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Chapter I

Introduction

Aeroelasticity studies the interaction between aerodynamic and elastic forces on de-
formable bodies subject to a flow [15, 42]. The whole domain is often described by
“Collar’s triangle” [42] which symbolises the different interplays between the different
forces at work.

Aero-

elasticity

Elasticity Inertia

Aero-

dynamics

Fig. I.1 Collar’s triangle

Collar’s triangle also includes the inertial forces and consequently includes dynamic aeroe-
lasticity [42]. The edges of the triangle stand for different subproblems that are linked to
the phenomena that will be studied in this work. The lower edge represents free vibra-
tion problems, a domain which studies the interactions of elasticity and inertia without
external influences. On the right edge, mostly flight dynamic phenomena like body free-
dom flutter [72] can be found [42]. The left edge represents static aeroelasticity, which
is mostly about in-flight performance in deformed state as well as control reversal and
aeroelastic divergence [55, 146]. The term “aeroelasticity” in the center of the triangle
should be called “dynamic aeroelasticity”, as it involves inertial forces inherent to move-
ment. In this category, phenomena like buffeting, flutter and limit cycle oscillations are
to be found. The present work will mostly study the flutter phenomenon, which is placed
in the center of Collar’s triangle, although in the given setting, divergence may occur.
Although aeroelasticity is also of concern for other domains such as civil engineering and
turbomachinery, this work will make reference to problems in aeronautical applications,
where it remains a challenge today.

1



2 Chapter I. Introduction

I.1 Motivation: Flutter problems in aeronautics

Despite being studied for a long time, aeroelastic phenomena still represent a major chal-
lenge in aeronautic construction [146]. The first systematic study of flutter was performed
on the Handley-Page O 400 bomber from World War I, which suffered from tail flutter
[146]. Garrick and Reed [44] provide an excellent overview over aeroelastic problems en-
countered in early aviation. A theoretical approach to the flutter problem was developed
by Theodorsen [124]. However, the possibility of study did not prevent further flutter
problems to occur. Through to the 1950s, multiple airplane prototypes encountered flut-
ter problems [44]. One of the most spectacular cases is the case of the Lockheed Electra,
which suffered two losses of production aircraft due to a phenomenon called “whirl flut-
ter”. In the accidents, the aeroelastic modes of the wing became coupled with the modes
of the propeller discs due to defects in the mounting of the engine nacelles [18, 19]. Also
modern aircraft continue to suffer from aeroelastic problems. One of the most severe,
well-known and well-studied examples is the General Dynamics F-16, where the entire
wing structure is subject to limit cycle oscillations (LCO) in certain flight regimes due to
store configurations (e. g. [46]). In additon to that, edge cases such as stabiliser flutter
[73], or fluttering winglets [103] are common. With increased interest in high-flying un-
manned aerial vehicles, which often have wings of an extremely high aspect ratio, however,
aeroelasticity on wings becomes a new concern. Recent reports of drone crashes suggest
that ultimate failure was due to aeroelastic effects [38, 39].

Due to the high failure potential when aeroelastic phenomena occur, there is a strong
motivation to determine their nature and their onset. Flutter testing is an important part
of aircraft qualification today (e. g. [41]). The onset of aeroelastic phenomena, however,
is highly dependent on the underlying parameters and thus very sensitive to uncertainties
[13]. Aeronautical structures made of composite materials appearing more and more
frequently, the complexity of composite laminate materials and the numerous sources
of uncertainties connected to their manufacturing makes the prediction of aeroelastic
instabilities even more challenging. At the same time, there is a variety of models for
aeroelastic simulation in use, which may require separate parametrisation. The modelling
differences also yield deviations in the result for the flutter onset velocity. This is why
this work aims at the development of an approach to quantify uncertainties from different
sources in order to give robust predictions of the linear flutter velocity.

I.2 Overview of aeroelastic prediction methods

As aeroelastic phenomena can lead to failure of aircraft either through fatigue or imme-
diate runaway of the coupled forces, efforts to calculate them have been important for
a long time. Especially the aerodynamic modelling involved, which has to account for
the unsteady effects, still represents a great challenge. Early attempts for unsteady aero-
dynamic modelling to predict the dynamic lift of airfoils based on potential-flow theory
are due to Wagner [139], whose work later led to the Theodorsen model [124] which was
specifically designed for the modelling of flutter.



I.2 Overview of aeroelastic prediction methods 3

With the introduction of computers in aerodynamic calculus, it was possible to deploy
discrete models. A method notably used in aeroelasticity is the Doublet Lattice Method
(DLM) introduced by Albano and Rodden [2]. Later, vortex-sheet methods were also
generalised to unsteady problems, where Murua et al. [92] cites [11, 108] as the beginning,
and later articles where similar methods finally appear as Unsteady Vortex Lattice Method
(UVLM) [79, 71]. As available computational power increased, the complexity of the
flows solved also got more important. In the end of the 1980s, aeroelastic solutions
using the transonic small disturbance equation appeared [12]. In the early 1990s the first
approaches coupling computational fluid dynamics methods, such as finite volume method
computation of Euler and Navier-Stokes flows, and structural models employing the finite
element method followed. Schuster et al. [115] used a Reynolds-Averaged Navier Stokes
(RANS) aerodynamic code to evaluate the static aeroelastic response of fighter aircraft
in the transonic flight regime, while [52] used a finite-difference Euler solver coupled
to a finite element model to study the dynamic response of a cantilevered rectangular
wing (both found in [67]), [111]. The development went on to more and more complex
predictions, so that today, transonic wing LCOs can be simulated using a full FEM wing
model and Unsteady RANS (URANS) (e.g. [122]).

While on the high end, phenomena are treated that need investigation using Computa-
tional Structural Dynamics (CSD) and Computational Fluid Dynamics (CFD) methods,
potential flow modeling is still in use in the domain of aeroelasticity. The DLM and the
UVLM methods are often used in design and optimisation (e.g. [120, 17]) although more
complex models also come into use for the domain (e.g. [65]). Approximated versions
of Theodorsen’s theory are used again since [68] showed their usability in control theory.
More accurate approximations have been developed until recently, as for example by [20]
who provided state-space models for aeroelasticity by using a harmonic balance develop-
ment. However, due to ever-increasing computational power, the DLM has been used in
flutter control recently by [72], who use it for body freedom flutter prediction and control
via control surfaces.

The structural models also evolved at the same time. Early aeroelastic studies were limited
to wing section models with a limited number of degrees of freedom, as for example in
Theodorsen’s report [124], which describes calculations for wing section reduced to a
flat plate with pitch and plunge motion freedoms, and with a flap that has a rotational
degree of freedom. This quickly evolved to wings modelled as a beam [51], which is
especially valid for classical wing designs including a spar. Also other structural models
like panels (e.g. [32, 3]) and plates (e.g. [31]) which only require simple structural models,
were used in aeroelastic computations. Today, mostly finite element models are used to
calculate the structural dynamic properties of wings. As it is applicable to a variety of
geometries, the finite element method permitted to calculate the dynamic properties of
more complex wing configurations. Common model types based on finite elements include
for example plates, as used by [5] for demonstration of aeroelastic tailoring of composites.
Finite element beam models enjoy popularity for more complex configurations in order
to simulate partial or complete airframes. For example, Nayfeh et al. [95] use them to
simulate store configurations under a fighter wing. Kotikalpudi et al. [72] employs a beam
model to simulate a complete flying wing configuration for a body freedom flutter study.
To obtain more realistic models, wing box models find entry into the optimisation domain,
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such as in [45], where the sensibility of the aeroelastic behaviour of a wing structure to
damage is assessed in a stochastic framework. Shell models are used as an alternative,
such as in [122] where they are used to calculate transonic limit cycle oscillations of a
high-aspect-ratio wing. In static aeroelasticity, more detailed models up to full, realistic
wing structures come into use. A recent example is the study of Yi et al. [151], who
optimize a wing structure of a UAV including ribs and spars in an aeroelastic framework.

The increasing use of composite laminated materials in aircraft construction has become
another special challenge for the simulation of aeronautical structures. On one hand,
these materials have very interesting properties, such as their high strength-to-weight and
stiffness-to-weight ratios, but, on the other hand, they are anisotropic. This directional
behaviour complicates the design process, but can also be used to control the stiffness
properties of the wing to prevent flutter, a method referred to as aeroelastic tailoring.
Early studies on the free vibration behaviour [4, 99] led to investigations in aeroelasticity
[106, 57], before attempts to actively exploit these properties [142]. Especially, aeroelas-
tic tailoring enables advanced aircraft configurations like forward-swept wings. For this
particular purpose, the concept appears in a flight testing proposal by Mourey [91], be-
fore Weisshaar uses aeroelastic tailoring for prevention of divergence [142]. Consequently,
there is activity in optimisation specific to composite structures with respect to aeroelastic
behaviour (e. g. [80]). Composite materials also enable the construction of higher-span
wings, which introduces geometric nonlinearities. Afonso et al. [1] give an overview about
the broad research activity associated to this problem.

I.3 Uncertainty quantification

The complex interactions that lead to flutter are highly sensitive to uncertainties [13],
which is why there is special interest in uncertainty quantification in this area. The
recent review [13] cites a number of additional reasons why uncertainty quantification
is compelling, one of the most important being the classical 15% safety margin on the
airspeed which is required as of the date of the writing of these lines for qualification of
airframes (e. g. [41]).

In this work, uncertainties shall be categorised into two types, namely, aleatory and
epistemic uncertainties, (e. g. [59], of which the definitions are retained in the following).
Epistemic uncertainties are uncertainties that are due to a lack of knowledge. By addition
of information, they can thus be reduced. Aleatory uncertainties are due to natural
variation and, contrary to epistemic uncertainties, irreducible by addition of knowledge.
Although there is some debate if it makes sense to distinguish the two types [70], this
distinction will be adopted in the present work.

The perhaps simplest uncertainty quantification method is Monte Carlo simulation (MCS),
which consists in drawing random parameters and propagate them through a response
function, in this case the aeroelastic solver. It has become feasible with the apparition of
reasonably powerful computers and has found application in uncertainty quantification
in aeroelasticity, with one of the first examples given by Vaicaitis et al. [129] who used
MCS to model pressure fluctuations along a wing. However, Monte Carlo simulations are
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computationally costly, which prevents its use in more complex scenarios and which is
why surrogate modelling techniques have been developed.

