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variabilité des organismes vivants de toute origine y compris, entre 

autres, les écosystèmes terrestres, marins et autres écosystèmes aquatiques et les complexes 

écologiques dont ils font partie ; cela comprend la diversité au sein des espèces et entre 

espèces ainsi que celle des écosystèmes

 partage juste et équitable des 

avantages découlant de [leur] utilisation 
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34,95 g/l dextrose, 7,3 g/l K2HPO4, 
2,04 g/l KH2PO4, 1,12 g/l KCl, and 

0,84 g/l NaHCO3 

Carboxylated 3-poly-L-lysine, 6,5 M 
éthylène glycol, 0,7 M saccharose 
2 M DMSO, 1 M acétamide, 3 M 

PEG  
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Abstract 

Animal-derived products are widely used in sperm cryopreservation for their cryoprotective 

properties. These components, however, tend to be replaced because of sanitary risks. 

STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-l’Argentière, France) called “CRYO3” is 

a chemically defined preservation medium currently used for freezing human tissue and adult stem 

cells. The aim of this study was to evaluate the effect of a CRYO3-based medium on ram sperm 

freezing regarding in vitro parameters and in vivo fertility. Semen from nine Charolais rams was 

collected using an artificial vagina, then split and frozen using two media: a CRYO3-based medium or 

a control medium containing egg yolk (10 %) and milk (45 %). Sperm membrane integrity (PI/SYBR-

14 and Calcein AM/Ethidium Homodimer-1), acrosome integrity (FITC-PNA/PI) and mitochondrial 

membrane potential (JC-1) were assessed using flow cytometry, while functional membrane integrity 

was assessed using a hypo-osmotic swelling test and motility parameters, evaluated by computer-

assisted sperm analysis. Pregnancy rates, prolificacy and the average daily weight gain of lambs 

(DWG) were evaluated after performing 195 laparoscopic inseminations. The control medium showed 

significantly higher results than CRYO-based medium for all in vitro parameters, except for linearity 

and straightness (motions parameters). Conversely, field trials showed no significant difference 

between the control medium and the CRYO3-based medium for pregnancy rates (72.2 % and 67.9 %, 

respectively), prolificacy (1.8 and 1.6, respectively) and the DWG (0.34 kg/day and 0.35 kg/day, 

respectively). This preliminary study showed that CRYO3 cannot replace egg yolk and milk in 

freezing extenders for commercial purposes. However, as laparoscopic inseminations allowed a 67 % 

pregnancy rate, CRYO3-based medium remains an option for international transport or long-term 

storage of genetic diversity.  



Introduction 

Animal-derived products (egg yolk, milk) have long been used to preserve frozen sperm in many 

species [1], especially rams [2,3]. Since 1939 [4], egg yolk has been routinely added to the sperm 

freezing media in order to minimize cryoinjuries. Indeed, egg yolk provides protection against cold 

shock [4,5] and has a protective effect on the plasma membrane [2]. Milk, as skimmed milk or whole 

milk, has also been used as a component of freezing media [2]. Milk as well as egg yolk seem to 

reduce the deleterious effects of the freezing process on sperm [6–8]. Indeed, caseins micelles, major 

proteins of milk, are believed to protect the sperm by reducing the binding of Binder of SPerm (BSP) 

proteins to sperm and then lipid loss [9,10]. With egg yolk, low-density lipoproteins (LDL) are known 

to be responsible for sperm protection during cryopreservation [9,10]. Lusignan et al. [10] 

demonstrated that BSP proteins in seminal plasma bind with LDL of egg yolk instead of the choline 

phospholipid proteins of the sperm membrane. These findings show that the components of milk and 

egg yolk, sequestrating BSP proteins, improve sperm cryo survival by decreasing lipid efflux from the 

sperm membrane [7]. 

Nevertheless, the use of animal-derived products presents numerous drawbacks. Indeed, the first major 

problem of using egg yolk and milk is the sanitary risk. Potential risks of contamination by pathogenic 

agents have been reported by Bousseau et al. [11]. Moreover, the egg yolk biochemical composition 

varies depending of the source and then could give heterogeneous results. Likewise, the presence of 

debris and the greater viscosity of these components render standardising microscopy assessment of 

frozen thawed semen more difficult [12]. Additionally, egg yolk provides aromatic amino acids and 

therefore contributes to the production of reactive oxygen species by dead spermatozoa to the 

detriment of live spermatozoa [6,13]. Finally, because of the international trade in milk and egg 

products, there is a risk to introduce exotic diseases via semen media containing egg yolk and milk. 

Today, alternatives to animal-derived products for sperm freezing are available. Indeed, soya lecithin 

and liposome-based media have been used extensively in many species to replace media containing 

animal proteins [3,11,12,14–17]. Their protective effect could be called into question, however, 



because of their unstable composition and variable properties [18]. In French ovine insemination 

centers, sperm is cryopreserved according to Colas [19], a conventional freezing procedure using egg 

yolk and milk in extenders. For these reasons, in order to overcome new biobanking regulations in the 

coming years, it might be necessary to cryopreserve semen in a stable, synthetic and chemically 

defined medium. STEMALPHA.CRYO3 (Ref 5617, Stem Alpha) called “CRYO3” is a good 

manufacturing practices (cGMP) serum-free, protein-free and dextran-free solution. CRYO3 is 

composed of high molecular weight synthetic hyaluronic acid (HA), glucose, carbohydrates, amino 

acids, mineral salts, vitamins, fatty acids esters and buffers (personal communication from Daniel 

Licari, March 2018). It was initially designed for clinical applications, in order to replacing serum in 

somatic and human adult stem cells freezing medium [20–23]. Recently, it has been found that 

CRYO3 could be a potential additive to cryopreserve reproductive cells. Indeed, CRYO3 can be used 

for rabbit [24] and bovine embryo cryopreservation [25]. No significant difference was found for the 

rabbit embryo in vitro survival rate between CRYO3 and foetal calf serum (FCS). However, CRYO3 

was found to be better for bovine embryos. Moreover, they observed better in vivo embryo viability, 

after embryo transfers when CRYO3 was used compared to FCS in the rabbit. Despite good 

performance of soya lecithin and liposomes on sperm quality, the objective of this study was to avoid 

all forms of derived (plant or animal origin), or unstable and variable products. The aim of the present 

study was to evaluate the effect of a chemically defined cryopreservation medium (CRYO3-based 

medium) on ram sperm regarding in vitro parameters and in vivo fertility. 

Materials and Methods 

The design of this veterinary clinical study was approved by the animal research ethics committee of 

VetAgro Sup. All animal procedures conformed to the European Regulations (Regulation (EU) 

2016/1012 related to zootechnical and genealogical conditions for the breeding, trade in and entry into 

the Union of purebred breeding animals, hybrid breeding pigs and the germinal products thereof). 

Unless specified otherwise, all chemicals were purchased from Sigma-Aldrich (Saint-Quentin-

Fallavier, France). 



Semen collection 

Sexually mature Charolais rams (n = 9; three to five years old) with proven fertility were used for this 

study. The rams were kept in a semen collection and storage centre (INSEM OVIN, agreement No. 

FRCO871, Limoges, France) under uniform conditions. All males were housed in groups of 4 to 6 

rams. They were fed with straw and hay and had free access to water. Animals were maintained under 

natural light and were subjected to semen collection once a day from Monday to Friday during 

breeding season. For the study, rams were subjected to semen collection once in the morning with an 

artificial vagina during the breeding season. Briefly, the artificial vagina was filled with warm water at 

a temperature (approximately 37°C) that mimics the natural condition of the female tract. A teaser ewe 

was presented to the ram and semen was recovered in a graduated glass tube attached to the artificial 

vagina. Directly after collection, the volume, concentration (ACCUREAD photometer, IMV 

Technologies, L’Aigle, France) and subjective motility (10× negative phase contrast objective) of each 

ejaculate (one per animal) were evaluated. The volume and the concentration of ejaculates varied 

between 0.6 and 1.3 mL and 1.9 and 3.3 × 109 spermatozoa/mL (spz/mL), respectively. Only 

ejaculates that presented a white colour and a visual motility higher than 70 % were used and held at 

37°C in a water bath before dilution and freezing procedure. 

Semen freezing 

Each ejaculate (n = 9) was split into two equal aliquots that were cryopreserved in a CRYO3-based 

medium composed of a chemically defined product, CRYO3 (pH = 6.8-7.6; osmolarity = 305-390 

mOsm; viscosity = 1-7 cps) or in medium containing egg yolk and milk (control medium). Each 

sample was processed using a two-step dilution procedure currently used in French ovine insemination 

centers according to Colas [19]. Each freezing medium (CRYO3-based medium and control medium) 

were then composed of two extenders. . Briefly, the first step consisted of diluting semen at 30°C in a 

glycerol-free medium at a concentration of 800 × 106 spz/mL. For the control medium, the first 

extender was composed of lactose (102.96 g/L) 20 % (v:v) hen egg yolk and gentamicin (Gibco, 

10 mg/mL) in sterile water. For the CRYO3-based medium, the first extender of the first step 



contained 20 % (v:v) CRYO3 in a Tris buffer supplemented with citric acid, glucose (TCG) and 

antibiotics (tris-hydroxymethyl-aminomethane, 30.26 g/L; citric acid, 17 g/L; glucose, 12.5 g/L; mix 

of sodium benzylpenicillinate 200 UI/mL, procaine benzylpenicillinate 300 UI/mL and 

dihydrostreptomycine, 0.5 mg/L; pH = 7.0). 

After equilibration of the diluted semen at 4°C for 90 min, the second step was performed at 4°C. A 

second extender (equilibrated at 4°C) containing glycerol was added in two steps 20 min apart at a 

final ratio of 1:1 to obtain a final concentration of 400 × 106 spz/mL. For the control medium, the 

second extender contained 90 % (w:v) of milk powder diluted in sterile water (Regilait, 40 g/L of 

semi-skimmed milk), 10 % (v:v) glycerol and gentamicin (Gibco, 10 mg/mL); pH was adjusted to 6.8. 

For the CRYO3-based medium, the second extender was composed of 20 % (v:v) CRYO3, 0.2 M of 

trehalose and 10 % (v:v) glycerol in TCG (pH = 7.0). The diluted sperm samples were cooled for two 

hours at 4°C. 

After equilibration, sperm was loaded into 0.25 mL French straws (IMV Technologies, L’Aigle, 

France). Straws were then suspended horizontally in liquid nitrogen vapour 20 cm above the liquid 

nitrogen surface (between -50°C and -70°C) for eight minutes before being plunged into liquid 

nitrogen. Straws were stored for at least two weeks in liquid nitrogen prior to thawing for assessment 

or for artificial inseminations. 

Thawing was performed by submerging the straws in a water bath at 37°C for 30 seconds before in 

vitro sperm evaluation and insemination. 

Sperm evaluation after thawing 

Post-thawed semen was diluted in a Tris-citrate buffer supplemented with fructose (TCF; tris-

hydroxymethyl-aminomethane: 27 g/L, citric acid: 14 g/L, fructose: 10 g/L; pH = 7.24; 

osmolarity = 294 mOsmol) in order to obtain 100 × 106 spz/mL for assessment. 

 

 



Flow cytometry analyses 

Semen was evaluated by flow cytometry to assess the plasma membrane integrity (fresh and frozen-

thawed samples), the acrosome integrity and the mitochondrial membrane potential. For all samples, 

the sperm population was identified (FSC/SSC dot plots) and 10,000 events among the sperm 

population were analysed at a low rate (200 cells/s). Analyses were performed using Flowsight Amnis 

(Emd Millipore, Seattle, WA) equipped with blue–green (488 nm, 60 mW), red (642 nm, 100 mW) 

and side scatter (SSC; 785 nm, 12 mW) solid-state lasers. The Flowsight is equipped with a 

quantitative imaging upgrade that includes a 488-nm laserpower doubler and increased image 

resolution (40× magnification). This innovative device, the Flowsight Amnis, allowed the visualisation 

of each event acquired via a classical microscope objective. It permitted us to gate precisely the sperm 

population and thus to eliminate debris and other cell particles, leading to an accurate analysis of the 

sample. Post-acquisition analyses were performed on Amnis IDEAS software (Millipore-Amnis; 

version 6.2).  

Plasma membrane integrity was evaluated with a Live/Dead Sperm Viability Kit (Invitrogen, Eugene, 

OR, USA) using propidium iodide (PI) and SYBR-14 staining. Intact spermatozoa appeared green in 

SYBR-14, whereas membrane-damaged spermatozoa were stained in red by PI. For each sample, 

10 µL of semen (100 × 106 spz/mL) were incubated with SYBR-14 (working concentration 45 nM) 

and PI (working concentration 11 µM) in a TCF extender (5 min, 37°C). Sperm membrane integrity 

was assessed with a 488-nm excitation laser and a 530 ± 30 nm bandpass emission filter for SYBR-14 

and 650 ± 13 nm bandpass emission filter for PI. The percentages of intact (SYBR-14 +) and 

membrane-damaged (PI +) spermatozoa were determined.  

A second evaluation of the plasma membrane integrity was carried out with a calcein AM and an 

ethidium homodimer-1 probes (C/EH) (Invitrogen, Eugene, OR, USA). Briefly, for each sample, 

10 µL of semen (100 × 106 spz/mL) were incubated with Calcein AM (working concentration 2 µM) 

and ethidium homodimer (working concentration 4 µM) in TCF extender (15 min, 37°C). Sperm 

membrane integrity was assessed with a 488-nm excitation laser and a 530 ± 30 nm bandpass emission 

filter for Calcein AM and 650 ± 13 nm bandpass emission filter for ethidium homodimer-1. The 



percentages of intact (Calcein AM +) and membrane-damaged (Ethidium homodimer-1 +) 

spermatozoa were determined. 

Acrosome integrity was assessed using FITC-PNA (1 mg/mL, Sigma-Aldrich, Saint-Quentin-

Fallavier, France). For each sample, 10 µL of semen (100 × 106 spz/mL) were incubated with FITC-

PNA (working concentration 10 µg/mL) in TCF extender (15 min, 37°C). Propidium iodide (working 

concentration 11 µM) was added 5 minutes before the end of the incubation. Fluorescence was 

collected with 488 nm excitation laser, a 530 ± 30 nm bandpass emission filter for FITC-PNA and a 

650 ± 13 nm bandpass emission filter for PI. The percentages of cells with intact acrosome 

(PI - / FITC-PNA -) were recorded.  

High mitochondrial membrane potential was assessed using the lipophilic cation JC-1 (1,5 mM, 

Invitrogen, Life Technologies, Eugen, OR, USA). For each sample, 10 µL of semen 

(100 × 106 spz/mL) were incubated with JC-1 (working concentration 0.75 mM) in TCF extender 

(15 min, 37°C). Fluorescence was collected with a 488-nm excitation laser, a 530 ± 30 nm bandpass 

emission filter and 610 ± 30 nm bandpass emission filter. The percentages of cells with high 

mitochondrial membrane potential (hMMP) staining in orange and with low mitochondrial membrane 

potential (green stained cells) were recorded. 

Hypo-osmotic swelling test (HOST) 

The functional integrity of sperm membrane can be evaluated with the hypo-osmotic swelling test, as 

described by Jeyendran et al.[26]. Briefly, 10 µL of semen at a concentration of 100 × 106 sperm/mL 

were diluted in 100 µL of a hypo-osmotic solution (100 mOsmol; 4.9 g/L citrate sodium, 9 g/L 

fructose). A smear test was performed after 30 min of incubation at 37°C. A total of 200 spermatozoa 

were observed under a phase-contrast microscope at magnification 400×. Spermatozoa with functional 

membranes appeared with swollen and curved tails. The percentage of functional membrane integrity 

was calculated as the following equation:  

 



Motion characteristics 

The post-thaw motility of the semen of the nine rams was evaluated using Sperm Class Analyser 

software (SCA2013, Microptic S.L; Barcelona, Spain) with a 10× negative phase contrast objective. 

Each semen sample was diluted to a concentration of 20 × 106 spz/mL. Briefly, a 5 µL sample of the 

diluted semen was loaded in a pre-warmed analysis chamber with a depth of 20 µM (Leja Products, 

Nieuw-Vennep, The Netherlands). For each sample, 10 fields were analysed and percentages of motile 

(VAP > 10 µm/s) and progressively motile (STR index > 80%) spermatozoa, amplitude of lateral head 

displacement (ALH), beat cross frequency (BCF), curvilinear velocity (VCL), straight line velocity 

(VSL), average path velocity (VAP), linearity (LIN=VSL/VCL), wobble (WOB=VAP/VCL) and 

straightness (STR=VSL/VAP) were recorded. The camera setting was 50 frames/s.  

Artificial insemination 

Multiparous Charolais ewes (n = 195) housed on free pasture were used for laparoscopic insemination. 

Ewes were synchronised with an intravaginal fluorogestone acetate sponge (20 mg, Chronogest, MSD 

Animal Health, Angers, France) for 14 days. Fifty-eight hours before artificial insemination (AI), the 

sponges were removed and animals were given an intramuscular injection of 500 – 600 IU of eCG 

(MSD Animal Health, Angers, France). Each ewe received one dose (one straw) of frozen-thawed 

semen. Briefly, the inseminating pipette was introduced into the lumen of each uterine horn. The straw 

was equally deposited (0.125 mL of frozen–thawed semen containing approximately 100 × 106 sperm) 

in each horn (50 × 106 sperm/horn). Ewes were randomly assigned to the control group (n = 97 ewes 

inseminated with the control medium) and the CRYO3 group (n = 98 ewes inseminated with the 

CRYO3-based medium). Frozen straws from the nine rams were randomly assigned to ewes and 

equally distributed for AI (approximately 20 to 21 ewes inseminated per ram). AI procedures were 

performed by a certified operator (CIA L’Aigle, agreement No. 263 related to ovine species, L’Aigle, 

France). Also, animal welfare during and after laparoscopic procedures was of specific concern. 

Pregnancy rate, prolificacy rate and average daily weight gain of lambs were determined as the 

following equations:  



 

 

 

Statistical analysis 

Statistical analyses were performed using R software [27]. The results were presented as the means ± 

standard deviation. The percentage of membrane integrities (IP/SYBR-14 and calcein/ethidium), 

percentage of acrosome integrity, percentage of hMMP, percentage of functional membrane integrity 

(HOST) and sperm motility parameters were compared using a Wilcoxon test. The average daily 

weight gains of lambs exhibited a Gaussian distribution and were compared using a paired t-test. The 

Chi-square test was used to compare pregnancy rates. Prolificacy rates (assumed to follow a Poisson 

distribution) were compared using generalised linear model including the freezing medium as a fixed 

effect. The correlation between in vitro parameters and reproductive performance was analysed using 

a generalised linear model procedure. Differences with p < 0.05 were considered statistically 

significant. 

Results 

Before freezing, the percentage of membrane integrity (IP/SYBR-14) was 75.7 ± 9.0 %. After 

thawing, the percentage of membrane integrity decreased radically for both media (Table 1). 

Significant differences were observed between media for all flow cytometry parameters (Table 1). 

A significant difference between the control and CRYO3-based media was found after performing a 

hypo-osmotic swelling test (p < 0.05). The control medium exhibited higher quality of spermatozoa in 

terms of functional membrane integrity compared to the CRYO3-based medium (39.9 % ± 8.7 and 

16.9 % ± 9.1 respectively). 



Significant differences between the control and CRYO3-based media were observed for the 

percentage of progressive and total motility, VSL, VCL, VAP, WOB, ALH and BCF. These 

parameters were lower for the CRYO3-based medium compared to the control medium (Table 2). No 

significant difference was found between the control and CRYO3-based media for LIN and STR. 

