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Résumé L’objectif de ce travail de thèse est le développement de techniques de détection
d’intrusions et de corrélation d’alertes spécifiques aux systèmes de contrôle industriels (ICS).
Cet intérêt est justifié par l’émergence de menaces informatiques visant les ICS, et la nécessité
de détecter des attaques ciblées dont le but est de violer les spécifications sur le comportement
correct du processus physique.

Dans la première partie de nos travaux, nous nous sommes intéressés à l’inférence automa-
tique de spécifications pour les systèmes de contrôle séquentiels et ce à des fins de détection
d’intrusions. La particularité des systèmes séquentiels réside dans leur logique de contrôle opérant
par étapes discrètes. La détection d’intrusions au sein de ces systèmes a été peu étudiée malgré
leur omniprésence dans plusieurs domaines d’application.

Dans notre approche, nous avons adopté le formalisme de la logique temporelle linéaire (LTL)
et métrique (MTL) permettant de représenter des propriétés temporelles d’ordre qualitatif et
quantitatif sur l’état des actionneurs et des capteurs. Un algorithme d’inférence de propriétés a
été développé afin d’automatiser la génération des propriétés à partir de motifs de spécifications
couvrant les contraintes les plus communes. Cette approche vise à pallier le nombre conséquent
de propriétés redondantes inférées par les approches actuelles. Afin d’y remédier, nous ajoutons
une étape de pré-sélection permettant de restreindre la recherche des propriétés valides sur des
portions non redondantes des traces d’exécution. Nous évaluons notre approche sur un processus
physique complexe contrôlé par plusieurs automates programmables industriels et soumis à des
attaques orientées processus. Les résultats montrent qu’une réduction importante des propriétés
inférées est atteignable tout en maintenant un taux de détection élevé.

Dans la deuxième partie de nos travaux, nous cherchons à combiner l’approche de détec-
tion d’intrusions développée dans le premier axe avec des approches de détection d’intrusions
classiques. Pour ce faire, nous développons une approche de corrélation tenant compte des spé-
cificités des systèmes industriels en deux points: (i) l’enrichissement et le prétraitement d’alertes
venant de domaines différents (cyber et physique), et (ii) la mise au point d’une politique de
sélection d’alertes tenant compte du contexte d’exécution du processus physique.

Le premier point part du constat que, dans un système industriel, les alertes qui sont
remontées au corrélateur sont caractérisées par des attributs hétérogènes (attributs propres
aux domaines cyber et physique). Au sein des approches de corrélation classiques, une étape
de prétraitement est généralement utilisée afin de normaliser les alertes et de compléter les
champs manquants. Cependant, le cas des systèmes industriels s’avère être plus complexe de
par l’hétérogénéité des attributs. Afin d’y remédier, nous utilisons des informations relatives aux
protocoles supportés par les contrôleurs et à la distribution des variables du processus au sein
des contrôleurs afin d’enrichir les alertes du domaine physique par des informations du domaine
cyber. Le deuxième point concerne le développement d’une politique de sélection d’alertes qui
adapte dynamiquement les fenêtres de sélection des alertes selon l’évolution des sous-processus.
Les résultats de l’évaluation comparée de notre approche par rapport à des approches classiques
purement temporelles montrent une meilleure performance sur la base de métriques telles que le
taux de réduction des alertes et la complétude des corrélations.

Mots-clés: Détection d’intrusions, systèmes de contrôle industriels, cybersécurité, corréla-
tion d’alertes, vérification à l’exécution, inférence de spécifications
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Abstract The objective of this thesis is to develop intrusion detection and alert correlation
techniques geared towards industrial control systems (ICS). Our interest is driven by the recent
surge in cybersecurity incidents targeting ICS, and the necessity to detect targeted attacks which
induce incorrect behavior at the level of the physical process.

In the first part of this work, we develop an approach to automatically infer specifications over
the sequential behavior of ICS. In particular, we rely on specification language formalisms such
as linear temporal logic (LTL) and metric temporal logic (MTL) to express temporal properties
over the state of the actuators and sensors. We develop an algorithm to automatically infer
specifications from a set of specification patterns covering the most recurring properties. In
particular, our approach aims at reducing the number of redundant and unfalsifiable properties
generated by the existing approaches. To do so, we add a pre-selection stage which allows
restricting the search for valid properties over non-redundant portions of the execution traces.
We evaluate our approach on a complex physical process steered by several controllers under
process oriented attacks. Our results show that a significant reduction in the number of inferred
properties is possible while achieving high detection rates.

In the second part of this work, we attempt to combine the physical domain intrusion detec-
tion approach developed in the first part with more classical cyber domain intrusion detection
approaches. In particular, we develop an alert correlation approach which takes into account
some specificities of ICS. First, we explore an alert enrichment approach that allows mapping
physical domain alerts into the cyber domain. This is motivated by the observation that alerts
coming from different domains are characterized by heterogeneous attributes which make any
direct comparison of the alerts difficult. Instead, we enrich physical domain alerts with cyber
domain attributes given knowledge about the protocols supported by the controllers and the
memory mapping of process variables within the controllers.

In this work, we also explore ICS-specific alert selection policies. An alert selection policy
defines which alerts will be selected for comparison by the correlator. Classical approaches often
rely on sliding, fixed size, temporal windows as a basis for their selection policy. Instead, we
argue that given the complex interdependencies between physical subprocesses, agreeing on an
alert window size is challenging. Instead, we adopt selection policies that adapt to the state of
the physical process by dynamically adjusting the size of the alert windows given the state of
the subprocesses within the physical process. Our evaluation results show that our correlator
achieves better correlation metrics in comparison with classical temporal based approaches.

Keywords: Intrusion detection, industrial control systems, cybersecurity, alert correlation,
runtime verification, specification mining

GIPSA-Lab, 11 Rue des Mathématiques
38400, Saint-Martin-D’Hères, France
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Introduction

This thesis focuses on the cybersecurity of industrial control systems (ICS). An ICS is
a set of devices (electrical, mechanical, hydraulic,. . . ) whose interaction controls the
behavior of a physical process in order to achieve an industrial objective (manufactur-
ing, transportation of matter and energy, etc.). ICSs serve as the backbone of several
critical infrastructures that provide facilities for the generation and distribution of elec-
tricity, water treatment and supply, railway transportation networks, and manufacturing
applications. Due to their criticality, failures in these systems, whether of accidental or
intentional origins, can lead to significant human and economic loss.

The recent history of ICSs is that of an ever-growing convergence with classical in-
formation technology (IT) systems. In an effort to drive down costs and provide stake-
holders, engineers and operators with seamless access to the industrial plants, ICSs are
nowadays interconnected with the Internet and have adopted off-the-shelf IT technology
such as TCP/IP networking, standard computer architectures, and common operating
systems. Concurrently, many of the security vulnerabilities which marred IT systems
have been exported to ICSs. Thus, if such systems were once considered secure because
of their isolation, their use of proprietary protocols and peculiar architectures, this is
no longer the case as witnessed by the growing number of increasingly sophisticated
cybersecurity incidents in the last decades [39, 138, 32]. As a result, nation-states, orga-
nizations, and industries have become sensitive to the security threats of ICSs, and have
been adamant in their call for the development of adequate security measures to protect
ICSs from security breaches.

One of the key aspects which distinguish an ICS from classical IT systems is the
presence of a physical process. This has lead to the apparition of a new class of novel
threats which target the physical process. The main goal of these threats is to induce
incorrect behavior at the level of the physical process. Examples of incorrect behavior
might include driving temperatures beyond thresholds, overflowing tanks, or damaging
valves through excessive manipulation. We use the term process-oriented attacks to
refer to the attacks that are related to such threats. Above all, it should be stressed
that process-oriented attacks are not merely hypothetical scenarios that are beyond the
means of attackers. Many of the recent high-profile security incidents such as the Stuxnet
worm [39] and the CrashOverride [138, 32] attacks are instances of such attacks. In this
thesis, we focus on the security of ICSs with respect to process-oriented attacks.

Yet, despite their real possibility, it is far from clear whether we currently dispose

xiii



xiv Introduction

of adequate means to secure ICSs against process-oriented attacks. Generally, we can
distinguish between preventive security measures and reactive security measures. Pre-
ventive security measures try to preclude the occurrence of a security incident. However,
given the complexity of the systems, the ever-increasing number of vulnerabilities, and
the limited financial resources, preventing all possible incidents is a daunting task. As
a result, reactive security controls are used as a posteriori measures to detect, contain
and react to intrusions. In all cases, security controls in ICSs must not disturb the
normal functioning of the system by introducing time latencies which might interfere
with the control loops, and must also be compatible with the limited computing and
memory resources within ICS components. In this thesis, we identify intrusion detection
as a promising class of reactive security measures whose aim is to automatically detect
security incidents by passively monitoring the ICS.

In the last few years, many ICS-oriented intrusion detection approaches have been
explored in the research community. However, the following remarks can be made con-
cerning the state of the art on intrusion detection approaches in ICSs. Approaches that
attempt to detect process-oriented attacks by relying solely on observations at the level
of the cyber domain lead to poor detection results because of their deficient knowledge
of the state of the physical process. On the other hand, approaches which monitor the
physical process often resort to limited models which are either insufficient to capture
the dynamics of the physical process, or demand significant effort and expert knowledge
from security operators to build the detection models. With respect to the state of the
art in intrusion detection, this thesis defends the following two positions:

I) Detecting process-oriented attacks that generate manifestations both in the cyber
and physical domains of the ICS is best performed by using two separate but comple-
mentary types of intrusion detection approaches: (i) process-oriented intrusion detection
approaches that operate over the state of sensors and actuators in order to detect the
physical domain manifestations of the attacks, and (ii) cyber domain oriented intrusion
detection approaches that monitor the cyber domain in order to identify the source of
the attacks and help operators distinguish between legitimate operations and attacks.

For the type of approaches in (i), the models should be expressive enough to cover
the dynamics of the physical process. In particular, one must keep in mind the hybrid
nature of ICS which induces both continuous and sequential behaviors. The continuous
behavior is traditionally modeled through differential equations producing continuous
trajectories, while the sequential behavior is modeled through discrete event systems
producing discrete sequences of logical actuator/sensor states and events. Moreover, de-
spite their expressivity, building the detection models should be automatically performed
in order to lighten the burden on the security operators. Finally, care should be taken so
that the alerts raised by the models are pertinent and precise so that the operators can
react timely.

The type of approaches in (ii) is closely related to traditional intrusion detection
solution in IT systems which have been extensively explored in the computer security
community.
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II) Based on the separation performed above, it is necessary to link manifestations both
from the process-oriented intrusion detection approaches and the classical cyber domain
approaches in order to fully understand the impact of the attack on the physical process
and its source in the cyber domain. This task is closely related to alert correlation, a
collection of tasks which, among other things, group low-level alerts to afford operators
a higher-level view of the events within the system. So far, there have been few attempts
at developing adequate alert correlation approaches for ICSs. In particular, classical
alert correlation is geared towards alerts coming solely from the IT domains, and thus
characterized by a high degree of homogeneity in terms of attributes. On the other hand,
the case is more involved in ICSs where alerts can come from different domains with
heterogeneous attributes.

Contributions Based on the previous discussion, our main contributions are as follows:

� We propose an intrusion detection approach which relies on automatically mined
process specifications to detect process-oriented attacks on the sequential behavior
of an ICS. The specifications are synthesized as monitors that read the execution
traces and report violations to the operator. A central aspect of our method consists
in reducing the number of mined specifications suffering from redundancies. This
method provides significant improvements in comparison with naive specification
mining approaches.

� We propose an alert correlation approach to link alerts from different intrusion
detection systems spanning both the cyber and the physical domains of the ICS.
We tackle two limits of traditional alert correlation systems: the pre-processing
and enrichment of alerts across the cyber-physical domains and the definition of an
ICS-specific alert selection policy which adjusts the alert window to the runtime
context of the physical process.

� We evaluate both our intrusion detection and correlation approach using an ex-
perimental testbed in a hardware-in-the-loop setting under both process-oriented
attacks and legitimate operator manipulations.

Thesis organization This thesis is organized into two main parts, each part is subdi-
vided into two chapters.

The first part provides the background and related work necessary to understand
and position our contributions. In Chapter 1, we introduce the necessary background
information on ICSs along with their specificities with respect to IT systems. After a
general discussion of security issues within ICSs, we explore some of the major security
incidents that involve process-oriented attacks. In Chapter 2, we first present a taxonomy
of intrusion detection approaches in ICSs. Based on this taxonomy, we provide a critical
discussion of the existing approaches. We also introduce work on runtime verification
as a pertinent verification approach for our intrusion detection task. Finally, we discuss
existing alert correlation approaches and their limitations with respect to ICSs.
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The second part introduces our contributions to intrusion detection and alert correla-
tion for ICSs. In Chapter 3, we discuss our intrusion detection approach geared towards
process-oriented attacks. We first introduce our threat model, then present our approach
before discussing our evaluation methodology and results. In Chapter 4, we present a
correlation approach to link alerts from both the process-oriented intrusion detection sys-
tem developed in Chapter 3, and from more classical cyber-domain intrusion detection
systems. In particular, we present our model to map alerts from the physical domain
into the cyber domain given knowledge of the controllers and their protocols. We then
present our evaluation of the approach and discuss the correlation results.
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In this chapter, we introduce the necessary background concepts which will be used
throughout this work. First, we introduce and contrast industrial control systems (ICS)
to traditional information technology (IT) systems. Next, we motivate the need for
intrusion detection as a security control and provide a general introduction to intrusion
detection. Finally, we present and analyze some relevant attacks on industrial control
systems.

1.1 Industrial control systems

In this section, we introduce ICSs (Section 1.1.1), describe their general architecture
(Section 1.1.2) and highlight their differences with traditional IT systems (Section 1.1.3).

1



2 Chapter 1. Background

1.1.1 Terminology

Several organizations have proposed a definition of an industrial control system. The
ANSSI, the National Cybersecurity Agency of France, defines an ICS as “the set of
human and material means which aim at controlling or commanding technical plants
composed of a set of sensors and actuators” ([28]). The National Institute of Standards
and Technology (NIST) adopts a similar definition by characterizing an ICS as “the
combination of control components (electrical, mechanical, hydraulic, pneumatic, etc.)
that act together to achieve an industrial objective (manufacturing, transportation of
matter and energy, etc.)” ([133]). The aim of an ICS is thus the command and control of
an industrial process whose domain of application can vary ostensibly. In practice, ICSs
can be characterized by [115]: (i) the nature of their operations such as the transformation
of raw material into a final product, or the realization of maintenance activities, (ii)
the complexity of the operations which might necessitate the combination of several
distributed control activities, and (iii) the geographical distribution of the ICS.

As a consequence of this diversity, the term ICS constitutes, in fact, a broad de-
nomination which encompasses several variants. The literature abounds in alternative
denominations such as SCADA (Supervisory Control And Data Acquisition),DCS (Dis-
tributed Control System), IACS (Industrial Automation and Control Systems), or PCS
(Process Control System). However, the limits and differences between these denomina-
tions are not always explicitly drawn, and establishing clear distinctions can be tricky no
less due to the increasing convergence in technologies employed by these variants.

For instance, the ANSSI uses the term SCADA in reference to systems that “allow for
the acquisition and processing of a large quantity of data (remote measures and alarms,
etc.) and control industrial equipment (controllers, actuators, sensors, etc.) by issuing
remote commands” ([28]). NIST draws a sharper distinction by referring to “systems used
to control dispersed assets where centralized data acquisition is as important as control ”
([133]). Thus, in the case of SCADA, the accent is on the geographical distribution of
the ICS, and the contrast is particularly apparent with respect to DCS which refers to
control production systems within the same geographical zone [43, 145].

In the remainder of this chapter, we abstract away from these terminological am-
biguities and introduce a general description of architectures and components that are
common to the aforementioned ICS variants.

1.1.2 Architecture

ICSs are hierarchical systems whose structure exhibits several levels as depicted in Fig-
ure 1.1. In this section, we provide, for each level, a cursory description of its objective
along with a discussion of the main components involved in its realization.

Process level (Level 0). This level constitutes the first line of the system in direct in-
teraction with the physical process. Here, instrumentation components such as actuators
and sensors are deployed. Sensors convert physical observables (pressure, temperature,
etc.) into electrical signals. We distinguish between two types of sensors : (i) discrete
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Figure 1.1: The layered architecture of a typical industrial control system [74]

sensors operating on a finite set of values (ex. proximity sensor reporting either the
presence or absence of an object), and (ii) analog sensors which allow for continuous
measures (ex. pressure sensor returning an output signal proportional to the amount of
applied pressure). Actuators typically convert electrical signals into mechanical move-
ments. Similarly to sensors, we can distinguish between discrete (ex. two-way valves) and
continuous (ex. DC motors) actuators. Recently, under the name of intelligent electronic
devices (IEDs), sensors and actuators have moved towards more elaborate functionali-
ties including the execution of local control operations, the ability to perform diagnostic
operations and to communicate with other components [133].

Actuators and sensors exchange data with components at higher levels, typically
controllers, either through direct connections through a star architecture, or using a
bus architecture. In terms of communication, the volume of exchanged data at this
level is low, and exchanges are cyclical with short transfer time. Examples of field-level
communication protocols include AS-i bus1, Profibus DP2, and Ethercat3.

Basic control level (Level 1). The objective of this level is to steer and control the
physical process in interaction with the field level’s instrumentation components. Control
is performed using embedded devices known as controllers. The main goal of a controller
is the execution of control logics and algorithms necessary for the control of an industrial

1http://www.as-interface.net/
2https://www.profibus.com/
3https://www.ethercat.org/

http://www.as-interface.net/
https://www.profibus.com/
https://www.ethercat.org/
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process. Digital controllers, also known as Programmable Logic Controllers (PLCs),
are at the heart of modern industrial control systems as a replacement to traditional
electromechanical relays.

Within process control, we can distinguish between continuous and sequential control.
Continuous (or regulatory) control aims at maintaining a physical value at the desired
level (also called setpoint) by manipulating and correcting control signals sent to the
process. A proportional-integral-derivative controller (PID controller) is an example of a
widely used closed-loop continuous control mechanism. Sequential control is concerned
with issuing ordered sequences of commands to switch the process between different
contexts such as startup, shutdown, batching, etc. In practice, both continuous and
sequential controls are usually intertwined to achieve the overall control objectives.

In terms of architecture, PLCs include a processor (CPU), random-access memory
(RAM), input/output modules through which sensors and actuators can be reached, as
well as communication interfaces [36]. While many of these components are common
to traditional computing systems, PLCs are characterized by their real-time execution
requirements, their tailored memory, and computing resources, as well as their resilience
requirements to harsh conditions (high temperatures, electromagnetic interferences, me-
chanical vibrations, etc.) [36].

The activity of a PLC reduces essentially to the execution of a cycle which includes:
(i) reading inputs from sensors, (ii) executing control logics, (iii) transitioning to new
states, and (iv) writing outputs to actuators. This cycle can be suspended at any time
to handle raised interrupts. The controller then executes the routine associated with the
interrupt before resuming the execution cycle. For instance, timer interrupts can be used
to guarantee precise sampling times which are necessary for applications such as PID
control.

A controller’s memory contains two types of data: (i) the program or control log-
ics, and (ii) the state of a set of variables corresponding to setpoints or to the physical
process’s actuator and sensor states. In terms of control logics programming, the IEC
61131-3 standard [64] defines several programming languages: (i) Ladder language, (ii)
Sequential Function Chart (SFC), (iii) Function Block Diagrams (FDB), (iv) Structured
Text (ST), and (v) Instruction List (IL). The choice of a language depends on the partic-
ular application domain and on geographical or industry-specific differences in language
adoption.

With regard to communication, this level includes data exchanges among controllers
for distributed control applications, as well as exchanges with the upper supervisory
level. Traffic is characterized, albeit in a lesser extent compared to the field level, by its
periodicity, its low data volume and its short transfer times. Examples of communication
protocols include Modbus4, DNP35, and IEC618506.

4www.modbus.org/
5https://www.dnp.org/
6https://webstore.iec.ch/searchform&q=61850

www.modbus.org/
https://www.dnp.org/
https://webstore.iec.ch/searchform&q=61850
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Supervisory control level (Level 2). Operating at a higher hierarchical degree, this
level presents a global view of the system’s control state and operations. Control servers
are responsible for the gathering of information from lower layers for monitoring and
diagnostic purposes. This information can be presented to a process operator through a
human-machine interface (HMI). An HMI displays graphical indicators that inform the
operator about the state of the physical process or the occurrence of alarm notifications.
The operator can act on the physical process through the HMI as well. The supervisory
level also includes engineering workstations which allow the specification of setpoints and
the programming of the controllers. Communication at this level begins to resemble that
of traditional IT systems: the volume of data exchanges becomes significant with lower
requirements in terms of transfer time. Typical network protocols encountered at this
level include OPC DA7 and OPC UA8.

Process management and corporate network levels (Level 3-4). The core activ-
ities at these levels pertain to the allocation and optimization of resources, maintenance
planning, and quality control. These activities are based essentially on information gath-
ered from lower levels. The automatic collection and storage of this information are
typically performed by historians which act as a centralized database that might hold
configuration parameters as well as process variable states and setpoints.

In the next section, we compare classical IT systems to ICSs to motivate our need to
develop ICS-specific intrusion detection and alert correlation approaches.

1.1.3 Comparison between classical IT systems and ICSs

In order to quickly align industrial plants’ orientations with economical stakes, plant
operators require seamless access to recent and complete information about the plant’s
state. As a result, the recent history of ICSs is that of a growing convergence with
classical information technology (IT). If ICSs were once considered protected from digital
threats because of their isolation and reliance on proprietary protocols, as well as their
uncommon architectures, such a vision is no longer valid. In practice, ICSs have begun
moving towards standard protocols and architectures, commercial operating systems and
the use of public networks [115]. However, major differences remain which should not
be neglected when thinking about security within ICSs. A simple transposition of IT
security measures might not be effective due to certain fundamental divergences :

• Performance. ICSs have strong constraints in terms of real-time and deterministic
performance [43, 133]. Any delay in data processing or transmission can deteriorate
the performance of the control loops. It is also necessary to limit the response time
variance of signals (i.e, the jitter) as such behaviors can affect the integral and
derivative components of regulators [43]. These strict requirements tend to fade

7https://opcfoundation.org/developer-tools/specifications-classic/data-access/
8https://opcfoundation.org/developer-tools/specifications-unified-architecture/

https://opcfoundation.org/developer-tools/specifications-classic/data-access/
https://opcfoundation.org/developer-tools/specifications-unified-architecture/
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as we move towards higher levels of the ICS. In traditional IT systems, response
times are less critical and jitter constraints concern only certain applications such
as voice over IP. IT systems have also greater requirements in terms of bandwidth
compared to industrial networks.

• Availability. The nature of industrial systems, in contact with the physical pro-
cess, requires a high degree of availability. Unpredictable shortages are thus unac-
ceptable. The shutdown of an ICS needs to be planned in advance in order to avoid
any negative impact on the production. In comparison, availability in IT systems
is less critical.

• Resource constraints. Most components in an ICS are limited in terms of re-
sources. In particular, embedded and real-time devices such as controllers are
based on tailored hardware. Processing power, memory resources, and network
bandwidth are thus not as abundant as in classical IT systems. When combined
with the strict requirements of ICSs in terms of real-time and deterministic per-
formance, such constraints hamper the implementation of heavy security controls
such as encryption.

• The lifetime of components. Spurred by rapid technological advances, IT sys-
tem components typically have a lifetime in the order of 3 to 5 years. In contrast,
ICSs tend to resist changes, leading to much longer lifetimes which can vary between
15 to 20 years or more [133]. Many factors contribute to this disparity including
the difficulty to interrupt the functioning of an industrial system without affecting
its production, and the heavy investment in terms of time and resources required
to test the compatibility to new solutions before their deployment.

From the above discussion, we see that a simple transposition of IT security mea-
sures to ICSs is not adequate due to their different characteristics. For instance, while
components in IT systems possess in general enough resources to perform cryptographic
operations, this is not the case in ICSs where devices have tailored resources, and where
heavy computations can disturb the time constraints of the control loops. As a result, we
aim in this thesis to explore security measures that do not impact the normal functioning
of the ICS. In the next section, we discuss such a security measure.

1.2 Security in ICS

This section explores intrusion detection as a promising reactive security control for ICSs.
We first discuss security properties and controls relevant to industrial control systems in
Section 1.2.1 with an emphasis on intrusion detection as an interesting security control.
Then, Section 1.2.2 provides a general introduction to intrusion detection and to the
defining features of intrusion detection systems.
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1.2.1 Security properties and controls

Information system security seeks to thwart attacks on data and services by guaranteeing
a set of fundamental security properties. While such properties are also relevant in the
case of ICSs, their definition and scope can be extended to match the specificities of
industrial plants.

• Confidentiality which refers to the non-divulgation of information to unautho-
rized people or systems. In ICSs, this amounts to protecting: (i) data relative to
performance, planning and set up operations, and (ii) passwords and encryption
keys. Moreover, we can also seek to protect data exchanges between instrumenta-
tion components at the field level, and PLCs at the control level [21]

• Integrity which refers to the prevention of any modification or destruction of in-
formation by unauthorized people or systems. In ICSs, we can protect the integrity
of data sent by sensors, or the integrity of commands. It is also possible to de-
fine a notion of measures integrity which seeks to protect a sensor against any
action that might affect its capacity to send data representative of its deployment
environment [21]. For instance, we might physically protect the sensor against
displacement or the addition of an element which might perturb its measures.

• Availability which ensures that authorized people or systems can at any time access
the services or resources offered by the system. For ICSs, availability is particularly
important especially at the lowest levels of the system (field and control zones).

In terms of desired security properties, we notice an inversion between IT systems
and ICSs. Traditionally, the desired security properties for IT systems are, by decreasing
order of importance, confidentiality, integrity, and availability. In ICSs, the order is
inverted by privileging availability, followed by integrity and confidentiality [21].

The desired security properties are ensured through a security policy. The security
policy explicitly specifies rules that distinguish authorized from unauthorized behavior.
A breach in the security policy is called an intrusion. The implementation of the secu-
rity policy consists of selecting the set of security controls able to enforce the security
policy. Some security controls try to prevent the occurrence of a security incident. For
instance, authentication, access control, system hardening, and secure programming are
examples of preventive security control measures. However, given the complexity of the
systems, the ever-increasing number of vulnerabilities, and the limited financial resources,
preventing all possible intrusions is a difficult task. To detect, contain and react to intru-
sions, reactive security controls such as antivirus software have been developed. When
implementing a security control in ICSs, one must be careful not to disturb the normal
functioning of the system. For instance, security controls must not introduce time laten-
cies which might disturb the control loops, and must also be compatible with the limited
computing and memory resources within ICS components. This reactive family of secu-
rity controls is particularly interesting as it can be deployed on dedicated components
and can operate in a totally passive manner [30] to avoid disturbing the ICS. Moreover,
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certain classes of intrusion detection approaches can build base profiles of the system’s
normal behavior in order to detect novel attacks [30]. Such approaches are promising in
ICSs due to the relatively simpler network dynamics in terms of fixed topologies, limited
user population, and regular communication patterns [21]. In this thesis, we develop an
intrusion detection approach geared towards ICSs.

1.2.2 Intrusion detection

Intrusion detection is a reactive or a posteriori security control which seeks to automati-
cally identify violations of the security policy of a monitored system. To perform its task,
the intrusion detection system (IDS) can use different data sources from the monitored
environment. Then, through a detection method, the IDS detects the presence of an in-
trusion and raises an alert. IDS can be classified depending on the type of data source
and the detection method [30].

Data source. In terms of data source, we distinguish between network-based IDS
(NIDS) and host-based IDS (HIDS). NIDS monitor, capture and analyze network data
(packets headers, payloads, etc.). Packet analysis can vary in complexity; advanced IDS
can perform deep inspection of the packets including the application layers. One advan-
tage of NIDS is that they do not interfere with the performance of hosts when deployed
in separate machines. However, network encryption, along with the increase in network
bandwidth, can impact the capacities of IDS to efficiently analyze packets.

On the other hand, HIDS rely on host data sources such as operating systems or
application logs. Because they rely on host data, HIDS are not affected by the use of
network encryption. Application-specific IDS have the advantage of dealing with less
varied data (formats specific to the application logs, restricted attacks, etc.) at the cost
of a lack in generality. When monitoring OS data, HIDS can use logs from audit tools,
system call traces, along with information about users or file systems. In general, HIDS
can impact hosts in terms of memory and computing resources. Moreover, a HIDS located
at a particular host has a restricted scope and affords limited visibility of intrusions.

Detection method. We can identify two major detection methods: anomaly-based
and misuse-based. Anomaly-based approaches suppose that an intrusion can be detected
by observing deviations from the normal behavior of the monitored system. Depending
on how knowledge about the system’s normal behavior is acquired, we can distinguish
between several anomaly-based approaches: (i) approaches based on statistical models
or machine learning algorithms, and (ii) approaches based on explicit and often formal
specifications of the normal behavior of the system.

The main advantage of anomaly-based approaches is their theoretical capacity to de-
tect unknown attacks. However, these approaches tend to generate a consequent amount
of false alerts [45]. This is due to the difficulty of representing exhaustively the normal
behavior of the system using limited learning data, or the difficulty to totally specify
the behavior of complex systems. Moreover, a system’s normal behavior tends to change
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Figure 1.2: Possibilities for an IDS verdict

with time, which necessitates updates to the base profile. Care should also be taken to
use attack-free data when building the base profile. Finally, another weak aspect of such
an approach is its poor alert characterization; it is difficult for the operator to understand
exactly the nature of the deviation without further context.

Misuse-based approaches rely on a knowledge base of abnormal behavior, usually
represented by attack signatures. In general, misuse-base IDS use pattern matching
algorithms to recognize suspicious actions. Compared to anomaly-based approaches,
this method theoretically generates less false alerts. This, however, assumes that the
signatures are pertinent. Also, characterizing an alert is easier since detection relies on
a knowledge base of attacks. However, misuse-based approaches are at risk of missing
novel attacks. Thus, significant efforts need to be expanded in order to keep signature
databases up to date with pertinent signatures. The task of writing attack signatures
requires some level of expertise. When writing attack signatures rules, a balance needs to
be achieved between too specific rules which might be easily circumvented by an attacker,
and overly generic rules that might induce false alerts.

Performance evaluation. The performance of an IDS can be assessed based on the
following cases 1.2: (i) true positives (TP) which correspond to correctly identified at-
tacks, (ii) false positives (FP) which correspond to genuine behavior identified as ma-
licious, (iii) true negatives (TN) which correspond to the correct rejection of genuine
behavior, and (iv) false negatives (FN) which correspond to missed attacks. Together,
these cases allow us to define two metrics to evaluate an IDS performance : (i) True Posi-
tive Rate (TPR) which measures the sensitivity of the IDS and is given by TP

(TP+FN) (= 1

if no false negative), and (ii) False Positive Rate (FPR) which measures the specificity
of the IDS and is given by FP

(FP+TN) (= 0 if no false positives).

1.3 Some relevant attacks on industrial control systems

In this section, we discuss some recent attacks on ICSs which are of particular interest for
this work. While numerous ICSs specific security incidents have been reported in the last
decades9,10, we focus on attacks where the goal of the attacker is the disruption of the
physical process as they are the most relevant to the approach we explore in this thesis.

9http://www.risidata.com/Database/
10https://ics-cert.us-cert.gov/alerts

http://www.risidata.com/Database/
https://ics-cert.us-cert.gov/alerts
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Thus, we do not discuss attacks such as Dragonfly/Havex [37] or Blackenergy [65] were
espionage and information gathering is the main objective. However, these attacks are
not without interest as they can serve as a stepping stone for the more targeted attacks
we discuss.