I.3.1 Surrogate modelling

To lower the computational cost, surrogate models have been developed which approx-
imate the stochastic response in place of the original solver. Wang [141] cites several
surrogate model techniques, which will be summarised in the following.

Perhaps the oldest surrogate modelling technique is polynomial chaos, which goes back
to an article by Wiener [143]. The original approach built surrogates for responses to
Gaussian random variables by a spectral expansion using Hermite polynomials, which are
orthogonal with respect to normal distributions. The expansion can either be used non-
intrusively, using integration techniques, or be directly injected in Galerkin-method-type
or finite element solvers. It became popular for stochastic finite elements [47]. In order
to be able to use the polynomial chaos approach on non-Gaussian distributions, Xiu and
Karniadakis [147] generalised it using the Askey scheme, which gives a set of families of
probability distributions with the corresponding orthogonal polynomials. This approach
was quickly used for problems in CFD [148] and fluid-structure interactions [149, 83].

A further extension of the method to arbitrary probability measures was described by
Soize and Ghanem [118]. Again, the approach quickly found its way into applications
in fluid-structure interactions, such as in [144], where stall flutter of turbine blades was
investigated. Recently, the arbitrary polynomial chaos was demonstrated to work with
correlated variables [94]. Wan and Karniadakis [140] developed the method into a multi-
element approach, improving the performance of the method for scenarios with strong
gradients (used for example by Le Meitour et al. [75] in uncertainty quantification on
limit cycle oscillations). Blatman and Sudret [16] tried to expand the usability of the
method from small to moderate numbers of variables by using sparse grid quadrature.
Another approach is to drop variables of insignificant sensitivity, which is for example
used by Congedo et al. [26] for shape optimisation of an airfoil in nonclassical flows.

The approaches have been applied to uncertainty quantification on composite wings.
Manan and Cooper [84] used polynomial chaos to model uncertainty in the frequency
response function of a composite wing with uncertain logitudinal Young’s modulus and
shear modulus. Scarth et al. [114] quantified the uncertainty in critical flutter velocity
due to ply angle uncertainty, where the number of dimensions was reduced using lamina-
tion parameters [126] and the correlation was treated using a Rosenblatt decomposition.
To avoid a high number of parameters, the study was restricted to laminates without
membrane-bending coupling, which introduces an artificial symmetrisation of the layup.
Moreover, it assumes plies identical in base material and thickness. An alternative ap-
proach to the lamination parameters is the polar method, which was first developed by
Verchery [138] and reformulated later by Vannucci [133]. The polar method directly
works on stiffness tensors, which allows to circumvent the restriction of the lamination
parameters.

Collocation methods appeared later in the uncertainty context [60]. The most common



6 Chapter I. Introduction

form was developed by [86] for the purpose of uncertainty quantification in CFD and
demonstrated on a Riemann problem. The stochastic collocation method uses Lagrange
polynomials at defined points, the so-called collocation points, to interpolate the stochas-
tic response. Sparse grids were introduced by [150, 98]. Witteveen and Iaccarino [145]
presented a multi-element approach for stochastic collocation based on simplex elements,
already with the motivation to solve the problem of correlated variables. An alterna-
tive formulation for treating correlated variables in collocation without the need for a
multi-element approach was later developed byNavarro Jimenez et al. [93]. Edeling et al.
[36] brought sparse grids to multi-element approaches to enable the treatment of higher-
dimensional problems.

Both stochastic collocation and polynomial chaos expansions suffer from the curse of
dimensionality because of dependence on cubature. Several approaches to provide relief
from this problem. Doostan and Iaccarino [29] aim to replace the quadrature rules with
optimised versions of least-squares approximation. Another approch tries to improve
sparse-grid rules [131], from which both methods would benefit.

Other non-intrusive technologies in use for uncertainty quantification include Kriging [33],
mixed forms of polynomial methods and Kriging [25], Karhunen-Loève decompositions
[47] and different types of chaos expansions like for example Fourier chaos expansions
[87] (found in [13]) or Wiener-Haar expansions [74, 105]. A new approach aiming directly
at the curse-of-dimensionality problem are non-intrusive low-rank separation techniques
[30].

I.4 Quantification of epistemic uncertainties

Stochastic inverse problems have been solved in structural mechanics for a long time,
Bayesian updating being one of the first techniques employed (e. g. [24]). In the begin-
ning, the distributions were calculated using approximations (e.g. [8]). Full Markov-Chain
Monte Carlo techniques came up with more computational power available [10, 7]. Since,
authors have tried to reduce computational cost of bayesian methods. In order to im-
prove the efficiency of the sampling in an effort to update coefficients in the computational
model of a building Cheung and Beck [22] employed hybrid Monte Carlo. Marzouk et al.
[85] used polynomial chaos on the prior distribution in a contaminant source identification
problem. Gogu et al. [48] used fitted polynomial models in a study on elastic properties of
orthotropic plates from free vibration data. Later, Gogu et al. [50] employed a reduced-
order model for the same purpose, where interferometry data was used. Congedo et al.
[27] used polynomial chaos in a backwards uncertainty propagation for the prediction of
shockwaves. In order to adapt a polynomial chaos model to the posterior in Bayesian in-
ference, making the approximation more efficient, Birolleau et al. [14] proposedan iterative
technique.

Cheung et al. [23] applied that methodology to turbulence modelling, bringing it to the
CFD domain. Edeling et al. [34] performed Bayesian Model Averaging (BMA) [56], where
the averaging was also performed between different scenarios. In aeroelasticity, Riley [109]
finally performed BMA on a set of aeroelastic models, alongside a simpler adjustment
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factors approach, but without model updating.

From a mathematical point of view, epistemic uncertainty gets reduced by experimental
data in the Bayesian framework. However, the experiments are rarely free from uncer-
tainties of the underlying physical parameters, which are due to manufacturing errors or
measurement errors and consequently of aleatory nature. The two types of uncertainties
have thus to be treated at the same time. Jakeman et al. [61] solved the problem for
discrete aleatory uncertainty by drawing realisations of the aleatory variables and sam-
pling the Cumulative Distribution Function (CDF) of the other variables for each of the
realisations, which is essentially the same mechanism as proposed by Eldred et al. [37].
However, other authors (e. g. Oden et al. [100]) argue that in the Bayesian framework,
the two uncertainties need not to be treated differently.

I.5 Thesis layout

This work aims at quantifying several uncertainties occuring in aeroelastic problems.

In the second chapter, the different aeroelastic modelling approaches that are used in the
thesis will be presented. For simplicity and to permit Monte Carlo simulations within rea-
sonable computation time, the choice of aeroelastic models is limited to common potential
flow-based methods for incompressible flows. Energy methods will be used to provide a
common framework for Pitch and Plunge Airfoil (PAPA) and plate wings despite the
different structures.

In the third chapter, propagation of uncertainties in the composite materials and the study
of their effect on the critical flutter velocity of a straight rectangular composite wing will
be performed. A preliminary deterministic parametric study will be carried out in the
domain of orthotropic laminates. Both uncertainties in ply angles and ply thicknesses will
be applied. In order to reduce the number of uncertain parameters, like in [96], the polar
method will be used. The individual effects of ply angle and ply thickness uncertainties
on the critical flutter velocity will be examined separately, and later on the response
to the combination of the two uncertainties will be studied. Finally, the uncertainty
quantification will be accelerated by using an arbitrary polynomial chaos surrogate in
order to handle the correlation between the polar parameters serving as uncertain entry
variables. Eventual discontinuities in the random space will be treated by splitting the
domain in smooth partitions by machine learning and applying separate surrogates on
the different parts.

The fourth chapter will be dedicated to epistemic uncertainty regarding the modelling
choices. The first model studied is a quasi-steady approach by Wright and Cooper [146]
already used in the forward uncertainty quantification in chapter III. Furthermore, a
consolidated stochastic version of the approximations to Theodorsen’s model [20] will be
used in the study. Both models will be applied to a PAPA model and calibrated with the
help of the original validation data from [124]. Bayesian Model Averaging (BMA) will be
performed to compare the two models.

In the fifth chapter, the uncertainty studies laid out in the previous chapters will be
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brought together in a combined study. First, the models will be applied to a composite
plate wing and calibrated with the materials considered deterministic. Data from a flutter
experiment from Hollowell and Dugundji [58] will be used for calibration. In a second
step, the aleatory uncertainty from chapter three will be added to the problem. The
combined study will be refined by adding data from a free vibration experiment also from
[58] and the PAPA experimental data from the fourth chapter.

The last chapter will present the conclusions drawn from this work, and discuss its per-
spectives.

Finally, the appendices will give some numerical details and auxiliary studies in addition
to the main work of the thesis. Appendix A will give details on the mathematical devel-
opment of the Rayleigh-Ritz system matrices used in the aeroelastic solvers. Appendix B
will provide some validation cases and convergence studies for the aPC method used in
the third chapter. Finally, Appendix C gives details to a Bayesian calibration of material
parameters using free vibration data, which is later incorporated into a combined study
in chapter five.



Chapter II

Aeroelasticity for incompressible
flows

In this chapter, the aeroelastic models are described as they will be used later on in
this work for the uncertainty quantification studies. To be able to validate accelerated
techniques with the help of Monte Carlo simulations, the study is restricted to traditional
aeroelastic problems, that is, flutter of typical airfoil sections and cantilevered plates.

All the models in this framework are based on the Rayleigh-Ritz formalism. The equations
of motion are derived from the Lagrange equation [117]

d

dt

∂T

∂q̇
−

∂T

∂q
+

∂U

∂q
=

∂(δW )
∂ (δq)

(II.1)

where T is the kinetic energy, U is the potential energy and δW is the virtual work of the
non-conservative forces. The vector of generalised coordinates is denoted by q. While the
kinetic and potential energy are associated to the structure, the aerodynamic terms are
part of the non-conservative forces and go into the virtual work. The Lagrange equation
sets the common framework. However, the terms of the equation II.1 have to be expressed
in a different manner following the different models, which largely depend on the type of
the structure. All the aerodynamic models in this framework are based on incompressible
potential flow theory.

II.1 Pitch And Plunge Airfoil problems

The most simple example problem which permits the study of aeroelastic phenomena is an
airfoil section model with two degrees of freedom, namely pitch and plunge motion. This
is why this canonical problem is often abbreviated as Pitch And Plunge Airfoil (PAPA).
Despite its relative simplicity, the PAPA model is capable of demonstrating aeroelastic
phenomena such as divergence, limit cycle oscillations and flutter [78].