The reproductive parameters are shown in Table 3. No difference was found between the control and 

CRYO3-based media for pregnancy rate, prolificacy or average daily weight gain of lambs (p > 0.05).  

No significant correlation between in vitro parameters (from flow cytometry, HOST and CASA) and 

reproductive parameters (pregnancy rate, prolificacy) was found. 

Discussion 

Semen cryopreservation has been developed in numerous mammalian species and is widely used in 

farm animal breeding, particularly in bovine [28]. Ram semen cryopreservation remains difficult, 

however, as reflected by the low fertility rates after artificial insemination observed in this species [2]. 

This study was performed to investigate the effect of a chemically defined sperm cryopreservation 

medium on in vitro parameters and in vivo fertility in ovine species.  

For this study, we showed that all in vitro parameters (by flow cytometry, HOST, CASA), except for 

LIN and STR, yielded better results for the control medium compared to the CRYO3-based medium. 

After laparoscopic inseminations on 195 ewes, however, no significant difference was found between 

media for the pregnancy rate, the prolificacy and the average daily weight gain of lambs. 

In the present study, egg yolk and milk seemed to protect spermatozoa better than the tested medium 

with regard to in vitro results. Membrane integrity, acrosome integrity, hMMP and progressive 

motility of sperm cryopreserved in control medium were three times more higher compared to the 

CRYO3-based medium. Indeed, egg yolk and milk are used in cryopreservation media as a source of 

lipoproteins, which are known to protect sperm cells from cold shock mainly by maintaining 

membrane phospholipid integrity [29]. Numerous authors have suggested that LDL could be 

responsible for the resistance of sperm during cold shock and for the improvement of motility [30–32]. 

Soy lecithin, a vegetal phospholipid, is known to replace egg yolk [33] and has been studied in many 



experiments involving ram semen cryopreservation, as reported earlier [15,33,34]. Indeed, semen 

quality (progressive motility, functional membrane integrity, acrosome integrity, mitochondrial 

activity) was comparable or even better (25 %, 56 %, 85 %, 56 %, respectively) when cryopreserved 

with soy lecithin than in presence of egg yolk (21 %, 50 %, 76 %, approximately 54 %, respectively)  

[33]. In our study, we tested a synthetic product composed of hyaluronic acid (HA). Several studies 

used HA as an antioxidant supplement in sperm freezing media [35–37], or as a cryoprotectant [38]. 

HA is known to compose the extracellular matrix and to be present in several tissue and fluids [39]. 

More specifically, it seems that HA could regulate sperm metabolism and could be involved in sperm 

capacitation process [40]. HA supplementation after thawing human sperm has been shown to be 

beneficial [41]. However, the addition of HA in the freezing medium does not improve sperm quality 

in human [41] nor ram [36], as observed in our study. Our in vitro results (especially the sperm 

motility) are different from some previous studies [42,43] but consistent with others [33,34,44–46]. 

These discrepancies could be explained by the low freezing rate method (20 cm above liquid 

nitrogen). Furthermore, the significant difference observed for in vitro results between our two media 

can also, in part, be explained by the differences in the composition of antibiotics. Indeed, Salvetti et 

al. [47] showed that antibiotics in rabbit sperm extenders can change the temperature of crystallisation 

and the quantity of ice formed during the freezing step. Therefore, even if HA from CRYO3 does not 

enough mimic the surfactant properties brought by phospholipids in vegetal or animal-derived 

product, we should be careful since composition of media in terms of antibiotics are different.  

Despite the obvious differences observed between control and CRYO3-based media, some parameters 

such as LIN and STR were not statistically different for the control and CRYO3-based media. The 

non-significant differences in LIN and STR could have explained the in vivo results. Indeed, Hirano et 

al. [48] reported that VSL and ALH were correlated with in vitro fertilisation results for human sperm. 

Similarly, Lavara et al. [49] found a negative correlation for LIN and kindling rate with rabbit sperm, 

whereas Larsen et al. [50] found a significant effect of STR on the fertility rate with human sperm. A 

positive correlation between BCF and fertility has also been reported in human and ovine sperm 

[50,51]. In the present study, however, no relationship between CASA parameters and in vivo results 



was found. Similarly, Holden et al. [52] did not observe a correlation between in vitro sperm 

parameters (viability or total motility and pregnancy rates) when non-sorted bull sperm was evaluated. 

It appears that motility or viability parameters are considered as compensable traits of semen for 

fertility, as they depend on the number rather than the rate of spermatozoa affected [43,44,52,53].  

Despite poor in vitro results, laparoscopic insemination could allow a high pregnancy rate with 

CRYO3-based medium (67 % vs. 72 % for egg yolk and milk-based medium, p > 0.05). The number 

of spermatozoa per dose and the pregnancy rate associated were similar to other studies using 

laparoscopic inseminations [54–56]. Our in vivo results were even better compared to other studies 

using fresh or frozen-thawed ram semen [57,58]. In stallions, a freezing medium was not optimal 

based on in vitro analyses but was better after insemination compared to the control medium with egg 

yolk [59]. Authors made the assumption that after cryopreservation, it is possible that only a small 

subpopulation of spermatozoa that is still sufficient for fertilising the egg was preserved in the medium 

tested. Consequently, this optimal but small subpopulation of sperm has not been highlighted by the 

laboratory examination of sperm quality. Indeed, we assume that CRYO3-based medium via its main 

component (hyaluronic acid) might select the “strongest spermatozoa” and eliminate the less resistant 

during cryopreservation. Recently, it was shown that it is therefore important to identify and compare 

sperm subpopulations using a clustering analysis because of the heterogeneity of a single ejaculate 

[60]. Thus, in the present study, CRYO3 failed to protect ram spermatozoa whilst it appeared to be a 

good substitute to serum-based media in rabbit and bovine embryo freezing. 

Conclusion 

This preliminary study showed that CRYO3 cannot replace egg yolk and milk in commercially 

available freezing extenders. Indeed, this product was established to replace serum for somatic and 

stem cells cryopreservation. However, since laparoscopic insemination has allowed to recover a 

pregnancy rate of 67 %, CRYO3-based medium remains an option in some instances. The use of 

CRYO3 may be appropriate to overcome the forthcoming regulatory requirements in the international 

trade of semen from animals of high genetic value. It could also be considered for the long-term 



storage of rams resources in sheep cryobanking programs. Adjustments of the freezing procedure and 

must nevertheless be studied to improve the in vitro viability of spermatozoa. 
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Table 1 Effect of the freezing medium on the plasma membrane integrity, the acrosome integrity and 
the high mitochondrial membrane potential of thawed semen. 

Flow Cytometry parameters Control medium CRYO3-based medium 

Plasma membrane integrity (IP/SYBR-14) (%) 15.9 ± 4.2a 4.2 ± 1.8b 

Plasma membrane integrity (C/EH) (%) 20.7 ± 6.4a 7.7 ± 4.7b 

Acrosome integrity (%) 20.2 ± 4.8a 7.1 ± 3.5b 

High mitochondrial membrane potential (%) 18.5 ± 4.3a 5.1 ± 3.0b 

Results are presented as the means ± standard deviation.  
a, b Values within a row with different superscripts differ significantly at P < 0.05. 

Table 2 Effect of the freezing medium on sperm motility after thawing.  

Motion characteristics Control medium CRYO3-based medium 

Progressive (%) 24.3 ± 5.1a 8.4 ± 3.0b 

Motile (%) 45.0 ± 5.7a 23.5 ± 5.3b 

VCL (µm²/s) 118.2 ± 13.1a 66.7 ± 12.4b 

VSL (µm²/s) 41.9 ± 6.4a 25.1 ± 6.4b 

VAP (µm²/s) 61.9 ± 6.4a 34.3 ± 7.1b 

LIN (%) 29.7 ± 3.0a 26.1 ± 3.6a 

STR (%) 59.3 ± 4.1a 57.8 ± 3.5a 

WOB (%) 48.8 ± 3.0a 42.9 ± 4.0b 

ALH (µm) 2.8 ± 0.4a 1.7 ± 0.3b 

BCF (Hz) 12.04 ± 1.7a 8.2 ± 2.0b 

VCL = curvilinear velocity; VSL = straight line velocity; VAP = average path velocity; LIN = VSL/VCL 
(linearity); STR = VSL/VAP (straightness); WOB = VAP/VCL (wobble); ALH = amplitude of lateral head 
displacement; BCF = beat cross frequency.  

Results are presented as the means ± standard deviation.  
a, b Values within a row with different superscripts differ significantly at P < 0.05.  



Table 3 Effect of the freezing medium on in vivo results after artificial insemination with thawed ram 
sperm. 

Medium Pregnancy rate (%) Prolificacy (number 

of lamb(s)/ewe) 

Average daily weight 

gain of lambs (kg/day) 

Control medium 

(n = 97) 

72.2 ± 0.4 1.8 ± 0.8 0.34 ± 0.1 

CRYO3-based medium 

(n = 98) 

67.3 ± 0.5 1.6 ± 0.6 0.35 ± 0.1 

p-value 0.51 0.65 0.55 

Results are presented as the means ± standard deviation.  
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Abstract 

Animal-derived products are widely used in sperm cryopreservation for their cryoprotective 

properties. These components, however, require to be replaced because of sanitary risks. 

STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-l’Argentière, France) called 

“CRYO3” is a chemically defined preservation medium currently used for freezing human 

tissue and adult stem cells. The aim of this study was to evaluate the effect of a CRYO3-based 

medium on in vitro parameters of the liquid storage at 4°C and the freezing of bull sperm. Sperm 

from four Montbéliard bulls was collected four times using an artificial vagina, then split and 

frozen using six media: a positive control medium containing egg yolk (20 %), a negative 

control medium composed only of a Tris buffer and glycerol, a CRYO3-based medium and 

three commercial media (Optidyl®, OPTIXcell®, BIOXcell®). Sperm membrane integrity 

(PI/SYBR-14), acrosome integrity (FITC-PNA/PI) and mitochondrial membrane potential (JC-

1) were assessed using flow cytometry, while functional membrane integrity was assessed using 

a hypo-osmotic swelling test and motion characteristics, evaluated by computer-assisted sperm 

analysis. A thermodynamic approach allowed us to characterize the media using Differential 

Scanning Calorimetry (DSC). OPTIXcell® showed mostly significantly higher results for all 

in vitro parameters with the CRYO-based medium and the negative control medium showing 

the lowest. Moreover, the study of the freezing media behaviour using DSC showed that the 

positive control was the only medium which did not achieve its maximum crystallisation 

quantity. Moreover, OPTIXcell was more thermodynamically instable compared to CRYO3-

based medium. This study showed that the product, CRYO3, cannot replace egg yolk in 

freezing extenders. Thus, OPTIXcell® containing liposomes seemed to be an appropriate 

medium for cryopreserving Montbeliard bull sperm. 

 
Introduction 

Animal-derived products (egg yolk, milk) have long been used to preserve frozen sperm in 

many species [1], especially bulls [2]. Since 1939 [3], egg yolk has been routinely added to the 

sperm freezing media for minimising cryoinjuries. Indeed, egg yolk provides protection against 

cold shock [3,4] and has a protective effect on the plasma membrane [5]. Indeed, low-density 

lipoproteins (LDL) are known to be responsible for sperm protection during cryopreservation 

[6,7]. LDL are believed to protect the sperm by reducing the binding of Binder of SPerm (BSP) 



proteins to sperm and then lipid loss [6,7]. Lusignan et al. [7] demonstrated that BSP proteins 

in seminal plasma bind with LDL of egg yolk instead of the choline phospholipid proteins of 

the sperm membrane. These findings show that the components of milk and egg yolk, 

sequestrating BSP proteins, improve sperm cryo survival by decreasing lipid efflux from the 

sperm membrane [8]. 

Nevertheless, the use of animal-derived products presents numerous drawbacks. The first major 

concern of using egg yolk or milk is the sanitary risk [9]. Moreover, the biochemical 

composition of egg yolk is extremely variable, which leads to variable results. Likewise, the 

presence of debris and the greater viscosity of these components render standardising 

microscopy assessment of frozen thawed semen more difficult [10]. Additionally, egg yolk 

provides aromatic amino acids and therefore contributes to the production of reactive oxygen 

species to the detriment of live spermatozoa [2,11]. Also, spreading exotic disease through 

international transport is an emerging concern. 

Today, alternatives to animal-derived products for sperm freezing are available. Indeed, soya 

lecithin and liposome-based media have been used extensively in many species to replace media 

containing animal proteins [9,10,12–16], despite of their unstable and variable properties [17]. 

In French bovine insemination centers, sperm is cryopreserved using a controlled-rate freezer 

and a commercial medium containing egg yolk, Optidyl® (IMV Technologies, France). Using 

such media is acceptable within a short-term commercial strategy. However, it sounds 

necessary to develop the use of stable, synthetic and chemically defined medium in biobank to 

overcome any update of the regulations by the future. STEMALPHA.CRYO3 (Ref 5617, Stem 

Alpha, Saint-Genis-l’Argentière, France) called “CRYO3” is a patented serum-free, protein-

free and dextran-free medium (manufactured according to good manufacturing practices 

[cGMP-annex 1] in compliance with 2001/83/EC). CRYO3 is composed of synthetic 

hyaluronic acid of high molecular weight (> 106 D), glucose, carbohydrates, amino acids, 

mineral salts, vitamins, fatty acids esters and buffers. It was initially designed for clinical 

applications, in order to replace serum in somatic and human adult stem cells freezing medium 

[18–21]. More recently, it has been shown as a potential medium to cryopreserve reproductive 

cells (ie. rabbit [22,23] and bovine [24] embryos , ram sperm [Gavin-Plagne et al., 2018 ; In 

Press]).  

Despite good performance of soya lecithin and liposomes on sperm quality, the objective of 

this study was to avoid all forms of derived (plant or animal origin), or unstable and variable 

products. The aim of the present study was to evaluate the effect of a chemically defined 



cryopreservation medium (CRYO3-based medium) on in vitro parameters of bull sperm. The 

evaluation of CRYO3 as a potential substitute to serum was performed using two approaches: 

a thermodynamic approach using Differential Scanning Calorimetry and a biological approach 

using bovine sperm freezing. 

Materials and Methods 

Experimental design 

The experimental design is summarized in Figure 1. Sixteen ejaculates (4 bulls, four replicates) 

were assessed in vitro before and after freeze-thaw procedure (flow cytometry, CASA and HOS 

test). Moreover, diluted sperm was evaluated after 3h of equilibration at 4°C, in order to 

evaluate the toxicity of the media before the freezing procedure (CASA and HOS test).  

 

Figure 1. Experimental design of the study. 
Bull sperm was frozen either in a control medium (TCGG-EY) made at the laboratory, containing egg yolk; or in 
Optidyl® (IMV Technologies, L’Aigle, France) containing egg yolk or in OPTIXcell (IMV Technologies, 
L’Aigle, France) containing liposomes or BIOXcell (IMV Technologies, L’Aigle, France) containing soya lecithin 
or in a CRYO3-based medium, called “TCGG-CRYO3”, or in a negative control, called “TCGG”, consisting of a 
Tris buffer and glycerol. After collection, sperm was assessed by flow cytometry, CASA and HOS Test, while 
equilibrated sperm at 4°C during 3h was assessed by CASA and HOS Test. Frozen-thawed sperm quality was 
evaluated by flow cytometry, CASA and HOS Test. Freezing media were thermodynamically characterized using 
a Differential Scanning Calorimeter. CASA: Computer-Assisted Sperm analysis; DSC: differential scanning 
calorimeter; LN2: Liquid Nitrogen. 
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Semen collection 

Sexually mature Montbeliard bulls (n = 4 bulls; two to nine years old) with proven fertility were 

used four times for this study. The bulls were housed in a breed society managing bovine species 

(Auriva-Elevage, Brindas, France) under uniform conditions. Animals were maintained under 

natural light and were subjected to semen collection twice a week (Monday and Wednesday or 

Tuesday and Thursday). For the study, bulls were subjected to semen collection twice in the 

morning with an artificial vagina. Directly after collection, the volume, concentration and 

motility (IVOS IITM Animal, Hamilton Thorne, United States) of each ejaculate were evaluated. 

Only ejaculates that presented a white colour and a visual motility higher than 70 % were used 

and held at 37°C in a water bath before dilution and freezing procedure. 

Semen freezing 

Each ejaculate (n = 16) was split into six equal aliquots that were cryopreserved in three 

commercial media and three media made at the laboratory (Table 1):  

- OPTIDYL® (IMV Technologies, L’Aigle, France) containing egg yolk ; 

- OPTIXcell® (IMV Technologies, L’Aigle, France) containing liposomes ; 

- BIOXcell® (IMV Technologies, L’Aigle, France) containing soya lecithin ; 

- a medium containing a Tris buffer supplemented with citric acid and glucose (TCG; 

Tris-hydroxymethyl-aminomethane: 32.7 g/L, citric acid: 18.5 g/L, glucose: 8.7 g/L; 

pH = 6.8; osmolarity = 294 mOsmol) and glycerol only (TCGG),  as negative control; 

- a CRYO3-based medium (TCGG-CRYO3) composed of the same base medium 

(TCGG) and a chemically defined product, 20 % (v/v) CRYO3 (pH = 6.8-7.6; 

osmolarity = 305-390 mOsm; viscosity = 1-7 cps); 

- a medium containing TCGG and 20 % (v/v) of egg yolk (TCGG-EY), as positive 

control. 

The pH (at room temperature and at 37°C) and the osmolality (VAPRO® Vapor Pressure 

Osmometer 5600, Wescor, Logan, USA) of each medium is presented in Table 2. 

 

 



Table 1. Composition of freezing media. 

Freezing medium Base medium Glycerol Main additive (v/v) 

Optidyl® 
Carbohydrates, 

buffers, antibiotics Around 6.4 and 7 % 

20 % ionized egg yolk 

OPTIXcell® Liposomes 

BIOXcell® Soya lecithin 

TCGG-EY TCG 7 % 20 % egg yolk 

TCGG-CRYO3 TCG 7 % 20 % CRYO3 

TCGG TCG 7 % - 

 

 

Table 2. Chemical property of the freezing media. 

  pH at room temperature pH at 37°C Osmolality 
Optidyl 6.82 ± 0.03 6.68 ± 0.02 1392.75 ± 13.05 

OPTIXcell 6.73 ± 0.01 6.56 ± 0.02 1441.33 ± 61.58 
BIOXcell 6.95 ± 0.01 6.85 ± 0.02 1310.50 ± 74.74 

TCGG-EY 6.78 ± 0.01 6.66 ± 0.02 1640.75 ± 27.42 
TCGG-CRYO3 6.99 ± 0.05 6.84 ± 0.03 1500.25 ± 33.28 

TCGG 6.91 ± 0.03 6.73 ± 0.02 1455.75 ± 15.26 
Results are presented as the means ± standard deviation of 4 measures from 4 different preparation. 
 

Sperm was first diluted 1:1 with the freezing medium and put at 37°C during at least 10 minutes. 

Sperm samples were then diluted in the freezing medium to a obtain a final sperm concentration 

of 80 x 106 spermatozoa/mL. The diluted sperm samples were cooled during four hours at 4°C. 

After equilibration, sperm was loaded into 0.25 mL French straws (IMV Technologies, 

L’Aigle, France) using an automatic straw filling machine placed in a 4°C chamber. Straws 

were then frozen in a controlled-rate freezer (DigitCool 5300, IMV Technologies, L’Aigle, 

France) using a bull sperm freezing curve (5°C/min from 4°C down to -10°C, 40°C/min from -

10°C down to -100°C and 20°C/min until -140°C, before being plunged into liquid nitrogen). 

