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Résumé

Les simulations, de plus en plus, sont capables de saisir la complexité de l’époque de
réioisation, durant laquelle l’hydrogène neutre de l’Universe a été ionisé par les premières
sources lumineuses. Des bases de données représentatives de la multitude de signaux
possibles seront nécessaires pour contraindre les paramètres des modèles quand des ob-
servations 21 cm seront disponibles. À cette in, et en préparation des observations à
venir sur des instruments comme SKA, nous avons développé une base de données de
cones de lumières EoR haute-résolution (21ssd.obspm.fr), ainsi qu’une modélisation du
bruit thermique. Nous avons également développé un formalisme permettant de quan-
tiier la diférence entre les modèles de cette base de données, en utilisant le spectre de
puissance et la fonction de distribution des pixels. Nous trouvons que les deux diagnos-
tiques sont sensibles à des paramètres diférents des modèles, ce qui signiie que les deux
peuvent être utilisés ensemble de manière complémentaire pour extraire l’information
maximale. De plus, en utilisant le code 21cmFAST, nous avons développé des stratégies
pour échantillonner l’espace des paramètres d’une mannière optimale (plus homogène et
isotrope), ain de fournir le meilleur point de départ pour l’extraction des paramètres.
Finalement, l’échantillonnage amélioré est utilisé pour entrainer un réseau de neurones.
Ce réseau retrouve les paramètres du modèle en se basant sur une observable. Nous obser-
vons une amélioration modérée dans la précision de ses prédictions quand nous utilisons
l’échantillonnage optimisé lors de son entrainement.
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Abstract

Simulations are increasingly able to capture the intricacies of the Epoch of Reionization,
during which the neutral hydrogen in the Universe was ionized by the irst luminous
sources. Databases encompassing the range of possible signals will be needed to constrain
parameter values when 21 cm observations are available. In preparation for upcoming
experiments such as the SKA, we have developed a database of high-resolution EoR
lightcones (21ssd.obspm.fr), along with realistic thermal noise modelling. We examine
frameworks with which we can quantify the diference between entries in this database,
speciically with the power spectrum and pixel distribution function. We ind that the
two diagnostics are sensitive to diferent parameters, meaning they can be used together
to extract maximumal information. Then, using the 21cmFAST code, we explore how to
optimally sample a parameter space (so that it is more homogeneous and isotropic), in
order to provide the best set-up for parameter extraction. Finally, the improved sampling
is used in training a neural network. The neural network uses observables as input data,
and attempts to estimate the corresponding parameter values. When the optimal sampling
is used as training data, we ind that the neural network is able to estimate parameter
values with a modest improvement in accuracy.
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Research summary

The period of the Universe during which the irst stars and galaxies formed is still not well
understood. This epoch, known as the ‘Cosmic Dawn’, is considered important towards
understanding the beginning of large-scale structure. After these irst luminous sources
came to be created, they gradually ionized the neutral hydrogen in the Universe. Ionized
regions grew and combined, until the Universe was more-or-less entirely ionized. This
period, which is thought to have taken place roughly 13 billion years ago, is called the
Epoch of Reionization, and provides the setting for this manuscript.

Neutral hydrogen emits radiation at ∼21 cm (∼1400 MHz), and this is expected to
prove a key tool towards studying the progression of reionization. Theoretical work, in
tandem with recent simulations, has attempted to estimate the expected strength of this
radiation when emitted in the intergalactic medium during the Universe’s infancy. The
value is dependant on many factors: the astrophysical properties of the irst luminous
sources, how exactly each of them (galaxies, quasars, X-ray binaries) individually con-
tributed, the start and duration of reionization, etc. Most now agree that the maximum
strength of the signal will be somewhere between a few tens of mK to a few hundred
mK. Compare this to the cosmic microwave background, detected in the 1960s, which
is orders of magnitude stronger. Nonetheless, current experiments are accurate enough
that the signal should be detectable (the issue is now properly modelling all the brighter
‘foreground’ contamination between us and the distant Universe, and calibrating instru-
mentation accordingly).

With this context in mind, we set out to prepare for these upcoming observations.
Firstly, a database of high-resolution simulated 21 cm signals (lightcones) was created.
Low-resolution versions, intended to simulate upcoming observations, were also created,
and we included thermal noise (based on SKA speciications) for both. We then looked
into deining the ‘distance’ between diferent lightcones. Finally, using a semi-numerical
code, we explored how best to create a database ‘optimally’. The idea is that, when the
true 21 cm signal is eventually detected, we will be able to compare this real signal to
the simulated signals in our database in order to determine the true nature of physical
phenomenon in the early universe (the physics of the irst sources, for example). There
must be a way to optimally choose how to simulate signals, in order to assure the best
chance of understanding the real one.

The database was created using a fully coupled radiative hydrodynamical
code named LICORICE, which has been described in a number of papers (Semelin
2016 and references therein). The simulation begins with an initial hydrogen ield at
redshift ∼100, from which the gravitational, radiative, and baryonic physics are explicitly
calculated and advanced with each time step. As the simulation box evolves, thin slices
at diferent redshifts are arranged one-by-one to build a full time-line of the EoR: known
as a lightcone. As LICORICE is a computationally intensive simulation, the irst version
of the database (named 21SSD: 21 cm Simulated Signal Database) contains 45 diferent
simulated signals. Between the signals, three astrophysical parameters are varied: two of
which relate to the X-ray properties of early sources, and the third quantiies the Lyman
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α emissivity. We also simulate thermal noise, somewhat based on previous modellings
(McQuinn et al., 2006; Mellema et al., 2013; Koopmans et al., 2015), although modelling
the UV visibilities is carried out with more up-to-date values (Dewdney, 2015). The inal
database is described in (Semelin et al., 2017).

These lightcones are then simpliied and quantiied, speciically in the context
of comparing them eiciently. The individual lightcones are not only on the order of
∼a few tens of Gb in ile size, but the placement of their ionization bubbles is arbitrary.
This makes them impossible to compare without irst being simpliied. We irst create a
routine to calculate the power spectra along the length of the lightcone (corresponding
to the line of sight). Each of these has some width along the line of sight, but roughly
corresponds to a single redshift. The advantages of allowing for some width are noted in
(Morales & Hewitt, 2004; Morales, 2005), and the concept has been used by a number
of authors. In addition, we consider a less explored diagnostic for diferentiating between
the simulated signals: the pixel distribution function. This is efectively a 2D histogram,
in which the pixels at each redshift are binned based on their brightness temperature.
This second method proves interesting, in that it seems to better capture some of the
more complex morphologies of the EoR. We also look at the distances between diferent
simulated signals using both diagnostics. The power spectra appears to be more sensitive
to the X-ray eiciency of early sources, while the pixel distribution function picks up
more on the Lyman α eiciency. Neither method seems especially sensitive to the third
parameter (the ratio of high energy and low energy X-ray photons emitted by sources).

We then go further, asking if there is an optimal choice for parameter values
when simulating signals and creating a database. The deinition of optimal is non-trivial,
but in a nutshell it requires the distribution of the simulated signals (using the above
framework for distances) to be as homogeneous and isotropic as possible. To explore this
idea of database optimization, we rely on the semi-numerical code 21cmFAST (Mesinger
et al., 2011) which, although not as detailed in the physical modelling as LICORICE, can
simulate the EoR quickly. To build up the basics of an algorithm to create an optimal
database, we require a fast code in order to test many diferent parameter values. Part
of this endeavour also involves understanding the geometry of the space inhabited by the
power spectra, and deined by the distances between them. We quantify this geometry
using metrics, and the resulting eigenvectors. Ultimately, two diferent optimization al-
gorithms are tested. Assuming the parameter values initially lie on a grid, the irst one
rotates and stretches the grid (based on the average metric information) in order to ind
the best orientation for a homogeneous and isotropic distribution of the simulated signals.
The second does not assume any grid, and instead tries to move points in the parameter
space iteratively (based on the local metric information) such that they are not overly
close to their neighbours. We inally verify whether these methods result in databases
that can better train a neural network to estimate the parameter values with which test
signals were created. We do ind modest improvement, although there is still work to be
done to assure all regions of the parameter space relect this improvement (Eames, 2018;
in prep).
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CHAPTER 0

Introduction

Ever Larger Structure

There is a very very very lot of stuf out there. So much so that it can be rather intim-
idating to think about. As soon as we as a species could do this — think — we became
naturally curious about the heavens. The twinkling stars and the sun and moon were
initially attributed to deities, who watched down upon us with their ubiquitous gaze.

Yet, over the millenniums, we have slowly unravelled these mysteries to arrive at a
clearer picture of these lights in our sky. Those dots that moved, called wanderers (the
Greek meaning of ‘planet’), were eventually understood to be other worlds orbiting a
common star — our sun. And those distant twinkles were shown to be in fact stars, often
very much like our own. They could even host their own planets; at least so much was
suspected as early as 1584 by Giordano Bruno, as attested to in ”De l’ininito universo
et mondi” (Bruno, 1584); later to be proven in 1991 when an exoplanet was discovered
(Latham et al., 1989; Cochran et al., 1991). In addition to our realization that we comprise
neither the only planet, nor the only solar system, our classical sentiment of privileged
uniqueness in the Universe was further challenged as time passed. In the 17th and 18th

centuries the notion of a ‘galaxy’ — which has existed since the ancient Greeks — began
to form an evidence-based foundation. First with Galileo’s studies of distant faint stars
(Galilei, 1610), then Thomas Wright’s concept of a large body of gravitationally bound
stars (Wright, 1750), Immanuel Kant’s addition that there could be many of these ‘Island
Universes’ (Kant, 1755), and then an attempt by William Herschel to understand the
shape of our galaxy through counting stars in diferent regions of the sky (Herschel,
1785).

Wright and Kant were not only prescient in their supposition that stars could amass
into large ‘islands’ – they also (correctly) supposed that some of the blurry nebula seen
in the night sky could be examples. Herschel did not share this view, and believed that
nebulae were phenomena entirely within our own galaxy. In fact, this view was not
seriously challenged until the 1900s, in which it was realized that novas in Andromeda
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— thought at the time to be a nebula — were much fainter than those occurring in
other regions of the Milky Way. On the 26th of April, 1920 a debate between Harlow
Shapley and Heber Curtis took place (Shapley & Curtis, 1921). Now remembered as
the ‘Great Debate’, Curtis (who had noted the nova brightness discrepancy) argued that
Andromeda and other ‘Island Universes’ were outside our own Galaxy, while Shapley
believed that everything was contained within the Milky Way. But the debate did more
than simply highlight contrasting scientiic view points. It illustrates the diiculty we
faced in conceiving the massive scales required for a multi-galaxy Universe. If Curtis was
correct — as would eventually be accepted — then Andromeda would be millions of light
years away.

Today we have accepted this vastness; it is common knowledge that there are many
galaxies, perhaps on the order of a few trillion in our observable Universe (Conselice
et al., 2016). Powerful new probes have peered deeper and further into our cosmos. The
most iconic example of this generation is the Hubble Telescope, with which the stunning
Hubble Deep Field image was created in 1995 (igure 1). In 2021 the James Webb Space
Telescope will raise the bar further, and usher in a new era of deep space astronomy.

Another curious thing has happened as we have, through the decades, peered deeper
and deeper into the Universe that surrounds us. On account of the inite speed of light,
the further outwards we probe, the further back in time we see. Some of the light particles
that created the Hubble Deep Field image had travelled for billions of years, before ending
their journeys on the electronic cells of the telescope. This means that we are able to
(and moreover, obliged to) see distant galaxies as they were billions of years ago.

Through this phenomenon, our understanding of the Universe has evolved to encom-
pass not only the present, but the long chronology that has preceded our ininitesimal
present existence. We can see stars being born and dying, young galaxies birthed through
massive collapse while others collide catastrophically, ancient black holes voraciously
shredding their surrounding stars and gas clouds with the accompanying hyper-luminous
accretion disks that shine brightly across the billions of years that separate us, and even
the faint afterglow of the big bang itself. The spectacle that is eternally performed in the
dark skies above us is one that encompasses fantastical sights playing out for the watchful
eyes of curious astronomers on a stage that stretches across, not only the physical heavens,
but the chronology of existence itself.

Yet, the spacial and temporal dimensions of our Universe — though intimately paired
— have a striking dissimilarity. As far as we can tell, our Universe has no conceivable
physical border. We can speak of the edge of the ‘Observable Universe’, however this
represents a barrier beyond which matter cannot be imaged, not beyond which it cannot
exist1. Conversely, in the chronological direction, we know that there must be a previous
time before which no galaxies nor stars could exist. We know this must be true for a
number of reasons.

1It cannot be excluded from observations that the universe has a hyperspheric geometry. This would
mean no boundaries, yet a inite volume (much larger than the current observable universe). The Omega
curvature parameter is currently Ωk = 0.001 ± 0.002 (Planck Collaboration et al., 2018), which could be
negative, positive, or zero.



Introduction 5

Figure 1 – The Hubble Deep Field. Image Credit: R. Williams (STScI), the Hubble Deep
Field Team, NASA.
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In 1929, it was discovered that distant galaxies are moving away from us faster than
nearer ones (Hubble, 1929). This suggested that the Universe is expanding (and in fact,
in the late 90s it was discovered that this expansion is accelerating; see Perlmutter et al.
1997; Riess et al. 1998; Schmidt et al. 1998). Extrapolating into the past, we expect
that the Universe must have initially been much smaller, perhaps originating in a ‘Big
Bang’ (as coined by British astronomer – and occasional radio presenter – Fred Hoyle
in 1949, who was in fact an opponent of the model). Repeated observations over the
decades have conirmed this phenomenon, most recently via cepheids (variable stars)
(Riess et al., 2018) and the Cosmic Microwave Background (CMB) (Planck Collaboration
et al., 2016a). Curiously the two methods currently ofer diferent estimates for the
speed of this expansion: 73.52 ± 1.62 and 67.74 ± 0.46 (km/s)/Mpc respectively. Some
suggestions for the reason behind this disagreement are presented in Planck Collaboration
et al. (2018), and it is hoped that upcoming estimations of the constant using gravitational
waves will settle the matter (Nair et al., 2018).

The second of the two methods of estimating the constant of expansion — the Cosmic
Microwave Background — is unsurprisingly also a ‘smoking gun’ of said expansion. Con-
sidered a possibility since the 1940s (Gamow, 1948), the background radiation would come
to be known serendipitously in the mid 1960s when two young instrumentalists working
at Bell Telephone Laboratories measured excess temperature they could not account for
(Penzias & Wilson, 1965). Penzias and Wilson narrowly superseded other eforts to detect
the signal, and this fortuity assured them the 1978 Nobel Prize.

What had been detected was faint radiation emitted when the Universe was a mere
∼379,000 years old (z ≈ 10892) as well as much hotter and denser. Earlier than this we
expect that there was nothing more than a chaos of particles and nuclei3, too energetic
to allow electrons to be captured. As the expansion continued, the temperature fell, and
at around 3000 K the particles were suiciently cooled to form the irst neutral elements
(primarily hydrogen and helium). Rapidly the Universe went from being opaque to being
traversable by photons, which would not be easily captured by the neutral atoms. It is
these photons that can be detected everywhere in our Universe: residual radiation that still
lingers after over 13 billion years. The radiation corresponds to a temperature brightness
of ∼ 2.73 K, follows a near perfect blackbody spectrum (with a peak in the microwave
regime — hence the name), and is remarkably isotropic (with small anisotropies of root
mean square roughly ∆ T ≈ 18 µK Wright 2004; Smoot 2007). Over the past decades a
series of probes have incrementally reined our sky-wide maps of the CMB. Ordered by
launch date they were: COBE in 1989, WMAP in 2001, and Planck in 2009.

The discoveries of Hubble expansion and the Cosmic Microwave Background together
began to shape and illuminate many of the mysteries of our Universe’s history. We now
understand that our Universe is expanding, and that — of crucial importance — it was

2For the layperson, z is the redshift: a measurement of how stretched the light has become since
is emission; this stretching is due to the expansion of the Universe. z = 1089 tells us that the light’s
wavelength is 1089 times longer when it arrives at Earth. Redshifts are the standard measure for referring
to previous periods of the Universe’s history.

3The irst multi-nucleon nuclei are thought to have been formed within the irst 20 minutes of the
Universe’s history, during a period known as Big Bang Nucleosynthesis.
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once too hot and dense for elements to form. As our current cosmos is replete with
uncountable structures and complexities – stars, galaxies, black holes, nebulae, comets,
asteroids, planets, etc. — we know that there must have been a period during which
the irst structures were formed from the irst gasses. We therefore refer to this period
as that of ‘Structure Formation’. Before any complex structure, we must not have had
any luminous sources. Our Universe, we presume, consisted of simply neutral gas (at
z ≲ 1000). The only light particles would have been the CMB photons, streaming through
the darkness with low — and ever lower — energies. This period is referred to, quite
literally, as the ‘Dark Ages’.

A Summary of What we Know

And so we can begin to construct a timeline. At irst, for a few hundred thousand years,
there was an extremely hot dense ‘soup’ of energetic particles, within which atoms could
not form. Before this we can say very little with certainty. It seems tempting to continue
extrapolating backwards, concluding that the entire Universe was housed within an initial
and ininitesimal singularity. Perhaps this was the case, yet there may very well be more
to the story. If we are someday able to directly detect the ‘Cosmic Neutrino Background’
(thought to be emitted when the Universe was only 1 second old, and indirectly conirmed
in recent years, e.g. Follin et al. 2015), or the even more enigmatic ‘Cosmic Gravitational
Wave Background’ (hypothetically emitted between 10−36 − 10−32 s after the Big Bang,
Caprini & Figueroa 2018), then we will be at liberty to comment further on what came
before. For now, the Universe’s infancy remains shrouded in mystery.

After temperatures dropped suiciently, neutral atoms were able to form, and the
Universe became clear. All of the photons that had been trapped in the initial mess
were suddenly free to travel the Universe unimpeded, and begun their long journeys
simultaneously – collectively forming the Cosmic Microwave Background. The Dark Ages
of the Universe began. Very slight overdensities in the neutral, and otherwise uniform, gas
began to gravitate into increasingly dense and hot regions. The irst large-scale structures
began to appear in the Universe: webs of dense gas framing endless voids of lower density.
Structure Formation began. Eventually, the most dense regions of these cosmic gas webs
surpassed the threshold temperatures for hydrogen fusion (13 million K). It was then that
the very irst stars (called Population III stars) were born, a few hundred million years
after the Big Bang (z ≈ 20 − 30) (Bromm et al., 2009). This period is sometimes, quite
poetically, referred to as the ‘Cosmic Dawn’.

These irst stars, entirely metal free, are thought to have been on the order of 100 times
larger than our sun (Umeda & Nomoto, 2003), although smaller ‘secondary’ Population
III stars, smaller than our own sun, may have also been produced (Krumholz, 2015).
Regardless of their sizes, the irst stars introduced high energy ionizing photons into the
Universe. In the regions around the stars, the neutral hydrogen was slowly ionized, and
these HII (ionized) bubbles4 continued to grow and eventually merge with other such

4When one of these spheres is in equilibrium, it is referred to as a Strömgren Sphere (Stromgren,
1939).
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bubbles. And so, over the next billion years (z ≈ 20 − 6) the Universe was completely
ionized5. This period is referred to the Epoch of Reionization — often abbreviated as
EoR — and will set the stage for the research presented in this thesis.

During this period, stars were only one of the sources of ionizing photons. At the
beginning of the EoR, it is clear that stars drove reionization (Alvarez et al., 2006),
however the exact contributions from other sources are still debated. Active Galactic
Nuclei (AGN) and Supernovae are also thought to have contributed signiicantly (perhaps
primarily at certain redshifts). In recent years, studies of extremely distant luminous
objects have found that some of them existed in regions of the Universe that were not
yet fully ionized. Spectral absorption lines in the quasar ULAS J112001+0641 (z ≈ 7)
indicate that the hydrogen at that time was >10% neutral (Mortlock et al., 2011). Such
studies seem to imply that reionization was complete at z ≈ 6 (Planck Collaboration
et al., 2016b; Becker et al., 2001).

After reionization, as of around 1 billion years after the Big Bang, the Universe begins
to look more like what we know today. Efectively all of the hydrogen has been ionized in
the intergalactic medium, massive stars die in iery supernovas and litter their neighbour-
hoods with heavier elements, galaxies merge and evolve, and (relatively late in the game)
the expansion of the Universe begins to mysteriously accelerate. Over the past 12 billion
years our solar system was born from the metal-rich remnants of previous generations
of stars, our planet’s chemistry allowed for the formation of liquid water, cyanobacteria
provided the oxygen, evolution through natural selection brought about a curious ape,
and in the blink of an eye we ind ourselves here today to wonder about it all.

Where to go from Here?

Looking back at all that has happened, our inclination is to try to deepen our under-
standing of periods that are less well understood. With the exception of the CMB, we
have yet to see anything older than z ≈ 11 (the current record being galaxy GN-z11,
formed when the Universe was ∼400 million years old Oesch et al. 2016). Although it
would be fascinating to peer towards the extremely young Universe, as it existed before
the emission of the CMB, the technical challenges involved are enormous. As stated, until
we perfect the detection of either cosmic neutrinos, or cosmic gravitational waves, this
early epoch will remain beyond our reach. However, the upcoming JWST will be able to
push far enough to peer into the Dark Ages, and is expected to see 1 galaxy at z ≈ 11
per ield of view in 104 s (Cowley et al., 2018). Currently we have only observed a single
galaxy at this distance (Oesch et al., 2016). See igure 2 for a comparison to the Hubble
Space Telescope.

However, such early epochs of the Universe begin to present us with a curious problem:
lack of sources. Between the emission of the CMB and the period of the irst stars our
cosmos consisted of nothing but neutral gas. Although there is much information to

5Or at least 99.9% ionized at z = 6 (Fan et al., 2006a).
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Figure 2 – Cosmic timeline. Image credit: NASA & Ann Feild
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be gained during the Dark Ages of the Universe — such as how structures developed
from slight density variations — optical and IR telescopes simply have no sources with
which to study this period. Regardless of how big one envisions the collecting area of the
instrument, the problem remains the same. “If only there were a way to study the gas
itself,” one might lament.

Being able to image the position and density of gas across the ancient Universe would
be invaluable not only for studying the Dark Ages. It would also allow us to constrain the
duration and properties of the Epoch of Reionization. Many of our theoretical assumptions
regarding the EoR ind themselves based upon subsequent assumptions about the objects
responsible for ionizing. We are unsure about how important early AGN were in ionizing
the Universe compared to stars, for example, simply because we are unsure of how early
AGN and stars behaved. If we were able to image the structure formation, and eventual
ionization of the gas, it would allow us to infer the properties of these irst sources.
Understanding the astrophysical properties of said sources would, in turn, give us a better
understanding of our Universe’s fundamental workings. However, this all depends on being
able to image neutral gas.

As it happens there is, in fact, a way to do exactly that...

The 21 cm Hydrogen Line

The magic lies in a very speciic wavelength6: 21 cm (van de Hulst, 1945; Furlanetto
et al., 2006). Or 21.1061140549 cm (in free space) to be exact (Dupays et al., 2003). In
cosmology there is perhaps no observational tool with more potential than that of the
21 cm hydrogen line, also known simply as ‘The Hydrogen Line’. If we properly develop
our ability to detect this evasive signal from the early Universe — an endeavour that is on
track to becoming a reality in the coming decade — it will herald a new era of profound
understanding regarding our place in the cosmos. It is with this signal that we hope to
be able to, as hinted at above, explore the periods of our Universe bereft of luminous
sources.

As it stands, there still remain many challenges towards achieving this goal. However,
instrumental sensitivity has, in recent years, inally arrived at what is expected to be
suicient for detection. The remaining hurdles lie primarily in theoretical and technical
considerations, such as proper instrumental calibration, and developing clever methods
of dealing with the multitude of phenomena that obscure this distant signal. The three
main ofenders of this obstruction are: Galactic Synchrotron emission, Galactic Free-free
emission, and extragalactic emission. These sources of foreground radiation can be many
orders of magnitude brighter than 21 cm radiation. Foregrounds will be discussed in detail

6In fact, the neutral gas of the Dark Ages has a number of emission lines due to hyperine transfers
(those due to deuterium or helium-2), however these are much weaker. The 21 cm line is the strongest,
and therefore the most studied.





12 0.2 The 21 cm Hydrogen Line

phenomena that obscure other wavelengths. His student, Hendrik van de Hulst, correctly
predicted the theoretical existence of the hydrogen line in 1944 (van de Hulst, 1945),
however detection would take the team another 7 years. In 1951 Oort and a young radio
astronomer, C. A. Muller, did inally succeed in detecting the Galactic hydrogen line
(Muller & Oort, 1951). The two owed their success largely to Harold Ewen and Edward
Purcell, who ofered technical help after having detected the line earlier that year using
their iconic horn antenna (Ewen & Purcell, 1951). In fact, the latter two had held of on
publishing until comparing with van de Hulst (although, unlike with the CMB, nobody
lost out on a Nobel Prize; the discovery did not lead to any laureates).

After this initial discovery, the mid to late ifties saw a lurry of subsequent interest in
the 21 cm line. In 1954 Oort, Muller, and van de Hulst used the hydrogen line to map the
spiral structure of the Galaxy for the irst time (van de Hulst et al., 1954). The potential
for studying extragalactic sources was also quickly recognized, and the focus shifted to the
nearby Andromeda galaxy (van de Hulst et al., 1957), other more distant galaxies (Kerr
et al., 1954; Chamaraux et al., 1970), and eventually intergalactic space (Field, 1959a).

The Hydrogen Line in Cosmology

Early Interest

At the time of discovery, it was already expected that the early Universe should have con-
tained large quantities of neutral hydrogen. However, interest in cosmological applications
was not immediate as it was expected that HI radiation would prove much too weak for
detection. Beginning in the mid 70s, the hydrogen line saw a second wave of interest
when it was realized that it could likely prove a powerful tool in cosmology for probing
Recombination (Dubrovich, 1975), the Dark Ages (Varshalovich & Khersonskii, 1977), as
well as the IGM (Watson & Deguchi, 1984), and that the signal may be detectable in the
near future.

Tomography

One of the primary reasons that 21 cm radiation is considered as a strong candidate for
understanding the EoR and the Dark Ages is that it would allow for the construction of
a large scale ‘tomograph’. Most extragalactic radio sources are spectrally smooth, which
is to say they emit photons at all frequencies. For example, the Hubble Ultra-Deep Field
(igure 1) contains a 2D projection of roughly 10,000 galaxies, all of which are imaged
at diferent times in the Universe’s history. Certainly, imaging the galaxies at a range
of frequencies most deinitely gives us interesting information about their age, physical
properties, and distances. However, we will only see each galaxy as it existed at one
speciic point in time. Shifting our observations in frequency space will afect only the
relative brightnesses of the individual galaxies (redshift evolution will be negligible).
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Figure 4 – In anatomy, an example of tomography is viewing slices through a human body.
In cosmology, we can view slices through the Universe; however, each slice refers to a
diferent time period. Image Credit: scielo.br & 21cmFAST (Mesinger et al., 2011).

Contrary to this, for any instance throughout the Universe’s history in which there
has been any hydrogen, the accompanying hydrogen line has always been emitted at a
single discrete wavelength: 21 cm. Therefore, ignoring any peculiar velocity along the
line of sight, diferences in the frequency of the hydrogen line as observed from Earth can
only be due to the efects of redshift. As we know, redshift is in turn directly related to
the age of the radiation. On account of this relationship, observing only a thin band of
frequencies is equivalent to focusing on a thin ‘slice’ of the Universe’s history, and varying
the frequency moves our observations through the hydrogen’s chronology. The process of
creating a 3D image of the cosmos and then studying speciic slices is called tomography8.
Performing a tomography, as opposed to a simple projection image, would equate to a
more robust and comprehensive glimpse into the early Universe. Some example slices are
shown in igure 4, as well as a more detailed slice 14 on page 43.

First Detection Attempts

In the 1970s an attempt was made by Rashid Sunyaev and Yakov Zel’dovich to predict
the signal strength of high redshift EoR 21 cm radiation (Zel’dovich, 1970; Sunyaev &
Zeldovich, 1975). However, the pair incorrectly assumed that large gas overdensities
should form irst. The idea was that eventually these large overdnesities would break
down into smaller overdensities, giving way to the irst structures: ilaments, stars, and
galaxies. This was known as the ‘top-down’ view of structure formation. If true, the
signal from massive sheets (with masses estimated to be up to ∼ 1015M⊙) was estimated
to be as high as ∼10 K when observed from Earth (Sunyaev & Zeldovich, 1975).

