenomenon covering a wide range of processes occurring at di�erent time scales as illustrated in Fig.
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1.5. These processes form the basement for the multiphysical model discussed in this thesis. The
�rst part of the processes take place at femtosecond or picosecond timescales and lead to the free
carrier generation, and the formation of a heat-a�ected zone. The periodic nanoplasmas are likely to
be formed during ultrashort laser pulse duration. The second part involves the glass decomposition
and material reorganization at nanosecond and microsecond scales up to fast cooling of the lattice,
resulting in the permanent modi�cation. The laser-induced nanopores in�uence the ultrashort laser
propagation during the next pulse irradiation.

In this thesis, the problem is also sub-divided into two parts. In the �rst part, the ultrashort laser
interaction with inhomogeneous media is investigated based on three-dimensional Maxwell's equations
coupled with rate equation. In the second part, two-dimensional multiphysical approach is applied,
where two-temperature and thermo-elastoplastic models are combined with Maxwell's and multiple
rate equations and supplemented by criteria for glass decomposition and hydrodynamic approach.

This thesis was prepared in Laboratoire Hubert Curien, Saint-Etienne, France in the frame of
NANODIELEC project, LABEX MANUTECH SISE (ANR-10-LABEX-0075) of Université de Lyon,
within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

The thesis is organized as follows.
In Chapter 1, the up-to-date experimental literature related to the phenomenon of volume nanograt-

ings has been reviewed. The questions, concerning the mechanism of their formation, have been arisen
and the scenarios, proposed previously by independent experimental and theoretical groups, have been
discussed. The analysis allows us to choose adequately the physical model, which includes most of the
involved processes and checks the validity of the proposed scenarios.

In Chapter 2, the multiphysical model is introduced, describing a wide range of processes such
as electromagnetic nonlinear interaction, free carrier generation, electron-ion energy transfer, hydro-
dynamics, thermoelastic wave propagation, and mechanisms of glass decomposition. The physical
processes are connected together, enabling a detailed theoretical investigation of the in�uence of laser
parameters on the processes of glass decomposition for a deeper understanding of femtosecond laser-
induced phenomena.

Chapter 3 proposes a numerical approach to solve the described system of equations. Particular
attention is paid to the development of a novel method for fast solution of nonlinear optics problems.
The electromagnetic �nite-di�erence time-domain approach is expanded for dispersive nonlinear media,
where the iterative procedure is used for solving the nonlinear Maxwell-Ampere's equations. The
numerical methods for solving two temperature model and thermo-elastoplastic wave equations are
equally discussed.

Chapter 4 and Chapter 5 include the numerical results obtained by the electromagnetic approach
coupled with excitation/relaxation processes.

In Chapter 4, the ultrashort laser irradiation of a single nanoparticle is investigated. For low
intensity irradiation in the absence of changes in fused silica optical properties, the numerical model
is validated by comparing with the analytical Mie theory. The electron density evolution is then
investigated in a nonlinear case. The growth of nanoplasma perpendicular to laser polarization from
the nanometric inhomogeneity is predicted by the numerical model.

Chapter 5 provides the main results concerning three-dimensional periodic nanostructure formation
inside fused silica bulk. The electronic modi�cations induced by ultrashort laser are investigated as
a function of laser pulse energy and polarization, as well as the initial concentration of randomly
distributed inhomogeneities which are shown to play the key role in the periodic nanoplasma formation.
The mechanisms of the nanostructure formation on the surface and in the bulk of fused silica are shown
to have similar nature. Results of multipulse simulations are included to support the scenario of void-
like nanoplane growth on a shot-to-shot basis.

Chapter 6 extends the approach by combining two-temperature, thermo-elastoplastic and hydro-
dynamic models. The simulations provide the evolution of the heat-a�ected zone after ultrashort laser
interaction. Criteria for glass decomposition are additionally applied to predict the nanovoid formation
inside glass. The threshold conditions for nanogratings formation and erasure are �nally connected
with laser irradiation parameters and a laser parameter window for nanostructuring is proposed based
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on the numerical calculations.
Finally, the main results and conclusions are summarized in Chapter 7. Suggestions for future

research are discussed.
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Chapter 2

Modeling details

In this chapter, we describe a multiphysical self-consistent model for ultrashort laser interaction
with dielectrics. Firstly, the propagation dynamics of light in dispersive, nonlinear dielectric me-
dia during femtosecond laser duration is given by a set of nonlinear Maxwell's equations. Then,
Maxwell's equations are coupled with time-dependent electron density equation, where the electron
excitation/relaxation processes are taken into account. Speci�c attention is paid to the processes of
nonlinear ionization such as multiphoton, tunneling and avalanche ionizations and their relative con-
tribution to the changes in optical properties of the media. The nonlinear contributions due to the
third-order Kerr nonlinearity and due to the ponderomotive force are considered in the model. Then,
the electron-ion heat transfer equations are incorporated into the model to describe the temperature
dynamics from femtosecond to microsecond timescales. The system of equations is closed with ther-
moelastic wave equations, enabling to estimate the stresses, the densities and the transient changes of
the refractive index. The viscoelastic model and classical nucleation theory (CNT) serving as criteria
for glass decomposition are detailed. Finally, Rayleigh-Plesset equation is introduced to investigate
the hydrodynamics of nanovoids/nanopores.

2.1 Maxwell's equations for dispersive nonlinear media

The propagation of electromagnetic wave in media is described by the system of Maxwell's equations
∂ ~D

∂t
= ∇× ~H − ~J

∂ ~B

∂t
= −∇× ~E,

(2.1)

where ~E is the electric �eld, ~B is the magnetic �eld, ~D is the displacement current, ~H is the magnetizing
�eld, and ~J is the electric current density. The �rst equation is called Maxwell-Ampere equation,
whereas the second is Maxwell-Faraday equation.

In the case of non-magnetic material, the magnetic �eld is proportional to the magnetizing �eld
~B = µ0

~H, where µ0 is the permeability of free space. The displacement �eld for a non-linear media is
de�ned as ~D = ε0ε(ω) ~E = ε0ε∞ ~E + ~P = ε0ε∞ [1 + χ(ω)] ~E, where ~P is the polarization �eld, ε0 is the
free space permittivity, ε(ω) and χ(ω) are the material permittivity and susceptibility, which in general
case depend on the frequency of the incident electromagnetic wave ω, and ε∞ is the value of material
permittivity at in�nite frequency. For simplicity, the polarization current is de�ned as ~Jp = ∂ ~P

∂t . The
system of Maxwell's equations is rewritten in the following way

∂ ~E

∂t
=
∇× ~H

ε0ε∞
− 1

ε0ε∞
( ~Jp + ~J)

∂ ~H

∂t
= −∇×

~E

µ0
.

(2.2)
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2.2 Drude and Lorentz models for dispersive media

To account for the complex index of material dielectric constant, as well as its variation with the
frequency of light ω, a classical model based on the equation of a motion for a harmonically bound
classical electrons interacting with an electric �eld ~E was proposed by Drude and Lorentz. The equation
of motion is written as

me

(
∂2~r

∂t2
+ γ

∂~r

∂t
+ ω2

0~r

)
= −e ~E(~r, t), (2.3)

where ω0 is the natural frequency of the oscillator, γ is the damping constant, me and e are the
electron mass and charge, respectively. For an incident electromagnetic �eld of frequency ω, ~E(~r, t)
is represented by a complex exponential ~E = ~E0exp(−iωt). The solution of the equation (2.3) in
complex form is given by ~r = − e

me

(
ω2

0 − ω2 − iγω
)−1 ~E0. The electric dipole moment of the electron

is given by ~p = −e~r. The polarization �eld per unit volume is de�ned as ~P (ω) = ε0ε∞χ~E = Np(ω) =
e2N
me

(
ω2

0 − ω2 − iγω
)−1 ~E(ω), resulting in the following di�erential equation by taking Fourier trans-

form
∂2 ~JL
∂t2

+ γ
∂ ~JL
∂t

+ ω2
0
~JL = ε0ε∞ω

2
0

∂ ~E

∂t
, (2.4)

where ~JL = ∂ ~P
∂t is the Lorentz current applied directly to Maxwell-Ampere equation (2.2).

The dielectric function ε for the material with one resonance is given by ε = ε∞ +
ω2

0

ω2
0−ω2−iγω . The

frequency dependent dielectric constant of the material with several optical resonances can be modeled
by a set of Lorentz poles

ε(ω) = ε∞ +
∑
j

Gjω
2
0

ω2
j − ω2 − iγjω

, (2.5)

where γj is the damping factor for each Lorentz pole or collision wavelength, Gj is the oscillator
strength such as

∑
j Gj = 1, ωj is the oscillating wavelength or the resonant frequency.

For Lorentz model, the real and the imaginary parts of the dielectric permittivity ε = Re(ε)+iIm(ε)
are given by

ε1 = Re(ε) = ε∞ +
∑
j

Gjω
2
0(ω2

j − ω2)

(ω2
j − ω2)2 + γ2

jω
2

ε2 = Im(ε) =
∑
j

Gjω
2
0γjω

(ω2
j − ω2)2 + γ2

jω
2
.

(2.6)

If we neglect bound electrons, oscillating with resonant frequency, there is no natural frequency for
free electron gas. In this case, the Drude model can be derived from the Lorentz model by making
the assumption that ωj = 0. This way, the real and imaginary parts of the dielectric permittivity are
written as

ε1 = Re(ε) = ε∞ −
∑
j

Gjω
2
0

ω2 + γ2
j

ε2 = Im(ε) =
∑
j

Gjω
2
0γj

ω3 + γ2
jω
.

(2.7)

The general expression for the dielectric permittivity of the material with several optical resonances
is known as Sellmeier's formula

ε(ω) = 1 +
∑
j

Gjωj
ω2
j − ω2

. (2.8)

For fused silica, a set of parameters was introduced and tested by comparing with experimental results
by Nakamura et al. [122, 123]. A set of parameters for noble metals was proposed by Johnson and
Christy [124].
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The Lorentz equation (2.4) under the assumption ω0 = 0 and by substituting ~JD = ∂P
∂t takes form

of the Drude equation for dispersive media

∂ ~JD
∂t

= −
~JD
τe

+ ω2
p
~E, (2.9)

where e is the elementary charge; me is the electron mass; ne is the time-dependent free carrier density,
ω2
p = e2ne

ε0me
is the plasma frequency and τe = γ−1 is the electron collision time. The equation describes

the heating of the conduction band electrons. The current ~JD is applied directly to Maxwell-Ampere
equation (2.2).

In our case, the dielectrics with time-varying optical properties are of interest, so the most conve-
nient model is the Drude model, where the polarization current is de�ned by the equation (2.9).

The real and the imaginary parts of permittivity ε have been derived from a simple Drude model
with time-varying electron density ne (2.7). In fact, the time-dependent changes of the permittivity
are associated both with state and band �lling and the free carrier response [125] as follows

ε1(ne) = ε− (ε− 1)
ne
na
− e2ne
me(ω2

L + νe2)

ε2(ne) =
e2neνe

meωL(ω2
L + νe2)

,

(2.10)

where ε = n2 is the dielectric constant of non-excited glass at ne = 0, ωL = 2πc/λ is the frequency of
the laser and νe = τe

−1 is the electron collision frequency. The contribution of the valence electrons to
glass permittivity is insigni�cant. One can estimate, that for νe = 2 ·1015 s−1 and ncr = 1.74 ·1027 m−3

for laser wavelength λ = 800 nm, the contribution of the conduction electrons is e2ne
me(ω2

L+νe2)
≈ 1.15,

whereas the one of the valence electrons is (ε − 1)nena ≈ 0.096. As a result, their in�uence on the
propagation is neglected in (2.2).

The permittivity of the material is directly related to the optical properties of the medium ε =
(n+ik)2, where n is the refractive index, which indicates the phase velocity information, and k is the ex-
tinction coe�cient, which indicates the amount of absorption loss while propagating through the mate-

rial. One can derive the expressions for them as n =

√
(
√
ε21 + ε22 + ε1)/2 and k =

√
(
√
ε21 + ε22 − ε1)/2.

Finally, the absorption coe�cient is related to the extinction coe�cient as αabs = 4πk/λ.

2.3 Kerr e�ect

Besides the frequency dependent linear contribution to the polarization �eld ~P , the material re-
sponds nonlinearly to the applied electric �eld ~E due to Kerr e�ect. The third nonlinear electric

polarization �eld is de�ned as Pi = ε0ε∞
3∑
j=1

3∑
k=1

3∑
l=1

χ
(3)
ijklEjEkEl, where χ

(3)
ijkl - the 4th order component

of the electrical susceptibility [126]. For isotropic materials, there are 21 nonzero susceptibilities, of
which only 3 are independent

χ
(3)
1133 = χ

(3)
1122 = χ

(3)
2233 = χ

(3)
2211 = χ

(3)
3311 = χ

(3)
3322

χ
(3)
1331 = χ

(3)
1221 = χ

(3)
3223 = χ

(3)
2112 = χ

(3)
3113 = χ

(3)
2332

χ
(3)
1313 = χ

(3)
1212 = χ

(3)
2323 = χ

(3)
2121 = χ

(3)
3131 = χ

(3)
3232

χ
(3)
1111 = χ

(3)
2222 = χ

(3)
3333 = χ

(3)
2211 + χ

(3)
2112 + χ

(3)
2121.

(2.11)

The condition of the invariance of indices to all permutations of the input signals and the re-
sulting beam comes from the assumption of Kleinman symmetry. This approximation applied to
solve the problem numerically in reasonable times holds if the frequency of the laser is far below
the material resonant frequency and there is no dispersion in the nonlinear response over the entire
range of frequencies involved [127]. Finally, the components of the polarization �eld are given by
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Pi = ε0ε∞χ3

∣∣∣ ~E∣∣∣2Ei, where χ3 is the third-order susceptibility equal for all polarization components
and without any frequency dependent contributions. This way, the complete displacement current is

given by ~D = (ε ~E+ ε∞χ3E
2 ~E)ε0. Substituting the expression for the polarization �eld to ~JKerr =

∂ ~P

∂t
results in the following Kerr polarization current

~JKerr = ε0ε∞χ3

∂

(∣∣∣ ~E∣∣∣2 ~E)
∂t

. (2.12)

The nonlinear current (2.12) is incorporated to the system of Maxwell's equations (2.2), analogically
to the polarization Drude current ~Jp. Note, that the third-order susceptibility is related to Kerr

nonlinear refractive index as χ3 = 8·nKerr
3

n
2

√
ε0
µ0
. The Kerr nonlinear refractive index is taken to

be nKerr = 3.89 · 10−20m2/W for fused silica [61] (corresponding to χ3 ≈ 2 · 10−22 m2/V2) and
nKerr = 3.45 · 10−20m2/W for borosilicate glass [31,35].

2.4 Electron collision time

In the femtosecond laser-excited dielectrics, the electron collision time τ is variable during the
process of the energy deposition, as the electron density and the electron temperature grow rapidly and
the electron energy distribution is far from equilibrium during the whole pulse duration. On the same
time, it is one of the most crucial parameters of the Drude model (2.7). For fused silica, the averaged
values for the electron collision parameter reported in the literature vary from 0.2 fs [62,128,129] to 23.3
fs [69], revealing that it is de�nitely determined by the excitation conditions. As a result, attempts to
evaluate the levels of electron plasma densities may lead to an error more than an order of magnitude
and in�uence the balance between multiphoton and collisional ionization mechanisms [130].

On one side, a certain analogy can be drawn with temperature dependence of the collision time
in metals, which is the sum of the contributions from the electron-phonon and electron-ion collisions.
The general trend of behavior of the total collision time with the increasing laser intensity and electron
temperature is that it decreases continuously, �nally reaching the lower physical limit τmin = d/V = 0.2
fs [129], where V is the electron velocity and d is the interatomic distance. With further increase in
intensity and temperature, the collision time increases as in ideal hot plasma, for which Spitzer's
formula can be applied [90,131] as

τSpitzer =
3

4

(mekbTe)
3/2

(2π)1/2Zave4menelnΛ
, (2.13)

where Zav is the ionization degree, Te is the electron temperature, lnΛ ≈ 10 is the Coulomb logarithm
or the relationship between the maximum and minimum collisional parameter. Taking the electron

temperature approximately equal to the energy of electron motion Te ≈ me
2

(
eE
meω

)2
, one can estimate

the collision time τ = 1 fs [71]. In contrast, in the limit of a cold solid at temperatures below the Fermi
temperature, the electrons are in a degenerate state. The collision frequency is no longer dependent on
the electron temperature, but governed by the scattering of electrons by phonons or lattice vibrations,
giving the maximum value of the collision time for room temperature τe ≈ 25 fs [129]. Thus, the
minimum value at room temperature and the maximum limited value for the e�ective collision rate
are well de�ned.

On the other side, it is well-known that the collision time decreases with the free electron density
increasing up to the near-critical density ncr = ε0meω

2/e2, resulting in a decrease of re�ectivity [132].
Therefore, an inversely proportional relation with the free electron density can be assumed analogically
to semiconductors, where the charge carriers are electrons and holes and their numbers are controlled
by the concentration of impurity elements and the electron mobility is characterized by the empirical
relationship

µe = µmin +
µmax − µmin
1 +

(
ne
ncr

)α . (2.14)
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As there is also strong relationship between the electron collision time and the electron mobility,
common empirical dependence can be applied for τ = τmin+ τmax−τmin

1+
(
ne
ncr

)α , where, for example, τmin = 0.2

fs, τmax = 2 fs and α = 0.7. The maxima and minima of the parameter are taken from the work [133],
where the calculated re�ectivity for di�erent electron collision times is compared with the experimental
results. Thus, with growing intensity smaller values for collision time are obtained. For critical value of
density, the value for the collision time equals τ = 1.1 fs [134]. The comparison between the electronic
modi�cations obtained by taking into account di�erent collision times as parameters is given in Chapter
4. If not mentioned, the electron collision time taken in this thesis is τe = 0.5 fs [2].

2.5 Ponderomotive force

The electrons move under the e�ect of the laser electric and magnetic �elds described by the
equation of motion md~v

dt = −e ~E(~r) − e~v × ~B(~r). If the electromagnetic wave varies in space and ~v is
not constant due to nonlinear propagation in media, there is a time-averaged charged force, causing
the electrons to move along the propagation direction. The expression for the nonlinear ponderomotive
force can be found by time-averaging the second order solution of the equation of motion for the charged
particle, taking account the term ~v× ~B and the expression for ~B from Maxwell-Faraday equation. The
force is inversely proportional to the squared frequency of irradiation Fp = − e2

4meω2∇(E2) = −∇ΦPM

in an oscillating electromagnetic �eld [14,105], where ΦPM is the ponderomotive potential and ~E(~r) is
the local �eld amplitude of the electric �eld. The sign indicates that the force pushes the electrons away
from the regions of high intensity. The carrier density generated due to the ponderomotive potential
is given by np = 1

3π2 (3me
~ )3/2(Ef −ΦPM )3/2, where Ef is the Fermi energy and ~ is the reduced Plank

constant. Therefore, the permittivity related to the ponderomotive force in the frequency domain is
described by

εPM (
∣∣∣ ~E∣∣∣2) = 1− e2

3π2ε0meω2

(
2me

~2

)3/2

Ef − e2
∣∣∣ ~E∣∣∣2

2meω2


3/2

. (2.15)

By truncating Taylor series, one can �nd the Kerr-like nonlinearity due to the presence of the charged
force [135]

εPM

(∣∣∣ ~E∣∣∣2) = ε∞ +
3

2

(
ωp

3π2ε0mee

)2/3 e4

ω4~2

∣∣∣ ~E∣∣∣2 = ε∞ + χPM

∣∣∣ ~E∣∣∣2 . (2.16)

It is worth noting, that the contribution of the ponderomotive force to the glass permittivity increases
with the increasing wavelength in fourth order λ.

Analogically to the polarization current, the convolution marked by ∗ is introduced as G(t) =
χPM (t) ∗ E2(t) [136] with the corresponding Fourier transform G(ω) = χPM (ω)ϑ[E2(t)], where ϑ
stands for Fourier transform. Taking into account the frequency dependence of χPM , the di�erential
equation is obtained by applying the inverse Fourier transform

∂4G

∂t4
=

3

2

(
ωp

3π2ε0mee

)2/3 e4

~2
E2. (2.17)

The nonlinear current corresponding to the ponderomotive force contribution, which is incorporated
to Maxwell-Ampere equation (2.2), is given by

~JPM = ε0ε∞χPM
∂
(∣∣∣~G∣∣∣ ~E)
∂t

. (2.18)

2.6 Free carrier rate equation

It is well established that three main mechanisms are responsible for the material excitation and
the �ow of electrons from valence to conduction band [68,69,137]: ionization produced by simultaneous
absorption of multiple photons in Fig. 2.1(a), tunneling through the potential barrier in Fig. 2.1(b), and
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avalanche or electron impact ionization in Fig. 2.1(c). The relative contribution of the mechanisms
depends on laser wavelength, pulse duration, intensity and electron density. The time-dependent
conduction-band carrier density evolution is described with a rate equation, �rstly proposed by Stuart
[137], taking into account photoionization, avalanche ionization, recombination and electron di�usion
as

∂ne
∂t

=
na − ne
na

wpi(I) +Wav(I, ne) +D∆ne −
ne
τrec

, (2.19)

where τrec is the electron recombination time, wpi is the photoionization rate, Wav is the contribution
due to avalanche ionization, na is the saturation particle density, and D is the di�usion coe�cient.
The di�usion coe�cient is estimated as D = V 2τ , where V = 2 · 108cm/s is the thermal velocity for
fused silica and τ is the electron collision time [107].

Figure 2.1: Mechanisms of nonlinear ionization in dielectrics: (a) multiphoton ionization (MPI), (b)
tunneling ionization, (c) avlanche ionization.

Photoionization leads not only to the increase of the free electron density but also to the reduction
in optical pulse energy required to ionize the medium. To take into account the losses, the e�ective
current ~Jpi is incorporated to Maxwell-Ampere equation (2.2). The value of the current is found by
setting the laser energy gain of electrons due to photoionization equal to the energy loss of the electric
�eld ~Jpi ~E = Egwpina [71, 82,104]. One can derive the following photoionization current

~Jpi = Eg
wpi(I) ~E∣∣∣ ~E∣∣∣2

na − ne
na

. (2.20)

Here, Eg is the electron band gap in the absence of the electric �eld; na is the saturation density;

I = n
2

√
ε0
µ0

∣∣∣ ~E∣∣∣2 is the intensity and n is the refractive index of unexcited material with ne = 0. The

energy gap Eg refers to the energy di�erence between the top of the valence band and the bottom of
the conduction band in Fig.2.1.

The rate wpi(I) depends on the laser intensity. For intensities lower than I = 1017W/m2, tun-
neling ionization e�ect is negligible, whereas multiphoton ionization could be described by six-photon
ionizaton approximation wpi = σ6I

6 [69]. For intensities signi�cantly higher than I = 1017W/m2, the
tunneling e�ect may play a role. Both e�ects are included in a model proposed by Keldysh [138]. The
parameter allowing to estimate which e�ect is essential (multiphoton ionization or tunneling e�ect)

was introduced by Keldysh γ =
ω
√
m∗Eg
eI = ω

√
2m∗Wion
eE , where ω = 2π · c/λ ≈ 2.355 ∗ 1015s−1 is the

frequency at the wavelength λ = 800 nm, Eg = 9 eV for fused silica, m∗ = me·mh
me+mh

≈ 0.5 · 9.1 · 10−31kg
is the reduced mass of the electron and the hole. For a �xed laser wavelength, the value of the pho-
toionization rate can be found separately from the complete Keldysh formalism [138] and incorporated
in the equation (2.19). Note that the cycle averaged expression for laser intensity or electric �eld
should be used to apply with photoionization rate. In this work, however, we evaluate directly the
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Figure 2.2: Comparison of photoionization rates given by Keldysh theory [138] for laser wavelength
λ = 800 nm, six-photon approximations with σ6 = 2 · 10−65m9W−6s−1 and σ6 = 2 · 10−67m9W−6s−1

[69].

time-dependent intensity not averaged by period to calculate the free carrier electron density (2.19)
and the photoionization current (2.20).

In the case of fused silica and λ = 800 nm laser irradiation, the six-photon ionization approximation
is commonly used. Fig. 2.2 shows that applying the six-photon ionization approximation instead of
the complete Keldysh ionization rate leads to an overestimation (in case of σ6 = 2 · 10−65m9W−6s−1)
or to an underestimation (in case of σ6 = 2 ·10−65m9W−6s−1) of the ionization rate up to three orders
in magnitude for intensities higher or less than I = 1017W/m2 [69, 132, 134, 139]. In contrast, three-
photon ionization approximation wpi = σ3I

3 is commonly applied for low electron band gap glasses,
as it gives better agreement with the experimental results [31, 140�143]. The reported multiphoton
ionization coe�cients for fused silica and borosilicate glasses are summarized in Table 2.1.

Another mechanism, which is responsible for the electron density increase is the avalanche ionization
(AI). There are several models frequently used in the literature for predicting the AI rate [144].

Stuart et al. proposed that the rate depends linearly on the laser intensity as Wav = α · I(t), where
the avalanche ionization coe�cient α = 10−3 m2

s·W for fused silica was found by numerically solving a
Fokker-Planck equation describing the electron dynamics [145]. Note, that the assumption that the
avalanche rate scales linearly with the laser intensity is valid only for low intensities [144].

A simpli�ed model of avalanche ionization rate assuming constant collision frequencies and energy
loss was proposed by Sparks [144,146]. This model assumes energy gain of a conduction electron from
an alternating electric �eld, once the conduction electron has attained the energy equal to Eg, it can
excite a valence electron across the band gap, and this process repeats itself as

WSparks =
0.693e2E2τK

me
∗Eg(1 + ω2τK2)

− 0.693hωp
EgτL

, (2.21)

where τK = 1.36 · 10−15s is the electron-phonon relaxation time when only large-angle scattering is
considered, τL = 8.77 · 10−16s is the relaxation time when both large- and small- angle scatterings are
considered, ωp is the average phonon frequency, and hωp = 0.025eV . The Thornber AI model is based
on the excursion and acceleration of the electrons in a direct current electric �eld and is applicable for
all electric �eld strengths [146].

The avalanche ionization rate can be also derived from the Drude model [74, 147, 148], where the
heating of free electrons is associated with the absorption coe�cient. In this case, the avalanche
ionization rate is described via the Drude formalism as

Wav =
e2τene

∣∣∣ ~E∣∣∣2
ncε0meEg(1 + ω2τe2)(1 +me

∗/me)

na − ne
na

, (2.22)
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where τe is the electron collision time, me
∗ is the reduced electron mass, n is the refractive index of

the non-excited material, and na is the saturation electron density.
All the introduced approaches fail to account for the fact that only the most energetic electrons are

able to induce the avalanche ionization. A more general approach can be used to estimate accurately
the contribution of the avalanche ionization Wav(I, ρ) based on the multiple rate equation [68]. The
system of P coupled equations i = [1, .., P ] writes as follows

∂n1

∂t
= (na − ne)wpi −W1,ptn1 + 2ᾱni −

n1

τrec
∂n2

∂t
= W1,ptn1 −W1,ptn2 −

n2

τrec
.....
∂ni
∂t

= W1,ptni−1 − ᾱni −
ni
τrec

,

(2.23)

where P is de�ned by the critical energy of the impact ionization and the corresponding one-photon
energy; the total electron carrier density ne =

∑P
i=1 ni; ᾱ is the avalanche parameter; and W1,pt is the

mean value of the one-photon absorption probability for fused silica. Unlike the single-rate equation,
the multiple rate equation takes into account the fact that only the electrons of i population, which
have su�ciently high energy, contribute to the avalanche ionization [68]. The number of discrete energy
states is calculated as P = 1 + [ εcrit~ω ], where the critical energy for impact ionization is de�ned as

εcrit = (1 +m∗/me)

(
Eg +

e2I

4m∗ω2

)
, (2.24)

where the laser frequency is ω = 2πc/λ and the corresponding photon energy is ~ω. One can note, that
the critical energy (2.24) takes into account the changes of the electron band gap Eg. The one-photon
absorption probability is de�ned as W1,pt = σ

ln(2)εcrit
1

P−1√2−1
I, where the absorption cross section is

described by the Drude formalism as σ = e2

m∗νe[1+(ω/νe)2]
[149]. For the avalanche parameter, the

asymptotic value ᾱ = [ P−1
√

2− 1]W1,pt is proposed [68].
Recent experiments have revealed that the electron recombination time τrec is strongly dependent

on the energy deposition, electron densities and laser-induced temperatures [2, 28, 59, 60]. The precise
knowledge of the characteristic time dependency is still lacking. Here, electron recombination time
is taken to be τrec = 1ps [150]. This value is within the reported times for similar laser irradiation
conditions, i. e. moderate laser pulse energies Σ < 4µJ and sub-picosecond pulses [28, 60]. Note,
that the electron recombination time is longer than the commonly reported decay τtr = 150 fs [61,62],
attributed to ultrafast self-trapping phenomena. Sub-picosecond electron plasma lifetimes are restricted
to low electron densities ne < 1025 m−3 [61], low temperatures and low laser pulse energies. The
electron densities are one-two order of magnitude greater in the laser irradiation regimes, discussed in
this thesis.

In the case of low band gap glasses such as borosilicate and soda-lime glasses the electron trapping is
measured to be somewhat two orders higher τrec = 100 ps [62]. It was also shown that the recombination
depends strongly on the electron density [35,151]. As an example, for borosilicate glass, the following
density-dependent electron trapping time was proposed τrec = νrecne, where νrec = 2 · 10−15m3/s [35].
This dependence is used further in this thesis for borosilicate glass.

To de�ne the nonlinear processes, playing the important role in ultrashort laser-induced irradiation,
we investigate the �nal electron density distribution. The basic model takes account the photoionization
given by Keldysh formalism, the avalanche ionization by Drude model, the photoionization depletion by
~Jpi current, electron collisions with τ = 0.5 fs, electron recombination with τrec = 1 ps, and Kerr e�ect
(black dashed line). We consider moderate focusing conditions and the resulting electron densities,
slightly overpassing the critical value ncr = 1.74 · 1027 m−3. If we add the ponderomotive force, the
distribution as well as the maximum electron densities do not change signi�cantly as marked by dashed
line in Fig. 2.3. Analogically, the contribution of the electron di�usion de�ned by D = V 2τ for τ = 0.5
fs is not signi�cant (not shown here). If the coe�cient D ≈ 0.04 m2/s proposed by Gildenburg et
al. [107] is considered, the contribution is relatively weak but visible as shown by dashed-dotted line
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Figure 2.3: The contribution of nonlinear processes (Kerr e�ect, electron di�usion and ponderomotive
force) to the �nal electron density distribution (a) in the propagation direction, (b) in the transverse
direction, (c) maximum values of the electron densities. Laser irradiation conditions: laser wavelength
is λ = 800 nm, the laser pulse energy is �xed to be 2µJ , the waist beam is 2µm, the pulse duration is
�xed to be 80 fs.

in Fig. 2.3. Note, that the electron collision time τ = 10 fs was proposed there. Finally, if we do not
consider the Kerr e�ect, both the maximum electron density and the spatial distributions are modi�ed
by more than 10% (solid line).

We conclude that the contribution caused by the ponderomotive force and the electron di�usion
are not signi�cant at moderate irradiation conditions, however, the Kerr e�ect should be taken into
account.

We show that the electron collisions de�ne mostly the spatial electron density pro�le in Fig. 2.4.
Main nonlinear processes such as photoionization, avalanche ionization and Kerr e�ect are included but
slightly di�erent electron collision times are used τ = 0.5 fs and τ = 1 fs. As a result, di�erent optical
properties are given for the �xed laser pulse energy and focusing irradiation conditions by equations
(2.7).

2.7 Electron-ion heat transfer equations

The ionization process locally transforms dielectric material into an absorbing plasma with metallic
properties. The electrons in the conduction band are heated by the laser, and transfer their energy to
the lattice. Heating of the dielectric and establishment of the energy equilibrium between the electrons
and the lattice can be described by the two-temperature model, and the energy conservation law as
follows


Ce
∂Te
∂t

= ∇ · (ke∇Te)− γei(Te − Ti) + Iαabs

Ci
∂Ti
∂t

= ∇ · (ki∇Ti) + γei(Te − Ti)−BβT0
∂

∂t
(∇ · ~u),

(2.25)

where γei is electron-lattice coupling factor, Ce and Ci are the electron and the lattice heat capacity
respectively, ke and ki are the electron and the lattice thermal conductivities, αabs is the bremsstrahlung
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Figure 2.4: Spatial electron density distributions for electron collision time (a) 0.5 fs (b) 1 fs (c)
maximum electron densities in the propagation direction. Laser irradiation conditions: laser wavelength
is λ = 800 nm, the laser pulse energy is �xed to be 2µJ , the waist beam is 2µm and the pulse duration
80 fs.

absorption coe�cient related to the extinction coe�cient as α = 4πk
λ , ~u is the displacement vector,

β is the coe�cient of thermal expansion, and B is the bulk elastic modulus. The last term stands
for the transform of mechanical energy to thermal energy and describes heat dissipation of the stress
wave [152,153].

The coupling factor is estimated from known data on the characteristic times of electron-lattice

relaxation γei =
Ce
τei

, where τei = 1 ps for transparent dielectrics [154]. The electron heat capacity is

de�ned as Ce =
3

2
kBne, where kB = 1.38 · 10−23m2kgs−2K−1 is the Boltzman constant. The heat

conductivity for electrons is ke = 2kB
2µeneTe/e, where µe = 3 · 10−5 m2

V ·s is the electron mobility [154].

Figure 2.5: Heat capacity and thermal conductivity temperature dependencies for fused silica [59,155,
156] and constant values for borosilicate glass [23].