The cooling rate was calculated using a type T thermocouple (TC Direct, Dardilly, France) 

inserted in a separate straw containing cells and freezing medium. The approximate cooling 

rate in the linear part of the freezing curves was 32 °C/min. Straws were stored in liquid nitrogen 

for at least one week prior to assessment.  

Thawing was performed by submerging the straws in a water bath at 37°C for 30 seconds. Two 

straws corresponding to the same experimental condition were thawed and pooled before 

assessment, in order to reduce inter-straw variation. 



Sperm evaluation after thawing 

Post-thawed semen was diluted in the TCF buffer in order to obtain 100 × 106 spz/mL for 

assessment.  

Flow cytometry analyses 

Semen was evaluated by flow cytometry to assess the plasma membrane integrity (fresh and 

frozen-thawed samples), the acrosome integrity and the mitochondrial membrane potential. For 

all samples, the sperm population was identified (FSC/SSC dot plots) and 10,000 events among 

the sperm population were analysed at a low rate (200 cells/s). Analyses were performed using 

Flowsight Amnis (Emd Millipore, Seattle, WA) equipped with blue–green (λ = 488 nm, 

60 mW), red (λ = 642 nm, 100 mW) and side scatter (SSC; λ = 785 nm, 12 mW) solid-state 

lasers. The Flowsight is equipped with a quantitative imaging upgrade that includes a 488-nm 

laserpower doubler and increased image resolution (40× magnification). It allowed the 

visualisation of each event acquired via a classical microscope objective. It permitted us to gate 

precisely the sperm population, and thus to eliminate debris and other cell particles, leading to 

an accurate analysis of the sample. Post-acquisition analyses were performed on Amnis IDEAS 

software (Millipore-Amnis; version 6.2).  

Plasma membrane integrity was evaluated with a Live/Dead Sperm Viability Kit (Invitrogen, 

Eugene, OR, USA) using propidium iodide (PI) and SYBR-14 staining. Intact spermatozoa 

appeared green in SYBR-14, whereas membrane-damaged spermatozoa were stained in red by 

PI. For each sample, 10 µL of semen (100 × 106 spz/mL) were incubated with SYBR-14 

(working concentration 45 nM) and PI (working concentration 11 µM) in a TCF extender 

(5 min, 37°C). Sperm membrane integrity was assessed with a 488-nm excitation laser and a 

530 ± 30 nm bandpass emission filter for SYBR-14 and 650 ± 13 nm bandpass emission filter 

for PI. The percentages of intact (SYBR-14 +) and membrane-damaged (PI +) spermatozoa 

were determined.  

Acrosome integrity was assessed using FITC-PNA (1 mg/mL, Sigma-Aldrich, Saint-Quentin-

Fallavier, France). For each sample, 10 µL of semen (100 × 106 spz/mL) were incubated with 

FITC-PNA (working concentration 10 µg/mL) in TCF extender (15 min, 37°C). Propidium 

iodide (working concentration 11 µM) was added 5 minutes before the end of the incubation. 

Fluorescence was collected with a 488 nm excitation laser, a 530 ± 30 nm bandpass emission 



filter for FITC-PNA and a 650 ± 13 nm bandpass emission filter for PI. The percentages of cells 

with intact acrosome (PI - / FITC-PNA -) were recorded.  

High mitochondrial membrane potential was assessed using the lipophilic cation JC-1 (1,5 mM, 

Invitrogen, Life Technologies, Eugene, OR, USA). For each sample, 10 µL of semen 

(100 × 106 spz/mL) were incubated with JC-1 (working concentration 0.75 mM) in TCF 

extender (15 min, 37°C). Fluorescence was collected with a 488-nm excitation laser, a 

530 ± 30 nm bandpass emission filter and 610 ± 30 nm bandpass emission filter. The 

percentages of cells with high mitochondrial membrane potential (hMMP) staining in orange 

and with low mitochondrial membrane potential (green stained cells) were recorded. 

Hypo-osmotic swelling test (HOST) 

The functional integrity of sperm membrane can be evaluated with the hypo-osmotic swelling 

test, as described by Jeyendran et al. [25]. HOS test was performed for evaluating sperm after 

sperm collection, after an equilibration at 4°C and after freezing-thawing. Briefly, 10 µL of 

semen at a concentration of 100 × 106 sperm/mL were diluted in 100 µL of a hypo-osmotic 

solution (100 mOsmol; 4.9 g/L citrate sodium, 9 g/L fructose). A smear test was performed 

after 30 min of incubation at 37°C. A total of 100 spermatozoa were observed under a phase-

contrast microscope at magnification 400×. Spermatozoa with functional membranes appeared 

with swollen and curved tails. The percentage of functional membrane integrity was calculated 

as the following equation:  

 

Motion characteristics 

The post-thaw motility of the semen of the nine rams was evaluated using Sperm Class Analyser 

software (SCA2013, Microptic S.L; Barcelona, Spain) with a 10× negative phase contrast 

objective. Each semen sample was diluted to a concentration of 20 × 106 spz/mL. Briefly, a 

5 µL sample of the diluted semen was loaded in a pre-warmed analysis chamber with a depth 

of 20 µM (Leja Products, Nieuw-Vennep, The Netherlands). For each sample, 10 fields were 

analysed and percentages of motile (VAP > 10 µm/s) and progressively motile (STR index > 

80%) spermatozoa, amplitude of lateral head displacement (ALH), beat cross frequency (BCF), 

curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), linearity 



(LIN=VSL/VCL), wobble (WOB=VAP/VCL) and straightness (STR=VSL/VAP) were 

recorded. The camera setting was 50 frames/s.  

Thermodynamic properties of the media 

The phase transitions of the freezing media were characterized using a power compensation 

DSC (Diamond DSC, Perkin-Elmer, Waltham, Massachusetts, USA) equipped with a liquid 

nitrogen cooling accessory (Cryofill) and the Pyris software (11.11.1 version). The accuracy 

provided in the technical specifications of this DSC is ± 0.11°C for temperature and ± 1.10% 

for energy. The DSC was calibrated for temperature and energy at +2.5°C/min with two 

standards: the ice melting of pure bi-osmosed water (0°C; 333.40 J/g) and the crystallographic 

transition of cyclohexane in its solid state (-87.06°C; 79.58 J/g), for a high data range of 

720 mW. The validity of the calibration was verified regularly using tests on pure bi-osmosed 

water and cyclohexane, and the maximal error of reproducibility obtained with these pure 

standards was ± 0.36°C (temperature) and ± 0.62 % (energy). Experiments were conducted 

using standard hermetically sealed aluminium pans (Ref. 0219–0062, Perkin-Elmer, Waltham, 

Massachusetts, USA) designed for volatile samples. The pans were previously cleaned 

following the standard procedure provided by Perkin-Elmer. During the experiment, the 

cryopreservation media were stored less than 2 weeks at 4°C in Eppendorf tube previously 

cleaned and sterilized to remove any impurities that could interfere with the thermodynamic 

measures. Three replicate measurements were taken for each solution. Before testing, each 

solution was stored at room temperature for approximately 30 min. The solution was then 

gently mixed though a series of 5 capsizing.  The solution was then loaded in aluminum pans 

(20 µL) using a micropipette to limit the variations in weight between the samples. The 

aluminum pans were first weighed without cryopreservation solution on a high sensibility scale 

balance (XS105 DualRange, Metler Toledo, France) and were then weighed after the loading 

of the cryopreservation solution in order to measure the sample mass. The weights were 

determined with a resolution of 10-5 g. The samples weight was 3.70 ± 0.38 (mean ± standard 

deviation, n = 6). Three cycles of cooling and warming between 10°C and -150°C were applied 

to each sample to determine the melting temperature (Tm, in degree celcius [°C]) and the 

crystallization enthalpy variation (ΔH, in Joules per gram [J/g]). An empty oven baseline of the 

DSC, systematically subtracted from the sample thermograms, was regularly recorded with 

care, using the same protocol in temperature variations Tm is the temperature under which 

crystallization can occur, and ΔH allows the quantification of crystallized ice in the solution 

(Joules per gram, J/g). We determined ΔHmax which represents the maximum crystallization 



quantity that can develop in each medium, and ΔH50°C/min which represents the crystallization 

quantity at a cooling rate of 50°C/min. A rapid cooling (100°C/min) was followed by a slow 

warming (2.5°C/min) to measure Tm. Tm was defined at the top of the main melting peak. A 

slow cooling (2.5°C/min) was followed by a rapid warming (20°C/min) to determine ΔHmax. 

For determining ΔH50°C/min, a rapid cooling of 50°C/min and a rapid warming (20°C/min) was 

applied. ΔH was measured by evaluating the area encompassed between the peak of 

crystallization and the baseline. The areas were calculated using a sigmoid curve baseline. 

Statistical analysis 

Statistical analyses were performed using R software [26]. The results were presented as 

mean ± standard deviation. The percentage of membrane integrity percentage of acrosome 

integrity, percentage of hMMP, percentage of functional membrane integrity (HOST) and 

motion parameters were analysed using a mixed model including the medium (six media), the 

storage (sperm equilibrated at 4°C or frozen-thawed) and their interaction as fixed effects. The 

bull was considered as a random effect. Differences with p < 0.05 were considered statistically 

significant. Thermodynamic values were analysed using descriptive statistics. 

Results 

Sperm quality before equilibration and freezing-thawing 

Fresh sperm exhibited an average progressive motility of 76.2 ± 8.9 %, total motility of 

85.8 ± 5.3 %, functional membrane integrity of 74.1 ± 13.0 %, membrane integrity of 

57.4 ± 12.8 %, acrosome integrity of 59.9 ± 11.6 % and high mitochondrial membrane 

potential of 59.4 ± 12.8 % (Figure 2). The concentration and motion characteristics per bull are 

presented in Table 3. More variability within a bull was observed for flow cytometry parameters 

compared to progressive and total motility (Figure 2). 

 

 



 

 

Table 3. Concentration and motion characteristics of fresh sperm per bull. 

  Bull 1 Bull 2 Bull 3 Bull 4 Mean 
Concentration 
(.109/mL) 0.9 ± 0.1 1.6 ± 0.5 1.8 ± 0.2 1.4 ± 0.2 1.4 ± 0.4 

VCL (µm²/s) 129.4 ± 0.6 161.1 ± 25.8 166.0 ± 24.0 141.5 ± 5.0 149.5 ± 23.9 
VSL (µm²/s) 70.0 ± 8.0 81.2 ± 14.0 89.9 ± 17.0 80.3 ± 6.7 80.3 ± 13.1 
VAP (µm²/s) 83.2 ± 9.5 96.7 ± 11.4 99.4 ± 7.5 87.4 ± 7.6 91.7 ± 10.6 
LIN (%) 49.4 ± 2.1 54.8 ± 18.4 57.3 ± 14.7 60.9 ± 16.5 55.6 ± 13.6 
STR (%) 75.2 ± 2.5 67.7 ± 11.4 69.2 ± 16.1 74.8 ± 12.4 71.7 ± 11.0 
WOB (%) 62.7 ± 2.8 62.9 ± 6.8 64.3 ± 6.8 63.9 ± 2.7 63.4 ± 4.7 
ALH (µm) 2.6 ± 0.6 3.4 ± 1.0 3.4 ± 1.0 3.0 ± 0.3 3.1 ± 0.8 
BCF (Hz) 19.4 ± 1.3 18.8 ± 3.0 20.3 ± 4.0 21.5 ± 0.9 20.0 ± 2.6 

VCL = curvilinear velocity; VSL = straight line velocity; VAP = average path velocity; LIN = VSL/VCL 
(linearity); STR = VSL/VAP (straightness); WOB = VAP/VCL (wobble); ALH = amplitude of lateral head 
displacement; BCF = beat cross frequency. Results are presented as the means ± standard deviation. 



Figure 2. Main in vitro sperm parameters per bull before freezing. 
(A) Progressive motility – average progressive motility was 76.2 ± 8.9 %; (B) Total motility – average total 
motility was 85.8 ± 5.3 %, (C) Functional membrane integrity (HOS test) – average functional membrane integrity 
was 74.1 ± 13.0 %, (D) Membrane integrity – average membrane integrity was 57.4 ± 12.8 %, (E) Acrosome 
integrity – average acrosome integrity was 59.9 ± 11.6 %, (F) High mitochondrial membrane potential – average 
hMMP was 59.4 ± 12.8 %. 
The symbol * within the graphs corresponds to the mean of 4 ejaculates from one bull.  
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Sperm quality depending on the medium and the storage 

Differences between equilibrated and frozen-thawed sperm for progressive motility, total 

motility and functional membrane integrity are shown in Figure 3. Other in vitro parameters are 

shown in Table 4 and Table 5 for equilibrated and frozen-thawed sperm, respectively. 

Figure 3. Differences between equilibrated and frozen-thawed sperm depending on the medium. 
(A) Progressive motility, (B) Total motility, (C) Functional membrane integrity (HOS test). 
Results are presented as the means ± standard deviation of 16 ejaculates from four bulls.
a,b,c,d,e,f Values within a graph with different superscripts differ significantly at P < 0.05.
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The medium had a significant effect on bovine sperm parameters. A significant effect of the 

storage was observed on progressive motility, total motility, HOS, LIN, STR, WOB, ALH. The 

equilibration decreased sperm quality for all the media. This decrease was more important in 

TCGG-CRYO3 and TCGG. Also, a significant interaction effect between the medium and the 

storage was found for progressive motility, VCL, VSL, VAP, STR, WOB, ALH. This 

interaction was mainly observed for BIOXcell, TCGG-CRYO3 and TCGG. OPTIXcell showed 

the highest percentages of viability while TCGG-CRYO3 and TCGG showed the lowest. 

Moreover, no significant difference was found between TCGG-EY, Optidyl and BIOXcell, and 

between TCGG-CRYO3 and TCGG. 

Thermodynamic properties of the media 

As shown in Table 6, the average melting temperature Tm of the two media were close. 

Paradoxically, TCGG-CRYO3 was found to show more variability than TCGG-EY, Optidyl 

and OPTIXcell for Tm. We observed that with a cooling rate of 50°C/min, TCGG-EY was the 

only medium which do not achieve its maximum crystallisation quantity (-188 J/g vs. -192 J/g 

for ΔH50°C/min and ΔHmax respectively). OPTIXcell was the least thermodynamically stable 

solution with a greater variability in ΔHmax and H50°C/min. The values of crystallization 

temperatures were close but TCGG-CRYO3 obtained the lowest with -19.66°C and -21.06°C 

at a cooling rate of 2.5°C/min and 50°C/min respectively. 

Table 6. Thermodynamic indicators of the freezing media. 

Medium Tm (°C) ΔHmax (J/g)  Tc2.5°C/min (°C) ΔH(-50°C/min) (J/g)  Tc50°C/min (°C) 
Optidyl -1.82 ± 0.03 -193.39 ± 3.38 -16.74 ± 3.56 -194.45 ± 1.95 -21.11 ± 1.82 

OPTIXcell -1.86 ± 0.09 -212.36 ± 3.76 -18.17 ± 0.57 -211.49 ± 4.09 -18.60 ± 0.40 
TCGG-EY -2.25 ± 0.06 -192.44 ± 2.28 -17.47 ± 0.92 -187.64 ± 2.12 -20.57 ± 2.30 

TCGG-
CRYO3 -2.11 ± 0.29 -210.04 ± 3.48 -19,66 ± 1.22 -210.66 ± 2.36 -21.06 ± 1.64 

Results are presented as the means ± standard deviation of 3 replicates of each medium. Tc(2.5°C/min) : Crystallization 
temperature at a cooling rate of 2.5°C/min;  Tc(50°C/min) : Crystallization temperature at a cooling rate of 50°C/min 
Tm : Melting temperature ; ΔHmax : maximum crystallization enthalpy variation; ΔH50°C/min : crystallization enthalpy 
variation at a cooling rate of 50°C/min. 

 



Discussion 

Semen cryopreservation has been developed in numerous mammalian species and is widely 

used in farm animal breeding, particularly in bovine [27]. This study was performed to 

investigate the effect of a chemically defined bull sperm freezing medium on in vitro 

parameters. Generally, after bull sperm equilibration at 4°C, no significant difference was 

observed between TCGG-EY, Optidyl, OPTIXcell and BIOXcell and between TCGG-CRYO3 

and TCGG, the latter showing the lowest values. After thawing, OPTIXcell showed the highest 

percentages of motion characteristics and flow cytometry parameters. After thawing, no 

difference was found between Optidyl, BIOXcell and TCGG-EY, and between TCGG-CRYO3 

and TCGG. Concerning the thermodynamic properties of the media, the melting temperature 

and the crystallisation quantity of each medium were close. However, OPTIXcell was more 

thermodynamically stable compared to TCFG-CRYO3 for the melting temperature Tm. This 

observation was inverted for the crystallisation quantity formed. 

In this study, phospholipid brought by egg yolk, liposome or soya lecithin seemed to protect 

bull spermatozoa better than the TCGG-CRYO3 medium with regard to in vitro results. We 

evaluated a synthetic product composed of hyaluronic acid. Several studies used hyaluronic 

acid as an antioxidant supplement in sperm freezing media [28–30], or as a cryoprotectant [31]. 

hyaluronic acid is known to compose the extracellular matrix and to be present in several tissue 

and fluids [32]. More specifically, it seems that hyaluronic acid could regulate sperm 

metabolism and could be involved in sperm capacitation process [33]. Supplementation of 

human sperm with hyaluronic acid after thawing has been shown to be beneficial [34]. 

However, the addition of hyaluronic acid in the freezing medium does not improve sperm 

quality in human [34] nor in ram, as confirmed in our study and as previously observed [29]. 

Moreover, we found no significant difference between TCFG-CRYO3 and TCFG, showing that 

CRYO3 does not protect bull sperm. To our knowledge, this is the first study to compare the 

efficacy of different commercial media with a negative control, composed of a Tris buffer and 

glycerol only. 

Values of sperm motility of our study are different from some previous studies [16,35,36] but 

consistent with others [39–42]. Lima-Verde et al. observed no significant difference between 

OPTIXcell and Andromed® (equivalent to BIOXcell, Minitüb GmbH, Germany) for in vitro 

parameters, as well as in vivo fertility (on 800 AI, around 65 % of non-return rate) [39]. As in 

our study, Ansari et al. found that OPTIXcell was superior than an egg yolk-based medium for 



buffalo bull sperm cryopreservation in terms of in vitro parameters and in vivo fertility (on 400 

AI, 60 % vs. 42%, respectively) [16]. Moreover, no significant difference was found between 

BIOXcell and Triladyl® (equivalent to Optidyl, Minitüb GmbH, Germany) [40]. 

The various parameters evaluated by CASA system could not distinguished more precisely the 

media in this study. Indeed, it seems difficult to quantify a correlation between in vitro and in 

vivo analyses of frozen-thawed sperm [43,44]. Nowadays, CASA systems cannot predict the 

fertility as sperm evolved in a microenvironment completely different from the genital tractus 

of the female [44]. Thus, in vitro fecundation or artificial inseminations are necessary to bring 

more information about the cryoprotection potential of each medium. 