The Figure II.1 shows an example of a typical scheme of a PAPA aeroelastic model.

9
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Fig. II.1 Scheme of a typical wing section in a Pitch And Plunge Airfoil. The
two degrees of freedom are the vertical displacement of the elastic axis w and
the pitch angle α.

The kinetic energy T of this aeroelastic configuration is expressed with respect to the
center of gravity as [55]

T =
1
2

m
(

ẇ2 + 2bxαẇα̇
)

+
1
2

Iαα̇2 (II.2)

where w is the displacement of the elastic axis in z direction and α is the angular displace-
ment, which coincides with the angle of attack in the scheme of Figure II.1. Coefficient
b denotes the half chord. Coefficient xα is the adimensional distance between the centre
of gravity and the elastic axis, also called the nondimensional static imbalance, and is
positive towards the rear of the wing section. Finally, m is the mass of the wing, and Iα

is the rotational moment of inertia about the elastic axis.

The potential energy U due to the elastic forces is given by [55]

U =
1
2

kzw2 +
1
2

kαα2 (II.3)

where kz and kα denote the spring stiffnesses in the plunge and pitch degrees of freedom,
respectively.

The virtual work of the non-conservative forces contains the aerodynamic forces and the
damping effects

δW = L(−δw) + Mδα + dzẇ(−δw) + dαα̇(−δα) (II.4)

The constants dz and dα are the corresponding damping coefficients. As frequently done
in the aeroelastic analysis of PAPA models [15], the airfoil is modelled as a flat plate.
Consequently, the aerodynamic centre is always assumed to be at a quarter of the chord,
measured from the leading edge. The aerodynamic lift and moment are noted L and M .
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Injecting Equations (II.2)-(II.4) into Equation (II.1), the equation of motion is obtained

mẅ + mbxαα̈ + kzw = −L − dzẇ (II.5)

Iαα̈ + mbxαẅ + kαα = M − dαα̇ (II.6)

These equations are rendered dimensionless by dividing through mb in case of the plunge
displacement and through mb2 in the case of the equation II.6 in pitch

ẅ

b
+ xαα̈ + ω2

z

w

b
= −

L

mb
− 2ζzωz

ẇ

b
(II.7)

r2
αα̈ + xα

ẅ

b
+ r2

αω2
αα =

M

mb2
− 2ζαr2

αωαα̇ (II.8)

This removes the dimensions from the equation, so that the effects of the stiffness now ap-
pear in terms of the natural angular frequencies in pitch and plunge ωα and ωz. Moreover,

the nondimensional gyration radius rα =
√

Iα

mb2 emerges, of which the reference length
scale is the half chord b.

These equations can be written in matricial form
[

1 xα

xα r2
α

]

︸ ︷︷ ︸

Mass matrix M

[
ẅ
b

α̈

]

+

[

ω2
z 0

0 r2
αω2

α

]

︸ ︷︷ ︸

Stiffness matrix K

[
w
b

α

]

=

[

− L
mb

Mα

mb2

]

−

[

2ζzωz 0
0 2ζαr2

αωα

]

︸ ︷︷ ︸

Damping matrix D

[
ẇ
b

α̇

]

(II.9)

Note that there is not yet an explicit expression for the terms L and M of the aerodynamic
lift and moment. Despite computers being powerful enough to compute these terms using
Unsteady Reynolds-Averaged Navier-Stokes models, modelling based on potential flow
is still common and widely used in research, especially in the framework of uncertainty
quantification [13]. As breaking potential flow models down to linear systems is analytical,
this has the advantage of being very rapid. They are thus well-suited for use in applications
needing a high number of computations such as optimisation and stochastic analysis. Two
common modelling approaches based on potential flow, which will be used in this work,
are presented in the following.

II.1.1 Wright’s quasi-steady approach

The model presented in this section is taken from Wright and Cooper [146]. It is based on
an earlier model by Hancock [54], who suggests the use of unsteady derivatives to augment
steady potential flow aerodynamics. Wright and Cooper [146] simplify the model so that
it is essentially composed of a steady potential flow model, with the plunge motion taken
into account by using ẇ ≈ V sin α∗ ≈ V α∗ with α∗ an effective angle of attack [42], and
derivatives Lα̇ and Mα̇.

The equations for lift and moment, in dimensional form, are given as [146]

L = 2ρaπbV 2
(

α +
ẇ

V

)

(II.10)

M = 2ρaV 2b2
[

1
2

π

(

α +
ẇ

V

)

+ Mα̇
α̇b

2V

]

(II.11)
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where ρa is the density of the air, and V is the airspeed. Expressions (II.10) and (II.11)
are written considering that the aerodynamic centre is at a quarter of the chord.

Rewriting equations (II.10)(II.11) in matricial form and dividing by the adimensionalis-
ing parameters mb and mb2, respectively, the nondimensional equations for the lift and
moment are then

[
−L
mb
M

mb2

]

=
2
µ

V 2

b2

[
0 −1
0
(

ah + 1
2

)

] [
w
b

α

]

︸ ︷︷ ︸

Aerodynamic “stiffness” matrix Ka

+
2
µ

V

b

[
−1 − 1

π
Lα̇(

ah + 1
2

)
1

2π
Mα̇

]

︸ ︷︷ ︸

Aerodynamic damping matrix Da

[
ẇ
b

α̇

]

(II.12)

The additional 1
π

factors before the unsteady derivatives come from the efforts to render
the equations dimensionless. The mass ratio is µ = m

ρaπb2 and ah is the distance between
the centre of gravity and the midchord, which is taken positive towards the trailing edge.

In their examples as well as some publications [123, 114], Wright and Cooper [146] fix the
value of the unsteady derivatives to Lα̇ = 0 and Mα̇ = −1.2. While it is stated that Lα̇

does not have a big influence and is thus neglected, Wright and Cooper [146] argue that
the value of Mα̇ may depend on the frequency. This raises the question of how general
the value for Mα̇ used in the aforementioned publications is.

Making the common assumption that structural damping is negligible and using Equation
(II.12) for the lift and moment, the full system of equations (II.9) can now be written as

Mq̈ + Kq = Daq̇ + Kaq (II.13)

To solve the system for aeroelastic instabilities, i. e. for the critical velocity at which
divergence or flutter occurs, the p method is used [55]. It uses an approach such that

w

b
=

w

b
exp (pt) (II.14)

α = α exp (pt) (II.15)

with p = sωα and s is an artificial parameter. The approach taken here deviates from
[55] as dimensional time is used instead of the nondimensional time τ = V

b
t.

Factoring out ωα and introducing the nondimensional speed index V ∗ = V
bωα

, the aerody-
namic stiffness matrix Ka and the aerodynamic damping matrix Da from Equation (II.13)
can be rewritten as

Ka =
2ω2

α

µ
V ∗2

[
0 −1
0
(

ah + 1
2

)

]

(II.16)

Da =
2ω2

α

µ
V ∗2

[
−1 − 1

π
Lα̇(

ah + 1
2

)
1

2π
Mα̇

]

(II.17)

Moreover, inserting Equations (II.14), (II.15) in Equation (II.13), and dividing by ω2
α
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gives

s2

[

1 xα

xα r2
α

]

︸ ︷︷ ︸

M

q +

[

ω2 0
0 r2

α

]

︸ ︷︷ ︸

K∗

q =
2
µ

V ∗2

[
0 −1
0
(

ah + 1
2

)

]

︸ ︷︷ ︸

K∗

a

q + s
2
µ

V ∗2

[
−1 − 1

π
Lα̇(

ah + 1
2

)
1

2π
Mα̇

]

︸ ︷︷ ︸

D∗

a

q

(II.18)
where , K∗, K∗

a and D∗

a are the system matrices with further dimensional parameters
removed by dividing by ω2

α.

The resulting problem is a quadratic eigenvalue problem [125] with eigenvalues s, which
can be written in matricial form asas

[

I 0
0 −M∗

]

s

[

q
sq

]

=

[

0 I
K∗ − A∗ B∗

] [

q
sq

]

(II.19)

which is equivalent to the system given in [146].

The complex conjugate eigenvalues s can be interpreted as [125]

s =
−ζω ± ıω

√

1 − ζ2

ωα
(II.20)

where ζ is a nondimensional damping ratio and ω is the frequency of the aeroelastic
mode. In the instability limit case, the damping ζ is zero and the eigenvalues consequently
become s = ±ı ω

ωα
. For small values of ζ, the eigenvalue s can be shortened to [55]

s =
Γ ± ıω

ωα
(II.21)

Practically, the flutter speed index V ∗

f is solved for by increasing the speed index until
the real part Γ of one of the eigenvalues becomes positive. The V ∗

f value is then refined
by a bisection algorithm, which drives Γ closer to zero. Finally, the frequency value is
determined by using the imaginary part of the eigenvalue.
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Fig. II.2 V − Γ diagram for the example from [55, p. 123] obtained using the
p-method flutter solution and Wright aerodynamics for a PAPA configuration
with ω = 0.4, r2

α = 6
25 , xα = 0.1, µ = 20, ah = −0.2. The magenta line represents

the fluttering mode. The nondimensional critical flutter velocity of V ∗

f = 1.615
is given by the black vertical arrow.

For demonstration purposes, the computation for the example from [55, p. 123] is repeated
for the Wright model with Lα̇ = 0 and Mα̇ = −1.2, which is the same choice for the
parameter values as in [146]. The corresponding velocity-damping diagram, which is
often used to graphically demonstrate flutter problems, is given in Figure II.2. The red
line indicates the stability limit (i.e. zero damping). The vertical arrow indicates the
critical flutter velocity index V ∗

f = 1.615, which is the point where the unstable mode,
depicted in the diagram as magenta-coloured dotted line, crosses the zero line.

II.1.2 Theodorsen approach

The quasi-steady approach assumes that the flow follows the wing perfectly at all times.
That approximation becomes problematic in the case of a moving wing. In the previous
model, the problem was solved by adding unsteady derivative parameters. Another ap-
proach consists in modelling wake effects. The work of Wagner [139] was one of the first
approaches to calculate the unsteady lift of an airfoil by modelling a wake flow by vortex
transport for wings in angular movement. Later, Theodorsen [124] developed a frequen-
tial model of unsteady aerodynamic forces for sinusoidal movement in pitch and plunge
airfoils. Theodorsen’s model can be shown to be equivalent to the Laplace transform of
Wagner’s when applied to angular motion without aileron only [43, 20].