The adaptive �t shown in Fig. 2.5 is used to reproduce the temperature dependence of the fused
silica thermal conductivity with slope discontinuities at the annealing temperature Tanneal = 1400 K
and the melting temperature Tmelt = 1875 K [156] as follows

ki =


1.3 + 1.6 ·

(
Ti

1400

)1.7
W
Km , 300K ≤ Ti < 1400K

2.9− Ti−1400
475

W
Km , 1400K ≤ Ti < 1875K

1.9 W
Km , Ti ≥ 1875K.

(2.26)

The ion heat capacity temperature dependence for fused silica shown in Fig. 2.5 is taken from
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recent experimental data [59,155] approximated as

Ci =


1.6 ·

(
1 +

√
Ti−300

200 /8

)
MJ
m3K

, 300K ≤ Ti < 500K

1.8 ·
[
1 +

(
Ti−500

1375

)1.25
11
18

]
MJ
m3K

, 500K ≤ Ti < 1875K

[3.2− 0.3
(

1875
Ti

)10
] MJ
m3K

, Ti ≥ 1875K,

(2.27)

The commonly reported values of thermal conductivities and ion heat capacities for fused silica and
for borosilicate glasses are shown in Table 2.1.

2.8 Thermo-elastic wave equations

Thermo-elastic deformation caused by nonuniform temperature distribution in glasses is determined
by thermo-elastic wave equations [157�159] as

ρ
∂2~u

∂t2
= G∇2~u+

G

1− 2ν
∇(∇ · ~u)−Bβ∇Ti, (2.28)

where ν is Poisson coe�cient, ρ is the material density, E is the longitudinal elastic modulus or Young's
modulus, B = E

3(1−2ν) is the bulk elastic modulus, and G = E
2(1+ν) is the shear elastic modulus. The

anomalous temperature dependence of elastic moduli and Poisson coe�cient is taken into account as
it was proposed by Parc et al. [160] for fused silica as follows

E = (97− 1200
Ti+1200 · 24)GPa

B = (60− 1200
Ti+1200 · 23.2)GPa

G = (33.5− 1173
Ti+1173 · 2.3)GPa

ν = 0.2− 1200
Ti+1200 · 0.03.

(2.29)

Since no temperature dependency has been found for borosilicate glass, the constant value is taken for
E and ν, whereas the expressions for the bulk and the shear elastic moduli are de�ned by the formulas
indicated above. The reported values of elastic moduli and Poisson coe�cient for fused silica and
borosilicate glasses are summarized in Table 2.1. Note, that the temperature dependence of thermal
expansion coe�cient β, bulk moduli and Poisson coe�cient is known only for solid phase (up to melting
temperature Tmelt = 1875 K). The applicability of thermoelastic wave equations is limited by these
temperatures. Furthermore, the equations do not describe glass decomposition processes and can not
be used to describe the laser-induced dynamics at strong shock wave propagation (σ > 1) GPa and
strong material compression (ρ/ρ0 > 1) [89, 90]. In this case, hydrodynamic equations supported by
the equation of state and shock data should be used to predict the material displacement behavior [90].
These regimes are out of the scope of the proposed numerical model and are not considered in this
work.

Density is obtained based on the continuity equation as follows

∂ρ

∂t
+∇ ·

(
ρ
∂~u

∂t

)
= 0. (2.30)

The laser-induced stress are calculated from the displacement vector using the stress-strain relation
[152,153,159] as follows 

σxx = 2G

(
∂ux
∂x

+
ν

1− 2ν

∂uy
∂y

)
−Bβ(T − T0)

σyy = 2G

(
∂uy
∂y

+
ν

1− 2ν

∂ux
∂x

)
−Bβ(T − T0)

σxy = G

(
∂ux
∂y

+
∂uy
∂x

)
,

(2.31)
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where T0 = 300 K is the initial temperature. Von Mises criterion suggests that the material withstands
loads tending to elongate till the tensile strength σtens de�ned as

σtens =
√
σ2
xx − σxxσyy + σ2

yy + 3σ2
xy (2.32)

reaches the critical value [161]. The critical value for fused silica is 48.3 MPa [153].
The transient refractive index change can be induced in two main ways as a consequence of ultra-

short laser interaction with glasses. The �rst way is a mechanical way, where the changes are associated
with the modi�cation induced by stresses. The second way is due to structural properties of the glass,
which are commonly related to the lattice temperature by thermo-optic coe�cients [162, 163]. This
way, the complete transient refractive index can be written as

∆ni = −n0
3

2

2∑
j=1

pij
∂uj
∂j

+
∂n

∂Ti
(Ti − T0), (2.33)

where i, j = 1, 2 correspond to x, y and pij is the photo-elastic matrix with coe�cients p11 = p22 = 0.121
and p12 = p21 = 0.27 for glass [83, 164, 165] and ∂n

∂Ti
is the experimentally measured thermo-optic

coe�cient. For fused silica, it equals to 9.33 · 10−6 K−1 for the temperatures up to 800 K [162, 163],
whereas for borosilicate glasses the coe�cient is smaller 3.41·10−6 K−1 [162]. The presented expression,
however, does not give the information about �nal permanent refractive index changes in glasses related
to type-I (densi�cation) and type-II (rarefaction). The conditions for void formation are discussed
below.

2.9 Viscosity and relaxation time

While irradiated by ultrashort laser, glasses are heated up to high temperatures [29], at which
the material properties signi�cantly change during glass-liquid transition [156,166]. One of the crucial
properties is viscosity η, which is a measure of the material resistance to the gradual tensile material
deformation. Glass viscosity is known to decrease exponentially with the increasing temperature [167�
169]. This way, if the temperatures are higher than a certain critical value, the material will be relaxed
viscoelastically faster than cooling time [109].

Figure 2.6: Viscosity temperature dependencies for fused silica and borosilicate glass [170].

One of the possibilities to describe the temperature dependence of viscosity is to use the Vogel-
Fulcher-Tammann (VTF) model, which describes viscosity data at intermediate temperatures over
many orders of magnitude with a high accuracy [169]

ln[η(Ti)] = A+B/(Ti − TV ), (2.34)
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where A = −7.925 and B = 31555.9 are constants, and TV = −142 K is Vogel's temperature for
fused silica; A = −1.97, B = 4912.5, TV = 475.4 K for borosilicate glass. The parameters are
taken from the book [170]. The resulting viscosity curves shown in Fig. 2.6 �t well the experimental
measurements [167,168,171] and consistent with the other viscosity models [169].

The viscosity also governs viscoelastic relaxation processes. For viscoelastic materials, the stress
depends not only on the strain rate but also changes due to viscous damping. Maxwell model approx-
imates the stress evolution in the material in the case of small deformations, comprising of a spring
and a Newton damper in series as follows

∂ς

∂t
=

1

E

∂σ

∂t
+
σ

η
, (2.35)

where ζ = − ∆ρ
ρ∆t is the strain rate, ∆ρ < 0 is the density change, corresponding to material's expansion

and rarefaction, ∆t is the characteristic time of the deformation, and ρ = 2.2 g/cm3 is fused silica
density.

For short picosecond timescales ∂ς
∂t �

σ
η , therefore all the energy is stored elastically σ = ςE.

At nanosecond-microsecond timescales the viscous loss term can play an important role σ
η ≈

1
E
∂σ
∂t ,

which leads to the relaxation of the stress within a characteristic time τM = η/E. Thus, Maxwell
viscoelastic relaxation time τM gives the time required for material parameters stabilization. The
temporal evolution of the stress due to viscous loss is not considered in calculations, as it is shown
that the viscoelastic relaxation takes place before fast cooling of the lattice only for high temperatures
Ti ≈ 3000 K and low glass viscosity. For these extreme conditions, the system of thermo-elasoplastic
equations can not be applied to evaluate correctly the laser-induced stress evolution.

2.10 Glass decomposition criteria

Here the criteria for void-like structure formation are detailed. Two major pathways are considered:
a mechanical way or cavitation/fragmentation, represented by viscoelastic criterion based on the energy
conservation law [172] and a thermal way or phase explosion, described by the classical nucleation
theory.

Figure 2.7: Illustration of Grady's viscoelastic model for spall in liquid.

To de�ne the conditions for cavitation inside fused silica bulk, the viscoelastic energy conservation
law is used. According to the Grady's spall criterion for liquids [172], the sum of both elastic and kinetic
energies should be greater than the surface energy, required to fracture the liquid into nanocavities of
size R, plus the local viscous dissipation during void growth and coalescence in the cavitation process
as follows

P 2
dyn

4B
+
ρζ2R2

120
≥ 6σ

R
+ ηζ, (2.36)
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where B = ρc2s(1+ν)
3(1−ν) ≈ ρc

2
s/2 ≈ 40 GPa is the elastic bulk modulus [160], cs ≈ 5.9·103 m/s2 is the sound

speed in fused silica, ν ≈ 0.2 is Poisson ratio [160], Pdyn is the dynamic tensile strength required for
cavitation, η(T ) is the viscosity, σ = σ0(1−T/Tcr)α is the surface tension, σ0 = 0.3 N/m is the surface

tension constant [173], α = 1.25 is the critical index [174]. The �rst term
P 2
dyn

4B has the main contribution

and expresses the elastic energy of deformation. The second term ρζ2R2

120 is the corresponding kinetic
energy. The work against tension forces 6σ

R and dissipation forces ηζ are proportional to the surface
tension σ(T ) and the viscosity η(T ), which both depend on the laser-induced temperatures in glass
(decrease with the increasing temperature).

The viscoelastic criterion could be interpreted in terms of a mechanical model: a mass suspended
by an elastic spring (surface tension) and put in a viscous liquid (viscosity) illustrated in Fig. 2.7. The
laser-induced strain of the material plays the role of someone pulling the rope. Besides the deformation
process, the glass is heated and then cools down fast in a microsecond timescale. Note that the required
temporal temperature evolution should be calculated by solving (2.25), whereas the evolution of the
strain rate by solving both the momentum (2.28) and continuity equations (2.30).

Figure 2.8: Phase diagram for fused silica taken from Ref. [174] indicating fused silica phases such as
low-pressure phase, liquid and vapor phases, coesite, stishovite and high-pressure phases.

According to the classical homogeneous nucleation theory (CNT), the rate, at which nucleation
occurs is given by the free energy of the critical nucleus W = 16πσ3

3∆P 2 , where σ is the surface tension,
de�ned previously, ∆P is the di�erence in free energy per unit volume between the thermodynamic
phase nucleation and the phase that is nucleating, Tcr ≈ 5400 K is the critical point temperature for
fused silica [174]. The nucleation growth begins after a characteristic time τnucl = exp( W

kBT
)/N , where

N = V ρNa/M ≈ 2.1 · 1010s−1 is the number of sites available for nucleation in V = 1µm3, Na is
Avogadro number, and M ≈ 60 g/mole is the fused silica molar mass. The critical nucleus is de�ned
by the minimum of homogeneous nucleation barrierW = 4

3πr
3∆P+4πr2σ, i. e. rcr = − 2σ

∆P , satisfying
∂W (rcr)/∂r = 0. The pressure at thermodynamic equilibrium is taken from the liquid-vapor curve for
fused silica calculated by the equation of state (EOS) [174�176]. Pressure-temperature phase diagram
is shown in Fig. 2.8. Note, that the regime of void-like structure formation (type-II) at moderate laser
pulse irradiation, mostly considered in this thesis, takes place for temperatures higher than the melting
point Tmelt > 1875 K and pressures P < 10 GPa, therefore, the nucleation here is the transition from
the metastable liquid phase to the vapor phase.
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2.11 Rayleigh-Plesset equation

The Rayleigh-Plesset equation is then solved to analyze the nanopores dynamics [177, 178], which
is written as follows

R̈ = −3

2

(Ṙ)2

R
− 4ηṘ

ρR2
− ∆P

ρR
− 2σ

ρR2
, (2.37)

where R(t) is the characteristic size of nanopores, Ṙ and R̈ are the �rst and the second derivatives
of the size function, ∆P ≈ −3

2nakBT is the negative pressure within the formed nanobubble. The
initial conditions are set as R(0) = R0 and Ṙ(0) = 0, where R0 is the initial size of nanopores. The
pressure term −∆P

ρR has a positive contribution and, therefore, stands for the growth of the nanopores.

The surface tension term − 2σ
ρR2 and the term −3

2
(Ṙ)2

R have a negative contribution and can contribute

to nanovoid collapse. Finally, the viscosity term −4ηṘ
ρR2 can be associated with the resistance to the

material deformation, as it acts always against the direction of the nanovoid evolution Ṙ.
Note that Rayleigh-Plesset model can be used only to predict the evolution of individual nanovoids.

The collective thermo-mechanical e�ects of nanopores and their in�uence on the �nal modi�cation is
neglected in this work and requires a separated study based on solving the full system of Navier-Stokes
equations and the equation of state (EOS). Furthermore, the following assumptions are made while
deriving from Navier-Stokes equations:

(i) spherical symmetry of the nanobubble (the contribution of the surface tension is di�erent in the
case of non-spherical microcavities, for instance)

(ii) bubble contains a homogeneously distributed vapor/gas with uniform temperature and pressure
(the assumption of the ideal gas is made in this work)

(iii) an in�nite domain of liquid with constant density ρ and viscosity η outside the bubble (the
in�uence of other nanobubbles on the considered one as well as the inhomogeneity of the liquid tem-
perature/density distribution are neglected).

2.12 Conclusions

In this chapter, the fundamental system of equations has been introduced to describe the dynam-
ics of ultrafast laser-induced interaction from femtoseconds to microseconds, considering the nonlin-
ear optics of ultrashort laser propagation during the pulse duration, ionization, excitation/relaxation
processes, electron-ion heat transfer and thermoelastic dynamics. Furthermore, the criteria for cav-
itation/fragmentation and nucleation are described. The analysis is completed by Rayleigh-Plesset
equation for considering hydrodynamics of nanopores/nanovoids. It is shown that the ionization and
the electron collision processes play the key role in the de�nition of the �nal electron density distribu-
tions, whereas the nonlinear e�ects caused by the electron di�usion and the ponderomotive force are
negligible at moderate intensity irradiation conditions. The model is for a wide range of dielectrics, but
in this thesis, the results will be mainly presented for fused silica glass. It should be noted, however,
that the application of the model is not limited to glasses but can be used also for modeling other ma-
terials, such as water, or, expanded for semiconductors or metals. The optical, thermal and mechanical
parameters of the modeling as well as the temperature dependencies of thermophysical properties are
reviewed for fused silica and borosilicate glasses in the appendix. In what follows, we will discuss how
the system of equations describing the multiphysical model is solved numerically.

2.13 Appendix

Heat capacity, thermal conductivity and viscosity temperature dependencies for fused silica are
shown in the graphs taken from Ref. [155,156,170]. Below, the optical and thermo-mechanical proper-
ties of di�erent glasses are summarized in the table 2.1 from independent experimental measurements
or theoretical works.
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Table 2.1: Optical and thermo-mechanical properties of fused silica, boro�oat (B33) and BK7 glasses.

Physical properties Fused silica Borosilicate glass

Density ρ[g/cm3] 2.2 [23,113,113,179�181]
2.2 [23, 113] (B33)
2.51 [31,35,113,181]

(BK7)
Refractive index n

λ = 800 nm 1.45 [69,83]
1.47 (B33)

1.52 [35] (BK7)
Electron band gap
Eg[eV]

9 [83], 9.3 [90]
7.2-7.8 [59, 65,87]

4.2-4.28 [31,140] (BK7)
3.7 [35] (BK7)

Kerr e�ect,
10−16nKerr[cm

2/W ]
3.54 [69,83], 3.89 [61] 3.45 [31,35] (BK7)

Electron recombin.
time τrec[ps]

0.15 [61,62,69,83,90]
0.06 [141], 1-2 [2, 28]
30 [59], >100 [2, 28]

5-100 [35,62] (BK7)

Photoionization rate wpi
λ = 800 nm

σ6[ m
9

W 6s
] or σ3[ m

3

W 3s
]

Keldysh [69]
6-photon:

2 · 10−65 [69, 83,90]
6 · 10−63 [69, 140,154]
3.15 · 10−67 [69, 141]

Kennedy's approx. [35]
3-photon:

7 · 10−13 [31, 140](BBS)
3 · 10−14 [141](BBS)

1.343 · 10−12 [143](BK7)

Heat capacity
Ci[J/(kgK)]

772-790 [23,113]
730-752 [83,153,179]
1450 [59] (1873K)

704-845 [87], 1100 [181]
1335-1440 [174](1600-2400K)

830 [23,113] (B33)
860 [113]

878 [31] (BK7)
820 [35,181] (BK7)

Thermal conductivity
ki[W/(mK)]

1.38-1.67 [23,87,179]
1.31 [113], 1.4-2.514 [153]
1.4-3.0 [156](300-2500K)

1.1-1.2 [23, 113]
0.96 [35] (BK7)
1.114 [113] (BK7)

Softening temperature
Tmelt[K]

1993-2006 [153,154,180,181]
1750 [179],1873-1875 [59,113]

1093 [113]
1051 [181]

Thermal expansion
10−7β[1/K]

5.0 [113,182], 5.5 [83,153,181]
1.4-6.0 [183] (300-970K)

6.0-6.1 [65, 162]

32.5 [113] (B33)
51 [162]

71-72 [113,181,182](BK7)

Young's modulus
E[GPa]

65 [179], 72-73 [83,113,153]
76-90 [160] (200-1800K)
73-80 [184] (300-1700K)

64 [113] (B33)
82 [113] (BK7)

Bulk modulus B[GPa] 36.9 [153], 35-44 [160] (200-1800K)
38-45 [180] (300-1700K)

35 (B33)
45.6 (BK7)

Shear modulus G[GPa] 31.2 [153], 30-33.5 [160] (200-1800K)
31-33 [180] (300-1700K)

26.2 (B33)
34.2 (BK7)

Poisson ratio ν
0.17-0.2 [83, 153,180](300-

1700K)
0.2

Tensile strength
σtens[MPa]

48.3 [153] 35-100
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Figure 2.9: Heat capacity, thermal conductivity and viscosity temperature dependencies for fused silica
glass.
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Chapter 3

Numerical method

In this chapter, we describe a new numerical approach developed for fast solution of complex
dynamic problems in ultrashort laser-matter interaction.

The �rst part of the model describing the electrodynamics is based on nonlinear Maxwell's equations
coupled with time-dependent electron density equation. The approach uses the Finite-Di�erence Time-
Domain (FDTD) and the auxiliary di�erential equation (ADE) methods for frequency-dependent Drude
media with a time-dependent carrier density, changing due to Kerr, photoionization, avalanche and
recombination e�ects. The system of nonlinear Maxwell-Ampere's equations is solved by an iterative
�xed-point procedure. The proposed approach is shown to remain stable even for complex nonlinear
media and strong gradient �elds.

The second part of the model consists of solving electron-ion heat transfer equations and ther-
moelastic wave equations. As the concerned physical processes take place on large timescales from
femtoseconds to microseconds, the procedure of changing the temporal step is discussed, the appropri-
ate discrete schemes for solving the numerical problem are given.

Graphics-processing-units (GPU) technique is implemented by using an e�cient algorithm enabling
solution of massively three-dimensional problems within reasonable computation time.

3.1 Yee algorithm

Here and further we consider the non-magnetic Maxwell's equations written in the following "point"
form 

∂ ~E

∂t
= (∇× ~H − ~J) ·

√
µ0

ε0
· c/ε∞

∂ ~H

∂t
= −∇× ~E · c ·

√
ε0
µ0
,

(3.1)

where ~E is the electric �eld, ~H is the magnetizing �eld, c = 1√
ε0µ0

is the speed velocity, ε0 is the
free space permittivity, µ0 is the permeability of free space, ε∞ is the material permittivity at in�nite
frequency, and ~J is the nonlinear current, which might include the contributions due to heating, Kerr
e�ect, photoionization and ponderomotive force, as discussed in the previous chapter.

A �nite-di�erence time-domain (FDTD) is a numerical technique used for modeling computational
electrodynamics and based on solving the system of Maxwell's equations. It was proven to be one
of the most powerful numerical techniques in the modeling of micro and nanoscale optical devices.
The choice of a time-domain spatially discretized method in this thesis is justi�ed by the need to
investigate the spatial distributions of the intensity-dependent physical values taking into account for
several nonlinear e�ects, having particular timescales. As coherent ultrashort laser is a source of the
irradiation, a single frequency is produced, so the dispersion of the laser beam is neglected and we take
account only for the dispersion of the media. The algorithm for solving numerically the time-dependent
three-dimensional Maxwell's equations in di�erential form for linear non-dispersive media ( ~J = 0) by
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Figure 3.1: Spatial discretization of electric and magnetic �elds in 3D-FDTD grid.

simple explicit scheme was �rstly introduced by Yee in 1966 [185] as follows

Hx
(t+1)

(m,n+1/2,p+1/2) = Cz
√

ε0
µ0

(Ey
t
(m,n+1/2,p+1) − Ey

t
(m,n+1/2,p))

−Cy
√

ε0
µ0

(Ez
t
(m,n+1,p+1/2) − Ezt(m,n,p+1/2)) +Hx

t
(m,n+1/2,p+1/2)

Hy
(t+1)

(m+1/2,n,p+1/2) = Cx
√

ε0
µ0

(Ez
t
(m+1,n,p+1/2) − Ezt(m,n,p+1/2))

−Cz
√

ε0
µ0

(Ex
t
(m+1/2,n,p+1) − Ext(m+1/2,n,p)) +Hy

t
(m+1/2,n,p+1/2)

Hz
(t+1)

(m+1/2,n+1/2,p) = Cy
√

ε0
µ0

(Ex
t
(m+1/2,n+1,p) − Ext(m+1/2,n,p))

−Cx
√

ε0
µ0

(Ey
t
(m+1,n+1/2,p) − Ey

t
(m,n+1/2,p)) +Hz

t
(m+1/2,n+1/2,p)

Ex
(t+1)

(m+1/2,n,p) =
Cy
ε∞

√
µ0

ε0
(Hz

t
(m+1/2,n+1/2,p) −Hz

t
(m+1/2,n−1/2,p))

−Cz
ε

√
µ0

ε0
(Hy

t
(m+1/2,n,p+1/2) −Hy

t
(m+1/2,n,p−1/2)) + Ex

t
(m+1/2,n,p)

Ey
(t+1)

(m,n+1/2,p) = −Cx
ε∞

√
µ0

ε0
(Hz

t
(m+1/2,n+1/2,p) −Hz

t
(m−1/2,n+1/2,p))

+Cz
ε

√
µ0

ε0
(Hx

t
(m,n+1/2,p+1/2) −Hx

t
(m,n+1/2,p−1/2)) + Ey

t
(m,n+1/2,p)

Ez
(t+1)

(m,n,p+1/2) = Cx
ε∞

√
µ0

ε0
(Hy

t
(m+1/2,n,p+1/2) −Hy

t
(m−1/2,n,p+1/2))

−Cy
ε

√
µ0

ε0
(Hx

t
(m,n+1/2,p+1/2) −Hx

t
(m,n−1/2,p+1/2)) + Ez

t
(m,n,p+1/2),

(3.2)

where (m,n, p) are the spatial mesh points and t is the temporal mesh point,
√

µ0

ε0
= 377 is the

electromagnetic impedance, Cx = c∆t
∆x = 1

2 , Cy = c∆t
∆y = 1

2 and Cz = c∆t
∆z = 1

2 are Courant numbers,
connecting temporal ∆t and dimensional steps ∆x, ∆y and ∆z. The spatial discretizations of electric
and magnetic �elds are presented in Fig. 3.1. The time increment 1/2 is chosen to satisfy 1D, 2D and
3D's stability criteria (Courant-Friedrichs-Lewy's condition) [186]

∆t ≤ 1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

(3.3)

According to Courant's relationship for the spatial step ∆x = 1 nm, the timestep should satisfy ∆t =
Cx∆x
c ≈ 1.66 as. The maximum spatial step providing the su�ciently low numerical dispersion is limited

by the following expression related to the wavelength in media ∆xmax ≤ λ/(10nmax). Therefore, the
method is e�ective to investigate the electromagnetic processes on nano/micrometer spatial scales
(from several tenths of nanometers to several microns) and on femtosecond timescales.

It is important to note, that the electric and the magnetic �elds are spatially displaced on a half-
step and de�ned in following positions in the grid: Hx(m,n+ 1/2, p+ 1/2), Hy(m+ 1/2, n, p+ 1/2),
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Hz(m+1/2, n+1/2, p), Ex(m+1/2, n, p), Ey(m,n+1/2, p), Ez(m,n, p+1/2). This asymmetry provides
conditional stability of the Yee scheme in contrast to other explicit leapfrog di�erential schemes. As
an example, for the standard symmetric explicit leapfrog scheme for one dimensional Maxwell-Ampere
equation written as

E(m,t+1) − E(m,t)

∆t
= c · H

(m+1,t) −H(m−1,t)

∆x
, (3.4)

one can use von Neumann stability analysis and search the solution in the form tz · eiλm as follows

z − 1

∆t
= c · e

iλ − e−iλ

∆x
= 2c · i · sin(λ)

∆x
. (3.5)

According to the stability criterium, |z| ≤ 1, however, one can obtain

|z| = 1 +

(
2c · sin(λ)

∆t

∆x

)2

≥ 1. (3.6)

It means that the explicit symmetric leapfrog di�erential scheme is unconditionally unstable. Applying
the same procedure for numerical scheme used in Yee method yields

z − 1

∆t
= c · e

iλ − 1

∆x

|z| =
∣∣∣∣1 +

(
c ·∆t
∆x

(eiλ − 1)

)∣∣∣∣ = (1 +
c ·∆t
∆x

(cos(λ)− 1))2 + (
c ·∆t
∆x

sin(λ))2 =

= 1 +
2c ·∆t

∆x
(1− cos(λ))

(
c ·∆t
∆x

− 1

)
. (3.7)

Thus, the numerical scheme is stable under the Courant-Friedrichs-Lewy's condition
c ·∆t
∆x

≤ 1.

3.2 Initial conditions

There are two ways to introduce the source into the electromagnetic code. The simplest method
is to give some values, changing in time to the electric or the magnetic �elds, which is the realization
of the �hard source� and is useful for testing the initial equations. The major issue with the hard
sources is that they re�ect [187, 188]. In most cases, the problem consists in measuring the scattered
�eld without having it interrupted by the source [188]. To avoid this problem, a soft source should
be realized, where the value is added to the �eld at the previous timestep, simulating a current. The
physical meaning of the soft source is well understood and its analytical solution is well known, whereas
there is no analytical solution for the hard source excitation.

The soft source can be introduced in sinusoidal form as

Ex(t+ 1, x, y, z) = sin(ω(t− z/Cz)− ϕ) + Ex(t, x, y, z), (3.8)

in Gaussian form as

Ex(t+ 1, x, y, z) = exp

[
−
(
t− z/Cz − ϕ

θ

)2
]

+ Ex(t, x, y, z), (3.9)

and in general form as

Ex(t+ 1, x, y, z) = sin(ω(t− z/Cz)− ϕ) · exp

[
−
(
t− z/Cz − ϕ

θ

)2
]

+ Ex(t, x, y, z), (3.10)

where t and z are time and spatial coordinates, Cz is the Courant number, ϕ is the delay, θ is the pulse
duration in timesteps, ω = 2π∆x

λ Cz is the frequency. Since the pulse f(t) = sin(ωt−ϕ) ·exp(−
( t−ϕ

θ

)2
)

is in�nitely long in the time domain, it has to be truncated so that only values larger than γ are
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Figure 3.2: Geometrical parameters of the Gaussian beam.

included into the discrete representation. In many cases, su�cient initial choices are γ = 10−9, ϕ =
[−ln(γ)]−1/2θ ≈ 4.55θ and time duration tmax = 2ϕ. For γ = 10−4, ϕ ≈ 3θ.

In realistic physical problems, a focused Gaussian beam source is used to simulate the irradiation
by laser as follows

Ex(t+ 1, x, y, z) =
w0

w(z)
exp

[
− r2

w(z)2 − ikz − ik
r2

2R(z)
+ iς(z)− (t− t0)2

θ

2
]

+ Ex(t, x, y, z), (3.11)

where the geometry and behavior are governed by a set of beam parameters presented in Fig. 3.2:
w0 is the waist beam, w(z) = w0

√
1 + ( z

zR
)2 is the variation of spot size and the radius at which

the �eld amplitude drops to 1/e of their axial values, zR = πw0
2n0
λ is the Rayleigh range or length,

r = x2 + y2 is the radial distance from the beam's narrowest point (waist), R(z) = z[1 + ( zRz )2] is
the radius of curvature of the wavelength comprising the beam, and ς(z) = arctan( z

zR
) is the Gouy

phase shift, an extra contribution to the phase that is seen in Gaussian beams. At a distance from the
waist equal to Rayleigh range zR, the width w of the beam is w(±zR) =

√
2w0. The distance between

these two points is called the confocal parameter or depth of focus of the beam b = 2zR = 2πw0
2n0

λ .
The parameter wz increases linearly from z to zR. This means that far from the waist the beam is
cone-shaped. The angle between the straight line r = w(z) and the central axis of the beam r = 0 is
called the divergence of the beam and is given by θ ≈ λ

πw0
. The numerical aperture is de�ned to be

NA = nsin(θ), the Rayleigh range is related to the numerical aperture by zR = w0
NA .

Since the Gaussian beam uses the paraxial approximation, it fails when wavefronts are tilted by
more than about π/6 from the direction of the propagation. From the expression of the divergence,
this means that the Gaussian beam model is valid only from beams with waists larger than about 2λ

π .
For the laser irradiation wavelength λ = 800 nm, w0 ≥ 2λ

π ≈ 500 nm. For large focusing angles, the
Gaussian form of the beam entering the sample can result in appearance of exponentially diverging
harmonics [130]. The error becomes larger with the decreasing beam waist. As it becomes comparable
to the reduced wavelength λ/n, higher-order terms in the expansion should be included. For example,
the interval of application of the paraxial approximation of the Gaussian beam's pro�le can be expanded
by taking into account corrections to higher numerical apertures [189,190].

The input laser pulse energy is de�ned as

Σ =

√
π

2

πw2
0

2
θI, (3.12)

where θ is the pulse duration (FWHM) and the laser �uence corresponds to F0 = Σ/(πw0
2

2 ).
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3.3 Absorbing boundary conditions (ABC)

A wave, hitting an object, scatters the applied wave into potentially many directions. In general, the
boundary conditions on the boundary are needed to avoid the nonphysical re�ections of the scattered
waves from the boundaries of the grid. Absorbing boundary conditions (ABC) provide a relatively
simple way to terminate the grid, relying on the fact, that the solution of Maxwell's coupled curl
equations via an FDTD algorithm is equivalent to the solution of the second-order wave equation for
any one of the �elds components. Although the wave equation naturally supports waves propagating
in both forward and backward directions, it can be divided into two one-way equations, each of which
supports waves in only one direction. The wave equation that governs the propagation of the �eld in
1D can be written in the following form(

∂

∂x
−√µε ∂

∂t

)(
∂

∂x
+
√
µε
∂

∂t

)
Ey = 0. (3.13)

Approximating the derivatives, �rst-order Mur's condition are obtained for m = 0 and m = imax
border spatial mesh points as

Et+1
0 = Et1 +

Cx − 1

Cx + 1
(Et+1

1 − Et0)

Et+1
imax

= Etimax−1 +
Cx − 1

Cx + 1
(Et+1

imax−1 − E
t
imax).

(3.14)

In three-dimensional case, the wave equation is written as(
∂

∂x
−

√
1

C2

∂2

∂t2
− ∂2

∂y2
− ∂2

∂z2

)(
∂

∂x
+

√
1

C2

∂2

∂t2
− ∂2

∂y2
− ∂2

∂z2

)
Ey = 0. (3.15)

Using the approximation
√

1− s2 ≈ 1− s2

2
, where s2 =

∂2

∂y2
+

∂2

∂z2
, one obtain the following equation

for second-order Mur's ABC [191](
∂

∂x
− 1

C

∂

∂t
+
c

2

∂2

∂y2 + ∂2

∂z2

∂
∂t

)(
∂

∂x
− 1

C

∂

∂t
+
c

2

∂2

∂y2 + ∂2

∂z2

∂
∂t

)
Ey = 0, (3.16)

where the derivatives are approximated in the following way[
∂2E

∂x∂t

]n
3/2j

=
1

2∆t

(
En+1

2,j − E
n+1
1,j

∆x
−
En−1

2,j − E
n−1
1,j

∆x

)
[
∂2E

∂t2

]n
3/2j

=
1

2

(
En+1

2,j − 2En2,j + En−1
2,j

(∆t)2
−
En+1

1,j − 2En1,j + En−1
1,j

(∆t)2

)
[
∂2E

∂y2

]n
3/2j

=
1

2

(
En2,j+1 − 2En2,j + En2,j−1

(∆y)2
−
En1,j+1 − 2En1,j + En1,j−1

(∆y)2

)
.

(3.17)

Final approximation scheme of second-order Mur's conditions is given by

En+1
0,j = −En−1

1,j −
1− Cx
1 + Cx

[
En+1

1,j + En−1
0,j

]
+

2

1 + Cx

[
En0,j + En1,j

]
+

+
C2
y

2(1 + Cx)

[
En,j+1 − En0,j + En0,j−1 + En1,j+1 − 2En1,j + En1,j−1

]
En+1
i,0 = −En−1

i,1 − 1− Cx
1 + Cx

[
En+1
i,1 + En−1

i,0

]
+

2

1 + Cx

[
Eni,0 + Eni,1

]
+

+
C2
y

2(1 + Cx)

[
Eni+1,0 − Eni,0 + Eni−1,0 + Eni+1,1 − 2Eni,1 + Eni−1,1

]
.