8Tomography can be used outside of the astrophysical context, for example to study cross-sections of
the human body (MRI, igure 4), foetal development (Ultrasound), or large volumes of water (SONAR).
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Another early study exploring the possibility of detecting high redshift 21 cm signals
was the work of Craig Hogan and Martin Rees in 1979 (Hogan & Rees, 1979). They
predicted correctly that the primordial 21 cm radiation should show structure in both real
and redshift space, and were also able to formulate a basic theory for how the brightness
temperature should vary with frequency. However, they overestimated the redshifts at
which emission would be visible with 1979 technology to be as high as z ≈ 9. Thus, it
is unsurprising that the next decade saw many failed attempts at detecting high redshift
21 cm radiation (Bebbington, 1986; Hardy & Noreau, 1987; de Bruyn et al., 1988).

Thankfully, the 1990s brought fresh insight into why the signal had proven so elusive
at these high redshifts. In 1990 Rees re-evaluated the theories of primordial hydrogen
structure with Douglas Scott, (Scott & Rees, 1990). In particular, they re-visited the
previous failures of high redshift 21 cm radiation detection and were able to prove that
structure must indeed form from the ‘bottom up’, with small clumps of hydrogen giv-
ing way to increasingly large clusters. In addition, they presented an early formula for
calculating the expected brightness temperature for a given redshift9:

Tb = 3.66 × 10−23 × ρ0ΩBf
√

1 + z

µHmHH0

K (1)

where ρ0 is the present-day density of the Universe (equal to 3H2

0

8πG
kg m−3), ΩB is the ratio

of baryon density to critical density, f is the fraction of hydrogen that is neutral, µHmH

is the average mass per hydrogen atom, H0 is Hubble’s constant, and z is, of course, the
redshift. Inserting modern values from Planck Collaboration et al. (2016a) we expect
that near the end of the EoR (z = 6) we need sensitivity to Tb luctuations on the order
of 3.3 mK. To probe an early period of the EoR (z = 9) these luctuations would be
as small as 2.3 mK, and to probe the Dark Ages (perhaps the birth of the irst stars at
z ≈ 30) we would need to detect luctuations <1 mK. It is therefore unsurprising that, by
the early 90s, experiments had failed to detect primordial 21 cm radiation; they simply
lacked the necessary sensitivities (sensitivities were on the order of 900 mK, see de Bruyn
et al. 1988).

However, thankfully the situation is not as bleak. Equation 1 considers only the
emission regime10 (TS ≫ TCMB), and also does not consider the contribution of the ionized
fraction (approximations are listed in section 9 of Scott & Rees 1990). We shall see
in section 0.4 that current estimates of the brightness temperature at these redshifts
are between 30 and 50 mK (Furlanetto et al., 2006). A more accurate expression11 for
calculating the brightness temperature will be explored in equation 16.

9The corresponding equation in the article is eq.7. Here the NHI and ∆ν terms have been expanded,
hence the diferent appearance.

10At the time, the redshift at which the signal would switch from absorption to emission was more
uncertain.

11Although Scott & Rees (1990) weren’t too far of the mark for the emission regime. Modern simula-
tions still give an emission signal of ∼a few mK with the high T assumption (see Ross et al. 2018, igure
3).
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Continued Attempts

Many radio astronomers, including Rees and Scott, were optimistic that the Giant Me-
trewave Radio Telescope (GMRT) array, built in India in the early to mid 90s, would
inally provide the necessary precision to detect primordial hydrogen line radiation. Piero
Madau and Avery Meiksin teamed up with Rees in 1997 to stipulate as to whether or not
the GMRT would be able to detect the faint Tb luctuations discussed previously. It was
concluded that, if reionization occurred at redshifts between z = 5 and z = 10, then the
GMRT stood a good chance of detection Madau et al. (1997). The GMRT went online the
next year, however to date it has not yet detected primordial neutral hydrogen radiation
up to z ≈ 8.6 with sensitivity ≈ 248 mK (Paciga et al., 2011, 2013; Paciga, 2013). The
sensitivity of the GMRT is thought to be suicient, however the calibration, systematics,
and foregrounds are the limiting factors that have yet to be overcome.

In the new millennium, many authors have presented an in-depth look into the prospects
of 21 cm tomography (Loeb, 2005; Furlanetto et al., 2006; McQuinn et al., 2006; Santos
& Cooray, 2006; Mao et al., 2008). If temperature brightness sensitivity limits are sui-
ciently low, it is shown that the method could be realistic as far back as z ≈ 50, a period
long before the irst stars. Taken from Mao et al. (2008), igure 5 gives a rough picture of
tomography’s predicted reach in terms of the Universe’s chronology. Amongst the con-
clusions presented by the aforementioned paper, and in addition to probing the EoR, it
is expected that tomography performed by the upcoming Square Kilometre Array (SKA)
could also improve our limits on space curvature and neutrino masses by two orders of
magnitude (SKA-Collaboration, 2015; Shao et al., 2015; Sprenger et al., 2018).

Figure 5 – 21 cm tomography could probe the Universe at all redshifts as far back as z ≈
50 (light blue). In comparison, the CMB allows us to see only z ≈ 1089 (thick line), and
the Sloan Digital Sky Survey (Gunn et al., 2006) up to z ≈ 0.7 (red). Figure taken from
(Mao et al., 2008).
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Recent Observational Developments

Construction of the SKA is expected to begin next year, with the irst observations coming
in the mid 2020s. For the time being, plenty of pathinders have either already been
deployed, or will soon be completed.

21 cm Power Spectrum Detection Experiments

Some of these aim to trace the Spacial/Spectral intensity luctuations. This would allow
us to create a power spectrum of the 21 cm signal.

• Already mentioned, the Giant Metrewave Radio Telescope was one of the earliest
eforts, and current constraints are ∆2(k) ≤ 2482 mK2 for z ≈ 8.6 (Paciga et al.,
2013).

• The Murchison Wideield Array (MWA) is another such pathinder operating in
Australia (Tingay et al., 2013). Observations began in 2012 for the redshift range
z = 6.2 − 11.7, and to date the best limit in the range is ∆2(k) ≤ 1642 mK2 for
z ≈ 7.1(Dillon et al., 2015; Beardsley et al., 2016). An upgraded Phase II version
of the MWA is online as of early 2018, and is expected to push these limits further.
Limits have also been placed on the beginning of the EoR (z ≈ 12 − 18), and are
∆2(k) ≤ (104)2 mK2 in this redshift interval (Ewall-Wice et al., 2016).

• Another efort is the Precision Array for Probing the Epoch of Reionization (PA-
PER) (Parsons et al., 2010). Built in South Africa as a collaboration between a
group of American Universities, it began collecting data in 2009. PAPER previ-
ously set an upper limit at z = 8.4 of ∆2(k) ≤ 222 mK2 (Parsons et al., 2014;
Ali et al., 2015), which was the lowest at the time, however the result has since
been retracted due to insuicient noise considerations12. The project has recently
wrapped up, and will eventually be integrated in HERA (section 0.3.3).

• One of the more ambitious pathinder eforts is the Low Frequency Array (LOFAR),
which consists of 50,000 antennas (in the 110-250 MHz band of interest here) ar-
ranged into 51 stations across Europe (with the central cluster in the Netherlands)
(van Haarlem et al., 2013). At present the upper limit is ∆2(k) ≤ 79.62 mK2 in
the range z = 9.6 − 10.6 (Patil et al., 2017)13

12See the Erratum addition in Ali et al. (2015).
13As of 2018 this has been pushed further to ∆2(k) ≤ 452 mK2 at z = 9, which represents (since the

retracted PAPER result) the current deepest upper limit (not yet published).
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Globally Averaged 21 cm Experiments

As opposed to constructing instrumentation to measure variations of the signal across the
sky, which requires multiple receivers and a large collecting area, a cheaper alternative
is to measure the ‘globally averaged 21 cm signal’. This option is quite common as
it is less expensive14, and the following instruments are examples. However, there are
disadvantages. The averaged signal contains much less information, and loses efectively
all morphological information relating to the evolution of structure. This in turn can
make foreground subtraction more diicult. What we are left with is simply a ‘bulk sum’
of neutral hydrogen for various epochs.

• The Large-Aperture Experiment to Detect the Dark-Ages (LEDA), observing be-
tween ∼ 30− ∼ 85 MHz (z ≈ 16 − 34) in California and New Mexico, has been
online since 2011 (Price et al. (2018); www.tauceti.caltech.edu/leda/).

• BIGHORNS (Broadband Instrument for Global Hydrogen Reionization Signal) in
Western Australia, probing between ∼ 10− ∼ 480 MHz. Initial results were pub-
lished in 2015 (Sokolowski et al., 2015).

• SCI-HI (Sonda Cosmológica de las Islas para la Detección de Hidrógeno Neutro)
has been operating since 2013 in Mexico in the 40 - 130 MHz range (Peterson et al.,
2014; Voytek et al., 2014).

• The Probing Ratio Intensity at high-Z from Marion (PRIZM) experiment recently
went online on a small island of the coast of South Africa, and will probe the ∼30
- ∼200 MHz (z ≈ 6 − 47) range (Philip et al., 2018).

• SARAS 2 in India operates between 110−200 MHz, with irst results in 2017 (Singh
et al., 2017).

• Perhaps the most well known is the Experiment to Detect the Global EoR Signature
(EDGES), operating in Western Australia (alongside the MWA) in the ∼ 50− ∼
200 MHz ranges (z ≈ 6 − 27) (Bowman et al., 2008). In addition to being one
of the older apparatuses (online since 2006, although the 50 - 100 MHz low-band
capabilities were only added in 2015), as mentioned above EDGES was the irst to
claim a detection in early 2018 (Bowman et al., 2018), although Hills et al. (2018)
warns this could be due to improper foreground modelling (see section 0.5).

Thus, while the EDGES results are awaiting conirmation, the most heavily redshifted
neutral hydrogen signal that has been detected to date (in emission) is that originating in
nearby galaxies, out to roughly z ≈ 0.1 (Geréb et al., 2015). Attempts have been made
to use gravitational lensing to detect HI line emission out to z ≈ 0.5 (Hunt et al., 2016).
Switzer et al. (2013) have also constrained 21 cm luctuations out to z ≈ 0.8 through
intensity mapping.

14Although calibration is still very diicult.
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Upcoming Experiments

In addition to these operating eforts, a number of additional experiments are currently
in preparation, or being constructed.

• The upcoming Hydrogen Epoch of Reionization Array (HERA) is being constructed
in South Africa (one kilometre from the site of the future SKA). The array aims to
bring more sensitivity to the angular and spectral scales where PAPER and MWA
have suggested 21 cm signal is most likely to be detected (DeBoer et al., 2017).

• 2019 is also expected to see the completion of NENUFAR (New Extension in Nançay
Upgrading LOFAR), which is being built in Nançay, France. The array will operate
between 10 − 80 MHz, and in addition to being a standalone Cosmic Dawn experi-
ment it will act as a second core for LOFAR (Zarka et al. (2012); www.nenufar.obs-
nancay.fr).

• There are also two exciting upcoming lunar experiments. The ambitious Netherlands-
China Low-Frequency Explorer (NCLE) was put into place at the Earth-Moon L2
point in May 2018, and will operate between 0.08− ∼ 80 MHz. Very recently, a sec-
ond space based experiment named DARE has been announced. It will observe in
the ∼ 40− ∼ 120 MHz range (Burns et al., 2017); www.isispace.nl/projects/ncle/.

The Square Kilometre Array

The above experiments are all considered precursors to the Square Kilometre Array15. The
SKA, expected to be operational in the mid 2020s, will consist of up to 500,000 antennas.
These will be organized into two core sites: SKA-Low (50-350 MHz) in Western Australia
(where the MWA and EDGES are currently operating) and a second in South Africa
(where MeerKAT16 and HERA will be operated). In addition, there will be a number
of outlying stations situated in other African nations to further increase the baseline
coverage. The resolution (in the range of 50 - 350 MHz, with a FoV of ∼ 4◦) is estimated
to be ∼ 7 arcsec for these long baselines SKA-Low (Huynh & Lazio, 2013). However it
should be noted that there are very few of these long baselines, and therefore the noise
will be much too high to detect the 21 cm signal at these resolutions. 21 cm detection will
depend primarily on the core cluster of antenna17, and should be achievable on the order
of ∼ a few arcmins, depending on redshift (for realistic resolution estimates for 21 cm
tomography see Koopmans et al. (2015)).

15With the exception of HERA, which is expected to also contribute excellent stand-alone tomography,
and is therefore more of a competitor.

16Holwerda et al. (2012).
17This isn’t to say that the long baselines are useless. They will allow for more detailed modelling of

extragalactic point sources, which will help with foreground subtraction (section 0.5), and will also be
useful for other SKA science goals.

www.nenufar.obs-nancay.fr
www.nenufar.obs-nancay.fr


Introduction 19

In 2012 the Australian Square Kilometre Array Pathinder (ASKAP) was completed
on the future SKA site (speciically the SKA-low site in Australia). The array currently
consists of 36 telescopes, and this number will eventually be increased to 60. The key
advantage of ASKAP is its use of Phased-Array Feeds (PAFs) to simultaneously observe
via a number of diferent beams, thus increasing the FoV and improving survey speed
(Hay & O’Sullivan, 2008). As of 2018, early results and pilot surveys have been published
(Hobbs et al., 2016; Kohler, 2017), and the PAHs are currently being upgraded to allow
even faster survey speeds (Schinckel & Bock, 2016).

Summary of EoR Experiments

Table 1 – Summary of EoR experiments

Name Type Location ν (MHz) z Date Reference

GMRT Fluctuations India ∼ 50 -
∼ 1500

∼ 0 -
∼ 28

1995 Paciga et al. (2013)

EDGES Global Australia ∼ 50 -
∼ 200

∼ 6 -
∼ 27

2006 Bowman et al. (2008)

PAPER Fluctuations S. Africa ∼ 100 -
∼ 200

∼ 7 -
∼ 14

2009 Parsons et al. (2010)

LEDA Global USA ∼ 30 -
∼ 88

∼ 16 -
∼ 34

2011 Price et al. (2018)

MWA Fluctuations Australia ∼ 80 -
∼ 300

6.2 -
11.7

2012 Tingay et al. (2013)

LOFAR Fluctuations Europe ∼ 10 -
∼ 240

6 -
∼ 140

2012 Patil et al. (2017)

SCI-HI Global Mexico ∼ 40 -
∼ 130

∼ 11 -
∼ 36

2013 Peterson et al. (2014)

BIG-
HORNS Global Australia ∼ 50 -

∼ 250
∼ 6 -
∼ 30

2015 Sokolowski et al. (2015)

PRIZM Global Marion Is. ∼ 30 -
∼ 200

∼ 7 -
∼ 50

2017 Philip et al. (2018)

SARAS 2 Global India ∼ 110 -
∼ 200

∼ 7 -
∼ 13

2017 Singh et al. (2017)

NCLE Global Space 0.08 -
∼ 8

∼ 18 -
large 2019 www.isispace.nl

/projects/ncle/
NENU -

FAR Fluctuations France 10 -
87

∼ 18 -
∼ 140

2019 www.nenufar.obs
-nancay.fr

HERA Fluctuations
Tomography S. Africa ∼ 50 -

∼ 250
∼ 6 -
∼ 30

2020? DeBoer et al. (2017)

SKA Fluctuations
Tomography

Australia -
Africa

∼ 50 -
∼ 350

∼ 4 -
∼ 30

2025? Maartens et al. (2015)

DARE Global Space ∼ 12 -
∼ 120

∼ 4 -
∼ 35

? Burns et al. (2017)
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Recent Theoretical Developments

In the past two decades, in addition to continued attempts at observing the EoR through
21 cm radiation, there has been signiicant efort towards perfecting the theoretical frame-
work. This includes developing the mathematics necessary to robustly predict dynamics
of the epoch, as well as simulating the expected radiation patterns. The interplay between
observation, theory, and simulation is what drives the domain forward.

21 cm Radiation in Absorption and Emission

Throughout the Dark Ages and the Epoch of Reionization, the 21 cm signal is always
observed against the background of CMB radiation. That is to say, when we study the
blackbody emission of the CMB, 21 cm radiation is measured as a diference from the
expected CMB intensity. This diference can manifest itself as either an excess (when
the hydrogen clouds through which the CMB is passing contain a suprlus of atoms in
the upper hyperine level, and are emitting 21 cm radiation), or an absence (when the
hydrogen clouds are instead absorbing CMB photons). Thus, throughout the cosmic
history of the Universe, we describe the signal as being in either emission or absorption
for given periods.

The evolution of the 21 cm signal is related to a complex interplay of gas dynamics,
the evolution of the CMB, and the expansion of the Universe. Truly preparing for 21 cm
cosmology involves understanding this interplay and predicting the evolution of the signal
as a function of redshift, and many groups have attempted to do just this (Field 1959a;
Gnedin & Shaver 2004; Furlanetto et al. 2006; Iliev et al. 2006; Mellema et al. 2006;
Baek et al. 2009; Alvarez et al. 2010; Semelin et al. 2017 — some of these works are
theoretical, others are numerical; the list is certainly non-exhaustive). We now describe
eforts towards this goal.

Estimating the Brightness Temperature

In 2006, Steven Furlanetto, Peng Oh, and Frank Briggs carried out a comprehensive re-
evaluation and exploration of 21 cm cosmology (Furlanetto et al., 2006). Of note was the
introduction of a new formula (p.23 in Furlanetto et al. 2006) for calculating the expected
21 cm brightness temperature luctuations. It is worthwhile outlining the derivation of
this formula, as it will form the core of this thesis. Let us therefore start by stating
that 21 cm radiation has an associated optical depth τ21. This optical depth will be
deined as τ21 = ln

Φi
21

Φt
21

, in which Φi
21 and Φf

21 are the initial and inal 21 cm radiant luxes,
respectively. Rearranging this relation we arrive at:

e−τ21 =
Φt

21
Φi

21
. (2)
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So e−τ21 represents the fraction of transmitted 21 cm radiation. With this result in
memory, we turn to the intensity for a given frequency ν, represented as I(ν). This
intensity will be equal to the CMB radiation Iγ that is transmitted through the gas
(Iγe−τ21) plus the integral of all attenuated emission in the IGM along the line of sight
(which is transmitted). So we arrive at the equation:

I(ν) = Iγe−τ21 +
∫

dIHIe−τ21(z′) (3)

Computing the integral and switching to temperature brightness (using the relationship
in the Rayleigh-Jean regime) we arrive at:

Tb(ν) = TS(1 − e−τ21) + Tγe−τ21 (4)

What is left is now to calculate the 21 cm optical depth. The optical depth can be deined
as:

τ21 =
∫ ∞

0
Φ(ν)σ01n0dl (5)

where σ01 is the cross section of the 21 cm transition, n0 is the number density for
hydrogen in the lower state, and Φ(νg) is the line proile18 (peaked at ν21 with some slight
width to accommodate the thermal motion of the gas clouds, and normalized such that∫∞

0 Φ(νg)dνg = 1). The integration is carried out along the line of sight (and hence dl
is the line element). We also must consider the contribution to the optical depth from
spontaneous emission (identical to equation 5, but with σ01 → σ10 and n0 → n1). So,
combining the absorption and emission within the gas we arrive at:

τ21 =
∫ ∞

0
Φ(νg)(σ01n0 − σ10n1)dl (6)

we can now switch from cross-sections to Einstein B coeicients (Herzberg, 1950; Hilborn,
2002) using the relation:

σij =
hνgBij

4π
(7)

We now arrive at:
τ21 =

∫ ∞

0

hνg

4π
Φ(νg)(B01n0 − B10n1)dl (8)

We wish to integrate in terms of frequency, and must therefore compute the conversion
between dl and dνg. To begin this, we can start by dl = c · dt, and now multiplying the top
and bottom by an element of the scale factor we get dl = (c · dt · da)/da = (c · da)/ȧ.
Now, we note that the νg used above is the frequency in the rest frame of the gas (which
is assumed to have peculiar velocity along the line of sight, denoted as v∥). Let’s deine
νz to be the frequency for a given redshift z, and νobs as the observed frequency on earth.
The two will be related through the scale factor, explicitly as νz = νobs/a, and deriving
this expression gives us dνz = −(νobs/a2)da. Substituting da for the above equivalency,

18Note that νg is the frequency in the rest frame of the gas.
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and isolating dl, we arrive at:

dl = − ca2

νobsȧ
dνz = − ca

νobsH
dνz (9)

We have here substituted the Hubble factor (H = a/ȧ). Now we must take into account
peculiar velocity of the gas to determine the corrected value of νg. We begin with νg =
νz(1 − v∥/c), which can then be derived to give dνg = dνz(1 − v∥/c) − (νz · dv∥)/c =
dνz(1 − v∥/c) − (νz · dv∥ · dl)/(c · dl). Rearranging and plugging in equation 9 we arrive
at:

dνg = dνz

(
1 +

1

H

dv∥
dl

)
(10)

Note that the v∥/c term is assumed to be ≪ 1. Combining equations 9 and 10 gives:

dl = − ca

Hνobs

(
1 + 1

H

dv∥

dl

)dνg (11)

And now that the peculiar velocity is also taken into account, we can substitute this into
equation 819:

τ21 = −hνg

4π
(B01n0 − B10n1)

ca

Hνobs

(
1 + 1

H

dv∥

dl

)
∫ ν0

∞
Φ(νg)dνg (12)

Because Φ(νg) is normalized, the integral solves to 1 (note we are taking the ‘CMB to
telescope’ is positive for the integral bounds). To simplify the B coeicients, we turn
attention to the Zeeman efect: when the spin of the electron and proton are in parallel
(the higher energy state) the presence of a magnetic ield causes the upper hyperine
transition to split into three energy levels (Zeeman, 1897), which results in B01 = 3B10.
The relation is similar for the number densities of the n0 and n1 populations, however
these will also be efected by the relative strength of the spin temperature to the 21 cm
excitation temperature T⋆ (∼0.068 K). Explicitly we have n1/n0 = 3e−T ⋆/TS , and because
T⋆ ≪ TS we then have n1/n0 ≈ 3(1 − T⋆/TS). Applying these equalities, we arrive to:

τ21 = −hνg

4π
B01n0

ca

Hνobs

(
1 + 1

H

dv∥

dl

) (13)

A few small tweaks are left. nHI = n0 + n1 (both states), and recall n1 ≈ 3n0, so n0 =
nHI/4. As well, the B coeicients are deined as Bij = c2/Aij/2hνobs

3, T⋆ = hνobs/kB,
and a = 1/(1 + z):

τ21 = − 3hc3νgnHIA10

32π(1 + z)HTSν2
obs

(
1 +

1

H

dv∥
dl

)−1

(14)

19At this point, we will remove many terms from the integral. This is done by assuming that they vary
only negligibly along the line of sight on the spacial scale corresponding to the thermal width of the line
proile, Φ. See Appendix A for a veriication of this assumption.
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Now that we have a deinition of 21 cm optical depth, we can diferentiate equation 6,
and then add a 1/(1 + z) term to account for the redshift scaling of the TS and Tγ terms:

δTb(z) =
TS − Tγ

1 + z
(1 − e−τ21) ≈ TS − Tγ

1 + z
τ21 (15)

Plugging in τ21 from equation 14, using H(z) ≈ H0Ω
1/2
m (1 + z)3/2, and condensing all

constant terms, we arrive at:

δTb(z) ≈ 9xHI(1 + δ)(1 + z)1/2

[
1 − Tγ(z)

TS

] 
H(z)/(1 + z)

dv∥/dr∥


 mK (16)

where xHI is the neutral fraction, (1 + δ) is the fractional overdensity of baryons, Tγ(z)
is the CMB brightness temperature, TS(z) is the 21 cm spin temperature20 for a given
redshift, H(z) is the Hubble constant at said redshift, and dv∥/dr∥ is the gradient of
proper velocity along the line of sight.

Equation 16 highlights the intimate relationship between the CMB temperature and
that of the 21 cm radiation. For example, we remark that if TS(z) → Tγ(z) then δTb(ν) →
0. To put this conceptually, if the CMB and 21 cm radiation (from the IGM) are observed
at equal temperature, then we cannot distinguish the 21 cm signal, which will otherwise
appear as either an excess or lack of temperature brightness. We can also explore the two
limits. If Tγ(z) ≪ TS(z) then δTb(ν) will approach a ixed positive value. Conversely, if
Tγ(z) ≫ TS(z) then δTb(ν) will become increasingly negative.

The spin temperature TS for a cloud of hydrogen is determined by three factors.
Firstly, the kinetic temperature of the cloud (TK) decides the probability of collisions
between atoms, free electrons, and protons. These collisions can induce spin-lips, and
hence the release of 21 cm radiation. Secondly, the temperature of the background CMB
(Tγ) will efect the ‘visibility’ of 21 cm radiation, whose intensity is efectively the diference
of said radiation from the CMB. Thirdly, a similar absorption/re-emission efect can be
caused by the scattering of UV photons from the Lyman Alpha background (Tc, c standing
for colour). Together, the interplay of these three efects gives us a succinct expression
for spin temperature (p. 24 of Furlanetto et al. 2006):

T −1
S =

T −1
γ + xcT

−1
K + xαT −1

c

1 + xc + xα

(17)

where xc is the collisional coupling for TS, and xα is the Wouthuysen-Field coupling for TS.
This theoretical framework contributed to many important advances of the next decade
(Barkana & Loeb 2007; Mesinger & Furlanetto 2007; Pritchard & Furlanetto 2007; Lidz
et al. 2008; Meiksin 2009; Baek et al. 2010; Brandenberger et al. 2010; Mesinger et al.

20Also sometimes called the excitation temperature, it can be thought of at follows. For a quantity
of hydrogen atoms, in which a certain ratio of the atoms are in the parallel spin coniguration and the
remainder are in the anti-parallel spin coniguration, what is the expected temperature. This temperature
will be highest if all atoms are all in the parallel coniguration.
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2011; Mellema et al. 2013; Fialkov et al. 2014, etc.), and is still a relevant overview of the
topic.

Figure 6 – Top panel: Evolution of the gas, CMB, and spin temperatures (TK, Tγ, TS) as
a function of redshift. Bottom panel: The resulting average temperature brightness (δTb)
relative to the CMB as a function of redshift. Reproduced from Furlanetto et al. (2006),
page 47.

The redshift evolution of the spin temperature relative to the kinetic gas and CMB
temperatures is shown in igure 6 (reproduced from Furlanetto et al. 2006, p. 47). The
authors assumes only adiabatic cooling and Compton heating are involved. At z ≈ 300 TS

and TK decouple from Tγ (as Compton heating becomes ineicient) and continue cooling
adiabatically. Then, at z ≈ 70, as the gas density continues to drop, collisional coupling
begins to become inefective in coupling TS to Tk, and TS slowly approaches Tγ, with
re-coupling essentially complete at z ≈ 30. Therefore, 21 cm radiation should manifest
as absorptions within the CMB at z ≳ 30, and is predicted to go as deep as a few tens of
mK. This initial absorption proile could prove useful for studying the Dark Ages, though
it is expected to have ended before the beginning of the EoR, and is expected to be too
faint to study in the foreseeable future.

Thankfully, igure 6 presents only half of the story. Recall that only adiabatic cooling
and Compton scattering were included. In reality, the period z ≲ 30 introduced many
new dynamics to the forming structure of the early Universe. The birth of the irst
stars must have begun heating the gas, eventually to the point of surpassing the CMB
(Tk < Tγ). As well, at some point, the spin temperature must have recoupled to the
gas temperature through Lyα coupling (via the Wouthuysen-Field efect, see Wouthuysen
1952; Field 1959b).