In this work, only pitch and plunge motion will be considered. The point of departure
is again the equation of motion (II.9). The unsteady lift and moment are given by
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Theodorsen [124] as

L = ρaπb2 (V α̇ + ẅ − bahα̈) + 2πρaV bC(k)
[

V α + ẇ + b

(
1
2

− ah

)

α̇

]

(II.22)

M = −ρab2
[

π

(
1
2

− ah

)

V bα̇ + πb2
(

1
8

+ a2
h

)

α̈ − ahπbẅ

]

+2ρaV b2π

(

ah +
1
2

)

C(k)
[

V α + ẇ + b

(
1
2

− ah

)

α̇

]

(II.23)

where k is the reduced frequency

k =
ωb

V
(II.24)

and C(k) is Theodorsen’s lift function [124]

C(k) =
−J1(k) + ıY1(k)

−(J1(k) + Y0(k)) + ı(Y1(k) − J0(k))
(II.25)

which is also referred to as “circulation function”. The real and imaginary parts of the
function Equation (II.25) are plotted in Figure II.3.
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Fig. II.3 Real and imaginary part of Theodorsen’s function [124] plotted over
the reduced frequency k

As before, the lift equation (II.22) is divided by mb and the moment equation (II.23) by
mb2 in order to obtain dimensionless quantities.

L

mb
=

1
µ

(
V

b
α̇ +

ẅ

b
− ahα̈

)

+
2
µ

V

b
C(k)

[
V

b
α +

ẇ

b
+
(

1
2

− ah

)

α̇

]

(II.26)

M

mb2
= −

1
µ

[(
1
2

− ah

)
V

b
α̇ +

(
1
8

+ a2
h

)

α̈ − ah
ẅ

b

]

+
2
µ

V

b

(

ah +
1
2

)

C(k)
[

V

b
α +

ẇ

b
+
(

1
2

− ah

)

α̇

]

(II.27)

are obtained. In matricial form, the aerodynamic operator given by expressions (II.26),(II.27)
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with the correct signs can be written in the time domain as
[

− L
mb

M
mb2

]

=
1
µ

[
−1 ah

ah −
(

1
8 + a2

h

)

] [
ẅ
b

α̈

]

+
1
µ




−2V

b
C(k) −2V

b

(
1
2 − ah

)

C(k) − V
b

2V
b

(

ah + 1
2

)

C(k) −
(

1
2 − ah

)
V
b

+ 2V
b

(

ah + 1
2

) (
1
2 − ah

)

C(k)





[
ẇ
b

α̇

]

+
1
µ

[

0 −2V 2

b2 C(k)
0 2V 2

b2

(

ah + 1
2

)

C(k)

] [
w
b

α

]

(II.28)

and finally, by using the reduced frequency k, this aerodynamic operator is expressed in
the frequency domain as

[

− L
Mb

M
Mb2

]

= ω2 1
µ

[

lh lα
mh mα

]

︸ ︷︷ ︸

A

q (II.29)

where q = {w
b

, α}T is the vector of the degrees of freedom, and the components of
the matrix A are given as functions of the aeromechanical parameters and the reduced
frequency k as

lh = 1 − 2
ı

k
C(k) (II.30)

lα = −ah − 2
(

1
2

− ah

)
ı

k
C(k) −

ı

k
− 2

1
k2

C(k) (II.31)

mh = −ah + 2
(

ah +
1
2

)
ı

k
C(k) (II.32)

mα =
(

1
8

+ ah

)2

−

(
1
2

− ah

)
ı

k
+ 2

(

ah +
1
2

)(
1
2

− ah

)
ı

k
C(k)

+2
(

ah +
1
2

)
1
k2

C(k) (II.33)

When the complete system of equations shall be resolved, this cannot be done directly
by using the p method. The reason for this is that Theodorsen’s function depends on
the reduced frequency k, which is not given directly in the p method, but is one of the
variables the system is solved for. The most simple approach to circumvent this problem
is the k method [55] where instead of the airspeed V , the reduced frequency k is the given
variable.

Assuming no damping, the equations (II.9) can then be given as

λ [(M + A)] q = K∗q (II.34)

where K∗ is the stiffness matrix obtained after dividing by ω2
α. The eigenvalue λ can be

defined as [55]

λ = (1 + ıg)
ω2

ω2
α

(II.35)
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where g is an artificial damping coefficient. In practice, the flutter problem is thus solved
by iterating over k (or its inverse 1

k
to have linear results in velocity) and searching the

root of g. As multiple roots of g can occur, it is useful to first just do iterations and then
refine with a higher order method.

An example V − g diagram is given in Figure II.4, where the example from [55] is solved
using Theodorsen aerodynamics. Again, the stability limit of g = 0 is indicated by the red
line. The unstable mode is the mode that is represented by the orange line, as the orange
dotted line in Figure II.4 is the line to cross the instability limit at the lowest velocity.
The critical flutter velocity at which that happens is V ∗

f = 2.2031 in this example, which
is indicated by the black arrow. This is significantly higher than the prediction of the
Wright model.
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Fig. II.4 V − g diagram for the example from [55, p. 123] using k-method
flutter solution with Theodorsen aerodynamics for a PAPA configuration with
ω = 0.4, r2

α = 6
25 , xα = 0.1, µ = 20, ah = −0.2. The orange line represents the

fluttering mode. The nondimensional critical flutter velocity of V ∗

f = 2.2031 is
given by the black vertical arrow.

The artificial damping coefficient g is often associated to structural damping.

If structural damping is present, the g term has to be adjusted to account for the positive
structural damping present in the system. However, if classical structural damping terms
are given, the conversion implies a known frequency, although it is present as an unknown
in the above system. The problem can be solved by doing subsequent iterations, taking
g = 0 as the starting point, determining the frequency and calculating a new candidate
for g. This procedure must be repeated until an equilibrium is achieved [55].

II.2 Plate wings

In plate wings, bending and torsion are generally coupled and cannot be considered sepa-
rately. Instead, the whole surface is in motion without a main axis specified. In addition
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to that, where the PAPA aeroelastic models suppose an infinite wing, the plate wing
model is finite.

Figure II.5 shows a model of a typical straight plate wing.

c⊗
z
y

x

S

ec

b

V

Fig. II.5 Scheme of the rectangular plate wing model. The plate is clamped at
x = 0 and subject to an incompressible flow in the y direction

The excentricity of the lift is indicated by e. As it is assumed in this work that the wings
are always flat plates, and potential flow theory is used, the excentricity factor is always
e = 0.25, so ec = 1

2b, with b the half chord. Finally, S is the half span of the wing1

In order to compute the model, it is assumed that the wing is of homogeneous density.
Consequently, the centre of gravity is located at midchord. The midchord axis will be
used as a reference axis (x axis represented by the dashed line in Figure II.5), which
amounts to setting the parameter ah to zero.

II.2.1 Rayleigh-Ritz approach

The wing structure is modelled as a Kirchhoff plate. In the following, the plate is con-
sidered to be made of a composite laminate, i.e. the stack of oriented orthotropic layers
(a more detailed description and definition will be given in section III). In this case, the
homogeneous equivalent behaviour of the plate is described by the Classical Laminated
Plate Theory (CLPT). In this framework, the relation between the generalised forces and
the displacements are given as [121]

[

n
m

]

=

[

A B
B D

] [

ε

κ

]

(II.36)

where n are the membrane forces, and m are the bending moments. A is the in-plane
stiffness tensor linking the membrane forces to the membrane strain, D is the bending
stiffness linking the bending moment to the mid-planes’ curvature κ, and B is a coupling
tensor, linking bending moments to membrane strain and membrane forces to curvature.

1The span is in aeronautic jargon defined in terms of an entire aircraft and is the measure from wingtip
to wingtip. However, in this work, only one wing is considered.
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The matrix which is composed of the A, B and D matrix is often referred to as the ABD
matrix. The membrane strain ǫ and the curvature κ are defined in Voigt’s notation as
[121, 114]

ǫ =






∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x




 (II.37)

κ =







−∂2w
∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y







(II.38)

When there are no membrane loads (n = 0), the ABD equation can be rewritten as [88]

m = (D − BA−1B)κ (II.39)

which motivates a modified expression for the bending stiffness tensor

D̃ = D − BA−1B (II.40)

Using these expressions, the elastic potential energy can be calculated [4]

U =
1
2

∫ ∫

mTκdxdy (II.41)

which can be written using Equations (II.39) and (II.40) as

U =
1
2

∫ ∫

κTD̃κdxdy (II.42)

The kinetic energy is given by

T =
1
2

ρd

∫ ∫

ẇ2dxdy (II.43)

where ρ is the density of the material and d is the total thickness of the plate.

In the framework of the Rayleigh-Ritz method, an approach is made for shapes of indi-
vidual modes in the vertical displacement w. Although there are more precise methods
like using orthogonal functions [102] , algebraic polynomials are used in this work for the
sake of simplicity [107]

w(x, y, t) =
nx∑

i=1

ny∑

j=1

wij(t)
(

x

S

)j+1 (y

c

)j−1

(II.44)

where the functions are chosen to respect the boundary conditions of the cantilevered
plate (i.e. w(x = 0, y, t) = 0 and ∂w

∂y
(x = 0, y, t) = 0, see Figure II.5) . Finally, the vector

of generalised coordinates q is made up from the time-dependent modal coefficients wij .
The coefficients themselves are

wij = ŵij exp (ıωt) (II.45)
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Inserting these terms into the Lagrange equations (II.1), the mass, stiffness and aerody-
namic matrices can be derived using the expressions for kinetic energy, potential energy
and the virtual work, and carrying out the derivatives by generalised coordinates, where
the latter are the vectors of modal coefficients ŵ(ij) where (ij) is a combined index for
the modes. The explicit expressions for the system matrices are given in appendix A.

The term of virtual work of the non-conservative forces in the Lagrange equations (II.1)
corresponds to the contribution of the aerodynamic actions. It will leads to the aerody-
namics matrixes, as it is explained in details in the following section.

II.2.2 Aerodynamic operators

To be able to use the potential flow-based aerodynamic operators already presented in
the Pitch And Plunge Airfoil section, several assumptions are necessary.

First of all, the models assume a wing section and are not made for 3D structures like a
plate. The most simple assumption is that the plate can be composed of infinitesimally
small strips (“strip theory”, [146]) to obtain the full lift. The potential flow models demon-
strated actually assume that the wing is flat. This in turn means that the aerodynamic
centre is located at a quarter of the chord measured from the leading edge. The absence
of camber also means that the model does not take into account chord-wise modes and
the mode shape assumptions (II.44) are cut off at ny = 2.