(3.18)
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The repeated application of the operator may still only be approximately satis�ed. Nevertheless,
it performs better than the �rst-order alone and results in better re�ection coe�cients.

However, a number of drawbacks of ABC are evident. Firstly, the re�ection coe�cient that results
from the analytical ABC is a function of the incident angle, and can be very high for grazing angles.
Therefore, for higher accuracy the one-way wave equation that must be applied at the boundary
becomes increasingly complex, and requires the storage of the �elds at previous time steps, eliminating
one of the great advantages of the FDTD method, which does not require the storage of any �elds
more than one time step back. Secondly, ABC were initially designed to absorb homogeneous travelling
waves. In fact, the global performance of the one-way wave boundary condition can not be improved
signi�cantly by increasing the order of the ABCs over order 2. Finally, the ABC can not be placed
close to the sources, which are in the evanescent region, whatever may be their order. In most cases,
it results in a computational domain signi�cantly larger than the optimum domain that would be used
with an ideal ABC that could absorb both traveling and evanescent waves and could be placed nearby
the region of the interest [192].

3.4 Perfectly matched layers (PML)

The other family of methods are called perfect matched layers (PML), which de�ne a thin lossy
layer with evolving arti�cial conductivities around the boundary. The boundary layer is designed so
that it absorbs enough of outgoing wave, prevents the re�ections from the interface between the actual
medium and the boundary medium and make the re�ections from the actual boundary acceptably low.
The PML are of great importance since they allow to simulate semi-in�nitely extended media and to
avoid nonphysical re�ections at the edges of the simulation grid.

The �rst e�ective PML was introduced by Berenger in 1994 [193]. The Berenger or split-�eld per-
fectly matched layer method is based on �eld-splitting of Maxwell's equations and selectively choosing
di�erent values for the �conductivities� in di�erent directions. In three-dimensional modeling, 12 sub-
components are required, thus the Maxwell's equations are replaced by 12 equivalent equations [194].
The proposed method was compared with ABC and it was shown that PML signi�cantly reduced the
re�ection from the truncation of the computational grid [195,196].

Waves, incident on the PML border, run into a �brick wall� of lossy material but as the �elds are
spatially displaced by half a spatial step, they encounter the PML border di�erently. To reduce the
resulting re�ection factor, Berenger proposed grading the PML conductivity smoothly from zero to
some maximum value at the outer border with either a polynomial or a geometric variation [197]. For
a wave, impinging the PML at angle θ, the re�ection is given by R(θ) = exp(−2σηdcosθ), where η
is the characteristic wave impedance, d is the thickness of PML layer, and σ is the PML's arti�cial
conductivity. Berenger's grading reduces the re�ection error, as the PML losses gradually rise from zero
along the direction normal to the interface. For example, for polynomial grading σx =

( x
D

)q
· σmax,

the re�ection coe�cient is given by R(θ) = exp

(
−2νσmaxdcosθ

q + 1

)
.

In general, the lowering of R(θ) is achieved either by increasing the thickness of the layer, either by
increasing the conductivity. In actual numerical experiments, it is not true because sharp variations of
the conductivity in a discrete space result in spurious numerical re�ections. Choosing the conductivity
and the thickness of the PML is a major question in applications, because contradictory requirements
hold. Firstly, the thickness of the PML must be as thin as possible to reduce the computational cost.
Secondly, the variations of the conductivity must be small enough to reduce the spurious re�ection.
Finally, the theoretical re�ection must be as small as possible.

However, the Berenger PML medium can not be considered a physical medium, because di�erent
conductivities are acting on non-physical split-�elds. There is an alternative formulation of the PML
absorbing boundary condition in terms of a physical anisotropic medium having tensor permittivity and
permeability called uniaxial perfect matched layer (UPML) [198]. The general tensors can be presented

in the following form by the product of the three smatrices ε′ =

s−1
x sysz 0 0

0 s−1
y sxsz 0

0 0 s−1
z sxsy

 ε, where
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sxsy
sz

 = 1 +
1

iωε

σxσy
σz

.
The Berenger PML is a simple example of an anisotropic medium, although it is not as �exible as

the uniaxial PML method. In fact UPML's approach does not involve modi�cation of Maxwell's equa-
tions and is easy to implement in codes with anisotropic material properties [199�201]. Furthermore,
UPML has the unique feature of being Maxwellian, because it satis�es Maxwellian equations. This
interpretation of stretched coordinates facilitates the extension of the PML concept to more general
media and to other partial di�erential equations of physics.

The Maxwell's equations in the frequency form are written as follows



iω

(
1 +

σx
iωε0

)−1(
1 +

σy
iωε0

)(
1 +

σz
iωε0

)
Hx = − 1

µ0

(
∂Ez
∂y
− ∂Ey

∂z

)
iω

(
1 +

σx
iωε0

)(
1 +

σy
iωε0

)−1(
1 +

σz
iωε0

)
Hy = − 1

µ0

(
∂Ex
∂z
− ∂Ez

∂x

)
iω

(
1 +

σx
iωε0

)(
1 +

σy
iωε0

)(
1 +

σz
iωε0

)−1

Hz = − 1

µ0

(
∂Ey
∂x
− ∂Ex

∂y

)
iω

(
1 +

σx
iωε0

)−1(
1 +

σy
iωε0

)(
1 +

σz
iωε0

)
Ex =

1

ε0

(
∂Hz

∂y
− ∂Hy

∂z

)
iω

(
1 +

σx
iωε0

)(
1 +

σy
iωε0

)−1(
1 +

σz
iωε0

)
Ey =

1

ε0

(
∂Hx

∂z
− ∂Hz

∂x

)
iω

(
1 +

σx
iωε0

)(
1 +

σy
iωε0

)(
1 +

σz
iωε0

)−1

Ez =
1

ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
.

(3.19)

Let us consider only �rst equation as all the equations are equivalent

iω(1 +
σy
iωε0

+
σz
iωε0

− σyσz
ω2ε20

)Hx = − 1

µ0

(
∂Ez
∂y
− ∂Ey

∂z

)
(1 +

σx
iωε0

). (3.20)

Passing to the time domain,

iωHx →
∂Hx

∂t
,
σx
iωε0

(
∂Ez
∂y
− ∂Ey

∂z

)
→ σx∆t

ε0

T∑
n=0

(
∂Ez
∂y
− ∂Ey

∂z

)
(3.21)

.

The procedure requires the curl of the magnetic or electric �eld at each time step, in this case the in-

tegral can be discretized as a summation. Furthermore, there is one more integral left
σyσz
iωε20

x→ σyσz∆t

ε20

T∑
n=0

Hx.

In the book of Sullivan [202], it is assumed that the contribution of the integral is negligible. However,
the following equation can be written in general case

∂Hx

∂t
+
Hx

ε0
(σy + σz) +

σyσz∆t

ε20

T∑
n=0

Hx = . . .

− 1

µ0

[
∂Ez
∂y
− ∂Ey

∂z
+
σx∆t

ε0

T∑
n=0

(
∂Ez
∂y
− ∂Ey

∂z

)]
.

(3.22)
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Finally, an appropriate di�erential scheme for the equation is given by



Ht+1
x (m,n∗, p∗) = A ·Hx

t(m,n∗, p∗) +B · Cz
√
ε0
µ0

[
Ety(m,n

∗, p+ 1)− Ety(m,n∗, p)
]
− . . .

B · Cy
√
ε0
µ0

[
Etz(m,n+ 1, p∗)− Etz(m,n, p∗)

]
+ . . .

B
σx∆t

ε0
Phx

t(m,n∗, p∗)−Bσyσz∆t
2

ε20
Rhx

t(m,n∗, p∗)

Phx
t+1(m,n∗, p∗) = Cz

√
ε0
µ0

[
Ety(m,n

∗, p+ 1)− Ety(m,n∗, p)
]
− . . .

Cy

√
ε0
µ0

[
Etz(m,n+ 1, p∗)− Etz(m,n, p∗)

]
+ Phx

t(m,n∗, p∗)

Rhx
t+1(m,n∗, p∗) = Rhx

t(m,n∗, p∗) +Hx
t(m,n∗, p∗)

A =
2ε0 −∆t(σy + σz)

2ε0 + ∆t(σy + σz)
, B =

2ε0
2ε0 + ∆t(σy + σz)

,

(3.23)

where (m,n, p) and (m∗n∗p∗) = (m+1/2, n+1/2, p+1/2) are the spatial mesh points, t is the temporal
mesh point, Phx and Rhx are the additional arrays required for summation.

The coe�cients, proposed in the book [202], are de�ned as σmax = 0.333 · 2ε0
∆t

, q = 3. As
ε0
∆t

=
1

η∆xCx
,

one can obtain the following formula for the re�ection coe�cient

R(θ) = exp

(
−2ησmaxdcosθ

q + 1

)
≈ exp(−dcos(θ)

3
) (3.24)

.

However, the implementation of the UPML is cumbersome, involving running integrals which must
be stored for each grid cell in the PML. Furthermore, while the Berenger's split-�eld PML and UPML
described above are both very robust and e�cient at terminating most FDTD simulation spaces, both
su�er from the inability to absorb evanescent waves [203]. This means the PML must be placed
su�ciently far from any scattering objects. This restriction can lead to simulation spaces that are
larger than desired. In order to absorb evanescent waves, a strictly causal form of the PML has been
derived by Kuzuoglu and Mittra [204].

The most e�ective implementation of this complex-frequency-shifted method (CPML) was derived
by Roden and Gedney [205, 206]. In this method, a more general stretched coordinate is introduced
si = ki +

σi
αi + iωε0

, ki ≥ 1, αi ≥ 0. The CPML implementation can be applied to any kind of the

material, be it dispersive, anisotropic or nonlinear. It is shown that using CPML results in signi�cantly
faster convergence speed than using UPML [207]. Such a di�erence in the convergence behavior is
explained by the analysis of the condition number of the coe�cient matrices. The implementation of
the CPML can be done by simply adding components to the normal update equations [187,208]. Here,
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we write the equations only for two-dimensional case

P t+1
hx (m∗, n∗) = BxP

t
hx(m∗, n∗) + (Bx − 1)Cx

√
ε0
µ0

(
Ety(m+ 1, n∗)− Ety(m,n∗)

)
P t+1
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t
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√
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)
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√
ε0
µ0
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− . . .
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D
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( n
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· σmax
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(
D −m
D

)qα
· αmax, αy =

(
D − n
D

)qα
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Kx = 1 +
(m
D

)q
· (Kmax − 1), Ky = 1 +

( n
D

)q
· (Kmax − 1)

Bx = exp

(
−∆t

ε0
(
σx
kx

+ αx)

)
, By = exp

(
−∆t

ε0
(
σy
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+ αy)

)
,

(3.25)

where (m,n), (m∗, n∗) = (m+1/2, n+1/2) are the spatial mesh points, t is the temporal mesh point, σ
and κ are scaled along their respective axes and graded in the same way as in the Berenger's split-�eld
formulation and α is graded in the opposite manner, being non-zero at the PML interface and fading
to zero at the boundary. A and B are 1D functions and there is no need to store them over the entire
3D space. Similarly, the additive �elds are zero outside the PML regions, and so can be stored only
within the PML, saving computational time and storage space.

Table 3.1: The computation requirements of di�erent PML's.
Storage Operations Multiplications Additions

Regular split PML 10 56 16 40
Eight-variable split PML 8 60 18 42
Uniaxial PML 8 48 20 28
CPML 10 56 20 36

The maximum conductivity can be de�ned as [187,205,207,209,210]

σmax = −(q + 1)ln[R(0)]

2ηd
≈ 3(q + 1)

ηd
, (3.26)

where R(0) = exp
(
−2ησmaxd

q+1

)
= 10−6 is the desired re�ection at normal incidence, q is the polynomial

parameter,D is the thickness of PML, η =
√

µ0

ε0
is zero impedance. One can derive

σmax∆t

ε0
≈ 3(q + 1)

d
,

where d is the number of cells reserved for PML.
In the simpli�ed case (αmax = 0,κmax = 1), it has only one parameter which usually lays in the

interval 2 ≤ q ≤ 4. Even with a regular stretch the re�ection from the CPML di�ers from that of the
split PML or UPML. From a few experiments provided by Roden and Gedney [205,206], it seems that
the re�ection of homogeneous waves from CPML is slightly smaller than from the other three PML
implementations. However, the di�erence is not signi�cant. The interest of the CPML implementation
is mainly in using a CFS stretching factor with more adjustable parameters.
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In the most general case there are more parameters: κmax, αmax, q, qα. For example, in the work
[211] the following coe�cients were de�ned as κmax = 5, αmax = 0.05, q = 3, qα = 1, σmax = 0.8(q+1)

ηD .
Generally, the optimal choice of parameters depends on the geometry, resolution and frequency range
of the problem. Parameter α governs the absorption of the evanescent �elds. Typically, it should be
larger for the problems with strongly evanescent waves, and smaller for problems with only weakly
evanescent �elds. The optimal value does not depend on the frequency, being inversely proportional
to the size of the problem.

Finally, the computational requirements of the di�erent PMLs are compared [192] and summarized
in Table 3.1. Although CPML method requires more arrays to store in the memory and slightly more
operations to perform, it is bene�cial in both two-dimensional and three-dimensional problems, as the
method enables considering the scattering objects in the vicinity of the lossy layer. Simpli�ed UPML
method, however, gives comparable performance, while the object of interest is far from the boundary,
for example, in the case of tightly focused laser beam in the center of the grid.

3.5 Temporal discretization

In this part, we show how FDTD method can be adopted to describe the propagation of light in
nonlinear dispersive media during the ultrashort laser pulse irradiation. In what follows, the system
of nonlinear Maxwell's equations (2.2) is discretized temporally as follows

~Ht+1/2 − ~Ht−1/2

∆t
= −(∇× ~E)

t

µ0

~Et+1 − ~Et

∆t
=

(∇× ~H)
t+1/2

ε0
− 1

ε0
( ~J

t+1/2
D + ~J

t+1/2
Kerr + ~J

t+1/2
pi + ~J

t+1/2
PM ),

(3.27)

where ~JD is the current derived from the Lorentz-Drude model for the dispersive media (2.9), ~JKerr is
Kerr polarization current (2.12), ~Jpi is the photoionization term (2.20), and ~JPM is the contribution
due to the ponderomotive force (2.18). The terms are added to the Maxwell-Ampere electric �eld
update equation and de�ned on t+ 1

2 timestep.

3.5.1 Implementation of the Lorentz-Drude model

In this part, we describe the auxiliary di�erential (ADE) technique, �rstly proposed by Ta�ove [212]
to implement the Lorentz-Drude dispersive models to Yee numerical scheme. The basis of the method
is to express the relationship between the electric displacement �eld ~D and the electric �eld ~E with a
di�erential equation rather than with a convolutional integral which was proposed in recursive convolu-
tional method [213]. The major advantage of the ADE is the simplicity in modeling complex materials.
In this approach, the dispersive complex media is modeled simply by adding the current directly to
the Maxwell-Ampere di�erential equation (3.27). ADE does not complicate the method if the other
nonlinear e�ects are considered [214,215], whereas the recursive convolutional method can not handle
nonlinear dispersive materials due to the linearity of the convolutional integral.

The Drude current, responsible for the heating of the conduction band electrons and de�ned from
the equation (2.9), is discretized as

~J t+1
D = ~J tD

1− νe∆t/2
1 + νe∆t/2

+
e2∆t

me (1 + νe∆t/2)

ne
t+1 ~Et+1 + ne

t ~Et

2
. (3.28)

Applying the approximation ~J
t+1/2
D = ( ~J tD + ~J t+1

D )/2, one can �nd the Drude current's discretiza-
tion on times t+ 1/2 to introduce directly in Maxwell-Ampere equation (2.2) as follows

~J
t+1/2
D =

~J tD
1 + νe∆t

2

+
e2∆t

me (2 + νe∆t)

ne
t+1 ~Et+1 + ne

t ~Et

2
. (3.29)
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In the general case of the dispersive material with multiple poles m with the damping factors γm
and the strengths Gm (2.8), one can rewrite

~J t+1/2
m =

~J tm

1 + γm∆t
2

+
Gmωp∆t

(2 + γm∆t)

~Et+1 + ~Et

2
. (3.30)

The electric �eld can be found from Maxwell-Ampere equation (3.27) and discretized as follows

~Et+1 = C1
~Et + C2

(
[∇× ~H]t+1/2 − 1

2

M∑
m=1

[
(1 +A1m) ~J tm

])

C1 =
2ε∞ − 1

2

∑M
m=1A2m

2ε∞ + 1
2

∑M
m=1A2m

, C2 =
2∆t

2ε∞ + 1
2

∑M
m=1A2m

A1m =
1− γm∆t/2

1 + γm∆t/2
, A2m =

ω2
p∆t

2

1 + γm∆t/2
.

(3.31)

For Lorentz multipole media (2.4) with damping factors γm, oscillator strengths Gm, resonant
frequencies ωm and polarization �elds ~Pm, the discretization equations are found analogically and are
given by

~Et+1 = C1
~Et + C2

~Et−1 + C3

(
[∇× ~H]t+1/2 − 1

2

M∑
m=1

[
(1 +A1m)~P tm +A2m

~P t−1
m

])

C1 =
2ε∞

2ε∞ + 1
2

∑M
m=1A3m

, C2 =
1
2

∑M
m=1A3m

2ε∞ + 1
2

∑M
m=1A3m

, C3 =
2∆t

2ε∞ + 1
2

∑M
m=1A3m

~P t+1
m = A1m

~Pm
t
+A2m

~Pm
t−1

+A3m

~Et+1
m − ~Et−1

m

2∆t

A1m =
2− ω2

m∆t2

1 + γm∆t/2
, A2m =

γm∆t− 2

γm∆t+ 2
, A3m =

Gmω
2
p∆t

2

1 + γm∆t/2
.

(3.32)

3.5.2 Nonlinear currents

Kerr contribution (2.12) is introduced by using the following equation

~J
t+1/2
Kerr = ε0χ3

(
It+1 ~Et+1 − It ~Et

)
ξ∆t

, (3.33)

where ξ = n
2

√
ε0
µ0

is the normalization constant.

The �nite-di�erence equation for the ionization current (2.20) is given by

~J
t+1/2
pi = ξEg

(
wt+1
pi

~Et+1(na − net+1)

2naIt+1
+
wtpi

~Et(na − net)
2naIt

)
. (3.34)

3.5.3 Fixed-point iteration algorithm

By substituting (3.29, 3.33, 3.34) to (3.27), a system of nonlinear Maxwell's equations is to be
solved. One can note, that all nonlinear processes here (2.9, 2.12, 2.20) are intensity-dependent. Thus,
the equations for each electric �eld could not be solved separately as it was possible for nonlinear
Kerr and Raman media in 2D-TE case by recursive convolutional dispersive method with iterative and
non-iterative schemes [216�218] or by �nding the analytical solution for cubic equation [219].

The �rst algorithm for nonlinear dispersive media which could be implemented for 3D-FDTD and
could handle any kind of nonlinearities was proposed by Greene and Ta�ove [220]. The algorithm was
based on the multi-dimensional Newton's iteration for three electric �eld components. The method
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requires the calculation of the Jacobian matrix at each iteration which is cumbersome from a view
of computational speed [221] and is delicate in the case when the nonlinear process is not de�ned by
analytical formula as Keldysh photoionization in the considering model. Furthermore, the nonlinear
equation is of high order with electric �eld as a variable which results in high number of required
iterations.

Recently, a new method for solving the system of nonlinear equations has been proposed and
investigated by Ammann [221] and then implemented by Francés [222, 223]. In this method, the
Newton's iteration for Ext+1, Eyt+1 and Ez

t+1 is replaced by �xed-point iteration for It+1. The
intensity has to be introduced in the equations and is calculated as It+1 = ξ(Ex

t+1Ex
t+1+Ey

t+1Ey
t+1+

Ez
t+1Ez

t+1), where Ext+1, Eyt+1 and Ezt+1 are taken from the ADE method for nonlinear medium. In
our case, the algorithm is especially advantageous as all the nonlinear processes are intensity-dependent.
At the same time, computational speed is increased and the accuracy is maintained.

The schematics of the calculation procedure is shown in Fig. 3.3. Firstly, the magnetic �elds are
updated according to simple Yee's discretization [185]. Then, the iteration is started and the electric
�elds are calculated according to nonlinear ADE method as

~Et+1 = C1(Itk, I
t+1
k ) ~Et + C2(Itk, I

t+1
k )

[
(∇× ~H)t+1/2 − ∆t

ε0

~J tD
1 + νe∆t

2

]
, (3.35)

with the coe�cients that include the Kerr e�ect and the photoionization's contributions

C1(Itk, I
t+1
k ) =

2ε∞ −
ωtpl

νe∆t+2 + 2χItk − ξ
wtpi
Itk

Eg∆t
ε0

(1− net

na
)

2ε∞ + 2χIt+1
k + ξ

wt+1
pi

It+1
k

Eg∆t
ε0

(1− net+1

na
) +

ωt+1
pl

νe∆t+2

C2(Itk, I
t+1
k ) =

2∆t

2ε∞ + 2χIt+1
k + ξ

wt+1
pi

It+1
k

Eg∆t
ε0

(1− net+1

na
) +

ωt+1
pl

νe∆t+2

,

(3.36)

where the plasma frequency is ωtpl = e2∆t2net

meε0
, χ = χ3

ξ , and ε∞ is the medium permittivity. After
that, one should check if the resulting intensity as the sum of the squared electric �elds satis�es the
Maxwell-Ampere's nonlinear equation with possible deviation not more than a tolerance ε (Fig. 3.3). If
not, the C1 and C2 coe�cients and electric �elds are updated again taking into account the new value
of the calculated intensity. If yes, the iteration procedure is �nished, the electron density is given by
(2.19), the polarization currents are updated according to (3.28) which are used at the next timestep
for calculation of C1 and C2 (3.36).

3.5.4 On the convergence of the iteration procedure

In what follows, we investigate the convergence of the proposed iteration algorithm. According
to Banach �xed-point theorem [224], �xed-point iteration method f(It+1) = ξ( ~Et+1 ~Et+1) = It+1

converges if the derivation of the intensity function
∣∣∣∂f(It+1)
∂It+1

∣∣∣ < 1 is limited ∀It+1 from the applied
intensity interval. This condition yields

ξ

[
C1(It+1) ~Et + C2(It+1)

(
(∇× ~H)t+1/2 − ∆t

ε0

~J tD
1 + νe∆t

2

)]
·[

C1
′(It+1) ~Et + C2

′(It+1)

(
(∇× ~H)t+1/2 − ∆t

ε0

~J tD
1 + νe∆t

2

)]
<

1

2
.

(3.37)

Because of the continuity of the equations, and because temporal and spatial grid have accurately high
resolutions respectively, the terms containing spatial and temporal derivations as (∇ × ~H)t+1/2 and
~J tD can be considered small compared with the terms proportional to the electric �eld and hence can
be neglected. Therefore, the condition yields

C1(It+1)C1
′(It+1)It <

1

2
. (3.38)
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Figure 3.3: Schematics of the calculation procedure.

Substituting (3.36) and calculating the derivation, one can �nd the following condition[
2ε∞ −

ωpl
νe∆t+2 + 2χIt − ξwpiIt

Eg∆t
ε0

(1− net

na
)
]2 [

2χ+ ξ
(
w′pi
It+1 −

wpi
(It)2

)
Eg∆t
ε0

(1− net

na
)
]
It[

2ε∞ + 2χIt+1 + ξ
wt+1
pi

It+1
Eg∆t
ε0

(1− net+1

na
) +

ωt+1
pl

νe∆t+2

]3 <
1

2
. (3.39)

From the above expression, the timestep ∆t has to be chosen in order to respect the convergence
condition. The choice depends on the particular properties of the medium, as Kerr nonlinearity χ,
photoionization wpi, the medium permittivity ε∞, and the laser intensity I. However, for wide range
of dielectric materials the condition will be met as the contribution of nonlinear parts in the expression
is signi�cantly smaller than 2ε∞ even for high laser intensities I ≈ 1018Wm−2. Here, we show that for
fused silica the algorithm is stable even for large spatial and temporal steps. In nanometric calculation,
the reasonable spatial step will be 1nm ≤ ∆x ≤ 20nm. The timestep is related to the spatial step
by Courant-Friedrichs-Lewy's condition [186] for three-dimensional grid with identical spatial step
∆t = ∆x

2c <
1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

. Therefore, 1.5as < ∆t < 35as.

Thus, the nonlinear component due to Kerr e�ect with χ3 = 2 · 10−22m2V −2 for fused silica [61] is

2χ3I

ξ
≈ 0.07 < 2ε∞ ≈ 4. (3.40)

The highest value of the component responsible for heating of the conduction band electrons is

ωpl
νe∆t+ 2

=
e2∆t2ne

meε0(2 + νe∆t)
≤ e2∆t2na

2meε0
< 0.035 < 2ε∞, (3.41)

where the saturation density is na = 2 · 1028m−3 for fused silica. Finally, we estimate roughly the
highest value for photoionization to be

ξ
wpi
It

Eg∆t

ε0

(
1− ne

t

na

)
≤ ξwpi

It
Eg∆t

ε0
≤ 0.245 < 2ε∞, (3.42)

where Eg = 9 eV for fused silica [61]. Note, that wpi(I)
I increases with the increasing intensity and

wpi(I = 1018Wm−2) ≈ 1041s−1m−3 [138]. The last nonlinear term appears to be the most essential at
high laser intensities and one order higher than the other contributions. At such intensities Keldysh
photoionization rate wpi < σI6, where σ = 2 · 10−65m9W−6s−1. If one consider now wpi = σI6, the

49



condition will be only reinforced. In what follows, ξ
[
w′pi(I)− wpi

I

]
Eg∆t
ε0

= 5
wpi
I

αEg∆t
ε0

is �ve times
higher than estimated value but still lower than ε∞. In fact, one can �nd, that[

2ε∞ − ξwpiI
Eg∆t
ε0

(1− ρ
ρ0

)
]2 [(w′pi

I −
wpi
(I)2

)
ξEg∆t
ε0

(1− ne
na

)
]
I[

2ε∞ + ξ
wpi
I

Eg∆t
ε0

(1− ne
na

)
]3 <

5wpi
I

ξEg∆t
ε0

2ε∞
≤ 0.3 <

1

2
. (3.43)

Therefore, the algorithm converges for timestep ∆t < 35as and I ≈ 1018Wm−2. It is possible to widen
the interval of the applied intensities for which it converges by reducing the spatial and temporal steps.
No instability problems have been encountered in investigations. Regarding the iterative process, an
experimental procedure was done in order to establish an upper limit in the number of iterations. The
maximum number of the iterations was �xed to 10 steps achieving good results near the upper limit
of convergence of the method |Ik−Ik−1|

Ik−1
< ε = 10−12.

In case It+1 is replaced by It, one can obtain the simpli�ed algorithm for which is not necessary to
keep in the memory both intensities at each spatial step. The algorithm is more stable and convenient
for larger interval of intensities but deviation from the exact solution is possible [221] due to the error
in discretization of nonlinear currents (3.33) and (3.34).

3.5.5 Electron density equation

We use a simple implicit scheme for single rate electron density equation (2.19)

ne
t+1 − net

∆t
=

(na − net+1)wt+1
pi + (na − net)wtpi

2
+ . . .

wt+1
av ne

t+1 + wtavne
t

2
− ne

t + ne
t+1

τrec
,

(3.44)

where wav(I) is considered to be dependent only on the laser intensity. The discretization of multiple
rate equations propsoed by Rethfeld [68] is analogical to the discretization of the single rate equation.

The electron carrier density at the next temporal step can be calculated as

ne
t+1 = B

[
1−

(wtpi − wtav)∆t
2

− ∆t

2τrec

]
ne
t +B

na(w
t+1
pi + wtpi)∆t

2
, (3.45)

where the coe�cient B is de�ned as B =
1

1 +
(wt+1
pi −w

t+1
av )∆t

2 + ∆t
2τrec

.

3.6 Spatial discretization

In what follows, we discuss the particularity of spatial discretization for polarization currents (3.28)
and electric �elds (3.35) by FDTD method coupled with the free carrier density equation. Due to initial
asymmetrical behavior of the numerical scheme proposed by Yee [185], the electric and magnetic �elds
are spatially displaced on a half-step (Fig. 3.1). On the contrary, intensity I, electron density ne, C1

and C2 should be de�ned at one grid position (Fig. 3.1). There are two ways to introduce the intensity
of laser beam. The �rst way is to �nd the arithmetic mean of the squared neighbor electric �elds

I(m,n, k) =
1

2

[
Ex

2(m+ 1/2, n, k) + Ex
2(m− 1/2, n, k)

]
+

1

2

[
Ey

2(m,n+ 1/2, k) + Ey
2(m,n− 1/2, k)

]
+

1

2

[
Ez

2(m,n, k + 1/2) + Ez
2(m,n, k − 1/2)

]
,

(3.46)

where (m,n, k) corresponds to spatial dimension in the direction x, y and z correspondingly. Note, that
for simplicity, we omit here ξ = n

2

√
ε0
µ0
. The approximation for each squared electric �eld component

gives a second-order error by truncating Taylor series
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∆E2
x =

1

2

(
Em+1/2
x

)2
+

1

2

(
Em−1/2
x

)2
− (Emx )2

=
1

2

[
Emx +

∆x

2
(Emx )′ +O(∆x2)

]2

+
1

2

[
Emx −

∆x

2
(Emx )′ +O(∆x2)

]2

− (Emx )2

= O(∆x2). (3.47)

Figure 3.4: Steps of the calculation procedure and shared memory allocation of the required arrays for
each step.

The alternative way is to de�ne �rstly the electric �elds in (m,n, k) and then, to calculate the
intensity

I(m,n, k) =
1

4
[Ex(m+ 1/2, n, k) + Ex(m− 1/2, n, k)]2 +

1

4
[Ey(m,n+ 1/2, k) + Ey(m,n− 1/2, k)]2 +

1

4
[Ez(m,n, k + 1/2) + Ez(m,n, k − 1/2)]2 .

(3.48)

In this case, it is a fourth-order approximation which results in the smaller error

∆E2
x =

1

4
(Em+1/2

x + Em−1/2
x )2 − (Emx )2

=
1

4

[
Emx +

∆x

2
(Emx )′ +

∆x2

8
(Emx )′′ + Emx −

∆x

2
(Emx )′ +

∆x2

8
(Emx )′′ +O(∆x4)

]2

− (Emx )2

= O(∆x4). (3.49)

In the �rst case, one should calculate separately the electric �elds for each neighbor cells, which
increases twice the calculation procedure and is especially cumbersome in the iterative procedure. As
one will see, simpli�cations are possible in the second case, where the sum of two neighbor electric
�elds can be found directly.

Electron density and coe�cients (3.36) have the same discretization as the intensity. One can note
that they are used for calculation of Drude currents (3.28) and electric �elds (3.35) having di�erent
discretizations. Ignoring this fact will lead to the asymmetry in the numerical scheme and to unphysical
results, especially when an interface between two di�erent media is considered. To avoid such problem,
we propose to modify (3.36) and to achieve equal spatial discretization in both parts of the equations.
For the Ex electric �eld, we apply

Em+1/2
x =

Cm+1
1 + Cm1

2
Em+1/2
x +

Cm+1
2 + Cm2

2

[
(∇× ~H)m+1/2 − ∆t

ε0

Jx
m+1/2
D

1 + νe∆t
2

]
. (3.50)

51



Note, that to �nd Emx = (E
m+1/2
x + E

m−1/2
x )/2, we use the following �nite-di�erence expression of

(3.35) centered at x spatial position m

Emx = Cm1
E
m+1/2
x + E

m−1/2
x

2
+ Cm2

[
(∇× ~H)m − ∆t

ε0

JxD
m+1/2 + JxD

m−1/2

2 + νe∆t

]
. (3.51)

For the Drude current Jx, one can apply

Jx
m+1/2,t+1
D = Jx

m+1/2,t
D

1− νe∆t/2
1 + νe∆t/2

+ . . .

e2∆t2

meε0

(
ne
m+1,t+1 + ne

m,t+1
)
E
m+1/2,t+1
x +

(
ne
m+1,t + ne

m,t
)
E
m+1/2,t
x

2 + νe∆t
. (3.52)

Similar procedure applies to y and z �eld and current components, correcting spatial discretization for
n and k correspondingly.

3.7 Electron-ion heat transfer equations

The following numerical scheme based on the implicit Crank-Nicolson method [225] is proposed for
solving the two-dimensional equation for electron temperature (2.25)

3kB(nt+1
e + nte)

4

(Te)
t+1 − (Te)

t

∆t
=
kB

2µe
2e
∇ · (neTe∇Te)t+1 + . . .

kB
2µe

2e
∇ · (neTe∇Te)t −

3kB
4τei

[
T t+1
e nt+1

e + T ten
t
e − (nt+1

e + nte)Ti
]

+ Iαabs, (3.53)

where the electron density-dependent heat capacity Ce, thermal conductivity ke and electron-lattice
relaxation time γei are incorporated into the equation. In what follows, we de�ne r = nte

nt+1
e

as the

relationship between the electron densities, Q = 8π∆tIk
3λnekB

as the source, ke = kBµe∆t
3e∆x2 as the e�ective

constant thermal conductivity divided by heat capacity, γe = ∆t
τei

as the e�ective relaxation time. One
can �nd the solution for the electron temperature at the next temporal step as follows

T te = E1Te
t−1 + E2(γeTi +Q) + . . .
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2
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+ . . .
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(3.54)

E1 = E2

(
1− 2keTe

t−1 r

1 + r
− γe

r

1 + r

)
,

E2 = 1/

(
1 +

2keTe
1 + r

+
γe

1 + r

)
, Ek =

keE2

2(1 + r)
,

where (m,n) are the spatial mesh points, t is the temporal mesh point. If not precised, the temperatures
Te and Ti and the electron densities ne are de�ned at (m,n) spatial step and t temporal step.