The exact redshift at which these two event occurred remains uncertain. This is
because the point at which Tk surpassed Tγ depends on X-ray production rates, and TS

recoupling depends on the star formation rate and escape fraction. All of these quantities
are not well understood at high redshifts. If recoupling occurred while TK < Tγ, then
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Figure 7 – Left: Evolution of the gas, CMB, and spin temperatures, with the inclusion of
early luminous sources, as a function of redshift. The dashed red line assumes the spin
temperature and the gas temperature recoupled while the gas was colder than the CMB.
The solid red line assumes the inverse. Note that Tgas is TK, TCMB is Tγ, and Tspin is
TS. Reproduced from Zaroubi (2013), page 29. Right: Same, but excluding TS, zoomed
in z to focus on the EoR, and including various quasar luminosity fractions. Reproduced
from Baek et al. (2010), page 6.

it is expected that a second TS absorption period would have formed, followed by a
transition into emission. Alternately, the spin temperature may have recoupled to the gas
temperature only when TK ≥ Tγ, in which case the spin temperature would be visible
only in absorption for z ≲ 30. This extended history is illustrated in igure 7, reproduced
here from Zaroubi (2013).

Tracing the Neutral Fraction

The existence of 21 cm emission (and possibly a secondary period of absorption) at red-
shifts below 30 gives us a realistic chance of detection. Although the signal becomes
strong in emission as the irst stars begin to heat the gas21, there is another limiting
factor. In heating the gas, the irst stars and galaxies also begin to reionize the neutral
hydrogen. Through this, there is less and less neutral hydrogen from which the signal can
be emitted. Hence why, for the recent history of the Universe z ≲ 6 we do not see any
21 cm radiation originating in the intergalactic medium (IGM)22.

Therefore, we have no way (besides observations) of knowing the exact behaviour
of the 21 cm brightness temperature, largely due to gaps in our understanding of how
exactly reionization played out. Depending on the relative importances of various sources
in reionizing the IGM, the neutral fraction will have evolved diferently. This will, in turn,
efect the strength of the brightness temperature.

21Although ‘strong’ is relative. Emission saturates at a few tens of mK, while absoprtion can be larger
than 100 mK in amplitude.

22This can also be seen from equation 16. For small z, the neutral fraction xHI ≈ 0, and hence δTb → 0.
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So the goal therefore becomes to constrain the progression of the EoR. This can be
carried out through diferent techniques, some of which we will now present in broad
theoretical terms (as well as giving a brief mention to the accompanying observational
prospects, despite the aim of the current section being an overview of recent ‘theoretical’
developments).

Intensity Mapping

As mentioned above, although there is negligible 21 cm in the interstellar medium at low
redshifts, there is still 21 cm from neutral hydrogen lingering in galaxies. Capturing HI
emission from an individual galaxy, even in the local universe, is challenging (as stated
in section 0.3.2). Yet, collectively, the 21 cm contribution from millions of galaxies is
measurable (and mappable with large pixels). This procedure of taking a more statistical
approach to the neutral hydrogen content (of the low redshift Universe) is called intensity
mapping.

The procedure was proposed irst for the EoR (Madau et al., 1997), and later for the
post-ionization universe (Bharadwaj & Sethi, 2001; Peterson et al., 2009). It has since been
applied successfully out to redshift 0.8 (Chang et al., 2010), with upcoming experiments
hoping to map Baryon Acoustic Oscillations (Ansari et al., 2012), and push closer towards
the EoR (Newburgh et al., 2014; Smoot & Debono, 2017). Even at low redshifts, intensity
mapping is an excellent tool for extrapolating what the neutral hydrogen content of the
Universe was at higher redshift. If extended to EoR redshifts, the implications would be
even more substantial (see Kovetz et al. 2017 for an overview of current developments).

Lyman Alpha Emitters

The early universe can also be studied through Lyman Alpha Emitters (LAE). These
consist of young luminous stars in active star forming regions, as well as quasars, which
reside within hydrogen clouds. Their radiation ionizes the surrounding hydrogen, yet the
electrons are recaptured and trickle down the Lyman lines. The dominant radiation is
Lyα, emitted at 1216 Å, which therefore falls in the optical range up to z ≲ 6.5, beyond
which it is observed in IR. Because of the strength of the line, LAE have been observed out
to the EoR (Nilsson, 2007; Ono et al., 2012; Larson et al., 2018). This allows us to study
the LAE luminosity function, which in turn acts as a tracer for reionization. Towards
these eforts, suiciently resolved EoR simulations help us understand the behaviour of
early LAE (Zheng et al., 2010; Inoue et al., 2018).

Gunn-Peterson Efect

We can also study the EoR via quasars, speciically via the Gunn-Peterson trough (Gunn
& Peterson, 1965), in which the electromagnetic radiation of EoR quasars is damped at
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wavelengths below the Lyα line due to neutral hydrogen absorption along the line of
sight. Whether or not we see structure past the cut-of is an indication of the ionized
fraction at the corresponding redshift. These observations must be bolstered by projects to
understand the nature of high redshift quasars (for example, the quasar survey presented
in Fan et al. 2006b).

Galaxy Luminosities

Distant galaxies are another piece of the puzzle. The current most distant galaxy is found
at z ≈ 11 (Oesch et al., 2016), well into the expected period of reionization. Yet as we
peer into higher redshifts, we see fewer and fewer galaxies. As per the Halo Mass Function
towards high-z, they simply did not have enough time to form, especially massive bright
ones that could have been detected. Observational data sets of these distant sources —
speciically how many we count at each redshift — therefore help us map the EoR. A
number of contemporary high-redshift galaxy surveys are rapidly adding to our inventory
of EoR galaxies (see Salmon et al. 2018 p.5 for a summary). Figure 8 presents an example
of our current estimates on the redshift evolution of the luminosity function (reproduced
from Bouwens et al. (2016)).

Figure 8 – Evolution of the galaxy luminosity function as a function of z. For example, we
should expect to ind ∼1 magnitude -18 galaxy per 104 Mpc3 at redshift z = 10. Reproduced
from Bouwens et al. (2016), page 14.

An estimate of the progression of reionization is presented in igure 9. This is based
on the above-mentioned evidence (quasar dampening, LAE). ‘Dark pixels’ refers to the
fraction of the Lyα and Lyβ forest that does not emit (McGreer et al., 2015), which is a
direct tracer of the neutral fraction. As well, the CMB optical depth also provides rough
boundaries on the EoR progression (Planck Collaboration et al., 2016b).
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Figure 9 – Evolution of the neutral fraction of the Universe during the EoR as a function
of z. Points indicate known constraints, such as distant Qasars and Lyα clustering.
Reproduced from Greig & Mesinger (2017a), page 13.

Noise Estimation

For the time being, to truly constrain the EoR, and thus the expected intensity of the
21 cm signal, we require deeper surveys (such as those made possible with the JWST,
which will not observe the 21 cm signal, but will still help us constrain the EoR through
studying early galaxies). Another large hurdle is the amount of unwanted contamination
which must be taken into consideration. There are various sources of this contamination,
including systematics (such as surface errors and other mechanical imperfections), as well
as bright foregrounds.

In the case of a radio-interferometer, the thermal noise can be calculated (see derivation
in Taylor et al. 1999, chapter 9) as:

∆Tb,noise =
SEFD

ηs

√
N(N − 1)∆νtint

mK (18)

where SEFD is the ‘system equivalent lux density’ in Jy (SEFD = Tsys

K/Jy
, where Tsys

is the system temperature23), ηs is the system eiciency, N is the number of substations,
∆ν is the frequency bandwidth, and tint is the integration time. To test this theory
within the context of real observations, let us refer to Jelić et al. (2008), which used
reasonable LOFAR values (importantly, this is at a resolution of 3”, very diferent from
EoR 21 cm observations, which will be on the order of arcmins) to predict instrumental
thermal noise on the order of 500 mK at 150 MHz with a 1 MHz bandwidth in a single
night. However, this could be reduced as low as 52 mK if data was instead collected

23Which includes contributions from receiver noise, feed losses, spillover, atmospheric emission, galactic
background and cosmic background. See derivation in Crane & Napier 1989.
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over one hundred nights. Was this estimation correct? We can now compare with actual
noise, which is given in Patil et al. (2016) to be 0.9 mJy for a night of observation at
150 MHz (∆ν = 195kHz). This can be converted to temperature brightness using the
Rayleigh-Jeans law:

Tb =
λ2 · S

2kBΩ
= 1.222 × 103 I

νθ2
(19)

where λ is the wavelength, kB is the Boltzmann constant, Ω is the beam solid angle, S
is the lux density, I is the brightness (Jy/beam), ν is the frequency (GHz), and θ is the
beam angle in arcsec (we assume here a spherical beam, otherwise θ = θmaj · θmin)24.
Using the above values we arrive at Tb,noise ≈ 5.4 K, but we must remember that this is at
a bandwidth of 195 kHz, one ifth of the value used for the theoretical noise calculation.
Noise scales as 1/

√
∆ν, or roughly 1/

√
5 in our case, which brings us to Tb,noise ≈ 2.4 K.

This is ive times larger than what was predicted, and not only gives an indication of the
diiculty of overcoming noise, but also tells us that observations will need to be carried
out over many nights.

There are other sources of contamination caused by all that lies between the earth and
the primordial Universe. Unfortunately, these tend to be much more complicated to model
and understand. Therefore, alongside eforts to improve theory and instrumentation,
another branch of EoR research has focused on overcoming the challenge of ‘foregrounds’.

Foregrounds

As stated, it was realized quite early on that a major hindrance towards detecting pri-
mordial 21 cm radiation is the multitude of much stronger signals that dominate the sky.
Notably, synchrotron and free-free emission from our Galaxy are estimated to be up to
three orders of magnitude brighter than the 21 cm radiation we hope to measure (Bonaldi
et al., 2014; Bowman et al., 2018). Beyond Galactic sources, distant radio galaxies also
contribute to the measured signal. Even CMB radiation (though a background rather
than a foreground) plays a part25. Thus, it should come as no surprise that a considerable
efort to understand and remove radio foregrounds has taken shape over the past decade.
This section aims to present a quick overview of said eforts, and the list of publications
and topics relating to foregrounds is in no way exhaustive.

24A full derivation of arriving at the right hand form of the equation can be found at sci-
ence.nrao.edu/facilities/vla/proposing/TBconv.

25Although the CMB peaks in the radio spectrum, the Rayleigh-Jeans tail of the CMB still contributes
signiicant brightness down to low frequencies, and dominates at 1400 MHz. However, for EoR studies,
the 21 cm signal has been redshifted to the point that CMB is no longer a signiicant issue e.g. 233 MHz
at z = 6.
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Difuse Foregrounds

One of the irst investigations into the full range of difuse radio foregrounds was Oh
& Mack (2003). The diiculty expected in dealing with foregrounds was quickly made
evident, though it was also noted that the unchanging nature of free-free and synchrotron
emission in frequency space could provide a potential tool towards extracting the 21 cm
signal. To expand on this point, free-free and synchrotron emissions are released across
many frequencies. Conversely, 21 cm radiation is always released at a discrete frequency
(1420 MHz), and any changes in this frequency can only be due to redshift26 (or proper
velocity). A visualization of this is shown in igure 10.

de Oliveira-Costa et al. (2008) presents a model of the Galactic radio sky between
10 MHz and 100 GHz. Though not intended speciically for EoR foreground subtraction,
they nonetheless prove useful towards this goal. The maps included best estimates for ex-
pected synchrotron, dust, and free-free foregrounds, as well as intragalactic point sources.
The same year, Jelić et al. (2008) presented simulated radio maps for 5◦ × 5◦ patches of
sky. They included Galactic free-free, synchrotron, and supernova remnant emissions, as
well as that from radio galaxies and radio clusters. In addition, said maps also included
instrumental polarization response, which the previous collaboration had not. Chapman
et al. (2015) summarizes some of the recent developments on foreground modelling.

Difuse Foreground Subtraction Methods

With increasingly accurate foreground and 21 cm simulation maps (Jelić et al. 2008;
Santos et al. 2008; Thomas et al. 2009; Mesinger et al. 2011; Iliev et al. 2014; Semelin et al.
2017, etc.) it became possible to superimpose simulated 21 cm maps with foregrounds,
and then attempt EoR signal extraction. Among the proposed techniques, some were
novel, while others were based on previous subtraction methods that had been developed
towards cleaning CMB maps. Presented here is concise overview of a number of diferent
foreground removal techniques.

Native Subtraction Models

There have been a number of subtraction methods developed explicitly to deal with
21 cm radiation. In some sense, all techniques are founded on the idea of itting a smooth
frequency function to each line of sight, modelling difuse foregrounds (free-free and syn-
chrotron), and then subtracting. This method relies on the spectral smoothness of fore-
grounds, a property not shared by the EoR signal (igure 11, which can be thought of as
looking at a single pixel in igure 10 across all frequencies). Based on 21 cm cubes created
by Ciardi & Madau (2003), this extraction method was attempted by Jelić et al. (2008).

26Although it is obviously not this clean cut, with free-free and synchrotron also exhibiting some
changes in frequency space (Ali et al., 2008)
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(a) Free-Free - 100 MHz (b) Free-Free - 200 MHz

(c) HI - 119 MHz (d) HI - 120 MHz

Figure 10 – Comparison of the frequency dependence of Free-Free radiation (a,b) and HI
radiation (c,d). From 100 to 200 MHz Free-Free displays very little diference in shape,
only in brightness. HI has signiicant diferences, even across 1 MHz. Free-Free maps
courtesy of Anna Bonaldi. 21 cm maps made using 21cmFAST (Mesinger et al., 2011).
All maps 200 cMpc.
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It was assumed that ∆Tb = 2 K for foregrounds and ∆Tb = 5 mK for the EoR signal.
The extraction was carried out by irst calculating three power laws in frequency space.
These power laws represented the expected emission from Galactic synchrotron, Galactic
free-free, and extragalactic emissions. The ‘dirty map’ (comprising EoR signal as well
as foregrounds) was then partitioned by itting a third order polynomial representing the
three power laws, as well as a background constant equation, representing the remaining
EoR radiation. When the polynomial was it, it could then be subtracted to reveal the
underlying hydrogen radiation. It was shown that the subtraction method could detect
the signal down to 52 mK (although limited by noise, such as that of the interferometer).
This was an encouraging result, as it achieves a sensitivity on the order of magnitude at
which 21 cm radiation is expected to manifest.

Figure 11 – Temperature brightness luctuations along the line of sight. The upper black
line is what is observed, the dotted blue and dotted black lines are the smoothed and itted
foregrounds respectively, and the lower black line is the residual signal (EoR + Noise).
Reproduced from Jelić et al. (2008).

Harker et al. (2009) built upon this early efort, concluding that the process of itting
(parametrizing) a power law to data entailed some unwanted consequences. It was argued
that choosing a power law description for a foreground source is inherently arbitrary.
Speciically, overitting the data with high order polynomials smooths some of the desired
EoR signal, and underitting is insuicient to properly include all features in the it. The
proposed solution is a method called Wp27 smoothing, which aims to minimize the change
in a it’s curvature, as opposed to simply the distance between the data and the curve.

The author concludes that28, Wp smoothing easily outperforms other non-parametric
cleaning algorithms, and is competitive with many parametric cleaning algorithms – even

27As explained in the article, ‘Wp’ is short for the German ‘Wendepunkt’, meaning ‘Inlection Point’.
28When the smoothing parameter λ is correctly chosen, see Harker et al. (2009) section 4.1.
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though, in the test cases, these have advanced knowledge of foreground structure. This
makes Wp smoothing a strong candidate for handling future foreground subtraction.

More recently, work has been carried out into using wavelet iltering based on the
shape of the 21 cm signal’s jagged features in frequency space (Gu et al., 2013). There
has also been interest in overcoming polarized foregrounds (Moore et al., 2013), a topic
that had not been previously studied in much depth, especially with respect to frequency
space. After attempting to clean 21 cm maps by individually removing polarized fore-
ground sources, the technique proves to be both ineicient, and insuicient to mitigate
contamination temperature brightness below that of the 21 cm radiation. Subsequent
eforts have strived to better model and subtract polarized foregrounds (Spinelli et al.,
2018; Dillon et al., 2018).

CMB Extraction Techniques

In addition to these foreground subtraction techniques, others have instead focused their
eforts on modifying existing ones originally developed to extract the CMB signal. For
example, one technique used previously for CMB cleaning is ‘Correlated Component Anal-
ysis’ (CCA), and there has been work to re-purpose it for EoR data (Bonaldi et al., 2014).
CCA relies, similarly to polynomial itting methods, on the fact that the signal to be re-
covered has structure in frequency space, while foregrounds tend to look the same across
the sky at all frequencies (with variation mainly in brightness).

Ultimately the CCA method has been shown to work quite well for simulated pri-
mordial hydrogen radiation, and reduced the foregrounds by roughly three orders of
magnitude. Some of the shortcomings mentioned by Bonaldi et al. (2014) include the
assumption that EoR radiation from two separate redshifts is entirely unrelated. In fact,
two EoR slices sampled at redshifts varying by ∆z = 0.1 will be correlated at the 10−20%
level, which means there is a risk that some of the EoR signal is lost to the CCA cleaning.
It is also assumed that the mixing matrix does not vary rapidly across the sky (which
may not be realistic). There is also an omission of discrete (point) radio sources in the
foreground layers. However, overall the results paint an optimistic picture for upcoming
data collection.

Chapman et al. (2013) introduces a non-parametric cleaning technique called Gener-
alized Morphological Component Analysis (GMCA). While previous techniques largely
assumed that foreground components were statistically independent and had smooth fre-
quency spectra, GMCA has avoided these assumptions by instead focusing on the physical
morphology of foreground components. This subtraction method does not assume any-
thing about the spectral form of foregrounds, a technique sometimes referred to as ‘Blind
Source Separation’ (BSS). The aim is to study the shape of foregrounds across various
frequencies, to infer where small luctuations stand out.

Building on previous work (Chapman et al., 2012), as well as GMCA theory developed
for CMB map cleaning (Bobin et al., 2008), it has been shown that GMCA applied to
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21 cm radiation is still efective in signal recovery. Some sections of 21 cm maps (su-
perimposed with foregrounds) were recovered with correlation coeicients of up to 0.905
when compared to the original clean map (Chapman et al., 2013). Although paramet-
ric methods (those that assume spectral shape) perform better, Chapman et al. (2015)
encourages more exploration of BSS techniques, which do not present as severe a risk of
smoothing EoR features.

Foreground Avoidance

Yet another possibility is ‘Foreground Avoidance’ (Morales et al., 2012; Chapman et al.,
2015, 2016). It has been claimed that most of the EoR signal lies in one region of the
Spatial Fourier Space (an area where foregrounds contaminate less). This area, sometimes
called the ‘EoR Window’, is a small wedge in the Fourier Representation of the signal
(k⊥, k∥) (?Raut et al., 2018). PAPER employs foreground avoidance, yet there are still
uncertainty regarding the degree of leakage polluting such windows. It has been reported
that difuse foregrounds do contaminate these windows, though not unmanageably so (see
Pober et al. 2013, section 4). HERA will also make use of the technique (Ali et al., 2015),
while the SKA will rely primarily on foreground subtraction (Mellema et al., 2013).

Discrete Radio Sources

Of the research put into 21 cm radiation foregrounds, most of it has focused on Galactic
phenomena (free-free, synchrotron) and difuse radio galaxies/clusters. Discrete radio
sources, mostly distant radio galaxies and other Quasi Stellar Objects (QSOs), remains an
area that has not been thoroughly explored. In the context of EoR foreground subtraction,
there has been some preliminary work concerning point sources (Di Matteo et al., 2002,
2004). However, this remains mainly an attempt to quantify the degree to which point
sources contribute to foreground contamination, as opposed to devising a full-ledged
subtraction scheme. These initial eforts have shown that current subtraction methods
(used for difuse foregrounds) are incapable of properly overcoming the issue. Part of
the reason for this diiculty is the fact that each source has a unique frequency/intensity
relationship, making them more complicated. Therefore, most foreground subtraction
schemes suggest performing the discrete radio source removal separately (Di Matteo et al.,
2004; Trott et al., 2012; Bonaldi et al., 2014). One useful tool towards approaching the
challenge is the fact that, like most foregrounds, there is no spatial evolution in a map
of radio sources sampled at diferent frequencies. The only diference is in lux. The
complicating factor is that the lux/frequency relationship varies between sources.

A number of teams have focused on developing catalogues of the extragalactic radio
sky (Sadler et al., 2002; Jackson, 2005; van Weeren et al., 2014; Williams et al., 2013;
Hurley-Walker et al., 2017). This helps us to better estimate the magnitude and dis-
tribution of extragalactic sources, and ofers the necessary templates for testing point
source subtraction techniques. Instruments can also create their own sky maps using
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longer baselines, and then subtract these when searching for the EoR on shorter baselines
(section 0.3.3) via a process known as self-calibration. LOFAR currently performs self-
calibration (Nijboer et al., 2006; Patil et al., 2017). The SKA will also use self-calibration
(an overview of self-calibration for the SKA is given in (Repetti et al., 2017)).

Foreground Removal on SKA Pathinders

It should be noted that much of these frameworks are built around preparing for SKA
data intake, and thus the true efectiveness of various foreground removal methods will
only become fully evident when tested on actual SKA data. For now, the increasing num-
ber of operational EoR experiments (section 0.3) makes it possible to begin preliminary
foreground removal testing on real data. This has already been attempted on data from,
among others, GMRT (Ghosh et al., 2011), MWA (Pober et al., 2016), and LOFAR (Patil
et al., 2016). Such eforts are an imperative step towards understanding what to expect
when SKA data is made available, although theoretical results must certainly continue
alongside these (Mertens et al., 2018; Zuo et al., 2018).

Also of note is that, although we have consistently referred to the EoR signal here,
this is not the only domain for which 21 cm foreground removal must be applied. Similar
techniques have also been attempted on 21 cm signal from z ∼ 1 galaxies to aid with
intensity mapping (Ansari et al., 2012). The issue of synchrotron and free-free remains
the same, however extragalactic point sources are no longer an issue in the same sense as
with 21 cm from cosmological origin.

EoR Simulations

In the domain of EoR research, as in many diferent avenues of physics, a cooperative triad
exists to continually expand and solidify our knowledge. The irst aspect is the theoretical
front (sections 0.2.1, 0.4, 0.5), imagining and mathematically formalizing the preliminary
science. The second aspect is the experimental efort (section 0.3), building instrumen-
tation to test hypothetical predictions. As the technical challenge of building larger and
more complex instrumentation has increased over the years, a third aspect has emerged:
simulation. Based on theory, simulations now help us predict what observational eforts
should realistically hope to see. This, in turn, guarantees that instruments are optimized
to verify predictions. Simulations can also directly help us determine astrophysical and
cosmological parameters (section 0.6.6).

Boxsize and Resolution

Yet, even with large computing advancements in recent decades, computational power is
not an ininite resource. Simulations must balance the physical ‘boxsize’ with the ‘reso-
lution’ of each element. Opting for a large box entails – for realistic computation times
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– larger pixels (more precisely, ‘voxels’). This sacriices some of the small scale dynam-
ics such as halo formation and evolution. On the other hand, choosing small box and
resolution sizes, though better capturing the dynamics of individual halos, results in the
loss of larger physics such as the growth of the largest structures, and the accompanying
large scale radiative transfer process (e.g. external ionization by distant sources and X-ray
heating).

Authors difer on the boxsize necessary for a suiciently robust 21 cm simulation.
It has been suggested that only the largest simulation boxes (∼ a few hundred cMpc)
capture the true dynamics of the EoR, and that smaller boxsizes underestimate the size
of ionized patches (Iliev et al., 2014).

In terms of resolution, the question is at what mass29 (and redshift) halos collapse and
begin star formation. In the early universe (z ≈ 100) the IGM was at a temperature of ∼a
few tens of K, with the irst minihalos having a size of ∼ 103M⊙ Tegmark et al. (1997a). As
these halos grew, the thermal gas pressure and gravitational pressure competed. Cooling
efects could lower the former below its virial equilibrium value, and allow the gas in
smaller halos to collapse. In the metal-free primordial gas, the only possibilities were
atomic hydrogen and molecular hydrogen. However, atomic hydrogen cooling is ineicient
under 104 K (see igure 12). The corresponding virial mass is ∼ 108M⊙, calculated based
on the virial temperature and radius30:

Mvir =
5kBTvirRvir

2Gmp

(20)

What this means is that simulations must resolve halos down to at least 108M⊙ for
realistic reionization (Bromm et al., 2002; Furlanetto et al., 2006). Yet smaller halos
almost certainly also contributed — the question is to what degree. Molecular hydrogen
can cool down to ∼a few hundred K, corresponding to a mass of ∼ 105M⊙. Yet molecular
hydrogen usually forms on dust, which should not have existed in signiicant quantity
until reionization had already began. Any molecular hydrogen formation would have had
to go through ineicient channels in gaseous phase. If star formation can indeed begin
in 105M⊙ halos, reionization may have begun as early as z ≈ 30 (Gnedin & Hui, 1998;
Furlanetto et al., 2006).

In order to deal with this uncertainty, the ability to resolve 105M⊙ halos helps to assure
reasonable dynamics. However, this resolution is very computationally costly, and makes
large boxsizes impossible31. Simulations can therefore choose to rely on the constraint
that reionization should inish at z ≈ 6. By strengthening the ionizing eiciency of
108M⊙ halos (or larger ones), simulations can assure that this constraint will be satisied
(although reionization will start later, and the small-scale ionized structure will have a
diferent morphology). The solution may ultimately be cooperation between large boxsize

29All masses quoted refer to total mass (baryonic + dark matter).
30The virial radius and mass can be related when assuming a typical NFW proile (Navarro et al.,

1996).
31A 300 Mpc boxsize at this resolution would require 1014 (100 trillion) resolution elements.
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Figure 12 – Cooling rates for primordial gas (H & He) as a function of temperature.
The solid red line shows cooling rates for an atomic gas, while the dotted blue line is for
molecular gas (assuming a molecular abundance of 0.1% nH). Reproduced from Barkana
& Loeb (2001).

simulations, and high-resolution simulations. The latter can answer questions about the
star forming eiciency of low-mass minihalos, and this information can be implemented
into large boxsize simulations that do not otherwise resolve low-mass halos.

An overview of current EoR codes and simulations is presented in table 2, with ac-
companying resolution and boxsize.

Eulerian and Lagrangian Speciications

There is also an important distinction to be made that lies at the foundation of simulation
work. A code can operate on the principal of dividing up a simulation box into individual
ixed cells, within which various information is calculated (density, mass, energy, etc.).
This is called the Eulerian speciication of the low ield (Cen, 1992; Ryu et al., 1993;
Teyssier et al., 1998). Alternately, a simulation can also abandon this luid approach, and
opt instead for tracking various packets of ixed mass. The position and velocity of each
packet is recorded and evolved (this can still be calculated against a mesh). This second
technique is known as the Lagrangian speciication (Gnedin, 1995; Pen, 1995), sometimes
referred to as ‘meshfree’. Some of the disadvantages are that Lagrangian simulations can
experience distortions, and Eulerian simulations tend to have limited dynamical range
(Teyssier, 2002).
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The Lagrangian speciication can also be used as the foundation for Smooth Particle
Hydrodynamics (SPH), in which the distances between particles is calculated and evolved
(Gingold & Monaghan, 1977). This allows for the interpolation of various ields for regions
between particles. The SPH approach will be explored more thoroughly in Chapter 3 (see
section 3.3.3). Another point of note is that it is common in both Lagrangian and Eulerian
simulations to handle dark matter as particles (e.g. Teyssier 2002). As dark matter is
collisionless, treating it as a luid leads to unrealistic density features.

For the purpose of this thesis the Lagrangian speciication is more relevant, as the two
codes (to be discussed later) that form the basis of chapters 1 and 3 are both Lagrangian.

Adaptive Mesh Reinement

One interesting compromise — both to the boxsize vs resolution paradigm (applying
speciically to the Eulerian speciication) — is to use Adaptive Mesh Reinement (AMR).
The technique was developed in the 80s (Berger & Oliger, 1984; Berger & Colella, 1989),
before being re-purposed for astrophysics (Rufert 1992; Bryan & Norman 1997; Klein
1999; Teyssier 2002, among others). The idea was to start with a grid of ixed spaces, and
then adapt reinement as needed. Regions deemed ‘interesting’ are subdivided into more
inely divided resolution, while other regions are resolved more coarsely. This is often
called the ‘zoom-in’ technique, and the efect is that interesting small-scale dynamics can
be explored, while the computational time otherwise wasted on unnecessary regions is
economized. For Lagrangian simulations analogous reinement methods may be used,
however they must overcome the diiculty of sub-dividing mass-parcels, as opposed to
simply the mesh.

Dynamical Complexity

In addition to the size and resolution of the simulation, another consideration is the
robustness of the underlying physics. This concerns how the simulation is initialized, and
subsequently evolved.