Furthermore, the potential flow-based aerodynamic operators calculate the lift based on
the angle of attack α, which is derived from the vertical displacement of the plate via a
small deformation assumption [123]

α ≈ sin (α) =
∂w

∂y
(II.46)

Other than PAPAs and beam wings, plate wings do not have a fixed reference axis. It is
assumed here that the reference axis corresponds to midchord, which implies ah = 0. Also,
here is no common non-dimensionalisation for plate wings, which is why the dimensional
expressions are used in this case.

The virtual work of the aerodynamic forces is then

δW =
∫

Ldx (−δw) +
∫

Mdxδα (II.47)

By inserting the expression into the Lagrange equation, the system matrices are recovered.
This procedure is described in Appendix A along with their full expressions. The solution
methods basically stay the same.

It must be noted that for simulating effects of a finite span, Stodieck et al. [123] multiplies
the lift and moment expressions for the Wright operator by a factor of

[

1 −
(

x
S

)3
]

, except
for the unsteady derivative expressions.

For demonstration purposes, the flutter diagram of a plate flutter example for a 1mm-thick
steel plate is shown in Figure II.6. The Wright aerodynamic model is used in conjunction
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with Stodieck’s modification for finite span [123] and a p method solver. nx = 8 modes are
used along the span. As many of the dimensionless constants do not apply (for example,
there is no ωα), dimensional values are given.

Note that only a selection of modes is presented. In the upper part of the figure, the
velocity-damping diagram is shown. The fluttering mode is depicted by a solid green line,
which crosses the instability limit at Vf = 68.41 [m/s]. It becomes stable again at higher
velocities , when the green line passes the zero damping line again at values of V over 100
m/s (see Figure II.6.a). The associated frequency can be determined in the diagram of
Figure II.6.b, following the solid green line. The flutter frequency is the frequency that
occurs for the same mode as the fluttering mode determined in the first diagram, at the
same velocity. The eigenvalues of the modes occur in complex conjugate pairs, which is
why there is a counterpart of the frequency with a negative value.
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Fig. II.6 Example V − λ diagram for a 1mm-thick steel plate with a span
of 0.3048[m] and a chord of 0.0762[m] using a p-method solver with Wright
aerodynamics and a finite wing approximation [123]. The critical flutter velocity
of 68.41 [m/s] is indicated by the black vertical bar. In the lower part the flutter
frequency of 408.9 [rad/s] is given by the horizontal black bar and the black dot.
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Chapter III

Quantification of aleatory
uncertainties: composite materials

The stiffness behaviour of aeronautic structures such as wings or stabilisers changes their
aeroelastic response. In particular, anisotropic materials can have significant impacts on
the critical flutter velocity [106]. Recent years have seen a surge in airframe constructions
using composite materials, which are inherently anisotropic. These materials are primar-
ily chosen for their advantageous stiffness- and strength-to-weight ratios, but also offer
the possibility of steering the aeroelastic behaviour; a process that is referred to as aeroe-
lastic tailoring [142]. These composite materials are mostly laminates, which means that
they consist of layups of several oriented layers which are most commonly orthotropic.
The manufacturing process of the final parts introduces many parameters, such as the
ply angles and the ply thicknesses, and therefore sources of errors, which influence the
anisotropic stiffness of the material and which can be regarded as uncertain.

In this chapter, the influence of deviations in the anisotropy will be examined. To this
end, first a general representation method for anisotropic material parameters will be
presented with the polar method [138], which will serve for analytical purposes, as well
as for a reduction of the number of parameters to be examined. Using this approach,
a preliminary deterministic study will be carried out, which will serve to investigate the
influence of the anisotropy on the aeroelastic response. The primary focus will be set on
the critical flutter velocity of which the concept was introduced in the previous chapter.

Following this analysis, points of interest will be identified in the domain of polar param-
eters for which layups will be reconstructed. A stochastic analysis of the effects of the
manufacturing errors on the aeroelastic response will be performed on these laminates,
where the ply angles and the ply thicknesses will serve as examples of manufacturing
error.

While the study will be limited to the rather simple solution methods for the flutter prob-
lem, Monte Carlo simulation of the deviation still takes a lot of time, which would become
a limiting factor for subsequent studies with more advanced aeroelastic solvers. Therefore,
a surrogate model is developed to accelerate the stochastic analysis. The aforementioned

23
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polar method will serve in this framework to reduce the number of uncertain variables to
just six in order to keep the computational cost for the surrogate model at a reasonable
level. The resulting polar parameters are correlated. Moreover, discontinuities are present
in the aeroelastic response due to a mode switch. Both of these problems prompt for a
special approach, based on arbitrary polynomial chaos and machine learning in this work.

An uncertainty quantification study on uncertain ply angles has already been conducted
by [114]. A restriction in the underlying method limited the study to symmetric lami-
nates, which implies neglecting the effects of membrane-bending coupling. As the polar
method can be applied to the modified bending stiffness tensor D̃, in this work, no re-
striction on the uncertainty such as an artificial symmetrisation of is performed, but the
full uncertainty is respected. A study of the resulting differences was given in [96].

III.1 Dimension reduction and analysis: The polar method

In the framework of the plate wing, the stiffness of the material is expressed using the clas-
sical laminated plate theory (CLPT). In the CLPT, the membrane, bending and coupling
stiffnesses are represented by the so-called ABD-matrix, of which A is the membrane
stiffness, D the bending stiffness, and B is a coupling term. Starting form the stiffness
tensor of one elementary layer Q, the A,B and D tensors are obtained as [121]

A =
∑

k

Qk(zk − zk−1) (III.1)

B =
1
2

∑

k

Qk(z2
k − z2

k−1) (III.2)

D =
1
3

∑

k

Qk(z3
k − z3

k−1) (III.3)

The zk represent are the positions of the ply limits. The stiffness tensor of the elementary
layer has to be rotated appropriately to reflect the orientation of the corresponding layer
in the stacking sequence.

In early analysis of anisotropy, the stacking sequence was used directly to analyse the
properties of the layup. (e.g. [57, 62]). This is reasonable if the number of plies is
limited. However, it becomes quite difficult if the number of plies is large. Tsai and Hahn
[126] consequently proposed a representation of anisotropy which groups the cosines and
sines of the ply angles, the so-called lamination parameters. In comparison to the stiffness
tensor, these simplify handling of rotations of the reference frame. They provide more
synthetic control over the anisotropy and have consequently been used in design and
optimisation problems for laminates [53]. However, the lamination parameters suppose
that the plies are identical in ply material and thickness, which limits their usability for
the present problem. Moreover, they are defined with respect to the CLPT tensors A, B
and D, so they cannot be applied directly to the modified bending stiffness D̃ introduced
in Equation (II.40).

For these reasons, the polar method [138, 66] is adopted in this work as a different
representation of anisotropic plate behaviour. As it operates directly on 2D stiffness
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tensors of any type and order, it is applicable to the modified bending stiffness D̃ and
does not need further hypotheses on the laminate stack such as identical plies. The use
of D̃ also enables it to treat non-symmetric stacks with the polar parameters of only one
tensor. In the case of the lamination parameters, the representation of all three stiffness
tensors is needed to achieve a full representation of the same material behaviour.

For an arbitrary symmetric positive-definite two-dimensional fourth-order tensor L, the
polar decomposition can be described as follows [133]

8T0 = Lxx − 2Lxy + 4Lss + Lyy (III.4)

8T1 = Lxx + 2Lxy + Lyy (III.5)

8R0eı4Φ0 = Lxx + 4ıLxs − 2Lxy − 4Lss − 4ıLys + Lyy (III.6)

8R1eı2Φ1 = Lxx + 2ıLxs + 2ıLys − Lyy (III.7)

where Lαβ are the Cartesian components of the Voigt notation L of tensor L. The indices
x and y refer to the axis coordinates, while s stands for shear.

The polar method decomposes the stiffness tensor into six polar components: two isotropic
components T0 and T1, two anisotropic moduli R0 and R1 as well as two angles Φ0 and
Φ1 giving the respective orientations of the anisotropic components [133]. The first four
material constants are invariant to the orientation of the reference frame, as well as the
difference between the polar angles. These five invariants are the minimum set of constants
that represent elastic behaviour. However, the polar angles Φ0 and Φ1 individually depend
on the orientation of the reference frame.

The cartesian representation of the tensor can be retrieved from the polar components
using the following formulas [133]

Lxx = T0 + 2T1 + R0 cos(4Φ0) + 4R1 cos(2Φ1) (III.8)

Lxy = −T0 + 2T1 − R0 cos(4Φ0) (III.9)

Lxs = R0 sin(4Φ0) + 2R1 sin(2Φ1) (III.10)

Lyy = T0 + 2T1 + R0 cos(4Φ0) − 4R1 cos(2Φ1) (III.11)

Lys = −R0 sin(4Φ0) + 2R1 sin(2Φ1) (III.12)

Lss = T0 − R0 cos(4Φ0) (III.13)

An important feature of the polar method is its capacity to reveal material symmetries
[133]. The easiest and most obvious case is isotropy, for which the anisotropic compo-
nents R0 and R1 are zero, and consequently the polar angles Φ0 and Φ1 are not defined.
Square symmetry can be identified in the case where R1 is zero (which also renders the
corresponding polar angle Φ1 undefined) [133]. Orthotropy manifests in the difference of
the polar angles being a multiple of π

4 [133]. As Φ0 − Φ1 is periodic with π
2 , it is sufficient

to distinguish the two cases Φ0 − Φ1 = 0 and Φ0 − Φ1 = π
4 , so the condition can be

summarised as Φ0 − Φ1 = K π
4 . K is called orthotropy shape parameter and can take the

values K = {0, 1}. Moreover, there is a special case of orthotropy in the case where R0

is equal to zero, in which case the Φ0 angle is not defined and thus the angular offset
criterion does not make sense [132]. It mirrors the case of square symmetry. To reflect
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that it is a special case, it is referred to as R0-orthotropy [132, 133]. A summary of the
symmetry conditions is given in Table III.1.

Elastic symmetry Polar condition Parameters for Direction of the
full description main orthotropy axis

Isotropy R0 = R1 = 0 T0, T1 none
Square Symmetry R1 = 0 T0, T1, R0, Φ0 Φ0

R0-Orthotropy R0 = 0 T0, T1, R1, Φ1 Φ1

Orthotropy Φ0 − Φ1 = K π
4

, K ∈ {0, 1} T0, T1, RK = (−1)KR0, R1, Φ1 Φ1

Table III.1 – Conditions for elastic symmetries in terms of polar invariants [133].