Once the laser energy is transferred to the electron system and Q ≈ 0, the discrete scheme is
unconditionally stable, so the temporal step can be safely increased up to tens of femtoseconds. In
fact, one can investigate the stability in the form tz · eiλm as follows

z − r

z
=

[
−2sin2(

λ

2
)
ke∆t

∆x2
− γe

2

]
(z +

r

z
)

z2 =
r − 2sin2(λ2 )ke∆t

∆x2 − γe
2

r + 2sin2(λ2 )ke∆t
∆x2 + γe

2

≤ 1. (3.55)

Nevertheless, to avoid the decaying oscillations, the condition keTe = kBµeTe∆t
3e∆x2 ≤ 1

2 is to be hold. One
can estimate, that for a spatial step ∆x = 20 nm and high electron temperatures of order Te = 106−107

K, ∆t < 50 fs.
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The similar implicit Crank-Nicolson scheme is used for solving the equation for ion temperature
(2.25)

ρiCi
Ti
t+1 − Tit

∆t
=
ki
2

[
∇ · (∇Ti)t+1 +∇ · (∇Ti)t

]
+ . . .

3kB
[
ne
t+1(Te

t+1 − Tit+1) + ne
t(Te

t − Tit)
]

8τei
− BβT0(∇~ut+1 +∇~ut)

2
. (3.56)

As in previous case, we de�ne γi = 3kB∆t
4Ci

. One can �nd the lattice temperature de�ned at the next
temporal step as follows

T t+1
i = I1Ti + I2γi

(
Te
t+1ne

t+1 + Tene
)
/2 + . . .
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m+1 − u
t+1
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1

1 + γinet+1/2
,

I3 =
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, I4 =

BβI2

4ρiCi∆x
.

(3.57)

If not precised, the temperatures Te and Ti, the electron densities ne and the displacements u are
de�ned at (m,n) spatial step and t temporal step. As the previous scheme, it is unconditionally stable.
The decaying oscillations are completely avoided as the condition ki∆t

ρiCi∆x2 ≤ 1
2 is satis�ed. One can

note, that the temporal step can be also increased up to few picoseconds to solve heat di�usion equation
when the electron-ion transfer is �nished and the system is in equilibrium. For example, for a spatial
step ∆x = 20 nm, ∆t ≤ ∆x2/D ≈ 400 ps.

For both electron and ion temperatures, the initial and boundary conditions are expressed as
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∂Te
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∂Ti
∂z

)
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= 0,

(3.58)

where T0 is the initial temperature, 0, xmax and 0, zmax are boundaries of the numerical grid. The
boundary conditions are discretized by the second order numerical scheme.

3.8 Thermo-elastic wave equations

The equation for displacements (2.28) is solved numerically by the following discrete scheme

ρ
ut+1 − 2ut + ut−1

∆t2
=
G

2
(∇2~ut+1 +∇2~ut−1) + . . .

G

2− 4ν

[
∇(∇ · ~ut+1) +∇(∇ · ~ut)

]
−Bβ∇Ti.

(3.59)
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Finally, the two-dimensional displacements can be expressed at the next temporal step as
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(3.60)

If not precised, the temperatures Ti, the densities ρ and the displacements u are de�ned at (m,n) spatial
step and t temporal step. The particularity of the thermoelastic wave equation is a pressure wave
solution. The changes in displacements due to pressure wave launching take place up to nanosecond
timescales on a few micrometers spatial grid, as the longitudinal sound velocity of the pressure wave
CL =

√
G/ρ is about 6 km/s or 6µm/ns. Therefore, the stability criterium for hyperbolic system of

equations yields C1 = G∆t2

ρ∆x2 ≤ 1 and can be rewritten as ∆t ≤ ∆x/CL < 3 ps. At few nanoseconds,
the laser-induced system is stabilized and then the relaxation follows. Therefore, the temporal step
can be increased up to hundreds of picoseconds.

The initial and boundary conditions for displacements are written as follows

u0
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∂ux
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∂t

)t=0

= 0(
∂ux
∂x

)
(m=0,xmax)

− Bβ

B + 4
3G

(Ti(m=0,xmax) − T0) = 0(
∂uz
∂z

)
(n=0,zmax)
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B + 4
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(3.61)

where T0 is the initial temperature, (0, xmax) and (0, zmax) are boundaries of the numerical grid. The
equations for boundary conditions are approximated by the corresponding second-order di�erential
scheme.

The implicit di�erence scheme for the density equations (2.30) is written as follows
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(3.62)

If not precised, the displacements u and the densities ρ are de�ned at (m,n) spatial step and t temporal
step. The initial and boundary conditions for the density equation are written as follows

ρ0 = ρ0(
∂ρ

∂x

)
(m=0,xmax)

=

(
∂ρ

∂z

)
(n=0,zmax)

= 0,
(3.63)
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Figure 3.5: Schematics and limitations of the multiphysical calculation procedure.

where ρ0 = 2.2 g/cm3 for fused silica and borosilicate glass is the density of non-deformed material,
(0, xmax) and (0, zmax) are boundaries of the numerical grid. The equations for boundary conditions
are approximated by the corresponding second-order di�erential schemes.

Fig. 3.5 illustrates the structure of the self-consistent multiphysical model. The electromagnetic
model sets the spatial limitation of the mesh. The nonlinear system of Maxwell's equations coupled
with free carrier rate equation are solved with the smallest timestep in attosecond range. The calcu-
lated spatio-temporal distributions of the electron density, intensity and absorption serve as the initial
conditions for solving electron-ion heat transfer equations. The temporal step can be increased up to
1000 times as soon as the laser pulse has passed (then, the electromagnetic calculations are switched
o�). Electron-ion heat transfer sets the spatio-temporal lattice temperature distribution, used as the
initial source for the thermo-elastic wave equations coupled with the continuity equation for the lattice
density. After the electron and ion temperatures �nd the equilibrium, the timestep can be increased
100 times more. The following limitation is because of the pressure wave launch, taking place up to
several nanoseconds. After this process, the only limitation is caused by solving heat di�usion equation
and enables the timestep increase up to tenths-one hundred of picoseconds.

3.9 Conclusions

We have presented in details the numerical method for solving the system of equations describing
ultrashort laser interaction with dielectrics.

The fundamental part of the method is devoted to solving complex dynamic problems in nonlinear
optics and is based on the Maxwell's equations coupled with time-varying electron density equation,
taking into account the variety of nonlinear processes which take place under high-intensity ultrashort
laser irradiation like Kerr e�ect, photoionization, avalanche and recombination processes. The proposed
numerical approach allows reaching a su�cient stability, �nding a good compromise between the model
accuracy and ease of use. In particular, the method is advantageous in the case of ultrafast laser
material processing [3], for modeling ultrashort laser nanoparticle interaction [134, 226], and to study
the periodic nanostructure formation in dielectric materials by femtosecond laser irradiation [227,228].
The electrodynamic approach is applied in Chapter 4 and Chapter 5. The proposed parallel GPU
implementation detailed in Appendix leads to a signi�cant decrease in the computation time.

Finally, the appropriate discrete schemes are written for solving electron-ion heat transfer equations,
thermoelastic wave equation and continuity equation for density and the temporal steps required for
the numerical stability are discussed. Chapter 6 describes the numerical results obtained by modeling
of ultrashort laser interaction with fused silica solving full system of equations.
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3.10 Appendix: GPU implementation

It should be noted that realistic 3D-calculations are extremely time-consuming and require storage
and manipulation of massive data on each timestep. To implement parallel algorithm to code, the
numerical grid should be divided into thread blocks. The cells situated at the borders of the blocks need
to access to adjacent blocks, which makes the parallel procedure complex and disadvantageous in the
case of implementation on multi-processors using the Message Passing Interface (MPI) library [229,230].
Note, that in this case, two dimensional arrays of electric and magnetic �elds have to be sent to neighbor
processors at each timestep. For example, using 1D-block data redistribution between the processors,
for a 3D-grid with 350 × 350 × 350 cells, after each timestep and for each processor, there are two
square faces of neighbor cells 350 · 350 · 2 = 2.45 · 105 to interchange with 6 electromagnetic �elds, 3
Drude currents and one electron density array of type "`double"' (10 · 8 = 80 bytes), so approximately
20 Mbytes to transfer. Considering that it takes about few seconds [231] and 48000 timesteps are
modeled, the time needed just to transfer the required neighbor �elds exceeds one hundred hours,
which is comparable to the computation time. Furthermore, the communication time between the
processors rises rapidly both with the number of processors and the size of the grid, resulting in bad
speedups [231,232].

Figure 3.6: Computation time dependence on the size of the grid for CPU, MPI with 2 processors,
MPI with 8 processors and GPU in the case of two-dimensional and three-dimensional problems of 400
timesteps.

On the contrary, the proposed GPU technique is extremely bene�cial, accelerating the calculation
by hundreds of times, because context switching between GPU threads does not require the state to
be stored/restored in contrast to CPU threads [233] and the peak memory bandwidth could be as high
as 288 Gb/s. Even a non-optimized parallel implementation of the FDTD on a GPU can lead to a
signi�cant decrease in computation time with respect to a CPU implementation [234]. However, the
code should be optimized avoiding unnecessary use of global memory.

The implementation of the proposed method involves allocating and initializing on the GPU global
memory six arrays for the Ex, Ey, Ez electric �eld components of the current and previous timesteps
and three arrays for the Hx, Hy, Hz magnetic �eld components, three arrays for the polarization
currents JxD, JyD, JzD, twenty four arrays for the UPML (six faces and four arrays for each square
face), the arrays for intensities I and electron densities ne for current and previous timesteps. Once
on the device, it is advantageous to use the fast but limited shared memory to handle updating
equations [233�236]. To reduce the number of memory access transitions and to exploit the availability
of the shared memory, we propose to expand the dimensions of the blocks loading therein all the
needed components, including the ones corresponding to adjacent blocks as it was implemented for
linear FDTD [234]. Instead of two common steps of updating electric and magnetic �elds for simple
FDTDs [234,235], the model requires three steps shown in Fig. 3.4. Between the steps, the threads are
synchronized by syncthreads(). At each step, only shared memory is used for computation and the
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expanded shared memory allocations of the required arrays using b + 1 cells are outlined in Fig. 3.4.
Thus, for example, calculation of the intensity by (3.48) as a sum of the neighbor electric �elds de�ned
by (3.51) requires the allocation of electric and magnetic �elds, and polarization currents at m + 1/2
and m − 1/2 in shared memory at the beginning of the second step. Analogically, calculation of the
polarization current by (3.52) requires the electron densities stored at m and m + 1 at the beginning
of the third step.

Table 3.2: CPU, MPI & GPU computation time.

Grid Grid points Timesteps Single CPU
MPI (8

processors)
GPU

2000× 2000 4 · 106 32000 75 h 14 h 40 1 h 20
350× 350× 350 42.875 · 106 48000 1200 h 750 h 7 h 35
500× 500× 500 125 · 106 48000 3500 h - 12 h 30

The advantage of using GPU-based algorithm over CPU or non-optimized classical MPI-based
algorithm can be already seen after 400 timesteps calculation in Fig. 3.6. In particular, when the
communication between the processors in 3D problems is of the same order as the calculation time,
using multiple processors turns out to be ine�cient, whereas GPU conserves its high performance
speedups. In what follows, I give an example of approximate calculation time required to solve a
massive nonlinear dynamic problem on a single CPU, by using MPI in parallel on 8 processors, and
by GPU QuadroK6000 with 2880 CUDA cores in Table 3.2. For two-dimensional case, ∆x = 5
nm is used to calculate light propagation in the grid 10 × 10µm2 with timestep ∆t = 7.5 as and
irradiation during 240 fs with intensity I = 5 · 1017 W m−2. The GPU acceleration is more than
50 times, which could be achieved only by using many processors. The GPU technique is even more
bene�cial in three-dimensional case, where using a lot of processors is disadvantageous due to large
data array manipulation (Table 3.2). The spatial step is ∆x = 10nm, resulting in 3.5× 3.5× 3.5µm3

and 5 × 5 × 5µm3 grids. The corresponding timestep is ∆t = 15 as and irradiation during 720 fs
with similar intensities. The acceleration on GPU reaches 280 times which enables calculating realistic
problems in nonlinear optics within reasonable time.
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Chapter 4

Ultrashort laser interaction with

nanoparticle in dielectric media

This chapter is devoted to the numerical study of ultrashort laser interaction with a single spheri-
cal nano-inhomogeneity in a dielectric medium. The aim is to describe the evolution of intensity and
free carrier density distribution in the vicinity of the nanoparticle as a function of the nanoparticle's
size and density in optical medium with varying optical properties due to femtosecond laser irradia-
tion. Particular attention is paid to the di�erences of ultrashort laser interaction with nanovoids and
metallic nanoparticles embedded in fused silica. Depending on the size and on the density, di�erent
behavior is shown in the near-�eld and in the far-�eld of the nanoparticle. Finally, the presented study
explains the growth of polarization-dependent nanoplasmas from single inhomogeneities of di�erent
optical properties, which is a signi�cant step toward understanding of ultrafast laser interaction with
inhomogeneous dielectric medium.

4.1 Main parameters from Mie theory

Nonlinear electrodynamics of ultrafast laser interaction with nanoparticles (NPs) could not be
described by electrostatic approach. To take into account the changes in the optical properties of the
medium and ionization processes in dielectrics, nonlinear Maxwell's equation should be coupled with
electron density equation, as it was discussed in the previous chapter.

Figure 4.1: Main parameters resulting in di�erent ultrashort laser interaction with nanoparticles.

Nevertheless, till optical changes in dielectric medium are not signi�cant, the initial intensity dis-
tribution created by scattering from a single sphere in homogeneous medium is given by the analytical
solution of the Mie scattering problem [237]. In general, the electric �elds scattered by homogeneous
sphere of radius R in spherical coordinates (r, θ, ϕ) are expressed as in�nite sums of the multiplied
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electric Be and magnetic Bm moments, spherical Henkel functions of the �rst kind and their deriva-
tives, and Legendre polynomials of the �rst kind, which are functions of kr, q and nq (see appendix),
where k = 2π/λ1 is the wave number in the medium, r is the radial distance from the center of
the nanoparticle, λ1 = λ/n is the wavelength in the medium with relative permittivity n2 = ε2/ε1,
q = 2πR/λ1 is the size parameter, ε1 and ε2 are medium's and nanoparticle's electric permittivities,
respectively [237,238]. Therefore, it is reasonable to choose q and n as the main parameters of interest
in further investigation [Fig. 4.1].

Simple solutions are known in the near-�eld kr � 1 and in the far-�eld kr � 1 of the sphere of
a nanometric size q � 1 with relatively low nq � 1 or high density nq � 1. In this case, Henkel
functions are approximated by their asymptotes, magnetic and electric moments of the second order
and higher are negligible [238]. The scattering of light by spheres which are much smaller than the
irradiation wavelength is called Rayleigh scattering [238]. The scattering has dipole character and does
not depend on the exact shape of particles.

The described approximation of the Mie solution is helpful for analyzing qualitatively the initial
static optical response of nanoparticles in dielectric medium. To follow the kinetics of electron plasma
generated due to the presence of the embedded nanoparticles, the method based on the nonlinear
Maxwell's equations coupled with electron density equation is used in this chapter.

4.2 Role of material optical properties and NP's size

As an example, we consider �rstly femtosecond laser interaction with a small spherical gold nanopar-
ticle in fused silica.

Figure 4.2: Electron density distributions of generated plasma normalized to critical value ncr =
1.74 ·1027m−3 after λ = 800 nm irradiation of gold nanoparticles of di�erent size (q = 0.2 and q = 0.1)
in fused silica at the end of the pulse. The input pulse has the energy of 250 nJ.

A simple analysis based on the electrostatic analytic solution of the scattering problem can already
give the qualitative information about the near-�eld intensity distribution. The local �eld distribution
in the vicinity of the nanoparticle strongly depends on the parameters q and n according to the Mie
theory. In the present study, the conditions q = 2πR/λ1 � 1 and nq � 1 are satis�ed, so that
the scattering has a dipole character. For instance, for nanoparticles with radius R � 90 nm the
condition is valid at laser irradiation wavelength λ1 = λ/n ≈ 550 nm in fused silica. In the near-�eld
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approximation (kr � 1), the scattered electric �elds can be written in the following form [238]:
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(4.1)

where Be
1 and Bm

1 and the �rst order electric and magnetic moments. In what follows, the polarization
is along x direction and the light propagation is along z direction. This way, both electric �eld ~E and
wave vector ~k lie in x0z plane (corresponding to ϕ = 0). By considering the near-�eld approximation in
this plane and by neglecting the magnetic dipole moments, the intensity distribution can be estimated
as
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1)2
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where the Ē stands for the complex conjugate values.

Figure 4.3: (a,c): Near-�eld approximation of the intensity distribution created by nanovoid (a) and
small gold nanoparticle (c) with parameter size q = 0.2 given by the analytical Mie solution. (b,d):
Electron density distribution of fused silica generated plasma normalized to critical value ncr = 1.74 ·
1027m−3 at λ = 800 nm irradiation of void (b) and gold nanoparticle (d) at the end of the pulse (left).
The input pulse has the energy of 250 nJ.

From this expression, one can see that the intensity is higher in the x direction (θ = π/2) than in
the z direction (θ = 0, π), creating elliptical distribution of intensities in the near-�eld of nanoparticle.

In what follows, to �nd the quantitative distributions of the intensity and the electron density in
the vicinity of the nanoparticle, we solve the nonlinear system of Maxwell's equations coupled with
electron density equation (2.2,2.19). As the intensity increases, the ionization processes start to play
essential role and lead to the generation of plasma in the enhanced intensity regions. The plasma is
con�ned to the interface between fused silica and gold. The calculation results show that free carrier
density distribution strictly follows the intensity one (Fig. 4.2). The process of the plasma generation
is quite similar for an inhomogeneity of a smaller size, which gives the opportunity to understand what
happens in the near-�eld of very small inhomogeneities considering nanoparticles larger in size but still
satisfying the conditions q � 1 and nq � 1.
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Figure 4.4: Electron density distribution of fused silica generated plasma normalized to critical value
ncr = 1.74 · 1027m−3 at λ = 800 nm irradiation of nanovoid (a, b) and gold nanoparticle (c, d) with
parameter size q = 0.2 (a, c) and q = 1 (b, d) at the end of the pulse. The input pulse has the energy
of 250 nJ.

Di�erent intensity distributions are expected for nanovoids ε2 = 1 < ε1 and metallic nanoparticles
ε2 > ε1 embedded in fused silica, with enhancements in the propagation direction z for nanovoids
and in the polarization direction x for metallic nanoparticles [Fig. 4.3 (a, c)]. In fact, the resulting
distributions could be explained by the analytical Mie solution. The electric moment of a small
nanometric spherical inhomogeneity is de�ned as Be

1 ≈ iq3 n2−1
n2+2

. Therefore, di�erent signs of the
resulting scattered electric �elds for voids n2 < 1 and metallic nanoparticles n2 > 1 (see appendix) are
obtained.

Fig. 4.3 (b, d) shows that the free carrier density distribution calculated by solving (2.2,2.19) after
ultrafast laser irradiation of a nanovoid or a nanoparticle has also characteristic enhancements in z or
x directions, respectively. Note, that both the intensity enhancement and free carrier density caused
by irradiation of a single nanovoid is signi�cantly lower than in the case of metallic nanoparticle.

Free electron densities follow the initial Rayleigh intensity distribution if the ionization is weak and
the size of the sphere is considerably small, which requires that the conditions q � 1 and nq � 1
are satis�ed. In what follows, we investigate the evolution of the electron plasma in case of larger
voids and nanoparticles. Fig. 4.4 compares the electron density distributions in the vicinity of small
q � 1 and large q = 1 nanoparticles. Strong backward scattering is common for both inhomogeneities
of critical size q = 1 independent of their nature, which means that these regions are �rstly ionized
during ultrashort laser irradiation. As in previous case, higher electron densities are generated in the
vicinity of gold nanoparticle. We note that this enhancement is no more related to the near-�eld of
the nanoparticle as kr > 1 for the critical size q = 1. We conclude that for particle sizes larger than
a resonant value, de�ned as q ≈ 1, the scattered �eld distribution and therefore, the electron density
distributions are no more symmetrically localized close to the nanoparticle-glass interface and have a
preferential extrema in the propagation direction.
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4.3 Role of optical properties of dielectric media

The optical parameters of the media play a crucial role in the electromagnetic modeling. As
frequency dependence of fused silica is described by Drude formalism, the complex permittivity of the
media, dependent also on the electronic carrier density, can be written in the following way:

ε(ne) = ε∞ −
e2ne

me(ω2 + ν2
e )

+ i
e2neνe

meω(ω2 + ν2
e )
, (4.3)

where ω = 2πc/λ is the frequency of the irradiated wavelength and νe is the electron collision frequency.
In several works, the electron collision time τe = 1/νe, which in reality depends both on the electron
carrier density and on the electron temperature, is assumed to be constant. The values commonly
used in the analysis of experimental measurements and in numerical simulations vary from 0.1 fs to 10
fs [129,133,239�242].

The calculations are �rst performed with τ = 0.5 fs. In addition, two models taking into account
for time-varying density-dependent electron collision time dependencies are considered. One possibility
is to use the following empirical expression that was proposed in Ref. [242]

τ(t) =


3.5fs, ne(t) ≤ 5 · 1025m−3

16πε20
√
m∗e(0.1Eg)

3

√
2e4ne(t)

, ne(t) ≥ 5 · 1025m−3,
(4.4)

where Eg = 9 eV is the electron band gap and m∗e = 0.64me is the reduced electron mass. The
following model considers the electron collision time inversely proportional to the electron density,
taking account the decrease of the time between electron's collision for large laser pulse energies [133].

Figure 4.5: Electron density distributions normalized to fused silica critical value ncr = 1.74 · 1027m−3

at λ = 800 nm irradiation in the vicinity of a gold nanoparticle for three di�erent electron collision
times models: τ1(t), according to (4.4) used in reference [242]; τ = 0.5 fs; τ2(t), according to (4.5)
proposed in [134]. The input pulse has the energy of 300 nJ. The graph shows τ1(t) and τ2(t) as the
functions of free carrier density.

In dielectric materials electron collision time also depends on electron mobility, so that the following
empirical equation is to be checked out:

τe(t) = τmin +
τmax − τmin

1 + (ne(t)/ncr)α
, (4.5)
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where τmin = 0.2 fs; τmax = 2 fs; and α = 0.7. The maxima and minima of the parameter used
in simulations are taken from the work [133], where the calculated re�ectivity for di�erent electron
collision times is compared with the experimental results. Thus, with growing density smaller values
for collision time are obtained, �tting well the experimental independent measurements [89,240,241].

The calculation results obtained by using di�erent parameters, as follows, constant electron collision
time τ = 0.5 fs, and empirical relationships (4.4) and (4.5) are shown in Fig. 4.5. One can see that the
results obtained by using equation (4.4) are close to the ones obtained for τ = 0.5 fs and reveal smaller
e�ects of the particles, whereas the results calculated by using equation (4.5) demonstrate stronger
changes in the �eld in the vicinity of the particle.

In what follows, we compare the spatial free carrier density distributions of the fused silica plasma
generated in the near-�eld of the gold nanoparticle after the end of the pulse. The higher the collision
time is, the closer the properties of the media to the metallic ones, as the real part of the dielectric
constant (4.3) is getting closer to its minimum negative value Re(ε) = ε∞ − e2ne

meω2 . Moreover, one
can note, that the electron collision time which corresponds to the near-critical density value plays a
crucial role in plasma generation. Thus, in the �rst proposed empirical model (4.4) τ1(ncr) ≈ 0.1 fs
and in the second (4.5) τ2(ncr) ≈ 1.1 fs. These facts explain the di�erences in the calculation results.

4.4 Far-�eld interaction

In what follows, we investigate how the presence of the inhomogeneity and the generated plasma
in the near-�eld of the inhomogeneity a�ects the laser propagation in the far-�eld.

As in previous cases, we propose to start the qualitative analysis considering the static analytical
Mie solution. The scattered electric �elds in the far-�eld approximation (kr � 1) could be written
as [238]
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As one can note, Mie solution for the far-�eld kr � 1 (4.6) di�ers qualitatively from the near-�eld
solution kr � 1 (4.1) due to the di�erent asymptotes of Henkel's functions (see appendix). In the

near-�eld of the nanoparticle, the asymptote writes as ς(1)
1 (kr) = − i

kr
, it is non-harmonic function

and the electric �elds decrease fast in the radial direction, which means that the energy density is
concentrated in the vicinity of the nanoparticle. In contrast, the asymptote for the far-�eld writes
as ς(1)

1 (kr) = −exp(ikr), which means that the solution is a harmonic function. Henkel function is
multiplied by 1/kr, so anyway the solution decreases in the radial direction but not as fast, as in the
case of the near-�eld electric �eld approximation.

Because of the interference of the incident wave with the scattered far-�eld spherical wave, the
periodic maxima and minima are organized in the direction of light propagation leading to the regions
of the enhanced intensity in Fig. 4.6(a) [134, 226]. This phenomenon can be explained by analyzing
the far-�eld dipole approximation of Mie solution (see appendix). We consider, as for the near-�eld
problem, the laser interaction with the inhomogeneity in xz plane, corresponding to ϕ = 0. Note,
that in this case E(s)

ϕ = 0 and in the far-�eld E(s)
θ >> E

(s)
r . Converting the scattered electric �eld to

Cartesian coordinates, it becomes evident that the scattered electric �eld E(s)
x ∝ E(s)

θ ∝ −iB1
e exp(ikz)

kz

interferes with the incident polarization �eld E
(i)
x ∝ exp(−ikz) (see appendix). Fig. 4.6(a) shows

that the interference results in the organization of the standing wave with the intensity distribution
I ∝ exp(2ikz)

(kz)2 having maxima and minima in the axis z backward direction separated by ∆z = λ/2n.

However, the intensity decreases very fast in the radial direction, as 1/r2, explaining why local maxima
are getting weaker.
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Figure 4.6: (a) Static analytical Mie theory intensity distribution for a small nanoparticle of radius
R = 5 nm localized in (0,0) (interference between the incident plane wave and the scattered spherical
wave).(b) Electron density distribution is calculated by 2D-Maxwell's equations coupled with electron
density equation at the peak of 80 fs laser pulse irradiating a single nanoparticle; Here, laser irradiation
conditions: pulse duration θ = 80 fs (FWHM), irradiation wavelength in air λ = 800 nm, pulse energy
E = 300 nJ. Electron density is normalized to its critical value at 800 nm ncr = 1.74 × 1027m−3 and
~k is the incident laser wave vector.

The free carrier density distribution calculated by solving (2.2,2.19) is shown in Fig. 4.6(b). In
the far-�eld of the nanoparticle, one can clearly see the periodic maxima of the electron density with
the interval λ/2n. Note, that the interference also leads to the organization of the second nanoplasma
structure created in backward direction of laser propagation [134], which is explained by stronger
backward scattering from larger inhomogeneities, as in Fig. 4.4. The dynamics of the interaction of
the laser light with plasma is de�ned by strong enhancement in the direction backward to the laser
propagation and is discussed in details in the next part of this chapter.

We investigate also the far-�eld scattered �elds in the plane yx, perpendicular to laser propagation
direction with θ = π/2. In this case, E(s)

θ = 0 and in the far-�eld E(s)
ϕ >> E

(s)
r . The component of the

scattered �eld can be written in the following way in Cartesian coordinates E(s)
x ∝ E(s)

ϕ ∝ −iB1
e exp(iky)

ky
(see appendix). The interference of the incident �eld with the scattered �eld results in the spherical
periodic intensity distribution with ∆ = λ/n, enhanced in y direction. Therefore, the enhanced
patterns are quasi-parallel to the electric �eld polarization in yx plane. Note, that the solution is real if
~k is real (non-excited dielectric). In contrast, for a nanoparticle in a metallic media, which is complex,
the imaginary solution will result in the intensity decrease in y direction E

(s)
x ∝ exp(−ky), and,

therefore, the preferential radiation remnants along the polarization. This enhancement contributes to
the formation of quasi-perpendicular patterns. The following approach can be used as an approximation
to explain the preferential periodic intensity enhancement due to the interference of the incident �eld
with the scattered �eld from the nano-inhomogeneity on/near the dielectric/metallic surface if the
light propagates on the surface. The ultrashort laser interaction with fused silica rough surface will be
discussed in the next chapter.

4.5 Evolution from a single inhomogeneity to a nanoplane

Here, we consider the nonlinear dynamics of further interaction of ultrashort laser pulses with
the generated plasma. Interestingly, electron density pro�les calculated around single inhomogeneities
of di�erent nature (nanovoid ε2 = 1 or metallic nanoparticle) already reveal a remarkable plasma
elongation backwards in the direction perpendicular to laser polarization in Fig. 4.7. Note, that the
process is very rapid and nonlinear. In addition, local �eld enhancement leads to su�ciently high
intensities, so that the multiphoton ionization starts playing a crucial role changing the refractive
index of the medium. Therefore, changes both in scattering and in absorption characteristics of the
medium also take place.

In the near �eld of the nanoparticle, where r � λ/2πn, the intensity is strongly enhanced. One
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Figure 4.7: Electron density distributions are calculated by coupled 2D-FDTD demonstrating the
electron plasma growth due to the presence of a single nanovoid and a single metallic nanoparticle of
radius R = 5 nm in fused silica localized in (0.15,0)µm at the pulse peak. Laser irradiation conditions:
pulse duration θ = 120 fs (FWHM), irradiation wavelength λ = 800 nm, pulse energy E = 2µJ and
τ = 10 fs for a nanovoid and E = 500 nJ and τ = 0.5 fs for metallic nanoparticle. Here and further,
electron density is normalized to its critical value at 800 nm ncr = 1.74×1027m−3 and ~k is the incident
laser wave vector.

can thus expect that multiphoton ionization is also higher in these areas. The enhancement as well
as the initial intensity distribution are di�erent for inhomogeneities of di�erent nature (see Fig. 4.3).
For voids, or for inhomogeneities with an enhanced ionization cross section [82], the scattering is
weaker than for metallic nanoparticles or high-density plasma nanospheres with reduced ionization cross
section. In the case of the nanospheres with the reduced bandgap, high-density plasma is con�ned inside
the nanospheres making them quasi-metallic scattering centers responsible for further elongation and
formation of the nanoplane perpendicular to laser polarization. In the case of voids/inhomogeneities
with higher bandgap, which are more di�cult to ionize, the nanoplane elongation is possible if the quasi-
metallic plasma is generated in the vicinity of the inhomogeneities due to the intensity enhancement in
the near-�eld of the scattering centers. For instance, the growth of the nanoplane from a void could be
drastic if the optical properties of the medium are very sensible to the intensity of the irradiation, which
is the case of fused silica (six-photon ionization cross section). The results of numerical calculations in
Fig. 4.7 with a single void and with a high-density inhomogeneity demonstrate, that in spite of di�erent
nature of the inhomogeneities, initial intensity distribution and di�erent parameters, the physics of the
nanoplasma formation is qualitatively the same in both cases. It is related to the fact that after a thin
plasma layer with metallic properties Re(ε) < 0 is generated in the near-�eld of the initial nanosphere,
further plasma generation is guided only by scattering from already organized plasma independent of
the initial inhomogeneity nature. This means that the physics discussed in this chapter is applicable
to any kind of initial inhomogeneities of the size rather smaller than the irradiation wavelength.

If the condition r � λ/2πn is satis�ed, the intensity distribution near nanometric laser-induced
inhomogeneity is enhanced only in the direction of the electric �eld polarization. Fig. 4.8(a) shows
that plasma generated due to this enhancement has roughly an ellipsoid form. Interestingly, the size of
the resulting ellipsoid depends only on the irradiation wavelength and optical parameters of the media,
but not on the initial NP's size. As the plasma dimension overcomes the laser wavelength range, the
growth slows down and the backward scattering starts playing an essential role [Fig. 4.8(b)]. Such
change in the scattering behavior, related to the resonance is the size of the inhomogeneity (kr ≈ 1
in terms of Mie scattering) [243] enables nanoplane elongation in the backward propagation direction
[Fig. 4.8(c)].

In the far-�eld r � λ/2πn, the interference between the incident and the scattered wave leads to
the organization of periodic standing spherical waves, with intensity proportional to 1/r2 and with a
period λ/(2n) in the backward propagation direction [Fig. 4.8(a)]. This e�ect can be also observed
for larger inhomogeneities consisting of quasi-metallic plasma as in Fig. 4.8(b) and even for long
nanoplanes acting as nanoantennas with re�ectivity maxima at half-integer wavelength in the me-
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Figure 4.8: Electron density snapshots are calculated by coupled 2D-FDTD demonstrating the evo-
lution from a single inhomogeneity of radius R = 5 nm localized in (0.3,0)µm to nanoplane taken
at (a) 40 fs before the pulse peak, (b) at the pulse peak, (c) 40 fs after the pulse peak. Laser irra-
diation conditions: pulse duration θ = 120 fs (FWHM), irradiation wavelength λ = 800 nm, pulse
energy E = 300 nJ. Here and further, electron density is normalized to its critical value at 800 nm
ncr = 1.74 × 1027m−3 and ~k is the incident laser wave vector. SEM images are taken from Ref. [18]
at di�erent scan velocities. Experimental details: pulse energy 50 nJ, pulse duration 100 fs at central
wavelength 800 nm, repetition rate 250 KHz and focusing conditions NA = 1.1. Scale bar 1µm.

dia [82]. Although the enhancement in the far-�eld backward propagation direction is rather weaker
than in the near-�eld and quickly decreases with r, Fig. 4.8(b) shows that it is possible to ionize the
nearest enhanced regions by multiphoton absorption mechanism. As a result, the second nanoplasma
structure is formed in the backward propagation direction. It a�ects the light propagation in a sim-
ilar way. Fig. 4.8(c) clearly demonstrates that such incubation process results in the formation of a
nanoplane elongated in the backward propagation direction perpendicular to the laser polarization. As
the nanoplane is already formed, the process is now guided mostly by the near-�eld intensity enhance-
ment at the tip of the nanoplasma [44], leading to further elongation in the direction perpendicular
to laser polarization. The length of the resulting nanoplasmas depends on the pulse duration and on
the laser pulse energy, however, the �nal width in the polarization direction is independent of these
parameters. High-�delity visualization in fused silica con�rms experimentally the evolution mechanism
from a single inhomogeneity to nanocrack [18]. Only qualitative comparison is possible in Fig. 4.8 as
the calculations indicate the temporal electron density evolution during one pulse duration, whereas
the SEM images show the nanocrack growth on the shot-to-shot basis.

