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Extended English abstract 

Granitoids and their related mineralization is always the highly focused topic for 

geologists all over the world. The Nanling Range in South China is one of the most famous 

metallogenic belts around the world, especially for its large-scale W-Sn mineralization. 

Middle-Late Jurassic is the most important epoch for granitic magmatism and associated 

mineralization in this region. Although numerous studies have been carried out on the 

petrogenesis and metallogenesis of the Middle-Late Jurassic ore-bearing granitoids in the 

Nanling Range, there are still great controversies and problems remaining to be solved, 

especially on the Cu-Pb-Zn-bearing and W-bearing granitoids and their skarn mineralization. 

Four main scientific problems are proposed as follows: (1) What are the petrogenetic 

differences and links between the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing 

granitoids in the Nanling Range? (2) How do the skarn deposits structurally connect to the 

Middle-Late Jurassic ore-bearing granitoids in the Nanling Range? (3) What are the genetic 

links between different mineralization types and the formation mechanism of complex 

zonation in the Middle-Late Jurassic Cu-Pb-Zn skarn deposits in the Nanling Range? (4) 

What are the key factors controlling the occurrence of unusual magnesian skarn W 

mineralization during Late Jurassic in the Nanling Range? The Tongshanling-Weijia area in 

the western part of the Nanling Range is selected as the study area. The main research objects 

of this Ph.D. thesis are the Tongshanling Cu-Pb-Zn and Weijia W skarn deposits. 

The South China Block is a major continental component with a complex history of 

tectonic evolution in East Asia. It was constructed through a Neoproterozoic (1.0 – 0.8 Ga) 

amalgamation of the Yangtze and Cathaysia Blocks. In Phanerozoic, the South China Block 

mainly experienced three tectonothermal events, i.e., the Early Paleozoic (460 – 390 Ma) 

intracontinental orogeny, the Early Mesozoic (240 – 200 Ma) intracontinental compressional 

deformation, and the Late Mesozoic (Jurassic to Cretaceous) palaeo-Pacific plate subduction. 

As a consequence, the corresponding multiple-aged (i.e., Neoproterozoic, Early Paleozoic, 

Triassic, Jurassic, and Cretaceous) granitoids and associated polymetallic mineral deposits are 

widely developed in South China. In the Nanling Range of South China, the most extensive 



Extended English abstract 

II 

Middle-Late Jurassic (165 – 150 Ma) ore-bearing granitoids can be divided into W-bearing, 

Sn-bearing, Nb-Ta-bearing, and Cu-Pb-Zn-bearing granitoids. Skarn is one of the most 

important mineralization types for the Middle-Late Jurassic polymetallic mineral deposits 

especially the Cu-Pb-Zn and W deposits in the Nanling Range. 

The Tongshanling-Weijia area is situated in southern Hunan Province. The exposed 

strata in this area include Ordovician to Triassic systems except for the absence of Silurian 

system and Upper Permian to Lower Triassic series and are dominated by Devonian and 

Carboniferous systems. The Middle Devonian Qiziqiao Formation, the Upper Devonian 

Shetianqiao and Xikuangshan Formations, and the Shidengzi Member of the Upper 

Carboniferous Datang Stage are the main ore-bearing horizons in the Tongshanling-Weijia 

area. The structural framework of this area is south-north- to southwest-northeast-trending on 

the whole. The Tongshanling granodiorite and the Weijia granite are the dominant magmatic 

rocks in this area, which are genetically related to Cu-Pb-Zn and W mineralization, 

respectively. The Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong 

Mo deposit are distributed around the Tongshanling intrusion and constitute the Tongshanling 

Cu-Mo-Pb-Zn-Ag ore district. The Weijia W deposit is located 15 km to the northeast of the 

Tongshanling polymetallic ore district. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range are distinctly different in mineralogy and geochemistry. The Cu-Pb-Zn-bearing 

granitoids are dominated by weakly fractionated metaluminous I-type amphibole-bearing 

granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element 

(LREE/HREE) ratios, and δEu values, lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti 

depletions. The W-bearing granites are mainly highly differentiated peraluminous S-type 

granites, which have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values, 

higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing and 

W-bearing granitoids were formed predominantly between 155.2 Ma and 167.0 Ma (peak 

value: 160.6 Ma) and between 151.1 Ma and 161.8 Ma (peak value: 155.5 Ma), respectively. 

There is a time gap of about 5 Ma between the two different types of ore-bearing granitoids. 

Based on detailed geochronological and geochemical studies of both the Tongshanling 
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Cu-Pb-Zn-bearing and Weijia W-bearing granitoids and combined with a comparison between 

the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range, a 

genetic model of the two different types of ore-bearing granitoids has been proposed. The 

underplated basaltic magmas induced by the subduction of the palaeo-Pacific plate provided 

heat to firstly cause partial melting of the mafic amphibolitic basement in the lower crust, 

resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the 

development of basaltic magma underplating, the muscovite-rich metasedimentary basement 

in the upper-middle crust was then partially melted to generate W-bearing granitic magmas. 

The non-simultaneous partial melting of one source followed by the other brought about a 

time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granitoids. 

The microgranular enclaves in the Tongshanling granodiorite have dioritic compositions 

with a mineralogy dominated by plagioclase, amphibole, and biotite. Abundant residual 

materials, such as mafic mineral clots, inherited and metamorphic zircon, and Ca-rich core 

plagioclase, occur in the enclaves and are in favor of a restite origin. The amphibole-rich clots 

are considered as vestiges of residual pyroxene-rich precursors from the source. Three types 

of amphibole, i.e., magmatic, metamorphic, and magma reworked metamorphic amphibole, 

have been recognized in the granodiorite and its enclaves according to their different 

occurrences, textures, and compositions. The zonal amphibole-rich clots exhibit increasing Al 

and decreasing Si contents from interior amphibole to exterior amphibole and also from core 

to rim in amphibole grains, and the outer parts of enclave magmatic zircon have higher 

ThO2+UO2 contents and lower Zr/Hf ratios than the inner parts, showing the process of 

magma reworking of the restite enclaves. Based on the textural and compositional evidence, 

these microgranular enclaves are thought to be reworked restite enclaves. This is also 

supported by thermobarometric calculation. A model illustrating the formation process of 

reworked restite enclave has been proposed. Combined with previous experimental studies of 

partial melting, the Tongshanling granodiorite is deduced to be derived from dehydration 

melting of amphibolite in the mafic lower crust. The fertile amphibolitic source is beneficial 

to the formation of Cu-Pb-Zn-bearing granodiorites in the Nanling Range. 

Magma emplacement-induced structural control on skarn formation at the Tongshanling 
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Cu-Pb-Zn deposit was studied by structural analysis, Raman spectroscopy of carbonaceous 

material (RSCM) thermometry, and electron backscatter diffraction (EBSD) mapping. In the 

Tongshanling area, the regional normal faults were in all probability formed during the Late 

Triassic to Early Jurassic decompression and are not related to the emplacement of the 

Middle-Late Jurassic Tongshanling granodiorite. The emplacement of the Tongshanling 

granodiorite induced strong marbleization and deformation of the surrounding carbonate 

rocks. The wall-rock foliation cuts the bedding and is parallel to the intrusion boundary with a 

gradually decreased density outward from the contact zone. RSCM thermometry shows an 

outward trend of gradually decreased metamorphic temperature from ca. 620 °C to ca. 300 °C. 

EBSD mapping reveals that the deformed calcite in the contact zone has strong shape 

preferred orientation (SPO) and crystallographic preferred orientation (CPO). The exoskarn 

and sulfide-quartz veins of the Tongshanling Cu-Pb-Zn deposit strike and dip consistently 

with the foliation of the deformed wall rocks. Combined with the RSCM and EBSD results, it 

is concluded that the exoskarn and sulfide-quartz veins were controlled by the magma 

emplacement-induced wall-rock deformation which significantly increased wall-rock 

permeability to promote the infiltration of magmatic fluids along fractures. 

The Tongshanling Cu-Pb-Zn deposit shows a well-developed outward zonation from 

proximal endoskarn through proximal exoskarn to sulfide-quartz veins and then to distal skarn, 

additionally with a few late Pb-Zn sulfide-quartz veins and carbonate replacement Pb-Zn 

sulfide veins distributed in the proximal part. The Jiangyong Pb-Zn-Ag deposit and Yulong 

Mo deposit are dominated by carbonate replacement and skarn mineralization, respectively. 

Garnet U-Pb dating yields a 207Pb/235U-206Pb/238U concordia age of 162.0 ± 3.7 Ma with a 

weighted average 206Pb/238U age of 162.4 ± 4.2 Ma for the proximal exoskarn in the 

Tongshanling Cu-Pb-Zn deposit. Molybdenite Re-Os dating of the Tongshanling Cu-Pb-Zn 

deposit and Yulong Mo deposit yields 187Re-187Os isochron ages of 161.8 ± 1.7 Ma and 160.0 

± 5.8 Ma with weighted average model ages of 161.9 ± 1.1 Ma and 160.1 ± 0.8 Ma, 

respectively. U-Pb dating of the hydrothermal titanite in the altered granodiorite yields lower 

intercept ages of 155.5 ± 3.1 Ma and 155.6 ± 3.1 Ma in the Wetherill and Tera-Wasserburg 

U-Pb concordia plots, respectively, with a weighted average 206Pb/238U age of 154.4 ± 1.9 Ma. 
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S, Pb, and H-O isotopic studies reveal that the ore-forming materials and fluids of the 

Tongshanling polymetallic ore district were derived from the Tongshanling intrusion. The Cu 

and Zn were most probably released from the mafic amphibolitic lower crust by partial 

melting, whereas, the Pb was extracted from the upper crust by the ascending granodioritic 

magma. Based on the geological, geochronological, and isotopic geochemical studies, it is 

concluded that the different mineralization types and ore deposits in the Tongshanling ore 

district are genetically linked together and are the productions of evolution and zonation of 

the same skarn system associated with the Tongshanling granodioritic intrusion. A 

comparison of the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling Range 

further supports the petrogenetic model of non-simultaneous partial melting illustrating the 

origins of the Cu-Pb-Zn-bearing and W-bearing granitoids. 

The Weijia scheelite skarn deposit comprises dominant magnesian skarn and subordinate 

calcic skarn with abundant fluorite and is genetically related to a highly fractionated 

porphyritic granite with a felsitic to fine-grained matrix. The magnesian skarn generally 

occurs as stockwork veinlets in dolostone with a mineralogy dominated by serpentine and 

phlogopite. Wollastonite, garnet, and pyroxene are the main calcic skarn minerals. Scheelite is 

mostly distributed in the magnesian and calcic skarns as disseminated grains. Biotite 

fluorimetry indicates that the Weijia granite was crystallized from a F-rich magma. The high 

fluorine activity of granitic melts results in a low magmatic viscosity to enable the prolonged 

crystal fractionation and tungsten enrichment of the granitic magma to a relatively low 

temperature, finally with the porphyritic Weijia granite formed under a water-saturated 

condition. During the magmatic to hydrothermal evolution, F-rich hydrosaline melts were 

firstly separated from magma by liquid immiscibility followed by the exsolution of F-poor 

hydrothermal fluids. Both of the F-rich hydrosaline melts and F-poor hydrothermal fluids 

have transported tungsten from the magma into the wall rocks for subsequent skarn 

mineralization. RSCM thermometry indicates a distinctly lower temperature of magnesian 

skarnization than calcic skarnization. The relatively low temperature and high fluorine 

activity during magnesian skarnization are not favorable for the development of anhydrous 

prograde skarn minerals, such as forsterite and spinel, and lead to the formation of the special 
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F-rich garnet. As the shared precipitant of fluorine and tungsten, calcium could be the critical 

factor to induce the positive correlation between the WO3 and CaF2 grades of skarn ores. The 

higher WO3 grades of the calcic skarn than those of the magnesian skarn are controlled by the 

higher calcium activity during skarnization in limestone than that in dolostone. 

Main conclusions of this Ph.D. thesis are summarized as follows: (1) The Middle-Late 

Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range were derived from 

non-simultaneous partial melting of the mafic amphibolitic basement and the muscovite-rich 

metasedimentary basement, respectively; (2) The microgranular enclaves of the Tongshanling 

granodiorite are reworked restite enclaves derived from partial melting of the mafic 

amphibolitic source; (3) The exoskarn and sulfide-quartz veins in the Tongshanling Cu-Pb-Zn 

deposit are structurally controlled by the magma emplacement-induced wall-rock deformation; 

(4) The different mineralization types and ore deposits in the Tongshanling polymetallic ore 

district are genetically linked together and are the productions of evolution and zonation of 

the same skarn system associated with the Tongshanling granodioritic intrusion; (5) The key 

factors controlling the occurrence of unusual magnesian skarn W mineralization during Late 

Jurassic in the Nanling Range mainly include an enriched source, a fluorine-rich magma, a 

strong crystal fractionation, and a fluorine-rich hydrosaline melt. 

Keywords: Cu-Pb-Zn-bearing granitoids; W-bearing granites; Microgranular enclaves; Skarn; 

Magmatic-hydrothermal system; Zonation; Structural control; Permeability; Petrogenesis; 

Metallogenesis; Middle-Late Jurassic; Nanling Range 
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Chapter 1. Introduction 

1.1. Research background and scientific problems 

1.1.1. Research background 

Granitoids and their related mineralization is always the highly focused topic for 

geologists all over the world (Hsu et al., 1963a, 1963b; Einaudi et al., 1981; Xu et al., 1982; 

Černý et al., 2005; Linnen and Cuney, 2005; Meinert et al., 2005; Seedorff et al., 2005; 

Sillitoe, 2010; Chen et al., 2013; Mao et al., 2013a; Wu et al., 2017). In the past decade, 

numerous studies concerning granitoids and their related mineralization have been carried out 

on the aspects of origin and evolution of granitoids (e.g., Tartèse and Boulvais, 2010; Huang 

and Jiang, 2014; Romer and Kroner, 2015, 2016; Simons et al., 2016, 2017; Jiang and Zhu, 

2017; Wu et al., 2017; Zhang et al., 2017a), spatiotemporal and genetic links between 

granitoids and ore deposits (e.g., Chiaradia et al., 2009; Feng et al., 2011a, 2015; Zhang et al., 

2015a, 2017b, 2017c; Naranjo et al., 2018), geochemical behaviors of ore elements during 

magmatic to hydrothermal evolution (e.g., Che et al., 2013; Ballouard et al., 2016; Hulsbosch 

et al., 2016; Schmidt, 2018; Wolf et al., 2018), descriptive deposit geology and structural 

analysis (e.g., Soloviev, 2011, 2015; Soloviev et al., 2013; Mahjoubi et al., 2016; Ducoux et 

al., 2017; Soloviev and Kryazhev, 2017; Naranjo et al., 2018; Yang et al., 2018), sources of 

ore-forming materials and fluids (e.g., Vallance et al., 2009; Shu et al., 2013; Soloviev et al., 

2013; Xie et al., 2015; Ding et al., 2016a; Zhou et al., 2016), physicochemical evolution 

during ore-forming process (e.g., Vallance et al., 2009; Shu et al., 2013; Mao et al., 2017), 

hydrothermal fluid dynamics (e.g., Sizaret et al., 2009; Mahjoubi et al., 2016; Launay et al., 

2018), numerical modeling (e.g., Eldursi et al., 2009; Ingebritsen and Appold, 2012; Schöpa 

et al., 2017), metallogenic mechanism (e.g., Lecumberri-Sanchez, 2017; Korges et al., 2018; 

Zhang et al., 2018a), etc. Hence, there is no doubt that granitoid-related ore deposits are the 

final products of comprehensive effect by various factors which include the sources of 

granitoids, generation of granitoid magmas, evolution of magmatic to hydrothermal systems, 

influence of accidental materials and fluids, migration of ore-bearing fluids, fluid-rock 
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reaction, structural controls, etc. 

The Nanling Range in South China is one of the most famous metallogenic belts around 

the world, especially for its large-scale W-Sn mineralization. A great number of granitoids 

and associated mineral deposits are widely developed in the Nanling Range (Fig. 1-1). 

Although these granitoids and related ore deposits were formed in multiple periods, i.e., Early 

Paleozoic, Triassic, Jurassic, and Cretaceous (Fig. 1-1), Middle-Late Jurassic is the most 

important epoch for granitic magmatism and associated mineralization in this region (Mao et 

al., 2007, 2013a; Chen et al., 2013; Fu et al., 2013; Li et al., 2013). Four dominant types of 

Middle-Late Jurassic ore-bearing granitoids in the Nanling Range, i.e., W-bearing (e.g., 

Yaogangxian, Dengfuxian, Weijia, Xihuashan, Dajishan, etc., Fig. 1-1), Sn-bearing (e.g., 

Huashan-Guposhan, Jiuyishan, Qitianling, Qianlishan, Hehuaping, etc.), Nb-Ta-bearing (e.g., 

Dajishan, Jianfengling, Laiziling, etc.), and Cu-Pb-Zn-bearing (e.g., Shuikoushan, Baoshan, 

Tongshanling, Dabaoshan, etc., Fig. 1-1) granitoids, have been recognized by previous studies 

(Chen et al., 2008, 2013; Fu et al., 2013; Li et al., 2013). Although numerous studies have 

been carried out on the petrogenesis of these Middle-Late Jurassic ore-bearing granitoids (e.g., 

Wang et al., 2003a; Zhang, 2004; Li et al., 2007a; Chen et al., 2008, 2013; Jiang et al., 2009; 

Fu et al., 2013; Li et al., 2013; Xie et al., 2013; Dong et al., 2014; Zhang, 2014; Zuo et al., 

2014; Yang et al., 2016; Zhao et al., 2016a, 2016b; Wu et al., 2017; Zhang et al., 2017a), 

there are still great controversies remaining to be solved, especially on the origins of the 

Cu-Pb-Zn-bearing and W-bearing granitoids. 

Based on the occurrence of dark microgranular enclaves and the interpretation of 

geochronological and geochemical data, it is generally considered that the Middle-Late 

Jurassic Cu-Pb-Zn-bearing granitoids in the Nanling Range, which are dominated by I-type 

amphibole-bearing granodiorites, were formed by mixing of crust-derived and mantle-derived 

magmas (Wang et al., 2003a; Jiang et al., 2009; Li et al., 2013; Xie et al., 2013; Zhao et al., 

2016b). However, these microgranular enclaves do not show any credible evidence, except for 

some Sr-Nd isotopes (Xie et al., 2013), supporting magma mixing and detailed petrographic 

and mineralogical studies of these microgranular enclaves are absent. It is noteworthy that the 

zircon Hf isotopic compositions of these microgranular enclaves are similar to those of their 
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Figure 1-1. Distribution of multiple-aged granitoids and related mineral deposits in the Nanling Range of South China (modified after Chen et al., 2008, 2013).
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host granitoids, both of which show typical crust-derived features (Jiang et al., 2009; Xie et 

al., 2013; Zuo et al., 2014; Yang et al., 2016; Zhao et al., 2016b). Zuo et al. (2014) and Yang 

et al. (2016) proposed that the Shuikoushan granodiorite was derived from partial melting of 

the mafic lower crust. Thus, the petrogenesis of these Cu-Pb-Zn-bearing granitoids is still 

disputable and needs further investigations. 

For the Late Jurassic W-bearing granites in the Nanling Range, it is widely accepted that 

they are dominated by highly fractionated S-type two-mica, muscovite, and biotite granites 

and were mainly derived from partial melting of crustal metasedimentary rocks (Zhang, 2004; 

Chen et al., 2008, 2013; Fu et al., 2013; Dong et al., 2014; Zhang, 2014; Jiang and Zhu, 2017). 

However, some researchers thought that these W-bearing granites are highly fractionated 

I-type granites and were mainly derived from partial melting of crustal meta-igneous rocks 

(Li et al., 2007a; Wu et al., 2017; Zhang et al., 2017a). Li et al. (2007a) pointed out that the 

Jurassic amphibole-bearing granodiorite, biotite monzogranite, K-feldspar granite, and 

two-mica (muscovite) granite constitute a metaluminous to weakly peraluminous evolution 

series of I-type granites. It is reasonable that the highly fractionated properties of the 

W-bearing granites enhance the difficulty of distinguishing their source rocks (Chappell, 1999; 

Gao et al., 2016; Wu et al., 2017). Therefore, the petrogenesis of these W-bearing granites and 

the relationship between the W-bearing granites and the Cu-Pb-Zn-bearing granodiorites 

require further studies. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids related mineral 

deposits in the Nanling Range are dominated by skarn, greisen, quartz vein, and carbonate 

replacement mineralization in which only skarn is of great importance to both of the 

Cu-Pb-Zn and W deposits (Chen et al., 2008; Mao et al., 2009a, 2013a; Fu et al., 2013). A 

number of Middle-Late Jurassic Cu-Pb-Zn and W skarn deposits appear in the western part of 

the Nanling Range. Study on the genesis and ore-forming processes of these Cu-Pb-Zn and W 

skarn deposits is beneficial to understanding the differences between Cu-Pb-Zn and W skarn 

mineralization and the regional metallogenic regularities of Cu-Pb-Zn and W in the Nanling 

Range. 

The Middle-Late Jurassic Cu-Pb-Zn skarn deposits in the Nanling Range, such as the 
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Tongshanling, Baoshan, Shuikoushan, Dabaoshan, and Huangshaping deposits, commonly 

have the characteristic of association of different mineralization types which include skarn, 

carbonate replacement, sulfide-quartz vein, etc. (Wang, 2010; Zhu et al., 2012; Lu et al., 2013, 

2015; Bao et al., 2014; Qu et al., 2014; Cai et al., 2015; Dai et al., 2015; Huang et al., 2015; 

Xie et al., 2015; Ding et al., 2016a). In addition, complex zonation of metals and 

mineralization types may occur in an individual Cu-Pb-Zn skarn deposit or ore district. For 

instance, the Tongshanling Cu-Mo-Pb-Zn-Ag skarn ore district is constituted by three ore 

deposits, i.e., the Tongshanling Cu-Pb-Zn, Jiangyong Pb-Zn-Ag, and Yulong Mo deposits, 

distributing around the Tongshanling granodioritic intrusion (Huang and Lu, 2014; Zhao et al., 

2016b). The Tongshanling Cu-Pb-Zn deposit shows a zonation of proximal skarn (endoskarn 

and exoskarn), distal skarn, and sulfide-quartz veins between them (Huang and Lu, 2014; Cai 

et al., 2015; Lu et al., 2015). The Jiangyong Pb-Zn-Ag deposit is composed of proximal skarn 

and distal carbonate replacement (Yi and Xu, 2006; Huang and Lu, 2014). The Yulong Mo 

deposit comprises only skarn (Huang and Lu, 2014; Zhao et al., 2016b). Although numerous 

geochronological and geochemical studies have been carried out on these Middle-Late 

Jurassic Cu-Pb-Zn skarn deposits (e.g., Lu et al., 2006, 2015; Qu et al., 2014; Cai et al., 2015; 

Huang et al., 2015), the links between different mineralization types and the genesis of 

complex zonation are still poorly understood. 

Essentially, all economic W skarns are calcic throughout the world (Kwak, 1987), such 

as the well-known Zhuxi (China), Xintianling (China), Shizhuyuan (China), Yaogangxian 

(China), CanTung (Canada), Pine Creek (USA), King Island (Australia), Salau (France), and 

Los Santos (Spain) deposits (Meinert et al., 2005; Pan et al., 2017). Magnesian W skarns are 

uncommon and have been rarely reported (Guy, 1979; Casquet and Tornos, 1984; Kwak, 1987; 

Dubru et al., 1988; Vander Auwera and Andre, 1991). However, the discovery of the Late 

Jurassic super-large Weijia W deposit (ca. 300,000 t WO3) in the Nanling Range that 

comprises predominant magnesian W skarn (ca. 240,000 t WO3) and subordinate calcic W 

skarn (ca. 60,000 t WO3) demonstrates and highlights the importance of magnesian skarn for 

W mineralization. Scientifically the Weija deposit presents a special case of W skarn deposit. 

Such unusual economic mineralization is of great interest to economic geologists and 
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provides an excellent opportunity for further understanding of W skarn mineralization. Since 

the concealed Weijia W deposit is still unmined, however, very few studies have been carried 

out on its metallogenesis and mineralization process, except for some publications of deposit 

geology and ore-bearing granite (e.g., Li et al., 2012a; Hu et al., 2015; Zhao et al., 2016a, 

2016b). No genetic model has been proposed for this particular W skarn deposit so far and the 

key factors that control magnesian skarn W mineralization are still unknown. 

Although numerous geochronological and geochemical studies have revealed that the 

Middle-Late Jurassic Cu-Pb-Zn and W skarn deposits in the Nanling Range are genetically 

associated with granitoids (e.g., Bi et al., 1988; Li et al., 1996; Liu et al., 2006; Lu et al., 2006, 

2015; Ma et al., 2007; Yao et al., 2007; Lei et al., 2010; Huang and Lu, 2014; Qu et al., 2014; 

Zhu et al., 2014; Cai et al., 2015; Huang et al., 2015; Shuang et al., 2016; Zhao et al., 2016a, 

2016b), the detailed structural connecting process between them is still unclear. Previous 

studies on skarn deposits mainly focused on metasomatism, zonation, skarn mineralogy, 

geochemistry, and petrogenesis (Meinert et al., 2005). However, little attention has been paid 

to structural control (e.g., Love et al., 2004; Li et al., 2014a; Ducoux et al., 2017), especially 

the magma emplacement related one, on skarn formation. Magma emplacement-induced 

structural control is crucial to understanding the process of skarnization and can provide 

important information for prospecting and exploration. In addition, the roles of some other 

key parameters affecting skarn formation, such as permeability, were also rarely considered. 

The anisotropy of permeability in country rocks, which could be derived from magma 

emplacement-induced structures, may control the location and scale of skarnization to a 

certain extent. Thus, except for geochemical studies, studies on magma emplacement-induced 

structural control and permeability constraint are also of great importance and will be 

beneficial to further understanding the mechanism of skarn formation. 

1.1.2. Scientific problems 

Under on the research background mentioned above, four main scientific problems 

concerning the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids and 

associated skarn deposits in the Nanling Range are proposed as follows. 
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(1) What are the petrogenetic differences and links between the Middle-Late Jurassic 

Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range? 

(2) How do the skarn deposits structurally connect to the Middle-Late Jurassic ore-bearing 

granitoids in the Nanling Range? 

(3) What are the genetic links between different mineralization types and the formation 

mechanism of complex zonation in the Middle-Late Jurassic Cu-Pb-Zn skarn deposits in 

the Nanling Range? 

(4) What are the key factors controlling the occurrence of unusual magnesian skarn W 

mineralization during Late Jurassic in the Nanling Range? 

1.2. Topic selection and research contents 

1.2.1. Topic selection 

The Tongshanling-Weijia area in the western part of the Nanling Range is an ideal 

region for studying the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids and 

associated skarn deposits. In the Tongshanling-Weijia area, the Tongshanling granodiorite 

and Weijia granite are spatially adjacent with a distance of 15 km and are genetically 

associated with Cu-Pb-Zn and W skarn mineralization, respectively. These Cu-Pb-Zn-bearing 

and W-bearing granitoids and related skarn deposits were formed contemporaneously in 

Middle-Late Jurassic (Jiang et al., 2009; Huang and Lu, 2014; Lu et al., 2015; Zhao et al., 

2016a, 2016b). As described above, the Tongshanling Cu-Mo-Pb-Zn-Ag skarn ore district 

exhibits a complex zonation of metals and different mineralization types and the Weijia W 

skarn deposit contains dominant magnesian W skarn and subordinate calcic W skarn. 

Therefore, the Tongshanling-Weijia area is selected as the study area of this Ph.D. thesis. The 

Tongshanling and Weijia deposits, which act as a window of the Middle-Late Jurassic 

Cu-Pb-Zn-bearing and W-bearing granitoids and related skarn deposits in the Nanling Range, 

are the main research objects of this Ph.D. thesis. Consequently, this Ph.D. thesis is entitled 

“Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids and their skarn 

mineralization in the Nanling Range, South China: the Tongshanling and Weijia deposits”. 
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1.2.2. Research contents 

This Ph.D. thesis mainly contains the following research contents. 

(1) Petrogenesis of the Tongshanling Cu-Pb-Zn-bearing granodiorite and Weijia W-bearing 

granite. Comparison of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing 

granitoids in the Nanling Range. 

(2) Petrogenesis and formation process of the microgranular enclaves in the Tongshanling 

granodiorite. 

(3) Regional structural features in the Tongshanling-Weijia area. Local structural control on 

skarn formation at the Tongshanling Cu-Pb-Zn deposit induced by magma emplacement. 

(4) Zonation and genesis of the Tongshanling Cu-Mo-Pb-Zn-Ag skarn ore district which 

includes the Tongshanling Cu-Pb-Zn, Jiangyong Pb-Zn-Ag, and Yulong Mo deposits. 

(5) Ore-forming process of the Weijia W skarn deposit. Key factors controlling the unusual 

magnesian skarn W mineralization in the Weijia deposit. 

1.3. Research methodology and technical route 

1.3.1. Research methodology 

This Ph.D. thesis was finished mainly through the following research methods. 

(1) Field observation, sample collection, and sample processing: regional and local structural 

analyses, deposit geological study, mineral separation, thin section making, whole-rock 

powder preparation, etc. 

(2) Structural study: deformation analysis, RSCM thermometry, and calcite EBSD mapping. 

(3) Petrographic study: optical microscope and scanning electron microscope observations. 

(4) Mineralogical study: SEM elemental mapping, EMP analysis of major elements, and 

LA-ICP-MS analysis of trace elements. 

(5) Geochronological study: zircon, garnet, and titanite U-Pb and molybdenite Re-Os dating. 

(6) Petrogeochemical study: whole-rock major elements, trace elements, and Sr-Nd isotopes 

and zircon Hf isotope. 

(7) Ore deposit geochemical study: S and Pb isotopes of sulfide minerals and H-O isotopes 

of quartz.  
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1.3.2. Technical route 

Petrogenesis of granitoids was studied by zircon U-Pb dating and Hf isotope and 

whole-rock geochemistry. Petrogenesis of microgranular enclaves was studied through 

petrography and mineralogy. Magma emplacement-induced structural control on skarn 

formation was studied by structural analysis, RSCM thermometry, and EBSD mapping. 

Zonation and genesis of the Tongshanling polymetallic ore district were studied through 

molybdenite Re-Os and garnet and titanite U-Pb dating and S, Pb, H-O isotopes. 

Metallogenesis of the Weijia W deposit and key factors controlling the unusual magnesian W 

skarn were studied by RSCM thermometry, whole-rock geochemistry, and mineralogy. 

1.4. Workload and research achievements 

1.4.1. Workload 

The details of completed workload during my Ph.D. study are listed in Table 1-1. 

1.4.2. Main findings and innovations 

Main findings and innovations of this Ph.D. thesis are listed as follows. 

(1) The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range were derived from non-simultaneous partial melting of the mafic amphibolitic 

basement and the muscovite-rich metasedimentary basement, respectively. 

(2) The microgranular enclaves of the Tongshanling granodiorite are reworked restite 

enclaves derived from partial melting of the mafic amphibolitic source. 

(3) The exoskarn and sulfide-quartz veins in the Tongshanling Cu-Pb-Zn deposit are 

structurally controlled by the magma emplacement-induced wall-rock deformation. 

(4) The different mineralization types and ore deposits in the Tongshanling polymetallic ore 

district are genetically linked together and are the productions of evolution and zonation 

of the same skarn system associated with the Tongshanling granodioritic intrusion. 

(5) The key factors controlling the occurrence of unusual magnesian skarn W mineralization 

during Late Jurassic in the Nanling Range mainly include an enriched source, a 

fluorine-rich magma, a strong crystal fractionation, and a fluorine-rich hydrosaline melt. 
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Table 1-1. List of completed workload during my Ph.D. study 

Subject Content Quantity unit 
Persons and/or organizations 
attending/completing this work 

Field 
observation 

➢ 2012.10.12 – 2012.10.21 
Tongshanling Cu-Mo-Pb-Zn-Ag 
ore district and Weijia W deposit 

10 days Cheng, C.Z., Huang, X.D., 
Liu, Z., etc. 

 ➢ 2013.04.27 
Magnetite-apatite deposits 
in the Ning-Wu Basin 

1 day Lu, J.J., Wang, L.J., Huang, 
X.D., etc. 

 ➢ 2013.06.04 – 2013.06.05 
Magnetite-apatite deposits 
in the Ning-Wu Basin 

2 days Lu, J.J., Wang, L.J., Huang, 
X.D., etc. 

 ➢ 2013.07.13 – 2013.08.01 
Tongshanling Cu-Pb-Zn deposit, 
Yulong Mo deposit, Weijia W deposit, 
Baoshan Pb-Zn deposit, and 
Huangshaping Pb-Zn-W-Mo deposit 

20 days Lu, J.J., Ma, D.S., Ding, T., 
Huang, X.D., Sun, Z.Y., etc. 

 ➢ 2013.11.17 – 2013.11.25 
Weijia granite, 
Jiangyong Pb-Zn-Ag deposit, and 
Tongshanling Cu-Pb-Zn deposit 

9 days Huang, X.D., Sun, Z.Y., etc. 

 ➢ 2014.01.25 – 2014.01.26 
Zhuxi W deposit 

2 days Wang, R.C., Lu, J.J., Lu, X.C., 
Shu, L.S., Chen, G.H., Huang, 
X.D., Yu, Q., etc. 

 ➢ 2014.08.01 – 2014.08.08 
Tongshanling granodiorite, Yulong Mo 
deposit, Jiangyong Pb-Zn-Ag deposit, and 
Weijia W deposit 

8 days Huang, X.D., Zhao, X., etc. 

 ➢ 2014.08.23 – 2014.08.24 
Beiya Au deposit and 
Jinding Pb-Zn deposit 

2 days Meinert, L.D., Lentz, D.R., 
Huang, X.D., Yao, C.Y., etc. 

 ➢ 2014.09.28 – 2014.10.06 
Weijia W deposit, Tongshanling 
Cu-Pb-Zn deposit, and Jiuyishan, 
Jianfengling, and Huashan-Guposhan 
granites 

9 days Chen, Y., Faure, M., Scaillet, 
B., Lu, J.J., Sizaret, S., Wang, 
B., Guo, C.L., Liu, H.S., Huang, 
F.F., Huang, X.D., Zhao, X., 
Zhu, X., etc. 

 ➢ 2014.12.08 – 2014.12.18 
Tongshanling Cu-Pb-Zn deposit 

11 days Huang, X.D., Tuo, X.S., etc. 

 ➢ 2015.09.08 – 2015.09.14 
Jurassic granites in Fujian Province 

7 days Liu, H.S., Huang, X.D., etc. 

 ➢ 2015.09.27 – 2015.10.15 
Regional geology of the 
Tongshanling-Weijia area, 
Tongshanling Cu-Pb-Zn deposit, 
and Muguayuan W deposit 

19 days Lu, J.J., Chauvet, A., Sizaret, S., 
Barbanson, L., Guo, C.L., 
Huang, X.D., Zhang, Q., Zhao, 
X., Xiang, L., Li, X.Y., etc. 

 ➢ 2016.05.24 – 2016.05.29 
Granites and associated 
Mineralization in the 
French Massif Central 

6 days Chen, Y., Faure, M., Wang, 
R.C., Li, X.H., Xu, X.S., Yang, 
J.H., Chauvet, A., Lin, W., Qiu, 
J.S., Sizaret, S., Li, Q.L., Xie, 
L., Liu, X.C., Liu, H.S., Xue, 
Z.H., Huang, F.F., Zhu, Z.Y., 
Huang, X.D., etc. 

(To be continued on the next page) 
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Table 1-1. (Continued) 

Subject Content Quantity unit 
Persons and/or organizations 
attending/completing this work 

 ➢ 2016.09.13 – 2016.09.16 
Jiaodong Au deposits 

4 days Fan, H.R., Fontboté, L., Rhys, 
D., Liu, X., Qiu, K.F., Huang, 
X.D., etc. 

 ➢ 2016.10.12 – 2016.10.21 
Regional geology of the 
Tongshanling-Weijia area, 
Tongshanling Cu-Pb-Zn deposit, 
and Weijia W deposit 

10 days Chauvet, A., Barbanson, L., 
Huang, X.D., Chen, G.H., etc. 

 ⚫ Total 120 days  

Sample 
collection 

➢ From surface outcrops 120 pieces Huang, X.D., etc. 

➢ From underground galleries 246 pieces Huang, X.D., etc. 

 ➢ From drill cores 227 pieces Huang, X.D., etc. 

 ➢ From ore plots 147 pieces Huang, X.D., etc. 

 ⚫ Total 740 pieces  

Sample 
processing 

Mineral separation    

➢ Zircon 7 pieces Langfang Geoservices Co. Ltd. 

 ➢ Sulfide minerals 116 pieces Huang, X.D. and Cheng, C.Z. 

 ➢ Scheelite 30 pieces Langfang Geoservices Co. Ltd. 

 ➢ Quartz 37 pieces Huang, X.D. and Cheng, C.Z. 

 ⚫ Total 190 pieces  

 Polished epoxy resin discs holding zircon 4 pieces Beijing GeoAnalysis Co. Ltd. 

 Polished sections 65 pieces Langfang Geoservices Co. Ltd., 
NJU, and ISTO 

 Thin sections    

 ➢ Covered thin sections 316 pieces Langfang Geoservices Co. Ltd. 
and NJU 

 ➢ Uncovered thin sections 476 pieces Langfang Geoservices Co. Ltd., 
ISTO, and NJU 

 ➢ Thin sections for fluid inclusion study 77 pieces Langfang Geoservices Co. Ltd. 
and ISTO 

 ⚫ Total 869 pieces  

 Whole-rock powder 54 pieces Langfang Geoservices Co. Ltd. 
and NJU 

 Sample preparation for 
permeability experiment 

8 pieces Huang, X.D. and Sizaret, S. 
at ISTO 

Isotopic 
dating 

LA-ICP-MS Zircon U-Pb dating 4 
114 

pieces 
points 

Huang, X.D. at LAMD, NJU 

 Molybdenite Re-Os dating 13 pieces National Research Center of 
Geoanalysis, CAGS, Beijing 

 LA-ICP-MS Titanite U-Pb dating 1 
21 

piece 
points 

Huang, X.D. at Nanjing 
FocuMS Technology Co. Ltd. 

Petrographic 
observation 

By optical microscope 803 pieces Huang, X.D. at LAMD, NJU 
and ISTO 

 By SEM (BSE and CL images) 80 
23 

pieces 
days 

Huang, X.D. at LAMD, NJU 
and ISTO and Beijing 
GeoAnalysis Co. Ltd. 

(To be continued on the next page) 
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Table 1-1. (Continued) 

Subject Content Quantity unit 
Persons and/or organizations 
attending/completing this work 

Mineral CPO 
determination 

Calcite EBSD mapping 8 pieces Barou, F., Huang, X.D., and 
Chauvet, A. at Géosciences 
Montpellier 

Composition 
analysis 

Whole-rock composition    

➢ Whole-rock major elements 54 pieces Analysis Center of No. 230 
Research Institute of the China 
National Nuclear Corporation, 
Changsha 

 ➢ Whole-rock trace elements 54 pieces Huang, X.D. and Liu, Q. 
at LAMD, NJU 

 ➢ Whole-rock Sr-Nd isotopes 17 pieces Huang, X.D. at LAMD, NJU 

 In-situ mineral composition    

 ➢ Point and line analyses and 
elemental mapping by SEM 

80 
23 

pieces 
days 

Huang, X.D. at LAMD, NJU 
and ISTO 

 ➢ Major elements by EMP 5856 points Huang, X.D. at LAMD, NJU 
and ISTO 

 ➢ Trace elements by LA-ICP-MS 411 points Huang, X.D. at Nanjing 
FocuMS Technology Co. Ltd. 

 ➢ Zircon Hf isotope by LA-ICP-MS 4 
83 

pieces 
points 

Huang, X.D. at LAMD, NJU 

 Mineral and fluid isotopic composition    

 ➢ S isotope of sulfide minerals 112 pieces Ministry of Education Key 
Laboratory of Nuclear 
Resources and Environment, 
East China University of 
Technology 

 ➢ Pb isotope of sulfide minerals 41 pieces Analytical Laboratory of the 
Beijing Research Institute of 
Uranium Geology 

 ➢ H-O isotopes of quartz 37 pieces Analytical Laboratory of the 
Beijing Research Institute of 
Uranium Geology and 
LAMD, NJU 

Temperature 
measurement 

RSCM thermometry 47 pieces Huang, X.D. at BRGM 

Fluid inclusion thermometry 11 pieces Huang, X.D. at LAMD, NJU 

Experimental 
study 

Crystal growth experiment 20 rounds Huang, X.D. and Sizaret, S. 
at Polytech Orléans 

 Permeability experiment 6 rounds Huang, X.D., Sizaret, S., and 
Champallier, R. at ISTO 

Numerical 
modeling 

Crystal growth and magma 
emplacement-induced fluid flow 

2 cases Huang, X.D. and Sizaret, S. 
at ISTO 

Notes: BRGM: Bureau de Recherches Géologiques et Minières, France; BSE: backscattered electron; CAGS: 

Chinese Academy of Geological Sciences; CL: cathodoluminescence; CPO: crystallographic preferred 

orientation; EBSD: electron backscatter diffraction; EMP: electron microprobe; ISTO: Institut des Sciences de la 

Terre d’Orléans, France; LA-ICP-MS: laser ablation-inductively coupled plasma-mass spectrometry; LAMD: 

State Key Laboratory for Mineral Deposits Research, China; NJU: Nanjing University, China; RSCM: Raman 

spectroscopy of carbonaceous material; SEM: scanning electron microscope. 
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Chapter 2. Geological setting 

2.1. South China 

South China is world famous for the widespread multiple-aged granitoids and related 

polymetallic mineral deposits, especially the extremely abundant W-Sn deposits, and has 

attracted great interests of numerous geologists and scientific research institutes to carry out 

countless studies on its geodynamic evolution, magmatism, and mineralization (Hsu, 1943; 

Hsu et al., 1960, 1963a, 1963b; Institute of Geochemistry, CAS, 1979; Mo et al., 1980; 

Department of Geology, NJU, 1981; Xu et al., 1982, 1983; Chen et al., 1989a, 2008, 2013; 

The Granitoid Research Group of the Nanling Project, MGMR, 1989; Hua and Mao, 1999; 

Zhou and Li, 2000; Shu and Zhou, 2002; Wang and Zhou, 2002; Hua et al., 2003, 2005; Sun 

et al., 2005; Sun, 2006; Zhou et al., 2006a, 2018; Li and Li, 2007; Li et al., 2007a, 2009, 2013, 

2016, 2017, 2018a; Wang et al., 2007a, 2013, 2017a; Zaw et al., 2007; Zhou, 2007; Mao et al., 

2008a, 2009a, 2011a, 2011b, 2013a; Faure et al., 2008, 2009, 2016a, 2016b, 2017; Shu et al., 

2009, 2015; Wan, 2010; Hu and Zhou, 2012; Shu, 2012; Zhao and Cawood, 2012; Pirajno, 

2013; Zhang et al., 2013; Hu et al., 2017; Zhao et al., 2017). As one of the main continental 

fragments disaggregated from the Gondwana supercontinent that assembled together with 

Siberia to construct the present Eurasia (Metcalfe, 2013), the South China Block is a major 

continental component with a complex history of tectonic evolution in East Asia (Zhou and Li, 

2000; Shu and Zhou, 2002; Li and Li, 2007; Wang et al., 2007a, 2013, 2017a; Faure et al., 

2008, 2009, 2016a, 2016b, 2017; Li et al., 2009, 2016, 2017, 2018a; Shu et al., 2009, 2015; 

Wan, 2010; Shu, 2012; Zhao and Cawood, 2012; Zhang et al., 2013). The South China Block 

is generally considered to link with the North China Block through the Qinling-Dabie-Sulu 

orogen to the north, connect with the Indochina Block by the Jinshajiang-Ailaoshan-Song Ma 

suture zone to the southwest, joint with the Songpan-Gantze Block through the Longmenshan 

fault to the northwest, and is bounded by the Pacific plate to the east (Fig. 2-1). Faure et al. 

(2016a) proposed a hypothetic Triassic suture to the east of Hainan Island as the southern 

offshore of the South China Block (Fig. 2-1). 
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Figure 2-1. Structural map showing the tectonic location and main tectonic elements of the South China Block 

(cited from Faure et al., 2017). 

 

2.1.1. Geodynamic evolution 

It is generally accepted that the South China Block was constructed through a 

Neoproterozoic amalgamation of the Yangtze Block and the Cathaysia Block with the 

Jiangnan Orogen as the suture zone between them (Figs. 2-2 and 2-3a), although the precise 

time of the amalgamation is still controversial from 1.0 Ga to 0.8 Ga (Li et al., 2002, 2003, 

2007b, 2008, 2009, 2014b; Wang and Li, 2003; Shu et al., 2006a, 2011; Zhou et al., 2006b; 
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Wang et al., 2007a; Cawood et al., 2013; Yao et al., 2014a). After the collision of the Yangtze 

Block and the Cathaysia Block, the South China Block experienced a regional-scale extension 

during Late Neoproterozoic which led to the formation of rift basins that contain a set of 

siliciclastic sediments coeval with bimodal volcanic rocks (800 – 690 Ma; Fig. 2-3b) (Wang 

and Li, 2003; Shu et al., 2011; Li et al., 2014b). Then the Cathaysia Block underwent a stable 

intraplate neritic-bathyal depositional stage from Sinian to Early Paleozoic (690 – 460 Ma; 

Fig. 2-3c) during which thick siliciclastic sediments were formed (Shu et al., 2014) without 

volcanic magmatism and any evidence for the input of mantle-derived materials. 

In Phanerozoic, the South China Block mainly experienced three tectonothermal events, 

i.e., Early Paleozoic, Triassic, and Jurassic-Cretaceous events, which were generally referred 

to as “Caledonian or Kwangsian”, “Indosinian”, and “Yanshanian” movements by Chinese 

 

 

Figure 2-2. (a) Sketch map showing the tectonic location of South China. (b) Simplified geological map of 

South China illustrating the distributions of main Phanerozoic structures and igneous rocks (cited from Li et al., 

2017).  
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Figure 2-3. Schematic model illustrating the geodynamic evolution of South China from Neoproterozoic to 

Early Mesozoic (cited from Shu et al., 2015).  
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geologists, respectively (Ting, 1929; Hsu et al., 1960, 1963a, 1963b; Ren, 1991; Hua and Mao, 

1999; Zhou and Li, 2000; Hua et al., 2003, 2005; Wang et al., 2005a, 2010, 2011a, 2013; 

Zhou et al., 2006a; Chen et al., 2010, 2013). The Early Paleozoic tectonic movement was 

commonly recognized according to the presence of a conspicuous unconformity between the 

Middle Devonian and Silurian strata, pervasive shortening deformation, and high-grade 

metamorphism (Grabau, 1924; Ting, 1929; Lin et al., 2008; Faure et al., 2009; Charvet et al., 

2010; Li et al., 2010, 2016, 2017; Charvet, 2013; Wang et al., 2013; Shu et al., 2015). It is 

now commonly interpreted as an intracontinental orogeny due to the lack of ophiolitic rocks, 

accretionary complexes, volcanic rocks with arc affinities, and the input of mantle-derived 

components in granitic magmatism (Faure et al., 2009; Charvet et al., 2010; Li et al., 2010; 

Charvet, 2013; Wang et al., 2013; Shu et al., 2015). Three competing tectonic models have 

been proposed to explain the origin of the Early Paleozoic orogeny, i.e., (1) northwestward 

intracontinental subduction of the northwestern Cathaysia Block beneath the southeastern 

Yangtze Block (Fig. 2-4a; Faure et al., 2009), (2) northwestward intraplate overthrusting of 

the northwestern Cathaysia Block atop the southeastern Yangtze Block (Fig. 2-4b; Li et al., 

 

 

Figure 2-4. Schematic models illustrating the geodynamic mechanism of the (a–c) Early Paleozoic and (d–g) 

Triassic tectonic events in the South China Block (cited from Li et al., 2017).  
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2010), and (3) combined northwestward underthrusting of an inferred East China Sea Block 

and southeastward underthrusting of the Yangtze Block both beneath the Cathaysia Block 

(Figs. 2-3d and 2-4c; Shu et al., 2014, 2015). This tectonic event was constrained in 

chronology by newly grown mica 40Ar/39Ar dating at 450 – 390 Ma with contemporaneous 

anatectic granites dated at 460 – 390 Ma (Shu et al., 1999, 2015; Charvet et al., 2010; Shu, 

2012; Li et al., 2016, 2017). During Late Paleozoic from 390 Ma to 240 Ma, the South China 

Block underwent a stable intraplate carbonate depositional stage in a littoral-neritic 

environment resulting in the formation of a series of limestone, dolomite, and clastic rocks 

(Fig. 2-3e; Shu et al., 2006b, 2008, 2009). 

Triassic is the main period for the development of the South China tectonic framework 

(Faure et al., 2016a, 2017). The Triassic tectonic movement was initially recognized due to 

the Late Triassic (Norian) angular unconformity of conglomerate and sandstone overlaying 

folded and metamorphosed rocks in Vietnam of the Indochina Block (Deprat, 1914, 1915; 

Fromaget, 1932, 1941). In South China, the Triassic event is recorded as a regional Late 

Triassic unconformity, folding, thrusting, ductile shearing, metamorphism, and granitic 

magmatism (Wang et al., 2005a, 2013; Lin et al., 2008; Shu et al., 2008, 2015; Zhang and Cai, 

2009; Chu et al., 2012a, 2012b; Faure et al., 2016a, 2016b, 2017; Li et al., 2016, 2017). An 

Alps-type collision model (Fig. 2-4d) was proposed by Hsü et al. (1988, 1990) to explain the 

origin of this tectonic event based on interpreting the Banxi Group as a Mesozoic ophiolitic 

mélange. However, subsequent studies revealed that the Banxi Group is composed of a 

Neoproterozoic turbidite sequence (Gu et al., 2002; Wang and Li, 2003; Wang et al., 2007a). 

Although it is now widely accepted that the Triassic tectonic movement in the South China 

Block is an intraplate deformation event (Lin et al., 2008; Shu et al., 2008, 2015; Chu et al., 

2012a, 2012b; Faure et al., 2014), the geodynamic mechanism of this event is still disputed 

with the following models: (1) flat-slab subduction model of the palaeo-Pacific plate (Figs. 

2-4e and 2-5a–d) proposed by Li and Li (2007), (2) intraplate oblique convergence of the 

Yangtze Block and the Cathaysia Block (Fig. 2-4f) proposed by Wang et al. (2005a), and (3) 

collision of the South China Block with the Indochina Block and/or the North China Block 

(Figs. 2-4g and 2-6a–b) (Lepvrier et al., 2004; Faure et al., 2008; Cai and Zhang, 2009; Wang 
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Figure 2-5. Paleogeographic evolution of the South China Block from Permian to Jurassic, the flat-slab 

subduction model of the palaeo-Pacific plate, and postorogenic magmatism induced by slab foundering and 

retreating (cited from Li and Li, 2007). 

 

et al., 2013; Shu et al., 2015; Li et al., 2016). Wang et al. (2013) emphasized that the 

interaction between the South China Block and the surrounding blocks/plates provided the 

first-order driving force for the Triassic intracontinental deformation across the South China 

Block. The third tectonic model is becoming more and more popular than the former two, 

however, the influence of the palaeo-Pacific plate subduction during Triassic is still uncertain 

(Wang et al., 2013). 

During Late Mesozoic (Jurassic-Cretaceous), the South China Block was dominated by 

an extensional tectonic regime, which is demonstrated by the occurrence of abundant 

granitoid rocks with an evident input of juvenile mantle-derived components, the wide 
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Figure 2-6. Schematic model illustrating the driving mechanisms for the geodynamic evolution of the South 

China Block during Mesozoic (cited from Wang et al., 2013).  
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distribution of extensional basins, the existence of extensional tectonomagmatic associations, 

the extensional information recorded by magma emplacement processes, and the absence of 

compressional deformation structures (Shu and Zhou, 2002; Shu et al., 2006b, 2009; Shu, 

2012; Wang and Shu, 2012; Wang et al., 2013; Wei et al., 2014a, 2014b, 2016). Zhou and Li 

(2000) firstly proposed the model of palaeo-Pacific plate subduction with changing angles 

(Fig. 2-7) to understand the origin of the large-scale Late Mesozoic granitic magmatism in 

Southeastern China. A combination of the palaeo-Pacific plate subduction induced back-arc 

extensional setting, asthenosphere upwelling, basaltic magmas underplating, and crustal 

anatexis is thought to be the key mechanism for the generation of these Late Mesozoic 

granitoid rocks (Shu and Zhou, 2002; Zhou et al., 2006a). A transition of regional tectonic 

regime from the Tethysian domain to the palaeo-Pacific domain is suggested to occur in 

Early-Middle Jurassic (Shu and Zhou, 2002; Zhou et al., 2006a; Shu, 2012). Li and Li (2007) 

interpreted the Late Mesozoic granitoid rocks as a result of postorogenic magmatism induced 

 

 

Figure 2-7. Schematic model illustrating the palaeo-Pacific plate subduction with changing angles in 

Southeastern China during Late Mesozoic (cited from Zhou and Li, 2000). 
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by slab foundering and retreating in their flat-slab subduction model of the palaeo-Pacific 

plate (Fig. 2-5e and f). Wang et al. (2013) pointed that the post-orogenic collapse after the 

Triassic compressive deformation and the back-arc extension resulted from the westward 

subduction of the palaeo-Pacific plate probably jointly controlled the Early-Middle Jurassic 

tectonic regime of the South China Block (Fig. 2-6c), and the palaeo-Pacific plate subduction 

and the blocking with the Indochina Block to the southwest and the North China Block to the 

north might dominate the tectonic regime of the South China Block since Late Jurassic (Fig. 

2-6d). However, the geophysical study on granite emplacement mechanism carried out by Liu 

et al. (2018) revealed that the Late Jurassic Qitianling pluton in South China was formed 

during a period of tectonic quiescence. Therefore, the Jurassic tectonic setting in South China 

remains a subject of controversy that need to be solved by further studies. 

2.1.2. Multiple-aged granitoids and volcanic rocks 

The outcrop area of the multiple-aged granitoids in the South China Block is about 

169,690 km2, in which the Neoproterozoic, Early Paleozoic, Late Paleozoic, Triassic, 

Jurassic, and Cretaceous granitoids occupy about 9,950 km2, 22,110 km2, 1,480 km2, 23,230 

km2, 61,460 km2, and 51, 460 km2, respectively (Fig. 2-8; according to a recently revised 

version of the map from Sun, 2006). In addition, the Jurassic and Cretaceous volcanic rocks 

have outcrop areas of 1,170 km2 and 89,620 km2, respectively (Fig. 2-8; Zhou et al., 2006a). 

These multiple-aged granitoids and volcanic rocks in the South China Block respectively have 

unique spatial distributions, chronological features, structural characteristics, mineralogical 

and geochemical compositions, and relations with tectonic events. 

The Neoproterozoic granitoids mostly occur as peraluminous granite batholiths along the 

southeastern margin of the Yangtze Block in southern Anhui, northern Jiangxi, southern 

Hubei, and northern Guangxi Provinces (Fig. 2-8), such as the Xucun, Jiuling, Motianling, 

and Yuanbaoshan granites. They were partially deformed as gneissoid granites and coexist 

with a set of slightly earlier formed Neoproterozoic island-arc volcanic-sedimentary sequence 

(Zhou, 2003; Sun, 2006). These Neoproterozoic granites generally contain aluminum-rich 

minerals, such as cordierite, muscovite, tourmaline, and garnet, and are considered as S-type 

granites (Li et al., 2003; Zhou, 2003). Some Neoproterozoic I-type granitoids also appear in  
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Figure 2-8. Distribution of multiple-aged granitoids and volcanic rocks in South China (modified after Sun, 

2006 and Zhou et al., 2006a). 

 

the South China Block, such as the Huangling complex in western Hubei Province (Fig. 2-8) 

which is comprised of dominant Na-rich tonalite-trondhjemite-granodiorite association and 

minor K-rich calc-alkaline intrusions (Li et al., 2003). The Neoproterozoic granitoids were 

mostly formed at ca. 830 Ma and were derived from partial melting of various crustal sources 

with different influences by juvenile mantle-derived components (Li et al., 2003; Zhou, 2003; 

Sun, 2006; Yao et al., 2014a; Zhang et al., 2016a; Wang et al., 2017a; Xiang et al., 2018). Li 

et al (2003) introduced a model of mantle plume beneath South China to interpret the origin 

of these Neoproterozoic granitoids, however, it is now more accepted that the generation of 

these Neoproterozoic granitoids was related to the amalgamation of the Yangtze and 
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Cathaysia Blocks and its post-orogenic extension (Zhou, 2003; Sun, 2006; Yao et al., 2014a; 

Wang et al., 2017a). 

The Early Paleozoic granitoids are mainly distributed in the boundary areas between 

Jiangxi and Fujian, Jiangxi and Hunan, Hunan and Guangxi, and Guangxi and Guangdong 

Provinces (Fig. 2-8). However, Early Paleozoic volcanic rocks and associated mafic intrusions 

are poor in the South China Block interior (Zhou, 2003; Sun, 2006; Wang et al., 2013; Zhang 

et al., 2017d). These Early Paleozoic granitoids can be divided into relatively earlier gneissoid 

granites and relatively later massive granitoids with respective peak ages of ca. 440 Ma and 

ca. 420 Ma (Sun, 2006; Wang et al., 2013; Shu et al., 2014, 2015). The gneissoid granites are 

less voluminous than the massive granitoids and generally contain muscovite, garnet, and 

tourmaline. The massive granitoids mostly occur as large-volume batholiths and laccoliths 

and are characterized by peraluminous biotite monzonitic granites, two-mica monzonitic 

granites, and muscovite-(garnet) granites (Wu et al., 2008; Charvet et al., 2010; Li et al., 

2010; Wang et al., 2013). There are also some biotite granodiorites and hornblende-bearing 

granites. For the petrogenesis of these Early Paleozoic granitoids, Sun (2006) pointed out that 

the gneissoid granites were formed through crustal partial melting by a combined 

compression, ductile deformation, and migmatization mechanism, whereas, the massive 

granitoids were formed by partial melting of dominant crustal materials with possible input of 

mantle-derived components under an extensional tectonic setting. Zhang et al. (2010, 2012) 

and Wang et al. (2011a) proposed that these Early Paleozoic granitoids probably originated 

from partial melting of Proterozoic metapelite and meta-igneous rocks with poor input of 

juvenile mantle-derived components. Li et al. (2010) and Wang et al. (2011a) interpreted their 

origin to be related to increased thermal weakening of the thickened continental crust during 

Early Paleozoic. 

The Late Paleozoic magmatic rocks in the South China Block are dominated by the 

voluminous Emeishan basalts and related intrusions in Southwest China which were formed 

at ca. 260 Ma in Late Permian (Xu et al., 2001; Fan et al., 2008; Zhou et al., 2008). However, 

the Late Paleozoic granitoids are rarely exposed and are dominantly distributed in southern 

Hainan Island. These Late Paleozoic granitoids in Hainan are characterized by calc-alkaline 
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gneissoid granites which have ages of 267 – 252 Ma, show the geochemical features of I-type 

granites, and are thought to be related to a continental arc setting (Li et al., 2006; Chen et al., 

2011). They are temporally similar to the gneissoid granodiorites in the Ailaoshan-Song Ma 

suture zone between the South China Block and the Indochina Block (Lan et al., 2000; Carter 

et al., 2001; Carter and Clift, 2008). 

The Triassic granitoids are mainly spread in southeastern Guangxi, Hunan, northern 

Guangdong, southern Jiangxi, and western Fujian Provinces (Fig. 2-8). However, Triassic 

volcanic rocks are almost absent in the South China Block. Two series of Triassic granitoids 

have been recognized as follows: (1) minor gneissoid granites dominantly along the Yunkai 

domain at the southern margin of the South China Block with ages of 250 – 242 Ma; (2) 

voluminous peraluminous massive granitoids with two peak ages of ca. 240 Ma and ca. 220 

Ma (Wang and Zhou, 2002; Li et al., 2005; Wang et al., 2005b, 2007b, 2013; Peng et al., 

2006a; Zhou et al., 2006a; Zhou, 2007; Zhang et al., 2014). Except for the garnet- and 

cordierite-bearing granites in the Darongshan-Shiwandashan and northern Yunkai domains, 

most of these peraluminous massive granitoids are biotite monzonitic granites, two-mica 

monzonitic granites, and muscovite granites (Zhou and Yu, 2001; Wang and Zhou, 2002; 

Zhou et al., 2006a; Zhou, 2007). The Triassic granitoids contain both S-type and I-type 

granites and are dominated by S-type granites. It is generally accepted that these granitoids 

were derived from partial melting of crustal metamorphic basements without significant 

addition of juvenile mantle-derived components (Ge, 2003; Deng et al., 2004; Wang et al., 

2007b). For the petrogenetic mechanism of these Triassic granitoids, Wang et al. (2002a, 

2007b) emphasized the importance of isostatic adjustment of the thickened continental crust, 

with heat supplied from in-situ radiogenic heating in the thickened continental crust, and 

subsequent heating by underplated basaltic magmas. Zhou et al. (2006a) interpreted the earlier 

gneissoid granites as syn-collisional granites and the later massive granitoids as late 

collisional granitoids. 

The Jurassic granitoids occupy the largest exposure area of the whole multiple-aged 

granitoids in South China and are mostly distributed in Guangdong, Hunan, Jiangxi, and 

Fujian Provinces far away from the southeast coastline (Fig. 2-8). These Jurassic granitoids 
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show a southwest-northeast trend of spatial distribution overall and exhibit a west-east 

extending trend in the Nanling Range made up of three distinguishable belts which are the 

northern Qitianling-Jiufeng belt, the middle Dadongshan-Guidong belt, and the southern 

Fogang-Xinfengjiang belt (Fig. 2-8; Sun, 2006; Zhou et al., 2006a; Wang et al., 2013). These 

Jurassic granitoids were mainly formed from 165 Ma to 150 Ma and are composed of I-type, 

S-type, and A-type granitoids and minor syenites (Zhou and Li, 2000; Hua et al., 2003, 2005; 

Sun et al., 2005; Sun, 2006; Zhou et al., 2006a; Li and Li, 2007; Zhou, 2007; Chen et al., 

2008, 2013; Jiang et al., 2008; Mao et al., 2008a, 2013a; Zhu et al., 2008; Wang et al., 2013; 

Huang et al., 2017a). Compared with the Jurassic granitoids, the Jurassic volcanic rocks are 

obviously less exposed and are mostly spread in southern Hunan, southern Jiangxi, 

northeastern Guangdong, and southwestern Fujian Provinces with a rough west-east trend. 

They were dominantly formed in Early-Middle Jurassic from 195 Ma to 170 Ma and are 

mainly composed of bimodal magmatic assemblages of basalt and rhyolite with similar 

abundances (Zhou et al., 2006a; Wang et al., 2013). 

The Cretaceous granitoids occupy the second largest exposure area of the whole 

multiple-aged granitoids in South China and are mainly spread in the coastal Guangdong, 

Fujian, and Zhejiang Provinces with a southwest-northeast extending trend, and also in the 

Lower Yangtze northern Hunan, southern Hubei, and southern Anhui Provinces with a 

west-north-east trend of spatial distribution (Fig. 2-8). These Cretaceous granitoids were 

mainly formed from 135 Ma to 80 Ma with two peak ages of 125 Ma and 93 Ma and are 

composed of I-type, S-type, and A-type granitoids, and minor alkaline rocks (Zhou and Li, 

2000; Wang and Zhou, 2002; Hua et al., 2003, 2005; Sun, 2006; Zhou et al., 2006a; Li and Li, 

2007; Zhou, 2007; Mao et al., 2008a, 2013a; Wang et al., 2013; Yan et al., 2017). Compared 

with the Cretaceous granitoids, the Cretaceous volcanic rocks are much more voluminous and 

are mainly distributed in the coastal Zhejiang, Fujian, and Guangdong Provinces constituting 

a northeast-trending volcanic zone (Fig. 2-8). They were mainly formed from 130 Ma to 85 

Ma and are dominated by granitic volcanic-subvolcanic-intrusive assemblages with minor 

mafic rocks (Zhou et al., 2006a; Wang et al., 2013). 

The Early-Middle Jurassic volcanic rocks in the South China Block were interpreted as 
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to genetically associated with crust-mantle interaction under a rift-like setting in response to 

the far-field effect induced by the palaeo-Pacific plate subduction (Zhou et al., 2006a, 2006c; 

Zhou, 2007; He et al., 2010; Wang et al., 2013). Zhou et al. (2006a) proposed that the 

formation of these Early-Middle Jurassic volcanic rocks might mark the ending of the old 

Tethysian tectonic regime and the beginning of the new palaeo-Pacific tectono-magmatic 

cycle. The explosive formation of the Late Mesozoic granitoids and the Cretaceous volcanic 

rocks is widely considered as a result of the palaeo-Pacific plate subduction, asthenosphere 

upwelling, basaltic magmas underplating, and crustal anatexis, and maybe also post-orogenic 

extension (Zhou and Li, 2000; Shu and Zhou, 2002; Wang and Zhou, 2002; Zhou et al., 2006a; 

Li and Li, 2007; Zhou, 2007; Mao et al., 2013a; Wang et al., 2013; Huang et al., 2017a; Li et 

al., 2018a). Compared with the Early Paleozoic and Triassic granitoids, the Late Mesozoic 

granitoids distinctly contain more juvenile mantle-derived components (Zhou et al., 2006a; 

Wang et al., 2013). 

2.1.3. Polymetallic mineralization 

Numerous mineral deposits of W, Sn, rare metals, base metals, and precious metals have 

been discovered in the South China Block, which are characterized by multiple-aged 

(Neoproterozoic, Early Paleozoic, Triassic, Jurassic, and Cretaceous) mineralization and are 

dominated by Mesozoic especially Late Mesozoic mineralization (Figs. 2-9 and 2-10; Hua 

and Mao, 1999; Hua et al., 2003, 2005; Mao et al., 2007, 2008a, 2009a, 2009b, 2011a, 2011b, 

2013a; Zaw et al., 2007; Chen et al., 2008, 2013, 2015a; Ma, 2008; Pei et al., 2008; Cheng et 

al., 2010; Hu and Zhou, 2012; Fu et al., 2013; Li et al., 2013; Pirajno, 2013; Sheng et al., 

2015; Hu et al., 2016, 2017; Zhao et al., 2017; Zhou et al., 2017, 2018). The vast majority of 

these multiple-aged mineral deposits are temporally and spatially closely associated with the 

multiple-aged granitoids in the South China Block (Fig. 2-10; Hua et al., 2003; Mao et al., 

2007, 2008a, 2009a, 2009b, 2011a, 2011b, 2013a; Chen et al., 2008, 2013; Ma, 2008; Pei et 

al., 2008; Cheng et al., 2010; Hu and Zhou, 2012; Fu et al., 2013; Li et al., 2013; Hu et al., 

2016, 2017; Zhao et al., 2017; Zhou et al., 2017, 2018). 

The Neoproterozoic mineralization has been discovered mainly in the Jiangnan Orogen 

between the Yangtze and Cathaysia Blocks so far. They are dominated by Sn and also some 



Chapter 2. Geological setting 

28 

 

Figure 2-9. Distribution of the Mesozoic mineral deposits in East China (Southeast China and Northeast China) 

(cited from Mao et al., 2011a). 

 

W deposits which are related to the Neoproterozoic granites in the Jiangnan Orogen, such as 

the Baotan Sn orefield associated with the Pingying granite (Zhang et al., 2016a; Chen et al., 

2018), the Jiumao Sn deposit associated with the Yuanbaoshan granite (Yao et al., 2014a; 

Xiang et al., 2018), the Biaoshuiyan and Heiwanhe Sn-W deposits associated with the 

Fanjingshan granite (Xia, 1985; Zhu, 2010; Wang et al., 2011b), the Nanjia and Wuya W  
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Figure 2-10. Summary of the geodynamic evolution, granitic magmatism, and related mineralization in South 

China. 

 

deposits associated with the Motianling granite (Pan and Hu, 2014; Liu et al., 2016a, 2016b), 

and the Huashandong W deposit associated with the Jiuling granite (Zhong et al., 2005; Liu et 

al., 2015). Chen et al. (2018) published a cassiterite U-Pb age of 829 ± 19 Ma by LA-ICP-MS 

analysis for the Menggongshan Sn deposit in the Baotan Sn orefield. Xiang et al. (2018) 

obtained two metallogenic ages of 831 ± 11 Ma and 828 ± 12 Ma for the Jiumao Sn deposit 

by LA-ICP-MS cassiterite U-Pb dating. Liu et al. (2015) constrained the formation time of the 

Huashandong W deposit at 805 ± 5 Ma by molybdenite Re-Os dating. 

The Early Paleozoic mineral deposits in South China discovered until now are mainly W 

(Sn) and also some Nb-Ta deposits and are temporally and spatially related to the later (ca. 

420 Ma) Early Paleozoic granites (Fig. 2-10). The Yuechengling granitic complex in northern 

Guangxi Province is a typical case of the Early Paleozoic W-bearing granites. Yang et al. 

(2014) published a zircon U-Pb age of 421.8 ± 2.4 Ma and a scheelite Sm-Nd age of 421 ± 24 

Ma for the Niutangjie W deposit at the southern margin of the Yuechengling granite. Chen et 

al. (2016) identified an Early Paleozoic W mineralization event in the Dushiling W deposit at 

the northeastern margin of the Yuechengling granite by zircon U-Pb dating (422.9 ± 2.1 Ma, 

423.2 ± 2.4 Ma, 420.9 ± 2.3 Ma, 421.5 ± 2.5 Ma), scheelite Sm-Nd dating (417 ± 35 Ma), and 

titanite U-Pb dating (424 ± 13 Ma, 425 ± 12 Ma). The Penggongmiao granitic batholith in 

southern Hunan Province was previously also regarded as an Early Paleozoic W-bearing 

granite. A dozen of scheelite-quartz veins have been detected at the southern contact zone 

between the Penggongmiao granite and country rocks in the Zhangjialong W deposit. Two 
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crystallization ages of 435.3 ± 2.7 Ma and 436.2 ± 3.1 Ma and a crystallization age of 426.5 ± 

2.5 Ma for the Penggongmiao medium to coarse grained biotite granite and the magmatic 

scheelite-bearing aplite veins therein, respectively, were obtained by Zhang et al. (2011a) 

through LA-ICP-MS zircon U-Pb dating. However, Yuan et al. (2018) recently pointed out 

that the Zhangjialong W deposit was formed during Late Jurassic with a molybdenite Re-Os 

age of 160.2 ± 2.2 Ma and a muscovite 40Ar/39Ar age of 153.5 ± 1.0 Ma. The Xigang Nb-Ta 

deposit in eastern Jiangxi Province was recently confirmed as an Early Paleozoic (422 ± 3 

Ma, 420 ± 4 Ma, 424 ± 5 Ma) deposit by LA-ICP-MS coltan U-Pb dating (Che et al., 2018). 

During Triassic, some Nb-Ta deposits were formed at ca. 240 Ma and more W-Sn, Nb-Ta, 

and also U, Pb-Zn, Mo deposits were formed at ca. 220 Ma (Fig. 2-10). The LA-ICP-MS 

coltan U-Pb geochronological study of Che et al. (2018) confirmed that the Guangning Nb-Ta 

deposits in Guangdong Province were formed during Early Triassic (Houxi: 248 ± 4 Ma; 

Chunxin: 247 ± 3 Ma, 246 ± 3 Ma; Dongtounan: 247 ± 3 Ma, 246 ± 3 Ma; Shenkeng: 245 ± 3 

Ma). The Late Triassic mineral deposits in South China mainly contain the Wangxianling W 

deposit (zircon U-Pb age: 226 – 222 Ma, molybdenite Re-Os age: 228 – 221 Ma, muscovite 

40Ar/39Ar age: 214 Ma, Zhang et al., 2015a), Limu Sn-W-Nb-Ta deposit (zircon U-Pb age: 

218 – 214 Ma, muscovite 40Ar/39Ar age: 213 Ma, Feng et al., 2013; zircon U-Pb age: 225 Ma, 

Zhang et al., 2014; coltan U-Pb age: 219 – 217 Ma, Che et al., 2018), Qingshuitang Pb-Zn 

deposit (zircon U-Pb age: 203 Ma, Miao et al., 2014), Youmaling W deposit (zircon U-Pb age: 

215 – 212 Ma, Yang et al., 2013; zircon U-Pb age: 225 – 220 Ma, scheelite Sm-Nd age: 212 

Ma, Zhang et al., 2015b; coltan U-Pb age: 204 Ma, Che et al., 2018), Yuntoujie W-Mo 

deposit (zircon U-Pb age: 217 Ma, molybdenite Re-Os age: 217 Ma, Wu et al., 2012), 

Caojiaba W deposit (titanite U-Pb age: 206 – 196 Ma, Xie et al., 2018), Muguayuan W 

deposit (Li et al., 2018b), etc. 

Late Mesozoic (Yanshanian) is the most important metallogenic period in South China 

(Fig. 2-10). The Late Mesozoic mineralization is characterized by widespread, large-scale, 

and polymetallic (W, Sn, Nb, Ta, Cu, Pb, Zn, Au, Ag, Mo, Bi, U, Fe, etc.) mineralization 

(Fig. 2-10). Thus, it was called Late Mesozoic “metallogenic explosion” by Hua and Mao 

(1999). Mao et al. (2013a) discussed the temporal-spatial distribution features of these Late 
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Mesozoic mineral deposits. Here, the general regularities of the Late Mesozoic mineralization 

are further summarized as follows: (1) Middle-Late Jurassic (175 – 155 Ma) calc-alkaline 

granitoids associated porphyry, skarn Cu (Au, Mo) and hydrothermal Pb-Zn-Ag systems in 

the Qinzhou-Hangzhou metallogenic belt; (2) Late Jurassic (160 – 150 Ma) metaluminous to 

peraluminous granites related W-Sn-Mo-Bi-Nb-Ta systems dominated by skarn, quart-vein, 

greisen, and pegmatite mineralization in the Nanling Range metallogenic belt and adjacent 

areas; (3) Early Cretaceous (145 – 120 Ma) porphyry-skarn Cu-Mo-Au, skarn Fe and Fe-Cu, 

and magnetite-apatite deposits associated with the I-type calc-alkaline granitoids (gabbro, 

diorite, and granodiorite) and A-type granitoids in the Middle-Lower Yangtze metallogenic 

belt; (4) Middle-Late Cretaceous (120 – 80 Ma) porphyry-epithermal Cu-Mo-Au, epithermal 

Au (Ag), hydrothermal Pb-Zn-Ag, porphyry Sn, quartz-vein W, and granite-related U 

deposits in the southeastern coastal metallogenic belt and granite-related Sn polymetallic, W, 

and Carlin-type Au deposits in the Youjiang basin. It is noteworthy that the recently 

discovered giant Dahutang veinlet-disseminated W deposit (> 1.31 Mt WO3, zircon U-Pb age: 

170 – 160 Ma for granodiorite porphyry, ca. 150 Ma for porphyritic biotite granite, ca. 144 

Ma for fine-grained biotite granite, and ca. 130 Ma for granite porphyry, molybdenite Re-Os 

age: 150 – 140 Ma; Mao et al., 2013c, 2015; Huang and Jiang, 2014; Zhang et al., 2018a, 

2018b) and Zhuxi skarn W deposit (2.86 Mt WO3, zircon U-Pb age: 151 – 148 Ma, scheelite 

Sm-Nd age: ca. 144 Ma, molybdenite Re-Os age: ca. 145 Ma, muscovite 40Ar/39Ar age: ca. 

150 Ma; Chen et al., 2015b; Liu et al., 2017; Pan et al., 2017; Wang et al., 2017b; He et al., 

2018) in northern Jiangxi Province have changed the distribution framework of tungsten 

resources in South China. 

2.2. Nanling Range 

The Nanling Range covers a total area of about 200,000 km2 in the central-southern part 

of South China from 111° E to 117° E and from 23°20’ N to 26°40’ N and includes southern 

Hunan, southern Jiangxi, northern Guangdong, northeastern Guangxi, and western Fujian 

Provinces (Fig. 1-1; Shu et al., 2006b; Zhou, 2007; Chen et al., 2013). It holds the largest W 

production of South China and also of the whole world. Since the first question of “Where is 
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the Nanling Range?” raised by Li (1942), systematic studies of the different types of 

granitoids and their related mineralization in the Nanling Range have never been interrupted 

(Hsu, 1943; Hsu et al., 1960, 1963a, 1963b; Institute of Geochemistry, CAS, 1979; Mo et al., 

1980; Department of Geology, NJU, 1981; Xu et al., 1982, 1983; Chen et al., 1989a, 2008, 

2013; The Granitoid Research Group of the Nanling Project, MGMR, 1989; Hua and Mao, 

1999; Hua et al., 2003, 2005; Li et al., 2007a, 2013; Mao et al., 2007, 2008a, 2009a, 2011a, 

2013a; Zaw et al., 2007; Ma, 2008; Pei et al., 2008; Hu and Zhou, 2012; Fu et al., 2013; 

Pirajno, 2013; Hu et al., 2017; Huang et al., 2017a; Zhao et al., 2017; Zhou et al., 2018). 

Although multiple-aged (Early Paleozoic, Triassic, Jurassic, and Cretaceous) granitoids and 

associated polymetallic (W, Sn, Nb, Ta, Cu, Pb, Zn, etc.) mineral deposits are widely 

developed in the Nanling Range (Fig. 1-1), Middle-Late Jurassic is the most important period 

for granitic magmatism and related mineralization in this region (Chen et al., 2013; Li et al., 

2013; Mao et al., 2013a; Huang et al., 2017a). 

2.2.1. Middle-Late Jurassic ore-bearing granitoids 

The Middle-Late Jurassic ore-bearing granitoids in the Nanling Range can be divided 

into four different types, i.e., W-bearing, Sn-bearing, Nb-Ta-bearing, and Cu-Pb-Zn-bearing 

granitoids, according to the association of ore-forming elements, petrographic features, and 

geochemical characteristics (Chen et al., 2008, 2013; Huang et al., 2017a; Wang et al., 2017c). 

Main features of these ore-bearing granitoids are summarized in Table 2-1. The W-bearing 

granites are dominated by S-type two-mica, muscovite, and biotite granites, such as the 

Yaogangxian, Dengfuxian, Taoxikeng, Xihuashan, and Dajishan granites (Fig. 1-1). The Sn 

mineralization is mainly associated with two different types of granites, i.e., aluminous 

A-type (A2-type) biotite granites, such as the Huashan-Guposhan, Jiuyishan, and Qitianling 

granites, and S-type two-mica, muscovite, and biotite granites, such as the Maoping, Piaotang, 

Baxiannao, and Huamei’ao granites (Fig. 1-1). The Nb-Ta-bearing granites are mostly highly 

fractionated albite and muscovite granites which are genetically associated with S-type 

W-bearing and Sn-bearing granites, such as the Jianfengling, Laiziling, Dengfuxian, and 

Dajishan granites (Fig. 1-1). The Cu-Pb-Zn mineralization is predominantly related to 

metaluminous calc-alkaline I-type granodioritic rocks, such as the Shuikoushan, Baoshan, 
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Tongshanling, and Dabaoshan granodiorites (Fig. 1-1). All of these different types of 

ore-bearing granitoids were formed from 165 Ma to 150 Ma. Dark microgranular enclaves 

and amphibole are commonly observed in the Cu-Pb-Zn-bearing granodioritic rocks and the 

Huashan-Guposhan and Qitianling A2-type Sn-bearing biotite granites but are absent in the 

other Sn-bearing granites and also the W-bearing and Nb-Ta-bearing granites. The Fe-Ti 

oxide minerals of the Cu-Pb-Zn-bearing granodiorites and the Huashan-Guposhan and 

Qitianling Sn-bearing granites are dominated by magnetite, whereas, the other ore-bearing 

granites mainly contain ilmenite. These different types of ore-bearing granitoids have various 

associations of accessory minerals. They also have different features in mineralization types. 

The Cu-Pb-Zn mineralization mainly consists of skarn, carbonate replacement, and 

sulfide-quartz vein. Skarn, greisen, and quartz vein are the dominant types for W and Sn 

mineralization. Besides, chloritized granite is also important for Sn mineralization. The Nb-Ta 

mineralization mainly comprises albite granite, greisen, and pegmatite. 