In our study, thermodynamic characterization could not predict the behavior of the medium 

during freezing-thawing, as we did not observe important difference between media. OPTIXcell 

showed however a greater variation, demonstrating its thermodynamic instability. Indeed, 

OPTIXcell is composed of liposomes, which, with the time, can aggregate and precipitate to 

form flat bilayers or bigger vesicles [17]. Moreover, the values for Tc have to be studied with 

caution because this parameter is more dependent to experimental conditions than sample 

composition, compared to Tm and ΔH. Indeed, crystallization can appear because of 

heterogenous nucleation, due to impurities on the aluminium pan surface, making Tc more 

variable. Thus, the use of DSC in understanding freezing medium behavior could improve 

freezing protocols particularly for embryo and stem cells slow freezing [24,45]. Thus, the use 

of DSC in understanding freezing medium behavior could improve freezing protocols 

particularly for embryo and stem cells slow freezing [24,45]. 

Conclusion 

This study showed that CRYO3, used routinely in French stem cells cryobanks, does not protect 

bull sperm before and after freezing-thawing procedure. We can conclude that OPTIXcell®, 

containing liposomes as a substitute of egg yolk, is an appropriate medium for cryopreserving 

bull sperm. 
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Abstract 

Animal-derived products are widely used in sperm cryopreservation for their cryoprotective 

properties. These components, however, require to be replaced because of sanitary risks. 

STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-l’Argentière, France) called 

“CRYO3” is a chemically defined preservation medium currently used for freezing human 

tissue and adult stem cells. The aim of this study was to evaluate the effects of a CRYO3-based 

medium and of different cooling rates on in vitro parameters and in vivo fertility of ram sperm. 

Sperm from four Blanche du Massif Central rams was collected using an artificial vagina, then 

split and frozen using three media and two cooling rates. Sperm membrane integrity (PI/SYBR-

14), acrosome integrity (FITC-PNA/PI) and mitochondrial membrane potential (JC-1) were 

assessed using flow cytometry, while functional membrane integrity was assessed using a hypo-

osmotic swelling test and motion characteristics, evaluated by computer-assisted sperm 

analysis. Pregnancy rate, parturition rate and prolificacy were evaluated after performing 

laparoscopic inseminations. Moreover, the freezing media were characterized 

thermodynamically using a differential scanning calorimeter. The cooling rates had no 

significant effect, except on the wobble motion parameter. The positive control medium showed 

significantly higher results than CRYO3-based medium and the negative control medium for 

all in vitro parameters, except for straightness motion parameter. Conversely, field trials 

showed no significant difference between the media for pregnancy rate (71%, 64% and 74%), 

parturition rate (68%, 61% and 74%) and prolificacy (2.0, 2.1 and 1.7), for the positive control, 

CRYO3-based medium and the negative control respectively. This study showed that the 

product, CRYO3, cannot replace egg yolk and milk in freezing extenders. Moreover, for the 

first time, we showed that laparoscopic inseminations allowed a 74 % parturition rate thanks to 

an easy and inexpensive medium composed only of a Tris buffer and glycerol. This medium, 

although could not be used in large scale, remains an option for international transport or long-

term storage of genetic diversity. 

Introduction 

Animal-derived products (egg yolk, milk) have long been used to preserve frozen sperm in 

many species [1], especially rams [2,3]. Since 1939 [4], egg yolk has been routinely added to 

the sperm freezing media for minimising cryoinjuries. Indeed, egg yolk provides protection 

against cold shock [4,5] and has a protective effect on the plasma membrane [2]. Milk, as 



skimmed milk or whole milk, has also been used as a component for freezing media [2]. 

Nevertheless, the use of animal-derived products presents numerous drawbacks. The first major 

concern of using egg yolk or milk is the sanitary risk [6]. Moreover, the biochemical 

composition of egg yolk is extremely variable, which leads to variable results. Likewise, the 

presence of debris and the greater viscosity of these components render standardising 

microscopy assessment of frozen thawed semen more difficult [7]. Additionally, egg yolk 

provides aromatic amino acids and therefore contributes to the production of reactive oxygen 

species to the detriment of live spermatozoa [8,9]. Also, spreading exotic disease through 

international transport is an emerging concern. 

Today, alternatives to animal-derived products for sperm freezing are available. Indeed, soya 

lecithin and liposome-based media have been used extensively in many species to replace media 

containing animal proteins [3,6,7,10–13], despite of their unstable and variable properties [14]. 

In breed societies managing ovine species, sperm is cryopreserved according to a method 

adapted from Colas [15], using egg yolk and milk in extenders. Using such media is acceptable 

within a short-term commercial strategy. However, it sounds necessary to develop the use of 

stable, synthetic and chemically defined medium in biobank to overcome any update of the 

regulations by the future. it might be necessary to cryopreserve semen in a stable, synthetic and 

chemically defined medium. STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-

l’Argentière, France) called “CRYO3” is a patented serum-free, protein-free and dextran-free 

medium (manufactured according to good manufacturing practices [cGMP-annex 1] in 

compliance with 2001/83/EC). CRYO3 is composed of synthetic hyaluronic acid of high 

molecular weight (> 106 D), glucose, carbohydrates, amino acids, mineral salts, vitamins, fatty 

acids esters and buffers. It was initially designed for clinical applications, in order to replace 

serum in somatic and human adult stem cells freezing medium [16–19]. More recently, it has 

been shown as a potential medium to cryopreserve reproductive cells (ie. Rabbit [20,21] and 

bovine [22] embryos, ram sperm [Gavin-Plagne et al., 2018; In Press]).  

The objectives of this study were firstly to avoid all forms of derived (plant or animal origin), 

or unstable and variable products, and secondly to test a faster cooling rate. The aim of the 

present study was to evaluate the effect of a chemically defined medium (CRYO3-based 

medium) on in vitro parameters and fertility parameters of ovine sperm. The evaluation of 

CRYO3 as a potential substitute to egg yolk and milk was performed using two approaches: a 

thermodynamic approach using Differential Scanning Calorimetry (DSC) and a biological 

approach using ovine sperm freezing and artificial inseminations. 



Materials and Methods 

The design of this veterinary clinical study was approved by the animal research ethics 

committee of VetAgro Sup. All animal procedures conformed to the European Regulations 

(Regulation (EU) 2016/1012 related to zootechnical and genealogical conditions for the 

breeding, trade in and entry into the Union of purebred breeding animals, hybrid breeding pigs 

and the germinal products thereof).  

Experimental design 

The experimental design is summarized in Figure 1. Twenty-four ejaculates (6 rams, four 

replicates) and two factors were evaluated: 

- the effect of the freezing medium, with a positive control (egg yolk and milk-based 

medium), a tested medium (CRYO3-based medium) and a negative control (glycerol-

based medium without additives); 

- the effect of the cooling rate, related to the distance between the straws and the surface 

of liquid nitrogen during the freezing process (5 cm and 20 cm). 

Sperm was assessed in vitro before (hypo-osmotic swelling test [HOS test] and subjective 

motility score) and after freeze-thaw procedure (flow cytometry, CASA and HOS test). 

Moreover, the toxicity of the media was evaluated by HOS test during equilibration at 4°C 

before the addition of glycerol-based extender (2h), after its addition (2h20) and at the end of 

equilibration (4h). Also, DSC was used to characterize the media and the cooling rates were 

recorded using a thermocouple. Finally, the post-thaw fertility of sperm samples was assessed 

performing laparoscopic inseminations. 



 

Figure 1. Experimental design of the study. 
Ram sperm was frozen either in a control medium (EYM), containing egg yolk and milk; or in a CRYO3-based 
medium, called “TCFG-CRYO3”, or in a negative control, called “TCFG”, consisted of a Tris buffer and glycerol. 
After collection, sperm was assessed by subjective motility and HOS Test, while equilibrated sperm at 4°C after 
2h, 2h20 and 4h was only assessed by HOS Test. Frozen-thawed sperm quality was evaluated by flow cytometry, 
CASA and HOS Test. Freezing media were thermodynamically characterized using a Differential Scanning 
Calorimeter. The cooling rates associated to the two levels of LN2 heights were recorded. Artificial inseminations 
on 75 ewes were performed to evaluate sperm fertility. CASA: Computer-Assisted Sperm analysis; DSC : 
differential scanning calorimeter; LN2 : Liquid Nitrogen; TCF : Tris buffer supplemented with citric acid and 
fructose. 

Semen collection 

Sexually mature Blanche du Massif Central rams (n = 6 rams; three to four years old) with 

proven fertility were used four times for this study. The rams were housed in a breed society 

managing ovine species (Fedatest GIE US Rom, Agreement No. CO4301, Mazeyrat d’Allier, 

France) under uniform conditions. Animals were maintained under natural light and were 

subjected to semen collection twice a week. For this study, rams were subjected to semen 

collection twice in the morning with an artificial vagina. Directly after collection, the volume 

and concentration (ACCUREAD photometer, IMV Technologies, L’Aigle, France) of each 

ejaculate were evaluated. Subjective motility (negative phase contrast) was assessed using a 

motility score from 0 to 5 [23].Only ejaculates that presented a white colour and a motility score 

greater or equal to 4 were used and held at 37°C in a water bath before dilution and freezing 

procedure. 
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Semen freezing 

Each ejaculate (n = 24) was split into three equal aliquots that were cryopreserved in three 

media (Table 1) : 

- a medium containing a Tris buffer supplemented with citric acid and glucose (TCF; 

Tris-hydroxymethyl-aminomethane: 27 g/L, citric acid: 14 g/L, fructose: 10 g/L; 

pH = 7.24; osmolarity = 294 mOsmol), trehalose and glycerol (TCFG), as negative 

control; 

- a CRYO3-based medium (TCFG-CRYO3) composed of the same base medium (TCFG) 

supplemented with 20 % (v/v) CRYO3 (pH = 6.8-7.6; osmolarity = 305-390 mOsm; 

viscosity = 1-7 cps); 

- the egg yolk and milk-based medium (EYM) adapted from Colas [15] and currently 

used by French breed societies managing ovine species, as positive control. 

The composition of each freezing medium and the addition of glycerol in a two-step dilution 

procedure are summarized in Table 1 and Figure 2.  

Table 1. Composition of extender 1 and extender 2 for each freezing medium. 

  EYM TCFG-CRYO3 TCFG 

Extender 1 
(at 30°C) 

Sugar Lactose (102.96 g/L) - - 
Additive 20 % (v/v) hen egg yolk 20 % CRYO3 - 

Buffer Gentamicin (Gibco, 10 mg/mL) 
in sterile water TCF TCF 

Extender 2 
(at 4°C) 

Sugar - 0.2 M trehalose 0.2 M trehalose 

Glycerol 10 % (v/v) glycerol 10 % (v/v) 
glycerol 

10 % (v/v) 
glycerol 

Buffer 

90 % (w/v) of milk powder 
diluted in sterile water (Regilait, 
40 g/L of semi-skimmed milk) 

and gentamicin (Gibco, 
10 mg/mL) 

TCF TCF 

pH Adjusted at 6.8 7.0 7.0 

TCF: Tris buffer supplemented with citric acid and fructose (Tris-hydroxymethyl-aminomethane, 27 g/L; citric 
acid, 14 g/L; fructose, 10 g/L; pH = 7.0). 

 

Briefly, the semen was diluted at 30°C up to 800 × 106 spz/mL in a glycerol-free extender 

(Extender 1, Table 1), then equilibrated at 4°C during two hours. A second extender containing 



glycerol was added (1:1, v:v) at 4°C in two steps (20 min apart) up to a final concentration of 

400 × 106 spz/mL (Table 1, Figure 2). Total sperm equilibration lasted four hours. 

Figure 2. The two-step dilution procedure of ram sperm during equilibration at 4°C. 
EYM: egg yolk and milk-based medium (positive control); TCFG-CRYO3: CRYO3-based medium in 
TCF buffer and glycerol; TCFG: TCF buffer and glycerol (negative control); TCF: Tris buffer 
supplemented with citric acid and fructose. 
 

After equilibration, sperm was loaded into 0.25 mL French straws (IMV Technologies, 

L’Aigle, France). Straws were then suspended horizontally 5 cm or 20 cm above the liquid 

nitrogen surface for ten minutes, before being plunged into liquid nitrogen. Straws were stored 

in liquid nitrogen for at least two weeks prior to in vitro assessment or artificial inseminations. 

Thawing was performed by submerging the straws in a water bath at 37°C for 30 seconds. Two 

straws corresponding to the same experimental condition were thawed and pooled before 

assessment, in order to reduce inter-straw variation. 

Physical assessment 

Monitoring the cooling rates 

The cooling rates were calculated using type T thermocouples (TC Direct, Dardilly, France) 

inserted in a separate straw containing cells and freezing medium. Thermocouples were 

connected to a four-channel recorder, which allowed the record of the thermal evolution of the 

freezing procedure. Temperatures were recorded every two seconds. 

Thermodynamic properties of the media 

The phase transitions of the freezing media were characterized using a power compensation 

DSC (Diamond DSC, Perkin-Elmer, Waltham, Massachusetts, USA) equipped with a liquid 
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nitrogen cooling accessory (Cryofill) and the Pyris software (11.11.1 version). The accuracy 

provided in the technical specifications of this DSC is ± 0.11°C for temperature and ± 1.10% 

for energy. The DSC was calibrated for temperature and energy at +2.5°C/min with two 

standards: the ice melting of pure bi-osmosed water (0°C; 333.40 J/g) and the crystallographic 

transition of cyclohexane in its solid state (-87.06°C; 79.58 J/g), for a high data range of 

720 mW. The validity of the calibration was verified regularly using tests on pure bi-osmosed 

water and cyclohexane, and the maximal error of reproducibility obtained with these pure 

standards was ± 0.36°C (temperature) and ± 0.62 % (energy). Experiments were conducted 

using standard hermetically sealed aluminium pans (Ref. 0219–0062, Perkin-Elmer, Waltham, 

Massachusetts, USA) designed for volatile samples. The pans were previously cleaned 

following the standard procedure provided by Perkin-Elmer. During the experiment, the 

cryopreservation media were stored less than 2 weeks at 4°C in Eppendorf tube previously 

cleaned and sterilized to remove any impurities that could interfere with the thermodynamic 

measures. Three replicate measurements were taken for each solution. Before testing, each 

solution was stored at room temperature for approximately 30 min. The solution was then 

gently mixed though a series of 5 capsizing.  The solution was then loaded in aluminum pans 

(20 µL) using a micropipette to limit the variations in weight between the samples. The 

aluminum pans were first weighed without cryopreservation solution on a high sensibility scale 

balance (XS105 DualRange, Metler Toledo, France) and were then weighed after the loading 

of the cryopreservation solution in order to measure the sample mass. The weights were 

determined with a resolution of 10-5 g. The samples weight was 3.70 ± 0.38 (mean ± standard 

deviation, n = 6). Three cycles of cooling and warming between 10°C and -150°C were applied 

to each sample to determine the melting temperature (Tm, in degree celcius [°C]) and the 

crystallization enthalpy variation (ΔH, in Joules per gram [J/g]). An empty oven baseline of the 

DSC, systematically subtracted from the sample thermograms, was regularly recorded with 

care, using the same protocol in temperature variations Tm is the temperature under which 

crystallization can occur, and ΔH allows the quantification of crystallized ice in the solution 

(Joules per gram, J/g). We determined ΔHmax which represents the maximum crystallization 

quantity that can develop in each medium, and ΔH50°C/min which represents the crystallization 

quantity at a cooling rate of 50°C/min. A rapid cooling (100°C/min) was followed by a slow 

warming (2.5°C/min) to measure Tm. Tm was defined at the top of the main melting peak. A 

slow cooling (2.5°C/min) was followed by a rapid warming (20°C/min) to determine ΔHmax. 

For determining ΔH50°C/min, a rapid cooling of 50°C/min and a rapid warming (20°C/min) was 



applied. ΔH was measured by evaluating the area encompassed between the peak of 

crystallization and the baseline. The areas were calculated using a sigmoid curve baseline. 

Sperm evaluation before and after thawing 

Post-thawed semen was diluted in the TCF buffer in order to obtain 100 × 106 spz/mL for 

assessment. Sperm after collection was evaluated by subjective motility (score 1 to 5) [24] and 

HOS test. Equilibrated sperm in EYM and TCFG-CRYO3 at 4°C was assessed using HOS test. 

After freezing-thawing, sperm was assessed by flow cytometry, HOS test and CASA. 

Flow cytometry analyses 

Frozen-thawed semen was evaluated by flow cytometry to assess the plasma membrane 

integrity (fresh and frozen-thawed samples), the acrosome integrity and the mitochondrial 

membrane potential. For all samples, the sperm population was identified (FSC/SSC dot plots) 

and 10,000 events among the sperm population were analysed at a low rate (200 cells/s). 

Analyses were performed using Flowsight Amnis (Emd Millipore, Seattle, WA) equipped with 

blue–green (λ=488 nm, 60 mW), red (λ=642 nm, 100 mW) and side scatter (SSC; λ=785 nm, 

12 mW) solid-state lasers. The Flowsight is equipped with a quantitative imaging upgrade that 

includes a 488-nm laserpower doubler and increased image resolution (40× magnification). It 

allowed the visualisation of each event acquired via a classical microscope objective. It 

permitted us to gate precisely the sperm population, and thus to eliminate debris and other cell 

particles, leading to an accurate analysis of the sample. Post-acquisition analyses were 

performed on Amnis IDEAS software (Millipore-Amnis; version 6.2).  

Plasma membrane integrity was evaluated with a Live/Dead Sperm Viability Kit (Invitrogen, 

Eugene, OR, USA) using propidium iodide (PI) and SYBR-14 staining. Intact spermatozoa 

appeared green in SYBR-14, whereas membrane-damaged spermatozoa were stained in red by 

PI. For each sample, 10 µL of semen (100 × 106 spz/mL) were incubated with SYBR-14 

(working concentration 45 nM) and PI (working concentration 11 µM) in a TCF extender 

(5 min, 37°C). Sperm membrane integrity was assessed with a 488-nm excitation laser and a 

530 ± 30 nm bandpass emission filter for SYBR-14 and 650 ± 13 nm bandpass emission filter 

for PI. The percentages of intact (SYBR-14 +) and membrane-damaged (PI +) spermatozoa 

were determined.  

Acrosome integrity was assessed using FITC-PNA (1 mg/mL, Sigma-Aldrich, Saint-Quentin-

Fallavier, France). For each sample, 10 µL of semen (100 × 106 spz/mL) were incubated with 



FITC-PNA (working concentration 10 µg/mL) in TCF extender (15 min, 37°C). Propidium 

iodide (working concentration 11 µM) was added 5 minutes before the end of the incubation. 

Fluorescence was collected with a 488 nm excitation laser, a 530 ± 30 nm bandpass emission 

filter for FITC-PNA and a 650 ± 13 nm bandpass emission filter for PI. The percentages of cells 

with intact acrosome (PI - / FITC-PNA -) were recorded.  

High mitochondrial membrane potential was assessed using the lipophilic cation JC-1 (1,5 mM, 

Invitrogen, Life Technologies, Eugene, OR, USA). For each sample, 10 µL of semen 

(100 × 106 spz/mL) were incubated with JC-1 (working concentration 0.75 mM) in TCF 

extender (15 min, 37°C). Fluorescence was collected with a 488-nm excitation laser, a 

530 ± 30 nm bandpass emission filter and 610 ± 30 nm bandpass emission filter. The 

percentages of cells with high mitochondrial membrane potential (hMMP) staining in orange 

and with low mitochondrial membrane potential (green stained cells) were recorded. 