4.6 Conclusions

In this chapter, we have investigated numerically nanoplasma formation near inhomogeneities of
di�erent size and density due to local �eld enhancement during femtosecond laser irradiation by solving
the system of nonlinear Maxwell's equations coupled with electron density equation. As an example,
fused silica is taken as a dielectric medium, spherical nanovoid with the dielectric constant ε = 1 and
spherical gold metallic nanoparticle are considered as inhomogeneities.

At the initial stage of ionization, the spatial electron density distribution follows the intensity
distribution, which could be qualitatively predicted by electrostatic analytical Mie solution. Di�erent
con�gurations of intensity and electron density distributions are shown in the near-�eld of a small
metallic nanoparticle and a small nanovoid (q � 1). For inhomogeneities of bigger size (q = 1) and
di�erent density, the backward scattering results in the regions of high intensity enhancements. In
the far-�eld of inhomogeneities, the interference between the plane incident wave and the spherical

67



scattered wave leads to the organization of periodical spatial minima/maxima of the intensity and of
the electron density.

At later stages of ionization, the dynamics of femtosecond laser irradiation could not be described
any more by electrostatic approach. It is shown that the transient properties of the material surround-
ing the inhomogeneity strongly impact the distribution and the size of the generated plasma. Therefore,
collisional frequency and irradiation conditions are the parameters which are crucial for electromagnetic
modeling. Two di�erent models taking into account the electron density dependence of the collision
frequency are investigated giving di�erent resulting spatial electron density con�gurations.

Finally, it is shown that further ultrashort laser irradiation of inhomogeneities results in the
nanoplasma growth backwards to the laser propagation and perpendicular to laser polarization. The
dynamics of the laser-matter interaction is de�ned by the optical properties of the medium but has
similarities in the case of the inhomogeneities of di�erent densities.

4.7 Appendix: Elements of Mie scattering by homogeneous sphere

The electric �elds scattered by homogeneous sphere in spherical coordinates (r, θ, φ) can be written
as follows [237,238]

E(s)
r =

cosφ

k2r2

∞∑
l=1

l(l + 1)Be
l ς

(1)
l (kr)P

(1)
l (cosθ)

E
(s)
θ = −cosφ

kr

∞∑
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(
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l ς

(1)′
l (kr)P

(1)′
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l ς
(1)
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(1)
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1

sinθ

)
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φ = −sinφ
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(
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l ς

(1)′
l (kr)P
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l ς
(1)
l (kr)P
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l (cosθ)sinθ

)
,

(4.7)

where Be
l and Bm

l are electric and magnetic dipole moments, k is the wave vector in the medium,
ς

(1)
l (kr) are the spherical Henkel functions of the �rst kind, and P (1)

l (cosθ) are Legendre polynomials
of the �rst kind. Additionally, the �elds have a time dependence factor exp(−iωt) that has been
suppressed in the above equations.

The asymptotes for Henkel functions are as follows
i) Near-�eld (kr � 1): ς(1)

1 (kr) = − i
kr and ς(1)′

1 (kr) = i
(kr)2 .

ii) Far-�eld (kr � 1): ς(1)
1 (kr) = −exp(ikr) and ς(1)′

1 (kr) = −i · exp(ikr).
Small size approximations (q � 1, nq � 1, l = 1): Be

1 = iq3 n2−1
n2+2

, Bm
1 = iq5 n2−1

30 , Be
l → 0, Bm

l → 0,
l > 1.

For small metallic nanoparticle (q � 1, nq � 1, l = 1): Be
1 = iq3, Bm

1 = i q
3

2 , B
e
l → 0, Bm

l → 0,
l > 1.

Legendre polynomials for l = 1: P (1)
1 (cosθ) = sinθ and P (1)′

l (cosθ) = − cosθ
sinθ .

The scattered electric �elds in Cartesian coordinate system:
E(s)
x = E(s)

r sinθcosφ+ E
(s)
θ cosθcosφ− E(s)

φ sinφ

E(s)
y = E(s)

r sinθsinφ+ E
(s)
θ cosθsinφ+ E

(s)
φ cosφ

E(s)
z = E(s)

r cosθ − E(s)
θ sinθ.

(4.8)

68



Chapter 5

Investigation of periodic nanostructure

formation in glass

In this chapter, we present numerical insights in ultrashort laser-induced nanostructuring model-
ing. Particularly, the mechanism of self-organized nanograting formation is investigated by a numerical
approach based on Maxwell's equations coupled with free carrier density equation and previously de-
scribed in Chapter 2 and Chapter 3. It is shown that randomly distributed nanoscale inhomogeneities
signi�cantly a�ect the light propagation, resulting in the formation of periodically arranged nanoplas-
mas. The in�uence of laser parameters such as laser pulse energy, laser wavelength, laser polarization,
as well as the in�uence of the inhomogeneity concentration and concentration pro�les on the resulting
characteristics of the nanoplasmas are numerically investigated. For a �rst time, a correlation of the
concentration of inhomogeneities with the number of laser pulses is demonstrated, and an explanation
of the pulse number e�ect on the nanograting periodicity is proposed. The physical origin of the self-
organization is discussed in details, and a multipulse feedback mechanism is proposed to explain the
growth of nanoplasmas consisting of nanovoids during multipulse laser irradiation. The similarity be-
tween surface nanostructuring and bulk nanostructuring is discussed. Finally, the obtained calculation
results are compared with numerous independent experimental �ndings.

5.1 Transient nanoplasmonics of laser-induced inhomogeneities

In this part, the particularities and the assumptions of the considered model are discussed in details.
In the previous chapter, the evolution from a single inhomogeneity to a nanoplane has been dis-

cussed. Taylor et al. proposed that the origin of self-organized nanogratings could be explained by
a so-called transient nanoplasmonics model [39], in which the nanoplasmas grew periodically pulse
by pulse from the hot-spots organized inhomogeneously around defects or color centers as shown in
Fig. 5.1(a-d). Later, electron density kinetics in glass containing tiny voids was �rstly considered and
a certain periodicity of electron density pro�les was revealed [82]. We propose also that the physi-
cal origin of nanograting self-organization is the result of the electrodynamic processes and electron
plasma evolution which take place during the laser pulse in the dielectric medium containing nanoscale
inhomogeneities. Therefore, we investigate the mechanism of formation by numerical approach based
on Maxwell's equations coupled with time-dependent carrier density equation detailed in Chapter 2
and Chapter 3 to describe the electron dynamics on nanoscale. In the equation, the complete Keldysh
ionization rate takes into account multiphoton and tunneling e�ects and multiple rate equation is
considered to estimate accurately the contribution of the avalanche ionization. The model is used to
investigate the evolution of the electron density distribution during the pulse irradiation by Gaussian
ultrashort laser beam, where initially a smooth distribution of nanoscale inhomogeneities simulating
the bulk nanoroughness is introduced. The randomly distributed inhomogeneities with di�erent initial
concentrations correspond to the state of the laser-induced fused silica after di�erent number of pulses.
During femtosecond laser pulse irradiation, the electron density distribution evolves because of the ion-
ization processes driven by inhomogeneous intensity distribution, resulted from local �eld enhancements
around the inhomogeneities and strong interference e�ects from the inhomogeneity scattered waves.
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An example of maximum three-dimensional electron density distribution as a result of the numerical
calculation based on nonlinear Maxwell's equations coupled with the free carrier rate equation is shown
in Fig. 5.1(e). Remarkably, the spatial distribution is quasi-periodical and polarization-dependent.

Figure 5.1: (a-d) Transient nanoplasmonics model is demonstrated schematically [39]. (e) Maximum
electron density distribution (ne > 0.5ncr) calculated by coupled 3D-FDTD with initial randomly
distributed inhomogeneities. Laser irradiation wavelength λ = 800 nm. The average initial distance
between the inhomogeneities is d = 70 nm.

For simplicity, �rstly we consider nano-regions with a reduced ionization potential to be inhomo-
geneities formed as a result of multiple laser interactions. Then, a multipulse feedback mechanism
with a threshold for nanovoids formation is proposed, generalizing the previously obtained results.
The inhomogeneities are initially set to be spheres of 5− 10 nm radius of the dielectric material. The
electromagnetic �eld in these regions is modeled by resolving the same system of equations (2.2,2.23)
with a narrower electron band gap Eg = 5.2 eV [61, 130, 244, 245]. As long as the size of the inhomo-
geneity is considerably smaller than the irradiation wavelength, the initial plasma generation follows
the Rayleigh scattering distribution [134]. The dynamics of the femtosecond laser interaction with
such inhomogeneities is qualitatively the same giving the opportunity to simulate up to a = 10 nm
nanospheres for λ = 800 nm [82, 134]. The laser-induced inhomogeneity concentration increases with
the number of pulses due to nonlinear ionization memory [246] or glass decomposition processes, which
take place on longer timescales and are discussed in Chapter 6. Therefore, we investigate the resulting
electron density distribution by laser irradiation of randomly distributed inhomogeneities with di�er-
ent initial concentration corresponding to the state of laser-induced fused silica after several pulses. In
fact, such an approach allows me not only studying the pulse number e�ect on the nanograting char-
acteristics but also modeling of initially slightly doped fused silica with corresponding concentrations
of inhomogeneities [23,109,110].

In this part, the terms "nanogratings", "nanoplanes" or "nanostructures" designate only free carrier
density pro�le. The experimental evidence of the electron density in�uence on the formation of the
�nal structure can be found in [246�249].

In what follows, the initial Gaussian electric �eld pro�le is considered as a focused beam source
with the beam waist from w0 = 1µm up to w0 = 3µm and the numerical aperture NA = sin( λ

πw0
) for

irradiation wavelength from λ = 400 nm up to λ = 1200 nm relatively not high, for which the paraxial
approximation of the Gaussian beam's pro�le is still valid [74, 130]. Pulse width at half maximum
(FWHM) is varied from θ = 80 fs up to θ = 240 fs. For such ultrashort pulses, ionization takes place
before thermal e�ects such as heat di�usion occur [250], thus, the numerical model, neglecting the
electron-lattice exchange, is able to describe the modi�cation in dielectric during the pulse duration.
Recent thermo-elastoplastic modeling of laser-matter interaction has shown that the �nal modi�cation
structure is imprinted into bulk glass already at sub-nanosecond timescale [75], which is less than
common interval between two femtosecond pulses in experiments. These results can be supported by
time-resolved di�raction measurements [251].
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First, we report the results of 2D-FDTDmodeling of the TM-polarized mode. Thus, all the resulting
snapshots of the electric �elds, intensity and electron density are in the plane xOz, where the focused
beam is polarized along x direction and z is the propagation direction. Then, numerical results of
3D-FDTD modeling are presented and discussed.

5.2 Nanograting organization from random inhomogeneities

By using previously proposed idea of the pulse to pulse memory [246], we consider several distribu-
tions of the laser-generated inhomogeneities, as shown in Fig. 5.2. First, there are regions modi�ed and
unmodi�ed by the previous laser pulse with an evident interface between them as it was experimentally
reported in [18, 97]. Second, the inhomogeneities can be uniformly distributed. And �nally and more
realistically, there is a smooth gradient concentration pro�le.

Figure 5.2: Schematic representation of three possibilities of localization of laser-induced inhomo-
geneities before irradiation by femtosecond laser focused beam: (a) with interface between modi-
�ed and unmodi�ed regions, (b) with homogeneous concentration, (c) with variable concentration
(d1 < d2 < d3). d is the average distance between the centers of the nanospheres and a is the
nanosphere radius.

5.2.1 Sharp interface

Let us consider the �rst case. To analyze how the nanoplanes evolve in the presence of a sharp
interface between concentration pro�les, we divide the calculation volume in two regions: unmodi�ed,
without any initial inhomogeneities, and modi�ed, with randomly distributed inhomogeneities. Elec-
tron density snapshots taken during the pulse duration reveal the temporal evolution of nanoplanes
(Fig. 3). Similar behavior was reported in experiments [18,97]. The interference between the incident
and scattered waves and incubation process induced by multiphoton ionization lead to the organization
of �rst nanoplanes from the laser-induced interface. If there are few laser-induced inhomogeneities,
each nanoplane grows strictly from its seed. Fig. 5.3(a) shows, however, that several periodic intensity
patterns are obtained in the region free of inhomogeneities near the interface if the concentration of
inhomogeneities is increased. Nanoplasmas start following these intensity enhancements, elongating
perpendicular to the laser polarization with a common period of λ/n in Fig. 5.3(b,c). Further, we
refer to this kind of nanogratings as low-frequency nanogratings (LFNGs). Moreover, in the region
with initially localized inhomogeneities, corresponding to the second con�guration in our numerical
investigation, the structures with the periodicity twice smaller are organized, high-frequency nanograt-
ings (HFNGs). Only qualitative comparison is possible with the experimental SEM images shown in
Fig. 5.3, because the calculation results indicate the temporal electron density evolution during one
pulse duration, whereas the SEM images show the periodic nanostructure formation and growth on
the shot-to-shot basis.

To demonstrate the e�ect of the irradiation wavelength on the periodicity of LFNGs and HFNGs,
Fig. 5.4 shows electron density pro�les calculated for three laser wavelengths frequently used in the
experiments with femtosecond lasers [14,16,18,39,95,97,252]. One can see that the periodicity of the
self-organized nanoplanes is proportional to λ, in agreement with several experimental observations [16,
44]. Interestingly, the nanoplanes become thicker with the increasing irradiation wavelength. Firstly,
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Figure 5.3: Electron density snapshots are calculated by coupled 2D-FDTD (2.2, 2.23) revealing the
evolution of nanogratings (a) 80 fs before the pulse peak, (b) at the pulse peak, (c) 80 fs after the
pulse peak. Laser irradiation conditions: pulse duration θ = 240 fs (FWHM), irradiation wavelength
λ = 800 nm, pulse energy E = 500 nJ. The line separates the region with initially localized nanospheres
(modi�ed) and the region, initially free from any inhomogeneities (unmodi�ed). The schematic repre-
sentation of the initial distribution of inhomogeneities is shown in Fig. 5.2(a). The concentration of the
initial inhomogeneities of r = 5 nm in the right part of the volume is Ci = 1%. SEM images are taken
from Ref. [18] at di�erent scan velocities. Exp. details: laser pulse energy is 1.2µJ , pulse duration 100
fs at central wavelength 800 nm and repetition rate 250 kHz, focusing conditions NA = 1.1.

we explain the physical origin of LFNGs. Secondly, we will focus on HFNGs, the structures with
smaller periodicity.

Figure 5.4: Electron density snapshots are calculated by coupled 2D-FDTD (2.2, 2.23) suggesting that
nanograting period is proportional to the irradiation wavelength: (a) λ = 515 nm, (b) λ = 800 nm, (c)
λ = 1045 nm. Here, electron density is normalized to its critical value at 800 nm ncr = 1.7× 1027m−3.
Laser irradiation conditions: pulse duration θ = 240 fs (FWHM) and corresponding pulse energies
(a) E = 400 nJ, (b) E = 500 nJ, (c) E = 600 nJ. Snapshots are taken 80 fs after the pulse peak.
The line separates the region with initially localized nanospheres (modi�ed) and the region, initially
free from any inhomogeneities (unmodi�ed). The schematic representation of the initial distribution
of inhomogeneities is shown in Fig. 5.2(a). The concentration of the initial inhomogeneities of r = 5
nm in the right part of the volume is �xed to Ci = 0.5% for all wavelengths (a-c). Note, that for each
wavelength, di�erent corresponding parameters are used for multiple rate equation (2.23) and Keldysh
photoionization rate wpi.

Periodic structures formed at rough interface between two media is usually associated with an
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interference between the incident wave and the scattered waves [80]. This interference causes periodic
energy deposition [76, 79]. In addition, an interference of the incident wave with the excited surface
plasmon polaritons also leads to an enhancement of surface periodic structure formation under the
conditions required for the surface plasmons [253�256]. Moreover, both scenarios were used to explain
VNG formation [91, 97, 98]. Here, to elucidate the mechanism of the periodic organization of LFNGs,
we study the role of each nonlinear current from the system of equations (3.27). The performed
calculations demonstrate, that the nanoplanes are formed even for JKerr = 0, Jpi = 0 and JDz = 0.
The last condition means that the electron oscillation along the axis z is neglected. In this case, the
�elds Ex and Ez can be directly separated if the intensity is given as I = n

2

√
ε0
µ0
Ex

2. Hence, electron

density changes only due to the �eld component Ex. The periodicity of these nanoplanes is independent
of the collision frequency of excited fused silica νe and periodic intensity patterns appear even for the
case of non-excited surface plasmons Re(ε) > −n2 [255,256], where ε is dielectric permittivity de�ned
by the Drude formalism. This fact suggests, that the organization of LFNGs here is due to interface
roughness. Furthermore, several phenomena contribute to the periodic nanoplane evolution: excitation
of surface plasmon wave, scattering from the already organized elongated nanoplasmas, interference
between the scattered waves from several laser-induced inhomogeneities and backward scattering from
a system of randomly distributed inhomogeneities.

5.2.2 Smooth concentration pro�le

Now, let us turn to a more general case of a smooth concentration pro�le, distributing randomly
inhomogeneities in the entire numerical volume. Fig. 5.5 reveals that nanograting formation process
depends on the inhomogeneity concentration in this case. To describe the in�uence of the inhomo-
geneities on the nanoplane periodicity, we propose to de�ne the average distance between two initial
nanospheres as d = 1/

√
Ci, where Ci = N/S is the concentration of inhomogeneities, N is the number

of the inhomogeneities in the laser-induced area S. The interference between multiple scattered waves
from randomly distributed inhomogeneities strongly depends on this parameter. For widely separated
nanospheres, the interference between the incident and the scattered �elds dominates over all other
plasmonic modes. If particle dimensions are much smaller than the wavelength, the interference ef-
fect is negligible but inter-particle coupling becomes signi�cant, enabling high local concentration of
electromagnetic energy in the vicinity of the interfaces of nearly touching nanoplasmas.

If there are very few nanospheres, so that d > λ/n (Ci < 0.05%), each inhomogeneity acts as a
seed for one nanoplasma and they are elongated randomly in the grid as shown in Fig. 5.1(c). For
higher concentration and if λ/2n < d < λ/n (0.05% < Ci < 0.5%) as in the case of pure dielectric with
the seeds at its interface, the nanoplasmas elongate perpendicular to the laser polarization direction
from the laser-modi�ed inhomogeneities and the dominant period is close to λ/n due to the described
interference mechanism leading to the organization of LFNGs [Fig. 5.5(a,d)]. However, the mechanism
of the organization changes dramatically for larger concentration of inhomogeneities. This e�ect is due
to the mutual enhancement induced by multiple scattering from nanoplasmas that becomes dominant
over the interference between the incident and the scattered �elds.

Electron density snapshots demonstrate the temporal evolution of HFNGs from randomly dis-
tributed initial inhomogeneities in Fig. 5.2. The organization of HFNGs is completely di�erent from
LFNG formation. Even at the pulse peak no periodicity can be revealed yet. Nanoplasmas develop
from random inhomogeneities into well-ordered patterns consequently, controlled by strong local �eld
enhancement. From the Fourier transform of the electron density snapshot taken at the end of the pulse
[Fig. 5.5(e)], one can see that the dominant period is close to λ/(2n). The periodicity does not depend
on the laser energy density, which is the highest in the center and decreases towards the edge of the fo-
cal region as a Gaussian distribution. Note, that several phenomena contribute to the observed period
reduction such as intensity enhancement due to multiple scattering from the nanospheres, intensity
enhancement between two organized nanoplasmas [54,98,257] and half-wavelength cavity feedback [91].
If the inhomogeneity concentration is increased, nanoplasmas tend to merge together. Fig. 5.5(c,f)
shows that self-organized nanogratings are separated by λ/(3n). At larger concentration, there is no
more dominant characteristic period. This fact is due to a very short average distance between the
initial nanospheres, as d ≈ 50 − 100 nm (Ci ≈ 5%). The plasma is organized by femtosecond laser
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Figure 5.5: (a-c) Electron density snapshots are calculated by coupled 2D-FDTD (2.2, 2.23) at the end
of the pulse duration θ = 240 fs (FWHM) for di�erent initial concentration of randomly distributed
inhomogeneities of r = 5 nm and (d-f) Fourier Transform (FT) of the images: (a) and (d) Ci = 0.1%,
(b) and (e) Ci = 1%, (c) and (f) Ci = 3%. The wave numbers kz and kx are normalized to the norm
of the incident wave number k0 = 2π/λ. The pulse energy is �xed to E = 500 nJ. The irradiation
wavelength is 800 nm. The schematic representation of the initial distribution of inhomogeneities is
shown in Fig. 5.2(b).

irradiation of such inhomogeneities and occupies all the gaps between inhomogeneities. Thus, VNGs
spaced by less than λ/4n are out of the scope of the present modeling.

To identify the physical phenomenon responsible for the organization of HFNGs, as in the previous
case, we study the contributions of nonlinear currents in nanograting formation from the system of
equations (3.27). Firstly, we check that JKerr and Jpi do not in�uence the physical process. Secondly,
we perform calculations with JDz = 0 to check whether the role of electron oscillations along the axis
z is negligible. In this case we observe no periodic organization. The electron density snapshots in Fig.
5.6 reveal that even for high concentration, the inhomogeneities do not interact creating nanoplanes
elongated perpendicular to the laser polarization. We underline that the same procedure of switching
o� the JDz component in the case of LFNGs does not destroy the self-organization process. It means
that di�erent physical processes are responsible for creating LFNGs and HFNGs. This numerical result
can be explained by the di�erent local �eld response of the inhomogeneities, when JDz = 0 is assumed.
In fact, in this case, the material responds in the propagation direction z with εz = n2 (non-excited
dielectric), which excludes the quasi-metallic properties of the inhomogeneity and does not result in the
formation of the �nal elongated nanoplasma. This observation supports the role of local �eld e�ects
in the formation of HFNGs.

5.2.3 Smooth gradient pro�le

Finally, to demonstrate the in�uence of concentration on the nanograting period, we consider the
third case with a smooth gradient pro�le. The results shown in Fig. 5.7 are obtained by varying the
average distance between initial nanospheres from 50 nm to 500 nm in space along the axis z. Electron
density reveals changes in the nanograting periodicity and thickness corresponding to initial local
concentration of inhomogeneities. LFNGs with period of λ/n do not have initially the interface with
modi�ed region and grow in the backward propagation direction. Therefore, the resulting structure
formation is not related to the surface wave excitation as it was suggested in [97,98]. Instead, it is an
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Figure 5.6: Electron density snapshots are obtained by coupled 2D-FDTD (2.2, 2.23) assuming a)
JDz = 0 and b) JDz 6= 0 at the end of the pulse duration θ = 240 fs (FWHM), laser irradiation of 800
nm and pulse energy of 500 nJ with initial concentration of inhomogeneities Ci = 9%. The schematic
representation of the initial distribution of inhomogeneities of r = 5 nm is shown in Fig. 5.2(b).

entirely volume e�ect as it was previously underlined by Buschlinger et al. [82]. If the gradient of the
concentration is reversed, the nanostructures correspond again to the initial concentrations. Thus, the
physical origin of sub-wavelength self-organized structures is connected to the stationary wave induced
either by the interference of the incident and inhomogeneity-scattered waves in the case of LFNGs, or
by an interference of several scattered waves from multiple inhomogeneities in the case of HFNGs. By
increasing the concentration, the scattering behavior is changed. As a result, nanoplanes with di�erent
periodicity are obtained depending on the local inhomogeneity concentration.

5.3 Comparison with experimental data

In the previous section, we have examined ultrashort laser irradiation of fused silica with ini-
tial randomly distributed inhomogeneities of di�erent pro�les. This section presents a more detailed
comparison with the available experimental results.

Fig. 5.8 shows the calculated electron density distributions for various pulse energies. For laser
pulse with energies smaller than 0.1µJ , the modi�cation is smooth and the electron densities do not
exceed the critical value [i, Fig. 5.8(a)]. Thus, the scattering from the laser-induced inhomogeneities
is rather weak to initiate the growth of planar nanoplasmas. Experimentally, smooth modi�cation
characterized by a uniform positive change in the material refractive index and absence of nanogratings
is attributed to small laser pulse energies [39]. By increasing the pulse energy, the conditions for
nanoplanes elongation perpendicular to the laser polarization are met [ii, Fig. 5.8(b)]. In addition, by
varying energy from 0.2µJ to 1µJ , no changes in nanogratings period are observed, as experimentally
reported in [13,20,44,252]. However, beyond the energy of 1µJ , high densities above the critical value
are created in the center of tightly focused region. At these laser pulse energy conditions, a complex
disrupted region is interconnected with nanoplanes in the top portion of the laser-induced region [iii,
Fig. 5.8(c)], as experimentally reported in numerous independent experimental works [13, 39, 250].
Typically, these conditions will lead to the nanogratings erasure in the center of the laser-induced
area, however, this process does not have an electromagnetic origin and will be considered in the next
chapter by multiphysical model.

To examine the role of temporal pulse width, we vary pulse duration from θ = 80 fs up to θ = 240
fs. We observe that the nanogratings are self-organized with the same characteristic period for each
of the pulse durations. These results also agree with the following experiments [4,13,39,44,53]. Note,
that the nanogratings with a characteristic period of λ/(2n) have been recently revealed even for pulse
duration as long as 8 ps [250]. One can conclude, for instance, that the di�erences of the �nal laser-
induced modi�cation by applying di�erent pulse durations do not have an electromagnetic origin and
will be discussed in the next chapter.

Only qualitative electrodynamic approach is considered here to investigate the in�uence of laser
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Figure 5.7: Electron density snapshot is obtained by coupled 2D-FDTD taken 80 fs after the peak of
the pulse duration θ = 240 fs (FWHM), laser irradiation of 800 nm and pulse energy of 500 nJ with
initial variable concentration of inhomogeneities of r = 5 nm decreasing linearly in the z direction from
Ci = 5% to Ci = 0.05%. The schematic representation of the initial distribution of inhomogeneities is
shown in Fig. 5.2(c).

Figure 5.8: Electron density snapshots are obtained by coupled 2D-FDTD (2.2, 2.23) taken at the end
of the pulse duration θ = 240 fs (FWHM) and laser irradiation of 800 nm with laser beam energy: (a)
E = 50 nJ (smooth modi�cation), (b) E = 500 nJ (birefringent modi�cation), (c) E = 2µJ (disrupted
modi�cation). Electron density is normalized to its critical value at 800 nm ncr = 1.7 × 1027m−3.
Note, that in Fig. 5.8(a) the scale is di�erent than in Fig. 5.8(b) and in Fig. 5.8(c). The schematic
representation of the initial distribution of inhomogeneities is shown in Fig. 5.2(b). The concentration
of the initial inhomogeneities of r = 5 nm is Ci = 1%. Note, that di�erent number of rate equations
(5) are solved for di�erent amplitudes of the electric �eld: (a) im = 9, (b) im = 10, (c) im = 21.

pulse energy and pulse duration on nanogratings formation mechanism. In Chapter 6, the method
is coupled with two-temperature model equations to estimate quantitatively the attained electron
densities and temperatures as well as the conditions for nanogratings formation and erasure.

Nevertheless, one can already see that the electron density distributions calculated by coupled
FDTD (2.2,2.23) have strong similarities with the nanogratings observed in most experiments. For
instance, Fig. 5.9 shows that the calculated free carrier density pro�le qualitatively reproduces the
experimentally measured pro�le of the refractive index change at similar focusing conditions. A good
agreement between the periods obtained numerically and experimentally [14, 39, 44, 258] is achieved.
It is worth noting that the proposed mechanism of nanograting self-organization also explains possible
coexistence of several characteristic periods [20, 259] as well as the nanostructures separated by sub-
wavelength periods shorter (around λ/(3n)) [4, 16, 52, 102, 110] at higher number of pulses and larger
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Figure 5.9: Electron density pro�le in the propagation plane calculated by 2D-FDTD coupled with
electron density equation at the pulse peak. Pulse duration is 50 fs (FWHM), the waist beam is �xed
to be 1µm, laser pulse energy is 500 nJ. Initial concentration of randomly distributed inhomogeneities
Ci = 0.25%. Initial size of inhomogeneities r = 20 nm. The experimental SEM image is taken from
Ref. [13]. Exp. details: laser pulse energy 300 nJ, pulse duration 50 fs, central wavelength 800 nm,
repetition rate 100 kHz, focusing conditions NA = 0.65.

(around λ/n) [5,34,53,97] than λ/(2n). According to numerical calculations, a uniform concentration
pro�le of inhomogeneities is the most probable in the experiments, because of the strong arrangement
due to high number of pulses. Moreover, we underline the crucial role of laser-induced inhomogeneities
in nanograting self-organization and the possibility of regulating the period of the nanostructures
changing the inhomogeneity concentration as it has been recently evidenced experimentally either by
doping fused silica [23,110] or by varying the applied number of pulses [19,34,53,54].

Similar experimental results of nanograting period dependence on laser pulse number were obtained
for λ = 515 nm [16] and for λ = 1550 nm [53]. The graphs are presented in Fig. 5.10(c, d). In
fact, these experimental �ndings correlate fairly well with the concentration of inhomogeneities in
numerical modeling, as Fig. 5.10(a) shows. Based on the mechanism of nonlinear ionization memory
from pulse to pulse [246], new inhomogeneities are organized pulse by pulse. Hence, the concentration
of inhomogeneities is proportional to the number of pulses. Such assumption allows me to explain
the phenomenon of the decreasing nanograting period in terms of the decreasing average distance
between the laser-induced inhomogeneities. The period depends strongly on the concentration and
continuously decreases depending on di�erent ways of scattering from the multiple nanoplasmas. We
note that the exact values of the number of pulses are correlated with the corresponding inhomogeneity
concentrations without any straightforward equivalence. Thus, if the applied number of pulses remains
low, the periodicity sharply decreases. At high number of pulses, a smoother transition emerges. The
same tendency has been obtained for low and high inhomogeneity concentrations.

Fig. 5.10(b) shows also that in the calculations, each nanoplane consists of numerous high den-
sity laser-induced plasmas initiated from randomly distributed initial inhomogeneities and "frozen"
at di�erent steps of their evolution. Thus, there are two types of nanoplasmas: (i) those that are
signi�cantly elongated up to several hundreds of nanometers perpendicular to the laser polarization;
and (ii) the other ones with a diameter of ten-twenty nanometers. Similar structures were observed
in [53,248,258].

The presented model does not describe all sets of complex thermo-mechanical and chemical pro-
cesses taking place between two pulses in fused silica during VNG formation. Nevertheless, these
simpli�ed calculation results help to shed new light at the role of laser-induced inhomogeneities, in-
terference between the incident and inhomogeneity-scattered waves, multiple scattering, local �eld
enhancement resulting in plasma elongation and nanograting self-organization in direction perpendic-
ular to the laser irradiation. In particular, the model is able to explain previously observed period to
be close to λ/2n.
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Figure 5.10: Period dependence on the number of pulses from experimental data [16, 53] (c, d) com-
paring with the dependence on the concentration of inhomogeneities from numerical modeling (a). (b)
Gradient free carrier density pro�le with varying initial concentration of inhomogeneities and di�erent
resulting periods.

5.4 In�uence of polarization state on ultrafast laser-induced bulk
nanostructuring

In this part, the results of complete 3D-FDTD simulations coupled with electron density equation
are discussed and the in�uence of di�erent polarizations, including linear, radial, azimuthal, circular and
mixed, is investigated. The resulting electronic modi�cations are compared with available experimental
literature data. Some of the numerical results are published in Ref. [260].

Previously, the advantage of using complex cylindrical polarizations was discussed. Firstly, both
radial and azimuthal polarization beams are rotationally symmetric and isotropic. Secondly, they
are expected to increase processing e�ciency, quality and speed of the femtosecond laser processing
[261�264]. Thus, radial polarized �elds are better than linear scalar �elds for excitation of surface
plasmon polaritons [265�267], detection, manipulating, optical trapping and reshaping of nanoparticles
[268�270], quantum information processing [271], and sub-wavelength nanostructuring [46,49�51,272].

Recent experimental approaches o�er a possibility not only to create vector �elds with azimuthally-
dependent polarization [46,49,50,273,274], but also to apply arbitrarily patterned vector optical �elds
varying spatial arrangement and distributions of states of polarization by using spatial light modulators
[275�278]. Here, we propose that such a technique could be useful not only for high-speed fabrication
of periodic nanostructures with femtosecond laser processing, but also for improving and controlling
the characteristics of the nanostructures. Particularly, using the vector optical �elds with combined
azimuthal- and radial-variant polarization [278�283] might serve to tune the period and the thickness
of the nanostructures.

Ripple formation and distortions might be on the contrary undesirable for accurate femtosecond
material processing, laser drilling and laser lithography [182, 284]. Circularly polarized beams were
shown to produce no gratings but random nanodot deposits [5,285�289] and much less likely to undergo
multiple �lamentation than linearly polarized beams [290,291] because the input circular polarization
state does not induce a preferred direction in the transverse plane. Therefore, they are advantageous
to prevent the nanostructure organization on the surface [292,293] and in bulk of dielectrics [5, 44,48,

78



284,294]. To determine more precisely the mechanisms taking place during ultrashort laser irradiation,
we investigate numerically laser-matter interaction with circularly polarized beams.