Initial Conditions

Initially, ‘packets’ of matter (gas, dark matter, etc.) are randomly scatted within the
simulation box. Yet, this is an oversimpliication, and setting up the initial conditions for
a cosmological simulation involves some thought.

The irst step is to generate the initial ield with some level of luctuations. This
ield can be generated at very high redshifts (z ≈ 1000), and consists of a Gaussian
random ield (the power spectrum shape and normalization will depend on the assumed
cosmology at high-z). In order to compute the density ield (and subsequently velocity
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and acceleration ields) at redshifts z ≲ 1000, one common approach is known as the
Zel’dovich Approximation32 (Zel’dovich, 1970; Shandarin & Zeldovich, 1989). This is the
assumption that a point q = (x, y, z) will experience density evolution given by:

ρ(q, t) ≈ ρ̄

(1 − b(t)α(q))(1 − b(t)β(q))(1 − b(t)γ(q))
(21)

Here t is time;α(q),β(q), and γ(q) are the three eigenvalues of the deformation tensor at
point q; and ρ̄ is the mean density at time t given in terms of the scale factor as ρ̄ =
(az=0/a)3ρ0. The b(t) factor is the linear luctuation growth rate, whose full form is bulky
(Peebles, 1980; Zeldovich & Novikov, 1983), but can be approximated33 as (Shandarin &
Zeldovich, 1989):

b(z) =
b0

1 + 2.5zΩ0

1+1.5Ω0

(22)

where Ω0 is the geometry parameter for a Friedmann Universe at z = 0, and b0 is the
linear luctuation growth rate also at z = 0. With this we have the mechanism to im-
plement initial density evolution into a homogenous simulation box34. Once the density
luctuations are included, the velocity ield can be derived (this can also be carried out
in reverse). After z ≈ 100 numerical simulation can be used to capture non-linearities in
the growth of density luctuations.

Note Regarding Adaptive Mesh Reinement

For zoom-in simulations making use of AMR, an additional problem comes to light. When
a region of interest is reined to have better resolution, the conditions within these new
zoomed regions must be initialized such that there is no discrepancy at the resulting
boundary between a iner-sampled region and a courser-sampled region. Poorly handling
such boundaries can create shock artefacts. Codes have been developed speciically for
the purpose of approaching this issue. Some use discrete Fourier transforms to add small
scale perturbations to coarser perturbations (GRAFIC2 code, see Bertschinger 2001),
while others use a method called ‘real-space convolution kernels’ (MUSIC code, see Hahn
& Abel 2011). The detailed workings of such codes is not relevant here, however their
importance in AMR simulations is worth being stated.

Evolving the Simulation

Once the initial conditions have been set up, each time-step calculates the gravitational
attracting between packets, and moves them accordingly. When a region has suicient
density, it is marked as being luminous (the equivalent of stars having formed), and at

32The Zel’dovich approximation has now been largely replaced by more advanced approximations.
33Accurate to within 15% for 0.01 ≲ Ω0 ≲ 1 (Shandarin & Zeldovich, 1989).
34Zel’dovich assumed that there would be one eigenvector (α(q),β(q), or γ(q)) larger than the others,

and therefore that the collapse would occur irst along one eigenvector axis. This explains the presumption
that large gas overdensities would form irst, as discussed in section 0.2.3.
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each subsequent time step photon packets are radiated outwards from said regions. These
photon packets can, in turn, be absorbed by matter packets.

Though, as with resolution, full dynamics are computationally expensive. An alterna-
tive is Semi-Numerical simulations, in which various short-cuts are taken to approximate
EoR dynamics. For example, gravitation may be replaced with linear extrapolation of
gas movement from initial conditions. As well, full dynamic simulations generally treat
gas diferently in dense regions, while semi-numerical methods may neglect this. As for
ionisation percentage, the number can also be inferred heuristically based on the photon
absorption/emission. With these compromises, semi-numerical codes (Mesinger et al.,
2011; Shin et al., 2008; Santos et al., 2008) can simulate reionization in boxes of 10243 in
a few hours, while Full-RT simulations sometimes require over a hundred thousand (and
thus, must be run in parallel on supercomputers).

Radiative Transfer

Another method of reducing computation time is by carrying out certain physical pro-
cesses after the simulation has run. Radiative transfer (RT), for example, can be carried
out in post-processing. This avoids advancing each photon packet at each step. Instead,
steps account for only gravitation (and possibly hydrodynamics); the radiation (and tem-
perature) is approximated for each redshift once the simulation has inished. The compro-
mise is that post-processing radiative transfer may neglect important physical processes.
Feedback between halos, for example is best captured in simulations where the radiative
transfer is ‘coupled’ to the dynamical steps35. Fully coupled radiative transfer also pro-
vides a stronger model for the relationship between radiative (X-ray, UV, Lyα) heating
and adiabatic cooling (Semelin, 2016; Semelin et al., 2017).

Full coupled RT simulations and semi-numerical simulations can, in a sense, work
together. Heavy-duty simulations can help polish the assumptions made by faster semi-
numerical codes. In turn, the latter can explore larger parameter spaces, and ind ‘inter-
esting cases’ to be explored in more depth by more robust simulations.

21cmFAST

One code in particular merits a separate word. 21cmFAST is a semi-numerical code that
allows fast generation of simulated 21 cm signal from z = 300 onwards, and will be used
extensively in chapter 3. The code is able to evolve the signal through this time-scale in
a few minutes on a single processor (at resolutions of a few cMpc), and although the iner
details of full numerical simulations will not be seen (e.g. section 1.2.2), the power spectra
are still shown to agree to 10s of percent (Mesinger et al., 2011). 21cmFAST handles initial
conditions in the method detailed in section 0.6.2, and then achieves computation time

35This will be relevant only for small halos (see section 0.6.1), and at small angular resolutions (∼a
few hundred ckpc, see Semelin 2016).
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economies via the following: bypassing the halo inding algorithm (which was previous
used in Mesinger & Furlanetto 2007), approximating gravitational collapse by moving
each particle according to irst-order perturbation theory36 (Zel’dovich, 1970), opting not
to treat baryons and dark matter separately, and simplifying baryonic physics37 (Mesinger
et al., 2011). Sample 21cmFAST output is shown in igure 14.

Summary of EoR Simulations

We present here an overview of some recent EoR simulations. As well, igure 13 compares
boxsize and resolution between a number of contemporary simulations. The units ckpc
and cMpc are comoving kiloparsercs and megaparsecs, respectively.

Table 2 – Summary of EoR Simulations and Codes
A star denotes a code, while all other entries are simulations.

Name Full
RT AMR Coupled Resolution

(z = 6)
Boxsize
(z = 6) Reference

21cmFAST⋆ no no no ∼ 0.5 cMpc ∼ 200 cMpc (Mesinger et al., 2011)
CoDaa yes no yes ∼ 3 ckpc ∼ 90 cMpc (Ocvirk et al., 2015)

CubeP3Mb⋆ yes no no ∼ 90 kpc ∼ 600 cMpc (Iliev et al., 2014)
CROC yes yes ? 100 cpc 100 cMpc (Gnedin, 2014)

ENZOc⋆ yes yes yes ∼ 4 ckpc 20 cMpc (Norman et al., 2015)
GADGET-2d⋆ yes ? yes ∼ 38 ckpc ∼ 9 cMpc (Finlator et al., 2011)
LICORICE⋆ yes yes yes ∼ 10 ckpc 300 cMpc (Semelin, 2016)

RAMSES-RTe⋆ yes yes yes ? ? (Rosdahl et al., 2013)
SPHINXe yes yes yes ∼ 0.1 cpc 10 cMpc (Rosdahl et al., 2018)

Technicolor
Dawn ? ? ? 50 ckpc ∼ 18 cMpc (Finlator et al., 2018)

TRAPHIC⋆ yes ? ? ∼ 200 pc ∼ 70 cMpc (Pawlik et al., 2015)
VULCANc no yes yes ∼ 0.3 cpc 25 cMpc (Anderson et al., 2017)

SIMFAST21f no yes yes ∼ 9 ckpc 100 cMpc (Santos et al., 2008)
n/ac yes yes yes 50 ckpc ∼ 14 cMpc (Chen et al., 2017)

aCustomized from a previous code detailed in Stranex & Teyssier (2010).
bCustomized from a previous code detailed in Harnois-Déraps et al. (2013).
cCustomized from a previous code detailed in Bryan et al. (2014).
dCustomized from a previous code detailed in Springel (2005).
eCustomized from a previous code detailed in Teyssier (2002).
fCustomized from a previous code detailed in Shin et al. (2008).

36There is also the option to evolve the density linearly, for an additional speed boost.
37Some baryonic physics is included in the parameters (e.g. Nγ and Tvir; see section 3.3.1).
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Figure 15 – An example of various diagnostics produced by SPHINX (Rosdahl et al., 2018).
The top left square shows the neutral fraction nH, the top right is stellar matter (note the
scale makes individual stars very small in this image), the bottom left is the temperature,
and the bottom right is lux. The box size is 100 kpc.

spectrum), and the best ‘match’ gives us an approximation for the true parameter values
(based on the values used to simulate the closest match to the real data).

This methodology presents two challenges. Firstly, it will be necessary to quantify
the ‘diference’ (or distance) between reionization scenarios. How should we deine such
a quantity, and how will our deinition afect parameter reconstruction? This is a con-
temporary issue, with no single solution, and it will be explored in more depth in chapter
2. Secondly, for large databases of detailed observables (>10 Gb each), comparisons
for all combinations of observables can become complex and computationally expensive.
To overcome this, the last few years have seen an explosion of eforts to realize eicient
parameter reconstruction, either via the Bayesian Markov Chain Monte Carlo method
(Harker et al., 2012; Greig & Mesinger, 2015; Kern et al., 2017; Greig & Mesinger, 2017b,
2018), or (more recently) via neural networks (Shimabukuro & Semelin, 2017; Kern et al.,
2017; Schmit & Pritchard, 2018; Gillet et al., 2018). We add to these eforts, as will be
presented in chapter 3.
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Figure 16 – The procedure through which snapshots can be used to create a lightcone
(Zawada et al., 2014).

Figure 17 – An example slice through a lightcone taken from Zawada et al. (2014), showing
∆Tb between redshifts ∼ 6 and ∼ 14.
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Bayesian MCMC

The roots for the Monte Carlo method are found in 1940s wartime, during which the
probabilistic depth of particle travel through various materials involved tedious manual
calculations (Kean 2010; Robert & Casella 2011). Los Alamos scientists (Stanislaw Ulam,
and later John von Neumann) realized that randomly sampling initial conditions and
calculating the corresponding outcomes could give eicient estimations of the probabilities,
as opposed to the tedious calculation of the full numerical solution. The method proved
successful, and was further developed after the war (Metropolis & Ulam, 1949; Turing,
1950; Kahn & Theodore, 1951; McKean, 1966).

However, although the Monte Carlo method handled probability functions of one or
two variables well, it faltered when faced with high-dimensional functions. Metropolis
et al. (1953) focused on an especially diicult probability function for which numerical
integration was impossible, and which could not be randomly sampled on account of
how small it was for most coordinates. The proposed solution was that, after randomly
sampling N points, a random walk could be adopted to move each point iteratively towards
a region of higher probability. At each iteration the random walk was represented by a
Markov Chain matrix40, hence the name Markov Chain Monte Carlo (MCMC). This
foundation has remained the same, although future developments honed the mathematics
and presented improved algorithms (Hastings, 1970; Geman & Geman, 1984; Tanner &
Wong, 1987; Gelfand & Smith, 1990).

The MCMC method formed the basis of the BUGS software for Bayesian inference
(Gilks & Spiegelhalter, 1994). Subsequent more robust programs used MCMC Bayesian
inference to explore n-dimensional parameter spaces initially for the CMB (Christensen
et al., 2001; Lewis & Bridle, 2002), and soon for the 21 cm signal as well (Harker et al.,
2012; Greig & Mesinger, 2015; Kern et al., 2017; Greig & Mesinger, 2017b, 2018). In sum,
for a given observation x we assume some n-dimensional probability distribution function
p which depends on n parameters of unknown values (θ⃗ = θ1, θ2, ..., θn). Hence we have
p(x|θ⃗) (the probability of observation x if we have parameters θ⃗). Yet we want to know
the values of the variables, not the observation! So we lip this to p(θ⃗|x) and plug it into
Bayes’ theorem:

p(θ⃗|x) =
p(θ⃗)p(x|θ⃗)

∫
p(x|θ⃗)p(θ⃗)dθ⃗

(23)

where the denominator is a normalization constant which must be evaluated. The dii-
culty in evaluating this n-dimensional integral, as well as the n-1 dimensional integrals
required to ind p(θ1), p(θ2), etc., is immense without the MCMC approach (see Chris-
tensen et al. 2001 for a full derivation).

40The simplest form represents, for a given point, an equal chance of moving to any of the discretized
points falling within a certain radius around the initial point.
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Principal Component Analysis

One method which has become increasingly common to simplify high-dimensional data,
and merits a quick mention, is Principal Component Analysis, or PCA (developed in
Pearson 1901 and Hotelling 1936). The PCA method consists of irst deining a new set of
vectors within a data cluster, each one a linear combination of the associated parameters.
The vectors are arranged from the most, to the least, correlated with the data. By ignoring
the least correlated vector, it becomes possible to reduce dimensionality while losing the
least amount of information. These vectors correspond to the eigenvectors41 of the Fisher
Matrix, for which each entry relates a pair of two parameters to the resulting observable.
The full mathematical deinition of the Fisher Matrix is not relevant for our purposes (it
can be found in Ly et al. 2017, Appendix A).

In the late 90s, cosmological data sets (historically quite small compared to other
domains) were large enough to attempt PCA parameter reconstruction (Tegmark et al.,
1997b). The method now forms the basis of a number of projects throughout astrophysics
(see Ishida & de Souza 2011, and references therein). The theory developed in chapter 3
is tangentially related to PCA, as will be discussed therein (see note at the end of section
3.4).

Coming Challenges

This chapter has presented an overview of the current state of 21 cm Cosmology, and
eforts to probe and understand the Epoch of Reionization. At present, there are a number
of challenges to be overcome, as well as interdisciplinary partnerships to be strengthened,
in order to achieve this goal.

Firstly, experimental eforts must be coordinated and developed further (section 0.3).
Upper limits for the brightness temperature must be lowered, and tentative detections
must be cross-checked with other experiments.

Secondly, in conjunction with experimentation, previous theoretical frameworks must
be revisited and re-evaluated (section 0.4). Limits on 21 cm signal strength must be used
to reject models that predicted radiation beyond said limits, and constrained parameter
values must be translated into improved theoretical nuance. This is already taking place
with recent limits (Ali et al. 2015 now retracted, Patil et al. 2017) which have been used
to constrain (for example) the X-ray production at high redshift.

Thirdly, another theoretical consideration — and one so signiicant it merits separate
appraisal — is foregrounds (section 0.5). Increasingly accurate radio sky maps, pushed
deeper in order to capture extragalactic sources as well as Galactic ones, must be created

41The corresponding eigenvalues are measures of the correlation between a model and data along the
eigenvectors.
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and used to test various subtraction methods. Real data must also be subject to subtrac-
tion testing, to converge on the full cleaning pipeline future experiments such as the SKA
will utilize.

Fourthly, both the theoretical and observational eforts must be bolstered by robust
and eicient EoR simulations (section 0.6). Simulated EoR signal, built upon theoretical
predications, must serve to hone instrumentation in order to maximize the chance of signal
detection. Eventually, simulations and the databases they make possible will be invaluable
in determining the true parameter values upon which the early Universe operated.

These are the pillars upon which EoR physics has been built. The goals have been
made clear, and now, after nearly a century of advances, there is an undeniable sense that
we are on the cusp on inally unlocking the secrets of the Cosmic Dawn and Epoch of
Reionization.

This manuscript is organized as follows. Chapter 1 discusses the preparation under-
taken in building a database of high-resolution 21 cm observables, notably the develop-
ment of an observable for realistic noise. Chapter 2 explores diferent methods to quantify
the diference between two observables, their advantages and disadvantages, and talks of
diferent ways to use the database. Chapter 3 explores the geometry of the parameter
space, with the goal of developing a framework to optimally sample said space (such as to
best train neural networks). Finally, Chapter 4 summarizes what has been achieved, how
it can help future EoR studies, and highlights avenues that merit further exploration.







Part One

21SSD: Building a Database of EoR
Signals





CHAPTER 1

21SSD: Building a Database of EoR Signals

Motivation

In preparation for upcoming EoR experiments, and ultimately the Square Kilometre Ar-
ray, the need for high-resolution Full-RT simulations has already been stated. Although
Bayesian Markov Chain Monte Carlo methods are computationally infeasible, these sim-
ulations can still be used for parameter reconstruction methods with neural networks
(section 0.6.6). A database of possible EoR 21 cm signals would also provide templates
for developing end-to-end simulations for the SKA. This will be a necessary step before
the experiment can go online. Another use for simulations with high-resolution and full
dynamics is to adjust semi-numerical codes. Speciic efects that may only show up in a
heavy-duty simulation, such as feedback efects which result from coupling ionization and
dynamics, can be imitated by semi-numerical codes through ‘ine tuning’ the parameters,
or with the introduction of new ones. The resolution may not be as ine, but if the re-
sulting reionization scenarios are convergent, this allows semi-numerical codes to replicate
the indings of full simulations to obtain a much iner sampling of a parameter space.

Finally, and perhaps the most fundamental reason to create a database, has to do
with computational time. Full simulations may take many hundreds of thousands of
computer hours to realize, and repeating this multiple times is simply not realistic. Any
time anyone wants to carry out any science on mock SKA data, it is in their interest
to use the highest resolution, and the most physically realistic, simulations available.
Re-creating simulated data, and expending immense computational resources, multiple
times by diferent research groups, is simply nonsensical unless the goal is explicitly to
test diferent simulations. Therefore, by making EoR templates publicly available, this
wastage can be avoided.

It is for this reason that we sought to prepare 21SSD (21 cm Simulated Signal Database),
which can now be found online at 21ssd.obspm.fr.

Our contributions to this goal were as follows. Familiarity with the simulation was
gained through studying some aspects of the physics of the resulting models, speciically

21ssd.obspm.fr
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with respect to self-shielding efects in cosmological radiative transfer (section 1.2). After
this, a review was carried out on the diferent possible parameter spaces that have been
used previously by other groups (section 1.3). Lastly, an additional goal was realistically
modelling the thermal noise which the SKA should be subject to at diferent resolutions
and redshifts (section 1.4).

Table 1.1 – Chapter 1 Contribution Breakdown

Section Me Not Me
1.2 xα histogram (igure 1.3) LICORICE Code
1.3 Some discussion and literature re-

view
Final parameter choices and creat-
ing 21SSD

1.4 Literature review, initial noise
model and noise addition routine

SKA UV-coverage modelling

Corresponding Publication: First half of Semelin et al. 2017.

A Toe in the Water: Self-Shielding

The LICORICE Code

The code used to develop the database is LICORICE. The code has been developed
over the past two decades (Semelin & Combes, 2002; Semelin et al., 2007; Baek et al.,
2009; Iliev et al., 2009; Baek et al., 2010; Vonlanthen et al., 2011; Semelin, 2016). The
simulation allows for fully coupled radiative hydrodynamics at high-resolution (10243 or
more), and is based on a Tree+SPH method (Semelin & Combes, 2002). Both ionizing
UV and X-ray frequencies are coupled to the dynamics, which are advanced with Monte
Carlo ray-tracing. The program also makes use of Adaptive Mesh Reinement for the
ray-tracing.

Shielding

An interesting feature that appears in the resulting observables1 is ‘shielding’. Two sepa-
rate efects were observed: X-ray shielding and Lyα shielding. In the irst case, some gas
regions that are initially warmer than their surroundings at the beginning of the EoR are
found to become cooler than neighbouring regions as reionisation proceeds. In the case of
Lyα shielding, the result is lower coupling of TS to Tk, leading to moderately overdense
neutral regions in the voids.

1We remind the reader that other authors have previously called these ‘models’.





56 1.2 A Toe in the Water: Self-Shielding

Vonlanthen et al., 2011), and as such this efect has not been observed in other simulations
(which will approximate the local Lyα lux that determines TS as, for example, evolving
with a simple 1

r2 radial lux proile). Semelin et al. (2007) showed that, when resolution
is adequate, photons are often scattered of over-dense regions while still in the wings of
the ilament (roughly one half may be ejected). Had it not been for this scattering, they
would otherwise have been redshifted to Lyα frequency, and scattered in the centre of the
ilaments (thus contributing therein to the coupling of TS and Tk). Close to sources, the
radial lux proile can steepen to ∼ r− 7

3 . This efect leads to Lyα back-scattering in the
wings, as shown by the dark regions of low xα in igure 1.2.

Figure 1.2 – Lyα coupling coeicient (xα) in a 140 ckpc thick slice (z = 10.1), produced
with LICORICE. The contours correspond to δ ≥ 1.38 · δavg. Reproduced from Semelin
(2016).

To quantify that this was in fact the case, the relationship between density and xα

(the Lyman alpha coupling coeicient) was studied. The goal was to show that regions of
higher density do indeed correspond, in general, to regions of low xα. This is seen in the
histogram presented in igure 1.3. The solid black line represents the average xα value for
a given density, and the black dots above and below show the values within which 68%
of the cells fall.

Although the average line becomes somewhat erratic at high densities, this is because
there are fewer cells which fall into higher density bins, skewing the sample size. Regardless
of this, the downwards trend is evident: denser regions tend to have a lower Lyα coupling
coeicient. This is, in the essence, what is meant by Lyα shielding, and explains the
behaviour seen in igure 1.2. This trend could be used to improve on the 1

r2 modeling
used in other codes that do not run the fully line transfer.



21SSD: Building a Database of EoR Signals 57

 0  2  4  6  8  10  12  14

nH[cm
-3

]

-1

-0.5

 0

 0.5

 1

x
α

-7

-6

-5

-4

-3

-2

-1

 0

Figure 1.3 – 2D histogram of the density and xα distribution. The solid black line is
average xα, and the black dots are 68% bounds for each column.

Deining a Parameter Space

After having developed a familiarity with the code, the next task was to decide which
parameters to vary, as well as which values to choose. There are a number of diferent
opinions on how best to parametrize Epoch of Reionization simulations.

Previous Parametrizations

Pritchard et al. (2015) suggests a number of relevant cosmological parameters (Ω den-
sity coeicients, Hubble parameter, inlationary parameters, curvature, etc.). Greig &
Mesinger (2015) explores a three parameter space consisting of the ionizing eiciency
of galaxies ζ, the mean free path of ionizing photons in ionized regions Rmfp, and the
minimum virial temperature for star-forming halos T Feed

vir . Three more parameters were
recently added in Greig & Mesinger (2017b): the integrated soft band luminosity per
SFR LX<2keV/SFR, the X-ray energy threshold for self-absorption by the host galaxies
E0, and the X-ray spectral index αX . Fialkov et al. (2017) outlines a basic parameter
space consisting of an X-ray emissivity term fX

2, a hard/soft Spectral Energy Distribution
2Although this was introduced earlier in Furlanetto et al. (2006).
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(SED) term, and a boolean parameter as to whether or not to include Atomic Cooling
(equivalent to deciding if small halos should exhibit star formation). Kern et al. (2017)
presents an ambitious 11-dimensional parameter space, including the three astrophysical
parameters of Greig & Mesinger (2015), ive cosmological parameters, as well as three
parameters related to the X-ray spectrum. See summary table 1.2.

It can be seen that the choice of parameters varies signiicantly, and is intimately
linked to the corresponding modelling technique. Switching to a new set of parameters
can sometimes be very technically challenging in terms of redesigning code previously
based on a diferent set. Regardless, converging on a standardized set of parameters was
set out as a task for theoreticians involved in the SKA science working group.

In the context of LICORICE, the cosmological parameters suggested in Pritchard et al.
(2015) and Kern et al. (2017)3 are less relevant: a number of LICORICE’s advantages are
astrophysical. For example, coupled photon packet propagation, hard X-ray contribution,
shielding efects shown above, etc (Semelin et al., 2017). Two parameters from Fialkov
et al. (2017) were easy its for LICORICE: fX , as well as the SED variable (although
the latter was modiied slightly for our purpose). The third variable (a 3D parameter
space is a reasonable irst step for a computational expensive simulation such as 21SSD)
relates to the Lyman band emissivity. Ultimately these three are most relevant for the
very beginning of the EoR, during the initial absorption regime (see section 1.3.2 for a
deinition of all 3).

Table 1.2 – Parametrizations

Reference # Parameters
Greig & Mesinger (2015) 3 ζ, Rmfp, T Feed

vir
Fialkov et al. (2017) 3 fX , SED, Halo SF Cutof (Atomic Cooling)
Semelin et al. (2017)a 3 fα, fX , rH/S

Kern et al. (2017) 11 ζ, Rmfp, T Feed
vir , fX , αX , νmin, σ8, H0, Ωbh

2, Ωch
2, ns

Greig & Mesinger (2017b) 6 ζ, Rmfp, T Feed
vir , LX<2keV/SFR, E0, αX

a21SSD.

Although the parameters presented in Greig & Mesinger (2015) were not used here,
they will be returned to in chapter 3.

Equivalences

There are a few small words to add on these parameter sets. Firstly, the X-ray parameter
fX in Kern et al. (2017) is deined slightly diferently than in Fialkov et al. (2017), however

3Note that this parametrization, as well as that of Greig & Mesinger (2017b), were published after
21SSD went online. Their inclusion here is retrospective.
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they are both efectively normalization parameters. The former deines it as:

ϵX(ν) ∝ fX

(
ν

νmin

)−αX

(1.2)

where ϵX is the source X-ray emissivity, νmin is the obscuration frequency cutof, and αX

is the spectral slope (also parameters in Kern et al. (2017)). The alternate deinition,
adopted for 21SSD, is presented below.

The SED parameter in Fialkov et al. (2017) is also roughly equivalent to the rH/S

parameter used for 21SSD (described below). Fialkov et al. divides the SED into ‘hard’
and ‘soft’ variants, in which each is deined by the luminosity divided by the star formation
rate (SFR) (for the frequency bands 0.2-30 keV and 0.5-8 keV). The values for these are
given in the article.

Parameter Deinitions

The parametrization chosen for 21SSD consists of the following three parameters (in-depth
descriptions are given in Semelin et al. 2017).

• fα: Lyman band emissivity
This value quantiies the Lyman band emissivity eiciency, and encapsulates a num-
ber of uncertainties associated with the Lyman emissivity of early luminous sources
(choice of the initial mass function, dust, etc.). The deinition is somewhat complex,
as it should be taken to be a heuristic scaling, however it can be written as

fα = Eef
(∫ νlimit

να

∫

M
ξ(M)L(M, ν)Tlife(M)dMdν

)−1

(1.3)

where Eef is the efective energy emitted in the simulation, ξ(M) is the IMF, L(M, ν)
is the energy emitted per second per Hz by a star of mass M at frequency ν,
Tlife(M) is the lifetime of a star of mass M , να is the Lyα frequency, and νlimit is
the Lyman limit frequency (the ionization energy of neutral hydrogen). Ultimately,
everything in the large bracket of equation 1.3 is the theoretical energy that we
expect based on the values of the listed variables. We can therefore simply say
that fα = Eef/Etheory. fα is given values 0.5, 1.0, and 2.0. It should also be noted
that this is a computationally ‘free’ variable: Lyman line transfer has no noticeable
feedback on the dynamics, and is therefore carried out in post-processing. Moreover,
the resulting local Lyα lux scales linearly with the emissivity of the source.

• fX : X-ray emissivity
This is a scaling parameter for adjusting the X-ray luminosity of a source (LX). It
is deined as

LX = 4.3 · 1040fX

(
SFR

1M⊙ · yr−1

)
erg · s−1 (1.4)
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where SFR is the star formation rate. The X-ray luminosity is very poorly con-
strained (Furlanetto et al., 2006), and is therefore sampled over a wide range (0.1,
0.3, 1.0, 3.0, 10).

• rH/S: Hard-to-soft X-ray ratio
X-ray photons will difer in energy (and therefore in mean free path) depending on
whether they originate in AGN or X-ray binaries (Fialkov et al., 2014). The relative
importances of these two in reionization is not well constrained, and therefore we
deine the proportion of them as

rH/S =
fXRB

X

fX

(1.5)

where fX = fAGN
X +fXRB

X , and has the deinition given in equation 1.5. We consider
three cases: the X-ray contribution is entirely due to AGN, entirely due to X-ray
binaries, and due to both equally (rH/S = 0, 0.5, 1).