The polar constants cannot take arbitrary values, but are bound to thermodynamic limits
(i. e. the stiffness tensor has to be positive-definite), as well as to geometric constraints
when dealing with laminate layups. Considering orthotropic laminates made of an or-
thotropic base material layer, the bounds can be found in [89, 134] as

0 ≤ R1 (III.14)

−Rmax
K ≤ RK ≤ Rmax

K (III.15)

2
(

R1

Rmax
1

)2

− 1 ≤

(

RK

Rmax
K

)

(III.16)

correspond to the anisotropic polar parameter of a uni-directional laminate of overall
thickness h made of the base material layer (for in-plane behaviour: Rmax

K = hRBM
K and

Rmax
1 = hRBM

1 , whilst for bending behaviour Rmax
K = 1

3h3RBM
K and Rmax

1 = 1
3h3RBM

1 )

We remind that, for the case of laminates made of layers of the same base material,
the isotropic polar parameters are nominally constant. Thus only anisotropic polar pa-
rameters RK and R1 can vary with respect to the laminate stacking sequence and their
domain of definition is expressed by the thermodynamic and geometric bounds given by
Equations (III.14)-(III.16). Thus, the domain in Figure III.1 describes the complete set
of admissible orthotropic laminates. Given any possible stacking sequence corresponding
to an orthotropic laminate of overall thickness h, its anisotropic polar parameters RK and
R1 will belong to the domain of Figure III.1. Consequently, this is the domain of study
for the analysis and optimisation of composite structures composed of orthotropic mate-
rials (see for instance [66]). Particularly, it is used here for the deterministic aeroelastic
analysis of a composite plate wing.

The limits of the resulting domain are plotted in Figure III.1, for a given base layer with
KBM = 0 (which is the case for most common base materials). Assuming identical plies
with the same base material and the same ply thickness, the isotropic constants do not
depend on the layup. In order to be able to depict the whole orthotropic domain in one
piece, the polar module R0 and the orthotropy shape parameter K are combined in one
single parameter RK = (−1)KR0, which is now a signed parameter. With this measure,
it is possible to describe the whole domain of orthotropic layups with just the parameters
RK and R1.
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Fig. III.1 Polar domain for orthotropic laminates in the plane of the anisotropic
polar parameters RK and R1.

In this domain, several special configurations of laminates can be directly identified. The
right upper corner of the domain corresponds to the unidirectional laminate made of
the underlying base material. The right edge of the domain corresponds to cross-ply
laminates, while the upper, parabolic edge corresponds to angle-ply laminates. The left,
lower edge finally corresponds to a stacking sequence with ply angles of ±45◦.

III.2 Deterministic analysis

In this section, a preliminary deterministic study of the flutter response for a a compos-
ite rectangular plate wing will be carried out. This will serve to explore the aeroelastic
behaviour of the wing. In particular, it is intended to identify physical phenomena occur-
ing in the parameter space as well as provide information on cases where uncertainty is
interesting to study. To this end, the plate wing model given in section II.2 (Figure II.5)
is considered in conjunction with Wright aerodynamics (the unsteady derivative coeffi-
cient Mα̇ is set to Mα̇ = −1.2 as in [123, 114]). As in these references, a sixteen-layer
composite plate with a half-span of S = 0.3048 [m] and a chord of c = 0.0762 [m] will
be used. In contrast to [114], the air density is adjusted to sea-level and the finite-wing
approximation from [123] is used. A summary of the geometric and aeromechanical data
is given in Table III.2.
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Half-span S[m] Chord c[m] Air density ρa[kg/m3] Unsteady derivative Mα̇

0.3048 0.0762 1.225 −1.2

Table III.2 – Geometric and aeromechanical parameters for the plate wing depicted in
Figure II.5.

All layups in this chapter are nominally uncoupled (B = 0, i.e. D̃ = D, see section II.2)
employing AS4/3502 graphite/epoxy as base material [126, 128]. Table III.3 lists the
engineering moduli of this material, along with the assumed ply thickness and density.
The corresponding polar parameters, calculated by means of Equations (III.5)-(III.7), are
given in Table III.4. It can be noted that this base material is highly anisotropic, as can
be deduced from the highly different values of the engineering moduli, and even more
clearly by the fact that the anisotropic polar moduli RBM

K and RBM
1 are significantly

different from zero. The base material is consequently suited to highlight the influence of
the anisotropic behaviour of different layups.

E1[GPa] E2[GPa] G12[GPa] ν12[−] ρ[kg/m3] Ply thickness t[mm]
138.0 8.96 7.1 0.3 1600 0.1

Table III.3 – Material properties and ply thickness for the AS4/3502 base layer used for
the laminates analysed in this chapter.

T Q
0 [GPa] T BM

1 [GPa] RQ
0 [GPa] RQ

1 [GPa] ΦQ
0 [◦] ΦQ

1 [◦]
21.35 19.15 14.25 16.23 0 0

Table III.4 – Polar constants for the stiffness tensor fo the AS4/3502 UD layer

As in the linear regime the plate wing is mainly subject to bending loads, the polar
constants for a plate made of a sixteen-layer unidirectional layup with the fibres aligned
to the half-span axis of the wing can be simply deduced by multiplying the polar constants
of the base material given in Table III.4 by the geometric bending inertia of the plate,
i.e. h3

12 where h = 16t. The resulting unidirectional plate bending polar parameters are
given in Table III.5. The anisotropic polar parameters represent the maximum admissible
values Rmax

K and Rmax
1 that appear in the geometric bounds (Equations (III.14)-(III.16))

and they define the admissible domain of all orthotropic sixteen-layer layups made of the
AS4/3502 base material, that is depicted in Figure III.2.
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T D
0 [Nm] T D

1 [Nm] RD
0 [Nm] RD

1 [Nm] ΦD
0 [◦] ΦD

1 [◦]
7.29 6.54 4.86 5.54 0 0

Table III.5 – Bending stiffness polar constants for a unidirectional sixteen-layer laminate
made of AS4/3502 base material.
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Fig. III.2 Aeroelastic response surfaces of the critical flutter velocity Vf and the
flutter frequency ωf on the admissible domain for plate wings made of sixteen-
layer uncoupled orthotropic laminates made from AS4/3502 (properties: Ta-
bles III.4,III.3) with geometry and aeromechanical parameters as in Table III.2
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As nominally uncoupled orthotropic laminates are considered, the isotropic polar con-
stants T D

0 and T D
1 are independent from the layup (i.e. they are constant all over the

domain of orthotropic sixteen-layer laminates of Figure III.2) and they are equal to the
ones of the unidirectional sixteen-layer layup (see Table III.5). The angle Φ1 is nominally
fixed at zero, which means the principal axis of orthotropy is aligned with the spanwise
mid-chord axis. Under these conditions, the parametric study can be limited to only RD

K

and RD
1 , with the geometry and the aeromechanical parameters kept fixed at the values

defined in Table III.2. The corresponding response surfaces for the critical flutter velocity
and flutter frequency on the resulting admissible domain for orthotropic laminates are
given in Figure III.2.

The response surface clearly highlights that it is not sufficient to just maximise the
anisotropic stiffness in order to also maximise the critical flutter velocity. Instead, the
critical flutter velocity rises, moving from the right side of the domain (i.e. maximum
value of RD

K) towards lower values of RD
K . The variation with RD

1 is less important, with a
small increase in the critical flutter velocity when moving from RD

1 = 0 to the upper side
of the domain. The maximum value of the critical flutter velocity V max

f = 148.43[m/s]
is reached at point L5 (green square dot in Figure III.2.a), which is located on the upper
bound of the domain (i.e. maximum admissible value for RD

1 ). When moving further
left from the maximum point along the upper bound of the domain, the critical flutter
velocity drops abruptly to the minimum value over the domain V min

f = 76.3[m/s]. When
(−1)KRD

0 decreases further, Vf violently drops. This drop in the critical flutter velocity
corresponds to a discontinuity of the response surface of Vf (see Figure III.2.a), which
spans over a straight line, described by the equation

[

RD,switch
K

RD,switch
1

]

=

[

0.92
0

]

+ s

[

−2.87
3.03

]

, s ∈ [0, 1] (III.17)

On the left side of the discontinuity (i.e. decreasing values of RD
K), the response surface for

Vf is more skewed, with Vf increasing moving from the top to the bottom of the domain
(i.e. decreasing values of RD

1 ). It must be noticed that the same line of discontinuity
is present in the frequency response surface (Figure III.2.b). This is indicating a regime
change in the flutter behaviour. Right of the step, the flutter frequency is at about
500[rad/s], whereas the frequency rises to about 850[rad/s] on the left. Inside these two
regimes, the flutter frequencies show much less variability than the critical flutter velocity.
This again points to the fact that there are two flutter regimes, and the step is caused by
a mode switch.

A number of significative points possesing interesting features are selected from the do-
main of nominally uncoupled orthotropic laminates of Figure III.2 In order to better ex-
plain the physical phenomena related to these aeroelastic response surfaces and to study
the influence of uncertainties in a realistic way, the corresponding stacking sequences are
reconstructed subsequently. The design rules for the corresponding layups are based on
combinatorics and were demonstrated in [135, 136, 130]. The author of this thesis had
access to the database resulting from that work.

The points chosen for further studies are indicated by markers in Figure III.2. Their full
sets of polar parameters are given in Table III.6 together with the nominal values of the
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critical flutter velocity Vf and flutter frequency ωf . The corresponding stacking sequences
are detailed in Table III.7.