 

Table 2-1. Main features of the Middle-Late Jurassic ore-bearing granitoids in the Nanling Range (summarized 

from Chen et al., 2008, 2013; Huang et al., 2017a; Wang et al., 2017c) 

Ore-bearing granitoid Cu-Pb-Zn Sn W Nb-Ta 

Tectonic setting Intraplate extension 

Rock type I-type granodioritic 
rocks 

A(A2)-type biotite 
granites and S-type 
two-mica, muscovite, 
and biotite granites 

S-type two-mica, 
muscovite, and 
biotite granites 

Highly fractionated 
albite and 
muscovite granites 

Age 165 – 150 Ma 

Dark enclaves Observed Observed or not Not observed Not observed 

Amphibole Observed Observed or not Not observed Not observed 

Fe-Ti oxide minerals Mainly magnetite Mainly Magnetite or 
mainly ilmenite 

Mainly ilmenite Mainly ilmenite 

Accessory minerals Titanite, allanite, 
apatite, sulfide 
minerals 

Titanite, allanite, 
apatite, cassiterite or 
monazite, xenotime, 
apatite, cassiterite  

Monazite, xenotime, 
apatite, wolframite, 
scheelite 

Columbite-tantalite, 
monazite, xenotime, 
ferberite 

Mineralization type Skarn, carbonate 
replacement, 
sulfide-quartz vein 

Skarn, greisen, 
quartz vein, 
chloritized granite 

Skarn, greisen, 
quartz vein 

Albite granite, 
greisen, pegmatite  
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2.2.2. Middle-Late Jurassic skarn deposits 

Skarn is one of the most important mineralization types for the Middle-Late Jurassic 

Cu-Pb-Zn, W, and Sn deposits in the Nanling Range (Table 2-1). The skarn Cu-Pb-Zn 

deposits mainly include the Tongshanling (Cai et al., 2015; Lu et al., 2015; Wang et al., 

2017d), Baoshan (Lu et al., 2006; Bao et al., 2014; Xie et al., 2015), Shuikoushan (Liu, 1994; 

Lu et al., 2013; Huang et al., 2015), Dabaoshan (Wang, 2010; Qu et al., 2014; Dai et al., 

2015), and Huangshaping (Xi et al., 2009; Zhu et al., 2012; Ding et al., 2016a) deposits (Fig. 

1-1). The skarn W deposits mainly include the Yaogangxian (Peng et al., 2006b; Zhu et al., 

2014), Shizhuyuan (Liu et al., 2006; Wu et al., 2016), Xintianling (Bi et al., 1988; Zhang, 

2014; Shuang et al., 2016), and Weijia (Hu et al., 2015; Huang et al., 2017a) deposits (Fig. 

1-1). The skarn Sn deposits mainly include the Shizhuyuan (Li et al., 1996; Liu et al., 2006), 

Jinchuantang (Liu et al., 2014), and Hehuaping (Yao et al., 2014b) deposits (Fig. 1-1). These 

Middle-Late Jurassic skarn deposits are mostly distributed in the western part of the Nanling 

Range (Fig. 1-1). Association of different mineralization types is a common feature of these 

skarn deposits. Carbonate replacement and sometimes sulfide-quartz vein are also important 

mineralization types in the skarn Cu-Pb-Zn deposits. For instance, the Tongshanling 

Cu-Pb-Zn deposit is composed of skarn Cu (Mo), skarn Cu-Pb-Zn, sulfide-quartz vein 

Cu-Pb-Zn, and carbonate replacement Pb-Zn orebodies (Cai et al., 2015; Lu et al., 2015; 

Wang et al., 2017d). Quartz vein and greisen are also important mineralization types in the 

skarn W and Sn deposits. For instance, the Yaogangxian W deposit mainly contains scheelite 

skarn and wolframite-quartz vein orebodies (Peng et al., 2006b; Zhu et al., 2014). Another 

remarkable feature of these skarn deposits is the association of different ore-forming 

elements. For instance, the Huangshaping deposit is dominated by skarn W-Mo and carbonate 

replacement Pb-Zn mineralization (Xi et al., 2009; Zhu et al., 2012; Ding et al., 2016a) and 

the Shizhuyuan deposit is characterized by Sn-W-Mo-Bi polymetallic mineralization (Li et al., 

1996; Liu et al., 2006; Wu et al., 2016). Among these Middle-Late Jurassic skarn deposits in 

the Nanling Range, the spatially adjacent Tongshanling Cu-Pb-Zn and Weijia W skarn 

deposits in the Tongshanling-Weijia area are selected as the research objects of this Ph.D. 

thesis. 
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Chapter 3. Geology of the Tongshanling-Weijia area 

In geography, the Tongshanling-Weijia area is situated in southern Hunan Province 

about 120 km to the east of Guilin (Fig. 1-1) and at the boundary region among Daoxian, 

Jiangyong, and Jianghua Counties. In geology, it is located in the conjunction zone between 

the Yangtze and Cathaysia Blocks, in the western part of the Nanling Range metallogenic belt 

(Fig. 1-1), and also in the southwestern part of the Qinzhou-Hangzhou metallogenic belt. The 

Haiyangshan-Dupangling, Jiuyishan, and Huashan-Guposhan plutons are distributed to the 

west, east, and south of the Tongshanling-Weijia area, respectively. 

3.1. Stratigraphy 

In the Tongshanling-Weijia area, the exposed strata include Ordovician to Triassic 

systems except for the absence of Silurian system and Upper Permian to Lower Triassic series 

and are dominated by Devonian and Carboniferous systems (Figs. 3-1 and 3-2). The Upper 

Ordovician strata mainly occur in the northwestern part of the Tongshanling-Weijia area (Fig. 

3-1) with a thickness larger than 782 m and are composed of low-grade metasandstone with 

interbedded slate (Fig. 3-2). The Lower Devonian strata overlay the Upper Ordovician strata 

by an angular unconformity and comprise conglomerate, pebbled sandstone, quartz sandstone, 

and siltstone with a thickness of ca. 120 m (Fig. 3-2). The Middle Devonian series contains 

the lower Tiaomajian Formation and the upper Qiziqiao Formation with thicknesses of ca. 

530 m and ca. 1080 m, respectively (Figs. 3-1 and 3-2). The Tiaomajian Formation is 

constituted by a ca. 390-m-thick Lower Member of siltstone and silty shale with intercalated 

quartz sandstone and shale and a ca. 140-m-thick Upper Member of siltstone and quartz 

sandstone with intercalated shale and mudstone (Fig. 3-2). The Qiziqiao Formation consists of 

a ca. 340-m-thick Lower Member of limestone, carbonaceous limestone, and marly limestone, 

a ca. 390-m-thick Middle Member of dolostone with intercalated dolomitic limestone, and a 

ca. 350-m-thick Upper Member of limestone with intercalated marly limestone (Fig. 3-2). The 

Upper Devonian series contains the lower Shetianqiao Formation and the upper Xikuangshan 

Formation with thicknesses of 233 – 499 m and 198 – 345 m, respectively (Figs. 3-1 and 3-2). 
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Figure 3-1. Geological map of the Tongshanling-Weijia area in southern Hunan Province (modified after 

Regional Geological Survey Team of Hunan Geology Bureau, 1975a, 1975b). 1: Tongshanling Cu-Pb-Zn 

deposit; 2: Jiangyong Pb-Zn-Ag deposit; 3: Yulong Mo deposit; 4: Weijia W deposit. 

 

The Shetianqiao Formation is made up of limestone and dolomitic limestone with intercalated 

dolostone lumps (Fig. 3-2). The Xikuangshan Formation is composed of a 133 – 269-m-thick 

Lower Member of limestone and dolomitic limestone with intercalated marl and marly 

limestone and a 65 – 76-m-thick Upper Member of siltstone, shale, and marl (Fig. 3-2). The 

Lower Carboniferous series contains the lower Yanguan Stage and the upper Datang Stage 
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Figure 3-2. Stratigraphic column of the Tongshanling-Weijia area (according to Regional Geological Survey 

Team of Hunan Geology Bureau, 1975a, 1975b). 

 

with thicknesses of 291 – 529 m and 416 – 560 m, respectively (Figs. 3-1 and 3-2). The 

Yanguan Stage comprises a 287 – 463-m-thick Lower Member of limestone and dolomitic 

limestone and a 4 – 66-m-thick Upper Member of marl, marly limestone, and sillcalite (Fig. 

3-2). The Datang Stage is constituted by the 251 – 370-m-thick Shidengzi Member of 

chert-bearing limestone with intercalated shale and dolomitic limestone, the 19 – 44-m-thick 

Ceshui Member of shale with intercalated marl, and the ca. 146-m-thick Zimenqiao Member 

of limestone with intercalated dolomitic limestone (Fig. 3-2). The Upper Carboniferous strata, 

i.e., the Hutian Group, consists of dolostone with a thickness larger than 170 m (Fig. 3-2). The 

Lower Permian strata, i.e., the Qixia Formation, is made up of chert-bearing limestone with a 
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thickness larger than 40 m (Fig. 3-2). The Upper Triassic strata overlay the Lower Permian 

and Carboniferous strata by an angular unconformity and are composed of conglomerate, 

marl, and shale with a thickness larger than 60 m (Fig. 3-2). 

3.2. Structures 

The structural framework of the Tongshanling-Weijia area is south-north- to 

southwest-northeast-trending on the whole (Fig. 3-1). The folds in this area comprise 

alternatively appeared anticlines and synclines which are cut through by faults (Fig. 3-1). A 

vast majority of the faults are thrust and strike-slip faults and several ones are normal faults. 

The folded and metamorphosed Ordovician strata and the angular unconformity between the 

Lower Devonian and Upper Ordovician strata record the Early Paleozoic intracontinental 

orogen in the South China Block. The Devonian and Carboniferous strata have been folded 

and faulted through the Triassic intracontinental compressive deformation in South China 

which also led to the angular unconformity of the Upper Triassic strata overlaying the folded 

Lower Permian and Carboniferous strata. The south-north- to southwest-northeast-trending 

structural framework in the Tongshanling-Weijia area was established dominantly by the 

Triassic tectonic event. During Middle-Late Jurassic, the Tongshanling and Weijia granitoids 

intruded into the folded and faulted Devonian and Carboniferous carbonate strata as stocks, 

dikes, apophyses, etc. (Fig. 3-1). 

3.3. Magmatism 

The Tongshanling granodiorite porphyry and the Weijia granite porphyry are the main 

magmatic rocks in the Tongshanling-Weijia area (Fig. 3-1). The Tongshanling granodiorite 

porphyry was emplaced as stocks with a total exposure area of 12 km2 (Fig. 3-1). It is 

composed of plagioclase (ca. 45 vol%), K-feldspar (ca. 22 vol%), quartz (ca. 20 vol%), biotite 

(ca. 10 vol%), and amphibole (ca. 3 vol%). Some dark microgranular enclaves are found in 

the Tongshanling granodiorite porphyry. The Weijia granite porphyry is located 15 km to the 

northeast of the Tongshanling intrusion (Fig. 3-1). It was emplaced as scattered bosses, 

ductoliths, apophyses, and dikes with a total exposure area of 1.3 km2 (Fig. 3-1). The Weijia 
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granite porphyry consists of K-feldspar (ca. 37 vol.%), quartz (ca. 35 vol.%), albite (ca. 25 

vol.%), and minor muscovite (ca. 2 vol.%) and biotite (ca. 1 vol.%). Dark microgranular 

enclaves are absent in the Weijia granite porphyry. There are some other granite porphyry 

swarms, i.e., the Tongshanling granite porphyry, appearing in the northeastern part of the 

Tongshanling intrusion (Fig. 3-1) and cutting the Tongshanling granodiorite porphyry and 

related skarn. This kind of granite porphyry is petrographically different from the Weijia 

granite porphyry with a distinctly finer grain size. Its phenocrysts are composed of plagioclase 

(ca. 35 vol%), K-feldspar (ca. 30 vol%), quartz (ca. 30 vol%), and biotite (ca. 5 vol%). Some 

mafic rocks also occur in this area and its adjacent area. They are the Huziyan high-Mg basalt 

in Daoxian County (ca. 150 Ma; Li et al., 2004) and the Huilongxu lamprophyre in Jiangyong 

County (ca. 170Ma; Wang et al., 2003b) (Fig. 3-1). 

3.4. Mineralization 

The polymetallic mineralization in the Tongshanling-Weijia area contains Cu-Pb-Zn and 

W mineralization associated with the Tongshanling granodiorite porphyry and the Weijia 

granite porphyry, respectively (Fig. 3-1). The Tongshanling Cu-Pb-Zn deposit, Jiangyong 

Pb-Zn-Ag deposit, and Yulong Mo deposit, which are distributed around the Tongshanling 

granodioritic intrusion, constitute the Tongshanling Cu-Mo-Pb-Zn-Ag ore district (Fig. 3-1). 

The Tongshanling polymetallic ore district is one of the oldest mines in the Nanling Range. 

The ore-bearing horizons of these mineral deposits are the Middle Devonian Qiziqiao 

Formation, the Upper Devonian Shetianqiao Formation and Xikuangshan Formation, and the 

Shidengzi Member of the Upper Carboniferous Datang Stage (Fig. 3-2). The mineralization 

types of these mineral deposits include skarn, sulfide-quartz vein, and carbonate replacement 

with the Tongshanling Cu-Pb-Zn deposit dominated by skarn and sulfide-quartz vein 

mineralization, the Jiangyong Pb-Zn-Ag deposit dominated by carbonate replacement 

mineralization, and the Yulong Mo deposit dominated by skarn mineralization (Fig. 3-2). The 

Weijia W deposit is a recently discovered super-large scheelite skarn deposit in the Nanling 

Range. It is distributed in the contact zone between the Weijia granite porphyry and wall 

rocks (Fig. 3-1) and is mainly composed of magnesian and calcic skarn W orebodies, which 
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appear in the Middle Member (dolostone) and Upper Member (limestone) of the Qiziqiao 

Formation, respectively (Fig. 3-2). The Weijia scheelite skarn deposit is a special case that is 

characterized by large-scale magnesian skarn mineralization and is significantly different 

from the other scheelite skarn deposits in the Nanling Range and also around the world which 

are mostly dominated by calcic skarn mineralization. 
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Chapter 4. Different origins of the Cu-Pb-Zn-bearing and 

W-bearing granitoids 

4.1. Introduction 

The Nanling Range of South China is world famous for its widely developed 

multiple-aged granitic magmatism (Early Paleozoic, Triassic, Jurassic, and Cretaceous) and 

related polymetallic mineralization (W, Sn, Nb, Ta, Cu, Pb, Zn, etc.) (Fig. 1-1) and thus has 

been of interest to geologists for a long time. Relative to Early Paleozoic, Triassic, and 

Cretaceous granitoids, Jurassic granitoids and related mineral deposits are the most important 

in the Nanling Range (Chen et al., 2013; Li et al., 2013; Mao et al., 2013a). According to the 

association of ore-forming elements, petrographic and geochemical characteristics, the Jurassic 

ore-bearing granitoids in the Nanling Range can be divided into four different types: 

W-bearing, Sn-bearing, Nb-Ta-bearing, and Cu-Pb-Zn-bearing. The W-bearing granites are 

dominated by crust-derived S-type two-mica, muscovite, and biotite granites (Chen et al., 

2013). The Sn mineralization is mainly associated with aluminous A-type (A2-type) granites 

(Jiang et al., 2008; Zhu et al, 2008; Chen et al., 2013). The Nb-Ta-bearing granites are mostly 

highly fractionated albite granites (Chen et al., 2008). The Cu-Pb-Zn mineralization is 

predominantly related to amphibole-bearing metaluminous calc-alkaline granodiorites (Wang 

et al., 2003a; Li et al., 2013). Various kinds of granitoids have distinct diversities in terms of 

metallogenic specialization. A comparative study of different types of ore-bearing granitoids 

will not only improve the understanding of the mechanism that controls metallogenic 

specialization, but also has important implications for prospecting and exploration. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range are obviously different in terms of their petrography and geochemistry. However, the 

mechanism that created these differences is still not well understood. Numerous studies have 

been conducted on these two types of ore-bearing granitoids. The W-bearing granites are 

considered to be products of the partial melting of an old metasedimentary basement (Zhang, 

2004; Chen et al., 2013; Dong et al., 2014; Zhang, 2014), however, the petrogenesis of the 



Chapter 4. Different origins of the Cu-Pb-Zn-bearing and W-bearing granitoids 

42 

Cu-Pb-Zn-bearing granitoids is still controversial. Wang et al. (2003a) held an opinion that the 

diorites-granodiorites in southeastern Hunan Province mainly originated from basaltic rocks 

from depleted mantle and were contaminated by some old crustal materials. Another opinion 

proposed by Jiang et al. (2009) based on the Tongshanling granodiorite is that this type of 

granitoid was produced by the mixing of dominant melts from the partial melting of 

metasedimentary basement and some mantle-derived basaltic magmas. Yang et al. (2016) 

considered that the Shuikoushan granodiorite originated from amphibole-dehydration melting 

of mafic rocks in the middle-lower crust. Although the Jurassic Cu-Pb-Zn-bearing and 

W-bearing granitoids in the Nanling Range were both predominantly formed during the 

Middle-Late Jurassic (165 – 150 Ma), the W-bearing granites (ca. 155 Ma) were formed slightly 

later than the Cu-Pb-Zn-bearing granitoids (ca. 160 Ma). The cause of this time gap requires 

further investigation. Whether or not these two types of ore-bearing granitoids are products of 

the same original magma in different fractionation stages is also unclear.  

This study focused on the magmatism of the Tongshanling-Weijia area in southern Hunan 

Province and undertook a comparison of the Middle-Late Jurassic Cu-Pb-Zn-bearing granitoids 

(Shuikoushan, Baoshan, Huangshaping, Tongshanling, Dabaoshan intrusions, etc.) and 

W-bearing granites (Yaogangxian, Xintianling, Dengfuxian, Weijia, Xihuashan, Muziyuan, 

Piaotang, Dajishan intrusions, etc.) in the Nanling Range. Based on a summary of the main 

features and differences of the two different types of ore-bearing granitoids, a petrogenetic 

model has been proposed. 

4.2. Petrography of granitoids 

4.2.1. Tongshanling granodiorite porphyry 

The Tongshanling granodiorite is porphyritic and has a medium-fine granitic texture (Fig. 

4-1a–c). Phenocrysts are generally 1 – 5cm in size and locally some plagioclase megacrysts 

can be greater than 10 cm. Rock-forming minerals are dominated by plagioclase (45 vol.%), 

K-feldspar (22 vol.%), quartz (20 vol.%), biotite (10 vol.%), and amphibole (3 vol.%). 

Accessory minerals include mainly apatite, zircon, titanite, allanite, rutile, sulfides, and Fe-Ti 

oxide minerals. The Fe-Ti oxide minerals are mainly magnetites. Plagioclases with An% 
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Figure 4-1. Petrographic photomicrographs of granitoids from the Tongshanling-Weijia area. (a–c) Tongshanling 

granodiorite porphyry; (d–h) Dioritic dark enclaves; (i) Tongshanling granite porphyry; (j–l) Weijia granite 

porphyry. (a) “Pearlitic margin” texture of` K-feldspar phenocryst, the size of microgranular quartz grains is 200 

– 500 μm, crossed-polarized light. (b) Single-grained amphibole with short prismatic apatite inclusions, 

plane-polarized light. (c) Amphibole-rich clot, plane-polarized light. (d) Reaction rim of plagioclase phenocryst, 

crossed-polarized light. (e) Amphibole as the predominant dark mineral, plane-polarized light. (f) Biotite as the 

predominant dark mineral, plane-polarized light. (g) Amphibole-rich clot, plane-polarized light. (h) Needle-like 

or elongated prismatic apatites, plane-polarized light. (i) Porphyritic texture, the matrix has a felsitic texture, 

crossed-polarized light. (j) Hexagonal bipyramidal quartz phenocryst with resorption texture, crossed-polarized 
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light. (k) “Pearlitic margin” texture of K-feldspar phenocryst, the size of microgranular quartz grains is 10 – 100 

μm, and increases from inside to outside, crossed-polarized light. (l) Micrographic texture, crossed-polarized 

light. Mineral abbreviations: Qz = quartz, Kfs = K-feldspar, Pl = plagioclase, Amp = amphibole, Bt = biotite, Ap 

= apatite. 

 

values of 21 – 48 commonly have a zonal texture and sericitized calcium-rich cores. Some 

K-feldspar phenocrysts have a “pearlitic margin” texture, which is made up of 200 – 500 μm 

quartz grains (Fig. 4-1a). Biotites are brown and generally contain mineral inclusions of 

apatite and zircon. Amphiboles are green hornblendes and generally contain apatite inclusions 

(Fig. 4-1b). Locally, amphibole-rich clots appear (Fig. 4-1c). Apatites have short prismatic 

shapes. Magnetite is sometimes associated with allanite (Fig. 4-2a), and in some cases occurs 

as inclusions in allanite and biotite (Fig. 4-2b and c). Magnetite in biotite occasionally has 

pyrite inclusions (Fig. 4-2c). 

4.2.2. Dioritic dark enclaves 

Dioritic dark enclaves are commonly observed in the Tongshanling granodiorite 

porphyry. They are mostly ellipsoidal and several to dozens of centimeters in size. There is no 

quenched boundary between the enclaves and their host rocks. The enclaves have a fine 

granular texture and occasionally contain plagioclase phenocryst, which generally has a 

reaction rim (Fig. 4-1d). The mineral assemblage of the enclaves is the same as the host 

granodiorite porphyry, but the abundance of mafic minerals in the enclaves can reach 50 vol%. 

The ratios of amphibole to biotite in the enclaves are quite variable. In most cases amphiboles 

are more than biotites (Fig. 4-1e), except for a few enclaves in which mafic minerals are 

dominated by biotites (Fig. 4-1f). Amphibole-rich clots (Fig. 4-1g) are common in the dark 

enclaves. Plagioclases have a zonal texture, An% values of 22 – 45, and mostly show 

sericitized calcium-rich cores. Apatites have a needle-like or elongated prismatic shape (Fig. 

4-1h). 

4.2.3. Tongshanling granite porphyry 

The Tongshanling granite porphyry has a porphyritic texture (Fig. 4-1i) and phenocrysts 
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Figure 4-2. Backscattered electron (BSE) images of accessory minerals in the Tongshanling granodiorite 

porphyry and Weijia granite porphyry. (a–c) Tongshanling granodiorite porphyry; (d–f) Weijia granite porphyry. 

(a) Intergrowth of magnetite and allanite. (b) Magnetite and apatite inclusions in allanite. (c) Pyrite inclusions of 

magnetite in biotite. (d) Intergrowth of zircon, thorite, and monazite. (e) Intergrowth of zircon, thorite, and 

xenotime. (f) Intergrowth of monazite and xenotime. Mineral abbreviations: Mag = magnetite, Aln = allanite, Ap 

= apatite, Py = pyrite, Bt = biotite, Zrn = zircon, Thr = thorite, Mnz = monazite, Xtm = xenotime. 

 

are mainly 0.2 – 3 mm sized plagioclase (35 vol%), K-feldspar (30 vol%), quartz (30 vol%), 

and biotite (5 vol%). The matrix exhibits a fine-granular to felsitic texture (Fig. 4-1i). 

Accessory minerals include mainly zircon and apatite. An embayed resorption texture is 

common for quartz phenocrysts. Biotites are brown and generally contain apatite inclusions. 

4.2.4. Weijia granite porphyry 

The Weijia granite porphyry is light red or off-white in outcrops at the surface and has a 

porphyritic texture. Phenocrysts are 30 – 50 vol% in content and are comprised of quartz, 

K-feldspar, albite, and minor biotite. The phenocryst granularity is 0.5 – 5 mm except for a 

few phenocrysts larger than 1 cm. The matrix has a fine granular to felsitic texture (Fig. 4-1j 

and k) and contains a few muscovites. Quartz phenocrysts generally have a hexagonal 

bipyramidal shape and resorption texture (Fig. 4-1j). In the rim of some K-feldspar 

phenocrysts, microgranular quartz grains, with a grain size of 10 – 100 μm, constitute a 
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“Pearlitic margin” texture (Fig. 4-1k), and the size of these quartz grains increases from inside 

to outside. A micrographic texture (Fig. 4-1l) can be found in K-feldspars. Accessory minerals 

include zircon, thorite, xenotime, monazite (Fig. 4-2d–f), niobite, samarskite, fergusonite, 

scheelite, parisite, and ilmenite. 

4.3. Sampling and analytical methods 

The samples of the Tongshanling granodiorite porphyry and its dioritic dark enclaves, the 

Tongshanling and Weijia granite porphyries were collected from outcrops at the surface and in 

the adits of mines. 

Zircons were extracted by standard density and magnetic separation techniques. Intact 

and transparent zircon grains were handpicked under a binocular microscope, then mounted in 

an epoxy resin disc and polished. Cathodoluminescence (CL) image was obtained using a 

JEOL JSM-6510 scanning electron microscope equipped with a Gatan Mini-CL detector at 

the Beijing GeoAnalysis Co. Ltd. Whole-rock trace and rare earth element (REE), Sr-Nd 

isotope, and zircon U-Pb and Hf isotope analyses were performed at the State Key Laboratory 

for Mineral Deposits Research, Nanjing University. 

The U-Pb isotope of zircons was determined by an Agilent 7500a ICP-MS equipped with 

a New Wave UP213 laser sampler. Analysis was performed with a beam diameter of 25 μm, 5 

Hz repetition rate, energy of 10-20 J/cm2, acquisition time of 60 s, and background 

measurement of 40 s. Zircon Lu-Hf isotope was analyzed using a Neptune Plus MC-ICP-MS 

attached to a New Wave UP193FX laser ablation system. Analysis was performed with a 

beam diameter of 35 μm, 10 Hz repetition rate, acquisition time of 60 s, and acquisition 

number of 200 times. The detailed analytical procedures and data processing methods 

followed Zhang et al. (2014). 

Whole-rock powder was dissolved in Teflon vessel using a HF+HNO3 mixture for trace 

element, rare earth element and Sr-Nd isotope analyses. Trace and rare earth elements were 

determined by a Finnigan MAT Element II HR-ICP-MS. The analytical conditions and 

procedure followed Gao et al. (2003). The analytical precision for most elements was better 

than 5 %. A cation-exchange resin was used to separate and purify Sr and Nd using the 



Nov. 2018                                                                                X.D. HUANG 

47 

method described by Pu et al. (2005). The Sr and Nd isotopic ratios were determined by a 

Neptune Plus MC-ICP-MS. The parameters for mass fractionation correction and data 

processing were the same as those described by Xie et al. (2013) and Zhang et al. (2014). 

Whole-rock major element compositions were measured using a wet chemical method at 

the Analysis Center of No. 230 Research Institute of the China National Nuclear Corporation, 

Changsha. The analytical precision for all elements was better than 5 %. The detailed 

procedures are described in the China National Standards GB/T 14506.3-2010 – GB/T 

14506.14-2010. 

4.4. Results 

4.4.1. Zircon U-Pb age 

Zircons of granitoids from the Tongshanling-Weijia area are mainly colorless and 

transparent through to light brown and subtransparent, and euhedral to subhedral prismatic 

grains with pyramidal termination, and exhibit well-developed growth zoning in CL images 

(Fig. 4-3). The analytical results of zircon U-Pb isotopes are listed in Appendix 4-1. Magmatic 

zircons from the Tongshanling granodiorite porphyry have a weighted mean 206Pb/238U age of 

162.5 ± 1.0 Ma (Fig. 4-4a), representing its crystallization age. Magmatic zircons in the 

dioritic dark enclaves generally consist of cores with a bright CL image and rims with a dark 

CL image. The rims have higher Th and U contents than the cores and both have the same 
206Pb/238U ages (Fig. 4-3b), giving a weighted mean value of 160.6 ± 1.4 Ma (Fig. 4-4b). The 

weighted mean 206Pb/238U age of the Tongshanling granite porphyry is 158.8 ± 1.2 Ma (Fig. 

4-4c), which is slightly younger than the granodiorite porphyry. There are two kinds of 

zircons in the Weijia granite porphyry. One has a bright CL image (Fig. 4-3d) and good 

transparency without cracks, while the other has a dark CL image (Fig. 4-3d) and is 

subtransparent with cracks. Metamictization happened in zircons with a dark CL image. 

Therefore, in this study zircons with a bright CL image were selected for dating. Their 
206Pb/238U ages vary from 157 Ma to 160 Ma and yield a weighted mean value of 158.3 ± 2.2 

Ma (Fig. 4-4d). Old inherited cores are common in magmatic zircons of the granitoids from 

this study area. Inherited cores usually have a rounded shape (Fig. 4-3) and their 206Pb/238U 
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Figure 4-3. Zircon CL images of granitoids from the Tongshanling-Weijia area. GDP: granodiorite porphyry; GP: 

granite porphyry. The smaller and larger circles represent the analytical spots of U-Pb and Hf isotope, 

respectively, and the numbers are U-Pb age and εHf (t) value. 

 

ages are concentrated in range of 800 – 1200 Ma and 2350 – 2500 Ma (Appendix 4-1). 

4.4.2. Zircon Hf isotope 

The analytical results of zircon Hf isotope are listed in Appendix 4-2. The Tongshanling 

granodiorite porphyry and its dioritic dark enclaves have consistent zircon εHf (t) values (–

11.6 – –6.3 and –9.3 – –6.9, respectively) and Hf model ages (1.60 – 1.94 Ga and 1.64 – 1.79 

Ga, respectively) (Fig. 4-5a–d). The Tongshanling granite porphyry has a larger variation of 

zircon εHf (t) and TC 
DM (Hf) values (–16.1 – –0.2 and 1.22 – 2.22 Ga, respectively) (Fig. 4-5e 

and f). The values of zircon εHf (t) and TC 
DM (Hf) of the Weijia granite porphyry change in 

range of –4.6 – –1.7 and 1.31 – 1.50 Ga (Fig. 4-5g and h), respectively. The 800 – 1200 Ma 

inherited zircon cores mainly have εHf (t) values of –0.4 – +6.9 (mostly above +2.3) and TC 
DM 

(Hf) values of 1.18 – 1.55 Ga. The 2350 – 2500 Ma inherited zircon cores have εHf (t) values 

of +5.9 – +8.7 and TC 
DM (Hf) values of 2.44 – 2.53 Ga. 
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Figure 4-4. Zircon 206Pb/238U-207Pb/235U concordia diagrams of granitoids from the Tongshanling-Weijia area. 

GDP: granodiorite porphyry; GP: granite porphyry. 

 

4.4.3. Whole-rock major elements 

The analytical results of whole-rock major element, trace and rare earth element and 

Sr-Nd isotopic compositions of granitoids from the Tongshanling-Weijia area are listed in 

Appendix 4-3 and the main geochemical features are shown in Table 4-1. In the TAS diagram 

(Fig. 4-6a), the Tongshanling granodiorite porphyry samples are plotted in the granodiorite 

field, the dark enclaves mainly in the monzodiorite to diorite fields, and the Tongshanling and 

Weijia granite porphyries in the granite field. The Tongshanling granodiorite porphyry and its 

dioritic dark enclaves are metaluminous calc-alkaline rocks and the Tongshanling and Weijia 

granite porphyries are peraluminous alkaline granites (Fig. 4-6b and c). In the ACF diagram 

(Fig. 4-6d), the Tongshanling granodiorite porphyry and its dark enclaves are plotted in the 
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Figure 4-5. Histograms for zircon εHf (t) and TC 
DM (Hf) (Ga) values of granitoids from the Tongshanling-Weijia 

area. The zircon Hf isotopic data of the Middle-Late Jurassic Cu-Pb-Zn-bearing granitoids in the Nanling Range 

(CGNR) are from Xie et al. (2013), Zuo et al. (2014), Zhao et al. (2016b), and unpublished data from our 

research group; the zircon Hf isotopic data of the Late Jurassic W-bearing granites in the Nanling Range 

(WGNR) are from Chen et al. (2013). 
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Table 4-1. Main geochemical features of granitoids from the Tongshanling-Weijia area 

Geochemical indexes 
Tongshanling 
granodiorite porphyry 

Dioritic dark 
enclaves 

Tongshanling 
granite porphyry 

Weijia granite 
porphyry 

SiO2 (wt.%) 63.71 – 70.09 53.38 – 59.35 71.35 – 74.34 73.86 – 76.73 

CaO/(Na2O+K2O) 0.32 – 0.60 0.70 – 1.22 0.09 – 0.31 0.01 – 0.09 

Mg/(Mg+Fe) 0.42 – 0.48 0.42 – 0.47 0.31 – 0.41 0.04 – 0.32 

ASIa 0.91 – 1.03 0.83 – 0.94 0.97 – 1.17 1.00 – 1.18 

DIb 68 – 80 42 – 58 83 – 90 94 – 97 

Rb/Sr 0.5 – 1.3 0.5 – 0.9 0.5 – 1.2 10.3 – 21.6 

Zr/Hf 30.6 – 34.5 28.8 – 32.9 27.4 – 32.8 14.0 – 16.9 

δEuc 0.64 – 0.97 0.37 – 0.73 0.73 – 0.83 0.03 – 0.05 

ΣREE (ppm) 82 – 111 107 – 202 124 – 158 55 – 100 

LREE/HREE 6.0 – 7.7 2.9 – 7.3 13.4 – 15.9 1.8 – 3.4 

HFSEd (ppm) 184 – 241 219 – 275 228 – 261 142 – 179 

TZr
e (°C) 747 – 770 702 – 764 763 – 784 718 – 741 

(87Sr/86Sr)i 0.708955 – 0.710682 0.710023 – 0.711200 0.707011 – 0.708124  

εNd (t) value –6.9 – –4.2 –6.7 – –5.2 –2.8 – –2.1 –5.4 – –4.5 

TC 
DM (Nd) (Ga) 1.29 – 1.51 1.38 – 1.49 1.12 – 1.18 1.32 – 1.39 

Zircon εHf (t) value –11.6 – –6.3 –9.3 – –6.9 –16.1 – –0.2 –4.6 – –1.7 

Zircon TC 
DM (Hf) (Ga) 1.60 – 1.94 1.64 – 1.79 1.22 – 2.22 1.31 – 1.50 

Notes: a ASI: aluminum saturation index, n(Al2O3)/n(CaO+Na2O+K2O). b DI: differentiation index, the sum of 

CIPW normative minerals Q, Or, Ab, Ne, Lc, and Kp. c δEu = 2EuN/(SmN+GdN). d HFSE: high field strength 

elements (Zr+Nb+Ce+Y). e TZr: zircon saturation temperature, calculated by the method of Miller et al. (2003). 

 

I-type granite field and the Tongshanling and Weijia granite porphyries are plotted in the 

S-type granite field. 

4.4.4. Whole-rock trace and rare earth elements 

The Tongshanling granodiorite porphyry has low Rb/Sr ratios, high Zr/Hf ratios, and 

weak Ba, Nb, P, and Ti depletions as shown in the spider diagram (Fig. 4-7a). Its REE patterns 

slope to the right, without obvious Eu negative anomalies (Fig. 4-7b). Compared with the 

granodiorite porphyry, the dioritic dark enclaves have a distinctly higher ΣREE abundance 

and more visible Sr and Eu depletions (Fig. 4-7c and d). The Tongshanling granite porphyry 

has similar Rb/Sr and Zr/Hf ratios to the Tongshanling granodiorite porphyry, and exhibits 
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Figure 4-6. Major element diagrams of granitoids from the Tongshanling-Weijia area. (a) TAS [(Na2O+K2O) 

(wt.%)-SiO2 (wt.%)] classification diagram, after Middlemost (1994). (b) SiO2 (wt.%)-A.R. diagram, after 

Wright (1969). (c) ANK-ACNK diagram. (d) ACF diagram, after Hine et al. (1978). GDP: granodiorite porphyry; 

GP: granite porphyry. The whole-rock geochemical data of the Middle-Late Jurassic Cu-Pb-Zn-bearing 

granitoids in the Nanling Range (CGNR) are from Wang et al. (2003a), Jiang et al. (2009), Xie et al. (2013), Zuo 

et al. (2014), Zhao et al. (2016b), and unpublished data from our research group; the whole-rock geochemical 

data of the Late Jurassic W-bearing granites in the Nanling Range (WGNR) are from Zhang (2004), Zhang 

(2014), Zhao et al. (2016b), and unpublished data from our research group. 

 

obvious Ba, Sr, P, and Ti depletions (Fig. 4-7e), high LREE/HREE ratios of 13.4 – 15.9, weak 

Eu negative anomalies (Fig. 4-7f), and high HFSE abundances. The Weijia granite porphyry is 

characterized by high Rb/Sr ratios, low Zr/Hf ratios, low ΣREE and HFSE abundances, strong 

Ba, Sr, P, and Ti depletions, obvious Nd positive anomalies (Fig. 4-7g), flat REE patterns, and 

strong Eu negative anomalies (Fig. 4-7h). 
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Figure 4-7. Primitive mantle-normalized (Sun and Mcdonough, 1989) spider diagrams and chondrite-normalized 

(Boynton, 1984) REE patterns of granitoids from the Tongshanling-Weijia area. The legends and data sources of 

the Middle-Late Jurassic Cu-Pb-Zn-bearing (CGNR) and W-bearing (WGNR) granitoids in the Nanling Range 

are the same as Figure 4-6. 
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4.4.5. Whole-rock Sr-Nd isotopes 

The Tongshanling granodiorite porphyry and its dioritic dark enclaves have (87Sr/86Sr)i 

ratios of 0.708955 – 0.710682 and 0.710023 – 0.711200, εNd (t) values of –6.9 – –4.2 and –6.7 

– –5.2, and Nd model ages of 1.29 – 1.51 Ga and 1.38 – 1.49 Ga, respectively. The 

Tongshanling granite porphyry has lower (87Sr/86Sr)i ratios (0.707011 – 0.708124), higher εNd 

(t) values (–2.8 – –2.1) (Fig. 4-8a), and younger Nd model ages (1.12 – 1.18 Ga). It is difficult 

to thoroughly extract Rb from the samples of the Weijia granite porphyry which have high 

Rb/Sr ratios. Therefore, its Sr isotopic composition has not been determined. The εNd (t) 

values of the Weijia granite porphyry are –5.4 – –4.5 and are plotted above the evolution 

region of the Precambrian metasedimentary basement of the Nanling Range (Fig. 4-8b). Its T
C 
DM (Nd) values are 1.32 – 1.39 Ga. 

4.5. Discussion 

4.5.1. Timing of granitoids 

Wang et al. (2002b) reported a U-Pb age of 178.9 ± 1.7 Ma for the Tongshanling 

granodiorite porphyry by single-grain zircon dating. The SHRIMP zircon U-Pb dating results 

from Wei et al. (2007) and Jiang et al. (2009) are 149 ± 4 Ma and 163.6 ± 2.1 Ma, respectively. 

Zhao et al. (2016b) obtained three LA-ICP-MS zircon U-Pb ages of 160.7 ± 0.5 Ma, 160.5 ± 

0.9 Ma and 159.7 ± 0.8 Ma. Zircon dating of the Tongshanling granodiorite porphyry and its 

dark enclaves in this study gives consistent U-Pb ages of 162.5 ± 1.0 Ma and 160.6 ± 1.4 Ma 

(Fig. 4-4a and b), respectively, which are in accordance with the ages published by Jiang et al. 

(2009) and Zhao et al. (2016b). The zircon U-Pb age of the Weijia granite porphyry obtained 

in this study is 158.3 ± 2.2 Ma (Fig. 4-4d) and is consistent with the result of 157.8 ± 0.9 Ma 

acquired by Zhao et al. (2016a). The Tongshanling granite porphyry has a zircon U-Pb age of 

158.8 ± 1.2 Ma (Fig. 4-4c). From the above discussion, it is concluded that the Tongshanling 

granodiorite porphyry and both the Weijia and Tongshanling granite porphyries were formed 

at 160 – 164 Ma and about 158 Ma and 158.8 Ma, respectively, and that the granite 

porphyries are slightly younger than the granodiorite porphyry. The metallogenic ages of the 

Tongshanling Cu-Pb-Zn deposit and Weijia W deposit obtained by Huang and Lu (2014) and 
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Figure 4-8. Sr-Nd isotopic compositions of granitoids from the Tongshanling-Weijia area. (a) εNd (t)-(87Sr/86Sr)i 

diagram, the Sr-Nd isotopic compositions of the Precambrian metasedimentary basement of the Nanling Range 

(MSBNR) are from Zhu et al. (2008) and Xie et al. (2013), the Ninyuan alkaline basalt and Daoxian high-Mg 

basalt are from Li et al. (2004) and Jiang et al. (2009), and the Huilongxu lamprophyre are from Wang et al. 

(2003b). (b) εNd (t)-t (Ma) diagram, the Nd isotopic evolution region of the Precambrian metasedimentary 

basement of the Nanling Range are from Sun et al. (2005). The legends and data sources of the Middle-Late 

Jurassic Cu-Pb-Zn-bearing (CGNR) and W-bearing (WGNR) granitoids in the Nanling Range are the same as 

Figure 4-6. 

 

Zhao et al. (2016b) by molybdenite Re-Os dating are 161.8 ± 1.7 Ma and 159.0 ± 5.6 Ma, 

respectively. They are consistent with zircon U-Pb ages of the Tongshanling granodiorite 

porphyry and Weijia granite porphyry, respectively, indicating that the Cu-Pb-Zn and W 

mineralization in the Tongshanling-Weijia area are closely associated with granitoids. 
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4.5.2. Degree of fractionation 

The Tongshanling granodiorite porphyry is an amphibole-bearing metaluminous 

calc-alkaline granitoid, and has low differentiation indexes and Rb/Sr ratios, high 

CaO/(Na2O+K2O) ratios and δEu values (Table 4-1 and Fig. 4-9a), and weak Ba, Sr, P, and Ti 

depletions (Fig. 4-7a), showing a low degree of fractionation. The Weijia granite porphyry is a 

high-silica peraluminous alkaline granite, and has very high differentiation indexes, low 

CaO/(Na2O+K2O) ratios, high Rb/Sr ratios (Table 4-1 and Fig. 4-9a), strong Ba, Sr, P, and Ti 

depletions (Fig. 4-7g), and obvious Eu negative anomalies (Fig. 4-7h), indicating a higher 

degree of fractionation than the Tongshanling granodiorite porphyry and belonging to a highly 

evolved granite. The Tongshanling granite porphyry has distinctly different petrological 

characteristics from the Cu-Pb-Zn-bearing Tongshanling granodiorite porphyry and is a 

peraluminous alkaline granite. This granite porphyry has low Rb/Sr ratios, high Zr/Hf and 

LREE/HREE ratios (Table 4-1), and weak Eu negative anomalies (Fig. 4-7f), with an 

evidently lower fractionation degree than the W-bearing Weijia granite porphyry. 

4.5.3. Petrogenesis 

The Tongshanling granodiorite porphyry has typical crust-derived Sr-Nd-Hf isotopic 

signatures (Table 4-1), indicating an origin from the partial melting of crustal materials. The 

existence of hornblende and hornblende-rich dioritic dark enclaves, low aluminum saturation 

indexes and (87Sr/86Sr)i ratios (Table 4-1), rightward sloping REE patterns, and weak 

depletions of Ba, Sr, P, Ti, and Eu (Fig. 4-7a and b) exhibit the characteristics of I-type granite, 

and in the ACF diagram (Fig. 4-6d) the Tongshanling granodiorite porphyry is plotted in the 

I-type granite field. The high Mg/(Mg+Fe) ratios (0.42 – 0.48) indicate a mafic source. In the 

AMF-CMF diagram (Fig. 4-9c), the Tongshanling granodiorite porphyry is plotted in the field 

of partial melts from metabasaltic to metatonalitic sources. All these features suggest that the 

Tongshanling granodiorite porphyry might be derived from the partial melting of the basaltic 

to tonalitic mafic lower crust. 

The dioritic dark enclaves have a zircon U-Pb age and Sr-Nd-Hf isotopic compositions 

that are consistent with the host granodiorite porphyry (Table 4-1 and Figs. 4-4, 4-5 and 4-8), 
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Figure 4-9. (a) CaO/(Na2O+K2O)-Rb/Sr diagram. (b) Mg/(Mg+Fe)-SiO2 (wt.%) diagram. (c) AMF-CMF 

diagram, after Altherr et al. (2000), AMF = molar Al2O3/(MgO+FeOTotal), CMF = molar CaO/(MgO+FeOTotal). (d) 

Rb (ppm)-(Y+Nb) (ppm) diagram, after Pearce et al. (1984) and Förster et al. (1997), Syn-COLG: syn-collision 

granites; VAG: volcanic arc granites; WPG: within plate granites; ORG: ocean ridge granites. The legends and 

data sources of the Middle-Late Jurassic Cu-Pb-Zn-bearing (CGNR) and W-bearing (WGNR) granitoids in the 

Nanling Range are the same as Figure 4-6. 

 

indicating they have the same source. The aggregated amphiboles in the dark enclaves and 

granodiorite porphyry (Fig. 4-1c and g) generally contain actinolitic cores (Al2O3: 2.5 – 3.7 

wt.%) and hornblende rims (Al2O3: 4.7 – 8.9 wt.%). This phenomenon is common in 

calc-alkaline granodiorites and their dark enclaves, and was considered to be the result of a 

reaction between unmelted residual pyroxenes and melts based on studies of mineral 

chemistry, REE and isotopes (Castro and Stephens, 1992; Sial et al., 1998; Stephens, 2001; 

Martin, 2007). Because the plagioclase crystallized from dioritic and granodioritic magmas is 
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generally andesine to oligoclase, the calcium-rich cores (An% > 70) of plagioclase from the 

dark enclaves and granodiorite porphyry might be the residue from source going through 

partial melting. The reaction rim of plagioclase phenocrysts from the enclaves (Fig. 4-1d) 

implies that these phenocrysts originated from the host magmas and that there is mass 

exchange between the enclaves and host magmas. CL images of magmatic zircons from the 

enclaves show the texture of dark rim and bright core (Fig. 4-3b). Relative to the bright core, 

the dark rim has higher Th and U concentrations (ThO2+UO2 contents of rim and core: 0.12 – 

0.32 wt.% and 0.04 – 0.21 wt.%, respectively), and lower Zr/Hf ratios (rim: 74 – 86, core: 86 

– 110), which are similar to those of the magmatic zircons from the host granodiorite 

porphyry (ThO2+UO2 contents: 0.01 – 0.44 wt.%, Zr/Hf ratios: 68 – 94), also indicating a 

mass exchange between the enclaves and host magmas. Therefore, it is very likely that the 

dioritic dark enclaves are reaction products of the restites from source after partial melting 

and granodioritic magmas. 

Both the Tongshanling and Weijia granite porphyries were formed slightly later than the 

Tongshanling granodiorite porphyry (Fig. 4-4c and d), and have similar Nd and zircon Hf 

isotopic compositions with crust-derived signatures (Table 4-1 and Figs. 4-5 and 4-8). These 

granite porphyries are peraluminous alkaline granites and are plotted in the S-type granite 

field of the ACF diagram (Fig. 4-6d). In the AMF-CMF diagram (Fig. 4-9c), the Tongshanling 

granite porphyry is plotted in the field of partial melts from metagreywackes. The Weijia 

granite porphyry does not fall into the diagram due to its high degree of fractionation (AMF: 

11.88 – 69.08, CMF: 0.23 – 3.14). Its low Mg/(Mg+Fe) ratios (0.04 – 0.32) indicate that it 

might be product of the partial melting of metasedimentary rocks. Its spider diagram and REE 

patterns are similar to those of the typical S-type W-bearing Yaogangxian granite in the 

Nanling Range (Dong et al., 2014). Thus, both the Tongshanling and Weijia granite 

porphyries are S-type granite. They might be derived from the partial melting of 

metasedimentary rocks in the upper-middle crust. The Weijia granite porphyry went through a 

high degree of differentiation, whereas the Tongshanling granite porphyry is a weakly 

fractionated granite. 
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4.5.4. Sources of the Cu-Pb-Zn-bearing and W-bearing granitoids 

The main features of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing 

granitoids in the Nanling Range are summarized in Table 4-2. The Cu-Pb-Zn-bearing 

granitoids were mainly formed at 155.2 – 167.0 Ma, with a peak value of 160.6 Ma, and the 

W-bearing granites were predominantly formed at 151.1 – 161.8 Ma, with a peak value of 

155.5 Ma (Appendix 4-4 and Fig. 4-10). Overall, these two different types of ore-bearing 

granitoids were formed in the Middle-Late Jurassic, however, the W-bearing granites were 

formed about 5 Ma later than the Cu-Pb-Zn-bearing granitoids. The Cu-Pb-Zn-bearing 

granitoids are mostly metaluminous calc-alkaline amphibole-bearing granodiorites, with low 

degrees of fractionation (Wang, 2010; Xie et al., 2013; Yang et al., 2016). The W-bearing 

granites are peraluminous alkaline granites and are highly differentiated (Chen et al., 2008; 

Dong et al., 2014) (Figs. 4-6, 4-7 and 4-9a). 

The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range have (87Sr/86Sr)i ratios of 0.708 – 0.712 and > 0.712, εNd (t) values of –10 – –2 (peak 

value: –7 – –6) and –14 – –7 (peak value: –10 – –9), and zircon εHf (t) values of –13 – –7 

(peak value: –11 – –10) and –14 – –8 (peak value: –13 – –12), respectively, indicating that 

they were both derived from the partial melting of continental crust. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing granitoids in the Nanling Range have the 

features of I-type granites. They are plotted in the I-type granite field of the ACF diagram (Fig. 

4-6d) and are plotted in the field of partial melts from metabasaltic to metatonalitic sources in 

the AMF-CMF diagram (Fig. 4-9c). These granitoids have high Mg/(Mg+Fe) ratios (Fig. 

4-9b). All these features show that they were derived from the partial melting of mafic rocks. 

This type of ore-bearing granitoids has an average zircon saturation temperature of 750 °C 

(Table 4-2), which is distinctly lower than the formation temperature (840 – 1139 °C) of the 

granulitic mafic xenoliths in the Daoxian basalt (Kong et al., 2000; Dai et al., 2008), 

indicating that the source of this type of granitoids is not a granulitic basement. According to 

the experimental study of Beard and Lofgren (1991), dehydration melting of amphibolites 

would generate water-unsaturated weakly peraluminous to metaluminous granodioritic melts, 

with residual plagioclase and pyroxene, whereas partial melting in water-saturated conditions 
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Table 4-2. Main features of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range 

 Cu-Pb-Zn-bearing granitoidsa  W-bearing granitesb 

Location Western part of the Nanling Range (South 
Hunan, North Guangdong) 

 Eastern part of the Nanling Range (South 
Hunan, South Jiangxi, North Guangdong) 

Age (Ma) 155.2 – 167.0 (peak value: 160.6)  151.1 – 161.8 (peak value: 155.5) 

Tectonic setting Intraplate extension  Intraplate extension 

Rock type Granodiorites with the signatures of 
I-type granites 

 S-type two-mica, muscovite, and biotite 
granites 

Source Mainly mafic amphibolitic basement in 
the lower crust 

 Mainly muscovite-rich metasedimentary 
basement in the upper-middle crust 

Dark enclaves Observed  Not observed 

Amphibole Observed  Not observed 

Fe-Ti oxide minerals Mainly magnetite  Mainly ilmenite 

Accessory minerals Zircon, titanite, allanite, etc.  Zircon, monazite, xenotime, thorite, etc. 

Redox condition Oxidized  Reduced 

Degree of fractionation Weakly fractionated  Highly fractionated 

ASI 0.8 – 1.0  1.0 – 1.2 

CaO/(Na2O+K2O) 0.3 – 0.8  <0.2 

Rb/Sr <2  10 – 250 

δEu 0.6 – 1.0  <0.15 

ΣREE (ppm) 100 – 240  60 – 180 

LREE/HREE 5 – 13  0.5 – 3 

HFSE (ppm) 180 – 290  150 – 300 

TZr (°C) 720 – 790 (average value: 750)  690 – 760 (average value: 735) 

(87Sr/86Sr)i 0.708 – 0.712  >0.712 

εNd (t) value Mainly –10 – –2 (peak value: –7 – –6)  Mainly –14 – –7 (peak value: –10 – –9) 

Zircon εHf (t) value Mainly –13 – –7 (peak value: –11 – –

10) 

 Mainly –14 – –8 (peak value: –13 – –

12) 

Notes: a The Cu-Pb-Zn-bearing granitoids include Shuikoushan, Baoshan, Huangshaping, Tongshanling, 

Dabaoshan intrusions, etc., the Huangshaping ore-bearing granites are mainly granite porphyry and quartz 

porphyry. b The W-bearing granites include Yaogangxian, Xintianling, Dengfuxian, Weijia, Xihuashan, 

Muziyuan, Piaotang, Dajishan intrusions, etc. The detailed data sources are shown in Appendix 4-4 and the 

captions of Figures 4-5 and 4-6. 

 

would produce Ca-rich, and Fe-, Mg-, Ti-, and K-poor and strongly peraluminous melts, with 

residual amphibole. The Middle-Late Jurassic Cu-Pb-Zn-bearing granitoids in the Nanling 
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Figure 4-10. Zircon U-Pb ages of the Middle-Late Jurassic Cu-Pb-Zn-bearing (CGNR) and W-bearing (WGNR) 

granitoids in the Nanling Range. The data sources are shown in Appendix 4-4. 

 

Range are Fe-, Mg-, and K-rich metaluminous granodiorites, therefore, they were in all 

probability derived from dehydration melting of amphibolites. The granulitic mafic xenoliths 

in the Daoxian basalt were formed under a pressure of 0.88 – 1.24 GPa with a corresponding 

depth of 29 – 41 km (Dai et al., 2008), suggesting that the lower limit of the depth of the 

amphibolitic basement is presumably 29 km. Yang et al. (2016) estimated the depth of the 

amphibolitic source of the Shuikoushan granodiorite in Hunan Province and obtained an 

upper limit of 25 km. Therefore, it is speculated that as the source of the Cu-Pb-Zn-bearing 

granitoids, the depth of the amphibolitic basement in the lower crust is 25 – 29 km. The zircon 

Hf model ages of the Cu-Pb-Zn-bearing granitoids (1.50 – 2.20 Ga, peak value: 1.85 Ga) 

indicate that the amphibolitic basement was mainly formed in the Paleoproterozoic. SHRIMP 

zircon U-Pb dating of the amphibolite from the Mayuan Group, which is the basement of the 

Cathaysia Block, yielded a Paleoproterozoic age of 1766 ± 19 Ma (Li, 1997), confirming that 

there is Paleoproterozoic amphibolitic basement in the Nanling Range. 

The Late Jurassic W-bearing granites in the Nanling Range are plotted in the S-type 



Chapter 4. Different origins of the Cu-Pb-Zn-bearing and W-bearing granitoids 

62 

granite field of the ACF diagram (Fig. 4-6d) and in the Precambrian metasedimentary 

basement of the Nanling Range in the Sr-Nd isotope diagram (Fig. 4-8), and they have low 

Mg/(Mg+Fe) ratios (Fig. 4-9b), indicating that they originated from the partial melting of 

metasedimentary rocks. In the AMF-CMF diagram (Fig. 4-9c), the W-bearing granites are 

mainly plotted in the field of partial melts from metagreywackes. They have an average zircon 

saturation temperature of 735 °C (Table 4-2). According to experimental studies, 

metagreywackes can be partially melted to produce granitic melts only when the temperature 

is higher than 800 °C (Vielzeuf and Montel, 1994; Gardien et al., 1995). Under the 

temperature conditions of below 800 °C, muscovite is the only possible rock-forming mineral 

that can be greatly dehydrated (Miller et al, 2003), and muscovite-rich metapelites can be 

partially melted to generate granitic magmas even when the temperature is lower than 750 °C 

(Thompson, 1982; Gardien et al, 1995). Thus, it can be considered that the source of the 

W-bearing granites is a muscovite-rich metasedimentary basement in the upper-middle crust. 

The zircon Hf model ages of the W-bearing granites (1.50 – 2.30 Ga, peak value: 1.95 Ga) 

indicate that the metasedimentary basement which as the W-bearing granite source was 

mainly formed in the Paleoproterozoic. 

4.5.5. Genetic model of the Cu-Pb-Zn-bearing and W-bearing granitoids 

The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range are plotted in the post-collision extension field of the Rb-(Y+Nb) tectonic 

discrimination diagram (Fig. 4-9d), indicating that they were formed in an extensional 

tectonic setting. The palaeo-Pacific plate subduction model was proposed by Zhou and Li 

(2000) and Zhou et al. (2006a) to explain the geodynamical mechanism of the Late Mesozoic 

large-scale granitic magmatism in South China. The extensional tectonic setting caused by the 

palaeo-Pacific plate subduction induced asthenosphere upwelling and basaltic magma 

underplating. Deep continental crust was partially melted by heating of the underplated 

basaltic magmas to generate granitic magmas. On the basis of the study of the petrogenesis 

and source signatures of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing 

granitoids in the Nanling Range, we proposed a genetic model for the two different types of 

ore-bearing granitoids (Fig. 4-11). By extensional decompression and heating of the 



Nov. 2018                                                                                X.D. HUANG 

63 

underplated basaltic magmas, the mafic amphibolitic basement in the lower crust was first 

partially melted to produce Cu-Pb-Zn mineralization related granodioritic magmas. With 

further basaltic magma underplating, the W-bearing granitic magmas were generated by the 

partial melting of the muscovite-rich metasedimentary basement in the upper-middle crust. 

The time gap of about 5 Ma between the Middle-Late Jurassic Cu-Pb-Zn-bearing and 

W-bearing granitoids in the Nanling Range was caused by the non-simultaneous partial 

melting of different granitoid sources. 

 

 

Figure 4-11. Genetic model of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the 

Nanling Range. MC: magma chamber; MSB: metasedimentary basement; MAB: mafic amphibolitic basement; 

MGB: mafic granulitic basement. 
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4.6. Summary 

The Tongshanling granodiorite porphyry and Weijia granite porphyry were formed at 160 

– 164 Ma and about 158 Ma, respectively. The statistics of the zircon U-Pb ages indicate that 

the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range 

were formed mainly at about 160 Ma and 155 Ma, respectively. There is a time gap of about 5 

Ma between the formation of the two different types of ore-bearing granitoids. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing granitoids in the Nanling Range are 

dominated by metaluminous amphibole-bearing granodiorites, which have a low degree of 

fractionation and the features of I-type granites, whereas the Late Jurassic W-bearing granites 

are highly differentiated peraluminous S-type granites. 

A comparison of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids 

in the Nanling Range revealed that the Cu-Pb-Zn-bearing granitoids were mainly derived 

from the partial melting of the mafic amphibolitic basement in the lower crust and that the 

W-bearing granites were predominantly derived from the partial melting of the 

muscovite-rich metasedimentary basement in the upper-middle crust. The time gap of about 5 

Ma between the two different types of ore-bearing granitoids arose from the non-simultaneous 

partial melting of different granitoid sources. 
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Chapter 5. Reworked restite enclave 

5.1. Introduction 

Microgranular enclaves in granitoids have long been studied, as they can provide 

significant information for the petrogenetic mechanism of their host granitoids. Various models 

have been proposed to explain the origin of microgranular enclaves, including magma mixing, 

restite after partial melting, accidental xenolith, and disrupted cumulate (autolith) (Didier, 1973; 

Didier and Barbarin, 1991), among which magma mixing (Vernon, 1984; Dorais et al., 1990; 

Poli and Tommasini, 1991; Blundy and Sparks, 1992; Yang et al., 2004, 2007; Barbarin, 2005; 

Zhao et al., 2010; Cheng et al., 2012; Perugini and Poli, 2012; Fu et al., 2016; Zhang et al., 

2016b) and restite (White and Chappell, 1977; Chappell et al., 1987; Chen et al., 1989b, 1990, 

1991; Chappell and White, 1991; Chappell, 1996; White et al., 1999; Chappell and Wyborn, 

2012) were the most hotly debated hypotheses. In recent years, mixing of mafic and felsic 

magmas was the most popular petrogenetic interpretation for dark microgranular enclaves and 

their host granitoids which show juvenile and evolved isotopic signatures, respectively (e.g., 

Yang et al., 2004, 2007; Zhao et al., 2010; Cheng et al., 2012; Fu et al., 2016). This 

interpretation was also frequently cited for those granitoids and enclaves with similar isotopic 

compositions (e.g., Jiang et al., 2009; Liu et al., 2013; Luo et al., 2015). However, it is 

noteworthy that magma mixing is primarily controlled by the viscosities of different 

end-members, and a low viscosity interval between mafic and felsic magmas favors their 

mixing (Sato and Sato, 2009; Perugini and Poli, 2012; Laumonier et al., 2014a, 2014b, 2015). 

Under experimental conditions of 300 MPa and relatively slow strain rates (10–5 – 10–3 s–1), the 

rheological threshold for mixing of basaltic and haplotonalitic magmas under water-absent and 

water-saturated conditions occurs at 1160 – 1170 °C (Laumonier et al., 2014a) and around 

1000 °C (Laumonier et al., 2015), respectively. It is inconceivable for most natural granitic 

magmas to keep such high temperatures to have a large-scale mixing with mafic magmas. Wu 

et al. (2007) pointed out that the existence of magmatic enclaves is indicative of a limited 

magma mixing. 
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In the Nanling Range of South China, dark microgranular enclaves are commonly 

observed in the Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites, such as the 

Tongshanling (Jiang et al., 2009) and Baoshan (Xie et al., 2013) granodiorites. Previous studies 

interpreted these enclaves as a result of mantle-derived mafic magma and crust-derived felsic 

magma mixing (Jiang et al., 2009; Xie et al., 2013), and it was widely considered that the 

Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites have an origin of crust-mantle mixing 

(e.g., Wang et al., 2003a; Jiang et al., 2009; Li et al., 2013; Xie et al., 2013; Zhao et al., 2016b). 

However, another hypothesis, partial melting of the mafic lower crust, has been proposed in 

recent years (Yang et al., 2016; Huang et al., 2017a), and gave rise to a reconsideration of the 

origin of the Cu-Pb-Zn-bearing granodiorites. The arguments for these two different 

interpretations were both primarily based on geochemistry and geochronology, but 

petrographic and mineralogical evidence was absent. 

The Tongshanling intrusion, which is a typical Cu-Pb-Zn-bearing granodiorite containing 

microgranular enclaves and has been intensely studied in terms of geochronology and 

geochemistry, was chosen as the research target. In this study, detailed petrographic and 

mineralogical researches have been carried out on the Tongshanling granodiorite and its 

microgranular enclaves to better constrain the genesis of microgranular enclaves and provide 

petrogenetic implications for the Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites in the 

Nanling Range. 

5.2. Tongshanling granodiorite and its microgranular enclaves 

The Tongshanling intrusion as stock with a total exposure area of 12 km2 (Fig. 3-1) has 

an approximately homogeneous composition of amphibole-bearing biotite granodiorite (Fig. 

5-1a) and does not show obvious lithological zonation except for local variation of mineral 

granularity. It has SiO2 contents of 63.7 – 70.1 wt.% and is metaluminous (aluminum saturation 

index: 0.9 – 1.0), high-K calc-alkaline and weakly fractionated [CaO/(Na2O+K2O): 0.3 – 0.6; 

Rb/Sr: 0.5 – 1.3], and shows characteristics of I-type granites (Huang et al., 2017a). Three 

deposits, the Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong Mo 

deposit, are distributed around this intrusion (Fig. 3-1). These deposits occur in the concealed 
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Figure 5-1. Petrographic photographs of the Tongshanling granodiorite and its microgranular enclaves. (a) 

Medium- to coarse-grained and porphyritic texture of the amphibole-bearing biotite granodiorite at specimen 

scale. (b) An ellipsoidal dark enclave in the granodiorite, which contains a few plagioclase phenocrysts, shows a 

gradational contact with the host, and does not have a chilled margin with magmatic flow foliation. (c) 

Idiomorphic and isolated amphibole in the granodiorite, plane-polarized light. (d) Enclosed amphibole in the 
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granodiorite, crossed-polarized light. (e) Amphibole-rich clot in the granodiorite, which is mainly comprised of 

aggregated fine-grained amphibole with a few biotite and plagioclase, plane-polarized light. (f) Granoblastic 

triple-junction texture of the amphibole-rich clot with a few interstitial anhedral biotite crystals, in the 

granodiorite, plane-polarized light. (g) Gradational transition from an enclave to the host granodiorite with 

increasing mineral granularity and decreasing proportion of mafic minerals, crossed-polarized light. (h) The 

enclaves are mainly composed of plagioclase, amphibole, and biotite, the mafic minerals are anhedral to 

subhedral and are dominated by amphibole with a few biotite, the amphibole occurs dominantly as aggregated 

with fewer isolated crystals, plane-polarized light. (i) Reaction rim of a plagioclase phenocryst which does not 

have a Ca-rich core, in the enclaves, crossed-polarized light. (j) Amphibole-rich clot in the enclaves, which has a 

pale-green to colorless interior and a green colored exterior, plane-polarized light. (k) Zonal amphibole crystals 

in the amphibole-rich clot interior with paler colored cores and deeper colored rims, in the enclaves, 

plane-polarized light. (l) Granoblastic triple-junction texture of the amphibole-rich clot interior without 

interstitial biotite, in the enclaves, plane-polarized light. (m) Intergrowth of biotite and amphibole in an 

amphibole-biotite clot which does not show zonal feature and granoblastic triple-junction texture, in the enclaves, 

plane-polarized light. (n) Poikilitic texture of a large-grained K-feldspar crystal in the enclaves, 

crossed-polarized light. (o) Poikilitic texture of a large-grained quartz crystal in the enclaves, crossed-polarized 

light. Amp = amphibole, Bt = biotite, Kfs = K-feldspar, Pl = plagioclase, Qz = quartz. 

 

contact zone between granodiorite and carbonate rocks, and its peripheral zone. By zircon U-Pb 

and molybdenite Re-Os dating, it was revealed that the Tongshanling granodiorite (164 – 160 

Ma; Jiang et al., 2009; Zhao et al., 2016b; Huang et al., 2017a) and its surrounding deposits 

(162 – 160 Ma; Huang and Lu, 2014; Lu et al., 2015; Zhao et al., 2016b) were formed 

contemporaneously. 

Dark microgranular enclaves are commonly found scattered throughout the Tongshanling 

granodiorite. They occur as separate individuals, which are several to dozens of centimeters in 

size and generally have round to ellipsoid shapes (Fig. 5-1b). The contact of the enclaves with 

the host rock is gradational (Fig. 5-1b), and chilled margin and magmatic flow foliation are 

absent. Most enclaves are fine-grained and homogeneous, and some contain a few plagioclase 

phenocrysts (Fig. 5-1b). Previous zircon U-Pb geochronology showed that they were formed 
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at 163 – 160 Ma (Jiang et al., 2009; Huang et al., 2017a), which is identical to that of the host 

granodiorite. These enclaves mostly have dioritic compositions (53.4 – 59.4 wt.% SiO2), and 

show similar Mg/(Mg+Fe) ratios (0.4 – 0.5) and HREE-depleted REE patterns with the host 

rock, but higher ΣREE contents and larger negative Eu anomalies (Huang et al., 2017a). 

5.3. Petrography 

5.3.1. Tongshanling granodiorite 

The Tongshanling granodiorite is medium- to coarse-grained, porphyritic (Fig. 5-1a), 

and consists primarily of plagioclase (ca. 45 vol.%), K-feldspar (ca. 22 vol.%), quartz (ca. 20 

vol.%), biotite (ca. 10 vol.%), and amphibole (ca. 3 vol.%). The phenocrysts are mainly 1 – 5 

cm sized, except for some local plagioclase megacrysts with a size up to 10 cm. Plagioclase is 

primarily euhedral to subhedral oligoclase to andesine with zonal texture, and occasionally 

includes a sericitized core which has an embayed margin and generally occupies less than 30 

vol.% of the whole plagioclase (Fig. 5-2a). Amphibole is green colored and mostly occurs as 

euhedral (Fig. 5-1c) to subhedral isolated crystals, and occasionally as mineral inclusions (i.e., 

enclosed amphibole) in plagioclase (Fig. 5-1d) and K-feldspar. Besides the isolated and 

enclosed amphibole, another rare but remarkable amphibole is aggregated crystals which 

 

 

Figure 5-2. Compositional zonation of plagioclase with a Ca-rich core (analysis was performed on the unaltered 

part) from the Tongshanling granodiorite and its microgranular enclaves. 
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constitute millimetric polycrystalline amphibole-rich clots together with a few biotite and 

plagioclase (Fig. 5-1e). The aggregated amphibole is obviously finer grained (< 300 μm) than 

the isolated ones and is generally connected by a granoblastic triple-junction texture (Fig. 

5-1f). Biotite is brown and dominantly distributes in the matrix as euhedral to subhedral 

crystals. A few anhedral biotite crystals are distributed as interstitial along the boundary 

between the aggregated amphibole grains (Fig. 5-1f). Accessory minerals include zircon, 

apatite, titanite, allanite, rutile, sulfide, and Fe-Ti oxide minerals. The Fe-Ti oxide minerals 

are dominated by magnetite. 

5.3.2. Microgranular enclaves 

The fine-grained (Fig. 5-1g) dioritic dark enclaves have the same minerals, even 

accessory minerals, as their host granodiorite but in different proportions. They generally have 

a plagioclase content of 50 – 60 vol.%, and 30 – 50 vol.% of mafic minerals (Fig. 5-1g and h), 

with a few K-feldspar and quartz. The mafic minerals of most enclaves are dominated by 

amphibole (Fig. 5-1h), with the exception of some dominated by biotite. At the contact 

between the enclaves and their host rock, the mineral granularity and proportion of mafic 

minerals change gradually rather than sharply (Fig. 5-1g). Plagioclase is mainly subhedral to 

anhedral and sometimes euhedral crystals which mostly consist of a sericitized core with an 

irregular margin and a fresh rim with zonal texture (Fig. 5-2b). The sericitized core accounts 

for at least 60 vol.% of the whole plagioclase (Fig. 5-2b). Notably, the quantity of 

core-bearing plagioclase and the proportion of sericitized core in the enclaves are much more 

than those in the host granodiorite. The plagioclase phenocrysts with a reaction rim and no 

sericitized cores (Fig. 5-1i) appear occasionally. Biotite is brown and occurs primarily as 

anhedral to subhedral crystals. Compared with the host granodiorite, the majority of 

amphibole in the enclaves occurs as aggregated rather than isolated crystals (Fig. 5-1h). The 

ratio of the aggregated and isolated amphibole contents is about 5:1. The aggregated 

amphibole, which mainly constitutes amphibole-rich clots together with a few biotite, is 

anhedral and has a similar grain size (< 300 μm) with the most other enclave minerals (Fig. 

5-1h and j). The isolated amphibole is mostly anhedral to subhedral (Fig. 5-1h) and never 

appears as idiomorphic as that in the host granodiorite (Fig. 5-1c). Nearly half of the 
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amphibole-rich clots are several millimeters sized and are zoned with a pale-green to colorless 

interior and a deep-green colored exterior (Fig. 5-1j); the another half is smaller in size and 

does not show a color zonation (Fig. 5-1h). Although not always, the interior amphibole 

grains in the zonal clots also show a zonal feature, with the core being paler colored than the 

rim (Fig. 5-1k). However, the clot exterior amphibole grains do not show a color zonation. A 

granoblastic triple-junction texture can be commonly observed in the clot interior where only 

amphibole appears but no interstitial biotite does (Fig. 5-1l), whereas the clot exterior shows 

an anhedral granular texture of dominant amphibole and a few biotite crystals (Fig. 5-1j). The 

biotite in the clot exterior occupies no more than 5 vol.% of the clot. Besides the 

amphibole-rich clots, some rarely-occurred mafic mineral clots are composed of amphibole 

and abundant biotite with an intergrowth texture, and do not have zonal feature and 

granoblastic triple-junction texture (Fig. 5-1m). In these amphibole-biotite clots, the content 

of biotite is about 40 – 50 vol.%. A few large-grained K-feldspar and quartz have a poikilitic 

texture and include the fine-grained amphibole, biotite, and plagioclase (Fig. 5-1n and o). 

5.4. Analytical methods 

Major element analyses of plagioclase, amphibole, and biotite were carried out with a 

CAMECA SX50 electron microprobe (EMP) at Institut des Sciences de la Terre d’Orléans 

(ISTO), France. Zircon was analyzed by a JEOL JXA-8100M EMP at the State Key Laboratory 

for Mineral Deposits Research (LAMD), Nanjing University (NJU), China. The analytical 

conditions included an accelerating voltage of 15 kV, a beam current of 10 nA (CAMECA, 

ISTO) or 20 nA (JEOL, LAMD, NJU) with beam diameter of 1 μm, and counting times of 10 s 

for all elements and 5 s for background. The collected data were corrected by the ZAF 

procedures. Calibration was performed using natural minerals and synthetic compounds. 

Trace element contents of amphibole and biotite were determined by an Agilent 7700× 

inductively coupled plasma mass spectrometry coupled to an Excite 193 nm Photon Machines 

laser ablation system (LA-ICP-MS) at Nanjing FocuMS Technology Co. Ltd. Each analysis 

was performed by a 25 – 50-μm ablating spot at 5 – 8 Hz with energy of 5 – 5.5 mJ 

(transmittance 80%) for 40 s after measuring the gas blank for 15 s. USGS standard reference 
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materials BIR-1G, BHVO-2G, and BCR-2G, NIST standard reference material 610, and 

Chinese Geological Standard Glasses CGSG-1 and CGSG-2 were used as external standards 

to plot calibration curve. GSE-1G was analyzed for quantity control of the time-dependent 

calibration for sensitivity drift. The off-line data processing was performed using a program 

called ICPMSDataCal (Liu et al., 2008b). 

5.5. Analytical results 

5.5.1. Plagioclase 

Representative microprobe analyses of plagioclase from the Tongshanling granodiorite 

and its microgranular enclaves are listed in Appendix 5-1. In the granodiorite, most plagioclase 

crystals show an anorthite range from An21 to An48 (Fig. 5-3). The plagioclase with a sericitized 

core has an anorthite content of An71 – An72 and An31 – An64 at the core and rim, respectively 

(Fig. 5-2a). In the enclaves, the plagioclase rims have an anorthite content of An22 – An45, 

similar to that of the core-free plagioclase in the host granodiorite, whereas, the sericitized cores 

show an anorthite range from An65 to An76 (Fig. 5-3). Thus, the enclave plagioclase shows a 

discontinuous compositional change from core to rim (Fig. 5-2b). The Ca-rich plagioclase cores 

of both the granodiorite and its enclaves are almost uniform in composition without obvious 

zonation (Fig. 5-2). 

 

Figure 5-3. Composition of plagioclase from the Tongshanling granodiorite and its microgranular enclaves. 
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5.5.2. Amphibole 

The different occurrences of amphibole (i.e., enclosed, isolated, and aggregated) in the 

Tongshanling granodiorite and its enclaves are all calcium amphibole, and show a large 

compositional variation, but have quite consistent Mg/(Mg+Fe) ratios (0.44 – 0.58) (Fig. 5-4; 

Appendix 5-2). In the classification of Hawthorne et al. (2012), for the granodiorite, the 

enclosed and most isolated crystals plot in the pargasite field; some isolated ones plot in the 

magnesio-hornblende field; the core and rim of aggregated amphibole grains plot in the 

transition field from tremolite to magnesio-hornblende and in the magnesio-hornblende field, 

respectively (Fig. 5-4a). For the enclaves, the core and rim of clot interior amphibole grains plot 

in the tremolite and in the transition field from tremolite to magnesio-hornblende, respectively; 

both the clot exterior amphibole and the isolated amphibole plot in the magnesio-hornblende 

field (Fig. 5-4a). 

 

 

Figure 5-4. Mineral chemistry of amphibole from the Tongshanling granodiorite and its microgranular enclaves. 

(a) Classification diagram of amphibole [General formula: A0–1B2C5T8O22(OH, F, Cl)2, after Hawthorne et al., 

2012], when Mg/(Mg+Fe2+) < 0.9, the tremolite field represents an actinolitic composition (according to Leake 

et al., 1997). (b) Si (apfu)-AlTotal (apfu) diagram. MI: mineral inclusion; II: inner of isolated amphibole; OI: outer 

of isolated amphibole; CA: core of aggregated amphibole grains; RA: rim of aggregated amphibole grains; I: 

isolated amphibole; CCI: core of clot interior amphibole grains; RCI: rim of clot interior amphibole grains; CCE: 

core of clot exterior amphibole grains; RCE: rim of clot exterior amphibole grains. 



Chapter 5. Reworked restite enclave 

74 

Among all the different occurrences of amphibole, the enclosed amphibole in the 

granodiorite has the highest Al [1.55 – 2.12 apfu (atoms per formula unit)] and lowest Si (6.25 

– 6.82 apfu) contents (Fig. 5-4b). Most isolated amphibole crystals in the granodiorite have Al 

contents of 1.34 – 1.62 apfu and Si contents of 6.62 – 6.88 apfu and a few have obviously lower 

Al (1.04 – 1.11 apfu) and higher Si (7.04 – 7.12 apfu) contents (Fig. 5-4b). The aggregated 

amphibole of both the granodiorite and its enclaves shows distinctly lower Al and higher Si 

contents than the enclosed and dominant isolated amphibole in the granodiorite (Fig. 5-4b). The 

core of aggregated amphibole grains in the granodiorite has lower Al contents (0.63 – 0.81 apfu) 

and higher Si contents (7.33 – 7.49 apfu) than the rim (Al: 0.90 – 1.59 apfu; Si: 6.71 – 7.31 apfu) 

(Fig. 5-4b). Particularly, the core of clot interior amphibole grains in the enclaves shows 

actinolitic compositions [Mg/(Mg+Fe2+) < 0.9; Fig. 5-4a; Appendix 5-2] with the lowest Al 

(0.31 – 0.52 apfu) and highest Si (7.49 – 7.72 apfu) contents and the rim has higher Al (0.82 – 

1.28 apfu) and lower Si (7.01 – 7.35 apfu) contents than the core (Fig. 5-4b). Notably, although 

the clot exterior amphibole grains do not show a color zonation, they have zoned compositions, 

with the core having lower Al contents (0.81 – 1.05 apfu) and higher Si contents (7.16 – 7.30 

apfu) than the rim (Al: 1.25 – 1.30 apfu; Si: 6.88 – 6.97 apfu) (Fig. 5-4b). At clot scale, the 

exterior of zonal amphibole-rich clots shows more Al-enriched and Si-depleted amphibole 

compositions than those of the interior (Fig. 5-4b). The isolated amphibole in the enclaves can 

be divided into two different groups with low-Al, high-Si and high-Al, low-Si compositions, 

respectively (Fig. 5-4). 

Trace element compositions of amphibole are listed in Appendix 5-3. The isolated 

amphibole in the granodiorite has flat REE patterns with weak LREE depletions and obvious 

Eu negative anomalies (Fig. 5-5a). The ΣREE contents are 307 – 764 ppm and the mean Eu 

[ Eu = 2EuN/(SmN + GdN)] value is 0.05. The rim of clot interior amphibole grains and the 

isolated amphibole in the enclaves, with ΣREE contents of 485 – 525 ppm and 317 – 549 ppm, 

respectively, have the similar REE patterns and mean Eu value (0.06) (Fig. 5-5b and c) to the 

isolated amphibole in the granodiorite. In contrast, although the core of clot interior amphibole 

grains in the enclaves also shows flat REE patterns with weak LREE depletions, it has distinctly 

lower ΣREE contents (99 – 146 ppm) and a slightly higher mean Eu value (0.09) (Fig. 5-5b). 
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In the trace element binary diagrams (Fig. 5-6), it is clearly separated from the other 

occurrences of amphibole by lower contents of Rb, Sr, Cs, Ba, Zr, Hf, Nb, Ta, Th, U, ΣREE, Y, 

Zn, Pb, Sn, W, V, Sc, Ga, and In. 

5.5.3. Biotite 

Biotite crystals of the Tongshanling granodiorite and its microgranular enclaves have 

similar major element compositions (Appendix 5-4). Their Mg/(Mg+Fe) ratio varies in a  

 

 

Figure 5-5. Chondrite-normalized (Boynton, 1984) REE patterns of amphibole from the Tongshanling 

granodiorite and its microgranular enclaves. 
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narrow range of 0.39 – 0.48. In the classification of Tischendorf et al. (1997), they plot 

dominantly in the Fe biotite field and some in the Mg biotite field (Fig. 5-7). However, they 

  

 

Figure 5-6. Trace element binary diagrams of amphibole from the Tongshanling granodiorite and its 

microgranular enclaves. Legends are the same as Figure 5-5. 