Table 1.3 – 21SSD Parameter Values

Parameter Explored Values
fα 0.5, 1., 2.
fX 0.1, 0.3, 1., 3., 10.
rH/S 0., 0.5, 1.

Using the diferent combinations of values listed in 1.3, the resulting sampling consists
of 45 observables. Examples of the resulting lightcones included in the 21SSD (slices
through the lightcones) are shown in igure 1.4. The initial sampling is sparse, as it repre-
sents a irst step into eventually constructing a more ambitious set of diferent observables.
For this preliminary sampling, the large computation time (∼ 2.5 × 106 computer hours)
is incentive to be cautious in the initial scope.

From igure 1.4 we are also able to visualize the general relationship between the three
parameter values and the resulting reionization scenarios. Choosing a small value of fX

leads to a later heating, which allows for more time in the strong absorption regime. An
increase in fα means earlier Lyα coupling, and hence a stronger absorption. The efect of
rH/S is more subtle, but can been seen between the 3rd and 4th lightcones (from the top)
in igure 1.4. Speciically at redshift 8 we notice how setting rH/S to 1 results in a more
difuse lightcone, with less structure. Soft X-rays heat more locally, while harder X-rays
travel farther before heating their surroundings, and hence contribute to a somewhat more
‘global’ heating.
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Simulating SKA Noise

Having developed these observables, they are ready to be put to use as templates for any
number of variety of early-universe research studies. However, they are still lacking two
aspects of real SKA data. For one, the highest resolution observables correspond to a level
of resolution (∼ 0.3 arcmin for z ≈ 6) that is unrealistic for SKA-low (∼a few arcmin
for z ≈ 6, as seen in section 0.3.3). Indeed, thermal noise at high resolution will heavily
obscure what can be seen, especially at high redshifts.

To simulate these efects, reducing the resolution is straightforward (a simple pixel
averaging routine will do the trick4). However, modelling the noise is more challenging.
One model for tomographic noise scaling is provided by Mellema et al. (2013), based of
previous calculations by McQuinn et al. (2006). It gives the expected noise contribution
to be:

∆Tb =

(
k⊥
2π

)(
D2

c × ΩF oV

)1/2
(

Tsys√
Btint

) √
AcoreAeff

A2
coll

mK (1.6)

where k⊥ is the angular scale, Dc is the comoving distance from the telescope to the
source, ΩF oV is the ield of view of the smallest beam-formed receiver element, Tsys is
the system temperature (used previously in equation 18), B is the bandwidth, and tint

is the integration time. As well, the three areas Acore, Aeff , and Acoll are the core area,
the efective area for a receiver element, and the total collecting area (Aeff × Nstat, the
number of stations) respectively. This equation can be simpliied (following the method
outlined in Koopmans et al. 2015), as we can express ΩF oV in terms of the wavelength
we hope to observer, as ΩF oV = λ2/Aeff , which will cancel out the other Aeff term. This
brings us to:

∆Tb =

(
k⊥
2π

)
(Dc × λ)

(
Tsys√
Btint

) √
Acore

A2
coll

mK (1.7)

As explained in Koopmans et al. (2015), the value Acore

Acoll
is approximately unitary for low

resolutions (where the core region of densely packed receivers is the primary collecting
area). However, for higher resolutions (higher k⊥), this assumption no longer holds, and
equation 1.7 will break down. In addition to this, it should be noted that k⊥, Dc, Tsys,
and B all have redshift dependence5. Therefore, in order to realistically estimate the Acore

Acoll

term, it is necessary to perform a full uv modelling of the sky using SKA speciications
(Dewdney, 2015). Through using these, the full uv modelling was carried out by Benoît
Semelin, and produced a table of noise values for ∆Tb(z, ∆θ). That is, the expected
thermal noise (rms) for various values of redshift and angular resolution. Using this, a
program for interpolating these values for any redshift and angular resolution was devised,
and then noise could be applied to each redshift slice of the lightcone. Noisy lightcones
produced through this method are presented in Semelin et al. (2017).

4Although, the ideal approach would have been to convolve the cubes with the instrumental response
(a consequence of the station beam and antenna distribution) in Fourier space.

5The bandwidth B only has redshift dependence if matched to the angular resolution. One can also
choose to keep it ixed.
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noise estimation in which neighbouring pixels are correlated, which will be the case for
upcoming observations.

In fact, an updated version of the noise model presented here was developed in which
applied noise is added to the Fourier space. This updated version was used in Bolgar
et al. (2018) (for which I am 2nd author), however was not inished by the time 21SSD
was due to go online.

Finalized Database

With all 45 observables generated, and with a proper noise estimation included, the
21SSD database was made publicly available. All templates can be downloaded from
21ssd.obspm.fr, and for each sampled point in the parameter space the high-resolution
observable is provided (1024x1024x8192 pixel lightcones), as well as SKA-low resolution
observables (16x16x128 pixel and 32x32x256 pixel lightcones). For all of these, noisy and
clean versions are provided, as well as the uv coverage code, and table of thermal noise vs
angular resolution at various redshifts. For all lightcones, the procedure to generate them
from the snapshots (igure 16) can also be carried out in the x,y, or z spatial dimensions.
This allows for the creation of three lightcones for each observable.

The high-resolution templates are unrealistic for the expected capabilities of SKA-Low,
though they are still excellent tools for studying the intricate dynamics of the EoR. This
can be useful for training neutral networks, or for ine tuning numerical models. High-
resolution observables will also be necessary for full end-to-end simulations (in which
noise and resolution efects are included to simulate the full SKA pipeline). The SKA-
resolution observables, especially those with noise, are more suited to give us an idea
of what we should realistically be able to see. They also serve as a sandbox for testing
observable diagnostics, as well as parameter reconstruction. For both high and low-
resolution observables, we will now demonstrate some preliminary work to showcase the
potential of 21SSD.

21ssd.obspm.fr
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CHAPTER 2

Extracting Knowledge from 21SSD

Revisiting Parameter Reconstruction

After having dedicated signiicant time and efort to creating the 21SSD database, it
seems only logical to ‘take it for a test drive’, so to speak. As already discussed in section
0.6.6, a large reason that simulations are such an integral part of the quest to understand
the Epoch of Reionization comes from their potential for ‘Parameter Reconstruction’.
The reader is reminded that the goal here is to use real observational data to uncover
the values of astrophysical or cosmological parameters present in our observables. At
present, a number of ongoing experiments (table 1) are focused on measuring the global
sky-averaged signal, as well as studying the EoR power spectrum, both of which can help
with setting limits on parameter values. However, the ideal tool — that which contains
the most information — would be a full tomographic map.

In waiting for tomography experiments to go online, primarily the SKA, it is in our
interest to devise and test methods to determine parameter values in order to have a
framework in place for real data at the time of irst light. However, in the absence of real
data, simulation data can be readily substituted. In fact, this has already been attempted.
Some tests have been made of 21 cm parameter reconstruction using the MCMC method
(Harker et al., 2012; Greig & Mesinger, 2015, 2017b, 2018) (which has previously been
applied to CMB as well, see Lewis & Bridle 2002, in addition to all Planck and WMAP
papers), while others have focused instead on using machine learning and neural networks
(Shimabukuro & Semelin, 2017; Kern et al., 2017; Schmit & Pritchard, 2018; Gillet et al.,
2018). Yet, currently, most eforts have focused on mock data created by low-resolution
semi-numerical simulations. The 21SSD database provides us with a perfect environment
to begin to test the prerequisites of parameter extraction on more realistic mock data.
Although we do not perform full parameter extraction in this chapter, we will begin
to explore the concepts of deining ‘distance’ between 21SSD observables: the irst step
towards extracting parameters. This chapter lays the foundation, and sets up a theoretical
model, for full parameter reconstruction on both high-resolution observables, or realistic
mock SKA data.
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To achieve this, section 2.2 lays out the procedure for calculating the multi-redshift
power spectrum for a lightcone from the 21SSD database. Section 2.3 presents an alter-
native, and often overlooked diagnostic, to the power spectrum: the Pixel Distribution
Function. Both of these are then used as the basis for calculating the distance between
simulations in section 2.4, and the advantages and disadvantages of each are discussed.
These methods are then applied to low-resolution mock SKA data in section 2.5, and i-
nally the chapter concludes with a brief discussion on how these results could reconstruct
parameters (section 2.6).

Table 2.1 – Chapter 2 Contribution Breakdown

Section Me Not Me
2.2 Majority Minor formatting of igure 2.2
2.3 Majority Adding contours to igure 2.4
2.4 All —
2.5 Creating low-res lightcones Noise curves on igure 2.9

Corresponding Publications: Second half of Semelin et al. (2017), and Eames &
Semelin (2018)a.

aIAU333 proceedings.

Lightcone Power Spectra

The standard, though by no means the only, technique to quantify the progression of
reionization is through the 21 cm power spectrum. Showing the evolution of the power
spectra as a function of redshift allows us to examine the dominant scale of luctuations
at diferent periods throughout the EoR. A simulation may save ‘snapshots’ of the boxes
for various redshifts. A 3D Fourier transform can then be applied to them, to give the
power spectra for each redshift. 21SSD saves snapshots between z = 15 − 6 at intervals
of ∆z ≈ 0.25.

Yet, when dealing with real observational data, we will not be simply handed snap-
shots of the Universe. Our observations will be lightcones (section 0.6.5). Therefore, the
question arises of how to derive the power spectra from the lightcones.

The simplest option would be to calculate the 2D power spectrum at each slice (a
single pixel in width). When the promise of the power spectra was realized with relation
to the EoR, this was also the envisioned approach to handling observational data. It was
initially advocated that comparing the 2D power spectra at diferent frequencies would be
an efective method for overcoming noise from foreground sources (Zaldarriaga et al., 2004;
Bharadwaj & Ali, 2004). Building on this, it was soon realized that there is a large amount
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of information along the line of sight. In fact, constructing the 3D power spectrum was
shown to better overcome foregrounds than simply comparing 2D power spectra (Morales
& Hewitt, 2004; Morales, 2005). Allowing some width in frequency-space, we can perform
a 3D Fourier transform on what is essentially a snapshot. Although it can be argued that
the information is relatively similar along the line of sight as perpendicular to it, the fact
is that the 3D power spectrum increases statistics and thus decreases the level of noise.

However, there are two other problems with lightcones. Ideally, we would like the
3D space to be isotropic. Yet, peculiar motion along the line of sight creates anisotropy
(Kaiser, 1987). This is sometimes called ‘redshift space distortion’. With this extra width
we also begin to incorporate information about the Universe at diferent times, with
ionized bubbles becoming smaller at higher redshifts (known as the ‘lightcone efect’).
The relative importance of the lightcone efect will depend on the width of the slice upon
which the power spectrum is calculated. Redshift space distortions will as well (although
to a lesser extent), yet unlike the lightcone efect they also vary depending on the redshift
of the slice. In general it has been shown that anisotropy created by peculiar velocity
(redshift space distortion) is dominated by the physical anisotropy of a wide redshift range
(Barkana & Loeb, 2005, 2006). This stronger source of anisotropy can, in fact, bear a
characteristic imprint of the state of the IGM, and is hence not altogether undesirable
(Zawada et al., 2014). Recent work has focused on reconciling or working around these
two efects through novel methods of quantifying the EoR (see, for example, Kakiichi
et al. 2017; Giri et al. 2018; Majumdar et al. 2018).

Reshaping

Ultimately, it was decided to take a wide slice at each redshift, such that the comoving size
along the line of sight is equal to that of the height and width (a cube of equal comoving
distance). The decision was motivated by the fact that this both vastly increases the
information, as well as signiicantly facilitates the computation (performing a 3D FFT
on a cube is simpler than on a rectangular prism). Yet the issue of scale still stands:
the pixels correspond to bins of equal bandwidth, in order to have similar thermal noise.
They must therefore be adjusted such that they have equal comoving thickness. This can
be accomplished through irstly calculating the comoving distance to each slice along the
redshift axis:

Dc =
c

H0

∫ 0

z

dz√
Ωm(1 + z)3 + Ωλ

(2.1)

where the Ω density parameters have the usual deinition (the curvature density Ωk is
taken to be zero), and H0 is the Hubble constant today, with values taken from Planck
Collaboration et al. (2016a). Along the physical axes, the high-resolution lightcone has
a width and height of 200 cMpc. Therefore, should we want to calculate the power
spectrum at redshift z, we take all slices whose comoving distance falls into the range
Dc(z)±100 cMpc. Now, these pixels can be stretched such that the temperature brightness
is distributed over the correct number of pixels for a cubical slice – 1024 for the high-
resolution lightcone (through the standard method of calculating the fractions of the
initial pixels that fall into the new grid). Figure 2.1 illustrates this procedure.
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section 2.4.3). Assuming spacial isotropy on large scales, k → |k| (a spacial average), and
we set the Dirac function to 2π via Fourier series expansion.

P21(k, z) =
1

4π

∫ ∣∣∣∣∣∣
δ̂Tb(k, z)

k

∣∣∣∣∣∣

2

dS (2.3)

P21(k, z) =
1

4πk2

∫
|δ̂Tb(k, z)|2dS (2.4)

To apply this to our data, we must irst apply the Fourier transform.

Applying the Fourier Transform

This is done with the Intel Math Kernel Library (MKL) DFTI routine1. Although the
DFTI functions are designed to handle 1D and 2D Fourier transforms, they do not come
with out-of-box functionality for 3D Fourier transforms. Thus the data spacing has to be
done manually. The 3D functionality, and the system for arranging the output data, was
patched together based on information from a number of online forums and examples.

The MKL DFTI routine takes advantage of symmetry, and returns an array with
dimensions [x, y, z

2
], in which entries are complex. Therefore, it is necessary to apply

the following routine (a normalization step) to each entry to arrive at the real Fourier
transformed cube:

Corrected(x, y, z) =

√√√√(Re[Output(x, y, z)])2 + (Im[Output(x, y, z)])2

(dpix)3
× (dMpc)

3 (2.5)

in which dpix is the side of a slice in pixels and dMpc is the size in cMpc. Although we are
not the irst to use the MKL DFTI for a 3D FT, we present the code nonetheless to save
future researchers the trouble of forum hunting (appendix B.1).

Binning

The power spectrum is then created through the standard method of averaging the power
in the spherical shells (although, in accordance with the MKL DFTI output, these are
hemi-spherical shells). The code used to generate the power spectra, which is included
as part of the 21SSD downloadable suite, ofers three methods of calculating the bins.
Should we want nb bins, the ith bin limit can be deined such that we assure:

• Equal volume
ith bin limit = dpix

2
3

√
i

nb
· kmin

1See https://software.intel.com/en-us/mkl-developer-reference-c-dfticomputeforward.

https://software.intel.com/en-us/mkl-developer-reference-c-dfticomputeforward
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• Linearity in k
ith bin limit = (i + 0.5) · kmin

• Logarithmic spacing
ith bin limit = 2

(
dpix

4

) i
nb · kmin

where kmin = 2π
dMpc

. There are advantages to all three methods. Equal volume bins
assures that no bin sufers from more sample variance than any of the others. Logarithmic
similarly reduces sample variance between bins, however it allows slightly more bins at
small-k. Yet we found that neither of these two binning methods suiciently sampled
the small-k region — a region of strong importance for EoR simulations. Therefore, the
choice was made to opt for a simple linear binning and accept the increased variance at
low k. Although there are many more pixels in large-k bins, the small-k region is well
sampled (we used nb = dpix/2). Sample power spectra created through this procedure are
shown in igure 2.2. We have included thermal noise following the method outlined in
Mellema et al. (2013). The procedure has also been used to generate the power spectra
presented in Semelin et al. (2017).
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Figure 2.2 – A selection of ive observables (power spectra) from 21SSD. The black line
represents thermal noise for a typical SKA survey, created using the procedure in Mellema
et al. (2013).

The ability of the power spectra in categorizing diferent EoR parameter conigurations
is evident. The rise of small structure (large k) at z = 8, for example. The arrangement of
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the diferent observables in P (k) also relects the deepness of the 21 cm ‘valley’ (see igure
1.5). As well, the shape of the power spectra also changes markedly for large structure
(small k), which is good news as this is the regime where noise poses less of a problem.
We expect peculiar motion would also add more power to the larger k side of the spectra
(smaller structure).

The power spectra also serve to illustrate some of the consequences of parameter
adjustments that we outlined in discussing the lightcones (igure 1.4). For example, the
more difuse nature of the lightcone at redshifts 8 ≳ z ≲ 9 we see when rH/S = 1 is also
seen in the power spectra: the blue dot-dash line is above the green dot-dash line at these
redshifts in igure 1.5, but nearly identical at other redshifts. To better see the efects of
the parameter values on the power spectra, one can plot them as lines of redshift (each
line corresponding to a ixed k value). Examples of this can be found in Santos et al.
(2008); Baek et al. (2010).

Quasar Contributions

On an aside, this power spectrum routine was also used to study the contribution of
quasars to reionization, with results presented in Bolgar et al. (2018). Figure 2.3, repro-
duced from said article, shows the quasar contribution to the power spectrum at z = 8
and z = 10. fduty is the ‘duty cycle’ of the quasars, which can be thought of as the
duration of the period of peak emission, and fcorr is a correction factor for the bolometric
luminosity. The noise is for SKA1 with 1000 h exposure time.

Pixel Distribution Function

Although the power spectra certainly ofer a powerful tool for simplifying and quantifying
the progression of the EoR, they do have their shortcomings. The power spectra, on
account of the reduction of information to the rms of the modules of the coeicient k-bins,
only account for Gaussian. This means that two lightcones with difering non-Gaussian
structure could have the same power spectra.

For this reasons, an alternative diagnostic was sought. We therefore explored using
the Pixel Distribution Function (PDF): a 2D histogram in which bins are organized in
terms of Tb and redshift (more precisely, bins are created such that they are linear in scale
factor). Explicitly, the ith bin limits for both variable are:

bina,i =

(
i

nb,a

)
(afinal − ainitial) + ainitial (2.6)

binTb,i =

(
i

nb,Tb

)
(Tb,max − Tb,min) + Tb,min (2.7)
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Figure 2.3 – The contribution of quasars to the power spectrum for redshifts 8 and 10, as
well as two diferent duty cycles. The shaded region is where the noise becomes higher
than the EoR power spectrum. Reproduced from Bolgar et al. (2018).

We then calculate which bin a pixel (x,y,z) falls into via:

Tb,bin = int
(

Tb(x, y, z) − Tb,min

Tb,max − Tb,min

nb,Tb

)
+ 1 (2.8)

For the scale factor bins the calculation is identical.

The relevant Fortran code is presented in appendix B.2, and the result are shown in
igure 2.4 for 15 observables taken from the 21SSD database.

The PDF also proves to be an interesting diagnostic, whose shape changes noticeably
between observables. For more subtle changes, the 1σ and 3σ contour lines help highlight
the diferences (containing 68.2% and 99.7% of the pixels respectively, for a given redshift).
In general, the area of primary pixel concentration roughly traces the values of average Tb

for a given redshift. The spikes in the purple (low pixel count) ‘wings’ are due to cosmic
variance; more concretely, a spike corresponds to passing through a bubble which is more
coupled in Lyα. If the boxsize was suiciently high (to remove this sample variance) we
would not have any spikes in these purple regions.

We can also adjust the PDF by subtracting the average Tb at each redshift. An example
of two ‘adjusted’ PDF (for both a strong and weak reionization scenario) is given in igure
2.5. Such adjusted PDF correspond to what could be produced should the inal SKA be
unable to measure average Tb at each redshift (although it is expected that average Tb

will be measurable through the antenna signal autocorrelation.).
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Figure 2.4 – A selection of pixel distribution functions from 21SSD (those with fα = 1).
For each PDF, the black and orange contours contain 68.2% and 99.7% of the pixels (for a
given redshift). Note that the contours may seem discontinuous, however in these regions
the pixels mostly fall along the 0 mK line. Multiple peaks for a given z can also lead to
odd contour shapes.
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Figure 2.5 – An example of adjusted PDF, in which the average Tb has been subtracted for
each redshift. Two observables have been chosen to represent strong and weak reionization
scenarios.

It should be noted that the thickness of each scale factor bin is still free to be adjusted.
Like with the power spectra, wide bins have less noise, but also begin to lose their ability
to represent speciic redshifts.

Deining Distance

With both the power spectra and the pixel distribution functions ofering methods to sim-
plify diferent EoR progressions, the question then becomes how to quantify the diference
between two observables. We adopt a simple L2 norm for this end. This formalism has
been used previously to compare predictions and observations in MCMC implementa-
tions, and seems like a logical choice here. Should the power spectra be used, the distance
between observables i and j is calculated as:

DPS(i, j) =

√∫ (
PSi(k, z) − PSj(k, z)

)2
dkdz (2.9)

where PSi is the ith observable, k is the inverse distance in h · cMpc−1, and z is the
redshift. This can be thought of as calculating the integrated volume2 between the two
power spectra ‘surfaces’. In the case of the PDF, the calculation is similarly:

DPDF(i, j) =

√∫ (
log10(PDFi(Tb, z)) − log10(PDFj(Tb, z))

)2
dkdz (2.10)

the only diference being that the logarithm of the PDF is taken beforehand. Unlike the
Power Spectrum, the range of each PDF covers 7 or 8 orders of magnitude, making the
logarithm useful to give weight to the low-pixel (purple) regions of the distributions.

2Or, more exactly, the volume between the spared surfaces of two power spectra.
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Figure 2.6 – The distance between the power spectra of the observables in 21SSD.

One is justiied in thinking that it would be logical to take into account the statistical
error (noise, e.g.) associated with each bin (both for the PDF and the power spectra)
when calculating distance. This is a valid point. We will return to it, and justify our
error omission, in the second part of section ??.

Power Spectrum Distance

The distance between the power spectra of 21SSD simulations is presented in igure 2.6.
We see that this distance is the most extreme between the simulation with parameters
[fX , rH/S, fα] = [0.1, 1.0, 2.0] and simulations made with diferent values of fX , as illus-
trated by the horizontal yellow bar. This is explained by the exceptionally deep EoR in
this particular simulation (see igure 1.4). In general, it is seen that variations between
each ‘block’ of simulations made with equal fX are signiicant. However, within each of
these blocks, there is little variation. This seems to suggest that using the power spectra
to calculate distances discriminates well for fX , but less powerfully for rH/S and fα.
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Pixel Distribution Function Distance

The PDF proves to be a very diferent diagnostic, which can be easily seen in igure
2.7. Firstly, comparing the PDF leads to a smaller range of values for distance. This
is because each individual PDF has the same integrated volume (a result of a constant
number of pixels in each simulation)3. Therefore the distance between two is somewhat
more constrained. Conversely, the power spectra can be orders of magnitude lower or
higher than others, depending on the ionization scenario. This diference explains the
fact that the power spectra distances fall between three orders of magnitude (10−2 - 101)
while the PDF only cover roughly one order (10−0.5 - 100.5).

In addition to magnitude, the PDF are also very diferent in form. There is little
variation from one 9x9 ‘block’ of constant fX values to another, nor between 3x3 blocks of
constant rH/S, yet there is substantial diference between simulations made with diferent
fα values. This is seen in the diferent magnitudes of neighbouring pixels.

Comparing Distance Deinitions

To properly examine where the diferent diagnostics excel, a comparison is necessary. For
a given pair of simulations i & j we can deine the Distance Ratio as:

Ratio(i, j) = max


 D̃PS(i, j)

D̃PDF(i, j)
,
D̃PDF(i, j)

D̃PS(i, j)


 (2.11)

To allow for a proper comparison, both distances are divided by their respective average
distance. These adjusted distances are denoted D̃, and deined by:

D̃(i, j) =
D(i, j)

1
N
∑N

i,j=1(D(i, j))
(2.12)

where N is the number of simulations. We can see the result of this in igure 2.8. Simu-
lations made with fX = 1.0 - 10 are deemed further from other simulations when using
the PDF distance as opposed to the PS distance, and the structure in fα is also seen to
stand out, especially at fX = 0.1.

The main information in this map is that the diference in discriminating power is
especially strong between observables with high heating levels (upper part of the triangle).
As we are taking the maximum of the two ratios, this tells us that one is outperforming
the other in this region. Judging from igures 2.6 and 2.7, this appears to be the PDF
(the values in this region are noticeably smaller for the power spectra distances).

3Although it is true that we are looking at the logarithm of the PDF, this will be true regardless. The
nature of the multi-redshift PDF means that any two will always overlap in some places, which is not
true for the power spectra.
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Figure 2.7 – The distance between the pixel distribution functions of the observables in
21SSD.
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Figure 2.8 – A comparison of the two methods for deining distance (power spectra and
pixel distribution function).
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It should also be remembered that the two diagnostics have diferent sensitivity to the
noise, and even in regions where the PDF appears to perform better, this advantage may
be lost to the noise the PDF experiences over the power spectrum. A inal conclusion
would need to account for the noise.

What is clear is that both methods seem to ofer a somewhat complementary pairing.
The power spectrum appears to be more sensitive to changes in fX (the clear diferences
from one 9×9 block of constant fX to another), while the PDF weights changes in fα more
heavily (the diference between one pixel to its neighbours). This is fortunate in a way,
as it gives us the power to probe two variables more efectively. This being said, neither
diagnostic seems to react especially strongly to changes in rH/S (we see little diference
between neighbouring 3×3 blocks of constant rH/S), indicating that either a new method
to constrain this parameter will be needed, or that the variable is simply not suiciently
consequential to reionization observables to realistically be extracted (obviously this needs
to be veriied with other simulations).

Distance Magnitude

As stated, the multi-redshift power spectra cover roughly 3 orders of magnitude, while
the PDF covers only ∼1. This leads to an interest efect, where changes in one variable
can eclipse changes in the others. For our parametrization changes in fX cause a large
change in order of magnitude of the power spectra (though not necessarily the slope). For
regions where fX is held constant (the points closest to the diagonal in igure 2.6) we see
that the fα diferences are apparent (neighbouring pixels are diferent) as they are when
the PDF is used (igure 2.7). This hints at another potential advantage of the PDF, which
is that it is less likely for one parameter to dominate. It could perhaps be possible to
apply a normalization to the power spectra to account for this efect (we could similarly
exponentiate PDF to perhaps better distinguish fX , however there already appears to be
some sensitivity to this parameter).

Mock SKA Data

The advantages of these diagnostics in both categorizing, as well as comparing, diferent
EoR observables, comes across clearly after having seen the results in section 2.4. How-
ever, it should be recalled that both the power spectra, as well as the pixel distribution
functions, were created using the highest resolution lightcones (a few arcsec). For the
power spectra, the noise curve already corresponds to realistic SKA noise, and therefore
they already represent a realistic idea of what to expect. However, the PDF will lose
their details if a lower resolution lightcone is used, and therefore igure 2.4 represents the
idealized potential of such diagnostics.

On account of this, we reproduced the PDF using the low resolution lightcones. This
is shown in igure 2.9. Although the shape persists (roughly tracing the average Tb values
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for a given redshift), much of the information that may have been contained in the faint
wings (seen in igure 2.4) has been lost. Adding noise is the equivalent of smoothing the
PDF in the Tb direction. As well, when the thermal noise is included, there is very little
hope of tracing the EoR through PDF past z ≈ 12 at 6’ resolution (and perhaps z ≈ 10
at 3’ resolution).

Attempting Parameter Reconstruction

The framework laid out in this chapter sets the stage for future work in parameter recon-
struction. The 21SSD observables are suiciently detailed to capture the intricacies of the
Epoch of Reionization, and paired with the two distance measures they could prove pow-
erful tools to add to current parameter inference eforts (section 0.6.6). Here we outline
the rough steps through which this goal could be achieved:

1. Ideally, the parameter space should be better sampled, as 45 observables is a rela-
tively sparse sampling with which to form the foundation of parameter extraction. A
database of ∼100observables would represent a solid update on the current 21SSD,
and likely be suicient for preliminary parameter extraction attempts.

2. It would also be worthwhile to test other parameters. As was seen in section 2.4.3,
the three used here all showed diferent sensitivities to the PS and PDF methods of
comparing observables. Perhaps we could ind a choice of parameters which all vary
strongly for one of the two methods, which would help us to eventually set tighter
constraints.