1.3.1 Maroochy Shire

The Maroochy Shire cyber event is the first widely known example of an attacker mali-
ciously breaking into a control system [97]. The attack perpetrator was Vitek Boden, a
disgruntled former employee of Hunter Watertech, an Australian company that installed
radio-controlled equipment for the Maroochy Shire Council in Queensland, Australia.
After failing to land a job with the Maroochy Shire Council, Boden decided to get even
with his former employer and the Council. Through a series of attacks between February
29 and April 23, 2000, Boden issued radio commands to the sewage equipment which he
might have helped install. Using proper radio equipment attached to a possibly stolen
computer, Boden was able to drive around the area and launch his remote attacks which
ultimately lead to the spillage of 800,000 liters of raw sewage into local parks and rivers,
and the death of marine life. Boden was sentenced to two years in jail and to the reim-
bursement of the cleanup costs to the Council.

The Maroochy Water Services Sewerage SCADA system consisted of 142 sewage
pumping stations, each station containing a computing device able to receive instruc-
tions from a central control server and to transmit alarm signals. Communication among
pumping stations and between each pumping station and the central server was per-
formed using a two-way radio system. Starting from February 2000, the sewerage system
exhibited a series of incorrect behavior including (i) pumps not running as expected, (ii)
alarms not being reported to the central server, and (iii) communication loss between
the central server and the pumping stations. Technical experts summoned to look into
the issue came to the conclusion that the problems experienced by the system were the
result of human intervention rather than equipment failure.

In this cyber incident, the conduct of the attacker displayed a great level of familiarity
and knowledge about the system. Boden was an insider who worked for a contractor
that supplied control system technology to the Maroochy Shire Council. The incident
betrays a lack of proper management, technical and operational security controls: no
cybersecurity policies, procedures, and defenses were in place. Of particular interest
for this work, no proper system monitoring was deployed in the system as a part of
a defense-in-depth strategy. As argued by [97], if adequate monitoring systems were
deployed, the type of forensics performed by the contractor company and the police
might have detected the attack earlier. Since part of the attacker’s actions was to stop
pumps from running when they should have been, physical domain oriented intrusion
detection systems could have detected such incorrect behavior. Moreover, part of the
forensics effort performed by the experts was to manually trace back the source of the
corrupt messages to a particular pumping station. Alert correlation approaches which
automatically link manifestations from both the physical domain (inhibition of pumps)
and the cyber domain (corrupt messages) would have assisted investigators in quickly
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identifying the source of the incorrect behavior.

1.3.2 Stuxnet

Discovered in June 2010, Stuxnet [39] is a sophisticated worm that is widely suspected of
targeting Iran’s nuclear facilities, in particular, the Iranian Natanz enrichment plant. The
level of Stuxnet’s sophistication is manifested through its multiple spreading techniques,
its exploitation of four 0day vulnerabilities (application vulnerabilities unknown to the
application’s developers), its reliance on rootkits (concealment techniques used to hide
the malware from anti-viruses and users), its use of two stolen digital certificates to
sign its drivers, its modification of system libraries and, finally, its capacity to update
itself. The analysis of Stuxnet shows the highly specific nature of its target systems
which consist of Siemens SCADA systems with a particular centrifuges layout. Under
the assumption that Stuxnet indeed targeted the Iranian nuclear program, Stuxnet might
have successfully managed to impact up to 1000 centrifuges at Natanz which amounts
to 11% of the total number installed at the time. Due to its high level of sophistication,
Stuxnet is suspected to be a joint American/Israeli cyberweapon.

To spread itself, Stuxnet can use multiple methods including infected USB flash
drives, network shares, SMB vulnerabilities or Siemens Simatic Step7 projects. Stuxnet
also contains safeguards to limit its progression: it can only infect three computers from
a given flash drive and is hardcoded to stop spreading itself after June 24, 2012. Through
an RPC-based peer-to-peer network connecting it with other instances on a local network,
Stuxnet has the ability to update itself to newer versions. Upon infecting a computer,
Stuxnet attempts to connect to two command and control (C&C) servers via HTTP. In
particular, Stuxnet sends information about the host’s OS, computer name, and domain
name. It also notifies the server about the presence of particular targeted software such as
Siemens Step7 (Siemens specific PLC programming environment) or WinCC (Siemens-
specific monitoring software). The C&C server can send Windows binaries to be loaded
into the infected machine.

To perform its attack, Stuxnet controls all requests sent to Siemens Simatic PLCs
by wrapping a library used to communicate with the PLCs. This allows the malware to
install itself on the PLCs and hijack the communication between WinCC and the PLC.
As a result, the attacker gains a foothold on the PLCs and can directly issue commands
to actuators, effectively blinding any IDS deployed in the supervisory layers.

The code Stuxnet uses to carry attacks defines three sequences of which only two are
executed. These two sequences consist of running the centrifuge rotors at too low (2 Hz)
or too high frequencies (1410 Hz). The execution of a sequence lasts between 15 to 50
minutes, and successive attacks are separated by about 27 days, which result in stealthy
attacks over long periods of time. To conceal its effect on the plant, Stuxnet records and
replays to the WinCC monitor program data of the centrifuges’ normal operations. As a
result, the process operator is unaware of the unusual frequencies at which the centrifuges
are running. Detecting this attack would require IDS that: (i) operate between the PLC
and the sensors and actuators to avoid being blinded by the replay of recorded data, and
(ii) can detect abnormal deviations in the evolution of sensor and actuator states.
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Stuxnet is thus an ICS tailored malware with an unprecedented level of sophistication.
Its most significant achievement lies undoubtedly in its capacity to leverage Siemens
equipment to impact centrifuges using pre-programmed knowledge on the speeds that
would cause damage. Beyond protective control measures such as the segmentation and
isolation of the various sub-systems comprising the ICS, detecting such attacks requires
physical domain IDS that can monitor the state of sensors and actuators, and detect
any deviation from normal behavior. In the case of Stuxnet, IDS cannot rely on the
monitoring exchanges between the PLCs and the supervisors as they are hijacked by the
malware. Ideally, a physical domain IDS would collect data as close as possible to the
actuators and sensors, beyond the reach of infected PLCs.

1.3.3 CrashOverride

CrashOverride [138, 32] is the first ever malware specifically targeting electric grids,
and the second, after Stuxnet, to be designed with the explicit intent of disrupting
physical processes. On December 17th, 2016, the malware successfully impacted an
electric substation (that is a system responsible for the transformation of voltage levels,
switching operations, and fault protection). Contrary to Stuxnet, CrashOverride is not
specific to any particular vendor, relying instead on domain knowledge about electric
grids’ operations and communication networks. In particular, CrashOverride is extensible
with the ability to support additional protocol modules to extend its reach to other
geographical regions. Thus, one significant novelty demonstrated by CrashOverride is
the move towards malware able to operate in various environments and not confined to
specific vendor platforms.

The core of CrashOverride consists of three parts : (i) an initial backdoor, (ii) a loader
module, and (iii) several supporting payload modules. The backdoor provides access to
the ICS network by connecting to and receiving commands from an external command
and control server. Such commands include the creation of new processes, the execution
of commands, and the manipulation of users, files and services. The launcher module
plays two main roles. It first launches and passes control to the payload modules that
manipulate the ICS. Then, it waits for two hours before executing the data wiper which
clears registry keys, erases files and kills processes. In particular, the data wiper targets
ICS specific configuration files identified through their file extensions. The data wiper’s
goal is to remove any trace of the attacker’s activity in order to evade forensic analysis.

The payload modules are implementations of common electrical grids protocols in-
cluding IEC 101, IEC 104, IEC 61850, and of OPC DA. These modules read configuration
files which define the target (typically a slave device such as a Remote Terminal Unit
(RTU) which transmits measurements to a central server) and the action to take. Since
there was no observed prior network reconnaissance stage, it is assumed that the con-
figurations are provided by the malware operator. The modules begin by killing the
legitimate master process on the victim’s host before starting their own process to send
data to the slave devices. Then, depending on the configuration file, the module can per-
form several actions such as (i) enumerating memory addresses corresponding to an RTU
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or PLC’s inputs/outputs to operate circuit breakers11, (ii) continuously opening circuit
breakers, and (iii) successively opening and closing circuit breakers. Through these pay-
load modules, CrashOverride can de-energize substations potentially leading to outages,
or force automated protective operations to isolate a substation due to continuous toggle
of breakers between open and closed states.

Among the novelties introduced by the CrashOverride malware is the capacity to en-
gineer process-oriented attacks that can leverage multiple protocols. In terms of intrusion
detection, these means that multiple protocol-specific IDS need to be deployed in order
to cover all the possible payload modules that CrashOverride is capable of employing.
This multiplicity of cyber domain IDS, alongside physical domain IDS that can detect the
incorrect handling of breakers, calls for alert correlation approaches that can aggregate
alerts from heterogeneous IDS spanning both the cyber and the physical domain.

1.4 Conclusion

In this chapter, we have introduced the class of systems known as ICS. Since these systems
from the backbone of many critical infrastructures (energy generation and transmission,
transportation systems, water supply, etc.), their correct functioning must be ensured.
Following the recent security concerns due to their increased accessibility and convergence
with traditional IT systems, we have identified intrusion detection as a pertinent security
measure for the automatic identification of security breaches. The differences between
an ICS and IT systems mean that a simple transposition of IT security measures into
ICS is not always possible, nor desirable. Chief among the specificities of an ICS is the
presence of a physical domain in addition to the cyber domain. A discussion of recent
attacks on ICS targeting the physical process has motivated the need for physical domain
oriented intrusion detection approaches. In the next chapter, we explore the state of the
art relative to intrusion detection within ICS.

11Electro-mechanical or electronic device designed to protect an electrical circuit from damage due to
excessive current
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This chapter presents existing work related to our contributions to intrusion detection
(Chapter 3) and alert correlation (Chapter 4) in ICSs. In Section 2.1, we propose a
taxonomy of existing intrusion detection approaches in industrial control systems and
lay out our positioning with regards to the state of the art. Then, Section 2.2 delves
into runtime verification which we identify as a suitable formal verification technique for
our intrusion detection approach. Finally, Section 2.3 discusses existing alert correlation
solutions similar to our approach.

2.1 Intrusion detection for industrial control systems

This section reviews existing work on intrusion detection for industrial control systems.
First, Section 2.1.1 discusses some common taxonomies used to classify ICS-based intru-
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sion detection systems. Then, an exploration of ICS-based intrusion detection approaches
within the literature is presented in Section 2.1.2.

2.1.1 A taxonomy of intrusion detection approaches in ICS

In Section 1.2.2, we classified IDS approaches following their detection method and data
source. In ICS, due to the presence of a physical domain in addition to the cyber domain,
IDS approaches can be further characterized by ICS-specific characteristics such as their
knowledge of the physical process, the control data (sensor and actuator states) or the
control logics executed by the controllers.

The literature contains several examples of ICS-oriented IDS taxonomies [153, 95, 151,
152, 56]. Besides classical distinctions in terms of detection method and data sources,
the authors in [153] analyze 9 approaches with respect to: (i) the adequacy of the IDS
solution in the context of ICS as reflected by its capacity to handle industrial protocols, its
knowledge of the physical process and the hierarchical structure of ICS, (ii) the existence
of an explicit threat model, (iii) the distinction between an intrusion and a fault, (iv) the
detection time (online or offline), and (v) integrated security which refers to the impact
on the ICS’s availability of a malfunction in the IDS.

Similarly, the authors in [95] extract, through a study of 28 ICS-oriented approaches,
the following ICS-specific dimensions: (i) monitoring of the physical process and the laws
governing its behavior, (ii) making use of the regularity and predictability of control loops,
and (iii) dealing with old and obsolete technologies. The classification proposed in [152]
organizes knowledge relative to an industrial system into knowledge about the physical
process and knowledge about the control system. Knowledge about the physical process is
represented by critical states [19], while knowledge about the control system is subdivided
into several aspects: communication, task, resources and control data. Communication
deals with protocol-specific aspects such as the vocabulary (syntax of messages) and
the grammar (order of message exchanges). It also covers network exchanges at the flow
level. A flow is defined as a “set of IP packets passing an observation point in the network
during a certain time” [155]; all packets belonging to a flow share common properties.
The flow aspect is concerned with information about which nodes communicate with each
other and through which protocol these communications are performed. The task aspect
covers the scheduling and the state of tasks within the computation nodes of the system.
The resources aspect is concerned with the use of memory and computation resources
within the computation nodes of the system, as well as the usage of network resources.
Finally, control data deals with control-loop characteristics such as the freshness and the
interval of allowed values for sensor and actuator states.

Through a synthesis of these different taxonomies, we propose to classify ICS-specific
IDS approaches based on the degree of knowledge which the IDS has of the system’s
interaction with the physical process. Thus, as depicted in Figure 2.1, we distinguish
between cyber domain oriented intrusion detection approaches that only focus on the
cyber aspect of the ICS, and physical domain oriented approaches which focus on the
physical process.

Among cyber domain oriented approaches, we can further distinguish between IDS
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Figure 2.1: Classification of ICS-specific IDS approaches

which focus on the communication aspect of the ICS, and IDS which focus on the in-
telligent nodes of the ICS, i.e. nodes which perform some form of computation such as
controllers, supervisors or IEDs. This distinction is similar to the one between NIDS and
HIDS. The communication aspect covers the communication protocols (vocabulary and
grammar), the communication flows (the flow patterns between nodes of the system), and
the telemetric profile of the network (statistical meta-information such as the average size
or transmission time of network packets). IDSs focusing on intelligent nodes detect sus-
picious behaviors at the level of the controllers, supervisors, intelligent sensors/actuators,
and in general any entity within the system which is able to perform some computation.
Here, we are interested in problematics such as memory and computing resources, as well
as the scheduling, state, and execution of tasks within intelligent nodes operating under
real-time constraints.

For process domain oriented approaches, two aspects are essential: (i) the control
logics which are executed by the controllers to command the physical process, and (ii) the
control data which include data sent to actuators and received from sensors, commands
issued by supervisors or operators, as well as data exchanged between controllers.

2.1.2 Overview of intrusion detection approaches in ICS

In this section, we provide an overview of intrusion detection approaches in ICS with re-
spect to the classification shown in Figure 2.1. Our objective is to illustrate the strengths
and shortcomings of the existing approaches depending on where they lie in the classifi-
cation.

Compared to misuse-based intrusion detection, anomaly-based approaches have been
the focus of research efforts on intrusion detection in ICS. This can be explained by the
widespread belief that ICS exhibit relatively stable behaviors due to their fixed topolo-
gies and regular communication patterns [21], and by the capacity of anomaly-based
approaches to detect novel attacks. Misuse-based intrusion detection efforts have con-
sisted mainly of building signature databases such as those provided by Digital Bond 1.
These signatures can detect denial of service attacks (for instance by rebooting a PLC or
sending large size requests), reconnaissance attempts (for instance by scanning available
operations and registers on a PLC), and exploits targeting known vulnerabilities such as
buffer overflows. The necessity for expert knowledge to write pertinent rules combined

1www.digitalbond.com

www.digitalbond.com
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with the need to constantly keep signature databases updated have further motivated
researchers to focus on anomaly-based approaches. In the remainder of this section and
thesis, we thus focus mainly on anomaly-based approaches.

A) Cyber domain: communication protocol based approaches

Among IDS that focus on the communication aspect of the ICS, protocol-oriented ap-
proaches [24, 85, 48, 68, 69, 23, 148, 33, 54, 149] are interested in the vocabulary and
grammar of industrial protocols. For instance, the authors in [24] focus on the Modbus
protocol and explore an anomaly-based approach which constrains the values taken by
the fields (function code, protocol identifier, etc.) in a Modbus message. Similarly, [85]
develop an analyzer for the DNP3 protocol which checks dependencies: (i) within a single
DNP3 message such as field lengths, and (ii) between different DNP3 messages such as
the occurrence of a response after each request.

While the dependencies on the protocol grammar in [24] and [85] is limited to simple
request-response constraints, the works of [48, 68, 69, 23, 148] go farther by inferring
an automaton model of the message exchanges. This family of work can be classified
in two groups: (i) works that rely on deterministic models [48, 68, 69], and (ii) works
that rely on probabilistic models [23, 148]. The authors in [48] explore the possibility of
modeling Modbus traffic between an HMI and a PLC (also called an HMI-PLC channel)
by automatically learning a finite state automaton which models the ordering of messages
under the hypothesis that such communications are highly periodic. The aim of the
automaton is to capture the re-occurring sequence of control messages, called a cycle,
which is exchanged on the HMI-PLC channel. In [68], the approach is extended to more
complex protocols such as Siemens S7 [68]. However, the evaluation of the approach using
data from real plants [23] shows that the periodicity hypothesis of HMI-PLC Modbus
traffic is not totally satisfied and that several cycles can co-exist on the same channel.
Kleinmann and Wool [68, 70] mention two reasons for this behavior: (i) the presence
of a multi-threaded HMI application where each thread scans a separate set of control
registers, and (ii) the possibility for an HMI to “subscribe” to some control registers on
the PLC and to asynchronously receive notifications about the registers’ states. In both
cases, the occurrence of several cycles within a channel can lead to a high false alarm
rate.

In response to the multiplicity of cycles, Kleinmann and Wool [69] propose to use
several automata, each automaton dedicated to a cycle. A demultiplexer is used to select
the appropriate automaton for each new message symbol. Yet, the proposed solution
relies on a priori knowledge of the number of cycles within the traffic, as well as the use
of distinct message symbols for each automaton. All in all, we observe that deterministic
approaches assume too strong hypotheses regarding the periodicity and regularity of
traffic. For instance, the presence of network delays or operators’ interventions can lead
to false positives [23].

In reaction to the issues observed in deterministic approaches [48, 68, 69], the works
in [23, 148] move towards probabilistic models in the hope to deal with some uncertainties
in ICS traffic. In [23], the authors use Markov chains to model the message exchanges
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between control servers and PLCs. Each state of the model represents a message symbol,
and transitions refer to the sequencing of message symbols. Alerts are raised either due
to unknown states/transitions or to states/transitions that occur with an anomalous
frequency.

Figure 2.2 shows an example of such an automaton learned from Modbus traffic
between a supervisor and a PLC. Labels associated with states refer to types of message
characterized by the Modbus function code (FC 5 for write commands, FC 1 and 2
for reading commands) and the accessed PLC addresses (starting address and number
of variables accessed). The model shows a group of transitions (drawn in thick) with
high probabilities linking in a cycle the states s0, s1, and s2. These states correspond to
Modbus monitoring traffic (Modbus read operations). Thus, monitoring data constitutes
the majority of the traffic between the supervisor and the PLC. The strong cycle is
broken by transitions with low probabilities to the states s3, s4, s5, and s6. These states
correspond to manual operations performed by process operators during the recording of
the training traces.

Similarly, [148] model message sequences through probabilistic suffix trees (PST). In
comparison with the approach in [23] which conditions the occurrence of a message with
respect only to the previous message (Markov assumption), the approach by [148] allows
more flexibility by taking into account a variable number of previous messages.

s0FC 2/31:10 s1 FC 1/30:1

s2
FC 1/41:10

1

0.999

0.997
s3FC 5/30:1

0.0007

1

s4FC 5/41:1 0.0009

1

s6 FC 5/44:1

0.0004

0.7 0.00015

0.3 s5

FC 5/41:0

0.0008

1

Figure 2.2: Example of a probabilistic automaton model of a supervisor-PLC channel traffic
using the approach in [23]

However, as in the case of deterministic approaches [48, 68, 69], the evaluation of
probabilistic approaches show that they are effective only when the sequence is strongly
periodic with a simple periodicity. Moreover, a common thread running through all
protocol-oriented works is the need to ignore parts of the messages in order to generate
abstract symbols that allow learning tractable models of the traffic. For instance, to
exhibit the periodicity required in [48] and [68], the authors ignore the data carried by
the messages and only cater to the type of commands. A similar operation, although
to a lesser degree, is performed in the works of [23, 148]. In Figure 2.2, the monitoring
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states s0, s1, s2 do not provide any information about the actual state of the physical
process since the values returned by the read commands are ignored to keep the model
tractable. Such an abstraction operation leads to inaccurate models that run the risk of
missing attacks since the view afforded by these models is coarser than the view at the
level of the physical process.

Another issue of protocol-based approaches is the lack of information provided by
the alerts with regard to the behavior at the level of the physical process. For instance,
an unknown state alert raised by the model in Figure 2.2 would boil down to previously
unseen access to a PLC variable. Since no context is given as to the state of the physical
process when the variable is accessed, the process operator faces difficulties in identifying
whether the alert corresponds to a false or true positive.

Figure 2.3: Flow whitelist statistics for a flow-based intrusion detection approach[6]

B) Cyber domain: flow-based approaches

Flow-based approaches [5, 24, 52, 51] focus on the detection of irregular flows within
the ICS. The authors in [5] present an approach based on a whitelist of network flows.
Each flow is characterized using four properties: (i) the client IP address, (ii) the server’s
IP address, (iii) the server-side transport port number, and (iv) the transport protocol
(TCP or UDP). To justify the tractability of such a whitelist, the authors emit strong
hypotheses on the stability of network exchanges within ICS. In the same vein as [5],
[52, 51] discuss the possibility of using configuration files available in ICS to extract
information pertinent to the detection of unknown flows. In particular, the authors focus
on Substation Configuration Description (SCD) files used in IEC 61850 substations and
which contain useful information such as the subnetwork to which belongs an IED, its
network interface configuration and parameters (IP address, multicast MAC address, IP
gateway, etc.).

Figure 2.3 provides statistics about flow whitelists as extracted by [5] on datasets
from both industrial networks (water1, water2-control, water2-field, and electric-gas)
and IT networks (loc6 and uni). The table provides, for each dataset, the set of internal
hosts, the number of host pairs in the whitelist, and the number of flows in the whitelist.
The table also shows the ratio of host pairs to internal hosts and the ratio of flows to
the number of internal hosts. For instance, dataset water1 contains 51 hosts and its
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constructed whitelist contains 58 host pairs (ratio of 1.1) and 81 flows (ratio of 1.6). By
comparing the statistics of industrial networks with those of IT networks, we observe that
the number of host pairs and of flows generated by IT networks is significantly higher.
By contrast, industrial networks are characterized by a limited number of communicating
pairs compared to the number of possible pairs.

While the above example shows that network flow whitelists can be tractable in ICS,
the presence of mechanisms such as dynamic port allocation (DPA), a technique used with
RPC to dynamically decide on ports, can lead to an increase in the size of the whitelist
as well as the occurrence of false positives [5]. More importantly, flow-based approaches
are limited in terms of the threat model. By construction, such approaches are limited
to attacks whose manifestations can appear at the level of flows such as reconnaissance
and denial of service attacks [5]. Moreover, an attack can correspond to a legitimate flow
leading to false negatives. For instance, an attack where malicious process commands
are issued from a supervisor to alter process variables in a PLC’s memory can appear
as a legitimate flow if the attacker uses the adequate protocols and if the supervisor is
otherwise used by process operators to intervene on the process. Finally, an unknown flow
does not provide enough information for a security operator to understand the impact of
the manifestation on the ICS.

C) Cyber domain: telemetry based approaches

Telemetry oriented approaches [118, 146, 6, 86] focus on building a base profile of network
exchanges using statistical measures or classification models. For instance, the authors in
[118] assess the performance of several classifiers such as naive Bayesian models, decision
trees or logistic regression algorithms in detecting attacks through features such as the
number of lost packets from both clients and servers and the retransmission time of lost
packets. In this anomaly-based approach, the main assumption is that an attacker’s
location or software/hardware setup can lead to significant deviations in the network
measures. The approach in [146] follows a similar idea, albeit with a more diverse set
of measures including host-based indicators such as the number of used processors, the
failure rate in connection attempts. In [6], the authors use a spectral representation of
flows between control servers and PLCs to detect flows with unusual frequencies.

In general, telemetric approaches are similar to flow-based approaches in that they
target a limited threat model. As a result, most approaches focus on attacks that lead
to a significant observable deviation in the frequency of flows or of statistical measures
such as denial of service [118, 146, 6] or reconnaissance attacks [6]. Thus, a telemetric
approach would fail against more subtle and advanced attacks such as process-oriented
attacks that only use few commands to put the physical process in a critical state.

D) Cyber domain: intelligent nodes based approaches

Compared to communication-based approaches, intelligent nodes based approaches [154,
124, 121, 13] are relatively scarce. This can be explained by the specificity of the compo-
nents in an ICS, the limited memory and computing resources, as well as instrumentation
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difficulties. The authors in [154] develop an intrusion detection approach based on the
analysis of the execution time of tasks in real-time devices. Here, the main target is
the detection of code injection attacks which can lead to the execution of unauthorized
instructions. In effect, the worst-case execution time (WCET) is estimated from a static
analysis of portions of the source code. Then, at runtime, the effective execution time is
compared with the WCET bounds and an alert is raised when a task’s execution time
goes beyond the WCET. The study discusses several instrumentation strategies which
allow monitoring of the execution time of tasks without compromising the real-time per-
formance.

Through a different approach, the authors in [124] develop an IDS which models
the evolution of variables within PLCs’ memories. In effect, the authors estimate the
conditional probabilities of the next value of a memory variable given the actual state
of the memory. During detection, the IDS raises an alert if the probability of a new
value being assigned to a variable is zero. The main assumption of this approach is
the regularity of the evolution of the continuous and discrete variables in the PLCs’
memories.

All in all, intelligent nodes based approaches remain relatively scarce in comparison
with communication-based approaches. This difference can be explained by the difficul-
ties in instrumenting and monitoring the resource-constrained intelligent nodes within
an ICS without affecting the real-time performance requirements of control loops [154].
Communication-based approaches are comparatively easier to deploy passively through
taps and mirror switch ports without affecting the ICS.

E) Physical domain oriented approaches

As discussed above, flow-based and telemetric-based approaches are ineffective against
advanced attacks that induce incorrect behaviors at the level of the physical process
without generating overtly abnormal behavior in the cyber domain. And while some
protocol-based approaches have attempted to model the sequence of network messages
between supervisors and controllers to detect such attacks [23, 148, 48], the abstraction
required to keep the models tractable might lead to false negatives. In all the approaches
with poor knowledge of the physical process, understanding the meaning of an alert with
respect to the behavior of the physical process is difficult. Based on these observations,
some IDS approaches incorporate more knowledge about the physical process [55, 35, 20,
42, 96, 112, 111, 142, 40].

Instead of monitoring sequences of network messages, process-oriented intrusion de-
tection approaches generally elect to monitor physical process and control loop related
observables such as the evolution of actuator/sensor states or of setpoints. Within this
category, the main difference between the approaches pertains to (i) the type of vari-
ables that are monitored (continuous or discrete), (ii) the expressivity of the base profile
models, and (iii) the cost of specifying the base profile models.

For instance, [55] automatically classify variables involved in a physical process into
three types: (i) continuous variables, (ii) discrete variables which can take a finite set of
values, (iii) constants. Continuous variables typically represent sensor measures, discrete
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(PLC[10.0.0.10 : 502].HR[1] < 1000 ∧ PLC[10.0.0.22 : 502].IR[1] > 99)→ Alert : 4

Figure 2.4: Example of a critical state-based detection rule[19]

variables represent monitoring information (alarms, events) or a control program’s state
(clock, counter, etc.), and constants refer to configuration parameters or setpoints. The
authors associate a model for each variable depending on its type in order to predict
its next value. Thus, continuous variables are modeled through an autoregressive model
and by specifying their maximal and minimal bounds. Discrete variables and constants
are represented by their set of observed values. The IDS raises an alert when variables
manifest abnormal behavior. For continuous variables, this can be manifested by a sudden
change in the values or the occurrence of values outside the bounds. For discrete variables
and constants, abnormal behavior corresponds to previously unseen values. Similarly, [35]
differentiate three main types of PLC registers used by Modbus: (i) measure variables,
(ii) counter variables, and (iii) constants. Here, the base profile of variables is constructed
through the statistical variance, dispersion indices, or monotonicity. Both [55, 35] reduce
the cost of specifying the base profiles by automatically determining the type of variables.

In comparison with [55, 35], the works of [20, 42, 96] differ in that they start from
manual specifications about forbidden states or allowed behavior within the physical
process. Such specifications are often expressed in terms of interval values on measure
vectors. The authors in [20, 19, 42] present an approach which is based on the a priori
specification of the critical states within the physical process. The state of the physical
process corresponds to the values taken by actuators and sensors. An alert is raised when
the current state reaches or approaches a forbidden state. In the same vein, [96] develops
an IDS based on manually specified behavioral rules which circumscribe the allowed
behavior of the sensors and actuators. The heart of the approach consists in transforming
the behavior rules into a probabilistic finite state automaton representation where states
are partitioned into secure states, warning states, and non-secure states. The transition
probabilities are computed for different hypotheses of noise and attacker models. The
detection of an attack is based on a compliance degree which reflects the tendency of the
system to behave securely. A device behaves securely when its state, as represented by
the state of actuators and sensors, remains in or near secure states.

An example of a detection rule based on critical states is shown in Figure 2.4, written
using a custom language called ISML [19]. The left side of the rule expresses constraints
on a holding register (HR) in the PLC at address 10.10.0.10, and on an input register (IR)
in the PLC at address 10.10.0.22. These registers correspond respectively to a continuous
actuator (turbine rotation speed) and a continuous sensor (temperature sensor). The
semantics of the rule is that an alert with risk level 4 is raised if the turbine rotation
speed is less than 1000 and the temperature is above 99.

Based on the previous example, we can make the following remarks about the expres-
sivity and complexity of such models. In general, ISML expresses constraints as a simple
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conjunction of assignments to PLC registers with no notion of temporal order. Thus, the
model does not allow expressing rules over events, i.e. changes in the state of the actu-
ators or sensors, or over temporal behaviors involving states and events. For instance,
one cannot express a rule that raises an alert if a valve is opened more than 10 seconds
after shutting down a motor. Expressing such rules requires more expressive models that
reason on trajectories instead of states. Moreover, the approach assumes that the set of
critical states can be manually determined in advance. While such an assumption can
be valid for small systems, manually determining critical states for large systems can be
daunting and involves the risk of missing some critical states. Expressivity limits apply
to many of the approaches in this category [20, 42, 96]. As a result, recent approaches
have begun exploring more expressive formalisms such as temporal logics [128, 40] which
can be used to specify temporal patterns over the behavior of the system. Similarly, the
authors in [2] argue for the centrality of quantitative time within cyber-physical systems
and derive security constraints which incorporate time in addition to states and events.

While the previous approaches assume that access to actuator and sensor states
is possible at low layers of the system, the authors in [53] follow a radically different
approach by developing a semi-automatic method to detect malicious actions based on
a semi-automated SCADA log processing approach. The authors propose to rely on two
methodologies originating from the field of industrial risk analysis: PHEA (Predictive
Human Error Analysis) and HAZOP( HAZard and OPerability study). PHEA is used to
specify the set of possible actions on a SCADA system. These actions serve as input to
the HAZOP analysis, which is a qualitative method that identifies risky situations based
on the combination of keywords relative to the process, and of guidewords that specify
possible process deviations. Risky situations are then classified based on the severity of
their consequences, and the most critical situations are detected based on the processing
of logs. Under the hypothesis that SCADA logs are relatively stable (limited changes to
equipments, existence of a finite set of repeated actions), the analysis is based on the
identification of least frequent patterns of system behavior based on a set of attributes
including the timestamp, the type of action, the user initiating the action, and the action’s
location. Least frequent patterns are expected to reflect anomalous behaviors.