Hypo-osmotic swelling test 

The functional integrity of sperm membrane can be evaluated with the hypo-osmotic swelling 

test, as described by Jeyendran et al. [24]. HOS test was performed for evaluating sperm after 

sperm collection, after an equilibration at 4°C and after freezing-thawing. Briefly, 10 µL of 

semen at a concentration of 100 × 106 sperm/mL were diluted in 100 µL of a hypo-osmotic 

solution (100 mOsmol; 4.9 g/L citrate sodium, 9 g/L fructose). A smear test was performed 

after 30 min of incubation at 37°C. A total of 100 spermatozoa were observed under a phase-

contrast microscope at magnification 400×. Spermatozoa with functional membranes appeared 

with swollen and curved tails.  

Motion characteristics 

The post-thaw motility was evaluated using Sperm Class Analyser software (SCA2013, 

Microptic S.L; Barcelona, Spain) with a 10× negative phase contrast objective. Each semen 

sample was diluted to a concentration of 20 × 106 spz/mL. Briefly, a 5 µL sample of the diluted 

semen was loaded in a pre-warmed analysis chamber with a depth of 20 µM (Leja Products, 

Nieuw-Vennep, The Netherlands). For each sample, 10 fields were analysed and percentages 

of motile (VAP > 10 µm/s) and progressively motile (STR index > 80%) spermatozoa, 

amplitude of lateral head displacement (ALH), beat cross frequency (BCF), curvilinear velocity 

(VCL), straight line velocity (VSL), average path velocity (VAP), linearity (LIN=VSL/VCL), 

wobble (WOB=VAP/VCL) and straightness (STR=VSL/VAP) were recorded. The camera 

setting was 50 frames/s.  



Artificial insemination 

Multiparous Blanche du Massif Central ewes (n = 75) housed on free pasture were used for 

intrauterine insemination by laparoscopy. Ewes were synchronised with an intravaginal 

fluorogestone acetate sponge (20 mg, Chronogest, MSD Animal Health, Angers, France) for 

14 days. Fifty-eight hours before artificial insemination (AI), the sponges were removed and 

animals were given an intramuscular injection of 500 IU of eCG (MSD Animal Health, Angers, 

France). Each ewe received one dose (one straw) of frozen-thawed semen. Briefly, the 

inseminating pipette was introduced into the lumen of each uterine horn. The straw was equally 

deposited (0.125 mL of frozen–thawed semen containing approximately 100 × 106 sperm) in 

each horn (50 × 106 sperm/horn). Ewes were randomly assigned to the EYM group (n = 28 

ewes inseminated with the EYM medium), the CRYO3 group (n = 28 ewes inseminated with 

the TCFG-CRYO3 medium) and the negative group (n = 19 ewes inseminated with the TCFG 

medium).  

Frozen straws were randomly assigned to ewes and equally distributed for AI (approximately 

23 to 26 ewes inseminated per ram). In order to have sufficient number of inseminated 

ewes/ram, we decided to use the best three rams within the six rams collected, three sessions 

within the four sperm collection sessions and only sperm frozen at 5 cm of LN2 surface. AI 

procedures were performed by a certified operator. Also, animal welfare was of specific 

concern, during and after laparoscopic procedures. 

Pregnancy rate, parturition rate and prolificacy were determined as the following equations:  

 

 

 

 

 



Statistical analysis 

Statistical analyses were performed using R software [25]. The results were presented as 

mean ± standard deviation. The percentage of functional membrane integrity (HOS test) 

evaluated during sperm equilibration at 4°C was analysed using a mixed model including the 

time and the medium as fixed effects, and the ram as a random effect. The percentage of 

membrane integrity, percentage of acrosome integrity, percentage of hMMP, percentage of 

functional membrane integrity and sperm motility parameters were analysed using a mixed 

model including the ram as a random effect. The medium and the distance above the surface of 

liquid nitrogen were included as fixed effects with three and two levels respectively. Pregnancy 

and parturition rates, following a binomial distribution, and prolificacy, assumed to follow a 

Poisson distribution, were analysed using generalized linear models, including the medium as 

a fixed effect and the ram as a random effect. Differences with p < 0.05 were considered 

statistically significant. Thermodynamic values were analysed using descriptive statistics. 

Results 

Cooling rates and thermodynamic properties  

Crystallization appeared at - 11°C for the two levels of LN2 height (5 cm and 20 cm). The 

average cooling rates, as measured from the linear part of the temperature records, are shown 

in Table 2. Whatever the freezing step, the cooling rate was higher using the shortest distance 

from straws to the surface of liquid nitrogen. 

Table 2. Cooling rates measured within the straw during the freezing procedure. 

 LN2 Height 

 5 cm 20 cm 

Before crystallization (from 5°C to -11°C) 129°C/min 49°C/min 

After crystallization (from -11°C to -30°C) 68°/min 27°C/min 

Before being plunged into LN2 6°C/min 2°C/min 

As shown in Table 3, the average melting temperature Tm of the two media were close. We 

observed that with a cooling rate of 50°C/min, EYM and TCFG-CRYO3 do not achieve their 



maximum crystallisation (-198 J/g vs. -216 J/g and -218 J/g vs. -223 J/g for ΔH50°C/min and 

ΔHmax respectively). TCFG-CRYO3 was found to show more variability than EYM. Moreover, 

the crystallization temperature of EYM was lower than those of TCFG-CRYO3. The 

crystallization temperatures observed at a cooling rate of 2.5°C/min and 50°C/min were lower 

than observed with the thermocouple (-11°C).  

Table 3. Thermodynamic characteristics of the freezing media. 

Medium Tm (°C) ΔHmax (J/g)  Tc2.5°C/min (°C) ΔH(-50°C/min) (J/g)  Tc50°C/min (°C) 
EYM -1.27 ± 0.16 -215.54 ± 5.70 -18.66 ± 2.33 -197.94 ± 0.91 -20.72 ± 1.21 

TCFG-
CRYO3 -1.44 ± 0.34 -223.14 ± 5.45 -15.42 ± 1.87 -217.74 ± 4.77 -16.84 ± 1.29 

Results are presented as the means ± standard deviation of 3 replicates of each medium. Tc(2.5°C/min) : Crystallization 
temperature at a cooling rate of 2.5°C/min;  Tc(50°C/min) : Crystallization temperature at a cooling rate of 50°C/min 
Tm : Melting temperature ; ΔHmax : maximum crystallization enthalpy variation; ΔH50°C/min : crystallization enthalpy 
variation at a cooling rate of 50°C/min. 
 
 

Sperm quality before equilibration  

Ejaculates had an average concentration of 3.93 ± 0.80 × 109 spermatozoa/mL and an average 

volume of 2.70 ± 0.7 mL (Table 4). Fresh sperm exhibited an average functional membrane 

integrity (HOS test) of 54.8 ± 20.2 % and motility score of 4.78 ± 0.06 (Figure 2). 

Table 4. Concentration and volume of ejaculates per ram. 

  976 990 1022 1039 1046 1050 

Concentration 
(.109/mL) 

3.5 ± 0.3 3.8 ± 1.2 4.5 ± 1.0 4.0 ± 0.7 4.2 ± 0.8 3.6 ± 0.4 

Volume (mL) 2.8 ± 0.2 2.6 ± 0.4 2.5 ± 0.5 1.5 ± 0.1 2.5 ± 0.8 1.5 ± 0.7 

Results are presented as the means ± standard deviation of 24 ejaculates from six rams. 

 



Figure 3. Sperm quality before freezing, per ram.  
(A) Functional membrane integrity (HOS Test), (B) Motility score (subjective motility). 
The symbol * within the graphs corresponds to the mean. 

Sperm quality after equilibration  

Sperm equilibrated at 4°C showed a significant decrease of functional membrane integrity 

depending on the time and the medium (Figure 2). 

 

Figure 4. Functional membrane integrity of sperm equilibrated at 4°C depending on the time and 
the freezing medium. 
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Sperm quality after freezing-thawing 

In vitro parameters 

The main sperm parameters are shown in Figure 5. Motions characteristics are shown in Table 

5. The cooling rates had no significant effect, except on the wobble motion parameter and on 

the membrane integrity. However, significant differences were found between media, except 

for the straightness and the beat cross frequency. Globally, EYM showed the highest values 

after freezing-thawing. TCFG-CRYO3 and TCFG were not significantly different, except for 

the wobble (at 5 cm and 20 cm above LN2) and linearity (at 5 cm above LN2). 

 



 
Figure 5. Main in vitro parameters of ram sperm frozen in different media using two cooling rates. 
(A) Progressive motility, (B) Total motility, (C) Functional membrane integrity (HOS test), 
(D) Membrane integrity, (E) Acrosome integrity, (F) High mitochondrial membrane potential. 
The symbol * within the graphs corresponds to the mean.  
The median is indicated by a horizontal line.  
a,b,c Values within a graph with different superscripts differ significantly at P < 0.05 
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Fertility parameters 

Mixed models did not show a significant difference between the freezing media for the 

pregnancy rate, the parturition rate and the prolificacy (Table 6). However, the negative control 

TCFG showed the best parturition rate with 74 % of delivered ewes.  

Table 6. Effect of the freezing medium on the fertilizing ability of ram sperm frozen at 5 cm 
above LN2. 

 EYM TCFG-CRYO3 TCFG 

Pregnancy rate 71.4 % (20/28) 64.3 % (18/28) 73.7 % (14/19) 

Parturition rate 67.9 % (19/28) 60.7 % (17/28) 73.7 % (14/19) 

Prolificacy 2.0 2.1 1.7 

AI were performed with straws frozen at a LN2 height of 5 cm, from three rams (rams No. 1022, 1046 and 1050) 
and three sessions. 

 

Discussion 

Semen cryopreservation has been developed in numerous mammalian species and is widely 

used in farm animal breeding, particularly in bovine [26]. Ram semen cryopreservation remains 

difficult, however, as reflected by the low fertility rates after artificial insemination observed in 

this species [2]. This study was performed to investigate the effects of a chemically defined 

sperm cryopreservation medium on in vitro parameters and in vivo fertility in ovine species.  

For this study, better results were obtained using the highest cooling rate (straws placed 5 cm 

above the liquid nitrogen), even if this effect was not significantly different from the slowest 

(straws placed 20 cm above the liquid nitrogen). This slow cooling rate is obtained with the 

procedure usually operated in France, while most of the authors now suggest to use cooling 

rates of around 50°C/min for ram sperm cryopreservation [27].  

In the present study, egg yolk and milk seemed better protect spermatozoa than the CRYO3-

based medium with regard to in vitro results. Indeed, egg yolk and milk are used in 

cryopreservation media as a source of lipoproteins, which are known to protect sperm cells 

from cold shock, mainly by maintaining membrane phospholipid integrity [28]. Numerous 

authors have suggested that low density lipoproteins could be responsible for the resistance of 

sperm during cold shock and for the improvement of motility [29–31]. In our study, we 



evaluated a synthetic product composed of hyaluronic acid. Several studies used hyaluronic 

acid as an antioxidant supplement in sperm freezing media [32–34], or as a cryoprotectant [35]. 

Hyaluronic acid is known to compose the extracellular matrix and to be present in several tissue 

and fluids [36]. More specifically, it seems that hyaluronic acid could regulate sperm 

metabolism and could be involved in sperm capacitation process [37]. Supplementation of 

human sperm with hyaluronic acid after thawing has been shown to be beneficial [38]. 

However, the addition of hyaluronic acid in the freezing medium does not improve sperm 

quality in human [38] nor in ram, as confirmed in our study and as previously observed [33].  

Our in vitro results (especially the sperm motility) are different from some previous studies 

[39,40] but consistent with others [41–45]. These discrepancies may result from the freezing 

material that was used (Styrofoam box vs. programmable freezer) and the resulting oscillations 

of the temperature [46] or the more abrupt drop of the temperature between 5°C and -15°C [46]. 

Within this range of temperature, ram sperm is very sensible to cryo-damage. Thus, a cooling 

rate of 5°C/min between 5°C and -25°C is more appropriate [47]. Around the temperature of 

crystallization (-11°C in our study), the cooling rates varied between 27°C/min and 49°C/min 

(straws at 20 cm above LN2), and between 68°C and 129°C/min (straws at 5 cm above LN2) 

after and before crystallization, respectively. Moreover, we found no significant difference 

between TCFG-CRYO3 and TCFG, which confirms that CRYO3 cannot protect ram sperm. 

To our knowledge, no study was performed on a ram sperm using freezing medium free of any 

additives (antioxidants, egg yolk, milk, soya lecithin or liposomes). This is the first study to 

confirm that ram sperm can be efficiently frozen in an easy-to-produce, phospholipid-free and 

inexpensive medium composed only of a Tris buffer and glycerol. 

Despite poor in vitro results, intrauterine inseminations by laparoscopy did result in a high 

parturition rate for the TCFG medium (74 % vs. 68 % for EYM and 61 % for TCFG-CRYO3, 

p > 0.05). The number of spermatozoa per dose and the pregnancy rate associated were similar 

to other studies using laparoscopic inseminations [27,48,49]. We obtained also similar 

pregnancy rate to studies using half of the number of spermatozoa per dose (50 x 106 instead of 

100 x 106 in our study) [50], suggesting that this number could be reduced. Our in vivo results 

were even better compared to other studies using fresh or frozen-thawed ram semen [51,52]. 

This study showed that no matter the freezing medium used, the intrauterine insemination allow 

satisfying fertility results. It could mean that the freezing medium is not a factor of AI success 

when intrauterine insemination is used. A retrospective study on 44 448 AI in the Churra breed 

in Spain showed that the year, the farm, the season, the AI technique (vaginal or intrauterine 



insemination), the technician and the age of the ewe influence significantly the fertility success 

[53]. Khalifa et al. [27] showed a significant difference between two extenders composed of 

soya lecithin (BIOXcell vs. AndroMed) only for young ram semen. This difference was not 

observed for mature ram semen. Moreover, despite significant differences observed between 

media for in vitro parameters, no difference was found for the in vivo parameters. This 

highlights the fact that estimation of sperm viability in the laboratory using multiple parameters 

(flow cytometry, HOS test or motions characteristics) cannot predict ram sperm in vivo fertility. 

This observation is consistent with a study that showed no significant correlation between in 

vitro and in vivo parameters in ovine species [54]. It raises the question of the relevance in 

carrying out so many laboratory tests.  

In this study, differences observed for in vitro results were not related to differences in the 

thermodynamic characterization of the freezing media. TCFG-CRYO3 showed however a 

greater variation, demonstrating its thermodynamic instability. Moreover, Tc using DSC was 

different from the crystallization temperature observed within the straw using the thermocouple 

(around -16°C vs. -11°C, respectively). This parameter has to be observed with caution because 

it is more dependent to experimental conditions than sample composition, compared to Tm and 

ΔH. Indeed, crystallization can appear because of heterogeneous nucleation, due to impurities 

on the aluminium pan surface, making Tc more variable. Thus, the use of DSC in understanding 

freezing medium behavior could improve freezing protocols particularly for embryo and stem 

cells slow freezing [22,55]. 

In the present study, we showed that the negative control medium composed of TCF and 

glycerol only was as good as the positive control medium composed of egg yolk and milk. On 

the contrary, CRYO3 failed to protect ram spermatozoa whilst it appeared to be a good 

substitute to serum-based media in rabbit and bovine embryo freezing. 

Conclusion 

This study showed that no matter the freezing medium used, laparoscopic insemination allowed 

to recover an acceptable parturition rate with 61 % (CRYO3-based medium), 68 % (EYM, 

positive control) and 74 % (TCFG, negative control). The medium consisted only of a Tris 

buffer and cryoprotectants thus may be appropriate to overcome the forthcoming regulatory 

requirements in the international trade of semen from animals of high genetic value. It could 

also be considered for the long-term storage of biological resources in sheep cryobanking 



programs. Adjustments of the freezing procedure and further analysis must nevertheless be 

studied to verify the potential sperm epigenetic modifications. 
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Abstract 

Rabbit pluripotent stem cells (rbPSCs) show similar characteristics than their human 

counterpart, and therefore represent an interesting animal model for stem cell therapies. As for 

human pluripotent stem cells (hPSCs), there is a need to develop a cryopreservation protocol 

for rbPSCs, as these cells have poor capacities to support freezing conditions. To our 

knowledge, no study on a standardized protocol of rbPSCs cryopreservation was carried out in 

rabbits. Moreover, animal-derived products and high concentration of dimethyl sulfoxide 

(DMSO) in freezing media are still used in laboratories. The aim of this study was to evaluate 

the effect of a slow-freezing chemically defined medium, STEMALPHA.CRYO3, in 

combination with a diminished concentration of DMSO on the pluripotence characteristics of 

rbPSCs. STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-l’Argentière, France) 

called “CRYO3” medium is a chemically defined cryopreservation medium currently used for 

freezing human tissue and adult stem cells. This study was performed on rabbit embryonic stem 

cells (rbESCs) and rabbit induced pluripotent stem cells (rbiPSCs). Mouse embryonic stem cells 

were used as a reference. Cells were cryopreserved in single cells by using three types of 

freezing media (Serum/KOSR or CRYO3, and CryoStor® CS10 as a positive control), six 

concentrations of DMSO (0, 2.5, 3, 4, 5 or 10 %) and two types of slow-freezing method 

(freezing container or controlled-rate freezer). Membrane integrity was evaluated after thawing 

and at passage 6 using flow cytometry. Growth curves were calculated from thawing to passage 

6. Gene expression was assessed at passage 1 and passage 6 using reverse-transcriptase and 

real-time quantitative PCR. We showed acceptable viability rates, growth recoveries and stable 

gene expression after freezing-thawing rbPSCs. CryoStor® CS10 showed the best results with 

CRYO3 containing 4, 5 or 10% of DMSO. These preliminary results revealed that rbPSCs can 

be cryopreserved, either in a freezing container or a controlled-rate freezer, in synthetic media 

as CryoStor® CS10 or CRYO3, with less than 5 % of DMSO for CRYO3-based medium. 