Nov. 2018                                                                                X.D. HUANG 

77 

 

Figure 5-7. Classification diagram of biotite (after Tischendorf et al., 1997) from the Tongshanling granodiorite 

and its microgranular enclaves. 

 

show some differences in the trace element compositions (Appendix 5-3). The enclave biotite 

has lower Sr, Ba, ΣREE, Y, Zn, Pb, W, Sc, Co, Ni, Ga, and In contents, and higher Sn and V 

contents than that of the granodiorite (Figs. 5-8 and 5-9). 

5.5.4. Zircon 

Magmatic zircon of the granodiorite shows well-developed oscillatory zoning, and 

generally includes an inherited core (Fig. 5-10a). Their ThO2+UO2 contents and Zr/Hf ratios 

 

 

Figure 5-8. Chondrite-normalized (Boynton, 1984) REE patterns of biotite from the Tongshanling granodiorite 

and its microgranular enclaves. 
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Figure 5-9. Trace element binary diagrams of biotite from the Tongshanling granodiorite and its microgranular 

enclaves. Legends are the same as Figures 5-7 and 5-8. 

 

are 0.01 – 0.44 wt.% and 68 – 94, respectively (Fig. 5-10b; Appendix 5-5). In the enclaves, 

inherited zircon cores are also present (Fig. 5-10c). The magmatic zircon generally comprises 

an inner part with bright cathodoluminescence (CL) image and an outer part with dark CL 

image (Fig. 5-10c). The outer parts have higher ThO2+UO2 contents and lower Zr/Hf ratios 

than the inner parts and are compositionally more similar to the magmatic zircon in the host 

granodiorite (Fig. 5-10b; Appendix 5-5). It is worth noting that about 80% of the enclave zircon 
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grains show chaotic internal textures without oscillatory zoning (Fig. 5-10d and e), and 

sometimes are surrounded by an oscillatory-zoned magmatic rim (Fig. 5-10f). 

5.6. Discussion 

5.6.1. Textural evidence 

5.6.1.1. Residual materials 

The restite model was mostly discussed and developed by the studies of granites and their 

enclaves in the Lachlan Fold Belt (White and Chappell, 1977; Chappell et al., 1987; Chen et al., 

1989b, 1990, 1991; Chappell and White, 1991; Chappell, 1996; White et al., 1999; Chappell 

and Wyborn, 2012). Restite microgranular enclaves in calc-alkaline I-type granitoids generally 

have some diagnostic textural features as follows: (1) remnants of refractory materials, such as 

 

 

Figure 5-10. Texture and mineral chemistry of zircon from the Tongshanling granodiorite and its microgranular 

enclaves. (a) CL image of a magmatic zircon with an inherited core from the granodiorite. (b) Zr/Hf-ThO2+UO2 

(wt.%) diagram of magmatic zircon from the granodiorite and its enclaves. (c) CL image showing the 

compositional zonation of a magmatic zircon with an inherited core from the enclaves. (d and e) Chaotic internal 

textures of metamorphic zircon in the enclaves. (f) Metamorphic zircon with a magmatic rim in the enclaves. 
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Ca-rich plagioclase, inherited zircon, and possibly pyroxene produced by dehydration melting 

reactions; (2) mafic mineral clots coexisted with Ca-rich plagioclase; (3) residual metamorphic 

texture inherited from the source. 

In the enclaves of the Tongshanling granodiorite, mafic mineral clots are widely scattered 

(Fig. 5-1h, j, and m). These clots are comprised of anhedral to subhedral crystals and do not 

exhibit the typical texture of serial crystallization as in magmatic rocks. The metamorphogenic 

granoblastic triple-junction texture in the interior of zonal amphibole-rich clots (Fig. 5-1l) 

directly reflects the restite information from the metamorphic source (Castro and Stephens, 

1992; Sial et al., 1998). The commonly occurred old zircon cores (Fig. 5-10c; Huang et al., 

2017a) are also indicative of an inheritance from the crustal source. The chaotic internal texture 

of the dominant enclave zircon grains (Fig. 5-10d and e) is different from the magmatic 

oscillatory-zoned texture and is similar to the convoluted zoning and recrystallization texture of 

zircon formed by high-temperature metamorphism (Hoskin and Black, 2000; Corfu et al., 2003; 

Wu and Zheng, 2004; Harley et al., 2007). In all probability, this kind of zircon is metamorphic 

zircon maintained from the source after partial melting. With an irregular margin and almost 

uniform composition without zonation (Fig. 5-2b), the sericitized Ca-rich plagioclase cores are 

distinctly different from the fresh zonal magmatic plagioclase. The confined sericitization only 

in the core rather than in the rim (Fig. 5-2b) may indicate that the core plagioclase was an early 

existed phase which has been altered by magmatic fluids before the crystallization of rim 

plagioclase. Therefore, these plagioclase cores are thought to be of a restite origin. They are 

analogous to the residual plagioclase described by Chappell et al. (1987). The existence of these 

residual minerals implicates that the temperature of partial melting was insufficient to 

thoroughly melt the source materials. Thus, these microgranular enclaves are restite enclaves 

and show the same petrographic features as the restite enclaves of I-type granites in the Lachlan 

Fold Belt (e.g., Chen et al., 1990, 1991). 

5.6.1.2. Vestiges of magma reworking 

The textural vestiges of restite enclaves reworked by the host magma are evident in the 

microgranular enclaves. The plagioclase phenocrysts in the enclaves show identical features to 

the matrix plagioclase in the host granodiorite with a similar granularity and composition (An30 
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– An40, measured by optical microscope) and without Ca-rich cores (Fig. 5-1i). They were 

probably formed by transfer of accidental crystals from the host magma. White et al. (1999) 

emphasized that the restite enclaves could contain a melt phase which has been produced 

during partial melting but is insufficient to disaggregate the enclave into the magma. The 

reaction rim of plagioclase phenocryst (Fig. 5-1i) could be formed by reaction of the accidental 

plagioclase with the initial melt in the enclaves. Vernon (1991) pointed out that poikilitic 

texture results from magmatic crystallization with relatively low nucleation rates and high 

growth rates. Thus, the poikilitic texture of K-feldspar (Fig. 5-1n) and quartz (Fig. 5-1o) in the 

enclaves in all probability reflects an input of late-stage silica-rich melt from the host magma. 

There is a progressive change of texture and mineral proportion from the zonal amphibole-rich 

clot interior to exterior (Fig. 5-1j–l) and then to the amphibole-biotite clot (Fig. 5-1m), with 

gradually obscurer granoblastic triple-junction texture and elevated biotite content, showing a 

progressive reaction process of the restite with the accidental melt from the host magma. This 

accidental melt was also probably responsible for the formation of the magmatic rims of 

residual plagioclase (Fig. 5-2b) and zircon (Fig. 5-10c and f). The process of magma reworking 

is also reflected by the gradational contact between the enclaves and the host granodiorite (Fig. 

5-1g). 

5.6.2. Compositional evidence 

5.6.2.1. Magmatic amphibole 

Both natural amphibole (Duan and Jiang, 2017) and experimental studies (Schmidt, 1992; 

Ernst and Liu, 1998) have revealed that, during magmatic crystallization with decreasing 

pressure and temperature, the early-crystallized amphibole is more Al-enriched and Si-depleted 

than the late-crystallized amphibole. The dominant idiomorphic isolated amphibole in the 

Tongshanling granodiorite shows normal magmatic growth zonation (Appendix 5-2) and was 

evidently formed by magmatic crystallization. With higher Al and lower Si contents than the 

isolated amphibole (Fig. 5-4b), the enclosed amphibole is also of magmatic origin but was 

crystalized earlier than the isolated one. In the plot of the generalized tschermakite vs. edenite 

components (Fig. 5-11), the magmatic amphibole is distributed away from the tremolite 
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Figure 5-11. Plot of the generalized tschermakite [(TAl–ANa–AK–2ACa) (apfu)] vs. edenite [(ANa+AK+ACa) 

(apfu)] components for amphibole from the Tongshanling granodiorite and its microgranular enclaves (after 

Schumacher, 2007). Legends are the same as Figure 5-4. 

 

end-member and is obviously separated from the other occurrences of amphibole. Assuming 

that the whole-rock composition of the Tongshanling granodiorite is similar to the melt 

composition from which the magmatic amphibole was crystallized, the REE distributions of 

model magmatic amphibole calculated by partition coefficients in felsic (dacitic to rhyolitic) 

melts (Arth, 1976) are consistent with those of the isolated amphibole (Fig. 5-12), further 

demonstrating its magmatic origin. 

5.6.2.2. Metamorphic amphibole 

It is notable that, compared with the magmatic amphibole, the amphibole grains in the 

enclave zonal clots show a contrary compositional zonation and distinctly lower Al and higher 

Si contents (Fig. 5-4b; Appendix 5-2), indicating that they were not formed by magmatic 

crystallization. The clot interior amphibole has a granoblastic triple-junction texture (Fig. 5-1l) 

and the grain core is compositionally close to the tremolite end-member (Fig. 5-11), thus the 

actinolitic core amphibole is considered to be of a metamorphic origin. A study of analogous 

amphibole-rich clots in granodiorite by Castro and Stephens (1992) argued that the actinolitic 
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Figure 5-12. REE distribution modelling of magmatic amphibole and residual clinopyroxene and amphibole. 

Model magmatic amphibole 1 and 2 are calculated by partition coefficients in felsic melts with rhyolitic and dacitic 

compositions (Arth, 1976), respectively, assuming that the whole-rock composition of the Tongshanling 

granodiorite is similar to the melt composition in which magmatic amphibole has been crystallized. Model residual 

clinopyroxene 1, 2, and 3 are calculated by partition coefficients in dacitic melt (Arth, 1976; Fujimaki et al., 1984) 

in terms of 10% partial melting with a restite comprised of 30% clinopyroxene + 70% plagioclase (model 1), 50% 

clinopyroxene + 50% plagioclase (model 2), and 45% clinopyroxene + 45% plagioclase + 10% amphibole (model 

3), respectively, using the amphibolite of the regional metamorphic basement (Li, 1997) as the source rock. Model 

residual amphibole 3 is calculated by the restite model 3. The whole-rock REE compositions of the Tongshanling 

granodiorite and its microgranular enclaves are from Huang et al. (2017a). The REE concentrations of all model 

residual minerals and natural samples are normalized by chondrite (Boynton, 1984). 

 

core amphibole is actually a pseudomorph after a primary pyroxene-rich precursor, which is 

expected to be relatively poor in Al and has been transformed into amphibole by a complex 

reaction. They supposed that this reaction may have occurred by hydrogenation of the primary 

pyroxene with a magnesio-hornblende armor [pyroxene + fluids (OH, etc.) → actinolite] or 

may also have occurred as a direct discontinuous reaction of the pyroxene with the melt 

(pyroxene + melt1 → hornblende + melt2). Martin (2007) considered that the former hypothesis 

is more dependable. The actinolitic core amphibole in the Tongshanling microgranular 
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enclaves contains significantly lower REE contents than the magmatic amphibole (Fig. 5-5a 

and b). It is consistent with the hypothesis that the actinolitic core amphibole was transformed 

from primary residual pyroxene which has significantly lower REE partition coefficients than 

amphibole in felsic melt (Arth, 1976; Fujimaki et al., 1984). This is also responsible for the 

distinctly lower contents of the other incompatible elements in the actinolitic core amphibole 

(Fig. 5-6a–h). It is reasonable that the incompatible elements tend to concentrate in melt during 

partial melting and give rise to a depleted remnant. The obvious Eu negative anomalies and 

weak LREE depletions of the actinolitic core amphibole (Fig. 5-5b) indicate the coexistence of 

plagioclase in residual materials (Stephens, 2001). This has been further demonstrated by the 

occurrence of abundant residual Ca-rich plagioclase cores in the enclaves. As revealed by 

previous experimental studies, dehydration melting of amphibolite at crustal pressure and 

temperature usually produces a pyroxene- and plagioclase-rich restite in which the pyroxene is 

dominated by clinopyroxene (Beard and Lofgren, 1991; Wolf and Wyllie, 1994; Johannes and 

Holtz, 1996). Using the amphibolite of the regional metamorphic basement (Li, 1997) as the 

source rock of the Tongshanling granodiorite, the REE distributions of model residual 

clinopyroxene calculated in terms of 10% partial melting with a model restite comprised of 

different proportions of clinopyroxene, plagioclase and amphibole are similar to the actinolitic 

core amphibole but with lower REE contents especially when residual amphibole occurs (Fig. 

5-12). However, the model residual amphibole contains distinctly higher REE contents than the 

actinolitic core amphibole (Fig. 5-12). Thus, the results of REE distribution modeling indicate 

that the actinolitic core amphibole was transformed from primary residual pyroxene by 

hydrogenation, during which the REE contents had increased due to its higher REE partition 

coefficients, rather than directly preserved as residual amphibole. 

5.6.2.3. Magma reworked metamorphic amphibole 

The increasing Al and decreasing Si contents from core to rim of the clot interior 

amphibole grains and also from interior to exterior of the whole zonal clot (Fig. 5-4b), with a 

trend from metamorphic amphibole to magmatic amphibole (Fig. 5-11), show the process of 

magma reworking of the restite enclaves. In consideration of the consistent REE patterns with 

the magmatic amphibole (Fig. 5-5a and b), the rim of clot interior amphibole grains may have 
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been formed by reaction of the actinolitic amphibole with the host magma. Castro and Stephens 

(1992) and Stephens (2001) considered that this reaction was induced dominantly by diffusive 

exchange along the grain boundaries. With a similar compositional zonation to the clot interior 

amphibole but higher Al and lower Si contents (Fig. 5-4), the clot exterior amphibole was 

formed by a more intense magma reworking than the clot interior amphibole. The isolated 

enclave amphibole has magma reworked compositions (Fig. 5-11) and consistent REE patterns 

with the magmatic amphibole (Fig. 5-5a and c), suggesting that it is also magma reworked 

amphibole and is deduced to be transformed from isolated residual pyroxene. The high-Al and 

low-Si isolated amphibole may result from a more intense reworking by a late and evolved host 

melt than the low-Al and high-Si isolated amphibole. 

5.6.2.4. Zircon and plagioclase 

The composition zonation of enclave magmatic zircon (Fig. 5-10c) has recorded two 

different melts existed in the enclaves. Huang et al. (2017a) reported that both the inner parts 

and outer parts of enclave magmatic zircon have consistent U-Pb ages and Hf isotopic 

compositions with the magmatic zircon in the host granodiorite, indicating that they were 

sequentially crystallized from different melts with the same origin. The outer parts have higher 

ThO2+UO2 contents and lower Zr/Hf ratios than the inner parts, and are more similar to those of 

the magmatic zircon in the host granodiorite (Fig. 5-10b), suggesting that the outer magmatic 

zircon was crystallized from a late and more evolved host melt, whereas, the inner parts with 

lower ThO2+UO2 contents and higher Zr/Hf ratios (Fig. 5-10b) may be crystallized from the 

initial melt retained in restite. The magmatic rims of enclave plagioclase may have been 

crystallized from the initial melt or the evolved host melt. However, the consistent 

compositions of magmatic plagioclase in the enclaves and their host granodiorite (Fig. 5-3) and 

the discontinuous compositional change within the enclave plagioclase from core to rim (Fig. 

5-2b) indicate that the magmatic rim plagioclase in the enclaves was in all probability 

dominantly crystallized from the evolved host melt. 
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5.6.2.5. Biotite 

The temperature of biotite dehydration melting is much lower than that of amphibole 

dehydration melting (Johannes and Holtz, 1996). Therefore, the enclave biotite should not be a 

residual phase when amphibole broke down. However, it has lower contents of ΣREE and some 

other incompatible elements such as Sr, Ba, Y, Zn, Pb, and W than the magmatic biotite in the 

host granodiorite (Figs. 5-8 and 5-9a–d), reflecting some residual information. The consistent 

major element compositions of biotite in the granodiorite and its enclaves (Fig. 5-7) indicate an 

intense reworking of the restite by the host magma. 

5.6.2.6. Residual materials in the granodiorite 

There are also some residual materials in the host granodiorite, such as the old zircon cores 

(Fig. 5-10a), the Ca-rich plagioclase cores (Fig. 5-2a), and the rarely-occurred amphibole-rich 

clots (Fig. 5-1e). These residual materials can be directly inherited from the source after partial 

melting or can be derived from disaggregation of the restite enclaves reworked by the host 

magma. The amphibole-rich clots also have a metamorphic triple-junction texture (Fig. 5-1f) 

and mainly consist of granoblastic amphibole with an actinolitic core surrounded by a 

magnesio-hornblende rim (Fig. 5-4a), which are similar to those in the enclaves. In the 

amphibole-rich clots, the amphibole rim has distinctly higher Al and lower Si contents than the 

core (Fig. 5-4b), showing a magma reworked signature (Fig. 5-11). The low-Al and high-Si 

magma reworked isolated amphibole (Figs. 5-4b and 5-11) may be derived from the 

disaggregation of amphibole-rich clots or transformed from isolated residual pyroxene just as in 

the enclaves. 

5.6.2.7. Geochemical signatures 

The Harker plots of the Tongshanling granodiorite and its microgranular enclaves show 

excellent linearities (Fig. 5-13). This phenomenon coincides with the restite model and was 

explained to be result from progressive separation of melt and restite (White and Chappell, 

1977; Chappell et al., 1987). Previous studies showed that the microgranular enclaves have 

quite consistent evolved Sr-Nd and zircon Hf isotopic compositions with their host granodiorite, 

with both the enclaves and granodiorite having respective (87Sr/86Sr)i ratios of 0.710 – 0.711 
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and 0.709 – 0.711, Nd (t) values of –6.7 – –5.0 and –6.9 – –4.2, and zircon Hf (t) values of –11.5 

– –6.9 and –12.2 – –6.9 (Jiang et al., 2009; Zhao et al., 2016b; Huang et al., 2017a). They are 

distinct from those mantle-derived enclaves which have more juvenile isotopic signatures than 

the host granitoids (e.g., Yang et al., 2004, 2007; Zhao et al., 2010; Cheng et al., 2012; Fu et al., 

2016). The almost contemporaneous mantle-derived mafic rocks adjacent to the Tongshanling 

intrusion show notably more juvenile isotopic compositions than the Tongshanling granodiorite 

and its enclaves, such as the Huziyan high-Mg basalt [ca. 150 Ma, (87Sr/86Sr)i: 0.705 – 0.706, 

Nd (t): –1.3 – +0.7], Huilongxu lamprophyre [ca. 170 Ma, (87Sr/86Sr)i: 0.704 – 0.705, Nd (t): –

1.7 – –1.3], and Ninyuan alkaline basalt [ca. 170 Ma, (87Sr/86Sr)i: 0.704 – 0.705, Nd (t): +5.4 – 

+6.1] (Wang et al., 2003b; Li et al., 2004; Jiang et al., 2009). It was impossible to produce these 

enclaves with the same isotopic signatures as their host granodiorite by crust-mantle magma 

mixing. These isotopic features are suggestive of a crustal origin for the enclaves and preclude 

 

 
Figure 5-13. Harker plots for (a) FeOTotal, (b) MgO, (c) CaO, and (d) K2O of the Tongshanling granodiorite and 

its microgranular enclaves showing excellent linearities. The data are from Huang et al. (2017a). 
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the possibility of mantle-derived mafic magmatic crystallization, which further support the 

interpretation of the enclaves as reworked restite. 

5.6.3. Geothermobarometry 

5.6.3.1. Temperature 

Numerous mineral thermometers, include amphibole, plagioclase, and biotite, have been 

proposed to estimate the temperature conditions of magmatic process (e.g., Holland and 

Blundy, 1994; Henry et al., 2005; Putirka, 2005, 2008, 2016; Ridolfi and Renzulli, 2012). 

Various thermometers (Table 5-1) were applied for temperature calculation to test the 

interpretation for enclave origin. Most magma reworked amphibole crystals, except for the 

intensely reworked high-Al and low-Si isolated amphibole and the rim of clot exterior 

amphibole grains in the enclaves, were not used for calculation due to their dis tinct 

compositional disequilibrium (low Al and high Si contents) with the host melt which would 

inevitably lead to an underestimation of temperature. The detailed results are listed in Table 5-1. 

Although there are some differences between different calculation methods and some 

thermometers yielded overestimated (Ridolfi et al., 2010; Molina et al., 2015; Putirka, 2005; Eq. 

4a of Putirka, 2016) and underestimated (Eq. 4b of Putirka, 2016) temperatures (Table 5-1), 

several general regularities are evident. The temperature recorded by magmatic amphibole 

decreases progressively from the enclosed ones through the inner and to the outer of isolated 

ones (Table 5-1; Fig. 5-14a and b). This is in accordance with their petrographic crystallization 

sequence. The actinolitic core amphibole and the Ca-rich core plagioclase record distinctly 

higher temperatures than the isolated magmatic amphibole and the magmatic rim plagioclase, 

respectively (Table 5-1). This is consistent with the restite origin of the actinolitic core 

amphibole and the Ca-rich core plagioclase. The magmatic rim plagioclase and biotite in the 

enclaves show consistent temperatures with those in the host granodiorite, respectively (Table 

5-1; Fig. 5-14c), suggesting that during the process of magma reworking the enclave 

plagioclase and biotite were in equilibrium with the host melt. The high-Al and low-Si isolated 

amphibole and the rim of clot exterior amphibole grains in the enclaves have similar 

temperatures which are slightly lower than that of the isolated magmatic amphibole (Table 5-1;  
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Table 5-1. Geothermometry based on mineral chemical compositions of amphibole, plagioclase, and biotite 

from the Tongshanling granodiorite and its microgranular enclaves 

Geothermometer 
Temperaturea (°C) 

Reference 
Tongshanling granodiorite Microgranular enclaves 

Amphibole MI: 740 – 840; II: 700 – 770; 
OI: 690 – 760 

I: 700 – 750; 
RCE: 690 – 720 

Ernst and Liu (1998) 

Amphibole MI: 828 – 931; II: 818 – 844; 
OI: 801 – 842 

I: 803 – 809; 
RCE: 783 – 795 

Ridolfi et al. (2010) 

Amphiboleb MI: 751 – 807; II: 683 – 744; 
OI: 663 – 780 

I: 654 – 726; 
RCE: 662 – 698 

Ridolfi and Renzulli (2012) 

Amphibole-liquidc MI: 962 – 998; II: 976 – 984; 
OI: 971 – 989 

I: 976 – 984; 
RCE: 969 – 974 

Molina et al. (2015) 

Amphibole-liquid MI: 897 – 919; II: 903 – 908; 
OI: 893 – 910 

I: 879 – 886; 
RCE: 871 – 887 

Equation 4a of Putirka 
(2016) 

Amphibole-liquid MI: 598 – 616; II: 596 – 603; 
OI: 594 – 609 

I: 595 – 603; 
RCE: 593 – 602 

Equation 4b of Putirka 
(2016) 

Amphibole MI: 769 – 867; II: 771 – 792; 
OI: 758 – 789 

I: 753 – 759; 
RCE: 739 – 751 

Equation 5 of Putirka 
(2016) 

Amphibole MI: 772 – 865; II: 769 – 787; 
OI: 757 – 788 

I: 753 – 760; 
RCE: 740 – 752 

Equation 6 of Putirka 
(2016) 

Amphibole MI: 764 – 858; II: 774 – 793; 
OI: 763 – 784 

I: 755 – 763; 
RCE: 748 – 764 

Equation 8 of Putirka 
(2016) 

Amphibole-liquid MI: 786 – 877; II: 796 – 809; 
OI: 788 – 803 

I: 784 – 788; 
RCE: 774 – 785 

Equation 9 of Putirka 
(2016) 

Amphibole-plagioclased MI: 729 – 896; II: 710 – 782; 
OI: 698 – 764 

I: 703 – 740; 
RCE: 682 – 728 

Blundy and Holland (1990) 

Amphibole-plagioclase (A) MI: 709 – 863; II: 700 – 801; 
OI: 682 – 789 

I: 682 – 729; 
RCE: 679 – 737 

Holland and Blundy (1994) 

Amphibole-plagioclase (B) MI: 700 – 849; II: 676 – 775; 
OI: 661 – 770; CA: 819 – 847 

I: 660 – 739; 
RCE: 662 – 751; 
CCI: 764 – 848 

Holland and Blundy (1994) 

Plagioclase-liquid Core: 1017 – 1030; 
Intermediate: 990 – 999; 
Rim: 956 – 972 

Core: 1025 – 1031; 
Intermediate: 994 – 995; 
Rim: 960 – 973 

Putirka (2005) 

Biotite 680 – 726 694 – 733 Henry et al. (2005) 

Notes: a MI: mineral inclusion; II: inner of isolated amphibole; OI: outer of isolated amphibole; CA: core of 

aggregated amphibole grains; I: isolated amphibole; CCI: core of clot interior amphibole grains; RCE: rim of 

clot exterior amphibole grains. The low-Al and high-Si isolated amphibole was excluded for temperature 

calculation. b The pressure used for those pressure-dependent thermometers was 3 kbar for the II, OI, I, and RCE 

amphibole, 5 kbar for the MI amphibole, and 8 kbar for the CA and CCI amphibole. c The model liquid used the 

averaged whole-rock composition of the Tongshanling granodiorite based on the data reported by Huang et al. 

(2017a). d For the amphibole-plagioclase thermometers, the II, OI, I, and RCE amphibole, the MI amphibole, and 

the CA and CCI amphibole were supposed to be in equilibrium with the rim, intermediate, and core plagioclase, 

respectively. 
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Fig. 5-14a and b), indicating that the intensely reworked enclave amphibole was nearly in 

equilibrium with the host melt. However, they show notably lower temperatures than the early 

enclosed magmatic amphibole (Table 5-1; Fig. 5-14a and b), reflecting that an evolved host 

melt was responsible for the reworking of restite enclaves. The prediction of SiO2 in coexisting 

  

 

Figure 5-14. Physicochemical conditions estimated by mineral chemical compositions of amphibole and biotite 

from the Tongshanling granodiorite and its microgranular enclaves. (a) Semiquantitative thermobarometer of 

amphibole based on Al2O3 and TiO2 contents (after Ernst and Liu, 1998). (b) Temperature and SiO2 content in 

coexisting model melt calculated by amphibole composition based on the Equations 5 and 10 of Putirka (2016). 

(c) Temperature calculated by the Ti-in-biotite geothermometer according to Henry et al. (2005), the dashed 

curves represent intermediate 50 °C interval isotherms. (d) Pressure calculated by the Al-in-hornblende 

geobarometer according to Anderson and Smith (1995), the dashed curves represent intermediate 0.5 kbar 

interval isobars. Legends of amphibole and biotite are the same as Figure 5-4 and Figures 5-7 and 5-8, 

respectively. 
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model melt with magmatic amphibole and intensely reworked enclave amphibole (Eqs. 10 and 

5 of Putirka, 2016) yielded SiO2 contents of 65.3 – 70.1 wt.% and 68.4 – 69.7 wt.%, 

respectively, which match the whole-rock composition of the Tongshanling granodiorite (63.7 

– 70.1 wt.%, Huang et al., 2017a) (Fig. 5-14b). It means that these amphibole crystals were 

basically in equilibrium with the host granodioritic magma and the temperature calculation is 

meaningful. 

5.6.3.2. Pressure 

Al-in-hornblende barometer can provide an effective approach to estimate the magma 

emplacement depth of near-solidus granitic systems with highly restrictive conditions 

(Schmidt, 1992; Anderson and Smith, 1995; Ridolfi and Renzulli, 2012; Mutch et al., 2016; 

Putirka, 2016). The Tongshanling granodiorite contains all the necessary equilibrium phases, 

i.e., hornblende + biotite + plagioclase + orthoclase + quartz + titanite + Fe-Ti oxide + melt + 

fluid. Based on the calibration proposed by Anderson and Smith (1995), the rim compositions 

of magmatic isolated amphibole [Mg/(Mg+Fe) > 0.35] in the granodiorite give a pressure of 2.6 

– 3.4 (3.0 ± 0.4) kbar (calculated with T = 750 °C) (Fig. 5-14d), corresponding to a deep 

emplacement depth of 8.6 – 11.2 km (3.3 km/kbar) with an average value of ca. 10 km. This 

result is consistent with those calculated by the calibration of Mutch et al. (2016) and the 

Equation 7a of Putirka (2016) on the whole, which are 2.7 – 3.6 kbar and 2.5 – 3.3 kbar, 

respectively. 

The Tongshanling granodiorite belongs to low-temperature granites in terms of the 

relatively low zircon saturation temperature (Table 5-2) and the occurrence of inherited zircon 

(Chappell et al., 2000; Miller et al., 2003). The low-temperature and deep-emplaced 

granodioritic magma is indicative of a relatively high viscosity to a certain extent which is 

favorable for carrying some residual materials from the source. Different from volcanic rocks in 

which the anhydrous primary residual minerals, such as pyroxene, can be commonly preserved 

as phenocrysts, the deep-emplaced magma is beneficial to drive an intense reworking of the 

residual materials during slow cooling (Chappell et al., 1987). Thus, the residual pyroxene 

might have been totally transformed into amphibole in such a deep-emplaced magma. This  
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Table 5-2. Main features of the major Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites in the Nanling 

Range, South China 

Intrusion Shuikoushan Baoshan Tongshanling Dabaoshan 

Metal association Pb-Zn-Au-Ag (Cu, Mo)-Pb-Zn-Ag Cu(Mo)-Pb-Zn-Ag Mo(W)-Cu-Pb-Zn-Fe 

Dark enclaves Have not been 
reported 

Observed Observed Have not been 
reported 

Lithology Porphyritic to equigranular biotite granodiorite with a dominant mineralogy of 
plagioclase + K-feldspar + quartz + biotite ± amphibole 

Accessory minerals Apatite, zircon, titanite, allanite, rutile, sulfide minerals, and Fe-Ti oxide minerals 
(mainly magnetite) 

Zircon U-Pb age (Ma) 156.0 ± 1.0, 
158.8 ± 1.8, 
158.3 ± 1.2 

158.0 ± 2.0, 
156.7 ± 1.4, 
157.7 ± 1.1 

163.6 ± 2.1, 
160.7 ± 0.5, 
160.5 ± 0.9, 
159.7 ± 0.8, 
162.5 ± 1.0 

167.0 ± 2.5, 
162.2 ± 0.7, 
161.0 ± 0.9, 
160.2 ± 0.9, 
166.3 ± 2.0, 
166.2 ± 2.7, 
162.1 ± 1.6 

Metallogenic age (Ma) 
(Molybdenite Re-Os 
dating) 

157.8 ± 1.4 160 ± 2 161.8 ± 1.7, 
160.1 ± 0.8, 
161 ± 1, 
162.2 ± 1.6 

163.9 ± 1.3, 
164.8 ± 0.8 

Evolutionary degree Low Low Low Low 

SiO2 (wt.%) 59.6 – 65.2 62.6 – 68.8 63.7 – 70.1 64.4 – 72.9 

ASIa 0.9 – 1.1 0.8 – 1.0 0.9 – 1.0 1.0 – 1.1 

CaO/(Na2O+K2O) 0.3 – 0.8 0.3 – 0.9 0.3 – 0.7 0.2 – 0.8 

Mg/(Mg+Fe) 0.4 – 0.6 0.4 – 0.6 0.4 – 0.5 0.3 – 0.7 

Rb/Sr 0.2 – 0.4 0.5 – 2.9 0.4 – 1.3 1.2 – 2.1 

Eub 0.8 – 1.0 0.6 – 0.8 0.6 – 1.0 0.6 – 0.8 

LREE/HREE 8.7 – 16.1 7.0 – 10.6 5.1 – 11.3 10.3 – 18.0 

ΣREE (ppm) 120 – 234 124 – 271 82 – 189 134 – 236 

HFSEc (ppm) 229 – 267 198 – 282 165 – 264 175 – 284 

TZr
d (°C) 726 – 775 722 – 760 738 – 772 739 – 774 

(87Sr/86Sr)i 0.710 – 0.711 0.710 – 0.712 0.709 – 0.711 0.704 – 0.714 

Nd (t) value –6.6 – –5.9 –7.3 – –5.0 –6.9 – –4.2 –8.2 – –6.8 

Zircon Hf (t) value –10.8 – –7.9 –12.0 – –9.2 –12.2 – –6.9 –11.8 – –7.5 

References Huang et al. (2015); 
Wang et al. (2003a); 
Yang et al. (2016); 
Zuo et al. (2014) 

Lu et al. (2006); 
Wang et al. (2003a); 
Xie et al. (2013) 

Huang and Lu (2014); 
Jiang et al. (2009); 
Lu et al. (2015); 
Wang et al. (2003a); 
Huang et al. (2017a); 
Zhao et al. (2016b) 

Li et al. (2012b); 
Mao et al. (2013b); 
Qu et al. (2014); 
Huang et al. (2017b); 
Wang (2010); 
Wang et al. (2011d) 

Notes: a Aluminum saturation index, ASI = n(Al2O3)/n(CaO+Na2O+K2O). b Eu = 2EuN/(SmN+GdN). c High 

field strength elements, HFSE = Zr+Nb+Ce+Y. d Zircon saturation temperature, TZr was calculated by the 

method of Miller et al. (2003). 
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could account for the absence of residual pyroxene in the Tongshanling granodiorite and its 

microgranular enclaves. 

5.6.4. The model for reworked restite enclave 

Based on the nature of reworked restite enclaves with distinct textural and compositional 

features described above, the formation process of the microgranular enclaves in the 

Tongshanling granodiorite is deduced as follows (Fig. 5-15). 

Stage 1: Formation of granodioritic melt and restite during partial melting. Partial 

melting of the mafic amphibolitic basement in the lower crust produced a metaluminous and 

high-K calc-alkaline granodioritic melt coexisted with a primary pyroxene-rich restite that 

mainly comprised of pyroxene, plagioclase, and also refractory accessory minerals, such as 

zircon. Most melt was extracted and constituted a granodioritic magma with a few residual 

materials. There were still a few initial melts maintained in the restite due to its high viscosity. 

Stage 2: Preliminary reaction of the restite enclave with the initial melt. Some fragments 

of restite were carried by the ascending host magma. With the cooling of magma, the inner 

parts of magmatic zircon were firstly crystallized from the initial melt in the restite enclaves. 

The pyroxene-rich precursors were transformed into actinolite by progressive hydrogenation 

from exterior to interior. Some small clots had a more intense reaction with the initial melt 

and formed magnesio-hornblende and a few biotite in the exteriors. The isolated residual 

pyroxene was also transformed into magnesio-hornblende with low Al and high Si contents. 

Stage 3: Further reaction of the restite enclave with the evolved host melt. The 

composition of the host melt was gradually evolved with crystallization. Progressive input of 

the evolved host melt led to a further reaction of the restite enclaves with the melt. This 

resulted in the formation of the outer parts of magmatic zircon and the magmatic rims around 

residual Ca-rich plagioclase. The exteriors of most clots had been transformed into 

magnesio-hornblende. The small clots showed more Al-enriched and Si-depleted 

compositions of magnesio-hornblende and might have a higher biotite content than the large 

ones due to the more intense reaction with the melt. Some low-Al and high-Si isolated 

amphibole crystals were transformed into high-Al and low-Si ones. 
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Stage 4: Formation of the reworked restite enclave. With the reaction between the restite 

enclaves and the host magma, the zonal amphibole-rich clots had been formed. The small clots 

might have been transformed into non-zoning amphibole-rich clots or amphibole-biotite clots. 

The input of late-stage silica-rich melt from the host magma led to the formation of the 

poikilitic texture of K-feldspar and quartz in the restite enclaves. After the granodioritic magma 

had been completely solidified, the reworked restite enclaves were survived as dark 

 

 

Figure 5-15. Schematic model illustrating the formation process of reworked restite enclave (see detailed 

description in the text). In the right diagram, the center and the surrounding parts show the evolutionary 

processes of the restite enclave and the host granodioritic magma, respectively. To better explain this model, the 

melt content in the enclave (spots in the center part of the right diagram) and the zircon size have been magnified. 

For the magma reworked amphibole, the deeper colored ones have a more intense reaction with the melt and 

higher Al contents than the paler colored ones. 



Nov. 2018                                                                                X.D. HUANG 

95 

microgranular enclaves in the host granodiorite. 

5.7. Petrogenetic implications 

Restite may provide an important indication for the source nature of the host granitoids 

since it is remnant of refractory material after partial melting of the source rocks. Because the 

Tongshanling microgranular enclaves are restite which has been partially modified by the host 

granodioritic magma, the primary restite should be more mafic than the dioritic compositions. 

The pyroxene-rich precursors of the amphibole-rich clots, which have silica-poor compositions 

and mainly consist of pyroxene and Ca-rich plagioclase, may represent the primary restite from 

the source after partial melting. To produce such a composition of primary restite and a 

granodioritic magma showing I-type features, the source should have a relatively mafic 

composition, such as amphibolite (e.g., Chen et al., 1990; Sial et al., 1998; Stephens, 2001). 

Dehydration melting of amphibolite can generate metaluminous granodioritic melts with 

a pyroxene-rich restite at pressure lower than 10 kbar (Beard and Lofgren, 1991; Johannes 

and Holtz, 1996), whereas, water-saturated melting of amphibolite will produce strongly 

peraluminous melts with a restite dominated by amphibole (Beard and Lofgren, 1991). A 

pressure estimation of granulitic mafic xenoliths (8.8 – 12.4 kbar; Dai et al., 2008) in the 

Huziyan basalt (ca. 150 Ma), which occurs at 20 km north-northeast to the Tongshanling 

intrusion, suggests that the mafic amphibolitic basement should be located at a depth 

corresponding to a pressure lower than 8.8 kbar. Therefore, dehydration melting of 

amphibolite at pressure lower than 8.8 kbar was in all probability responsible for the origin of 

the metaluminous Tongshanling granodiorite. The zircon Hf model ages of the Tongshanling 

granodiorite and its microgranular enclaves (1.5 – 2.1 Ga and 1.6 – 2.0 Ga, respectively, both 

with a peak value of 1.75 Ga; Jiang et al., 2009; Zhao et al., 2016b; Huang et al., 2017a) 

indicate that the amphibolitic basement was mainly formed in Paleoproterozoic. The 

occurrence of the Tianjinping amphibolite (1766 ± 19 Ma; Li, 1997) from the basement of the 

Cathaysia Block confirms the existence of the Paleoproterozoic amphibolitic basement in the 

Nanling Range. 

It is noteworthy that, the lower crust of South China, especially the mafic amphibolitic 
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basement, has fertile ore-forming metals. For instance, the amphibolites of the Tianjinping 

Formation and the Mayuan Group have Cu contents of 57.7 ppm and 66.5 ppm, and Zn 

contents of 119 ppm and 118 ppm, respectively (Li, 1997), which are distinctly higher than 

those of the middle and upper crusts in South China (Gao et al., 1998) and are also higher 

than those of the lower crust reported by Rudnick and Fountain (1995). Such a fertile source 

is beneficial to the formation of Cu-Pb-Zn-bearing granodiorites in the Nanling Range. 

The Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites in the Nanling Range have 

similar mineralogical and geochemical features (Table 5-2). They are generally 

hornblende-bearing, metaluminous and high-K calc-alkaline rocks with high Mg/(Mg+Fe) 

ratios and low evolutionary degrees, and show characteristics of I-type granites (Table 5-2). 

They also have similar evolved Sr-Nd and zircon Hf isotopic compositions (Table 5-2). With 

regard to the previously proposed two different genetic models for these Cu-Pb-Zn-bearing 

granodiorites, i.e., crust-mantle mixing and partial melting of the mafic lower crust, our 

research stands by the latter and provides inspiration for the further study. 
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Chapter 6. Magma emplacement-induced structural control on 

skarn formation 

6.1. Introduction 

Skarn deposits, as one of the most important mineralization types for a lot of metals, 

have attracted a great interest of numerous geologists. Previous studies mainly focused on 

metasomatism, zonation, skarn mineralogy, geochemistry, and petrogenesis (Meinert et al., 

2005). However, little attention has been paid to structural control (e.g., Love et al., 2004; Li 

et al., 2014a; Ducoux et al., 2017), especially the magma emplacement related one, on skarn 

formation. Magma emplacement-induced structural control is crucial to understanding the 

process of skarnization and can provide important information for prospecting and 

exploration. In South China, multiple-aged granitoids and polymetallic deposits are widely 

developed (Figs. 2-8–2-10, Zhou et al., 2006a; Chen et al., 2013; Mao et al., 2013a). Although 

numerous geochronological and geochemical studies have revealed that most mineral deposits 

are genetically associated with granitoids (e.g., Yang et al., 2014; Zhang et al., 2015a; Chen et 

al., 2016; Zhao et al., 2016b; Xiang et al., 2018), the detailed connecting process between 

them is still unclear. The magma-dynamic study of Liu et al. (2018) revealed that the 

emplacement of the Jurassic granitoids in South China was not driven by tectonic deformation. 

Therefore, these granitoids are good cases for the study of local wall-rock deformation 

induced by volume force involved in the emplacement of granitoids. This study takes the 

Middle-Late Jurassic Tongshanling Cu-Pb-Zn deposit in southern Hunan Province of China 

(Fig. 6-1a) as an excellent example to decipher magma emplacement-induced structural 

control on skarn formation. 

6.2. Regional structural analysis 

The exposed strata in the Tongshanling area are dominated by Devonian and 

Carboniferous carbonate rocks (Fig. 6-1). These strata have been deformed and developed a 

lot of north-south to northeast-southwest striking folds and faults (Fig. 6-1). The folds are 
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composed of alternatively appeared anticlines and synclines which are cut through by the 

faults (Fig. 6-1b and c). A vast majority of these faults show an east to southeast vergent 

thrusting or a sinistral strike-slip sense and several ones are normal faults (Fig. 6-1b–d). 

During Middle-Late Jurassic, the Tongshanling granodioritic magmas intruded into the 

carbonate strata as stock (Fig. 6-1b and c) and then caused Cu-Pb-Zn mineralization. 

6.2.1. Normal fault 

Both the normal faults to the west and east of the Tongshanling intrusion strike 

consistently with the regional thrust faults and dip to west to northwest (Figs. 6-1b and 6-2). 

The carbonate rocks adjacent to these normal faults do not show any deformation except for 

brittle fractures (Fig. 6-2). At a southern outcrop of the western normal fault, automorphic 

calcite accumulates along the fault plane as vein steeply cutting the bedding and broken by a 

later sinistral strike-slip movement (Fig. 6-2a–c). At a northern outcrop, the calcite mainly 

distributes in the footwall of the normal fault (Fig. 6-2d). For the eastern normal fault, two 

generations of calcite are recognized, with the late calcite being more coarse-grained, 

automorphic and pure, and having a lower hardness than the early one (Fig. 6-2e–l). Some 

wall-rock breccias are observed in the first-generation calcite from a southern outcrop (Fig. 

6-2l). 

6.2.2. Contact zone 

The carbonate rocks in the contact zone close to the Tongshanling intrusion have been 

strongly marbleized and deformed (Fig. 6-3). The recrystallized calcite crystals mostly have 

an elongated shape (Fig. 6-3c, e, and h). In the northeastern contact zone, the foliation dips to 

north to northeast, cuts the bedding with a steeper angle, and shows a sense of normal motion 

(Fig. 6-3a, b, and d). From proximal to distal, the intensity of marbleization and the density of 

foliation gradually decrease and finally to the undeformed carbonate strata (Fig. 6-3a). The 

southern contact zone exhibits distinctly stronger marbleization and deformation with a higher 

density of foliation than the northeastern contact zone (Fig. 6-3). In the southern contact zone, 

the bedding is invisible and the foliation is wrinkled near the intrusion (Fig. 6-3g). Notably, 

the foliation rotates around the southern boundary of the intrusion and is parallelized to the 
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Figure 6-1. Simplified geological map of the Tongshanling area (modified after Regional Geological Survey 

Team of Hunan Geology Bureau, 1975a, 1975b) showing the sample locations for Raman spectroscopy of 

carbonaceous material (RSCM) analysis and electron backscatter diffraction (EBSD) mapping. The results of 

RSCM thermometry are presented as mean value ± standard deviation (°C) in Figure 6-1b and d, the same in the 

following figures. 

 

contact (Fig. 6-3f, i, and j). The dip angle of foliation in the southern contact zone is larger 

than that in the northeastern contact zone (Fig. 6-3). 

6.3. Deposit geology 

The Tongshanling Cu-Pb-Zn deposit occurs in the northeastern concealed contact zone 

between the granodiorite and carbonate rocks and its peripheral zone (Fig. 6-4). This deposit 

shows an obvious zonation with a proximal skarn, a distal skarn, and sulfide-quartz veins 
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Figure 6-2. Field observations of normal faults (outcrop locations shown in Fig. 6-1b) in the Tongshanling area. 

 

between them (Fig. 6-4). The proximal skarn is distributed in the granodiorite and in the 

limestone of the Middle Devonian Qiziqiao Formation and can be further divided into 

massive endoskarn extending along the border of granodiorite and peripheral vein exoskarn 

(Fig. 6-4). The sulfide-quartz veins mainly occur in the Qiziqiao limestone with minor in the 

Upper Devonian Shetianqiao limestone (Fig. 6-4). Differently, the distal skarn is stratiform 

and evidently controlled by the argillaceous limestone of the Upper Devonian Xikuangshan 

Formation (Fig. 6-4). The distal skarn is not the research object of this study and will not be 
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Figure 6-3. Cross sections (section lines shown in Fig. 6-1b) of the (a–e) northeastern and (f–j) southern contact 

zones from the Tongshanling intrusion to country rocks. 

 

further described and discussed in the following text. 

 

 

Figure 6-4. Cross section (section line shown in Fig. 6-1b) of the Tongshanling Cu-Pb-Zn deposit (modified 

after No. 206 Exploring Team of Hunan Metallurgical and Exploring Company, unpub. report, 1975). 
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6.3.1. Endoskarn 

With irregular shapes, the massive endoskarn dominantly consists of garnet and 

pyroxene with minor retrograde minerals, such as actinolite and epidote. It has a brown color 

and does not show a clear zonation (Fig. 6-5a). Sulfide ore bodies in the endoskarn are 

composed of chalcopyrite and pyrrhotite coexisting with abundant quartz and show a banded 

structure (Fig. 6-5a). The sulfide and quartz bands dip to north to northeast in general (Fig. 

6-5a). 

6.3.2. Exoskarn 

The exoskarn veins, with a width of dozens of centimeters, have a brownish green color 

on the whole (Figs. 6-5b–c and 6-6a). They cut across the bedding by a steeper angle and 

 

 
Figure 6-5. Photographs of (a) massive endoskarn, (b and c) vein exoskarn, and (d) deformed country rocks in 

the Tongshanling Cu-Pb-Zn deposit. Mineral abbreviations: Ccp = chalcopyrite, Grt = garnet, Po = pyrrhotite, Px 

= pyroxene, Qz = quartz, Wo = wollastonite. 
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Figure 6-6. Panoramic views of exoskarn in the Tongshanling Cu-Pb-Zn deposit showing skarn zonation and 

evolution. Mineral abbreviations are the same as Figure 6-5. 

 

uniformly dip to north to northeast (Figs. 6-5b–c and 6-6a). Some parts of the exoskarn veins 

are parallel to the bedding and construct a steplike profile with the steeper parts (Figs. 6-5c 

and 6-6a). The country rocks have been strongly marbleized and deformed (Fig. 6-5b–d). 

These exoskarn veins commonly exhibit a well-developed outward zonation from 
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garnet-pyroxene through wollastonite to marble (Figs. 6-5 and 6-6). Different from the 

deformed marble which consists of elongated calcite crystals, the marble envelope of the 

exoskarn comprises undeformed granular calcite crystals (Fig. 6-5d). Three generations of 

garnets are distinguished. They are chronologically green-brown disseminated garnet in the 

wollastonite skarn, brown garnet coexisting with pyroxene, and red-brown vein-like garnet 

cutting the garnet-pyroxene skarn (Fig. 6-6). Ore minerals are chalcopyrite, sphalerite, galena, 

pyrrhotite, and pyrite. Vein-like barren quartz occurs in the center of exoskarn (Fig. 6-7a) or 

cuts through it (Fig. 6-7b). A few sulfide-quartz veinlets appear at the distal end of exoskarn 

veins (Fig. 6-6b). 

6.3.3. Sulfide-quartz vein 

The sulfide-quartz veins are a dozen to tens of centimeters in width (Fig. 6-7c and d). 

They consistently dip to north to northeast and cut the bedding (Fig. 6-7c and d). Compared 

with the deformed marble close to exoskarn, the wall rocks of sulfide-quartz veins have not 

been strongly marbleized and deformed (Fig. 6-7c and d). Some outcrops show a sense of 

normal motion (Fig. 6-7d). Ore minerals are chalcopyrite, sphalerite, galena, pyrite, and 

arsenopyrite. 

6.4. Sampling and analytical methods 

Thirty-six carbonate samples from surface and underground outcrops and a drill core 

(ZK1001) to the north of the Tongshanling intrusion were collected for Raman spectroscopy 

of carbonaceous material (RSCM) analysis among which eight samples were further selected 

for electron backscatter diffraction (EBSD) mapping (sample locations shown in Figs. 6-1–

6-5). Garnets in the endoskarn and exoskarn were sampled for compositional analysis by 

electron microprobe (EMP). 

RSCM analysis was carried out by a Renishaw InVIA Reflex micro-spectrometer 

coupled to a DM2500 Leica microscope at Bureau de Recherches Géologiques et Minières 

(BRGM), Orléans, France. An argon laser with 0 = 514.5 nm was used as exciter. Instrument 

control and Raman measurements were performed by the Renishaw Wire 3.4 software. Before 

analysis, the spectrometer was calibrated using the 520.4 cm−1 line of silicon. To check 
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Figure 6-7. Photographs of vein-like quartz (a) in the center of exoskarn or (b) cutting through it and (c and d) 

sulfide-quartz veins in the peripheral strata in the Tongshanling Cu-Pb-Zn deposit. Mineral abbreviations are the 

same as Figure 6-5. 

 

within-sample structural heterogeneity, at least 10 spectra were recorded for each sample. 

Each spectrum was acquired through 5 – 10 accumulations and an acquisition time of 10 – 20 

s. The off-line data were processed using the program PeakFit v4.06 with a Voigt function. 

EBSD mapping was executed by a CamScan X500FE CrystalProbe equipped with an 

HKL NordlysNano EBSD detector and an X-MaxN energy dispersive spectrometry (EDS) 

detector at Géosciences Montpellier, France. The operating conditions included an 

accelerating voltage of 20 kV and a working distance of 25 mm. A mapped area from 1.2 × 

1.7 mm to 12.6 × 16.5 mm and a step size between 1 m and 18 m were used for different 

samples depending on their grain sizes. The acquired data were processed using the 

CHANNEL5 software. 

Garnet was analyzed by a JEOL JXA-8100M EMP at the State Key Laboratory for 
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Mineral Deposits Research (LAMD), Nanjing University (NJU), China. The analytical 

conditions included an accelerating voltage of 15 kV, a beam current of 20 nA with beam 

diameter of 1 m, and counting times of 10 s for all elements and 5 s for background. The 

collected data were corrected by the ZAF procedures. Calibration was performed using 

natural minerals and synthetic compounds. 

6.5. Results 

6.5.1. RSCM thermometry 

Raman spectra of carbonaceous material are shown in Figure 6-8. Some parameters of 

the Raman spectra are listed in Appendix 6-1. Calculation of temperatures is based on the 

functions of Beyssac et al. (2002) and Lahfid et al. (2010). The unfractured and undeformed 

carbonate strata far away from the Tongshanling intrusion have undergone temperatures from 

238 °C to 347 °C (Fig. 6-1b and d) with a mean value of 300 °C. The undeformed limestone 

adjacent to the regional normal faults gives temperature of 293 – 348 °C (Figs. 6-1b and 6-2b, 

 

 

Figure 6-8. Raman spectra of carbonaceous material in carbonate rocks from the Tongshanling Cu-Pb-Zn 

deposit and its adjacent area and temperatures calculated by the RSCM thermometry. 
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f, j). The temperatures obtained by the deformed marble in the contact zone range from 

570 °C to 599 °C (Figs. 6-1b and 6-3a, f). A gradational transition of lithology from marble at 

the contact zone to limestone near the surface with progressively decreasing temperatures 

from 601 °C to 320 °C is revealed by the drill core ZK1001 (Fig. 6-8). In the Tongshanling 

Cu-Pb-Zn deposit, from proximal to distal, the metamorphosed carbonate rocks close to the 

endoskarn, exoskarn, sulfide-quartz veins, and distal skarn underwent temperatures of 618 – 

624 °C, 595 – 619 °C, 500 – 547 °C, and 461 – 515 °C, respectively (Fig. 6-4). 

6.5.2. EBSD mapping 

EBSD analytical results of carbonate samples are shown in Figure 6-9. Near the regional 

normal faults, the calcite grains have no shape preferred orientation (SPO) and show a weak 

crystallographic preferred orientation (CPO) by the smaller grains but not by the larger grains 

(Fig. 6-9a and b). The elongated calcite and dolomite grains in the contact zone have an 

obvious SPO (Fig. 6-9c–g). They mostly show a CPO with their c-axis aligned with the long 

axis of the grains and clockwise oblique to the Z-axis of the sample frame (Fig. 6-9c–g). The 

fine-grained samples (Fig. 6-9c and f–g) have a more well-defined c-axis maximum than the 

coarse-grained samples (Fig. 6-9d and e). In the fine-grained samples, the c-axis maximum of 

the smaller grains is more confined than that of the larger grains (Fig. 6-9c and f–g). In the 

coarse-grained samples, the c-axes of the larger grains are roughly normal to the XZ plane 

(Fig. 6-9d and e). The calcite grains in a calcite (20 %)-dolomite (80 %) composite sample 

from the southern contact zone have distinctly more perpendicular c-axes to the XZ plane 

than the dolomite grains (Fig. 6-9f and g). With a strong SPO, the calcite adjacent to the 

exoskarn at underground gallery shows a consistent CPO (Fig. 6-9h) with the calcite in the 

northeastern contact zone at surface (Fig. 6-9c). The calcite near the peripheral sulfide-quartz 

veins does not have a SPO but shows a CPO by the smaller grains, whereas, not by the larger 

ones (Fig. 6-9i). 

6.5.3. Garnet composition 

Representative EMP analyses of garnet are listed in Appendix 6-2. Both the garnets in 

the endoskarn and exoskarn are grandite (Py+Al+Sp < 7.8 %) (Fig. 6-10). The composition of 
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Figure 6-9. Crystallographic preferred orientation (CPO) of calcite (dolomite) from the Tongshanling Cu-Pb-Zn 

deposit and its adjacent area determined by EBSD mapping. All pole figures are equal-area lower hemisphere 

projections based on one point per grain. D and N are the size and number of grains, respectively. (a and b) 
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Undeformed limestone adjacent to the western (T1613) and eastern (T1615) normal faults, respectively. (c–d and 

e–g) Deformed marble in the northeastern (T1532 and T1533) and southern (T1641 and T1645) contact zones, 

respectively. (h and i) Metamorphosed carbonate rocks close to the exoskarn (T1534A) and sulfide-quartz vein 

(TSL1411), respectively. 

 

garnet in the endoskarn ranges from Gr57.8Ad38.7 to Gr65.2Ad30.3 (Fig. 6-10a). Three 

generations of garnets in the exoskarn sequentially have respective composition of Gr7.3Ad91.4 

– Gr20.4Ad78.2, Gr20.2Ad75.8 – Gr29.8Ad66.7, and Gr59.0Ad38.0 – Gr68.7Ad29.1, with progressively 

increasing Al and decreasing Fe contents (Fig. 6-10b). The composition of the latest garnet in 

the exoskarn is consistent with that of the garnet in the endoskarn (Fig. 6-10). 

 

 

Figure 6-10. Compositions of garnets from the endoskarn and exoskarn of the Tongshanling Cu-Pb-Zn deposit. 

Mineral abbreviations: Ad = andradite, Al = almandine, Gr = grossularite, Py = pyrope, Sp = spessartine. 

 

6.6. Discussion 

The Early-Middle Triassic intracontinental deformation in the eastern South China Block 

has been generally recognized as a northwest-southeast compression associated with a series 

of northeast-southwest striking folds and thrust faults (Wang et al., 2013; Shu et al., 2015). In 

the Tongshanling area, the Early-Middle Triassic intracontinental compression caused folding 

and thrusting of the Devonian and Carboniferous carbonate strata which were further intruded 
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by the Middle-Late Jurassic granodioritic magmas (Fig. 6-1b and c). The regional west- to 

northwest-dipping normal faults (Figs. 6-1b and 6-2) should be formed under an extensional 

setting most probably induced by the Late Triassic to Early Jurassic decompression and/or the 

subduction of the Paleo-Pacific plate rather than the emplacement of the Tongshanling 

intrusion. The calcite distributed along or in the footwall of the normal faults (Fig. 6-2) may 

be generated by a later decompressive precipitation after an earlier pressure dissolution. At the 

eastern normal fault, the first-generation calcite is fine-grained with a higher hardness and 

contains some wall-rock breccias, whereas the second-generation calcite is automorphic, 

coarse-grained and pure (Fig. 6-2c and d), indicating a transition from a relatively 

compressive setting to a relatively extensional setting. This is in accordance with the regional 

tectonic evolution from Triassic compression to Jurassic extension. 

The organization degree of carbonaceous material is not affected by retrogression, thus 

the RSCM thermometry records the peak metamorphic temperature (Beyssac et al., 2002). 

Since the carbonate strata far away from the Tongshanling intrusion have not been influenced 

by magmatic heating and also have not been deformed by regional metamorphism, the 

temperature recorded by the strata (ca. 300 °C) may arise from burial metamorphism 

corresponding to a depth of ca. 10 km (calculated by a gradient of 30 °C/km). This is 

comparable to the emplacement depth of the Tongshanling granodiorite (ca. 10 km) calculated 

by Al-in-hornblende barometer (Huang et al., 2018). The slightly higher temperature of the 

fractured limestone could result from local heating during normal faulting. 

Combining the results of RSCM thermometry and EBSD mapping with structural 

analysis, it is confidently concluded that the wall-rock metamorphism and deformation around 

the Tongshanling intrusion was induced by magma emplacement. The critical evidence is 

listed as follows: (1) the wall-rock metamorphism and deformation are limited in the contact 

zone (Fig. 6-3); (2) the metamorphic temperature and the marbleization degree of wall rocks 

gradually decrease outward from the contact zone (Figs. 6-3 and 6-8); (3) the foliation of 

deformed marble, which cuts the bedding and shows a sense of normal motion, keeps in 

parallel with the intrusion boundary and dips outward (Fig. 6-3); (4) the density of foliation 

gradually decreases outward from the contact zone (Fig. 6-3); (5) different from the 
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undeformed calcite close to the regional normal faults, the calcite in the contact zone has 

much stronger SPO and CPO (Fig. 6-9). Compared with the northeastern contact zone, the 

southern contact zone has a much stronger intensity of marbleization and deformation with 

steeper-dipping foliation (Fig. 6-3), indicating that the magma conduit of the Tongshanling 

intrusion should be located in the southern part. 

Rheological behaviour of naturally and experimentally deformed carbonates and 

microstructural evolution of calcite and dolomite during deformation have been the topics of 

numerous studies (e.g., Pieri et al., 2001; Barnhoorn et al., 2004; Oesterling et al., 2007; 

Seaton et al., 2009; Kushnir et al., 2015; Berger et al., 2016). Mineral composition, grain size, 

temperature, and strain greatly affect the deformation mechanism of carbonate minerals. The 

clockwisely oblique CPO of deformed calcite in the contact zone (Fig. 6-9c–g) is indicative of 

a high shear strain with subgrain rotation recrystallization and grain size reduction (as 

demonstrated by Pieri et al., 2001; Barnhoorn et al., 2004; Oesterling et al., 2007). The 

weaker CPO of the coarse-grained samples may result from post-deformational grain growth 

at elevated temperature (> 500 °C), possibly over a prolonged period of time. Although the 

experimental observation of Barnhoorn et al. (2005) revealed that post-deformational 

annealing does not produce a significant change of CPO in a short time (not exceed 24 hours), 

a natural case of Seaton et al. (2009) proved that long-term grain growth at high temperature 

can destroy pre-existing CPO. The deformation mechanism of calcite-dolomite composite is 

strongly controlled by strain partitioning between calcite and dolomite (Kushnir et al., 2015). 

During high-temperature deformation, dolomite is generally stronger than calcite with a 

dominant deformation mechanism of dislocation creep, whereas calcite undergoes dislocation 

creep and dynamic recrystallization (Kushnir et al., 2015; Berger et al., 2016). The dolomite 

in the calcite-dolomite composite sample from the southern contact zone was deformed 

mainly by c <a> and r slip systems (Fig. 6-9f), whereas the calcite was deformed dominantly 

by r <a> and f slip systems (Fig. 6-9g). 

Previous molybdenite Re-Os dating revealed that the exoskarn and sulfide-quartz veins 

were formed contemporaneously with the emplacement of the Tongshanling intrusion (Huang 

and Lu, 2014; Lu et al., 2015). In comparison with the endoskarn garnet, the compositional 
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evolution of the three generations of exoskarn garnet (Figs. 6-6 and 6-10) indicates a 

progressive increase of magmatic components during the formation of the exoskarn and 

implies a genetical link between the exoskarn and the Tongshanling granodiorite. The 

exoskarn and sulfide-quartz veins strike and dip consistently with the foliation in the contact 

zone and cut the bedding (Figs. 6-5b–c and 6-7c–d). Both the results of RSCM thermometry 

and EBSD mapping of deformed marble adjacent to the exoskarn veins are comparable to 

those of deformed marble in the contact zone at surface (Figs. 6-8 and 6-9). The peripheral 

sulfide-quartz veins are actually late-stage productions during the evolution of skarn system 

(Figs. 6-6b and 6-7a–b) and their wall rocks were marbleized under a lower temperature (Fig. 

6-8) and were deformed with a weaker CPO but no SPO (Fig. 6-9i). Therefore, the exoskarn 

and sulfide-quartz veins are evidently controlled by the magma emplacement-induced 

wall-rock deformation. The undeformed marble envelope of the exoskarn (Fig. 6-5d) may be 

formed by chemical recrystallization of the deformed marble during metasomatism and is 

suggestive of a post-deformational skarnization. The sulfide and quartz bands of the 

endoskarn (Fig. 6-5a), with the same strike-dip as the exoskarn and sulfide-quartz veins, also 

reflect some information of the magma emplacement-induced structural control.  

The permeability of crust exponentially decreases with depth (Ingebritsen and Manning, 

1999; Ingebritsen and Appold, 2012). Recrystallization of calcite during marbleization will 

further significantly decrease the permeability of carbonate rocks. With a depth of ca. 10 km, 

unfractured marble is almost impermeable (permeability could be lower than 10–20 m2, 

unpublished experimental data). However, fracturing can dramatically increase the 

permeability of rocks (Ingebritsen and Appold, 2012; Coelho et al., 2015). Thus, the magma 

emplacement-induced wall-rock deformation was critically important for creating 

permeability to promote the infiltration of magmatic fluids along fractures and then 

structurally controlled the wall-rock skarnization. A schematic model illustrating the magma 

emplacement-induced structural control on skarn formation of the Tongshanling Cu-Pb-Zn 

deposit is shown in Figure 6-11. 

This study provides a new viewpoint for understanding the connecting process between 

skarn systems and granitoids and enlightens further prospecting and exploration for mineral 
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deposits related to granitoids, especially the deep-emplacement granitoids, in South China and 

also around the world. Magma emplacement-induced wall-rock fractures are ideal permeable 

zones and are beneficial to hydrothermal mineralization. 

 

 

Figure 6-11. Schematic model illustrating the magma emplacement-induced structural control on skarn 

formation at the Tongshanling Cu-Pb-Zn deposit. 
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6.7. Summary 

The regional normal faults in the Tongshanling area were formed under the tectonic 

change from Triassic compression to Jurassic extension earlier than the emplacement of the 

Tongshanling intrusion. 

The emplacement of the Tongshanling intrusion started from the southern part and 

induced wall-rock marbleization and deformation in the contact zone. 

The magma emplacement-induced wall-rock deformation significantly increased 

permeability to promote the infiltration of magmatic fluids along fractures and then 

structurally controlled the formation of exoskarn and sulfide-quartz veins. 
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Chapter 7. Zonation and genesis of the Tongshanling 

Cu-Mo-Pb-Zn-Ag skarn system 

7.1. Introduction 

Association and zonation of various alteration and mineralization types are commonly 

observed in natural magmatic-hydrothermal systems, such as porphyry and skarn systems 

(Meinert et al., 2005; Sillitoe, 2010; Soloviev, 2011, 2015; Soloviev et al., 2013; Catchpole et 

al., 2015; Pirajno and Zhou, 2015; Soloviev and Kryazhev, 2017). Comprehensive study on 

the relationship between these alteration and mineralization types through geology, 

geochronology, geochemistry, etc., will greatly promote the understanding of ore-forming 

process and is also beneficial to further prospecting and exploration. The Middle-Late Jurassic 

Cu-Pb-Zn deposits in the Nanling Range, South China, include the Shuikoushan, Baoshan, 

Tongshanling, and Huangshaping deposits in southeastern Hunan Province, and the 

Dabaoshan deposit in northern Guangdong Province (Fig. 1-1), are characterized by multiple 

mineralization types that are spatially associated and zoned (Lu et al., 2013; Qu et al., 2014; 

Cai et al., 2015; Xie et al., 2015; Ding et al., 2016a). For instance, carbonate replacement and 

skarn are the predominant mineralization types of the Shuikoushan Pb-Zn-Au-Ag (Lu et al., 

2013; Huang et al., 2015), Baoshan Cu-Mo-Pb-Zn-Ag (Lu et al., 2006; Xie et al., 2015), 

Tongshanling Cu-Mo-Pb-Zn-Ag (Cai et al., 2015; Lu et al., 2015; Zhao et al., 2016b), and 

Huangshaping Pb-Zn-W-Mo (Yao et al., 2007; Ding et al., 2016a) deposits; sulfide-quartz 

veins are also important in the Tongshanling ore district (Cai et al., 2015; Lu et al., 2015; 

Zhao et al., 2016b); the Dabaoshan deposit mainly consists of porphyry Mo (W), skarn Mo-W, 

and stratiform Cu-Pb-Zn orebodies (Wang et al., 2011c; Qu et al., 2014; Mao et al., 2017). 

However, the relationship between these different mineralization types was rarely considered 

in previous studies. Whether they are genetically linked or not is still ambiguous. 

The Tongshanling polymetallic ore district is located in the western part of the Nanling 

Range metallogenic belt about 120 km to the east of Guilin and in the suture zone between the 

Yangtze Block and Cathaysia Block (Fig. 1-1). It was discovered in 1958 and mined since 
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1977 and is one of the oldest mines in the Nanling Range. Ancient mineral waste residues 

were remained on the surface and some pottery bowls of the Jin dynasty (from A.D. 265 to 

A.D. 420) were found in an ancient adit. The ore district contains about 53,000 t Cu (average 

1.23 wt.% Cu), 6,000 t Mo (average 0.30 wt.% Mo), 126,000 t Pb (average 2.58 wt.% Pb), 

138,000 t Zn (average 3.95 wt.% Zn), and 780 t Ag (average 144 g/t Ag) (No. 206 Exploring 

Team of Hunan Metallurgical and Exploring Company, unpub. report, 1975; No. 409 

Geological Team of Bureau of Geology and Mineral Exploration and Development of Hunan 

Province, unpub. report, 2008; Institute of Geological Survey of South Hunan, unpub. report, 

2012). In addition, there are about 5,520 t Bi (average 0.16 wt.% Bi), 1,900 t Cd (average 

0.016 wt.% Cd), 195 t Se (average 0.001 wt.% Se), and 95 t Te (average 0.003 wt.% Te) 

within the Cu-Pb-Zn resources. It is constituted by three ore deposits distributed around the 

Tongshanling granodioritic intrusion, i.e., the Tongshanling Cu-Pb-Zn deposit, Jiangyong 

Pb-Zn-Ag deposit, and Yulong Mo deposit (Figs. 3-1, 7-1, 7-2, and 7-3). They are dominated 

by skarn, sulfide-quartz vein, and carbonate replacement mineralization. Although numerous 

geochronological and geochemical studies have been carried out on the Tongshanling 

granodiorite and these surrounding deposits (Wang et al., 2003a; Yi and Xu, 2006; Wei et al., 

2007; Jiang et al., 2009; Quan et al., 2013; Cai et al., 2015; Lu et al., 2015; Zhao et al., 2016b; 

Huang et al., 2017a; Wang et al., 2017d), the relationships of the three deposits and different 

mineralization types are still unknown. 

In this study, new geochronological data of garnet and titanite U-Pb and molybdenite 

Re-Os ages and geochemical data of S, Pb, and H-O isotopic compositions are presented 

based on detailed geological information and paragenetic sequences to constrain the genetic 

links and ore-forming processes of the different deposits and mineralization types in the 

Tongshanling Cu-Mo-Pb-Zn-Ag ore district. 

7.2. Deposit geology 

7.2.1. Tongshanling Cu-Pb-Zn deposit 

The Tongshanling Cu-Pb-Zn deposit occurs in the northeastern concealed contact zone 

between the Tongshanling granodiorite and country rocks, and its peripheral zone (Figs. 3-1, 
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Figure 7-1. Geological maps of the (a) Tongshanling Cu-Pb-Zn deposit (modified after No. 206 Exploring Team 

of Hunan Metallurgical and Exploring Company, unpub. report, 1975), (b) Jiangyong Pb-Zn-Ag deposit 

(modified after No. 409 Geological Team of Bureau of Geology and Mineral Exploration and Development of 

Hunan Province, unpub. report, 2008), and (c) Yulong Mo deposit (modified after Institute of Geological Survey 

of South Hunan, unpub. report, 2012). 

 

7-1a, and 7-2). Three ore sections, Nanfengshan, Maozaiwan, and Beihoushan, successfully 

constitute this deposit from southwest to northeast (Fig. 7-1a). The Tongshanling Cu-Pb-Zn 
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deposit exhibits an obvious zonation of proximal skarn, distal skarn, and sulfide-quartz veins 

between them (Fig. 7-2). The proximal skarn is distributed in the Nanfengshan and 

Maozaiwan sections (Fig. 7-2) and can be further divided into endoskarn and exoskarn which 

are different in geometry, mineralogy and mineralization. The sulfide-quartz veins mainly 

occur in the Maozaiwan section with minor in the Beihoushan section (Fig. 7-2). The distal 

skarn was well developed in the Beihoushan section with minor in the Maozaiwan section 

(Fig. 7-2). 

 

 
Figure 7-2. Cross sections (section lines shown in Fig. 7-1) of the Tongshanling Cu-Pb-Zn deposit (modified 

after No. 206 Exploring Team of Hunan Metallurgical and Exploring Company, unpub. report, 1975). 
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Figure 7-3. Cross sections (section lines shown in Fig. 7-1) of the (a) Jiangyong Pb-Zn-Ag deposit (modified 

after No. 409 Geological Team of Bureau of Geology and Mineral Exploration and Development of Hunan 

Province, unpub. report, 2008) and (b) Yulong Mo deposit (modified after Institute of Geological Survey of 

South Hunan, unpub. report, 2012). 

 

7.2.1.1. Proximal endoskarn 

The proximal endoskarn is massive (Fig. 7-4a) with irregular shapes and extends along 

the border of granodiorite. With a principal mineralogy of garnet and pyroxene (Figs. 7-5a 

and 7-6a) and minor retrograde minerals, such as actinolite and epidote, the endoskarn has a 

brown color in general and does not show a clear zonation (Fig. 7-4a). Chalcopyrite and 

pyrrhotite are the predominant ore minerals coexisting with abundant quartz in the endoskarn 

(Figs. 7-4a, 7-5a, and 7-6b). The chalcopyrite generally surrounds the pyrrhotite as envelopes 
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Figure 7-4. Outcrop-scale photos of different mineralization types of the (a–i) Tongshanling Cu-Pb-Zn deposit, 

(j–m) Jiangyong Pb-Zn-Ag deposit, and (n and o) Yulong Mo deposit. (a) Chalcopyrite + pyrrhotite 

mineralization accompanied by quartz in the massive proximal endoskarn. (b) Proximal exoskarn vein with an 

outward zonation from garnet-pyroxene through wollastonite to marble and late quartz in the center. (c) 

Exhausted stratiform distal skarn orebody with roof and floor of silicified limestone. (d) Residual argillaceous 
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limestone in the distal skarn. (e) Proximal exoskarn cut through by a quartz vein. (f) Distal skarn cut across by a 

sulfide-quartz vein. (g) Sulfide-quartz vein mineralization in the peripheral zone of proximal skarn. (h) Late 

Pb-Zn sulfide-quartz vein cutting the granodiorite. (i) Late carbonate replacement Pb-Zn sulfide vein with a 

banded structure. (j) Skarn orebody in the contact zone between granodiorite and country rocks. (k) Carbonate 

replacement Pb-Zn sulfide vein with a banded structure. (l) Residual carbonate rocks in the banded carbonate 

replacement Pb-Zn sulfide orebody. (m) Banded carbonate replacement Pb-Zn sulfide orebody cut by a late 

calcite vein. (n) Skarn vein with an outward zonation from pyroxene-garnet through wollastonite to marble. (o) 

Molybdenite in the skarn vein. Mineral abbreviations: Ccp = chalcopyrite, Grt = garnet, Mol = molybdenite, Po 

= pyrrhotite, Px = pyroxene, Qz = quartz, Wo = wollastonite. 

 

(Fig. 7-5a). Sparse disseminated sphalerite and pyrite grains occasionally appear in the 

chalcopyrite. There is no galena in the endoskarn ores. 

7.2.1.2. Proximal exoskarn 

The proximal exoskarn mostly occurs as veins with a width of dozens of centimeters in 

the upper member of the Qiziqiao Formation (Fig. 7-4b). These exoskarn veins commonly 

exhibit a well-developed outward zonation from garnet-pyroxene through wollastonite (Fig. 

7-6c) to marble and contain late quartz in the center (Fig. 7-4b). They are green-colored on 

the whole (Fig. 7-4b) and the pyroxene/garnet ratio is distinctly higher than that of the 

endoskarn. Ore minerals are chalcopyrite, sphalerite, galena, pyrrhotite, and pyrite (Figs. 7-5b 

and 7-6d). The (sphalerite + galena)/chalcopyrite and pyrite/pyrrhotite ratios of the exoskarn 

ores are remarkably higher than those of the endoskarn ores. 

7.2.1.3. Distal skarn 

Different form the proximal skarn, the distal skarn is evidently controlled by the 

argillaceous limestone of the Xikuangshan Formation and has stratiform shapes with 

thicknesses of several meters (Figs. 7-2 and 7-4c). Some residual protolith pieces of 

argillaceous limestone are observed in the distal skarn (Fig. 7-4d). The distal skarn does not 

show an obvious zonation. The roof and floor of the distal skarn are generally silicified 

limestone (Fig. 7-4c) which is widely and continuously spread in the lower member of the 
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Figure 7-5. Specimen-scale photos of different ore types of the Tongshanling Cu-Pb-Zn deposit. (a) Proximal 

endoskarn ore. (b) Proximal exoskarn ore. (c and d) Distal skarn ore. (e) Cu-dominant sulfide-quartz vein ore. (f) 

Cu-Pb-Zn sulfide-quartz vein ore. (g) Pb-Zn sulfide-quartz vein ore. (h) Carbonate replacement Pb-Zn sulfide 

vein ore. Mineral abbreviations: Apy = arsenopyrite, Cal = calcite, Ccp = chalcopyrite, Gn = galena, Grt = garnet, 

Po = pyrrhotite, Px = pyroxene, Py = pyrite, Qz = quartz, Sp = sphalerite, Wo = wollastonite. 



Nov. 2018                                                                                X.D. HUANG 

123 

 

Figure 7-6. Petrographic photomicrographs of different mineralization and ore types of the (a–h) Tongshanling 

Cu-Pb-Zn deposit, (i–l) Jiangyong Pb-Zn-Ag deposit, and (m–o) Yulong Mo deposit. (a) Coarse-grained garnet 

and pyroxene in the proximal endoskarn. (b) Chalcopyrite and pyrrhotite in the proximal endoskarn ore. (c) 

Coarse-grained pyroxene and wollastonite in the proximal exoskarn. (d) Chalcopyrite, sphalerite, galena, 

pyrrhotite, native bismuth, and actinolite in the proximal exoskarn ore. (e) Fine-grained garnet and pyroxene in 



Chapter 7. Zonation and genesis of the Tongshanling Cu-Mo-Pb-Zn-Ag skarn system 

124 

the distal skarn. (f) Chalcopyrite, sphalerite, galena, and pyrite in the distal skarn ore. (g) Early euhedral 

arsenopyrite and pyrite cut by late chalcopyrite in the Cu-dominant sulfide-quartz vein ore. (h) Early pyrite and 

chalcopyrite replaced by late sphalerite and galena in the Cu-Pb-Zn sulfide-quartz vein ore. (i) Chalcopyrite, 

pyrrhotite, and pyrite in the skarn ore. (j) Early pyrrhotite and pyrite replaced by late sphalerite in the carbonate 

replacement ore. (k) Pyrargyrite, freibergite, and galena coexisting with sphalerite in the carbonate replacement 

ore. (l) Galena with freibergite inside enclosing sphalerite and idiomorphic pyrite in the carbonate replacement 

ore. (m) Flaky molybdenite aggregation in the pyroxene-garnet skarn. (n) Flaky molybdenite disseminated in the 

garnet skarn cut by a late calcite veinlet. (o) Early automorphic garnet and late interstitial quartz in skarn. 

Mineral abbreviations: Act = actinolite, Apy = arsenopyrite, Cal = calcite, Ccp = chalcopyrite, Frb = freibergite, 

Gn = galena, Grt = garnet, Mol = molybdenite, Po = pyrrhotite, Px = pyroxene, Py = pyrite, Pyg = pyrargyrite, 

Qz = quartz, Sp = sphalerite, Wo = wollastonite. 

 

Xikuangshan Formation (Fig. 7-2). Skarn minerals are prograde garnet, pyroxene, 

wollastonite, and retrograde actinolite, vesuvianite, epidote, etc., which are markedly more 

fine-grained than those of the proximal skarn (Fig. 7-6e). Ore minerals include chalcopyrite, 

sphalerite, galena, pyrite (Figs. 7-5c–d and 7-6f), and sometimes pyrrhotite and arsenopyrite. 

7.2.1.4. Sulfide-quartz vein 

The quartz veins are a dozen to tens of centimeters in width (Fig. 7-4e–h) and are mainly 

distributed in the Qiziqiao and Shetianqiao Formations spatially between the proximal skarn 

and the distal skarn (Fig. 7-2). Both the proximal and distal skarns are cut by the quartz veins 

(Fig. 7-4e and f). Early vein-like quartz in the proximal exoskarn center (Fig. 7-4b) and the 

quartz veins cutting through the proximal exoskarn are barren (Fig. 7-4e). The peripheral 

mineralized quartz veins can be separated into proximal Cu-dominant sulfide-quartz veins and 

distal Cu-Pb-Zn sulfide-quartz veins. The ores of the latter have noticeably higher (sphalerite 

+ galena)/chalcopyrite ratios than those of the former and both of them contain pyrite but do 

not have pyrrhotite (Figs. 7-5e–f and 7-6g–h). Arsenopyrite appears in the Cu-dominant 

sulfide-quartz vein ores (Figs. 7-5e and 7-6g) but is absent in the Cu-Pb-Zn sulfide-quartz 

vein ores (Figs. 7-5f and 7-6h). Some late Pb-Zn sulfide-quartz veins cut through the 

granodiorite (Fig. 7-4h) and contain abundant pyrite and arsenopyrite (Fig. 7-5g). 
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7.2.1.5. Carbonate replacement 

Carbonate replacement Pb-Zn sulfide veins are rarely occurred in the proximal part. 

They have a width of several tens of centimeters and show a banded texture (Figs. 7-4i and 

7-5h). Ore minerals are sphalerite, galena, pyrite, and arsenopyrite (Fig. 7-5h). The unique 

gangue mineral is calcite (Fig. 7-5h). 

7.2.1.6. Ore types 

Based on the zonation of mineralization and mineral association, seven different ore 

types of the Tongshanling Cu-Pb-Zn deposit are distinguished as follows (mineral 

abbreviations refer to Figs. 7-5 and 7-6): 

(1) Proximal endoskarn ore (Ccp ± Sp + Po ± Py + skarn minerals + Qz) (Figs. 7-5a and 

7-6a–b); 

(2) Proximal exoskarn ore (Ccp + Sp + Gn + Po + Py + skarn minerals + Qz + Cal) (Figs. 