As discussed in Section 1.2.1, the notion of measures integrity is essential in ICS.
A category of intrusion detection approaches is specifically interested in false measures
injection attacks [142, 22, 132]. For instance, the authors in [22] stress the necessity
to develop algorithms able to detect compromised measures where the attacker alters
the measures coming from sensors. The authors propose to use knowledge about the
command laws and the physical process models (state and output equations) in order to
predict the expected measures with respect to a sequence of commands. An attack is
detected by comparing the actual and the predicted measures. The detection is based
on sequential detection algorithms which determine, given a sequence of observations
and a threshold value which is set to respect a false alarm rate, whether the system is
under attack. Three attack types are considered: (i) surge attacks where the attacker
maximizes the impact as soon as possible, (ii) bias attacks where the attacker alters the
measure vectors by a constant value at each sample, and (iii) geometric attacks which
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combine both surge and bias attacks. The authors conclude that geometric attacks are
the most successful attack strategy while surge attacks do not cause significant damage
to the process.

Approaches in this category are often geared towards specific ICS applications. For
instance, [132] propose an approach adapted to the case of power systems. Here, detection
is based on a temporal series of discrepancies in the measured frequencies and power.
[72] explore, in a detection approach geared towards smart grids, to use a set of rules
extracted from a hybrid automaton model of the system. The automaton characterizes
the behavior of the system in terms of the evolution of continuous (current intensity) and
discrete (state of breakers) values. The authors in [44] adopt an anomaly-based approach
based on neural networks applied to the control of a water tank. The features that are
considered are: (i) the level of the tank, (ii) the frequency of the responses, (iii) the
operation mode of the controllers (manual or automatic) and iv) the state of the pump.

The necessity for process-oriented intrusion detection is motivated by the short-
comings of traditional intrusion detection approaches in detecting attacks targeting the
physical process as demonstrated by some major recent security incidents (Stuxnet [39],
CrashOverride [138]). In contrast to the approaches that rely solely on cyber domain ob-
servations to detect attacks targeting the physical process [23, 148, 48], process-oriented
approaches directly monitor the evolution of process variables [20, 55, 35].

However, some approaches [94, 19] only cover a limited threat model due to the low
expressivity of their models. For instance, the approach developed in [94] can only detect
global invariants valid over all the states of the physical process (ex. the property that
a temperature should never exceed a maximum threshold anytime during the execution
of the process). However, some attacks can violate invariants that are local to specific
states of the physical process (ex. a valve which can only be opened during a specific
state of the physical process). On the other hand, approaches with more expressive
formalisms involve costly detection models [128, 149] in terms of time and required expert
knowledge. As a result, research is still required to develop highly automated and cost-
effective process-oriented approaches targeting a large threat model. In Chapter 3, we
propose an intrusion detection approach which uses a sufficiently expressive formalism to
cover the sequential dynamics of an ICS. Our approach automatically builds the detection
models through an inference phase in order to alleviate the operators from the burden of
manually specifying the models.

F) Approaches combining different aspects

Finally, a number of works [14, 15, 113, 152] cover multiple aspects of the above tax-
onomy. Such a wide coverage is motivated by the need to detect sophisticated attacks,
identify accidental deviations, and reduce false positives. Following a formal approach,
[14, 15] are interested in intrusion detection within advanced metering infrastructures
(AMIs). An AMI automatically collects data from energy metering devices (electricity,
gas, water, etc.) for energy consumption analysis and billing purposes. The authors de-
velop an architecture including a set of intrusion detection and alert aggregation agents.
The intrusion detection agents span the communication dimension (structure, protocol
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grammar, telemetry) as well as the intelligent nodes dimension (constraints on objects
access and resource use). The specifications identified for the different dimensions are
fed to a formal verification environment including a proof assistant. This environment
includes also the specification of the global security policy which needs to be guaranteed.
The goal is to prove that there exists no network trace which can violate the security
policy without being detected by the intrusion detection agents.

The authors in [152] introduce an intrusion detection approach combining knowledge
about the physical process and the cyber domain. With respect to the communication
aspect, the authors focus on grammar, structure, and telemetry. Knowledge about the
physical process is represented by critical states as in [19]. The authors develop a sta-
tistical anomaly alert classification approach based on a hidden Markov model (HMM).
Alerts from different anomaly-based IDS are reduced to a tuple of binary values where
each position in the tuple is associated with an IDS. The HMM estimates whether a
tuple corresponds to an attack, a fault, or a normal behavior.

While the above approaches explore the joint use of different types of intrusion de-
tection approaches [113, 152], the treatment of alerts remains simplistic, leading to an
increased awareness in the need for alert correlation [14]. In IT systems, alert corre-
lation [139, 29, 140] is a set of techniques used to eliminate redundant alerts, reduce
the number of false alerts, and reconstruct attack scenarios. Yet, alert correlation ap-
proaches [17] in ICS remain scarce. We provide a more in-depth coverage of the appli-
cability of classical alert correlation approaches to ICS in Section 2.3. Here, we briefly
mention some ICS-specific approaches to alert correlation.

The authors in [17] develop a solution to detect, correlate and visualize multi-steps
attacks. In such an attack, the attacker needs to cross multiple network zones to reach the
critical zones of the ICS. The detection combines misuse-based approaches (Snort with
Digital Bond signatures), and anomaly-based approaches (Bayesian sensors) which detect
reconnaissance and denial of service attacks. Correlation and visualization are performed
through the ArcSight Security Information and Event Management (SIEM) system. To
deal with the important number of alerts that can be returned by the IDS, the alerts
are classified by incident classes. A priority level is assigned to each class depending on
its consequences on the security objectives of the ICS. Thus, incident classes that affect
availability are given higher priority relative to integrity and confidentiality. In parallel,
a criticality level is associated with each component of the ICS based on its type and
deployment zone. For instance, controller components and field-level components receive
maximal criticality. Correlation is then performed through an algorithm which takes into
account the progression in the criticality of the alerts raised by the IDS. As a result, the
correlated alerts represent the progression of the attacker towards increasingly critical
parts of the ICS.

In summary, research on the combined use of multiple IDS for the detection of attacks
is still limited. The works in [14, 15], although covering multiple aspects, does not
involve knowledge about the physical process. A similar observation can be made for
the correlation approach in [17]. And while the solution in [152] includes knowledge
of the physical process in terms of critical states [19], the reduction performed on the
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alerts discards information which would otherwise help the operator in understanding the
suspicious manifestations (impacted actuators, IP addresses, etc.). Thus, an important
and still unresolved issue facing approaches covering multiple aspects is the need to
associate suspicious manifestations coming from both the cyber and the physical domains
despite their disparity in terms of attributes (actuator/sensor states and events in the
physical domain, protocol-based attributes in the cyber domain). In Chapter 4, we
propose to tackle this issue through an alert aggregation approach that caters for the
heterogeneous nature of ICS domains.

2.2 Runtime verification

In this section, we first explore various formal verification techniques and then focus on
runtime verification which we identify as a suitable technique for our intrusion detection
approach presented in Chapter 3.

2.2.1 Motivation

As we discuss in Section 3.1, our threat model focuses on process-oriented attacks, i.e
attacks which induce incorrect behavior at the level of the physical process. Correction
is defined as the occurrence or non-occurrence of temporal patterns, also called specifi-
cations [90]. For instance, a specification can define a correct trajectory as a trajectory
where a forbidden state is never reached (i.e overflowing a tank, going over a certain tem-
perature threshold, etc). In terms of intrusion detection, our objective is to verify, during
execution, whether the physical process deviates from correct sequential behaviors.

IEEE [41] defines verification as the set of techniques which aim at showing that a
system satisfies its specifications. Examples of such techniques include model checking,
theorem proving, testing, and runtime verification. The selection of a technique de-
pends, among other factors, on the expected exhaustivity of the verification (coverage
of all possible behaviors of the system), the automation of the verification procedure,
the complexity of the systems under study, and the stage where verification is performed
(development, deployment, etc.).

Intrusion detection is an a posteriori security measure used mainly during the sys-
tem’s deployment where only the current behavior of the system is accessible. Thus, we
do not aim at an exhaustive coverage of all possible behaviors of the system; the IDS
should only be able to say, for any current behavior, whether it is correct or not.

Thus, we frame our intrusion detection task as the automatic verification of a set
of correctness properties on the sequential behavior of the physical process during its
execution. We now briefly discuss each of the main verification techniques and argue
that runtime verification is the most suitable technique to serve as the basis for our
intrusion detection task.

Model checking The objective of model checking [25] is to verify automatically that
all trajectories of a model satisfy a specification. Here, the model is a mathematically
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precise description of the behavior of the system under study. Model checking is thus
an automatic and exhaustive approach to check whether all possible system scenarios,
as captured by the model, satisfy some desired properties. Due to the exhaustivity of
the verification, model checking is mainly applicable to finite state systems whose tra-
jectories can be enumerated. This imposes limitations on the size and complexity of the
systems under study. Moreover, the verification procedure happens mainly during the
conception and development stages. This approach is thus not suitable for verification
during deployment.

Theorem proving Theorem proving [114] is a deductive verification technique which,
starting from a mathematical representation of the system under study, attempts to
deduce a theorem showing that a desired property is satisfied. To construct a proof of
the theorem, software tools, known as proof assistants, generate intermediate proof steps.
Proof assistants generally require human assistance to reduce the proof search. Thus,
this technique is labor-intensive and requires a high level of expertise. Moreover, this
approach is geared towards the conception and development stages of a system and is
thus not adapted to the verification during the system’s deployment.

Testing When a model description of the system is unavailable (ex. in the case of
proprietary models), model checking and theorem proving techniques cannot be applied.
In this case, an alternative approach, called testing [110], consists in generating and
feeding inputs to the system and then checking for an appropriate reaction. Testing can
be performed either with a total knowledge of the system (white-box testing), with no
knowledge of the system (black-box testing) or with intermediate knowledge (gray-box
testing). Testing suffers from its lack of exhaustivity and the difficulty to test deployed
safety-critical systems where bad reactions can lead to significant damages.

Runtime verification Following [82], runtime verification is defined as the “discipline
of computer science that deals with the study, development, and application of those
verification techniques that allow checking whether a run of a system under scrutiny
satisfies or violates a given correctness property”. In practice, verification is performed
using a monitor derived automatically from the property to be verified. In an online
setting (as opposed to processing recorded behavior), the monitor follows the current
behavior (i.e run) and, at any instant, delivers a verdict on whether the property
is satisfied or violated. Thus, runtime verification differs significantly from the above
techniques in that it is geared towards verification during deployment.

Discussion Among all the popular verification approaches sketched above, runtime
verification is the only one allowing verification during the deployment of the system
under study. Moreover, since it does not target exhaustivity, its verification task is sig-
nificantly less costly in terms of computation and human involvement compared to model
checking and theorem proving. Thus, we adopt runtime verification as the basis for our



2.2. Runtime verification 29

intrusion detection approach. In the following sections, we explore popular specification
languages used in runtime verification and discuss the synthesis of runtime monitors.

2.2.2 Specification languages for runtime verification

As discussed above, specifications correspond to properties which the system needs to
satisfy. Usually, such specifications are expressed in terms of natural language (ex. En-
glish) and can thus fall prey to ambiguous interpretation. To resolve this ambiguity,
several specification languages have been devised. These languages formally define the
syntax (set of well-formed specifications) and semantics (interpretation of a well-formed
formula) of specifications.

A) Characteristics of specification languages

Specification languages can be broadly classified based on the following aspects [7]:

• Executable/Declarative A distinction can be made between executable speci-
fication languages such as state machines and declarative specification languages
such as temporal logics. Executable specification languages produce low-level spec-
ifications that can use more straightforward monitoring algorithms. On the other
hand, declarative specification languages capture properties at a higher level of ab-
straction. Declarative languages require a procedure to generate executable objects
(monitors) which can be used to verify the properties.

• Finite/Infinite When verifying a system at runtime, the observations are neces-
sarily (ever-increasing) finite traces. However, the semantics of some specification
languages are defined over infinite traces (ex. temporal logics). Thus, in order for
such languages to be used in runtime verification, a mapping is performed from
infinite to finite semantics.

• Qualitative/Quantitative time Some specification languages can only denote
the relative order (qualitative) of states/events on a trace, while others include a
notion of quantitative time distance between states/events. For instance, specifica-
tion languages supporting a quantitative notion of time can check whether event
A happens less than x seconds after event B, whereas a qualitative notion of time
would only express whether A happens before or after B.

• Data While classical specification languages consider states/events as atomic sym-
bols, recent research has explored more expressive specification languages that
can support structures containing data variables [131] (ex. records in a relational
database, data variables in sequential programs, etc.).

Using runtime verification for the purpose of intrusion detection against the threat
model discussed in Section 3.1 forces some choices with respect to the aforementioned
aspects. Firstly, since runtime verification is performed on observations which are (ever-
increasing) finite traces, we require specification languages with finite semantics. Also,
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because our threat model covers the sequential behavior of the physical process, we
require specification languages that can express both qualitative and quantitative time
constraints. We do not require however the full power of specification languages support-
ing data variables as we only consider constraints over logical states and events. Finally,
for declarative specification languages, a monitoring procedure must exist which allows
the monitoring of the specifications.

There is a significant amount of specification languages discussed in the literature [7].
Common languages include temporal logics, regular and non-regular languages, automata
and rule systems. In this work, we focus on the most studied family of specification
languages, namely temporal logics. Due to their widespread use, this family includes
variants which cover nearly all the possible configurations of the aspects discussed above.

B) Temporal Logic

Temporal logic is the most common family of specification languages for runtime verifi-
cation. Temporal logics are declarative specification languages, usually interpreted over
infinite traces with adaptations to finite traces. The family includes variants supporting
both qualitative and quantitative time. Temporal logic has also been extended to support
data variables [131] and description logics [89]. We focus in particular on two common
variants which together fulfill the needs of our intrusion detection task: Linear Temporal
Logic (LTL) and Metric Temporal Logic (MTL). Through these specification languages,
we can express and monitor specifications over the sequential behavior of an ICS.

Linear temporal logic [117] augments propositional logic with temporal operators
able to express ordering relationships. LTL formulae are interpreted over infinite se-
quences where each position is associated with a set of true boolean variables. An ex-
ample of a temporal operator is the always operator, denoted �. For any propositional
formula p, the LTL formula �p is satisfied at a position of a trace if p is satisfied in every
subsequent position of the trace. For instance, given the sequence σ : {a}.{a, b}.{a} . . .
with propositional variables a and b, the formula �a is satisfied at the first position since
a is true at every position of the sequence.

Another temporal logic operator is the eventually operator, denoted ♦. For any
propositional formula p, the LTL formula ♦p is satisfied at a position of a trace if there
exists a subsequent position of the trace where p is true. For instance, given the sequence
σ above, the formula ♦b is true at the first position since b eventually becomes true at
the second position of the sequence.

In addition to the above temporal operators, LTL also includes the next operator,
denoted X, which asserts that a formula is true at the next position of the trace. For
instance, Xb is true at the beginning of σ since b becomes true at the next position.
Finally, the Until operator, denoted U , takes two formulae as input. The LTL formula
pUq asserts that p is true until q becomes true. Thus, aUb is true at the first position of
σ.

We now give a formal presentation of LTL’s syntax and semantics. Let AP be a set
of atomic propositions. AP might, for instance, contain propositions about the state of
actuators and sensors. The syntax of LTL over the alphabet Σ = 2AP , which we write
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LTL(Σ), is defined as follows:

ϕ :: p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | Xϕ, p ∈ AP

We define Σω as the set of infinite sequences over Σ. Let ϕ,ϕ1, ϕ2 ∈ LTL(Σ) be LTL
formulae, i ∈ N a position, and w(i) the ith element of the infinite sequence w ∈ Σω.
LTL formulae can be inductively interpreted over elements in Σω as follows:

w, i |= p ∈ AP ⇐⇒ p ∈ w(i)

w, i |= ¬ϕ ⇐⇒ w, i 6|= ϕ

w, i |= ϕ1 ∨ ϕ2 ⇐⇒ w, i � ϕ1 ∨ w, i � ϕ2

w, i |= ϕ1Uϕ2 ⇐⇒ ∃k ∈ N, k ≥ i. w, k |= ϕ2 ∧ ∀i ≤ j < k. w, j |= ϕ1

w, i |= Xϕ ⇐⇒ w, i+ 1 |= ϕ

We also define ♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ. Here, ¬ and ∨ are, respectively, the
negation and logical OR operators. The remaining logical operators (∧,⇒,⇔) can be
derived as usual.

In sequential control systems, we are often interested in expressing properties involv-
ing events such as rising (↑) or falling (↓) edges. Such events can be expressed in LTL
as follows [119]:

a↑ ≡ ¬a ∧Xa a↓ ≡ a ∧X¬a

Example 2.1. (LTL formulae) The constraint that valves V P1 and V P2 are never
simultaneously opened can be expressed as the LTL formula: �¬(VP1open ∧ VP2open)
where VP1open and VP2open are propositional variables referring to the open state of
valves VP1 and VP2.

While temporal operators in LTL only allow specifying qualitative temporal relation-
ships, Metric Temporal Logic (MTL) extends LTL to specify quantitative temporal
properties. Various types of MTL semantics have been explored in the literature[9].
Since we observe the state of actuators and sensors by taking samples at discrete times,
we focus on the so-called point-based semantics of MTL over a discrete time domain.
MTL extends LTL’s operators with intervals. An interval refers to a range of discrete
time points. For instance, the MTL formula �[1,5]p asserts that p should hold between
1 and 5 time points from now. Contrary to LTL, MTL formulae are interpreted over
timed sequences which associate every time point with a set of true propositional vari-
ables. Timed sequences are of the form ρ = (τ0, E0).(τ1, E1). . . where τi ∈ R+ and (τi) is
strictly increasing and either finite or diverges to infinity (non-Zenoness requirement),
and Ei is a set of boolean variables which are true at τi.

Formally, the syntax of MTL over the alphabet Σ = 2AP , which we write MTL(Σ),
is defined as follows:

ϕ :: p | ¬ϕ | ϕ ∨ ϕ | ϕUIϕ, p ∈ AP

Where I ⊆ (0,∞) is a non-empty interval over N with endpoints in N ∪ {∞}.
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Given a timed sequence ρ and MTL formula ϕ, ρ, i |= ϕ is interpreted inductively as
follows:

ρ, i |= p ∈ AP ⇐⇒ p ∈ Ei
ρ, i |= ¬ϕ ⇐⇒ ρ, i 6|= ϕ

ρ, i |= ϕ1 ∨ ϕ2 ⇐⇒ ρ, i � ϕ1 ∨ ρ, i � ϕ2

ρ, i |= ϕ1UIϕ2 ⇐⇒ ∃j such that i < j < |ρ|, ρ, j |= ϕ2, τj − τj ∈ I,
∧ ∀k with i < k < j, ρ, k |= ϕ1

As for LTL, we also define ♦Iϕ ≡ trueUIϕ and �Iϕ ≡ ¬♦I¬ϕ.

Example 2.2. (MTL formulae) The constraint that the valve V T1 must be opened at
least once each hour can be expressed with the following MTL formula: �(♦[0,3600s]VT1open).

2.2.3 Monitoring techniques

As discussed above, monitors only have access to finite but expanding prefixes. However,
LTL and MTL formulae are interpreted over infinite sequences. This mismatch restricts
the class of monitorable formulae [10]. Monitorability refers to the capacity of a moni-
tor, after any finite number of observations, to still detect the violation/satisfaction of
a property after, at most, a finite number of additional observations. Intuitively, this
means checking whether the monitor can still provide an evaluation of the current execu-
tion while avoiding situations where the monitor would inevitably provide inconclusive
results [7]. For instance, consider the following two properties: (i) �¬(valve1 ∧ valve2),
and (ii) �♦(valve1). Property (i) says that valve1 and valve2 should never be simulta-
neously active. At any time during the monitoring of this property, it is still possible to
reach a point where the property is violated, i.e when we observe a state where valve1

and valve2 are both simultaneously active. In this case, the monitor can confidently de-
clare the violation of the property. On the other hand, property (ii) says that it is always
the case that we will reach a position where valve1 is active. Contrary to property (i),
the monitor can never hope to reach a point where it is possible to decide whether this
property is violated or not. To observe this, note that irrespective of any new input, the
monitor still needs to look out for the occurrence in a future position of a state where
valve1 is active. Thus, the monitor is always in a state of indecision and this property is
deemed not monitorable.

Several characterizations of monitorable properties exist within the literature [38,
81]. Of particular interest in the detection of process-oriented attacks is the subset
of monitorable properties called safety properties. Informally, a safety property states
that “something bad should never happen”. The property (i) above is an example of a
safety property. Another class of monitorable properties is called co-safety properties.
Informally, a co-safety property states that “something good happens”. For example, the
property ♦(valve1) is a co-safety property which says that valve1 is finally open at some
point in time. In the remainder of this work, and because we want to monitor properties
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for which we have a hope of reaching a definite verdict, we only focus on monitorable
properties [38, 81].

Two main methods are used to realize the monitoring functionality: automata-based
and rewriting-based techniques.

Automata-based techniques. Using these techniques, monitors are synthesized
as finite state automata from property specifications. For instance, in the case of LTL
safety properties, such an automaton recognizes minimal bad prefixes of a safety prop-
erty. Minimal bad prefixes are finite sequences which cannot be extended to satisfy the
safety property, and which do not contain any other bad prefix [27]. If a safety property
is violated on an infinite sequence, then it has already been violated on some finite prefix.
In this case, a monitor is a finite state automaton which recognizes, as early as possible,
such a prefix and reports a violation. Constructing a monitor usually requires translating
the LTL formula into a Büchi automaton which accepts all infinite sequences satisfying
the formula (see [141] for a formal definition). A nested depth-first-search allows the
identification and removal, from the Büchi automaton, of all states which cannot initiate
an accepting run. The resulting automaton can then be treated as a finite state automa-
ton where all states are accepting and used as a monitor [27]. Similar automata-based
techniques have been developed for quantitative specification languages [59].

Rewriting-based techniques. While automata-based techniques transform specifi-
cations into automata prior to processing any observation, rewriting-based techniques [57,
58], operate directly on the sequence of states and events. After each processed state or
event, the monitored property is rewritten and the new property’s validity is tested on
the remaining sequence of states and events. This rewriting process continues until the
truth value of a newly generated property can be determined. Rewriting-based techniques
can also transform the original formula into an equivalent representation which allows
for efficient monitoring by, for instance, keeping track of the truth value of subformulae
through dynamic programming methods [8]. In practice, automata-based techniques can
sometimes be considered as pre-computations of rewriting-based approaches [80, 81]. If
the automaton is realized as a transition table, a simple lookup is sufficient to process
any observation. However, the size of the transition table can be huge depending on the
size of the formula to be monitored. Thus, while rewriting-based techniques are typically
easier to implement and may exhibit better memory performance, they may also suffer
from worse runtime performance [81].

In selecting between a rewriting-based and an automata-based technique, one essen-
tially needs to strike a memory-time trade-off. For the purposes of intrusion detection,
the verdict needs to be reached as soon as possible and runtime performance is critical,
thus favoring automata-based techniques. Moreover, according to [12], most common
LTL properties result in a monitor of size less than 100 measured in terms of the number
of states and transitions. However, on a case-by-case basis and for pathological proper-
ties which result in the synthesis of a big automaton, rewriting-based techniques can be
adopted instead.
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Figure 2.5: Classification of qualitative specification patterns

2.2.4 Specification patterns

While LTL and MTL provide suitable formalisms to characterize temporal constraints
pertaining to states and events ordering, expressing specifications directly in terms of
formulae can be tedious. As properties grow in complexity, writing accurate and cor-
rect formulae becomes a difficult task. Thus, several works [34, 119, 71] have looked at
specification patterns that capture commonly occurring properties. As argued in [34],
only a small proportion of the constraints expressible by any given specification language
occur in practice. Thus, a reduced set of reoccurring specifications can be identified
through an extensive review of the literature (e.g. requirement documents for appliance
and automotive embedded systems [71]), and then generalized to produce specification
patterns. Moreover, specification patterns provide a more intuitive description of spec-
ifications in terms of natural language. This turns out to be extremely beneficial for
our intrusion detection task. Instead of parsing a complex temporal logic formula or a
low-level automaton, the security operators can interpret a specification by referring to
its specification pattern class which is described in natural language.

For our purposes, specification patterns can be divided into two groups: (i) qualitative
specification patterns [34, 119] which represent qualitative temporal properties based on
a formalism such as LTL, and (ii) quantitative specification patterns [71] which include
quantitative time constraints using a formalism such as MTL. We now further discuss
each group based on the seminal works of Dwyer [34] and Konrad [71].

Qualitative specification patterns Dwyer [34] distinguishes between occurrence pat-
terns and order patterns. Occurrence patterns include absence, universality and existence
patterns. Absence patterns assert that a certain event or state never occurs during the
execution of the system. Universality patterns assert that a certain state always holds
during the execution of the system. Existence patterns assert that a certain event or
state eventually holds at some point during the execution of the system. Order patterns
include precedence and response patterns. Precedence and response patterns express
relationships between two events or states where the occurrence of one is a necessary
condition for the occurrence of the other.

In order to further restrict the portion of the execution where a specification should
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Figure 2.6: Classification of quantitative specification patterns

hold, Dwyer [34] introduces the notion of a scope. Five scopes are defined: (i) a global
scope, (ii) a scope starting after an event/state, (iii) a scope ending before an event/state,
(iv) a scope between two events/states, (v) a scope starting after a first event/state and
lasting until the eventual occurrence of a second event/state. All scopes are left-closed
and right-open. In practice, scopes allow us to express local constraints on the execution
of the physical process.

Quantitative specification patterns Konrad [71] extends the fundamental notions
introduced by Dwyer’s to the quantitative domain. Three categories of quantitative
specification patterns are identified: duration, periodic, and order. Duration patterns
describe the minimum or maximum amount of time a state formula has to hold once it
becomes true. Periodic patterns describe the amount of time in which a formula has to
hold at least once. Finally, order patterns specify either the maximum amount of time
that passes between a first state holding true and a second state holding true (bounded
response) or the minimum amount of time a state must hold true once another state
holds true (bounded invariance). As in the case of Dwyer’s patterns, scopes restrict the
portion of the execution trace on which the specifications must hold.

Discussion Qualitative (Figure 2.5) and quantitative (Figure 2.6) specification pat-
terns constitute our starting point in terms of sequential behavior constraints. However,
patterns are abstract entities which need to be instantiated on a particular system in
order to yield concrete specifications that can be monitored. Our next objective is thus
as follows: given a finite set of specification patterns and a finite set of execution traces
of the physical process, find all instantiations of the patterns that are valid on the traces.
This task is known as specification mining and requires special care to avoid generating
too many irrelevant instances.

2.2.5 Specification mining

The problem of specification mining can be expressed as follows: given a finite set of
specification patterns and a finite set of execution traces of a system, find all instanti-
ations that are valid on the traces. Several works have explored this issue based on a
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variety of patterns [79, 84, 147, 144, 88, 62]. Most specification mining approaches [144,
88, 147, 84] focus on specific specification patterns or tool-specific templates such as re-
sponse [147, 144, 88] and alternating patterns [144]. In contrast, the approach in [79]
develops a specification mining approach geared towards LTL patterns of arbitrary length
and complexity. Similarly, mining of quantitative temporal has also been explored in the
literature [62].

Regardless of the specific mining approach adopted, one is usually required, if no a
priori information is available, to explore the space of all possible instantiations and test
the validity of each instantiation on the traces. While the size of the search space can be
significant, recent work [79] has shown that using memoization and selective treatment
of the traces can significantly reduce the complexity of the task even when dealing with
general LTL formulae. However, as we discuss in Chapter 3, the number of resulting
mined specifications can still remain significant, and a large subset of these specifications
are often redundant. In terms of intrusion detection, this phenomenon can lead to the
generation of too many alerts with poor value to the security operator. In Chapter 3, we
propose an approach to mine relevant specifications in the particular context of ICS.

2.3 Alert correlation

In order to link alerts from both the physical domain IDS and the cyber domain IDS,
we propose in Chapter 4 an alert correlation approach adapted to the context of ICS.
In this section, we introduce the notion of alert correlation and present the individual
phases that form the overall correlation process. We explore related work for each of
these phases and discuss their adequacy with respect to ICS.

2.3.1 Motivation

The number of alerts and the volume of data generated by IDS in a system can be
overwhelming for security operators [105]. Some attacks such as port scans and denial of
service attacks tend to generate multiple alerts. Thus, one or more IDS can emit multiple
alerts for a single attack. This phenomenon can also lead to redundant alerts which an
operator needs to sift through in order to identify pertinent information. Moreover, due
to poor IDS signatures in the case of misuse-based IDS, or incorrect base profiles in the
case of anomaly-based IDS, a significant amount of alerts can consist of false positives.

To further motivate the need for correlation, this time in the context of ICS, consider
the case of process-oriented attacks carried out from the supervisory levels [32]. While
physical domain IDS might be able to detect the effects of the attack on the physical
domain, they do not provide information about the source of the attack at the supervisory
level. On the other hand, such information can be available at the level of cyber domain
IDS which in turn lack any visibility about the impact of the attacks on the physical
process. Thus, to acquire a global view of the attack, it is necessary to aggregate alerts
from both the physical and the cyber domains. Aggregating alerts is one of the core
tasks of alert correlation.
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Overall, the main objectives of alert correlation approaches are to (i) reduce the
number of alerts by removing false positives and redundancies, (ii) group low-level alerts
by reconstructing attack scenarios that afford operators a higher-level view and give
scores of criticality to alert groups.

2.3.2 Phases of alert correlation

While several alert correlation models exist within the literature [140, 125, 127], the
following four-step general architecture can be identified [47]:

A) Pre-treatment

Raw alerts coming from the IDS often require pre-treatment in order to be ready for the
correlation process. For instance, alerts coming from different IDS often use different
formats and conventions. Thus, a normalization step is added to unify the syntax
(i.e., the structure of the attributes) [66, 134] and semantics (i.e., the meaning of the at-
tributes) [66, 87, 134] of the alerts to allow for their comparison in the correlation process.
For instance, the works in [134, 66] rely on the IDMEF format 2 which defines a unified
format that enables syntactic normalization. Semantic normalization usually consists of
finding equivalencies between different attributes’ values or establishing generic attack
categories. As an illustration of semantic normalization, the authors in [134] extend ID-
MEF with a taxonomy attribute that allows specifying the meaning of alerts based on
a hierarchy of objects (system, protocol, user, etc.) and some associated conditions or
actions on the objects. For instance, an alert on the shutdown of an operating system
would be reported as a shutdown action on the system.os object.

In general, alert normalization is either implicitly considered within alert correla-
tion approaches [139], or relies on formats such as IDMEF to define the unified at-
tributes [134, 66]. In the context of ICS, normalization is rendered difficult by the pres-
ence of alerts from both the cyber and the physical domains which are characterized by
radically different attributes. Additionally, these alerts from different domains can carry
complementary information as in the case of a process-oriented attack originating from
the cyber domain. This heterogeneity limits the applicability of existing normalization
approaches which cater either for syntactic variations in the representation of an infor-
mation on the same attribute, or the representation of the same information in different
attributes.

The previous remarks on the heterogeneity and complementarity of the information
carried by alerts coming from different domains of an ICS suggest that our main objective
is to enrich the information gathered from one domain with information from the other
domain. In traditional alert correlation approaches [29, 129, 101], alert enrichment
caters to alerts that suffer from missing information such as temporal information or
source IP. To do so, contextual information is added to alerts by relying on knowledge
bases [100] which might include information such as the system’s topology [129] and

2http://tools.ietf.org/html/rfc4765
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assets [29]. In the same vein, the approach in [101] uses honeypot databases for contextual
information on malware propagation activity or the profile of web servers in order to
enrich IDS alerts.