Case T D̃
0 [Nm] T D̃

1 [Nm] RD̃
K [Nm] RD̃

1 [Nm] ΦD̃
0 [◦] ΦD̃

1 [◦] Vf [m/s] ωf

[
rad

s

]

L1 7.288 6.538 −4.865 0 0 0 115.46 847.14
L2 7.288 6.538 0 3.916 0 0 125.06 498.82

L3/L4 7.288 6.538 1.048 1.484 0 0 116.26 448.60
L5 7.288 6.538 −1.948 3.032 0 0 143.48 505.24
L6 7.288 6.538 −1.408 2.941 0 0 138.67 499.83

Table III.6 – Polar properties and flutter response of the six configurations chosen on the
response surface of Figure III.2. Corresponding stacking sequences are given in Table III.7

Case Stacking sequence Property summary

L1 [452, −454, 452, −452, 454, −452] nominally square symmetric (RD̃
1 = 0)

L2 [22.52, −22.54, 22.52, −22.52, 22.54, −22.52] nominally R0-orthotropic (RD̃
0 = 0)

L3 [±66.8, 0, −66.8, 0, 66.82, −66.8, 66.8, −66.82, 0, 66.8, 0, ±66.8] general orthotropic, shifted by 90◦

L4 [0, ±58.8, 0, −58.8, 02, 58.8, 58.8, 02, −58.8, 0, ∓58.8, 0] same nominal properties as L3
L5 [28.42, −28.44, 28.42, −28.42, 28.44, −28.42] general orthotropic, Vfmax

L6 [34, 0, −342, ±34, 34, 02, −34, ±34, 342, 0, −34] general orthotropic

Table III.7 – List of laminates based on AS4/3502 corresponding to selected points on
the response surface of Figure III.2

All of the stacking sequences are chosen to exactly correspond to the polar parameters
given, that is, to be part of the domain described by the Figure III.2. This means that
in their nominal configuration, they are all orthotropic with the main axis of orthotropy
aligned with the span-wise mid-chord axis, and D = D̃, which means that they are
uncoupled (i.e. B = 0). It can be noticed that, despite being uncoupled, these layups are
not symmetric.

In the following, the choice of the particular points and layups will be motivated further.

• Layups L1 and L2 are chosen because they represent two special cases of elastic
symmetries, of which it is expected to identify some effects on the flutter behaviour.
It can be noticed that L1 is located at the extreme left corner of the domain (green
square dot in Figure III.2) whilst L2 is on the upper bound of the domain (black
asterisk in Figure III.2). By design, they both correspond to angle-ply sequences
(i.e. two-orientation layups ±α, with α = 45 and α = 22.5, respectively).

– Layup L1 is square symmetric, as its polar parameter RD̃
1 is zero

– Layup L2 is R0-orthotropic, i. e. RD̃
K = 0

• Layups L3 and L4 are general uncoupled orthotropic layups (3-orientation lami-
nates,see Table III.7), but chosen for the study as they are two distinct layups shar-
ing the same polar parameters and consequently corresponding to the same point
(superposed red and blue crosses) in Figure III.2. They serve to identify influences
of differences in the stacking sequence on the uncertainty.

• Layup L5 corresponds to the stacking sequence at the maximum value of the flutter
velocity in the polar domain and also in direct vicinity of the mode switch (green
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solid square dot in Figure III.2). By design, L5 is also an angle-ply configuration
with η = 28.4.

• Layup L6 (pink triangle dot in L6 Figure III.2) is close to the maximum point, but
not situated in direct vicinity of the mode switch. This will emulate a more realistic
case for the uncertainty study, representing a situation where the mode switch is
not directly hit, but “by accident”. L6 is not on the upper border of the domain,
thus it is not an angle-ply layup but a 3-orientation laminate (η = 0 and ±ξ = 34)
as written in Table III.7.

In order to graphically represent the different stiffnesses of the layups, circular diagrams
of the engineering moduli are given in Figure III.3. They show their equivalent nomi-
nal bending Young’s modulus ED and torsional modulus GD as function of the angular
deviation δ from the material’s principal orthotropy axis. Young’s modulus ED and the
torsional modulus GD are taken respectively as the reciprocal values of the 1, 1 and 6, 6
components of the normalised bending compliance tensor d∗ = h3

12 D̃−1 [89, 90]. The values
for δ = 0 correspond to the homogeneised bending moduli for each laminate in its main
orthotropy axis.

By observing Figure III.3, the square symmetry of L1 can clearly be identified from the
cross-shaped diagram of its bending modulus ED as well as torsional modulus GD. More-
over, compared to the other laminates, it has the highest possible value of the torsional
modulus GD in the orthotropy axes (δ = 0 and δ = 90, see Figure III.3.b), since it
corresponds to the lowest possible value of RD

K .

In contrast to that, the R0-orthotropy of layup L2 is less clearly distinguishable by eye.
It has an hourglass-shape in Young’s modulus ED (Figure III.3.a). The shear modulus
GD is cross-shaped and extends less than the laminates L1, L5 and L6 which also show a
cross-shaped GD outline (Figure III.3.b).

L3 and L4 are general orthotropic laminates. As both are designed to have the same
polar parameters, then their homogenised elastic properties are the same and their curves
coincide. The angular plot of Young’s modulus for these layups is an oval of which the
shape is closer to a circle than for the other examples (Figure III.3.a). This reflects the
fact that the anisotropic polar parameters are closer to zero, so the materials can be
looked upon as “more isotropic”. This is also reflected in the shear modulus shape, which
roughly resembles a square with rounded corners in contrast to the other layups, where
the shear modulus always has a very pronounced cross shape (Figure III.3.b).

L5 and L6, despite representing different classes of layups and having even a different
number of ply orientations, are close albeit not identical in polar parameters, which also
is found again in the very similar angular modulus plots. As general orthotropic laminates,
they expose the typical “butterfly” shape in the angular trace of Young’s modulus ED

(Figure III.3.a). As for L1 and L2 their torsional modulus plot is cross-shaped, with the
values being between the more extreme L1 and L2 (Figure III.3.b).
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Fig. III.3 Polar diagrams of nominal Young’s modulus E and shear modulus G
as a function of the angular deviation from the orthotropy axis δ for the selected
layups given in Table III.7, for which the polar parameters are given in Table III.6

In order to complete the deterministic aeroelastic analysis and to explain the shape of the
response surface for Vf and ωf , the V − λ stability diagram as well as the corresponding
aeroelastic mode shape are described in details for the selected laminate configurations
given in Table III.7.

Figure III.4.a shows the V − λ diagram, , i.e. the real part of the eigenvalues of the
aeroelastic system plotted against the airspeed V , for a wing with specifications according
to Table III.2 made up of the square symmetric layup L1. As explained in chapter II,
any mode is stable as long as the real part of its corresponding eigenvalues is smaller
than zero. The airspeed at which the real part of the eigenvalue becomes positive is the
critical flutter velocity indicated by the black vertical bar, here at Vf = 115.46[m/s]. The
unstable mode, represented in Figure III.4.a by the green solid line, has the shape shown
in Figure III.4.b . The flutter mode is bending-dominated and resembles what in free
vibration of a cantilevered beam would be called a second bending mode. Nevertheless,
the mode also has small torsion components, which are less pronounced than the bending
component. The modal bending behaviour can be guessed well by the material properties,
as square-symmetric laminates are quite stiff against torsion, but less against bending (in
Figure III.3 one can see that the bending modulus ED of layup L1 in the orthotropy axis
δ = 0 is much smaller than for the other laminates in our set of study).
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Fig. III.4 V − λ diagram and mode shape for layup L1 (Tables III.7,III.6)

The fluttering mode for layup L2 becomes unstable at a higher velocity (Vf = 125.06[m/s]),
but climbs up more abruptly than the previous example, as can be seen in Figure III.5(a).
Being R0-orthotropic, it has a much higher bending stiffness than L1, but a lower tor-
sional stiffness. The mode shape is consequently torsion-dominated rather than bending-
dominated, as shown in Figure III.5(b).

-200

-100

0

100

200

50 75 100 125 150

R
e
(λ

)

V [m/s]

(a)

-0.5
0

0.5

0 0.2 0.4 0.6 0.8 1

y c

x
L

(b)

Fig. III.5 V − λ diagram and mode shape for layup L2 (Tables III.7,III.6)

These two stacking sequences happen to represent two different modal regimes indicated
by the response surface in the orthotropic plane depicted in Figure III.2. The response
surface also suggests a rather violent transition between the two regimes in terms of
flutter data. In order to deepen the investigation of the transition or “switch” between
the modal regimes, L5 was picked. Because the transition is rather subtle in the flutter
diagram, two laminates with a certain offset from L5 are generated in order to highlight
the change of the mechanism. Advantage is taken from the fact that L5 is an angle-ply
laminate with lamination angle η = 28.4 and sits on the border of the orthotropic domain.
Further configurations that only move along the border of the orthotropic domain can
be generated by just widening or narrowing the angles. For the following examples,
laminates L5+ and L5− are considered, with the lamination angle η respectively widened
and narrowed by two degrees. Laminate L5+ is consequently on the left side of the switch
(i. e. its aeroelastic modal regime resembles that of layup L1), while Laminate L5− is



III.2 Deterministic analysis 35

on the right side of the switch (i.e. it belongs to the same region and aeroelastic modal
regime as layup L2).

The flutter diagram of the mode shape for L5+ are shown in Figure III.6. The critical
flutter velocity, in comparison with layup L1, has dropped to 89.54[m/s] (see vertical solid
line in Figure III.6.a) . Nevertheless, its modal behaviour as depicted in Figure III.6.a)
corresponds largely to the modal behaviour of L1, i.e., it resembles a second bending
mode. However, the V − λ diagram Figure III.6.a shows that the corresponding mode,
represented by the violet dash-dotted line, barely becomes unstable. The real part of the
eigenvalue does not pass the instability criterion by much. Moreover, it descends again
below the instability limit at about V = 130[m/s].

-200

-100

0

100

200

50 75 100 125 150

R
e
(λ

)

V [m/s]

(a)

-0.5
0

0.5

0 0.2 0.4 0.6 0.8 1

y c

x
L

(b)

Fig. III.6 V − λ diagram and modal response of laminate L5+.
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Fig. III.7 V − λ diagram and modal response of laminate L5−.

When considering laminate L5−, thus moving the stiffness right from L5, the bending
modulus increases whilst the torsional modulus decreases. The V − λ diagram for layup
L5− is given in Figure III.7.a. One can notice that the violet, the flutter mode of the
previous example, again shown by the violet dash-dotted line is still recogniseable, as
can be seen in Figure III.7.a. However, it does not pass the instability limit any more.
Consequently, the first unstable mode becomes the mode indicated by the green solid line
in both examples, which becomes unstable only at Vf = 137.37[m/s] in the L5− case.
The corresponding mode is now a “first bending” type mode, which with further shifts
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transitions to torsion modes smoothly. This transition is consistent with the fact that the
bending stiffness increases.

This deepened investigation confirms that the step in critical flutter velocity is caused by
an abrupt switch in modal behaviour, which is the consequence of a change in the balance
between bending and torsional stiffness. The change in balance leads to a shift in modal
damping as a function of the freestream velocity, and thus changes the mode becoming
unstable at the lowest velocity.