7-5b and 7-6c–d); 

(3) Distal skarn ore (Ccp + Sp + Gn ± Po + Py ± Apy + skarn minerals + Qz + Cal) (Figs. 

7-5c–d and 7-6e–f); 

(4) Cu-dominant sulfide-quartz vein ore (Ccp ± Sp ± Gn + Py + Apy + Qz) (Figs. 7-5e and 

7-6g); 

(5) Cu-Pb-Zn sulfide-quartz vein ore (Ccp + Sp + Gn + Py + Qz) (Figs. 7-5f and 7-6h); 

(6) Pb-Zn sulfide-quartz vein ore (Sp + Gn + Py + Apy + Qz) (Fig. 7-5g); 

(7) Carbonate replacement Pb-Zn sulfide vein ore (Sp + Gn + Py + Apy + Cal) (Fig. 7-5h). 

7.2.1.7. Paragenesis 

The paragenetic sequence of the Tongshanling Cu-Pb-Zn deposit (Fig. 7-7) is comprised 

of a prograde stage and a retrograde stage. Anhydrous skarn minerals wollastonite, garnet, and 

pyroxene were firstly formed in the prograde stage followed by a few scheelite and 

molybdenite. In the early retrograde stage, some hydrous skarn minerals, such as actinolite, 

vesuvianite, and epidote, replaced the anhydrous skarn by retrograde alteration. Sericite and 

chlorite were then formed by hydrothermal alteration of the granodiorite. Hydrothermal 

quartz, calcite, and sulfide minerals began to precipitate. The formation sequence of sulfide 
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minerals started from pyrrhotite and pyrite through chalcopyrite to sphalerite and then to 

galena overall. The content of pyrite progressively increased with time. A little native bismuth 

was simultaneously precipitated with galena. With the occurrence of abundant quartz, the 

proximal Cu-dominant sulfide-quartz veins were formed and followed by the distal Cu-Pb-Zn 

sulfide-quartz veins and then the late Pb-Zn sulfide-quartz veins. Some Pb-Bi sulfides were 

contemporaneously precipitated with galena in the sulfide-quartz veins. The carbonate 

replacement Pb-Zn sulfide veins were formed at the latest. 

 

 

Figure 7-7. Paragenetic sequence of the Tongshanling Cu-Pb-Zn deposit. 

 

7.2.2. Jiangyong Pb-Zn-Ag deposit 

The Jiangyong Pb-Zn-Ag deposit occurs in the northwestern concealed contact zone 

between the Tongshanling granodiorite and country rocks, and its peripheral zone (Figs. 3-1, 

7-1b, and 7-3a). It is characterized by carbonate replacement mineralization in the Shidengzi 
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limestone of the Upper Carboniferous Datang Stage (Fig. 7-3a). Although skarn 

mineralization is developed in the contact zone (Figs. 7-1b, 7-3a, and 7-4j), it is not of great 

economic importance. The ore minerals of the skarn orebodies are dominated by pyrrhotite 

and pyrite with minor chalcopyrite (Fig. 7-6i) and sphalerite. The carbonate replacement 

sulfide orebodies are distributed within the range of 350 m in distance from the contact zone. 

They generally show vein-like (Fig. 7-4k), lentiform, and sackform geometries and mostly 

have a banded structure (Fig. 7-4k–m). Sphalerite, galena, pyrite, pyrrhotite, and arsenopyrite 

are the dominant ore minerals of the carbonate replacement sulfide orebodies (Fig. 7-6j). 

Silver is predominantly concentrated in galena by isomorphous substitution of Pb or as 

independent Ag-minerals such as pyrargyrite (Fig. 7-6k), freibergite (Fig. 7-6k and l), and 

freieslebenite. The galena/sphalerite ratio, pyrite/pyrrhotite ratio, and Ag grade of sulfide ores 

show positive correlations with the distance to the contact zone. 

Compared with the Tongshanling Cu-Pb-Zn deposit, the Jiangyong Pb-Zn-Ag deposit 

shows a relatively weak prograde anhydrous skarn stage with the formation of some 

wollastonite, garnet, and pyroxene in the contact zone and a strong retrograde stage 

dominated by carbonate replacement with the formation of abundant sulfide minerals and 

calcite in the peripheral zone but almost no quartz and chalcopyrite (Figs. 7-7 and 7-8). The 

carbonate replacement ore bodies of the Jiangyong Pb-Zn-Ag deposit are similar to those of 

the Tongshanling Cu-Pb-Zn deposit in geometry, ore structure, mineral association, and 

paragenetic sequence (Figs. 7-7 and 7-8). During Pb-Zn mineralization, galena was generally 

precipitated later and more distal than sphalerite. Galena/sphalerite ratio, pyrite/pyrrhotite 

ratio, and Ag grade progressively increased with time. Barren calcite veins were formed at the 

latest and cut the sulfide orebodies (Fig. 7-4m). 

7.2.3. Yulong Mo deposit 

The Yulong Mo deposit occurs in the periphery of the southern concealed contact zone 

between the Tongshanling granodiorite and country rocks (Figs. 3-1, 7-1c, and 7-3b). It is 

constituted by NW-SE-striking mineralized skarn veins in the Shidengzi limestone of the 

Datang Stage (Figs. 7-1c and 7-3b). These skarn veins are generally 0.1 – 2 m in thickness 

(Fig. 7-4n and o) with an interval distance of 3 – 10 m and a vertical extension of 10 – 100 m. 
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Figure 7-8. Paragenetic sequence of the Jiangyong Pb-Zn-Ag deposit. H &S = Hydrosilicate and sulfide. 

 

They commonly have a brown color and exhibit an outward zonation from pyroxene-garnet 

through wollastonite to marble (Fig. 7-4n). Ore minerals are mainly molybdenite, pyrrhotite, 

pyrite, and minor scheelite, chalcopyrite, sphalerite, galena, and arsenopyrite. Molybdenite is 

distributed in pyroxene-garnet skarn as aggregations (Figs. 7-4o and 7-6m), veinlets, and 

disseminated (Fig. 7-6n). Late quartz and calcite occur as interstitial in skarn (Fig. 7-6o) or as 

veinlets cutting skarn (Fig. 7-6n). 

The paragenetic sequence of the Yulong Mo deposit is shown in Figure 7-9. Compared 

with the Tongshanling Cu-Pb-Zn deposit and Jiangyong Pb-Zn-Ag deposit, the Yulong Mo 

deposit is characterized by a well-developed prograde anhydrous skarn stage with the 

formation of abundant wollastonite, garnet, and pyroxene and a relatively weak retrograde 

stage with the formation of some hydrosilicate minerals such as vesuvianite, actinolite, 

epidote, and chlorite and sulfide minerals but no strong sulfide-quartz vein and carbonate 

replacement mineralization (Figs. 7-7–7-9). The early-formed molybdenite is the unique ore 

mineral of economic significance. 
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Figure 7-9. Paragenetic sequence of the Yulong Mo deposit. 

 

7.3. Sampling and analytical methods 

Proximal exoskarn and altered granodiorite from the Tongshanling Cu-Pb-Zn deposit 

were sampled for laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) 

U-Pb dating of garnet and hydrothermal titanite on thin sections, respectively. Molybdenite 

samples of proximal endoskarn, proximal exoskarn, and distal skarn from the Tongshanling 

Cu-Pb-Zn deposit and skarn from the Yulong Mo deposit were collected for Re-Os dating. 

Sulfide minerals (chalcopyrite, sphalerite, galena, pyrite, pyrrhotite, and molybdenite) of 

different mineralization types from different levels of the three ore deposits were 

systematically sampled for S and Pb isotopic analyses. Quartz samples from the three ore 

deposits were collected for H-O isotopic analyses. Sulfide minerals and quartz were 

handpicked under a binocular microscope after crushing samples to 40 – 60 mesh. Separated 

grains were rinsed by absolute alcohol. Then, the sulfide minerals were ground to powder < 

200 mesh for subsequent analyses. 

U-Pb dating of garnet was conducted with an Agilent 7700× ICP-MS coupled to a 
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GeoLasPro 193 nm laser ablation system at the Guangdong Provincial Key Laboratory of 

Marine Resources and Coastal Engineering, Sun Yat-sen University, China. Each analysis was 

performed by a 32- m ablating spot at 5 Hz with an energy density of 5 J/cm2 for 45 s after 

measuring the gas blank for 20 s. Zircon 91500 (Wiedenbeck et al., 1995) was used as the 

external standard and garnet QC04 and OH-1 (Deng et al., 2017; Seman et al., 2017) were 

used to monitor the process of garnet U-Pb dating. The matrix effect of garnet U-Pb dating 

has been proved to be minor (Mezger et al., 1989; Deng et al., 2017; Seman et al., 2017). The 

off-line data processing was performed using a program called ICPMSDataCal (Liu et al., 

2008b). Common lead was corrected by the 207Pb method (Stern, 1997; Frost et al., 2000; 

Aleinikoff et al., 2002) and the 207Pb-corrected 206Pb/238U ages were used to calculate the 

weighted average age. 

Re-Os dating of molybdenite was carried out by a Thermo Electron TJA X-series 

ICP-MS in the Re-Os laboratory of the National Research Center of Geoanalysis, Chinese 

Academy of Geological Sciences, Beijing. The analyzed molybdenite was fine-grained (< 0.1 

mm) in order to prevent decoupling of Re and 187Os within large grains. Firstly, molybdenite 

was digested by HNO3-HCl solution in a Carius tube followed by heating for 10 hours at 

230 °C with a stainless-steel jacket. Then, the Re was separated through solvent extraction 

and cation-exchange resin chromatography. The detailed analytical procedures were described 

by Shirey and Walker (1995), Mao et al. (1999), and Du et al. (2004). Analytical blanks for Re 

and Os were 4.3 pg and 0.09 pg, respectively. Model ages were calculated by the following 

equation: t=[ln(1+187Os/187Re)]/ , in which  is the 187Re decay constant of 1.666×10−11/year 

(Smoliar et al., 1996). The model age of the GBW04435 (JDC) molybdenite standard 

measured in this study is 141.0 ± 1.9 Ma and is consistent with the certified value of 139.6 ± 

3.8 Ma (Du et al., 2004). 

U-Pb dating of titanite was performed by an Agilent 7700× ICP-MS coupled to an Excite 

193 nm Photon Machines laser ablation system at Nanjing FocuMS Technology Co. Ltd., 

China. Each analysis was conducted with a 40- m ablating spot at 6 Hz with an energy 

density of 6.7 J/cm2 for 45 s after measuring the gas blank for 15 s. Titanite BLR-1 

(Aleinikoff et al., 2007; Mazdab, 2009) was used as the external standard and Ontario titanite 
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(Corfu, 1996) was used to monitor the process of U-Pb dating. NIST SRM 610 was used as 

the reference material to calibrate the U, Th, and Pb concentrations of titanite by using 43Ca as 

the internal calibration. The off-line data processing was performed using a program called 

ICPMSDataCal (Liu et al., 2008b). Common lead was corrected by the 207Pb method (Stern, 

1997; Frost et al., 2000; Aleinikoff et al., 2002) and the 207Pb-corrected 206Pb/238U ages were 

used to calculate the weighted average age. Wetherill U-Pb concordia plots of garnet and 

titanite, Tera-Wasserburg U-Pb concordia plots of titanite, Re-Os isochrons of molybdenite, 

and weighted average age calculations of garnet, molybdenite, and titanite were constructed 

by the software Isoplot 4.15 (Ludwig, 2012). 

Sulfur isotopic compositions of sulfide minerals were analyzed by a Finnigan MAT-253 

mass spectrometer coupled to a Flash EA 1112 elemental analyzer at the State Key Laboratory 

Breeding Base of Nuclear Resources and Environment, East China University of Technology. 

For each sample, 20 – 100 g sulfide powder was heated at 1020 °C to extract SO2 gas for S 

isotopic analysis. The analytical results of 34S/32S ratios are expressed as the conventional δ34S 

values in per mil relative to the Cañon Diablo Troilite (CDT). The analytical precision was 

better than 0.2 ‰. 

Lead isotopic compositions of sulfide minerals were measured by a GV IsoProbe-T 

Thermal Ionization Mass Spectrometer (TIMS) at the Analytical Laboratory of the Beijing 

Research Institute of Uranium Geology, China. The analytical procedure involved dissolution 

of sulfide powder using HF and HClO4 in crucibles followed by basic anion-exchange resin 

chromatography to purify Pb. Lead isotopic ratios were monitored and corrected by the 

analytical results of the standard NIST NBS 981. The external reproducibilities of Pb isotopic 

ratios were 0.001 – 0.003 for 206Pb/204Pb and 207Pb/204Pb, and 0.002 – 0.008 for 208Pb/204Pb at 

2-sigma level. 

Hydrogen-oxygen isotopic compositions of quartz were analyzed using a Finnigan 

MAT-253 mass spectrometer at the Analytical Laboratory of the Beijing Research Institute of 

Uranium Geology, China. Water was released from quartz by heating to ca. 600 °C in an 

induction furnace and then reacted with heated zinc powder at 400 °C to produce H2 for 

hydrogen isotopic analysis. Quartz grains were ground to powder < 200 mesh and then 
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reacted with BrF5 at 500 – 600 °C for 14 h to generate O2. With the catalysis of platinum, the 

O2 reacted with graphite at 700 °C to produce CO2 for oxygen isotopic analysis. The 

analytical results of 2H/1H and 18O/16O ratios are expressed as the conventional δD and δ18O 

values in per mil relative to the Standard Mean Ocean Water (SMOW) with precisions of 1 ‰ 

and 0.2 ‰, respectively. 

7.4. Results 

7.4.1. Garnet U-Pb dating 

The LA-ICP-MS U-Pb dating results of garnet in the proximal exoskarn from the 

Tongshanling Cu-Pb-Zn deposit are listed in Appendix 7-1. Twenty-five analyses revealed 

that the garnet in the proximal exoskarn has U, Th, and Pb contents of 7.25 – 17.19 ppm, 0.02 

– 0.20 ppm, and 0.18 – 0.61 ppm, respectively, and 207Pb/206Pb, 207Pb/235U, and 206Pb/238U 

ratios of 0.012337 – 0.122815, 0.165985 – 0.609241, and 0.023547 – 0.029738, respectively 

(Appendix 7-1). A concordia age of 162.0 ± 3.7 Ma is obtained by the Wetherill concordia 

plots of the 207Pb-corrected 207Pb/235U and 206Pb/238U ratios (Fig. 7-10). The weighted average 

value of the 207Pb-corrected 206Pb/238U ages is 162.4 ± 4.2 Ma (Fig. 7-10) which is consistent 

with the concordia age. 

 

 

Figure 7-10. Wetherill U-Pb concordia plots and weighted average 206Pb/238U age of garnet in the proximal 

exoskarn from the Tongshanling Cu-Pb-Zn deposit. 
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7.4.2. Molybdenite Re-Os dating 

The Re-Os dating results of molybdenites from the Tongshanling Cu-Pb-Zn deposit and 

Yulong Mo deposit are listed in Appendix 7-2. Two molybdenite samples from the proximal 

endoskarn, one molybdenite sample from the proximal exoskarn, and two molybdenite 

samples from the distal skarn of the Tongshanling Cu-Pb-Zn deposit have respective Re 

contents of 16.28 – 89.51 ppm, 24.60 ppm, and 47.97 – 98.23 ppm, respective 187Re contents 

of 10.23 – 56.26 ppm, 15.46 ppm, and 30.15 – 61.74 ppm, respective 187Os contents of 27.84 

– 152.45 ppb, 41.32 ppb, and 81.02 – 168.46 ppb, and respective model ages of 162.4 – 163.1 

Ma, 160.2 Ma, and 161.1 – 163.5 Ma (Appendix 7-2). All these five samples yield a 
187Re-187Os isochron age of 161.8 ± 1.7 Ma and a consistent weighted average model age of 

161.9 ± 1.1 Ma (Fig. 7-11a). 

 

 

Figure 7-11. Re-Os isochrons and weighted average model ages of molybdenites from the (a) Tongshanling 

Cu-Pb-Zn deposit and (b) Yulong Mo deposit. 
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Eight molybdenite samples from the skarn of the Yulong Mo deposit have Re, 187Re, and 
187Os contents of 37.90 – 50.82 ppm, 23.82 – 31.94 ppm, and 63.93 – 85.39 ppb, respectively 

(Appendix 7-2). Their Re-Os model ages vary from 158.9 Ma to 161.8 Ma and have a 

weighted average value of 160.1 ± 0.8 Ma (Appendix 7-2 and Fig. 7-11b). The 187Re-187Os 

isochron age of these eight molybdenite samples is 160.0 ± 5.8 Ma (Fig. 7-11b) which is 

consistent with the weighted average model age. 

7.4.3. Titanite U-Pb dating 

The titanite used for U-Pb dating occurs as pseudomorphic crystals replacing biotite or 

coexists with sulfide minerals as an interstitial texture in the altered granodiorite (Fig. 7-12a). 

This kind of titanite is evidently hydrothermal titanite formed by hydrothermal alteration of 

the granodiorite and is different from the automorphic and isolated magmatic titanite. 

 

 

Figure 7-12. (a) Wetherill and (b) Tera-Wasserburg U-Pb concordia plots and weighted average 206Pb/238U age of 

hydrothermal titanite in the altered granodiorite from the Tongshanling Cu-Pb-Zn deposit. 
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The LA-ICP-MS U-Pb dating results of hydrothermal titanite in the altered granodiorite 

from the Tongshanling Cu-Pb-Zn deposit are listed in Appendix 7-3. Twenty-one analyses 

revealed that the hydrothermal titanite in the altered granodiorite has U, Th, and Pb contents 

of 40.6 – 404.4 ppm, 21.1 – 249.1 ppm, and 2.1 – 12.4 ppm, respectively, and 207Pb/206Pb, 

207Pb/235U, and 206Pb/238U ratios of 0.070981 – 0.295930, 0.236849 – 1.833193, and 0.024529 

– 0.043285, respectively (Appendix 7-3). A lower intercept age of 155.5 ± 3.1 Ma and an 

upper intercept age of 4580 ± 100 Ma are obtained by the Wetherill concordia plots of the 

207Pb/235U and 206Pb/238U ratios (Fig. 7-12a). The Tera-Wasserburg concordia plots of the 

238U/206Pb and 207Pb/206Pb ratios yield a lower intercept age of 155.6 ± 3.1 Ma and an upper 

intercept age of 4586 ± 120 Ma (Fig. 7-12b). The weighted average value of the 

207Pb-corrected 206Pb/238U ages is 154.4 ± 1.9 Ma (Fig. 7-12b) which is consistent with the 

lower intercept ages of the Wetherill and Tera-Wasserburg U-Pb concordia plots. 

7.4.4. S isotope 

The analytical results of S isotopic compositions of the sulfide minerals from the 

Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong Mo deposit are 

listed in Appendix 7-4 and shown in Figure 7-13. These sulfide minerals have δ34S values of –

0.3 – 6.3 ‰ and show a progressively decreasing trend of the δ34S value from the 

Tongshanling Cu-Pb-Zn deposit through the Jiangyong Pb-Zn-Ag deposit to the Yulong Mo 

deposit on the whole (Fig. 7-13). 

The δ34S values of the sulfide minerals from the Tongshanling Cu-Pb-Zn deposit range 

from 0.2 ‰ to 5.0 ‰ and show variations of 1.9 – 3.6 ‰, 2.5 – 4.4 ‰, 1.9 – 4.6 ‰, 0.2 – 4.5 

‰, and 1.9 – 5.0 ‰ for the proximal endoskarn, proximal exoskarn, sulfide-quartz vein, distal 

skarn, and carbonate replacement mineralization types, respectively (Fig. 7-13). One 

pyrrhotite sample from the altered granodiorite has a δ34S value of 3.9 ‰ (Fig. 7-13). In the 

proximal endoskarn ores, the δ34S values of molybdenite, chalcopyrite, and pyrrhotite are 3.2 

– 3.6 ‰, 2.2 – 2.4 ‰, and 1.9 – 2.1 ‰, respectively (Fig. 7-13). The chalcopyrite, sphalerite, 

and galena in the proximal exoskarn ores have respective δ34S values of 3.4 – 4.4 ‰, 2.8 – 3.9 

‰, and 2.5 – 2.8 ‰ (Fig. 7-13). In the sulfide-quartz veins, chalcopyrite, sphalerite, and 

galena show respective δ34S values of 2.7 – 4.6 ‰, 2.9 – 4.5 ‰, and 1.9 – 3.1 ‰ (Fig. 7-13). 
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Figure 7-13. S isotopic compositions of sulfide minerals from the Tongshanling Cu-Pb-Zn deposit, Jiangyong 

Pb-Zn-Ag deposit, and Yulong Mo deposit. Mineral abbreviations: Ccp = chalcopyrite, Gn = galena, Mol = 

molybdenite, Po = pyrrhotite, Py = pyrite, Sp = sphalerite. 

 

The molybdenite, chalcopyrite, sphalerite, and galena in the distal skarn ores have δ34S values 

of 4.5 ‰, 3.1 – 3.6 ‰, 3.0 – 3.4 ‰, and 0.2 – 1.8 ‰, respectively (Fig. 7-13). In the 

carbonate replacement ores, the δ34S values of sphalerite and galena are 4.7 – 5.0 ‰ and 1.9 – 
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2.2 ‰, respectively (Fig. 7-13). 

The δ34S values of the sulfide minerals from the Jiangyong Pb-Zn-Ag deposit vary from 

0.2 ‰ to 3.3 ‰ and show ranges of 1.2 – 2.6 ‰ and 0.2 – 3.3 ‰ for the skarn and carbonate 

replacement mineralization types, respectively (Fig. 7-13). Two pyrrhotite samples from the 

altered granodiorite have δ34S values of 2.0 ‰ and 2.5 ‰ (Fig. 7-13). In the skarn ores, one 

sphalerite and three pyrrhotite samples show respective δ34S values of 2.6 ‰ and 1.2 – 2.2 ‰ 

(Fig. 7-13). The sphalerite, pyrite, and galena in the carbonate replacement ores have δ34S 

values of 2.4 – 3.3 ‰, 1.8 – 2.6 ‰, and 0.2 – 1.1 ‰, respectively (Fig. 7-13). The δ34S values 

of twelve molybdenite and one pyrrhotite samples from the skarn ores of the Yulong Mo 

deposit are 4.9 – 6.3 ‰ and –0.3 ‰, respectively (Fig. 7-13). 

The sulfur isotopic fractionations and calculated temperatures of sulfide mineral pairs 

from the Tongshanling Cu-Pb-Zn deposit and Jiangyong Pb-Zn-Ag deposit are listed in Table 

7-1. The δ34S values of sulfide minerals in isotopic equilibrium should be arranged in the 

sequence of δ34SMol > δ34Spy > δ34SSp = δ34SPo > δ34SCcp > δ34SGn (Ohmoto and Rye, 1979). 

According to the Δ34S values of sulfide mineral pairs, it is evidently concluded that the 

pyrrhotite-chalcopyrite in the proximal endoskarn ores and the sphalerite-chalcopyrite in the 

proximal exoskarn, sulfide-quartz vein, and distal skarn ores of the Tongshanling Cu-Pb-Zn 

deposit and the sphalerite-pyrrhotite in the skarn ores and the pyrite-sphalerite in the carbonate 

replacement ores of the Jiangyong Pb-Zn-Ag deposit were not formed in isotopic equilibrium 

(Table 7-1). Considering the positive Δ34SSp-Gn values (Table 7-1) and the close coexistence of 

sphalerite and galena, they were possibly formed in isotopic equilibrium. The calculate 

temperatures of the sphalerite-galena pairs reveal that the carbonate replacement ore-forming 

processes in the Tongshanling Cu-Pb-Zn deposit and Jiangyong Pb-Zn-Ag deposit have similar 

temperatures which are distinctly lower than those of the skarn and sulfide-quartz vein 

mineralization (Table 7-1). 

7.4.5. Pb isotope 

The analytical results of the Pb isotopic compositions of sulfide minerals are listed in 

Appendix 7-4. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the sulfide minerals from 

the Tongshanling Cu-Pb-Zn deposit vary from 18.643 to 18.785, 15.725 to 15.854, and 38.919 
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Table 7-1. Sulfur isotopic fractionations and calculated temperatures of sulfide mineral pairs from the 

Tongshanling Cu-Pb-Zn deposit and Jiangyong Pb-Zn-Ag deposit 

  Δ34SCDT (‰) [T °C]a 

Sample No. Level Py-Sp Py-Gn Sp-Po Sp-Ccp Sp-Gn Po-Ccp Ccp-Gn 

Tongshanling Cu-Pb-Zn deposit       
Proximal endoskarn       
TSL121 00 m      –0.3  
TSL122 00 m      –0.3  
Proximal exoskarn       
TSL98 00 m    –0.6 0.3  0.9 [530] 
TSL123 00 m    –0.5 1.1 [541]  1.6 [329] 
Sulfide-quartz vein       
TSL04-1 60 m    0.7 [190] 1.6 [402]  0.9 [530] 
TSL04-5 60 m    –0.2 1.1 [541]  1.3 [395] 
TSL04-6 60 m    –0.2 1.0 [581]  1.2 [422] 
TSL04-9 60 m    –0.2    
TSL04-12 60 m    –0.9    
TSL04-15 60 m    1.0 [114]    
TSL25-2 90 m    –0.2 1.0 [581]  1.2 [422] 
TSL25-3 90 m    0.0 0.8 [682]  0.8 [578] 
TSL26-1 120 m    0.2 [593] 1.0 [581]  0.8 [578] 
TSL28-1 120 m    –0.3    
TSL28-2 120 m    –0.2 0.8 [682]  1.0 [488] 
TSL28-3 120 m    0.2 [593] 1.2 [507]  1.0 [488] 
TSL29-2 180 m    –0.1 1.2 [507]  1.3 [395] 
Distal skarn       
TSL91 231 m    –0.1 1.3 [476]  1.4 [371] 
TSL93 231 m     1.6 [402]   
TSL145 231 m    –0.5    
Carbonate replacement       
TSL17 60 m     2.8 [237]   
TSL40 231 m     2.8 [237]   
Jiangyong Pb-Zn-Ag deposit       
Skarn       
JY48 240 m   0.4     
Carbonate replacement       
JY59 200 m –0.7       
JY47 160 m –1.0 1.5 [556]   2.5 [267]   
JY63 160 m –0.4 2.1 [427]   2.5 [267]   
JY50 240 m –0.9 1.9 [463]   2.8 [237]   
JY56 200 m –0.6 1.8 [483]   2.4 [278]   
JY58 200 m –0.9 1.3 [617]   2.2 [303]   
JY66 240 m –0.1 1.9 [463]   2.0 [331]   

Note: a Temperatures were calculated using the isotopic fractionation factors of sulfide mineral pairs from 

Ohmoto and Rye (1979), Δ34SA-B = CA-B × 106 / T (K)2, CPy-Sp = 0.30, CPy-Gn = 1.03, CSp-Po = 0.00, CSp-Ccp = 0.15, 

CSp-Gn = 0.73, CPo-Ccp = 0.15, CCcp-Gn = 0.58. Mineral abbreviations: Ccp = chalcopyrite, Gn = galena, Po = 

pyrrhotite, Py = pyrite, Sp = sphalerite. 
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to 39.352, respectively. Nine chalcopyrite samples show 206Pb/204Pb, 207Pb/204Pb, and 
208Pb/204Pb ratios of 18.703 – 18.785, 15.730 – 15.854, and 38.931 – 39.350, respectively. The 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of nine sphalerite samples are 18.693 – 18.752, 

15.747 – 15.821, and 38.993 – 39.240, respectively. Eleven galena samples have 206Pb/204Pb, 
207Pb/204Pb, and 208Pb/204Pb ratios of 18.643 – 18.743, 15.725 – 15.834, and 38.919 – 39.352, 

respectively. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of one molybdenite sample 

are 18.723, 15.770, and 39.073, respectively. 

The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the sulfide minerals from the 

Jiangyong Pb-Zn-Ag deposit range from 18.836 to 18.969, 15.712 to 15.875, and 38.997 to 

39.535, respectively. Two pyrrhotite samples have 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb 

ratios of 18.921 – 18.932, 15.818 – 15.834, and 39.349 – 39.408, respectively. The 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of two sphalerite samples are 18.853 – 18.969, 

15.727 – 15.875, and 39.055 – 39.535, respectively. Six galena samples show 206Pb/204Pb, 
207Pb/204Pb, and 208Pb/204Pb ratios of 18.836 – 18.880, 15.712 – 15.752, and 38.997 – 39.143, 

respectively. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of one pyrrhotite sample from 

the Yulong Mo deposit are 18.772, 15.729, and 39.022, respectively. 

In the 206Pb/204Pb vs. 208Pb/204Pb and 206Pb/204Pb vs. 207Pb/204Pb diagrams, the sulfide 

minerals from the Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong 

Mo deposit show similar Pb isotopic compositions on the whole and are plotted above the 

average upper crust evolution lines (Fig. 7-14a and b). Notably, except for three discrete 

points, all the sulfide minerals of different mineralization types from the Tongshanling 

Cu-Pb-Zn deposit construct perfect positive linear correlations in the 206Pb/204Pb vs. 
208Pb/204Pb and 206Pb/204Pb vs. 207Pb/204Pb diagrams with high squared correlation coefficients 

(R2) of 0.97 (Fig. 7-14c and d). In the same way, all the sulfide minerals of different 

mineralization types from the Jiangyong Pb-Zn-Ag deposit also construct perfect positive 

linear correlations (R2 = 0.99) with similar but slightly steeper slopes and lower intercept 

values relative to those of the Tongshanling Cu-Pb-Zn deposit (Fig. 7-14c and d). 

7.4.6. H-O isotopes 

The analytical results of H-O isotopic compositions of the quartz from the Tongshanling 
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Figure 7-14. Pb isotopic compositions of sulfide minerals from the Tongshanling Cu-Pb-Zn deposit, Jiangyong 

Pb-Zn-Ag deposit, and Yulong Mo deposit plotted with the evolution curves generated by the plumbotectonics 

model of Zartman and Doe (1981) (a and b) and the two-stage model of Stacey and Kramers (1975) (d). The Pb 

isotopic compositions of the Tongshanling granodiorite are from Cai et al. (2015). The data sources of Pb isotopic 

compositions of sulfide minerals from the Middle-Late Jurassic Cu-Pb-Zn (CDNR) and W (WDNR) deposits in 

the Nanling Range are listed in Appendix 7-5. 

 

Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong Mo deposit are listed in 

Appendix 7-6. The H isotopic compositions of the fluids hosted by quartz were directly 

obtained through the analyses by mass spectrometer and the O isotopic compositions of the 

fluids were calculated from the O isotopic compositions of quartz and the homogenization 

temperatures of fluid inclusions based on the quartz-water isotopic equilibrium equation of 

1000 lnα = 3.38 (106 T–2) – 3.40, 1000 lnα ≈ δ18Oquartz – δ18OH2O, T in K (Clayton et al., 

1972). Nine quartz samples from the Tongshanling Cu-Pb-Zn deposit, one quartz sample from 

the Jiangyong Pb-Zn-Ag deposit, and three quartz samples from the Yulong Mo deposit have 
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respective δDH2O values of –62 – –48 ‰, –70 ‰, and –58 – –53 ‰, respective δ18Oquartz 

values of 11.7 – 14.0 ‰, 12.4 ‰, and 9.4 – 13.3 ‰, and respective δ18OH2O values of 1.6 – 

4.8 ‰, 4.3 ‰, and 4.1 – 5.5 ‰. In the δ18OH2O vs. δDH2O diagram, all the quartz samples from 

the three deposits show similar H-O isotopic compositions between the magmatic water and 

meteoric water on the whole (Fig. 7-15). Compared with the sulfide-quartz veins in the 

peripheral limestone from the Tongshanling Cu-Pb-Zn deposit, the quartz veins in 

granodiorite from the Tongshanling Cu-Pb-Zn deposit and Jiangyong Pb-Zn-Ag deposit and 

the quartz in skarn from the Yulong Mo deposit have slightly higher δ18OH2O and lower δDH2O 

values and are closer to the field of magmatic water (Fig. 7-15). 

 

 

Figure 7-15. H-O isotopic compositions of the fluids hosted by quartz from the Tongshanling (TSL) Cu-Pb-Zn 

deposit, Jiangyong (JY) Pb-Zn-Ag deposit, and Yulong (YL) Mo deposit. The fields of primary magmatic and 

metamorphic waters and the meteoric water line are from Taylor (1997). SMOW = standard mean ocean water. 

The data sources of H-O isotopic compositions of ore-forming fluids of the Middle-Late Jurassic Cu-Pb-Zn 

(CDNR) and W (WDNR) deposits in the Nanling Range are listed in Appendix 7-7. 

 

7.5. Discussion 

7.5.1. Timing of mineralization 

As a routine and effective method to directly constrain the metallogenic ages, 

molybdenite Re-Os dating has been widely used in the geochronological studies of 
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ore-forming process (e.g., Stein et al., 1997, 2001; Mao et al., 1999, 2008b, 2013c; Stein, 

2014; Catchpole et al., 2015; Sillitoe et al., 2015). Several molybdenite Re-Os ages of the 

Tongshanling polymetallic ore district have been reported by previous studies. Lu et al. (2015) 

obtained a weighted average model age of 161 ± 1 Ma for the molybdenites from the 

sulfide-quartz veins of the Tongshanling Cu-Pb-Zn deposit. The weighted average Re-Os 

model ages of the molybdenites from the skarn ores of the Yulong Mo deposit published by 

Lu et al. (2015) and Zhao et al. (2016b) are 155 ± 3 Ma and 162.2 ± 1.6 Ma, respectively. 

However, the metallogenic ages of the dominant distal and proximal skarns in the 

Tongshanling Cu-Pb-Zn deposit are still not well constrained and the two molybdenite Re-Os 

model ages of the Yulong Mo deposit are not consistent and their corresponding 187Re-187Os 

isochron ages are unavailable or not precise (Lu et al., 2015; Zhao et al., 2016b). 

In this study, the molybdenites from the proximal endoskarn, proximal exoskarn, and 

distal skarn of the Tongshanling Cu-Pb-Zn deposit yield consistent Re-Os model ages of 

162.4 ± 2.2 – 163.1 ± 2.3 Ma, 160.2 ± 2.4 Ma, and 161.1 ± 2.4 – 163.5 ± 3.7 Ma (Appendix 

7-2), respectively, with an integrated weighted average value of 161.9 ± 1.1 Ma (Fig. 7-11a). 

The 187Re-187Os isochron age of these molybdenites is 161.8 ± 1.7 Ma (Fig. 7-11a) and 

perfectly coincides with the weighted average model age. These geochronological results are 

in accordance to the metallogenic age of the sulfide-quartz veins (161 ± 1 Ma, Lu et al., 

2015). Therefore, it is concluded that the proximal endoskarn, proximal exoskarn, 

sulfide-quartz veins, and distal skarn are temporally indistinguishable by molybdenite Re-Os 

dating and there are no obvious time intervals between these different mineralization types in 

the Tongshanling Cu-Pb-Zn deposit. The molybdenites from the skarn ores of the Yulong Mo 

deposit yield a 187Re-187Os isochron age of 160.0 ± 5.8 Ma (Fig. 7-11b) with a well consistent 

weighted average model age of 160.1 ± 0.8 Ma (Fig. 7-11b). These ages are consistent with 

the result of 162.2 ± 1.6 Ma published by Zhao et al. (2016b). Thus, the Tongshanling 

Cu-Pb-Zn deposit and Yulong Mo deposit were formed simultaneously with identical 

metallogenic ages of 160 – 162 Ma. 

Except for the molybdenite Re-Os ages, two Sm-Nd isochron ages of 155 ± 8 Ma and 

173 ± 3 Ma for the garnets from the skarn of the Yulong Mo deposit and the distal skarn of the 
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Tongshanling Cu-Pb-Zn deposit, respectively, were achieved by previous studies (Lu et al., 

2015; Wang et al., 2017d). These geochronological results are quite dispersed relative to the 

molybdenite Re-Os ages. In order to determine the time interval between skarn formation and 

sulfide mineralization, LA-ICP-MS U-Pb dating of the garnet from the proximal exoskarn of 

the Tongshanling Cu-Pb-Zn deposit was carried out in this study and yields a concordia age of 

162.0 ± 3.7 Ma with a consistent weighted average 206Pb/238U age of 162.4 ± 4.2 Ma (Fig. 

7-10). These results are in accordance to the molybdenite Re-Os ages and reveal that there is 

no obvious time interval between skarn formation and sulfide mineralization. 

The LA-ICP-MS U-Pb dating of the hydrothermal titanite in the altered granodiorite 

from the Tongshanling Cu-Pb-Zn deposit yields lower intercept ages of 155.5 ± 3.1 Ma and 

155.6 ± 3.1 Ma in the Wetherill and Tera-Wasserburg U-Pb concordia diagrams, respectively 

(Fig. 7-12), with a consistent weighted average 206Pb/238U age of 154.4 ± 1.9 Ma (Fig. 7-12b). 

These titanite U-Pb ages are about 5 Ma younger than the molybdenite Re-Os and garnet 

U-Pb ages and may reflect a slightly later hydrothermal event after the dominant skarn and 

sulfide-quartz vein mineralization. However, the nature and role of the later hydrothermal 

event are still unknown and need to be further studied. A possibility is that the later 

hydrothermal event was genetically related to the later carbonate replacement mineralization 

in the Tongshanling polymetallic ore district. 

For the Jiangyong Pb-Zn-Ag deposit, up to date, there is no available mineral found for 

geochronological study of metallogenesis. Zhao et al. (2016b) obtained two zircon U-Pb ages 

of 160.7 ± 0.5 Ma and 160.5±0.9 Ma for the ore-bearing Tongshanling granodiorite sampled 

from the underground galleries in the Jiangyong Pb-Zn-Ag deposit. It is dependable to 

conjecture that the Jiangyong Pb-Zn-Ag deposit was formed temporally consistent with or 

slightly later than the Tongshanling granodiorite. 

In a word, the three ore deposits in the Tongshanling polymetallic ore district were 

almost contemporaneously formed at 160 – 162 Ma which is consistent with the zircon U-Pb 

age of the Tongshanling granodiorite (160 – 164 Ma, Jiang et al., 2009; Zhao et al., 2016b; 

Huang et al., 2017a). Except for the carbonate replacement mineralization which is still not 

well constrained by geochronology, there are no evident time intervals between the different 
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mineralization types in the Tongshanling ore district. 

7.5.2. Sources of ore-forming materials 

The sulfide minerals of the Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag 

deposit, and Yulong Mo deposit show a narrow variation of δ34S values from –0.3 ‰ to 6.3 ‰ 

(Fig. 7-13). Such S isotopic compositions are consistent with those of the sulfides derived 

from high-temperature magmas but are distinctly different from those of the sulfides 

precipitated from sea water and also the sulfides transformed from sulfate by organic 

reduction (Fig. 7-16). Therefore, the sulfur for sulfide mineralization in the Tongshanling 

polymetallic ore district is magmatic sulfur originated from the Tongshanling granodioritic 

intrusion, whereas, the carbonate wall rocks almost do not make a contribution of sulfur to the 

metallogenesis. 

The Pb isotopic compositions of the sulfide minerals from the three ore deposits are 

similar on the whole and are identical to those of the Tongshanling granodiorite (Fig. 7-14a 

and b, Cai et al., 2015), indicating that the lead for sulfide mineralization in the Tongshanling 

polymetallic ore district was derived from the Tongshanling granodioritic intrusion. The 

sulfide minerals from the Tongshanling ore district show Pb isotopic compositions with upper 

crust affinities (Fig. 7-14a and b). Based on detailed geochronological, geochemical, 

petrographic, and mineralogical studies, Huang et al. (2017a) and Huang et al. (2018) 

demonstrated that the Tongshanling granodiorite was originated from partial melting of the 

mafic amphibolitic lower crust. Thus, the lead for the metallogenesis in the Tongshanling ore 

district was in all probability extracted from the upper crust by the ascending granodioritic 

magma. The positive linear correlations of Pb isotopic compositions made up by the sulfide 

minerals from the Tongshanling ore district show steep slopes and do not construct isochrons 

(Fig. 7-14c and d). Such Pb isotopic linear trends are probably indicative of a mixing between 

two different source-rock components (e.g., Anderson et al., 2002; Schneider et al., 2002; 

Cunha et al., 2007; Zeng et al., 2014). The mixing of a lower crust-derived magma with 

relatively low U/Pb and Th/Pb ratios and an upper crust-derived component with relatively 

high U/Pb and Th/Pb ratios may be the genesis of the Pb isotopic linear trends revealed by the 

sulfide minerals from the Tongshanling ore district. 
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It is noteworthy that, the mafic amphibolitic lower crust in South China has fertile Cu 

and Zn contents but a barren Pb content. For instance, the exposed amphibolites in the 

Tianjinping Formation and the Mayuan Group which are the lower-crust basement of the 

Cathaysia Block have Cu contents of 57.7 ppm and 66.5 ppm, Zn contents of 119 ppm and 

118 ppm, and Pb contents of 7.39 ppm and 8.46 ppm, respectively (Li, 1997). Their Cu and 

Zn contents are distinctly higher than those of the upper crust (Cu: 29 ppm, Zn: 63 ppm) in 

Southeast China (Gao et al., 1998) and are also higher than those of the lower crust (Cu: 26 

ppm, Zn: 78 ppm) reported by Rudnick and Fountain (1995). However, their Pb contents are 

distinctly lower than that of the upper crust (17 ppm) in Southeast China (Gao et al., 1998). 

Taylor and McLennan (1995) also reported a distinctly lower Pb content of the lower crust (4 

ppm) than that of the upper crust (20 ppm). Therefore, the Cu and Zn of the Tongshanling ore 

district were most probably released from the mafic amphibolitic lower crust by partial 

melting, whereas, the Pb was extracted from the upper crust by the ascending granodioritic 

magma. 

7.5.3. Nature of ore-forming fluids 

The quartz veins in the granodiorite from the Tongshanling Cu-Pb-Zn deposit and 

Jiangyong Pb-Zn-Ag deposit and the quartz in the skarn of the Yulong Mo deposit show H-O 

isotopic compositions with evident magmatic water affinities (Fig. 7-15), indicating a 

magmatic origin of the ore-forming fluids. By contrast, the sulfide-quartz veins in the 

Tongshanling Cu-Pb-Zn deposit show a slight shift of oxygen isotope towards the meteoric 

water line (Fig. 7-15), indicating an additional influence of meteoric water during the 

migration of ore-bearing fluids from the granodiorite to the peripheral wall rocks with the 

temperature decreasing. However, the effect of meteoric water during mineralization was 

limited and did not change the magmatic water-dominant nature of the ore-forming fluids. In 

a word, the ore-forming fluids of the three ore deposits in the Tongshanling ore district are all 

dominated by magmatic water derived from the Tongshanling granodioritic intrusion. 

7.5.4. Genetic links between different mineralization types and ore deposits 

The Tongshanling Cu-Pb-Zn deposit exhibits a well-developed outward zonation from 
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the proximal endoskarn (Fig. 7-4a) through the proximal exoskarn (Fig. 7-4b) to the 

sulfide-quartz veins (Fig. 7-4g) and then to the distal skarn (Fig. 7-4c) with an extending 

distance of several hundred meters (Fig. 7-2). Besides, a few late Pb-Zn sulfide-quartz veins 

(Fig. 7-4h) and carbonate replacement Pb-Zn sulfide veins (Fig. 7-4i) occur in the granodiorite 

and proximal wall rocks, respectively. Previous studies argued that the distal skarn 

mineralization was caused by hydrothermal overprint and reworking of a pre-enriched 

syndepositional source bed and belongs to stratabound mineralization during which the strata 

have made a significant contribution of ore-forming materials (Long, 1983; Chen, 1986; Deng 

and Deng, 1991). However, the sulfide minerals from the distal skarn ores do not show any 

credible isotopic information supporting a wall-rock contribution of syndepositional 

ore-forming materials. They have similar magmatic δ34S values to those of the other 

mineralization types (Fig. 7-13). The positive linear correlations made up by the sulfide Pb 

isotopic compositions of these different mineralization types in the Tongshanling Cu-Pb-Zn 

deposit (Fig. 7-14c and d) which show a consistent variation with those of the Tongshanling 

granodiorite (Fig. 7-14a) also indicate the same origin of ore-forming materials from the 

Tongshanling intrusion. According to the spatiotemporal evolution sequence from the 

irregular quartz within the proximal endoskarn (Fig. 7-4a) through the barren vein-like quartz 

in the center of the proximal exoskarn (Fig. 7-4b) or cutting the proximal exoskarn (Fig. 7-4e) 

to the sulfide-quartz veins in the peripheral limestone (Fig. 7-4g), the sulfide-quartz veins are 

considered as later productions of the evolved skarn system relative to the earlier skarn. Then, 

the carbonate replacement Pb-Zn sulfide veins were formed with lower temperatures than the 

sulfide-quartz veins (Table 7-1). The zonation of these different mineralization types results in 

the formation of a metal zonation from proximal Cu to distal Cu-Pb-Zn with a few late Pb-Zn 

orebodies in the proximal part. In summary, the different mineralization types of the 

Tongshanling Cu-Pb-Zn deposit are genetically connected in the same skarn system related to 

the Tongshanling granodioritic intrusion. 

Similar to the Tongshanling Cu-Pb-Zn deposit, for the Jiangyong Pb-Zn-Ag deposit, the 

sulfide S and Pb isotopic compositions of the skarn and carbonate replacement mineralization 

types (Figs. 7-13 and 7-14) also indicate the same origin of ore-forming materials from the 



Nov. 2018                                                                                X.D. HUANG 

147 

Tongshanling intrusion. The temperature of carbonate replacement (237 – 331 °C, Table 7-1) 

calculated by the sulfur isotopic fractionation between sphalerite and galena is consistent with 

previous fluid inclusion microthermometric results (225 – 340 °C, Yi and Xu, 2006) and is 

similar to that of the Tongshanling Cu-Pb-Zn deposit (237 °C, Table 7-1), indicating a 

low-temperature and late mineralization. Notably, the Pb isotopic linear trends of the 

Jiangyong Pb-Zn-Ag deposit are almost parallel to those of the Tongshanling Cu-Pb-Zn 

deposit with lower intercept values (i.e., higher 206Pb/204Pb ratio) (Fig. 7-14c and d). Since the 
206Pb/204Pb ratio of the ore-bearing magma was always in evolution by the decay of 238U, the 

divergence of 206Pb/204Pb ratio between these two deposits may be indicative of a time 

interval between the non-simultaneous separations of ore-bearing fluids from magma to form 

these two deposits. Thus, the Jiangyong Pb-Zn-Ag deposit was formed slightly later than the 

Tongshanling Cu-Pb-Zn deposit. This is in accordance with the low-temperature carbonate 

replacement-dominant mineralization in the Jiangyong Pb-Zn-Ag deposit. 

The southern contact zone between the Tongshanling granodiorite and country rocks, 

where the Yulong Mo deposit occurs (Fig. 3-1), shows distinctly stronger wall-rock 

marblization and deformation than the northeastern contact zone. Based on detailed field 

observations, structural analysis, RSCM thermometric and EBSD studies (shown in Chapter 6), 

it is concluded that the emplacement of the Tongshanling intrusion started from the southern 

part. Therefore, under a high-temperature condition, skarn molybdenite mineralization is the 

predominant mineralization type in the Yulong Mo deposit, whereas, the relatively 

low-temperature sulfide-quartz vein and carbonate replacement mineralization types are 

absent. 

Geochronological and S, Pb, and H-O isotopic studies reveal that the Tongshanling 

Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong Mo deposits were almost 

contemporaneously formed with the ore-forming materials and fluids derived from the 

Tongshanling granodioritic intrusion. They are genetically linked in the same 

magmatic-hydrothermal system. The sulfide δ34S values show a progressively decreasing 

trend from the Yulong Mo deposit through the Tongshanling Cu-Pb-Zn deposit to the 

Jiangyong Pb-Zn-Ag deposit (Fig. 7-13). This trend results from thermodynamic equilibrium 
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fractionation of S isotopes from the same magmatic sulfur source. Among these sulfide 

minerals, the molybdenite has the strongest chemical bond, thus, it has the highest δ34S values 

(Fig. 7-13). The higher δ34S values of the molybdenite from the Yulong Mo deposit than that 

from the Tongshanling Cu-Pb-Zn deposit (Fig. 7-13) indicate a relatively high ore-forming 

temperature of the Yulong Mo deposit. The lower δ34S values of the galena from the 

Jiangyong Pb-Zn-Ag deposit than that from the Tongshanling Cu-Pb-Zn deposit (Fig. 7-13) 

result from the lower ore-forming temperature of the Jiangyong Pb-Zn-Ag deposit. A 

comparison of the paragenetic sequences of these three ore deposits (Figs. 7-7–7-9) indicates 

that the Yulong Mo deposit and Jiangyong Pb-Zn-Ag deposit are corresponding to the skarn 

stage and carbonate replacement stage of the Tongshanling Cu-Pb-Zn deposit, respectively. In 

conclusion, the different mineralization types and ore deposits in the Tongshanling ore district 

are genetically linked together and are the productions of evolution and zonation of the same 

skarn system associated with the Tongshanling granodioritic intrusion. 

7.5.5. Ore-forming process 

On the basis of the geological, geochronological, and geochemical studies and the 

discussion above, the ore-forming process of the Tongshanling polymetallic ore district is 

summarized as follows. 

During Middle-Late Jurassic, partial melting of the fertile mafic amphibolitic lower crust 

produced a Cu and Zn enriched granodioritic magma. The ascending granodioritic magma 

extracted abundant Pb from the upper crust and intruded into the Devonian and Carboniferous 

carbonate strata. Then, the vein skarn of the Yulong Mo deposit and the proximal massive 

endoskarn and vein exoskarn of the Tongshanling Cu-Pb-Zn deposit were firstly formed by 

reaction between the granodioritic intrusion and carbonate rocks and followed by Mo, Cu, and 

Cu-Pb-Zn mineralization, respectively, with temperature decreasing. A great quantity of 

ore-bearing magmatic fluids were transported outward maybe along a major fault in the 

Tongshanling Cu-Pb-Zn deposit. The infiltration of ore-bearing magmatic fluids along the 

argillaceous limestone of the Xikuangshan Formation led to the formation of the stratiform 

distal skarn Cu-Pb-Zn orebodies. With the evolution of the skarn system, the outward 

migration of ore-bearing magmatic fluids along fractures from the proximal part resulted in the 
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formation of the sulfide-quartz veins in the peripheral limestone between the proximal and 

distal skarns. The Cu-dominant sulfide-quartz veins were formed earlier at more proximal 

locations than the Cu-Pb-Zn sulfide-quartz veins. After, with the temperature further 

decreasing, the carbonate replacement Pb-Zn sulfide orebodies were formed at the latest 

dominantly in the Jiangyong Pb-Zn-Ag deposit with a few in the Tongshanling Cu-Pb-Zn 

deposit. 

7.5.6. Comparison with the Late Jurassic W deposits in the Nanling Range 

A great number of previously published S, Pb, and H-O isotopic data and molybdenite 

Re-Os geochronological data of the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the 

Nanling Range are collected to make a comparative study of these two different types of 

mineralization. The detailed data are listed in Appendices 7-5 and 7-7–7-9 and shown in 

Figures 7-14–7-18. 

The S isotopic compositions of the sulfide minerals from the Middle-Late Jurassic 

Cu-Pb-Zn and W deposits in the Nanling Range predominantly show narrow variations (δ34S 

values are –5.0 – 6.5 ‰ and –2.9 – 8.9 ‰, respectively) and are of an evident magmatic 

signature except for the Huangshaping Pb-Zn-W-Mo deposit (Fig. 7-16). Ding et al. (2016a) 

proposed that the sulfur for Pb-Zn mineralization in the Huangshaping deposit has a mixing 

origin of partial magmatic sulfur and partial sulfur reduced from evaporite. The H-O isotopic 

compositions of the quartz from the Cu-Pb-Zn and W deposits are similar and show trends of 

oxygen isotope shift from magmatic water to meteoric water (Fig. 7-15). These isotopic 

features indicate that granitoid magmas have played an important role in providing 

ore-forming materials and fluids for the Middle-Late Jurassic Cu-Pb-Zn and W mineralization 

in the Nanling Range. The Pb isotopic compositions of the sulfide minerals from these two 

types of mineral deposits are similar and show upper crust affinities (Fig. 7-14a and b). Huang 

et al. (2017a) proposed that the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing 

granitoids in the Nanling Range were derived from non-simultaneous partial melting of the 

mafic amphibolitic basement in the lower crust and the muscovite-rich metasedimentary 

basement in the upper-middle crust, respectively. Thus, the upper-crust Pb isotopic signatures 

of the W deposits were probably inherited from the magma source, whereas, those of the 
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Figure 7-16. S isotopic compositions of sulfide minerals from the Middle-Late Jurassic Cu-Pb-Zn and W deposits 

in the Nanling Range. The data sources are listed in Appendix 7-8. 

 

Cu-Pb-Zn deposits may be indicative of an extraction of Pb from the upper crust by the 

ascending lower crust-derived magmas as discuss before. 

Notably, the molybdenite Re-Os ages revealed that the Cu-Pb-Zn deposits were formed 

mainly from 153.8 Ma to 166.0 Ma with a peak value of 159.9 Ma, whereas, the W deposits 

were formed mainly from 146.9 Ma to 160.0 Ma with a peak value of 154.5 Ma (Fig. 7-17). 

There is a time gap of about 5 Ma between the two different types of mineral deposits. This is 

highly consistent with the time gap of about 5 Ma between the Cu-Pb-Zn-bearing and 

W-bearing granitoids (Huang et al., 2017a) and further supports the petrogenetic model of 

non-simultaneous partial melting illustrating the origins of the Cu-Pb-Zn-bearing and 
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Figure 7-17. Molybdenite Re-Os ages of the Middle-Late Jurassic Cu-Pb-Zn (CDNR) and W (WDNR) deposits in 

the Nanling Range. The data sources are listed in Appendix 7-9. 

 

W-bearing granitoids (Huang et al., 2017a). The molybdenite Re-Os ages of the Cu-Pb-Zn 

and W deposits are consistent with the zircon U-Pb ages of the Cu-Pb-Zn-bearing and 

W-bearing granitoids (Huang et al., 2017a), respectively, indicating that the Middle-Late 

Jurassic Cu-Pb-Zn and W deposits in the Nanling Range are genetically associated with the 

contemporaneous ore-bearing granitoids. 

The molybdenites from the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the 

Nanling Range have Re contents of 16.3 – 1841 ppm and 0.003 – 14.6 ppm, respectively (Fig. 

7-18). Such distinctly different molybdenite Re contents are indicative of different sources of 

ore-forming materials for the Cu-Pb-Zn and W deposits. Mao et al. (1999) proposed that the 

Re contents of molybdenite progressively decrease from a mantle source (n × 10–4) through a 

crust-mantle mixing source (n × 10–5) to a crustal source (n × 10–6). The low Re contents of 

the molybdenites from the W deposits are consistent with their upper-middle crust-derived 

ore-bearing granites and ore-forming materials. The high Re contents of the molybdenites 

from the Cu-Pb-Zn deposits are widely considered as an indicator of crust-mantle 
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Figure 7-18. Re contents of molybdenites from the Middle-Late Jurassic Cu-Pb-Zn (CDNR) and W (WDNR) 

deposits in the Nanling Range. The data sources are the same as Figure 7-17. 

 

mixing-derived ore-forming materials (e.g., Lu et al., 2006, 2015; Wang et al., 2011d; Huang 

et al., 2015). However, Stein et al. (2001) pointed that melting of mafic rocks may also be 

expected to produce high Re contents in associated molybdenites. Therefore, the high 

molybdenite Re contents of the Cu-Pb-Zn deposits can be well explained by the origin of the 

Cu-Pb-Zn-bearing granitoids, i.e., partial melting of the mafic amphibolitic lower crust, and 

the crust-mantle mixing source is not necessary. The progressively decreasing molybdenite 

Re contents from the earlier Cu-Pb-Zn deposits to the later W deposits (Fig. 7-18) reflect the 

non-simultaneous formation of the Cu-Pb-Zn-bearing and W-bearing granitoids by 

progressive partial melting from the mafic amphibolitic lower crust to the muscovite-rich 

metasedimentary upper-middle crust. 

7.6. Summary 

The Tongshanling Cu-Pb-Zn deposit shows a well-developed outward zonation from 

proximal endoskarn through proximal exoskarn to sulfide-quartz veins and then to distal skarn, 

additionally with a few late Pb-Zn sulfide-quartz veins and carbonate replacement Pb-Zn 

sulfide veins distributed in the proximal part. The Jiangyong Pb-Zn-Ag deposit and Yulong 
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Mo deposit are dominated by carbonate replacement and skarn mineralization, respectively. 

Garnet U-Pb dating yields a 207Pb/235U-206Pb/238U concordia age of 162.0 ± 3.7 Ma with 

a weighted average 206Pb/238U age of 162.4 ± 4.2 Ma for the proximal exoskarn in the 

Tongshanling Cu-Pb-Zn deposit. Molybdenite Re-Os dating of the Tongshanling Cu-Pb-Zn 

deposit and Yulong Mo deposit yields 187Re-187Os isochron ages of 161.8 ± 1.7 Ma and 160.0 

± 5.8 Ma with weighted average model ages of 161.9 ± 1.1 Ma and 160.1 ± 0.8 Ma, 

respectively. U-Pb dating of the hydrothermal titanite in the altered granodiorite yields lower 

intercept ages of 155.5 ± 3.1 Ma and 155.6 ± 3.1 Ma in the Wetherill and Tera-Wasserburg 

U-Pb concordia plots, respectively, with a weighted average 206Pb/238U age of 154.4 ± 1.9 Ma. 

S, Pb, and H-O isotopic studies reveal that the ore-forming materials and fluids of the 

Tongshanling polymetallic ore district were derived from the Tongshanling intrusion. The Cu 

and Zn were most probably released from the mafic amphibolitic lower crust by partial 

melting, whereas, the Pb was extracted from the upper crust by the ascending granodioritic 

magma. 

Based on the geological, geochronological, and isotopic geochemical studies, it is 

concluded that the different mineralization types and ore deposits in the Tongshanling ore 

district are genetically linked together and are the productions of evolution and zonation of 

the same skarn system associated with the Tongshanling granodioritic intrusion. 

A comparison of the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling 

Range further supports the petrogenetic model of non-simultaneous partial melting illustrating 

the origins of the Cu-Pb-Zn-bearing and W-bearing granitoids. 
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Chapter 8. Ore-forming process of the Weijia scheelite 

skarn deposit 

8.1. Introduction 

About one-half of the world's tungsten resources are present as scheelite in skarn 

deposits (Werner et al., 2014). Essentially, all economic W skarns are calcic throughout the 

world (Kwak, 1987), such as the well-known MacTung (Canada), CanTung (Canada), Pine 

Creek (USA), King Island (Australia), Sangdong (South Korea), Nui Phao (Vietnam), Uludağ 

(Turkey), Salau (France), Los Santos (Spain), Xintianling (China), Shizhuyuan (China), and 

Yaogangxian (China) deposits (see details in the Appendix of Meinert et al., 2005). Especially, 

the recently discovered giant Zhuxi W-Cu deposit (2.86 Mt WO3, Wang et al., 2017b) in 

northeastern Jiangxi Province of South China is also dominated by calcic skarn mineralization 

(Pan et al., 2017). In contrast, magnesian W skarns are uncommon and have been rarely 

reported. For instance, the Costabonne W deposit (France) (Guy, 1979; Kwak, 1987; Dubru et 

al., 1988), Carro del Diablo W-Sn deposit (Spain) (Casquet and Tornos, 1984), and 

Traversella Fe-W-Cu deposit (Italy) (Dubru et al., 1988; Vander Auwera and Andre, 1991) are 

several exceptional examples of magnesian W skarns. These latter are characterized by 

small-scale mineralization and are of less economic importance. Although dolomitic rocks are 

favorable hosts for some Fe, Sn, and Au skarns, general observations revealed that they tend 

to inhibit the development of W skarns (Zharikov, 1970; Einaudi et al., 1981; Kwak, 1987; 

Ray, 1998, 2013; Meinert et al., 2005). 

The discovery of the super-large Weijia scheelite skarn deposit in South China that 

comprises predominant magnesian W skarn and subordinate calcic W skarn demonstrates and 

highlights the importance of magnesian skarn for W mineralization. The Weijia W deposit has 

a total WO3 resource of ca. 300,000 t estimated by a cut-off grade of 0.12 wt.%, in which ca. 

240,000 t are from the magnesian skarn with an average grade of ca. 0.18 wt.% and the rest ca. 

60,000 t from the calcic skarn with an average grade of ca. 0.24 wt.% (No. 1 General Brigade 

of Hunan Geological and Mining Bureau for Nonferrous Metals, unpub. report, 2014; No. 418 
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Geological Team of Bureau of Geology and Mineral Exploration and Development of Hunan 

Province, unpub. report, 2016). Since the concealed Weijia W deposit is still unmined, 

however, very few studies have been carried out on its metallogenesis and mineralization 

process, except for some publications of deposit geology and ore-bearing granite (e.g., Li et 

al., 2012a; Hu et al., 2015; Zhao et al., 2016a, 2016b; Huang et al., 2017a). Scientifically the 

Weija deposit presents a special case of scheelite skarn deposit. Such unusual economic 

mineralization is of great interest to economic geologists and provides an excellent 

opportunity for further understanding of W mineralization. Two main particularities have been 

evocated in preceding publications. First, it is genetically related to a highly fractionated 

porphyritic granite with petrographic features similar to those of the subvolcanic granites 

(Huang et al., 2017a). Such an association differs from most other W skarn deposits that are 

commonly related to deep-emplaced and coarse-grained granitoids (Einaudi et al., 1981; 

Newberry and Swanson, 1986; Kwak, 1987; Ray and Webster, 1991; Meinert et al., 2005). 

Second, fluorite is abundant and is a potential economic resource of the Weijia W deposit (Hu 

et al., 2015). However, no genetic model has been proposed for this particular deposit. 

In this study, based on detailed observations of surface outcrops and numerous drill cores, 

systematic petrographic study, Raman spectroscopy of carbonaceous material (RSCM) 

thermometry, whole-rock geochemical analysis of altered granite, and mineralogical analyses 

of micas, skarn minerals, and scheelite are carried out to constrain the process of magmatic to 

hydrothermal evolution and magnesian and calcic skarnization and mineralization of the 

Weijia W deposit. Some key processes that control tungsten mineralization are then discussed 

based on these results and previous studies. Finally, a comprehensive genetic model of the 

Weijia W deposit is proposed. 

8.2. Deposit geology 

8.2.1. Stratigraphy 

In the Weijia W deposit, the exposed strata are mainly Middle-Upper Devonian 

carbonate rocks that include the Middle Devonian Qiziqiao and Upper Devonian Shetianqiao 

and Xikuangshan Formations, some of which are covered by Quaternary sediments (Fig. 8-1). 
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Figure 8-1. Geological map of the Weijia W deposit (modified after No. 418 Geological Team of Bureau of 

Geology and Mineral Exploration and Development of Hunan Province, unpub. report, 2016). 

 

These strata have not been intensively deformed by regional folds and faults, and consistently 

strike northwest-southeast and dip 10 – 35 ° to southwest (Fig. 8-2). The Qiziqiao Formation 

is composed of a ca. 340-m-thick lower member of limestone, carbonaceous limestone, and 

marly limestone, a ca. 390-m-thick middle member of dolostone with intercalated dolomitic 

limestone, and a ca. 350-m-thick upper member of limestone with intercalated marly 

limestone. The Shetianqiao and Xikuangshan Formations dominantly consist of limestone, 

dolomitic limestone, and marly limestone. During Late Jurassic, the Qiziqiao Formation was 

intruded by the Weijia granite and the magnesian and calcic skarn scheelite orebodies were 

formed in the middle and upper members, respectively (Fig. 8-2). 
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Figure 8-2. Cross section A-B (section line shown in Fig. 8-1) of the Weijia W deposit (modified after No. 1 

General Brigade of Hunan Geological and Mining Bureau for Nonferrous Metals, unpub. report, 2014; No. 418 

Geological Team of Bureau of Geology and Mineral Exploration and Development of Hunan Province, unpub. 

report, 2016). 

 

8.2.2. Weijia granite 

The Weijia granite was emplaced along the bedding (Fig. 8-2) and occurs as scattered 

bosses, ductoliths, apophyses, and dikes, with a total exposure area of ca. 1.3 km2 (Fig. 8-1). 

A rough estimation shows that the total volume of the Weijia granite not exceeds 1 km3. With 

a light red to off-white color, the fresh granite shows a typical porphyritic texture (Figs. 8-3a 

and 8-4a). The porphyritic Weijia granite contains 30 – 50 vol.% of phenocrysts mostly with a 
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Figure 8-3. Petrographic photographs of the Weijia W deposit at hand-specimen scale. (a) Porphyritic texture of 

the Weijia granite. (b) Altered granite with a green color. (c and d) Stockwork magnesian skarn veinlets hosted 

by dolostone. (e) Sulfide ore from the bottom of magnesian skarn. (f) Secondary weathering orebody over the 

calcic skarn. (g) Reaction front of the calcic skarn. (h) Three generations of garnet, two generations of pyroxene, 

and K-feldspar-quartz and quartz veinlets in the calcic skarn. (i) The first-generation garnet, late pyroxene, and 

(K-feldspar)-quartz veins in the calcic skarn. (j) The latest fluorite veinlets cut across all the other minerals, 

include quartz, in the calcic skarn. Mineral abbreviations: Ab = albite, Bt = biotite, Cal = calcite, Fl = fluorite, 

Grt = garnet, Kfs = K-feldspar, Px = pyroxene, Py = pyrite, Qz = quartz, Wo = wollastonite. 



Nov. 2018                                                                                X.D. HUANG 

159 

 

Figure 8-4. Petrographic photomicrographs (crossed-polarized light) and backscattered electron (BSE) images 

of the Weijia granite. (a) Porphyritic texture of the Weijia granite (b) Embayment texture of the hexagonal 

bipyramidal quartz phenocryst. (c) Micrographic texture in K-feldspar. (d) “Pearlitic border” texture of the 

K-feldspar phenocryst. (e) Bleached biotite phenocryst. (f) Interstitial white mica in the matrix. (g) Bubble-like 

aggregate of white mica and fluorite. (h) Intergrowth of zircon, thorite, and xenotime. (i) Intergrowth of 

monazite and xenotime. Mineral abbreviations: Ab = albite, Bt = biotite, Fl = fluorite, Kfs = K-feldspar, Mnz = 

monazite, Qz = quartz, Thr = thorite, WM = white mica, Xtm = xenotime, Zrn = zircon. 

 

granularity of 0.5 – 5 mm and 50 – 70 vol.% of matrix with a felsitic to fine-grained texture 

(Figs. 8-3a and 8-4a–f). It is comprised of quartz (ca. 35 vol.%), K-feldspar (ca. 37 vol.%), 

albite (ca. 25 vol.%), and minor biotite (ca. 1 vol.%) and white mica (ca. 2 vol.%) (Figs. 8-3a 

and 8-4a–f). With a hexagonal bipyramidal shape, the quartz phenocrysts frequently exhibit 

an embayment texture (Fig. 8-4b). Micrographic texture is common in K-feldspar (Fig. 8-4c). 

In the rim of some K-feldspar phenocrysts, microgranular quartz (10 – 100 m), with a 

gradually increased grain size outward, constitutes a “pearlitic border” texture (Fig. 8-4d). 
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Biotite crystals mainly occur as phenocrysts, a large proportion of which are bleached (Fig. 

8-4e) in comparison to the fresh ones (Fig. 8-4a). White mica is distributed as interstitial 

crystals in the matrix (Fig. 8-4f) or coexists with fluorite as millimeter-sized bubble-like 

aggregates (Fig. 8-4g). Accessory minerals include fluorite, scheelite, zircon, thorite, 

xenotime, monazite (Fig. 8-4h and i), niobite, samarskite, fergusonite, parisite, ilmenite, etc. 

The granite close to skarn orebodies has been widely altered and sometimes mineralized 

(Fig. 8-2) and is generally green-colored (Fig. 8-3b). The altered granite close to the 

magnesian skarn commonly shows a much stronger degree of alteration than that close to the 

calcic skarn. Serpentine, phlogopite, dolomite, and calcite are widespread in the altered 

granite near the magnesian skarn (Fig. 8-5). Serpentine usually cuts the granite as veinlets 

(Fig. 8-5a) or brecciates and replaces the phenocrysts (Fig. 8-5b). Phlogopite generally 

replaces the K-feldspar phenocrysts with a relict (Fig. 8-5c) or pseudomorph (Fig. 8-5d) 

texture or occurs as alteration mineral colts in the matrix that are frequently constituted by a 

core of dolomite or calcite with/without fluorite and a rim of phlogopite (Fig. 8-5e and f). 

8.2.3. Stockwork veins 

It is interesting to note that the apex of the Weijia granite has been mined for kaolin. 

Numerous stockwork veins and a few aplite veins are distributed at the apex of the Weijia 

granite. These stockwork veins are mostly northeast-southwest to north-south striking and 

steeply dip to northwest to west with some to southeast (Fig. 8-6). Three generations of 

stockwork veins have been distinguished according to their petrographic features. They are 

successivelly the first-generation K-feldspar-quartz pegmatite veins (Fig. 8-7a), the 

second-generation (K-feldspar)-quartz veins (Fig. 8-7b) or veinlets, and the third-generation 

stockwork quartz veinlets (Fig. 8-7c). The K-feldspar-quartz pegmatite veins are several 

centimeters in thickness and comprise dominantly K-feldspar and quartz that are similar in 

contents (Fig. 8-7a). Two generations of K-feldspar are recognized in the K-feldspar-quartz 

pegmatite veins (Fig. 8-7a). By contrast, the (K-feldspar)-quartz veins or veinlets contain 

obviously less K-feldspar which is corresponding to the late-generation K-feldspar in the 

K-feldspar-quartz pegmatite veins (Fig. 8-7a and b). The stockwork quartz veinlets have a 

thickness of several millimeters and are predominantly composed of quartz almost without 
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Figure 8-5. Petrographic photomicrographs (crossed-polarized light) and BSE images of the altered Weijia 

granite near the magnesian skarn. (a) Serpentine cuts the granite as veinlet coexisting with abundant dolomite. (b) 

Serpentine brecciates and replaces the quartz phenocryst. (c) K-felspar phenocryst replaced by phlogopite and 

dolomite with a residual core. (d) Pseudomorphic replacement of a K-felspar phenocryst by phlogopite. (e) 

Alteration mineral clot constituted by a core of dolomite and fluorite and a rim of phlogopite. (f) Alteration 

mineral clot constituted by a core of calcite and a rim of phlogopite. Mineral abbreviations: Cal = calcite, Dol = 

dolomite, Fl = fluorite, Kfs = K-feldspar, Phl = phlogopite, Qz = quartz, Srp = serpentine. 
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Figure 8-6. Equal-area lower hemisphere stereonet projection and density distribution of the poles of the 

stockwork veins at the apex of the Weijia granite. 

 

K-feldspar (Fig. 8-7c). Notably, there is a bleached zone of granite enveloping the 

K-feldspar-quartz pegmatite veins and (K-feldspar)-quartz veins (Fig. 8-7a and b). Fe-Ti 

oxide halos and biotite occur in the periphery of the bleached zone but are absent in bleached 

zone (Fig. 8-7a and b). The granite surrounding the stockwork quartz veinlets is totally 

bleached without biotite and Fe-Ti oxide halos (Fig. 8-7c). 

White mica commonly appears in the stockwork veins (Fig. 8-8a–c). The white mica in 

the K-feldspar-quartz pegmatite veins and (K-feldspar)-quartz veins or veinlets generally 

occurs as independent crystals and has a relatively large grain size of hundreds of microns 

(Fig. 8-8a and b), whereas, the white mica in the stockwork quartz veinlets is aggregated and 

is distinctly smaller with a grain size of several microns to dozens of microns (Fig. 8-8c). The 

biotite crystals in the granite with stockwork veins are widely bleached with the formation of 

abundant Fe-Ti oxides (Fig. 8-8d). White mica also appears in the matrix of granite with 

stockwork veins (Fig. 8-8e) and the bleached zone near stockwork veins (Fig. 8-8f). 

8.2.4. Magnesian skarn 

The magnesian skarn is distributed along the contact zone between the Weijia granite and 

dolostone (Fig. 8-2). With thicknesses of 85 – 182 m, the magnesian skarn orebodies mostly 
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Figure 8-7. Petrographic photographs of the stockwork veins at the apex of the Weijia granite at hand-specimen 

scale. Mineral abbreviations are the same as Figure 8-3. 

 

occur as stratiform within the dolostone of the middle member of the Qiziqiao Formation and 

have a consistent strike-dip with the host strata (Fig. 8-2). They are buried at the depths below 

the surface of 200 – 900 m (Fig. 8-2). The magnesian skarn generally occurs as green-colored 

stockwork veinlets in the fissures of dolostone with a millimeter-scale outward zonation from 

magnesian skarn through bleached marble to unaltered dolostone (Fig. 8-3c and d). This 
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Figure 8-8. Petrographic photomicrographs (crossed-polarized light) of micas in the stockwork veins and their 

adjacent zone at the apex of the Weijia granite. (a) White mica in the K-feldspar-quartz pegmatite veins. (b) 

White mica in the (K-feldspar)-quartz veinlets. (c) White mica in the stockwork quartz veinlets. (d) Bleached 

biotite in the granite with stockwork veins. (e) White mica in the matrix of granite with stockwork veins. (f) 

White mica in the bleached zone near stockwork veins. Mineral abbreviations are the same as Figure 8-4. 

 

zonation is particularly obvious in the dolostone enriched with carbonaceous materials (Fig. 

8-9). At the bottom of the magnesian skarn orebodies, there is a 0.85-m-thick stratiform 

sulfide orebody. It is low-grade and has a dominant ore mineralogy of chalcopyrite, sphalerite, 

galena, pyrite (Fig. 8-3e), and arsenopyrite. 

Serpentine and phlogopite are the predominant magnesian skarn minerals (Figs. 8-9 and 

8-10a–d), however, forsterite and spinel which frequently occur in magnesian skarn as 

prograde minerals are absent. Abundant calcite was formed during the magnesian skarnization 

of dolostone. The calcite generally constructs the envelopes of the magnesian skarn veinlets 

(Figs. 8-9 and 8-10a and c–e), cross-cuts them as late veinlets (Figs. 8-3c and 8-10f), or 

occurs in the center of them (Figs. 8-3d and 8-10d). Abundant fluorite was formed together 

with the magnesian skarn minerals. The fluorite generally coexists with serpentine and 

phlogopite in the center of the magnesian skarn veinlets (Fig. 8-10b, c, and e) or constructs 

the envelopes of them (Fig. 8-10e and g). Some sellaite crystals appear in the calcite 
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Figure 8-9. Stockwork magnesian skarn veinlets hosted by the dolostone enriched with carbonaceous materials 

in the Weijia W deposit. Mineral abbreviations are the same as Figure 8-5. 

 

envelopes of the magnesian skarn veinlets (Fig. 8-10c–e). A few marialite (Fig. 8-10e and g), 

plagioclase, and K-feldspar (Fig. 8-10 g) were late formed in the center of the magnesian 

skarn veinlets. Garnet as en early prograde mineral occasionally appears in the magnesian 

skarn and may coexist with scheelite (Fig. 8-10f and h). Scheelite is mostly distributed in the 

magnesian skarn veinlets as disseminated grains and sometimes coexists with magnetite (Fig. 

8-10c). 

The paragenetic sequence of the magnesian skarn is shown in Figure 8-11. In the pre-ore 

stage, some prograde minerals, i.e., garnet and pyroxene, were formed firstly followed by the 

formation of a few chondrodite, fluoborite, magnetite, and scheelite. Fluorite also began to 

precipitate. The syn-ore stage was dominated by the formation of abundant serpentine, 

phlogopite, fluorite, scheelite, calcite, and dolomite, some talc, chlorite, and sellaite, and a 

few later marialite, plagioclase, K-feldspar, and quartz. In the post-ore stage, carbonate 

minerals, fluorite, and quartz were still continually formed with the disseminated precipitation 

of some sulfide minerals, such as pyrite, arsenopyrite, chalcopyrite, sphalerite, and galena. 

8.2.5. Calcic skarn 

The calcic skarn is distributed along the contact zone between the Weijia granite and 

limestone (Fig. 8-2). With thicknesses of 14 – 46 m, the calcic skarn orebodies mostly occur 

as massive or stratiform within the limestone of the upper member of the Qiziqiao Formation 

(Fig. 8-2). They have a buried depth shallower than 300 m and are partially exposed on the 

surface (Fig. 8-2). Surficial weathering of the calcic skarn led to the formation of a secondary 
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Figure 8-10. Petrographic photomicrographs (crossed-polarized light) and BSE images of the magnesian skarn 

in the Weijia W deposit. (a) Phlogopite, serpentine, and calcite formed by skarnization of dolostone. (b) 

Coexistence of phlogopite, serpentine, and fluorite in the magnesian skarn. (c) Outward zonation of magnesian 

skarn from serpentine with scheelite and fluorite in the center and magnetite in the rim through calcite with a few 

sellaite to dolomite. (d) Outward zonation of magnesian skarn from phlogopite + calcite through serpentine to 

phlogopite and then to serpentine + calcite with a few sellaite. (e) Outward zonation of magnesian skarn from 

phlogopite + fluorite and marialite through serpentine to phlogopite and to serpentine and fluorite with some 

phlogopite and then to calcite and sellaite. (f) Earlier garnet, phlogopite, and serpentine with a few scheelite cut 

by later calcite. (g) Outward zonation of magnesian skarn from serpentine and K-feldspar through fluorite + 

marialite to phlogopite and then to fluorite + serpentine. (h) Scheelite coexisting with garnet, fluorite, and calcite 

enveloped by serpentine. Mineral abbreviations: Cal = calcite, Dol = dolomite, Fl = fluorite, Grt = garnet, Kfs = 

K-feldspar, Mag = magnetite, Mar = marialite, Phl = phlogopite, Sch = scheelite, Sel = sellaite, Srp = serpentine. 

 

 

Figure 8-11. Paragenetic sequence of the magnesian skarn in the Weijia W deposit. 
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weathering orebody with a WO3 resource of ca. 8,000 t and an enriched average grade of ca. 

0.35 wt.% (No. 1 General Brigade of Hunan Geological and Mining Bureau for Nonferrous 

Metals, unpub. report, 2014). This weathering orebody is horizontally extended over the 

calcic skarn orebodies with a thickness of 3 – 40 m (Fig. 8-2). It is composed of Quaternary 

sediments in which the content of residues increases with depth (Fig. 8-3f). 

Wollastonite, garnet, and pyroxene are the predominant calcic skarn minerals (Fig. 8-3g–

j). At the reaction front of calcic skarn, marble was formed along the fluid pathways in 

limestone and overprinted by wollastonite and followed by garnet (Fig. 8-3g). Three 

generations of garnet have been distinguished in the calcic skarn, which are chronologically 

green-brown to yellow-brown disseminated or aggregated garnet, yellow-brown to red-brown 

vein-like garnet, and red-brown to dark brown vein-like or interstitial garnet (Fig. 8-3h–j). 

The first-generation garnet is commonly zoned with some pyroxene inclusions inside and has 

been partially replaced by later minerals (Fig. 8-12a). By contrast, the second-generation 

vein-like garnet does not show a zonal texture and cuts earlier pyroxene (Fig. 8-12b). The 

third-generation interstitial garnet has a well-developed zonal texture with the remaining 

interstice filled by calcite (Fig. 8-12c). The pyroxene can be divided into an early generation 

of light green disseminated pyroxene (Fig. 8-3h) and a late generation of dark green pyroxene 

dominated by veinlets (Fig. 8-3h–j) and sometimes aggregated masses (Fig. 8-3i). The 

wollastonite contains an early generation that coexists with garnet and pyroxene and shows an 

intergrowth texture with fluorite and a late generation that occurs as veinlets cutting the 

earlier garnet, pyroxene, wollastonite, and fluorite (Fig. 8-12d and e). The matrix of the calcic 

skarn frequently exhibits a complex intergrowth texture of skarn minerals, calcite, fluorite, 

and quartz (Fig. 8-12f). Some columnar vesuvianite crystals with a zonal texture appear in the 

calcic skarn (Fig. 8-12g). The calcic skarn is cross-cut by (K-feldspar)-quartz veins or veinlets 

which are commonly enveloped by the late pyroxene (Fig. 8-3h–j). Fluorite veinlets were 

formed later and cut across the quartz veinlets (Fig. 8-3j). Late K-feldspar and quartz may 

coexist with fluorite (Fig. 8-12h). Scheelite is distributed in the calcic skarn as disseminated 

grains (Fig. 8-12b and h). 
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Figure 8-12. BSE images of the calcic skarn in the Weijia W deposit. (a) The first-generation automorphic 

garnet with a zonal texture containing some pyroxene inclusions and enclosed and partially replaced by fluorite. 