However, because they rely on a unified alert format, these classical enrichment
approaches suffer from the same bane as classical normalization approaches. For in-
stance, the approach in [29] fills missing values in attributes with information on the
targets, sources, and IDS within the cyber domain. Similarly, the authors in [101] rely
on the unified attributes defined by IDMEF to query enrichment information in honeypot
databases. The approach in [129] also relies on cyber domain knowledge such as the hop
count between hosts and the TCP/IP stack properties of hosts (for instance, the TCP
Reset packet acceptance policy). However, such enrichment solutions are possible owing
mainly to their confinement to a single domain where attributes are to a great extent ho-
mogeneous. For instance, while the approach in [101] aims at enriching local alerts raised
by IDS with global threat information available in honeypot databases, all information
belongs to the cyber domain and is represented using similar attributes (IP addresses,
detection time, classification of attacks) which allows the correlator to query honeypot
databases for enrichment information. In contrast, information carried by physical do-
main alerts is represented in terms of widely different attributes (actuator/sensor events
and states) in comparison to information within cyber domain alerts.

B) Verification

This step consists in verifying and discarding alerts which are not pertinent with respect
to the system [75]. For instance, alerts might refer to attacks which exploit vulnerabilities
that are not applicable to the system. Following the classification in [75], verification
approaches can be classified as either active or passive. Active alert verification [75]
dynamically looks for information which might determine the pertinence of an alert.
On the other hand, passive alert verification [129] relies on a priori information gathered
about the system which is possibly stored in formal knowledge bases such as M4D4 [100].
So far, verification approaches geared towards ICS remain rare. As a preliminary step,
the development of knowledge bases that might support passive alert verification has
been recently studied in the literature [78, 77].

C) Aggregation

Aggregation consists in reducing the number of alerts by grouping alerts together into
meta-alerts. For instance, alerts which refer to the same attack and come from similar
or heterogeneous IDS can be grouped into meta-alerts. The approaches which look for
similarity between alerts [63, 139] often rely on a direct comparison between common
attributes using different metrics. The aggregation of alerts can serve as a preliminary
stage to the identification of attack scenarios through the association of meta-alerts with
elementary attack steps. This association can be based on a specification of the expected
attacks using for instance correlation rules [99], attack graphs [123] or trees [47]. Attack
reconstruction can also be performed by reasoning on pre-conditions and post-conditions
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of elementary attack steps [104].
Ultimately, the above approaches assume that alerts are characterized by a subset

of common attributes in order to define their similarity metrics. As argued previously,
this means that a direct application of these approaches in the context of ICS, where
alerts coming from different domains do not share attributes, is difficult without a proper
pre-treatment step.

Another issue with classical alert correlation approaches rests in the choice of a time
window in the case of online aggregation, i.e. where alerts are merged upon reception and
immediately forwarded to the next correlation stage. For each new alert, the correlator
needs to decide which previously received alerts will be tested for aggregation. A naive
approach would memorize and test all received alerts. However, due to resource limits,
most alert correlation approaches set a sliding time window with a fixed size. Each new
alert is tested with all or a subset of the previous alerts in the current window. For
instance, the authors in [140] heuristically set a window size of 2s. More importantly,
the choice of a time window determines which alerts will be compared for aggregation.
Thus, a time window implicitly defines a similarity measure for alerts based on the time
attribute. Alerts which fall within the same time window are assumed to be more similar
than those falling outside of the time window. Ultimately, the choice of a window size
depends on the goal of the correlation. For instance, the reconstruction of long-term
attacks requires a time window with a different scale in comparison to the time window
required for the aggregation of alerts corresponding to an attack’s elementary steps.

In ICS where the evolution of the physical process is hard to predict, deciding on
a single optimal window size is problematic. For instance, the duration of a particular
stage in the physical process’s execution can depend on the state of other process stages
or on the occurrence of a manual intervention by process operators. On the other hand,
alerts which occur during the same stage can belong to a single elementary attack step
within a more complex multi-stage attack. It is thus important to dynamically adjust
the aggregation window depending on the state of the physical process to avoid missing
useful aggregations.

D) Impact and priority analysis

In this step, alerts or meta-alerts are evaluated and ranked depending on criteria such
as the potential impact of attacks or the confidence in the IDS’s verdicts. For instance,
the authors in [17] evaluate the priority of alerts in ICS depending on the nature of the
targeted components (for example, PLCs are given higher criticity scores), and the ICS
zone where the attacks are detected (for example, areas closer to the physical process are
deemed more critical).

Discussion All in all, the particular context of ICS imposes several challenges to tradi-
tional alert correlation approaches. Chief among these challenges is the need for adequate
alert enrichment approaches to associate information within alerts coming from both the
cyber and the physical domains. Without such a normalization step, subsequent alert



40 Chapter 2. Related Work

correlation tasks such as aggregation cannot be carried. Moreover, when performing on-
line aggregation of alerts, the necessity to adjust the aggregation alert window depending
on the state of the physical process is essential to avoid missing interesting aggregations.
To the best of our knowledge, there are no approaches in the literature which tackle
these specific issues within ICS. In Chapter 4, we introduce an approach to perform
cross-domain aggregation of heterogeneous alerts in ICS.

2.3.3 Abstraction models

In our cross-domain aggregation approach discussed in Chapter 4, we rely on the notion of
abstraction to capture the relation between the physical and the cyber domains within an
ICS. Our interest in abstraction stems from the observation that, due to the possibilities
through which an operator or an attacker can interact with a PLC to affect any given
process variable, a violation at the level of the physical domain can correspond to many
possible violations at the cyber domain. This disparity between the physical and the
cyber domain needs to be taken into account when enriching an alert from one domain
with information from the other domain. Otherwise, if the enrichment process does not
sufficiently capture all possible cyber domain cases for a given physical domain alert,
useful aggregations might be missed in subsequent stages.

To capture this intuition of abstraction relations between domains, many theories of
abstraction have been explored in the literature [126, 46, 116]. The majority of these the-
ories, while providing sound approaches to the concept of abstraction, do not delve into
the technicalities involved in performing abstraction [126]. As an expedient to this lack of
applicability of general theories of abstraction, the KRA model [126] introduces adapt-
able procedures, called abstraction operators, which correspond to recurring abstraction
tasks common to various domains (machine learning, planning, problem solving, etc.).

Within KRA, abstraction is performed on observations containing objects belonging
to a domain (also called a representation framework). A domain is represented by the
generic types of objects which can be observed, their attributes and their relations. For
instance, within the cyber domain, network flow can be considered as an object type
characterized by attributes such as the source IP, destination IP, and destination port.
In this case, a relation sameSource might associate flows that have the same source host.
Given a domain, we can generate the space of all possible observations which correspond
to all the possible valuations of the objects’ attributes and relations within the domain.
In our example, this would correspond to all possible network flows within the system
and their relations.

Abstraction operators link two domains such as several observations in the first do-
main, called the concrete domain, are linked to a single observation in the second domain,
called the abstract domain. Each elementary abstraction operator is formally defined in
terms of its effect on domains and observations. Once elementary abstraction opera-
tors are composed into complex abstraction processes, transforming an observation is
performed automatically. For instance, an abstraction operator might hide an attribute
from the concrete domain. In the network flow example, an abstraction operator might
hide the source IP attribute. This would generate a new abstract domain where the ob-
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served objects are missing the source IP attribute. As a result, two observed flows at the
concrete domain which differ only in their source IP would be mapped to the same ob-
ject at the abstract domain. This blurring at the abstract domain between observations
distinguishable at the concrete domain captures the notion of abstraction within KRA.
A formal treatment of this notion of abstraction, along with an inventory of abstraction
operators defined over the KRA model, is given in [126].

In Chapter 4, we take inspiration from the notion of abstraction operator as intro-
duced in the KRA model and define our own operators. We depart from the KRA
model in that, given our alert enrichment use case explained in Chapter 4, we require the
definition of concretization operators that map abstract observations to the set of possi-
ble concrete observations. On the other hand, the KRA model is primarily aimed for a
bottom-up use; it does not define concretization operators for each abstraction operator.

2.4 Conclusion and positioning

In this chapter, we have presented a taxonomy and a literature overview of intrusion
detection approaches for ICS. We have also discussed the issue of correlation and its rele-
vance in ICS. The state of the art on IDS approaches in ICS shows a great preponderance
of anomaly-based approaches. Such approaches are interesting because of their ability to
detect novel attacks. However, in particular with respect to learning-based approaches,
some difficulties subside [130]: (i) the high cost in terms of false positives, (ii) the inad-
equacy or absence of learning data, (iii) the poor semantic interpretation of the alerts,
and (iv) the variability of data on which detection is based. In addition, as exhibited by
our exploration of the state of the art, the majority of ICS-based approaches suffer from
one or more of the following weaknesses:

• Detection limited to cyber level observations. A number of research efforts
aim at detecting process-oriented attacks based solely on observations at the cyber
level [23, 148, 48]. However, these approaches are not adequate both in terms of
attack detection and alert comprehension. For instance, some approaches [23, 48]
attempt to model the ordering of network messages between supervisors and PLCs.
Any message which violates the ordering captured by the model is considered suspi-
cious and leads to an alert. Given the number of possible messages, simplifications
are needed to keep the models tractable. This leads to inaccurate models prone
to poor detection results. Low-level events such as network delays can also cause
false alerts. Moreover, since the alerts are expressed in terms of cyber attributes
(i.e fields in an ICS protocol) rather than physical process attributes (i.e states of
actuators and sensors), evaluating the significance of the alerts with respect to the
physical process is challenging. As a result, a security operator might struggle to
qualify an alert as either true or false. With respect to process-oriented attacks,
accurate and understandable detection results require observations at the level of
the physical process.

• Limited model expressivity. Some approaches [94, 19] which operate directly
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at the level of the physical process suffer from insufficiently expressive models that
limit the threat model. For instance, the approach developed in [94] can only detect
global invariants valid over all the states of the physical process (ex. the property
that a temperature should never exceed a maximum threshold anytime during the
execution of the process). However, some attacks can violate invariants that are
local to specific states of the physical process (ex. a valve which can only be opened
during a specific state of the physical process). To detect such attacks and expand
the threat model, more expressive formalisms are required.

• Cost of models. Many approaches rely heavily on security operators to manually
specify the detection models [128, 149]. In addition to the time required to build
these models, it is assumed that the operators have adequate knowledge of the
formalisms and can specify the models without errors. However, this task becomes
increasingly difficult as more complex models are used to cover a larger threat
model. To reduce the cost of developing the models, automatic learning approaches
need to be explored.

The above weaknesses need to be confronted with the recent trend in ICS tailored
attacks. In particular, the analysis of some recent and notable attacks (see Section 1.3)
has shown the increasing sophistication in terms of (i) process knowledge (Stuxnet,
CrashOverride), and (ii) the move towards extensible attack frameworks supporting mul-
tiple protocols (CrashOverride). This recent trend calls for alert correlation approaches
that can link attack manifestations from both the physical and the cyber domains.

2.4.1 Positioning

In the remainder of this manuscript, we aim at answering some weaknesses raised above.
We argue that process-oriented attacks require suitable intrusion detection approaches
that operate directly on actuator and sensor states. Moreover, such an approach needs
to use a suitable formalism and relieve the operator from the burden of building the
detection models. The development of such an IDS is the main object of Chapter 3.

However, process-domain alerts do not allow the operator to trace the source of the
attack. Thus, process-domain alerts need to be correlated with cyber-domain alerts so
that the operators can better determine the cause of the process deviations. Existing
alert correlation approaches are not adapted for such a task as they cannot deal with the
heterogeneity of alerts in ICS. While classical alert correlation models include alert nor-
malization and enrichment as early phases in the correlation process, existing approaches
either implicitly assume alerts or rely heavily on the homogeneity of alert attributes which
often based on a common format such as IDMEF 3. However, such homogeneity assump-
tions, while valid within the confines of the cyber domain distinctive of traditional IT
systems, come under question when considering cyber-physical systems such as ICS.

Thus, a major hurdle facing alert correlation in ICS is the pre-treatment of alerts
coming from both the cyber and physical domains. This step is crucial to the overall

3http://tools.ietf.org/html/rfc4765

http://tools.ietf.org/html/rfc4765
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goals of alert correlations such as the aggregation of alerts, the reconstruction of scenarios
and the reduction of false positives. In Chapter 4, we develop a cross-domain aggregation
approach that complements our intrusion detection approach introduced in Chapter 3.
Together, both of these approaches can: (i) detect process-aware attacks using process-
oriented monitors and, (ii) correlate alerts from the physical and the cyber domains.
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Figure 2.7: Global overview of our contributions

Figure 2.7 gives a global view of the positioning of our contributions with respect
to the components of an ICS. In general, an ICS is constituted of both a cyber and
a physical domain. In the cyber domain, security controls are deployed to enforce the
domain’s security policy and to detect, through cyber domain IDS, its violations by an
attacker. At the boundary between the cyber and the physical domains, control logics are
executed by controllers which manipulate actuators and gather data from sensors in order
to steer the physical process. The trajectories given by the evolution of the sensor and
actuator states constitute the behavior of the physical process. This behavior, which can
be either continuous or sequential, is characterized by temporal constraints known also as
process specifications. In this thesis, we focus on the process specifications relative to the
sequential behavior as captured by LTL and MTL properties. The way in which these
properties are automatically inferred and monitored is the subject of Chapter 3. Finally,
given the alerts raised by both the cyber domain and the physical domain IDSs, we
perform cross-domain correlation to aggregate manifestations of attacks in both domains.
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The way in which alerts are selected, mapped from one domain to another and aggregated
is the subject of Chapter 4.
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Chapter 3

Process-oriented Intrusion Detection
in Sequential Control Systems
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In the preceding chapter, we have provided an overview of common process-oriented
intrusion detection approaches found in the literature and identified some of their major
weaknesses.

To answer these weaknesses, we introduce in this chapter an anomaly-based intrusion
detection approach which : (i) operates directly at the level of the physical process by
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Figure 3.1: Simple sub-process displaying both continuous and sequential behavior
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Figure 3.2: Example of continuous and sequential behavior in a physical process

monitoring the state of actuators and sensors, (ii) is based on expressive formalisms
that can detect sophisticated attacks covering a broad threat model, and (iii) is fully
automatic thus reducing the cost of model specification.

Before exploring in details our approach, we first define our threat model in Sec-
tion 3.1, in particular, the class of attacks which we aim at detecting. In Section 3.2,
we delve into the details of our mining and monitoring approach. We then present our
evaluation of the approach in Section 3.3 and finish with some conclusions in Section 3.5.

3.1 Threat model

Industrial control systems are dynamical systems whose state variables, continuous or
discrete, vary over time. The behaviors produced by these systems correspond to tra-
jectories in the state space. Informally, a trajectory is a (possibly infinite) sequence of
system states and events. Special attention must be given to the hybrid nature of ICS
which induces both continuous and sequential behaviors. The continuous behavior is
traditionally modeled through differential equations producing continuous trajectories.
On the other hand, the sequential behavior is modeled through discrete event systems
producing discrete sequences of logical actuator/sensor states and events.
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Example 3.1. (Continous and sequential behaviors) Consider the example sub-process
in Figure 3.1. This simple system consists of a tank TK1, four actuators (three valves
VP1, VP2, VT1, and a motor M1), and three sensors (w1, w2, t1vid). The objective
is to synthesize a product in tank TK1 starting from initial products P1 and P2. The
synthesis procedure is as follows: first, valve VP1 is opened to introduce a certain quantity
of product P1 in TK1. The introduction of a correct quantity of product P1 is signaled
by a rising edge of sensor w1. Then, valve VP1 is closed and valve VP2 is opened so
that an adequate quantity of product P2 is added to the content of TK1. Afterward,
the products in TK1 undergo a mixing phase using motor M1 for a period of 60 seconds.
Finally, the resulting product can be collected for further processing through valve VT1.

During the synthesis procedure, the level of tank TK1 varies continuously as products
are added and removed. In terms of behavior, the evolution of TK1’s level is a continuous
trajectory (see Figure 3.2). On the other hand, the control of the process throughout its
execution is also based on events (rising edges of sensors) and logical states (open and
closed valves). The resulting timed sequence of logical states and events (see Figure 3.2)
collectively constitute the sequential behavior of the system.

System engineers are often interested in determining whether the behaviors of a dy-
namical system are correct. Correction is defined as the occurrence or non-occurrence of
temporal patterns, also called specifications [90]. For instance, a specification can define
a correct trajectory as a trajectory where a forbidden state is never reached (i.e over-
flowing a tank, going over a certain temperature threshold, etc). Based on this notion
of correctness, we can define a process-oriented attack as an attack where the objective is
to induce incorrect behaviors at the level of the physical process. Process-oriented attacks
might target both the continuous and sequential aspect of ICS.

Example 3.2. (Process-oriented attacks) In the sub-process depicted in Figure 3.1, an
attacker can attempt to overflow the tank TK1 or modify the speed of motor M1. These
are attacks which target the continuous aspect of the sub-process as they lead to an
anomalous deviation in the trajectory of continuous variables (tank level and motor
speed). The attacker might also tamper with the sequence of the synthesis procedure
in order to generate a product of bad quality. For instance, the attacker might open
valve VP2 before valve VP1 is closed to corrupt the balance of products P1 and P2 in
the tank. The attacker might also interrupt the mixing phase earlier than expected by
stopping motor M1 short of 60s. These attacks target the sequential aspect of the sub-
process as they lead to violations in temporal constraints over discrete states and events
(for example, the forbidden occurrence of a rising edge of VP2 between a rising edge of
VP1 and a rising edge of sensor w1). Stuxnet and CrashOverride (see Section 1.3) are
examples of real process-oriented attacks, targeting respectively centrifuges in nuclear
plants and circuit breakers in electric grids.

The detection of attacks targeting the continuous aspect has been studied in the
literature [55, 1, 132, 22]. These approaches aim at detecting abnormal deviations in the
evolution of continuous variables using autoregressive models [55] or through estimated
process invariants [1]. In comparison to the continuous aspect, the sequential aspect of
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the physical process remains relatively unexplored [83]. Yet, such attacks [122, 76, 83]
have been identified as particularly dangerous and difficult to detect using traditional
intrusion detection approaches.

Attacks which target the sequential aspect of the physical process are also known in
the literature as sequence attacks [122, 76] and are sub-divided into two classes: (i) quali-
tative sequence attacks, and (ii) quantitative sequence attacks. In a qualitative sequence
attack, an attacker manipulates the relative order of commands to produce incorrect
behavior. For example, in Figure 3.1, the attacker can issue a particular sequence of
commands which result in a wrong balance of products in TK1. In a quantitative se-
quence attack, the attacker plays on the timing between commands. For example, an
attacker might damage a valve by issuing a sequence of commands which repeatedly open
and close the valve in a short period of time. The recent CrashOverride attacks [32] com-
prised both qualitative and quantitative sequence attacks. CrashOverride’s qualitative
attacks consisted of sending commands to keep circuit breakers open in the hope of induc-
ing outages. CrashOverride’s quantitative attacks forced the electric grid’s automated
protective operations to isolate substations due to the continuous toggle of circuit break-
ers between open and closed states. Note that in both cases, the individual commands
are legitimate (opening a circuit breaker can happen in the absence of an attack), but the
temporal ordering of the commands issued by the attacker induces incorrect behaviors.

We focus in this work on detecting process-aware attacks targeting the
sequential aspect of the physical process. In the remainder of this chapter, we
develop and evaluate an approach to automatically and efficiently infer and monitor
temporal constraints pertaining to the sequential aspect of a physical process.

3.2 Mining and monitoring approach

In this section, we present our mining and monitoring approaches to efficiently infer
specifications and monitor their violations. We first provide a general overview of our
approach while motivating the need to avoid naive inference approaches before delving
into more details regarding our mining and monitoring approaches.

3.2.1 Overview

In this section, we present a general overview of our approach which spans two phases :
(i) a mining phase where process specifications are inferred from execution traces of the
physical process, and (ii) a monitoring phase where the inferred properties are deployed
to detect violations.

A) Mining phase

Figure 3.3 shows the general overview of the mining phase. At first, we collect attack-
free execution traces that record the evolution of sensors and actuators states throughout
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the execution of control logics. Figure 3.4 shows some possible placements of monitors
within an example subprocess. Ideally, the state of sensors and actuators can be accessed
through the communications between the sensors/actuators and the PLCs using an ade-
quate tap. In terms of security, this would allow the monitors access to the correct state
of actuators and sensors even if the PLC is corrupted. On the other hand, setting up a tap
might turn out to be impractical if the number of actuators and sensors is consequent, or
if introducing a tap would cause an unacceptable disruption in the control loops. If such
a tap is not possible for practical purposes, we can also monitor the actuators/sensors
signals on each PLC using the supervisory HMI traffic. However, the monitors might
not have access to all possible actuator and sensor states depending on which variables
are queried by the HMI, and an attacker might blind the monitors if the controllers are
corrupted. In both cases, the state of sensors and actuators are periodically sampled and
constitute our execution traces.

We focus in our approach on control logics implemented as Sequential Function Charts
(SFC) (see [64] for an introduction to SFCs) as they are particularly suitable for sequential
processes. We distinguish between the control flow of an SFC, represented by selection
and parallel branches, and linear step-transition sequences without branching and parallel
execution which we call activities. Figure 3.5 provides an example of an SFC and its
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Figure 3.5: Example of an SFC and its constituent activities

decomposition in terms of activities. This SFC contains 7 activities whose size ranges
from a single step (steps 10,15,16 and 20) to multiple steps (macro steps M10 and M20).
We use the SFC’s structure to divide the execution traces per activity (performed by the
activity recognizer block in Figure 3.3), and mine process specifications per activity. The
activity recognizer reads the execution traces and uses the SFCs to identify the current
active steps and thus the current activities. We focus on activities as they represent the
actual sequencing of actions performed by the PLCs, while control flow decides which
activities are to be executed.

Our goal is to automatically find safety temporal specifications that are valid on
attack-free execution traces of the system. This problem is known as specification mining.
Specification mining approaches [79, 84, 147] typically use specification patterns to find
the properties that are valid on the traces. For instance, consider the pattern A never
occurs between B and C. Here, A, B, and C are variables which take values in a set
of events that might correspond to changes in the states of actuators and sensors. In
particular, B and C define the scope of the property, i.e the subsequences of the execution
trace where the constraint applies, and A specifies the event which never occurs within
the scope. If B ∈ {e0, e1, e2, e3}, C ∈ {e0, e1, e2, e3}, and A ∈ {e4}, then possible
instantiations of the pattern include : (i) e4 never occurs between e0 and e2, (ii) e4 never
occurs between e1 and e3, (iii) e4 never occurs between e1 and e2. The objective is to find
all instantiations that are valid on the attack-free traces.

However, a common issue with specification mining approaches is the significant
number of resulting valid instantiations. For instance, the authors in [79] discuss several
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techniques to reduce the complexity of the specification mining task. However, the
number of valid mined specifications can still remain significant.

0

e0

|
1

e1

|
2

e2

|
3

e3

|
overlap

between e0 and e2

between e1 and e3

Figure 3.6: Scopes overlap illustration

We argue that many of these instantiations are redundant due to scope overlaps. An
overlap occurs between two scopes when they delimit intersecting subsequences of the
execution trace. We illustrate this situation in the previous example using the execution
trace in Figure 3.6. Each position is associated with an event and the figure shows the
subsequences corresponding to the scopes between e0 and e2 and between e1 and e3. These
scopes overlap since the subsequences they delimit intersect on the subsequence spanning
positions 1 and 2.

To illustrate how such redundancies impact the number of violations sent to an op-
erator, suppose that the properties (i), (ii) and (iii) above are valid. If an attack causes
event e4 to happen between position 1 and 2, property (iii) would be violated. How-
ever, due to redundancy, properties (i) and (ii) would also be violated. Thus, instead
of a single violation, the operator would need to deal with three redundant violations.
This problem worsens as the number of events and scopes become large as in the case of
long activities. The operator then risks becoming overwhelmed with the significant num-
ber of violations. Instead, we propose to mitigate redundancies through a pre-selection
of scopes before mining. Only instantiations on the pre-selected scopes are tested for
validity. This pre-selection is done by the scopes identification block in Figure 3.3.

Another common issue involved in mining approaches relates to the falsifiability of
properties. A falsifiable property with respect to a trace is a property which can be
violated on the trace. Falsifiability is especially relevant with regards to scopes: all prop-
erties which refer to non-existent scopes are not falsifiable. Since they specify constraints
on non-existent scopes, one cannot check the violation of such properties. Consider for
instance the property universality_after(valve1,motor1). It corresponds to the fol-
lowing LTL formula: �(valve1 ⇒ �motor1). The antecedent of the implication refers
to the scope. If valve1 is not true at any position on the trace, the implication be-
comes vacuously true and the formula is not falsifiable. In addition, properties such
as absence_before(valve1,motor1) and absence_between(valve1, valve2,motor1) will
also be vacuously true on the trace since all these formulae involve implications with false
antecedents (♦valve1 for the first formula and valve1∧♦valve2 for the second formula).
By performing a pre-selection of scopes, we can avoid mining unfalsifiable properties
since all the pre-selected scopes must exist in the execution traces used for mining. This
is important since unfalsifiable properties can lead to an increase in the number of mined
and subsequently monitored properties. And since they are unfalsifiable, such properties
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cannot be reliably used to represent constraints over the behavior of the system.

B) Monitoring phase

Figure 3.7 depicts the monitoring process. Properties mined in the mining phase are
synthesized as monitors (see Section 2.2.3 for a discussion on monitoring techniques) and
the execution traces recorded at deployment time are directed to the proper monitors
through the activity recognizer. Thus, only the monitors corresponding to the current
activities read the execution trace. When a violation is detected, the monitors send
a report to an alerts manager which can be a SIEM (Security Information and Event
Management) product for instance. The security operator decides whether it corresponds
to a false or a true alert given the activity, the scope, and the impacted actuators.

3.2.2 Fundamental definitions
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Figure 3.8: Relation between events, observed traces and paths
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We now present in details the scopes selection methodology used in the mining phase
to mitigate redundancies. To begin, we introduce some fundamental definitions. Let AP
be a finite set of boolean variables where each variable refers to a state of a component
(sensor or actuator) in the system. Components with continuous values are discretized
and mapped to boolean variables. For instance, a level sensor tl reporting continuous
values can be discretized to boolean states (tl ≥ th) and (tl < th) with th a threshold.
Events are changes in the states’ values. For a state a ∈ AP , a↑ (resp. a↓) corresponds
to a rising edge (resp. falling edge) of state a.

From the setAP , we generate the set of all possible component eventsE =
⋃

a∈AP
{a↑, a↓}.

We also define the boolean variables act ∈ Act, which indicates whether the activity act
is currently active. To mark the beginning (activation of the first step) and the end
(deactivation of the last step) of an activity act, we use a pair of events (act↑, act↓).

Our view of the process is based on a periodic sampling of actuator and sensor states.
Independently of the sampling location, events are always observed at some discrete
points in time. An observed trace necessarily begins with the activation of an activity
and ends with its deactivation. These activity-specific events do not occur anywhere on
the trace. Figure 3.8 provides an example of an observed trace of size 4 over an activity
act. Each position in the observed trace corresponds to a set of observed events. For
instance, events {e1, e2} are mapped to position 1 while events {e3, e4, e5} are mapped
to position 2.

Definition 3.3 (Observed trace). Let P(·) denote the power set operation. An observed
trace t of size n ∈ N∗ over an activity act is an application :

t : {0, 1, . . . , n− 1} → P(E ∪ {act↑, act↓}){
t(0) = {act↑}, t(n− 1) = {act↓}
∀0 < i < n− 1, t(i) ∩ {act↑, act↓} = ∅

In what follows, we consider t to be an observed trace of size n ∈ N∗ over an activity
act. We refer to the domain {0, 1, . . . , n− 1} of t as Dom(t).

Recall that our objective is to reduce the number of mined process specifications by
avoiding scope overlaps. To characterize scope overlaps, we formally introduce the notion
of scope and scope cover.

Definition 3.4 (Scope). A scope is a pair of events (e1, e2) where e1, e2 ∈ Act ∪ E

The cover of a scope returns all the pairs of ordered time positions in the observed
trace where the events making up the scope occur. For instance, in Figure 3.8, the scope
(e1, e6) has cover Ct((e1, e6)) = {(1, 3)} since e1 occurs at position 1 and e4 occurs at
position 3. Note that given a scope s, the size of its cover |Ct(s)| can be greater than 1.
For instance, in Figure 3.8, Ct((e1, e5)) = {(1, 2), (1, 3)}.

Definition 3.5 (Scope cover). Let s = (e1, e2) be a scope. The cover of s over t, denoted
by Ct(s), is the set :

Ct(s) = {(i, j) ∈ Dom(t)2|i < j ∧ e1 ∈ t(i) ∧ e2 ∈ t(j)}
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3.2.3 Requirements on the set of scopes

A general approach to specification mining [79] would explore the space of all possible
properties given the set of actuators and sensors in the system. However, as discussed in
Section 3.2.1, this leads to a significant number of redundancies. Our main objective is
to avoid such redundancies through a careful pre-selection of the scopes in S such that
they do not exhibit overlaps.

However, this desired non-redundancy property needs to be balanced with other re-
quirements. For instance, we also need to ensure that the scopes in S collectively cover
each observed trace and that no property is missed. Otherwise, an attack might go unno-
ticed either because a subsequence is not covered by any property, or because all possible
properties on some subsequence have not been mined. Intuitively, this means that we
need to limit redundancies without sacrificing coverage.

In the following, we discuss three requirements that match these observations: (i)
maximizing the precision of the scopes, (ii) avoiding unconstrained parts of an observed
trace, and (iii) avoiding scope redundancies.

Requirement (i) deals with the issue of missed properties which can occur when the
scopes are too broad, i.e their covers span too many time positions within the observed
trace. To illustrate this case, consider the set of scopes S = {(act↑, e1), (e1, act

↓)} on
Figure 3.8. Suppose that a property p holds on the pair of time positions (1, 3) but not
on (3, 4). Then p does not hold on (1, 4). Since the cover of (e1, act

↓) is {(1, 4)}, mining
the properties directly on S would miss the fact that p holds on (1, 3). Note that a
similar situation occurs when a scope covers more than one pair of time positions; for
instance, if a scope covers two pairs of time positions and the property p holds on one
pair but not the other. For example, consider the set of scopes S = {(act↑, e5), (e5, act

↓)}
on Figure 3.8. The cover of (act↑, e5) is {(0, 2), (0, 3)}. If a property p is valid on (0, 2)
but not on (0, 3), then p would not be mined for the scope (act↑, e5) and the fact that p
is valid on (0, 2) would be missed. To avoid this issue, the scopes need to be of maximal
precision, i.e their cover must span only one pair of time positions whose endpoints are
as close as possible.

An effect of this precision requirement is an increase in the number of scopes which
ultimately leads to more inferred properties. For instance, if a property p is valid on
the 4 intervals in Figure 3.8, then our precision requirement would lead us to infer 4
properties (one for each scope covering a single interval), instead of one global property
on the scope (act↑, act↓). However, we argue that these additional properties allow the
operator to get a more precise information on the location of a violation within the trace.
Otherwise, to locate the violation, the operator would need to have access to complete
timestamped trace along with a timestamped alert so as to locate exactly the violation
within the trace. This puts an additional burden on the operators and requires time
synchronization mechanisms between the specification monitors and the trace recorders.