5.4.1 Linear polarization state

Figure 5.11: Calculation results obtained by linear polarization irradiation. (a) Electron density dis-
tribution ne > 0.1ncr calculated by 3D-FDTD coupled with electron density equation 80 fs after the
pulse peak. Pulse duration is 120 fs (FWHM). (b) Cross-section of the electron density, corresponding
to z = 4µm. (c) Corresponding Fourier Transform (FT). The pulse energy is �xed to 500 nJ. Laser
wavelength λ is 800 nm in air. The wave numbers kx and ky are normalized to the incident wave
number k0 = 2π/λ. Initial con-centration of randomly distributed inhomogeneities Ci = 1%. Initial
size of inhomogeneities r = 5 nm.

Fig. 5.11 shows the electron density pro�les calculated by 3D-FDTD coupled with electron
density evolution equation (2.2, 2.23) for linearly polarized beam (5.2). The light propagates in z
direction inside a glass sample with initial bulk nanoroughness. Nanoplasmas elongate from ran-
domly distributed inhomogeneities perpendicular to the light polarization moving by strong near-�eld
enhancement and multiphoton ionization of intensity enhanced regions during ultrashort laser irra-
diation. Fields interference due to multiple scattering from inhomogeneities leads to sub-wavelength
periodicity of the electron density ne(x, y, z) both in xOz and xOy planes [228]. Fourier Transform
(FT) is performed to analyze the results in the frequency domain in Fig. 5.11(c). In fact, the maximum
corresponds to kx ≈ 3k0, which identi�es the periodicity of λ/2n in fused silica reported in independent
experiments [23,39,44,97,295].

In fact, the periodicity of the nanostructures depends on the local concentration of inhomogeneities
[228], which could be controlled by the number of applied pulses. For example, an increase of the
concentration from Ci = 1% to Ci = 3% signi�cantly in�uences the periodicity and the thickness of
the self-organized nanogratings in Fig. 5.12(a). While performing FT, the maximum is displaced closer
to kx ≈ 4.5k0, which corresponds to the periodicity of λ/3n in fused silica. Therefore, di�erent sub-
wavelength periodicities obtained in experiments [4,16,54,57] are explained by variable concentration
of inhomogeneities.

The displacement of the maximum, as well as the dispersion of the Fourier Transform subplot,
can be presented by plotting the results of the frequency domain in one dimension for kx wavevector
(5.13). In fact, the dispersion increases in the case of higher concentration of inhomogeneities. The
error is kx = 3± 0.5 for (5.11) and kx = 4.5± 2 for (5.12). However, the maximum in the second case
is also displaced, which allows me to say that the periodicity of the nanostructures is di�erent. While
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Figure 5.12: (a) Electron density pro�le calculated by 3D-FDTD coupled with electron density equation
80 fs after the pulse peak. Pulse duration is 120 fs (FWHM). (b) Corresponding Fourier Transform
(FT). The pulse energy is �xed to 500 nJ. Laser wavelength λ is 800 nm in air. The wave numbers
kx and ky are normalized to the incident wave number k0 = 2π/λ. Initial concentration of randomly
distributed inhomogeneities Ci = 3%. Initial size of inhomogeneities r = 5 nm.

Figure 5.13: The electron density distribution in the frequency domain (using Fourier Transforms)
from 5.11 and 5.12 plotted in one dimension for kx vector.

increasing the inhomogeneity concentration, the frequency pro�le is getting more dispersed. However,
the characteristic peak of the frequency maximum could be still identi�ed for inhomogeneity concen-
trations (Ci < 3%) [228]. At higher concentration (Ci > 10%) the periodic formation is completely
faded away.

The results of a series of complete 3D-FDTD simulations for di�erent polarization angles are shown
in Fig. 5.14. Electron density snapshot taken in the plane xOy perpendicular to the laser wave prop-
agation presented in Fig. 5.14(b) reveals the orientation of the self-organized nanogratings strictly
perpendicular to the laser polarization. Fig. 5.14(d) demonstrates that by changing the polarization
of the electric �eld, the nanoplanes are rotated in space. Again, the nanograting orientation is per-
pendicular to the laser polarization in agreement with the experimental observations [20, 44, 45]. The
results in xOz plane by 2D-FDTD are shown to be consistent with the results obtained by 3D-FDTD.
By switching o� the currents JDz or JDy, we �nd that the self-organization process does not occur
anymore in both cases. This fact proves that the structures are formed by an interference of the mul-
tiple scattered waves of the orthogonal �elds Ez and Ey. This implies that the role of the electron
oscillations along z and y axes is not negligible. Therefore, the structures correspond to the HFNG
type. The periodicity of the structures is close to the half of the laser wavelength in glass. We note
that the same periodicity is revealed by 2D-FDTD calculations with the same initial inhomogeneity
concentration of smooth distribution pro�le. We underline that the orientation of the HFNG structures
is always perpendicular to the laser polarization. The in�uence of di�erent polarization states on the
resulting electronic modi�cation is investigated in details in the next part of this chapter.
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Figure 5.14: Electron density snapshots are obtained by coupled 3D-FDTD (2.2, 2.23) taken at the
end of the pulse duration θ = 120 fs (FWHM) with laser beam energy E = 300 nJ and irradiation
wavelength of 800 nm for di�erent electric �eld polarizations: (a) and (b) electric �eld is along Ox, (c)
and (d) electric �eld lies in xOy and has π/4 angle with the axe Ox. Electron density is normalized to
its critical value at 800 nm ncr = 1.7×1027m−3. The schematic representation of the initial distribution
of inhomogeneities is shown in Fig. 5.2(b). The concentration of the initial inhomogeneities is Ci = 1%.

5.4.2 Azimuthal-variant polarization states

Herein, we present the calculation results for three azimuthal variant polarization sources (5.4):
radial (Arg = 0), azimuthal (Arg = π/2), and spiral (Arg = π/4) (see appendix). Fig. 5.15 shows
that the optical material response is local and the nanostructures orientation is de�ned by the local
electric �eld polarization. As in the case of linear polarization, nanoplasmas elongate strictly perpen-
dicularly to the laser polarization. Because of azimuthal-variant behavior of the polarization state,
the desirable nanostructures orientation could be achieved. Radial polarization beam induces ring-like
self-organization in Fig. 5.15(a, d), whereas the azimuthal polarization beam creates radially oriented
nanoplasmas in Fig. 5.15(b, e). The polarization-dependent azimuthal-variant nanostructuring was
reported in numerous experimental works on surface nanostructuring [49�51,261,272,273,296,297] and
in fused silica bulk [33,46,47,274].

The superposition of radial and azimuthal polarizations leads to self-organization of Archimedian
nanospiral structures [49�51]. The particularity of the nanoscale spiral structures is their unique
inversion symmetry with an enhanced spectrally complex optical response, making them a strong
candidate for nonlinear optical applications [298�303]. The electron density pro�le of the corresponding
windmill-like modi�cation is shown in Fig. 5.15(c, f).

In what follows, we analyze the electron density pro�les induced by di�erent intensity irradiation
with azimuthal-variant and linear polarization states in Fig. 5.16. On one hand, larger area is covered
with high-density plasma and new more pronounced nanostructures are organized at high �uences. This
property is referred to as self-replicating formation mechanism. On the other hand, the nanogratings
period remains unchanged independently of the pulse energy in agreement with Bhardwaj et al. [44]. In
fact, similar behavior was revealed experimentally by applying azimuthal and radial polarizations [33].
The period of the self-organized nanostructures was estimated to lie between λ/(4n) ≈ 125 nm and
λ/(2n) ≈ 260 nm [101].
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Figure 5.15: Calculated shape of the electronic modi�cation induced by radial (a, d), azimuthal (b, e)
and spiral (c, f) polarization irradiation. (a, b, c) - Electron density distribution ne > 0.1ncr calculated
by 3D-FDTD coupled with electron density equation 80 fs after the pulse peak. Pulse duration is 120 fs
(FWHM). (d, e, f) - Cross-section of the electron density, corresponding to z = 4µm. The pulse energy
is �xed to 1µJ . Laser wavelength λ is 800 nm in air. Initial concentration of randomly distributed
inhomogeneities Ci = 1%. Initial size of inhomogeneities r = 5 nm. The experimental results are taken
from Ref. [51].

Note, that no pronounced modi�cation is induced in the center by applying azimuthally polarized
beam in Fig. 5.16(a, b), whereas the electronic densi�cation occurs by using spiral [Fig. 5.15f, 5.16(c,
d)] and radial polarizations [Fig. 5.15d, 5.18a] for the same laser irradiation conditions. Such behavior
could be explained by sharp longitudinal electric �eld component at the focus and, consequently,
larger energy deposition in the center in the case of radial polarization [264, 304]. In contrast, the
electric �eld is purely transverse and zero in the center for azimuthal polarization, therefore, there
is no electronic densi�cation in Fig. 5.17(c, d). These numerical results are in agreement with the
experimentally revealed modi�cations induced by single pulse irradiation by radially and azimuthally
polarized beams [33] shown in Fig. 5.17(a, b).

5.4.3 Radial-variant polarization states

Experiments reveal that at certain laser conditions the laser-induced nanostructures tend to self-
organize forming nanoplanes perpendicular to the local laser irradiation in fused silica [4,33,45,47,284].
Despite the ability to control the nanostructures characteristics by changing the laser parameters [2,33,
39,45,47,284], both the spatial con�guration and the uniformity of the nanostructures strongly depend
on the pristine glass material and bulk nanoroughness, thus, the process is not always predictable.
From the other point of view, the control over the precise con�guration could open new opportunities
in the laser nanostructuring [51,276�278].

Previously, it was shown that radially polarized beams and, especially, beams having radial-variant
states, were bene�cial in nanoscale precise processing such as optical trapping of nanoparticles and
plasmon excitation comparing to linearly polarized beams [265�267,276�278,280�283]. In our case, the
manipulation over the nanoscale inhomogeneities is based on Mie scattering and multiphoton ionization
processes which take place under femtosecond laser irradiation. Therefore, it could be advantageous
to have spatial control over the nanoplasmas evolution as well by applying radial-variant polarization
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Figure 5.16: Calculated electron density pro�les imprinted by azimuthal (a, b), spiral (c, d) and linear
(e, f) polarization irradiation 80 fs after the pulse peak. Pulse duration is 120 fs (FWHM). The pulse
energies are 300 nJ (e), 500 nJ (a, c, f) and 1µJ (b, d). Laser wavelength λ is 800 nm in air. Initial
concentration of randomly distributed inhomogeneities Ci = 0.5%. Initial size of inhomogeneities r = 5
nm.

beams.
Nanoplasmas, which evolve into self-organized patterns from randomly distributed inhomogeneities,

elongate during ultrashort laser irradiation in one underlined direction perpendicular to the local laser
irradiation. In the case of radial-variant polarization, the local laser polarization changes from radial to
azimuthal periodically along the radial direction. Local radial polarization provides strong longitudinal
electric �eld force contributing to the formation of periodical rings, whereas local azimuthal polarization
results in the local intensity enhancement along the radial direction, which de�nes the thickness of the
ring-shape modi�cation. Therefore, the mechanism of the electron densi�cation in the case of the
radial-variant polarization is the same as by using radial polarization. However, if in the case of
radial polarization the process of self-organization and the �nal periodicity of the nanostructures were
attributed to multiple scattering from inhomogenities, whereas it is the consequence of the initial
periodic intensity distribution in the case of radial-variant polarization.

An interesting point concerning radial-azimuthal-variant polarization is that the spatial distribution
is dependent on the radial vector only while it remains independent of the azimuthal angle [305].
Fig. 5.18 shows electronic modi�cations induced by radial polarization with Arg = 0 and radial-
azimuthal-variant polarization with (5.4) in glass with the same bulk nanoroughness. In the �rst case,
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Figure 5.17: Calculated electron density pro�les imprinted by azimuthal polarization irradiation 80 fs
after the pulse peak. Pulse duration is 120 fs (FWHM). The pulse energies are 500 nJ (a) and 1µJ (b).
Laser wavelength λ is 800 nm in air. Initial concentration of randomly distributed inhomogeneities
Ci = 0.5%. Initial size of inhomogeneities r = 5 nm. The results are qualitatively compared with
experiments taken from Ref. [33] (c, d). Exp. details: laser pulse energy (c) 300 nJ and (d) 500 nJ,
pulse duration 200 fs (FWHM) with central wavelength 775 nm, focusing conditions NA = 0.3.

Figure 5.18: Electron density pro�les imprinted by radial- (a) and radial-azimuthal-variant (b) polar-
ization irradiation 80 fs after the pulse peak. Pulse duration is 120 fs (FWHM). The pulse energies
are 500 nJ (a) and 2µJ (b). Laser wavelength λ is 800 nm in air. Initial concentration of randomly
distributed inhomogeneities Ci = 0.5%. In the case of radial-variant state (b), the beam radius is �xed
to be R0 = 1µm and N = 2, resulting in ∆R = 250 nm periodicity. Initial size of inhomogeneities
r = 5 nm.

shown in Fig. 5.18(a), the self-organization is uncontrollable, only de�ned by near-�eld interaction
of laser-induced inhomogeneities and preferred direction of their elongation perpendicular to the local
laser polarization. In the second case, as shown in Fig. 5.18(b), the growth of the nanoplasmas
is, however, limited by the regions of the periodic enhanced intensity. The interplay between the
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self-organization phenomena and the polarization geometry of the beam leads to the structures with
well-de�ned positions and controllable thickness.

5.4.4 Circular polarization state

Figure 5.19: Electron density pro�les imprinted by linear (a) and circular (b) polarization irradiation
20 fs after the pulse peak. Pulse duration is 120 fs (FWHM). The pulse energy is �xed to 500 nJ.
Laser wavelength λ is 800 nm in air. Initial concentration of randomly distributed inhomogeneities
Ci = 0.5%. Initial size of inhomogeneities r = 5 nm. The SEM images are taken from Ref. [5] (c,
d). Exp. details: laser wavelength 800 nm, pulse duration 130 fs, focusing conditions NA = 0.45,
repetition rate 100 kHz.

In what follows, we analyze the electronic modi�cation induced by circularly polarized beam
irradiation. The particularity of the circular polarization is that there is no preferred direction in
the plane x0y because the electric �elds Ex and Ey have equivalent contributions (5.3). In this
case, the nanoplasmas from laser-induced inhomogeneities transform into random voxel nanoscale
modi�cations [5]. Fig. 5.19 compares laser-induced electronic modi�cation by linearly and circularly
polarized beams. In the �rst case, nanoplasmas are stretched perpendicularly to the laser polarization
direction, whereas in the second case there is no periodic organization and the laser-modi�ed area is
covered by randomly distributed nanodots resulting from the laser-induced inhomogeneities evolution.
Random voxel nanoscale modi�cations formed after circularly polarized beam irradiation were reported
in several experimental works [5, 285�289] shown in Fig. 5.19.

Finally, we perform calculations for increased laser beam energy and compare the resulting elec-
tronic modi�cations induced by linear and circular beam irradiation. Fig. 5.20 shows the electron
density distribution after ultrashort laser irradiation by high-intensity linear and circular beams. At
the center of the beam focus, high electron densities above the critical value lead to smooth elec-
tron density pro�le. However, laser-induced inhomogeneities contribute to the inhomogeneous energy
deposition at the edges of the electronic modi�cation. In the case of linear polarization, the modi�ca-
tion is asymmetrical. The nanogratings elongate from the center oriented perpendicular to the laser
polarization. In contrast, the electron density distribution induced by circularly polarized beam is
quasi-symmetrical, even in the presence of bulk nanoroughness which results in a propeller-like density
pro�le on the interface of the electronic modi�cation. Therefore, laser processing with circular beam
is advantageous in the case one desire to avoid distortions.

To sum up, we provide new insights into the phenomena by calculating and visualizing the three-
dimensional electron density pro�les, and by considering the role of di�erent laser polarizations in
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Figure 5.20: Calculated shape of the electronic modi�cation induced by linear and circular polariza-
tion irradiation. (a, b) Electron density distribution calculated by 3D-FDTD coupled with electron
density equation 80 fs after the pulse peak. Pulse duration is 120 fs (FWHM). (c, d) Cross-section
of the electron density, corresponding to z = 4µm. (a, c) correspond to linear polarization, (b, d) to
circular polarization. The pulse energy is �xed to 2µJ . Laser wavelength λ is 800 nm in air. Initial
concentration of randomly distributed inhomogeneities Ci = 1%. Initial size of inhomogeneities r = 5
nm. The experimental results are taken from Ref. [19] (e) for linear polarization.

the formation of volume nanogratings. In particular, the nanostructuring by radial, azimuthal and
mixed polarizations is numerically investigated and the results of the calculations are compared with
available experimental data. We suggest that radial-variant polarization discussed in a few recent
articles [279�283] might be advantageous in femtosecond laser nanostructuring and con�rm it by cal-
culating electron density pro�les inscribed by the radial-variant polarization and comparing with the
ones of the azimuthal-variant polarization. Results of numerical calculations reveal, however, that
no nanogratings are formed by applying a circular polarization. We show that random nanodots
observed in experiments with circular polarization [5,39,285�289] are attributed to non-organized en-
ergy distribution in our calculation results. In addition, electron density pro�le induced by ultrashort
laser irradiation with circular polarization is shown to be quasi-symmetrical even in the presence of
laser-induced inhomogeneities in contrast to the electron density pro�le induced by linear polarization
irradiation.

5.5 Nanostructuring by Bessel beams

The main advantage of non-di�ractive Bessel beams over ordinary Gaussian beams lies in their
ability to exhibit a near constant intensity pro�le along the propagation [306]. Therefore, the higher
electron densities can be generated in the Bessel zone resulting in a thin plasma channel, which should
be bene�cial in ultrashort laser processing and, particularly, bulk nanostructuring of transparent di-
electrics [2]. Previously, writing volume Bragg gratings, single-shot fabrication of voidlike sub-micron
channels in fused silica as well as multipulse nanostructuring on the silicon surface by Bessel beams
were reported [293, 307, 308]. The transitions between the positive index smooth modi�cation and
void-like rarefaction modi�cations, �rstly demonstrated for Gaussian ultrashort laser processing by
varying the pulse energy, pulse duration or the focusing conditions, were revealed also for Bessel beam
processing [2, 308]. Recently, it has been demonstrated experimentally that self-organized nanograt-
ings can be induced also by applying non-di�ractive Bessel beam at moderate focusing conditions as
shown in Fig. 5.21(c). Here, we investigate numerically the dynamics of laser-matter interaction with
nanoscale laser-induced inhomogeneities using Bessel-Gaussian beam as a source.

To simulate a focused Bessel-Gaussian beam pro�le, the initial electric �eld source is introduced as
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Figure 5.21: (a) Electronic modi�cation induced by Bessel-Gaussian beam and calculated by 3D-FDTD
coupled with electron density equation. Snapshot is taken at the pulse peak. Pulse duration is 150 fs
(FWHM), laser pulse energy is 1µJ , waist beam is 1.2µm and the conical angle is 9o C. (b) Fourier
Transform (FT) of the electron density pro�le. (c) Experimentally revealed cross-section by scanning
electron microscopy (SEM). Pulse duration is �xed to be 150 fs at the central wavelength 800 nm at a
pulse repetition rate 100 kHz, and 1µJ per pulse at a scan velocity 10µm/s. The conical angle inside
the sample θ = 9o C and a FWHM diameter w0 = 1.2µm. (d) Initial intensity distribution, normalized
to I0 = 1017 W/m2. Laser wavelength λ is 800 nm in air. Initial concentration of randomly distributed
inhomogeneities is Ci = 0.5%. Initial size of inhomogeneities is r = 5 nm.

follows

Ex(t, r, z) =
w0

w(z)
exp

[
(r2 +

β2z2

k2
)(−w(z)2 +

ik

2R(z)
)− i(k − β2

2k
)z + iς(z)

]
·

J0

(
βr

1 + iz/R(z)

)
exp

[
−(t− t0)2

θ2

]
,

(5.1)

where r = x2 + y2, w(z) is the beam width, ς(z) is the phase-shift, R(z) is the radius of curvature,
de�ned analogically to ordinary Gaussian beam (3.11), β = ksin(θ), θ is the inclination angle with
respect to the propagation axis z or conical half-angle, and J0(r) = 1

2π

∫ 2π
0 [exp(ircosα)dα] is a cylin-

drical zeroth-order Bessel function [309]. For β = 0, the expression reduces to a Gaussian beam (3.11).
The initial amplitude at z = 0 is given by E(r, 0) = J0(βr)exp(−(r/w0)2). In our simulations, we use
the conical angle 9o C, which corresponds to the moderate focusing conditions and the beam waist
diameter of 1.2µm.

Fig. 5.21(a,b) shows the resulting electron density pro�le and the corresponding Fourier Transform
for similar laser irradiation conditions. The initial intensity distribution in the plane, perpendicular to
the propagation, is shown in Fig. 5.21(d). As in the case of Gaussian beam irradiation, similar periodic
structures are formed inside the bulk in the transverse plane. The numerical and the experimental
results concerning bulk nanostructuring by Bessel beam are described in details in Ref. [310].

5.6 Surface and bulk nanostructuring

In this part, we investigate the ultrashort laser interaction with fused silica-air surface by an elec-
tromagnetic approach coupled with electron density rate equation. We discuss the electromagnetic

87



formation mechanisms of di�erent kinds of ripples and �nd that the similarities between the mech-
anisms of subwavelength nanoripples on the surface and volume nanograting formation. The ripples
morphologies and the transitions between di�erent types of ripples at di�erent applied laser �uences
are investigated. The numerical results concerning surface nanostructuring are also detailed in Ref.
[311].

Figure 5.22: Schematic representation of the electromagnetic formation mechanisms of periodic nanos-
tructures in (a) bulk and (b) surface ultrashort laser nanoprocessing.

5.6.1 Formation mechanisms

The electromagnetic scenarios of subwavelength nanostructure formation on the surface and in the
bulk of glasses are illustrated in Fig. 5.22.

In the case of bulk nanostructuring (Fig. 5.22a), the laser-induced nanopores/nanovoids with a
radius r = 10 nm, reported in several experimental articles [23, 24], are considered as the scattering
centers. During ultrashort laser pulse irradiation, ionization processes reinforced by local �eld enhance-
ment in the vicinity of the scattering centers lead to the generation of localized hot spots of higher
electron densities or nanoplasmas. These nanoplasmas can then turn into void-like structures before
the next pulse interacts with glass. Local �eld enhancement contributes to their growth into nanoplanes
in the direction perpendicular to the laser polarization on a shot-to-shot basis [24,39,258]. Besides the
near-�eld enhancement, each nanoplasma or inhomogeneity center scatters spherical waves, which are
enhanced parallel to the nanoplane. The intensity enhancement is getting stronger as the nanoplasmas
elongate deeper below the irradiated surface [257, 312]. Fig. 5.23(a) shows the intensity distribution
from a single elongated void nanoplane. The interference of the incident �eld with the scattered �eld
results in the laser wavelength in media periodic modulation perpendicular to the laser polarization.
If several scattering centers are involved, the coherent superposition of the multiple scattered waves
results in the subwavelength periodicity as shown in Fig. 5.23(b). In general case, the �nal periodicity
of the nanostructures is related to the inhomogeneity concentration C or the average distance between
the nanoplasmas ∆R [228]. The concentration of the inhomogeneities on the surface fused silica/air
here is de�ned as C = Nπr2/(πw2

0), where N is the number of inhomogeneities of the characteristic
radius r in the laser-induced area S = πw2

0. The corresponding average distance is ∆R =
√
πr2/C.

In the case of surface nanostructuring, the rough surface between air (ε = 1) and fused silica with
half-sphere inhomogeneities of the same radius r = 10 nm is considered in Fig. 5.22(b). No scattering
centers are introduced inside fused silica. Below the surface, random perpendicular oriented patterns
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Figure 5.23: (a) Intensity distribution around a single void nanoplane Lx = 80 nm, Ly = 2µm, Lz = 500
nm. (b) Intensity distribution as a result of the superposition of the scattered waves from two void
nanoplanes Lx = 80 nm, Ly = 1.5µm, Lz = 50 nm. Intensity pattern from a single inhomogeneity
(hemisphere with R = 50 nm) (c) on the non-excited fused silica surface (n2 = 2.105), (d) on the
excited metallic fused silica surface (ε = −1 + 0.5 · i).

are generated by the interference of the incident �eld with near-�eld scattered waves by single inhomo-
geneities, so-called roughness-dependent radiation remnants [76, 79]. These patterns are the seeds for
the periodic hs� formation. Note, that small visible perpendicular oriented to the laser polarization
and randomly-distributed cracks are often reported in the experimental literature for low number of
applied pulses [56, 102, 287, 313]. The following scenario is similar to volume nanograting formation,
as the nanoplasmas grow from the seeds due to the local �eld enhancement and the superposition of
inhomogeneity scattered waves results in periodic modulation perpendicular to laser polarization. We
emphasize that the presence of the interface air-fused silica is not necessary for the hs� structures or
volume nanograting formation [228]. We note also that neither the local �eld enhancement nor the
interference of the scattered waves require the metallic optical properties of glass, however, the growth
of the nanoplasmas can be signi�cantly accelerated by the ionization processes in dielectrics if the pre-
distributed inhomogeneous seeds for the nanostructure formation acquire the metallic properties [228].

Apart from the enhanced near-�eld interaction with the incident light, the rough surface is at
the origin of the far-�eld periodic modulation, enhanced in parallel direction to the laser polarization
for non-metallic surface Re(ε) > 0 and in perpendicular direction for metallic surface Re(ε) < 0. The
typical intensity distributions from one single dielectric hemisphere on the non-excited and the metallic
fused silica surfaces are shown in Figs. 5.23(c,d). The intensity patterns dominant enhancement in
the directions perpendicular (Fig. 5.23c) and parallel (Fig. 5.23d) to the laser polarization is clearly
seen and was �rstly explained by Sipe theory [80] and then applied to explain the orientation and the
laser wavelength in media periodicity of the classical laser-induced ripples [76]. We note here, that the
presence of the interface (surface) is essential for generation of the far-�eld periodic intensity patterns.
Furthermore, we underline, that the condition Re(ε) < 0 is su�cient to generate the perpendicular
oriented patterns, even if the condition for the surface plasmon wave excitation Re(ε) < −1 is not
satis�ed.

In what follows, we investigate the mechanisms of ripples formation on fused silica surface by
recently developed self-consistent approach [314], where Maxwell's equations are coupled to free carrier
rate equation to take into account the transient changes of ultrashort laser-induced fused silica.
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Figure 5.24: Electron density distribution calculated by 3D-FDTD coupled with electron density equa-
tion 40 fs before the pulse peak, corresponding to the interference patterns (a-c) and at the pulse peak
with pulse energies 2µJ (d-f) and 3µJ (g-i). Pulse duration is 120 fs (FWHM). Transverse cross-
sections of the electron density are taken at z = 20 nm (a, d), z = 100 nm (b, e)and z = 200 nm
depths from the silica-air interface. The pulse energy 2µJcorresponds to a �uence of 8 J/cm2 with a
beam waist w0 = 5µm. Laser wavelength λ is 800 nm in air. Concentration of inhomogeneities on the
surface Ci = 0.1%. Initial size of inhomogeneities on the surface r = 10 nm. The electron density is
normalized to the critical value Ncr = 1.74 · 1021 cm−3.

5.6.2 LIPSS morphologies

Fig. 5.24 underlines the main types of electron density patterns formed by ultrashort pulse ir-
radiation of fused silica on di�erent depths below the surface. At low �uence laser irradiation, the
electronic modi�cation corresponds to the exact intensity maxima, resulted from the interference of
the incident wave with the scattered wave from the rough interface. At higher �uence, the local tran-
sient changes of the optical properties start playing a decisive role and could act as seeds for di�erent
type nanostructure formation.

Strongly dispersed subwavelength periodicity patterns, oriented perpendicular to the laser polar-
ization, dominate close to the surface at the depth of 20 nm shown in Fig. 5.24(a). These electron
density patterns are the consequences of the interference radiation remnants previously investigated
by electromagnetic approach [76] and referred to as roughness-dependent patterns (or type-r). It was
shown also that the inhomogeneous absorption triggering the formation of these patterns is due to
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the interference of the incident light with the scattered near-�elds of single inhomogeneities [79]. The
roughness-dependent features decay rapidly with the depth below the surface [76], which could be ex-
plained by the evanescent nature of the scattered near-�elds Esca ∝ 1/a2, where a is the distance from
the single inhomogeneity [226]. We emphasize that the interference of the evanescent scattered near-
�elds alone cannot result in the spatial periodic modulation, however, it can contribute to a signi�cant
local �eld enhancement [315].

Figure 5.25: Three-dimensional electron density pro�les of laser-induced surface modi�cation (a, c)
ne > 1021 cm−3 (b) ne > 2 ·1020 cm−3 taken at the pulse peak. Pulse duration is 120 fs (FWHM). The
pulse energy is �xed to (a, b) 2µJ and to (c) 3µJ . Laser wavelength λ is 800 nm in air. Concentration
of inhomogeneities on the surface Ci = 0.1%. Initial size of inhomogeneities on the surface r = 10 nm.

Figs. 5.24(b,c) demonstrate that more pronounced electron density patterns with a characteristic
period of the laser wavelength in medium and oriented parallel to the laser polarization, dominate at
the depths of z = 100 nm and z = 200 nm. These patterns were referred to the dissident interference
patterns (or type-d) [76] and were shown to be triggered by the interference of the incident light with
the far-�eld of inhomogeneities [79]. In fact, their origin, the orientation and the periodicity can be
explained as the result of the interference of the incident plane wave with the spherical scattered wave
from a single nanosphere in a dielectric medium with the refractive index n given by analytical Mie
theory [237]. This wave decays with the distance a below the surface as Esca ∝ 1/a [226]. We note also
that as the electron density of fused silica increases, the real part of the refractive index n decreases
down to the metallic state Re(ε) = n0

2 1−ω2τ2

1+ω2τ2 < 0, where n0 = 1.45 is the refractive index of the
non-excited silica, ω is the laser frequency and τ is the electron collision time. This leads to the
larger periodicity of the interference patterns. In contrast, the imaginary part k, playing the role of
absorption, increases, therefore, the scattered wave and the interference patterns of type-d decay faster.
The parallel oriented structures on the fused silica surface or the ls� features are commonly observed
in experiments for larger pulse energies in the ablated crater [93, 316, 317]. The calculation results
show that the periodic formation of these patterns does not require high electron densities, therefore,
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non-plasmonic electromagnetic scenario is appropriate to explain the orientation and the periodicity
of this kind of ripples [103].

Interestingly, the competition between the far-�eld and the near-�eld radiation remnants at �xed
depth below the surface depends on the exact roughness. For example, low concentration of larger
inhomogeneities (Ci = 0.05%, r = 20 nm) on the surface results in stronger far-�eld interaction at
the depth 40 nm and low frequency periodic patterns, whereas higher concentration of smaller inho-
mogeneities (Ci = 0.1%, r = 10 nm) provide bene�cial conditions for the high frequency patterns
establishment attributed to stronger near-�eld interaction (not shown here). This result can be ex-
plained by an analytical electromagnetic solution for a single inhomogeneity, where the transition from
the near-�eld to the far-�eld is given by ka ≈ 1, where k = 2πn/λ is the wave number and a is the
distance from a single inhomogeneity. Therefore, the classical ripples are stronger (their dominance
is closer to the surface) for inhomogeneities of larger size. Small-size roughness is likely to be present
initially on the non-excited surface of air-fused silica, where the role of the defects in laser-induced rip-
ples formation was previously discussed and investigated [318]. In contrast, the larger inhomogeneities
can be attributed to laser-induced nanoparticles or nanovoids, formed at higher intensity irradiation
due to heterogeneous nucleation or phase explosion on the silica/air interface [319].

Stronger excitation leads to higher electron densities, resulting in a signi�cant change of the optical
properties of fused silica. High electron density gradients between the inhomogeneous random hot
spots, resulted from the roughness-dependent patterns, and laser-induced area are reached due to
multiphoton excitation processes as shown in Fig. 5.24(d). Although these hot-spots have local
metallic properties, we emphasize that the electron densities in the laser-induced area remain sub-
critical. The random inhomogeneities play the role of the seeds for nanoplasma growth and are the
reason for the appearance of new periodic perpendicular patterns with subwavelength periodicity at
greater depth z = 100 nm in Fig. 5.24(e). These nanoplanes continue to grow for greater depths
driven by local �eld enhancement and multiphoton ionization processes. The Fourier transform of the
electron density snapshot shown in Fig. 5.24(e) reveals the periodicity close to λ/2n. We note, that
the periodicity of the �nal structures decreases with the increasing inhomogeneity concentration on the
rough surface, therefore, even smaller subwavelength periodicities are predicted by the numerical model
in the case of higher roughness (not shown here), similar to the case of bulk nanostructuring [228,260].
A similar transition from the random pre-distributed cracks to periodic nanostructures was revealed
experimentally on a shot-to-shot basis during ultrashort laser irradiation of fused silica surface [56].
Deep subwavelength or the hs� structures oriented perpendicular to laser polarization are commonly
observed in dielectrics [317].

At the greater depth of z = 200 nm, the ls�-‖ structures are clearly seen in Fig. 5.24(f). These
electron-density patterns are likely to be reinforced by the presence of the formed deep hs� structures
[320]. To emphasize the depth-dependent transition from hs� to ls�-‖ structures, Figs. 5.25(a,b)
shows the corresponding three-dimensional electron density modi�cations. The competition between
the structures of two types leads to the formation of a grating-like structure, reported by several
independent experimental groups [93, 316]. The deposited energy in this case is enough to melt the
intensity-enhanced regions of fused silica and to generate the �nal morphology of the ls�-‖ structures.