(b) The second-generation vein-like garnet including some scheelite and enveloped by fluorite and pyroxene. (c) 

The third-generation interstitial garnet with a well-developed zonal texture. (d and e) Earlier garnet, pyroxene, 

wollastonite and fluorite cut by later wollastonite, the earlier wollastonite shows an intergrowth texture with 

fluorite and the later wollastonite occurs as veinlets. (f) Complex intergrowth texture of skarn minerals, calcite, 

fluorite, and quartz in the matrix of the calcic skarn. (g) Columnar vesuvianite with a zonal texture. (h) Late 

K-feldspar and quartz coexisting with fluorite. Mineral abbreviations: Cal = calcite, Fl = fluorite, Grt = garnet, 

Kfs = K-feldspar, Px = pyroxene, Qz = quartz, Sch = scheelite, Ves = vesuvianite, Wo = wollastonite. 

 

The paragenetic sequence of the calcic skarn is shown in Figure 8-13. In the pre-ore 

stage, abundant prograde minerals, i.e., garnet, pyroxene, and wollastonite, were formed 

firstly followed by the formation of a few magnetite, vesuvianite, and scheelite. Fluorite also 

 

 

Figure 8-13. Paragenetic sequence of the calcic skarn in the Weijia W deposit. 



Nov. 2018                                                                                X.D. HUANG 

171 

began to precipitate. The skarn minerals were still continually formed in the syn-ore stage. 

Besides the skarn minerals, the syn-ore stage was dominated by the formation of abundant 

fluorite, scheelite, and calcite and a few serpentine, phlogopite, and chlorite followed by a few 

later plagioclase, K-feldspar, zeolite, and quartz. In the post-ore stage, calcite, fluorite, and 

quartz were still continually formed with the disseminated precipitation of some sulfide 

minerals, such as pyrite, pyrrhotite, arsenopyrite, chalcopyrite, sphalerite, and galena. 

8.2.6. Relationship between WO3 and CaF2 grades 

Both the magnesian and calcic skarn scheelite ores contain abundant fluorite (mostly 5 – 

20 wt.%), and their WO3 grades show an obvious positive correlation with fluorite contents 

(Figs. 8-14 and 8-15). The wall rocks (dolostone) near the magnesian skarn orebodies also 

have a high content of fluorite (mostly > 10 wt.%, Figs. 8-14 and 8-15), however, the wall 

rocks (limestone) near the calcic skarn orebodies show a distinctly lower fluorite content 

(mostly < 5 wt.%, Fig. 8-15). Weathering and leaching of the calcic skarn resulted in a sharp 

decrease of fluorite content to 0.4 – 0.8 wt.% (Figs. 8-14 and 8-15). 

8.3. Sampling and analytical methods 

Representative samples of the fresh and altered Weijia granite, stockwork veins at the 

apex of granite, and magnesian and calcic skarns and their adjacent carbonate wall rocks were 

collected from drill cores (numbered by ZK) and surface outcrops (numbered by WJ). They 

were firstly prepared as polished thin sections for petrographic studies under optical 

microscope and scanning electron microscope (SEM), and then for mineral composition 

analyses by SEM, electron microprobe (EMP), and laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS). Eleven polished thin sections of carbonate rocks 

close to the magnesian (six samples) and calcic (five samples) skarns were selected for RSCM 

thermometry. Twelve samples of altered granite spatially close to the magnesian (eight 

samples) and calcic (four samples) skarn orebodies were crushed to 200 mesh for whole-rock 

analyses of major and trace elements. 

RSCM analysis was carried out by a Renishaw InVIA Reflex micro-spectrometer 

coupled to a DM2500 Leica microscope at Bureau de Recherches Géologiques et Minières 
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Figure 8-14. Variations of WO3 and CaF2 grades in representative drill cores of the magnesian and calcic skarns 

in the Weijia W deposit. The data are from No. 1 General Brigade of Hunan Geological and Mining Bureau for 

Nonferrous Metals, unpub. report (2014) and No. 418 Geological Team of Bureau of Geology and Mineral 

Exploration and Development of Hunan Province, unpub. report (2016). 

 

(BRGM), Orléans, France. An argon laser with 0 = 514.5 nm was used as exciter. Instrument 

control and Raman measurements were performed by the Renishaw Wire 3.4 software. Before 

analysis, the spectrometer was calibrated using the 520.4 cm−1 line of silicon. To check 

within-sample structural heterogeneity, at least 10 spectra were recorded for each sample. 
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Figure 8-15. Binary plot of CaF2 and WO3 grades in representative drill cores of the magnesian and calcic 

skarns in the Weijia W deposit. The data sources are the same as Figure 8-14. 

 

Each spectrum was acquired through 5 – 10 accumulations and an acquisition time of 10 – 20 

s. The off-line data were processed using the program PeakFit v4.06 with a Voigt function. 

Whole-rock major elements were measured using wet chemical methods at the Analysis 

Center of No. 230 Research Institute of the China National Nuclear Corporation, Changsha. 

The detailed procedures are described in the China National Standards GB/T 14506.3-2010 – 

GB/T 14506.14-2010. The analytical precisions for all elements were better than 5 %. 

Whole-rock trace and rare earth elements were determined by a Finnigan MAT Element II 

high resolution ICP-MS at the State Key Laboratory for Mineral Deposits Research (LAMD), 

Nanjing University (NJU), China. The analytical procedures and conditions followed Gao et 

al. (2003). The analytical precisions for most elements were better than 5 %. 

Mineral discrimination, backscattered electron (BSE) imaging, and energy dispersive 

spectrometry (EDS) elemental mapping were performed by a ZEISS MERLIN Compact SEM 

equipped with a Gemini I electron column and a Bruker XFlash 6 | 30 silicon drift detector 

(SDD) at Institut des Sciences de la Terre d’Orléans (ISTO), France. The analytical conditions 

included an accelerating voltage of 15 kV, a current up to 100 nA with resolution up to 0.8 nm, 

and a work distance of 10 mm. 
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Major element analyses of micas and skarn minerals were carried out with a CAMECA 

SX50 EMP at ISTO, France. The analytical conditions included an accelerating voltage of 15 

kV, a beam current of 10 nA with diameter of 1 m, and counting times of 10 s for all 

elements and 5 s for background. The collected data were corrected by the ZAF procedures. 

Calibration was performed using natural minerals and synthetic compounds. 

Trace elements of garnet and scheelite were analyzed by an Agilent 7700× ICP-MS 

coupled to an Excite 193 nm Photon Machines laser ablation system at Nanjing FocuMS 

Technology Co. Ltd., China. Each analysis was carried out by a 50- m ablating spot at 8 Hz 

with energy of 4.5 mJ (transmittance 50%) for 40 s after measuring the gas blank for 15 s. 

NIST SRM 610 was used as the external standard for quantitative calibration of the 

time-dependent drift of sensitivity and mass discrimination. The off-line data processing was 

performed using a program called ICPMSDataCal (Liu et al., 2008b). 

8.4. Results 

8.4.1. RSCM thermometry 

The Raman spectrum of carbonaceous material comprises a first-order region of 1100 – 

1800 cm–1 and a second-order region of 2300 – 3500 cm–1 (Tuinstra and Koenig, 1970; 

Nemanich and Solin, 1979). All measurements were performed in the first-order domain. In 

the first-order region, the graphite (G) band occurs around 1580 cm–1 and corresponds to 

in-plane vibration of aromatic carbons in the graphitic structure (Tuinstra and Koenig, 1970; 

Lespade et al., 1984; Wopenka and Pasteris, 1993). The defect bands D1 and D2 occur around 

1350 cm–1 and 1620 cm–1, respectively, corresponding to physical and chemical defects in the 

aromatic skeleton of carbonaceous material (Wopenka and Pasteris, 1993; Ferrari and 

Robertson, 2000). Beyssac et al. (2002) defined the parameters R1 and R2 ratios, which are 

D1/G peak intensity (i.e., peak height) ratio and D1/(G + D1 + D2) peak area ratio, 

respectively, to evaluate the disorder degree of carbonaceous material. A negative linear 

correlation of the R2 ratio with the peak temperature of metamorphism in the range of 330 – 

640 °C was established by Beyssac et al. (2002), i.e., T (°C) = –445 × R2 + 641. The RSCM 

thermometer was extended towards low temperatures of 200 – 330 °C by Lahfid et al. (2010). 
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The Raman spectra of carbonaceous material in the carbonate rocks close to the 

magnesian and calcic skarns are shown in Figure 8-16. Some parameters of the Raman spectra, 

include the position and full width at half maximum (FWHM) of the G band, the R1 and R2 

ratios, and the calculated temperature, are listed in Appendix 8-1. Compared with the Raman 

spectra of carbonaceous material in the carbonate rocks near the calcic skarn, the Raman 

spectra of carbonaceous material in the carbonate rocks near the magnesian skarn show higher 

R1 and R2 ratios, indicating higher degrees of disorder and corresponding to lower peak 

metamorphic temperatures (Appendix 8-1 and Fig. 8-16). The Raman spectra of carbonaceous 

material in the carbonate rocks close to the magnesian and calcic skarns have respective R1 

ratios of 0.44 – 0.59 and 0.13 – 0.20, respective R2 ratios of 0.33 – 0.38 and 0.15 – 0.20, and 

respective calculated temperatures of 470 – 496 °C and 554 – 576 °C (Appendix 8-1 and Fig. 

8-16). The RSCM thermometry reveals that the wall-rock metamorphic temperature of the 

magnesian skarn was about 80 °C lower than that of the calcic skarn. 

 

 

Figure 8-16. Raman spectra of carbonaceous material in carbonate rocks close to the magnesian and calcic skarns 

in the Weijia W deposit and temperatures calculated by the RSCM thermometry. 
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8.4.2. Altered granite 

The fresh Weijia granite is predominantly composed of quartz, K-feldspar, and albite, 

containing high SiO2 (73.86 – 76.73 wt.%), Al2O3 (13.06 – 14.27 wt.%), K2O (4.84 – 6.78 

wt.%), and Na2O (3.01 – 3.72 wt.%) contents and low CaO (0.12 – 0.88 wt.%), MgO (0.01 – 

0.17 wt.%), FeOTotal (0.12 – 0.54 wt.%), and MnO (0.00 – 0.01 wt.%) contents (Huang et al., 

2017a). EDS elemental mapping of the altered granite close to the magnesian skarn shows 

that obvious Ca, Mg, Fe, and Mn gains happened during the hydrothermal alteration of 

granite (Fig. 8-17), corresponding to the formation of serpentine, phlogopite, dolomite, and 

calcite in the altered granite (Fig. 8-5). The matrix of the altered granite exhibits an evident 

Na loss (Fig. 8-18) relative to the fresh granite which may indicate a breakdown of albite 

during the hydrothermal alteration of granite. 

The analytical results of whole-rock major and trace element compositions of the altered 

Weijia granite are listed in Appendix 8-2 and shown in Figures 8-19 and 8-20. For major 

elements, the altered granite close to the magnesian skarn has distinctly higher CaO (0.69 – 

3.03 wt.%), MgO (0.11 – 0.90 wt.%), FeOTotal (0.27 – 1.57 wt.%), MnO (0.02 – 0.10 wt.%), 

and LOI (loss on ignition) (2.33 – 4.02 wt.%) contents and lower Na2O contents (0.10 – 1.74 

wt.%) than the fresh granite (Fig. 8-19a–d). In contrast, the altered granite close to the calcic 

skarn shows an obviously lower degree of mass transfer and has intermediate compositions 

between the fresh granite and the altered granite close to the magnesian skarn (Fig. 8-19a–d). 

The CaO, MgO, FeOTotal, MnO, LOI, and Na2O contents of the altered granite close to the 

calcic skarn are 0.18 – 1.26 wt.%, 0.04 – 0.19 wt.%, 0.21 – 0.73 wt.%, 0.00 – 0.02 wt.%, 1.70 

– 2.02 wt.%, and 1.59 – 3.19 wt.%, respectively (Fig. 8-19a–d). There are no strong Si, Ti, Al, 

and K (Fig. 8-19b) gains or losses during the hydrothermal alteration of granite. 

For trace elements, the altered granite close to the magnesian skarn has distinctly higher 

LILE (large ion lithophile elements) such as Rb (412 – 619 ppm) and Ba (66 – 195 ppm) 

contents than the fresh granite (Rb: 260 – 356 ppm, Ba: 7 – 43 ppm, Huang et al., 2017a) (Fig. 

8-19e). The altered granite close to the calcic skarn contains intermediate LILE contents (Rb: 

309 – 409 ppm, Ba: 25 – 38 ppm) between the fresh granite and the altered granite close to the 

magnesian skarn (Fig. 8-19e). In contrast, the HFSE (high field strength elements) such as Th, 



Nov. 2018                                                                                X.D. HUANG 

177 

 

Figure 8-17. Energy dispersive spectrometry (EDS) elemental mapping of the altered Weijia granite close to the 

magnesian skarn. 
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Figure 8-18. EDS elemental mapping of the matrix of the altered Weijia granite close to the magnesian skarn. 

 

 

Figure 8-19. Binary plots of some major compositions, trace elements, and calculated parameters of the fresh and 
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altered Weijia granite. LOI = loss on ignition. TE1,3 = {[CeN/(La2/3 
N × Nd1/3 

N ) × PrN/(La1/3 
N × Nd2/3 

N )]0.5 × [TbN/(Gd2/3 
N × 

Ho1/3 
N ) × DyN/(Gd1/3 

N × Ho2/3 
N )]0.5}0.5, it quantifies the degree of the tetrad effect (Irber, 1999). The data of fresh 

granite are from Huang et al. (2017a). 

 

U, Nb, Ta, Zr, and Hf are more stable than the LILE and do not show strong gains or losses 

during the hydrothermal alteration of granite (Fig. 8-20a). Notably, the altered granite shows 

higher REE especially HREE contents and a stronger REE tetrad effect than the fresh granite 

(Figs. 8-19f and 8-20b). The altered granite close to the magnesian skarn has higher ΣREE 

(105 – 207 ppm) and LREE (59 – 150 ppm) contents, similar HREE contents (43 – 59 ppm), 

and slightly higher δEu values (0.04 – 0.08) than that close to the calcic skarn (ΣREE: 117 – 

133 ppm, LREE: 51 – 80 ppm, HREE: 51 – 66 ppm, δEu: 0.02 – 0.04) (Fig. 8-20b). 

 

 

Figure 8-20. Primitive mantle-normalized (Sun and Mcdonough, 1989) spider diagrams and chondrite-normalized 

(Boynton, 1984) REE patterns of the fresh and altered Weijia granite. The data source of fresh granite is the same 

as Figure 8-19. 
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8.4.3. Biotite 

EDS elemental mapping reveals that the fresh biotite in the Weijia granite is Fe-rich and 

F-bearing biotite (Fig. 8-21). Some fluorite crystals appear in the fresh biotite along the (001) 

plane (Fig. 8-21). By contrast, the bleached biotite in the Weijia granite shows obvious losses 

of K, Fe, Mg, and Ti and a gain of Ca (Fig. 8-22), probably resulting from the hydrothermal 

alteration of granite during which the fresh biotite was broken down. 

Representative EMP analytical results and crystallochemical calculations of the fresh and 

bleached biotite in the Weijia granite are listed in Appendix 8-3. The fresh biotite in the 

granite without stockwork veins contains SiO2 contents of 31.15 – 34.85 wt.%, TiO2 contents 

 

 

Figure 8-21. EDS elemental mapping of fresh biotite in the Weijia granite. 
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Figure 8-22. EDS elemental mapping of bleached biotite in the Weijia granite. 

 

of 1.46 – 3.10 wt.%, Al2O3 contents of 14.70 – 16.46 wt.%, FeO contents of 29.27 – 35.39 

wt.%, MnO contents of 0.53 – 1.10 wt.%, MgO contents of 0.87 – 2.97 wt.%, CaO contents of 

0.00 – 0.20 wt.%, Na2O contents of 0.25 – 0.44 wt.%, and K2O contents of 5.95 – 8.92 wt.% 

and plots in the lepidomelane field of the [FeTotal+Mn+Ti–VIAl (apfu: atoms per formula unit)] 

vs. [Mg–Li (apfu)] classification diagram (Fig. 8-23a). 

Compared with the fresh biotite, the bleached biotite in the granite without stockwork 

veins has distinctly lower K2O contents of 0.32 – 7.42 wt.% (Fig. 8-24) and TiO2 contents of 

0.00 – 2.23 wt.% and higher Al2O3 contents of 15.62 – 25.44 wt.%, plotting in the 

lepidomelane and siderophyllite fields (Fig. 8-23a). 
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Figure 8-23. (FeTotal+Mn+Ti–VIAl) (apfu)-(Mg–Li) (apfu) classification diagram of micas (after Tischendorf et al., 

1997) from the Weijia W deposit. 
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Figure 8-24. K2O and F contents of micas from the Weijia W deposit. Legends are the same as Figure 8-23. 

 

Notably, the bleached biotite in the granite with stockwork veins shows distinctly higher 

SiO2 contents of 35.75 – 49.81 wt.%, Al2O3 contents of 16.71 – 30.81 wt.%, and CaO contents 

of 0.14 – 1.82 wt.% and lower TiO2 contents of 0.00 – 1.40 wt.%, FeO contents of 4.40 – 

27.43 wt.%, MnO contents of 0.00 – 0.87 wt.%, MgO contents of 0.13 – 0.69 wt.%, Na2O 

contents of 0.00 – 0.19 wt.%, and K2O contents of 0.88 – 9.90 wt.% (Fig. 8-24) than the fresh 

biotite in the granite without stockwork veins and is plotted in the siderophyllite and phengite 

fields (Fig. 8-23a). 

To be exact, the bleached biotite is not true mica and is transforming into clay minerals. 

In addition to the large variation of the K2O contents of the fresh and bleached biotite, the F 

contents of the fresh and bleached biotite also show a large variation (Fig. 8-24). The fresh 

and bleached biotite in the granite without stockwork veins and the bleached biotite in the 

granite with stockwork veins have progressively decreasing F contents of 1.93 – 5.54 wt.% 

with a peak value of 2.9 wt.%, 0.03 – 1.54 wt.% with a peak value of 0.5 wt.%, and 0.00 – 

1.65 wt.% with a peak value of 0.1 wt.% (Figs. 8-24 and 8-25a–b). 



Chapter 8. Ore-forming process of the Weijia scheelite skarn deposit 

184 

 
Figure 8-25. Histograms for F contents of different F-bearing minerals in the Weijia W deposit. 

(To be continued on the next page) 
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Figure 8-25. (Continued). 
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8.4.4. White mica 

Representative EMP analytical results and crystallochemical calculations of the white 

mica in the Weijia granite and its stockwork veins are listed in Appendix 8-4. The white mica 

in the matrix of granite without stockwork veins contains SiO2 contents of 43.00 – 51.00 

wt.%, TiO2 contents of 0.00 – 0.69 wt.%, Al2O3 contents of 28.81 – 33.75 wt.%, FeO contents 

of 1.02 – 7.37 wt.%, MnO contents of 0.00 – 0.32 wt.%, MgO contents of 0.02 – 0.37 wt.%, 

CaO contents of 0.00 – 0.31 wt.%, Na2O contents of 0.02 – 0.38 wt.%, and K2O contents of 

6.89 – 10.78 wt.% (Fig. 8-24) and plots dominantly in the muscovite field with some in the Li 

muscovite, Li phengite, and phengite fields (Fig. 8-23b). This kind of white mica mostly has 

F contents of 0.09 – 1.54 wt.% with a peak value of 0.5 wt.% and some has F contents of 2.54 

– 4.63 wt.% with peak values of 3.1 wt.% and 4.3 wt.% (Figs. 8-24 and 8-25c). 

Compared with the white mica in the matrix of granite without stockwork veins, the 

white mica coexisting with fluorite as aggregates in the granite without stockwork veins 

shows distinctly higher Al2O3 contents of 33.76 – 37.69 wt.% and lower FeO contents of 0.00 

– 1.87 wt.% and F contents of 0.00 – 1.62 wt.% with a peak value of 0.3 wt.% (Figs. 8-24 and 

8-25d), all plotting in the muscovite field (Fig. 8-23b). 

The white mica in the matrix of granite with stockwork veins can be divided into two 

groups with one group having relatively low SiO2 contents of 42.32 – 46.28 wt.% and Al2O3 

contents of 23.48 – 26.44 wt.% and high FeO contents of 7.15 – 12.14 wt.%, K2O contents of 

9.77 – 10.88 wt.% (Fig. 8-24), and F contents of 4.09 – 7.79 wt.% with a peak value of 6.7 

wt.% (Figs. 8-24 and 8-25e) and the other group containing relatively high SiO2 contents of 

44.70 – 49.76 wt.% and Al2O3 contents of 26.39 – 32.91 wt.% and low FeO contents of 0.80 – 

6.51 wt.%, K2O contents of 7.59 – 10.25 wt.% (Fig. 8-24), and F contents of 0.00 – 2.43 wt.% 

with peak values of 0.3 wt.% and 1.9 wt.% (Figs. 8-24 and 8-25e). They are plotted in the 

muscovite, phengite, Li muscovite, and Li phengite fields and the Li phengite, zinnwaldite, 

and lepidolite fields, respectively (Fig. 8-23b). 

The SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O contents of the white 

mica in the bleached zone near stockwork veins are 43.72 – 49.85 wt.%, 0.00 – 0.36 wt.%, 

26.59 – 34.37 wt.%, 0.34 – 7.30 wt.%, 0.00 – 0.34 wt.%, 0.00 – 0.47 wt.%, 0.00 – 0.86 wt.%, 
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0.00 – 0.35 wt.%, and 6.52 – 11.01 wt.% (Fig. 8-24), respectively. This kind of white mica 

shows F contents of 0.00 – 4.51 wt.% with a peak value of 1.1 wt.% (Figs. 8-24 and 8-25f) 

and plots in the muscovite, phengite, Li muscovite, and Li phengite fields (Fig. 8-23b). 

EDS elemental mapping reveals that the white mica in the K-feldspar-quartz pegmatite 

veins has a zonal texture with the core showing higher Fe, F, and K contents and lower Al 

contents than the rim (Fig. 8-26). EMP analyses show that the core contains SiO2 contents of 

44.16 – 49.59 wt.%, TiO2 contents of 0.00 – 0.36 wt.%, Al2O3 contents of 25.73 – 31.20 wt.%, 

FeO contents of 2.12 – 9.79 wt.%, MnO contents of 0.00 – 0.52 wt.%, MgO contents of 0.00 – 

0.27 wt.%, CaO contents of 0.00 – 0.10 wt.%, Na2O contents of 0.03 – 0.37 wt.%, K2O 

contents of 10.01 – 11.07 wt.% (Fig. 8-24), and F contents of 2.99 – 8.23 wt.% with a peak 

value of 4.5 wt.% (Figs. 8-24 and 8-25g), plotting in the lepidolite, zinnwaldite, Li phengite, 

and Li muscovite fields (Fig. 8-23b). Whereas, the rim contains distinctly higher Al2O3 

contents of 30.44 – 35.56 wt.% and lower FeO contents of 0.17 – 3.39 wt.%, K2O contents of 

8.40 – 10.80 wt.% (Fig. 8-24), and F contents of 0.00 – 2.34 wt.% with a peak value of 0.3 

wt.% (Figs. 8-24 and 8-25g), plotting in the muscovite and Li muscovite fields (Fig. 8-23b). 

EDS elemental mapping reveals that the white mica in the (K-feldspar)-quartz veins or 

veinlets also has a zonal texture with the core showing higher Fe, F, and K contents and lower 

Al contents than the rim (Fig. 8-27). EMP analyses show that the core contains SiO2 contents 

of 44.62 – 47.84 wt.%, TiO2 contents of 0.00 – 0.28 wt.%, Al2O3 contents of 25.47 – 33.33 

wt.%, FeO contents of 1.67 – 10.61 wt.%, MnO contents of 0.00 – 0.66 wt.%, MgO contents 

of 0.00 – 0.28 wt.%, CaO contents of 0.00 – 0.34 wt.%, Na2O contents of 0.00 – 0.53 wt.%, 

K2O contents of 9.57 – 10.75 wt.% (Fig. 8-24), and F contents of 2.71 – 8.12 wt.% with a 

peak value of 6.3 wt.% (Figs. 8-24 and 8-25h), plotting in the lepidolite, zinnwaldite, Li 

phengite, and Li muscovite fields (Fig. 8-23b). Whereas, the rim contains distinctly higher 

Al2O3 contents of 32.10 – 35.12 wt.% and lower FeO contents of 0.43 – 2.67 wt.%, K2O 

contents of 7.29 – 10.35 wt.% (Fig. 8-24), and F contents of 0.00 – 2.34 wt.% with a peak 

value of 0.3 wt.% (Figs. 8-24 and 8-25h), plotting predominantly in the muscovite and Li 

muscovite fields (Fig. 8-23b). 
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Figure 8-26. EDS elemental mapping of white mica in the K-feldspar-quartz pegmatite veins at the apex of the 

Weijia granite. 
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Figure 8-27. EDS elemental mapping of white mica in the (K-feldspar)-quartz veinlet at the apex of the Weijia 

granite. 

 

The SiO2, TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O contents of the white 

mica in the stockwork veinlets are 45.92 – 51.56 wt.%, 0.00 – 0.18 wt.%, 29.08 – 33.70 wt.%, 

0.61 – 2.09 wt.%, 0.00 – 0.22 wt.%, 0.06 – 0.60 wt.%, 0.05 – 0.42 wt.%, 0.03 – 0.16 wt.%, 

and 7.55 – 9.60 wt.% (Fig. 8-24), respectively. This kind of white mica shows extremely low 

F contents of 0.00 – 0.69 wt.% with a peak value of 0.1 wt.% (Figs. 8-24 and 8-25i) and is all 

plotted in the muscovite field (Fig. 8-23b). 

8.4.5. Serpentine 

EDS elemental mapping reveals that, during the process of magnesian skarnization, 
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dolomite was decomposed to release Mg for the formation of serpentine firstly and then 

phlogopite, calcite and fluorite were formed contemporaneously (Fig. 8-28a–i). The 

serpentine in the magnesian skarn can be roughly divided into two types according to its 

occurrences. The first type of serpentine shows a disseminated distribution in the exteriors of 

the magnesian skarn veinlets and coexists with calcite and fluorite, whereas, the other type of 

serpentine occurs together with phlogopite and fluorite in the interiors of the magnesian skarn 

veinlets (Figs. 8-9, 8-10d–e and g, and 8-28). Reasonably, the serpentine in the veinlet 

interiors was formed later than that in the veinlet exteriors. 

Representative EMP analytical results and crystallochemical calculations of the 

serpentine in the magnesian skarn of the Weijia W deposit are listed in Appendix 8-5. The 

serpentine in the magnesian skarn veinlet exteriors contains SiO2 contents of 39.36 – 46.74 

wt.%, TiO2 contents of 0.00 – 0.13 wt.%, Al2O3 contents of 0.47 – 2.92 wt.%, FeO contents of 

1.25 – 3.56 wt.%, MnO contents of 0.00 – 0.45 wt.%, MgO contents of 25.00 – 40.61 wt.%, 

CaO contents of 0.04 – 0.80 wt.%, Na2O contents of 0.00 – 0.20 wt.%, K2O contents of 0.00 – 

0.31 wt.%, and F contents of 1.08 – 5.88 wt.% with a peak value of 1.5 wt.% (Fig. 8-25j). By 

contrast, the serpentine in the magnesian skarn veinlet interiors has distinctly lower SiO2 

contents of 33.33 – 42.38 wt.%, MgO contents of 20.93 – 36.09 wt.%, and F contents of 0.00 

– 2.57 wt.% with a peak value of 0.1 wt.% (Fig. 8-25j) and higher Al2O3 contents of 0.79 – 

6.83 wt.% and FeO contents of 3.67 – 8.12 wt.%. 

8.4.6. Phlogopite 

BSE imaging (Fig. 8-10e) and EDS elemental mapping (Fig. 8-28j–aa) reveal that the 

late-formed phlogopite has higher Fe and lower Mg contents than the early-formed 

phlogopite. In the individual zoned phlogopite crystals, the later rim parts also show higher Fe 

and lower Mg contents than the earlier core parts (Fig. 8-29). 

Representative EMP analytical results and crystallochemical calculations of the 

phlogopite in the magnesian skarn of the Weijia W deposit are listed in Appendix 8-6. The 

phlogopite in the magnesian skarn contains SiO2 contents of 36.01 – 43.85 wt.%, TiO2 

contents of 0.00 – 0.19 wt.%, Al2O3 contents of 9.96 – 17.45 wt.%, FeO contents of 0.75 – 

22.26 wt.%, MnO contents of 0.00 – 1.49 wt.%, MgO contents of 11.47 – 31.57 wt.%, CaO 
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Figure 8-28. EDS elemental mapping of the magnesian skarn veinlets in the Weijia W deposit. 

(To be continued on the next page) 
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Figure 8-28. (Continued). 

 

 

Figure 8-29. EDS elemental mapping of phlogopite in the magnesian skarn of the Weijia W deposit. 

 

contents of 0.00 – 0.15 wt.%, Na2O contents of 0.00 – 0.40 wt.%, K2O contents of 7.04 – 

10.41 wt.% (Fig. 8-24), and F contents of 1.25 – 6.88 wt.% with peak values of 2.5 wt.% and 

3.1 wt.% (Figs. 8-24 and 8-25k). The late phlogopite shows distinctly higher FeO contents of 

3.97 – 22.26 wt.% and lower MgO contents of 11.47 – 25.10 wt.% and slightly higher MnO 

contents of 0.07 – 1.49 wt.% and lower K2O contents of 7.04 – 10.24 wt.% (Fig. 8-24) than 

the early phlogopite (FeO: 0.75 – 3.63 wt.%, MgO: 25.58 – 31.57 wt.%, MnO: 0.00 – 0.29 

wt.%, K2O: 8.07 – 10.41 wt.%). They have similar F contents 1.25 – 6.66 wt.% and 1.94 – 



Nov. 2018                                                                                X.D. HUANG 

193 

6.88 wt.%, respectively (Fig. 8-24). The early phlogopite plots predominantly in the Al 

phlogopite field of the [FeTotal+Mn+Ti–VIAl (apfu)] vs. [Mg–Li (apfu)] classification diagram, 

whereas, the late phlogopite is plotted in the phlogopite field (Fig. 8-23a). 

8.4.7. Garnet 

Representative EMP analytical results and crystallochemical calculations of the garnet in 

the magnesian and calcic skarns of the Weijia W deposit are listed in Appendix 8-7. The 

garnet in the magnesian skarn is grandite (Py+Al+Sp: 0.7 – 13.8 mol.%, mostly 8.0 – 13.8 

mol.%) (Fig. 8-30a). It has SiO2 contents of 34.48 – 37.81 wt.%, TiO2 contents of 0.00 – 0.19 

wt.%, Al2O3 contents of 14.68 – 20.37 wt.%, FeO contents of 2.11 – 9.33 wt.%, MnO contents 

of 0.22 – 3.96 wt.%, MgO contents of 0.05 – 3.13 wt.%, CaO contents of 30.39 – 36.29 wt.%, 

Na2O contents of 0.00 – 0.24 wt.%, and K2O contents of 0.00 – 0.08 wt.%, showing a 

compositional variation between Gr67.4Ad21.7 and Gr86.3Ad8.6 (Fig. 8-30a). Uncommonly, the 

garnet in the magnesian skarn contains very high F contents of 0.51 – 4.83 wt.% with a peak 

value of 3.2 wt.% (Fig. 8-25l). 

EDS elemental mapping reveals that the first-generation garnet in the calcic skarn 

exhibits a well-developed compositional zonation with the later rim parts having higher Fe 

and lower Al contents than the earlier core parts (Fig. 8-31a–f) or an oscillatory compositional 

zoning of Al and Fe (Fig. 8-31g–r). However, the second-generation vein-like garnet in the 

 

 

Figure 8-30. Compositions of garnets from the magnesian and calcic skarns in the Weijia W deposit. Mineral 

abbreviations: Ad = andradite, Al = almandine, Gr = grossularite, Py = pyrope, Sp = spessartine. 
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Figure 8-31. EDS elemental mapping of the first-generation garnet in the calcic skarn of the Weijia W deposit. 
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Figure 8-32. EDS elemental mapping of the second-generation garnet in the calcic skarn of the Weijia W deposit. 

 

calcic skarn does not show a compositional zonation (Fig. 8-32). Like the first-generation 

garnet, the third-generation interstitial garnet in the calcic skarn also has an obvious 

compositional zonation with the later outer parts having higher Fe and lower Al contents than 

the earlier inner parts (Fig. 8-33). 

All the three generations of garnets in the calcic skarn are grandite (Py+Al+Sp: 0.8 – 9.3 

mol.%) (Fig. 8-30b). The first-generation garnet has SiO2 contents of 34.19 – 36.87 wt.%, 

TiO2 contents of 0.00 – 0.28 wt.%, Al2O3 contents of 0.06 – 6.91 wt.%, FeO contents of 20.15 

– 29.38 wt.%, MnO contents of 0.02 – 1.89 wt.%, MgO contents of 0.00 – 0.54 wt.%, CaO 

contents of 31.24 – 34.38 wt.%, Na2O contents of 0.00 – 0.06 wt.%, and K2O contents of 0.00 

– 0.10 wt.%, showing a compositional variation between Gr0.3Ad94.6 and Gr32.4Ad62.5 (Fig. 

8-30b). 

The second-generation garnet has SiO2 contents of 35.57 – 37.56 wt.%, TiO2 contents of 

0.00 – 0.21 wt.%, Al2O3 contents of 5.17 – 13.57 wt.%, FeO contents of 12.31 – 21.57 wt.%, 

MnO contents of 0.07 – 1.40 wt.%, MgO contents of 0.01 – 0.36 wt.%, CaO contents of 31.99 

– 35.10 wt.%, Na2O contents of 0.00 – 0.05 wt.%, and K2O contents of 0.00 – 0.08 wt.%, 

showing a compositional variation between Gr25.0Ad73.8 and Gr59.4Ad35.2 (Fig. 8-30b). 

The third-generation garnet has SiO2 contents of 36.36 – 38.13 wt.%, TiO2 contents of 

0.00 – 0.11 wt.%, Al2O3 contents of 10.69 – 19.78 wt.%, FeO contents of 7.14 – 15.64 wt.%, 
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Figure 8-33. EDS elemental mapping of the third-generation garnet in the calcic skarn of the Weijia W deposit. 

 

MnO contents of 0.57 – 2.29 wt.%, MgO contents of 0.00 – 0.17 wt.%, CaO contents of 31.41 

– 35.01 wt.%, Na2O contents of 0.00 – 0.03 wt.%, and K2O contents of 0.00 – 0.06 wt.%, 

showing a compositional variation between Gr49.7Ad47.0 and Gr73.7Ad22.7 (Fig. 8-30b). 

Although the Fe and Al contents gradually increase and decrease with time, respectively, 

in the individual generations (i.e., first generation and third generation) of garnets (Figs. 

8-31a–f and 8-33), overall, the Fe and Al contents progressively decrease and increase, 

respectively, from the first-generation garnet through the second-generation garnet to the 

third-generation garnet (Fig. 8-30b). Compared with the garnet in the magnesian skarn, the 

three generations of garnets in the calcic skarn contain distinctly lower F contents of 0.00 – 

2.37 wt.% with a peak value of 0.1 wt.% (Fig. 8-25m). 
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LA-ICP-MS analytical results of the garnet in the magnesian and calcic skarns of the 

Weijia W deposit are listed in Appendix 8-8 and shown in Figures 8-34 and 8-35. The garnet 

in the magnesian skarn shows rightward sloping REE patterns with (La/Yb)N values of 5.9 – 

62.0 and obvious negative Eu anomalies with δEu values of 0.02 – 0.35 (Figs. 8-34a and 

8-35a–b). It contains ΣREE contents of 10.8 – 73.7 ppm (Fig. 8-35b). The first-generation 

garnet in the calcic skarn also shows rightward sloping REE patterns with (La/Yb)N values of 

0.6 – 62.8 but almost no Eu anomalies with δEu values of 0.44 – 1.79 (Figs. 8-34b and 8-35a–

b). It contains ΣREE contents of 4.4 – 26.8 ppm (Fig. 8-35b). In contrast, the 

second-generation and third-generation garnets in the calcic skarn show relatively flat REE 

patterns with obvious LREE depletions and negative Eu anomalies (Fig. 8-34c and d). They 

have (La/Sm)N values of 0.06 – 0.19 and 0.02 – 0.08, (La/Yb)N values of 0.07 – 0.55 and 0.02 

– 0.10, ΣREE contents of 5.9 – 36.4 ppm and 0.5 – 4.2 ppm, and δEu values of 0.11 – 0.40 

and 0.16 – 0.59, respectively (Fig. 8-35a–b). 

The garnet in the magnesian skarn and the third-generation garnet in the calcic skarn 

contain distinctly lower Ti and V contents than the first-generation and second-generation 

garnets in the calcic skarn (Fig. 8-35c). The HFSE (Zr, Hf, Th, and U) contents of the 

third-generation garnet in the calcic skarn are distinctly lower than those of the garnet in the 

magnesian skarn and the first-generation and second-generation garnets in the calcic skarn 

(Fig. 8-35d and e). The garnet in the magnesian skarn has distinctly lower W contents than the 

garnet in the calcic skarn (Fig. 8-35f). Among the three generations of garnets in the calcic 

skarn, the second-generation garnet contains the lowest W contents (Fig. 8-35f). 

8.4.8. Pyroxene 

Representative EMP analytical results and crystallochemical calculations of the 

pyroxene in the magnesian and calcic skarns of the Weijia W deposit are listed in Appendix 

8-9. The pyroxene in the magnesian skarn is salite (Jo: 0.1 – 1.6 mol.%) (Fig. 8-36a). Its SiO2, 

TiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O, and K2O contents are 52.84 – 55.58 wt.%, 0.00 – 

0.06 wt.%, 0.14 – 0.92 wt.%, 0.88 – 2.67 wt.%, 0.05 – 0.50 wt.%, 17.13 – 19.94 wt.%, 24.14 – 

26.16 wt.%, 0.00 – 0.09 wt.%, and 0.00 – 0.08 wt.%, respectively, showing a compositional 

variation between Di98.4Hd0.0 and Di99.9Hd0.0 (Fig. 8-36a). 
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Figure 8-34. Chondrite-normalized (Boynton, 1984) REE patterns of garnets from the magnesian and calcic 

skarns in the Weijia W deposit. 
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Figure 8-35. Trace element binary diagrams of garnets from the magnesian and calcic skarns in the Weijia W 

deposit. Legends are the same as Figure 8-34. 

 

 

 

Figure 8-36. Compositions of pyroxenes from the magnesian and calcic skarns in the Weijia W deposit. Mineral 

abbreviations: Di = diopside, Hd = hedenbergite, Jo = johannsenite. 
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Both the early and late generations of pyroxenes in the calcic skarn are salite and the 

late-generation pyroxene contains slightly higher contents of johannsenite components (3.3 – 

10.2 mol.%) than the early-generation pyroxene (0.2 – 5.2 mol.%) (Fig. 8-36b). The 

early-generation and late-generation pyroxenes show compositions close to the diopside and 

hedenbergite end members, respectively (Fig. 8-36b). 

The early-generation pyroxene has SiO2 contents of 48.91 – 54.97 wt.%, TiO2 contents 

of 0.00 – 0.12 wt.%, Al2O3 contents of 0.04 – 1.81 wt.%, FeO contents of 1.60 – 13.50 wt.%, 

MnO contents of 0.05 – 1.54 wt.%, MgO contents of 9.09 – 17.98 wt.%, CaO contents of 

23.42 – 25.98 wt.%, Na2O contents of 0.00 – 0.11 wt.%, and K2O contents of 0.00 – 0.07 

wt.%, showing a compositional variation between Di55.1Hd40.1 and Di99.6Hd0.0 (Fig. 8-36b). 

The late-generation pyroxene has SiO2 contents of 46.22 – 49.92 wt.%, TiO2 contents of 

0.00 – 0.15 wt.%, Al2O3 contents of 0.03 – 2.31 wt.%, FeO contents of 20.61 – 30.04 wt.%, 

MnO contents of 0.88 – 2.84 wt.%, MgO contents of 0.00 – 5.28 wt.%, CaO contents of 21.51 

– 23.47 wt.%, Na2O contents of 0.04 – 0.40 wt.%, and K2O contents of 0.00 – 0.10 wt.%, 

showing a compositional variation between Di0.0Hd94.6 and Di32.3Hd63.4 (Fig. 8-36b). 

8.4.9. Wollastonite 

Representative EMP analytical results and crystallochemical calculations of the 

wollastonite in the calcic skarn of the Weijia W deposit are listed in Appendix 8-10. The 

early-generation wollastonite has SiO2 contents of 47.82 – 49.37 wt.%, TiO2 contents of 0.00 

– 0.03 wt.%, Al2O3 contents of 0.00 – 0.02 wt.%, FeO contents of 0.00 – 0.07 wt.%, MnO 

contents of 0.01 – 0.16 wt.%, CaO contents of 45.53 – 47.05 wt.%, Na2O contents of 0.01 – 

0.05 wt.%, and K2O contents of 0.00 – 0.03 wt.%. Compared with the early-generation 

wollastonite, the late-generation wollastonite contains distinctly higher FeO contents of 0.20 – 

1.49 wt.% and MnO contents of 0.24 – 1.31 wt.% (Fig. 8-37). 

8.4.10. Vesuvianite 

Representative EMP analytical results and crystallochemical calculations of the 

vesuvianite in the calcic skarn of the Weijia W deposit are listed in Appendix 8-11. The 

vesuvianite has SiO2 contents of 33.45 – 36.55 wt.%, TiO2 contents of 0.00 – 0.14 wt.%,  



Nov. 2018                                                                                X.D. HUANG 

201 

 

Figure 8-37. Binary plot of FeO (wt.%) vs. MnO (wt.%) contents of wollastonite in the calcic skarn of the Weijia 

W deposit. 

 

Al2O3 contents of 14.23 – 17.31 wt.%, FeO contents of 3.09 – 6.72 wt.%, MnO contents of 

0.07 – 0.49 wt.%, MgO contents of 1.06 – 3.25 wt.%, CaO contents of 35.25 – 36.38 wt.%, 

Na2O contents of 0.00 – 0.08 wt.%, and K2O contents of 0.00 – 0.07 wt.%. Notably, the 

vesuvianite contains high F contents of 1.04 – 4.03 wt.% with peak values of 1.9 wt.% and 

2.9 wt.% (Fig. 8-25n). 

8.4.11. Scheelite 

Representative LA-ICP-MS analytical results of scheelite from the Weijia W deposit are 

listed in Appendix 8-12 and shown in Figures 8-38 and 8-39. The scheelite in the stockwork 

quartz veinlets shows flat REE patterns with (La/Yb)N values of 0.3 – 2.4 and (La/Sm)N 

values of 0.3 – 1.3 and strong negative Eu anomalies with low δEu values of 0.01 – 0.06 

(Figs. 8-38a and 8-39a–b). It contains high ΣREE contents of 1255.0 – 4891.8 ppm (Fig. 

8-39b). 

Two generations of scheelites with distinctly different REE patterns have been 

distinguished in the magnesian skarn (Fig. 8-38b and c). The early-generation scheelite in the 

magnesian skarn shows flat to slightly rightward sloping REE patterns with (La/Yb)N values 

of 0.1 – 17.0 and (La/Sm)N values of 0.2 – 2.2 and strong negative Eu anomalies with low 
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Figure 8-38. Chondrite-normalized (Boynton, 1984) REE patterns of scheelites from the stockwork quartz 

veinlets of granite and the magnesian and calcic skarns in the Weijia W deposit. 

Figure 8-39. Trace element binary diagrams of scheelites from the stockwork quartz veinlets of granite and the 

magnesian and calcic skarns in the Weijia W deposit. Legends are the same as Figure 8-38. 
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δEu values of 0.00 – 0.15 (Figs. 8-38b and 8-39a–b). It contains high ΣREE contents of 313.8 

– 1340.6 ppm (Fig. 8-39b). Whereas, the late-generation scheelite in the magnesian skarn 

shows steeper rightward sloping REE patterns with (La/Yb)N values of 21.7 – 138.0 and 

(La/Sm)N values of 6.5 – 63.3 and slightly negative to positive Eu anomalies with distinctly 

higher δEu values of 0.32 – 4.70 (Figs. 8-38c and 8-39a–b). It contains distinctly lower ΣREE 

contents of 2.9 – 108.0 ppm (Fig. 8-39b). 

Like the magnesian skarn, the calcic skarn also contains two generations of scheelites 

which show distinctly different REE patterns (Fig. 8-38d). The early-generation scheelite in 

the calcic skarn shows slightly rightward sloping REE patterns with (La/Yb)N values of 1.4 – 

67.4 and (La/Sm)N values of 0.4 – 4.8 and strong negative Eu anomalies with low δEu values 

of 0.01 – 0.34 (Figs. 8-38d and 8-39a–b). It contains high ΣREE contents of 426.7 – 5058.7 

ppm (Fig. 8-39b). Whereas, the late-generation scheelite in the calcic skarn shows steeper 

rightward sloping REE patterns with (La/Yb)N values of 380.9 – 1947.3 and (La/Sm)N values 

of 19.9 – 21.4 and almost no Eu anomalies with distinctly higher δEu values of 0.94 – 1.17 

(Figs. 8-38d and 8-39a–b). It contains distinctly lower ΣREE contents of 33.5 – 139.7 ppm 

(Fig. 8-39b). 

Compared with the scheelite in the magnesian and calcic skarns, the scheelite in the 

stockwork quartz veinlets contains higher Na, K, Al, Sc, Fe, Ti, V, Mn, Ga, Ge, Sb, Zr, Hf, 

Nb, Ta, Th, U, REE, and Y contents and lower Mo contents (Fig. 8-39). The scheelite in the 

magnesian skarn shows distinctly higher Mg contents than the scheelite in the calcic skarn 

and stockwork quartz veinlets (Fig. 8-39d). Whether for the magnesian skarn or the calcic 

skarn, the early-generation scheelite has higher Na, Mg, Sc, Ga, Ge, Nb, Ta, REE, and Y 

contents and lower Mo contents than the late-generation scheelite (Fig. 8-39). Besides, for the 

magnesian skarn, the early-generation scheelite contains higher Cs, Sb, Zr, and Hf contents 

than the late-generation scheelite (Fig. 8-39j–l); for the calcic skarn, the early-generation 

scheelite contains higher Th and U contents and lower Ba contents than the late-generation 

scheelite (Fig. 8-39j and n). 



Nov. 2018                                                                                X.D. HUANG 

205 

8.5. Estimation of fluorine activity 

The fluorine contents of the biotite in the Weijia granite, the white mica in the Weijia 

granite and its stockwork veins, the serpentine, phlogopite, and garnet in the magnesian skarn, 

and the garnet and vesuvianite in the calcic skarn are shown in Figures 8-24 and 8-25 and 

summarized in Table 8-1. Based on the occurrence of abundant fluorite and F-rich silicate 

minerals, especially the uncommon F-rich garnet, it is certain that the Weijia W deposit was 

formed in a special environment with high fluorine activity. 

Munoz (1984) proposed the F intercept value [IV (F)] and F/Cl intercept value [IV 

(F/Cl)] of micas to quantitatively estimate the fluorine activities of magmatic and 

hydrothermal conditions. Both higher IV (F) and IV (F/Cl) numbers indicate a lower degree 

of fluorine enrichment. The calculated IV (F) numbers of biotite, white mica, and phlogopite 

and IV (F/Cl) numbers of biotite and phlogopite are summarized in Table 8-1 and shown in 

Figures 8-40–8-42. The fresh biotite in the granite shows obviously lower IV (F) numbers 

than the bleached biotite (Fig. 8-40a–c), however, they have similar IV (F/Cl) numbers (Fig. 

8-41a–c). Except for the core parts of the white micas in the K-feldspar-quartz pegmatite 

veins and (K-feldspar)-quartz veins or veinlets and some white micas in the matrix of granite, 

which were formed with high fluorine activities, all the other white micas indicate relatively 

low fluorine activities (Fig. 8-40d–l). The phlogopite in the magnesian skarn has similar IV 

(F) numbers with the bleached biotite (Fig. 8-40m) and distinctly higher IV (F/Cl) numbers 

than the fresh and bleached biotite (Fig. 8-41d). In the IV (F) vs. IV (F/Cl) diagram (Fig. 

8-42), the fresh biotite in the granite plots in the field of porphyry Mo deposits, indicating an 

extremely high fluorine activity, whereas, the bleached biotite and phlogopite with distinctly 

higher IV (F) numbers indicate lower fluorine activities. 

Aksyuk (2000) proposed new biotite and phlogopite fluorimeters to estimate the fluorine 

concentrations in fluids associated with different skarn deposits, granitoids, pegmatites, and 

marble. Using the biotite fluorimeter, the HF concentrations calculated by the fresh biotite in 

the granite without stockwork veins are 10–1.46 – 10–0.71 mole/dm3 with a peak value of 10–1.00 

mole/dm3. The temperatures (569 – 659 °C with a peak value of 635 °C) used in the biotite 

fluorimeter are calculated by the Ti-in-biotite geothermometer according to Henry et al. 
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Table 8-1. F contents and some related parameters of different F-bearing minerals in the Weijia W deposit 

  F content (wt.%)  IV (F)a  IV (F/Cl)a 

Host rock Mineral Range Peak value  Range Peak value  Range Peak value 

Granite Fresh biotite in the granite 
without stockwork veins 

1.93 – 5.54 2.9  0.10 – 0.86 0.55  3.57 – 4.73 4.45 

 Bleached biotite in the granite 
without stockwork veins 

0.03 – 1.54 0.5  0.82 – 2.65 1.05  3.33 – 6.02 4.55 

 Bleached biotite in the granite 
with stockwork veins 

0.00 – 1.65 0.1  0.93 – 2.83 1.40  3.23 – 5.08 4.05 

 White mica in the matrix of 
granite without stockwork 
veins 

0.09 – 1.54 
2.54 – 4.63 

0.5 
3.1, 4.3 

 0.82 – 2.33 
0.04 – 0.43 

1.45 
0.05 

   

 White mica coexisting with 
fluorite as aggregates in the 
granite without stockwork 
veins 

0.00 – 1.62 0.3  0.67 – 2.60 1.35    

 White mica in the matrix of 
granite with stockwork veins 

0.06 – 2.43 
4.09 – 7.79 

0.3, 1.9 
6.7 

 0.55 – 1.93 
–0.73 

to 0.10 

0.75 
–0.15 

 

   

 White mica in the bleached 
zone near stockwork veins 

0.00 – 4.51 1.1  0.01 – 2.10 0.95    

Stockwork 
veins at 
the apex 
of granite 

Core of white mica in the 
K-feldspar-quartz pegmatite 
veins 

2.99 – 8.23 4.5  –0.85 
to 0.32 

0.05    

Rim of white mica in the 
K-feldspar-quartz pegmatite 
veins 

0.00 – 2.34 0.3  0.45 – 2.57 1.65    

 Core of white mica in the 
(K-feldspar)-quartz veins or 
veinlets 

2.71 – 8.12 6.3  –0.76 
to 0.44 

–0.45, 
–0.15 

   

 Rim of white mica in the 
(K-feldspar)-quartz veins or 
veinlets 

0.00 – 2.34 0.3  0.27 – 2.78 1.55    

 White mica in the stockwork 
quartz veinlets 

0.00 – 0.69 0.1  1.19 – 2.65 1.90    

Magnesian 
skarn 

Serpentine in the magnesian 
skarn veinlet exteriors 

1.08 – 5.88 1.5       

 Serpentine in the magnesian 
skarn veinlet interiors 

0.00 – 2.57  0.1       

 Phlogopite 1.25 – 6.88 2.5, 3.1  0.90 – 2.06 1.45, 1.85  4.08 – 5.88 5.45 
 Garnet 0.51 – 4.83 3.2       
Calcic 
skarn 

Garnet 0.00 – 2.37 0.1       
Vesuvianite 1.04 – 4.03 1.9, 2.9       

Note: a F intercept value [IV (F)] and F/Cl intercept value [IV (F/Cl)] are quantitative parameters for F 

enrichment degree defined by Munoz (1984), both higher values indicate a lower F enrichment degree. 

 

(2005). The bleached biotite in the granite without stockwork veins yields HF concentrations 

of 10–2.93 – 10–1.35 mole/dm3 with a peak value of 10–1.75 mole/dm3 (calculated by a constant 
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Figure 8-40. Histograms for F intercept value [IV (F)] of micas in the Weijia W deposit. 

(To be continued on the next page) 

 

temperature of 550 °C). The bleached biotite in the granite with stockwork veins yields HF 

concentrations of 10–2.91 – 10–1.49 mole/dm3 with a peak value of 10–1.95 mole/dm3 (using a 
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Figure 8-40. (Continued). 
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Figure 8-41. Histograms for F/Cl intercept value [IV (F/Cl)] of biotite and phlogopite in the Weijia W deposit. 

 

constant temperature of 500 °C). Using the phlogopite fluorimeter, the HF concentrations 

calculated by the phlogopite in the magnesian skarn are 10–3.03 – 10–1.45 mole/dm3 with a peak 

value of 10–2.75 mole/dm3 (using a constant temperature of 450 °C). Therefore, a progressive 

decreasing trend of HF concentration (fluorine activity) from 10–1.00 mole/dm3 through 10–1.75 

mole/dm3 to 10–1.95 mole/dm3 and then to 10–2.75 mole/dm3 is revealed by the fresh and 

bleached biotite and phlogopite. 

8.6. Discussion 

8.6.1. Fluorine promoting magmatic fractionation and tungsten enrichment 

The fresh biotite in the Weijia granite has high F contents (Figs. 8-24 and 8-25a), shows 
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Figure 8-42. F intercept value [IV (F)] vs. F/Cl intercept value [IV (F/Cl)] diagram (after Munoz, 1984) for biotite 

and phlogopite in the Weijia W deposit. IV (F) and IV (F/Cl) are quantitative parameters for F enrichment degree 

defined by Munoz (1984), both higher values indicate a lower F enrichment degree. Legends are the same as 

Figure 8-23. 

 

low IV (F) and IV (F/Cl) numbers (Figs. 8-40–8-42), and yields high HF concentrations (10–

1.5 – 10–0.7 mole/dm3) by the biotite fluorimetry (Aksyuk, 2000), indicating that the Weijia 

granite was formed by crystallization of a F-rich magma. The HF concentration of the Weijia 

granitic magma is consistent with those of the other rare metal leucogranites and Li-F granites 

and pegmatites worldwide (10–1.5 – 10–1 mole/dm3, Aksyuk, 2000) and is significantly higher 

than those of the granitoids related to W-skarns in the western Cordillera (10–2.8 – 10–1.8 

mole/dm3, Aksyuk, 2000) and also those of the porphyry Cu deposits (Fig. 8-42, Aksyuk, 

2000). 

The existence of abundant fluorine can dramatically reduce the viscosity and the minimum 

liquidus temperature of granitic melts by the formation of aluminofluoride (A1F3–
6 ) complex 

anions that weaken the framework of aluminosilicate complexes (Manning et al., 1980; 

Manning, 1981). The minimum liquidus temperature of granitic melts at 1 kbar changes 

progressively from 730 °C (Tuttle and Bowen, 1958) for the F-free system to 630 °C for the 

system with 4 wt.% added fluorine (Manning, 1981). As a consequence, the low viscosity and 

minimum liquidus temperature will lead to the formation of highly fractionated granites by 
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protracting the process of crystallization differentiation. Such prolonged crystal fractionation 

will then result in the enrichment of the incompatible tungsten in the residual granitic melts 

especially at relatively low magmatic temperatures (Audétat et al., 2000; Linnen and Cuney, 

2005), even though the tungsten solubility in granitic melts is nearly independent of the fluorine 

content (Linnen and Cuney, 2005; Che et al., 2013). 

Huang et al. (2017a) carried out detailed geochemical study of the Weijia granite and 

pointed out that it is a highly fractionated peraluminous S-type granite. It has high SiO2 

contents and shows low CaO/(Na2O+K2O) and high Rb/Sr ratios, low δEu values, and strong 

Ba, Sr, P, and Ti depletions (Huang et al., 2017a). The Ti-in-biotite thermometry of the fresh 

biotite in the Weijia granite yields a low temperature of 569 – 659 °C with a peak value of 635 

°C. The RSCM thermometry of the carbonate rocks close to the magnesian and calcic skarns 

reveals that the peak metamorphic temperature of the wall rocks does not exceed 576 °C (Fig. 

8-16). All these thermometric results indicate a low magmatic temperature of the Weijia 

granite. The highly fractionated and low-temperature features of the Weijia granite are 

genetically related to the high fluorine activity. 

The porphyritic texture with a felsitic to fine-grained matrix in the Weijia granite (Figs. 

8-3a and 8-4a), the embayment texture of the hexagonal bipyramidal quartz phenocrysts (Fig. 

8-4b), the micrographic texture in K-feldspar (Fig. 8-4c), and the distinctive “pearlitic border” 

texture of some K-feldspar phenocrysts (Fig. 8-4d) seem to suggest a shallow emplacement 

depth. Zhou et al. (1999) reported the similar “pearlitic border” texture of the porphyroclastic 

K-feldspar in the Tonglu rhyodacite in Southeastern China and interpreted it as a result of 

boundary layer effect caused by compositional disequilibrium during a rapid crystallization 

process. However, the small grain size of matrix in porphyritic granites can also simply result 

from the crystallization under water-saturated conditions and is not necessarily produced by 

pressure quenching (Whitney, 1988; Audétat et al., 2000). The embayment texture of quartz 

phenocrysts could be formed by a primary growth in F-rich magmas and is not necessarily to be 

the result of resorption in shallow environments (Audétat et al., 2000). Notably, the 

Al-in-hornblende geobarometry of the contemporaneous Tongshanling granodiorite which is 

located 15 km to the southwest of the Weijia granite and emplaced in the same Middle-Upper 
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Devonian carbonate strata (i.e., the Qiziqiao, Shetianqiao, and Xikuangshan Formations) yields 

a deep emplacement depth of ca. 10 km (Huang et al., 2018). Thus, the Weijia porphyritic 

granite should not be formed in a subvolcanic environment and its felsitic to fine-grained 

matrix was crystallized from the highly fractionated F-rich and water-saturated melts. 

In summary, the high fluorine activity of granitic melts results in a low magmatic viscosity 

to enable the prolonged crystal fractionation and tungsten enrichment of the granitic magma to 

a relatively low temperature, finally with the porphyritic Weijia granite formed under a 

water-saturated condition. 

8.6.2. Magmatic to hydrothermal evolution 

The Weijia granite and its later stockwork veins from K-feldspar-quartz pegmatite veins 

(Fig. 8-7a) through (K-feldspar)-quartz veins (Fig. 8-7b) or veinlets to stockwork quartz 

veinlets (Fig. 8-7c) reflect a process of magmatic to hydrothermal evolution. Especially, the 

white mica in the K-feldspar-quartz pegmatite veins and (K-feldspar)-quartz veins or veinlets 

shows a zonal texture with F-rich cores and F-poor rims, whereas, the white mica in the 

stockwork quartz veinlets has F-poor compositions without zonation (Figs. 8-24, 8-25g–i, 8-26, 

and 8-27). Such an evolution trend from early F-rich compositions to late F-poor compositions 

of white mica (Fig. 8-24) is indicative of the magmatic to hydrothermal evolution, because 

fluorine prefers to partition in melt and its fluid-melt partition coefficient (DF 
fluid/melt) is small even 

the melt contains a high fluorine concentration (e.g., DF 
fluid/melt = 0.4 at 3 wt.% F in the melt) 

(London et al., 1988; Webster and Holloway, 1990; Carroll and Webster, 1994). The 

occurrence of two groups of white mica in the matrix of granite with respective higher and 

lower F contents (Figs. 8-24 and 8-25c and e) also reflects the evolution process from the earlier 

magmatic stage with a higher fluorine activity to the later hydrothermal stage with a lower 

fluorine activity (Fig. 8-40d and f). Thus, the F-poor white mica coexisting with fluorite as 

aggregates in the granite is hydrothermal mica (Figs. 8-24, 8-25d, and 8-40e). 

Abundant fluorite and the other F-rich minerals occur in the magnesian and calcic skarns, 

whereas, the Weijia granite contains almost no fluorine, only with minor preserved in the 

micas, indicating that the majority of fluorine in the granitic magma has been transported into 

the wall rocks. Considering the small DF 
fluid/melt value, it is speculated that the fluorine was 
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probably dominantly transported by F-rich concentrated hydrosaline melts rather than by dilute 

hydrothermal fluids. Such hydrosaline melts could be generated by silicate-hydrosaline liquid 

immiscibility which has been demonstrated by natural and experimental studies (Veksler et al., 

2002; Badanina et al., 2004; Veksler, 2005). The enrichment of non-silicate anions, such as F–, 

Cl–, CO2– 
3 , and BO3– 

3 , is critical to the generation of the liquid immiscibility (Veksler, 2005). 

Veksler (2005) pointed out that the hydrosaline melts are likely to have Na, Li, and alkaline 

earths enriched and K and heavier rare alkalis depleted compositions. Using homogenized melt 

inclusions, Badanina et al. (2004) revealed the immiscibility between a Na-F-rich hydrosaline 

melt and a K-rich aluminosilicate melt in the most evolved units of the Orlovka granite 

complex. Between the silicate and hydrosaline melts, tungsten partitions strongly into the 

depolymerized hydrosaline liquids (Gramenitskiy et al., 1996), indicating the hydrosaline melts 

could be an important agent for tungsten enrichment and transportation from magma (Veksler, 

2005). 

Since the fluorine in the granitic magma has been mostly extracted into the immiscible 

hydrosaline melts, the later exsolved hydrothermal fluids from the residual aluminosilicate 

melts have a distinctly lower fluorine activity. Overprint of the later hydrothermal stage on the 

earlier magmatic stage led to the formation of the F-poor micas in the Weijia granite and its 

stockwork veins (Figs. 8-24 and 8-25a–i). This hydrothermal overprint is particularly evident in 

the bleached biotite of the granite which is transforming into clay minerals (Figs. 8-22 and 

8-24), in the zonal white micas of the stockwork veins (Figs. 8-26 and 8-27), and in the 

peripheral bleached zone of the stockwork veins where biotite and F-rich white mica are absent 

(Figs. 8-7 and 8-25f). The occurrence of abundant kaolin at the apex of the Weijia granite, 

which is similar to that of the Beauvoir granite in the French Massif Central, may be genetically 

related to greisenization during the hydrothermal alteration (Cuney et al., 1992). Hydrothermal 

alteration of the marginal granite close to carbonate rocks resulted in the gains of Ca, Mg, Fe, 

and Mn from wall rocks and the loss of Na into fluids (Fig. 8-19a, c, and d). The released Na 

from the granite could be important for the transportation of tungsten in the hydrothermal fluids 

as NaHWO0 
4  and NaWO– 

4  (Wood and Samson, 2000). This may also be implicated by the 

formation of late Na-bearing aluminosilicate minerals in the magnesian and calcic skarns, such 
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as the marialite, zeolite, and plagioclase (Figs. 8-11, 8-13, and 8-28s–aa). To a certain extent, 

the different alteration degrees of the granites close to the magnesian and calcic skarns are 

corresponding to the different mineralization scales of the magnesian and calcic skarns, 

respectively. 

To sum up, during the magmatic to hydrothermal evolution of the Weijia granite, F-rich 

hydrosaline melts were firstly separated from magma by liquid immiscibility followed by the 

exsolution of F-poor hydrothermal fluids. Both of the F-rich hydrosaline melts and F-poor 

hydrothermal fluids could be the agents for tungsten transportation from magma. 

8.6.3. Magnesian and calcic skarn formation 

The differential formation of the magnesian and calcic skarns respectively in the 

middle-member dolostone and upper-member limestone of the Qiziqiao Formation is 

dominantly controlled by the different lithologies of the host carbonate strata (Fig. 8-2). 

RSCM thermometry reveals that the magnesian skarn was formed under a distinctly lower 

temperature than the calcic skarn (Fig. 8-16). This is consistent with the contrary mineral 

associations of the magnesian and calcic skarns which are dominated by retrograde minerals 

(serpentine and phlogopite) and prograde minerals (garnet, pyroxene, and wollastonite), 

respectively (Figs. 8-11 and 8-13). Except for the serpentine and phlogopite, some other 

Mg-rich minerals, such as the sellaite, fluoborite, and chondrodite, occur in the magnesian 

skarn but are absent in the calcic skarn (Figs. 8-11 and 8-13). Compared with the garnet in the 

calcic skarn, the garnet in the magnesian skarn contains higher Mg contents (Appendix 8-7 

and Fig. 8-33). The pyroxene in the magnesian skarn is almost pure diopside (Fig. 8-36). All 

these features of the magnesian skarn are genetically related to the high Mg activity during 

skarn formation. Different from the calcic skarnization during which a high Ca activity is 

expected, the magnesian skarnization should be developed with a relatively low Ca activity 

and a high Mg activity which will result in a relatively high F activity. Because Ca can easily 

combine with F to form fluorite and decrease the F activity, whereas, it seems more difficult 

for Mg to combine with F to form sellaite. This is demonstrated by the occurrence of 

abundant fluorite but minor sellaite in the magnesian skarn (Fig. 8-11). The relatively low 

temperature and high fluorine activity during magnesian skarnization are not favorable for the 
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development of anhydrous prograde skarn minerals, such as forsterite and spinel, and lead to 

the formation of the special F-rich garnet (Fig. 8-25l). By contrast, the garnet formed with 

relatively high temperature and low fluorine activity during calcic skarnization has normal 

F-poor compositions (Fig. 8-25m). 

Both of the serpentine and phlogopite in the magnesian skarn show decreasing Mg and 

increasing Fe contents from early to late (Appendices 8-5 and 8-6 and Figs. 8-28j–aa and 8-29). 

In addition, the serpentine shows a decreasing trend of F contents with time (Appendix 8-5). 

These compositional variations indicate a coupled decreasing of F and Mg activities during 

magnesian skarn formation. F may have played an important role in releasing Mg from 

dolostone to form the magnesian skarn minerals. For the calcic skarn, the progressive changes 

of garnet compositions from andradite to grossularite (Fig. 8-33b) and pyroxene compositions 

from diopside to hedenbergite (Fig. 8-36b) indicate a decreasing trend of oxygen fugacity 

during skarn formation. This is also demonstrated by the evolution of negative Eu anomalies of 

the garnet REE patterns (Fig. 8-34b–d). The distinctly higher FeO and MnO contents of the 

late-generation wollastonite than those of the early-generation wollastonite (Fig. 8-37) implies 

a stronger contribution of components from wall rocks during the late stage of calcic skarn 

formation. 

8.6.4. Calcium as the precipitant of fluorine and tungsten 

The strong positive correlations between the WO3 and CaF2 grades of both the magnesian 

and calcic skarn ores (Figs. 8-14 and 8-15) seem to indicate a genetical link between tungsten 

and fluorine. However, previous experimental studies demonstrated that the tungsten 

solubilities in both silicate melts and aqueous fluids are almost independent of fluorine content 

(Manning and Henderson, 1984; Keppler and Wyllie, 1991; Linnen and Cuney, 2005; Che et al., 

2013). Thus, the positive correlation between the WO3 and CaF2 grades is not derived from a 

direct link between tungsten and fluorine. Instead, calcium, which is the shared precipitant for 

fluorine and tungsten to form fluorite and scheelite, respectively, could be the critical factor to 

induce the positive correlation between the WO3 and CaF2 grades in the skarn ores. 

It is noteworthy that the wall rocks (dolostone) close to the magnesian skarn orebodies 

contain significantly higher fluorite contents than those (limestone) close to the calcic skarn 
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orebodies (Figs. 8-14 and 8-15). This difference results from the higher calcium activity in the 

limestone than that in the dolostone which catches the fluorine in a relatively limited zone and 

prevents the outward escape of fluorine. To a certain extent, the high CaF2 but low WO3 grades 

of the dolostone close to the magnesian skarn (Figs. 8-14 and 8-15) are indicative of the 

independent relationship between tungsten and fluorine. During the process of skarn formation, 

the fluorine activity gradually decreases along with the precipitation of fluorite and the other 

F-bearing minerals. 

Lecumberri-Sanchez et al. (2017) emphasized that fluid-rock interaction is decisive for 

the formation of tungsten deposits and the precipitation of the main tungsten minerals 

scheelite (CaWO4) and wolframite [(Fe, Mn)WO4] thus depends on the availability of Ca, Fe, 

or Mn. Wang et al., (2017e) demonstrated that the released Ca by plagioclase breakdown 

controlled the scheelite mineralization in the Dongyuan and Zhuxiling porphyritic 

granodiorites, southern Anhui Province, China. A model of Fe-Mn and Ca released from 

biotite and apatite respectively by alteration to form wolframite and scheelite in granodiorite 

was proposed by Zhang et al., (2018a) to explain the genesis of the giant Dahutang W deposit 

in northwestern Jiangxi Province, China. In the skarn deposits, such as the Weijia W deposit, 

scheelite is predominantly hosted by skarn in the carbonate wall rocks. Therefore, it is evident 

that the key factor controlling the occurrences of scheelite orebodies in granitoids or wall 

rocks is calcium activity. The higher WO3 grades of the calcic skarn orebodies than those of 

the magnesian skarn ore bodies in the Weijia W deposit are controlled by the higher calcium 

activity during skarnization in limestone than that during skarnization in dolostone. This is 

also indicated by the distinctly lower Mg contents of the scheelite in the calcic skarn than 

those of the scheelite in the magnesian skarn (Fig. 8-39d). 

8.6.5. Ore-forming process 

Scheelite is a common mineral in various hydrothermal deposits and has been widely 

used as an indicator to trace ore-forming process (e.g., Li et al., 2018b; Zhang et al., 2018b; 

Zhao et al., 2018). The REE patterns of the scheelite from the Weijia W deposit can be 

divided into two different types on the whole, with one type of flat to slightly rightward 

sloping REE patterns with strong negative Eu anomalies and the other type of steeper 
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rightward sloping REE patterns almost without Eu anomalies (Fig. 8-38). These two different 

types of scheelite REE patterns are indicative of two generations of ore-forming liquids. 

The scheelite in the stockwork quartz veinlets (Fig. 8-38a) and the early-generation 

scheelites in the magnesian and calcic skarns (Fig. 8-38b and d) were formed by the 

early-generation ore-forming liquids. Their REE patterns are similar to those of the Weijia 

granite but with distinctly higher REE contents (Fig. 8-38a, b, and d), indicating large REE 

partition coefficients between the liquids and granitic melts. The early-generation ore-forming 

liquids are in all probability the F-rich hydrosaline melts which have enriched incompatible 

elements and were earlier separated from magma by liquid immiscibility (Veksler, 2005). The 

similar REE patterns of the early-formed scheelites with the granite result from an inheritance 

from the magma. 

The late-generation scheelites in the magnesian and calcic skarns (Fig. 8-38c and d) were 

formed by the late-generation ore-forming liquids. They have distinctly lower REE contents 

than the Weijia granite (Fig. 8-38c and d), indicating small REE partition coefficients between 

the liquids and granitic melts. Thus, the late-generation ore-forming liquids are the F-poor 

hydrothermal fluids which have relatively depleted incompatible elements and were later 

separated from magma by exsolution. The enrichment of LREE and the disappearance of 

negative Eu anomalies of the late-formed scheelites may result from the hydrothermal 

alteration of feldspars which are characterized by LREE enrichment and positive Eu 

anomalies. 

Therefore, both of the earlier separated F-rich hydrosaline melts and the later exsolved 

F-poor hydrothermal fluids have transported tungsten from the magma into the wall rocks for 

subsequent skarn mineralization. 

8.6.6. Metallogenic model 

Except for the processes of magmatic fractionation, magmatic to hydrothermal evolution, 

magnesian and calcic skarnization, and ore formation discussed above, the magma origin is 

another key process that controls tungsten mineralization. Romer and Kroner (2015, 2016) 

emphasized that protolith enrichment, sedimentary and tectonic accumulation of enriched 

source rocks, and heat input from the mantle are prerequisite steps for the generation of W 
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enriched melts. The existence of an enriched source in the Nanling Range is widely accepted 

due to the occurrences of abundant large-scale W deposits. The subduction of the 

palaeo-Pacific plate in South China during Late Mesozoic induced asthenosphere upwelling 

and basaltic magma underplating to promote partial melting of the enriched source and then 

generate W-bearing melts (Zhou and Li, 2000; Zhou et al., 2006a; Huang et al., 2017a). 

Different source rocks may produce different types of ore-bearing melts. For instance, the 

partial melting of the lower-crust mafic amphibolitic rocks and the middle-upper-crust 

metasedimentary rocks in the Nanling Range during Middle-Late Jurassic produced 

W-bearing and Cu-Pb-Zn-bearing granitoids, respectively (Huang et al., 2017a). Notably, the 

S-type Weijia granite, the A-type Hehuaping granite, and the I-type Tongshanling 

granodiorite in the Nanling Range which were emplaced in the same Qiziqiao Formation at 

the same time during Middle-Late Jurassic but are genetically related to W, Sn, and Cu-Pb-Zn 

skarn mineralization, respectively (Yao et al., 2014b; Huang et al., 2017a). Thus, the nature of 

the enriched source is also a key factor controlling tungsten mineralization. 

Based on the deposit geological, RSCM thermometric, whole-rock geochemical, and 

mineralogical studies and the discussion above, the comprehensive genetic model of the 

Weijia W deposit is summarized as follows. During Late Jurassic, with the subduction of the 

palaeo-Pacific plate, the underplated basaltic magmas heated and partially melted the enriched 

source in the Nanling Range to produce fluorine and tungsten enriched melts. The prolonged 

crystal fractionation of the fluorine-rich low-viscosity granitic magma to a relatively low 

temperature resulted in a strong enrichment of tungsten in the residual melts. During the 

magmatic to hydrothermal evolution, the earlier separated F-rich hydrosaline melts and the 

later exsolved F-poor hydrothermal fluids transported tungsten from the magma into the wall 

rocks. With the development of magnesian and calcic skarns, fluorine and tungsten were 

precipitated by calcium to form fluorite and scheelite, respectively. Fluorine was also involved 

in the formation of the other F-bearing minerals, such as serpentine and phlogopite. The 

relatively low temperature and high fluorine activity during magnesian skarnization prevented 

the development of anhydrous prograde skarn minerals, such as forsterite and spinel. The 



Nov. 2018                                                                                X.D. HUANG 

219 

higher calcium activity during skarnization in limestone than that in dolostone resulted in the 

higher WO3 grades of calcic skarn than those of magnesian skarn.  

8.7. Summary 

The Weijia scheelite skarn deposit comprises dominant magnesian skarn and subordinate 

calcic skarn with abundant fluorite and is genetically related to a highly fractionated 

porphyritic granite with a felsitic to fine-grained matrix. The magnesian skarn generally 

occurs as stockwork veinlets in dolostone with a mineralogy dominated by serpentine and 

phlogopite. Wollastonite, garnet, and pyroxene are the main calcic skarn minerals. Scheelite is 

mostly distributed in the magnesian and calcic skarns as disseminated grains. 

Biotite fluorimetry indicates that the Weijia granite was crystallized from a F-rich 

magma. The high fluorine activity of granitic melts results in a low magmatic viscosity to 

enable the prolonged crystal fractionation and tungsten enrichment of the granitic magma to a 

relatively low temperature, finally with the porphyritic Weijia granite formed under a 

water-saturated condition. 

During the magmatic to hydrothermal evolution, F-rich hydrosaline melts were firstly 

separated from magma by liquid immiscibility followed by the exsolution of F-poor 

hydrothermal fluids. Both of the F-rich hydrosaline melts and F-poor hydrothermal fluids 

have transported tungsten from the magma into the wall rocks for subsequent skarn 

mineralization. 

RSCM thermometry indicates a distinctly lower temperature of magnesian skarnization 

than calcic skarnization. The relatively low temperature and high fluorine activity during 

magnesian skarnization are not favorable for the development of anhydrous prograde skarn 

minerals, such as forsterite and spinel, and lead to the formation of the special F-rich garnet. 

As the shared precipitant of fluorine and tungsten, calcium could be the critical factor to 

induce the positive correlation between the WO3 and CaF2 grades of skarn ores. The higher 

WO3 grades of the calcic skarn than those of the magnesian skarn are controlled by the higher 

calcium activity during skarnization in limestone than that in dolostone. 



Chapter 8. Ore-forming process of the Weijia scheelite skarn deposit 

220 

The key factors controlling the occurrence of unusual magnesian skarn W mineralization 

during Late Jurassic in the Nanling Range mainly include an enriched source, a fluorine-rich 

magma, a strong crystal fractionation, and a fluorine-rich hydrosaline melt. 
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Chapter 9. Conclusions and perspectives 

9.1. Conclusions 

Main conclusions of this Ph.D. thesis are summarized as follows. 

(1) The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling 

Range are dominated by weakly fractionated metaluminous I-type amphibole-bearing 

granodiorites and highly differentiated peraluminous S-type granites, respectively. They 

were mainly derived from non-simultaneous partial melting of the mafic amphibolitic 

basement in the lower crust and the muscovite-rich metasedimentary basement in the 

upper-middle crust, respectively. The compositional divergence between different 

sources accounted for the metallogenic specializations of ore-bearing granitoids and the 

non-simultaneous partial melting of one source followed by the other brought about a 

time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granitoids. 

(2) Dark microgranular enclaves are commonly observed in the Middle-Late Jurassic 

Cu-Pb-Zn-bearing granodiorites in the Nanling Range. The microgranular enclaves in the 

Tongshanling granodiorite which contain abundant residual materials, such as mafic 

mineral clots, inherited and metamorphic zircon, and Ca-rich core plagioclase, are 

thought to be reworked restite enclaves formed by reaction of the restite with the host 

magma. The amphibole-rich clots are vestiges of residual pyroxene-rich precursors from 

the source. Consequently, the Tongshanling granodiorite was derived from dehydration 

melting of amphibolite in the mafic lower crust. The fertile amphibolitic source is 

beneficial to the formation of Cu-Pb-Zn-bearing granodiorites in the Nanling Range. 

(3) In the Tongshanling area, the regional normal faults were in all probability formed during 

the Late Triassic to Early Jurassic decompression and are not related to the emplacement 

of the Middle-Late Jurassic Tongshanling granodiorite. Based on structural analysis, 

RSCM thermometry, and EBSD mapping, it is concluded that the emplacement of the 

Tongshanling granodiorite started from the southern part and induced wall-rock strong 

marbleization and deformation in the contact zone. The magma emplacement-induced 
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wall-rock deformation significantly increased the permeability of wall rocks to promote 

the infiltration of magmatic fluids along fractures and then structurally controlled the 

formation of exoskarn and sulfide-quartz veins. 

(4) Geochronological studies reveal that the three ore deposits in the Tongshanling 

polymetallic ore district were almost contemporaneously formed at 160 – 162 Ma, 

consistent with the Tongshanling granodiorite (160 – 164 Ma). S, Pb, and H-O isotopic 

studies indicate that the ore-forming materials and fluids of the Tongshanling ore district 

were derived from the Tongshanling intrusion. The Cu and Zn were most probably 

released from the mafic amphibolitic lower crust by partial melting, whereas, the Pb was 

extracted from the upper crust by the ascending granodioritic magma. The different 

mineralization types and ore deposits in the Tongshanling ore district are genetically 

linked together and are the productions of evolution and zonation of the same skarn 

system associated with the Tongshanling granodioritic intrusion. 

(5) The Weijia granite was crystallized from a F-rich low-viscosity magma which had 

experienced a prolonged crystal fractionation and tungsten enrichment. The separation of 

F-rich hydrosaline melts by liquid immiscibility during the magmatic to hydrothermal 

evolution is important for tungsten transportation from the magma into the wall rocks. 