3. With more observables, the corresponding SKA resolution power spectra and pixel
distribution functions could then be created (section 2.5).

4. These would allow for larger distance maps (igures 2.6 and 2.7), using both distance
deinitions (sections 2.4.1 and 2.4.2).

5. Real incoming tomographic data could then be compared to the observables in the
21SSD database (through calculating the corresponding power spectrum and PDF)
using neural networks (recall from section 0.6.6 that MCMC involves recalculating
the observables at each step, and is therefore computationally unrealistic for high-
resolution codes).

6. Finally the relevant parameter values could be determined.

However, this quick overview is a tremendous oversimpliication. In reality there are a
number of things to consider. Future versions of the 21SSD database could (and should)
also explore other parameters, allowing for corresponding higher dimensional parameter
spaces (recall in section 1.3.1 an 11 dimensional sampling has been studied in Kern et al.
2017). There is also the matter of how to consolidate the diagnostic abilities of the power
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3’ noisy 3’ noisy

3’ clean 3’ clean

6’ noisy 6’ noisy

6’ clean 6’ clean
fX = 0.1, rH/S = 1, fα = 2 fX = 10, rH/S = 1, fα = 0.5

Figure 2.9 – A selection of pixel distribution functions created at SKA resolution. Thermal
noise is represented by the dashed white line (see section 1.4 for an overview of noise
modelling).
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spectra and pixel distribution functions. Certainly, as discussed in section 2.4.3, both
methods have somewhat complementary advantages, and it seems logical to use both.
Yet whether they should be applied separately to real data, or if a hybrid version should
be conceived (in which both distances are somehow weighted and combined), remains
an open question. There are still other considerations, such as future reinements to
the LICORICE code in preparation for SKA data, how to best train neural networks
in parameter reconstruction, and the possibility of standardizing a parameter space and
coordinating with other contemporary simulations to assure a more thorough sampling.

Needless to say, there is certainly work to be done. For the time being, the astute
reader may have noticed that at the core of many of the above-stated questions is the
notion of parameter space sampling. It is therefore along this avenue that my research
embarked during the inal year of my PhD, and thus the following chapter will begin by
elucidating exactly how parameter space sampling is intimately tied to resolving many of
the above considerations.



Part Three

Finding an Optimal Parameter
Space Sampling





CHAPTER 3

Finding an Optimal Parameter Space Sampling

The Problem at Hand

With 21SSD, as with any database of EoR models — or indeed, simulation models in gen-
eral — there is an understandable interest in sampling a parameter space as thoroughly as
possible. This entails sampling as many parameter conigurations as realistically feasible.
In addition, as mentioned previously, we ideally would like to explore parameter spaces
with as many parameters as possible, to eventually constrain a large number at once.
Yet properly sampling a high-dimensional parameter space, especially for full dynamics
codes (such as LICORICE), requires immense amounts of both time and computational
resources. For this reason, simply sampling heuristically and ‘hoping for the best’ (in
terms of capturing the full intricacies of a parameter space) is not desirable. One is jus-
tiied in asking if there could be an ‘optimal’ sampling: that is, a sampling (with a set
number of points) that optimizes the resulting database towards achieving a predeined
goal. This question will form the foundation of this chapter.

Firstly, before attempting to answer this question, we will deine what is meant by
optimal (section 3.2) and look at previous sampling techniques (section 3.2.1). Section
3.3 will describe the preliminary steps of creating a ‘prototype parameter space’ on which
to test sampling optimization algorithms. The irst of these algorithms, which is based on
metrics and linear algebra, is outlined in section 3.4. The second, which employs a more
physical approach to the problem and does not assume a grid is necessary, is then laid
out in section 3.5. These two methods are compared in section 3.5.1, and inally section
3.6 showcases some interesting results in applying these optimized samplings to neural
network training.



90 3.1 The Problem at Hand

Table 3.1 – Chapter 3 Contribution Breakdown

Section Me Not Me
3.2 Majority Some discussion
3.3 All implementation and igures Some theoretical input
3.4 All implementation and igures Theoretical framework
3.5 Creating models and calculating dis-

tances
Majority

3.6 Creating various samplings (test
data)

Majority

Corresponding Publication: Eames et al. (in prep).

Relevant Deinitions

It is worth taking a moment to cement some useful terminology before continuing.

The parameter space consists of a choice of parameters, and the range of values we allow
them to assume. A point in this parameter space is efectively a set of coordinates. If
we take the example of three parameters θ1, θ2, θ3, then our parameter space is all points
that fall into the ranges [θ1,min : θ1,max], [θ2,min : θ2,max], [θ3,min : θ3,max].

A sampling is a inite choice of points within a given parameter space. Continuing the
above example, the ith point would have the form θ⃗i = (θ1,i, θ2,i, θ3,i), where values fall
within the enforced bounds.

A model is a framework (theoretical or numerical) that is used to compute an observable
for a given point in the parameter space.

An observable1 is a quantity that can be computed from the observation. It is a prediction
of the observation as computed via a model. The power spectra is an example of an
observable, and should we choose this convention then a point θ⃗i in our parameter space
would have corresponding observable PS(θ⃗i). Other examples of observables could be
PDF, lightcones, the global signal, etc.

The space of observables2 is the space spanned by these observables. For example, a power
spectrum estimated in 10 k-bins at a single redshift inhabits a 10-dimensional space of
observables.

1It is worth restating that other authors have used the word ‘model’, however this can be misleading,
as ‘model’ traditionally refers to a speciic theoretical framework used in simulating a phenomenon. Yet
here the ‘modelling’ does not change, only the parameters used. We therefore feel that ‘observable’ is a
more cautious choice.

2This word ordering is intended to bypass the pitfall that would have been ‘observable space’; a choice
which would have easily been misinterpreted as the space which can be observed.
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The hypersurface of predictions by the model3 is a space embedded in the space of observ-
ables. The model acts as a map between the the parameter space and this hypersurface
(both of which have the same dimension). The geometry can be quite diferent from that
of the parameter space. For example, the two closest points in a sampling may not neces-
sarily transform to give the two closest observables (which also depends on the choice of
‘distance’ between observables). In section 3.4.1 we will deine a metric to quantify the
geometry of this hypersurface.

In mathematical terms, we could think of the model (simulation) as a function which
maps points from the parameter space to observables on the hypersurface (within the space
of observables). The nature of this function will depend on the observable, although we
should not expect it to be injective (multiple points in the parameter space could give
identical power spectra) nor surjective (there may be regions in the hypersurface that do
not have a corresponding point in the parameter space).

Optimal Sampling

When we envision an ‘optimal’ sampling, we refer to a parameter space sampling for
which all observables are equally diferent from ‘neighbouring’ observables (if the concept
of neighbours exists). Should the points in parameter space be organized on a grid, we
would ideally like for any two neighbouring points (along any axis) to map to equally
diferent observables (in the sense that they are at equal distance for a given distance
diagnostic). Should we not require a grid system, the deinition becomes more nuanced,
and we will return to this case in section 3.5.

In the mathematical framework outlined above, we are looking for a sampling of the
parameter space that maps onto a homogeneous and isotropic sampling of this hyper-
surface (according to our distance deinition). It should also be noted that the speciic
coniguration of an optimal sampling depends on the deinition of distance. For example,
a sampling that is optimal when the power spectra is used as the measure of distance,
will not necessarily be optimal when the pixel distribution function is substituted. This
will be discussed in section 3.7.

As a irst step, we will satisfy ourselves with ‘optimal’ referring to equally distant
observables, arranged in a grid (one which is not necessarily Cartesian). The hope is that
this will assure a better chance of exploring the full range of EoR scenarios, as well as
providing the best training data for neural networks attempting parameter reconstruction.

Previous Sampling Methods

There are a number of ways we may decide to sample a parameter space:
3Note that here we use ‘model’ in the traditional sense: the theoretical framework implicit in a

simulation.
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• Linear (Regular) Sampling (on a grid)

• Logarithmic Sampling (on a grid)

• Random Sampling

• Latin Hypercube Sampling

• n-Sphere Packing

• Heuristic Sampling

Spacing parameter values linearly or logarithmically along an axis is logical if we expect
the observable to change in a similar manner. If we recognize that moving within a region
of the parameter space has a strong efect on the resulting observables compared to other
regions, it is natural to oversample this region, approximating the sampling heuristically
(‘by eye’). When the relationship between the parameters and the resulting observables is
not immediately obvious, as is often the case for EoR simulations, one can take a random
sampling. Yet this risks oversampled and undersampled regions due to both shot noise
and intrinsic properties of the parameter space. Therefore, authors have previously used
the ‘Latin Hypercube’ method to avoid this.

Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) — as developed by Eglajs & Audze (1977); McKay
et al. (1979); Iman et al. (1981) — requires that no two points in the parameter space
share any parameter values. In two dimensions it is equivalent to placing a number of
rooks on a chessboard such that no two rooks can capture each other. Maximum spacing4

between samplings can be paired with LHS to avoid aberrant cases, such as sampling only
along one of the diagonals (Morris & Mitchell, 1995). This is called Orthogonal LHS. A
basic example can be found in igure 3.1.

LHS has been found to perform marginally better than regular grid sampling in train-
ing a statistical emulator5 on a sparsely sampled parameter space in 3D (Heitmann et al.,
2009), or 4D (Urban & Fricker, 2010). For neural network training, Schmit & Pritchard
(2018) did not ind any notable diference between LHS and grid sampling, however they
use the 3D parameter space of Greig & Mesinger (2015), and expect LHS would excel
for higher dimensions. The higher dimensional beneits of LHS are shown in Kern et al.
(2017).

4Note that this is the distance between parameter values, and not between the resulting observables.
5“A fast proxy for a complex computer model which predicts model output at arbitrary parameter

data from a limited ensemble of training data.” As described in Urban & Fricker (2010).
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eye’ sampling techniques, parameter space sampling has always been based on the distance
between parameters, as opposed to the distance between the resulting observables. For
this reason we will now attempt to develop a sampling technique that is optimal6 in terms
of spacing the resulting observables.

It is clear that we will need to explore large, well sampled parameter spaces. A sparse
sampling, such as 21SSD, would be insuicient to truly draw conclusions on the efective-
ness of any sampling method put forth. It will also be necessary to move points around
within this parameter space, possibly many times. Each time a single point is moved, it
requires the simulation to be re-run to create the corresponding observable. Combining
this with a satisfactory sample size will require a daunting number of simulation runs,
likely on the order of thousands.

Because of this requirement, full numerical codes such as LICORICE are simply out
of the question. We therefore use 21cmFAST (Mesinger et al., 2011), described in detail
in section 0.6.3. Note that the necessity of a fast semi-numerical code only applies to the
development of an algorithm for optimal sampling. Once the algorithm is designed and
tested, it can then be easily used to optimally sample with full numerical, high-resolution,
codes such as LICORICE, albeit with sparse sampling (recall that a sampling can be
optimal even for a sparse number of sampled points). We will return to this in section
3.7.

Parameter Deinitions

To enable easy future synergies (e.g. comparing parameter reconstruction results), we
choose to use the 3 dimensional parametrization used previously for 21MCMC (Greig &
Mesinger, 2015). This was mentioned in section 1.3.1, however here we quickly summarize
the three parameters.

• ζ, the ionizing eiciency of high-z galaxies:

ζ = 30

(
fesc

0.3

)(
f⋆

0.05

)(
Nγ

4000

)(
2

1 + nrec

)
(3.1)

where, for each bracket moving left to the right, the variables are the ionizing photon
escape fraction, the fraction of galactic gas in stars, the number of ionizing photons
produced per baryon in stars, and the typical number of times a hydrogen atom
recombines. The parameter should be thought of for an ‘umbrella parameter’ for a
number of efects that play into the ultimate reionization rate. In 21cmFAST, this
parameter ultimately decides whether, for a given number of sources, the IGM will
be ionized. Setting it to a low value will result in reionization taking place at late
redshifts (or not at all). High values result in early reionization.

6Section 3.2.
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• Rmfp, the mean free path of ionizing photons within ionized regions7.
This parameter dictates the speed at which ionized regions around ionizing galaxies
grow.

• Tvir, the minimum virial temperature of star forming halos.
It can be though of as an ionization switch, controlling when halos begin to ionize
their surroundings. Conversely to ζ, setting it to high values will result in a neutral
universe up to very late redshifts.

See Greig & Mesinger (2018) for full deinitions.

Parameter Ranges

The ranges are taken to be ζ ∈ [10, 200], Rmfp ∈ [10, 75] (cMpc), Tvir ∈ [8 × 103, 105] (K).

ζ is varied within a range similar to in Greig & Mesinger (2018), which is higher than
in previous versions of 21MCMC to include early bright galaxy reionization scenarios
(although they go up to ζ = 250, we opt for a lower value for a more closely spaced
sampling).

The mean free path in ionized regions has previously been shown to have little efect
on the observables above ≳ 15 Mpc (Sobacchi & Mesinger, 2014). However, our goal
here is not to include these indings regarding Rmfp, but rather rediscover them in the
geometry of the hypersurface of models. For this, we take the much higher values of
75 cMpc (compared to 25 in Greig & Mesinger 2018). For the lower bound, however, we
take a slightly more conservative value of 10 cMpc (compared to 5), which is the result
of discussion on the dynamics at this smaller scale.

For the virial temperature our range ([8 × 103, 105] (K)) also difers on for both the
higher and lower limits from 21MCMC ([104, 106] (K)). We allow a slightly lower minimum
virial temperature, as radiative cooling can allow for star formation in smaller (cooler)
halos (although the star formation eiciency drops to ∼20% at ∼ 102 K, it is still likely
reasonably at 8 × 103 K; see Kimm et al. 2017). On the other end, there has been hints
that the minimum Tvir is high (∼ 106 K) for EoR redshifts on account of metallicity efects
suppressing star formation (Kuhlen & Faucher-Giguère, 2012). Yet these higher values
lead to very little variation in PS (on account of the very late ionization), and hence we
choose a slightly lower one, to better test comparisons between the resulting observables.

The initial ‘iducial’ sampling consists of 10 values, spaced logarithmically8, for each
parameter; this results in a total of 103 points (table 3.2).

7More precisely, this is the ‘efective horizon’ of photos set by the sub-grid constraints of 21cmFAST.
The true mean free path tends to be slightly larger than this value on account of resolution efects
(Mesinger et al., 2011).

8The choice of logarithmic, as opposed to regular, sampling is based on the expectation that parameter
variations will impact the resulting observables more at the lower ends of the bounds. However, this may
not be the case. Still, developing an optimal sampling algorithm that functions well on an initially
logarithmic sampling, and adapting it to work on a regular sampling is much simpler than going the
other way.
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Table 3.2 – Fiducial Sampling

Parameter Explored values
ζ 10, 13.95, 19.45, 25.14, 37.14, 52.82, 73.68,

102.78, 143.37, 200
Rmfp 10, 12.51, 15.65, 19.57, 24.48, 30.63, 38.32,

47.93, 59.96, 75
Tvir/104 0.8, 1.06, 1.40, 1.86, 2.46, 3.25, 4.31, 5.70,

7.55, 10

21cmFAST Cloning and Paralellization

Even with the speed of 21cmFAST, running 1,000 versions of the code is a signiicant
challenge (a second iteration, to be described in table 3.3, necessitated 2,400 runs). Each
run takes on the order of a few hours, and thus running thousands of iterations without
paralellization would require an unrealistic time frame. Yet, even when running in par-
allel, the process of copying the 21cmFAST iles one-by-one, and manually changing the
variables, would be absurd.

To overcome this, a code was developed, written in c, to automate the process. A
‘master’ 21cmFAST directory was created, and copied into new directories as many
times as needed (we nicknamed these copies ‘clones’). The parameter ile was also al-
tered as required for each clone, and each clone directory was named accordingly (e.g.
f10_R10_T0.8e+04). 21cmFAST version 1.2 was used, with all parameters kept at their
‘out-of-box’ values9 (with the exception of zmax = 15, ∆z = 1, and those to be varied
in creating the parameter space). We also set TS ≫ TCMB to be true in the parameter
iles. This is expected to be a safe bet for most of reionization, although the assumption
is expected to be incorrect at the beginning of the EoR (the Cosmic Dawn), during which
astrophysical parameters are uncertain (Furlanetto et al., 2006; Mesinger et al., 2011).
For our purposes, assuming TS ≫ TCMB results in a speed-up of ∼a few, and we remind
the reader that our goal is to study sampling optimization, not the efects of diferent
heating scenarios.

Using MPI paralellization, a script was created to launch these thousands of clones
simultaneously. The code also deletes all program iles and unnecessary iles after each
run is complete. See Appendix B, section B.3 for the raw code. The code was run on the
OCCIGEN supercomputer, maintained at CINES
(https://www.cines.fr/calcul/materiels/occigen/).

With this, one thousand iterations of 21cmFAST are run in parallel to create observ-
ables at each point of this parameter space. For a sampling of 1,000 points, the runtime
is approximately ∼a few hours on OCCIGEN. The distance between observables is then
calculated for every pair of points in the parameter space using the process described in

9Boxlength = 300 Mpc, Boxsize = 256 (low) and 768 (high), cores = 8, RAM = 16 Gb.

https://www.cines.fr/calcul/materiels/occigen/
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section 2.4.1. The ‘out-of-box’ version of 21cmFAST already creates and saves the power
spectra, so we use this for the distance measure as opposed to the PDF (with power spec-
tra created at intervals of ∆z = 1, z ∈ [6, 15], and recall that we are comparing P (k, z), a
2D function). We now need to identify regions of the parameter space which have been
over/under-sampled.

Deining Density

To do this we must construct a deinition of ‘density in the space of observables’ based
on the power spectrum distance to neighbouring observables.

Inverse Average Distance

Perhaps the most intuitive way to go from a clustering of points to a density at each point
is simply to calculate the average distance to this point’s neighbours, and then invert this
value10:

3
√

ρi =


1

6

6∑

j=1

Di,j




−1

(3.2)

We consider the neighbours of a point to be those immediately bordering this point
on the grid — 6 points in our 3D parameter space (and the 6 resulting observables in
the space of observables). Note that these are not necessarily the six nearest points, as
deined by the distance measure Di,j. We can imagine a situation in which distances in
our 3D space are much larger in one dimension than the other two. This is equivalent to
having one parameter which, when varied, changes the form of the power spectra more
than the others.

For the observables created using a point sampled on the surfaces, edges, or corners
of the parameter space (those without a neighbour in all six directions) there is a slight
complication that arises. It seems natural that we could simply average these boundary
densities over fewer neighbours (5 for surfaces, 4 for edges, and 3 for corners). However,
as mentioned, we are confronted with the fact that there is a large anisotropy in our
parameter space — varying one parameter may have more efect on the morphology of
the observables, and hence the power spectra, than varying another. For our choice of
parameters, the distance between observables along the Rmfp direction was habitually
between one and two orders of magnitude smaller than in the ζ and Tvir directions – a
fact which produced a systematic lower density at boundary points. To remedy this, a
more satisfying choice is mirroring the neighbours, such that all observables have six.
Through this, we created the density cube shown in igure 3.2.

10We use the cube root of the the density to increase the contrast in upcoming igures, however we will
still use the convention of referring to the quantity as simply the ‘density’.
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Figure 3.2 – Densities of points sampled from this parameter space, as calculated using
the simple density model of inverse average distance to neighbouring observables (equation
3.2). The observable is the power spectrum.

We see that the density varies little as a function of Rmfp, except for low values of Tvir.
Raising Tvir above 1.40 × 104 K seems to have nearly no efect on the observables. This
seem logical, as the higher we raise Tvir, the less star formation will occur, and hence the
mean free path will become less important. Low values of ζ account for the region where
observables are the most similar. Likely at these low ionization eiciencies, ionization is
only starting at very late redshifts, and the observables are therefore all nearly identical.

Computing the Densities with Smoothed Particle Hydrodynamics

One issue with the simplistic approach of ‘inverse average distance’ is that it works best if
the topology of this distance-space of observables is lat and isotropic. In actuality, unlike
the parameter values, we cannot be sure that the resulting observables are necessary
‘next to each other’. We know only the distance between them. As mentioned before,
the 6 ‘neighbouring’ observables (with respect to parameter values) used to calculate the
average distance are not necessarily the closest in parameter space. A more satisfactory
method of calculating distance is preferable.

Smooth Particle Hydrodynamics (SPH), as outlined in (Lucy, 1977; Gingold & Mon-
aghan, 1977) and expanded upon in (Monaghan, 1992) was developed to deal with systems
of particles forming an irregular sampling, rather than a grid. It therefore provides a help-
ful framework with which to approach our transformed parameter space.

For each observable, we irst determine the n closest neighbours (where n < N , the
total number of observables). Of these, we denote the distance to the nth closest neighbour
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Figure 3.3 – Densities of points within this parameter space, as calculated using SPH (and
using the power spectra as observables).

h0, then deine a weighting function11:

W (D, h0) =





4−6R2+3R3

4β
for R < 1

(2−R)3

4β
for 1 ≤ R < 2

0 for 2 ≤ R
(3.3)

in which

R =
2D

h0

β = π

(
h0

2

)3

(3.4)

The density of the ith point then becomes

ρSP H,i =
1

n

n∑

j=1

W (Di,j, h0i) (3.5)

As before, Di,j is the distance between the i and jth observables, and h0,i is the distance
to the nth closest neighbour from the ith observable. For our purposes, we choose n = 10,
which gives the densities illustrated in igure 3.3.

Comparing with igure 3.2 we see that the SPH results in an interesting diference. The
density cube is similar, and for both density deinitions the density of the observable space
grows with increasing Tvir, while ζ is inversely proportional. The interesting behaviour at
Tvir = 8.00e3 is also seen for both density deinitions. However, where the two difere is in
the Rmfp dependency, which has inverted. Explicitly, in igure 3.2 increasing Rmfp results
in decreased density, while for the SPH case an increase in Rmfp results in increasing

11W can also be thought of as applying ‘Kernel Smoothing’.
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density. This tells us that the SPH method is inding the closest observables to difer
only in Rmfp. In short, we have oversampled along the Rmfp axis, a parameter which we
conclude does not have as strong an efect on the resulting observables as the other two
parameters.

We do not want to simply correct the parameter space heuristically, approximating re-
gions where the sampling should be more or less dense ‘by eye’. Recall that we ultimately
want an algorithm to mathematically resample the parameter space. In fact, when calcu-
lating the metric across the parameter space using a inite diference scheme (as will be
discussed below) we discovered that the metric in some regions had negative eigenvalues
(incompatible with the mathematical deinition of distance). This tells us that we simply
cannot proceed without irst creating a iner sampling.

Therefore, we adjust the iducial parameter values (table 3.2) by sampling along the
ζ and Tvir axes more inely (20 values each), and the Rmfp axis more coarsely (6 values).
The new parameter space sampling consists of 2,400 points, and is presented in table 3.3.

Table 3.3 – Adjusted Sampling

Parameter Explored values
ζ 20.00, 22.58, 25.49, 28.77, 32.48, 36.66, 41.33,

46.71, 52.73, 59.53, 67.20, 75.85, 85.63, 96.66,
109.11, 123.17, 139.04, 156.95, 177.17, 200.00

Rmfp 5.00, 7.38, 10.89, 16.07, 23.72, 35.00
Tvir/104 0.80, 0.91, 1.04, 1.19, 1.36, 1.56, 1.78, 2.03,

2.32, 2.65, 3.02, 3.45, 3.94, 4.50, 5.14, 5.88
6.71, 7.67, 8.76, 10.00

An Algorithm for Optimal Sampling: The Eigenvector
Method

Before using the full 2,400 point sampling, let us irst explore the distances between points
on a smaller 8×8×8 sampling to study what is going on along the current axes (although
we do use the 2,400 sampling in constructing the algorithm described below, 512 points
was chosen as the standard number of points for comparing the geometries of the diferent
spaces). Figure 3.4 presents a histogram of the distances between all neighbouring points
in the parameter space. A visualization is also provided in igure 3.9.

Looking at the histogram, we are able to conirm our supposition that the space is
neither isotropic, nor homogeneous. An isotropic space would have the histograms for
each axis overlapping, which is not the case here. We see that the distance between
neighbouring points along the Rmfp axis is noticeably smaller than for the other two
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Figure 3.4 – Distances between neighbouring observables along the three parameter axes
for an 8 × 8 × 8 logarithmic sampling. See igure 3.9 for a visualization of the sampling.

directions. As for an equally spaced axis, this would correspond to a Dirac delta function
(when represented as a distance histogram). We do not see this here: each histogram
has a peak with some width, and the Tvir axis has an additional tail with some values
scattered at higher distances, extending up to ∼23.

The ideal situation would therefore be, for our case, three overlapping Dirac delta
functions. In practice this may be impossible, however we can still work towards making
the peaks as narrow and close together as possible. Here, we can also see that simply
adjusting how inely we sample the three axes will not be enough. This will not remedy
the regions of high observable variability. The axes will likely have to be rotated, or (if
allowable) the grid could be abandoned altogether.

The idea is then to study the geometry of the space more rigorously, using the eigen-
vectors (normalized) and eigenvalues at each point (obtained using the metric). These
will give us an idea of the rate at which the observables change as we move through the
parameter space. Using three orthogonal averaged eigenvectors and eigenvalues, we can
reconstruct the grid in steps of equal observable distance (still using L2 norm on the power
spectra).

Working in a Logarithmic Space

It is important to remember that we will continue to use a logarithmic parameter space.
More explicitly, the paramater space has been renormalized such that, along each axis,
a logarithmic step (base 10) is treated as a diference of coordinate12 of ‘1’. This means

12This is the length between points in the parameter space, and not the power spectrum distance
between observables.
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that, for example, in the metric deinition below (speciically equations 3.8 to 3.13) when
we refer to the distance to ‘neighbouring’ points along a given axis, these points are
actually logarithmically spaced. The same holds true for the upcoming deinition of
volume (equation 3.16). When it comes time to calculate the new vectors along which
we will resample, we will account for this decision through the use of constant factors to
re-establish the physical value of the parameters with their ‘coordinate’ values (deined in
equation 3.19 below).

Deining the Metric

To begin this, using the distances between all points we can compute the metric at each
of these points. The metric of the 3D hypersurface of predictions is deined as:

g =



gxx gxy gxz

gxy gyy gyz

gxz gyz gzz


 (3.6)

such that two points of the hypersurface of prediction separated by an ininitesimal vector
(dx, dy, dz) using the above coordinate system, will be at a distance:

dl2 =
[
dx dy dz

]
· g ·



dx
dy
dz


 (3.7)

In order to compute the metric at each point in our parameter space, we use a simple
inite diference scheme. In our coordinate system, the vectors between neighbouring grid
points can be written (∆x, ∆y, ∆z), where ∆x, ∆y, and ∆z ∈ [−1, 0, 1]. We are thus
considering the 26 neighbouring points in 3D (the cube surrounding a point). For a given
neighbouring point, the distance D∆x,∆y ,∆z

is the corresponding distance according to the
metric, the relation to the metric terms in the (x, y) plane is as follows:

D2
1,0,0 = gxx (3.8)

D2
−1,0,0 = gxx (3.9)
D2

1,1,0 = gxx + 2gxy + gyy (3.10)
D2

−1,−1,0 = gxx + 2gxy + gyy (3.11)
D2

1,−1,0 = gxx − 2gxy + gyy (3.12)
D2

−1,1,0 = gxx − 2gxy + gyy (3.13)

Should we include the (x, z) and (y, z) planes, 12 more equations can be added. This
constitutes an overdetermined set of equations (which could be further expanded to in-
clude the corners of the cube) for which we could easily ind the least mean squared
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approximate solution. The symmetries of the equations suggest a more simple scheme.
Using only these 12 equations, we solve for the metric terms to arrive at an approximate
solution:

gxx =
D2

1,0,0 + D2
−1,0,0

2
(3.14)

gxy =
D2

1,1,0 + D2
−1,−1,0 − D2

1,−1,0 − D2
−1,1,0

8
(3.15)

The other coeicients have equivalent expressions. This scheme is in the spirit of using
centred diferences for computing derivatives. Because of this choice, we do not compute
the metric at the points located on the faces of our parallelepiped rectangle domain.
The accuracy of this estimation based on inite deference obviously relies on our iducial
sampling being dense enough so that the metric varies little between two neighbouring
points.