Further analyses as karyotyping, phosphatase alkaline activity test and teratoma induction, 

should be performed in order to confirm the pluripotency quality of the recovering cells and the 

efficiency of this protocol.   
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Introduction 

Rabbit pluripotent stem cells (rbPSCs) have the capacity to exhibit some features of 

pluripotency as long-term self-renewal, differentiation into the three germ layers, teratomas 

formation, and normal karyotype (Tancos et al., 2012; Osteil, 2013; Osteil et al., 2016). The 

rabbit could be a better model to study the pluripotence compared to the mouse, thanks to its 

similarities with primates in terms of embryo development, pluripotency state (cultured in a 

primed state) and placenta system (Graur et al., 1996; Duranthon et al., 2012; Fischer et al., 

2012). In order to use pluripotent stem cells for clinical, pre-clinical applications and research, 

there is a need to develop a safe, standardized and xeno-free freezing protocol for stem cells 

banking. There are two major techniques to preserve pluripotent stem cells: slow-freezing and 

vitrification (Hunt, 2011; Li and Ma, 2012). Vitrification has been developed particularly for 

cryopreserving human pluripotent stem cells (hPSCs) in small clumps as their dissociation in 

single cells is critical (Reubinoff et al., 2001; Richards et al., 2004; Matsumura et al., 2011; 

Ota et al., 2017). This method, widely used for preserving mammal oocytes and embryos (Rall 

and Fahy, 1985; Vajta et al., 1998; Dinnyés et al., 2000; Kuwayama, 2007; dos Santos-Neto et 

al., 2017; Vicente et al., 2018), shows some limits for pluripotent stem cells, such as the risk of 

contamination via liquid nitrogen and a low industrial application, among others. Even if some 

authors tried to avoid these limitations (Richards et al., 2004; Aerts et al., 2008; Li et al., 2008, 

2010; Beier et al., 2011; Nishigaki et al., 2011), vitrification still remains a difficult and 

operator-dependent procedure (Antinori et al., 2007; Stachecki et al., 2008; Miyazaki and 

Suemori, 2016). On the contrary, the slow-freezing method can be accessible to any kind of 

laboratories, without prior expertise in cryobiology, thanks to a freezing container or a 

controlled-rate freezer. However, there still remains two main risks in biobanking stem cells: a 

sanitary risk in using serum and/or animal-derived products in freezing media, and a toxic risk 

in using high concentration of dimethyl sulfoxide (DMSO), usually 10 % (Abrahamsen et al., 

2002; Adler et al., 2006; Katkov et al., 2006). Moreover, to our knowledge, no study on 

standardized protocols of rbPSCs cryopreservation was carried out in the rabbit species. For 

these reasons and in order to overcome new biobanking regulations in the coming years, it 

might be necessary to develop a standardized protocol for cryopreservation of rbPSCs, and 

more generally for PSCs, while replacing serum and decreasing the amount of DMSO in 

freezing media. STEMALPHA.CRYO3 (Ref 5617, Stem Alpha, Saint-Genis-l’Argentière, 

France) called “CRYO3” is a patented serum-free, protein-free and dextran-free medium 

(manufactured according to good manufacturing practices [cGMP-annex 1] in compliance with 
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2001/83/EC). CRYO3 is composed of synthetic hyaluronic acid (HA) of high molecular weight 

(> 106 D), glucose, carbohydrates, amino acids, mineral salts, vitamins, fatty acids esters and 

buffers. It was initially designed for clinical applications, in order to replace serum in somatic 

and human adult stem cells freezing medium (Jurga et al., 2012; Sarnowska et al., 2013; 

Mueller et al., 2014; Ducret et al., 2015). Recently, it has been found that CRYO3 could be a 

potential medium to cryopreserve reproductive cells. Indeed, CRYO3 can be used for rabbit 

(Bruyère et al., 2013; Teixeira et al., 2018) and bovine (Bruyère et al., 2012) embryo 

cryopreservation, as well as ovine sperm cryopreservation.  

The aim of the study was to evaluate the effect of a slow-freezing chemically defined medium, 

CRYO3-based medium, in combination with a diminished concentration of DMSO on the 

pluripotency characteristics of rbPSCs. The evaluation of CRYO3 as a potential substitute to 

serum was performed using two approaches: a biological approach using rbPSCs slow freezing-

thawing and a thermodynamic approach using Differential Scanning Calorimetry.  

Materials and methods 

Experimental design 

Cells were cryopreserved in single cells by using three types of freezing media (FBS/KOSR or 

CRYO3, and CryoStor® CS10 (BioLife Solutions, WA, USA) as a positive control), six 

concentrations of DMSO (0, 2.5, 3, 4, 5 or 10 %) and two types of slow-freezing method 

(freezing container or controlled-rate freezer). This study was performed on rbESCs, rbiPSCs 

and mESCs as a reference. Three independent replicates were performed for each condition. 

After thawing, viability was assessed at passage 0 (P0, corresponding to thawing) and passage 

6 (P6), growth recovery from passage P0 to P5 and gene expression at P1 and P5. Freezing 

media were also evaluated by a thermodynamic approach using a Differential Scanning 

Calorimeter (DSC). The experimental design is shown in Fig 1.  
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Stem cell culture 

rbPSCs were cultured on mouse embryonic fibroblast (MEFs) feeder cells. MEFs were 

prepared from 12.5-day-old embryos from the OF1 strain (Charles River). MEFs were 

prepared, cultured and treated with mitomycin-C (M4287, Sigma-Aldrich) as described 

elsewhere (Afanassieff et al., 2014).

RbESCs 

Rabbit embryonic stem cells (rbESCs, line ALF20) were derived from the isolated inner cell 

mass of one blastocyst from the New Zealand white rabbit strain (Hycole, Marcoing, France) 

as defined by Osteil and colleagues (Osteil et al., 2016). rbESCs were maintained at 38°C with 

CO2 + 5% O2 and cultured on mitomycin C-treated MEFs (1.25x104 MEF/cm2) in DMEM/F12 

medium supplemented with 10 % knockout serum replacement (KOSR) and 10 % FBS, 1 % 

non-essential amino acids, 1 % of a solution of 10,000 U/ml penicillin + 10,000 U/ml 

streptomycin + 29.2 mg/ml L-glutamine, 1 mM sodium pyruvate and 100 mM 2-

mercaptoethanol (InvitrogenTM). For rbESC, the medium was supplemented with 0.1 % of 

leukemia inhibitory factor (LIF). The medium was refreshed every 24 hours. rbESCs were 

dissociated every two days into single-cell suspensions after treatment with 1X StemPro® 

Accutase (GibcoTM) and seeded onto 6-well plates at a density of 0.4x106 cells/well with pre-

seeded MEFs. 

rbiPSCs 

Rabbit induced pluripotent stem cells (rbiPSCs, line B19) were generated from ear-skin 

fibroblasts of a 5-month-old female, by overexpressing Yamanaka’s factors with pMX 

retroviral vectors as described previously (Osteil et al., 2013). rbiPSCs were maintained at 38°C 

with CO2 + 5% O2 and cultured on mitomycin C-treated MEFs (1.25x104 MEF/cm2) in 

DMEM/F12 medium supplemented with 20% KOSR, 1 % non-essential amino acids and 1 % 

of a solution of 10,000 U/ml penicillin + 10,000 U/ml streptomycin + 29.2 mg/ml L-glutamine, 

1 mM sodium pyruvate and 100 mM2-mercaptoethanol. For rbiPSCs culture, the medium was 

supplemented with 10 ng/ml Fibroblast growth factor (FGF2, GibcoTM). The medium was 

refreshed every 24 hours. rbiPSCs were dissociated every two days into single-cell suspensions 

after treatment with 0.05 % trypsin–EDTA and seeded onto 6-well plates at a density of 

0.4x106 cells/well. 
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mESCs 

Mouse embryonic stem cells (mESCs, line E14Tg2a) were cultured as described elsewhere 

(Toyooka et al. 2008). mESCs were cultured on gelatin in GMEM BRK medium supplemented 

with 10 % FBS, 1 % non-essential amino acids and 1 % of a solution of 10,000 U/ml penicillin 

+ 10,000 U/ml streptomycin + 29.2 mg/ml L-glutamine, 1 mM sodium pyruvate and 100 mM 

2-mercaptoethanol and 0.1 % LIF at 37°C in an incubator with a humidified atmosphere of 5 % 

CO2. The medium was refreshed every 24 hours. mESCs were routinely dissociated into single-

cell suspensions after treatment with 0.05 % trypsin–EDTA and seeded onto 6-well plates at a 

density of 1x106 cells/100-dish. 

Cryopreservation 

Freezing media 

Three different types of freezing medium were used for each cell lines, each composed of six 

different concentrations of DMSO (except for CryoStor® CS10, which is composed of 10 % of 

DMSO), as described in Table 1. All freezing media were prepared the day before use. 

Table 1. Composition of the freezing media. 

Cell lines Basal medium 
DMSO concentration in 

freezing media (v/v, %) 

Final DMSO 

concentration (v/v, %) 

mESCs 
FBS or CRYO3 0, 5, 6, 8, 10 or 20 0, 2.5, 3, 4, 5 or 10  

CryoStor® CS10 10  10  

rbESCs 
FBS or CRYO3 0, 5, 6, 8, 10 or 20 0, 2.5, 3, 4, 5 or 10 

CryoStor® CS10 10 10 

rbiPSCs 
KOSR or CRYO3 0, 5, 6, 8, 10 or 20 0, 2.5, 3, 4, 5 or 10 

CryoStor® CS10 10  10 

 

Dilution  

After dissociation and centrifugation (1200 RPM for 5 min), cells were re-suspended either in 

culture medium (for FBS and KOSR condition) or CRYO3 or CryoStor® CS10 to the required 
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concentration. For FBS/KOSR and CRYO3 condition, dissociated cells were split into 0.5 ml 

in cryotubes and an equal volume of 4°C freezing medium was added drop by drop. For each 

condition, final cell concentration was as follows: 2.5x106 cells/ml for mESCs and 

2x106 cells/ml for rbESCs and rbiPSCs. Cryotubes were placed at 4°C before being processed 

for slow freezing. 

Slow freezing procedure 

Cryotubes were transferred either into a freezing container (Mr. Frosty®  Cryo 1°C Freezing 

Container, NalgeneTM) placed in a -80°C freezer or a controlled-rate freezer (Cryologic CL 

8800i, Cryologic, Blackburn, Australia) using a cooling rate of 1°C/min until -80°C. Cryovials 

were then plunged into liquid nitrogen for storage after 15h for the freezing container and at the 

end of the freezing procedure for the controlled-rate freezer. The cooling rates were calculated 

using type T thermocouples (TC Direct, Dardilly, France) inserted in separate cryotubes in the 

presence of cells and freezing medium, The approximate cooling rates in the linear part of the 

curves were 0,6 °C/min and 0,8 °C/min for the freezing container and the controlled-rate 

freezer, respectively. Cryotubes were stored in liquid nitrogen for at least 2 weeks prior to 

thawing for assessment. 

Thawing 

Cryovials were thawed at 37°C directly from the liquid nitrogen to a water bath until last ice 

crystals melted. Cells were then first diluted by addition of 1 ml of 37°C culture medium drop 

by drop and transferred to a 15 ml tube. The cryovial was then rinsed with 1 ml of 37°C culture 

medium and transferred to the 15 ml tube. Finally, 4 ml of 37°C culture medium was added 

drop by drop to the thawed cells. After the supernatant was removed by centrifugation 

(1200 RPM for 5 min), cells were resuspended in 1 ml of culture medium. A volume of 1/5 of 

the thawed cell suspension was used for flow cytometry assessment and 4/5 was cultured in a 

6-well plate with pre-seeded MEFs. The day after thawing, cells were rinsed twice with DPBS 

to remove dead cells.  

Viability and growth assessment of post-thaw pluripotent stem cells 

Viability by flow cytometry  

For all samples, the pluripotent stem cells population was identified (FSC/SSC dot plots) and 

10,000 events among the population were analyzed at a low rate (200 cells/s). Analyses were 

performed using FACS Canto II cytometer (Becton Dickinson) and acquired using the software 
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FACS Diva (Becton Dickinson). Viability was evaluated after thawing (P0), or after 

dissociation (P6 or fresh samples) by adding 5 μl of propidium iodide (1 mg/ml, Sigma Aldrich, 

France) to 1/5 of the thawed cell suspension (corresponding to 200 µl) 1 min before analysis.  

Growth recovery 

Growth recovery was calculated by counting cells (CountessTM II FL, Fisher Scientific, France) 

at each passage from the first plating following cell thawing to the sixth cell plating (P0 to P6). 

Results are presented as the logarithm of the total counted cells. 

Characterization of post-thaw pluripotent stem cells 

RNA extraction 

Total RNA was isolated from cell pellets, stored at -80°C, using QIAshredder, RNase-Free 

DNase Set and RNeasy Mini Kit (QUIAGEN, France) according to the manufacturer’s 

instructions. After RNA extraction, ARN quantity was assessed using NanoDrop 2000 and 

analyzed with the software associated (Fisher Scientific, France).  The A260/A280 and A260/A230 

ratios were around 2.0 and 2.2, respectively, for all samples, confirming nucleic acid purity. 

Reverse Transcription 

Reverse Transcription was performed with the High-Capacity RNA-to-cDNATM Kit (Fisher 

Scientific, France) which was used according to the manufacturer’s instructions. Briefly, 9 µl 

of RNA sample at a concentration of 55 ng/µl was diluted in 10 µl of buffer Mix and 1 µl of 

RT Enzyme Mix, from the Kit. Diluted samples were then transferred to a thermal cycler 

performing an incubation of 37°C for 60 minutes followed by a heating to 95°C for 5 minutes.  

Real-Time Reverse Transcriptase Quantitative PCR (RT-qPCR) Analysis 

Quantiative PCR (qPCR) was performed with Fast SYBR® Green Master Mix (Fisher 

Scientific, France) and analyzed with StepOnePlusTM real-time PCR system (Fisher Scientific, 

France). Following 40 amplification cycles, melt-curve analysis was used to verify that only 

the desired PCR products had been amplified. qPCR efficiency for both target and reference 

genes was determined from the relative quantitative values for calibrator normalized target gene 

expression using StepOnePlus Software V2.1 (Applied Biosystems). In all cases, expression of 

the target genes was normalized to those of rabbit TATA-box binding protein (Tbp) gene and 

to those of mouse Actine b (Actb). But the same results were obtained with a normalization 

with the mRNA level of rabbit and mouse Gapdh gene. Gene expression was also normalized 



10 

to fresh samples, used as a reference sample. All primers used for RT-PCR and qPCR are shown 

in supplementary material Table S1. Gene expression was quantified with the ΔΔCT method. 

qPCR assays were performed in triplicates and repeated in at least three independent 

experiments. Results (thawed cells at P1 and P6) are presented as logarithm of fold change. 

Thermodynamic characterization using Differential Scanning Calorimetry (DSC) 

Media analysed using DSC were: mESCs, rbESCs and rbiPSCs freezing media containing 0 %, 

5 % or 10 % DMSO, and CryoStor® CS10. The phase transitions of the freezing media were 

characterized using a power compensation DSC (Diamond DSC, Perkin-Elmer, Waltham, 

Massachusetts, USA) equipped with a liquid nitrogen cooling accessory (Cryofill) and the Pyris 

software (11.11.1 version). The accuracy provided in the technical specifications of this DSC 

is ± 0.11°C for temperature and ± 1.10% for energy. The DSC was calibrated for temperature 

and energy at +2,5°C/min with two standards: the ice melting of pure bi-osmosed water (0°C; 

333.40 J/g) and the crystallographic transition of cyclohexane in its solid state (-87.06°C; 79.58 

J/g), for a high data range of 720 mW. Experiments were conducted using standard hermetically 

sealed aluminum pans (Ref. 0219–0062, Perkin-Elmer, Waltham, Massachusetts, USA) 

designed for volatile samples and previously cleaned following the standard procedure provided 

by Perkin-Elmer. Three replicate measurements were taken for each solution. The aluminum 

pans were first weighed without cryopreservation solution on a high sensibility scale balance 

(XS105 DualRange, Metler Toledo, France) and were then weighed after the loading of the 

cryopreservation solution in order to measure the sample mass. The weights were determined 

with a resolution of 10-5 g. The samples weight was 4.06 ± 0.59 (mean ± standard deviation, 

n = 39). Two cycles of cooling and warming between 10°C and -150°C were applied to each 

sample to determine temperature of crystallization (Tc, in in degree Celsius [°C]), the melting 

temperature (Tm, in degree Celsius [°C]) and the crystallization enthalpy variation (ΔH, in 

Joules per gram [J/g]) of the cryopreservation media. An empty oven baseline of the DSC, 

systematically subtracted from the sample thermograms, was regularly recorded with care, 

using the same protocol in temperature variations. Tc corresponds to the peak of crystallization. 

Tm is the temperature under which crystallization can occur, and ΔH allows the quantification 

of crystallized ice in the solution. A rapid cooling (100°C/min) was followed by a slow warming 

(2.5°C/min) to measure Tm. Tm was defined at the top of the main melting peak. A slow cooling 

(2.5°C/min) was followed by a rapid warming (20°C/min) to determine Tc and ΔH. Tc was 

determined at the onset of the crystallization peak. ΔH was measured by evaluating the area 
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encompassed between the peak of crystallization and the baseline. The areas were calculated 

using a sigmoid curve baseline. 

Statistical Analysis 

Statistical analyses were performed on R software (R Development Core Team, 2011). The 

results correspond to 3 replicates for each condition and are presented as means ± standard 

deviation. Viability, growth recovery and gene expression were analyzed using a linear model. 

The medium, the DMSO concentration and the freezing method were included in the models 

as fixed effects. In order to determine the best fit model, AICc were performed [Aikaike 

Information Criterion for small samples (Johnson and Omland, 2004; Symonds and Moussalli, 

2011)]. A Tukey adjustment was used to compare each condition at a fixed 5 % error level. 

Differences with p < 0.05 were considered statistically significant. Thermodynamic values 

were analyzed using descriptive statistics. 

Results 

Viability 

Before freezing, viability rates of mESCs, rbiPSCs, and rbESCs were 92.33 %, 92.93 %, and 

88.17 %, respectively (Figure 2). After thawing, viabilities of positive controls (cells frozen in 

CryoStor® CS10) for all three cell types were not significantly different with those of fresh 

samples regardless of the freezing system used (84.53 % and 86.43 % for mESC; 84.80 % and 

89.60 % for rbiPSC; 71,07 % for rbESC in freezing container), excepted for rbESCs in 

controlled-rate freezer (only 8.20 %). In most case, CryoStor® CS10 medium showed the best 

viability compared to FBS and CRYO3-based media. For FBS and CRYO3 conditions, 

viabilities of all cell types decreased with decreasing DMSO percentages. Moreover, significant 

differences were observed between the controlled-rate freezer (Figure 2, A, C, E) and the 

freezing container (Figure 2, B, D, F), the latter showing less variability, and best viability with 

10 % of DMSO. Generally, no significant differences were found between CryoStor® CS10 

and CRYO3- or FBS- based media containing 4 %, 5 % and 10 % of DMSO, for mESCs with 

both method conditions (Figure 2, A, B), and for rbPSC with the freezing container condition 

(Figure 2, D,F). Finally, significant effects of medium and DMSO rate on cell viabilities were 

observed for mouse and rabbit cells, and, according to the cell type, significant effects of 

interaction of three tested parameters were also shown: interactions between method and 

percentage of DMSO, between medium and percentage of DMSO and between method and 
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medium for mESC (Figure 2, A,B); interaction between method and medium for rbESC (Figure 

2, C,D); and interaction between method and percentage of DMSO for rbiPSC (Figure 2, E,F). 

Notably, CRYO3-based medium showed better viability of rbESCs with the freezing container 

while FBS-based medium showed better viability with the controlled-rate freezer.  

 Of note, at passage 5, all cells recovered a viability similar to fresh samples (data not shown). 
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Figure 2. Viability of mESCs, rbESCs and rbiPSCs depending on the freezing method, the 
medium and the percentage of DMSO. 

(A, B) Viability of mESCs; (C, D) Viability of rbESCs; (E, F) Viability of rbiPSCs; (A, C, E) Viability of cells 
frozen in a controlled-rate freezer; (B, D, F) Viability of cells frozen in a freezing container; Viability curves of of 
cells frozen in FBS- or KOSR-based media and in CRYO3-based medium are shown in orange and red 
respectively. Before freezing, the percentage of viability was 92.33 ± 2.45 %, 88.17 ± 1.52 %, 92.93 ± 1.27 % for 
mESCs, rbESCs and rbiPSCs, respectively. After thawing, the viability of the positive control (CryoStor® CS10) 
was 84.53 ± 0.58 % and 86.43 ± 1.59 % (for mESCs), 8.20 ± 1.50 % and 71.07 ± 2.08 % (for rbESCs), 
84.80 ± 2.56 % and 89.60 ± 0.17 % (for rbiPSCs), frozen in the controlled-rate freezer and the freezing container, 
respectively. 
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Growth Recovery 

We found significant effects of the time, the freezing method and the DMSO concentration on 

the total number of recovered mESCs (Figure 3). For rbESCs and rbiPSCs, all the fixed 

parameters (freezing method, freezing medium and DMSO concentration), besides the time, 

influenced significantly the total number of recovered cells (Figure 4 and 5). However, the 

observed differences are slight and similar growth patterns were obtained between the freezing 

methods the freezing media and the DMSO concentrations. Generally, no significant difference 

in mESCs, rbESCs and rbiPSC growth recoveries was found between CryoStor® CS10 (frozen 

in the freezing container or controlled-rate freezer) and CRYO3- or FBS-based containing 4 %, 

5 % and 10 % of DMSO. However, CRYO3-based medium induced faster recovery and less 

variability of cell growth compared to FBS-based medium, especially for rbESCs and rbiPSCs. 