The relatively low temperature and high fluorine activity during magnesian skarnization 

are not favorable for the development of anhydrous prograde skarn minerals. As the 

shared precipitant of fluorine and tungsten, calcium could be the critical factor to induce 

the positive correlation between the WO3 and CaF2 grades of skarn ores. The higher 

WO3 grades of the calcic skarn than those of the magnesian skarn are controlled by the 

higher calcium activity during skarnization in limestone than that in dolostone. 

9.2. Perspectives 

Although a lot of new findings and conclusions are achieved through this Ph.D. thesis, 

some parts need to be further improved, such as the structural study of mineral deposits, and 

some other studies are still insufficient, such as the metallogenic age of the Jiangyong 

Pb-Zn-Ag deposit, the geochemical compositions of ore-forming fluids, and the detailed 
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physicochemical evolution during mineralization. In addition, the model of reworked restite 

enclaves should be further tested by the microgranular enclaves of the other Middle-Late 

Jurassic Cu-Pb-Zn-bearing granodiorites in the Nanling Range. A comparison between the 

microgranular enclaves of the Middle-Late Jurassic Cu-Pb-Zn-bearing granodiorites and 

Sn-bearing A2-type granites in the Nanling Range is necessary for understanding the origins 

of different ore-bearing granitoids. 

For further research of the multiple-aged granitoids and associated polymetallic mineral 

deposits in South China, besides the common geochronological, geochemical, and 

mineralogical studies, more attentions should be paid to structural controls on mineralization 

which are crucial to understanding the ore-forming process and can provide important 

information for prospecting and exploration. Many newly developed methods, such as the 

Raman spectroscopy of carbonaceous material thermometry (Beyssac et al., 2002; Lahfid et 

al., 2010), paleo-fluid flow orientation and velocity estimation (Sizaret et al., 2009; Launay et 

al., 2018), permeability experimentation (Coelho et al., 2015), and numerical modeling 

(Eldursi et al., 2009; Ingebritsen and Appold, 2012), should be introduced and applied to the 

further studies of metallogenesis in South China. 
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Appendices 

Appendix 4-1. LA-ICP-MS zircon U-Pb isotope analyses of granitoids from the Tongshanling-Weijia area 

Spot 
 Elements (ppm) Isotopic ratios Ages (Ma) 

232Th 238U Th/U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 

Tongshanling granodiorite porphyry 

TSL001-01  453 2476 0.18  0.04859 0.00184 0.16772 0.00588 0.02503 0.00036 128 88 157 5 159 2 

TSL001-02  365 1482 0.25  0.04931 0.00205 0.17024 0.00710 0.02504 0.00044 163 97 160 6 159 3 

TSL001-03  299 827 0.36  0.05178 0.00106 0.17960 0.00396 0.02516 0.00041 276 48 168 3 160 3 

TSL001-04  349 1157 0.30  0.04984 0.00203 0.17294 0.00692 0.02517 0.00047 188 96 162 6 160 3 

TSL001-05  368 648 0.57  0.04929 0.00123 0.17108 0.00441 0.02518 0.00039 162 60 160 4 160 2 

TSL001-06  745 1396 0.53  0.04899 0.00106 0.17053 0.00391 0.02525 0.00045 147 52 160 3 161 3 

TSL001-07  262 588 0.45  0.04926 0.00117 0.17134 0.00426 0.02523 0.00039 160 57 161 4 161 2 

TSL001-08  510 1579 0.32  0.04936 0.00171 0.17181 0.00610 0.02526 0.00045 165 83 161 5 161 3 

TSL001-09  266 330 0.80  0.05226 0.00172 0.18349 0.00602 0.02547 0.00042 297 77 171 5 162 3 

TSL001-10  228 469 0.49  0.05149 0.00123 0.18077 0.00450 0.02546 0.00040 263 56 169 4 162 3 

TSL001-11  365 954 0.38  0.04932 0.00095 0.17464 0.00367 0.02568 0.00039 163 46 163 3 163 2 

TSL001-12  255 1091 0.23  0.04931 0.00104 0.17400 0.00390 0.02559 0.00039 163 50 163 3 163 2 

TSL001-13  255 1160 0.22  0.04933 0.00215 0.17424 0.00763 0.02562 0.00047 164 101 163 7 163 3 

TSL001-14  409 1243 0.33  0.05258 0.00222 0.18724 0.00741 0.02583 0.00038 311 98 174 6 164 2 

TSL001-15  825 2320 0.36  0.04936 0.00084 0.17513 0.00335 0.02573 0.00039 165 41 164 3 164 2 

TSL001-16  678 1856 0.37  0.05468 0.00091 0.19425 0.00363 0.02577 0.00038 399 38 180 3 164 2 

TSL001-17  532 1508 0.35  0.05585 0.00127 0.19821 0.00478 0.02574 0.00042 446 52 184 4 164 3 

TSL001-18  401 1941 0.21  0.04945 0.00121 0.17624 0.00460 0.02585 0.00045 169 58 165 4 165 3 

TSL001-19  345 755 0.46  0.04950 0.00222 0.17702 0.00773 0.02593 0.00051 172 104 165 7 165 3 

TSL001-20  594 2406 0.25  0.04953 0.00116 0.17755 0.00447 0.02600 0.00046 173 56 166 4 165 3 

TSL001-21  1119 2485 0.45  0.04930 0.00125 0.17679 0.00468 0.02601 0.00050 162 61 165 4 166 3 

TSL001-22  578 1221 0.47  0.04945 0.00091 0.17935 0.00363 0.02631 0.00041 169 44 168 3 167 3 

TSL001-23  583 2082 0.28  0.05313 0.00091 0.26407 0.00514 0.03605 0.00058 334 40 238 4 228 4 

TSL001-24  168 371 0.45  0.05165 0.00139 0.25717 0.00712 0.03612 0.00063 270 63 232 6 229 4 

TSL001-25  369 1176 0.31  0.06830 0.00210 0.66895 0.02115 0.07105 0.00122 878 65 520 13 442 7 

TSL001-26  735 1128 0.65  0.07765 0.00223 0.93747 0.02796 0.08757 0.00147 1138 58 672 15 541 9 

TSL001-27  119 96 1.23 0.06503 0.00479 1.13255 0.08199 0.12634 0.00283 775 160 769 39 767 16 

TSL001-28  355 451 0.79 0.07094 0.00235 1.44505 0.04864 0.14776 0.00254 956 69 908 20 888 14 

TSL001-29  239 303 0.79 0.06985 0.00204 1.43373 0.04349 0.14895 0.00259 924 61 903 18 895 15 

TSL001-30  130 373 0.35 0.06977 0.00230 1.43448 0.04821 0.14916 0.00267 922 69 903 20 896 15 

TSL001-31  256 99 2.58 0.07596 0.00410 1.63620 0.08734 0.15625 0.00328 1094 111 984 34 936 18 

(To be continued on the next page)
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Appendix 4-1. (Continued) 

Spot 
 Elements (ppm)  Isotopic ratios  Ages (Ma) 

 232Th 238U Th/U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 

TSL001-32  332  460  0.72   0.07027  0.00189  1.51324  0.04276  0.15622  0.00259   936 56 936 17 936 14 

TSL001-33  318  1011  0.31   0.07324  0.00104  1.72992  0.02909  0.17133  0.00250   1021 29 1020 11 1019 14 

TSL001-34  309  179  1.72   0.10088  0.00458  3.74683  0.16915  0.26940  0.00531   1640 86 1581 36 1538 27 

TSL001-35  224  1285  0.17   0.14227  0.00651  7.15118  0.32685  0.36459  0.00729   2255 81 2130 41 2004 34 

TSL001-36  874  402  2.17   0.15994  0.00497  9.76820  0.31243  0.44301  0.00760   2455 54 2413 29 2364 34 

TSL001-37  421  449  0.94   0.16071  0.00421  7.55281  0.21014  0.34108  0.00603   2463 45 2179 25 1892 29 

TSL001-38  248  536  0.46   0.16357  0.00410  6.94630  0.18542  0.30809  0.00514   2493 43 2105 24 1731 25 

Dioritic dark enclaves 

JY55-01  1261  2438  0.52   0.05016  0.00177  0.17134  0.00608  0.02478  0.00043   202 84 161 5 158 3 

JY55-02  602  2214  0.27   0.05069  0.00141  0.17303  0.00500  0.02476  0.00041   227 66 162 4 158 3 

JY55-03  138  344  0.40   0.04936  0.00385  0.16964  0.01314  0.02493  0.00050   165 177 159 11 159 3 

JY55-04  374  522  0.72   0.04917  0.00350  0.16976  0.01189  0.02505  0.00052   156 161 159 10 159 3 

JY55-05  430  1750  0.25   0.04746  0.00138  0.16379  0.00494  0.02504  0.00040   72 65 154 4 159 3 

JY55-06  658  2115  0.31   0.05037  0.00152  0.17391  0.00541  0.02505  0.00041   212 72 163 5 159 3 

JY55-07  488  1725  0.28   0.05045  0.00154  0.17485  0.00544  0.02514  0.00040   216 72 164 5 160 3 

JY55-08  977  2158  0.45   0.04938  0.00132  0.17075  0.00474  0.02508  0.00039   166 64 160 4 160 2 

JY55-09  208  415  0.50   0.04932  0.00325  0.17215  0.01130  0.02533  0.00049   163 150 161 10 161 3 

JY55-10  834  1569  0.53   0.04933  0.00168  0.17243  0.00592  0.02535  0.00041   164 81 162 5 161 3 

JY55-11  824  2049  0.40   0.04928  0.00147  0.17143  0.00524  0.02523  0.00040   161 71 161 5 161 3 

JY55-12  481  1722  0.28   0.05349  0.00141  0.18722  0.00515  0.02540  0.00040   350 61 174 4 162 3 

JY55-13  59  210  0.28   0.04734  0.00545  0.16568  0.01894  0.02538  0.00056   66 238 156 16 162 4 

JY55-14  953  505  1.89   0.05569  0.00313  0.19547  0.01092  0.02550  0.00050   440 129 181 9 162 3 

JY55-15  3821  2517  1.52   0.04931  0.00168  0.17352  0.00601  0.02554  0.00045   163 81 162 5 163 3 

JY55-16  536  1212  0.44   0.04932  0.00170  0.17440  0.00612  0.02565  0.00043   163 82 163 5 163 3 

JY55-17  491  1666  0.29   0.05019  0.00151  0.17783  0.00551  0.02570  0.00041   204 71 166 5 164 3 

JY55-18  333  1464  0.23   0.05562  0.00188  0.25475  0.00870  0.03323  0.00056   437 77 230 7 211 3 

JY55-19  513  531  0.96   0.05519  0.00169  0.51161  0.01610  0.06731  0.00113   420 70 420 11 420 7 

JY55-20  899  544  1.65   0.05643  0.00162  0.53298  0.01578  0.06852  0.00110   469 65 434 10 427 7 

JY55-21  110  2117  0.05   0.06687  0.00196  0.93484  0.02807  0.10176  0.00177   834 63 670 15 625 10 

JY55-22  83  232  0.36   0.07508  0.00310  1.64143  0.06688  0.15859  0.00281   1071 85 986 26 949 16 

JY55-23  639  796  0.80   0.07566  0.00168  1.75299  0.04171  0.16814  0.00262   1086 46 1028 15 1002 14 

JY55-24  220  485  0.45   0.08013  0.00247  1.89245  0.05919  0.17132  0.00276   1200 62 1078 21 1019 15 

(To be continued on the next page) 
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Appendix 4-1. (Continued) 

Spot 
 Elements (ppm)  Isotopic ratios  Ages (Ma) 

 232Th 238U Th/U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 

Tongshanling granite porphyry 

TSL138-01  230  1258  0.18   0.05021  0.00217  0.17069  0.00720  0.02467  0.00044   205 102 160 6 157 3 

TSL138-02  743  1639  0.45   0.04933  0.00201  0.16719  0.00665  0.02460  0.00044   164 95 157 6 157 3 

TSL138-03  880  1881  0.47   0.04782  0.00160  0.16299  0.00557  0.02473  0.00039   90 76 153 5 157 2 

TSL138-04  410  1421  0.29   0.05079  0.00171  0.17277  0.00591  0.02468  0.00041   231 80 162 5 157 3 

TSL138-05  667  1660  0.40   0.04713  0.00179  0.16049  0.00618  0.02470  0.00040   56 83 151 5 157 3 

TSL138-06  483  683  0.71   0.04918  0.00361  0.16852  0.01209  0.02486  0.00054   156 166 158 11 158 3 

TSL138-07  670  1229  0.55   0.04919  0.00235  0.16827  0.00784  0.02484  0.00047   157 110 158 7 158 3 

TSL138-08  657  1723  0.38   0.05252  0.00216  0.18023  0.00740  0.02489  0.00048   308 96 168 6 158 3 

TSL138-09  1120  1992  0.56   0.04932  0.00188  0.16929  0.00629  0.02490  0.00045   163 89 159 5 159 3 

TSL138-10  325  1044  0.31   0.04992  0.00249  0.17166  0.00834  0.02497  0.00048   191 116 161 7 159 3 

TSL138-11  935  1844  0.51   0.05323  0.00170  0.18275  0.00598  0.02491  0.00040   339 74 170 5 159 3 

TSL138-12  735  1806  0.41   0.04926  0.00201  0.16893  0.00674  0.02490  0.00045   160 95 158 6 159 3 

TSL138-13  676  1553  0.44   0.05074  0.00190  0.17426  0.00655  0.02492  0.00041   229 89 163 6 159 3 

TSL138-14  525  1411  0.37   0.04932  0.00177  0.16970  0.00615  0.02496  0.00041   163 85 159 5 159 3 

TSL138-15  598  1822  0.33   0.05236  0.00224  0.18015  0.00765  0.02495  0.00047   301 100 168 7 159 3 

TSL138-16  245  620  0.39   0.04924  0.00342  0.17052  0.01162  0.02512  0.00052   159 158 160 10 160 3 

TSL138-17  393  1110  0.35   0.04914  0.00335  0.17067  0.01127  0.02520  0.00057   155 155 160 10 160 4 

TSL138-18  789  1600  0.49   0.04921  0.00225  0.16995  0.00756  0.02509  0.00048   158 106 159 7 160 3 

TSL138-19  834  1899  0.44   0.04961  0.00156  0.17155  0.00555  0.02508  0.00042   177 75 161 5 160 3 

TSL138-20  902  2107  0.43   0.04935  0.00168  0.17139  0.00593  0.02519  0.00043   164 81 161 5 160 3 

TSL138-21  635  688  0.92   0.04922  0.00309  0.17113  0.01052  0.02523  0.00051   158 143 160 9 161 3 

TSL138-22  659  1600  0.41   0.05005  0.00153  0.17407  0.00547  0.02523  0.00042   197 73 163 5 161 3 

TSL138-23  610  1604  0.38   0.04931  0.00155  0.17153  0.00552  0.02523  0.00042   163 75 161 5 161 3 

TSL138-24  188  437  0.43   0.06932  0.00215  1.39889  0.04419  0.14638  0.00248   908 65 888 19 881 14 

TSL138-25  444  940  0.47   0.07284  0.00146  1.50132  0.03312  0.14951  0.00231   1010 42 931 13 898 13 

TSL138-26  729  552  1.32   0.07108  0.00206  1.53689  0.04540  0.15684  0.00251   960 61 945 18 939 14 

TSL138-27  292  245  1.19   0.07779  0.00181  2.05875  0.05104  0.19200  0.00302   1142 47 1135 17 1132 16 

TSL138-28  287  151  1.90   0.07851  0.00265  2.02175  0.06929  0.18684  0.00316   1160 69 1123 23 1104 17 

TSL138-29  386  446  0.87   0.07943  0.00200  2.08608  0.05485  0.19054  0.00297   1183 51 1144 18 1124 16 

TSL138-30  538  284  1.90   0.10423  0.00238  4.13516  0.10124  0.28778  0.00475   1701 43 1661 20 1630 24 

TSL138-31  159  326  0.49   0.14988  0.00418  4.88191  0.14065  0.23626  0.00393   2345 49 1799 24 1367 20 

TSL138-32  1319  537  2.46   0.15273  0.00393  6.18107  0.16762  0.29356  0.00473   2377 45 2002 24 1659 24 

TSL138-33  288  409  0.70   0.15826  0.00397  8.98428  0.23580  0.41175  0.00649   2437 43 2336 24 2223 30 

(To be continued on the next page) 
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Appendix 4-1. (Continued) 

Spot 
 Elements (ppm)  Isotopic ratios  Ages (Ma) 

 232Th 238U Th/U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 

Weijia granite porphyry 

WJ5-01  183  223  0.82   0.05617  0.00488  0.19085  0.01641  0.02464  0.00053   459 199 177 14 157 3 

WJ5-02  975  942  1.03   0.05974  0.00276  0.20360  0.00931  0.02472  0.00046   594 103 188 8 157 3 

WJ5-03  388  534  0.73   0.04923  0.00324  0.16797  0.01091  0.02476  0.00052   159 150 158 9 158 3 

WJ5-04  99  136  0.73   0.04937  0.00955  0.16876  0.03239  0.02479  0.00077   165 357 158 28 158 5 

WJ5-05  83  99  0.84   0.04922  0.01522  0.16889  0.05186  0.02489  0.00103   158 525 158 45 158 6 

WJ5-06  47  66  0.71   0.04947  0.01829  0.16894  0.06209  0.02479  0.00110   170 633 158 54 158 7 

WJ5-07  686  2573  0.27   0.04924  0.00185  0.16956  0.00635  0.02499  0.00042   159 88 159 6 159 3 

WJ5-08  139  201  0.69   0.04940  0.00698  0.16972  0.02373  0.02492  0.00065   167 286 159 21 159 4 

WJ5-09  257  215  1.20   0.07385  0.00670  0.25373  0.02247  0.02492  0.00067   1037 190 230 18 159 4 

WJ5-10  257  501  0.51   0.04932  0.00343  0.17073  0.01174  0.02513  0.00052   163 158 160 10 160 3 

WJ5-11  574  595  0.96   0.06024  0.00272  0.22010  0.00984  0.02656  0.00050   612 100 202 8 169 3 

WJ5-12  136  208  0.65   0.04951  0.00611  0.18297  0.02231  0.02681  0.00070   172 262 171 19 171 4 

WJ5-13  101  141  0.72   0.10832  0.01572  0.45749  0.06498  0.03063  0.00091   1771 281 383 45 194 6 

WJ5-14  406  535  0.76   0.05117  0.00227  0.27302  0.01207  0.03873  0.00069   248 104 245 10 245 4 

WJ5-15  484  868  0.56   0.06603  0.00286  0.55699  0.02360  0.06119  0.00110   807 93 450 15 383 7 

WJ5-16  307  182  1.69   0.06361  0.00234  1.04873  0.03886  0.11962  0.00209   729 80 728 19 728 12 

WJ5-17  61  66  0.92   0.06878  0.00272  1.98580  0.07835  0.20972  0.00379   892 84 1111 27 1227 20 

WJ5-18  294  977  0.30   0.15223  0.00406  5.18185  0.14516  0.24692  0.00422   2371 47 1850 24 1423 22 

WJ5-19  77  84  0.92   0.16010  0.00463  10.19107  0.29969  0.46186  0.00782   2457 50 2452 27 2448 34 
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Appendix 4-2. LA-ICP-MS zircon Hf isotope analyses of granitoids from the Tongshanling-Weijia area 

Spot Age (Ma) 176Lu/177Hf 2σ 176Hf/177Hf 2σ (176Hf/177Hf)i εHf (t) T 
DM(Hf) (Ga) TC 

DM(Hf) (Ga) 

Tongshanling granodiorite porphyry 

TSL001-01 159 0.001143 0.000013 0.282389 0.000020 0.282385 –10.2 1.23 1.85 

TSL001-02 160 0.001599 0.000046 0.282438 0.000026 0.282434 –8.5 1.17 1.74 

TSL001-03 160 0.000934 0.000003 0.282463 0.000022 0.282460 –7.5 1.12 1.68 

TSL001-04 160 0.000774 0.000016 0.282397 0.000031 0.282395 –9.8 1.20 1.83 

TSL001-05 161 0.001337 0.000011 0.282354 0.000023 0.282350 –11.4 1.28 1.92 

TSL001-06 161 0.000443 0.000026 0.282345 0.000026 0.282344 –11.6 1.26 1.94 

TSL001-07 162 0.001349 0.000040 0.282460 0.000024 0.282456 –7.6 1.13 1.69 

TSL001-08 162 0.001151 0.000017 0.282453 0.000029 0.282449 –7.9 1.14 1.70 

TSL001-09 163 0.000831 0.000023 0.282465 0.000021 0.282462 –7.4 1.11 1.67 

TSL001-10 163 0.001320 0.000018 0.282449 0.000024 0.282445 –8.0 1.15 1.71 

TSL001-11 163 0.000999 0.000006 0.282441 0.000019 0.282438 –8.2 1.15 1.73 

TSL001-12 164 0.001893 0.000057 0.282499 0.000022 0.282493 –6.3 1.09 1.60 

TSL001-13 164 0.001569 0.000020 0.282478 0.000024 0.282473 –7.0 1.11 1.65 

TSL001-14 165 0.001592 0.000017 0.282428 0.000023 0.282423 –8.7 1.19 1.76 

TSL001-15 167 0.001293 0.000009 0.282421 0.000025 0.282417 –8.9 1.19 1.77 

TSL001-16 442 0.000790 0.000032 0.282107 0.000024 0.282100 –14.0 1.61 2.30 

TSL001-17 541 0.001396 0.000021 0.282587 0.000020 0.282573 4.9 0.95 1.19 

TSL001-18 767 0.000261 0.000003 0.281978 0.000024 0.281974 –11.3 1.76 2.37 

TSL001-19 888 0.000694 0.000016 0.282342 0.000024 0.282330 4.0 1.28 1.51 

TSL001-20 895 0.000190 0.000021 0.282206 0.000023 0.282202 –0.4 1.45 1.79 

TSL001-21 896 0.001093 0.000015 0.282250 0.000023 0.282232 0.7 1.42 1.73 

TSL001-22 936 0.000867 0.000032 0.282355 0.000022 0.282340 5.4 1.26 1.46 

TSL001-23 936 0.000721 0.000016 0.282188 0.000036 0.282175 –0.4 1.49 1.83 

TSL001-24 1021 0.000511 0.000002 0.282024 0.000024 0.282014 –4.2 1.71 2.13 

TSL001-25 1640 0.000847 0.000009 0.281873 0.000023 0.281846 3.7 1.93 2.11 

Dioritic dark enclaves 

JY55-01 158 0.002067 0.000019 0.282463 0.000024 0.282457 –7.7 1.15 1.69 

JY55-02 158 0.001549 0.000009 0.282470 0.000022 0.282466 –7.4 1.12 1.67 

JY55-03 159 0.001662 0.000037 0.282447 0.000021 0.282442 –8.2 1.16 1.72 

JY55-04 159 0.001383 0.000026 0.282461 0.000024 0.282457 –7.7 1.13 1.69 

JY55-05 159 0.001722 0.000060 0.282470 0.000029 0.282465 –7.4 1.13 1.67 

JY55-06 160 0.001339 0.000020 0.282482 0.000022 0.282478 –6.9 1.10 1.64 

JY55-07 160 0.001843 0.000030 0.282414 0.000022 0.282409 –9.3 1.21 1.79 

JY55-08 161 0.001094 0.000018 0.282476 0.000021 0.282473 –7.1 1.10 1.65 

(To be continued on the next page) 

 

 



Appendices 

270 

 

 

Appendix 4-2. (Continued) 

Spot Age (Ma) 176Lu/177Hf 2σ 176Hf/177Hf 2σ (176Hf/177Hf)i εHf (t) T 
DM(Hf) (Ga) TC 

DM(Hf) (Ga) 

JY55-09 161 0.001723 0.000006 0.282453 0.000031 0.282447 –8.0 1.15 1.71 

JY55-10 161 0.002152 0.000033 0.282476 0.000035 0.282470 –7.2 1.13 1.66 

JY55-11 162 0.001205 0.000018 0.282424 0.000028 0.282421 –8.9 1.18 1.77 

JY55-12 162 0.001468 0.000043 0.282451 0.000029 0.282446 –8.0 1.15 1.71 

JY55-13 163 0.001454 0.000053 0.282445 0.000027 0.282441 –8.2 1.16 1.72 

JY55-14 164 0.001419 0.000030 0.282448 0.000020 0.282444 –8.0 1.15 1.71 

JY55-15 420 0.001284 0.000015 0.282313 0.000023 0.282303 –7.4 1.34 1.87 

JY55-16 427 0.000830 0.000011 0.282434 0.000021 0.282427 –2.8 1.15 1.59 

JY55-17 625 0.001375 0.000020 0.282187 0.000021 0.282171 –7.5 1.52 2.03 

JY55-18 949 0.001815 0.000083 0.282275 0.000021 0.282243 2.3 1.41 1.67 

JY55-19 1086 0.001182 0.000056 0.282299 0.000040 0.282275 6.4 1.35 1.51 

JY55-20 1200 0.001281 0.000040 0.282244 0.000028 0.282215 6.9 1.43 1.57 

Tongshanling granite porphyry 

TSL138-01 157 0.001435 0.000012 0.282535 0.000028 0.282531 –5.1 1.03 1.53 

TSL138-02 157 0.001202 0.000027 0.282559 0.000033 0.282556 –4.2 0.99 1.47 

TSL138-03 158 0.002067 0.000013 0.282612 0.000027 0.282606 –2.4 0.93 1.36 

TSL138-04 158 0.002170 0.000048 0.282224 0.000035 0.282217 –16.1 1.50 2.22 

TSL138-05 159 0.000894 0.000022 0.282387 0.000039 0.282384 –10.2 1.22 1.85 

TSL138-06 159 0.002494 0.000019 0.282442 0.000054 0.282435 –8.4 1.19 1.74 

TSL138-07 159 0.001451 0.000029 0.282517 0.000033 0.282512 –5.7 1.06 1.57 

TSL138-08 159 0.001330 0.000036 0.282549 0.000038 0.282545 –4.5 1.01 1.49 

TSL138-09 159 0.001231 0.000026 0.282670 0.000031 0.282666 –0.2 0.83 1.22 

TSL138-10 159 0.000874 0.000012 0.282546 0.000027 0.282544 –4.6 1.00 1.50 

TSL138-11 159 0.001635 0.000039 0.282519 0.000030 0.282514 –5.6 1.06 1.56 

TSL138-12 160 0.001433 0.000014 0.282613 0.000020 0.282609 –2.3 0.92 1.35 

TSL138-13 160 0.001663 0.000018 0.282518 0.000025 0.282513 –5.7 1.06 1.56 

TSL138-14 160 0.000634 0.000039 0.282387 0.000031 0.282385 –10.2 1.21 1.85 

TSL138-15 160 0.000482 0.000030 0.282597 0.000029 0.282596 –2.7 0.92 1.38 

TSL138-16 161 0.001269 0.000011 0.282539 0.000022 0.282535 –4.9 1.02 1.51 

TSL138-17 161 0.001147 0.000012 0.282560 0.000022 0.282557 –4.1 0.99 1.46 

TSL138-18 161 0.002161 0.000009 0.282636 0.000028 0.282629 –1.5 0.90 1.30 

TSL138-19 881 0.001075 0.000018 0.282306 0.000018 0.282288 2.3 1.34 1.61 

TSL138-20 898 0.001502 0.000017 0.281938 0.000026 0.281912 –10.6 1.88 2.43 

TSL138-21 1142 0.001484 0.000079 0.282366 0.000032 0.282334 9.8 1.27 1.34 

TSL138-22 1160 0.001377 0.000055 0.282169 0.000034 0.282139 3.3 1.55 1.77 

(To be continued on the next page) 
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Appendix 4-2. (Continued) 

Spot Age (Ma) 176Lu/177Hf 2σ 176Hf/177Hf 2σ (176Hf/177Hf)i εHf (t) T 
DM(Hf) (Ga) TC 

DM(Hf) (Ga) 

TSL138-23 1183 0.001369 0.000025 0.282004 0.000038 0.281973 –2.1 1.78 2.12 

TSL138-24 1701 0.001505 0.000029 0.281952 0.000033 0.281904 7.2 1.85 1.94 

TSL138-25 2377 0.000746 0.000008 0.281489 0.000029 0.281455 6.7 2.45 2.50 

TSL138-26 2437 0.000623 0.000024 0.281424 0.000033 0.281395 5.9 2.53 2.59 

Weijia granite porphyry 

WJ5-01 157 0.000868 0.000007 0.282582 0.000027 0.282579 –3.4  0.95 1.42 

WJ5-02 157 0.001934 0.000087 0.282634 0.000027 0.282628 –1.7  0.90 1.31 

WJ5-03 158 0.000578 0.000015 0.282554 0.000030 0.282552 –4.3  0.98 1.48 

WJ5-04 158 0.000792 0.000011 0.282571 0.000027 0.282569 –3.7  0.96 1.44 

WJ5-05 158 0.000697 0.000007 0.282597 0.000029 0.282595 –2.8  0.92 1.38 

WJ5-06 159 0.001100 0.000014 0.282577 0.000047 0.282574 –3.5  0.96 1.43 

WJ5-07 159 0.001082 0.000006 0.282621 0.000019 0.282617 –2.0  0.90 1.33 

WJ5-08 159 0.000856 0.000017 0.282624 0.000024 0.282622 –1.8  0.89 1.32 

WJ5-09 160 0.000645 0.000005 0.282543 0.000025 0.282542 –4.6  0.99 1.50 

WJ5-10 383 0.001379 0.000088 0.282547 0.000024 0.282537 0.1  1.01 1.37 

WJ5-11 892 0.001141 0.000029 0.282420 0.000033 0.282401 6.6  1.18 1.35 

WJ5-12 2457 0.000886 0.000056 0.281501 0.000046 0.281459 8.7  2.44 2.44 

Note: Zircons with εHf (t) > 0 using single-stage model ages T 
DM(Hf) (Ga); Zircons with εHf (t) < 0 using two-stage model ages TC 

DM(Hf) (Ga). 
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Appendix 4-3. Major elements (wt.%), trace elements (ppm) and Sr-Nd isotopes of granitoids from the Tongshanling-Weijia area 

Sample 
Tongshanling granodiorite porphyry 

TSL58 TSL59 TSL60 JY23 JY36 JY38 JY40 YL49 YL50 

SiO2 68.23 68.12 65.94 65.74 63.71 65.02 65.84 68.21 70.09 

TiO2 0.37 0.43 0.47 0.52 0.52 0.56 0.48 0.44 0.37 

Al2O3 14.38 14.90 15.68 15.97 16.66 15.84 15.24 14.37 13.68 

Fe2O3 0.70 0.97 1.26 1.17 1.33 1.22 0.95 1.00 0.99 

FeO 2.15 2.04 2.18 2.45 2.62 2.60 2.36 2.28 1.85 

MnO 0.08 0.06 0.05 0.09 0.09 0.11 0.09 0.08 0.07 

MgO 1.16 1.29 1.41 1.64 1.81 1.69 1.63 1.30 1.08 

CaO 3.16 2.78 3.42 3.58 4.15 3.75 3.75 3.14 2.35 

Na2O 2.77 2.89 3.19 2.89 3.03 2.95 3.14 2.94 2.57 

K2O 4.63 4.64 3.97 3.97 3.92 4.22 4.42 4.20 4.79 

P2O5 0.13 0.15 0.18 0.19 0.21 0.20 0.18 0.18 0.15 

LOI 2.56 2.52 2.08 1.48 2.02 2.01 1.44 1.20 1.32 

Total 100.32 100.80 99.82 99.69 100.08 100.16 99.53 99.35 99.31 

Ga 16.80 15.71 17.41 16.29 15.75 16.73 16.24 17.30 17.05 

Rb 194.25 187.97 179.67 169.97 177.11 164.65 162.50 228.55 256.48 

Sr 267.48 302.14 308.22 339.80 291.38 310.89 332.43 268.47 205.93 

Y 18.41 24.32 21.85 18.33 19.42 20.25 19.90 17.49 18.26 

Zr 123.44 138.31 154.91 129.48 142.41 152.77 143.96 118.88 127.29 

Nb 14.43 21.02 23.52 14.65 15.05 15.79 13.55 17.93 16.85 

Ba 601.26 858.21 749.22 1795.75 916.95 845.02 872.38 246.68 213.69 

Hf 3.93 4.02 4.55 4.08 4.49 4.68 4.43 3.72 4.16 

Ta 1.60 1.48 1.78 1.74 1.69 1.57 1.45 1.95 2.52 

Th 23.21 15.19 16.62 13.47 13.26 13.78 14.75 15.12 20.42 

U 10.55 4.56 5.59 5.91 5.78 5.46 5.18 11.88 15.17 

La 17.91 22.42 23.88 20.80 21.13 22.12 21.19 13.40 16.00 

Ce 34.69 42.22 40.23 40.83 39.83 42.56 41.09 29.51 34.78 

Pr 4.77 5.16 5.03 5.71 5.96 5.97 5.82 4.61 5.17 

Nd 16.80 19.42 19.41 19.92 20.80 20.88 20.23 17.92 19.11 

Sm 3.42 3.76 4.01 4.01 4.22 4.31 4.25 3.82 3.90 

Eu 1.01 1.17 1.21 1.47 1.21 1.20 1.20 0.85 0.78 

Gd 3.26 3.53 3.80 3.81 3.89 3.84 3.95 3.40 3.41 

Tb 0.53 0.55 0.62 0.59 0.62 0.64 0.65 0.54 0.54 

Dy 3.16 3.16 3.64 3.40 3.58 3.72 3.74 3.00 3.01 

Ho 0.63 0.61 0.71 0.66 0.69 0.72 0.72 0.58 0.59 

Er 1.91 1.88 2.19 1.99 2.06 2.14 2.15 1.72 1.84 

Tm 0.30 0.28 0.33 0.30 0.31 0.32 0.32 0.26 0.29 

Yb 2.05 1.94 2.27 2.06 2.11 2.17 2.15 1.85 2.14 

Lu 0.32 0.31 0.36 0.32 0.32 0.33 0.33 0.29 0.35 

ASIa 0.94 1.00 0.99 1.03 0.99 0.97 0.91 0.95 1.00 

DIb 76.08  76.88  72.69  70.80  67.52  70.24 72.74 75.51 79.64 

ΣREE 90.76 106.42 107.69 105.87 106.73 110.92 107.79 81.75 91.91 

HFSEc 190.97 225.86 240.51 203.29 216.71 231.37 218.50 183.81 197.18 

TZr
d (°C) 749 764 770 758 758 764 752 747 761 

87Rb/86Sr 2.10 1.80  1.45 1.76 1.53 1.41 2.46 3.60 
87Sr /86Sr 0.715467 0.714273  0.714026 0.713045 0.714132 0.713807 0.714646 0.717641 

2σ 0.000008 0.000006  0.000006 0.000009 0.000007 0.000014 0.000008 0.000008 

(87Sr /86Sr)i 0.710612 0.710114  0.710682 0.708982 0.710592 0.710539 0.708955 0.709315 
147Sm/144Nd 0.12 0.12  0.12 0.12 0.12 0.13 0.13 0.12 
143Nd/144Nd 0.512208 0.512209  0.512231 0.512258 0.512212 0.512214 0.512351 0.512329 

2σ 0.000006 0.000005  0.000008 0.000007 0.000006 0.000005 0.000006 0.000006 

εNd (t) –6.9 –6.7  –6.4 –5.9 –6.8 –6.8 –4.2 –4.5 

TC 
DM(Nd) (Ga) 1.51 1.50  1.47 1.43 1.51 1.51 1.29 1.32 

(To be continued on the next page) 
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Appendix 4-3. (Continued) 

Sample 
Dioritic dark enclaves 

JY41 JY42 JY43 JY44 JY52 JY55 JY65 

SiO2 55.70 48.61 59.35 53.38  55.13  58.79  57.56  

TiO2 0.85 1.00 0.80 1.16  0.90  0.85  0.86  

Al2O3 16.18 16.48 16.49 18.54  16.82  17.05  17.20  

Fe2O3 1.30 4.80 1.27 1.18  1.71  1.58  1.48  

FeO 6.95 4.62 4.88 7.01  6.80  5.13  5.26  

MnO 0.30 0.29 0.18 0.17  0.32  0.20  0.19  

MgO 3.99 4.47 2.77 3.25  4.09  3.09  3.13  

CaO 5.87 6.62 4.92 4.46  6.00  4.80  5.36  

Na2O 3.27 3.38 3.08 3.23  3.46  3.48  3.26  

K2O 2.52 2.03 3.17 2.99  2.87  3.39  2.85  

P2O5 0.26 0.24 0.29 0.34  0.30  0.33  0.32  

LOI 2.57 6.72 2.03 3.43  1.23  1.57  1.77  

Total 99.77 99.26 99.25 99.13  99.63  100.26  99.24  

Ga 16.03 22.42 20.01 24.99  21.60  21.07  20.53  

Rb 125.83 135.10 221.60 213.96  185.59  224.96  210.82  

Sr 192.90 267.18 350.11 271.46  246.51  256.45  391.37  

Y 53.29 58.85 30.82 38.47  61.81  47.11  24.09  

Zr 105.97 134.91 121.57 144.20  146.16  190.58  133.43  

Nb 19.80 24.34 19.16 33.14  23.37  23.24  21.06  

Ba 268.94 400.17 592.37 428.28  479.41  515.45  617.02  

Hf 3.67 4.48 3.89 4.51  4.71  6.09  4.06  

Ta 2.12 2.50 1.73 3.83  2.67  2.80  0.88  

Th 11.77 15.20 15.26 12.61  10.01  24.09  13.13  

U 5.67 7.29 4.57 10.16  5.81  10.34  3.24  

La 15.24 19.65 28.17 18.42  16.70  35.53  26.87  

Ce 39.92 52.09 59.63 30.46  43.81  73.46  57.18  

Pr 7.98 10.15 9.32 5.55  8.58  11.06  8.58  

Nd 30.98 39.66 32.17 21.47  36.21  40.21  31.52  

Sm 8.76 10.59 6.66 5.94  10.27  9.02  6.33  

Eu 1.04 1.37 1.28 1.06  1.35  1.22  1.46  

Gd 8.32 9.72 6.07 5.82  9.64  8.49  5.65  

Tb 1.58 1.77 0.97 1.07  1.79  1.43  0.85  

Dy 9.86 10.81 5.66 6.68  11.14  8.56  4.78  

Ho 1.93 2.12 1.11 1.33  2.20  1.68  0.91  

Er 5.69 6.30 3.35 4.05  6.57  5.08  2.70  

Tm 0.86 0.96 0.50 0.63  0.99  0.76  0.38  

Yb 5.63 6.46 3.40 4.25  6.65  5.06  2.55  

Lu 0.82 0.97 0.51 0.67  0.99  0.77  0.39  

ASIa 0.86 0.83 0.94 1.11  0.85  0.94  0.94  

DIb 48.05  41.68  57.26  50.02  48.78  58.07  53.66  
ΣREE 138.60 172.62 158.80 107.38  156.90  202.33  150.15  

HFSEc 218.97 270.19 231.19 246.27  275.15  334.40  235.77  

TZr
d (°C) 702 702 732 755  721  764  735  

87Rb/86Sr 1.89    2.18   1.56  
87Sr /86Sr 0.714602    0.714997   0.714759  

2σ 0.000005    0.000006   0.000005  

(87Sr /86Sr)i 0.710293    0.710023   0.711200  
147Sm/144Nd 0.17    0.17   0.12  
143Nd/144Nd 0.512270    0.512291   0.512290  

2σ 0.000004    0.000005   0.000006  

εNd (t) –6.7    –6.3   –5.2  

TC 
DM(Nd) (Ga) 1.49    1.46   1.38  

(To be continued on the next page) 
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Appendix 4-3. (Continued) 

Sample 
Tongshanling granite porphyry 

TSL89 TSL90 TSL138 TSL139 TSL141 TSL142 TSL143 TSL146 

SiO2 71.57  71.35  72.29  73.07  71.80  72.17  72.68  74.34  

TiO2 0.22  0.24  0.21  0.23  0.22  0.22  0.22  0.22  

Al2O3 13.83  14.01  12.72  13.61  13.56  13.69  13.66  13.04  

Fe2O3 0.57  0.67  0.43  0.44  0.52  0.54  0.36  0.44  

FeO 1.36  1.10  1.18  1.31  1.24  1.32  1.38  1.21  

MnO 0.08  0.07  0.10  0.07  0.09  0.09  0.07  0.08  

MgO 0.56  0.60  0.60  0.51  0.54  0.61  0.42  0.56  

CaO 1.23  0.73  2.15  0.93  1.25  1.83  0.85  1.03  

Na2O 2.95  2.62  2.73  2.82  3.21  2.44  3.98  4.04  

K2O 5.16  5.81  4.30  4.94  4.87  5.04  4.41  3.98  

P2O5 0.10  0.09  0.08  0.08  0.08  0.08  0.08  0.08  

LOI 2.17  1.77  2.84  1.63  2.27  2.47  1.27  1.22  

Total 99.79  99.05  99.63  99.63  99.63  100.52  99.38  100.23  

Ga 15.53  14.80  14.95  16.93  16.91  16.68  15.65  12.32  

Rb 208.19  220.83  204.94  228.28  224.03  232.93  186.58  163.39  

Sr 228.16  184.64  167.17  308.94  293.35  277.23  277.33  323.44  

Y 12.64  10.95  13.02  14.07  13.35  13.13  13.81  13.88  

Zr 137.78  130.61  127.83  134.44  143.31  132.92  142.62  134.92  

Nb 35.00  32.91  34.68  38.50  37.15  37.30  37.15  38.42  

Ba 635.01  556.30  633.86  650.21  650.26  679.25  611.55  778.21  

Hf 4.39  4.76  3.95  4.21  4.39  4.18  4.35  4.19  

Ta 2.70  2.91  2.46  2.71  2.67  2.70  2.68  2.65  

Th 17.15  17.71  21.80  24.65  24.12  24.55  24.64  24.01  

U 6.30  11.07  13.83  9.14  7.31  7.51  9.55  9.26  

La 32.45  31.68  33.56  40.95  40.33  39.32  39.04  37.77  

Ce 51.93  54.02  55.92  68.35  66.82  66.01  65.07  63.39  

Pr 6.55  7.25  8.10  9.74  9.45  9.18  8.94  8.60  

Nd 20.40  22.27  20.43  24.77  24.52  24.12  23.90  23.37  

Sm 3.35  3.55  3.40  3.89  3.95  3.85  3.80  3.76  

Eu 0.87  0.86  0.86  1.02  1.04  0.99  0.98  0.88  

Gd 3.06  3.26  3.21  3.55  3.65  3.56  3.48  3.48  

Tb 0.40  0.42  0.43  0.45  0.48  0.46  0.45  0.45  

Dy 2.00  2.07  2.16  2.16  2.37  2.26  2.17  2.22  

Ho 0.37  0.38  0.40  0.39  0.43  0.41  0.40  0.41  

Er 1.12  1.17  1.22  1.20  1.34  1.28  1.24  1.28  

Tm 0.17  0.17  0.18  0.18  0.20  0.19  0.18  0.19  

Yb 1.20  1.24  1.28  1.23  1.38  1.33  1.28  1.34  

Lu 0.19  0.20  0.20  0.20  0.22  0.21  0.21  0.22  

ASIa 1.09  1.17  0.97  1.16  1.06  1.07  1.06  1.02  

DIb 86.12  87.64  82.50  87.48  86.43  83.74  89.23  89.73  
ΣREE 124.06  128.54  131.34  158.06  156.19  153.17  151.15  147.36  

HFSEc 237.35  228.49  231.44  255.35  260.63  249.35  258.65  250.61  

TZr
d (°C) 778  781  763  784  779  774  779  771  

87Rb/86Sr 2.64  3.46  2.61       
87Sr /86Sr 0.713635  0.714824  0.714022       

2σ 0.000007  0.000006  0.000009       

(87Sr /86Sr)i 0.707674  0.707011  0.708124       
147Sm/144Nd 0.10  0.10  0.10       
143Nd/144Nd 0.512431  0.512409  0.512391       

2σ 0.000006  0.000006  0.000005       

εNd (t) –2.1  –2.4  –2.8       

TC 
DM(Nd) (Ga) 1.12  1.15  1.18       

(To be continued on the next page) 
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Appendix 4-3. (Continued) 

Sample 
Weijia granite porphyry 

WJ-2 WJ-10 WJ-11 WJ-12 WJ-15 WJ-18 WJ-22 

SiO2 73.86  74.06  74.60  76.69  76.12  75.73  76.73  

TiO2 0.01  0.01  0.01  0.01  0.01  0.01  0.02  

Al2O3 13.84  14.27  14.08  13.30  13.70  13.69  13.06  

Fe2O3 0.07  0.29  0.11  0.02  0.00  0.01  0.22  

FeO 0.22  0.28  0.27  0.11  0.13  0.11  0.11  

MnO 0.01  0.01  0.01  0.00  0.00  0.00  0.00  

MgO 0.04  0.17  0.04  0.01  0.01  0.03  0.14  

CaO 0.88  0.15  0.63  0.28  0.12  0.17  0.25  

Na2O 3.36  3.01  3.17  3.72  3.34  3.01  3.48  

K2O 6.19  6.78  6.46  4.84  5.87  5.86  5.44  

P2O5 0.02  0.01  0.00  0.01  0.01  0.01  0.01  

LOI 1.06  0.94  0.74  0.77  0.73  0.88  1.10  

Total 99.57  99.98  100.12  99.74  100.04  99.51  100.57  

Ga 17.08  22.24  16.06  28.72  25.08  27.43  21.03  

Rb 300.62  310.95  259.64  318.89  345.79  355.98  291.60  

Sr 27.20  19.93  15.97  14.77  17.69  21.75  28.45  

Y 14.67  25.12  31.97  51.27  39.88  43.33  37.28  

Zr 74.78  83.19  74.06  60.61  81.13  71.77  80.14  

Nb 33.06  41.78  32.31  41.81  40.47  41.16  39.75  

Ba 7.46  15.02  7.32  10.62  21.52  34.84  42.60  

Hf 4.67  5.56  4.75  4.34  4.80  4.84  5.13  

Ta 4.04  6.12  4.49  7.53  5.39  5.97  5.54  

Th 12.04  18.05  15.83  26.76  27.31  27.78  27.60  

U 13.69  6.78  11.44  18.79  7.79  9.16  8.69  

La 7.14  8.52  8.12  15.20  11.55  14.67  13.33  

Ce 19.16  15.58  14.47  23.48  16.45  22.77  14.81  

Pr 1.92  2.38  2.17  5.49  3.85  5.08  4.54  

Nd 10.51  13.48  12.24  16.73  12.34  15.34  13.57  

Sm 3.86  5.26  4.89  7.40  5.97  6.61  5.88  

Eu 0.04  0.07  0.06  0.09  0.09  0.10  0.10  

Gd 4.05  5.88  5.26  8.32  7.02  7.45  6.49  

Tb 0.69  1.02  0.99  1.71  1.48  1.52  1.37  

Dy 3.91  5.96  6.13  10.11  8.83  8.95  8.25  

Ho 0.65  1.01  1.08  1.78  1.56  1.57  1.46  

Er 1.65  2.56  2.78  4.77  4.15  4.23  3.94  

Tm 0.21  0.35  0.39  0.67  0.59  0.59  0.55  

Yb 1.38  2.06  2.26  4.14  3.58  3.68  3.38  

Lu 0.18  0.28  0.33  0.59  0.51  0.53  0.47  

ASIa 1.00  1.13  1.05  1.12  1.13  1.18  1.08  

DIb 93.59 95.46 94.85 95.93 96.82 95.44 96.58 

ΣREE 55.35  64.41  61.17  100.47  77.97  93.08  78.14  

HFSEc 141.67  165.67  152.81  177.17  177.93  179.02  171.97  

TZr
d (°C) 722 741 726 718 741 735 737 

87Rb/86Sr        
87Sr /86Sr        

2σ        

(87Sr /86Sr)i        
147Sm/144Nd 0.22 0.24 0.24     
143Nd/144Nd 0.512424 0.512446 0.512406     

2σ 0.000006 0.000013 0.000009     

εNd (t) –4.7 –4.5 –5.4     

TC 
DM(Nd) (Ga) 1.33 1.32 1.39     

Notes: a ASI: aluminum saturation index, n(Al2O3)/n(CaO+Na2O+K2O). b DI: differentiation index, the sum of CIPW normative minerals Q, 

Or, Ab, Ne, Lc, and Kp. c HFSE: high field strength elements (Zr+Nb+Ce+Y). d TZr: zircon saturation temperature.  
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Appendix 4-4. Zircon U-Pb ages of the Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range, South China 

Intrusion/Deposit Metal association Lithology Analytical method Age (Ma) Reference 

Cu-Pb-Zn-bearing granites 

Shuikoushan Pb-Zn-Au-Ag Granodiorite SHRIMP 163.0 ± 2.0 Ma et al. (2006) 
LA-ICP-MS 156.0 ± 1.0 Zuo et al. (2014) 
SIMS 158.8 ± 1.8 Huang et al. (2015) 
SIMS 158.3 ± 1.2 Yang et al. (2016) 

Baoshan Cu-Mo-Pb-Zn-Ag Granodiorite porphyry SHRIMP 158.0 ± 2.0 Lu et al. (2006) 
LA-ICP-MS 156.7 ± 1.4 Xie et al. (2013) 

157.7 ± 1.1 

Granodioritic cryptoexplosion breccia SHRIMP 164.1 ± 1.9 Wu et al. (2005) 
162.2 ± 1.6 

Tongshanling Cu-Mo-Pb-Zn-Ag Granodiorite porphyry SHRIMP 163.6 ± 2.1 Jiang et al. (2009) 
LA-ICP-MS 160.7 ± 0.5 Zhao et al. (2016b) 

160.5 ± 0.9 

159.7 ± 0.8 

LA-ICP-MS 162.5 ± 1.0 This study 

Dabaoshan Fe-Cu-Mo-Pb-Zn Granodiorite porphyry LA-ICP-MS 167.0 ± 2.5 Li et al. (2012b) 
Granodiorite porphyry LA-ICP-MS 162.2 ± 0.7 Mao et al. (2013b) 

161.0 ± 0.9 

Granodiorite 160.2 ± 0.9 

Huangshaping Pb-Zn-W-Mo Dacite porphyry LA-ICP-MS 158.5 ± 0.9 Yuan et al. (2014) 
Quartz porphyry 160.8 ± 1.0 

Granite porphyry 155.2 ± 0.4 

Quartz porphyry LA-ICP-MS 160.5 ± 1.3 Ding et al. (2016b) 
W-bearing granites 

Dengfuxian W-Nb-Ta Medium-fine-grained two-mica granite LA-ICP-MS 154.4 ± 2.2 Cai (2013) 
Medium-grained porphyritic two-mica granite 151.1 ± 2.3 

Yaogangxian W Coarse-grained biotite granite SHRIMP 155.4 ± 2.2 Li et al. (2011) 
Fine-grained porphyritic granite 157.6 ± 2.6 

Quartz porphyry 158.4 ± 2.1 

Weijia W Granite porphyry LA-ICP-MS 157.8 ± 0.9 Zhao et al. (2016a) 
Quartz porphyry 158.3 ± 1.4 

Granite porphyry LA-ICP-MS 158.3 ± 2.2 This study 

Baxiannao W-Sn Medium-coarse-grained biotite granite SHRIMP 157.2 ± 2.2 Feng et al. (2011a) 
Maoping W-Sn Porphyritic biotite granite 151.8 ± 2.9 

Taoxikeng W Biotite granite SHRIMP 158.7 ± 3.9 Guo et al. (2011) 
157.6 ± 3.5 

Piaotang W-Sn Medium-fine-grained porphyritic biotite granite Single-grain zircon dating 161.8 ± 1.0 Zhang et al. (2009) 
Muziyuan W-Mo Medium-fine-grained biotite-bearing granite 153.3 ± 1.9 

Xihuashan W-Mo Coarse-grained porphyritic biotite granite LA-ICP-MS 155.7 ± 2.2 Wang et al. (2011c) 
Medium-grained porphyritic biotite granite LA-ICP-MS 155.5 ± 0.4 Yang et al. (2012) 
Medium-grained biotite granite 153.0 ± 0.6 

Fine-grained two-mica granite 152.8 ± 0.9 

Hukeng W Muscovite granite LA-ICP-MS 151.6 ± 2.6 Liu et al. (2008a) 
Hongtaoling W Biotite granite SHRIMP 151.4 ± 3.1 Feng et al. (2007a) 
Zhangtiantang W Fine-grained porphyritic muscovite granite SHRIMP 156.9 ± 1.7 Feng et al. (2007b) 
Huamei’ao W Biotite granite LA-ICP-MS 159.9 ± 1.2 Feng et al. (2015) 
Kuimeishan W Biotite granite SHRIMP 157.7 ± 2.7 Li et al. (2014c) 
Dajishan W-Nb-Ta Fine-grained muscovite granite Single-grain zircon dating 151.7 ± 1.6 Zhang et al. (2006) 
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Appendix 5-1. Representative EMP analyses of plagioclase (wt.%) from the Tongshanling granodiorite and its microgranular enclaves 

  Tongshanling granodiorite  Microgranular enclaves 

Sample No.  TSL009  TSL016  YL49  JY55 

      From core to rim in the same grain  From core to rim in the same grain   

Type  Rim  Rim  Core Rim Rim Rim Rim  Core Core Core Rim Rim Rim Rim 

SiO2  61.19   60.92   49.89 51.51 54.34 57.42 61.14  49.72 48.75 52.02 57.85 60.47 61.05 62.69 

TiO2  0.04   0.01   0.00 0.00 0.00 0.05 0.00  0.00 0.00 0.00 0.06 0.00 0.00 0.03 

Al2O3  23.40   24.06   30.89 29.81 28.70 26.51 23.26  31.74 32.17 29.32 25.63 23.93 23.85 22.43 

FeOa  0.48   0.22   0.22 0.44 0.04 0.08 0.17  0.02 0.21 0.05 0.07 0.01 0.14 0.15 

MnO  0.03   0.00   0.04 0.00 0.00 0.01 0.03  0.06 0.11 0.00 0.06 0.05 0.00 0.02 

MgO  0.00   0.02   0.01 0.04 0.00 0.01 0.03  0.00 0.00 0.01 0.00 0.00 0.01 0.00 

CaO  5.55   6.32   14.56 12.80 11.03 8.52 6.49  14.74 15.22 13.70 8.51 6.75 6.18 4.81 

Na2O  8.46   7.55   3.03 3.84 4.93 6.11 7.76  2.95 2.71 3.95 6.95 7.93 8.26 8.96 

K2O  0.21   0.25   0.13 0.12 0.20 0.49 0.33  0.05 0.06 0.13 0.11 0.16 0.22 0.29 

Total  99.36   99.33   98.77 98.57 99.23 99.19 99.22  99.28 99.24 99.19 99.24 99.31 99.70 99.37 

                   

Cations based on 8 oxygen               

Si  2.742   2.725   2.304 2.373 2.467 2.592 2.743  2.282 2.246 2.384 2.613 2.713 2.726 2.798 

Al  1.236   1.269   1.681 1.618 1.536 1.410 1.230  1.717 1.747 1.584 1.364 1.265 1.255 1.180 

Ti  0.001   0.000   0.000 0.000 0.000 0.002 0.000  0.000 0.000 0.000 0.002 0.000 0.000 0.001 

Fe  0.018   0.008   0.009 0.017 0.001 0.003 0.006  0.001 0.008 0.002 0.003 0.000 0.005 0.006 

Mn  0.001   0.000   0.001 0.000 0.000 0.000 0.001  0.002 0.004 0.000 0.002 0.002 0.000 0.001 

Mg  0.000   0.001   0.001 0.003 0.000 0.001 0.002  0.000 0.000 0.001 0.000 0.000 0.001 0.000 

Ca  0.267   0.303   0.720 0.632 0.537 0.412 0.312  0.725 0.751 0.673 0.412 0.324 0.296 0.230 

Na  0.735   0.655   0.271 0.343 0.434 0.535 0.675  0.262 0.242 0.351 0.609 0.690 0.716 0.776 

K  0.012   0.014   0.008 0.007 0.012 0.028 0.019  0.003 0.003 0.008 0.006 0.009 0.013 0.016 

                   

End membersb (%)               

An  26.30   31.16   72.08  64.33  54.63  42.27  31.00   73.24  75.36  65.20  40.08  31.69  28.90  22.50  

Ab  72.49   67.39   27.15  34.94  44.18  54.85  67.12   26.48  24.31  34.04  59.29  67.41  69.88  75.91  

Or  1.21   1.45   0.77  0.74  1.20  2.88  1.89   0.28  0.32  0.76  0.63  0.90  1.22  1.59  

Notes: a All Fe as Fe2+. b An = anorthite, Ab = albite, Or = orthoclase. 
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Appendix 5-2. Representative EMP analyses of amphibole (wt.%) from the Tongshanling granodiorite and its microgranular enclaves 

  Tongshanling granodiorite  Microgranular enclaves 

Sample No.  TSL016  YL49  JY40  JY55 

     Same grain  Same grain     Same grain  Same grain 

Typea  MI  MI II OI  CA RA OI  I I CCI RCI RCI CCE RCE 

SiO2  42.69   40.85 43.69  45.47   50.54  45.80  47.53  49.56  44.80  52.68  46.55  48.09  48.38 45.59 

TiO2  1.55   1.82 1.22  0.90   0.40  0.94  0.89  0.62  1.32  0.16  0.64  0.55  0.42 1.14 

Al2O3  9.67   11.52 8.59  7.53   3.68  7.66  5.89  4.76  8.12  2.48  6.86  5.81  4.57 7.25 

FeO  19.02   17.69 19.23  18.70   16.97  18.78  19.60  17.56  18.66  16.81  18.82  17.94  17.74 18.13 

MnO  0.59   0.41 0.72  0.56   1.07  0.94  0.89  0.63  0.64  0.98  0.71  0.96  0.87 0.52 

MgO  8.39   10.37 9.74  10.36   12.34  10.22  10.27  11.76  9.39  12.75  10.11  10.57  11.46 10.23 

CaO  11.74   9.18 11.17  11.07   11.25  11.22  10.90  11.26  11.10  11.88  11.72  11.85  11.26 11.14 

Na2O  1.49   1.32 1.42  1.40   0.62  1.28  0.89  0.81  1.16  0.41  1.00  0.85  0.66 1.16 

K2O  1.14   3.23 1.12  0.75   0.34  0.82  0.59  0.45  0.77  0.21  0.64  0.63  0.44 0.74 

F  0.14   0.61 0.43  0.49   0.14  0.15  0.21  0.20  0.24  0.08  0.17  0.17  0.32 0.21 

Cl  0.39   0.12 0.12  0.10   0.06  0.10  0.06  0.07  0.08  0.06  0.16  0.12  0.05 0.12 

Total  96.81  97.11 97.45 97.34  97.41  97.91  97.72  97.69  96.28  98.49  97.36  97.54  96.14 96.23 

                   

Ions based on 23 oxygen               

T_Si  6.604   6.263 6.652  6.877   7.479  6.871  7.121  7.337  6.850  7.687  7.021  7.217  7.299 6.945 

T_Al  1.396   1.737 1.348  1.123   0.521  1.129  0.879  0.663  1.150  0.313  0.979  0.783  0.701 1.055 

ΣT  8.000   8.000 8.000  8.000   8.000  8.000  8.000  8.000  8.000  8.000  8.000  8.000  8.000 8.000 

C_Al  0.368   0.345 0.192  0.220   0.121  0.225  0.161  0.166  0.313  0.113  0.240  0.245  0.111 0.247 

C_Ti  0.180   0.210 0.140  0.102   0.045  0.106  0.100  0.069  0.152  0.017  0.072  0.062  0.047 0.130 

C_Fe3+b  0.068   0.441 0.430  0.363   0.256  0.373  0.402  0.298  0.257  0.146  0.293  0.153  0.411 0.271 

C_Mg  1.934   2.370 2.210  2.337   2.722  2.286  2.293  2.596  2.140  2.773  2.273  2.364  2.578 2.323 

C_Fe2+  2.393   1.634 2.018  1.979   1.845  1.984  2.044  1.871  2.129  1.905  2.081  2.098  1.827 2.029 

C_Mn  0.058   0.000 0.010  0.000   0.012  0.027  0.000  0.000  0.010  0.045  0.040  0.078  0.026 0.000 

ΣC  5.000   5.000 5.000  5.000   5.000  5.000  5.000  5.000  5.000  5.000  5.000  5.000  5.000 5.000 

B_Mg  0.000   0.000 0.000  0.000   0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 0.000 

B_Fe2+  0.000   0.193 0.000  0.025   0.000  0.000  0.010  0.006  0.000  0.000  0.000  0.000  0.000 0.010 

B_Mn  0.019   0.053 0.083  0.072   0.122  0.092  0.113  0.079  0.073  0.076  0.050  0.043  0.084 0.067 

B_Ca  1.946   1.508 1.822  1.794   1.784  1.803  1.749  1.787  1.819  1.857  1.893  1.904  1.819 1.817 

B_Na  0.035   0.246 0.095  0.110   0.094  0.105  0.128  0.128  0.108  0.067  0.057  0.052  0.096 0.105 

ΣB  2.000   2.000 2.000  2.000   2.000  2.000  2.000  2.000  2.000  2.000  2.000  2.000  2.000 2.000 

A_Na  0.411   0.147 0.323  0.301   0.084  0.268  0.130  0.104  0.234  0.048  0.235  0.194  0.097 0.238 

A_K  0.225   0.631 0.218  0.145   0.065  0.157  0.113  0.085  0.150  0.039  0.123  0.120  0.084 0.145 

ΣA  0.636   0.777 0.541  0.446   0.149  0.424  0.243  0.189  0.384  0.087  0.357  0.314  0.181 0.382 

OHc  1.831   1.671  1.763  1.735   1.921  1.902  1.884   1.888  1.861  1.952  1.880  1.889  1.837  1.867  

F  0.068   0.298  0.207  0.238   0.065  0.072  0.100   0.095  0.119  0.035  0.079  0.080  0.152  0.103  

Cl  0.102   0.031  0.030  0.026   0.014  0.027  0.016   0.017  0.020  0.014  0.041  0.032  0.012  0.030  

                   

Mg/(Mg+Fe)  0.44   0.51 0.47  0.50   0.56  0.49  0.48  0.54  0.47  0.57  0.49  0.51  0.54 0.50 

Fe3+/(Fe2++ Fe3+)  0.03   0.19 0.21  0.15   0.14  0.19  0.16  0.14  0.11  0.07  0.12  0.07  0.18 0.12 

Notes: General formula: A0–1B2C5T8O22(OH, F, Cl)2. a MI: mineral inclusion; II: inner of isolated amphibole; OI: outer of isolated amphibole; CA: 

core of aggregated amphibole grains; RA: rim of aggregated amphibole grains; I: isolated amphibole; CCI: core of clot interior amphibole grains; 

RCI: rim of clot interior amphibole grains; CCE: core of clot exterior amphibole grains; RCE: rim of clot exterior amphibole grains. b Fe3+ was 

calculated using the average estimation after Leake et al. (1997). c The estimation of OH was based on OH+F+Cl = 2. 
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Appendix 5-3. LA-ICP-MS analyses of amphibole and biotite (ppm) from the Tongshanling granodiorite and its microgranular enclaves 

  Amphibole  Biotite 

  Tongshanling granodiorite  Microgranular enclaves  Tongshanling granodiorite  Microgranular enclaves 

Sample No.  TSL009  T1512  JY55  TSL009  JY55 

Type  Isolated amphibole  Isolated amphibole  Isolated amphibole 
Core of clot interior 

amphibole grains 
Rim of clot interior amphibole 

grains 
        

Trace elements                       

Sc  228.07  218.18  202.13   222.79  128.34  243.36   173.68  169.95  15.66  14.57  24.45  75.92  100.27  196.03   27.93  24.99  24.23   15.26  15.90  18.89  

V  341.09  326.39  426.10   420.57  407.28  397.12   436.33  528.56  42.44  37.63  73.41  163.36  243.60  414.63   413.87  424.33  429.83   517.65  509.53  445.61  

Cr  87.74  77.66  70.34   413.10  1006.91  391.54   77.45  86.36  368.61  390.45  278.45  783.18  382.77  143.75   94.59  86.13  101.01   88.78  84.95  80.90  

Co  34.07  34.93  32.90   29.65  29.95  25.25   28.89  28.93  33.53  33.63  32.99  31.23  29.87  32.44   51.66  50.80  49.38   42.64  43.09  45.10  

Ni  22.43  23.80  20.46   22.38  17.97  23.61   15.55  14.31  128.30  128.04  48.73  52.97  40.82  18.73   38.01  40.16  38.55   20.56  24.63  25.76  

Zn  282.42  299.29  303.45   266.58  262.78  225.39   232.00  232.38  220.78  225.22  207.41  218.74  217.52  230.96   355.49  387.97  397.94   314.71  323.71  316.08  

Ga  20.76  18.55  22.57   15.34  18.74  14.48   17.51  20.24  6.19  5.63  8.11  15.12  19.39  17.91   39.14  41.42  42.06   38.79  37.99  36.03  

Rb  4.09  4.00  3.86   6.83  4.20  13.65   5.66  12.26  0.88  0.53  0.80  2.93  2.56  10.47   858.82  902.22  923.82   961.43  988.88  722.87  

Sr  6.42  8.75  33.66   21.98  42.61  75.44   14.91  28.60  8.90  8.25  9.14  11.35  26.16  13.48   2.45  1.80  2.11   1.22  0.63  1.23  

Y  505.48  470.00  299.36   278.26  210.98  268.25   337.02  234.40  78.69  69.43  91.37  255.97  180.42  419.30   8.15  0.90  0.94   0.38  0.77  0.01  

Zr  41.60  33.06  48.20   19.98  43.93  17.53   45.21  64.16  6.84  5.73  9.73  26.51  31.42  37.40   2.02  1.67  2.04   1.44  2.13  3.37  

Nb  56.33  60.42  45.91   21.55  18.57  20.31   34.89  29.20  3.99  3.42  6.16  25.98  26.61  37.54   94.81  93.38  98.80   94.73  94.59  72.71  

In  0.80  0.76  0.92   0.89  0.79  0.88   0.73  0.79  0.29  0.24  0.39  0.71  0.77  0.77   0.16  0.13  0.14   0.11  0.11  0.13  

Sn  20.01  19.53  16.85   17.15  11.85  14.98   19.07  17.88  5.11  4.25  6.45  17.90  12.22  25.56   7.81  8.20  8.64   9.83  9.68  9.73  

Cs  0.00  0.37  0.00   3.04  0.95  5.78   0.98  2.53  0.08  0.00  0.05  0.43  0.10  1.87   35.64  18.72  21.48   27.00  57.32  17.68  

Ba  1.78  5.14  35.25   4.66  31.29  5.74   10.64  31.46  0.69  1.06  2.05  6.09  16.95  8.58   1188.67  2485.56  2333.86   1400.97  1057.79  1013.68  

Hf  5.14  4.16  3.30   2.22  2.67  2.13   4.08  4.42  0.33  0.13  0.67  1.91  1.90  5.03   0.18  0.23  0.21   0.13  0.24  0.25  

Ta  9.33  12.51  2.75   3.52  1.07  4.10   4.74  1.69  0.23  0.19  0.31  2.68  1.26  7.29   8.24  6.44  8.14   13.13  12.14  4.43  

W  0.65  0.46  0.31   0.31  0.11  0.45   0.20  0.17  0.00  0.04  0.13  0.25  0.12  0.37   1.72  2.03  2.14   0.95  0.96  0.84  

(To be continued on the next page) 
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Appendix 5-3. (Continued) 

  Amphibole  Biotite 

  Tongshanling granodiorite  Microgranular enclaves  Tongshanling granodiorite  Microgranular enclaves 

Sample No.  TSL009  T1512  JY55  TSL009  JY55 

Type  Isolated amphibole  Isolated amphibole  Isolated amphibole 
Core of clot interior 

amphibole grains 
Rim of clot interior amphibole 

grains 
        

Pb  2.93  3.03  4.24   4.14  2.88  8.78   2.63  3.16  0.94  0.84  0.87  2.03  2.22  2.77   3.48  3.52  3.85   2.42  1.88  2.43  

Th  0.36  0.26  0.34   0.41  0.53  1.37   0.16  0.16  0.01  0.00  0.07  0.13  0.16  0.17   0.03  0.00  0.00   0.00  0.00  0.00  

U  0.54  0.39  0.59   0.74  0.28  1.22   0.22  0.21  0.00  0.04  0.09  0.17  0.21  0.20   0.11  0.00  0.13   0.01  0.00  0.00  

                          

Rare earth elements (REE)                       

La  31.01  25.14  27.74   10.55  17.24  11.10   21.73  28.24  4.24  3.51  5.58  15.16  14.28  17.80   2.72  1.51  1.40   0.08  0.02  0.00  

Ce  140.42  120.56  120.00   47.91  70.80  40.50   99.85  117.29  20.04  17.40  28.98  74.08  65.06  87.82   5.64  0.59  0.60   0.27  0.13  0.01  

Pr  28.72  25.52  22.36   10.64  12.93  8.63   20.42  21.84  4.26  3.66  5.95  15.35  13.31  19.21   1.05  0.32  0.33   0.05  0.03  0.00  

Nd  173.15  151.32  127.07   67.25  75.05  56.13   123.02  118.72  25.09  22.03  35.02  93.68  71.57  119.02   5.48  1.44  1.35   0.07  0.38  0.01  

Sm  67.69  60.99  48.42   30.19  24.54  26.54   46.98  38.14  9.62  8.80  13.09  34.83  26.58  50.44   1.73  0.19  0.32   0.03  0.13  0.05  

Eu  1.95  1.80  3.69   1.49  2.64  1.39   1.96  3.03  0.81  0.83  1.07  1.76  2.67  2.21   0.11  0.09  0.09   0.04  0.03  0.03  

Gd  75.10  67.75  51.66   38.10  28.54  34.96   50.46  36.73  8.31  8.87  13.08  37.90  28.10  56.27   3.86  5.15  4.68   2.13  1.85  1.76  

Tb  13.37  12.55  9.40   6.91  4.96  6.66   8.82  6.20  1.85  1.61  2.22  6.29  4.94  10.47   0.21  0.01  0.01   0.01  0.01  0.00  

Dy  87.79  84.58  58.71   47.82  34.59  45.79   56.67  39.98  13.97  10.62  15.25  43.61  32.93  68.27   1.15  0.05  0.15   0.02  0.08  0.00  

Ho  18.09  17.10  11.64   9.86  7.39  9.33   11.63  8.42  2.54  2.27  3.12  9.01  6.56  14.38   0.23  0.02  0.04   0.01  0.00  0.00  

Er  54.83  53.50  33.61   30.26  24.14  29.19   36.34  26.39  9.09  7.45  9.28  27.13  20.73  44.45   0.71  0.05  0.06   0.04  0.04  0.00  

Tm  7.73  7.47  4.56   4.15  3.59  4.10   5.08  3.92  1.29  1.23  1.36  3.73  2.79  6.50   0.07  0.00  0.01   0.01  0.02  0.01  

Yb  56.06  55.59  31.84   30.35  26.39  28.04   36.70  31.11  11.57  9.23  10.84  27.48  24.15  45.39   0.56  0.00  0.06   0.08  0.09  0.00  

Lu  7.76  7.89  4.29   4.39  3.73  4.21   5.13  4.50  1.74  1.25  1.57  4.03  3.42  6.74   0.10  0.03  0.00   0.02  0.00  0.02  
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Appendix 5-4. Representative EMP analyses of biotite (wt.%) from the Tongshanling granodiorite and its microgranular enclaves 

 Tongshanling granodiorite  Microgranular enclaves 

Sample No. TSL009  TSL016  TSL58  YL49   JY55 

SiO2 36.12 35.76 36.13 35.90 35.57 36.30 35.78 35.02  35.44 36.09 35.61 35.31 

TiO2 3.44 3.49 3.83 3.76 3.58 3.40 3.87 4.12  3.78 3.67 3.68 3.74 

Al2O3 13.20 13.43 13.49 13.03 14.30 14.99 13.11 13.82  13.70 14.28 13.75 13.91 

FeO 21.09 20.26 21.20 22.51 21.02 20.55 22.70 23.47  22.16 21.41 21.76 22.83 

MnO 0.47 0.31 0.48 0.33 0.54 0.36 0.52 0.59  0.48 0.47 0.44 0.40 

MgO 9.42 10.03 9.12 9.20 10.68 9.85 9.37 8.96  9.84 9.96 9.83 10.48 

CaO 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

Na2O 0.12 0.20 0.10 0.10 0.09 0.06 0.09 0.07  0.10 0.12 0.06 0.04 

K2O 9.23 8.95 9.39 9.30 9.67 9.70 9.27 9.61  8.95 9.52 9.30 9.09 

F 0.12 0.20 0.13 0.32 0.61 0.81 0.60 0.61  0.50 0.97 0.70 0.59 

Cl 0.73 0.64 0.36 0.33 0.18 0.13 0.09 0.14  0.23 0.19 0.20 0.21 

Total 93.94 93.35 94.24 94.78 96.24 96.16 95.39 96.40  95.20 96.68 95.33 96.57 

              

Ions based on 22 oxygen            

T_Si 5.671  5.622  5.642  5.609  5.433  5.544  5.562  5.416   5.501  5.518  5.523  5.409  

T_Al 2.329  2.378  2.358  2.391  2.567  2.456  2.402  2.519   2.499  2.482  2.477  2.511  

T_Fe3+a 0.000  0.000  0.000  0.000  0.000  0.000  0.036  0.065   0.000  0.000  0.000  0.080  

ΣT 8.000  8.000  8.000  8.000  8.000  8.000  8.000  8.000   8.000  8.000  8.000  8.000  

M_Al 0.114  0.110  0.125  0.009  0.008  0.242  0.000  0.000   0.007  0.092  0.035  0.000  

M_Ti 0.406  0.412  0.450  0.442  0.411  0.391  0.453  0.479   0.442  0.422  0.429  0.431  

M_Fe3+ 0.401  0.407  0.369  0.456  0.612  0.432  0.450  0.524   0.473  0.489  0.491  0.503  

M_Mg 2.206  2.350  2.124  2.143  2.431  2.243  2.172  2.065   2.277  2.269  2.273  2.393  

M_Fe2+ 2.368  2.256  2.400  2.485  2.073  2.193  2.465  2.446   2.403  2.248  2.331  2.342  

M_Mn 0.062  0.041  0.064  0.044  0.070  0.047  0.068  0.078   0.063  0.060  0.057  0.052  

ΣM 5.556  5.577  5.532  5.579  5.606  5.547  5.608  5.592   5.666  5.581  5.617  5.720  

I_Ca 0.002  0.014  0.000  0.000  0.000  0.000  0.000  0.001   0.000  0.000  0.000  0.000  

I_Na 0.037  0.060  0.031  0.030  0.027  0.018  0.027  0.020   0.031  0.036  0.019  0.012  

I_K 1.848  1.795  1.870  1.854  1.884  1.890  1.838  1.897   1.772  1.858  1.839  1.776  

ΣI 1.888  1.869  1.901  1.884  1.911  1.908  1.865  1.917   1.803  1.893  1.858  1.787  

OHb 3.872  3.864  3.920  3.876  3.827  3.785  3.840  3.831   3.845  3.737  3.798  3.828  

F 0.030  0.051  0.033  0.079  0.150  0.198  0.148  0.151   0.124  0.238  0.175  0.144  

Cl 0.098  0.086  0.048  0.045  0.023  0.016  0.013  0.018   0.031  0.025  0.027  0.027  

              

Mg/(Mg+Fe) 0.44 0.47 0.43 0.42 0.48 0.46 0.42 0.40  0.44 0.45 0.45 0.45 

Fe3+/(Fe2++ Fe3+) 0.14 0.15 0.13 0.16 0.23 0.16 0.16 0.19  0.16 0.18 0.17 0.20 

Notes: General formula: IM3T4O10(OH, F, Cl)2. a Fe3+ was calculated by the surplus oxygen method after Zheng (1983). b The estimation of OH 

was based on OH+F+Cl = 2. 
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Appendix 5-5. Representative EMP analyses of magmatic zircon (wt.%) in the Tongshanling granodiorite and its microgranular enclaves 

  Tongshanling granodiorite  Microgranular enclaves 

Sample No.  TSL001  JY55 

Type       Inner    Outer    

SiO2  33.93 33.33 32.84 33.83  32.87 33.20 33.45 33.12 32.93 32.94 32.92 32.60 

ZrO2  65.08 65.24 66.07 65.06  66.64 66.35 65.85 66.48 65.60 66.22 66.08 66.08 

HfO2  1.38 1.29 1.53 1.46  1.15 1.09 1.03 1.12 1.44 1.53 1.51 1.35 

UO2  0.13 0.33 0.13 0.09  0.10 0.07 0.08 0.00 0.19 0.12 0.10 0.28 

ThO2  0.02 0.10 0.07 0.04  0.08 0.00 0.05 0.00 0.02 0.01 0.09 0.04 

P2O5  0.00 0.14 0.00 0.00  0.00 0.00 0.28 0.00 0.07 0.00 0.00 0.00 

Nb2O5  0.00 0.00 0.07 0.06  0.11 0.06 0.00 0.00 0.04 0.03 0.02 0.00 

Ta2O5  0.00 0.00 0.03 0.00  0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.15 

Y2O3  0.00 0.38 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 

Sc2O3  0.11 0.09 0.07 0.08  0.00 0.13 0.05 0.00 0.08 0.04 0.02 0.00 

Total  100.65 100.90 100.81 100.62  100.95 100.90 100.79 100.73 100.49 100.88 100.74 100.66 

               

Cations based on 4 oxygen             

Si  1.026 1.007 1.001 1.024  0.999 1.006 1.010 1.006 1.005 1.002 1.003 0.996 

Zr  0.959 0.961 0.982 0.960  0.988 0.980 0.970 0.984 0.976 0.982 0.982 0.985 

Hf  0.012 0.011 0.013 0.013  0.010 0.009 0.009 0.010 0.013 0.013 0.013 0.012 

U  0.001 0.002 0.001 0.001  0.001 0.000 0.001 0.000 0.001 0.001 0.001 0.002 

Th  0.000 0.001 0.001 0.000  0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 

P  0.000 0.004 0.000 0.000  0.000 0.000 0.007 0.000 0.002 0.000 0.000 0.000 

Nb  0.000 0.000 0.001 0.001  0.002 0.001 0.000 0.000 0.001 0.000 0.000 0.000 

Ta  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 

Y  0.000 0.006 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 

Sc  0.003 0.002 0.002 0.002  0.000 0.003 0.001 0.000 0.002 0.001 0.001 0.000 

               

ThO2+UO2  0.15 0.44 0.21 0.13  0.17 0.07 0.13 0.00 0.20 0.12 0.18 0.32 

Zr/Hf  80.62 86.33 73.86 76.01  99.07 103.70 109.52 101.04 77.71 73.93 74.66 83.62 
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Appendix 6-1. Some parameters for Raman spectra of carbonaceous material in carbonate rocks from the Tongshanling Cu-Pb-Zn deposit 

and its adjacent area and temperatures calculated by the RSCM thermometry (mean value and standard deviation) 

Sample No. 
Formationa 

[Depth (m)] 

Number of 

spectra 

 G positionb  G FWHMc  R1 ratiod  R2 ratioe  Temperaturef (°C) 

 Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 

Regional carbonate samples collected from the surface far away from the Tongshanling intrusion 

D1509 D3x 16  1574.24 1.77  54.48 0.01  0.57 0.02  1.31 0.09  238 22 

D1512 D2q 16  1566.77 1.46  54.48 0.01  0.66 0.01  1.96 0.11  347 16 

D1515 D3s 11  1576.18 2.45  54.48 0.01  0.60 0.01  1.51 0.09  282 18 

D1522 D3s 11  1574.51 2.55  54.48 0.01  0.68 0.00  2.10 0.03  340 4 

D1524 C1y 13  1578.66 3.09  54.46 0.01  0.57 0.01  1.33 0.08  244 18 

D1531 D3x 10  1603.38 2.01  50.17 4.18  0.66 0.02  1.96 0.16  347 21 

T1610 C1y 14  1561.64 10.18  53.21 3.30  0.61 0.02  1.57 0.14  293 27 

T1613 C1y 15  1579.77 10.86  59.89 6.25  0.62 0.02  1.64 0.16  305 28 

T1615 D3s 17  1574.81 4.76  80.61 7.40  0.66 0.01  1.92 0.06  348 9 

T1637A D3s 15  1599.22 11.34  40.30 3.89  0.63 0.01  1.74 0.06  324 10 

Metamorphosed carbonate samples collected from the surface and a drill core (ZK1001) in the Tongshanling ore district 
D1507B C1d 11  1579.94 1.45  18.05 1.45  0.11 0.05  0.16 0.07  570 29 

T1532 C1d 15  1579.67 0.73  18.51 1.83  0.06 0.02  0.09 0.05  599 20 

T1533 C1d 24  1579.33 1.30  19.68 2.16  0.11 0.04  0.15 0.05  572 21 

T1641 C1d 20  1580.51 0.55  18.26 0.90  0.07 0.02  0.11 0.03  593 14 

T1645 C1y 22  1580.63 0.37  22.56 1.32  0.09 0.03  0.12 0.04  587 18 

ZK1001-08 C1d [1146] 15  1579.25 0.57  17.03 1.35  0.06 0.03  0.09 0.05  601 24 

ZK1001-10 C1d [1110] 11  1579.12 1.45  18.53 1.41  0.15 0.05  0.17 0.07  564 30 

ZK1001-15 C1d [980] 16  1579.21 0.91  20.91 0.92  0.20 0.05  0.22 0.06  544 27 

ZK1001-18 C1d [851] 18  1579.38 0.69  21.94 1.31  0.23 0.12  0.24 0.09  532 39 

ZK1001-22 C1d [651] 10  1580.46 0.49  25.05 2.23  0.28 0.10  0.28 0.06  516 27 

ZK1001-23 C1d [601] 16  1581.33 0.54  22.97 0.75  0.56 0.15  0.36 0.05  480 21 

ZK1001-24 C1d [550] 20  1580.88 2.05  23.58 2.11  1.19 0.66  0.49 0.10  421 43 

ZK1001-25 C1d [500] 20  1582.92 4.75  39.44 6.47  1.75 0.36  0.60 0.07  372 29 

ZK1001-26 C1d [404] 18  1587.09 5.77  51.14 8.45  1.96 0.31  0.67 0.04  343 17 

ZK1001-29 C1d [203] 16  1596.68 2.63  53.22 4.95  2.21 0.17  0.71 0.02  326 10 

ZK1001-31 C1d [42] 17  1586.72 3.84  37.39 5.31  2.26 0.40  0.72 0.03  320 15 

Metamorphosed carbonate samples collected from the underground adits of the Tongshanling Cu-Pb-Zn deposit 
Samples close to the proximal endoskarn 

TSL1403 D2q 20  1580.48 0.61  17.20 1.68  0.03 0.02  0.04 0.02  624 11 

TSL1410 D2q 18  1577.42 4.41  17.94 2.84  0.04 0.03  0.05 0.04  618 17 

Samples close to the proximal exoskarn 

TSL1404 D2q 24  1579.89 2.73  18.39 3.41  0.08 0.04  0.10 0.05  595 21 

TSL1407 D2q 22  1579.81 2.88  18.20 6.98  0.05 0.03  0.07 0.05  610 22 

T1534A D2q 20  1580.51 0.95  18.16 1.52  0.04 0.03  0.05 0.04  619 17 

Samples close to the sulfide-quartz vein 

TSL1411 D3s 21  1580.92 0.45  24.58 2.13  0.33 0.06  0.32 0.04  500 18 

TSL1412 D2q 17  1580.71 0.72  25.00 1.23  0.23 0.05  0.23 0.04  539 16 

TSL1413 D2q 20  1579.81 1.39  22.74 0.90  0.19 0.04  0.21 0.04  547 16 

Samples close to the distal skarn 

T1507 D3x 15  1580.87 1.04  26.91 0.94  0.30 0.06  0.28 0.04  515 17 

T1530A D3x 13  1581.06 1.12  27.48 1.47  0.52 0.14  0.41 0.06  461 25 

Notes: a The abbreviations and lithologies of different Formations refer to Huang et al. (2017a). b Raman shift center of the graphite band. c 

Full width at half maximum of the graphite band. d R1 = (D1 + D4) / (D1 + D2 + D3 + D4 + G) area ratio and D1 / G height ratio for samples 

with temperatures of 200 – 320 °C and 330 – 650 °C, respectively. e R2 = (D1 + D4) / (D2 + D3 + G) and D1 / (G + D1 + D2) area ratios for 

samples with temperatures of 200 – 320 °C and 330 – 650 °C, respectively. f T (°C) = 1250 × R1–469.75 (Lahfid et al., 2010) and –445 × R2 

+ 641 (Beyssac et al., 2002) for samples with temperatures of 200 – 320 °C and 330 – 650 °C, respectively. 