Eigenvector Inversion

For each point, the corresponding metric is diagonalized to give the eigenvalues and eigen-
vectors. This is accomplished using the 3D diagonalization routine presented in Kopp
(2008)13. Although fast an eicient, an interesting complication arises. For the ith point,
v⃗i and −v⃗i are both equally valid eigenvectors (with eigenvalue λi). The diagonalization
routine will sometimes switch between signs at arbitrary positions in the parameter space.
This, in and of itself, would generally not be an issue. However each point has three eigen-
vectors, none of which are numbered, and all of which are expected to change direction
from one point to the next according to the topology. At regions where the observables
change quickly, it can become diicult to discern if the vectors have changed direction on
account of the metrics, or if one has accidentally been lipped.

Our goal is to build a set of local orthonormal basis vectors with the same orientation.
Because of this, the problem must be resolved, as any lipped vectors will bias the average
eigenvector we wish to compute. Therefore, a routine was developed to compare and
match vectors, to decide if one or more had been lipped. This worked well, but was still
seen to fail for regions in which observables changed rapidly. Take the following case, for
example:

Point 1: v⃗1 =
[
0.98 −0.06 −0.19

]
, v⃗2 =

[
−0.05 0.83 −0.55

]
, v⃗3 =

[
0.19 0.55 0.81

]

Point 2: u⃗1 =
[
0.69 −0.23 0.69

]
, u⃗2 =

[
0.37 0.93 −0.06

]
, u⃗3 =

[
−0.63 0.30 0.72

]

These are the three eigenvectors for two neighbouring points in a region of high ob-
servable variability. The one-to-one correspondence between vectors is not immediately

13Speciically the DSYEVJ3.c script, which diagonalizes using the Jacobi method.
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Figure 3.5 – A region of the parameter space showing the eigenvectors for each point. This
image illustrates the rotation of the eigenvectors from one point to the next. The image
has been scaled to make this behaviour especially obvious along the ζ axis.

obvious, nor is whether or not some have been inverted. In fact, given these two points
and nothing else, it is impossible to know which eigenvectors correspond (without resort-
ing to a much iner parameter space sampling between the points, at a computational
expense). However, we can exploit a feature of the parameter space to resolve this issue.

Figure 3.5 shows a region of the parameter space in which the eigenvectors have been
calculated and plotted at each point. This is a section without any inverted eigenvectors,
and we see along the ζ axis the eigenvectors appear to rotate across the parameter space.
In fact, this rotation exists along all three axes. Although the eigenvector rotation is not
linear across the parameter space, it still allows us to estimate the direction of the three
eigenvectors at any point by approximating their rotation in the region. To clarify this,
let us say we have three points aligned along one of the parameter space axes: i, j, and
k. Then, based on a linear extrapolation, we expect the kth point to have eigenvectors
(v⃗1,k, v⃗2,k, v⃗3,k) given as:

v⃗1,k = 2v⃗1,j − v⃗1,i, v⃗2,k = 2v⃗2,j − v⃗2,i, v⃗3,k = v⃗3,j − v⃗3,i

This remedies the issue of inverted eigenvectors, and also allows us to group the
eigenvalues. A histogram of eigenvalues across the parameter space14 is shown in igure

14In fact, we have not included the eigenvalues nor the eigenvectors that fall on the borders of the
parameter space, as they tend to behave erratically on account of the metrics not being properly deined
on the borders.
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Figure 3.6 – A histogram of eigenvalues across the parameter space, along with their
corresponding eigenvectors. The points on the borders of the parameter space have been
excluded.

3.6. The noticeably diferent shape for each of the three eigenvalue groups in the igure is
an indication of the inhomogeneity and anisotropy of the hypersurface of predictions (as
expected from igure 3.4, and the diferent efects of the parameters on the observables).

It should also be noted that the eigenvectors are each a combination of the three
parameter vectors (ζ, Rmfp, and Tvir), and there is no direct correspondence between the
distances in igures 3.4 and the eigenvalues in 3.6. It is for this reason that diferent
colours have been used.

Resampling

We can now begin to resample by irst calculating the average eigenvectors (normalized15)
and eigenvalues (across the 2,400 point logarithmic sampling). This is shown in igure
3.7.

We see that for all points in this parameter space, the corresponding eigenvectors tend
to fall in clustered regions (pointed to by the averaged eigenvectors). However, the eigen-
vectors v2 and v3 (see legend in igure 3.6) have ‘tails’ wherein the values spread out. v1 also
has a small secondary group of eigenvectors. This is possibly due to Tvir, for which we ob-
served the eigenvectors to change quickly between 0.91×104 K and 1.04×104 K. However,
understanding the true cause is non-trivial, as rotating eigenvectors is not necessarily an

15Be careful, depending on the method used for averaging, it may be necessary to re-normalize (even
if the eigenvectors were already normalized). This is because simply averaging the coordinates of the
eigenvector’s heads does not generally result in a normalized eigenvector.
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Figure 3.7 – The three average eigenvectors across the parameter space, showing the
clusters of eigenvectors, as well as the 2D projections. The colours are those of the
corresponding eigenvalues in igure 3.6.
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indication of changing distances, but curvature of the hypersurface of predictions (section
3.1.1). A full treatment of these efects would require a foray into diferential geometry,
and is not attempted here.

With these average eigenvectors v̄n and their corresponding average eigenvalues λ̄n

we efectively know the ‘average’ distance between simulations (eigenvalues) when travel-
ling through this parameter space in three orthogonal directions (eigenvectors). We can
therefore use this knowledge to re-sample the parameter space such that, in this new grid,
the distances between neighbouring simulations will be closer to constant on average. It
is to be expected that, on account of regions where the eigenvectors experience rotations
away from the average, there will be some variation in the distances between neighbouring
observables in said regions. However, we should still expect a much more isotropic and
homogeneous parameter sampling than the logarithmic counterpart.

Starting from the central point of our parameter space, we can slowly expand outwards
using three new ‘step vectors’, which are to be based on the average eigenvectors and
their average eigenvalues. To begin, we recall that a point i in our parameter space can
be assigned a ‘volume’ – that is to say, a region of the parameter space closer to this point
than to any other (again based on the L2 norm distance):

Vi =
√

deti =
√

λi
1λ

i
2λ

i
3 (3.16)

where λi
n is the nth eigenvalue for point i. Assuming N points in our parameter space, we

can calculate the average volume to be V̄ = 1
N

∑
i Vi, and therefore the average distance

between points will be16:

d̄ =
3

√
V̄ = 3

√√√√ 1

N

∑

i

√
λi

1λ
i
2λ

i
3 (3.17)

We can now use the normalized average eigenvectors v̄n = (x̄n, ȳn, z̄n) (linear combinations
of the three initial parameter axes) and their corresponding eigenvalues λ̄n. Starting
in the centre, we wish to move along each eigenvector by some distance such that the
L2 norm distances of the resulting observables are equal to the average distance. We
know that the amount we should move along each eigenvector should depend on that
eigenvector’s eigenvalue, so let us deine a normalization constant that depends on the
relevant eigenvalue: αn(λ̄n). Now, let us take the irst average eigenvector v̄1. If we move
from the central point to a new point along the vector αv̄1 the distance between the two
corresponding observables will be (from equation 3.7):

d2 = α1v̄1 · g · α1v̄1 = λ̄1α
2
1

(
x̄2

1 + ȳ2
1 + z̄2

1

)
(3.18)

To assure that d = d̄ we can now set αn(λ̄n) = d̄√
λn

. The inal step is to account for the
fact that the initial sampling was linear in logarithmic space, and therefore we must deine
constants of logarithmic step: c1 = ∆ log ζ, c2 = ∆ log Rmfp, c3 = ∆ log Tvir (the diference
between the logarithms of neighbouring parameter values). Explicitly, for any parameter

16To be clear, this is again a simpliication. The true average distance depends on the geometry of the
sampling (Cartesian grid, crystal lattice, etc.).
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θ, in any number of dimensions, the corresponding constant term can be deined as17:

cθ = log10(θi−1) − log10(θi) (3.19)

where θi and θi−1 are any two neighbouring values of the θ parameter (θi > θi−1).
Finally, we can deine our new step vectors s⃗n:

s⃗n =




d̄√
λ̄n

c1x̄n,
d̄√
λ̄n

c2ȳn,
d̄√
λ̄n

c3z̄n


 (3.20)

This formula will give us three step vectors, and starting from the central point we can
move outwards along said vectors, until we ind ourselves outside the initial bounds deined
in section 1.3.2, to re-sample our space. Should we require a speciic number of points in
our new sampling, we can adjust the d̄ value until we have the desired number (a smaller
d̄ will result in more points, and vice versa).

After applying this method, as expected, the three peaks overlap (igure 3.8). This
means that we have arrived at a nearly isotropic and homogeneous sampling of our pa-
rameter space. In igure 3.4, we saw that along the Tvir axis there were aberrant distance
bins extending beyond ∼20. With the new sampling, the outlier distances extend to ∼15,
and are distributed along the 3 step vector directions (which we expected, as each step
vector is a combination of the initial three axes). These higher distance bins correspond to
the previously mentioned regions in which eigenvalues change rapidly. Figure 3.9 shows
a comparison of the initial and inal parameter space sampling.

We can see that the grid has efectively been rotated, and the space between sampled
points have been rescaled for each axis. Yet the grid remains, allowing us to have a
clear deinition of neighbouring points. For reference, the inal step vectors for the 3D
parameter space presented here (within the bounds deined in section 3.3.1) were found
to be:

s⃗1 =
[
0.159451 −0.101265 0.135481

]

s⃗2 =
[
0.017299 0.057789 −0.023709

]

s⃗3 =
[
−0.017007 0.203757 0.042429

]

when sampling outwards from the point
[
1.827369 1.206016 4.480007

]
(the format

here is
[
log10(ζ) log10(Rmfp) log10(Tvir)

]
). This is for generating a sampling of 512

points, however the step vectors could be scaled (with the same scaling factor applied
to all of them) to increase or decrease the number of sampled points, as needed.

17In principle, the log base could be any number, however the corresponding iducial parameter space
sampling (table 3.3) should also have been constructed with the same base.
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Figure 3.8 – Histograms of the distances between neighbouring observables after having
resampled using the Eigenvector Method. A visualisation of the resampling can be found
in igure 3.9.

Figure 3.9 – Visualizations of the initial logarithmic parameter space sampling, and the
new sampling after applying the eigenvalue method. Both samplings contain 512 points.
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Note: Comparison with PCA

The method presented here shares some similarities with the PCA technique for param-
eter reconstruction (section 0.6.6). Both methods, for example, involve creating a new
orthonormal set of vectors, and then constructing a grid to reinterpret data. However,
the Fisher Matrix used by PCA is based on the correlation of diferent parameter pair-
ings, and not on the distances between observables. PCA is also often used to reduce the
dimension of a data set by eliminating vectors along which the data is weakly correlated,
which is not that case here. Finally, although PCA re-grids a data set, new points are
not sampled along this improved grid (as is a step in our method). However, with this
in mind, it should be noted that there is a strong relationship between the Fisher Matrix
and the metric used here, which we will return to in section 3.7.2.

Another Algorithm for Optimal Sampling: The Adap-
tive Grid-Free Method

As we saw in igure 3.8, the eigenvector method for resampling the parameter space is
clearly an improvement over the initial sampling. In particular, the similarity of observ-
ables along the Rmfp axis (in igure 3.4) has been remedied by reorienting the grid, such
that no axis corresponds to a change in only Rmfp. As well, regions in which observables
change rapidly (primarily the Tvir outlier bins at distance ≳ 10 in igure 3.4) are nearly
all taken care of after resampling.

Yet there is still room for improvement. All three (new) axes still have some width,
and have some very slight tails at higher distances (around distance ∼ 4). There are a
couple of other issues as well. A few distances, along all three axes, are still abnormally
high (distance ∼ 5 to ∼ 15). Looking closely, the three peaks are also not perfectly
overlapping, with most distances along the v1 axis still slightly higher than along the
other two.

The question then becomes how to remedy these efect. If we insist on conserving a
grid arrangement for sampled points, it is unlikely we will be able to do much better. This
is because, although rotating and stretching the grid can certainly reduce the anisotropy,
there may simply be patchy sections of the parameter space within which observables
vary diferently than the rest.

However, if we abandon the requisite of a grid altogether, then there are other ways to
further reduce the anisotropy. To attempt this, we present a new algorithm, which adapts
the sampling without the grid constraint (hence the name: Adaptive Grid-Free Method).

Algorithm Overview

Here we provide a brief quantitative description of the algorithm.
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Preliminaries

We begin with the sampling in table 3.3, and the metric at each point is computed
through the same equations deined in section 3.4.1. The total volume18 of the parameter
space is computed using the metric. Assuming maximum n-sphere packing (section 3.2.1),
the typical volume18 for each n-sphere is calculated. We initiate a maximum interaction
distance equal to twice the radius of the n-spheres (Dmax). Along the extremities of the
parameter space, we also designate a ‘bufer zone’ of set width. A new set of points is
randomly scattered (without grid constraints) in this space (points can also fall into the
bufer zone).

Iterating

1. Metrics at each of these randomly scattered points are interpolated using the values
of the nearest metrics (those that were computed on the iducial grid sampling).
Interpolation is carried out with an SPH scheme (section 3.3.3).

2. Take a pair of points i and j.

(a) Average the metric between these two points.

(b) Use this averaged metric to approximate the distance between the observables
at these two points (Di,j).

(c) Repeat this for the next set of points, until the distance between all pairs of
points is known.

3. For a point i and its neighbour j, if Di,j < Dmax then we deine:

d⃗i,j =
1

2
(Dmax − Di,j) · − r⃗i,j (3.21)

where r⃗i,j is a unitary vector pointing from i to j (and is negative as nearby points
should be moved apart). This is repeated for all pairs of points.

4. For each point i, the contribution of all n nearby points is summed, and then the
point is moved along this new vector d⃗i =

∑n
j=1 d⃗i,j.

5. Points in the bufer zone receive an additional displacement towards the centre
(representing a sort of coninement).

6. A new interaction distance Dmax is evaluated using the current number of points in
the parameter space region. The above steps are then repeated.

18Or hypervolume.
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Figure 3.10 – An example of an Adaptive Grid-free sampling (506 points).

Final Sampling

The positions of the points after each iteration are recorded. At the end of the loop, the
best coniguration can be selected from the histogram of the distances (computed using
the interpolated metrics between pairs of points) from each point to the Nkiss points,
where Nkiss is the ‘kissing’ number for a given dimension19.

Figure 3.10 shows an example of the best sampling after a number of iterations. Notice
that the points are more spread out at high Rmfp and low ζ. This matches what we found
in section 3.3.3 — that this is a region of low observable variability. It’s also important to
note that, although the sampling was initialized with 512 points, there are not 512 points
in the inal sampling (but rather 506). In our current method, the Adaptive Grid-free
algorithm generally will not preserve the number of points (although this depends on
initial randomly scattered points). This could possibly be improved in future.

19The kissing number is deined as follows. For a given n-sphere, how many n-spheres of the same
radius can be made to touch the irst one without overlaps. For 2D Nkiss = 6, for 3D Nkiss = 12, etc.
The kissing number is not known exactly for dimension > 4, except for 8D and 24D, however bounds
have been set at ∼ 20% up to 24D (Mittelmann & Vallentin, 2009).
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Figure 3.11 – Histograms of the distances between neighbouring observables after having
resampled using the Adaptive Grid-free method. A visualisation of the resampling can be
found in igure ig:Adaptive.

Figure 3.11 shows the result of this algorithm in terms of the distances between ob-
servables. The most obvious advantage is that there are no outlier distances at higher
bins. In addition, the fact that there are no clearly deined axes means that there is no
longer any issue of the distances along each axis being diferent (efectively we don’t have
to worry about having multiple peaks). There is still some spread in distances (between
distance ∼ 1 and ∼ 4), which is likely due to border efects, where points (and the re-
sulting observables) may behave diferently depending on the dynamics used within the
bufer zone.

Algorithm Comparison

To summarize: both algorithms have been showed to improve the homogeneity and
isotropy of the parameter space sampling. If we do not require a grid, nor a speciic
number of points, then the adaptive method is slightly better. The distances cluster
slightly tighter, and there are no outlier observables far removed from the rest. Although
if a grid system, or ixed number of points, are required, then the eigenvector method is
still a vast improvement over the initial sampling.

Implications for Neural Networks

With these new samplings prepared, it is tempting to see if our eforts have indeed im-
proved upon the iducial sampling. Recall that one of our goals was to provide better
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training data for neural networks. We are now in a position to test if we have accomplished
this.

Note: Although based on my work, this section presents research largely undertaken
by Aristide Doussot and Benoît Semelin.

Network Structure

We will be considering a neural network that takes an observable as input (in our case,
the power spectrum generated by 21cmFAST, discretized on 12 wavenumber bins and 10
redshift bins), and the values of the model parameters as output (ζ, Rmfp,Tvir). Such a
network needs to be trained before it can be used on the observed data. The training set
consist of a number of diferent inputs (P (k, z) in our case), and the associated desired
outputs (the corresponding values of ζ, Rmfp and Tvir). The hypothesis to be tested is
whether training on an optimal sampling of the parameter space will improve the accuracy
of the predictions of the resulting network.

For this test we used the Keras framework20 to implement a full connected neural
network with a single hidden layer. The input-layer contains 120 nodes (12 wavenumber
bins × 10 redshift bins), the hidden layer contains 80 neurons, and the output-layer
contains three neurons (one for each parameter).

We trained this network with three diferent training sets, each scattered in the same
region of the parameter space deined in section 3.3.1. The irst set consisted of a sim-
ple 3D grid with 512 points logarithmically spaced (equivalent to the iducial sampling,
however more sparsely sampled). The second, also with 512 points, was produced with
the Eigenvalue Method algorithm described above. The third was produced using the
Adaptive Grid-free, and instead contains 506 points (explained in section 3.5.1). The
number of points in these sets was chosen because given too many points as training data
the network performs well regardless of the sampling technique.

Quantifying Performance

The accuracy of the network during, and after, training is evaluated using a diferent test
set consisting of 512 points of the parameter space. The accuracy of the prediction for
sample j in the training set is estimated using a quantity known as the ‘loss function’,
and deined as:

Cj =
1

n

∑

i=1,n

[
log10

(
ypred

i,j

)
− log10

(
ytrue

i,j

)]2

(3.22)

20https://keras.io/
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Comparing Performance

We can see that, for the sampling created using the Eigenvector Method, the cost function
is lower across most of the parameter space. Only for some regions on the borders is it
higher. This represents a failure of the neural network to properly predict parameter
values for these regions. Although the overall performance is only 10% better than that
of the neural network trained on the initial logarithmic sampling, when we exclude the
border regions the improvement is closer to ∼40%.

As for the Adaptive Grid-free method, the cost function is lower over most of the
parameter space, with the exception of the lowest ζ values. There could be several pos-
sibilities to explain the low performance for these values. It has been veriied that the
Adaptive Grid-free method generates a CCP-like lattice sampling (section 3.2.1) of the
parameter space when applied to a Euclidian geometry for the hypersurface of predic-
tions. As the actual geometry is non-Euclidian, gaps may appear in the lattice in regions
where, for a given sampling density, the curvature properties of the hypersurface do not
allow for the same number of neighbouring points. Such a gap is caused by generating
a discrete sampling, and should one appears in a region with a low number of sampled
points, it could be responsible for large errors in the performance of the trained network.
Another more simple explanation is that, despite the bufer zone included in the Adaptive
Grid-free method (section 3.5.1), boundary efects are still not well under control. In any
case, the improvement over the initial sampling is still ∼12%, marginally better than over
the Eigenvector Method resampling (and again better if we exclude the low ζ column).

Future Prospects

We have presented here two algorithms for optimally sampling a parameter space. In
addition, these have been tested on neural network training to show their efectiveness.
This represents a solid irst step into exploring the feasibility of an ‘optimal sampling’, yet
as the concept has been relatively unexplored, there are plenty of opportunities to build
upon this research.

Higher Dimensional Parameter Spaces

None of the steps presented thus far have been dimension dependant. That is to say, it
would be worthwhile testing them on higher dimensions, such that they can be readily
applied to higher dimensional parameter spaces. A logical irst step would perhaps be
attempting optimal sampling on the six dimensional parameter space tested in Greig &
Mesinger (2017b), as this is a relatively simple extension of the sampling this work is
based on (Greig & Mesinger, 2017b). More ambitious could be attempting to optimally
sample the 11 dimensional space of Kern et al. (2017).
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In terms of how to approach this, irst recall that the general scaling of the size
of a grid sampling is exponential in the dimension of parameter space. Therefore, the
iducial space could be constructed with the Latin Hypercube method, as well as using
a circumscribed n-sphere (section 3.2.1). However, it remains to be seen how well these
algorithms could be applied upon a LHS initial sampling. Another issue is that in general
a Latin Hypercube sampling, unless carefully arranged, would not maintain the concept
of neighbouring points. This would prove an issue for the eigenvector method.

Evaluating the Metric in High Dimension

There is a way, however, to account for this. We could redeine the metric such that
it minimizes the error when computing the distance to a set of neighbouring points.
To begin, in 3D we could consider the 25 neighbouring points (in section 3.4.1 we only
considered the 20 points at a distance, in indices, of <

√
2). Then, seeing as all the

distances are known, we could start with our current metrics, and deine an error function.
For example, the error on the metric for the ith point would be:

error =
25∑

n=1

√
(DPS

i,n − Dmetric
i,n )2 (3.23)

where DPS
i,n is the standard Power Spectrum distance we have been using up until now

between point i and its nth neighbour, and Dmetric
i,n is the distance between the same points

given when applying the metric. The goal would then to be to reduce the error, and this
should assure the best estimation of the geometry of the hypersurface of predictions. This
would result in a set of 25 equations with 6 independent metric coeicients as variables.
It is simple linear algebra to ind the set of coeicients that minimize the error (e.g. via
the least square method). In fact, this has been implemented, but the result has not yet
been compared to the simple ‘inite distance’ method.

Note that Matrix Diagonalization is not computationally expensive for any dimension
we would realistically be exploring (Nebot-Gil, 2015).

The Fisher Information Metric

Currently, for Bayesian inference a lat prior (in which all parameter values, or the log-
arithm of all parameter values, are equally probable) is often used. One improvement
would a prior which also takes noise into consideration, such as Jefreys’ prior (Jefreys,
1946). Calculating Jefreys’ prior is dependent on computing the Fisher Information
Metric, whose terms are deined as:

Iθi,θj
= E

[
∂ log f

∂θi

∂ log f

∂θj

]
(3.24)
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where θi and θj are parameters of our model, E is the expected value (for a variable X on
a probability space (Ω, Σ, P ) E[X] =

∫
Ω X(ω)dP (ω)), and f is the distribution of possible

power spectra, in turn deined as:

f(PN , θ⃗) ≈
∏

ki

exp


−(PN(ki, z) − P (ki, z, θ⃗))2

2(σ(ki, z))2


 (3.25)

where the parameters of the model are θ⃗, PN is the power spectrum with noise (binned at
wavenumbers ki and redshifts z), and (σ(ki, z))2 is the variance of the combined sources
of noise for the ith wavenumber bin at redshift z. Inserting this deinition into equation
3.24 we arrive at:

Iθi,θj
=
∑

ki,z

1

(σ(ki, z))2

∂P (ki, z, θ⃗)

∂θi

∂P (ki, z, θ⃗)

∂θj

(3.26)

In which the noise term (1/σ2) is applied to each power spectra bin (in wavenumber and
redshift). If we ignore this noise variance term:

Iθi,θj
=
∑

ki,z

∂P (ki, z, θ⃗)

∂θi

∂P (ki, z, θ⃗)

∂θj

(3.27)

which is equivalent to equation 3.4.1 (in our case θ⃗ = ζ, Rmfp, Tvir). We chose not to
use the noise term (and therefore, not the true Fisher Information Metric) primarily
because our current neural network coniguration does not handle noisy power spectra
very well. We therefore consider this theoretical framework as a irst (idealized) step
towards optimal parameter space sampling. A planned next step is to verify that our
noise model is correct, implement it to arrive at the full Fisher Metric, and then use
Jefreys’ prior towards Bayesian inference.

Combination with 21cmMCMC

We have taken a tiny irst step into exploring what optimal parameter sampling means for
neural networks, it would also be worthwhile using one of the generated resamplings as
prior for MCMC parameter reconstruction. This would be especially easy in the case of
21CMMC, as we have used exactly the same code and parameters as in (Greig & Mesinger,
2017b). Therefore, testing the efectiveness would simply be a matter of re-running the
code with the optimized sampling as a prior (possibly Jefreys’ prior).

Alternate Distance Deinitions

One of the more important avenues to be explored — especially pertinent to this work —
is the efect of distance deinition on the resulting parameter space. As an example of this,
consider the following. The power spectra were found to be only weakly sensitive to the
Rmfp parameter. This largely deined the resulting optimal sampling, as the eigenvectors
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were ultimately arranged to accommodate the sensitivity of the power spectra to the three
axes. Should we have deined distance diferently — say, in terms of the L2 norm of the
pixel distribution functions — there is no reason to believe the Rmfp parameter would
again be weakly correlated. Recall that in section 2.4 we saw how, for the observables
of 21SSD, the power spectra and the PDF were found to exhibit sensitivities towards
diferent parameters.

Therefore, throughout this chapter, when we have referred to the sought after ‘optimal
sampling’ it bears remembering that this is in fact the ‘optimal sampling with respect to
the power spectra’. We have no guarantee that another diagnostic wouldn’t result in an
entirely diferent optimal sampling (in fact, we can almost be sure that it would).

Optimally Sampling 21SSD

Another stated goal of developing this methodology was to make an informed decision on
how to better sample a sparsely sampled high-resolution database. Now, we are prepared
to do just that. In the case of 21SSD, currently sampled at only 45 points (table 1.3),
we now have a framework for seeking out worthwhile new points at which to create
observables. As we already have the power spectra and PDF observables for each point,
and have already explored using both as distance measures, we have a good foundation
for intelligently expanding the database.

One may note that, for the iducial sampling used with 21cmFAST, we began with
1,000 points (table 3.2), and later increased to 2,400. So it may seem unrealistic to begin
with a mere 45 points. It is true that applying the resampling algorithms to 45 points is
unlikely to generate an optimal sampling. Regardless, we can be conident that the new
sampling will be a strong choice to assure all resulting observables will be diferent, likely
better than resorting to LHS or other standard sampling methods. One inal point worth
mentioning is that we may not wish to recreate the 45 observables already created (to
save computation time). Therefore, it would be possible to ix these 45 points, and apply
the Adaptive method to any new points being added.
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CHAPTER 4

Conclusion and Perspectives

In this work we have presented eforts towards adding to the foundation of Epoch of
Reionization studies. This includes framework relating directly to current observations,
as well as aimed at preparing for upcoming experiments. In both cases, the setting is
theoretical, and built upon the use of simulations. We will now briely summarize what
has been accomplished, and imagine the irst steps towards taking these developments
further, with the ultimate goal of preparing for increasingly ambitious EoR experiments.

In the irst part, a database of simulated 21 cm tomographies was created. Much of
what has been presented therein served to gain familiarity with the LICORICE code, and
better understand the nature of simulated EoR lightcones. This included a quick look into
an efect known as ‘self-shielding’, in which dense regions of neutral hydrogen were shown
to scatter less Lyα photons. We then discussed diferent parametrizations, their merits and
shortcoming, and our parameter choices for the 21SSD database (fX , fα, rH/S). Another
addition to the database was realistic thermal noise modelling, added to the lightcones
for various resolutions, and created by modelling in UV visibility space. SKA resolution
lightcones, created with full dynamics, as well as realistic noise, provide some of the best
prototypes for what we should realistically expect to see in the coming years. We arrived
at a reasonably optimistic outlook for thermal noise, with structure being recoverable
down to z ≈ 9 − 12, depending on the resolution and reionization scenario.

In the second part, preliminary steps were taken towards making use of this database.
The primary objective, planned for a less sparse future incarnation of 21SSD, is parameter
extraction. With this goal in mind, we irst examined diferent ways to characterise the
diferent reionization scenarios, through simplifying and quantifying the corresponding
lightcones. We examined the power spectra, and a less explored diagnostic: the Pixel
Distribution Function. We found the PDF to be a strong tool for this purpose, with some
unique attributes not present in the power spectra (principally the ability to encompass
non-gaussianity). To build upon this, we examined how these two diagnostics handle the
concept of ‘distance’ between diferent observables. We found that the PS and PDF are
both quite diferent in this respect: the power spectra seem more sensitive to changes in
fX , while the PDF responded more strongly to changes in fα. This leads us to believe both
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could — and should — be used to maximize the information available when attempting
parameter extraction.