At even stronger excitation, the central laser-induced area turns metallic Re(ε) < 0 and perpendic-
ular oriented electron density patterns with a larger periodicity approaching to the laser wavelength
are formed at the depths of z = 100 nm and z = 200 nm in Figs. 5.24(h,i). Their formation is the
consequence of the interference of the incident �eld with the scattered far-�eld from the metallic rough
surface (see Fig. 5.23d). Apart from these patterns, the hs� structures are formed around the quasi-
metallic area in Fig. 5.24(i). To emphasize the same orientation but di�erent periodicity of the electron
density patterns, we demonstrate also the corresponding three-dimensional electronic modi�cation in
Fig. 5.25(c). Interestingly, very similar ripples morphologies with the ls�-⊥ structures in the ablation
crater and subwavelength hs� structures around were observed on the surface of several dielectrics and
semiconductors [321�324].
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Figure 5.26: Electron density distribution calculated by Maxwell's equations coupled with rate equation
at the pulse peak for di�erent e�ective number of pulses evolution (a) N = 5, (b) N = 10, (c) N = 25,
(d) N = 50. Pulse duration is 80 fs (FWHM). The pulse energy is �xed to be 200 nJ. Laser wavelength
λ is 800 nm in air. Initial concentration of randomly distributed inhomogeneities Ci = 0.1%. Initial
size of inhomogeneities r = 10 nm.

5.7 Multipulse feedback mechanism

We have shown numerically that a single ultrashort pulse irradiation with initially presented ran-
domly distributed inhomogeneities on the surface or in the bulk of fused silica [228] leads to the
formation of three-dimensional periodic nanoplasmas oriented perpendicular to the laser polarization.
However, several pulses are required to form volume nanogratings or surface nanoripples [39,56]. Fur-
thermore, the nanoplanes were shown to consist of nanopores or less dense matter [7,24], which means
that a certain threshold for nanovoid formation is overcome during ultrashort multipulse laser irradi-
ation and the next pulse interacts with already generated nanovoids.

In order to take into account multipulse feedback during ultrashort laser irradiation, the regions
where the electron density overcomes the critical value ncr are considered to transform into voids with
the corresponding permittivity ε = 1 and electron density ne = 0. The proposed conditions are close
to the void formation thresholds [2] and ncr serves as a good approximation and simpli�cation of the
real conditions. As in a single pulse irradiation, randomly distributed laser-induced inhomogeneities
r = 10 nm with a reduced bandgap are localized in fused silica. They evolve into the hot spots with
the highest electron density during the pulse duration and, therefore, turn into nanovoids up to the
beginning of the next pulse. The e�ective number of pulses N is introduced.

Fig. 5.26 shows the electron density snapshots taken at di�erent number of pulses and the evolution
of nanoplasmas consisting of nanovoids. At �rst pulses, there is no periodic organization, the electron
density pro�le is presented by randomly distributed nanovoxels surrounded by high density electron
plasma as shown in Figs. 5.26(a,b). Similar non-organized laser-induced modi�cations were reported
in several independent works [7, 11, 118, 248, 258]. At higher number of pulses, strong local enhance-
ment around both plasma and void-like inhomogeneities contributes to the nanoplasmas elongation
in one underlined direction perpendicular to the laser polarization as evidenced in Fig. 5.26(c). The
distribution of the nanoplanes after N = 50 e�ective pulses is quasi-periodical with subwavelength
periodicity close to λ/(2n) in Fig. 5.26(d) because of the interference of the incident light with the
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waves scattered from the growing nanovoids.

5.8 Conclusions

We have numerically investigated the mechanisms of VNGs formation under femtosecond laser
irradiation of fused silica with randomly distributed nanometric inhomogeneities by solving nonlinear
Maxwell's equations coupled with multiple rate electron density equation taking into account both
avalanche and complex Keldysh photo-ionization. The numerical model is capable to reproduce the
transition between the quasi-homogeneous electronic modi�cation with randomly distributed scattering
centers to periodic nanoplasma modi�cation at higher laser pulse energies.

By analyzing the calculated electron density distribution, we have revealed and explained the evolu-
tion from small spherical nanometric inhomogeneities to periodical nanoplanes. Three cases have been
considered: (i) with a sharp interface between modi�ed and unmodi�ed regions; (ii) with a constant
concentration; and (iii) with a smooth concentration pro�le. In all these cases, periodic nanostructure
formation has been observed. The obtained results have shown that the period of nanoplanes growing
perpendicularly to the laser polarization depends strongly on the irradiation wavelength. These facts
agree fairly well with previous experimental observations. Furthermore, 3D-FDTD modeling has shown
that the nanostructures can be rotated in space by changing the electric �eld polarization.

The particularities of 3D electron density pro�les imprinted by ultrafast laser irradiation of glass
with developed bulk nanoroughness have been discussed in detail. By applying di�erent polarization
states, we have demonstrated numerically that the nanostructure orientation is perpendicular to the
local laser polarization. The larger bulk nanoroughness leads to a decrease of the nanostructure
periodicity, however, to more dispersed and less pronounced structures, while the laser �uence de�nes
the area covered with the nanostructures.

Radially polarized beam is shown to induce ring-like electronic modi�cation with a densi�cation in
the center, whereas azimuthally polarized beam creates radially oriented nanoplasmas elongated from
the center, where no electronic modi�cation occurs. In the case of windmill polarization, numerical
results demonstrate the self-organization of Archimedian spiral nanostructures. Between the combina-
tions of radial and azimuthal polarization states, arbitrary polarized laser beams might be advantageous
to allow better control over the nanostructure characteristics. Circular polarization is, however, shown
to be bene�cial to prevent the nanostructures self-organization, inducing random nanodots at moderate
intensities and quasi-symmetrical circular-shaped modi�cation in the case of high-intensity irradiation.

It is shown that the formation of periodic subwavelength nanostructures (HFNGs) does not require
the presence of a sharp interface between a�ected zones by laser and una�ected zones. In the presence
of the rough interface, the nanoplanes of di�erent nature and periodicity close to laser wavelength in
medium (LFNGs) are formed. Their formation is due to the interference between the incident wave
and the inhomogeneity-scattered waves which can be reinforced by surface plasmon wave excitation.

The mechanisms of periodic nanostructure formation are elucidated during fused silica/air surface
and fused silica bulk irradiation. Volume nanogratings and subwavelength surface nanoripples (hs�) are
shown to have similar formation mechanisms, and the presence of initial inhomogeneities or scattering
centers is required to start the nanoplasma growth. The orientation of the nanoplasmas is de�ned
by the local �eld enhancement perpendicular to the laser polarization, whereas the subwavelength
periodicity is the consequence of the coherent superposition of scattered waves by nanoplasmas. The
process of the nanostructure formation does not require that fused silica glass turns metallic, because
the signi�cant local �eld enhancement is achieved at the tips even of a void nanoplane providing the
growth on a shot-to-shot basis.

The hs� nanoripples with the orientation perpendicular to the laser polarization develop from the
intensity radiation remnants formed by the interference between the incident �eld and the near-�eld
below the surface. In contrast, the ls� classical ripples with the orientation parallel or perpendicular
to the laser polarization are the results of the interference of the incident light with the far-�eld of
rough non-metallic or metallic surfaces. Therefore, they are formed dominantly on greater depths
and at higher laser �uences or irradiation dose. The numerical results indicate non-metallic nature
of the transition between hs� and ls�-‖ and the metallic nature of the ls�-⊥ structures. Therefore,
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the polarization-dependent ripples morphologies, typically observed on the surface of dielectrics and
semiconductors, are elucidated.

An explanation of the pulse number e�ect on the nanograting periodicity is furthermore proposed
based on the mechanism of the nonlinear ionization memory and correlation between the concentration
of inhomogeneities and the number of pulses. As the concentration is related to the separation distance
between laser-induced nanospheres, the periodicity decreases with the increasing number of pulses due
to di�erent regimes of multiple scattering on nanoscale inhomogeneities.

Then, electromagnetic calculations taking into account multipulse feedback mechanism and nanovoid
formation in the laser-induced regions where the electron density exceeds ncr are provided. It is shown
that the proposed scenario explains also the periodic nanoplasma formation on a shot-to-shot basis.

Finally, the performed numerical modeling put in evidence that laser-induced inhomogeneities play
a crucial role in VNG formation. The nanometric inhomogeneities are not only the seeds and the
initial reason for periodic nanograting self-organization [82] but also the attributes guiding the whole
process. Without these seeds, it is impossible to explain subwavelength periodicity of the nanoplanes.

5.8.1 Appendix: Electric �eld sources for di�erent polarization states

Initial electric �eld source for linear polarization state is introduced as follows

Elinx (t, r, z) =
w0
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where θ is the pulse width at half maximum (FWHM), t0 is the time delay, w0 is the waist beam,
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) is the Gouy phase shift. z = 0 corresponds to the position of the beam waist.
For circular polarization, the initial electric �eld source is introduced as the superposition of two

linear polarizations with a phase di�erence of π/2
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(5.3)

For more complex polarization states, the following parametrization is used{
Ex(t, r, z) = Elinx [cos(Arg)ex − sin(Arg)ey]

Ey(t, r, z) = Elinx [cos(Arg)ey + sin(Arg)ex],
(5.4)

where ex = x/
√

(x2 + y2) and ey = y/
√

(x2 + y2) are the components of the unit vector due to the
conversion from cylindrical to Cartesian system of coordinates. Therefore, if Arg = 0, the polarization
is radial; if Arg = π/2, it is azimuthal. On the whole, it could be written as

Arg = 2πNr/R0 − arcsin(ey) + α0, (5.5)

where the �rst part stands for radially-varied polarization, the second gives the azimuthally-varied
polarization, and α0 is a constant. N is referred to the radial index, which de�nes the number of
maxima/minima, and R0 is the beam radius of radially-varied vector �eld. The intensity patterns
exhibit the extinction rings, implying that the polarization is radial-variant. The number of the
extinction rings is 2N , the radius of the ith extinction ring is given by Ri = (2i − 1)R0/4N and the
spatial interval between two separate rings is ∆R = R0/2N .
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Chapter 6

Thermo-mechanical evolution of

ultrashort laser-induced modi�cation

This chapter is focused on multiphysical modeling of ultrashort laser-induced modi�cations in
glasses. In particular, two-temperature model is used to investigate the thermal e�ects and to esti-
mate the glass temperatures directly from the electronic modi�cations calculated in previous chapters.
Thermo-elastoplastic wave equations are then solved to obtain the associated stresses, density and
transient refractive index changes. Viscoelastic conservation law and classical nucleation theory are
used to de�ne the criteria for nanopores formation inside fused silica bulk. A simpli�ed hydrodynamic
approach based on Rayleigh-Plesset equation is then applied to investigate further evolution of the
nanopores. The numerical modeling allows us to de�ne the threshold conditions for nanograting for-
mation and erasure. These conditions are connected with the initial laser irradiation parameters, such
as laser pulse energy, pulse duration and repetition rate, via self-consistent multiphysical modeling.
Finally, laser parameter window for nanogratings survival is de�ned.

6.1 Multiphysical model

The schematics of the multiphysical model is shown in Fig. 6.1. The main laser parameters
that in�uence the laser-a�ected distribution are laser intensity, pulse duration, numerical aperture
or focusing conditions, and laser wavelength. Only linear polarization is considered in this chapter.
Depending on these parameters, di�erent electron density pro�les given by multiple rate equation are
generated during ultrashort laser pulse propagation. As soon as the energy of the electrons is transferred
to the lattice, the temperature pro�les are established in the heat-a�ected zone, which are investigated
by two-temperature model. The temperature gradients lead to the stress and density redistribution
inside glass. Their pro�les are de�ned by thermo-elastoplastic model. Glass decomposition criteria are
then applied taking account temperatures and pressures within silica bulk. The hydrodynamic model
based on Rayleigh-Plesset equation gives additional information about the evolution of the modi�cation
for the given temperatures and pressures. Finally, if several pulses are applied and the lattice does
not have time to cool down to the room temperature, the temperature and the stress distributions are
used further as the initial conditions at the beginning of the next pulse.

6.2 Laser-induced thermal e�ects

Fig. 6.2(a) shows the electron density and temperature distribution of the laser-induced modi�cation,
while taking into account for smooth pro�le of randomly distributed nanometric inhomogeneities or
nanopores in glass [228]. Terasure indicates the minimum temperature, for which the nanogratings
are locally erased in the center of heat-a�ected zone and is related to the threshold, reported in the
experiments [10,13,16,23,39]. The area where this threshold is homogeneously overcome is attributed
to the presence of uniform voids in Ref. [11, 34]. The regions of high inhomogeneous electron density
mark the pro�les of nanoporous periodic nanostructures [7,258]. The typical two-dimensional electron
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Figure 6.1: Schematic representation of multiphysical model.

density and the corresponding lattice temperature distributions calculated for the same laser parame-
ters without any inhomogeneities are demonstrated in Fig. 6.2(b). In Fig. 6.2(a), the subwavelength
periodicity electron density/temperature patterns are formed, which further turn into void-like perma-
nent modi�cation structures attributed to volume nanogratings. In Fig. 6.2(b), there are no periodic
patterns in the spatial distribution. Note that even in the absence of inhomogeneities, two di�erent
laser-induced zones, where the nanostructures are conserved and erased, can be identi�ed.

In what follows, we investigate the homogeneous electron density and temperature distributions,
discuss the temperature thresholds for nanograting formation and erasure, �nd the dependence of
the thresholds on the laser parameters, such as pulse energy, pulse duration and repetition rate, and
summarize the main results in Figs. 6.15 and 6.16.

Laser energy strongly in�uences laser-induced modi�cations [10, 28, 29]. The results of a series of
calculations for laser pulse temporal width θ = 80 fs and a wide energies interval from 100 nJ to 2µJ
are demonstrated in Fig. 6.3. The presented electron densities, electron and lattice temperatures are
calculated in the center of the photoexcited region. The maximum free carrier densities from ne =
2.5 · 1026 m−3 to ne = 6.5 · 1026 m−3, created during the femtosecond pulse propagation, decay rapidly
during 10 ps after excitation in Fig. 6.3(a), which is typical time of relaxation for sub-picosecond laser-
induced carriers at moderate pulse energies Σ ≤ 4µJ [28,59,60]. The presented electron temperatures
of order Te = (5− 7) · 105 K reach their maxima also during pulse duration. It takes about 10 ps for
them to decrease and to become equal with lattice temperature in Fig. 6.3(b). The calculated lattice
temperatures reach their maxima in picosecond scale, but decay slowly within several microseconds
in Fig. 6.3(c). Independent of the pulse energy, the lattice temperatures decrease down to the initial
temperature at 10µs. Therefore, for repetition rates lower than 100 kHz, the heat accumulation e�ects
can be safely neglected for fused silica [23,325].

For laser pulse energies below Σ = 1µJ , the average temperatures stay below the softening point
in agreement with experimental results [29](the spatial distribution is not shown here). For energies
close to Σ = 1µJ , the electron densities of order ne = 5 · 1026 m−3 are generated inside photoexcited
region consistent with the reported values [15, 69�72, 75]. Under these conditions, a series of voids
are generated in a single pulse irradiation regime [29, 64, 118]. Such a regime can be realized in self-
organized nanogratings, while the softening point is not reached in all the heat-a�ected zone and the
region is not completely melted [29,39,44,64]. For laser pulse energies on the order of Σ = 2µJ , fused
silica temperatures are signi�cantly higher than the melting temperature.

98



Figure 6.2: Electron density and lattice temperature distributions of laser-induced modi�cation (a) with
inhomogeneities, (b) without inhomogeneities. Two regions are underlined: Ti > Terasure condition
de�nes the zone, where the nanogratings are erased, the larger zone indicates the photo-excited region,
where the nanogratings are formed. Laser irradiation conditions: pulse energy Σ = 1µJ , pulse duration
θ = 160 fs (FWHM), irradiation wavelength λ = 800 nm, beam waist w0 = 1µm. Electron density is
normalized to the critical electron density ncr = 1.74 · 1027 m−3.

Figure 6.3: Energy-dependent temporal dynamics of single-short femtosecond laser irradiation (a, b,
c). The values of maximum electron densities (a), electron and lattice temperatures (b, c) are taken at
the center of focus. The energies are varied from Σ = 100 nJ to Σ = 2µJ . Laser irradiation conditions:
pulse duration θ = 80 fs (FWHM), irradiation wavelength λ = 800 nm, beam waist w0 = 1µm.

Laser pulse duration is another crucial parameter strongly in�uencing the nonlinear energy deposi-
tion during ultrashort laser irradiation. We consider a wide range of femtosecond pulses, for which bulk
nanostructuring has been reported in the literature [4, 13�18, 39, 44]. Together with pulse energy, the
pulse duration de�nes the contributions of photoionization and avalanche ionization. Fig. 6.4 reveals
the maximum electron densities and temperatures as a function of pulse duration for di�erent pulse
energies calculated according to the numerical model.

For low pulse energies of Σ = 100 nJ and corresponding intensities I = (2−5) ·1017 W/m2 for w0 =
1µm focusing (3.12), the contribution of photoionization is more signi�cant than the contribution of the
avalanche ionization [326], resulting in higher electron densities at lower pulse durations. This trend
explains the experimentally measured higher breakdown threshold for longer pulses and is consistent
with numerous calculations [83, 139].

In contrast, for energies of Σ = 1µJ and higher and for w0 = 1µm focusing (3.12), high intensities
on the order of I = (2− 5) · 1018 W/m2 are induced in the bulk [4,14], providing su�ciently energetic
electrons for avalanche ionization. As a result, avalanche dominates over photoionization, even for
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Figure 6.4: Maximum electron densities and lattice temperatures as a function of pulse duration and
laser pulse energy in a single-shot femtosecond laser irradiation. The pulse durations are varied from
θ = 40 fs to θ = 320 fs (FWHM). Irradiation wavelength is λ = 800 nm, and beam waist is w0 = 1µm.

laser pulses as short as 40 fs [326]. In this case, the maximum electron densities and the maximum
lattice temperatures rise with the increasing pulse duration. This result is consistent with lower
breakdown threshold for increasing subpicosecond pulse durations in the experimental measurements
[146,327�330]. The numerical calculations based on the system of Boltzmann equations [67] at relatively
high intensities also agree with this dependency. Higher electron densities for longer pulse durations
result in higher lattice temperatures in Fig. 6.4 and, consequently, lower temperature threshold.

Note, that the refractive index changes corresponding to both modi�ed and unmodi�ed material
were investigated experimentally as a function of pulse duration in fused silica [10,13,15,38]. The larger
values, attained for longer pulse durations, are supposed to be related to the greater local electron
densities and temperatures. On the other hand, for θ = 160 fs pulse duration, the temperature
maximum is above the temperature Trelax ≈ 3000 K for modi�cation relaxation de�ned above. As
a result, the nanostructures are expected to be erased. The threshold temperature is attained for
subcritical electron densities of order ne = (5− 7) · 1026 m−3, slightly increasing for longer pulses.

Figure 6.5: Energy-dependent temporal dynamics of single-shot femtosecond laser irradiation of borosil-
icate glass. The values of maximum electron densities (a), electron and lattice temperatures (b, c) are
shown. The energies are varied from 500 nJ to 5µJ . Laser irradiation conditions: pulse duration θ = 80
fs (FWHM), irradiation wavelength λ = 800 nm, beam waist w0 = 1µm. The maximum temperatures
are plotted against the pulse energies and compared with the experimental measurements [29] (d).

Fig. 6.5 shows the results of a series of calculations for boro�oat glass, irradiated by the ultrashort
pulse of θ = 80 fs. The energies are varied within the interval [0.5; 5]µJ . As in previous case, the elec-
tron densities, electron and lattice temperatures are calculated in the center of the photoexcited region.
In contrast to fused silica, the electron plasma has a longer lifetime up to τ = 100 ps in borosilicate
glasses. Interestingly, the photoexcitation calculated by six-photon multiphoton ionization results in
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lower electron densities, lower electron temperatures, and, consequently, lower lattice temperatures at
�xed pulse energy and pulse duration. The temperatures lower than 1000 K for low energies of 0.5µJ
are consistent with the experimental �ndings [31], whereas the electron densities of order 1 · 1026m−3

were measured experimentally under tight focusing and low energies [331], in a good agreement with
the numerical results in Fig. 6.5(a,c). Furthermore, even for very high pulse energies of 5µJ , the elec-
tron densities are at least two times less than the critical value ncr = 1.74 · 1027m−3 for λ = 800 nm.
We propose that lower electron densities/temperatures could result in lower birefringence of ultrashort
laser-induced modi�cation [22, 332]. In the same time, the melting temperature is signi�cantly lower
Ti = 1050 K, therefore, the energy of 2µJ is enough to melt the photoexcited region. We compare
the calculated maximum temperatures in the focus of the photoexcited region with energy-dependent
Raman measurements [29] and �nd an excellent agreement up to energies 2µJ .

6.3 Thermo-elastoplastic modeling for fused silica

In this section, thermo-elastoplastic wave equations (2.28, 2.30, 2.32, 2.33) are solved to estimate
the stresses, density and refractive index changes for sigle-shot energy-dependent ultrashort laser irra-
diation regimes.

The results of a series of calculations for fused silica for ultrashort laser pulse duration θ = 80 fs
and wide energies interval from 500 nJ to 4µJ are presented in Fig. 6.6 and in Fig. 6.7. Maximum
electron densities, electron/lattice temperatures, densities, stresses and positive/negative refractive
index changes are calculated. In contrast to Fig. 6.3, less tight focusing conditions are considered.
Therefore, lower electron densities, electron and lattice temperatures are attained for the same laser
pulse energies.

For energies below 2µJ , the stresses do not exceed 45 MPa, which is less than tensile strength
for fused silica [153]. The typical transient negative refractive changes of order 10−4 due to ther-
mal gradient are shown in Fig. 6.7(a). In contrast, the transient positive index changes are due to
temperature dependence of the refractive index (see 2.33) and are estimated based on thermo-optic
coe�cients [162,163] in Fig. 6.7(b). The negative density changes of order 10−3 calculated by Euler's
equation are summarized in Fig. 6.7(c). The positive index changes of smaller order are related to the
generation of the pressure wave due to thermal gradient. One can see, that the characteristic time of
density change is about 100 ps.

Figure 6.6: Energy-dependent temporal dynamics of single-shot femtosecond laser irradiation of fused
silica. The values are taken at the center of focus. (a) Maximum electron densities, (b) Maximum
electron temperatures, (c) Maximum lattice temperatures, (d) Maximum negative stresses. The ener-
gies are varied from 500 nJ to 4µJ . Laser irradiation conditions: pulse duration θ = 80 fs (FWHM),
irradiation wavelength λ = 800 nm, beam waist w0 = 1.5µm. Thresholds for melting temperature and
tensile strength are indicated.
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Figure 6.7: Energy-dependent temporal dynamics of single-shot femtosecond laser irradiation of fused
silica. The values are taken at the center of focus. (a) Negative transient refractive index changes,
(b) Positive transient refractive index changes (structural), (c) Negative density changes, (d) Positive
density changes (generation of the pressure wave). The energies are varied from 500 nJ to 4µJ . Laser
irradiation conditions: pulse duration θ = 80 fs (FWHM), irradiation wavelength λ = 800 nm, beam
waist w0 = 1.5µm. Thresholds for critical electron density, softening temperature and tensile strength
are indicated.

Fig. 6.8 shows the spatial temperature dynamics during fast cooling of fused silica glass. The
temperatures start to decrease already at 100 ns in Fig. 6.8(b) due to strong thermal di�usion. The
heat-a�ected zone transforms from the stretched quasi-Gaussian pro�le in Fig. 6.8(a) to radial in
Fig. 6.8(d). The temperature signi�cantly decreases on microsecond scale. Due to signi�cant laser
pulse energy and high laser-induced temperatures, weak temperature increase is still present even after
10µs. The spatial temporal dynamics is qualitatively consistent with temporally resolved experimental
temperature measurements [29].

Figure 6.8: Spatial temperature dynamics during fast cooling of fused silica. Temperature snapshots
are taken (a) 10 ns, (b) 100 ns, (c) 1µs and 10µs after laser irradiation. The laser pulse nergy is 4µJ .
Laser irradiation conditions: pulse duration θ = 80 fs (FWHM), irradiation wavelength λ = 800 nm,
beam waist w0 = 1µm.
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6.4 Pressure wave generation

Figure 6.9: Propagation of longitudinal pressure wave in fused silica. Density snapshots are taken
(a) 200 ps, (b) 400 ps, (c) 600 ps and (d) 800 ps after the pulse. Laser irradiation conditions: pulse
duration θ = 80 fs (FWHM), irradiation wavelength λ = 800 nm, pulse energy E = 1.5µJ , beam waist
w0 = 1µm.

At timescales of several hundreds picoseconds to several nanoseconds glasses overcome the
transient regime, in which the forces caused by the thermal stress lead to displacements, that propagate
as longitudinal acoustic waves [159]. A generation of pressure wave was observed experimentally for
fused silica and other glasses [2, 17, 63, 64, 333]. Timescales of pressure wave propagation could be
expressed as t ≈ a

CL
, where a is the dimension and the longitudinal sound velocity in fused silica is

de�ned as CL =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
≈ 5968m/s. The dynamic evolution of the density in fused silica

during the pressure wave propagation is presented in Fig.6.9. The propagation distances of the pressure
wave are found to be approximately 1.2, 2.4, 3.6, 4.8µm at delays of 200, 400, 600, 800 ps. This result
is due to propagation with the longitudinal sound velocity. Fig.6.7(d) shows the maximum densities
generated in the pressure wave for di�erent pulse energies. The extremum corresponds to the initiation
of the pressure wave, which corresponds to a hundred picoseconds. Then, the density decreases and the
pressure wave dissipates. At nanoscale the positive stress is generated near the photoexcited region.
However, the values of the stress and the density enhancements due to pressure wave are one order
smaller than the ones in laser-induced thermal modi�cation in agreement with the measurements of
Sakakura et al. [65]. The glasses with larger thermal expansion coe�cient like borosilicate glasses
or soda-lime glasses lead to intense stress within the material [334] and, therefore, stronger pressure
waves [65].

6.5 Accumulation e�ects

Previously, di�erent models were proposed to take into account temperature increase during mul-
tipulse laser irradiation [35�37,335�338]. While most of them are based on the scaling factors and the
�tting parameters, which could be de�ned only experimentally, the application of these models to dif-
ferent laser conditions is questionable. Furthermore, temperature dependencies of thermal di�usivity
and heat conductivity were neglected, as well as the evolution of initial heat distribution. Here, I solve
the system of equations describing the temperature dynamics of glasses during multipulse ultrashort
laser irradiation and repetition rates from 100 kHz to 10 MHz. From Fig. 6.8(d), it could be seen that
very weak accumulation is expected for 100 kHz [23, 325], whereas the temperatures remain still high
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100 ns after the pulse in Fig. 6.8(b). The results of multipulse laser irradiation of fused silica for laser
wavelength λ = 515 nm and pulse duration θ = 450 fs are presented in Fig. 6.10(a-d). In the case
of 200 MHz, the temperature increase stays beyond 150 K, whereas for 10 MHz accumulation rate it
rises up to 1300 K.

Figure 6.10: (a-d) Temperature evolution during several pulse irradiation with (a) 200 KHz, (b) 1
MHZ, (c) 2 MHz, and (d) 10 MHz repetition rates and laser pulse energies (a) 400 nJ, (b) 250 nJ, (c)
200 nJ, and (d) 50 nJ in fused silica. Red and blue lines de�ne the temperature predictions according to
(6.1) taken with αmax to �t the �nal temperature after several pulses and αmin to �t the temperature
increase after the second pulse. Violet line refers to the temperature prediction according to (6.2) with
di�erent ξ. Laser irradiation conditions: pulse duration θ = 450 fs (FWHM), irradiation wavelength
λ = 515 nm, beam waist w0 = 1µm.

Previously, a simple method was proposed to calculate the resulting temperature after several pulses
irradiation [335]. There, the temperature rise of N th pulse heating could be estimated as follows

TN = T1 ·
1− αN

1− α
, (6.1)

where α =

√
tth

tth + 1/Rrep
, tth =

l2abs
D

is the characteristic cooling time, labs is the average absorption

depth, Rrep is the repetition rate, and D =
ki
ρCi

is the thermal di�usivity. However, both the average

absorption depth and the thermal di�usivity are functions of temperature, which does not allow the
straightforward use of the formula 6.1. In what follows, we calculate the dynamics of the temperatures
during multipulse ultrashort laser irradiation for di�erent repetition rates. Note, that laser irradiation
wavelength λ = 515 nm is taken to allow the comparison with experimental results [16] provided below.
Numerical results could be better �tted with tth = α2

Rrep(1−α2)
≈ (3− 9) · 10−8 s. Taking into account

that D ≈ 10−6m2/s for fused silica, we estimate the average absorption depth labs ≈ (2− 3) · 10−7 m.
The method proposed in Ref. [335] could be improved in the following way. The maximum tem-

perature just after the �rst pulse could be approximated as T1 = T0 + Q/Ci, where Q = Iαabs is the
energy converted into the heat. The temperature after Rrep time is ϑ1 = T1ξ. Therefore, the maximum
temperature just after the second pulse is expressed as T2 = T1(ξ + 1)− T0. A recursive procedure to
de�ne the maximum temperature after Nth pulse results in

TN = T1 ·
1− ξN

1− ξ
− T0 ·

1− ξN−1

1− ξ
. (6.2)

This approximation coincides with the previously proposed expression in the case the initial tempera-
ture T0 = 0, however, provides a signi�cant correction in the case T0 = 300 K for high repetition rates.
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Table 6.1: Heat accumulation e�ects in glass.

Rrep [MHz] Energy [nJ] αmin αmax ξ T1 [K]
0.1 500 0.015 0.025 0.158 1950
0.2 400 0.045 0.085 0.235 1850
1.0 250 0.2 0.275 0.425 1450
2.0 200 0.325 0.41 0.56 1250
10.0 50 0.5 0.65 0.825 700

The results of numerical calculations for di�erent repetition rates and comparison with analytical pre-
dictions based on (6.1) and (6.2) are shown in Fig. 6.10. For each repetition rate, we �nd a pulse energy
required to reach T = 2000 K for fused silica (further referred as the cavitation threshold) during multi-
pulse ultrashort laser irradiation. The results are summarized in Table 6.1. Di�erent number of pulses
is required to reach the saturation for each repetition rate. We use also the prediction proposed by
Gamaly et al. [335] to �nd the corresponding α to �t the results in a better way. The maximum value
(red line in Fig. 6.10) corresponds to αmax, which predicts the temperature saturation at 2000 K. This
value, however, does not predict the temperature rise after the second pulse. The minimum value αmin
is found to satisfy this condition (blue line in Fig. 6.10). In contrast, this value underestimates the
temperature of saturation. We propose that the temperature rise is better described by (6.2) and we
�nd the correspond ξ values. In fact, this analytical prediction gives the values very close to the ones
of numerical simulation both for the saturation temperature and the temperature rise after �rst pulses
for high repetition rates (Fig. 6.10). Moreover, the values of ξ correlate fairly well with the repetition
rates which allows us to de�ne the cooling time tth = (2.5 ± 0.2) · 10−7 s and the average absorption
depth labs ≈ 5 · 10−7 m in Fig. 6.11. This close correlation is because of smoother characteristics of
the proposed function (6.2) as two parameter temperatures of the laser-induced modi�cation T0 and
T1 are taken into account.

Figure 6.11: ξ is correlated with the corresponding repetition rates.

6.6 Nanovoids formation and survival

In this section, we turn to the nanograting formation and survival mechanisms. The self-organized
nanogratings consist of nanopores that were connected to the strong refractive index contrast [7]. The
formation of nanopores was attributed to glass decomposition, rather than structural modi�cation, i.
e. bond-breaking mechanisms [112]. It is widely accepted that the decomposition can be achieved by
three main ways: nucleation, cavitation/fragmentation and spinodal decomposition [174,339], and the
dominant mechanism is de�ned by the relative timescales of each process, where the fastest mechanism
wins [12]. On the other hand, the glass decomposition is limited by fast cooling of lattice, which
takes place after τcool = w0

2/D ≈ 1.68µs in ultrashort laser processing of fused silica [29], where
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D = ki/ρCi is the di�usion coe�cient. Here, we discuss the feasibility of each decomposition process
for the initiation of nanopores.

The mechanism of nuclei formation was proposed to explain the formation of self-organized bubbles
[75, 340] as well as nanogratings in fused silica [339]. The characteristic time for nucleation depends
strongly on the processing temperature and pressure values. For example, for temperatures of T = 3000
K, τnucl ≈ 1.3 s is needed for nucleation under P = 200 MPa pressure, τnucl ≈ 2µs under P = 300
MPa, and only τnucl ≈ 200 ps under P = 400 MPa. Additionally, the characteristic time decreases
by approaching to critical point temperature, which is typical to metal laser ablation [12, 341]. As
the exact pressure values for liquid fused silica Ti > Tmelt irradiated by ultrashort laser are not well-
known, we calculate the nucleation time for a wide range of pressures up to the highest value limited
by the critical pressure for fused silica. This critical value is set to be Pcr = 189 MPa, according to
Melosh [175]. Importantly, even larger values were reported in literature, such as Pcr = 551 MPa in
Ref. [342,343], so that the range for the nucleation can be wider.