From requirement (ii), the cover of the selected scopes should span all time positions in
each observed trace. Otherwise, attacks might be missed if they occur within uncovered
time positions. The set of scopes S = {(e1, e4), (e4, act

↓)} does not cover all time
positions in the observed trace of Figure 3.8 since the combined covers of (e1, e4) and
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(e4, act
↓) is {(1, 2), (2, 4)} which does not include (0, 1).

Redundancies (requirement (iii)) happen when two scopes overlap, i.e when the in-
tersection of their covers is not empty. For instance, in Figure 3.8, the scope (e1, e4)
with cover {(1, 2)} overlaps with the scope (e1, e6) with cover {(1, 3)} since their cover
intersect on (1, 2). Avoiding redundancies is our main objective since it leads to a re-
duction in the number of deployed monitors which otherwise overload the operator with
redundant information.

We now give a formal expression of the three requirements through the following two
propositions.

Proposition 3.6 (Requirement (i)). A set of scopes S is of maximal precision over trace
t iff
(a) ∀s ∈ S, |Ct(s)| = 1.
(b) For every other set of scopes S′ satisfying (a) :

∀(e′i, e′j) ∈ S′, ∃(ei, ej) ∈ S |{
Ct((ei, ej)) = {(ci, cj)}, Ct((e′i, e′j)) = {(c′i, c′j)}
c′i ≤ ci < cj ≤ c′j

Condition (a) in Proposition 3.6 restricts the cover of a scope to a single pair of time
positions. Condition (b) in Proposition 3.6 says that for any scope (e′i, e

′
j) in a set of

scopes S′, S contains a scope (ei, ej) at least as precise as (e′i, e
′
j). For instance, consider

the two sets of scopes S = {(act↑, e4), (e4, act
↓)} and S′ = {(act↑, act↓)} on Figure

3.8. We have Ct((act↑, act↓)) = {(0, 4)}, Ct((act↑, e4)) = {(0, 2)}, and Ct((e4, act
↓)) =

{(2, 4)}. Since the time position pairs (0, 2) and (2, 4) are within (0, 4), the scopes in S
are more precise than S′ on (0, 4).

Proposition 3.7 (Requirements (ii) and (iii)). Let I = {(i, j) ∈ Dom(t)2, j − i = 1}
be the set of all successive time position pairs in Dom(t). A set of scopes S satisfying
Proposition 3.6 is non-redundantly covering a trace t iff 1 :

∀(i, j) ∈ I, ∃!s ∈ S | Ct(s) = {(k, l)} ∧ k ≤ i < j ≤ l

Proposition 3.7 makes sure that each pair of time positions on t is covered once
and only once by a scope in S. For instance, regarding Figure 3.8, the set of scopes
S = {(act↑, e4), (e1, act

↓)} does not satisfy Proposition 3.7 since (1, 2) is covered by two
scopes : (act↑, e4) and (e1, act

↓).

3.2.4 Generation of a set of scopes for a single observed trace

In Section 3.2.3, we discussed the requirements which a set of scopes needs to meet. In
this section, we show how such a set of scopes can be generated first for a single observed

1∃! means there is one and only one



58
Chapter 3. Process-oriented Intrusion Detection in Sequential Control

Systems

trace. We postpone the discussion on the generation of a set of scopes for sets of observed
traces to Section 3.2.5.

To generate a set of scopes satisfying the requirements in Section 3.2.3 for a single
observed trace, we introduce the notion of a path. A path is an application which uniquely
associates each time position in the observed trace with a single event. This event must
not appear anywhere else in the observed trace. The goal of a path is to uniquely
characterize, using an event, every time position in the observed trace. Using these
characterizing events, we will show that a set of scopes satisfying Propositions 3.6 and
3.7 exists.

In Figure 3.8, a possible path derived from the observed trace associates act↑ to
position 0, e1 to position 1, e4 to position 2, e6 to position 3, and act↓ to position 4.
Given this path, e1 uniquely identifies position 1, i.e e1 is never observed at any other
position in the observed trace. Events e4 and e6 perform a similar task for positions 1
and 2. On the other hand, position 2 cannot be associated with event e5 since e5 occurs
also in position 3.

Definition 3.8 (Path). A path pt over t is an application :

pt : Dom(t)→ E such that :{
∀i ∈ Dom(t), pt(i) ∈ t(i)
∀(i, j) ∈ Dom(t)2, i 6= j =⇒ pt(i) 6∈ t(j)

Given an observed trace t, we denote by Πt the set of all possible paths over t. Note
that given an observed trace t, the number of paths |Πt| can be greater than 1. In the
previous example, position 1 could have been associated either with e1 or e2. Thus,
different paths are compatible with the observed trace in Figure 3.8. In what follows, we
refer to the image of a path pt over t as Img(pt).

Remark 3.9 (Path bijection). From Definition 3.8, pt defines a bijective application
from Dom(t) to Img(pt) since each time position in Dom(t) is associated with a unique
event in Img(pt).

Remark 3.10 (Existence of a path over an observed trace). Generally, one cannot
guarantee the existence of a path over an observed trace. A path cannot be generated
if one of the time positions can only be assigned events appearing elsewhere on the
observed trace. In this case, the position cannot be uniquely characterized. Later, we
discuss a solution to this issue which identifies and isolates a minimal subset of events that
hinders the generation of a path. In the worst case, our solution reduces to a standard
specification mining approach which explores all possible scopes. However, we will show
that significant improvements can still be achieved due to the regularity of the observed
traces in control systems.

Proposition 3.11. Given an observed trace t a set of scopes S satisfying Propositions
3.6, and 3.7 exists if a derived path exists.
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Discussion. Let t be an observed trace and pt ∈ Pt a derived path. By setting
S = {(pt(0), pt(1)), (pt(1), pt(2)), · · · , (pt(n− 2), pt(n− 1))}, we can show that S satisfies
Propositions 3.6 and 3.7.

� Condition (a) in Proposition 3.6 is satisfied due to the bijectivity of pt which maps
every scope in S to a single pair of time positions.

� Regarding condition (b) in Proposition 3.6, let S′ be another set of scopes satisfying
condition (a) in Proposition 3.6. Let (e′1, e

′
2) ∈ S′ and (c′1, c

′
2) the unique pair of time

positions (by condition (a)) to which Ct((e′1, e′2)) reduces. Since, by construction,
S covers all successive time positions in Dom(t), we can always map (e′1, e

′
2) to a

scope (e1, e2) ∈ S with Ct((e1, e2)) = {(c1, c2)} such that c′1 ≤ c1 < c2 ≤ c′2.

� Finally, concerning Proposition 3.7, let (i, j) ∈ I be a pair of successive time po-
sitions in Dom(t). By construction, the scopes in S cover all time positions in
Dom(t). Thus, there exists a scope in S, namely (pt(i), pt(j)), covering (i, j). This
scope is unique due to the bijectivity of pt.

Algorithm 1 shows our procedure for generating the set of possible paths Pt of an
observed trace t. The procedure incrementally generates the paths for t by constructing
intermediate paths for t’s prefixes. Lines 2-5 first initialize Pt with a separate sequence
for each of the events in the first position of t. Lines 6-15 extend the sequences in Pt
with an additional event for each of the remaining positions in t. The variable newPaths
holds, after each iteration of the main for-loop in Line 6, the paths constructed for the
prefixes of length i of t. When paths for a prefix cannot be constructed, i.e. newPaths
is empty after an iteration of the main for-loop, then no path can be generated for t and
the procedure returns an empty result.

3.2.5 Generation of a set of scopes for a set of observed traces

Up to this point, we have only considered how to generate a set of scopes S satisfying
the requirements in Section 3.2.3 for a single observed trace. However, we generally
have several observed traces each corresponding to a run of an activity. Moreover, these
observed traces might not be all identical, i.e they might contain different events or
ordering of events. Our objective in this section is to examine how to generate a set of
scopes when we have several distinct observed traces of an activity.

To generate S for a set of observed traces T = {t1, t2, · · · , tn}, we rely on the
corresponding set of possible derived path sets ΠT = {Pt1 ,Pt2 , · · · ,Ptn} as shown in
Figure 3.9. Here, each Pti is generated from the corresponding observed trace ti as
discussed in Section 3.2.4. Then, the scopes identification step takes as input the observed
paths in ΠT and determines a set of mining scopes. We focus, in the remainder of this
section, on the scopes identification step.

One straightforward case occurs when there exists a common path for t1, t2, · · · , tn,
i.e

⋂
1≤i≤n

Pti 6= ∅. Here, since there exists a common path to all observed traces, the set
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Algorithm 1: Path generation procedure (generate_path)
Data: t : Observed trace
Result: Pt : Paths generated from t

1 Pt ← {};
2 for j ∈ t[0] do
3 σ ← sequence();
4 σ[0]← j;
5 Pt.add(σ);

6 for 1 ≤ i ≤ |p| − 1 do
7 newPaths← {};
8 for j ∈ p[i] do
9 for σ ∈ Pt do

10 if j 6∈ Range(σ) then
11 σ[i]← j;
12 newPaths.add(σ);

13 if |newPaths| == 0 then
14 return None;

15 Pt ← newPaths;

16 return Pt;

of scopes can be generated as in the case of a single observed trace which was discussed
in Section 3.2.4.

A more challenging situation arises when a common path cannot be found. To illus-
trate this situation, Figure 3.10 shows an example of four observed traces for a single
activity where no possible paths can be derived. While the first and third observed traces
contain 6 observation points, the second and fourth observed traces only 7 observation
points. Moreover, between observed traces of the same size, no common paths can be
generated. For instance, position 2 on the first and fourth observed traces cannot be
characterized by the same event.

Upon closer inspection, we note that while events e1, e2, e3, e4, and e5 occur, relative
to one another, at the same positions across all the observed traces, event e6 is less stable.
In fact, e6 does not occur at all on the first observed trace and occurs at the third or
second position in the remaining traces. This means that scopes with event e6: (i) do not
occur at every observed trace and, (ii) do not cover the same time positions across all the
observed traces. For instance, the scope (e6, e3) does not occur on the first observed trace
and covers different time positions on the remaining observed traces. Thus, such scopes
cannot be used to construct a set of scopes satisfying the requirements in Section 3.2.3.

We call events such as e6 conflicting events. Our solution consists in identifying a
minimal set of conflicting events whose removal allows for the generation of a common
path. The resulting path produces the largest possible set of scopes which still satisfies
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Figure 3.9: Scope selection approach based on paths derived from the observed traces

the requirements in Section 3.2.3. The discarded conflicting events are used with a
standard mining approach with no guarantee of non-redundancy, i.e all possible scopes
including the conflicting events are explored. The main drawback of this solution is the
increase in the number of redundant alerts. In the worst case, if all events are conflicting,
our solution reduces to a standard mining approach with redundancies.

Due to the regularity of the observed traces generated from activities, we expect the
set of conflicting events to be minimal. As we discuss in our evaluation analysis (see
Table 3.4 in Section 3.3), the practicality of this approach rests on two observations
regarding the regularity of the observed traces : (i) the proportion of unique observed
traces is small with regards to the total number of recorded observed traces (less than 6
% on average) which limits the size of the set of observed traces from which a common
path needs to be found, and (ii) the proportion of conflicting events is limited, especially
in the case of redundancy-prone long activities, which leads to significant gains in terms
of avoiding redundant properties. While these observations have only been made with
respect to our evaluation testbed, we expect similar observations on datasets coming from
operational plants. Thus, in practice, substantial improvements can still be expected in
terms of redundancy compared to a standard approach.

Algorithm 2 shows our procedure for resolving conflicting events. The algorithm
attempts to find a common path by ignoring one or more events in the originally observed
traces. It takes as input the set T of observed traces and the set of events E (see Section
3.2.2). Then, it attempts to find the lowest number of events which must be ignored in
the originally observed traces to find a common path. In Line 1, the algorithm allocates
a queue to hold the current candidate events to be ignored. The queue is initialized in
Lines 2-3 with each event in E, i.e the smallest possible sets of conflicting events. In
Line 4, the algorithm uses a set visited to keep track of candidate sets that have already
been explored. Then, while there are still candidate sets (Line 5), a current candidate
is selected from the front of the queue (Line 6) and inserted in the visited set (Line
7). Line 8 computes the projection of each trace in T over the events in current, and
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Figure 3.10: Occurrence of a conflicting event on four observed traces of an activity

Line 9 computes the set of paths for each projected trace (procedure generate_paths
in Algorithm 1). If a common path is found among the paths of the projected traces
(Line 10), a solution is found and the algorithm returns it (Lines 11-12). Otherwise,
the algorithm adds, if possible, new sets of candidate conflicting events to the queue
(Lines 13-15). This is performed by extending the current set with one new event in E.
If current already holds all events in E, or if an extended set of candidate events has
already been visited, the set is not added to the queue.

3.2.6 Mining specifications

Recall that our goal is to find the safety temporal properties that are valid on attack-free
execution traces of the system, i.e the properties which are not violated by the attack-
free execution traces. To avoid the redundancy and falsifiability issues exhibited by naïve
mining approaches, we only try to find the safety temporal properties specified over the
scopes in the set of scopes S generated by the procedures in Sections 3.2.4 and 3.2.5.
The task of mining specifications depends on whether the properties we are looking for
are qualitative or quantitative. In this section, we examine the mining task for each case.

Qualitative properties. To mine qualitative properties, we instantiate each pattern
by replacing variables with process variable events and states, synthesize each instan-
tiation as a monitor, and run it on the set of training execution traces. A qualitative
property is valid if it is never falsified at any point in the training traces. Table 3.1 shows
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Algorithm 2: Conflicting events resolution
Data: T : Finite set of observed traces
Data: E : Finite set of system events
Result: p̂ : Common path

1 q ← queue();
2 for e ∈ E do
3 enqueue(q, {e});
4 visited← {};
5 while q not empty do
6 Current← dequeue(q);
7 insert(visited, Current);
8 Tproj ← {project(t, Current), t ∈ T};
9 ΠTproj ← {generate_paths(t), t ∈ Tproj};

10 p̂←
⋂

P∈ΠTproj

P;

11 if p̂ 6= ∅ then
12 return p̂;

13 for e ∈ E \ Current do
14 if |Current| < |E| ∧ Current

⋃
{e} 6∈ visited ∧ Current

⋃
{e} 6∈ q then

15 enqueue(q, Current
⋃
{e});

16 return None;

the qualitative properties we mine, along with the scopes we use and the monitorability
of the property. Note that we only mine using the between since we look for constraints
that are valid between each pair of events defining a scope. Moreover, since we mine
properties per activity (between the start of the activity denoted by act↑ and its end
denoted by act↓), the after and after until are in fact limited by the event act↓, the
before scope is limited by the event act↑, while the global scope is equivalent to the pair
of events (act↑, act↓. Thus, for our approach, all the scopes reduce to the between scope.

Quantitative properties. Instantiating quantitative properties is more complicated
in comparison to qualitative properties since they involve a temporal parameter. For
instance, the property pattern durationMin(X,T ) expresses the constraint that the log-
ical state X remains true for at least T units of time. While X can be replaced with
an actuator state as in the case of qualitative properties, finding a suitable substitution
for T requires more attention. We observe that if the property durationMin(S, 50s)
is true for a particular process state S, then duration(S, 40s) is also true. In general,
any value of T ≤ 50s will be true. Similarly, if durationMin(S, 70s) is false, then
durationMin(S, 80s) is also false. Here also, any value for T ≥ 70s will also be false.
We thus observe that for properties such as durationMin(X,T ), there exists a value t̂
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Table 3.1: Qualitative properties used in our mining approach

Qualitative property Scope Monitorability
Universality Between Yes
Absence Between Yes
Existence Between Yes
Response Between Yes
Precedence Between Yes

Table 3.2: Quantitative properties used in our mining approach

Quantitative property Scope Monotonicity Monitorability
Maximum duration Between Yes Yes
Minimum duration Between Yes Yes
Bounded recurrence Between Yes Yes
Bounded response Between Yes Yes
Bounded invariance Between Yes Yes

of T such that durationMin(X, t) is true for all values t ≤ t̂ and false for all values
t > t̂. We say that durationMin(X,T ) is monotonic in the parameter T. Properties
which exhibit monotonicity allow for an efficient procedure to find a suitable value for T
through a binary search approach. Checking whether a property exhibits monotonicity
has been studied in the literature [4, 62]. For instance, the approach in [4] allows identi-
fying monotonic properties based on syntactic deductive rules while the approach in [62]
encodes a property as a set of constraints in a fragment of first-order logic and then uses
a satisfiability modulo theories (SMT) approach to check for monotonicity. Table 3.2
shows the quantitative properties we mine, the scopes we use, the monitorability of the
properties and their monotonicity. For the same reasons as for the qualitative case, we
only mine using the between scope.

Based on the discussion above, the mining procedure consists in finding, for a user-
specified range of values [tmin, tmax], a user-specified tightness level d, and a monotonic
property p, a substitution of T which lies within d time units from the true target value
t̂. The tightness level determines how far from the true target level t̂ the final solution
can lie. Lower values of d mean that the substitution needs to lie closer to t̂. However,
values of d that are too low can lead to properties that are too conservative and thus to
false positives. By default, if no tighter initial bounds are given by the user, we set tmin
to the value 0 while we set tmax to a value equal to the total duration of the training
execution traces. To avoid overfitting the parameter d, we look for a value of d which
minimizes the number of false positives on the attack-free validation dataset which is
independent of the attack-free training dataset used to mine the properties.
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First, the validity of substitutions ptmin and ptmax over the training execution traces
is checked. If ptmin and ptmax return the same validity verdict (i.e, both invalid or valid),
then no suitable substitution for parameter T can be found. Otherwise, we partition
the range of values in two and check for the validity of substitutions : p

(
tmin+tmax

2
+d)

and p
(
tmin+tmax

2
−d)

If both substitutions return the same validity verdicts, the search

continues on either [tmin,
tmin+tmax

2 ] or [ tmin+tmax
2 , tmax]. Otherwise, a substitution for T

within the tightness level d has been found and the search can stop.

3.3 Evaluation

We evaluate our approach on a hardware-in-the-loop testbed with a simulated physical
process controlled by real PLCs. The process is a simplified chemical plant producing
benzene by hydrodealkylation of toluene [137]. A thorough evaluation would require
real data from an operational plant. However, getting such data is difficult due to the
particularly sensitive context of ICS. Also, publicly releasing information describing the
setup and the dataset is problematic, which is not satisfying from a scientific point of
view. Publicly available datasets2 are often too simple, including few sensors/actuators.
Studies which use real datasets are often limited to network trace files, while we require
the availability of control logic for a comprehensive analysis. Our goal was thus to develop
a realistic dataset which can still be publicly shared so that our results can be reproduced.

The physical process we have developed is simulated using OpenModelica3. Its pa-
rameters (tank dimensions, heating temperatures, mixing time, etc.) are set so that the
physical process undergoes several cycles during our simulations. Control is distributed
using three PLCs (Schneider M340 and M580 and Wago IPC-C6 with additional RTU
750-873). Each PLC sends commands and receives sensor information from the real-time
OpenModelica simulation via input/output (I/O) interface cards. The control logics ex-
ecuted by each PLC are implemented in SFC. To carry its task, a PLC may need to
communicate with other PLCs to query sensor states or send commands for distributed
control. Finally, HMI associated with each allows the operators to monitor and perform
manual interventions. Communication among all the ICS components is performed using
Modbus/TCP.

We now detail the simulated physical process, discuss how we carry attacks and
describe the implementation and the datasets. All the datasets, control logics and process
simulation files will be available online4.

3.3.1 Testbed description

The simulated physical process is shown in Figure 3.11. This process takes input products
P1 to P5 (on the horizontal line at the top of the figure) and yields output products P6
to P10 (on the vertical line at the right of the figure). The main objective of the process

2https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
3https://openmodelica.org
4https://persyval-platform.univ-grenoble-alpes.fr/0/searchbyrecently

https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
https://openmodelica.org
https://persyval-platform.univ-grenoble-alpes.fr/0/searchbyrecently
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P5

P5

Figure 3.11: Physical process model used in our evaluation

consists in carrying a chemical reaction to synthesize product P10 from reactants in the
silos S1 and S2. These reactants are manufactured from initial products in several stages
involving mixing (motors M1 to M4) and quality testing (QC1). The reaction occurs in
the reactor RE1 and residual reactants are recycled by feeding them back to the silos S1
and S2. Products P1 and P2 undergo a first phase of mixing in tank TK1 using motor
M1. The resulting product goes through further treatment in tank TK2 using motor
M2 and a secondary product P5 delivered by cart wagon CH1. As soon as the product
leaves TK1 for the buffer tank TP1, a new batch of product is prepared until the silo S1
is full. Input products P3 and P4 undergo a similar treatment in tanks TK3, TP2, and
TK4. However, before leaving for the silo S2, the mixture is tested for conformity by
delivering a sample to QC1. If the product is of good quality, the mixture is transferred
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to S2 through valve VT4. Otherwise, the mixture is taken out of the physical process
through valve VO (Product P7). The result of the conformity test is indicated by the
sensor SMPL and the sample product is evacuated using valve VSO (Product P6).

To carry the chemical reaction, the required amounts of the reactants are taken
from the silos S1 and S2 and heated in HT1. The actual reaction occurs in the reactor
RE1. Then, the resulting substance is cooled in CO1. Not all the reactants undergo a
transformation, so separation and recycling are performed in the separators SP1, SP2
and in the distillation column DI1. The reactants are recycled by feeding them back to
the silos S1 and S2. Products P8 and P9 are considered as by-products of the chemical
reaction.

The physical process involves 71 sensors and actuators and has two modes: manual
and automatic. The manual mode allows the operators to carry interventions on the
process and override the control performed by the PLCs. All in all, the physical process
is divided into 18 activities: 10 activities for the generation of the reactants in S1 and
S2, and 8 activities for the actual chemical reaction and recycling phases.

3.3.2 Attacks and operators interventions

To evaluate our approach, we need to generate attack traffic. However, attacks depend
strongly on the monitored system and, contrary to traditional IT domains, no dataset
with significant attacks targeting ICS is available. We thus identify possible attacks on
sequential control systems, taking into account real attack cases [122, 32]. In particular,
we model our attacks on the recent CrashOverride malware [32] by defining sequences of
commands whose execution induces incorrect process behavior (i.e, sequence attacks).

Moreover, we need to subject the ICS to interventions from process operators. In-
cluding manual operations from process operators is essential as they constitute a major
cause of false positives [23]. While false positives are hard to avoid in anomaly-based
approaches, our aim is to give security operators enough information so that they can
identify whether an alert is actually a false positive. We discuss in this section a model
of manual interventions covering both attacks and process operator interventions.

A) General intervention models

We start from the observation that both a process operator’s and an attacker’s inter-
ventions consist of a series of commands sent to a PLC to perform actions following
a procedure. For instance, the process operator has access to a high-level view of the
physical process and its state through an HMI and uses its interface to affect the process.
Yet, on the wire, these high-level operations are seen as a series of commands. In our
case, these commands correspond to Modbus messages sent to a PLC.

There are two parameters to consider in such a series : (i) the actual order of the
commands, and (ii) the delay between the commands. For a legitimate operator, uncer-
tainty can arise for both of these parameters. From an attacker’s perspective, sequence
attacks are carried out by manipulating either the order of the commands (qualitative
sequence attacks), or the delay between commands (quantitative sequence attacks). To
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model the behavior of operators and attackers, we use semi-Markov models which have
proven to be successful in modeling operators’ behaviors in human supervisory control
settings [16]. We refer to these models as action automata. Each state in the model
corresponds to a step in the procedure followed by an operator or an attacker. More-
over, each state is associated with a Modbus/TCP command to be sent to a PLC. For
each state, we specify the parameters (µ,σ) of the normal distribution associated with
the state duration. As discussed in [16], the parameters can help distinguish between
different supervisory tasks.

Additionally, both operators and attackers may need to carry their actions in specific
states of the physical process. For instance, an operator might open a valve to empty
a tank only when the tank is full. Similarly, an attacker might wait for a chemical
reaction to get underway before manipulating actuators to interfere with it. We allow
legitimate actions and attacks to be performed at specific states of the physical process
by associating the action automata with steps within the control logics (SFCs) executed
by the PLCs. At runtime, when control reaches an SFC step which is associated with an
action automaton, a choice is made as to whether to execute the action automaton or
not. If the decision is made to execute the action automaton, the commands specified by
the automaton’s steps are issued. We now examine in more details the action automata
corresponding to legitimate operations and attacks.

B) Action automata for legitimate operations

To model legitimate operations, we use a loop-free linear sequence of commands with a
random delay (type I action automaton in Figure 3.12). The length of these sequences
depends on the number of actuators manipulated by the operator or attacker. In all cases,
two states are allocated for setting the process into manual mode at the beginning of the
sequence, and back to automatic mode at the end of the sequence. Process operators
can either perform quick actions (for instance setting the process into manual mode and
moving to the next action in the procedure) or actions with a predefined amount of time
(open a valve for 20s). To handle such cases, we adjust the state duration parameters
in the operators’ automata accordingly. In these examples, we would use the following
settings respectively (µ = 2s, σ = 500ms) and (µ = 20s, σ = 2s)

C) Action automata for attacks

Some attacks can also be modeled using type I automata. In this case, the attacker
imitates the behavior of a legitimate operator. In this case, the main differences compared
to a legitimate operation reside either in the set of manipulated actuators, the ordering of
manipulations, or the SFC steps which are associated with the automaton. Thus, in our
model, an automaton corresponding to a legitimate operation can represent an attack
if it is associated with the wrong SFC step, i.e if it is executed in the wrong state of
the physical process. For instance, manipulating valve VP1 in Figure 3.11 makes sense
when tank TK1 is being filled but represents a malicious behavior when TK1 is being
emptied.
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In addition to the first model, we use a second type of automata (type II action
automaton in Figure 3.12) to model a wear attack where the attacker rapidly and suc-
cessively sends two commands such as the opening and closing of a valve or a circuit
breaker [32]. At the heart of this model is a single loop oscillating between two states.
As in the first type, two states are allocated for moving into and out of manual mode.

Table 3.3 presents examples of attacks that we carry in our evaluation. Annex B
provides the details of the parametrization of these attacks. We start by identifying
incorrect behaviors which the physical process must not exhibit. This includes, for in-
stance, tampering with motors or injecting a bad product mix. Then, we identify, for
each scenario, the actuators which the attacker need to manipulate and the automaton
type that models the particular sequence of actions.

s0start s1 s2 sf

(µ0, σ0) (µ1, σ1) (µ2, σ2)

Type I action automaton

s0start s1 s2 sf

(µ0, σ0) (µ1, σ1) p21 (µ2, σ2) p2f
(µ0, σ0)

Type II action automaton

Figure 3.12: Action automata used in the intervention block

3.3.3 Implementation and datasets

Mining, monitoring, and activity recognition are implemented in C++/Python. Analysis
is performed on an Intel Dual Core i7 2.6 Ghz machine with 16 GB of RAM and Linux
kernel 4.4.0. The monitors are generated using Aerial5. The activity recognizer takes
two files as inputs : (i) an XML file following the PLCOpen6 standard containing the
specification of the SFC which execution is followed, and (ii) a configuration file which
specifies the steps to activities mapping. The algorithms presented in Section 3.2 for the
generation of scopes are implemented in Python.

The evaluation relies on 4 network captures during which the physical process goes
through several cycles for every activity (up to tens of cycles for the most frequently
executed activities). A 2-hours long training traffic is used to generate the set of scopes
and perform the mining of properties. Concurrently, we perform a pre-defined set of
legitimate operator interventions as discussed in Section 3.3.2. The training dataset
reflects realistic conditions where certain legitimate behaviors are absent due to the

5https://bitbucket.org/traytel/aerial
6http://www.plcopen.org

https://bitbucket.org/traytel/aerial
http://www.plcopen.org
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Table 3.3: Description of attacks carried out in the evaluation

Attack Objective Targeted variables Type
A1 Inserting a bad balance of products

P1 and P2 in TK1
VP2@PLC1 I

A2 Inserting a bad balance of products
P1 and P2 in TK1

VP1@PLC1
VP2@PLC1

I

A3 Wearing motor M1 through quick
start/stop commands

M1@PLC1 II

A4 Introducing unfinished reactant in
S1

VT2@PLC1 I

A5 Stopping mixing of reactant in TK2
short of 60s

M2@PLC1 I

A6 Inserting a bad balance of products
P3 and P4 in TK2

VP4@PLC2 I

A7 Wearing motor M3 through quick
start/stop commands

M3@PLC2 II

A8 Stopping mixing of reactant in TK4
short of 60s

M4@PLC2 I

A9 Introducing bad quality product in
S2

VT4@PLC2 I

A10 Tampering with the reactor during
the chemical reaction

R1On@PLC3 II
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limited training window. For evaluation purposes, we use 3 captures spanning 3 hours
each and containing a total of 36 instances of sequence attacks.

3.4 Analysis

In this section, we evaluate our approach along three aspects : (i) the practicality of
scopes generation, (ii) the reduction in the number of mined redundant properties, (iii)
the detection of attacks and sources of false positives

3.4.1 Scopes generation

Table 3.4: Results of metrics MA
1 and MA

2 for the activities with conflicting events

Activity MA
1 MA

2

Act 1-1 6.7 6.25
Act 1-2 5.1 5
Act 2-1 3.2 6.25
Act 2-2 4.5 8.3
Act 3-1 10 2.9

The first step of the mining process consists of identifying the scopes to be used in the
search for valid properties. As we argued in Section 3.2.3, our procedure for generating
an adequate set of scopes depends on regularity assumptions about the observed traces.
We assess this regularity through two activity-specific metrics : (i) the proportion of
unique observed traces with respect to the total number of observed traces

MA
1 =

# unique observed traces in activity A
# observed traces in activity A

and (ii) the proportion of conflicting events

MA
2 =

# conflicting events in activity A
# events in activity A

MA
1 gives an indication of the number of unique observed traces over which scopes

identification is performed for activity A (see Section 3.2.5). MA
1 = 1 means that all the

observed traces for activity A are unique, while lower values of MA
1 indicate that the

activity tends to generate fewer unique observed traces. As we discussed in Section 3.2.5,
the case when multiple unique observed traces are present for a given activity is more
complex and requires finding a common path across all the unique observed traces.

MA
2 provides an indication of the number of events which must be discarded to

construct a set of scopes for activity A. As MA
2 gets lower, fewer events need to be



72
Chapter 3. Process-oriented Intrusion Detection in Sequential Control

Systems

discarded which in turns leads to more precision and fewer redundancies in the mined
properties.

Table 3.4 reports, for each activity A containing conflicting events, the values of MA
1

and MA
2 . We see that, for activities with conflicting events, the percentage of unique

observed traces does not go beyond 10% of the activity’s total observed traces.
This indicates that observed traces tend to be stable across the majority of the

activities. The only exceptions pertain to activities Act1-2 and Act2-2. These activities
correspond to the generation of, respectively, the first and second reactants in tanks TK1
and TK2. This generation depends in turn on the state of buffer tanks TP1 and TP2
(via sensors tpvid1 and tpvid2) which ultimately depends on the amount of reactants in
silos S1 and S2. These dependencies which lie outside of the activities Act1-2 and Act2-2
mean that events pertaining to sensors tpvid1 and tpvid2 can happen anywhere in their
observed traces. In fact, we observe that, for a given activity, conflicting events generally
pertain to sensors whose state does not depend exclusively on actions performed within
the activity. However, we also observe that the proportion of conflicting events shrinks
as the size of the activity (i.e, number of steps) grows. For instance, in Table 3.4, Act3-1
which is the longest activity within the system (11 steps), exhibits the fewest number
of conflicting events (5.5%). Since longer activities tend to produce significantly more
redundant properties in naive mining approaches, this means that significant gains in
terms of redundancies can be achieved.