In the third part, we approached parameter extraction from another angle: asking
if there is an ‘optimal’ manner in which to sample a parameter space when creating a
database. We deined the relevant terminology, and then examined two diferent methods
for improving a parameter space sampling. The irst method constructs metrics at all
sampled points (based on the distances to neighbouring points), and then reorients the
grid based on the corresponding eigenvectors. The second method interpolates the metric
at any point on the hypersurface, and iteratively moves points towards regions identiied
as overdense by their metric properties. This second method also does not constrain
points to a grid (hence the name ‘adaptive grid-free’ method). We showed that both of
these methods succeeded in reducing the anisotropy and inhomogeneity of the parameter
space sampling. As expected, the adaptive grid-free method works slightly better, as
points were less constrained within the space. The grid-free method was therefore used to
train neural networks, and we ind that this method works modestly better in the centre
of the parameter space, and on the low Tvir edge, although actually performs worse on the
other extremities of the parameter space. This is possibly due to the adaptive grid-free
algorithm encountering diiculties determining how to displace sampled points on the
boundaries.

This represents a irst foray into the notion of exploring the geometry of what we have
referred to as the ‘space of observables’. Although the advantages we have demonstrated
for neural network training have not proven revolutionary, it is nonetheless satisfying to
conirm that a slight beneit does indeed exist. The boundary efects could perhaps be
managed by expanding the bounds of the parameter space, such that the region within
which the neural network performs well corresponds to the region of reasonable estimates
on EoR parameter values. Regardless of the remedy, the logical ‘next step’ seems to be
to explore the source of these border efects in neural network training. The hope is that
the beneits of the resampling methods could be extended to the entire parameter space.
It is also possible that the improvements seen from the adaptive grid-free method may be
more substantial when applied to a higher dimensional parameter space.

There are also a number of other directions in which this foundation could be ex-
panded. Both methods were tested on a relatively simple 3D parameter space, and the
power spectrum was used in the deinition of distance between observables. Once the
optimization algorithms are perfected, it would be worthwhile testing them on higher di-
mensional parameter spaces, as well as examining how the PDF (or other observables in
general) efect the performance. Trying to optimize a parameter space constructed with
a full-dynamical code (such as LICORICE) would also be interesting. A large part of
the choice of using 21cmFAST as the ‘sandbox code’ with which to test the optimization
algorithms is the speed at which it runs. This allowed us to run it thousands of times
in parallel over the period of only a few days. When, after having created a space of
observables, an error was found, this realization was not ‘catastrophic’ as the observables
could be recreated in a reasonable amount of time. We would lose this liberty with a more
heavy-duty code, and should be sure of our decision before creating such a database (for
example a future updated 21SSD).
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Besides pushing towards more ambitious and complex data sets and algorithms, much
of what has been accomplished here should also be revisited and updated to be SKA
realistic. The noise model outlined in the irst part should be compared and standardized
with other authors (this is already under way). The resulting noisy lightcones (at SKA
resolutions) could then be used to re-test the distance diagnostics (power spectra and
PDF) used in the second part (recall that, although we created noisy SKA resolution
power spectra and PDF, they were not used in calculating the L2 norm distances). Much
of the framework in the third part could also be improved by taking into account the SKA-
context within which these ideas are intended to operate. As we advance along the SKA’s
construction time line, the technical speciications of the project will become clearer,
making this task easier. One of the issues we encountered occasionally when working
on our noise model was the diiculty in tracking down deinitive standardized values, in
particular information relating to the dipoles and their arrangement into stations

Our focus on EoR experiments should not be so narrow as to ignore the ever-growing
number of other excellent instrumental eforts. Much of the framework presented here
could (and should) be tested on existing SKA pathinders (LOFAR, for example). Even
with the lack of a deinitive EoR 21 cm detection (as the EDGES detection concerns the
Cosmic Dawn, and remains speculative), and even though it may be a number of years
before we have EoR power spectra and tomographies, noise models can still be tested,
and parameter reconstruction techniques can still be attempted with the global signal
measurements (which should be coming in the very near future). The next year will be
an eventful one in this respect. Three powerful new instruments are expected to go online
(NCLE, NenuFAR, and HERA), any of which could very well be the irst to deinitively
detect the 21 cm signal (if LOFAR does not do so before).

Turning to the more personal now, and allowing for a moment of retrospection, I’m
pleased with how this PhD has turned out. At the very beginning, the prospect of training
neural networks to better extract EoR parameter values (how the project was advertised)
was quite exciting. Over the course of the three years — as is perhaps the hallmark of
research — unexpected hurdles sprung up en route. Three in particular stand out as the
most ‘memorable’ (similar to how walking over hot coals would be memorable). I include
them here as a warning to others in the domain.

Properly simulating noise was the irst of these. Digging through articles, trying to
interpret formulae written with diferent variable formalisms, and pinning down current
SKA speciications, was trying (to say the least).

The second was a small ‘clean-up’ routine I built into my 21cmFAST cloning code,
intended to deal with the millions of iles generated when running thousands of clones in
parallel. When run on the supercomputer, the overambitious code — a mere three lines
— eagerly removed all iles in my directory (including itself, in fact). It took three weeks
to re-code all that had been lost (and foolishly not backed up).

The third, and easily the worst, was the issue of eigenvector inversion. In this thesis,
eigenvalue inversion inhabits but a single page. Yet outside of the thesis it inhabited many
many long nights, and was responsible for a number of literal headaches. Like a hydra,
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every time I had the hubris to think I’d solved the problem and inally oriented all of the
eigenvectors properly, three new regions of the parameter space would pop-up and rear
their improperly aligned heads. Finally, extrapolating the rotation bested the beast, and
when staring at the properly aligned eigenvector ield for the irst time, the overwhelming
beauty may have provoked a tear.

Suice to say, to have seen the prospect of testing neural networks growing more
distant with each hurdle, having my work inally being used for exactly this was extremely
satisfying (perhaps redeeming is a better word). Although I personally had no part
in building the neural networks themselves, receiving the image that quantiied their
performance when applied to my samplings left me with a sense of having ‘accomplished
my goal’ (and not a moment too soon, as I was well into writing this manuscript at the
time). In hindsight, what I’m most proud of is the code to initiate, run, simplify, and
compare thousands of 21cmFAST clones in parallel. After ixing the renegade clean-up
routine, the code worked fast and eiciently. All-in-all I estimate over 10,000 clones were
created and run in testing various samplings.

And so I leave on a happy note, pleased with what I’ve accomplished in Paris (both
inside and outside of my research), and thankful to the city for having provided me these
experiences, as well as the chance to add a minuscule iota to human knowledge.
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APPENDIX A

Thermal Width of the 21 cm Line Proile

In equation 12 we removed a number of terms from the integral
∫ ν0

∞ Φ(νg)dνg, making the
assumption that the terms should not vary along the line of sight on the spatial scale of
the line proile thermal width. We now test this by equating the translational and kinetic
energies:

1

2
mpv2 =

3

2
kBT (A.1)

where mp is the mass of hydrogen, v is the thermal velocity, kb is the Boltzmann constant,
and T is the temperature of the IGM. Using a rough estimate for the temperature of
T = 10 K, we ind that v ≈ 0.5 km/s. This will give a line width of:

∆l =
v

H(z)
(A.2)

Assuming H(z) ≈ 1000 km/s/Mpc for EoR redshifts, we conclude that ∆l ≈ 0.5 kpc.
Recall that we are using proper velocity (km/s), so this is a proper distance. Switching to
comoving distance, we arrive at a result closer to ∼a few ckpc. This is small enough that
our assumption will, indeed, hold. However, it will no longer be valid when considering
mini-halos, which can also be ∼a few ckpc in size.

Note: In principle, the temperature and Hubble expansion may be slightly larger,
depending on the redshift. However, even a slightly larger ∆l will remain below the scale
at which the properties of the IGM luctuate.





APPENDIX B

Sample Code

3D Fourier Transform for Power Spectra

This Fortran code generalizes the MKL Fourier transform routine (DFTI) to 3D, and
properly normalizes the output.

Use MKL_DFTI
implicit none

Mpc = 200 !Physical size of slices in cMpc
grid_size = 1024 !Size of slice in pixels
complex(WP), dimension(grid_size/2+1,grid_size,grid_size) :: ps_complex
real(WP), dimension(grid_size/2,grid_size,grid_size) :: real_cube

status = DftiCreateDescriptor(plan_forwards, DFTI_SINGLE, DFTI_REAL, 3, L)
status = DftiSetValue(plan_forwards, DFTI_PLACEMENT, DFTI_NOT_INPLACE)
status = DftiSetValue(plan_forwards, DFTI_CONJUGATE_EVEN_STORAGE,
DFTI_COMPLEX_COMPLEX)

!MKL doesn't set up the required data spacing for 3D FT,
so it has to be done manually
cstrides = [0, 1, INT(L(1)/2.0)+1, L(2)*(INT(L(1)/2.0)+1)]
rstrides = [0, 1, L(1), L(2)*L(1)]

status = DftiSetValue(plan_forwards, DFTI_INPUT_STRIDES, rstrides)
status = DftiSetValue(plan_forwards, DFTI_OUTPUT_STRIDES, cstrides)
status = DftiCommitDescriptor(plan_forwards)
status = DftiComputeForward(plan_forwards, ps_cube(:,1,1), ps_complex(:,1,1))
status = DftiFreeDescriptor(plan_forwards)

!ORGANIZE THE FOURIER TRANSFORM OUTPUT
print*,"Rearranging Fourier Parameter Space..."
do i = 1, grid_size

do j = 1, grid_size
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do k = 1, grid_size/2
!Take the modulus of each value and normalize (divide by

cube volume)
real_cube(k, j, i) = sqrt(real(ps_complex(k,j,i))**2 +

aimag(ps_complex(k,j,i))**2)/sqrt(real(grid_size**3))*
Mpc**3

enddo
enddo

enddo

Pixel Distribution Function Code

This Fortran code creates the PDF.

!Set up the bin limits.
do i = 1, a_bin_nb

a_bins(i) = (real(i)/a_bin_nb)*(a_f-a_i)+a_i
enddo
do i = 1, Tb_bin_nb

Tb_bins(i) = (real(i)/Tb_bin_nb)*(Tb_max-Tb_min)+Tb_min
enddo
do j = 1, Tb_bin_nb

do i = 1, a_bin_nb
!Set all values of the histogram to 1 (after we take the

log they will be zero).
Tb_histogram(i,j) = 1

enddo
enddo

!Calculate the average density if necessary (if not just set the whole
density array to zero)

avg_dens = 0
do i = 1, nz

do j = 1, grid_size
do k = 1, grid_size

if (dens_cutoff) avg_dens = avg_dens + dens(k,j,i)
if (.not. dens_cutoff) dens(k,j,i) = 0

enddo
enddo

enddo
if (dens_cutoff) avg_dens = avg_dens/real(grid_size*grid_size*nz)

!For each slice, find the average Temperature
do k = 1, nz

T_avg = SUM(tk(:,:,k))/grid_size**2
a_bin = 1
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!Find the expansion factor of the current slice, and then which
expansion factor bin it falls into

a = (real(k)/real(nz))*(a_f-a_i)+a_i
do while (a > a_bins(a_bin))

a_bin = a_bin + 1
enddo
do j = 1, grid_size

do i = 1, grid_size
!For the current slice, find all pixels that are

under the density cutoff
if (.not. isnan(tk(i,j,k)) .and. dens(i,j,k) <=

avg_dens*100) then
!Find which Tb bin each pixel fals into, and

augment that bin in the histogram
if (subtract_avg) then

Tb_bin = int((tk(i,j,k)-T_avg - Tb_min
)/(Tb_max-Tb_min)*Tb_bin_nb) + 1

if (Tb_bin <= Tb_bin_nb .and. Tb_bin >
0)

Tb_histogram(a_bin,Tb_bin) =
Tb_histogram(a_bin,Tb_bin) + 1

else
Tb_bin = int((tk(i,j,k) - Tb_min)/(

Tb_max-Tb_min)*Tb_bin_nb) + 1
if (Tb_bin <= Tb_bin_nb .and. Tb_bin >

0) Tb_histogram(a_bin,Tb_bin) =
Tb_histogram(a_bin,Tb_bin) + 1

endif
endif

enddo
enddo

enddo

!Create filename and save out the data
print*,'Writing file ',filename_out
open(20,file=filename_out,status='replace',form='formatted')
do ix=1,a_bin_nb

do iy=1,Tb_bin_nb
write(20,*) 1/((ix-0.5)/real(a_bin_nb)*(a_f-a_i)+a_i) - 1,

&
(iy-0.5)/real(Tb_bin_nb)*(Tb_max-Tb_min)+Tb_min, &
log10(real(Tb_histogram(ix,iy)))

enddo
write(20,*)

enddo
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21cmFAST MPI Cloning

This code initializes and runs clones of 21cmFAST (each clone has its parameters changed
irst).
//Compile with mpicc run_clones_MPI.c -o run_clones_MPI
//Run with mpirun -np # run_clones_MPI
//Set mode and input parameters below
//Makes ure there is a '21cmFAST-clones' directory, and that there's nothing

important in it. That's where the program will write to.

int main(){
MPI_Init(NULL, NULL);

//This is for an 8x8x8 sampling. Change as required.
float HII_EFF_FACTOR[] = {20, 27.79, 38.61, 53.65, 74.55, 103.59, 143.94,

200};
float R_BUBBLE_MAX[] = {5, 6.60, 8.72, 11.51, 15.20, 20.07, 26.51, 35};
float ION_Tvir_MIN[] ={8e3, 1.15e4, 1.65e4, 2.36e4, 3.39e4, 4.86e4, 6.97e4, 1

e5};

char cmnd[1000];
char filename[1000];
int i,j,l,i_max,j_max,l_max,threads,id,clone,total_clones;
int nb_tasks, my_rank, err_mpi, nb_lines, line;
float v1,v2,v3,w1,w2,w3;
char w1_char[25], w2_char[25], w3_char[25];
FILE *file;

//====================================================================================

//====================================================================================

//USE THIS TO DECIDE HOW THE CODE WORKS!!
int NORMAL = 0; //Uses the parameter space defined above
int RANDOM_CHOICE = 0; //Randomly choose parameter values
int UNIFORM_IN_LOGSPACE = 1; //Parameters will be uniformly chosen in log

space, as opposed to linear
int READ_IN = 1; //Reads in parameter values (specify filename below)
int ADAPTIVE = 0; //Read in the adaptive mesh file (READ_IN should also equal

1)
if (ADAPTIVE) READ_IN = 1;
sprintf(filename,"resampled_sqrtlambda.dat");

//====================================================================================

//====================================================================================

err_mpi = MPI_Comm_size(MPI_COMM_WORLD, &nb_tasks);
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err_mpi = MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

i_max = sizeof(HII_EFF_FACTOR)/sizeof(HII_EFF_FACTOR[0]);
j_max = sizeof(R_BUBBLE_MAX)/sizeof(R_BUBBLE_MAX[0]);
l_max = sizeof(ION_Tvir_MIN)/sizeof(ION_Tvir_MIN[0]);

total_clones = i_max*j_max*l_max;
if (RANDOM_CHOICE) total_clones = nb_tasks;
if (ADAPTIVE) total_clones = nb_tasks;

clone = my_rank;
i = clone % i_max;
j = clone / i_max % j_max;
l = clone / (i_max*j_max);

if (RANDOM_CHOICE){
srand(my_rank*1000);
if (UNIFORM_IN_LOGSPACE) {

HII_EFF_FACTOR[i] = pow(10,log10(HII_EFF_FACTOR[0])+((double)
rand() / (double) RAND_MAX)*(log10(HII_EFF_FACTOR[i_max-1])-
log10(HII_EFF_FACTOR[0])));

R_BUBBLE_MAX[j] = pow(10,log10(R_BUBBLE_MAX[0])+((double) rand()
/ (double) RAND_MAX)*(log10(R_BUBBLE_MAX[j_max-1])-log10(
R_BUBBLE_MAX[0])));

ION_Tvir_MIN[l] = pow(10,log10(ION_Tvir_MIN[0])+((double) rand()
/ (double) RAND_MAX)*(log10(ION_Tvir_MIN[l_max-1])-log10(
ION_Tvir_MIN[0])));

fprintf(stderr,"%f\t%f\t%f\n",HII_EFF_FACTOR[i],R_BUBBLE_MAX[j],
ION_Tvir_MIN[l]);

} else {
HII_EFF_FACTOR[i] = ((double) rand() / (double) RAND_MAX)*(

HII_EFF_FACTOR[i_max-1] - HII_EFF_FACTOR[0]) + HII_EFF_FACTOR
[0];

R_BUBBLE_MAX[j] = ((double) rand() / (double) RAND_MAX)*(
R_BUBBLE_MAX[j_max-1] - R_BUBBLE_MAX[0]) + R_BUBBLE_MAX[0];

ION_Tvir_MIN[l] = ((double) rand() / (double) RAND_MAX)*(
ION_Tvir_MIN[l_max-1] - ION_Tvir_MIN[0]) + ION_Tvir_MIN[0];

}
}

//If the file of resampled points is to be read:
nb_lines = 0;
if (READ_IN){

if (!ADAPTIVE){
file = fopen(filename,"r");
while (fscanf(file, "%i\t%i\t%i\t%f\t%f\t%f\t%f\t%f\t%f\n",&i,&j

,&l,&v1,&v2,&v3,&w1,&w2,&w3) == 9){
if (w1 != 0 || w2 != 0 || w3 != 0){nb_lines++;}

}
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fclose (file);
}else{

file = fopen("adaptive.dat","r");
while (fscanf(file, "%16s%16s%16s",w1_char,w2_char,w3_char) == 3)

{nb_lines++;}
fclose (file);

}
}
float resampled[nb_lines][6];
if (READ_IN){

line = 0;
if (!ADAPTIVE){

file = fopen(filename,"r");
while (fscanf(file, "%i\t%i\t%i\t%f\t%f\t%f\t%f\t%f\t%f\n",&i,&j

,&l,&v1,&v2,&v3,&w1,&w2,&w3) == 9){
if (w1 != 0 || w2 != 0 || w3 != 0){

resampled[line][0] = (float) i;
resampled[line][1] = (float) j;
resampled[line][2] = (float) l;
resampled[line][3] = w1;
resampled[line][4] = w2;
resampled[line][5] = w3;
line++;

}
}
fclose (file);

}else{
file = fopen("adaptive.dat","r");
while (fscanf(file, "%16s%16s%16s",w1_char,w2_char,w3_char) == 3)

{
resampled[line][0] = resampled[line][1] = resampled[line

][2] = 0.;
resampled[line][3] = atof(w1_char);
resampled[line][4] = atof(w2_char);
resampled[line][5] = atof(w3_char);
//if (my_rank == 1) fprintf(stderr,"%f\t%f\t%f\n",

resampled[line][3],resampled[line][4],resampled[line
][5]);

line++;
}

}
} else {float resampled[1][6];}

//Make sure the clone directory is empty
//system("rm -rf 21cmFAST-clones/*");

if (NORMAL) fprintf(stderr, "Creating clone %i/%i with parameters f = %.0f, R
= %.0f, T = %.1e\n",clone, total_clones, HII_EFF_FACTOR[i], R_BUBBLE_MAX

[j], ION_Tvir_MIN[l]);
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//if (RANDOM_CHOICE) fprintf(stderr, "Creating clone %i/%i with parameters f
= %.0f, R = %.0f, T = %.1e\n",clone, nb_tasks, HII_EFF_FACTOR[i],
R_BUBBLE_MAX[j], ION_Tvir_MIN[l]);

if (READ_IN) fprintf(stderr, "Creating clone %i/%i with parameters f = %.0f,
R = %.0f, T = %.1e\n",clone, nb_lines, resampled[clone][3], resampled[
clone][4], resampled[clone][5]);

//Copy 21cmFAST-master into the clones directory and rename the clone with
the relative parameters

if (!READ_IN) sprintf(cmnd,"cp -R 21cmFAST-master 21cmFAST-clones/f%.0f_R%.0
f_T%.1e", HII_EFF_FACTOR[i], R_BUBBLE_MAX[j], ION_Tvir_MIN[l]);

if (READ_IN) sprintf(cmnd,"cp -R 21cmFAST-master 21cmFAST-clones/f%.0f_R%.0
f_T%.1e", resampled[clone][3], resampled[clone][4], resampled[clone][5]);

system(cmnd);
//Update the parameter files (The values in the master should be 15, 30, 1e4

respectively for this to work)
if (!READ_IN){

sprintf(cmnd, "sed -i 's/HII_EFF_FACTOR (float) (30)/HII_EFF_FACTOR (
float) (%.2f)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", HII_EFF_FACTOR[i], HII_EFF_FACTOR[i], R_BUBBLE_MAX[j
], ION_Tvir_MIN[l]);

system(cmnd);
sprintf(cmnd, "sed -i 's/R_BUBBLE_MAX (float) (50)/R_BUBBLE_MAX (float)

(%.2f)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", R_BUBBLE_MAX[j], HII_EFF_FACTOR[i], R_BUBBLE_MAX[j],
ION_Tvir_MIN[l]);

system(cmnd);
sprintf(cmnd, "sed -i 's/ION_Tvir_MIN (double) (3e4)/ION_Tvir_MIN (

double) (%.2e)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", ION_Tvir_MIN[l], HII_EFF_FACTOR[i], R_BUBBLE_MAX[j],
ION_Tvir_MIN[l]);

system(cmnd);
}else{

sprintf(cmnd, "sed -i 's/HII_EFF_FACTOR (float) (30)/HII_EFF_FACTOR (
float) (%.2f)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", resampled[clone][3], resampled[clone][3], resampled[
clone][4], resampled[clone][5]);

system(cmnd);
sprintf(cmnd, "sed -i 's/R_BUBBLE_MAX (float) (50)/R_BUBBLE_MAX (float)

(%.2f)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", resampled[clone][4], resampled[clone][3], resampled[
clone][4], resampled[clone][5]);

system(cmnd);
sprintf(cmnd, "sed -i 's/ION_Tvir_MIN (double) (3e4)/ION_Tvir_MIN (

double) (%.2e)/g' 21cmFAST-clones/f%.0f_R%.0f_T%.1e/Parameter_files/
ANAL_PARAMS.H", resampled[clone][5], resampled[clone][3], resampled[
clone][4], resampled[clone][5]);

system(cmnd);
}
//Go into the new clone's Program directory and run 'make'
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if (!READ_IN) sprintf(cmnd,"21cmFAST-clones/f%.0f_R%.0f_T%.1e/Programs",
HII_EFF_FACTOR[i], R_BUBBLE_MAX[j], ION_Tvir_MIN[l]);

if (READ_IN) sprintf(cmnd,"21cmFAST-clones/f%.0f_R%.0f_T%.1e/Programs",
resampled[clone][3], resampled[clone][4], resampled[clone][5]);

chdir(cmnd);
system("make");
//system("rm *.c");
//system("rm PROGRAM_LIST");
//system("rm Makefile");
//chdir("../../..");

if (NORMAL) fprintf(stderr, "Treating clone = %i/%i with thread %i\n", clone,
total_clones,clone);

if (RANDOM_CHOICE) fprintf(stderr, "Treating clone = %i/%i with thread %i\n",
clone,nb_tasks,clone);

if (READ_IN) fprintf(stderr, "Treating clone = %i/%i with thread %i\n", clone
,nb_lines,clone);

//Go to the clone directory
if (!READ_IN) sprintf(cmnd,"21cmFAST-clones/f%.0f_R%.0f_T%.1e/Programs",

HII_EFF_FACTOR[i], R_BUBBLE_MAX[j], ION_Tvir_MIN[l]);
if (READ_IN) sprintf(cmnd,"21cmFAST-clones/f%.0f_R%.0f_T%.1e/Programs",

resampled[clone][3], resampled[clone][4], resampled[clone][5]);
chdir(cmnd);
//Run 21cmFAST
system("./drive_zscroll_noTs");
chdir("..");
system("mv Output_files/Deldel_T_power_spec/* .");
//system("rm -r */");
chdir("../..");

fprintf(stderr, "Clone %i/%i complete\n *****************************\n",
clone, total_clones);

MPI_Finalize();

return 0;
}
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APPENDIX D

Other Activities

Courses

IYAS 2015 15h
Parallel Computing 15h
Galaxy Formation 15h
Formation MT180 15h
Natural Space Risks 30h

Total 90h

Conferences & Meetings

October 2015 Roscof ORAGE Meeting 2015
November 2015 Paris Elbereth 2015
December 2015 Paris Cosmology and First Light
June 2016 Lyon SF2A 2016
September 2016 Strasbourg ORAGE Meeting 2016
November 2016 Goa Science for the SKA Generation
November 2016 Paris Elbereth 2016
September 2017 Lyon ORAGE Meeting 2017
October 2017 Dubrovnik IAU 333
November 2017 Paris Elbereth 2017
June 2018 Strasbourg Rise & Shine
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Miscellaneous

Some other things that I’ve been up to alongside my research:

Showcasing 21 cm lightcones in the ‘Apparitions’ art show at the École nationale
supérieure des beaux arts.

Organizing a weekly journal club for the doctoral students.

Organizing an annual trivia night for the observatory.
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Presenting my research at the ‘Ma thèse en 180 seconds’ competition.

Teaching a college course on Math and Physics (with 72 students).
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Résumé

Les simulations, de plus en plus, sont
capables de saisir la complexité de
l'époque de réioisation, durant laque-
lle l'hydrogène neutre de l'Universe a
été ionisé par les premières sources
lumineuses. Des bases de données
représentatives de la multitude de
signaux possibles seront nécessaires
pour contraindre les paramètres des
modèles quand des observations
21 cm seront disponibles. À cette
fin, et en préparation des observa-
tions à venir sur des instruments
comme SKA, nous avons développé
une base de données de cones
de lumières EoR haute-résolution
(21ssd.obspm.fr), ainsi qu'une mod-
élisation du bruit thermique. Nous
avons également développé un for-
malisme permettant de quantifier la
différence entre les modèles de cette
base de données, en utilisant le spec-
tre de puissance et la fonction de
distribution des pixels. Nous trou-
vons que les deux diagnostiques sont
sensibles à des paramètres différents
des modèles, ce qui signifie que les
deux peuvent être utilisés ensem-
ble de manière complémentaire pour
extraire l'information maximale. De
plus, en utilisant le code 21cmFAST,
nous avons développé des straté-
gies pour échantillonner l'espace des
paramètres d'une mannière optimale
(plus homogène et isotrope), afin de
fournir le meilleur point de départ
pour l'extraction des paramètres. Fi-
nalement, l'échantillonnage amélioré
est utilisé pour entrainer un réseau
de neurones. Ce réseau retrouve
les paramètres du modèle en se bas-
ant sur une observable. Nous obser-
vons une amélioration modérée dans
la précision de ses prédictions quand
nous utilisons l'échantillonnage opti-
misé lors de son entrainement.

Mots Clés

Cosmologie, simulation, EoR, 21 cm

Abstract

Simulations are increasingly able to
capture the intricacies of the Epoch
of Reionization, during which the
neutral hydrogen in the Universe
was ionized by the first luminous
sources. Databases encompass-
ing the range of possible signals
will be needed to constrain param-
eter values when 21 cm observa-
tions are available. In prepara-
tion for upcoming experiments such
as the SKA, we have developed
a database of high-resolution EoR
lightcones (21ssd.obspm.fr), along
with realistic thermal noise modelling.
We examine frameworks with which
we can quantify the difference be-
tween entries in this database, specif-
ically with the power spectrum and
pixel distribution function. We find
that the two diagnostics are sensitive
to different parameters, meaning they
can be used together to extract max-
imumal information. Then, using the
21cmFAST code, we explore how to
optimally sample a parameter space
(so that it is more homogeneous and
isotropic), in order to provide the best
set-up for parameter extraction. Fi-
nally, the improved sampling is used
in training a neural network. The neu-
ral network uses observables as in-
put data, and attempts to estimate
the corresponding parameter values.
When the optimal sampling is used as
training data, we find that the neural
network is able to estimate parameter
values with a modest improvement in
accuracy.

Keywords

Cosmology, simulation EoR, 21 cm
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