The other scenario, widely discussed in the literature, is nanovoid formation due to cavitation
[2, 118]. The dynamic tensile strength required for cavitation inside fused silica bulk Pdyn is derived
from Grady's criterion for spall in liquid [172] described by the inequality condition (2.36). Strain
rate ζ(T ), viscosity η(T ) and surface tension σ(T ) depend on the glass temperature evolution, which
is taken into account by the numerical method. The tensile stress is evaluated as P ≈ −βBT for
solid, where β = 5.5 · 10−7 K−1 is the thermal expansion coe�cient of fused silica [183] and B is the
elastic bulk modulus, de�ned previously, giving values of order 100 MPa. The corresponding strain
rate is estimated from the thermoelastic wave equations modeling, where ∆ρ

ρ ≈ −βT ≈ −10−3T/Tmelt
is reached at less than 100 ps, therefore, ζ ≈ 107T/Tmelt s−1. Taking into account the time dependency
of the dynamic tensile strength in the expanding glass given by Pdyn = 2Bζt [172], one can estimate,
that the elastic energy is greater than the kinetic energy Ee

Ek
≥ 15, applying the condition for the

nominal cavitation size R ≤ 2cst. Therefore, the following expression is valid

16Bζ2t2

15
≥ 6σ

R
+ ηζ ≥ ηζ. (6.3)

For temperatures slightly above the softening point Tmelt = 1875 K, the viscosities are as high as
η ≈ 108Pa · s [173], therefore, the contribution of viscous dissipation is several orders greater than
of the surface tension. In fact, fused silica still resists even at high temperatures, where metals and
semiconductors are fragmented [12,172,344]. By taking into account the temperature pro�le evolution
and fast lattice cooling, we estimate the maximum viscosity and, therefore, the minimum temperature
of fused silica for overcoming the dissipation forces ηmax = Bζτ2

cool ≈ 1.5 · 106 Pa·s, which corresponds
to Tmin ≈ 2000 K [168, 169]. For such temperatures, ηζ � 6σ/R is still satis�ed even for nanometric
sizes R � 10 nm, therefore, the conditions for nanocavitation are met for temperatures greater than
Tmin = 2000 K. The minimum characteristic time of cavitation is limited mostly by surface tension, as
the viscosity sharply decreases for T > 2800 K [59] but the surface tension still remains signi�cant [173].
For nanopores of R ≈ 10 nm, the minimum required time is estimated as tmin =

√
6σ/BRζ2 ≈ 4.1

ns, where ∆t = 100 ps is taken to evaluate the strain rate ζ, according to the results of thermo-
elastoplastic modeling [75]. In this way, at higher local temperatures and greater local strain rates
induced by density �uctuations or the presence of bulk inhomogeneities in glass, the nanopores of
smaller sizes are likely to be formed at nanosecond timescales. Interestingly, nanopores of smaller
size were experimentally revealed by Lancry et al. in di�erent glasses, while using higher repetition
rates [23]. For larger voids of R ≈ 1µm, lower tensile stresses are required to overcome the tension
forces and the minimum corresponding time lies in one hundred picosecond scales as indicated in Fig.
1.5. Formation of nanocavities of sizes smaller than 1µm in the center of heat-a�ected zone is typical
for single pulse irradiation of fused silica bulk [2, 17, 29,34,118,344].

The laser conditions corresponding to cavitation are somewhat di�erent from the ones theoretically
investigated by Gamaly et al. in the case of tight focusing inside sapphire [9, 89]. In our case, the
electron densities are less than the critical value ncr = 1.74 · 1027 m−3, the lattice density change and
the strain rates, related to the fused silica compression, are as small as ∆ρ/ρ ≈ 10−3 > 0 and ζ ≈ 107

s−1 correspondingly, supported by experimental direct measurements of the modi�cation [2, 28, 259]
and also of the density change at the center of the pressure wave [17,65]. Therefore, the cavitation takes
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place on nanosecond-microsecond timescales, passing by fused silica liquid state. In the experiments
of Juodkazis et al., the shock wave compresses the material up to ρmax = 2ρ and the pressures are
several orders greater such as P > 100 GPa, indicating the phase transition to high-pressure states of
matter [89, 174,175].

Finally, spinodal decomposition or critical point phase separation describes the material decompo-
sition in the unstable liquid-vapour region of the phase diagram following an expansion passing in the
neighborhood of the critical point [345] and, therefore, requires the temperatures close to the critical
temperature Ti > 0.9Tcr ≈ 4860 K [12, 174, 346]. The estimations indicate that nanovoids are likely
to be formed by cavitation or homogenenous nucleation at temperatures Ti < 0.9Tcr, therefore the
spinodal decomposition is not signi�cant.

The competition between cavitation and nucleation scenarios as a function of temperature and
pressure is illustrated by Fig. 6.12(b). The negative pressure is used to evaluate the mechanical tensile
stress for the cavitation process, whereas the positive thermodynamic pressure is considered for the
initiation of the nucleation process. The cavitation process takes place faster than nucleation one
at lower pressures and temperatures, therefore, the nanovoid is likely to be generated at moderate
intensity irradiation, where the temperatures in the center of heat-a�ected zone overpass the melting
point and Tcav ≈ 2000 K.

The nucleation process is limited by the critical pressure and temperature. According to the
pressure values de�ned by Kraus et al. [174] and Melosh [175] and the characteristic times for the
nucleation calculated by CNT, the nucleation process is faster than the cavitation process only for
temperatures T > 4000 K. However, these temperatures do not lie within the reported values for
nanograting formation T = 2000−3000 K [7] and are higher than the temperatures reached in moderate
intensity regimes of ultrashort laser irradiation, detailed in Table 6.2, according to our calculations in
Fig. 6.3. Additionally, we show that below that value the nanopores can then signi�cantly grow.
This process is driven by the hydrodynamic expansion before the fast cooling of the lattice for the
temperatures T > 3000 K. The nanopore growth is expected to cancel the e�ects of the electromagnetic
scattering and contribute to the nanogratings erasure. Therefore, only the cavitation process satis�es
the timescales of the phenomenon, limited by a fast cooling as well as commonly used repetition rates
less than 10 MHz.

6.7 Nanogratings erasure

Figure 6.12: (a) Evolution of nanopore sizes in time for temperatures from T = 2500 K to T = 3000
K and pressures de�ned by P = 3

2nakBT . (b) Pressure-temperature window for cavitation, nucleation
and viscous growth of nanopores.

Now, it remains to identify the nanograting erasure mechanisms. The estimated temperature
threshold provides the local conditions for nanopores or nanovoid formation, but does not give the
information about hydrodynamic evolution of the modi�cation. In what follows, to analyze the dy-
namics of nanoscale voids, we solve the Rayleigh-Plesset equation (2.37). For temperatures slightly
above the derived nanocavitation threshold T ≈ 2000 K and relatively high viscosity, one can derive
a law of viscous growth R ≈ R0exp(Pe/4), where Pe = τcool/τvisc = ∆Pτcool/η � 1 is Peclet number,
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showing the ratio between the timescales for di�usion τcool and for viscous deformation τvisc [347,348].
For such conditions, the size of nanopores remains almost unchanged from one pulse to another, which
is common for experiments at the regimes of self-organized nanogratings [23, 34]. In contrast, for
higher temperatures T > 3000 K, the viscosity term rapidly decreases, giving Pe > 1 and providing
signi�cant growth rate of nanovoids. The condition Pe = 1 is used to de�ne the threshold for rapid
nanopore growth. This condition and the conclusions drawn below are independent of the initial size
of nanopores R0 till it is in the nanometric scale. The nanopores of R0 = 5 − 20 nm are typically
observed in the moderate intensity regimes of self-organized nanogratings [7, 23, 34].

Fig. 6.12(a) shows the temperature-dependent evolutions for nanopores. For temperatures lower
than T ≈ 2000 K, the conditions for cavitation and nucleation are not satis�ed. As soon as the
threshold is overcome, the nanovoids and nanopores are stable and are conserved up to the glass
solidi�cation. Temperatures greater than T ≈ 2750 K lead to hydrodynamic growth of nanopores
(Pe > 1). Fig. 6.12(b) shows the conditions for nanopore growth in terms of temperatures and
pressures. The parameter window, which enables the formation of stable nanopores corresponds to
temperatures T ≈ 2000− 3000 K. We claim that only in this case the nanostructures are formed pulse
by pulse by electromagnetic scenario.

Figure 6.13: Temperature and viscosity dependent laser parameter window for nanograting formation
in fused silica and borosilicate glasses.

Fig. 6.13 shows the temperature dependencies of viscosities for fused silica and borosilicate glasses
taken from Ref. [170]. The melting temperature and the temperature, satisfying the condition for
viscous growth of the nanopores Pe = 1 serve as the local indicators for nanograting formation and
erasure. In fact, the condition for cavitation η(T, t) = Bζ(T, t)t2 gives the temperature values close
to the melting temperature Tmelt ≈ 1100 K for borosilicate glass. One can note, that the laser
parameter window for borosilicate glass is signi�cantly narrower than for fused silica. This is logical
since borosilicate glass has lower viscosity at the same temperatures and greater thermal expansion
coe�cient and laser-induced stresses, that result in greater Peclet number. Therefore, it is more di�cult
to �nd a convenient laser regimes for inscribing periodic structures inside borosilicate glasses [21,23].

Several previous experiments show that nanogratings were not formed in certain temperature ranges
[16,23]. This observation can be explained by the phenomena taking place when the temperatures T =
2500−3000 K are established in all the heat-a�ected zone, see Fig. 1.5. Firstly, nanopores start growing
because of low viscosities corresponding to these temperatures, which is observed experimentally [23].
The hydrodynamic growth can be the reason of disrupted regions [23,58], where the multipulse evolution
of nanoporous structures is de�ned not only by local �eld enhancement and electrodynamic scenario
shown in Fig. 6.2. Secondly, the Grady's criterion is satis�ed for larger areas, therefore, glass can
be decomposed into voids of hundreds of nanometers, which result in rather complex disruptions [58].
Finally, Lancry et al. proposed that the decomposition level was limited by heating-cooling pro�le
allowing the glass relaxation via back-migration of oxygen and its recombination after pulse excitation
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[23].
To examine the glass relaxation, we note that strongly temperature-dependent viscosity η(T ) gov-

erns the structural relaxation processes. Thus, Maxwell's viscoelastic relaxation time τM gives the
time required for material parameters stabilization and is directly proportional to viscosity coe�cient
τM = η/E, where E is the elastic bulk modulus. Glass viscosity is known to decrease exponentially
with the increasing temperature [167�169]. Thus, if temperatures are higher than a well-de�ned value,
the material will structurally relax faster than it will cool [109]. One can expect that the self-organized
nanogratings written by multipulse irradiation of fused silica are partly erased due to viscoelastic relax-
ation [21]. The role of viscosity in the regime of self-organized nanogratings was also underlined, while
comparing the laser-induced nanostructuring in fused silica with higher viscosity and in borosilicate
glasses [21], attaining lower viscosities at the same temperatures [166].

The relaxation time changes with temperature and with time. The maximum lattice temperature
de�nes the minimum relaxation time for laser-induced modi�cation. During �rst few nanoseconds after
photoexcitation, the temperature decreases insigni�cantly, providing the glass enough time to relax if
the temperature is su�ciently high. We de�ne the minimum structural relaxation time τrelax and
the corresponding minimum temperature Trelax = f(τrelaxE) as the critical parameters, for which the
laser-induced modi�cation relaxes.

Figure 6.14: Energy-dependent temporal dependence of viscosities and temperatures during single
pulse ultrashort laser irradiation. Laser irradiation conditions: pulse duration θ = 80 fs (FWHM),
irradiation wavelength λ = 800 nm, beam waist w0 = 1µm, laser pulse energies from Σ = 100 nJ
to Σ = 2µJ . Straight lines indicate the cavitation threshold de�ned by η(T, t) = Bζ(T, t)t2 and the
structural threshold de�ned by t = η(T, t)/E.

Taking into account temperature dependencies of the viscosity for fused silica and the numerical
results of energy-dependent temperature dynamics for �xed pulse duration θ = 80 fs in Fig. 6.3, we
plot the time evolution of the relaxation time τM = η/E. The point, where the curve crosses the
straight line τM = t, indicates that the relaxation takes place at time t. We estimate the critical
energy Σ ≈ 2µJ and the corresponding lattice temperature Trelax ≈ 2900 K, for which structural
relaxation is attained from Fig. 6.14. This value is larger than the softening temperature (see Table
2.1), but is smaller than the boiling temperature Tb = 3220 K at normal conditions [7, 174, 339, 349]
and is close to the experimentally de�ned value for viscoelastic relaxation Ti = 2763 K [109]. The
relaxation temperature is related to the viscosity ηrelax ≈ 100Pa · s or to the relaxation time τrelax ≈ 3
ns and is independent of the laser irradiation regime. The time τM is signi�cantly shorter than the
common time delay between two pulses in multipulse ultrashort laser irradiation with repetition rates
100 kHz - 10 MHz [16]. Therefore, the temperature threshold is independent of the particular repetition
rate as well. Fig. 6.14 also indicates the nanocavitation threshold, de�ned previously by condition
η(T, t) = Bζ(T, t)t2. The point, where two lines τcav = Bζt2/E and τM = η/E cross, corresponds to
the minimum threshold temperature for nanocavitation Tcav ≈ 2000 K.
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Table 6.2: Reported experimental regimes of self-organized nanogratings in fused silica.

Experimental group
Wave-
length
[nm]

Pulse
duration

[fs]

Energy
[µJ ]

Numeri-
cal

aperture

Repeti-
tion rate
[MHz]

1. Shimotsuma et al. [4] 800 150 1.0 0.95 0.2
2. Hnatovsky et al. [13] 800 40-500 0.1-2.5 0.65 0.1

3. Bhardwaj et al. [44] 800 50 0.3
0.45/0.65

0.1

4. Bricchi et al. [259] 850 200 0.24-0.61 0.55 0.25
5. Yang et al. [55] 800 150 0.5 0.55 0.25
6. Liao et al. [18] 800 100 0.05-1.2 1.1 0.25
7. Mauclair et al. [15] 800 150-2000 0.1/0.3 0.42 0.1
8. Papazoglou et al. [17] 800 35 1.0 0.4 0.1
9. Horstmann et al. [97] 1045 500 0.36/0.6 0.7 0.1-5.0
10. Richter et al. [16] 515 450 0.05-0.2 0.55 0.05-9.4
11. Mishchik et al. [11] 800 150 0.2-1.0 0.45 0.1
12. Lancry et al. [7] 1030 250 0.1-2.2 0.6 0.001-0.5
13. Bellouard et al. [350] 1030 150 0.19-0.4 0.4 0.1
14. Kazansky et al. [14] 800 150 0.9 0.55 0.25
15. Stankevi£ et al. [351] 1040 320 0.4-0.6 0.4-0.6 0.5

From the above discussion it follows that the self-organized nanogratings are formed in the locations,
where the cavitation takes place in a single pulse irradiation and the temperatures higher than Tcav ≈
2000 K are reached. Multipulse accumulation e�ects lead to higher local temperatures [23] and stresses
[350, 352] in the photo-excited zone, which provide the conditions for nanocavitation of nanopores on
the timescales shorter than the micrometer cavity is formed. The higher the temperature is, the greater
the viscous growth rate of nanopores is provided. We propose that only stable nanopores result in
the organization of periodic nanostructures on ultrashort timescales. In contrast, the hydrodynamic
growth of nanopores leading to micrometer disruptions [23, 58] should be avoided, therefore, the local
temperatures should not exceed Terasure ≈ 3000 K as shown in Fig. 6.12. In fact, nanogratings can
be erased by hydrodynamic or structural relaxation processes, occurring when all the heat-a�ected
zone temperatures overcome this value. These physical processes require low viscosities, attained at
high temperatures, and, therefore, we refer to the de�ned temperature values as to the viscoelastic
nanograting erasure limit, or relaxation temperature threshold.

6.8 Comparison with experimental data

Fig. 6.15 demonstrates the parameter window for self-organized nanogratings survival as a function
of pulse energies and pulse durations. This regime lies between cavitation and viscoelastic relaxation
thresholds corresponding to temperatures Tcav ≈ 2000 K and Terasure ≈ 3000 K. The behavior of the
critical curves is mostly de�ned by the contribution of the avalanche ionization and, therefore, by the
value of applied pulse energy [326]. For laser pulse energies higher than Σ = 400 nJ, higher electron
densities are reached for longer pulse durations. They result in a temperature threshold Terasure = 3000
K at shorter laser pulses. In contrast, for pulse energies lower than Σ = 400 nJ, the temperatures do
not attain the threshold value even for long pulse durations, as the contribution of the photoioniza-
tion is considerable or even more important than of the avalanche ionization. We propose that the
relaxation curve, marked by the dotted line in Fig. 6.15, qualitatively describes the transition from
the regime of the stable nanogratings to the disrupted regime [13,39] shown schematically in Fig. 6.2.
The experimental data regimes for nanogratings taken from Table 6.2 appear well between the cavi-
tation and relaxation curves. Furthermore, the numerical results are consistent with the experimental
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measurements of the void-nanogratings threshold [10, 11, 13, 39, 350]. For example, one can see that
the nanogratings are conserved for Σ = 2µJ pulse energy and θ = 40 fs pulse duration, as well as for
Σ = 300 nJ and θ = 150 fs pulse duration [39], because the viscoelastic threshold is not reached in
both cases in Fig. 6.15, although the intensities di�er by one order of magnitude at the same focusing
conditions NA = 0.65 and at the same irradiation wavelength λ = 800 nm. The pulse duration depen-
dency of the threshold is also consistent with the experimental observations within the same laser pulse
energy, where nanogratings are more likely to form disrupted regions for longer pulses [13,39,250].

Figure 6.15: Pulse energy/pulse duration parameter window for nanogratings survival Tcav < T <
Terasure. The solid and the dotted curves indicate the numerically calculated cavitation threshold
Tcav and viscoelastic erasure limit Terasure. The crosses and the dashed lines mark the experimentally
de�ned regimes summarized in Table 6.2, in which the self-organized nanogratings have been observed.
Laser irradiation conditions: irradiation wavelength λ = 800 nm, beam waist w0 = 1µm.

Because of non-homogeneous distribution of the electron densities in Fig. 6.2, the lattice tempera-
tures are also distributed inhomogeneously. Therefore, the nanogratings can be erased in the center of
the photoexcited region, but still remain in the regions of lower temperatures, where the viscoelastic
threshold is not attained, i. e. in the head and in the tail of heat-a�ected zone [7,17,55]. In contrast,
the disrupted partly melted regions are formed in the regions of higher temperatures [10, 11,39].

During multipulse laser irradiation, the resulting laser-induced modi�cation is also a�ected by heat
accumulation e�ects [16, 23, 35, 37]. Even at moderate repetition rates temperature rises signi�cantly
[23, 36, 37]. To compare the numerical results with the experiments in Table 6.2, where di�erent
repetition rates were applied, we take into account heat accumulation e�ects by solving electron-ion
heat transfer equations and calculating the lattice temperatures rise up to the saturation. From a
series of calculations, we de�ne the laser pulse energy threshold required to attain the temperatures
Tcav = 2000 K and Terasure = 3000 K for di�erent repetition rates.

The number of laser pulses required for the saturation depends on the repetition rates. Generally,
insigni�cant increase of the temperature of ∆T < 5 K is calculated after the next pulse irradiation
at 100 − 150 µs. This time corresponds to 100 − 150 pulses for 1 MHz repetition rate. Fig. 6.16(a)
shows the temperature evolution up to saturation at value Tcav ≈ 2000 K for �xed pulse duration
θ = 320 fs and di�erent repetition rates 250 kHz, 500 kHz, and 1 MHz. For repetition rates higher
than 500 kHz, the temperature is increased by more than twice compared to a single pulse irradiation.
This increase is evident at �rst 20 pulses for all repetition rates indicated in Fig. 6.16(a). Then,
the accumulated temperatures ∆T exponentially decrease. The temperature evolution is nonlinear
between the annealing Tanneal = 1400 K and the melting Tmelt = 1875 K temperatures. This result
can be explained by the discontinuity of the thermal conductivity ki(T ), as shown in Fig. 2.9(b).
To justify the saturated temperature, we verify that the accumulation rate α = ∆T/T << 1 and
Tcav ≈ 2000 K coincide with the attained saturation value after the in�nite number of pulses T∞ =
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Figure 6.16: (a) Temperature evolution up to T = 2000 K saturation by multipulse irradiation with
(1) 250 kHz, 120 nJ, (2) 500 kHz, 100 nJ and (3) 1 MHz, 80 nJ pulses with pulse duration of 320 fs.
(b) Pulse energy/repetition rate parameter window for nanogratings survival for �xed pulse durations
of 80 fs, 160 fs and 320 fs. The solid and dotted curves indicate the numerically calculated cavitation
and viscoelastic relaxation thresholds. The crosses and the dashed vertical and horizontal lines specify
the experimentally de�ned regimes, in which the nanogratings have been observed. Laser irradiation
conditions: irradiation wavelength λ = 800 nm, beam waist w0 = 1µm. Nanogratings are erased above
the highlighted regions for corresponding pulse durations.

TN limn→∞
1−αN
1−α = TN

1−α [335].
The calculated parameter window for nanograting survival is shown in Fig. 6.16(a). As in pre-

vious case, the reported laser regimes, where the nanogratings were observed, are mostly below the
viscoelastic threshold. The required laser pulse energy for cavitation and for nanograting erasure de-
creases with the increasing repetition rate, as higher temperatures are reached after multipulse laser
irradiation. This result is consistent with the fact that nanogratings formation in glasses is limited
by heat accumulation e�ects [7, 16, 23]. In fact, the repetition rate dependency of the threshold for
nanograting formation, experimentally observed by Richter et al. [16, 22], is qualitatively reproduced.

One can expect, that short pulses θ = 40 − 80 fs give still a large interval of pulse energies up to
Σ = 1µJ commonly used in experiments [15, 44, 97], where the structure relaxation is not attained
for high repetition rates. In contrast, the ultrashort pulses longer than θ = 150 fs for the same pulse
energies unavoidably overcome the threshold, while increasing the repetition rate.

6.9 Conclusions

We have numerically investigated the regimes of ultrashort laser irradiation of fused silica, providing
a full scenario of laser-a�ected zone evolution from femtoseconds to microseconds and elucidating the
role of laser parameters in resulting glass modi�cations and mechanisms of nanogratings formation and
erasure. For this, a self-consistent multiphysical model has been developed including Maxwell, electron
density evolution, electron-ion heat transfer and thermo-elastoplastic wave equations.

Based on the detailed analysis of the possible scenarios of glass decomposition, we have demon-
strated that voids of one hundred nanometer sizes are �rstly formed satisfying Grady's viscoelastic
criterion of decomposition in liquid [172] if temperatures as high as T ≈ 2000 K are reached in
the center of the heat-a�ected zone. On one hand, higher processing temperatures/pressures allow
for rapid nanocavitation responsible for nanopores formation. On the other hand, we elucidate that
the temperatures higher than T ≈ 3000 K lead to a hydrodynamic growth of nanopores by solv-
ing Rayleigh-Plesset equation. A similar temperature threshold is expected for structural relaxation
of laser-induced modi�cation, limiting the amount of decomposition. The competition processes are
investigated as a function of local temperatures/pressures, and the parameter window for nanopore
formation and stability, required for nanogratings formation, is de�ned.

By taking into account the temperature evolution up to the fast cooling of the lattice and estimated
thresholds for glass modi�cation, we have derived the critical laser regimes for di�erent pulse energies,
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pulse durations and repetition rates. An interplay between photoionization and avalanche ionization,
described by multiple rate equation model [68], is shown to be responsible for the decay of the threshold
with the increasing pulse duration. Furthermore, the heat accumulation e�ect signi�cantly a�ects the
threshold in the case of multipulse ultrashort laser irradiation.

The obtained dependencies explain, both qualitatively and quantitatively, the conditions for nanograt-
ings formation and erasure consistent with the numerous independent experimental �ndings [10, 13,
23, 39]. Particularly, it is shown that viscoelastic relaxation is responsible for disrupted laser-induced
modi�cations for energies higher than 500 nJ and pulse durations longer than 200 fs. A similar trend
is expected for repetition rates, higher than 100 kHz, when the local temperatures overcome T = 3000
K. Based on the numerical results, we propose that shorter pulses are bene�cial to apply for nanostruc-
turing at high repetition rates, as they provide a larger interval of pulse energies and higher electron
densities without surpassing the relaxation threshold. In fact, the described threshold dependency can
be applied for any high-temperature threshold of glass decomposition, for example, for laser-induced
microvoid formation [9,10]. Although the experiments are still required to elucidate and to con�rm the
laser parameter dependencies of void formation and dynamics on the nanoscales and microscales, the
pulse duration dependencies of the modi�cation threshold similar to the one discussed in this article
have been reported [2, 10,11,31].

The presented results are crucial for understanding the fundamental mechanisms of ultrashort
laser-induced modi�cation. The deduced dependencies are helpful for de�ning the optimal laser pa-
rameters for nanostructuring or avoiding the nanostructure organization and for developing techniques
for nanogratings rewriting [39,41].
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Chapter 7

General conclusions and outlook

7.1 Conclusions

This thesis provides new insights into the numerical modeling of ultrashort laser interaction with
fused silica. Particularly, the mechanism of volume nanogratings formation in glasses is investigated.

A self-consistent model is developed for numerical study of femtosecond laser interaction with
dielectrics. The model takes into account ultrashort laser propagation in media with transient opti-
cal properties changing nonlinearly due to excitation/relaxation processes by coupling the nonlinear
Maxwell's equations with the free carrier rate equation. A numerical GPU-based method is proposed
for fast computational realization.

Firstly, electromagnetic propagation model has been veri�ed by comparing with Mie analytical
solution for a small subwavelength sphere. Then, the model is coupled with nonlinear ionization to
elucidate the mechanisms of volume nanograting formation in glass. The goal was also to de�ne the
in�uence of laser irradiation parameters on the electronic modi�cations. As a result of these �rst series
of simulations, the following results have been obtained

(i) It is shown that ultrashort laser interaction with randomly distributed inhomogeneities in fused
silica results in three-dimensional periodic arrangement of plasma nanoplanes perpendicular to local
laser polarization without any presence of the sharp interface between laser-a�ected and una�ected
zones.

(ii) The orientation of the nanoplanes is explained by the unidirectional local near-�eld enhancement
resulting in the nanoplasmas growth perpendicular to the local laser polarization. This e�ect takes
place as a result of photoionization processes, which change the local optical properties of the glass.

(iii) The subwavelength periodicity is related to the coherent superposition of the multiple far-�eld
scattered waves from the formed nanoplanes and is shown to depend on the initial local concentration
of inhomogeneities.

(iv) The locality, the self-replication mechanism of their formation and the strong local orientation
dependence on the laser polarization are the other properties, investigated in this thesis, which make the
laser-induced nanoplasmas a perfect candidate for explaining the volume nanogratings formation. The
formation of ring-like electronic modi�cation, radially oriented nanoplasmas and Archimedian spiral
nanostructures by applying radial, azimuthal and spiral laser polarizations is investigated numerically.
Circular polarized beams are shown to be bene�cial to prevent the nanostructure self-organization.

(v) Importantly, it is shown that the laser-induced nanopores inside fused silica bulk can play
the role of random scattering centers. The results of multipulse feedback electromagnetic simulations
are provided to support the idea that the nanoplanes can grow consequently on a shot-to-shot basis,
forming the nanoporous layers.

Nanopore formation processes are then investigated by a more complete multiphysical model that
we have developed. This model, apart from the electromagnetic approach coupled with free carrier
rate equation, includes electron-ion temperature model and thermo-elastoplastic wave equations for
fused silica. The aim of this development was to connect the laser irradiation conditions with �nal
laser-induced modi�cations. The spatial distributions of laser-induced temperatures, stresses, densities
and transient refractive indices are calculated within this approach. Viscoelastic model for spall in
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liquid and classical nucleation theory are applied to de�ne the conditions for glass decomposition.
Additionally, the further nanopores evolution is elucidated by solving hydrodynamic Rayleigh-Plesset
equation for fused silica and borosilicate glasses. As a result of these simulations, we have obtained
the following main results

(i) The thermomechanical conditions for cavitation and nucleation are de�ned. The numerical
results indicate the required laser-induced pressures/temperatures for the dominance of cavitation or
nucleation.

(ii) The conditions for nanogratings survival are related to the presence of the nanopores, evolv-
ing from one pulse to another by electromagnetic �eld enhancement but not by the hydrodynamic
expansion. The results indicate a narrower laser parameter window for nanogratings inscription in
borosilicate glass.

Furthermore, the in�uence of laser parameters on the threshold conditions for nanogratings forma-
tion and erasure is investigated. The performed calculations have shown that the laser pulse energy
and pulse duration dependencies of the nanogratings formation/erasure and void formation can be
qualitatively reproduced by combining electromagnetic approach, multiple rate model for fused silica
excitation, two-temperature model and simple temperature criteria for cavitation, nucleation and hy-
drodynamic growth of nanopores. More precisely, the competition between the photoionization and
the avalanche ionization given by multiple rate equation results in the decreasing laser pulse energy
threshold for nanovoid formation with the increasing ultrashort pulse duration. We show that the laser
pulse energy threshold can be also decreased by increasing the repetition rate in multipulse irradiation
regimes.

In addition, femtosecond laser interactions with rough fused silica surface have been numerically
investigated. These calculations have clearly demonstrated that

(i) The mechanism of deep-subwavelength (high spatial frequency) nanoripples formation is shown
to be similar to the one for volume nanogratings, i. e. it is based on the nanoplasmas growth due to
local near-�eld enhancement and photoionization in the intensity-enhanced areas and the periodicity
is related to the standing wave formed by the coherent superposition of multiple scattered waves.
The nanoplasmas grow below the surface from the pre-distributed radiation remnants formed by the
interference of the incident light with near-�elds of inhomogeneities on the surface.

(ii) The transitions between di�erent ripples morphologies are investigated within one numerical
approach. The transition from high spatial frequency to parallel-oriented low spatial frequency ripples is
shown to have a non-metallic nature, whereas the origin of perpendicular-oriented low spatial frequency
ripples is the transition to metallic optical properties of laser-irradiated dielectric.

The performed numerical analysis can be used for a better understanding of the mechanisms of
periodic nanostructure formation in glasses and the laser parameter dependencies of the laser-induced
modi�cations during and after ultrashort laser propagation. The developed model provides important
insights into the de�nition of the optimal parameters for nanostructuring or avoiding the nanostructure
organization.

7.2 Perspectives

Among the perspectives of this study, we can mention, for instance, the followings. From the
numerical point of view, the next step may include

(i) Development of an analytic theoretical model to get a better understanding of the nature of
subwavelength non-propagating standing waves inside the material as well as the in�uence of the
nonlinear e�ects on the propagation. The extensions of Mie theory to de�ne the scattered �elds for
a system of multiple spheres and a sphere near the interface with dispersive media are of particular
interest.

(ii) Using alternative more precise electromagnetic methods (�nite element methods, Galerkin's
method, unconditionally stable and frequency-dependent methods, discrete dipole approximation etc.)
and di�erent roughness discretizations (e. g. introduced analytically or by surface integral equations).

(iii) Elucidating the role of the nonlinear e�ects such as ponderomotive force and electron den-
sity di�usion for high intensity irradiation as well as laser frequency chirp and spherical aberration
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e�ects based on separate and combined numerical approaches and taking into account ultrashort laser
propagation in nonlinear dispersive media.

(iv) Further investigations of periodic nanostructure formation in the bulk and on the surface
of di�erent semiconductors and dielectrics with di�erent optical properties. For example, the for-
mation of volume nanogratings parallel to the laser polarization has been recently reported in few
indirect semiconductors (Si, 4H-SiC, GaP). Additionally, ultrashort laser-induced ripples high spatial
frequency oriented parallel to the laser polarization are typically observed on the surface of metals and
semiconductors.

(v) Investigation of the validity of the two-temperature model in the laser-matter interaction with
dielectrics, paying a special attention on the electron-phonon transfer temporal scales, glass transi-
tion/melting processes which can in�uence the �nal results.

(vi) Development of hydrodynamic codes based on the solution of Navier-Stokes equations in order
to describe the dynamics/formation mechanisms of voids/nanopores and the material movement on
nanosecond and microsecond timescales due to single and collective thermo-mechanical e�ects and also
to de�ne better the role of high temperatures and pressures on the viscoelastic parameters and the
equation of state of laser-irradiated glasses.

(vii) Molecular dynamics can be an alternative promising approach to gain better knowledge on
the properties of glasses in solid and liquid state. Additionally, molecular dynamics can be coupled
with the method developed in this thesis, taking into account the inhomogeneous distribution of the
electrons due to nonlinear propagation and the temperature evolution after ultrafast laser material
excitation.

From the applicative point of view, it will be interesting to use the developed model for:
(i) Elucidating the in�uence of laser parameters such as laser pulse energy, pulse duration, numerical

aperture, laser wavelength, polarization and repetition rate (if several pulses are applied) on the �nal
modi�cation, e. g. transient refractive changes, void/nanopores formation. The laser parameter
dependency on the threshold for single void nanochannel formation is essential for the applications in
nano�uidics. Additionally, the numerical calculations for temperature accumulation e�ects and their
in�uence on the thresholds for cavitation or erasure of the nanostructures can be used to interpret the
experimental results for di�erent repetition rates and number of applied pulses.

(ii) Investigating and optimizing the di�raction signal from the three-dimensional birefringent laser-
induced structures for the development of polarization-sensitive devices and optical data storage.

(iii) Veri�cation of simple criteria for cavitation and nucleation used in this thesis by applying to a
wider range of dielectrics and semiconductors and comparing with the �nal laser-induced modi�cations
revealed experimentally.

(iv) Connecting the temporal refractive index change evolution, time-resolved experimentally, with
the temperature/density pro�les evolution calculated by numerical approaches.

As a result, the �eld of the possible applications can be extended to a wide range of glasses, as well
as semiconductors, crystals and other dielectric materials.
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