Table 3.5: Scopes generation result

Activity # SFC Steps Time (s) # Scopes
Act 1-1 4 0.064 6
Act 1-2 6 0.092 6
Act 2-1 4 0.084 6
Act 2-2 3 0.076 3
Act 2-3 3 0.069 3
Act 2-4 2 0.069 2
Act 3-1 11 1.508 17
Act 3-2 2 0.047 2
Act 3-3 1 0.060 1
Act 3-4 1 0.036 1
Act 3-5 1 0.040 1
Act 3-6 1 0.061 1
Act 3-7 1 0.035 1
Act 3-8 1 0.077 1
Act 3-9 1 0.063 1

Table 3.5 shows the results of the scopes’ identification step for the 15 evaluated
activities. The table displays the number of SFC steps in each activity, the time elapsed
to identify the scopes and the number of identified scopes to be used in the mining
phase. We observe from Table 3.5 that the number of mining scopes is always greater
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or equal than the number of SFC steps for each activity. We also note that the number
of scopes increases with the number of steps within the activity. This indicates that, in
general, more precise constraints can be mined on the traces at the level of events and
scopes compared to the level of SFC steps. Since the scopes are able to represent finer
distinctions within the observed traces, they are more suitable to avoid over-specification
issues (see Section 3.2.3).

3.4.2 Properties mining

The second step of the mining process is to find, for each activity, the set of valid
properties on the training dataset using the scopes generated in the previous step.

Table 3.6: Interpretation of the set of scopes generated for activity Act 1-1 and examples of
mined properties

Scope Interpretation Examples of properties
(act↑, t1vid↓) A new batch of the first reactant is be-

ing produced, tank TK1 is being filled
with product P1

absence(vp2)
durationMin(vp1,13s)

(t1vid↓, p1↑) Finished filling TK1 with product P1 universality(vp1)
durationMax(vp1,44s)

(p1↑, p2↑) Filling TK1 with product P2 absence(m1)
existence(vp2)

(p2↑, p2↓) Tank TK1 has been filled with prod-
ucts P1 and P2, now mixing products
in TK1 and started emptying tank TK1

response(m1,vt1)
durationMin(m1,50s)

(p2↓, p1↓) Tank TK1 is being emptied universality(vt1)
durationMax(vt1,46s)

(p1↓, act↓) Tank TK1 is being emptied and the
batch of the first reactant has been pro-
duced

absence(vp1)
durationMin(vt1,28s)

Table 3.6 shows the set of scopes identified for activity Act 1-1 along with the inter-
pretation of each scope and some properties mined on the scope. For instance, the scope
(act↑, t1vid↓) corresponds to the start of a new batch of the first reactant and the intro-
duction, in tank TK1, of product P1. On this scope, we mine qualitative properties such
as absence(vp2) which forbids valve vp2 from being opened while product P1 is inserted
(otherwise the balance between products P1 and P2 is impacted). We also mine quan-
titative properties such as durationMin(vp1, 13s) which specifies the minimum amount
of time valve vp1 is opened when introducing product P1.

Table 3.7 reports the mining results for all 15 activities. For each activity, the table
displays the amount of time needed for the mining process along with the number of quali-
tative and quantitative mined properties for the scope-based approach. We also compare
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the number of mined qualitative properties with Texada7, which is a general purpose
LTL specification miner which does not perform any filtering of redundant properties.
Compared to a general purpose miner, the scope-based approach consistently mines a
fewer number of properties. This is especially apparent for long activities such as Act 3-1
where we only retain 0.6% of the properties mined by Texada. Generally, longer activ-
ities involve more actuators and sensors, increasing the number of possible scopes and
of properties. In our case, for each activity, the number of scopes on which mining is
performed is significantly lower than the number of possible scopes. This provides an
advantage over other approaches which do not perform any pre-selection of scopes and
produce a large number of redundant properties.

Table 3.7: Properties mining result

Activity Qualitative properties Quantitative properties
Mining time (s) Scope-based LPB15 [79] Mining time (s) Scope-based

Act 1-1 5 31 1616 16 19
Act 1-2 7 38 4247 19 18
Act 2-1 6 28 1437 25 16
Act 2-2 4.5 14 216 14 2
Act 2-3 4.5 14 409 11 6
Act 2-4 5 13 381 16 5
Act 3-1 32 281 46657 54 81
Act 3-2 5.5 12 105 8.5 1
Act 3-3 5 12 38 11.5 3
Act 3-4 6 12 38 11 3
Act 3-5 5.5 12 38 8 3
Act 3-6 6 12 38 11 3
Act 3-7 5.5 12 38 8.5 3
Act 3-8 6 12 38 11 3
Act 3-9 5 12 38 11 3

3.4.3 Attack detection and false positives

To evaluate the performance of our intrusion detection approach, we deploy the monitors
synthesized from the properties identified in the mining phase and run the three evalu-
ation datasets. As expected, all attacks were successfully identified across all datasets.
Table 3.8 reports the properties violated by each of the attacks described in Table 3.3.
For each violated property, the operator has access to the scope on which the property
is valid and which has a particular meaning with respect to the process (for example
see Table 3.6). For instance, attack A3 which consists in a wear attack on motor M1
is detected through a quantitative property on the scope (p2↑, p2↓) restricting the min-
imum amount of time motor M1 must be operating (50s). Except for attacks A4 and

7http://bitbucket.org/bestchai/texada

http://bitbucket.org/bestchai/texada
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A9, all attacks are detected through a single property violation. However, attack A4 and
A9 differ in that attack A4 generates similar violations on consecutive scopes, while A9
reports different violations on the same scope.

Table 3.8: Temporal properties violated for each attack carried in the evaluation

Attack Type Violated properties
Qualitative Quantitative

A1 I (t1vid↓,p1↑):absence(vp2)
A2 I (p1↑,p2↑):absence(vp2)
A3 II (p2↑,p2↓):durationMin(m1,50s)
A4 I (tp1vid↑,sb↓):absence(vt2)

(sb↓,sh↑):absence(vt2)
A5 I (svid↓,act↓):durationMin(m2,60s)
A6 I (t2vid↓,p3↑):absence(vp4)
A7 II (p4↑,p4↓):durationMin(m3,50s)
A8 I (tsvid↓,act↓):durationMin(m4,60s)
A9 I (tsvid↑,act↓):absence(vt4)

(tsvid↑,act↓):universality(vo)
(tsvid↑,act↓):durationMin(vo,30s)

A10 II (ll1↓,ll3↑):durationMin(r1on,400s)

We also record false alarms due to operator interventions not seen in the training
dataset. Generally, we observe one violation per operator action. This follows from
the precision requirement on the scope set which ensures that violations report the most
precise scopes. Maintaining a limited number of alerts is important to avoid overwhelming
the security analyst. In contrast, due to a large amount of redundant mined properties,
the other approaches produce 10 to 30 times as much number of violated properties
for every operator’s action during the longer activities. In this case, the analyst needs
to sift through a larger number of violations to discriminate attacks from false alarms.
While most activities have a false positive rate below 10%, the longest activities such as
Act 3-1, can reach a rate as high as 35%, of which more than 80% are false positives
relative to quantitative properties. These quantitative false positives all relate to slight
deviations from the quantitative constraint such as when a valve which must not be kept
for more than 21s, is kept for 22s. One reason for these discrepancies is the limited
representativity of the total behavior of the activity afforded by the training traces.
By gathering more data on the normal behavior of the activity, we expect such false
positives to diminish. We discuss below another solution which consists in using more
robust monitoring techniques in the case of quantitative properties.

Consider the following property durationMin(vp1, 13s). A violation of this property
can occur if valve vp1 stays open for an amount of time less than 13s. However, in terms
of interpreting the violation, one can further distinguish between cases where vp1 stays
open for an amount of time close to 13s (for instance 12s or 11s), and cases where the
behavior of the valve deviates significantly from the constraint (for instance by staying
open for 3s). While the first case might point to a false positive, the second case can
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be more readily interpreted as a wear attack on valve vp1. Thus, in addition to the
binary information concerning the violation of the quantitative property, an operator
might also want to get a quantitative estimation of the deviation with respect to the
constraint. Recent research within runtime verification has begun exploring such issues
by developing such monitoring techniques for certain classes of metric temporal logic
properties [31].

3.5 Conclusion

Detecting process-aware attacks in ICS requires adequate intrusion detection measures
which take into account the physical process. In this chapter, we have presented an
approach to efficiently mine and monitor safety properties on execution traces of the
physical process. Process operators can use the approach both for online detection of
attacks, but also for retrospective root cause analysis of abnormal events.

However, relying solely on process-oriented intrusion detection approaches does not
allow the operator to identify the source of the attack. Such a global view requires the
combination of intrusion detection approaches from both the physical and the cyber do-
mains. Overall, the integration of feedback from the operator on reported violations and
of alerts from other IDS might help achieve lower rates of false positives and facilitate the
diagnosis of abnormal events. However, correlating alerts from heterogeneous domains as
can be found in ICS faces many challenges. In particular, proper pre-treatment and nor-
malization of heterogeneous alerts are necessary to unify the alert attributes and enable
alert aggregation and attack scenario reconstruction. In the next chapter, we introduce
an alert normalization approach that can assist in correlating alerts from multiple IDS
in an ICS.
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Chapter 3 introduced a physical domain intrusion detection approach which reports
alerts in terms of violated temporal constraints over actuator/sensor states and events.
However, physical domain detection methods cannot identify the source of the attacks,
hence the need for cyber domain IDS which analyze network activity at a higher level of
the ICS. On the other hand, these cyber domain IDS do not provide information about
the effect of attacks on the physical process. Since attacks targeting the physical process
can produce manifestations both in the physical and the cyber domains, we need to
correlate manifestations from both domains to better understand the alerts.

In IT systems, alert correlation [139, 29, 140] is a set of techniques used to eliminate
redundant alerts, reduce the number of false alerts, and reconstruct attack scenarios. So
far, there have been few attempts at developing alert correlation in ICS. Classical alert
correlation models [140] include normalization and pre-processing stages which unify the
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attributes’ values between alerts from different IDS. However, these stages are often
either implicitly assumed, or their extent is limited to filling missing values such as the
time, the source or the type of attacks [140]. In ICS, these pre-processing stages are more
complex due to the heterogeneity of the alerts received by the correlator from both the
physical and cyber domains.

Moreover, for each new alert, a correlator needs to decide which previously received
alerts will be tested for correlation. This choice is called an alert selection policy. A naive
policy will memorize and test all received alerts. However, due to resource limits, most
alert correlation approaches set a sliding time window with a fixed size. Each new alert
is tested with all or a subset of the previous alerts in the current window. For instance,
the authors in [140] heuristically set a window size of 2s. In ICS where the evolution
of the physical process is hard to predict, deciding on a single optimal window size is
problematic.

In this chapter, we develop a correlation solution which bridges between the physical
domain intrusion detection approaches such as the one developed in Chapter 3, and cyber
domain intrusion detection approaches. To pre-process alerts in ICS, we use information
about the devices laying at the boundary of the physical and cyber domains, namely the
controllers. Given the diversity of the network interfaces and ICS protocols supported
by the controllers, an attacker can use different vectors at the network level to achieve
the same effect on the physical process. Based on these observations, we argue that the
physical and cyber domains are linked through abstraction relations. By relying on the
notion of abstraction operator [126], alerts from the physical domain can be rewritten in
terms of cyber attributes and correlated with cyber domain alerts. Next, to answer the
issue of alert selection, we develop alert selection policies that adapt to the state of the
physical process rather than use a fixed size time-based alert window. Finally, through
an aggregation phase, we group alerts from both the physical and the cyber domains
into clusters that reflect elementary attack steps or operator interventions. Our solution
can then serve as the necessary first stage for more other alert correlation tasks such as
attack scenario reconstruction.

This chapter is organized as follows. Section 4.1 presents our alert correlation solution.
Section 4.2 describes our evaluation setup and implementation. Section 4.3 provides a
discussion and analysis of the results. Finally, Section 4.4 concludes the chapter.

4.1 Alert correlation approach

In this section, we delve into the details of our alert correlation solution. First, we
pinpoint the scope of our approach before going over our contribution.

4.1.1 Scope of our alert correlation approach

Figure 4.1 shows the scope of our alert correlation process. For simplicity, we omit
the verification and alert prioritization stages which can also be integrated within the
correlation process.
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Figure 4.1: Scope of our alert correlation approach

The input of our approach consists of alerts coming from both the physical domain
and the cyber domain IDS. Besides physical domain IDS such as the one developed in
Chapter 3, various cyber domain IDS, many of which were discussed in Chapter 2 (flow-
based IDS, vocabulary and grammar oriented IDS, etc.), can be used as alert sources for
the correlation block.

The output of our approach is a set of meta-alerts, each one aggregating several alerts
which eventually come from different domains. The meta-alerts can be used in subsequent
correlation stages to reconstruct complex attack scenarios that can be displayed to a
security operator through a SIEM.

The heart of the alert correlation process is performed in three stages. In the alert
selection stage ( 1 ), the received alerts are inserted into activity-specific alert windows
(see Section 3.2.1 for a discussion of activities). Since we consider an online correlation
process, alert windows limit the number of alerts considered for normalization and aggre-
gation. In our approach, these alert windows are instantiated and terminated depending
on the evolution of the activities at runtime. The activity recognizer is responsible for
notifying the correlator about the runtime context of the physical process (i.e, the active
steps within the activities). It tracks the current active steps using the SFCs implemented
in the PLCs and the evolution of actuator/sensor states.

The activity recognizer is provided with the SFCs executed by the PLCs and does
not need to connect to the PLCs in order to obtain them. Similarly, it can directly
monitor the evolution of actuator and sensor signals without interacting with the PLCs.
Thus, through the activity recognizer, the alert selection stage has access to the runtime
context of the physical process independently of the PLCs.

In the alert enrichment stage ( 2 ), the correlator transforms the alerts coming from
different IDS so that they can be compared for aggregation. In particular, alerts from
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the physical domain are transformed and enriched with cyber domain information given
knowledge about the PLCs’ configurations and supported protocols.

Finally, the alert aggregation stage ( 3 ) tests whether alerts are correlated and keeps
track of the correlations. Correlated alerts are grouped into meta-alerts which can be
presented to the security operator through a SIEM software for instance. The meta-alerts
contain references to the aggregated alerts. Feedback about successful aggregations is
reported back to the alert selection policy. This feedback can be used to select the next
alerts to test for aggregation (edge from 3 to 1 ).

4.1.2 Motivating example

Figure 4.2 depicts a simplified sub-process that will be used in this section as a running
example to illustrate our alert correlation approach. This sub-process represents a single
processing stage in a multi-stage chemical plant. Product incoming from the physical
process is first put in tank TK2 through valve VTP1. Using the cart CH1, a quantity
of product P5 is also added to the content of tank TK2. Then, the products are mixed
using motor M2 for a fixed amount of time. Finally, tank TK2 is emptied using valve
VT2.

These control operations are performed by a PLC and correspond, in terms of con-
trol logics, to a single activity (a linear sequence of step-transitions). In the supervisory
domain, a supervisor HMI along with an OPC server allows the operators to perform
manual interventions on the process. In our example, the supervisor HMI can com-
municate with the PLC using either Modbus or SOAP web-services through the PLC’s
internal web server. The OPC server only uses Modbus. The engineering workstation is
solely used to reprogram the PLC and is never used for any process interventions.

PLC

Engineering
Workstation

Supervisor
HMI

OPC Server

Physical
process IDS

Payload-based
IDS

Figure 4.2: Example of a subprocess with its associated control and supervisory devices

Two types of IDS are deployed : (i) a physical process IDS which surveys the state
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of the sensors/actuators through cyclical observation of the signals and reports any pro-
cess specification violation such as the opening of a valve in the wrong step, and (ii) a
protocol-specific payload-based IDS which reports any unknown attempt to manipulate
an actuator on the PLC. For instance, unknown attempts might be due to a Modbus
write command sent from an unauthorized host (engineering workstation), or by using a
previously unseen protocol (a SOAP request from the OPC Server).

A possible process-aware attack on this sub-process is an attempt to overflow the
tank TK2 through the malicious manipulation of valve VTP1. In a typical run, this
valve is only manipulated at the beginning of the activity until tank TK2 is filled. To
overflow TK2, an attacker can keep valve VTP1 open throughout the activity. If the
attacker sends the command to open valve VTP1 from an unauthorized host such as the
engineering workstation, then both the physical process IDS and the payload-based IDS
will raise alerts. The goal of alert correlation is to group such alerts so that they can be
displayed together to a security operator. The alert from the payload-based IDS would
allow the operator to incriminate the engineering workstation and further investigate
the source of the attack (by examining the workstation’s logs for instance). However,
the payload-based IDS alert can also be a false positive (a message not observed during
learning). Similarly, the opening of valve VTP1 might be a legitimate action or an action
with low incidence on the physical process. Using the alert raised by the physical process
IDS, the operator can recognize that it is indeed an attack and that given the current
context of the physical process, opening valve VTP1 is critical. Thus, the association of
information from both the payload-based IDS and the physical process IDS allows the
operator to gain precious time in the characterization of the alerts.

In the remainder of this section, we introduce an alert correlation approach that
maps the physical domain alerts into the cyber domain so that it can be compared and
associated with the other cyber domain alerts.

4.1.3 Alert selection

The alert selection phase relies on an alert window and some predefined alert selection
policies to decide which alerts will be provided to the subsequent stages.

Since we perform online correlation, i.e. where alerts are correlated upon reception
and the results are immediately forwarded to the next stage, each alert can only be kept
a finite amount of time during which it can be aggregated with other alerts. Performing
correlation online answers two pressing constraints: (i) the limits in terms of memory
resources, and (ii) the need to reduce the response time of the correlator. Since alerts
are stored in volatile memory, only a limited number of alerts can be kept at any time
by the correlator. Additionally, reducing the response time of the correlator allows the
security operators to react in a timely fashion.

To answer these constraints, classical alert correlation [140] approaches resort to use
a sliding time window. Only alerts that fall within this window are retained by the
correlator. While such a solution answers the above requirements, agreeing on the size
of the time window is not straightforward. Ultimately, the choice of a window size
depends on the goal of the correlation. For instance, the reconstruction of long-term
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attacks requires a time window with a different size in comparison to the time window
required for the aggregation of alerts corresponding to an attack’s elementary steps. For
a given correlation goal, the choice of the time window size determines which alerts will
be compared for aggregation. Thus, a time window implicitly defines a similarity measure
for alerts based on the time attribute. Alerts which fall within the same time window
are assumed to be more similar than those falling outside of the time window. Selecting
an inadequate time window size can lead to missing correlations if the size is too short,
or to unwanted correlations if it is too long.

Because the evolution of the physical process is hard to predict, deciding on a single
optimal time parameter is problematic. For instance, the duration of a particular stage
in the physical process’s execution can depend on the state of other process stages or on
the occurrence of a manual intervention by process operators. As a result, interesting
correlations can be missed if the windows are not adjusted accordingly. For example, in
the sub-process shown in Figure 4.2, maintaining the valve VTP1 open causes violations
to be raised by the physical process IDS throughout the activity since VTP1 should only
be manipulated at the beginning of this activity, i.e. when filling the tank. A sliding time
window-based correlator would need to adjust the window’s size to match the activity’s
duration in order to collect all the alerts relative to the attack. However, the transitions
in an activity can depend on other parts of the physical process (the influx of product
P5 from another subprocess) as well as on specific time conditions (such as running
motor M2 for a certain amount of time). Moreover, an operator can also manipulate
VT2 to interrupt the flow of output product and thus impact the activity’s duration.
Consequently, the time spent in each activity is hard to predict.

We thus argue that a time-based alert window is not adequate in the context of ICS.
Instead, we propose to dynamically adjust the size of the alert window depending on
the state of the physical process to avoid missing useful aggregations. As argued above,
the selection of an alert window policy depends on the overall goal of the correlation.
In our case, we focus on the early stages of the correlation process where the goal is
to aggregate alerts corresponding to the elementary steps of complex long-term attacks
(see Section 4.1.1). In the context of ICS, long-term attacks include distributed attacks
that can impact multiple activities or stages within the physical process. Regardless
of the complexity of a given attack, its elementary steps always target an actuator in
a particular activity. Our goal is to correlate alerts corresponding to these elementary
steps. To do so, instead of setting a fixed alert window size, we associate an alert window
to each activity and adjust the size of the window at runtime by monitoring the activation
of steps in the activity. As a result, the size of a given alert window varies dynamically
depending on the time taken by its associated activity.

To illustrate our solution, Figure 4.3 shows, for the activity corresponding to the
subprocess in Figure 4.2, the activity’s linear sequence of steps and transitions along
with its associated time window. The steps, labeled S0-S4, are associated with actions
on actuators in the physical process. For instance, at step S0, the PLC opens valve
VTP1 to let input product in tank TK2. The transitions between steps depend on
boolean conditions over sensor states and internal variables. For example, when control
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is at step S0 and the sensor tpvid is activated, control moves to step S1. We allocate,
for each step within the activity, a slot in the alert window. Thus, the alert window in
Figure 4.3 has 4 slots corresponding to the 4 steps in its associated activity. When control
reaches a step within the activity, newly received alerts are inserted in the corresponding
slot within the alert window. For instance, control in Figure 4.3 has reached step S4 and
thus any new alert is inserted in its corresponding slot within the alert window. Through
the correspondence between slots in the alert window and steps within the activity, the
size of alert windows can vary dynamically depending on how long control stays within
the activity’s steps.

Finally, allocating slots within the alert windows allows us to introduce three alert
selection policies that differ based on the number of slots taken into account:

All alerts. In this simple policy, all the alerts from the activation of the first step of
the activity until the end of the activity are selected for correlation.

Alerts in adjacent steps. This policy takes into account the intermediate steps within
an activity. Only alerts that occur within the last 2 slots are selected for correlation. The
policy rests on the assumption that alerts that occur in adjacent slots are more pertinent
than those in farther slots.

Adaptive alert selection. Instead of fixing a parameter for the number of relevant
neighboring slots, this policy uses the result of previous correlations to decide on the
number of past neighboring slots to include. At first, the new alert is tested against
the alerts in the current slot. Then, the correlations are iteratively tested against earlier
slots. If a correlation cannot be found within a slot in an iteration, no alerts in earlier
slots are tested. This policy allows finding activity-long attacks by linking alerts from
adjacent slots until no further correlation is possible.

4.1.4 Alert enrichment

In this section, we discuss in details our alert enrichment approach. First, we introduce
a motivating example, highlight the main difficulties and discuss the limits of existing
approaches in providing a solution. We then explore our enrichment model and process.

A) Motivation

Recall that the enrichment step’s objective is to map alerts from IDS in the physical
domain into alerts in the cyber domain so that they can be correlated with other cyber
domain alerts. To illustrate the need for such a mapping, consider the attack on the
example subprocess in Figure 4.2. The process monitor reports an alert Apm concerning
the forbidden opening (↑) of valve VTP1. The alert Apm is expressed using the following
list of attribute key-value pairs:

Apm : [(component,VTP1), (event, ↑)]
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where component and event are the attributes through which the monitor reports the
attack manifestation. If the attacker opens valve VTP1 by sending a Modbus command
from an engineering workstation with address Hew to the PLC with address Hplc, then
the Modbus actuator access monitor could raise an alert Aam:

Aam : [(source IP, Hew), (destination IP, Hplc), (function code, 5), (address, 41), (data, 1)]

In this alert, the attributes correspond to the fields in a Modbus message (see Annex C
for a presentation of Modbus).The function code attribute has the value 5 which refers
to the modification of a single coil (1-bit variable). The value of the address attribute
corresponds to the mapping of actuator VTP1 in the PLC’s memory. For the purpose of
our example, VTP1 is mapped to address 41 and can be accessed either through Modbus
or SOAP/HTTP. Here, actuator VTP1 is opened by setting its value to 1 through the
data field. The protocols used to modify VTP1 can be determined from the PLC’s
supported interfaces. The memory mapping of process variables, including VTP1, is
specified during development time by an engineer.

We note that there are no common attributes between Apm and Aam. Each alert
comes from a monitor operating in a different domain, and they consequently report
alerts in terms of widely different attributes. It is impossible to directly compare the
alerts without a pre-processing stage. The next observation is that Aam is only one
possible manifestation of the attack in the cyber domain. To achieve his objective, the
attacker can select between different requests that command the opening of VTP1. These
requests can be detected by the actuator access monitors but will result in alerts that
vary in terms of attributes and values. For example, consider the following two possible
alerts:

A
′
am : [(source IP, Hew), (destination IP, Hplc), (function code, 15), (start address, 40),

(quantity, 3), (values, 010)]

A
′′
am : [(source IP, Hew), (destination IP, Hplc), (function code, 15), (start address, 41),

(quantity, 2), (values, 10)]

In this case, the attacker uses function code 15 which allows the modification of
multiple coils at a time. The start address, quantity, and values give respectively the
offset, the quantity of coils to be modified, and the values to write. In each of A′am
and A′′am, address 41 (corresponding to VTP1 ) is assigned the value 1. It is clear that,
by further varying the start address, quantity and values attributes, the attacker can
generate a greater variety of Modbus commands which lead to the opening of valve VTP1.
Note also the attacker could have used another protocol such as a SOAP/HTTP request,
which further increases the possibilities. The recent CrashOverride attack (Section 1.3)
is a prominent example where at least four possible protocols (IEC 101, IEC 104, IEC
61850 and OPC DA) are available for the attacker.

In general, we observe that, due to the possibilities through which an operator or
an attacker can interact with a PLC to affect any given process variable, the physical
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domain and the cyber domain are linked through an abstraction relation. For instance,
an actuator event such as the opening of valve VTP1 abstracts away from the particular
PLC interface (Modbus or SOAP/HTTP) or protocol variation (Modbus function code
5 or 15) that was used to modify the PLC’s memory variable corresponding to VTP1.

One difficulty raised by this abstraction relation is how to represent the large number
of cyber domain observations corresponding to a single physical domain observation. In
classical alert correlation approaches, alerts are represented formally as a conjunction of
attribute-value equalities. For instance, alerts Apm and Aam above can be represented
by the following logical conditions:

Apm :=component = VTP1 ∧ event =↑
Aam :=source IP = Hew ∧ destination IP = Hplc ∧ function code = 5 ∧ address = 41

∧ data = 1

Here, component, event, source IP, etc. are examples of typed variables describing
physical and cyber domain features. Then, correlation between two alerts is typically
performed by comparing their common attributes. However, this simple representation is
insufficient to efficiently represent the abstraction relation between the physical domain
and the cyber domain. The reason is that, using attribute-value pairs, each possible
cyber domain alert corresponding to Apm, such as Aam, A′am and A′′am above, would
need to be explicitly represented as a separate alert. This would require the correlator to
generate and keep track of a significant amount of cyber domain alerts for each physical
domain alert, then test correlations for each of these cyber domain alerts. What we need
is an efficient way to capture and correlate all possible cyber domain alerts corresponding
to a physical domain alert without having to represent separately each possible case.

To solve this issue, we take inspiration from the KRA model described in Sec-
tion 2.3.3. The KRA model defines abstraction as a combination of basic operators
over observations. However, the KRA model is primarily aimed for a bottom-up use; it
does not define concretization operators for each abstraction operator. This constitutes
an issue in our case because while it is always possible to map a physical process alert to
the cyber domain, the opposite is not true. For instance, an unknown flow carrying IT
traffic between two supervisory machines does not have any direct relation to the phys-
ical process. Thus, for efficiency reasons, we start from cyber domain alerts as abstract
observations and generate the corresponding concrete observations, i.e the cyber domain
alerts. This requires the availability of concretization operators.

Moreover, since observations in the KRA model are stored in relational databases,
it is not clear how to handle the large amount of concrete observations corresponding to
an abstract observation. For instance, each of the alerts Aam, A′am, A′′am, . . . above would
need to be inserted in a separate row of some table within the database. In the next
section, we explore an enrichment model which alleviates these issues.

B) Enrichment model

From the KRA framework, we retain the idea of modeling an abstraction relation as a
composition of elementary abstraction operators. We combine these operators to trans-
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form a physical process alert into a new alert with cyber domain attributes. In particular,
we treat physical process alerts as abstract observations and aim at recovering all the
corresponding cyber domain concrete observations given knowledge about the ICS (pro-
tocols supported by the PLCs, protocol specifications and process variables mapping
within the PLCs). In order to capture more efficiently the significant number of concrete
cyber domain alerts that may correspond to a physical domain alert, we use an adequate
formalism to represent an alert. We then define, for the purposes of our application,
some abstraction operators along with their associated concretization operators.

Alert representation. We propose to enrich alert representations by using quantifier-
free first-order logic conditions [67] expressed in one or more first-order theories such
as linear integer arithmetic, strings, bit-vectors, or finite sets. These conditions are
constructed using five kinds of symbols: constants, variables, functions, predicates and
logical connectives (∧,∨,⇒,¬). Given a nonempty domain D, constants refer to particular
objects in D. Variables range over the objects in D. A function f(x1, x2, · · · , xn) maps
a tuple of objects (x1, x2, · · · , xi, · · · , xn), xi ∈ D to a single object in D. A predicate
p(x1, x2, · · · , xn) maps a tuple of objects in D to a boolean value. A term is either a
constant, a variable or a function with term arguments.

An atomic formula is a predicate symbol with term arguments. For instance, the
expression Equals(x, P lus(1, 2)) is an atomic formula where Equals is the equality pred-
icate, Plus a function with integer arguments and x is an integer variable. More complex
formulae are constructed by combining atomic formulae using the logical connectives: if
φ1 and φ2 are formulae, then φ1 ∧ φ2, φ1 ∨ φ2, φ1 ⇒ φ2 and ¬φ1 are also formulae. In
terms of semantics, an interpretation associates a domain object to every term and yields
a truth value for a formula. For instance, in the example above, an interpretation might
associate the integer 3 to the term x. Given this interpretation, Equals(x, P lus(1, 2)) is
true. On the other hand, the interpretation which associates the integer 2 to the term x
does not make the formula true. A formula is satisfiable if it has an interpretation which
makes it true. Thus the example formula above is satisfiable. On the other hand, the for-
mula Equals(x, P lus(1, 2))∧Equals(x, P lus(2, 3)) is not satisfiable since no assignment
of an integer to x can satisfy both Equals(x, P lus(1, 2)) and Equals(x, P lus(2, 3)).

Alerts are characterized by attributes which are typed variables. For an alert ψ, we
use Attψ to denote its set of attributes. As an illustration, let us consider the case of a flow
NIDS alert Aflow. Its set of attributes is given by AttAflow

= {srcIp, dstIp, dstPort , l4p}.
The source and destination addresses (srcIp and dstIp) are bit-vectors of fixed size 32
(ipv4 addresses). The destination port (dstPort) is a 16-bit integer. The transport
protocol (l4p) is an 8-bit integer that refers to the IANA assignment [60] (for instance, 6
for tcp and 17 for udp). The following are logical conditions which might be associated
with Aflow:

� σ1 : srcIp = h1 ∧ dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6

� σ2 : srcIp = h1 ∧ dstIp = h3 ∧ dstPort = 80 ∧ l4p = 6

� σ3 : srcIp ∈ {h1, h3} ∧ dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6
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Here, σ1 corresponds to a Modbus flow between h1 and h2, σ2 represents an HTTP flow
between h1 and h3, and σ3 represents a Modbus flow for which the source address is
either h1 or h3.