 

Figure 3. Growth recovery of frozen-thawed mESCs depending on the freezing methods, the 
freezing media and the DMSO concentrations. 

(A) Global growth recoveries of mESCs, (B) Comparison between growth recovery of fresh and frozen-thawed 
mESCs frozen in CryoStor or CRYO3-based medium using freezing containers. 
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Figure 4. Growth recovery of frozen-thawed rbESCs depending on the freezing methods, the 
freezing media and the DMSO concentrations. 
(A) Global growth recoveries of rbESCs, (B) Comparison between growth recovery of fresh and frozen-thawed 
rbESCs frozen in CryoStor or CRYO3-based medium using freezing containers. 
 
 

 

Figure 5. Growth recovery of frozen-thawed rbiPSCs depending on the freezing methods, the 
freezing media and the DMSO concentration.s 
(A) Global growth recoveries of rbiPSCs, (B) Comparison between growth recovery of fresh and frozen-thawed 
rbiPSCs frozen in CryoStor or CRYO3-based medium using freezing containers. 
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between the freezing media and passage numbers (Nanog), between freezing methods and 

passage numbers (Cdh2) as well as between DMSO concentrations and passage numbers 

(Cdh2) were found significant. For rbiPSCs, there were significant effects on gene expressions 

of freezing methods (Nanog, Esrrb), freezing media (Oct4, Nanog, Esrrb) and passage numbers 

(Oct4, Nanog, Esrrb, Cdh1, Cdh2) (Figure 8). Morever, we found significant effects of the 

interactions between freezing methods and freezing media (Oct4, Cdh1) and between freezing 

methods and passage numbers (Rex1). Above all, we observed that P6 gene expressions of 

samples frozen with 4 % or 5 % of DMSO were mainly closer to those of fresh samples, 

compared to samples frozen with other DMSO concentrations. 

Figure 6. Gene expression of frozen-thawed mESCs depending on freezing methods, freezing 
media, DMSO concentrations, at P1 and P6 post-thawing.  
The graph shows the logarithm of fold change, normalized to mouse Actb gene and mean fresh samples (three 
independent replicates) for each condition, at passages 1 and 6. 
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Figure 7. Gene expression of frozen-thawed rbESCs depending on the freezing methods, freezing 
media, DMSO concentrations, at P1 and P6 post-thawing. 
The graph shows the logarithm of fold change, normalized to rabbit Tbp gene and mean fresh samples (three 
independent replicates) for each condition, at passages 1 and 6. 
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Figure 8. Gene expression of frozen-thawed rbiPSCs depending on freezing methods, freezing 
media, DMSO concentrations, at P1 and P6 post-thawing. 
The graph shows the logarithm of fold change, normalized to rabbit Tbp gene and mean fresh samples (three 
independent replicates) for each condition, at passages 1 and 6. 
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Table 2. Thermodynamic properties of used freezing media. 

Cells Medium  DMSO concentration Tc (°C) Tm (°C) ΔH (J/g)  
mESC FBS 0% -16.73 ± 1.01 0.99 ± 0.04 -280.27 ± 4.01 
mESC FBS 5% -15.97 ± 4.33 -1.56 ± 0.08 -224.78 ± 4.31 
mESC FBS 10% -18.68 ± 1.81 -3.61 ± 0.34 -185.06 ± 3.11 
RbESC  FBS 0% -17.95 ± 1.25 0.71 ± 0.28 -274.05 ± 5.10 
RbESC  FBS 5% -19.65 ± 1.01 -2.53 ± 0.42 -205.53 ± 0.98 
RbESC  FBS 10% -19.19 ± 4.23 -3.82 ± 0.12 -184.05 ± 3.11 
RbiPSC  KOSR 0% -18.22 ± 4.58 0.45 ± 0.06 -256.32 ± 5.51 
RbiPSC KOSR 5% -21.74 ± 3.35 -1.70 ± 0.27 -215.06 ± 1.20 
RbiPSC KOSR 10% -19.50 ± 2.23 -3.99 ± 0.14 -175.71 ± 0.11 

all CRYO3  0% -16.61 ± 1.96 0.51 ± 0.10 -263.15 ± 1.32 
all CRYO3  5% -15.66 ± 2.83 -1.69 ± 0.28 -224.34 ± 9.40 
all CRYO3  10% -21.32 ± 3.35 -4.20 ± 0.16 -183.70 ± 7.28 
all CryoStor 10% -22.42 ± 1.63 -4.45 ± 0.35 -158.61 ± 1.33 

Results are presented as the mean ± standard deviation of 3 replicates of each tested medium. 
Tc: crystallization temperature; Tm: melting temperature; ΔH: maximum crystallization enthalpy variation. 
 
Discussion 

In this study, we report the effects of synthetic media for cryopreserving rbPSCs in using 

freezing container or controlled-rate freezer, with a cooling rate of 1°C/min. We showed that 

CRYO3-based medium could replace FBS or KOSR-based media for rbPSCs freezing, 

especially if DMSO concentration is reduced to 4-5 %.  Indeed, this synthetic medium induced 

acceptable viability rates, growth recoveries and pluripotency gene expression level in presence 

of only 4 % or 5 % of cryoprotectant. However, the control synthetic medium CryoStor® CS10 

containing 10 % of DMSO, gave rise to the best viability rate after thawing of rbPSCs, and 

showed lowest melting temperature and crystallization enthalpy variation by differential 

scanning calorimetry analysis. Nevertheless, this medium did not seem to allow better 

preservation of the stem cell quality as shown by the pluripotency gene expression level in 

recovered rbPSCs with the tested freezing media. 

Vitrification method has been used in stem cell cryopreservation, especially for freezing hPSCs 

clumps as a result of the dissociation sensitivity of these cells (Miyazaki and Suemori, 2016). 

rbPSCs can be dissociated by enzymatic reaction and then frozen in single cells with a slow-

freezing procedure. We showed that rbPSCs can be frozen either in a controlled-rate freezer or 

a freezing container. However, surprisingly, the freezing container showed better survival rates 

after thawing and appeared to be less variable, compared to the controlled-rate freezer. Some 
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authors applied an embryo protocol to hPSCs using a manual induction of nucleation, called 

“seeding” at -7°C or -10°C (Ware et al., 2005; Yang et al., 2006; Li et al., 2010). Variation 

observed in our study could be due to the non-controlled crystallization. 

Pluripotent stem cells are usually frozen in a serum-based medium containing 10 % of DMSO 

(Wang et al., 2007; Hunt, 2011; Li and Ma, 2012). Since animal-derived product could 

contribute to expose cells to pathogens as well as variability in the freezing procedure, it is 

necessary to replace these products with synthetic and chemically defined molecules. Many 

studies on human or mouse pluripotent stem cells showed that FBS or Human Serum Albumin 

could be substituted with commercial synthetic media containing high molecular weight 

polymer (Miyamoto et al., 2012; Sart et al., 2013; Liu and Chen, 2014; Ota et al., 2017). We 

chose CryoStor® CS10 as a positive control because this product is widely used for stem cells 

freezing. In our study, we compared a commercial synthetic product, CRYO3, accredited for 

clinical purposes, to CryoStor® CS10, a medium widely used for stem cell freezing. CRYO3 

is composed of hyaluronic acid (HA). Several studies used HA in tissue engineering (Kayakabe 

et al., 2006; Saw et al., 2011; Collins and Birkinshaw, 2013) or cryopreservation (Joly et al., 

1992; Sbracia et al., 1997; Lotfi et al., 2017). Our results confirmed that CRYO3 can be a 

potential substitute to serum, as rbPSC characteristics after freezing in CRYO3-based media 

were similar or even better than those of cells frozen in serum-based media. These data are 

coherent with previous studies of our team on embryo cryopreservation (Bruyère et al., 2012, 

2013; Teixeira et al., 2018).  

Beside the sanitary risk of classical PSC freezing medium, there is a risk of toxicity in 

employing high level of cryoprotectants in freezing media such as 10 % DMSO. Indeed, 

increase of cell differentiation and decrease in Oct4 pluripotency gene expression were 

observed in hPSCs frozen in presence of DMSO (Adler et al., 2006; Katkov et al., 2006). 

Moreover, for clinical aspects, DMSO residues trigger adverse effects in patients such as 

nauseas, headaches and diarrhea (Davis et al., 1990; Abrahamsen et al., 2002; Windrum and 

Morris, 2003; Thirumala et al., 2009). In our study, similar results were observed between 4 %, 

5 % and 10 % of DMSO mostly for CRYO3-based media, showing that it is possible to decrease 

DMSO concentration with high efficiency of preservation. Sart et al. (Sart et al., 2013) also 

observed similar viability rates after freezing mouse PSCs in 2 % or 5 % DMSO, compared to 

10 % DMSO, in a synthetic medium (HypoThermosol FRS, Bio-Life Solutions). However, 

after two days of culture, viability dropped to 10 % and 40 % respectively. We did not find a 

such phenomenon in our study, in which we observed on the contrary, an improved quality of 



21 

the recovered cells with time. Many studies referred the substitution or the combination of 

DMSO with other cryoprotectants, such as ethylene glycol (EG) or polyethylene glycol (PEG) 

(Ha et al., 2005; Katkov et al., 2006; Baran and Ware, 2007; Xu et al., 2010; Ota et al., 2017; 

Ntai et al., 2018). However, it was also shown that EG and PEG were more genotoxic than 

DMSO for human oocyte cryopreservation (Aye et al., 2010).  

Thermodynamic characterization of the tested freezing media was consistent with cryobiology 

theory and results about quality of recovered cells. Indeed, melting temperature and 

crystallization enthalpy variation, corresponding to the forming ice quantity, decreased with 

increased DMSO percentage. This inversed relation was not observed for crystallization 

temperature, because this parameter is more dependent to experimental conditions than sample 

composition, compared to Tm and ΔH. In fact, crystallization can appear because of 

heterogeneous nucleation induced by the presence of impurities on the aluminum pan surface, 

resulting in variable Tc. Moreover, CryoStor® CS10 was stable thermodynamically and showed 

the lowest parameters, suggesting that lower quantity of ice was formed at lower temperature 

this medium. This observation was consistent with high observed viability rate of mESCs and 

rbPSCs thawing from CryoStor® CS10. We observed that CRYO3-based medium showed 

higher variability of ΔH compared to CryoStor® CS10, suggesting its poor thermodynamical 

stability, although this instability was not demonstrated for embryo freezing medium containing 

CRYO3 (Bruyère et al., 2012, 2013). Furthermore, except for CryoStor® CS10, all tested 

freezing media exhibited similar thermodynamic patterns, corresponding to lower viability of 

the thawing cells. This data shows the interest of thermodynamic approaches using DSC in 

understanding the physical behavior of freezing media and in establishing relevant freezing 

protocols. 

Conclusion 

This is the first study to report a rbPSCs freezing method in a synthetic medium with reduced 

DMSO concentration. These preliminary results revealed that it is possible to cryopreserve 

rbPSCs in CryoStor® CS10 or in CRYO3 containing less than 10 % of DMSO, either in a 

freezing container or a controlled-rate freezer. Further analyses as karyotype, phosphatase 

alkaline and teratoma analysis should be performed in order to confirm the efficiency of this 

protocol.  
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Supplementary Material 

Table S 1. Primers used for RT-qPCR 

Gene Origin   Primers 
Oct4 Rabbit Forward CCTGCTCTGGGCTCCCCCAT 

 
 Reverse TGACCTCTGCCTCCACCCCG 

Nanog Rabbit Forward CACTGATGCCCGTGGTGCCC 
 

 Reverse AGCGGAGAGGCGGTGTCTGT 
Esrrb Rabbit Forward CGTGGAGGCCGCCAGAAGTA 

 
 Reverse TCTGGCTCGGCCACCAAGAG 

Rex1 (Zfp42) Rabbit Forward AGCCCAGCAGGCAGAAATGGAA 
 

 Reverse TGGTCAGTCTCACAGGGCACAT 
Cdh1 Rabbit Forward TGCACAGGCCGGAAACCAGT 

 
 Reverse ACGGCCTTCAGCGTGACCTT 

Cdh2 Rabbit Forward CCGTGGCAGCTGGACTGGAT 
 

 Reverse GATGACGGCCGTGGCTGTGT 
Tbp Rabbit Forward CTTGGCTCCTGTGCACACCATT 

 
 Reverse ATCCCAAGCGGTTTGCTGCTGT 

Oct4 Mouse Forward ATGCAAATCGGAGACCCTGGTGC 
 

 Reverse AGCCCAAGCTGATTGGCGATGTG 
Nanog Mouse Forward AAGCCATGCGCATTTTAGCACCC 

 
 Reverse AAGGAACCTGGCTTTGCCCTGAC 

Esrrb Mouse Forward CTCGCCAACTCAGATTCGAT 
 

 Reverse AGAAGTGTTGCACGGCTTTG 
Rex1 (Zfp42) Mouse Forward TGTGTGCAGAGTGTGGCAAAGC 

 
 Reverse TGGGTGCGCAAGTTGAAATCCAG 

Actb Mouse Forward TTCTTTGCAGCTCCTTCGTTGCC 
    Reverse TTTGCACATGCCGGAGCCGTTG 
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Abstract 

Embryo cryopreservation media usually contain animal-derived products, such as bovine serum 

albumin (BSA). These products present two major disadvantages: an undefined variable 

composition and a risk of pathogen transmission. We aimed to evaluate the effect of replacing BSA 

in rabbit embryo rapid cooling “freezing” and warming media with a chemically defined medium with 

no animal-derived products: STEM ALPHA.Cryo3 (“Cryo3”). 

A total of 1540 rabbit morulae were divided into three cryopreservation groups (group 1: BSA, 

group 2: 20% Cryo3 and group 3: 100% Cryo3) and a fresh controls group. After rapid cooling, 

embryos were cultured (in vitro approach), or transferred into synchronized does (in vivo 

approach). In the in vitro approach, post-warm survival rates obtained with 100% Cryo3 (94.9 %) 

were superior to BSA (90.8%) and 20% Cryo3 (85.6 %). The blastocyst formation rate was similar 

between BSA, 20% Cryo3 and 100% Cryo3 groups (85.1, 77.9 and 83.3 %, respectively), as was 

the expansion / hatching rate (63.1, 63.4 and 58.0%, respectively) and embryo mitochondrial 

activity. In the in vivo approach, pregnancy (80.0, 68.0 and 95.2 %, respectively), implantation 

(40.5, 45.9 and 44.8%, respectively), and live-foetus rates (35.6, 35.5 and 38.1 %, respectively) 

were similar between the three groups. To conclude, Cryo3 can replace BSA in rabbit embryo rapid 

cooling “freezing” and warming media. 

 

1. Introduction  

Over the past few decades, embryo cryopreservation has become crucial to the long-term 

preservation of genetic material in biobanks. Along with embryo transfer (ET), this technology has 

contributed to the distribution of genetic materials worldwide, replacing animal exchange [36]. The 

World Organisation for Animal Health assembled recommendations on risk management 

procedures concerning embryo collection and processing [74]. Even if these guidelines are the best 

way to reduce infectious disease transmission, embryo contamination is still of concern to health 

authorities [36].  

Animal-derived products, such as bovine serum albumin (BSA) or foetal calf serum, also referred to 

as foetal bovine serum, are commonly added to animal embryo cryopreservation media 

[5,49,66,68,77]. Serum-derived product composition is poorly known. Media containing BSA or 

serum are classified as semi-defined or non-defined, respectively [72]. These products contain 

growth factors, cell attachment and spreading factors, hormones, carbohydrates, amino acids, 

proteins (such as albumin), vitamins and various undefined molecules [9,72]. 

Serum-derived products promote embryonic viability and development [4,9,60,69,71,72] and have 

numerous advantageous properties in cryopreservation media, such as metal chelating activity, 

oncotic pressure regulation, pH regulation [22] and toxin-scavenging [11]. Additionally, animal sera 

have surfactant properties, which reduce the surface tension in the media, preventing embryos 

from floating or sticking to glass and plastic surfaces [22,73], and avoiding the adsorption of some 

media compounds (as hormones, growth factors and carrier proteins) to the material surfaces [53]. 

Moreover, the addition of serum-derived products to the cryopreservation media seems to protect 

embryos from possible toxic effects of cryoprotectants during the cryopreservation process [23,55]. 
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Despite the numerous beneficial effects of serum on embryos during and after cryopreservation, 

negative effects have also been suspected. Ruminant embryos cultured with serum before 

blastocyst formation may present increased incidence of unusual development, accompanied by 

“large offspring syndrome”: high birth weight, prolonged gestation, frequent dystocia, elevated 

abortion rates and organ defects [35,76]. 

Sera can be contaminated with pathogenic agents such as bacteria, viruses [20,58], yeast, fungi, 

and mollicutes such as mycoplasmas [14], or prions [44], even if the risk of prion contamination 

seems to be low [75]. Although commercial sera are usually declared to be pathogen-free, 

treatments like heat inactivation and gamma irradiation don’t always seem to be efficient [58]. 

The advantages of using synthetic medium, in cryopreservation media are widely recognized as 

providing more defined, more consistent and more reproducible conditions, in addition to avoiding 

animal welfare and ethical concerns. 

Numerous studies have aimed to replace animal products in cryopreservation media with media 

free of animal-derived products, such as silk protein sericin [24], vegetal peptones [18], HA [25,52], 

and non-organic macromolecules such as polyvinyl alcohol [21,38,50,62], polyvinylpyrrolidone 

[21,32,65] and Ficoll [21,32]. Hyaluronic acid (HA) is a glycosaminoglycan that can be synthetized 

in its pure form [16] and can be found in follicular, oviduct and uterine fluids [37] and its 

concentration increases in the uterus by the time of implantation [78]. After successfully replacing 

albumin in embryo culture [17,42], HA became an interesting candidate to replace animal products 

during cryopreservation. 

Animal derived sera composition not only changes between batches but is also extremely variable 

[9]. This variation can occur as a result of physiological and biochemical differences between 

donors [40], and more generally with gender [2], age [29], diet [41], photoperiod [64] and 

preparation methods [33]. Regarding embryotrophic properties of BSA, some authors observed 

considerable variations between suppliers and even between distinct lots from the same supplier 

[4,27,45]. 

 

STEM ALPHA.Cryo3 (referred to as “Cryo3”, Stem-Alpha, Saint-Genis-l'Argentière, France), is a 

patented serum-free, protein-free and dextran-free medium (manufactured according to good 

manufacturing practices [cGMP-annex 1] in compliance with 2001/83/EC). CRYO3 is composed of 

synthetic HA of high molecular weight (> 106 D), glucose, carbohydrates, amino acids, mineral 

salts, vitamins, fatty acids esters and buffers. This product was originally created for clinical 

applications, as a serum substituent in somatic and human adult stem cell freezing medium. 

Bruyère (2013) investigated foetal calf serum thermodynamic properties of three different suppliers 

and compared them to the synthetic medium Cryo3 (used at 18% v/v). All the solutions presented 

similar thermodynamic characteristics, but media containing foetal bovine serum presented more 

variable results, as well as aberrant values, unlike 18% Cryo3 medium, whose results appeared to 

be more stable. 