 



Appendices 

284 

 

Appendix 6-2. Representative EMP analyses of garnets (wt.%) from the proximal endoskarn and exoskarn of the Tongshanling Cu-Pb-Zn deposit 

Skarn  Proximal endoskarn  Proximal exoskarn 

Generation         First generation  Second generation  Third generation 

Point No.  1 2 3 4 5 6  7 8 9 10 11 12  13 14 15 16  17 18 19 20 

SiO2  36.93 36.66 36.85 36.92 36.18 36.53  35.09 34.92 34.87 35.14 35.17 35.17  35.04 35.03 35.26 35.42  37.41 37.23 37.23 37.39 

TiO2  0.02 0.08 0.01 0.10 0.00 0.01  0.00 0.00 0.03 0.06 0.00 0.00  0.00 0.00 0.00 0.01  0.03 0.05 0.00 0.04 

Al2O3  16.11 15.17 15.98 15.80 14.47 16.50  2.30 2.06 3.73 4.44 3.81 4.34  5.75 4.95 6.54 6.37  17.24 14.41 16.46 16.93 

FeO  12.01 12.56 11.70 11.64 13.65 10.79  27.49 27.56 25.35 24.73 24.70 23.38  23.32 24.39 22.35 22.25  10.27 12.50 12.17 10.45 

MnO  1.66 1.65 1.65 1.66 1.56 1.96  0.38 0.44 0.20 0.24 0.31 0.33  0.64 0.53 0.59 0.74  0.84 0.69 1.36 0.88 

MgO  0.02 0.00 0.00 0.00 0.01 0.01  0.05 0.06 0.10 0.10 0.16 0.15  0.02 0.03 0.00 0.01  0.09 0.07 0.04 0.05 

CaO  33.32 33.58 33.71 33.51 33.81 33.45  34.24 34.28 34.70 34.67 34.20 34.50  34.01 33.79 34.35 34.02  34.38 35.76 33.64 34.56 

Na2O  0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.09 0.09 0.08 0.08  0.00 0.00 0.00 0.00 

K2O  0.03 0.04 0.02 0.02 0.01 0.00  0.00 0.02 0.01 0.00 0.00 0.00  0.00 0.01 0.01 0.02  0.01 0.01 0.00 0.01 

F  0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 

Cl  0.04 0.04 0.03 0.04 0.03 0.03  0.04 0.02 0.03 0.03 0.03 0.03  0.05 0.04 0.05 0.05  0.03 0.03 0.03 0.04 

Total  100.09 99.74 99.92 99.65 99.68 99.26  99.55 99.35 98.99 99.38 98.34 97.87  98.88 98.83 99.18 98.93  100.27 100.71 100.89 100.31 

                         

Ions based on 12 oxygen                       

T_Si  2.868 2.867 2.868 2.880 2.844 2.860  2.889 2.885 2.872 2.874 2.907 2.915  2.868 2.875 2.869 2.887  2.880 2.888 2.865 2.881 

T_Al  0.132 0.133 0.132 0.120 0.156 0.140  0.111 0.115 0.128 0.126 0.093 0.085  0.132 0.125 0.131 0.113  0.120 0.112 0.135 0.119 

ΣT  3.000 3.000 3.000 3.000 3.000 3.000  3.000 3.000 3.000 3.000 3.000 3.000  3.000 3.000 3.000 3.000  3.000 3.000 3.000 3.000 

B_Al  1.342 1.266 1.334 1.332 1.185 1.382  0.113 0.086 0.234 0.302 0.277 0.338  0.423 0.354 0.495 0.499  1.443 1.206 1.358 1.419 

B_Ti  0.001 0.005 0.001 0.006 0.000 0.000  0.000 0.000 0.002 0.003 0.000 0.000  0.000 0.000 0.000 0.000  0.001 0.003 0.000 0.002 

B_Fe3+a  0.773 0.822 0.762 0.759 0.898 0.707  1.881 1.904 1.746 1.691 1.707 1.620  1.596 1.674 1.520 1.517  0.661 0.811 0.760 0.674 

(To be continued on the next page)  
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Appendix 6-2. (Continued) 

Skarn  Proximal endoskarn  Proximal exoskarn 

Generation         First generation  Second generation  Third generation 

Point No.  1 2 3 4 5 6  7 8 9 10 11 12  13 14 15 16  17 18 19 20 

B_Mg  0.000 0.000 0.000 0.000 0.000 0.000  0.006 0.007 0.012 0.004 0.016 0.019  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

B_Fe2+  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

B_Mn  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.003 0.006 0.000 0.000 0.023  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

ΣB  2.116 2.092 2.096 2.098 2.083 2.089  2.000 2.000 2.000 2.000 2.000 2.000  2.019 2.028 2.016 2.017  2.106 2.020 2.118 2.095 

A_Mg  0.002 0.000 0.000 0.000 0.001 0.002  0.000 0.000 0.000 0.009 0.004 0.000  0.003 0.004 0.000 0.001  0.010 0.008 0.005 0.005 

A_Fe2+  0.007 0.000 0.000 0.000 0.000 0.000  0.011 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.023 0.000 

A_Mn  0.109 0.109 0.109 0.110 0.104 0.130  0.027 0.028 0.009 0.017 0.022 0.000  0.045 0.037 0.041 0.051  0.055 0.045 0.089 0.057 

A_Ca  2.772 2.814 2.811 2.800 2.848 2.805  3.021 3.034 3.063 3.037 3.029 3.063  2.983 2.972 2.994 2.971  2.835 2.972 2.774 2.853 

A_Na  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0.015 0.014 0.013 0.013  0.000 0.000 0.000 0.000 

A_K  0.003 0.004 0.002 0.002 0.001 0.000  0.000 0.003 0.001 0.000 0.000 0.000  0.000 0.001 0.001 0.002  0.001 0.000 0.000 0.001 

ΣA  2.891 2.927 2.922 2.912 2.953 2.935  3.058 3.064 3.072 3.054 3.051 3.063  3.042 3.024 3.049 3.038  2.891 3.018 2.886 2.911 

F  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Cl  0.003 0.003 0.002 0.003 0.002 0.002  0.003 0.001 0.002 0.002 0.002 0.002  0.003 0.003 0.003 0.004  0.002 0.002 0.002 0.002 

                         

End membersb (%)                       

Gr  62.92 60.63 63.34 63.20 57.77 65.24  10.47 9.41 17.02 19.99 17.60 20.44  25.37 21.95 28.79 28.25  68.71 60.82 63.59 68.05 

Ad  32.99 35.63 32.92 33.04 38.67 30.28  88.11 89.35 82.14 79.05 81.05 78.22  73.06 76.72 69.87 70.02  29.06 37.43 32.37 29.81 

Py + Al + Sp  4.09 3.74 3.74 3.76 3.56 4.48  1.42 1.24 0.84 0.95 1.35 1.34  1.57 1.33 1.34 1.73  2.23 1.74 4.04 2.14 

Notes: General formula: A3B2T3O12. a Fe3+ was calculated based on the stoichiometric criteria after Droop (1987). b Mineral abbreviations: Ad = andradite, Al = almandine, Gr = grossularite, Py = pyrope, Sp = 

spessartine. 
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Appendix 7-1. LA-ICP-MS U-Pb dating results of garnet in the proximal exoskarn from the Tongshanling Cu-Pb-Zn deposit 

Spot 
 Elements (ppm)  Isotopic ratios  Ages (Ma) 

 Pb Th U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 

1-2-01  0.26 0.03 9.72  0.048939 0.019178 0.223433 0.100543 0.026977 0.001657  146.4 725.8 204.8 83.4 171.6 10.4 

1-2-02  0.38 0.03 9.50  0.096833 0.024945 0.448277 0.152093 0.029738 0.002805  1564.8 500.0 376.1 106.6 188.9 17.6 

1-2-03  0.37 0.03 10.29  0.054834 0.019057 0.204357 0.075525 0.026576 0.001561  405.6 633.3 188.8 63.7 169.1 9.8 

1-2-04  0.18 0.02 7.25  0.012337 0.007236 0.202635 0.103736 0.024695 0.001777    187.4 87.6 157.3 11.2 

1-2-05  0.44 0.11 14.56  0.035332 0.010679 0.208372 0.117544 0.026316 0.001677    192.2 98.8 167.5 10.5 

1-2-06  0.41 0.08 13.38  0.046970 0.013289 0.219194 0.085812 0.026908 0.001432  55.7 557.3 201.2 71.5 171.2 9.0 

1-2-07  0.45 0.12 15.08  0.052511 0.016047 0.184665 0.069402 0.026084 0.001374  309.3 577.7 172.1 59.5 166.0 8.6 

1-2-08  0.31 0.05 7.53  0.122815 0.032590 0.609241 0.183162 0.029443 0.001852  1998.2 487.5 483.1 115.6 187.1 11.6 

1-2-09  0.39 0.19 12.50  0.065390 0.019121 0.259003 0.056590 0.027293 0.001422  787.0 646.2 233.9 45.6 173.6 8.9 

1-2-10  0.51 0.18 16.77  0.080256 0.018175 0.224366 0.044099 0.028541 0.001349  1203.4 459.4 205.5 36.6 181.4 8.5 

1-2-11  0.50 0.16 14.49  0.071699 0.021054 0.206117 0.058539 0.028077 0.001605  977.5 625.0 190.3 49.3 178.5 10.1 

1-2-12  0.61 0.19 15.71  0.073554 0.014188 0.279307 0.047431 0.027565 0.001355  1029.3 394.0 250.1 37.6 175.3 8.5 

1-2-13  0.59 0.17 15.97  0.090933 0.023792 0.255400 0.072031 0.023547 0.001180  1455.6 516.7 231.0 58.3 150.0 7.4 

1-2-14  0.42 0.14 15.72  0.053655 0.016171 0.165985 0.042760 0.026614 0.001352  366.7 557.4 155.9 37.2 169.3 8.5 

1-2-15  0.44 0.13 14.06  0.085756 0.022678 0.244963 0.070105 0.025858 0.001392  1332.4 531.2 222.5 57.2 164.6 8.7 

1-2-16  0.39 0.15 15.37  0.089366 0.024653 0.284113 0.105711 0.023639 0.001177  1413.0 550.0 253.9 83.6 150.6 7.4 

1-2-17  0.30 0.07 10.46  0.026099 0.009569 0.177004 0.085985 0.024113 0.001568    165.5 74.2 153.6 9.9 

1-2-18  0.24 0.06 9.71  0.043009 0.016189 0.220661 0.089927 0.023937 0.001480    202.5 74.8 152.5 9.3 

1-2-19  0.33 0.07 10.81  0.040697 0.012388 0.196150 0.060537 0.025212 0.001469    181.9 51.4 160.5 9.2 

1-2-20  0.43 0.16 14.94  0.077035 0.022432 0.213394 0.056517 0.024789 0.001317  1121.9 609.7 196.4 47.3 157.9 8.3 

1-2-21  0.48 0.15 16.06  0.090418 0.019451 0.303659 0.080001 0.023926 0.001317  1435.2 415.7 269.3 62.3 152.4 8.3 

1-2-22  0.50 0.19 17.19  0.072609 0.020124 0.207200 0.056798 0.025658 0.001214  1002.8 588.9 191.2 47.8 163.3 7.6 

1-2-23  0.49 0.19 15.45  0.091629 0.026971 0.246048 0.055312 0.025958 0.001400  1461.1 585.3 223.4 45.1 165.2 8.8 

1-2-24  0.46 0.20 13.79  0.114048 0.031148 0.372318 0.123122 0.027943 0.001567  1865.1 506.0 321.4 91.1 177.7 9.8 

1-2-25  0.44 0.07 12.34  0.041993 0.012332 0.303210 0.057434 0.027684 0.001758    268.9 44.7 176.0 11.0 
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Appendix 7-2. Re-Os dating results of molybdenites from the Tongshanling Cu-Pb-Zn deposit and Yulong Mo deposit 

Sample No. Weight (g) 
 Re (ppb)  Common Os (ppb)  187Re (ppb)  187Os (ppb)  Model age (Ma) 

 Measured 2σ  Measured 2σ  Measured 2σ  Measured 2σ  Measured 2σ 

Tongshanling Cu-Pb-Zn deposit             

Proximal endoskarn             

TSL20 0.01504  16281 129  2.7618  0.0615   10233 81  27.84  0.23   163.1 2.3 

TSL32 0.01960  89506 680  27.5608  0.2776   56257 427  152.45  1.26   162.4 2.2 

Proximal exoskarn             

TSL25-1 0.02073  24604 222  1.7207  0.0527   15464 140  41.32  0.36   160.2 2.4 

Distal skarn             

TSL29-1 0.02047  47972 444  3.2672  0.0765   30152 279  81.02  0.64   161.1 2.4 

TSL31 0.04999  98234 1900  10.5649  0.1255   61742 1194  168.46  1.48   163.5 3.7 

Yulong Mo deposit             

YL08-1 0.02029  39083 291  0.3933  0.0625   24564 183  65.30  0.59   159.3 2.3 

YL08-2 0.02076  45294 334  0.3870  0.0308   28468 210  75.44  0.68   158.9 2.3 

YL09-2 0.02017  38827 321  3.5533  0.0594   24404 201  65.12  0.64   159.9 2.4 

YL12 0.02015  37900 282  7.2538  0.0846   23821 177  63.93  0.58   160.9 2.3 

YL19-1 0.02056  39333 292  0.7386  0.0589   24722 184  66.41  0.61   161.0 2.3 

YL19-2 0.02042  49801 394  6.3257  0.0564   31301 248  84.48  0.71   161.8 2.3 

YL19-4 0.02025  48309 365  0.6849  0.0610   30363 229  80.56  0.70   159.0 2.2 

YL22 0.02034  50815 453  0.7244  0.0509   31938 285  85.39  0.78   160.3 2.4 
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Appendix 7-3. LA-ICP-MS U-Pb dating results of hydrothermal titanite in the altered granodiorite from the Tongshanling Cu-Pb-Zn deposit 

Spot 
 Elements (ppm)  Isotopic ratios  Ages (Ma) 

 Pb Th U  207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ  207Pb/235U 1σ 206Pb/238U 1σ 206Pb/238U*a 1σ 

T1511-01  8.6  190.1  282.5   0.085678  0.001746  0.307062  0.006331  0.026084  0.000233   271.9  4.9  166.0  1.5  156.0  1.5  

T1511-02  5.3  115.4  157.5   0.111566  0.002456  0.405767  0.008640  0.026777  0.000284   345.8  6.2  170.3  1.8  152.8  1.8  

T1511-03  3.5  48.3  92.2   0.146566  0.003705  0.569599  0.013901  0.028694  0.000343   457.8  9.0  182.4  2.2  153.0  2.2  

T1511-04  2.3  22.3  40.6   0.240957  0.006790  1.109653  0.029336  0.034629  0.000536   758.0  14.1  219.5  3.3  149.9  3.3  

T1511-05  4.0  72.3  100.0   0.152320  0.003824  0.596640  0.013411  0.029174  0.000349   475.1  8.5  185.4  2.2  153.8  2.2  

T1511-06  2.2  27.5  52.6   0.177440  0.006053  0.686225  0.018989  0.030032  0.000479   530.5  11.4  190.7  3.0  150.3  3.0  

T1511-07  2.1  21.1  41.6   0.225677  0.007948  0.961289  0.027863  0.033166  0.000564   684.0  14.4  210.3  3.5  148.9  3.5  

T1511-08  4.3  75.8  104.9   0.153664  0.003749  0.606192  0.014528  0.029044  0.000340   481.2  9.2  184.6  2.1  152.7  2.1  

T1511-09  10.2  228.6  350.0   0.080016  0.001645  0.278568  0.005713  0.025346  0.000258   249.5  4.5  161.4  1.6  153.1  1.6  

T1511-10  8.3  184.4  260.7   0.095849  0.002182  0.343503  0.007520  0.026265  0.000284   299.8  5.7  167.1  1.8  154.2  1.8  

T1511-11  8.0  166.1  274.4   0.081790  0.002092  0.284642  0.006853  0.025621  0.000280   254.3  5.4  163.1  1.8  154.3  1.8  

T1511-12  10.0  104.3  404.4   0.070981  0.001690  0.236849  0.005345  0.024529  0.000285   215.8  4.4  156.2  1.8  150.6  1.8  

T1511-13  4.0  51.5  96.9   0.164386  0.004785  0.653694  0.018112  0.029627  0.000446   510.7  11.1  188.2  2.8  152.4  2.8  

T1511-14  7.0  49.4  89.9   0.295930  0.008572  1.833193  0.063727  0.043285  0.000904   1057.4  22.9  273.2  5.6  161.8  5.6  

T1511-15  12.4  249.1  391.2   0.086929  0.001854  0.317984  0.006593  0.026884  0.000375   280.4  5.1  171.0  2.4  160.3  2.4  

T1511-16  2.6  28.9  65.9   0.173843  0.006048  0.655088  0.019371  0.028880  0.000519   511.6  11.9  183.5  3.3  145.7  3.3  

T1511-17  2.7  28.9  57.6   0.198502  0.006853  0.806138  0.023689  0.031272  0.000582   600.3  13.3  198.5  3.6  149.5  3.6  

T1511-18  9.6  146.2  309.3   0.090529  0.002128  0.342463  0.008829  0.027414  0.000396   299.0  6.7  174.3  2.5  162.4  2.5  

T1511-19  9.2  168.4  286.4   0.086536  0.001804  0.323680  0.006563  0.027420  0.000365   284.7  5.0  174.4  2.3  163.6  2.3  

T1511-20  3.3  38.5  63.0   0.216300  0.006615  0.964200  0.026053  0.033919  0.000612   685.5  13.5  215.0  3.8  155.6  3.8  

T1511-21  4.0  47.6  92.0   0.165419  0.004588  0.702422  0.018261  0.031660  0.000512   540.2  10.9  200.9  3.2  162.3  3.2  

Note: a 206Pb/238U age corrected by 207Pb method. 
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Appendix 7-4. S and Pb isotopic compositions of sulfide minerals from the Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, 

and Yulong Mo deposit 

Sample No. Mineralization type Level Minerala δ34SCDT (‰) 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ 

Tongshanling Cu-Pb-Zn deposit          

TSL60 Altered granodiorite 30 m Po 3.9        

TSL25-1 Proximal endoskarn 30 m Mol 3.6  18.723  0.001  15.770 0.001 39.073 0.002 

TSL34 Proximal endoskarn 00 m Mol 3.2        

TSL120 Proximal endoskarn 00 m Po 2.0        

TSL121 Proximal endoskarn 00 m Po 2.1        

TSL121 Proximal endoskarn 00 m Ccp 2.4  18.785  0.002  15.730  0.002 38.931  0.004 

TSL122 Proximal endoskarn 00 m Po 1.9        

TSL122 Proximal endoskarn 00 m Ccp 2.2  18.706  0.003  15.742  0.002 38.979  0.006 

TSL98 Proximal exoskarn 00 m Ccp 3.4  18.780  0.003  15.854  0.003 39.350  0.008 

TSL98 Proximal exoskarn 00 m Sp 2.8        

TSL98 Proximal exoskarn 00 m Gn 2.5        

TSL123 Proximal exoskarn 00 m Ccp 4.4        

TSL123 Proximal exoskarn 00 m Sp 3.9        

TSL123 Proximal exoskarn 00 m Gn 2.8  18.704  0.002  15.761  0.002 39.034  0.005 

TSL04-1 Sulfide-quartz vein 60 m Ccp 3.0        

TSL04-1 Sulfide-quartz vein 60 m Sp 3.7  18.697  0.002  15.754 0.002 39.018 0.004 

TSL04-1 Sulfide-quartz vein 60 m Gn 2.1        

TSL04-5 Sulfide-quartz vein 60 m Ccp 4.0  18.736  0.003  15.798 0.003 39.179 0.008 

TSL04-5 Sulfide-quartz vein 60 m Sp 3.8        

TSL04-5 Sulfide-quartz vein 60 m Gn 2.7  18.701  0.003  15.757 0.003 39.022 0.007 

TSL04-6 Sulfide-quartz vein 60 m Ccp 3.5  18.769  0.003  15.844 0.003 39.314 0.008 

TSL04-6 Sulfide-quartz vein 60 m Sp 3.3        

TSL04-6 Sulfide-quartz vein 60 m Gn 2.3        

TSL04-7 Sulfide-quartz vein 60 m Ccp 3.6  18.755  0.002  15.825 0.002 39.247 0.004 

TSL04-9 Sulfide-quartz vein 60 m Ccp 4.2  18.735  0.002  15.802 0.001 39.182 0.004 

TSL04-9 Sulfide-quartz vein 60 m Sp 4.0        

TSL04-12 Sulfide-quartz vein 60 m Ccp 4.6  18.703  0.003  15.762 0.002 39.048 0.005 

TSL04-12 Sulfide-quartz vein 60 m Sp 3.7        

TSL04-15 Sulfide-quartz vein 60 m Ccp 3.5  18.748  0.003  15.818 0.003 39.237 0.007 

TSL04-15 Sulfide-quartz vein 60 m Sp 4.5        

TSL25-2 Sulfide-quartz vein 90 m Ccp 3.1        

TSL25-2 Sulfide-quartz vein 90 m Sp 2.9  18.752  0.003  15.819 0.003 39.240 0.006 

TSL25-2 Sulfide-quartz vein 90 m Gn 1.9        

TSL25-3 Sulfide-quartz vein 90 m Ccp 2.9        

TSL25-3 Sulfide-quartz vein 90 m Sp 2.9        

TSL25-3 Sulfide-quartz vein 90 m Gn 2.1  18.743  0.002  15.811 0.002 39.210 0.004 

TSL26-1 Sulfide-quartz vein 120 m Ccp 3.0        

(To be continued on the next page) 
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Appendix 7-4. (Continued) 

Sample No. Mineralization type Level Minerala δ34SCDT (‰) 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ 

TSL26-1 Sulfide-quartz vein 120 m Sp 3.2        

TSL26-1 Sulfide-quartz vein 120 m Gn 2.2  18.685  0.002  15.740 0.002 38.971 0.005 

TSL28-1 Sulfide-quartz vein 120 m Ccp 3.9        

TSL28-1 Sulfide-quartz vein 120 m Sp 3.6  18.737  0.002  15.800 0.002 39.180 0.004 

TSL28-2 Sulfide-quartz vein 120 m Ccp 3.5        

TSL28-2 Sulfide-quartz vein 120 m Sp 3.3  18.693  0.001  15.747 0.001 38.993 0.004 

TSL28-2 Sulfide-quartz vein 120 m Gn 2.5        

TSL28-3 Sulfide-quartz vein 120 m Ccp 3.5        

TSL28-3 Sulfide-quartz vein 120 m Sp 3.7  18.705  0.003  15.763 0.002 39.056 0.005 

TSL28-3 Sulfide-quartz vein 120 m Gn 2.5  18.709  0.002  15.769 0.002 39.072 0.004 

TSL29-2 Sulfide-quartz vein 180 m Ccp 3.4        

TSL29-2 Sulfide-quartz vein 180 m Sp 3.3  18.723  0.002  15.784 0.002 39.122 0.005 

TSL29-2 Sulfide-quartz vein 180 m Gn 3.1        

TSL66 Sulfide-quartz vein 60 m Ccp 3.1        

TSL71 Sulfide-quartz vein 60 m Ccp 3.6        

TSL78 Sulfide-quartz vein 150 m Ccp 3.7        

TSL79 Sulfide-quartz vein 150 m Ccp 3.3        

TSL81 Sulfide-quartz vein 150 m Ccp 2.7        

TSL85 Sulfide-quartz vein 205 m Ccp 2.8        

TSL95 Sulfide-quartz vein 231 m Ccp 3.3        

TSL109 Sulfide-quartz vein 231 m Ccp 3.5        

TSL03 Distal skarn 205 m Gn 1.4  18.673  0.001  15.725 0.001 38.919 0.003 

TSL27-1 Distal skarn 260 m Gn 1.5  18.714  0.002  15.777 0.003 39.098 0.007 

TSL29-1 Distal skarn 290 m Mol 4.5        

TSL33-2 Distal skarn 290 m Gn 0.2        

TSL91 Distal skarn 231 m Ccp 3.1        

TSL91 Distal skarn 231 m Sp 3.0  18.749  0.002  15.821  0.002 39.235  0.005 

TSL91 Distal skarn 231 m Gn 1.7  18.675  0.003  15.728  0.002 38.936  0.006 

TSL93 Distal skarn 231 m Sp 3.4  18.696  0.002  15.756  0.002 39.022  0.004 

TSL93 Distal skarn 231 m Gn 1.8  18.678  0.002  15.742  0.002 38.983  0.005 

TSL145 Distal skarn 231 m Ccp 3.6        

TSL145 Distal skarn 231 m Sp 3.1  18.739  0.002  15.809  0.002 39.200  0.004 

TSL17 Carbonate replacement 60 m Sp 5.0        

TSL17 Carbonate replacement 60 m Gn 2.2  18.702  0.002  15.834 0.002 39.352 0.004 

TSL40 Carbonate replacement 231 m Sp 4.7        

TSL40 Carbonate replacement 231 m Gn 1.9  18.643  0.002  15.760  0.002 39.084  0.004 

Jiangyong Pb-Zn-Ag deposit          

JY23 Altered granodiorite 160 m Po 2.5        

JY27 Altered granodiorite 160 m Po 2.0        

(To be continued on the next page) 
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Appendix 7-4. (Continued) 

Sample No. Mineralization type Level Minerala δ34SCDT (‰) 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ 

JY64 Skarn 160 m Po 1.2  18.921  0.002  15.818  0.002 39.349  0.005 

JY54 Skarn 200 m Po 2.1  18.932  0.003  15.834  0.003 39.408  0.007 

JY48 Skarn 240 m Po 2.2        

JY48 Skarn 240 m Sp 2.6  18.853  0.002  15.727  0.002 39.055  0.004 

JY59 Carbonate replacement 200 m Py 1.9        

JY59 Carbonate replacement 200 m Sp 2.6  18.969  0.002  15.875  0.003 39.535  0.006 

JY47 Carbonate replacement 160 m Py 1.8        

JY47 Carbonate replacement 160 m Sp 2.8        

JY47 Carbonate replacement 160 m Gn 0.3  18.850  0.002  15.730  0.002 39.062  0.006 

JY63 Carbonate replacement 160 m Py 2.3        

JY63 Carbonate replacement 160 m Sp 2.7        

JY63 Carbonate replacement 160 m Gn 0.2  18.836  0.002  15.712  0.002 38.997  0.004 

JY50 Carbonate replacement 240 m Py 2.4        

JY50 Carbonate replacement 240 m Sp 3.3        

JY50 Carbonate replacement 240 m Gn 0.5  18.880  0.002  15.752  0.002 39.143  0.004 

JY56 Carbonate replacement 200 m Py 2.6        

JY56 Carbonate replacement 200 m Sp 3.2        

JY56 Carbonate replacement 200 m Gn 0.8  18.857  0.002  15.726  0.002 39.045  0.005 

JY58 Carbonate replacement 200 m Py 2.4        

JY58 Carbonate replacement 200 m Sp 3.3        

JY58 Carbonate replacement 200 m Gn 1.1  18.865  0.003  15.736  0.003 39.083  0.008 

JY66 Carbonate replacement 240 m Py 2.3        

JY66 Carbonate replacement 240 m Sp 2.4        

JY66 Carbonate replacement 240 m Gn 0.4  18.866  0.003  15.750  0.002 39.134  0.005 

Yulong Mo deposit          

YL02 Skarn 395 m Mol 5.6        

YL08-1 Skarn 480 m Mol 5.9        

YL08-2 Skarn 480 m Mol 6.3        

YL09-1 Skarn 480 m Mol 6.1        

YL09-2 Skarn 480 m Mol 6.3        

YL12 Skarn 480 m Mol 4.9        

YL19 Skarn 435 m Mol 5.3        

YL19-1A Skarn 435 m Mol 4.9        

YL19-1B Skarn 435 m Mol 5.0        

YL19-2A Skarn 435 m Mol 5.4        

YL19-2B Skarn 435 m Mol 5.8        

YL22 Skarn 520 m Mol 5.6        

YL67 Skarn 520 m Po –0.3  18.772  0.003  15.729  0.002 39.022  0.006 

Note: a Mineral abbreviations: Ccp = chalcopyrite, Gn = galena, Mol = molybdenite, Po = pyrrhotite, Py = pyrite, Sp = sphalerite. 
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Appendix 7-5. Pb isotopic compositions of sulfide minerals from the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling Range 

of South China 

Deposit Metal association Related intrusion 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb Reference 

Cu-Pb-Zn deposits      

Shuikoushan Pb-Zn-Au-Ag Granodiorite 18.444 – 18.538 15.654 – 15.783 38.627 – 39.066 Lu et al. (2013) 

Baoshan Cu-Mo-Pb-Zn-Ag Granodiorite porphyry 18.188 – 18.844 

18.602 – 18.672 

18.485 – 18.753 

18.479 – 18.767 

15.675 – 15.768 

15.693 – 15.780 

15.661 – 15.843 

15.684 – 15.722 

38.562 – 39.149 

38.901 – 39.186 

38.737 – 39.395 

38.790 – 39.104 

Yao et al. (2006) 

Zhu et al. (2012) 

Xie et al. (2015) 

Ding et al. (2016c) 

Tongshanling Cu-Mo-Pb-Zn-Ag Granodiorite porphyry 18.256 – 18.856 

18.165 – 18.707 

18.673 – 18.969 

15.726 – 15.877 

15.649 – 15.798 

15.712 – 15.875 

38.878 – 39.430 

38.114 – 39.000 

38.919 – 39.535 

Cai et al. (2015) 

Wang et al. (2017d) 

This study 

Dabaoshan Cu-Pb-Zn-Mo-W-Fe Granodiorite porphyry 18.330 – 18.785 15.491 – 15.772 38.518 – 39.088 Xu et al. (2008) 

Huangshaping Pb-Zn-W-Mo Dacite porphyry, 

quartz porphyry, 

granite porphyry 

18.315 – 18.841 

18.498 – 18.658 

18.525 – 18.652 

15.450 – 16.000 

15.672 – 15.792 

15.686 – 15.845 

38.441 – 39.571 

38.770 – 39.260 

38.821 – 39.345 

Xi et al. (2009) 

Zhu et al. (2012) 

Ding et al. (2016a) 

W deposits       

Yaogangxian W Biotite granite 18.548 – 18.701 15.691 – 15.811 38.809 – 39.212 Zhu et al. (2014) 

Shizhuyuan W-Sn-Mo-Bi Biotite monzogranite 18.504 – 18.834 

18.565 – 18.622 

15.598 – 15.786 

15.694 – 15.738 

38.711 – 39.354 

38.819 – 38.986 

Zhang (1989) 

Wu et al. (2016) 

Da’ao W-Sn Biotite granite 18.599 – 18.857 15.685 – 15.762 38.822 – 39.077 Liu et al. (2007) 

Xihuashan W-Mo Biotite granite, 

two-mica granite 

18.640 – 18.849 15.697 – 15.941 38.902 – 39.134 Xu and Wang (2014) 
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Appendix 7-6. H-O isotopic compositions of quartz from the Tongshanling Cu-Pb-Zn deposit, Jiangyong Pb-Zn-Ag deposit, and Yulong Mo 

deposit 

Sample No. Occurrence of quartz Th
a (°C) δDH2O (V-SMOW) (‰) δ18Oquartz (V-SMOW) (‰) δ18OH2O (V-SMOW)

b (‰) 

Tongshanling Cu-Pb-Zn deposit     

TSL011 Quartz vein in granodiorite 300 –62 11.7 4.8 

TSL04-1 Sulfide-quartz vein in limestone 200 –55 13.7 2.0 

TSL04-5 Sulfide-quartz vein in limestone 220 –53 14.0 3.5 

TSL04-6 Sulfide-quartz vein in limestone 235 –53 12.3 2.6 

TSL04-7 Sulfide-quartz vein in limestone 250 –53 13.0 4.1 

TSL04-10 Sulfide-quartz vein in limestone 220 –48 14.0 3.5 

TSL12-1 Quartz cement of brecciated limestone 215 –52 14.0 3.2 

TSL13 Quartz vein in limestone 200 –55 13.3 1.6 

TSL28-3 Sulfide-quartz vein in limestone 215 –54 12.7 1.9 

Jiangyong Pb-Zn-Ag deposit     

JY51 Quartz vein in granodiorite 270 –70 12.4 4.3 

Yulong Mo deposit     

YL5 Vein-like quartz in skarn 275 –53 13.3 5.5 

YL63 Vein-like quartz in skarn 275 –58 13.1 5.3 

YL64 Massive quartz in skarn 350 –56 9.4 4.1 

Notes: a Homogenization temperature obtained from fluid inclusions in quartz. b δ18OH2O values are calculated based on the quartz-water 

isotopic equilibrium equation of Clayton et al. (1972). 
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Appendix 7-7. H-O isotopic compositions of ore-forming fluids of the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling Range 

of South China 

Deposit Metal association Related intrusion Mineral δDH2O (‰) δ18OH2O (‰) Reference 

Cu-Pb-Zn deposits       

Shuikoushan Pb-Zn-Au-Ag Granodiorite Quartz –54 – –49 –6.3 – 2.5 Liu (1994) 

Baoshan Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Fluorite –48 2.0 – 8.4 Shi et al. (1993) 

Tong et al. (1995) 

Tongshanling Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Quartz –70 – –48 1.6 – 5.5 This study 

Dabaoshan Cu-Pb-Zn-Mo-W-Fe Granodiorite porphyry Quartz –56 – –51 –2.9 – 11.3 Cai and Liu (1993) 

Mao et al. (2017) 

Huangshaping Pb-Zn-W-Mo Dacite porphyry, 

quartz porphyry, 

granite porphyry 

Quartz 

Calcite 

–75 

–55 

5.5 

6.5 – 8.7 

Shi et al. (1993) 

Tong et al. (1995) 

W deposits       

Xintianling W Biotite granite Quartz –97 – –43 

 

4.7 – 8.2 

 

Bi et al. (1988) 

Shuang et al. (2016) 

Da’ao W-Sn Biotite granite Quartz 

Cassiterite 

–92 – –54 

–86 

3.2 – 5.9 

–1.6 

Liu et al. (2007) 

Maoping W-Sn Biotite granite Quartz –60 7.0 – 8.0 Zhou et al. (2016) 

Piaotang W-Sn Biotite granite Quartz 

Wolframite 

–72 – –52 

–89 – –50 

4.9 – 8.9 

4.9 – 8.9 

Zhou et al. (2016) 

Muziyuan W-Mo Biotite-bearing granite Quartz –99 – –46  Zhou et al. (2016) 

Xihuashan W-Mo Biotite granite, 

two-mica granite 

Quartz 

Wolframite 

–91 – –43 

–55 – –43 

–2.4 – 8.3 

6.3 – 8.4 

Wei et al. (2011) 

Zhou et al. (2016) 

Dalongshan W-Mo Biotite granite Quartz –85 – –50  Zhou et al. (2016) 

Taoxikeng W Biotite granite Quartz –77 – –45 –3.1 – 1.2 Song et al. (2011) 

Huangsha W Biotite granite Quartz –68 – –56 5.0 – 7.1 Zhou et al. (2016) 

Pangushan W-Bi Biotite granite, 

two-mica granite 

Quartz –90 – –58 3.0 – 6.5 Fang et al. (2014) 

Zhou et al. (2016) 

Dajishan W-Nb-Ta Muscovite granite Quartz –53 – –49 2.8 – 7.4 Zhou et al. (2016) 
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Appendix 7-8. S isotopic compositions of sulfide minerals from the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling Range of 

South China 

Deposit Metal association Related intrusion Occurrences of sulfide minerals δ34SCDT (‰) Reference 

Cu-Pb-Zn deposits      

Shuikoushan Pb-Zn-Au-Ag Granodiorite Carbonate replacement –4.4 – 5.0 Jin et al. (1986) 

Lu et al. (2013) 

Baoshan Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Skarn 

Carbonate replacement 

Altered granodiorite 

–1.0 – 4.3 

–2.2 – 6.5 

1.5 – 3.5 

Yao et al. (2006) 

Zhu et al. (2012) 

Bao et al. (2014) 

Xie et al. (2015) 

Ding et al. (2016c) 

Tongshanling Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Skarn 

Sulfide-quartz vein 

Carbonate replacement 

Altered granodiorite 

–1.9 – 6.3 

1.9 – 4.6 

0.2 – 5.0 

2.0 – 3.9 

Cai et al. (2015) 

This study 

Dabaoshan Cu-Pb-Zn-Mo-W-Fe Granodiorite porphyry Porphyry mineralization 

Skarn 

Stratiform mineralization 

Sedimentary pyrite 
 

–4.0 – 5.0 

–5.0 – 5.0 

–4.0 – 5.0 

–22.5 – –5.3 

8.7 – 17.9 

Xu et al. (2008) 

Dai et al. (2015) 

Huangshaping Pb-Zn-W-Mo Dacite porphyry, 

quartz porphyry, 

granite porphyry 

Carbonate replacement 

Pyrite in granitoids 

Sedimentary pyrite 

–2.2 – 17.4 

0.2 – 16.5 

–22.6 – –2.5 

Xi et al. (2009) 

Zhu et al. (2012) 

Ding et al. (2016a) 

W deposits      

Dengfuxian W-Nb-Ta Two-mica granite Wolframite-quartz vein –1.4 – 0.6 Cai et al. (2012) 

Yaogangxian W Biotite granite Skarn 

Wolframite-quartz vein 

Late Pb-Zn mineralization 

–1.3 – 3.6 

–2.6 – 3.9 

–2.9 – 1.4 

Zhu et al. (2014) 

Shizhuyuan W-Sn-Mo-Bi Biotite monzogranite Skarn 

Greisen 

Late Pb-Zn mineralization 

2.8 – 8.9 

3.4 – 6.9 

3.7 – 6.3 

Liu et al. (2006) 

Da’ao W-Sn Biotite granite Greisen –1.7 – 2.4 Liu et al. (2007) 

Xihuashan W-Mo Biotite granite, 

two-mica granite 

Wolframite-quartz vein –2.1 – 0.4 

4.0 – 7.9 

Xu and Wang (2014) 

Taoxikeng W Biotite granite Wolframite-quartz vein –2.3 – 0.1 Song et al. (2011) 

Huangsha W Biotite granite Wolframite-quartz vein –1.3 – 2.2 Feng et al. (1989) 

Pangushan W-Bi Biotite granite, 

two-mica granite 

Wolframite-quartz vein –2.3 – 1.3 Fang et al. (2014) 

 

  



Appendices 

296 

 

 

Appendix 7-9. Re contents and Re-Os ages of molybdenites from the Middle-Late Jurassic Cu-Pb-Zn and W deposits in the Nanling Range of South 

China 

Deposit Metal association Related intrusion Mineralization types 
Re content (ppm) 
of molybdenite 

Molybdenite Re-Os age (Ma) 
Isochron age (weighted 
average model age) 

Reference 

Cu-Pb-Zn deposits      

Shuikoushan Pb-Zn-Au-Ag Granodiorite Skarn, 

carbonate replacement 

419.9 – 1841 157.8 ± 1.4 (159.21 ± 0.91) Huang et al. (2015) 

Baoshan Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Skarn, 

carbonate replacement 

86.3 – 338.6 160 ± 2 (158 ± 1) Lu et al. (2006) 

Tongshanling Cu-Mo-Pb-Zn-Ag Granodiorite porphyry Skarn, 

sulfide-quartz vein, 

carbonate replacement 

16.3 – 98.2 

37.9 – 50.8 

48.9 – 52.6 

42.5 – 61.1 

161.8 ± 1.7 (161.9 ± 1.1) 

160.0 ± 5.8 (160.1 ± 0.8) 

161 ± 45 (161 ± 1) 

167 ± 15 (162.2 ± 1.6) 

This study 

This study 

Lu et al. (2015) 

Zhao et al. (2016b) 

Dabaoshan Cu-Pb-Zn-Mo-W-

Fe 

Granodiorite porphyry Porphyry, skarn, 

stratiform 

mineralization 

64.7 – 102.4 

66.4 – 139.7 

168.3 ± 5.8 (163.9 ± 1.3) 

166 ± 3 (164.83 ± 0.80) 

Wang et al. (2011d) 

Qu et al. (2014) 

Huangshaping Pb-Zn-W-Mo Dacite porphyry, 

quartz porphyry, 

granite porphyry 

Skarn, 

carbonate replacement 

0.46 – 25.9 

3.1 – 46.8 

0.43 – 20.2 

1.2 – 11.9 

0.59 – 17.4 

154.8 ± 1.9 (154.6 ± 2.5) 

153.8 ± 4.8 (159 ± 8) 

159.4 ± 3.3 (157.1 ± 2.9) 

157.5 ± 2.1 (156.6 ± 0.9) 

157.6 ± 2.3 (156.5 ± 1.0) 

Yao et al. (2007) 

Ma et al. (2007) 

Lei et al. (2010) 

Lei et al. (2010) 

Lei et al. (2010) 

W deposits       

Dengfuxian W-Nb-Ta Two-mica granite Quartz vein 0.0029 – 0.098 150.5 ± 5.2 (152.4 ± 3.3) Cai et al. (2012) 

Yaogangxian W Biotite granite Quartz vein, skarn 0.010 – 2.6 154.9 ± 2.6 (155.5 ± 2.5) Peng et al. (2006b) 

Shizhuyuan W-Sn-Mo-Bi Biotite monzogranite Skarn 1.0 – 1.3 151.0 ± 3.5 Li et al. (1996) 

Weijia W Granite porphyry Skarn 0.15 – 5.5 159 ± 8 (159.0 ± 5.6) Zhao et al. (2016b) 

Da’ao W-Sn Biotite granite Greisen, quartz vein 0.029 – 1.2 151.3 ± 2.4 (153.3 ± 3.2) Fu et al. (2007) 

Yaolanzhai W Muscovite granite Altered granite, greisen 0.030 – 0.079 155.8 ± 2.8 (156.0 ± 1.1) Feng et al. (2011a) 

Maoping W-Sn Biotite granite Greisen, quartz vein 0.083 – 0.21 

0.037 – 0.11 

155.3 ± 2.8 (155.0 ± 0.9) 

150.2 ± 2.8 (148.7 ± 1.2) 

Feng et al. (2011a) 

Zeng et al. (2009) 

Baxiannao W-Sn Biotite granite Fractured zone 0.69 – 2.6 157.9 ± 1.5 (158.1 ± 1.0) Feng et al. (2011a) 

Niuling W Biotite granite Quartz vein 0.029 – 0.64 154.9 ± 4.1 (155.1 ± 4.6) Feng et al. (2011a) 

Zhangdou W Biotite granite Quartz vein 0.21 – 0.52 149.1 ± 7.1 (159.1 ± 5.0) Feng et al. (2011a) 

Muziyuan W-Mo Biotite-bearing granite Quartz vein 0.30 – 2.7 151.1 ± 8.5 (146.9 ± 4.6) Zhang et al. (2009) 

(To be continued on the next page) 
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Appendix 7-9. (Continued) 

Deposit Metal association Related intrusion Mineralization types 
Re content (ppm) 
of molybdenite 

Molybdenite Re-Os age (Ma) 
Isochron age (weighted 
average model age) 

Reference 

Xihuashan W-Mo Biotite granite, 

two-mica granite 

Quartz vein 0.052 – 1.5 157.75 ± 0.85 (156.3 ± 2.6) Hu et al. (2012) 

Taoxikeng W Biotite granite Quartz vein 0.0049 – 0.013 154.4 ± 3.8 (155.5 ± 1.1) Guo et al. (2011) 

Hongshuizhai W Biotite granite Greisen 0.047 – 0.30 157.0 ± 3.3 (156.3 ± 1.3) Feng et al. (2011b) 

Jiulongnao W Biotite granite Quartz vein 0.22 – 0.49 150 ± 11 (151.5 ± 1.1) Feng et al. (2011b) 

Zhangdongkeng W Biotite granite Quartz vein 0.010 – 0.14 153.6 ± 7.8 (151.3 ± 1.7) Feng et al. (2011b) 

Yanqian W Biotite granite Quartz vein 3.4 – 6.8 154.5 ± 3.4 (159.2 ± 2.3) Zhao et al. (2013) 

Huamei’ao W-Sn Biotite granite Quartz vein 0.20 – 1.7 158.5 ± 3.3 (158.6 ± 1.8) Feng et al. (2015) 

Huangsha W Biotite granite Quartz vein 2.0 – 3.9 145.7 ± 5.7 (153 ± 3) Huang et al. (2011) 

Pangushan W-Bi Biotite granite, 

two-mica granite 

Quartz vein 0.091 – 4.2 

5.4 – 9.6 

157.75 ± 0.76 (157.49 ± 0.82) 

158.8 ± 5.7 (158.06 ± 0.82) 

Zeng et al. (2011) 

Zeng et al. (2011) 

Anqiantan W-Bi Two-mica granite Quartz vein 0.78 – 3.5 154.4 ± 1.6 (155.17 ± 0.99) Liu et al. (2010) 

Baiyunxian W Amphibole-bearing 

biotite granite 

Quartz vein 0.22 – 0.66 (157.4 ± 9.1) Wang et al. (2009) 

Hongling W Biotite granite, 

muscovite granite 

Quartz vein 1.4 – 14.6 159.1 ± 1.5 (158.80 ± 0.88) Wang et al. (2010b) 

Yaoling W Monzogranite Quartz vein 0.46 – 6.2 159.5 ± 2.8 (158.9 ± 3.0) Qi et al. (2012) 

Meiziwo W-Sn Monzogranite Quartz vein 0.72 – 4.7 157.7 ± 2.8 (158.0 ± 2.1) Qi et al. (2012) 

Shigushan W-Bi Two-mica granite, 

muscovite granite 

Quartz vein 0.58 – 1.5 154.2 ± 2.7 (154 ± 2) Fu et al. (2008) 

Shirenzhang W Monzogranite, 

two-mica granite 

Quartz vein 0.48 – 5.0 159.1 ± 2.2 (157.6 ± 1.6) Fu et al. (2008) 

Kuimeishan W Biotite granite Quartz vein 0.41 – 4.4 153.7 ± 1.5 (155.2 ± 1.7) Li et al. (2014c) 

Dajishan W-Nb-Ta Muscovite granite Quartz vein 0.32 – 2.8 161.0 ± 1.3 (160 ± 1) Zhang et al. (2011b) 
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Appendix 8-1. Some parameters for Raman spectra of carbonaceous material in carbonate rocks close to the magnesian and calcic skarns in 

the Weijia W deposit and temperatures calculated by the RSCM thermometry (mean value and standard deviation) 

Sample No. 
Formationa 

[Depth (m)] 

Number of 

spectra 

 G positionb  G FWHMc  R1 ratiod  R2 ratioe  Temperaturef (°C) 

 Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 

Carbonate rocks close to the magnesian skarn 

ZK803-6 D2q [601] 21  1580.10 3.01  24.00 2.46  0.51 0.17  0.36 0.07  481 29 

ZK803-7 D2q [624] 22  1580.30 2.11  22.32 1.94  0.46 0.17  0.35 0.08  486 35 

ZK803-9 D2q [565] 20  1581.36 0.57  22.77 1.50  0.59 0.20  0.37 0.07  477 33 

ZK803-17 D2q [615] 14  1579.81 2.64  24.36 3.71  0.54 0.08  0.38 0.02  470 10 

ZK803-20 D2q [628] 25  1580.66 2.55  25.35 2.75  0.55 0.17  0.38 0.06  473 29 

ZK803-25 D2q [666] 12  1580.90 0.61  22.35 2.74  0.44 0.04  0.33 0.02  496 9 

Carbonate rocks close to the calcic skarn 

WJ23 D2q [0] 16  1579.94 0.82  23.55 2.06  0.13 0.05  0.15 0.05  573 22 

WJ24 D2q [0] 15  1579.93 0.65  23.01 1.50  0.14 0.04  0.16 0.04  568 17 

ZK7'02-4 D2q [42] 18  1580.11 0.26  21.42 1.05  0.20 0.05  0.20 0.04  554 18 

ZK7'02-17 D2q [176] 18  1579.71 0.75  20.33 3.20  0.15 0.07  0.15 0.05  576 21 

ZK7'02-18 D2q [180] 18  1579.89 0.45  21.35 6.13  0.16 0.13  0.16 0.04  572 16 

Notes: a D2q: The Middle Devonian Qiziqiao Formation. b Raman shift center of the graphite band. c Full width at half maximum of the 

graphite band. d R1 = D1 / G height ratio. e R2 = D1 / (G + D1 + D2) area ratio. f T (°C) = –445 × R2 + 641 (Beyssac et al., 2002). 
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Appendix 8-2. Whole-rock major and trace element compositions of the altered Weijia granite 

Sample No. ZK802-6 ZK803-29 ZK1001-2 ZK1001-3 ZK1001-5 ZK1001-6 ZK1001-7 ZK1001-9 WJ29 WJ35 ZK706-1 ZK706-2 

Depth (m) 565  548  642  634  616  604  594  573  0  0  286  279  

Major elements (wt.%)           

SiO2 73.85 72.81 71.19 74.62 75.38 74.93 73.10 74.98 76.82 75.82 73.87 74.12 

TiO2 0.06 0.02 0.05 0.05 0.05 0.04 0.05 0.04 0.01 0.02 0.02 0.02 

Al2O3 12.79 12.40 13.52 13.85 12.92 12.88 13.58 12.53 12.72 12.74 13.46 13.65 

Fe2O3 0.31 0.12 0.83 0.26 0.72 0.81 0.31 0.25 0.15 0.21 0.15 0.24 

FeO 0.49 0.16 0.81 0.84 0.66 0.83 0.73 1.00 0.07 0.40 0.36 0.51 

MnO 0.07 0.02 0.05 0.03 0.06 0.10 0.10 0.09 0.00 0.02 0.01 0.01 

MgO 0.90 0.11 0.39 0.21 0.22 0.16 0.17 0.11 0.04 0.19 0.09 0.13 

CaO 0.69 3.03 2.64 1.18 0.98 1.39 1.62 1.36 0.18 1.26 1.16 1.04 

Na2O 0.22 0.54 0.10 0.14 1.48 0.94 1.51 1.74 1.59 2.36 3.19 3.00 

K2O 7.78 8.28 5.71 5.72 5.54 4.58 5.45 5.00 5.78 5.57 5.45 5.23 

P2O5 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 

LOI 2.49 2.66 4.02 3.08 2.33 2.36 2.94 2.33 1.87 1.79 1.70 2.02 

Total 99.66 100.16 99.32 99.98 100.36 99.05 99.57 99.43 99.26 100.38 99.46 99.99 

             

Trace elements (ppm)           

Li 18.62 5.16 20.13 22.08 30.96 39.19 31.28 35.35 5.84 12.23 9.98 13.18 

Be 6.25 10.84 12.01 7.69 5.67 18.03 4.70 18.13 2.17 9.47 5.12 9.36 

Sc 8.13 5.35 15.74 10.76 10.15 13.99 10.17 10.26 4.14 8.53 9.70 9.69 

Ti 386.31 196.16 1094.95 443.71 399.34 1073.45 446.10 313.66 73.19 197.55 177.25 192.69 

Mn 691.13 186.83 539.26 217.43 469.80 898.70 753.27 701.25 64.31 215.16 118.50 153.76 

Cu 2.34 1.55 2.90 0.54 0.49 2.48 1.13 0.45 0.27 0.55 1.47 2.40 

Zn 99.28 31.82 62.91 65.14 62.75 100.14 75.16 67.18 16.04 25.82 16.70 22.64 

Ga 26.88 25.84 33.73 28.24 26.24 32.24 29.18 27.92 28.38 28.54 27.98 30.58 

Rb 619.16 535.09 496.16 435.02 412.27 505.75 499.94 500.77 308.68 350.27 398.48 409.01 

Sr 37.72 25.92 43.58 25.35 40.99 44.24 41.68 26.60 23.85 29.16 20.03 23.01 

Y 82.26 75.98 96.69 92.15 89.36 85.41 90.29 97.53 118.23 79.59 96.44 99.10 

Zr 115.45 65.52 81.35 84.82 89.35 74.42 83.39 78.29 69.41 75.16 69.64 65.42 

Nb 36.99 49.47 50.49 41.33 40.23 48.15 39.64 36.20 49.09 47.96 49.23 46.65 

Sn 55.04 3.00 6.46 8.62 9.81 13.44 13.66 24.88 0.79 1.76 4.63 10.30 

Cs 13.10 15.22 13.80 13.39 14.41 12.99 15.03 13.56 7.90 14.90 7.91 9.52 

Ba 195.34 130.39 158.30 135.26 123.84 66.38 112.91 110.79 24.50 35.00 24.75 38.41 

Hf 6.25 4.34 4.31 5.05 5.19 4.07 4.98 5.03 5.72 5.13 4.87 4.76 

(To be continued on the next page) 
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Appendix 8-2. (Continued) 

Sample No. ZK802-6 ZK803-29 ZK1001-2 ZK1001-3 ZK1001-5 ZK1001-6 ZK1001-7 ZK1001-9 WJ29 WJ35 ZK706-1 ZK706-2 

Depth (m) 565  548  642  634  616  604  594  573  0  0  286  279  

Ta 4.79 7.64 4.95 5.05 5.11 5.82 5.96 7.20 8.91 7.42 6.47 7.04 

W 14.16 38.83 3.88 4.42 3.73 4.69 5.38 4.86 5.43 264.89 3.42 3.01 

Pb 39.36 37.42 56.34 38.93 40.49 51.87 36.57 36.53 20.27 37.68 43.90 42.19 

Th 26.63 23.09 25.61 28.60 27.43 20.91 25.19 22.87 26.71 27.79 26.28 26.39 

U 15.89 16.27 12.72 19.41 18.92 11.42 18.05 17.22 8.14 16.32 18.95 18.32 

             

Rare earth elements (REE)           

La 17.32 12.62 28.98 28.30 27.30 25.04 26.59 24.89 9.96 15.39 13.10 13.50 

Ce 42.72 20.49 66.29 63.72 61.92 57.66 60.05 57.32 18.26 29.85 29.26 27.88 

Pr 5.60 4.63 8.29 12.21 12.00 7.30 11.65 11.48 3.64 6.14 6.24 5.93 

Nd 31.67 14.65 31.95 34.98 34.18 28.01 32.76 33.47 12.24 19.82 19.35 18.30 

Sm 9.86 6.63 10.49 11.08 10.99 9.16 10.43 11.98 7.26 8.29 8.33 8.06 

Eu 0.28 0.12 0.25 0.21 0.19 0.15 0.19 0.17 0.06 0.11 0.09 0.09 

Gd 11.30 8.90 10.46 12.65 12.42 9.01 11.97 13.21 11.38 10.23 10.90 10.83 

Tb 2.34 2.16 2.48 2.66 2.61 2.17 2.56 2.78 2.99 2.38 2.57 2.61 

Dy 15.80 14.53 15.15 17.26 16.90 13.18 16.60 17.59 21.32 16.00 17.58 18.00 

Ho 3.05 2.80 2.91 3.34 3.24 2.46 3.17 3.29 4.18 3.11 3.45 3.56 

Er 8.60 7.97 7.79 9.53 9.23 6.61 9.07 9.49 11.89 8.85 9.95 10.21 

Tm 1.27 1.17 1.34 1.39 1.35 1.17 1.35 1.46 1.76 1.31 1.48 1.53 

Yb 7.89 7.32 7.96 8.61 8.44 7.13 8.63 9.57 10.90 8.28 9.36 9.63 

Lu 1.11 1.03 1.15 1.24 1.21 1.04 1.24 1.40 1.55 1.18 1.35 1.38 

             

ΣREE 158.81 105.02 195.47 207.19 201.98 170.08 196.26 198.11 117.40 130.93 133.01 131.51 

La/Yb 2.20 1.72 3.64 3.29 3.23 3.51 3.08 2.60 0.91 1.86 1.40 1.40 

K/Rb 104.28 128.46 95.50 109.09 111.47 75.14 90.41 82.87 155.32 132.02 113.39 106.00 

Y/Ho 26.97 27.10 33.24 27.55 27.57 34.70 28.52 29.60 28.31 25.63 27.92 27.84 

Zr/Hf 18.47 15.09 18.90 16.79 17.23 18.28 16.73 15.57 12.13 14.66 14.29 13.75 

Sr/Eu 134.71 213.20 177.14 120.09 220.93 296.91 218.62 159.17 407.80 267.52 216.07 248.60 

δEua 0.08 0.05 0.07 0.05 0.05 0.05 0.05 0.04 0.02 0.04 0.03 0.03 

TE1,3
b 1.02 1.10 1.14 1.18 1.19 1.15 1.20 1.20 1.14 1.13 1.19 1.17 

Notes: ZK802-6, ZK803-29, ZK1001-2, ZK1001-3, ZK1001-5, ZK1001-6, ZK1001-7, and ZK1001-9 were sampled from altered granite 

spatially close to the magnesian skarn orebodies; WJ29, WJ35, ZK706-1, and ZK706-2 were sampled from altered granite spatially close to 

the calcic skarn orebodies. a δEu = 2EuN/(SmN + GdN). b TE1,3 = {[CeN/(La2/3 
N × Nd1/3 

N ) × PrN/(La1/3 
N × Nd2/3 

N )]0.5 × [TbN/(Gd2/3 
N × Ho1/3 

N ) × DyN/(Gd
1/3 
N × Ho2/3 

N )]0.5}0.5, it quantifies the degree of the tetrad effect (Irber, 1999). 
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Appendix 8-3. Representative EMP analyses of fresh and bleached biotite in the Weijia granite 

Occurrence  Biotite in the granite without stockwork veins  Biotite in the granite with stockwork veins 

Sample No.  WJ2  ZK902-1  WJ1616B  WJ1617B 

Type  Fresh  Bleached  Fresh  Bleached  Bleached  Bleached 

SiO2 (wt.%)  32.30 31.94  31.42 32.36 32.21 29.65  33.84 33.76 33.46  30.45 30.44 30.01  37.14 40.38 37.95 42.61  45.14 45.72 43.34 41.65 

TiO2  0.59 0.30  0.19 0.35 0.43 0.36  2.45 2.60 2.41  2.91 2.95 0.85  1.40 0.64 0.44 1.17  0.18 0.00 0.09 0.04 

Al2O3  18.64 19.04  20.56 20.66 21.78 19.35  15.09 15.35 15.51  16.79 16.98 20.31  17.93 18.04 16.71 18.71  24.03 22.58 19.39 15.27 

FeO  28.51 30.41  31.66 31.95 30.60 35.15  29.89 33.19 33.53  36.24 34.27 35.54  23.02 22.29 25.55 18.16  12.02 13.96 17.12 25.49 

MnO  0.86 0.96  0.94 0.93 0.87 1.34  0.60 0.66 0.60  0.65 0.82 0.65  0.31 0.29 0.24 0.33  0.10 0.21 0.21 0.06 

MgO  0.27 0.36  0.37 0.64 0.34 0.33  2.97 1.03 1.27  1.48 2.48 1.18  0.34 0.52 0.46 0.69  0.36 0.40 0.48 0.58 

CaO  0.00 0.00  0.10 0.05 0.04 0.08  0.11 0.00 0.00  0.00 0.02 0.28  0.44 0.67 0.74 1.03  0.61 0.98 1.31 1.70 

Na2O  0.19 0.10  0.06 0.07 0.06 0.08  0.37 0.37 0.40  0.18 0.11 0.06  0.06 0.11 0.08 0.05  0.00 0.02 0.10 0.10 

K2O  8.62 7.89  5.30 5.23 4.40 3.89  8.54 8.21 8.62  5.10 4.07 3.32  6.10 5.47 4.85 4.45  6.35 4.63 2.74 0.88 

F  3.64 2.42  0.59 0.48 0.03 0.91  4.84 3.06 2.42  1.17 0.85 0.53  0.65 0.60 1.04 0.35  0.00 0.00 0.11 0.24 

Cl  0.13 0.12  0.10 0.08 0.02 0.06  0.44 0.29 0.47  0.26 0.27 0.16  0.17 0.04 0.05 0.03  0.04 0.00 0.00 0.00 

Total  93.75 93.55  91.28 92.80 90.78 91.19  99.15 98.51 98.68  95.23 93.25 92.88  87.55 89.04 88.10 87.58  88.84 88.48 84.87 86.00 

Li2Oa  1.74 0.93  0.11 0.08 0.00 0.21  2.71 1.33 0.92  0.30 0.19 0.09  0.12 0.11 0.25 0.10  0.00 0.00 0.02 0.03 

                           

Ions based on 22 oxygen                         

T_Si  5.360 5.333  5.274 5.319 5.316 5.092  5.343 5.434 5.407  5.072 5.093 5.007  6.155 6.447 6.286 6.660  6.691 6.805 6.831 6.781 

T_Al  2.640 2.667  2.726 2.681 2.684 2.908  2.657 2.566 2.593  2.928 2.907 2.993  1.845 1.553 1.714 1.340  1.309 1.195 1.169 1.219 

ΣT  8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000  8.000 8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000 

(To be continued on the next page) 
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Appendix 8-3. (Continued) 

Occurrence  Biotite in the granite without stockwork veins  Biotite in the granite with stockwork veins 

Sample No.  WJ2  ZK902-1  WJ1616B  WJ1617B 

Type  Fresh  Bleached  Fresh  Bleached  Bleached  Bleached 

M_Al  1.005 1.078  1.342 1.322 1.551 1.007  0.151 0.347 0.360  0.368 0.442 0.999  1.656 1.841 1.548 2.107  2.889 2.765 2.433 1.712 

M_Ti  0.073 0.038  0.024 0.043 0.054 0.047  0.290 0.314 0.293  0.365 0.371 0.107  0.174 0.077 0.055 0.137  0.020 0.000 0.011 0.005 

M_Fe  3.956 4.246  4.445 4.392 4.224 5.048  3.947 4.467 4.531  5.050 4.796 4.958  3.190 2.977 3.539 2.374  1.490 1.738 2.257 3.470 

M_Mg  0.066 0.090  0.093 0.157 0.083 0.083  0.699 0.247 0.305  0.367 0.619 0.293  0.083 0.123 0.112 0.161  0.080 0.088 0.112 0.141 

M_Mn  0.120 0.136  0.133 0.129 0.122 0.195  0.080 0.090 0.082  0.092 0.117 0.091  0.043 0.039 0.033 0.043  0.013 0.026 0.027 0.008 

M_Li  1.162 0.624  0.072 0.050 0.001 0.142  1.720 0.861 0.601  0.201 0.125 0.059  0.081 0.069 0.168 0.062  0.000 0.000 0.013 0.017 

ΣM  6.383 6.212  6.109 6.093 6.034 6.522  6.887 6.326 6.172  6.443 6.468 6.508  5.228 5.126 5.456 4.885  4.492 4.618 4.853 5.353 

I_Ca  0.000 0.000  0.018 0.009 0.007 0.014  0.018 0.000 0.000  0.000 0.003 0.050  0.077 0.114 0.130 0.173  0.097 0.155 0.221 0.297 

I_Na  0.061 0.033  0.021 0.023 0.018 0.027  0.114 0.114 0.127  0.059 0.037 0.018  0.020 0.035 0.027 0.016  0.000 0.005 0.030 0.033 

I_K  1.825 1.680  1.134 1.096 0.926 0.851  1.720 1.685 1.776  1.084 0.869 0.707  1.290 1.113 1.024 0.887  1.201 0.879 0.550 0.182 

ΣI  1.886 1.713  1.173 1.128 0.951 0.892  1.853 1.799 1.903  1.143 0.908 0.775  1.388 1.262 1.181 1.076  1.299 1.039 0.800 0.512 

OHb  2.054  2.687   3.657  3.729  3.978  3.487   1.462  2.365  2.638   3.313  3.473  3.675   3.612  3.687  3.442  3.818   3.990  4.000  3.946  3.878  

F  1.910  1.279   0.315  0.247  0.017  0.495   2.419  1.556  1.234   0.614  0.451  0.279   0.341  0.301  0.545  0.175   0.000  0.000  0.054  0.122  

Cl  0.036  0.034   0.028  0.023  0.005  0.018   0.119  0.079  0.128   0.073  0.075  0.046   0.047  0.011  0.013  0.008   0.010  0.000  0.000  0.000  

                           

Fe3+c  1.386 0.892  0.000 0.000 0.000 0.157  2.063 1.180 1.108  0.406 0.104 0.000  0.000 0.000 0.000 0.000  0.000 0.000 0.000 0.000 

Fe2+  2.570 3.353  4.445 4.392 4.224 4.891  1.883 3.287 3.423  4.644 4.692 4.958  3.190 2.977 3.539 2.374  1.490 1.738 2.257 3.470 

Notes: General formula: IM2–3T4O10(OH, F, Cl)2. a Li2O is estimated using the equations Li2O = 0.237 × F1.544 (trioctahedral micas) and Li2O = 0.3935 × F1.326 (dioctahedral micas) after Tischendorf et al. (1997). b The estimation 

of OH is based on OH + F + Cl = 2. c Fe3+ is calculated based on the surplus oxygen method after Zheng (1983). 
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Appendix 8-4. Representative EMP analyses of white mica in the Weijia granite and its stockwork veins 

Occurrence  
White mica in the matrix of granite 

without stockwork veins 
 
White mica coexisting with fluorite as 

aggregates in the granite without 
stockwork veins 

 
White mica in the matrix of granite 

with stockwork veins 
 

White mica in the bleached zone 
near stockwork veins 

 
White mica in the K-feldspar-quartz 

pegmatite veins 

Sample No.  WJ2  ZK706-2  WJ13  WJ1616B  WJ1617B  WJ1616A 

Type                       Core Core Core Rim 

SiO2 (wt.%)  44.48 47.33  48.57 49.27  48.28 46.13 46.57 46.48  44.43 42.72 47.81 49.06  46.03 49.03 48.71 49.85  45.55 47.35 49.22 49.17 

TiO2  0.00 0.31  0.29 0.27  0.00 0.00 0.17 0.10  0.04 0.18 0.08 0.04  0.06 0.13 0.20 0.07  0.00 0.03 0.01 0.00 

Al2O3  28.98 30.41  32.42 31.43  37.39 36.98 33.76 36.41  25.16 27.72 28.98 32.46  31.57 28.08 28.03 30.88  26.37 27.63 28.84 34.07 

FeO  6.04 3.05  3.24 3.58  0.08 0.32 1.19 0.67  8.83 9.61 4.00 2.14  2.60 4.54 4.08 2.67  8.74 6.12 5.48 1.07 

MnO  0.29 0.00  0.07 0.00  0.00 0.00 0.10 0.01  0.06 0.18 0.14 0.10  0.03 0.03 0.07 0.04  0.22 0.39 0.21 0.04 

MgO  0.08 0.19  0.22 0.26  0.01 0.02 0.40 0.09  0.16 0.16 0.33 0.06  0.02 0.29 0.31 0.39  0.07 0.03 0.07 0.05 

CaO  0.09 0.00  0.03 0.00  0.00 0.00 0.00 0.10  0.00 0.01 0.09 0.21  0.01 0.15 0.10 0.40  0.00 0.00 0.00 0.00 

Na2O  0.32 0.04  0.04 0.08  0.20 0.26 0.40 0.42  0.20 0.23 0.03 0.08  0.30 0.03 0.02 0.05  0.20 0.05 0.06 0.07 

K2O  10.55 10.27  9.52 9.88  10.15 10.58 9.83 9.99  9.81 10.53 9.17 8.82  10.32 9.60 9.06 8.31  10.41 10.59 10.20 9.94 

F  4.38 1.54  0.70 0.40  0.81 0.15 1.14 0.35  7.09 4.36 1.67 0.22  2.32 1.61 1.03 0.49  7.90 5.58 3.59 0.38 

Cl  0.01 0.00  0.00 0.00  0.00 0.02 0.00 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.01  0.00 0.00 0.02 0.02 

Total  95.21 93.13  95.09 95.17  96.92 94.45 93.55 94.62  95.75 95.69 92.28 93.19  93.26 93.48 91.61 93.16  99.43 97.77 97.69 94.80 

Li2Oa  2.32 0.69  0.24 0.12  0.30 0.03 0.47 0.10  4.88 2.30 0.77 0.05  1.20 0.74 0.41 0.15  5.76 3.37 2.14 0.11 

                           

Ions based on 22 oxygen                         

T_Si  6.217 6.520  6.491 6.589  6.248 6.151 6.311 6.188  6.214 6.075 6.638 6.599  6.349 6.744 6.785 6.714  6.121 6.404 6.556 6.509 

T_Al  1.783 1.480  1.509 1.411  1.752 1.849 1.689 1.812  1.786 1.925 1.362 1.401  1.651 1.256 1.215 1.286  1.879 1.596 1.444 1.491 

ΣT  8.000 8.000  8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000 

(To be continued on the next page) 
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Appendix 8-4. (Continued) 

Occurrence  
White mica in the matrix of granite 

without stockwork veins 
 
White mica coexisting with fluorite as 

aggregates in the granite without 
stockwork veins 

 
White mica in the matrix of granite 

with stockwork veins 
 

White mica in the bleached zone 
near stockwork veins 

 
White mica in the K-feldspar-quartz 

pegmatite veins 

Sample No.  WJ2  ZK706-2  WJ13  WJ1616B  WJ1617B  WJ1616A 

Type                       Core Core Core Rim 

M_Al  2.991 3.458  3.597 3.543  3.950 3.962 3.702 3.899  2.361 2.721 3.381 3.744  3.481 3.297 3.387 3.616  2.297 2.808 3.083 3.824 

M_Ti  0.000 0.032  0.029 0.027  0.000 0.000 0.018 0.010  0.004 0.019 0.009 0.004  0.006 0.013 0.021 0.007  0.000 0.003 0.001 0.000 

M_Fe  0.706 0.351  0.362 0.401  0.009 0.035 0.135 0.074  1.033 1.142 0.464 0.241  0.300 0.522 0.476 0.301  0.982 0.692 0.610 0.118 

M_Mg  0.016 0.038  0.045 0.052  0.002 0.005 0.080 0.018  0.032 0.034 0.068 0.012  0.004 0.059 0.065 0.078  0.013 0.006 0.014 0.010 

M_Mn  0.035 0.000  0.008 0.000  0.000 0.000 0.011 0.001  0.007 0.022 0.016 0.012  0.003 0.003 0.008 0.004  0.024 0.045 0.023 0.005 

M_Li  1.301 0.385  0.131 0.062  0.154 0.016 0.255 0.053  2.743 1.315 0.432 0.029  0.667 0.409 0.229 0.084  3.112 1.831 1.147 0.058 

ΣM  5.049 4.264  4.172 4.085  4.115 4.019 4.201 4.055  6.179 5.253 4.370 4.041  4.462 4.303 4.185 4.091  6.429 5.386 4.879 4.015 

I_Ca  0.013 0.000  0.004 0.000  0.000 0.000 0.000 0.015  0.000 0.001 0.013 0.031  0.001 0.022 0.015 0.058  0.000 0.000 0.000 0.000 

I_Na  0.086 0.011  0.010 0.020  0.049 0.067 0.105 0.108  0.053 0.063 0.007 0.020  0.080 0.009 0.006 0.012  0.052 0.012 0.015 0.017 

I_K  1.881 1.804  1.622 1.686  1.676 1.799 1.699 1.697  1.750 1.909 1.624 1.514  1.817 1.684 1.610 1.427  1.785 1.827 1.733 1.678 

ΣI  1.981 1.816  1.636 1.707  1.725 1.866 1.804 1.819  1.803 1.973 1.643 1.564  1.898 1.715 1.631 1.498  1.837 1.840 1.748 1.695 

OHb  2.063  3.330   3.705  3.832   3.670  3.935  3.511  3.852   0.864  2.041  3.269  3.906   2.987  3.300  3.546  3.788   0.644  1.615  2.484  3.837  

F  1.934  0.669   0.295  0.168   0.329  0.062  0.489  0.148   3.136  1.959  0.731  0.094   1.013  0.700  0.454  0.210   3.356  2.385  1.512  0.158  

Cl  0.002  0.001   0.000  0.000   0.001  0.004  0.000  0.000   0.000  0.000  0.000  0.000   0.000  0.001  0.000  0.001   0.000  0.000  0.004  0.005  

                           

Fe3+c  0.000 0.000  0.000 0.000  0.000 0.000 0.000 0.000  0.974 0.000 0.000 0.000  0.000 0.000 0.000 0.000  0.982 0.000 0.000 0.000 

Fe2+  0.706 0.351  0.362 0.401  0.009 0.035 0.135 0.074  0.058 1.142 0.464 0.241  0.300 0.522 0.476 0.301  0.000 0.692 0.610 0.118 

(To be continued on the next page) 
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Appendix 8-4. (Continued) 

Occurrence  White mica in the K-feldspar-quartz pegmatite veins  White mica in the (K-feldspar)-quartz veins or veinlets  
White mica in the stockwork quartz 

veinlets 

Sample No.  WJ1617A  WJ3  WJ1620  WJ1628A  WJ1628B 

Type  Core Core Core Rim Rim Rim  Core Core Core Rim  Core Core Core Core Rim Rim       

SiO2 (wt.%)  45.45 47.18 45.97 45.52 46.23 46.85  45.89 45.82 47.39 49.40  46.94 46.65 45.27 45.43 46.86 47.79  49.24 49.47  49.26 48.30 

TiO2  0.00 0.18 0.21 0.06 0.00 0.04  0.05 0.11 0.00 0.00  0.04 0.13 0.15 0.00 0.00 0.00  0.03 0.01  0.00 0.00 

Al2O3  25.99 27.82 30.14 31.73 34.40 34.65  27.19 26.12 30.04 33.37  25.54 30.23 32.02 31.82 32.88 34.65  31.93 32.33  32.50 32.10 

FeO  7.36 4.87 3.80 2.85 0.50 0.24  6.94 8.91 2.67 1.09  8.19 4.95 2.81 2.47 1.57 0.43  1.22 1.31  1.13 1.00 

MnO  0.27 0.19 0.07 0.09 0.27 0.11  0.26 0.18 0.92 0.19  0.52 0.24 0.21 0.12 0.31 0.04  0.00 0.10  0.00 0.11 

MgO  0.03 0.02 0.02 0.01 0.05 0.05  0.04 0.09 0.05 0.29  0.07 0.11 0.03 0.02 0.02 0.02  0.19 0.38  0.49 0.60 

CaO  0.00 0.00 0.00 0.00 0.05 0.06  0.00 0.12 0.00 0.12  0.01 0.14 0.00 0.00 0.00 0.02  0.13 0.24  0.23 0.28 

Na2O  0.17 0.15 0.30 0.28 0.22 0.09  0.14 0.13 0.06 0.06  0.14 0.25 0.47 0.43 0.11 0.07  0.06 0.05  0.04 0.08 

K2O  10.62 10.92 10.73 10.60 10.21 10.19  10.13 9.78 9.78 9.21  9.65 9.57 10.59 10.21 9.98 9.82  8.36 9.14  8.30 8.25 

F  6.11 5.04 3.59 2.34 1.31 0.33  8.02 6.25 3.28 0.34  6.39 4.55 3.60 2.87 1.25 0.27  0.57 0.13  0.24 0.00 

Cl  0.00 0.00 0.01 0.00 0.00 0.01  0.00 0.00 0.00 0.01  0.02 0.04 0.05 0.00 0.02 0.00  0.02 0.02  0.03 0.01 

Total  96.01 96.36 94.84 93.49 93.24 92.60  98.65 97.51 94.18 94.09  97.51 96.84 95.19 93.36 93.01 93.11  91.74 93.17  92.21 90.74 

Li2Oa  3.88 2.88 2.14 1.22 0.57 0.09  5.90 4.02 1.90 0.10  4.15 2.46 2.15 1.59 0.53 0.07  0.18 0.02  0.06 0.00 

                          

Ions based on 22 oxygen                        

T_Si  6.328 6.449 6.311 6.292 6.282 6.354  6.139 6.289 6.472 6.564  6.409 6.301 6.168 6.268 6.404 6.421  6.679 6.635  6.634 6.607 

T_Al  1.672 1.551 1.689 1.708 1.718 1.646  1.861 1.711 1.528 1.436  1.591 1.699 1.832 1.732 1.596 1.579  1.321 1.365  1.366 1.393 