Using our alert representation, the cyber domain alerts corresponding to the physical
domain alert Apm in the previous section can be represented using the following condition
Âam:


Âam :=source IP = Hew ∧ destination IP = Hplc ∧ (ψ1 ∨ ψ2)

ψ1 :=unit id = 0 ∧ protocol id = 0 ∧ function code = 5 ∧ address = 41 ∧ data = 1

ψ2 :=unit id = 0 ∧ protocol id = 0 ∧ function code = 15 ∧
values[41− start address] = 1 ∧ start address ≤ 41 < start address + quantity

Here, ψ1 covers the straightforward case of the single coil modification (function code
5) while ψ2 covers the case of multiple coils modifications (function code 15). In ψ2,
the values attribute is an array of booleans while the start address and quantity are
integers. ψ2 checks whether the address of VTP1 falls within the range of modified coils
and whether it is assigned a value of 1.

Both ψ1 and ψ2 above are logical conditions which represent different ways to access
VTP1 based on its address within the Modbus protocol. Condition ψ1, representing a
single coil modification, explicitly specifies the address of actuator VTP1 while ψ2 uses
a start address and quantity scheme to modify multiple coils.

Abstraction operators. An abstraction operator is an application which takes as
input an alert Acon and outputs a new alert Aabs such that Aabs is more general than
Acon, i.e Acon ⇒ Aabs. For instance, consider an abstraction operator Op1 which maps
the flow NIDS alert Aam : srcIp = h1 ∧ dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6 into a new
alert Op1(Aam) : dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6. Compared with Aam, the new
alert Op1(Aam) does not specify the source of the anomalous flow (attribute srcIp). Due
to this loss of information with regard to the source address, Aam can be considered as
a special case of Op1(Aam) where srcIp = h1. In other words, Aam ⇒ Op1(Aam).

Looking at the relation between attributes at the cyber and at the physical domains,
we can distinguish between two cases. On one hand, some cyber domain attributes do
not have any bearing on the physical domain. For instance, the source network address
of a Modbus command does not tell us anything about which PLC is queried or which
actuator will be impacted. Since such attributes are irrelevant, they can simply be hidden
when performing the mapping. On the other hand, attributes such as the destination
network address, the function code, and the process variable address indicate the target
PLC and actuator. We now introduce two abstraction operators that correspond to these
cases.

Attribute hiding abstraction operator. An attribute hiding operator Hattr gen-
erates abstract alerts by removing constraints over an attribute attr in the input alert.
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The abstraction operator Op1 above is an example of an attribute hiding operator. The
main use of this operator is to discard attributes which are not relevant for the enrichment
process.

The operator generates Aabs = Hattr(Acon) from input alert Acon by: (i) removing
attr from AttrAcon , i.e AttrAabs

= AttrAcon \{attr}, and (ii) by forgetting any constraints
regarding attr. Several methods have been studied to compute this forgetting [98]. The
approach we follow consists in removing all the constraints associated with attr from the
conjunctions in the disjunctive normal form (DNF) of the Acon. Through the DNF, Acon
can be rewritten as:

m∨
k=1

(
∧

a∈AttAcon

λk[a])

where λk[a] is a logical formula containing only constraints associated with the attribute
a ∈ AttAcon . Then:

Hattr(Acon) =

m∨
k=1

(
∧

a∈AttAcon\{attr}

λk[a])

.
This procedure guarantees that Acon ⇒ Hattr(Acon), since by the rule of conjunction

elimination1: ∧
a∈AttAcon

λk[a]⇒
∧

a∈AttAcon\{attr}

λk[a]

and thus by the rule of constructive dilemma2:

m∨
k=1

(
∧

a∈AttAcon

λk[a])⇒
m∨
k=1

(
∧

a∈AttAcon\{attr}

λk[a])

which means that:

Acon ⇒ Hattr(Acon)

Finally, note that several attributes can be hidden simply be a composition of ele-
mentary attribute hiding operators.

Attributes equivalence abstraction operator. While an attribute hiding op-
erator completely eliminates an unneeded attribute, an equivalence operator replaces
constraints over some attributes of interest in the input alert with new constraints in the
abstract alert.

For instance, consider the flow NIDS alert Acon : srcIp ∈ {h1, h2} ∧ dstIp = h3 ∧
dstPort = 502 ∧ l4p = 6. In general, flows within an ICS can be assigned to zones

1(p ∧ q) ⇒ p
2((p ⇒ q) ∧ (r ⇒ s) ∧ (p ∨ r)) ⇒ (q ∨ s)
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depending on the location of the flow’s endpoints. Suppose that addresses h1, h2, and
h3 belong to HControl which denotes the set of network addresses within the control zone
(for instance, belonging to PLCs or local HMIs). In this case, flow NIDS alerts satisfying
srcIp ∈ HControl ∧ dstIp ∈ HControl would represent horizontal flows among different
nodes within the control zone.

Let’s use a new attribute, flowZone ∈ {Control, Supervisory,Hybrid}, to describe
the zone of a flow which can be either within the control and supervisory zones or crossing
different zones (hybrid). Thus, we have the following equivalence relation:

srcIp ∈ HControl ∧ dstIp ∈ HControl ⇔ flowZone = Control

Given this equivalence relation, an equivalence abstraction operator would transform
Acon into an alert Aabs where:

AttrAabs
= (AttrAcon \ {srcIp, dstIp}) ∪ {flowZone}

and:
Aabs : flowZone = Control ∧ dstPort = 502 ∧ l4p = 6

We make the following observations on this example. First, alert Aabs is more generic
than alert Acon since the former reports an unknown Modbus flow within the control zone
without specifying any specific Ip addresses, while Acon is restricted to Modbus flows from
either h1 and h2 to h3. Secondly, in the example, all hosts h1, h2 and h3 belong to the
same zone. This need not be the case in general. For instance, if h2 corresponds to
an engineering workstation at the supervisory level, then Acon would include flows from
both the Control and Hybrid categories. In this case, Acon would be mapped to:

Aabs : (flowZone = Control ∨ flowZone = Hybrid) ∧ dstPort = 502 ∧ l4p = 6

We now generalize the above procedure. Let Π be a bijective application that asso-
ciates conditions on some subset of the concrete alert’s attributes (denoted by AttDom(Π))
to equivalent conditions on the new abstract alert’s attributes (denoted by AttRange(Π)).
For instance:

AttDom(Π) = {srcIp, dstIp}, AttRange(Π) = {flowZone}

srcIp ∈ HControl ∧ dstIp ∈ HControl
Π−→ flowZone = Control

srcIp ∈ HSupervisory ∧ dstIp ∈ HSupervisory
Π−→ flowZone = Supervisory

Let EΠ be the equivalence abstraction operator based on Π. To generate Aabs =

EΠ(Acon) from input alertAcon, we make use of the DNF form ofAcon:
m∨
k=1

(
∧

a∈AttAcon

λk[a]).

We find, for every conjunction σk :
∧

a∈AttAcon

λk[a], the set:

Ck = {Π(ϕcon) | ϕcon ∈ Dom(Π) ∧
∧

a∈AttAcon

λk[a]⇒ ϕcon}



4.1. Alert correlation approach 91

representing the conditions in the range of Π which are compatible with σk. Then, σk is
replaced with: ∧

a∈AttAcon\AttDom(Π)

(λk[a]) ∧
∨
c∈Ck

c

and used to construct the abstract alert:
Aabs = EΠ(Acon) =

m∨
k=1

(
∧

a∈AttAcon\AttDom(Π)

(λk[a]) ∧
∨
c∈Ck

c)

AttAabs
= (AttAcon \AttDom(Π)) ∪AttRange(Π)

This procedure guarantees that Acon ⇒ EΠ(Acon). To see this, note that by the
definition of Ck, we know that: ∀c ∈ Ck,

∧
a∈Att

λk[a]⇒ c. Thus:

∧
a∈Att

λk[a]⇒
∨
c∈Ck

c

Moreover, we also know by the rule of conjunction elimination that:∧
a∈AttAcon

λk[a]⇒
∧

a∈AttAcon\AttDom(Π)

λk[a]

Thus: ∧
a∈AttAcon

λk[a]⇒
∧

a∈AttAcon\AttDom(Π)

(λk[a]) ∧
∨
c∈Ck

c

Finally, using the rule of constructive dilemma, we have:

m∨
k=1

(
∧

a∈AttAcon

λk[a])⇒
m∨
k=1

(
∧

a∈AttAcon\AttDom(Π)

(λk[a]) ∧
∨
c∈Ck

c)

and thus:

Acon ⇒ EΠ(Acon)

Concretization operators. For every abstraction operator Op, we can also define
an inverse operator Op−1 called a concretization operator. Given an alert Aabs, the
concretization operator outputs an alert Acon which subsumes all the alerts that could
have been mapped to Aabs by Op. Formally, this means that Op−1 outputs an alert Acon
such that for all alerts A′con, if Op(A′con) = Aabst, then A′con ⇒ Acon.
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Attribute hiding concretization operator. Consider the attribute hiding ab-
straction operator HsrcIp which hides the srcIp attribute for flow NIDS alerts. Let
Aabs : dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6 be an abstract alert which is the result
of applying HscrIp on some concrete alert Acon. Possible conditions for Acon include :
srcIp = h1 ∧ dstIp = h2 ∧ dstPort = 502 ∧ l4p = 6 or srcIp ∈ {h1, h3, h4} ∧ dstIp =
h2 ∧ dstPort = 502 ∧ l4p = 6. Both of these conditions are mapped to Aabs by HsrcIp.
In fact, any constraint on the srcIp would have been hidden by HsrcIp.

Thus, to cover all cases, the concrete alert need not specify any constraint on srcIp
so that srcIp can range over all its possible values. Thus, H−1

srcIp(Aabs) = Aabs.
We now show that H−1

srcIp(Aabs) effectively subsumes all possible concrete alerts that
can be mapped to Aabs by HsrcIp. In general, for any attribute hiding abstraction
operator HsrcIp, its corresponding concretization operator H−1

srcIp associates for every
abstract alert Aabs a concrete alert Acon = Aabs. Moreover, given any other concrete
alert A′con such that HsrcIp(A

′
con) = Aabs, we know that A′con ⇒ Aabs (by definition of

an abstraction operator). And since Acon = Aabs, then A′con ⇒ Acon which means that
H−1
srcIp(Aabs) effectively subsumes all possible concrete alerts that can be mapped to Aabs

by HsrcIp as required.

Attributes equivalence concretization operator. Consider the attributes equiv-
alence abstraction operator EΠ from the zone example above. Let Aabs : flowZone =
control ∧ dstport = 502∧ l4p = 6 be an abstract alert which is the result of applying EΠ

on some concrete alert Acon.
Since Aabs specifies that flowZone = Control, Acon must refer to flows within the

control zone. Thus, Acon must satisfy the equivalent constraint given by Π:

srcIp ∈ HControl ∧ dstIp ∈ HControl

Moreover, since no information remains in Aabs as to the specific source and destination
network addresses that were specified by Acon except that they belong to the control
zone, we get that:

E−1
Π (Aabs) : srcIp ∈ HControl ∧ dstIp ∈ HControl ∧ dstport = 502 ∧ l4p = 6

We can show that E−1
Π (Aabs) above subsumes all possible concrete alerts which can

be mapped to Aabs by EΠ. Since E−1
Π replaces the constraint flowZone = Control with

the equivalent constraint srcIp ∈ HControl ∧ dstIp ∈ HControl, we get that:

E−1
Π (Aabs)⇔ Aabs

And since for any other concrete alert A′con such that EΠ(A′cont) = Aabs we know that
A′con ⇒ Aabs (by definition of an abstraction operator), then we get that:

A′con ⇒ E−1
Π (Aabs)

which means that E−1
Π (Aabs) subsumes all possible concrete alerts which can be mapped

to Aabs by EΠ as required.
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Figure 4.4: Overview of the alert enrichment process

Finally, note that the swapping operation used above to generate concrete alert
E−1

Π (Aabs) can also be performed through EΠ−1(Aabs) (recall that Π is a bijective appli-
cation and thus has an inverse Π−1).

C) Alert enrichment process

The enrichment process is depicted in Figure 4.4. The process takes as input a physical
process domain alert, expressed in terms of process domain attributes, and outputs an
enriched cyber domain alert expressed in terms of cyber domain attributes. The heart
of the enrichment consists of the successive application of three concretization operators:
two attributes equivalence concretization operators ( 1 , 2 ) and one attributes hiding
concretization operator ( 3 ).

Each concretization operator uses information from the ICS to perform its mapping.
We now discuss in details each of the three concretization operators. To illustrate the
enrichment process, we take as an example the following process-domain alert:

Apm := component = VTP1 ∧ event =↑

Equivalence concretization operator E−1
Π1

( 1 )
The first step in the alert enrichment process is to map each actuator to (i) the set of

network addresses of the PLCs which control it, (ii) the protocols which can be used to
access the actuator on each PLC identified in (i), and (iii) the address or identifier which
is associated with the actuator for each protocol and PLC identified in (ii). Table 4.1
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Table 4.1: Example of actuators mapping information

Actuator PLC Ip address Protocol Address/identifier
VTP1 HPLC Modbus/TCP 41

DNP3 97

shows an example of such a mapping for actuator VTP1. In this example, VTP1 can
be accessed by using either Modbus/TCP with address 41 or DNP3 with address 97 on
PLC with network address HPLC .

This mapping is performed through an attributes equivalence concretization operator
E−1

Π1
where Π1 associates each actuator with information (i), (ii) and (iii) above. Recall

that Π1 is an application which associates equivalent constraints between an abstract
alert and a concrete alert. For instance, in the case of actuator V TP1 in Table 4.1, Π1

would associate the concrete level constraint:

dstIp = HPLC∧((protocol = Modbus∧address = 41)∨(protocol = DNP3∧address = 97))

with the abstract level constraint:

component = V TP1

When the concretization operator E−1
Π1

is applied to alert Apm we obtain:

E−1
Π1

(Apm) := event =↑ ∧(dstIp = HPLC ∧ ((protocol = Modbus ∧ address = 41)∨
(protocol = DNP3 ∧ address = 97)))

Obtaining the information necessary to construct Π1 is straightforward if adequate
device inventory databases are maintained at the ICS plant. While ICS plants are en-
couraged to maintain such databases with regular updates and proper security mech-
anisms [115], their availability is not guaranteed in general. In this case, alternative
ways to gather this information must be sought. The authors in [49] discuss several data
sources which can be used in order to retrieve the mapping between process variables
and memory locations. For instance, project files used to program PLCs can contain
valuable information such as the presence of descriptive text and friendly tags associ-
ated with memory locations. In many cases, these project files can be downloaded from
PLCs and reviewed using official vendor software. A drawback of this data source is the
need to use adequate software for every PLC constructor. Another possible data source
resides in local HMIs and workstations which allow users to monitor and interact with
the physical process. As in the case of PLC project files, HMIs configuration files can
be viewed using official vendor-specific software. Alternatively, if HMI configuration files
are not available, the compiled runtime files gathered from HMIs can be analyzed using
HEX editors to extract useful information. However, this task can be time-consuming
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and effort prone. Finally, network traffic can also be a useful source of information by
using safe ICS asset discovery techniques such as passive monitoring [143]. In practice,
collating information from many of these data sources might be necessary to retrieve the
required information.

Equivalence concretization operator E−1
Π2

( 2 )
The second step of the enrichment process is to associate events on actuators with ICS

protocol commands. For instance, to cause a rising edge (↑) of discrete actuator V TP1
using Modbus, an attacker can use either function code 5 ( writing a single coil) or 15
(writing multiple coils). This mapping is performed through an attributes equivalence
concretization operator E−1

Π2
.

To define Π2, we propose to characterize actuators access commands using three fea-
tures: (i) the operation type, (ii) the variable type, and (iii) the variable access mode.
We discuss in details each of these features through four ICS protocols : Modbus/TCP,
DNP3, IEC-104, and Ethernet/IP. Details about each of these protocols can be found
in Annex C. We choose to focus on these particular protocols because of their popular-
ity [103], the availability of their specifications, and the differences in their design and
domains of applicability.

� Operation type. This corresponds to a type of operation to be performed on the
actuator such as a read or a write operation. All the above protocols allocate a
specific field to characterize the operation: function code (Modbus, DNP3), type
identification (IEC-104) or request service (Ethernet/IP). An operation can either
characterize the type of variable on which it operates (for instance, function code
5 in Modbus and type identification 45 in IEC-104 for discrete outputs), or remain
agnostic as to the type of variable manipulated (for example, both DNP3 and
Ethernet/IP define generic write operations: function code 0x02 and Write Data
request service respectively).

� Variable type. As discussed above, in Ethernet/IP and DNP3, operations are not
specific to a particular type of variables. DNP3 uses the combination of the group
and variation fields to specify the type of the target variables. On the other hand,
the type targeted by Ethernet/IP is implied by the class identifier of the object’s
path (for example, Discrete Output Point with class identifier 0x09). Thus, we
distinguish on one hand between protocols where the type of variables is either
implied by the operation (Modbus, IEC-104) or by the variable’s access location
(Ethernet/IP), and on the other hand protocols where the type of target variables
is given by explicit fields (group, variation or class).

� Variable access mode. To refer to variables, Modbus, IEC-104 and DNP3 use
addresses while Ethernet/IP use either combination of class, object and attribute
identifiers or symbolic identifiers. Thus, we distinguish between address-based and
identifier-based variable access modes. Protocols such as Modbus, IEC-104, and
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Actuators access commands

Operation type

Generic Specific

Variable type

Explicit Implicit

Variable access mode

Address-based

EnumerationStart andcount
Start and

stop

Identifier-based

Enumeration

Figure 4.5: Main features of actuator access commands for common ICS protocols

DNP3 that use address-based access modes can refer to variables either using ex-
plicit ranges (start address and end address), start address and count, or by enu-
merating the addresses. Protocols that use identifier-based access modes such as
Ethernet/IP enumerate identifiers (sets of request paths).

Figure 4.5 provides a classification of actuator access commands based on the pre-
ceding discussion. We note that many ICS protocols tend to share similar schemes to
access actuators. For instance, Modbus, IEC-104 and DNP3 all use address-based vari-
able access modes. Thus, the same equivalence relations that are used for Modbus can be
reused for IEC-104 and DNP3 provided attribute names are adapted to each protocol (for
example, while Modbus and DNP3 use function codes, IEC-104 uses type identifications).
Modbus uses specific operation types with implicit variable type and address-based vari-
able access modes. Π2 would then associate the concrete level constraint:

(function code = 5 ∧ address = c ∧ data = 1) ∨ (function code = 15∧
values[c− start address] = 1 ∧ start address ≤ c < start address + quantity)

with the abstract level constraint:

event =↑ ∧address = c ∧ protocol = Modbus

Here, c is a constant integer, function code refers to the explicit operation type and
the address-based variable access modes (enumeration and start and quantity) are rep-
resented by the following two conditions:

address = c ∧ data = 1

values[c− start address] = 1 ∧ start address ≤ c < start address + quantity

Both of the above conditions can be used to express address-based variable access modes
for other protocols that use this access mode.
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Note that the enrichment model is generic and expressive enough in order to han-
dle cases which are not covered by the classification in Figure 4.5. Information about
where a protocol lies within the classification can be manually extracted from the pro-
tocol specifications of each supported protocol. For most of the commonly used ICS
protocols [103] (including Ethernet/IP, Profinet, EtherCAT, Modbus/TCP and DNP3),
such specifications are available. In the case of proprietary protocols such as Siemens S7,
reverse engineering [102] techniques can be used.

Attributes hiding concretization operator H−1
Att ( 3 )

The last concretization operator is an attributes hiding concretization operator which
handles all the cyber domain attributes that are irrelevant to the physical domain. These
attributes include both protocol-specific attributes such as the transaction id attribute
for Modbus and more general cyber domain attributes such as the source network address.

4.1.5 Alert aggregation

To evaluate our solution within the overall correlation process, we feed the output of our
alert enrichment approach to an alert aggregation stage inspired from existing similarity-
based alert correlation approaches [63, 139]. The alert aggregation phase decides, for
each new alert Anew and a set of previous alerts Aold from the alert selection stage, the
subset of Aold which are correlated with Anew based on the similarity of their attributes.
The decision is performed for each pair of (enriched) alerts (Anew, Aold), Aold ∈ Aold. On
the basis of these pairwise correlations, the correlator constructs meta-alerts (clusters of
alerts).

Multiple strategies can be followed to generate meta-alerts from pairwise correlations.
One possible strategy is to enforce that alerts belonging to the same cluster must all be
pairwise correlated pairwise. For instance, let S = {A1, A2, A3} be a set of alerts and
corr a correlation relation such that corr(Ai, Aj) if and only if Ai and Aj are correlated.
Then, using this strategy, S is a meta-alert if and only if corr(A1, A2), corr(A2, A3),
and corr(A1, A3). This strategy yields tight clusters where all the alerts are correlated
to one another. The drawback of this strategy is the possibility of missing interesting
correlations.

For instance, consider the case of an attacker who attempts to wear a valve, i.e
by rapidly opening and closing it. Furthermore, suppose that the attacker can impact
the valve through two different protocols. As part of this attack, the attacker uses
the first protocol to open the valve and the second protocol to close it. Moreover,
the attacker issues these commands from multiple engineering stations which normally
should not issue commands to PLCs. Suppose that this yields four alerts: two physical
domain alerts A1

phy, A
2
phy relative respectively to the forbidden opening and closing of

the valve, and two cyber domain alerts A1
cy, A2

cy relative respectively to the issuing
of commands from different engineering stations using different protocols. Then we
would have corr(A1

phy, A
1
cy) (forbidden command to open the valve and physical domain

violation reporting the opening of the valve) ,corr(A1
phy, A

2
phy) (two physical domain
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Figure 4.6: Indirect correlation between alerts

violations on the same valve), and corr(A2
phy, A

2
cy) (forbidden command to close the

valve and physical domain violation reporting the closing of the valve). However, A1
cy

and A2
cy are not directly correlated since they report commands issued using different

protocols from different stations. This implies that, following this strategy, the alerts
{A1

phy, A
2
phy, A

1
cy, A

2
cy} would not form a meta-alert, even though they are part of the

same attack.
In the example above, A1

cy and A2
cy are indirectly correlated because their correlation

can be understood only through the effect they have on the physical process, as reported
by the alerts A1

phy and A2
phy. Thus another strategy is to allow two alerts Ai and Aj to

belong to the same meta-alert if either Ai, Aj are correlated, or if there exists an alert Ak
such that Ai, Ak and Ak, Aj are respectively correlated. Thus, S above would constitute
a meta-alert if corr(A1, A2) and corr(A2, A3). In this case, it is not necessary for A1

cy and
A2
cy to be pairwise correlated in order to end up in the same cluster. Thus, this strategy is

looser than the first and can yield meta-alerts containing very different alerts. We argue
that such a strategy is the most promising in our use case because of the possibility that
two alerts which are indirectly correlated in one domain might be directly correlated with
alerts which are directly correlated in another domain as illustrated in Figure 4.6.

To decide whether Anew and Aold are correlated, we test, using an SMT solver,
whether there is an assignment to all or a subset of their common attributes which
makes Anew ∧ Aold true. However, this constraint can be quite strong. For instance, if
two Modbus payload-based IDS alerts A1 and A2 report the same source, same desti-
nation, and are both commands to override coils albeit with different function codes (5
and 15), we would still like to fuse them since they might be symptomatic of an attacker
who uses different function codes for consecutive commands. Thus a weaker yet still
interesting constraint might be:

A1.source IP = A2.source IP ∧A1.dest. IP = A2.dest. IP
∧A1.function code ∈WFC ∧A2.function code ∈WFC

where WFC is the set of Modbus writing function codes.
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In general, weaker constraints are obtained by either : (i) partitioning the set of
values of a common attribute and checking whether the attribute’s values in the pair of
tested alerts belong to the same partition, (ii) ignoring a common attribute. Examples of
the first type of weak constraint include checking whether source/destination addresses
belong to the same network zone (control, supervisory, etc.) or whether the function codes
refer to the same type of operations on process variables (write, read, etc.). Information
about the network’s topology can be obtained either through the plant’s asset inventory
databases or using passive asset discovery techniques [143], while the operation classes
specific to each protocol can be gathered from the protocol specifications if available or
through reverse engineering [102].

By default, the correlation is tested using the strongest constraint (equality between
all common attributes). If the correlation fails, we test with increasingly weaker con-
straints by applying (i) then (ii) on the attributes shared by the alerts that are com-
pared. Note that the number of weak constraints that are tested is bounded since the set
of common attributes is finite and the number of ways a constraint on each attribute can
be weakened is finite (using either (i) or (ii) above). To avoid too weak correlations, the
user can adjust two parameters : (a) the maximum number of tested weak constraints,
(b) a list of attributes for which weaker constraints cannot be produced using either (i)
or (ii) above. Weak correlations are tested using a breadth-first search strategy starting
from the strongest possible constraint and stopping the search when no more constraint
satisfying both (a) and (b) can be further produced. The type of correlation (strong,
weak through partitioning, weak through hiding) is specified in the alert correlations
received by the security operator.

4.2 Evaluation

To evaluate our approach, we need a sufficiently complex ICS. However, as discussed in
Section 3.3 due to privacy concerns, real data from operational plants is hard to obtain.
As a substitute, we develop a testbed with a complex physical process and realistic ICS
architecture. Compared to most experimental setups with publicly available datasets
that can be found in the literature, our testbed is either comparable3 or significantly
more complex4.

Our evaluation testbed consists of a hardware-in-the-loop setting including a simu-
lation of the physical process shown in Section 3.3, Figure 3.11. An ICS architecture
with both control and supervisory levels, shown in Figure 4.7, steers the physical pro-
cess. The architecture involves real components found in operational ICS (i.e, PLCs,
control servers, HMI, etc.). Control is distributed using three PLCs (Schneider M340,
Schneider M580, and Wago IPC-C6 with additional RTU 750-873). Control logics are im-
plemented in SFC. The Schneider M340 and Wago IPC-C6 PLCs support Modbus, while
the Schneider M580 PLC supports both Modbus and SOAP/HTTP. At the supervisory
level, an OPC-UA server polls data and relay commands to the PLCs. A supervisor HMI

3https://itrust.sutd.edu.sg/dataset
4https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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provides a global view of the state of the physical process to the operators. Engineering
workstations allow engineers to change the control logics of the PLCs. Operators are not
allowed to perform manual operations from the engineering workstations.

Figure 4.7 also depicts the IDS placement within the ICS. The network flow IDS [5]
covers the whole ICS traffic through a mirror port at the level of the switch. The
payload-based IDS [149] (PB1, PB2, and PB3) monitor the ICS traffic (Modbus/TCP
and SOAP/HTTP) reaching each PLC. Finally, the physical process IDS (see Chapter 3)
(PP1, PP2, and PP3) operate on the link between each PLC and its local HMI. For
practical purposes, we monitor the actuators/sensors signals on each PLC using the
supervisory HMI traffic. However, the physical process IDS could also directly monitor
the communications between the sensors/actuators and the PLC using an adequate tap.

4.2.1 Attacks and operators interventions

To evaluate our approach, we need to generate both attack and legitimate traffic. We
follow the same approach discussed in Section 3.3.2 to generate attacks and operators
interventions. Additionally, to reflect the possibilities afforded to an attacker when car-
rying attacks from the cyber domain, we specify two dimensions along which the attacks
can vary : (i) the source of the attack, and (ii) the protocols used to carry the attack.
The source of the attack can either be a host which is allowed to send commands to
PLCs (such as an HMI or an OPC server), or a host which is not used for process oper-
ations (such as an engineering workstation). The attacker can alternate between several
protocols (SOAP/HTTP or Modbus) and use different operations within each proto-
col (Modbus with function codes 5 or 15 for instance). When carrying attacks, both the
source of the attacks and the protocols used are randomly selected among all possibilities
afforded to the attacker.

4.2.2 Implementation

The IDS are implemented in C++/Python following their descriptions in the original
papers [5, 149]. We use Argus [3] to recognize network flows and rely on Bro [18] to ex-
tract Modbus/TCP data from network traffic. The correlator is implemented in Python.
To test for satisfiability when applying the mapping rules to alerts, the correlator queries
CVC4 [26], an SMT solver, through the PySMT library [120]. The communication be-
tween PySMT and the SMT solver uses the SMTLib standard. Thus, any SMT solver
supporting the standard and implementing the required theories can be used. To carry
interventions, we use either : (i) the Modbus client module in Metasploit [93] which is
queried through its RPC interface, (ii) the OPC-UA server by means of an OPC-UA
client [109], or (iii) SOAP/HTTP requests by means of a SOAP client [150]. All our
correlation performance analysis is performed on an Intel Dual Core i7 2.6 Ghz machine
with 16 GB of RAM running Linux kernel 4.4.0.
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4.2.3 Datasets

We base our evaluation on 5 network captures spanning a total of 62 hours. To train the
IDS base profiles, we use a 14 hours capture free of any malicious actions and containing
27 legitimate operator interventions. This dataset reflects realistic conditions where
certain legitimate behaviors are absent due to the limited training window. The number
of activities’ executions in the training data ranges from 28 to 155 cycles. We also generate
4 network captures which contain attacks as described in Section 4.2.1. These network
captures span a total of 48 hours during which 26 attacks and 98 legitimate operator
interventions are carried. The main différence with respect to the dataset used to evaluate
our intrusion detection approach in Section 3.3, is the possibility for the attackers and
operators to use multiple protocols in order to carry out their tasks. Whereas the dataset
in Section 3.3 contains only Modbus traffic, the dataset used to evaluate correlation uses
Modbus, SOAP/HTTP, and OPC UA to access process variables. As in the case of the
intrusion detection dataset, the correlation evaluation dataset is publicly available. All
datasets will be available online5.

4.2.4 Alert aggregation parameters

Recall from Section 4.1.5 that computing weak correlations involves either (i) partition-
ing the set of values of a common attribute, or (ii) ignoring a common attribute. In our
experiments, we partition the values of three category of attributes. IP addresses are
partitioned depending on the zones of the ICS (supervisory and control zones), function
codes are partitioned depending on the type of operations they perform on process vari-
ables (either reading or writing operations), and actuators/sensors (component attribute)
are partitioned depending on the PLC which control them (components that are con-
trolled by the same PLC are grouped together). All attributes can be ignored except for
the component attribute in the physical domain. This is because ignoring the component
attribute would mean that physical domain alerts are only correlated based on the events
they report (rising or falling edge) which is insufficient to yield good correlation results.

4.3 Analysis

In this section, we present and analyze the results of our approach on the traces described
in Section 4.2.3. We first describe the metrics we use for the evaluation and compare the
results against a classical temporal window correlation approach [140].

Metrics Our correlator links two alerts which are considered to be manifestations of
an operator or attacker’s intervention (i.e, sequence of commands). Correlation errors
happen either when two alerts which are not from the same intervention are linked
together (incorrect correlation), or when two alerts which are from the same intervention

5https://persyval-platform.univ-grenoble-alpes.fr/0/searchbyrecently

https://persyval-platform.univ-grenoble-alpes.fr/0/searchbyrecently
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are not linked (missing correlation). To evaluate our correlation approach with respect
to these possible errors, we use the following two classical correlation metrics [104] :

False correlation rate =
# incorrect correlations
# produced correlations

Missing correlation rate =
# missing correlations
# expected correlations

Here, produced correlations refer to all the correlations that were established by the
correlator. These produced correlations can include both correct and incorrect ones.
Expected correlations refer to the correlations that should be established by a correct
correlator. Thus, expected correlations include both the correlations that were correctly
established by the correlator, in addition to the correct correlations missed by the corre-
lator. The false correlation rate (FCR) reflects the proportion of incorrect correlations
in the correlations produced by the correlator. The missing correlation rate (MCR) rep-
resents the proportion of missing correlations in the number of correlations expected to
be produced by the correlator given the alerts. We identify the expected correlations
by manually analyzing the traces since we have access to detailed information (time,
protocols, target actuators, etc.) about the attacks and operator interventions carried
in the evaluation traces. Using this information, we can determine which alerts must be
correlated in order to correspond to the manifestations of an attack or of an operator’s
intervention.