The impossibility of characterizing animal-derived product composition and its variability lead to 

unpredictable development rates and to experimental results that might not be reproducible. 
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Consequently, all serum-derived products seem to be unsuitable when the goal of a study is to 

obtain defined media and standardized cryopreservation methods. 

 

Bruyère observed that Cryo3 can successfully replace animal products in rabbit embryo and bovine 

embryo slow-cooling “freezing” media [7,8]. 

Rapid-cooling “freezing” procedures comprise the use of higher solute concentrations than slow-

cooling “freezing”. These solutions, combined with a rapid cooling technique (such as direct 

plunging in liquid nitrogen), allow the formation of an amorphous state during cooling, avoiding the 

danger of ice crystal formation that occurs during slow-cooling “freezing”. However, unlike 

vitrification media, the formation of ice crystals during rapid-cooling “freezing” procedures is 

possible, especially during warming, if (i) warming rates are not quick enough [70], (ii) insufficient 

high total solute concentration or (iii) exposure to cryopreservation solution was too brief.   

 

The aim of our study was to evaluate the effect of replacing BSA with Cryo3 in rapid cooling 

“freezing” and warming solutions on the in vitro and in vivo development of rabbit morulae. 

 

2. Materials and methods 

The Ethical and Animal Welfare Committee of VetAgro Sup approved this study (Permit Number: 

05/26). All animals were handled according to the EU Directive 2010/63/EU for animal experiment 

guidelines. Unless specified otherwise, all chemicals were purchased from Sigma-Aldrich (Saint 

Quentin Fallavier, France). 

 

2.1 Embryo production and recovery  

A total of 62 rabbit New Zealand does (SARL HYCOLE, Marcoing, France) were housed in groups 

of five and fed a commercial diet. Does received five doses of a pFSH:LH (ratio 5:1, 31.5 μg total, 

Stimufol, Reprobiol, Belgium) preparation (administered twice-daily, subcutaneously). Eight hours 

after the last injection, does were inseminated with sperm from multiple males (pooled ejaculates), 

and an intramuscular injection of buserelin (2.0 μg Receptal, MSD Animal Health, Beaucouzé, 

France) was administered. 

Rabbit does were euthanized 65 to 68 h after the buserelin administration by cervical dislocation. 

The oviducts and uteri were flushed using Euroflush (IMV Technologies, L’Aigle, France) at room 

temperature. Embryos were recovered at the morula stage and classified according to the 

International Embryo Transfer Society (IETS) manual, [6][5][48]Bó and Mapletoft 2013) 

and quality 1 embryos [6] were pooled. Embryos (n = 1540) were randomly divided into three 

cryopreservation groups and two control groups. 

A group of embryos (n = 40) was cultured without cryopreservation (in vitro fresh control), and a 

group of embryos (n = 59) was transferred without cryopreservation (in vivo fresh control). 

 

2.2 Embryo rapid cooling 

Unless specified otherwise, all percentages are expressed as volume/volume. 
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Prior to rapid cooling, embryos (n = 1441) were randomly divided into three cryopreservation 

groups. All media contained the same cryoprotectant composition and the following base media: 

group 1 cryopreservation medium: IMV Embryo holding medium (IMV Technologies, L’Aigle, 

France), containing 0.4 % (w/v) BSA (n = 543); group 2 cryopreservation medium: D-PBS 

supplemented with 20% of Cryo3 (n = 423); group 3 cryopreservation medium: 100% Cryo3 

medium (n = 475). Embryos were transferred into a first equilibration solution composed of 5 % 

Me2SO and 5 % ethylene glycol (EG) (5 min), and a second equilibration solution composed of 

10% Me2SO and 10% EG (2 to 3 min). Embryos were then exposed to the cryopreservation 

solution of the correspondent group (30 sec) containing 20% Me2SO (approx. 2.8 M) and 20% EG 

(approx. 3.6 M), before being loaded to a Fibreplug (CVM kit, Cryologic) and cryopreserved by 

solid surface vitrification (three to four embryos per Fibreplug). Warming was performed by 

immersing the end of the Fibreplug directly into a thawing solution (0.5 M sucrose in group 1, 

group 2, or group 3 base medium, respectively) at 38.5 °C for 5 min, followed by three successive 

dilution baths (0.3 M, 0.1 M and 0.0 M sucrose). 

 

2.3 In vitro embryo culture and morphology assessment 

Embryos (n = 40) from the in vitro in vitro fresh control group were cultured (38.5 °C, 5 % CO 2) to 

the expanded blastocyst stage in Medium 199 (without glutamate) supplemented with 10% foetal 

calf serum and antibiotics (67 UI/mL penicillin and 67 μg/mL streptomycin, Dutscher, Brumath, 

France). In vitro development was assessed after 24 h and 48 h of culture and classified according 

to their development stage as morula, blastocyst, expanded and hatching embryos. Slightly 

expanded blastocysts with herniation of embryonic cells (Figure 1) were included in the expanded / 

hatching embryo group. 

 

2.4 In vivo embryo transfer 

Fresh embryos (n = 59) and warmed vitrified (total = 905; group 1 n = 358, group 2 n = 270, 

group 3 n = 277) embryos were transferred to synchronized New Zealand recipient does (n = 84), 

according to the protocol described by Salvetti [61]. Briefly, recipient does were synchronized with 

a buserelin injection (0.8 μg, intramuscular, Receptal), 50 to 60 h before transfer. After 

anaesthesia, a midventral laparotomy was performed, and 4 to 7 embryos (mean = 5.4) were 

transferred to each uterine horn. Pregnancy diagnosis was realized by palpation 20 days after 

embryo transfer. 

 

2.5 Mitochondrial activity assessment with JC-1 

The cationic dye JC-1 (5,5’6,6’-tetrachloro-1,1,3,3’tetraethylbenzimidazolycarbocyanine iodide; 

Thermofisher Scientific, Illkirch, France) exhibits different fluorescent properties, based on its 

accumulation within mitochondria. J-aggregates accumulate in mitochondria with high 

mitochondrial membrane potential (MMP), showing red fluorescence, while J monomers 

accumulate in low MMP mitochondria, presenting green fluorescence [54]. Consequently, embryos 

with more active mitochondria exhibit higher red to green ratios than less active or inactive 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
embryos. At the end of embryo culture, living embryos (n = 89) at the expanded / hatching stage 

from the three cryopreservation groups were subjected to a pretreatment of pronase (a protease, 

from Streptomyces griseus, 5 mg/mL) in Dulbecco's Phosphate-Buffered Saline medium (D-PBS) 

supplemented with D-glucose (5.56 mM), sodium pyruvate (0.33 mM) and bovine serum albumin (3 

mg/mL), at 38.5 °C, until the mucin coat began to d issolve. Embryos were then washed in six drops 

of modified D-PBS. Embryos were incubated with JC-1 for 75 min (1.5 μM, 38.5 °C, 5 % CO2) and 

observed using an Olympus IX71 epifluorescence microscope, with an excitation wavelength of 

488 nm. JC-1 aggregates were detected with a red filter (590 nm wavelength), whereas JC-1 

monomers were detected with a green filter (530 nm wavelength). To evaluate embryo 

mitochondrial activity, the staining intensity (by pixel) was measured, from both channels, in two 

randomly defined areas on each embryo, using the Fiji package [63] of ImageJ software (National 

Institute of Health, Bethesda, Maryland, USA), and the red to green ratio was quantified. 

An MMP disruptor (CCCP, carbonyl cyanide 3-chlorophenylhydrazone; Thermofisher scientific, 

Illkirch, France) was used as a control to confirm that directional changes in the dye signal were 

correctly interpreted. 

 

2.6 Statistical analysis 

In vitro and in vivo development rates were analysed with the chi-square test, whereas JC-1 

red/green ratios were analysed by one-way analysis of variance. All tests were performed with R-

Studio software [57]. Groups were considered significantly different at p < 0.05. 

 

3. Results 

 In vitro and in vivo embryo development after cryopreservation 

The in vitro blastocyst formation and expansion/hatching rates and in vivo development rates 

(pregnancy rate, implantation live-birth rates) after rapid cooling with media containing animal 

products or chemically defined products (group 2 and group 3) are summarized in Table 1. In vitro 

fresh control embryos expressed significantly superior blastocyst and expansion / hatching rates. 

The group 3 medium appeared significantly superior in in vitro post-warm survival rates than group 

1 and group 2 media. No significant differences were observed regarding the other in vitro and in 

vivo development rates. 

 

Mitochondrial activity assessment with JC-1 

Ratios of J-aggregate to J-monomer of cryopreserved expanded or hatching embryos, 

cryopreserved with media containing animal products (group 1) or chemically defined products 

(groups 2 and 3) are represented in Figure 2 and summarized in Figure 3. No significant 

differences were observed between the three groups. After incubation with the CCCP control, 

images showed no red fluorescence. 

 

4. Discussion 
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Over the last few decades, there have been important efforts to replace animal serum with defined 

media containing no animal products for embryo cryopreservation. Numerous natural or synthetic 

molecules have been used in slow cooling, as in rapid cooling media, to replace the biological and 

the physical properties of animal albumin. Studies demonstrate that animal products can be 

successfully replaced with products such as the silk protein sericin [24] and vegetal peptones [18] 

during bovine embryo slow-freezing, or HA during murine [26,52], bovine [51], and ovine [26] slow 

freezing. 

The non-organic macromolecule polyvinyl alcohol has been used to slow-freeze and vitrify embryos 

from different species, obtaining equivalent post-thaw development rates for murine [21,50,51] and 

porcine [62] embryos. However, inferior development rates were also obtained for murine [12], 

bovine [51,65,67] and ovine [38] embryos. Studies using polyvinylpyrrolidone tend to demonstrate 

a negative effect on cryopreservation media [65], as well as inferior surfactant properties [21,65] 

and toxicity to embryos [13,32]. 

Kuleshova et al. cryopreserved mouse embryos by rapid-cooling, using animal product free media 

containing 35 % polymers (dextran or Ficoll) and 25 % of penetrating cryoprotectants (EG), using a 

double straw arrangement to diminish contamination risk, obtaining in vitro development rates of 

100 % blastocyst expansion and in vivo foetuses rates of 76 % [31]. One year later, these authors 

obtained development rates (96 - 100% blastocyst expansion and 62 - 76 % live foetuses) after 

vitrifying mouse embryos with 34 to 49 % (w/v) of macromolecules (Ficoll or dextran) and 11 to 

27% (w/v) EG, in protein-free media [32]. However, these authors did not compare these protein-

free media with media containing animal products [32]. Another author evaluated the substitution of 

foetal calf serum with Ficoll, on mouse embryo quick freezing, obtaining equivalent development 

rates [21]. These studies suggest that these two molecules may be good candidates for 

replacement of animal products. 

In 1990, Palasz obtained equivalent post-thaw murine and bovine embryo development rates after 

embryo slow-frezing with synthetic HA and with NCS (n = 206) [52]. Joly observed equivalent post-

thaw murine (n = 443) and ovine embryo (n = 120) in vitro development rates, after embryo slow-

freezing in media containing HA and BSA [26]. 

Bioniche Life Sciences Inc. developed synthetic holding and freezing media (SYNGRO®) for 

bovine, equine, sheep and goat embryos, based on synthetic HA. However, few studies regarding 

cryopreservation were published with these commercial products [22]. Some authors used these 

media to slow-freeze equine embryos [3] and to slow-freeze and vitrify bovine embryos [30], but 

these studies didn’t aim to compare with animal derived product based media. 

In our previous work, we showed that animal products could be successfully replaced with 20 % 

Cryo3 in bovine [7] and rabbit embryo slow-freezing [8], where better in vivo development rates 

were obtained with 20% Cryo3, compared to foetal calf serum [8]. 

In the present study, we evaluated the effect of replacing BSA in rapid-cooling solutions and in 

warming solutions, using the same synthetic product as in our previous studies: Cryo3. 

In in vitro experiments, significantly superior survival rates were observed in the 100% Cryo3 

(group 3) compared to BSA (group 1) or 20% Cryo3 (group 2). No differences were found 
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regarding blastocyst formation, blastocyst expansion or blastocyst hatching development rates 

between groups. In the literature, quite variable post-warm in vitro development can be found 

(survival: 95.3 - 95.6 %, blastocyst formation: 56 – 91.7 %, hatching or expansion: 45 - 91.7 %) 

[39,43,47,56]. This variability may depend on several factors, such as donor genetics, the housing 

conditions of the animals and the embryo culture medium.  

Our post-warm development rates were in the range of values found in the literature. 

Embryos were not subjected to a pronase treatment to remove the mucin coat prior to culture. 

Kasai compared the in vitro development with and without mucin coat digestion and observed that 

approximately half of the non-treated embryos did not expand to a diameter more than twice that of 

the morula (46 % non-treated vs 92 % treated embryos) [28]. Fischer observed that uterine 

components are vital in the transformation of the extracellular coverings in the rabbit embryo. In 

rabbit culture media lacking uterine components, the zona pellucida does not dissolve and loses 

elasticity, leading to herniation of embryonic cells into the mucin coat, instead of expansion and 

hatching [15]. Indeed, we observed slightly expanded embryos with embryonic cell herniation 

(Figure 1) in cryopreserved and in non-cryopreserved groups. Considering these findings, we 

pooled slightly expanded herniated blastocysts with expanded and hatching blastocysts.  

To evaluate mitochondrial activity between cryopreservation groups, we only used developed 

embryos. If we had randomly picked embryos from all developmental stages, the development 

rates would have influenced the total mitochondrial activity and, therefore, confound our results. 

We obtained equivalent mitochondrial activity between the three groups, suggesting that all the 

developed embryos had the same energetic capacity of continuing further development. The 

obtained JC-1 ratios are equivalent to ratios found in the literature for fresh mouse blastocysts 

(approx. 1.35) [1]. Images obtained with the CCCP control demonstrated the JC-1 ratio is 

dependent on mitochondrial potential variations. 

In our in vivo experiments, no statistically significant difference was observed between fresh and 

cryopreserved embryos. No difference was found regarding pregnancy rates of the three rapid 

cooling groups, even if group 3 rates tended to be superior. Equivalent implantation rates and live-

birth rates were obtained with the three rapid cooling media groups. As in in vitro development 

studies, post-transfer in vivo development rates found in the literature can considerably vary 

(pregnancy: 56 - 100%, implantation: 8.7 – 65 %, live foetuses: 6.4 – 57.1 %) [25,28,43,48,59]. In 

vivo development rates may depend on the cryopreservation medium, cooling device and 

technique, transfer conditions (laparotomy / endoscopy, surgeon), and the housing conditions of 

the animals. The in vivo development rates obtained in our study were in the range and close to the 

superior limit for pregnancy and implantation rates. 

Regarding cryopreservation effects on embryos, a difference was found between fresh (expansion 

or hatching rate 97.5 %) and cryopreserved embryos during in vitro development, but this 

difference was no longer observed after in vivo transfers. A possible explanation would be that 

cryopreservation partially impairs embryos, and this damage can be reversible if embryos return to 

physiological conditions after cryopreservation. Both in vitro and in vivo experiments in this study 

indicate that animal products can be replaced by both concentrations (20% and 100%) of Cryo3. 
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Ménézo and Khatchadourian observed that non-defined peptides could bond to albumin, with 

subsequent deleterious effects on embryo post-thaw survival [46]. When using cryopreservation 

media entirely composed of synthetic chemically defined products, such as Cryo3, these 

interactions are avoided. 

Moreover, the use of a commercial synthetic medium for embryo cryopreservation, prepared 

industrially under rigorous quality control instead of laboratory-made media, avoids preparation 

variability, and increases reproducibility and standardization of the cryopreservation process.  

 
5. Conclusion 

The results from this study seem to demonstrate that a chemically defined substitute (STEM 

ALPHA.Cryo3) can successfully replace BSA in rabbit embryo rapid-cooling and warming media. 

The elimination of animal products of embryo cryopreservation media may improve procedure 

standardisation, by avoiding variability in media composition and, consequently, more variable 

results. Additionally, it would avoid sanitary concerns inherent to animal-derived products. 

To improve sanitary conditions, we have replaced BSA with 100% Cryo3 medium in rabbit embryo 

rapid-cooling media in the French National CryoBank. 
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Table 1. In vitro and in vivo rabbit embryo development rates after rapid cooling with media 

containing animal products (group 1) or chemically defined products (group 2 and group 3). 

 

  

  
Group 1 

(0.4 % BSA) 

Group 2 

 (20% 

Cryo3) 

Group 3 

 (Cryo3) 

Control 

(Fresh) 

In vitro 

development 

% Survival 
90.8%a 

(168/185) 

85.6 %a 

(131/153) 

94.9 %b 

(188/198)  

% Blastocyst 
85.1 %a 

(143/168) 

77.9 %a 

(102/131) 

83.3 %a 

(156/188) 

97.5 %b 

(39/40) 

% Expansion*, 

or Hatching 

63.1 %a 

(106/168) 

63.4 %a 

(83/131) 

58.0%a 

(109/188) 

97.5 %b 

(39/40) 

In vivo 

development 

% Pregnancy 

rate 

80.0%NS 

(24/31) 

68.0%NS 

(17/24) 

95.2 %NS 

(20/23) 

83.3 %NS 

(5/6) 

% Implantation 
40.5 %NS 

(117/303)  

45.9 %NS 

(84/183) 

44.8%NS 

(94/234) 

46.9 %NS  

(23/49) 

% Live birth 
35.6 %NS 

(103/303) 

35.5 %NS 

(65/183) 

38.1 %NS 

(80/234) 

40.8%NS 

(20/49) 

Different letters in the same row indicate a statistically significant difference (p < 0.05). NS 

indicates no statistically significant difference was observed. 

% Survival: number of morphologically intact embryos after freezing per frozen embryos. 

% Pregnancy rate: number of does positive to pregnancy diagnosis per recipient 

% Implantation: number of born kits (alive and dead) per transferred embryos on pregnant females 

% Live birth: number of live-born kits per transferred embryos on pregnant females 

*Slightly expanded blastocysts with herniation of embryonic cells comprised in this group 
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Figure 1. Stereoscopic pictures of rabbit embryos. 

  

Panel A) A slightly expanded blastocyst with embryonic cell herniation. 

Panel B) An expanded blastocyst. 
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Figure 2. Epifluorescence photomicrographs of rabbit embryos stained with JC-1.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2a. A, D, G) Regions of high MMP are indicated by red fluorescence (emission ~590 nm). 

B, E, H) Depolarized regions are indicated by green fluorescence (emission ~529 nm). 

C, F, I) Merged images. 

A, B, C) Embryo vitrified with a medium containing 0.4% BSA. 

D, E, F) Embryo vitrified with a medium containing 20% CRYO3. 

G, H, I) Embryo vitrified with a medium containing 100% CRYO3. 
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Figure 2b. After CCCP control (merged images). No regions of high MMP are visible. 
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Figure 3. JC-1 staining: red/green ratio of cryopreserved expanded or hatching blastocysts vitrified 

with media containing animal products (group 1) or chemically defined products (group 2 and group 3). 

 

Red/green ratio of embryos vitrified with group 1 (n = 31), group 2 (n = 27), or group 3 (n = 31), 

obtained with epifluorescence microscopy. No significant difference was observed between groups. 
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Highlights 

• Embryo cryopreservation media usually contain animal-derived products. 

• These products present an undefined variable composition and a contamination risk. 

• We aimed to replace BSA with a synthetic medium in rapid cooling “freezing” media. 

• Cryo3 can replace BSA in rabbit embryo rapid cooling “freezing” and warming media. 
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