ΣT  8.000 8.000 8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000 8.000 8.000  8.000 8.000  8.000 8.000 

(To be continued on the next page) 
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Appendix 8-4. (Continued) 

Occurrence  White mica in the K-feldspar-quartz pegmatite veins  White mica in the (K-feldspar)-quartz veins or veinlets  
White mica in the stockwork quartz 

veinlets 

Sample No.  WJ1617A  WJ3  WJ1620  WJ1628A  WJ1628B 

Type  Core Core Core Rim Rim Rim  Core Core Core Rim  Core Core Core Core Rim Rim       

M_Al  2.593 2.930 3.188 3.460 3.791 3.893  2.425 2.515 3.308 3.790  2.518 3.113 3.309 3.443 3.699 3.907  3.785 3.745  3.793 3.783 

M_Ti  0.000 0.018 0.021 0.006 0.000 0.004  0.005 0.011 0.000 0.000  0.004 0.013 0.015 0.000 0.000 0.000  0.003 0.001  0.000 0.000 

M_Fe  0.856 0.557 0.437 0.329 0.057 0.027  0.777 1.022 0.305 0.121  0.935 0.559 0.320 0.285 0.180 0.048  0.138 0.147  0.128 0.115 

M_Mg  0.007 0.003 0.005 0.003 0.009 0.011  0.008 0.019 0.010 0.058  0.015 0.022 0.005 0.005 0.004 0.004  0.038 0.077  0.097 0.122 

M_Mn  0.031 0.022 0.008 0.011 0.031 0.012  0.029 0.021 0.106 0.022  0.060 0.028 0.024 0.014 0.036 0.005  0.000 0.011  0.000 0.013 

M_Li  2.172 1.583 1.184 0.676 0.309 0.050  3.175 2.218 1.044 0.051  2.281 1.337 1.179 0.885 0.292 0.037  0.101 0.013  0.033 0.000 

ΣM  5.659 5.113 4.842 4.485 4.197 3.996  6.419 5.805 4.773 4.042  5.813 5.072 4.853 4.632 4.210 4.001  4.065 3.994  4.051 4.033 

I_Ca  0.000 0.000 0.000 0.000 0.007 0.008  0.000 0.018 0.000 0.018  0.002 0.020 0.000 0.000 0.000 0.003  0.019 0.034  0.033 0.041 

I_Na  0.047 0.039 0.079 0.074 0.058 0.023  0.035 0.034 0.015 0.016  0.037 0.065 0.124 0.114 0.028 0.017  0.016 0.013  0.011 0.022 

I_K  1.887 1.904 1.879 1.869 1.770 1.763  1.728 1.712 1.704 1.561  1.681 1.649 1.841 1.797 1.740 1.683  1.447 1.563  1.425 1.440 

ΣI  1.934 1.942 1.958 1.943 1.834 1.794  1.763 1.764 1.718 1.595  1.719 1.733 1.965 1.911 1.768 1.703  1.482 1.610  1.470 1.503 

OHb  1.308  1.821  2.437  2.976  3.435  3.855   0.606  1.285  2.584  3.854   1.236  2.047  2.438  2.746  3.452  3.885   3.753  3.943   3.890  3.997  

F  2.692  2.179  1.560  1.024  0.565  0.143   3.394  2.715  1.416  0.144   2.759  1.945  1.551  1.254  0.542  0.114   0.242  0.053   0.104  0.000  

Cl  0.000  0.000  0.003  0.000  0.000  0.001   0.000  0.000  0.000  0.002   0.005  0.008  0.011  0.000  0.006  0.000   0.004  0.004   0.006  0.003  

                          

Fe3+c  0.414 0.000 0.000 0.000 0.000 0.000  0.777 0.380 0.000 0.000  0.327 0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000 0.000 

Fe2+  0.442 0.557 0.437 0.329 0.057 0.027  0.000 0.642 0.305 0.121  0.608 0.559 0.320 0.285 0.180 0.048  0.138 0.147  0.128 0.115 

Notes: General formula: IM2–3T4O10(OH, F, Cl)2. a Li2O is estimated using the equations Li2O = 0.237 × F1.544 (trioctahedral micas) and Li2O = 0.3935 × F1.326 (dioctahedral micas) after Tischendorf et al. (1997). b The estimation 

of OH is based on OH + F + Cl = 2. c Fe3+ is calculated based on the surplus oxygen method after Zheng (1983). 
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Appendix 8-5. Representative EMP analyses of serpentine in the magnesian skarn of the Weijia W deposit 

Sample No.  ZK7'08-7  ZK7'08-9  ZK803-5  ZK803-14  ZK1202-1 

Occurrencea  Exterior Exterior Exterior  Interior Interior Interior Interior Interior Interior Interior Interior  Exterior Exterior Exterior Exterior Exterior  Exterior Exterior  Interior Interior 

Point No.  1 2 3  1 2 3 4 5 6 7 8  1 2 3 4 5  1 2  1 2 

SiO2 (wt.%)  41.04 40.49 41.03  41.83 42.27 39.42 40.36 40.07 41.63  40.41  39.55   45.81 46.22 45.39 41.90 43.76  43.03 44.28  38.43 39.95 

TiO2  0.00 0.00 0.00  0.00 0.02 0.00 0.00 0.00 0.06  0.01  0.00   0.00 0.00 0.00 0.02 0.00  0.10 0.07  0.00 0.00 

Al2O3  2.00 2.04 2.43  0.91 0.93 3.33 5.90 3.34 1.11  4.10  6.08   2.49 2.29 0.65 0.89 0.72  1.07 0.47  3.29 1.71 

FeOb  3.40 3.17 1.60  6.61 5.34 5.73 6.55 5.54 5.70  5.81  5.53   2.58 2.46 3.18 2.27 3.38  1.35 1.25  4.53 4.86 

MnO  0.14 0.24 0.07  0.28 0.19 0.31 0.21 0.15 0.39  0.29  0.15   0.04 0.11 0.08 0.00 0.01  0.09 0.00  0.43 0.39 

MgO  39.54 40.03 40.61  32.15 32.62 34.84 34.01 36.09 33.83  36.03  35.29   32.56 34.42 32.96 30.30 31.55  31.65 36.26  30.92 30.39 

CaO  0.11 0.11 0.11  0.41 0.29 0.06 0.02 0.07 0.26  0.09  0.04   0.38 0.22 0.30 0.48 1.34  0.46 0.26  0.14 0.12 

Na2O  0.01 0.03 0.00  0.03 0.03 0.02 0.04 0.06 0.04  0.07  0.00   0.05 0.05 0.00 0.00 0.00  0.00 0.03  0.04 0.00 

K2O  0.00 0.00 0.00  0.00 0.00 0.00 1.53 0.05 0.07  0.02  0.03   0.01 0.14 0.00 0.04 0.02  0.01 0.00  0.00 0.00 

F  1.57 2.42 3.01  1.88 2.31 0.66 1.29 1.91 1.27  1.54  0.20   2.36 3.25 2.50 2.92 3.04  1.52 2.13  0.00 0.68 

Cl  0.00 0.01 0.00  0.00 0.00 0.00 0.03 0.00 0.00  0.01  0.00   0.00 0.00 0.02 0.00 0.01  0.00 0.00  0.01 0.00 

Total  87.82 88.54 88.86  84.10 84.00 84.36 89.95 87.29 84.35  88.36  86.86   86.27 89.15 85.07 78.83 83.83  79.28 84.76  77.80 78.10 

                          

Ions based on 14 oxygen                        

T_Si  3.891 3.849 3.871  4.200 4.233 3.892 3.804 3.875 4.128  3.847  3.760   4.356 4.305 4.410 4.410 4.373  4.398 4.278  4.042 4.213 

T_Al  0.109 0.151 0.129  0.000 0.000 0.108 0.196 0.125 0.000  0.153  0.240   0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000 0.000 

ΣT  4.000 4.000 4.000  4.200 4.233 4.000 4.000 4.000 4.128  4.000  4.000   4.356 4.305 4.410 4.410 4.373  4.398 4.278  4.042 4.213 

(To be continued on the next page) 
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Appendix 8-5. (Continued) 

Sample No.  ZK7'08-7  ZK7'08-9  ZK803-5  ZK803-14  ZK1202-1 

Occurrencea  Exterior Exterior Exterior  Interior Interior Interior Interior Interior Interior Interior Interior  Exterior Exterior Exterior Exterior Exterior  Exterior Exterior  Interior Interior 

Point No.  1 2 3  1 2 3 4 5 6 7 8  1 2 3 4 5  1 2  1 2 

M_Al  0.115 0.078 0.140  0.108 0.110 0.280 0.459 0.256 0.129  0.307  0.441   0.280 0.251 0.074 0.111 0.085  0.129 0.053  0.407 0.212 

M_Ti  0.000 0.000 0.000  0.000 0.001 0.000 0.000 0.000 0.004  0.001  0.000   0.000 0.000 0.000 0.002 0.000  0.007 0.005  0.000 0.000 

M_Fe  0.269 0.252 0.126  0.555 0.447 0.473 0.516 0.448 0.473  0.462  0.440   0.205 0.192 0.258 0.200 0.282  0.116 0.101  0.399 0.429 

M_Mg  5.589 5.674 5.711  4.813 4.869 5.128 4.778 5.203 5.001  5.114  5.002   4.616 4.780 4.773 4.753 4.700  4.823 5.223  4.848 4.778 

M_Mn  0.011 0.020 0.005  0.024 0.016 0.026 0.017 0.012 0.033  0.023  0.012   0.003 0.009 0.007 0.000 0.001  0.008 0.000  0.039 0.035 

M_Ca  0.011 0.011 0.011  0.045 0.031 0.006 0.002 0.008 0.028  0.009  0.004   0.039 0.022 0.031 0.054 0.143  0.050 0.027  0.016 0.013 

M_Na  0.003 0.005 0.000  0.005 0.006 0.003 0.007 0.011 0.008  0.012  0.000   0.008 0.008 0.000 0.000 0.000  0.000 0.006  0.008 0.000 

M_K  0.000 0.000 0.000  0.000 0.000 0.000 0.184 0.007 0.008  0.002  0.003   0.001 0.017 0.000 0.005 0.003  0.001 0.000  0.000 0.000 

ΣM  5.998 6.039 5.994  5.550 5.481 5.916 5.964 5.943 5.684  5.930  5.902   5.152 5.278 5.144 5.126 5.214  5.133 5.416  5.717 5.468 

OHc  7.528 7.271 7.102  7.402 7.268 7.794 7.611 7.415 7.602  7.535  7.941   7.290 7.042 7.230 7.028 7.036  7.508 7.349  7.998 7.773 

F  0.472 0.727 0.898  0.598 0.732 0.206 0.384 0.584 0.398  0.463  0.059   0.710 0.958 0.767 0.972 0.962  0.492 0.651  0.000 0.227 

Cl  0.000 0.002 0.000  0.000 0.000 0.000 0.005 0.000 0.000  0.001  0.000   0.000 0.000 0.003 0.000 0.002  0.000 0.000  0.002 0.000 

Notes: General formula: M6T4O10(OH, F, Cl)8. a Interior and exterior represent that serpentine occurs in the interiors and exteriors of the magnesian skarn veinlets, respectively. b All Fe as Fe2+. c The estimation of OH is based on 

OH + F + Cl = 8. 
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Appendix 8-6. Representative EMP analyses of phlogopite in the magnesian skarn of the Weijia W deposit 

Sample No.  ZK7'08-7  ZK7'08-9  ZK7'08-10  ZK803-5  ZK803-14 

Sequence  Early Early Late Late  Late Late Late Late Late  Late Late Late Late Late  Early Early Early Early  Early Early 

Point No.  1 2 3 4  1 2 3 4 5  1 2 3 4 5  1 2 3 4  1 2 

SiO2 (wt.%)  41.90 42.87 40.20 37.07  40.11 37.97 39.07 39.45 36.25  41.85 41.00 39.03 37.29 37.57  40.45 41.58 42.57 41.72  43.41 42.33 

TiO2  0.00 0.00 0.06 0.04  0.00 0.00 0.01 0.00 0.00  0.00 0.03 0.00 0.04 0.00  0.00 0.00 0.19 0.13  0.00 0.01 

Al2O3  12.05 8.99 9.46 15.93  13.30 13.42 13.41 12.47 13.93  11.15 11.48 11.31 11.79 11.96  16.28 14.69 13.21 12.55  12.20 13.22 

FeO  2.15 3.45 4.26 7.58  5.03 7.35 9.61 11.19 15.44  9.91 12.02 20.10 21.86 22.06  1.95 2.64 1.98 1.53  1.02 1.89 

MnO  0.10 0.10 0.08 0.41  0.16 0.38 0.37 0.33 0.36  0.64 0.52 0.66 1.24 1.49  0.29 0.01 0.10 0.12  0.00 0.13 

MgO  27.89 30.80 31.57 23.20  25.10 25.00 21.34 19.95 17.73  20.99 20.65 15.22 12.56 11.88  25.58 26.59 27.60 27.36  28.01 26.97 

CaO  0.00 0.00 0.04 0.03  0.06 0.03 0.08 0.08 0.07  0.02 0.05 0.02 0.06 0.04  0.02 0.00 0.00 0.10  0.02 0.00 

Na2O  0.17 0.14 0.09 0.13  0.17 0.16 0.17 0.23 0.10  0.15 0.10 0.02 0.10 0.00  0.29 0.35 0.22 0.25  0.27 0.31 

K2O  10.41 6.94 7.04 8.00  9.84 8.74 9.79 9.36 7.33  9.72 9.28 8.48 8.36 8.55  9.63 9.58 9.43 9.47  9.73 9.95 

F  4.57 5.23 6.27 3.65  4.45 4.06 4.27 2.93 1.72  3.75 4.15 3.29 2.05 1.74  2.46 2.81 3.21 4.02  3.00 2.40 

Cl  0.00 0.01 0.00 0.00  0.03 0.00 0.00 0.00 0.01  0.01 0.03 0.01 0.04 0.04  0.01 0.00 0.01 0.00  0.00 0.00 

Total  99.24 98.52 99.06 96.02  98.26 97.10 98.13 95.98 92.95  98.20 99.30 98.14 95.39 95.32  96.96 98.24 98.53 97.26  97.66 97.20 

                          

Ions based on 22 oxygen                        

T_Si  5.933 6.082 5.799 5.478  5.805 5.600 5.787 5.921 5.632  6.142 6.026 5.981 5.901 5.938  5.700 5.811 5.931 5.945  6.064 5.947 

T_Al  2.011 1.503 1.609 2.522  2.195 2.332 2.213 2.079 2.368  1.858 1.974 2.019 2.099 2.062  2.300 2.189 2.069 2.055  1.936 2.053 

ΣT  7.943 7.585 7.407 8.000  8.000 7.932 8.000 8.000 8.000  8.000 8.000 8.000 8.000 8.000  8.000 8.000 8.000 8.000  8.000 8.000 

(To be continued on the next page) 
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Appendix 8-6. (Continued) 

Sample No.  ZK7'08-7  ZK7'08-9  ZK7'08-10  ZK803-5  ZK803-14 

Sequence  Early Early Late Late  Late Late Late Late Late  Late Late Late Late Late  Early Early Early Early  Early Early 

Point No.  1 2 3 4  1 2 3 4 5  1 2 3 4 5  1 2 3 4  1 2 

M_Al  0.000 0.000 0.000 0.252  0.074 0.000 0.128 0.126 0.181  0.071 0.016 0.023 0.100 0.165  0.404 0.230 0.100 0.053  0.072 0.136 

M_Ti  0.000 0.000 0.006 0.004  0.000 0.000 0.001 0.000 0.000  0.000 0.003 0.000 0.005 0.000  0.000 0.000 0.020 0.014  0.000 0.001 

M_Fe  0.255 0.409 0.513 0.936  0.609 0.907 1.191 1.405 2.006  1.216 1.477 2.576 2.892 2.915  0.230 0.308 0.231 0.182  0.120 0.222 

M_Mg  5.887 6.514 6.788 5.110  5.415 5.498 4.713 4.464 4.107  4.592 4.524 3.478 2.962 2.800  5.373 5.539 5.733 5.812  5.833 5.649 

M_Mn  0.012 0.012 0.010 0.051  0.020 0.047 0.047 0.042 0.047  0.079 0.064 0.086 0.166 0.200  0.034 0.001 0.011 0.015  0.000 0.015 

ΣM  6.154 6.935 7.317 6.354  6.118 6.452 6.079 6.037 6.341  5.958 6.085 6.163 6.126 6.080  6.040 6.078 6.096 6.077  6.025 6.024 

I_Ca  0.000 0.000 0.006 0.004  0.010 0.005 0.012 0.012 0.011  0.003 0.007 0.003 0.010 0.006  0.003 0.000 0.000 0.015  0.003 0.000 

I_Na  0.047 0.038 0.026 0.038  0.047 0.045 0.049 0.065 0.030  0.043 0.027 0.007 0.029 0.000  0.078 0.096 0.060 0.069  0.073 0.084 

I_K  1.881 1.257 1.294 1.507  1.818 1.644 1.850 1.791 1.453  1.820 1.740 1.657 1.688 1.724  1.731 1.707 1.677 1.721  1.734 1.784 

ΣI  1.929 1.295 1.327 1.550  1.874 1.694 1.912 1.869 1.494  1.867 1.774 1.667 1.727 1.730  1.813 1.803 1.736 1.806  1.811 1.868 

OHa  1.954  1.651  1.142  2.294   1.958  2.105  2.002  2.611  3.150   2.255  2.060  2.404  2.963  3.120   2.900  2.758  2.582  2.187   2.674  2.934  

F  2.046  2.345  2.858  1.706   2.036  1.895  1.998  1.389  0.846   1.742  1.931  1.595  1.026  0.869   1.097  1.242  1.416  1.813   1.326  1.066  

Cl  0.000  0.003  0.000  0.000   0.007  0.000  0.000  0.000  0.004   0.003  0.008  0.001  0.012  0.012   0.003  0.000  0.002  0.000   0.001  0.000  

                          

Fe3+b  0.255 0.409 0.513 0.862  0.609 0.907 0.987 0.864 0.763  0.749 0.797 0.755 0.789 0.728  0.230 0.308 0.231 0.182  0.120 0.222 

Fe2+  0.000 0.000 0.000 0.075  0.000 0.000 0.204 0.541 1.243  0.467 0.680 1.821 2.104 2.187  0.000 0.000 0.000 0.000  0.000 0.000 

Notes: General formula: IM3T4O10(OH, F, Cl)2. a The estimation of OH is based on OH + F + Cl = 2. b Fe3+ is calculated based on the surplus oxygen method after Zheng (1983). 
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Appendix 8-7. Representative EMP analyses of garnet in the magnesian and calcic skarns of the Weijia W deposit 

Skarn  Magnesian skarn  Calcic skarn 

Sample No.  ZK7'08-7  ZK7'08-9  ZK803-14  ZK803-15  ZK803-16  ZK1202-1  ZK7'02-1  ZK9'02-3 

Generation                    First generation  First generation  Second generation  Third generation 

Point No.  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2 

SiO2 (wt.%)  35.82 35.29  35.87 35.88  36.46 35.75  35.50 35.88  37.04 36.70  36.84 36.42  35.97 35.46  36.62 36.31  37.46 36.95  37.21 36.89 

TiO2  0.00 0.03  0.04 0.00  0.00 0.01  0.06 0.03  0.04 0.00  0.14 0.00  0.10 0.02  0.00 0.03  0.03 0.15  0.00 0.00 

Al2O3  16.72 17.15  17.15 16.80  17.01 17.99  17.58 17.03  19.49 17.34  16.02 16.08  2.57 1.53  4.87 2.84  14.11 9.44  16.46 16.03 

FeO  3.15 2.96  4.04 3.78  2.48 3.11  3.10 2.96  6.21 4.01  4.49 4.61  26.60 27.72  22.46 25.43  12.34 16.93  7.14 9.00 

MnO  1.12 1.02  0.51 0.80  0.94 0.30  0.97 1.00  0.55 0.43  0.39 0.37  0.53 0.56  0.37 0.58  1.87 1.04  1.52 1.50 

MgO  2.81 2.87  2.73 2.92  2.07 2.22  2.50 2.40  0.12 2.13  2.28 2.26  0.26 0.05  0.10 0.04  0.05 0.05  0.06 0.02 

CaO  34.44 34.51  35.61 35.51  35.07 35.75  35.31 35.43  35.09 35.94  34.31 34.32  33.42 32.98  33.93 32.74  32.61 33.45  34.84 33.82 

Na2O  0.02 0.00  0.04 0.04  0.04 0.00  0.01 0.01  0.00 0.12  0.01 0.00  0.05 0.01  0.00 0.00  0.00 0.00  0.00 0.00 

K2O  0.02 0.05  0.00 0.04  0.01 0.00  0.00 0.01  0.00 0.00  0.04 0.00  0.05 0.00  0.00 0.00  0.00 0.00  0.03 0.03 

F  3.82 4.83  2.96 3.92  2.45 3.76  2.44 3.74  2.71 4.09  2.65 4.24  0.09 0.18  0.03 0.09  1.23 1.36  2.37 1.22 

Cl  0.07 0.06  0.18 0.12  0.00 0.06  0.02 0.03  0.00 0.02  0.06 0.05  0.01 0.02  0.00 0.00  0.00 0.00  0.01 0.02 

Total  98.00 98.76  99.14 99.81  96.54 98.96  97.49 98.51  101.24 100.76  97.22 98.33  99.65 98.51  98.37 98.05  99.69 99.37  99.63 98.54 

                               

Ions based on 12 oxygen                             

T_Si  2.920 2.885  2.872 2.883  2.964 2.878  2.870 2.909  2.875 2.912  2.980 2.963  2.951 2.964  3.003 3.023  2.970 2.988  2.953 2.932 

T_Al  0.080 0.115  0.128 0.117  0.036 0.122  0.130 0.091  0.125 0.088  0.020 0.037  0.049 0.036  0.000 0.000  0.030 0.012  0.047 0.068 

ΣT  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000  3.003 3.023  3.000 3.000  3.000 3.000 

B_Al  1.526 1.537  1.490 1.474  1.594 1.584  1.545 1.536  1.658 1.533  1.507 1.505  0.199 0.115  0.470 0.278  1.288 0.888  1.493 1.434 

B_Ti  0.000 0.002  0.002 0.000  0.000 0.001  0.004 0.002  0.002 0.000  0.009 0.000  0.006 0.001  0.000 0.002  0.002 0.009  0.000 0.000 

(To be continued on the next page) 
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Appendix 8-7. (Continued) 

Skarn  Magnesian skarn  Calcic skarn 

Sample No.  ZK7'08-7  ZK7'08-9  ZK803-14  ZK803-15  ZK803-16  ZK1202-1  ZK7'02-1  ZK9'02-3 

Generation                    First generation  First generation  Second generation  Third generation 

Point No.  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2  1 2 

B_Fe3+a  0.215 0.202  0.270 0.254  0.169 0.209  0.210 0.201  0.403 0.266  0.304 0.313  1.751 1.813  1.457 1.591  0.724 1.070  0.474 0.598 

B_Mg  0.259 0.259  0.237 0.272  0.237 0.206  0.242 0.262  0.000 0.201  0.181 0.181  0.031 0.006  0.012 0.005  0.000 0.006  0.008 0.000 

B_Fe2+  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.012 0.066  0.060 0.125  0.000 0.027  0.000 0.000 

B_Mn  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.026 0.000 

ΣB  2.000 2.000  2.000 2.000  2.000 2.000  2.000 2.000  2.063 2.000  2.000 2.000  2.000 2.000  2.000 2.000  2.013 2.000  2.000 2.032 

A_Mg  0.082 0.091  0.089 0.077  0.013 0.060  0.059 0.029  0.014 0.051  0.094 0.092  0.000 0.000  0.000 0.000  0.005 0.000  0.000 0.003 

A_Fe2+  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.062 0.059  0.023 0.055  0.094 0.048  0.000 0.000 

A_Mn  0.078 0.071  0.035 0.055  0.065 0.021  0.066 0.068  0.036 0.029  0.026 0.025  0.037 0.040  0.025 0.041  0.126 0.071  0.076 0.101 

A_Ca  3.007 3.022  3.055 3.057  3.055 3.083  3.058 3.077  2.917 3.056  2.973 2.991  2.937 2.954  2.982 2.921  2.770 2.898  2.962 2.880 

A_Na  0.003 0.000  0.007 0.007  0.006 0.001  0.001 0.002  0.000 0.018  0.001 0.000  0.008 0.001  0.000 0.000  0.000 0.000  0.000 0.000 

A_K  0.002 0.005  0.000 0.004  0.001 0.000  0.000 0.001  0.000 0.000  0.004 0.000  0.006 0.000  0.000 0.000  0.000 0.000  0.003 0.003 

ΣA  3.090 3.097  3.096 3.122  3.127 3.104  3.126 3.148  2.954 3.102  3.005 3.017  3.050 3.054  3.030 3.017  2.989 3.017  3.041 2.984 

F  0.497 0.629  0.379 0.503  0.317 0.483  0.315 0.483  0.338 0.518  0.343 0.552  0.013 0.026  0.004 0.013  0.159 0.182  0.303 0.157 

Cl  0.005 0.004  0.012 0.008  0.000 0.004  0.002 0.002  0.000 0.001  0.004 0.004  0.001 0.001  0.000 0.000  0.000 0.000  0.000 0.001 

                               

End membersb (%)                             

Gr  77.43 78.20  76.64 76.17  82.14 81.48  79.35 79.72  80.19 78.69  75.74 75.55  11.84 7.25  23.45 13.83  59.70 43.41  73.74 69.02 

Ad  10.35 9.58  12.79 12.16  8.51 10.00  9.92 9.84  18.12 12.91  15.06 15.36  83.53 87.29  72.64 79.01  32.79 51.62  22.70 27.50 

Py + Al + Sp  12.23 12.22  10.56 11.67  9.35 8.53  10.72 10.44  1.69 8.40  9.19 9.09  4.63 5.46  3.91 7.16  7.51 4.97  3.57 3.49 

(To be continued on the next page) 
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Appendix 8-7. (Continued) 

Skarn  Calcic skarn 

Sample No.  ZK9'02-4  ZK9'02-7  ZK9'02-9-1  ZK9'02-9-2  ZK9'02-10 

Generation  First generation  Third generation  First generation  First generation  Second generation  Third generation  First generation  Second generation  First generation 

Point No.  1 2  1 2  1 2 3  1 2  1 2  1 2  1 2  1 2  1 2 3 

SiO2 (wt.%)  35.63 35.64  37.18 36.81  36.13 35.34 35.35  35.91 36.08  37.98 37.47  37.93 38.32  35.49 35.56  36.49 36.72  36.50 35.63 35.63 

TiO2  0.00 0.06  0.05 0.00  0.16 0.00 0.04  0.03 0.12  0.00 0.03  0.13 0.00  0.16 0.02  0.00 0.01  0.00 0.00 0.05 

Al2O3  4.74 4.03  16.74 13.32  4.28 3.03 2.63  1.30 1.20  12.98 10.68  18.40 17.00  3.23 2.96  11.25 9.68  5.39 3.33 2.56 

FeO  23.62 24.11  12.24 15.15  23.02 24.87 25.36  26.38 27.21  13.05 17.00  6.45 8.60  24.52 25.57  15.44 17.28  22.14 24.44 25.47 

MnO  0.43 0.74  1.45 0.81  0.27 0.16 0.18  0.31 0.29  0.78 0.54  1.79 1.17  0.28 0.41  0.83 1.28  0.06 0.14 0.29 

MgO  0.03 0.06  0.00 0.03  0.13 0.21 0.12  0.50 0.45  0.00 0.02  0.03 0.00  0.20 0.23  0.05 0.05  0.19 0.31 0.32 

CaO  32.31 31.82  31.67 32.64  33.36 33.64 33.45  33.03 32.94  34.20 33.91  33.84 33.64  33.94 33.52  34.28 33.58  34.15 33.81 33.78 

Na2O  0.02 0.00  0.00 0.00  0.02 0.00 0.00  0.00 0.04  0.03 0.05  0.00 0.00  0.00 0.01  0.00 0.03  0.04 0.01 0.00 

K2O  0.00 0.00  0.00 0.00  0.04 0.00 0.03  0.00 0.00  0.01 0.00  0.03 0.00  0.00 0.02  0.00 0.02  0.00 0.00 0.00 

F  0.00 0.00  0.34 0.21  0.00 0.14 0.00  0.00 0.00  1.44 0.99  1.74 0.68  0.24 0.00  0.93 0.15  0.28 0.00 0.18 

Cl  0.00 0.00  0.00 0.01  0.00 0.00 0.03  0.02 0.00  0.00 0.00  0.00 0.00  0.01 0.00  0.00 0.00  0.00 0.00 0.00 

Total  96.79 96.45  99.66 98.97  97.40 97.38 97.18  97.47 98.33  100.47 100.69  100.34 99.41  98.05 98.30  99.27 98.81  98.74 97.68 98.27 

                              

Ions based on 12 oxygen                           

T_Si  2.981 3.003  2.908 2.923  3.000 2.956 2.966  3.013 3.006  2.995 2.968  2.948 2.989  2.949 2.947  2.924 2.951  2.981 2.960 2.959 

T_Al  0.019 0.000  0.092 0.077  0.000 0.044 0.034  0.000 0.000  0.005 0.032  0.052 0.011  0.051 0.053  0.076 0.049  0.019 0.040 0.041 

ΣT  3.000 3.003  3.000 3.000  3.000 3.000 3.000  3.013 3.006  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000  3.000 3.000 3.000 

B_Al  0.449 0.400  1.452 1.170  0.419 0.254 0.226  0.129 0.118  1.202 0.965  1.633 1.553  0.265 0.236  0.986 0.868  0.500 0.286 0.210 

B_Ti  0.000 0.004  0.003 0.000  0.010 0.000 0.002  0.002 0.008  0.000 0.002  0.008 0.000  0.010 0.001  0.000 0.001  0.000 0.000 0.003 

(To be continued on the next page) 
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Appendix 8-7. (Continued) 

Skarn  Calcic skarn 

Sample No.  ZK9'02-4  ZK9'02-7  ZK9'02-9-1  ZK9'02-9-2  ZK9'02-10 

Generation  First generation  Third generation  First generation  First generation  Second generation  Third generation  First generation  Second generation  First generation 

Point No.  1 2  1 2  1 2 3  1 2  1 2  1 2  1 2  1 2  1 2 3 

B_Fe3+a  1.501 1.515  0.623 0.883  1.497 1.697 1.711  1.743 1.760  0.790 1.038  0.402 0.452  1.675 1.722  1.035 1.147  1.457 1.666 1.728 

B_Mg  0.004 0.007  0.000 0.000  0.015 0.026 0.015  0.062 0.056  0.000 0.000  0.000 0.000  0.024 0.029  0.000 0.000  0.023 0.039 0.040 

B_Fe2+  0.046 0.075  0.000 0.000  0.059 0.023 0.046  0.064 0.059  0.009 0.000  0.000 0.000  0.025 0.012  0.000 0.000  0.020 0.009 0.020 

B_Mn  0.000 0.000  0.000 0.000  0.000 0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000  0.000 0.000 0.000 

ΣB  2.000 2.000  2.078 2.053  2.000 2.000 2.000  2.000 2.000  2.000 2.005  2.043 2.005  2.000 2.000  2.021 2.015  2.000 2.000 2.000 

A_Mg  0.000 0.000  0.000 0.003  0.000 0.000 0.000  0.000 0.000  0.000 0.002  0.003 0.000  0.000 0.000  0.006 0.006  0.000 0.000 0.000 

A_Fe2+  0.106 0.109  0.177 0.123  0.043 0.020 0.023  0.044 0.077  0.063 0.088  0.017 0.109  0.004 0.038  0.000 0.014  0.035 0.023 0.021 

A_Mn  0.031 0.053  0.096 0.055  0.019 0.011 0.013  0.022 0.020  0.052 0.036  0.118 0.077  0.019 0.029  0.057 0.087  0.004 0.010 0.020 

A_Ca  2.897 2.872  2.655 2.778  2.967 3.015 3.008  2.970 2.940  2.890 2.878  2.818 2.812  3.022 2.977  2.943 2.891  2.989 3.010 3.007 

A_Na  0.002 0.000  0.000 0.000  0.002 0.000 0.000  0.000 0.006  0.004 0.007  0.000 0.000  0.000 0.002  0.001 0.004  0.006 0.002 0.000 

A_K  0.000 0.000  0.000 0.000  0.004 0.000 0.003  0.000 0.000  0.001 0.000  0.003 0.000  0.000 0.003  0.000 0.002  0.000 0.000 0.000 

ΣA  3.036 3.034  2.928 2.955  3.036 3.047 3.047  3.036 3.044  3.009 3.010  2.957 2.998  3.045 3.048  3.000 2.998  3.034 3.045 3.048 

F  0.000 0.000  0.043 0.027  0.000 0.020 0.000  0.000 0.000  0.186 0.130  0.217 0.085  0.033 0.000  0.123 0.021  0.039 0.000 0.026 

Cl  0.000 0.000  0.000 0.000  0.000 0.000 0.002  0.001 0.000  0.000 0.000  0.000 0.000  0.001 0.000  0.000 0.000  0.000 0.000 0.000 

                              

End membersb (%)                            

Gr  22.32 19.24  64.58 54.96  20.91 14.57 12.76  6.45 5.86  57.98 46.92  76.96 72.76  15.51 13.87  49.60 42.83  25.55 15.96 12.24 

Ad  71.62 72.94  26.08 38.93  74.71 82.84 84.12  87.45 87.41  37.94 48.87  18.36 21.02  82.13 82.65  48.33 53.58  71.78 81.44 84.51 

Py + Al + Sp  6.06 7.82  9.34 6.11  4.37 2.59 3.12  6.10 6.74  4.08 4.21  4.68 6.22  2.35 3.48  2.07 3.59  2.68 2.60 3.25 

Notes: General formula: A3B2T3O12. a Fe3+ is calculated based on the stoichiometric criteria after Droop (1987). b Mineral abbreviations: Ad = andradite, Al = almandine, Gr = grossularite, Py = pyrope, Sp = spessartine. 
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Appendix 8-8. LA-ICP-MS analyses of garnet in the magnesian and calcic skarns of the Weijia W deposit 

Skarn  Magnesian skarn  Calcic skarn 

Generation    First generation 

Sample No.  ZK803-15  ZK803-16  ZK7'02-1  ZK9'02-3  ZK9'02-9-1 

Type        Core Core Rim Rim      Core 

Major elements (wt.%)               

SiO2  39.42 39.44  40.16 39.75  39.18 35.98 38.13 37.84  39.77 37.70 39.14  40.18 

CaO  35.35 35.05  32.01 35.00  35.66 40.06 34.29 34.89  34.58 36.28 34.29  35.57 

Al2O3  19.23 19.18  19.65 19.02  2.77 3.83 1.38 2.45  4.41 4.42 2.81  0.82 

FeO  2.23 2.19  5.80 3.18  19.34 17.82 23.53 22.14  17.71 20.09 22.23  21.72 

MnO  0.98 1.04  1.79 0.31  0.90 0.60 1.89 1.78  0.61 0.31 0.58  0.30 

MgO  2.61 2.89  0.13 2.21  1.25 0.75 0.04 0.18  2.15 0.22 0.15  0.31 

                  

Trace elements (ppm)               

Na  107.32 157.90  21.39 427.92  99.94 56.33 14.19 18.55  90.69 64.69 67.63  20.49 

P  82.34 85.21  28.22 46.93  69.38 22.77 39.56 30.49  14.90 27.58 23.20  28.89 

K  24.99 125.44  704.12 37.31  26.53 28.63 15.84 2.49  53.65 62.45 58.59  14.22 

Sc  6.69 6.11  16.48 2.82  2.54 2.30 1.42 1.91  1.95 1.97 1.23  1.73 

Ti  1.94 0.01  7.31 6.17  518.66 1068.36 36.31 287.47  330.02 443.70 141.52  78.23 

V  1.07 0.73  2.47 0.45  7.79 9.53 1.60 6.88  11.35 14.73 4.19  2.78 

Cr  0.03 1.14  0.00 0.00  105.84 108.80 0.29 3.12  33.68 12.09 16.93  22.75 

Co  0.33 0.24  0.13 0.23  0.59 0.39 0.23 0.34  0.44 0.14 0.16  0.25 

Ni  0.00 0.61  0.38 0.68  3.12 1.90 0.15 0.56  2.70 0.55 0.61  0.65 

Cu  0.57 0.35  0.09 0.66  0.58 0.89 0.11 0.24  0.41 0.61 0.54  0.22 

Zn  105.61 142.51  138.26 1872.47  542.07 56.00 36.62 70.15  162.38 15.02 30.65  16.24 

Ga  13.79 12.84  43.35 33.54  34.82 37.66 34.89 36.72  48.62 31.76 57.87  52.21 

Ge  25.88 25.57  34.91 20.80  28.80 31.05 22.43 24.12  61.43 64.30 48.02  40.98 

Rb  0.54 3.50  19.10 1.05  0.35 0.57 0.29 0.03  0.95 1.14 1.10  0.26 

Sr  23.53 27.83  0.54 145.36  2.33 2.54 1.48 1.72  1.40 0.29 0.80  1.63 

Y  0.19 0.31  21.44 0.60  3.95 4.08 1.09 1.43  1.80 2.68 2.33  2.33 

Zr  0.24 0.27  1.50 0.94  5.78 3.96 2.17 4.59  5.22 6.74 9.71  3.16 

Nb  19.99 14.72  14.19 1.39  3.69 2.10 2.71 2.14  3.78 8.57 3.24  0.54 

(To be continued on the next page) 
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Appendix 8-8. (Continued) 

Skarn  Magnesian skarn  Calcic skarn 

Generation    First generation 

Sample No.  ZK803-15  ZK803-16  ZK7'02-1  ZK9'02-3  ZK9'02-9-1 

Type        Core Core Rim Rim      Core 

Mo  0.74 0.67  0.84 0.17  17.03 33.96 4.50 3.13  1.08 1.06 4.19  79.44 

Sn  446.29 553.60  1179.39 742.80  491.85 496.95 133.28 206.78  1115.17 2385.19 825.67  2294.44 

Sb  4.64 4.64  0.10 10.51  8.58 0.88 0.02 0.23  0.78 0.10 0.15  0.01 

Cs  0.16 1.41  0.36 0.29  0.07 0.10 0.05 0.00  0.14 0.19 0.34  0.04 

Ba  0.11 0.43  7.88 0.89  0.08 0.05 0.00 0.01  0.07 0.07 0.02  0.05 

Hf  0.04 0.03  0.17 0.02  0.21 0.09 0.05 0.14  0.16 0.21 0.33  0.11 

Ta  0.07 0.04  0.08 0.02  0.05 0.05 0.01 0.02  0.04 0.11 0.05  0.04 

W  1.00 1.33  17.56 1.65  551.36 1180.95 236.02 91.14  32.30 7.09 37.77  1128.32 

Pb  5.54 5.93  0.22 47.28  8.46 2.17 0.18 0.34  5.28 2.46 1.49  0.94 

Th  0.22 0.10  0.04 2.90  0.95 0.83 0.35 0.39  0.10 0.23 0.50  0.45 

U  1.29 0.77  0.08 1.54  0.39 0.27 0.32 0.13  0.18 0.34 0.32  1.59 

                  

Rare earth elements (REE)               

La  2.03 1.94  0.04 9.33  5.27 4.00 7.75 1.45  0.26 0.31 0.27  1.61 

Ce  6.84 5.89  1.73 36.75  11.53 9.12 10.33 3.77  1.21 2.41 1.48  4.54 

Pr  0.80 0.69  1.19 5.15  1.22 1.02 0.71 0.40  0.21 0.43 0.25  0.56 

Nd  2.15 1.45  12.64 16.24  4.64 4.17 2.06 1.76  1.05 1.93 1.29  2.29 

Sm  0.47 0.29  13.20 4.19  1.13 1.00 0.24 0.41  0.32 0.58 0.38  0.45 

Eu  0.02 0.02  0.01 0.02  0.24 0.26 0.08 0.07  0.12 0.17 0.06  0.14 

Gd  0.11 0.09  6.74 1.07  0.83 1.03 0.25 0.34  0.33 0.53 0.40  0.40 

Tb  0.03 0.02  1.82 0.16  0.13 0.16 0.03 0.05  0.06 0.09 0.07  0.06 

Dy  0.11 0.10  8.93 0.60  0.76 0.88 0.19 0.28  0.33 0.51 0.33  0.33 

Ho  0.01 0.01  1.10 0.05  0.15 0.16 0.03 0.06  0.07 0.11 0.09  0.07 

Er  0.04 0.03  2.72 0.07  0.42 0.36 0.11 0.15  0.18 0.25 0.25  0.19 

Tm  0.02 0.01  0.65 0.01  0.06 0.05 0.01 0.02  0.02 0.04 0.05  0.02 

Yb  0.23 0.18  5.83 0.10  0.32 0.27 0.08 0.16  0.18 0.23 0.32  0.13 

Lu  0.03 0.03  0.72 0.01  0.05 0.04 0.01 0.02  0.02 0.03 0.05  0.02 

(To be continued on the next page) 
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Appendix 8-8. (Continued) 

Skarn  Calcic skarn 

Generation  First generation  Second generation  Third generation 

Sample No.  ZK9'02-9-1  ZK9'02-3  ZK9'02-3  ZK9'02-9-1 

Type  Rim Rim              

Major elements (wt.%)              

SiO2  40.09 40.31  37.52 37.63 38.60 39.99 38.80 40.06  39.13  38.63 38.15 38.21 

CaO  34.99 35.39  34.94 35.27 34.23 34.15 32.34 32.92  33.54  33.01 34.01 34.11 

Al2O3  1.40 0.74  10.51 9.25 14.28 11.08 14.26 11.86  17.03  21.30 19.76 19.91 

FeO  21.92 22.12  14.99 16.00 11.14 12.60 11.81 12.85  8.44  4.57 6.19 5.98 

MnO  0.27 0.25  1.51 1.28 1.17 0.94 2.38 1.09  1.51  2.28 1.54 1.34 

MgO  0.30 0.20  0.05 0.04 0.11 0.65 0.03 0.74  0.04  0.03 0.04 0.04 

                 

Trace elements (ppm)              

Na  63.40 68.38  47.54 50.35 212.62 378.87 9.78 137.39  8.61  13.17 252.84 303.98 

P  25.65 29.79  24.71 17.86 20.68 21.53 25.73 16.97  15.17  27.84 26.19 39.65 

K  27.07 1216.34  32.79 35.25 173.23 359.77 1.29 122.03  2.85  0.36 224.56 953.09 

Sc  1.80 1.76  2.23 3.19 1.42 23.15 1.05 13.45  1.21  1.53 1.41 1.52 

Ti  60.27 15.47  72.58 147.68 33.35 122.21 106.87 120.81  19.28  0.00 5.57 11.87 

V  4.38 1.29  3.59 4.70 1.28 3.97 4.41 4.63  2.08  0.00 0.25 0.78 

Cr  67.71 111.52  18.03 6.45 116.29 68.87 9.01 25.63  166.29  2.90 63.93 62.38 

Co  0.20 0.17  0.19 0.18 0.16 0.24 0.23 0.35  0.18  0.29 0.24 0.31 

Ni  0.69 0.58  0.29 0.26 0.41 1.23 0.23 1.81  0.38  0.41 0.63 0.57 

Cu  0.28 0.48  0.34 0.39 1.37 2.33 0.20 0.68  0.16  0.00 1.02 1.30 

Zn  12.45 11.50  21.40 16.63 32.27 75.68 32.71 63.02  18.61  33.98 46.31 40.62 

Ga  34.93 32.14  52.21 51.78 48.92 49.62 55.88 49.82  50.53  31.90 61.73 63.31 

Ge  36.55 22.94  34.22 38.50 20.66 23.60 25.36 20.59  28.46  30.31 23.37 26.73 

Rb  0.43 11.05  0.60 0.62 2.96 7.05 0.00 2.12  0.06  0.04 3.77 7.96 

Sr  0.76 1.72  0.33 0.46 0.64 1.23 0.29 1.05  0.21  0.10 3.94 11.84 

Y  0.55 1.27  6.09 10.28 0.52 1.89 2.18 2.05  2.07  0.49 2.01 3.35 

Zr  0.72 1.60  0.89 2.17 1.00 7.52 0.81 6.89  0.33  0.01 0.09 0.13 

Nb  1.76 0.25  6.60 13.76 6.79 9.18 21.45 12.95  2.35  1.83 6.26 5.35 

(To be continued on the next page) 
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Appendix 8-8. (Continued) 

Skarn  Calcic skarn 

Generation  First generation  Second generation  Third generation 

Sample No.  ZK9'02-9-1  ZK9'02-3  ZK9'02-3  ZK9'02-9-1 

Type  Rim Rim              

Mo  28.25 10.88  1.36 1.46 37.03 1.66 1.40 1.13  2.86  1.49 1.72 2.32 

Sn  2331.71 1271.10  108.69 135.31 406.54 538.79 50.08 334.52  63.71  131.56 220.51 224.95 

Sb  0.61 0.09  0.26 0.00 1.51 0.71 0.08 0.30  0.00  0.10 0.43 1.21 

Cs  0.08 1.18  0.08 0.07 0.54 1.12 0.00 0.34  0.00  0.01 0.58 1.00 

Ba  0.10 0.08  0.04 0.78 0.14 0.11 0.03 0.07  0.00  0.02 0.13 0.45 

Hf  0.02 0.05  0.02 0.06 0.04 0.45 0.01 0.28  0.00  0.00 0.01 0.01 

Ta  0.02 0.01  0.12 0.25 0.13 0.42 0.08 0.35  0.02  0.00 0.02 0.02 

W  630.04 149.44  6.32 5.36 17.57 9.08 13.37 5.60  167.70  100.97 80.44 126.53 

Pb  1.44 1.03  7.56 0.91 45.98 12.11 0.04 7.89  0.18  0.05 2.84 3.11 

Th  0.10 0.25  0.74 1.06 0.13 0.25 0.21 0.14  0.07  0.00 0.01 0.01 

U  0.43 0.62  0.94 0.80 0.10 0.12 0.26 0.05  0.10  0.00 0.15 0.01 

                 

Rare earth elements (REE)              

La  0.87 1.06  0.43 0.52 0.16 0.25 0.12 0.09  0.05  0.00 0.52 0.02 

Ce  3.06 3.48  5.29 5.41 1.49 1.58 1.82 0.76  0.54  0.02 0.68 0.06 

Pr  0.44 0.41  1.55 1.58 0.42 0.42 0.55 0.25  0.16  0.01 0.06 0.02 

Nd  1.77 1.67  9.11 9.63 2.22 2.32 3.26 1.88  0.95  0.05 0.25 0.10 

Sm  0.27 0.33  3.75 4.90 0.53 0.98 1.35 0.99  0.52  0.08 0.15 0.15 

Eu  0.14 0.08  0.14 0.16 0.06 0.06 0.05 0.05  0.03  0.01 0.07 0.04 

Gd  0.20 0.26  2.33 3.57 0.30 0.77 0.75 0.66  0.47  0.08 0.28 0.26 

Tb  0.02 0.04  0.52 0.82 0.05 0.17 0.14 0.14  0.12  0.02 0.05 0.06 

Dy  0.11 0.23  2.57 4.57 0.31 1.07 0.77 0.82  0.62  0.09 0.32 0.50 

Ho  0.02 0.05  0.41 0.68 0.05 0.21 0.12 0.16  0.11  0.02 0.07 0.11 

Er  0.04 0.11  0.99 1.72 0.11 0.59 0.28 0.42  0.24  0.06 0.18 0.30 

Tm  0.01 0.02  0.19 0.33 0.02 0.14 0.04 0.09  0.05  0.01 0.03 0.06 

Yb  0.03 0.08  1.24 2.20 0.19 1.48 0.30 0.86  0.29  0.07 0.32 0.54 

Lu  0.01 0.01  0.16 0.27 0.04 0.26 0.04 0.13  0.04  0.01 0.04 0.09 
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Appendix 8-9. Representative EMP analyses of pyroxene in the magnesian and calcic skarns of the Weijia W deposit 

Skarn  Magnesian skarn  Calcic skarn 

Generation    Early generation  Late generation 

Sample No.  ZK7'08-10  ZK9'02-4  ZK9'02-5  ZK9'02-6  ZK9'02-7  ZK9'02-9-2 

Point No.  1 2 3 4 5 6  1 2  1 2 3  1 2 3  1 2 3  1 2 3 

SiO2 (wt.%)  53.07 53.74 53.82 53.73 53.68 53.94  51.74 52.75  53.27 52.90 52.73  48.05 47.75 48.38  46.72 48.17 47.63  48.26 48.45 48.12 

TiO2  0.05 0.00 0.00 0.00 0.05 0.01  0.00 0.02  0.00 0.00 0.00  0.00 0.01 0.00  0.07 0.01 0.00  0.00 0.00 0.00 

Al2O3  0.38 0.47 0.22 0.26 0.83 0.43  1.64 0.75  0.25 0.17 0.36  0.53 0.89 0.30  0.54 0.30 0.47  0.10 0.24 0.59 

FeO  2.01 2.67 1.82 1.01 1.46 1.16  4.73 2.24  2.99 3.61 6.17  25.89 26.62 26.69  27.80 26.68 27.34  25.66 24.22 23.68 

MnO  0.31 0.39 0.15 0.15 0.09 0.23  0.31 0.26  0.28 0.32 0.65  2.84 0.88 1.29  1.60 1.38 1.23  1.59 1.15 1.31 

MgO  17.13 17.23 17.66 17.97 18.38 18.77  15.84 17.07  16.50 16.25 14.65  0.01 0.23 0.51  0.09 0.26 0.56  1.23 2.05 3.09 

CaO  25.95 25.75 26.02 25.73 25.58 25.69  25.33 25.52  25.95 25.82 25.17  22.32 22.51 22.49  22.28 22.76 22.27  22.38 22.86 23.23 

Na2O  0.09 0.09 0.05 0.00 0.02 0.00  0.02 0.04  0.01 0.01 0.02  0.06 0.32 0.16  0.27 0.22 0.29  0.07 0.16 0.15 

K2O  0.00 0.02 0.05 0.02 0.01 0.00  0.00 0.00  0.00 0.00 0.00  0.10 0.00 0.02  0.00 0.03 0.00  0.00 0.05 0.00 

Total  98.99 100.35 99.78 98.88 100.10 100.22  99.61 98.63  99.24 99.08 99.75  99.80 99.20 99.84  99.37 99.81 99.79  99.28 99.18 100.16 

                           

Cations based on 6 oxygen                        

T_Si  1.952 1.950 1.961 1.969 1.944 1.952  1.904 1.945  1.960 1.954 1.958  1.984 1.971 1.988  1.936 1.981 1.957  1.987 1.980 1.934 

T_Al  0.017 0.020 0.009 0.011 0.035 0.018  0.071 0.033  0.011 0.007 0.016  0.016 0.029 0.012  0.026 0.015 0.023  0.005 0.012 0.028 

T_Fe3+a  0.031 0.030 0.030 0.019 0.020 0.030  0.024 0.022  0.029 0.039 0.026  0.000 0.000 0.000  0.038 0.004 0.020  0.008 0.008 0.038 

ΣT  2.000 2.000 2.000 2.000 2.000 2.000  2.000 2.000  2.000 2.000 2.000  2.000 2.000 2.000  2.000 2.000 2.000  2.000 2.000 2.000 

B_Al  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000 0.000 0.000  0.009 0.014 0.003  0.000 0.000 0.000  0.000 0.000 0.000 

B_Ti  0.001 0.000 0.000 0.000 0.001 0.000  0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.002 0.000 0.000  0.000 0.000 0.000 

(To be continued on the next page) 
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Appendix 8-9. (Continued) 

Skarn  Magnesian skarn  Calcic skarn 

Generation    Early generation  Late generation 

Sample No.  ZK7'08-10  ZK9'02-4  ZK9'02-5  ZK9'02-6  ZK9'02-7  ZK9'02-9-2 

Point No.  1 2 3 4 5 6  1 2  1 2 3  1 2 3  1 2 3  1 2 3 

B_Fe3+  0.031 0.051 0.025 0.012 0.024 0.005  0.096 0.047  0.040 0.047 0.043  0.017 0.040 0.023  0.080 0.037 0.065  0.018 0.035 0.077 

B_Mg  0.939 0.932 0.959 0.982 0.975 0.994  0.869 0.938  0.905 0.895 0.811  0.000 0.014 0.031  0.006 0.016 0.034  0.075 0.125 0.185 

B_Fe2+  0.000 0.000 0.000 0.000 0.000 0.000  0.025 0.000  0.022 0.026 0.122  0.876 0.879 0.894  0.845 0.877 0.855  0.858 0.785 0.681 

B_Mn  0.010 0.012 0.004 0.005 0.000 0.000  0.010 0.008  0.009 0.010 0.020  0.097 0.031 0.045  0.056 0.048 0.043  0.049 0.040 0.044 

ΣB  0.981 0.995 0.989 0.998 1.000 1.000  1.000 0.994  0.976 0.977 0.997  1.000 0.979 0.996  0.990 0.978 0.997  1.000 0.984 0.988 

A_Mg  0.000 0.000 0.000 0.000 0.018 0.018  0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 

A_Fe2+  0.000 0.000 0.000 0.000 0.000 0.000  0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000  0.000 0.000 0.000 

A_Mn  0.000 0.000 0.000 0.000 0.003 0.007  0.000 0.000  0.000 0.000 0.000  0.002 0.000 0.000  0.000 0.000 0.000  0.007 0.000 0.000 

A_Ca  1.023 1.001 1.015 1.011 0.993 0.996  0.999 1.008  1.023 1.022 1.002  0.987 0.996 0.990  0.989 1.003 0.981  0.988 1.001 1.000 

A_Na  0.007 0.007 0.004 0.000 0.001 0.000  0.002 0.003  0.001 0.001 0.002  0.005 0.026 0.013  0.022 0.017 0.023  0.005 0.012 0.012 

A_K  0.000 0.001 0.002 0.001 0.000 0.000  0.000 0.000  0.000 0.000 0.000  0.005 0.000 0.001  0.000 0.001 0.000  0.000 0.003 0.000 

ΣA  1.029 1.009 1.021 1.011 1.015 1.021  1.001 1.011  1.024 1.023 1.003  1.000 1.022 1.004  1.010 1.022 1.004  1.000 1.016 1.012 

                           

End membersb (%)                         

Di  98.99 98.74 99.54 99.53 99.71 99.31  96.17 99.16  96.67 96.13 85.02  0.04 1.52 3.24  0.63 1.72 3.66  7.63 13.17 20.34 

Hd  0.00 0.00 0.00 0.00 0.00 0.00  2.76 0.00  2.40 2.79 12.84  89.80 95.16 92.12  93.18 93.18 91.75  86.75 82.65 74.78 

Jo  1.01 1.26 0.46 0.47 0.29 0.69  1.07 0.84  0.93 1.08 2.14  10.16 3.33 4.63  6.20 5.10 4.59  5.62 4.19 4.88 

Notes: General formula: ABT2O6. a Fe3+ is calculated based on the stoichiometric criteria after Droop (1987). b Mineral abbreviations: Di = diopside, Hd = hedenbergite, Jo = johannsenite. 
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Appendix 8-10. Representative EMP analyses of wollastonite in the calcic skarn of the Weijia W deposit 

Sample No.  ZK9'02-4  ZK9'02-5 

Generation  Early generation  Late generation  Early generation  Late generation 

Point No.  1 2  1 2 3 4  1 2  1 2 3 4 

SiO2 (wt.%)  48.82  48.40   49.49 50.07 49.09 50.68  48.23  48.42   49.52 49.43 49.35 49.37 

TiO2  0.00  0.00   0.00 0.03 0.00 0.02  0.01  0.03   0.09 0.00 0.00 0.00 

Al2O3  0.02  0.01   0.00 0.04 0.02 0.01  0.02  0.02   0.04 0.04 0.03 0.02 

FeOa  0.00  0.03   0.34 0.82 1.01 1.19  0.00  0.07   0.38 0.65 0.86 1.49 

MnO  0.09  0.16   0.52 0.81 0.85 1.31  0.10  0.02   0.70 0.65 0.74 0.58 

MgO  0.00  0.00   0.00 0.04 0.04 0.06  0.00  0.00   0.04 0.00 0.00 0.05 

CaO  45.99  46.66   47.59 46.56 46.18 46.06  46.89  45.53   47.08 46.48 46.47 46.11 

Na2O  0.05  0.05   0.02 0.00 0.06 0.00  0.04  0.01   0.05 0.02 0.02 0.01 

K2O  0.00  0.03   0.00 0.00 0.00 0.01  0.00  0.00   0.00 0.02 0.00 0.00 

Total  94.98  95.36   97.96 98.37 97.25 99.33  95.54  94.09   97.89 97.30 97.46 97.62 

                 

Cations based on 18 oxygen              

T_Si  5.975  5.925   5.911 5.946 5.916 5.965  5.911  5.978   5.915 5.937 5.926 5.924 

T_Al  0.003  0.002   0.000 0.006 0.003 0.001  0.002  0.003   0.005 0.006 0.004 0.003 

ΣT  5.978  5.927   5.911 5.952 5.919 5.966  5.913  5.981   5.920 5.943 5.929 5.927 

A_Ti  0.000  0.000   0.000 0.002 0.000 0.002  0.001  0.003   0.008 0.000 0.000 0.000 

A_Fe  0.000  0.003   0.033 0.082 0.101 0.117  0.000  0.007   0.038 0.065 0.086 0.150 

A_Mg  0.000  0.000   0.000 0.006 0.006 0.010  0.000  0.000   0.008 0.000 0.001 0.008 

A_Mn  0.010  0.017   0.052 0.082 0.087 0.130  0.010  0.002   0.071 0.066 0.075 0.059 

A_Ca  6.031  6.119   6.090 5.924 5.962 5.808  6.158  6.024   6.025 5.981 5.978 5.929 

A_Na  0.012  0.013   0.005 0.000 0.015 0.000  0.009  0.002   0.010 0.005 0.006 0.003 

A_K  0.000  0.005   0.000 0.000 0.000 0.002  0.000  0.000   0.000 0.004 0.000 0.000 

ΣA  6.043  6.137   6.095 5.924 5.977 5.810  6.167  6.026   6.035 5.990 5.984 5.932 

Notes: General formula: ATO3. a All Fe as Fe2+. 
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Appendix 8-11. Representative EMP analyses of vesuvianite in the calcic skarn of the Weijia W deposit 

Sample No. ZK9'02-5 

Point No. 1 2 3 4 5 6 7 8 9 10 11 12 

SiO2 (wt.%) 35.66 34.73 34.50 34.60 35.36 34.71 35.30 35.18 35.67 35.96 35.14 36.55 

TiO2 0.01 0.03 0.00 0.03 0.00 0.00 0.00 0.02 0.03 0.14 0.06 0.00 

Al2O3 14.59 16.91 16.66 15.92 16.08 17.07 16.48 16.13 15.20 14.98 16.36 16.05 

FeOa 5.44 3.92 3.96 5.09 4.25 3.09 4.81 5.94 4.99 6.09 6.36 6.72 

MnO 0.22 0.07 0.32 0.38 0.23 0.37 0.26 0.49 0.13 0.42 0.35 0.34 

MgO 2.57 2.12 1.71 1.71 2.37 1.78 1.88 1.06 2.76 2.30 1.39 1.30 

CaO 35.56 35.44 35.33 35.54 35.46 35.42 35.34 35.82 35.96 36.01 35.57 35.77 

Na2O 0.02 0.04 0.01 0.02 0.01 0.04 0.03 0.08 0.01 0.01 0.07 0.01 

K2O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

F 1.04 1.37 1.86 1.97 2.58 2.77 2.92 3.04 3.43 3.62 3.84 4.03 

Cl 0.20 0.22 0.17 0.16 0.15 0.16 0.17 0.22 0.20 0.15 0.23 0.21 

Total 95.31 94.84 94.52 95.43 96.50 95.40 97.18 97.99 98.39 99.66 99.35 100.97 

             

Ions based on 73 oxygen           

T_Si 18.101  17.616  17.681  17.710  17.873  17.702  17.812  17.792  17.936  17.970  17.672  18.073  

T_Al 0.000  0.384  0.319  0.290  0.127  0.298  0.188  0.208  0.064  0.030  0.328  0.000  

ΣT 18.101  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.000  18.073  

M_Al 8.730  9.729  9.743  9.315  9.451  9.964  9.614  9.410  8.941  8.792  9.369  9.351  

M_Ti 0.004  0.011  0.000  0.011  0.000  0.000  0.000  0.009  0.011  0.052  0.022  0.000  

M_Fe 2.308  1.664  1.695  2.179  1.797  1.316  2.031  2.512  2.097  2.545  2.673  2.777  

M_Mg 1.945  1.602  1.309  1.306  1.789  1.353  1.413  0.800  2.066  1.711  1.044  0.955  

M_Mn 0.094  0.031  0.139  0.164  0.097  0.158  0.111  0.208  0.053  0.176  0.149  0.141  

ΣM 13.081  13.037  12.886  12.975  13.134  12.791  13.169  12.938  13.168  13.276  13.256  13.224  

I_Ca 19.339  19.261  19.397  19.491  19.200  19.354  19.105  19.412  19.372  19.285  19.167  18.948  

I_Na 0.018  0.036  0.009  0.021  0.009  0.041  0.025  0.079  0.013  0.012  0.067  0.012  

I_K 0.000  0.000  0.000  0.000  0.000  0.003  0.000  0.000  0.008  0.000  0.000  0.000  

ΣI 19.357  19.297  19.406  19.511  19.209  19.397  19.130  19.492  19.392  19.297  19.234  18.961  

OHb 8.159 7.611 6.834 6.664 5.744 5.395 5.195 4.945 4.366 4.161 3.695 3.521 

F 1.669 2.203 3.020 3.195 4.127 4.467 4.663 4.864 5.460 5.716 6.111 6.304 

Cl 0.172 0.186 0.147 0.141 0.129 0.138 0.142 0.190 0.174 0.124 0.194 0.175 

Notes: General formula: I19M13T18O68(OH, F, Cl)10. a All Fe as Fe2+. b The estimation of OH is based on OH + F + Cl = 10. 
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Appendix 8-12. Representative LA-ICP-MS analyses of scheelite from the Weijia W deposit 

Occurrence  
Scheelite in the 

stockwork quartz veinlets 
 Scheelite in the magnesian skarn 

Generation      Early generation  Late generation 

Sample No.  WJ35 WJ35 WJ35  ZK801-27 ZK801-33 ZK801-41 ZK802-15 ZK802-17 ZK803-2  ZK801-39 ZK801-40 ZK802-9 

Major elements (wt.%)            

WO3  70.01 79.72 80.91  79.27 78.67 78.34 74.47 62.96 77.17  80.21 75.21 78.75 

CaO  27.62 16.84 16.28  20.19 20.50 20.45 20.98 22.23 18.00  18.87 21.88 20.38 

MoO3  0.02 0.03 0.09  0.01 0.50 0.86 4.25 14.39 0.47  0.64 1.49 0.00 

                

Trace elements (ppm)            

Na  120.47 124.56 213.01  116.49 29.49 31.89 6.11 20.63 42.60  16.96 52.37 7.71 

Mg  105.21 73.44 201.77  285.76 366.90 265.29 33.00 165.51 5027.73  80.58 2798.11 1224.54 

Al  804.14 1220.50 741.54  12.20 1.49 1.80 0.00 398.91 1086.17  0.28 396.91 462.45 

Si  3562.27 5424.47 2231.54  688.08 679.72 957.68 927.13 723.19 6317.25  1071.16 3462.98 2105.52 

P  12.89 19.62 22.44  38.39 42.13 34.41 24.40 35.71 9.16  9.47 17.74 35.11 

K  62.50 454.14 223.19  2.18 1.98 9.62 0.00 0.49 107.42  5.77 97.37 74.97 

Sc  20.59 133.34 36.72  0.27 0.55 0.22 0.00 0.12 176.04  0.01 0.03 0.04 

Ti  56.39 96.37 82.76  0.00 0.00 0.00 2.08 0.30 4.65  0.49 1.43 0.00 

V  0.08 0.28 0.30  0.13 0.00 0.32 0.00 0.07 0.06  0.01 0.01 0.09 

Cr  13.24 14.16 2.14  0.90 0.00 0.00 0.00 3.61 3.61  0.00 0.50 0.00 

Mn  996.97 1936.14 1976.93  43.62 241.25 96.82 32.40 12.50 3743.52  5.16 84.08 4.23 

Fe  4182.01 7348.49 9663.02  17.37 161.14 17.47 0.00 110.13 8829.23  153.26 576.20 370.15 

Co  3.53 0.11 0.09  0.03 0.00 0.15 0.00 0.00 0.07  0.05 0.09 0.00 

Ni  0.62 0.10 0.12  1.68 0.00 0.00 0.53 0.00 0.13  0.14 0.17 1.08 

Cu  1.03 7.16 0.43  0.68 0.00 0.00 0.17 0.11 0.30  0.24 1.32 0.51 

Zn  12.26 16.94 18.72  0.00 0.00 0.76 0.96 542.47 33.50  6.81 7.47 0.87 

Ga  5.00 6.47 6.57  1.11 0.82 0.59 0.18 0.53 1.15  0.03 0.58 0.39 

Ge  5.14 2.60 1.22  0.01 0.54 1.46 1.80 0.10 1.80  0.17 0.24 0.00 

Rb  1.02 6.05 3.20  0.00 0.00 0.10 0.15 0.00 3.83  0.09 0.48 3.10 

Sr  21.98 31.46 40.23  49.77 16.64 59.56 35.81 42.07 28.23  22.65 28.02 420.77 

Y  1414.39 1221.18 774.84  824.54 12.76 4.01 117.44 47.52 313.78  1.53 1.84 1.34 

(To be continued on the next page) 
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Appendix 8-12. (Continued) 

Occurrence  
Scheelite in the 

stockwork quartz veinlets 
 Scheelite in the magnesian skarn 

Generation      Early generation  Late generation 

Sample No.  WJ35 WJ35 WJ35  ZK801-27 ZK801-33 ZK801-41 ZK802-15 ZK802-17 ZK803-2  ZK801-39 ZK801-40 ZK802-9 

Zr  8.97 12.07 4.80  6.23 5.17 7.30 5.61 4.94 35.16  0.02 0.02 6.63 

Nb  1212.42 1535.87 584.69  148.32 43.36 97.70 98.62 94.54 1104.77  2.71 40.52 0.90 

Sn  0.90 4.91 1.00  0.00 0.64 0.33 0.86 0.13 18.12  4.68 2.56 1.06 

Sb  15.37 8.55 2.27  0.16 0.08 0.00 0.29 0.24 0.68  0.05 0.07 0.25 

Cs  0.15 0.45 0.06  0.00 0.09 0.10 0.00 0.00 1.33  0.01 0.09 0.12 

Ba  0.46 0.25 0.10  0.00 0.14 0.25 0.00 0.00 1.94  0.14 1.33 1.01 

Hf  0.37 0.66 0.30  0.00 0.00 0.00 0.15 0.04 2.32  0.00 0.00 0.00 

Ta  32.60 42.42 21.98  1.72 0.29 0.03 0.14 0.19 2.73  0.06 0.05 0.00 

Pb  17.62 13.14 13.92  10.67 12.39 12.74 7.15 4.14 19.58  21.52 6.27 0.15 

Th  36.95 34.03 21.92  8.84 3.05 2.21 0.10 0.65 9.24  0.63 4.29 0.04 

U  703.35 108.24 25.38  12.37 2.58 9.00 0.25 0.83 47.44  2.11 34.51 0.65 

                

Rare earth elements (REE)            

La  120.52 180.44 259.92  156.79 50.02 60.81 14.70 45.26 9.30  2.70 37.45 1.08 

Ce  312.40 422.20 542.81  388.15 180.71 185.56 78.63 145.05 35.26  3.53 41.04 3.52 

Pr  46.12 59.09 71.05  48.00 24.03 21.50 16.19 18.74 7.63  0.29 1.70 0.70 

Nd  232.62 300.18 320.31  189.07 74.09 61.27 89.75 58.44 46.77  0.82 2.70 2.84 

Sm  142.22 141.86 126.08  84.79 22.08 17.08 57.17 20.52 39.04  0.15 0.37 0.81 

Eu  0.74 0.61 0.72  0.29 0.00 0.37 0.16 0.29 0.15  0.18 0.19 0.08 

Gd  254.97 225.84 170.56  90.70 8.90 4.62 48.51 13.44 42.13  0.12 0.35 0.79 

Tb  57.21 51.37 35.97  18.72 2.07 1.38 11.23 3.20 11.84  0.02 0.05 0.20 

Dy  367.79 331.12 232.50  115.20 10.66 6.30 63.79 20.13 73.79  0.18 0.30 0.76 

Ho  81.51 74.49 53.06  22.67 1.30 0.66 8.16 2.86 13.86  0.04 0.07 0.19 

Er  202.80 194.17 140.08  72.28 3.40 1.42 19.82 7.65 39.84  0.10 0.15 0.35 

Tm  28.75 30.76 22.16  13.98 0.70 0.31 3.01 1.45 9.23  0.01 0.02 0.16 

Yb  178.35 201.06 140.40  121.59 6.26 2.66 16.97 10.61 84.01  0.08 0.20 0.64 

Lu  22.79 28.30 20.35  18.40 0.69 0.33 1.83 1.02 12.29  0.02 0.04 0.10 

(To be continued on the next page) 
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Appendix 8-12. (Continued) 

Occurrence  Scheelite in the magnesian skarn  Scheelite in the calcic skarn 

Generation  Late generation  Early generation  Late generation 

Sample No.  ZK803-14 ZK803-14 ZK803-14  ZK7'04-2 ZK9'02-3 ZK9'02-3 ZK9'02-9-2 ZK9'02-10 ZK9'02-10  ZK9'02-7 ZK9'02-7 ZK9'02-7 

Major elements (wt.%)            

WO3  75.36 75.99 77.78  75.74 77.18 75.37 78.54 76.15 76.38  61.32 60.92 66.49 

CaO  19.77 21.75 19.72  19.93 20.23 20.10 19.32 20.06 20.22  22.09 21.35 23.14 

MoO3  4.15 1.88 2.12  2.54 2.01 4.15 1.23 3.04 2.70  15.14 17.43 9.92 

                

Trace elements (ppm)            

Na  10.01 13.06 4.79  246.11 90.21 20.16 124.70 52.82 58.89  15.22 9.02 9.04 

Mg  664.29 175.33 68.55  121.11 71.46 20.73 95.40 11.92 86.54  6.88 3.00 13.07 

Al  302.84 3.44 9.40  469.14 0.48 0.20 227.88 101.52 191.81  2.62 3.26 0.98 

Si  1948.26 1298.26 1532.69  1916.45 1444.70 1238.32 1781.92 1325.96 1322.85  6321.01 960.28 1622.53 

P  189.25 12.51 9.80  15.56 9.27 7.95 10.46 13.08 6.31  11.77 17.31 16.03 

K  296.76 0.97 7.29  162.74 13.91 2.59 251.91 85.39 8.96  8.74 6.43 4.57 

Sc  0.03 0.06 0.00  0.77 0.04 0.03 0.08 0.04 0.03  0.10 0.01 0.04 

Ti  1.87 1.25 1.01  18.11 1.64 1.81 1.29 7.16 9.89  7.07 8.50 4.87 

V  0.02 0.01 0.00  0.05 0.20 0.00 0.10 0.73 0.58  0.01 0.00 0.00 

Cr  11.87 2.80 0.26  84.80 0.66 5.20 48.48 4.39 208.88  44.48 3.75 2.95 

Mn  42.35 105.94 25.38  53.76 20.05 15.23 45.49 19.86 27.02  114.88 11.90 42.41 

Fe  293.71 189.53 159.62  335.08 137.89 134.95 167.70 1568.35 1260.58  331.18 235.82 340.23 

Co  0.06 0.04 0.05  1.25 0.05 0.03 0.05 0.07 0.06  0.05 0.07 0.08 

Ni  0.02 0.05 0.06  0.48 0.09 0.04 0.04 0.12 0.16  0.22 0.15 0.17 

Cu  0.08 0.06 0.05  2.80 0.12 0.05 0.09 0.60 0.17  0.18 0.22 0.04 

Zn  17.77 0.57 0.55  0.44 0.88 0.08 0.18 2.39 6.12  1.04 0.92 0.44 

Ga  0.11 0.51 0.10  16.65 4.56 1.60 7.61 3.78 3.41  0.26 0.12 0.55 

Ge  0.00 0.00 0.00  4.59 0.68 0.17 1.30 0.49 0.47  0.01 0.00 0.07 

Rb  12.32 0.00 0.27  2.39 0.22 0.03 1.73 0.62 0.19  0.18 0.17 0.11 

Sr  52.21 33.91 30.63  61.83 55.40 66.61 31.77 38.96 52.30  66.53 66.48 72.75 

Y  0.13 0.54 0.25  961.20 33.54 11.54 155.73 134.86 41.06  0.17 0.18 0.59 

(To be continued on the next page) 
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Appendix 8-12. (Continued) 

Occurrence  Scheelite in the magnesian skarn  Scheelite in the calcic skarn 

Generation  Late generation  Early generation  Late generation 

Sample No.  ZK803-14 ZK803-14 ZK803-14  ZK7'04-2 ZK9'02-3 ZK9'02-3 ZK9'02-9-2 ZK9'02-10 ZK9'02-10  ZK9'02-7 ZK9'02-7 ZK9'02-7 

Zr  0.02 0.01 0.01  1.36 0.01 0.02 0.02 0.25 0.18  0.08 0.01 0.03 

Nb  3.40 2.81 2.82  2480.59 420.02 180.68 721.06 477.04 308.49  24.06 16.29 77.11 

Sn  0.79 0.63 0.54  1.87 0.21 0.28 0.34 12.03 5.42  0.47 0.43 0.38 

Sb  0.00 0.03 0.03  45.96 0.01 0.07 0.07 6.15 0.81  0.13 0.90 0.18 

Cs  0.43 0.00 0.01  0.11 0.09 0.00 0.02 0.11 0.05  0.06 0.04 0.03 

Ba  0.35 0.16 0.18  0.31 0.39 0.32 0.23 0.78 0.37  1.32 1.33 0.74 

Hf  0.00 0.00 0.00  0.11 0.00 0.00 0.02 0.01 0.01  0.01 0.00 0.00 

Ta  0.06 0.06 0.05  101.96 4.53 1.09 13.17 1.41 0.94  0.06 0.04 0.14 

Pb  14.53 10.94 9.69  335.08 5.23 3.07 7.55 8.02 3.43  39.29 232.47 12.71 

Th  1.25 6.61 0.19  35.05 9.26 6.62 5.22 4.34 1.59  0.19 0.08 1.23 

U  5.38 24.98 1.20  67.09 6.89 5.87 3.88 3.73 1.46  0.22 0.13 3.17 

                

Rare earth elements (REE)            

La  1.53 15.83 4.76  420.74 180.12 97.17 207.46 177.43 148.54  19.70 11.14 43.84 

Ce  4.59 72.12 18.16  1380.33 514.90 204.95 704.46 394.84 357.29  30.17 16.68 73.72 

Pr  0.36 7.19 1.88  220.59 73.77 21.79 116.89 49.18 43.48  2.35 1.29 5.82 

Nd  0.58 10.56 3.21  1108.41 273.61 63.59 512.06 187.21 158.33  5.80 3.55 13.24 

Sm  0.07 1.34 0.46  444.27 92.88 13.25 199.95 48.63 34.05  0.58 0.33 1.38 

Eu  0.02 0.12 0.07  3.45 1.49 1.03 1.59 2.02 2.12  0.14 0.11 0.34 

Gd  0.03 0.30 0.09  494.53 59.06 8.24 142.81 44.50 25.17  0.27 0.20 0.71 

Tb  0.00 0.04 0.02  91.86 12.76 1.70 30.76 8.55 4.35  0.02 0.02 0.09 

Dy  0.03 0.18 0.08  489.41 61.75 8.46 156.10 45.42 21.63  0.08 0.08 0.34 

Ho  0.00 0.03 0.01  87.30 8.87 1.36 23.51 7.89 3.61  0.01 0.01 0.05 

Er  0.01 0.06 0.04  180.31 17.79 2.92 48.22 14.62 6.54  0.02 0.02 0.12 

Tm  0.00 0.01 0.01  21.33 2.63 0.40 6.75 1.46 0.72  0.00 0.00 0.01 

Yb  0.01 0.15 0.07  104.41 13.05 1.72 34.82 4.90 2.75  0.01 0.01 0.08 

Lu  0.00 0.02 0.01  11.74 1.28 0.13 3.63 0.34 0.24  0.00 0.00 0.00 
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The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granitoids in the Nanling Range were mainly 
derived from non-simultaneous partial melting of the mafic amphibolitic rocks in the lower crust and the 
muscovite-rich metasedimentary rocks in the upper-middle crust, respectively. The fertile sources in the 
Nanling Range are beneficial to the formation of Cu-Pb-Zn and W deposits during Middle-Late Jurassic. 
The lower-crust origin of the Cu-Pb-Zn-bearing granodiorites is further demonstrated by the dioritic 
microgranular enclaves in the Tongshanling granodiorite which are reworked restite enclaves derived 
from partial melting of the mafic amphibolitic source. The Cu and Zn associated with these intrusions 
were most probably released from the mafic amphibolitic lower crust by partial melting, whereas, Pb was 
extracted from the upper crust by ascending granodioritic magmas. The emplacement of these ore-
bearing granitoid magmas may have a structural connection with the subsequent polymetallic 
mineralization in some way. For instance, the exoskarn and sulfide-quartz veins in the Tongshanling Cu-
Pb-Zn deposit are evidently controlled by magma emplacement-induced wall-rock deformation. The 
different mineralization types and ore deposits in the Tongshanling Cu-Mo-Pb-Zn-Ag ore district are 
genetically linked together in the same skarn system as the productions of evolution and zonation. The 
Weijia granite was crystallized from a F-rich and water-saturated magma. The key factors controlling the 
occurrence of unusual magnesian skarn W mineralization during Late Jurassic in the Nanling Range 
mainly include a W enriched metasedimentary source, a fluorine-rich magma, a strong crystal 
fractionation, and a fluorine-rich hydrosaline melt. 
 
Keywords: Cu-Pb-Zn-bearing granitoids; W-bearing granites; Microgranular enclaves; Skarn; Structural 
control; Petrogenesis; Metallogenesis; Middle-Late Jurassic; Nanling Range 

Les granitoïdes associés aux skarn à Cu-Pb-Zn et au W, dérivent, respectivement, de la fusion partielle 
de roches mafiques à amphiboles dans la croute inférieure et de roches métas-édimentaires riches en 
muscovite dans la croute moyenne-supérieure. Ces sources fertiles mobilisées pour la formation de ces 
plutons a permis la formation de gisements à Cu-Pb-Zn, et W au cours du Jurassique moyen. L’origine 
dans la croûte moyenne de la granodiorite de Tongshanling, associée aux minéralisations à Cu-Pb-Zn, a 
été montrée par l’étude des enclaves microgranulaires dioritiques qui sont des restites remaniées issues 
de la fusion partielle des amphibolites de la croûte inférieure. Le Cu et le Zn associées à ces plutons sont 
probablement issus de la croûte inférieure et ces métaux ont probablement étés remobilisés au cours de 
la fusion partielle. Le Pb issue de la croute supérieur a été collecté lors de l’ascension du magma qui a 
donné la granodiorite. Lors de leur mise en place ces granitoïdes ont exprimé leur potentiel 
minéralisateur. L’étude structural montre que la géométrie des corps minéralisés et en lien avec la 
déformation induite par la mise en place des plutons. Les différentes expressions de la minéralisation 
dans le district à Cu-Mo-Pb-Zn-Ag de Tongshanling sont génétiquement lié à l’hydrothermalisme et à son 
évolution lors du développement du skarn. Le granite de Weijia a cristallisé à partir d’un magma saturé 
en eau et riche en Fluor. Les facteurs qui ont contrôlé la formation de ce skarn magnésien riche en W, 
suppose l’existence d’une source enrichie en W dans les sources métasédimentaires et d’un magma 
riche en Fluor très différentia par cristallisation fractionnée. 
 
Mots clés: Granitoïdes; Skarns; Enclave; Contrôle structuraux; Petrogènèse; Métallognénèse; Jurassique 
Moyen; Tongshanling; Weijia; Nanling 
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