In addition, we also evaluate the reduction in the number of alerts which are sent
to the operator after correlation. This reduction is determined through the following
metric :

Reduction = 1− #meta-alerts + #uncorrelated alerts
#total alerts

While higher values of the reduction metric mean fewer alerts to handle for the security
operators, the reduction should still allow distinguishing between different operator/at-
tacker interventions, i.e by keeping a low FCR value.

Results To evaluate our approach, we compute the FCR, MCR and reduction metrics
on the traces described in Section 4.2.3. We compare our results with a fixed-size sliding
window correlator. This correlator keeps a fixed size window of old alerts and links
each new alert with all alerts in the window. We compute the metrics for different
sizes of the temporal window. Tables 4.2 and 4.3 summarize the results for both the
activity-based and the temporal approach. In this table, Pall, Padj , and Pada refer to our
activity-based approach using respectively the all alerts in the activity, alerts in adjacent
steps, and adaptive alert selection policies discussed in Section 4.1.3. For the temporal
correlator, T10s, T1m and T5m refer respectively to window sizes of 10s, 1min and 5min.
In comparison, an activity’s average duration is around 5 min and can range anywhere
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Table 4.2: Evaluation results : FCR and MCR

FCR (%) MCR (%)
Activity Temporal Activity Temporal

Trace Pall Padj Pada T10s T1m T5m Pall Padj Pada T10s T1m T5m

N°1 0 0 0 0 0 0 0 21 21 75 36 37
N°2 0 0 0 12 9 11 4 15 15 53 10 8
N°3 0 0 0 9 8 5 0 15 34 62 34 0
N°4 2 2 2 1 15 21 1 14 19 62 34 6

Table 4.3: Evaluation results : Reduction rate

Reduction (%)
Activity Temporal

Trace Pall Padj Pada T10s T1m T5m

N°1 84 78 78 36 61 61
N°2 82 80 80 65 70 72
N°3 84 81 79 65 70 78
N°4 83 82 81 69 77 80

between 1 and 18 min. We set the maximum temporal window size to 5min to limit false
correlations on alerts belonging to multiple activities.

Overall, the results show that the activity-based approaches, in particular using policy
Pall, achieve the best FCR and MCR scores with the highest reduction in alerts across
all traces.

With regards to the FCR, since the temporal correlator links all alerts which fall
within the window without taking into account the compatibility of the attributes, our
approach performs better as expected.

For instance, the temporal correlator does not distinguish between alerts relative to
attacks on different PLCs. We also note that, in comparison with the temporal cor-
relator, the activity-based policies achieve better or comparable reduction results while
still maintaining a low FCR. In fact, all false correlations using the activity-based ap-
proaches involve rare cases of unknown OPC-UA flow alerts that correspond to keep-alive
messages.

With respect to the MCR, we observe that the activity-based approach with policy
P-1 performs the best. In contrast, the temporal approaches perform badly, especially for
small time windows. Even though fewer correlations are missed by the temporal approach
as the temporal window size gets bigger (T-1m and T-5m), deciding on a specific time
window size remains problematic. For instance, a window size of 5 minutes captures
all the expected correlations in Trace n°3 but misses 37% of the expected correlations in
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Trace n°1. Instead, the results show that better performance can be achieved by following
an activity-based approach. The worse relative performance of the activity-based policies
Padj and Pada compared to Pall indicates that activity-long attack manifestations are not
exclusively limited to adjacent slots and do not appear at each slot of the activity

Table 4.4: Alerts reported by an attack manipulating valve vp3 to overflow tank TK3

Identifier IDS Alert
(A11) SOAP PB (src IP,10.10.3.6), (dst IP, 10.10.5.2), (dst Port,80),

(start address,41), (values,1)
(A12) SOAP PB (src IP,10.10.3.6), (dst IP, 10.10.5.2), (dst Port,80),

(start address,41), (values,0)
(A13) PP (component,vp4), (event, ↓)
(A14) PP (component,vp4), (event,↑)
(A15) PP (component,vp4), (event,↑)
(A16) Modbus PB (src IP,10.10.3.27), (dst IP, 10.10.5.2), (dst Port,502),

(function code,5), (address,40),(data,1)
(A17) PP (component,vp3), (event,↑)
(A18) PP (component,vp3), (event,↑)
(A19) PP (component,vp3), (event,↑)

To illustrate this point, consider an attack which consists in overflowing tank TK3.
The attacker manipulates valves vp3 and vp4 through different protocols. In this case,
the attacker uses SOAP to manipulate valve vp3 and Modbus to manipulate valve vp4.
In normal functioning, valves vp3 and vp4 are only used to input a precise amount of
reactants P3 and P4 into the tank TK3. This is performed at the first two steps of the
activity. Afterward, the tank is full and valves vp3 and vp4 are no longer manipulated
until a new cycle of the activity where the tank is empty. To overflow the tank, the
attacker opens valves vp3 and vp4 in steps of the activity where the tank is already full.

This attack causes 6 physical process (PP) IDS alerts spread throughout the activity
and 3 cyber-domain alerts from the SOAP and Modbus payload-based (PB) IDS. In re-
sponse to this attack, the activity-based approach with policy Pall generates a meta-alert
containing all of the aforementioned alerts. The details of these alerts are reported in
Table 4.4. For each alert, the table reports its identifier, the source IDS and the infor-
mation contained in the alert as attribute-value pairs. Figure 4.8 shows the correlation
graph corresponding to the meta-alert. Nodes in the graph refer to alerts, while edges
refer to the correlations. Edge labels specify the strength of the correlations (strong or
weak), the attributes that are weakened in case of a weak correlation, and the absolute
reception time difference between the correlated alerts in seconds.

From Figure 4.8, we see several strong and weak correlations between these alerts.
Some strong correlations are straightforward. For instance, alerts A14 and A15 report
exactly the same information regarding valve vp4 and are thus strongly correlated. On
the other hand, the cross-domain strong correlation between alerts A11 and A14 requires
the mapping of the physical alert A11 into the cyber domain. In this case, A11 and A14
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are correlated since A14 reports the forbidden opening of valve vp4 which is controlled
by the PLC at address 10.10.5.2. This PLC can be queried using the SOAP protocol and
is configured to associate vp4 to address 41. The same reasoning holds for the strong
cross-domain correlations between A12 and A13, and between A16 and A17,A18,A19.

Figure 4.8 shows also weak correlations both within the same domain and across
domains. For instance, alerts A11 and A12 both report an unknown SOAP command
from the same host, towards the same PLC, and writing to the same address 41. However,
they differ in the values which are written. Thus, they are weakly correlated by ignoring
the values attribute. We can possibly interpret this correlation as a single attacker
performing different operations on the same actuator (for instance opening and closing
a valve).

We can observe in Figure 4.8 that the alerts from the Modbus IDS (A16 ) and SOAP
IDS (A11,A12 ) are never directly correlated. Yet they belong to the same meta-alert.
We observe instead that both they are indirectly correlated through alerts within the
physical domain. For instance, A11 is strongly correlated with physical domain alert
A15, A16 is strongly correlated with physical domain alert A19, and physical domain
alerts A15 and A19 are weakly correlated (by weakening the component attribute since
they both report the opening of valves which are controlled by the same PLC). Moreover,
both A11 and A16 are weakly correlated with the same physical domain alert A13. This
example illustrates our discussion in Section 4.1.5 about allowing indirect correlations
within meta-alert as a way to group alerts which, while not correlated in the same
domain, are indirectly correlated in the other domain.

We also observe that the absolute time difference between alerts varies widely from
0s to 555s. Thus, depending on the selected time window size, a subset of the alerts is
successfully correlated by the temporal approach. Note that all edges from the node A19
have large time values. In fact, A19 is recorded many steps after the initial cluster of
alerts, thus alert selection policies Padj and Pada will also fail to capture it.

4.4 Conclusion

In this chapter, we have developed an ICS-oriented alert correlation approach to link
heterogeneous alerts from IDS spanning both the cyber and physical domains. Our
approach includes three main stages. First, an alert selection stage selects the alerts
to be correlated based on the evolution of the activities within the physical process.
Then, an alert enrichment stage carries the alerts generated by the physical domain IDS
developed in Chapter 3 into the cyber domain so that they can be correlated with alerts
from classical cyber domain IDS. Finally, an alert aggregation stage generates meta-
alerts that contain alerts spanning both the physical and the cyber domains. The main
contributions of this chapter reside in two aspects: the mapping of physical domain alerts
to the cyber domain through abstraction operators and the definition of alert selection
policies that take into account the runtime context of the physical process. The evaluation
of our approach on a complex physical process subject to process-oriented attacks has
shown good correlation metrics compared to temporal-based correlators.
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Conclusion and perspectives

In this thesis, we have presented two main contributions: (i) a physical process-oriented
intrusion detection approach based on the efficient mining and monitoring of specifica-
tions over the sequential dynamics of an ICS, and (ii) an alert correlation approach which
enriches and maps physical domain alerts into the cyber domain to enable cross-domain
aggregation of alerts. We first summarize the context which has motivated these two
contributions.

Throughout this work, one of our main concerns has been to factor in the specificities
of ICSs with respect to traditional IT systems. First, ICSs have peculiar constraints in
terms of resources and time constraints, especially at the lower levels of the system. This
has justified the need to adopt non-intrusive and a posteriori security measures. As a
result, we have identified intrusion detection as a promising solution to detect attacks
against an ICS.

Next, we took into account the co-existence of both a physical and a cyber domain
within an ICS. Because of this dual aspect, ICSs are exposed to process-oriented attacks
which aim at generating incorrect behavior at the level of the physical process. This is
exemplified in several of the recent high profile real security incidents [39, 138, 32]. In
all these instances, the attacks have their starting point in the cyber domain and thus
induce manifestations in both the cyber and the physical domains. With this in mind,
our main worry was how to best detect such attacks in both their physical and their
cyber manifestations.

Through a review of the literature, we have identified several approaches which at-
tempt to answer this issue. One category of approaches relies solely on cyber-domain
IDS to detect both the cyber and physical domain manifestations of the attacks. Un-
fortunately, the approaches in this category do not yield good detection results as they
lack precise knowledge about the state of the physical process. On the other hand, the
second category of approaches attempts to detect process-oriented attacks within the
physical domain. While such approaches are promising, we have identified several chal-
lenges that question their practicality. First, some of the approaches lack models that
are sufficiently expressive to capture the dynamics, both continuous and sequential, of
an ICS. Unfortunately, the approaches with adequate expressivity still require expert
knowledge to manually specify the models. In addition, most of the physical domain
oriented approaches lack any vision about the cyber domain manifestations, and thus
cannot help the operators identify the source of the attacks.

109
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It is with this context in mind that we have argued for the following proposals which
have been applied in our contributions:

a) The development and deployment of separate intrusion detection approaches for the
cyber and the physical domains of an ICS. Against the cyber domain approaches
which attempt to detect process oriented attacks based solely on cyber domain
observations, we argued for the detection of physical domain manifestations based
on the direct monitoring of sensor and actuator states.

b) To reduce the cost of building the detection models, we have opted to automatically
mine process specifications from attack-free execution traces. This is an anomaly-
based approach which, while holding the promise of detecting novel attacks, can
also generate many false positives when the execution traces are not representative
of the total behavior of the system. Thus, we have stressed the need for a careful
mining in order to: (i) avoid overloading the operators with redundant and useless
alerts, (ii) provide precise information about the location of the violation so that
the operator can better decide whether it is a false or a true alert.

c) To link the cyber domain and physical domain manifestations of an attack, we
have argued for the necessity of an alert correlation stage. This correlation stage
complements the separation argued for in a) to provide the operators for a more
comprehensive view of the attack. We have identified and attempted to answer some
challenges that arise when developing a correlation approach in ICS. Chief among
these is the heterogeneity of the attributes that are reported by the alerts from the
different domains. This has motivated us to develop an alert pre-processing stage
that maps the physical domain alerts into the cyber domain. We have also argued
for the necessity to take into account the evolution of the physical process when
selecting the alerts to correlate. This has lead us to adopt and evaluate several
process-aware alert selection strategies.

The above proposals have been implemented and evaluated in a realistic test bed
with a complex physical process under process oriented attacks. While the results show
that the proposed approaches hold some promise, further extensions of this work can be
envisaged to improve their scope and their applicability.

Perspectives

We now discuss some possible extensions to our ICS-oriented intrusion detection and
alert correlation approaches.

Intrusion detection

� In Section 3.1, as part of our threat model, we have elected to focus on the se-
quential aspect of the ICS. This has motivated our choice of process specifica-
tion formalisms enabling the representation of qualitative (LTL) and quantitative
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(MTL) constraints over the evolution of actuator and sensor states and events.
One straightforward extension of our work is to consider a broader threat model
that encompasses also the continuous aspect of the ICS. This would require the
adoption of an adequate formalism, such as Signal Temporal Logic (STL) [91].
STL extends LTL by allowing for predicates over real-valued variables while re-
taining the capability to express quantitative time constraints as in MTL. Thus,
STL allows for runtime verification to cover the behaviors induced by hybrid cyber-
physical systems. While STL has been so far applied in various domains such as
systems biology and analog circuits, applications to intrusion detection remain to
be explored. In keeping with the general spirit of our approach, a first step would
be to explore and collect useful specification patterns based on STL.

� As discussed in the analysis our intrusion detection approach’s evaluation in Sec-
tion 3.4, in addition to the binary information concerning the violation of the
quantitative property, an operator might also be interested in a quantitative esti-
mation of the deviation with respect to the constraint. For instance, the operator
might be interested in knowing that, for a valve that should be opened for at most
every 30s, it was, in fact, opened every 2s as a result of a wear attack on the
valve. Recent research within runtime verification has begun exploring such issues
by developing such monitoring techniques for certain classes of metric temporal
logic properties [31].

� Using feedback by the security operator on the pertinence of the process specifi-
cations, we might be able to further adjust their level of precision. Recall from
Section 3.2 that we aim for maximal precision of the specification scopes, but that
this can induce an increase in the number of mined specifications. In the case of
constraints that apply on contiguous scopes, our approach would mine a specifica-
tion for each scope. However, an operator might require this level of precision, and
would prefer to have a single specification spanning all these scopes while retaining
the possibility to drill down whenever more precision is necessary.

� In this thesis, we have assumed that each monitor has access to all the sensor and
actuator states it requires to decide whether a property is violated or not. However,
this need not be the case in general. For instance, properties might be specified
over sensors and actuators which are distributed over multiple PLCs. In this case,
multiple monitors might be dispatched, each one having access only to a subset of
the actuator and sensor states which it needs to give a verdict. To correctly monitor
such global properties, some form of cooperation between the distributed monitors
is necessary [11] where information about the violation of the property is exchanged
between the monitors. However, exchanging information involves latencies which
can lead to a delay in the emission of the verdict. As a result, the attacks might
be detected too late for the operators to properly react. Research is still needed to
decide on the best way to distribute the monitors so as to minimize such delays for
the purpose of intrusion detection.



112 Conclusion and perspectives

Alert correlation

� Recall that our approach is primarily concerned with aggregating activity-long
alerts related to the elementary steps of an attack. Thus, a natural extension
consists in reconstructing complex attack scenarios spanning multiple activities.
Such reconstruction could rely on a joint security-safety analysis [73] to produce the
attack scenarios, and on the activity-specific meta-alerts generated by our approach
to track the elementary attack steps.

� In the case of online detection, the time window for an operator to diagnose the
situation and react accordingly can be limited. Thus, one possible extension of
this work concerns the development of safe intrusion prevention systems (IPS) that
can react automatically to abnormal events and afford more time for an operator’s
intervention. The development of an IPS for ICSs is challenging because of the high
cost involved in case of a wrong decision based on false alerts. Ultimately, better
decisions can be expected if information from both the cyber and the physical
domains are included in the decision process. An interesting line of research to
follow would be to use the information gathered within the clusters generated by our
correlation approach to guide the actions performed by an IPS. For instance, an IPS
would react differently if a cluster relates a process violation with an unknown flow
coming from a machine that is not supposed to interact with the physical process,
in comparison with a process violation with an unknown actuator manipulation
command coming from a legitimate supervisor. While the former can be readily
interpreted as an attack, the second is less clear and might need careful actions as
to not block a legitimate supervisor from performing its duties.
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Appendix A

Basics of Sequential Function
Charts (SFC)

Sequential Function Chart (SFC) is a graphical language, defined in IEC61131-3 [64], par-
ticularly adapted to the specification of the sequential control requirements of a system.
An SFC represents sequential tasks as a combination of steps, actions, and transitions
as represented in Figure A.1.
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Figure A.1: Example of an SFC with its main constituents

Steps Steps are depicted as rectangular boxes and represent particular states of the
controlled system. Each SFC defines at least one initial step (steps 10 and 20 in Fig-
ure A.1) where control must start during execution. When control reaches a step during
execution, we say that the step is active. Each step is associated with action blocks which
define the actions to be performed when the step becomes active. During an execution
cycle, only the actions associated with the active steps are evaluated.

I
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Transitions Steps are connected using transitions which are depicted as horizontal
lines between two steps. Transitions link a set of input steps with a set of output steps
through condition guards which are boolean expressions over input and internal variables.
When the input steps of a transition are active, and the guard condition is satisfied, the
process leaves the input steps and the output steps become active. During an execution
cycle, only the transitions following active steps are evaluated.

Actions The actions that are carried out in steps are depicted using action blocks.
An action block consists of two main parts: an action qualifier and an action. The
action provides a description of the action to be performed, possibly in one of the five
programming languages defined in IEC 61131-3 [64]. The action qualifier specifies when
the action must be executed. For example, an action might be executed once when the
step is activated (qualifier P), throughout the activation of the step (qualifier N), or with
some time delay after the step is activated (qualifier D). A complete description of all
possible qualifiers can be found in [64].

Control structures Steps and transitions within an SFC can be organized into six
main control structures.

Linear sequence Represents a linear succession of steps and transitions. This is
represented in Figure A.1, by the sequence of steps 11 to 14. In this control structure,
when control leaves an active step, it can move only to the next step in the sequence.

Divergent selection sequences This control structure links one input steps with
multiple output steps where each output step is preceded by a transition. This situation
is depicted in Figure A.2. Here, execution can move from step 1 to either step 2 or step
3 depending on the evaluations of transitions t1 and t2. When multiple transitions are
satisfied, an order, typically from left to right, is applied to decide which transition to
take.

1

2 3

t1 t2

Figure A.2: Divergent selection sequence in an SFC
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Convergent selection sequences This control structure merges multiple branches
resulting from a divergent selection sequence into a single branch. In this case, transitions
from each of the branches are followed by a single step as depicted in Figure A.3.

2 3

1

t1 t2

Figure A.3: Convergent selection sequence in an SFC

Divergent parallel sequences Contrary to the divergent selection sequence case,
divergent parallel sequences allow for multiple branches to hold active steps simultane-
ously. This is performed by following a single transition with multiple output steps. For
instance, in Figure A.4, when step 1 is active and transition evaluates to true, both steps
1 and 2 become simultaneously active.

1

2 3

t1

Figure A.4: Divergent parallel sequence in an SFC

Convergent parallel sequences A convergent parallel sequence ends a divergent
parallel sequence. In Figure A.5, steps 2 and 3 are the last steps in two separate parallel
branches. When both steps become active, and the transition t1 is satisfied, then control
moves to step 1.
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2 3

1

t1

Figure A.5: Convergent parallel sequence in an SFC
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Process-oriented attack parameters

The attacks are classified depending on their type (I or II, see Section 3.3). For each
entry, we specify the duration parameters associated with each state (in seconds) and
the action performed when execution reaches a state. Every action specifies the target
PLC, the target actuator and its new assigned value. For instance, the line :

s1(1000, 200),PLC@10.10.5.1,Actuator@V P1,Value = 1

means that the duration parameters for state s1 are (µ = 1000, δ = 200), the target PLC
is at address 10.10.5.1, the target variable is V P1 and its new value is 1. Note also that
for the correlation approach, each action might be performed by a different protocol, the
choice of which is decided randomly at runtime (see Section 4.2).

Type I attacks

sistart sh s1 . . . sn shf sf

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=0
s1 (20000 ,2000) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP2 , Value=1
s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP2 , Value=0
s f (2000 ,500)

Listing B.1: Inserting a bad balance of products P1 and P2 in TK1

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=1

V
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sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=0
s1 (20000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP2 , Value=1
s2 (20000 ,2000) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP1 , Value=1
s3 (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP2 , Value=0
s4 (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@VP1 , Value=0
s f (2000 ,500)

Listing B.2: Inserting a bad balance of products P1 and P2 in TK1

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=0
s1 (20000 ,2000) , PLC@10 . 1 0 . 5 . 1 , Actuator@VT2 , Value=1
s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@VT2 , Value=0
s f (2000 ,500)

Listing B.3: Introducing unfinished reactant in S1

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=0
s1 (2000 ,2000) , PLC@10 . 1 0 . 5 . 1 , Actuator@M2 , Value=1
s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@M2 , Value=0
s f (2000 ,500)

Listing B.4: Stopping mixing of reactant in TK2 short of 60s

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=0
s1 (20000 ,2000) , PLC@10 . 1 0 . 5 . 2 , Actuator@VP4 , Value=1
s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@VP4 , Value=0
s f (2000 ,500)

Listing B.5: Inserting a bad balance of products P3 and P4 in TK2

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=0
s1 (2000 ,2000) , PLC@10 . 1 0 . 5 . 2 , Actuator@M4 , Value=1
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s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@M4 , Value=0
s f (2000 ,500)

Listing B.6: Stopping mixing of reactant in TK4 short of 60s

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=0
s1 (20000 ,2000) , PLC@10 . 1 0 . 5 . 2 , Actuator@VT4 , Value=1
s2 (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@VT4 , Value=0
s f (2000 ,500)

Listing B.7: Introducing bad quality product in S2

Type II attacks

sistart sh s1 s2 shf sf0.8
0.2

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 1 , Actuator@Manual , Value=0
s1 (500 ,100) , PLC@10 . 1 0 . 5 . 1 , Actuator@M1 , Value=1
s2 (500 ,100) , PLC@10 . 1 0 . 5 . 1 , Actuator@M1 , Value=0
s f (2000 ,500)

Listing B.8: Wearing motor M1 through quick start/stop commands

s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 5 . 2 , Actuator@Manual , Value=0
s1 (500 ,100) , PLC@10 . 1 0 . 5 . 2 , Actuator@M3 , Value=1
s2 (500 ,100) , PLC@10 . 1 0 . 5 . 2 , Actuator@M3 , Value=0
s f (2000 ,500)

Listing B.9: Wearing motor M3 through quick start/stop commands
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s i (2000 ,500)
sh (2000 ,500) , PLC@10 . 1 0 . 8 . 1 0 0 , Actuator@Manual , Value=1
sh f (2000 ,500) , PLC@10 . 1 0 . 8 . 1 0 0 , Actuator@Manual , Value=0
s1 (500 ,100) , PLC@10 . 1 0 . 8 . 1 0 0 , Actuator@R1On , Value=1
s2 (500 ,100) , PLC@10 . 1 0 . 8 . 1 0 0 , Actuator@R1On , Value=0
s f (2000 ,500)

Listing B.10: Tampering with the reactor during the chemical reaction
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Description of some common ICS
protocols

Modbus/TCP. Modbus/TCP protocol [135] is an application layer protocol operat-
ing in a client/server setting. It is typically used for inter-PLC and supervisor/HMI to
PLC communications. The structure of a Modbus/TCP message is given in Figure C.1.
In particular, the transaction ID field allows to uniquely match a response to its corre-
sponding request, the function code specifies the nature of the request (for instance read
discrete inputs (1 bit) or registers (16 bits)) while the data field depends on the function
code (in case of a read request, the data field can specify the start address and number
of elements to read). The length of the data field varies and can be computed using
the length field. The protocol ID field is used for intra-system multiplexing and takes
the value of 0 for the Modbus/TCP protocol. The unit id field is used for intra-system
routing purposes, for example, to reach a Modbus slave device in a Modbus serial line
through a gateway between a TCP/IP network and a Modbus serial line.

DNP3. DNP3 [61] is a non-proprietary SCADA protocol designed for communications
between master stations and remote substation including RTUs and IEDs. While DNP3 is
primarily used in the electric utility industry, it has increasingly been adopted in adjacent
industries such as water treatment, oil and gas, and transportation. DNP3 application
layer messages are broken into fragments whose maximum size lies between 2048 to 4096
bytes depending on the receiving device’s buffer size. As depicted in Figure C.2, a DNP3
application layer message contains an application header and one or more DNP3 objects,
each data object is associated with an object header.

Transaction ID Protocol ID Length Unit ID Function Code Data

2 Bytes 2 Bytes 2 Bytes 1 Byte 1 Byte n Bytes

Figure C.1: Structure of a Modbus/TCP message

IX
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Figure C.2: Structure of a DNP3 fragment and DNP3 application header [50]

Figure C.3: Structure of a DNP3 object header [50]

The application header differs depending on whether the message corresponds to a
request or a response. In case of a request, the application header includes an applica-
tion control field and a function code field. The 1-byte application control field is used
to reassemble multiple fragments, detect duplicate fragments, and manage acknowledg-
ments. The function code field defines the purpose of the fragment and specifies for
instance whether a request is to read (function code 0x1) or write (function code 0x2)
data. In addition to the application control and function code fields, application headers
in response fragments also include a 2-bytes internal indications field that specifies the
status of the responding device (need time, device restart, etc.), and information about
the request (function code not supported, object unknown, etc.).

DNP3 organizes data (binary input/output, analog input/output, counters, etc.) in
terms of objects. When querying or returning objects, DNP3 devices use object headers
(see Figure C.3) within DNP3 fragments to specify the expected type of objects and the
range of objects to be queried/returned. Within an object header, the object type field
indicates the group or types of the object (for instance, group 10 for binary outputs or
group 40 for analog outputs), and the variation or format (for instance, analog inputs
can be formatted using 16 or 32 bit integers, or using a floating-point representation).
Object headers also include a qualifier field and a range field which together indicate the
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object addressing method. Objects can be addressed either by specifying a start and end
object index, by specifying a start index and a count of the number of objects addressed,
or by addressing all objects of a given type (no range specified). Finally, alongside object
headers, data objects contain the data values to be written or to be returned depending
on the type of the DNP3 fragment as specified by the headers (function code, group,
variation, etc.).

IEC-104. IEC 60870-5-104 (also known as IEC-104) [136] is a SCADA protocol defined
within the IEC 60870 collection of standards. IEC-104 is the TCP/IP adaptation of the
older IEC 60870-5-101 (IEC-101) serial protocol. The IEC-101 defines the functionalities
necessary for remote control over wide areas. Both IEC-104 and IEC-101 are used exten-
sively within the electrical industry, for instance, to establish communications between
electrical control stations and substations. In this chapter, we focus on the TCP/IP
based IEC-104 protocol.

In its application layer, IEC-104 defines two sub-layers: the Application Protocol
Control Information (APCI ) sub-layer, and the Application Service Data Unit (ASDU )
sub-layer. The APCI sub-layer, which lies on top of the TCP layer, defines three types of
IEC-104 message formats: information transfer format (I-format), numbered supervisory
functions (S-format), and unnumbered control functions (U-format). U-format messages
are used to start, stop or check the status of connections. I-format messages are used
to transfer data between IEC-104 devices. S-format messages are used to acknowledge
previously received I-format messages. Since we are interested in data transfer between
devices, we focus on I-format messages. Note that only I-format messages carry ASDU
sub-layer payloads, while S-format and U-format messages have a fixed length and only
carry ACPI.

An IEC-104 ASDU, whose structure is depicted in Figure C.4, consists of a data unit
identifier along with one or more information objects. The data unit identifier specifies
the type of the accessed data through the type identification field (for instance 45 for
commands to access binary outputs). In IEC-104, data is organized as information
objects, each object is characterized by one or more information elements. The IEC-
104 standard defines the structure of the information elements that form each type of
information object. Data can be addressed either by querying a sequence of information
objects (including all their information elements) or by querying a sequence of information
elements within a single information object. The choice between these two types of
addressing modes is specified by the structure qualifier (SQ) field and the number of
information objects or elements to be queried in the sequence is determined by the
number of objects field.

Besides the above fields, the data unit identifier carries a Test (T) field which indi-
cates whether the ASDU was generated in test conditions and is not intended to control
the process, a positive/negative (P/N) field which provides information about the correct
execution or not of a command, and a cause of transmission (COT) field which is used
to direct the ASDU to the correct task within a station and assist in an ASDU’s inter-
pretation. Examples of COT include background interrogation, data transmission, and
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Figure C.4: Structure of an IEC-104 ASDU [92]

Information object address unknown. The data unit identifier also specifies the originator
address which identifies the controlling station in the case of multiple controlling stations,
and the ASDU address field which identifies either a specific target station address or a
broadcast address.

Following the data unit identifier comes a number of information objects, each one
characterized by an information object address (IOA), one or more information elements
and an optional time tag. The number and type of information objects or elements are
determined by the fields in the data unit identifier.

Ethernet/IP. Ethernet/IP [108] is an industrial protocol, maintained by Open Device
Vendor Association (ODVA), which adapts the Common Industrial Protocol (CIP) [107]
to Ethernet-based TCP/IP networks. CIP specifies messages and services such as real-
time control, time synchronization, energy optimization, and network management to
enable communication within industrial applications. Ethernet/IP supports two types
of communications: request-response based communications which are called explicit
messaging, and pre-established connections where known information is exchanged at
fixed time intervals and which is called implicit messaging. Implicit messaging does not
require the use of address and service information since consuming nodes already know
(i.e implicitly) the expected data based on the connection ID.

Information within each CIP node in the system is modeled as a collection of ob-
jects which are structured into classes, instances, and attributes following a classical
object-oriented approach. Objects within the system can be addressed using a uniform
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Figure C.5: Addressing scheme of CIP used by Ethernet/IP [106]

addressing scheme consisting of C.5: a node address, a class identifier, an instance iden-
tifier, an attribute identifier, and a service code. Each node on a CIP network is assigned
a node address, which in the case of Ethernet/IP is represented by an IP address. Class,
instance and attribute identifiers are integer identification values which, together, allow
for attribute-level access to object instances. These identifiers can either be publicly
defined or vendor-specific. CIP defines a large collection of commonly defined objects,
including for instance discrete output point and discrete input point objects. Service
codes are integer identification values which refer to an action request directed at an
object instance or attribute. Examples of commonly used services include read and write
functions. As in the case of objects, CIP defines a library of common services and al-
lows for vendor-specific services to be defined. To specify the set of objects and services
provided by a device, simple ASCII-based text files called Electronic Data Sheets (EDS)
can be used.

Figure C.6 depicts the structure of a CIP request message. The Request service field
indicates the type of action performed on the object referenced by the request. The
Request Path Size field specifies the number of 16-bit words in the Request Path. The
Request Path contains one or more references to class, instance, and attribute identifiers.
References can either be in the form of 8-bit, 16-bit or 32-bit identifiers, or in the form of a
symbolic name using ANSI Extended Symbol Segments defined by the CIP specifications.
Finally, the Requested Data field contains service-specific data provided to the object
referenced in the Requested Path field.
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Request Service Request Path Size Request Path Request Data

Figure C.6: Structure of a CIP request message
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