The investigation has shown that the critical flutter velocity is highly dependent on the
material stiffness behaviour, especially in presence of mode switches, which lead to abrupt
changes in the critical flutter velocity with very small changes in the material. This
motivates the uncertainty quantification on manufacturing errors , such as on layers’
thicknesses and orientation angles, affecting the stiffness properties of the laminate, which
will be carried out in the next section.

III.3 Uncertainty propagation

In the previous section, it has been demonstrated by the example of orthotropic laminates
how changes of the stiffness affect the critical flutter velocity of the composite plate wing
example. In this section, typical uncertainties will be examined which alter the stiffness
of the material using the laminates listed in Tables III.6,III.7. With the uncertainties
added, the hypotheses made to construct the laminates for perfect orthotropy are no
longer respected. Notably, they are no longer uncoupled; consequently, the full D̃ tensor
has to be taken into account.

Two of the most important uncertainties include uncertainty in ply angles and ply thick-
nesses [119]. This study will focus on those two examples. As these are supposed to be
manufacturing errors and assuming that the manufacturer makes the best effort to fulfill
the specifications, the errors are assumed Gaussian, where for the angular uncertainty, a
standard deviation of 1◦ is assumed [127]. The author guesses the standard deviation of
the ply thickness as 5% of the nominal value, which means that the standard deviation
in this case is 0.005[mm]. The standard deviations are summarised in Table III.8.

σt[mm] 0.005 σθ[◦] 1.0

Table III.8 – Standard deviations of the uncertainties in ply thicknesses and angles

The uncertainties are in the following applied to the different laminates from Tables III.6,III.7,
and the changes in critical flutter velocity are observed. The effects of the different un-
certainties in the ply angles and the ply thicknesses will each be studied individually, as
well as their combined effects. Special attention will be paid to the differences in the
behaviours of the moduli and the uncertainty in the direction of the symmetry axes.
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III.3.1 General orthotropic laminates and the influence of the stacking
sequence

In the following, the two laminates out of the middle of the polar domain L3 and L4 will
be examined. The laminates are general orthotropic laminates and are far from the limits
of the domain, meaning that there are no special constraints on the stiffness.
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Fig. III.8 Gaussian KDEs of layups L3 and L4 (Table III.7) with uncertain ply
angles. Standard deviation on ply angles is 1◦. The KDEs are obtained with
Monte Carlo simulation using 105 samples

First, the influence of the uncertainty in the ply angles on the material stiffnesses in
form of the polar parameters is presented in Figure III.8. The histograms are obtained
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using 105 samples. Despite the uncertainty concerning only rotation of plies, the isotropic
parameters T0 and T1 are affected (Figure III.8.a,III.8.b). This is due to the incorporation
of the membrane-bending coupling in the modified bending stiffness tensor. Nevertheless,
this deviation is extremely small.

As both laminate layups are far from any constraints due to geometric or thermodynamic
domain limits in terms of the anisotropic moduli, both R0 and R1 (Figure III.8.c,III.8.d)
show bell-shaped curves for both of the laminates, which are roughly centered about the
nominal values of the moduli. However, in the L3 case, the variance in RD̃

0 is much higher,
giving the curve a wider spread than in the L4 case. Also, the RD̃

1 parameter has a greater
variance in the L3 case but the difference in the distributions is much smaller. In contrast
to this, the difference in the corresponding angles is inverted (Figure III.8.e,III.8.f), as
these distributions have a higher spread in the L4 case.

The corresponding responses in critical flutter velocity are shown in Figure III.9. As
before, both materials produce a bell-shaped curve roughly centered around the nominal
value. The distribution for L4 however is slightly narrower and steeper than the curve
for its L3 counterpart, indicating that the anisotropic moduli could play a bigger role in
this case than the uncertainty in the polar angles.
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Fig. III.9 Gaussian KDEs of critical flutter velocity (Vf ) response for layups
L3 and L4 (Table III.7) on uncertain ply angles with standard deviation of 1◦.
KDEs obtained by Monte Carlo simulation with 105 samples

In the following example, the uncertainty in the ply thicknesses are studied. The thick-
nesses have two effects:
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• Through the scaling of the whole stack, the plate can become more rigid or compliant

• The different scaling of the individual plies destroy the balance of the laminate. Via
this mechanism, the uncertainty in the ply thicknesses also have an influence on the
anisotropy and are able to alter it.

In this context, it is interesting to study the differences in behaviour in the two laminates
sharing the same behaviour, as the influence of the stacking sequence can directly be
revealed.
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Fig. III.10 Gaussian KDEs for layups L3 and L4 (Table III.7) with uncertain
ply thicknesses. The CoV of the ply thickness is 5%. The KDEs are obtained
with Monte Carlo simulation using 105 samples

The results are shown in Figure III.10. Other than the angular uncertainty, the ply
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thickness uncertainty has a big impact on the isotropic parameters T D̃
0 and T D̃

1 , probably
due to the aforementioned scaling effect. In contrast, there is a noticeable difference
in the behaviour of the anisotropic moduli. The RD̃

0 modulus shows significantly larger
variation for the L4 laminate in comparison to L3. However, the associated angle ΦD̃

0 is
less uncertain in the L4 case than in the L3 case.

As can be seen in Figure III.11, other than in the case of the angular uncertainty, the
uncertainty in the ply thicknesses does not lead to any visible difference in the distribution
of the critical flutter velocities in this case. Both examples show very similar bell-shaped
curves distributed around the nominal critical flutter velocity. The reason might be that
the differences in layup and the resulting differences in stiffness properties are too small
to cause significant differences in the modal behaviour, which in turn leads to very similar
behaviour in terms of critical flutter velocity.
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Fig. III.11 Gaussian KDE of critical flutter velocity (Vf ) response for layups
L3 and L4 (Table III.7) on uncertain ply thickness with a CoV of 5%. The KDE
is obtained by Monte Carlo simulation with 105 samples.

Finally, the combined effect of the two uncertainty types is studied. The corresponding
results are given in Figure III.12. In these cases, it is impossible to describe any of the two
uncertainty types as dominant. Moreover, the differences between the two layups clearly
appearing in the previous studies performing individual propagation of the uncertainties
become much less important. There is, however, a small difference in the RD̃

0 , which
means that the uncertainty in this parameter is less important for L4, which was the
case, albeit to a way greater extent, in the angular uncertainty scenario.
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Fig. III.12 KDEs of the polar parameters of layups L3 and L4 (Table III.7)
with uncertain ply angles and uncertain ply thicknesses. The standard deviation
of the ply angles is 1◦ and the CoV of the ply thicknesses is 5%. The histograms
obtained with Monte Carlo simulation using 105 samples.
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The distribution of the critical flutter velocity, shown in Figure III.13, resembles more
the thickness propagation case. The differences between the two layups present in the
angular uncertainty propagation are almost completely equalised.

For giving a comparison with classical safety margins, the classical 15% margin on the pre-
dicted flutter onset is given along with an estimation for the 1% quantile. As the estimate
for the quantile is significantly higher than the classical safety margin, a decent safety
reserve can be assumed. This prompts the question after possibilities for optimisation.
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Fig. III.13 Gaussian KDE of critical flutter velocity (Vf ) response for layups
L3 and L4 (Table III.7) on uncertain ply angles with a standard deviation of
1◦ and uncertain ply thicknesses with a CoV of 5%. The KDE is obtained by
Monte Carlo simulation with 105 samples.

III.3.2 Special material symmetries

Beyond ordinary orthotropy, with square symmetry and R0-orthotropy, there are special
cases of material symmetry implying additional constraints on the material behaviour.
This section will be taking interest in the question if the restrictions implied by the
symmetries have a stabilising effect or if, on the contrary, the loss of symmetry by the
uncertainty causes a destabilisation of the stiffness, and consequently the aeroelastic be-
haviour of the plate wing. For this purpose, the effect of the uncertainties described
previously (Table III.8) on laminate configurations with special symmetries, i. e. the
square symmetric laminate L1 and the R0-orthotropic laminate L2 (Tables III.6,III.7)
will be examined.
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a) Square symmetric layup L1

The analysis is started with the example layup L1, of which the polar parameter distribu-
tions for the angular uncertainty in the ply stack are given in Figure III.14. The isotropic
parameters T D̃

0 and T D̃
1 are behaving much in the same way as in the previous example.
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Fig. III.14 Histograms of layup L1 (Table III.7) with uncertain ply angles. The
standard deviation of the ply angles is 1◦. The histograms are obtained with
Monte Carlo simulation using 105 samples.

The uncertainty leads to the loss of the symmetry type of the material. This can be
observed in the polar parameters. In its nominal configuration, the L1 laminate layup is
square symmetric, which means that its nominal RD̃

1 is zero. With the uncertainty added,
the parameter shifts up. The RD̃

0 complements this behaviour by shifting down from its
nominal value. As the material is on the border of the domain of existence, the nominal
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value of RD̃
0 represents a sharp upper limit.

The polar angle of the newly defined orthotropy axis, which was set to zero before, is
now distributed at angles of zero and 90 degrees, which means that there is uncertainty
of the direction of the material behaviour. This is logical in the context that the values
of the corresponding RD̃

1 modulus, despite now being different from zero, stay relatively
low. This means that the associated anisotropic behaviour is not very strong, which is
also expressed in the uncertain direction.

Figure III.15 shows the corresponding results for propagation of the uncertainty through
the aeroelastic solver in terms of critical flutter velocity Vf . The angular uncertainty
affects this flutter response surprisingly little. The distribution is a narrow spike around
the value for the critical flutter velocity in nominal configuration of the composite material.
This could be due to the response in critical flutter velocity being relatively flat in the
region around the nominal configuration without any changes. This is at least true for
the behaviour in the RD̃

0 and RD̃
1 with the nominal angles applied (Figure III.2). It could

also be that the particular symmetry of the material adds to the stability of the material
properties.
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Fig. III.15 Gaussian KDE of critical flutter velocity (Vf ) response for layup L1
(Table III.7) on uncertain ply angles with a standard deviation of 1◦. The KDE
is obtained by Monte Carlo simulation with 105 samples

Figure III.16 shows the effects of the uncertainty in the ply thickness on the polar prop-
erties laminate L1 (Tables III.7,III.6). The Gaussian nature of the thickness uncer-
tainty translates to smooth bell-shaped curves in the isotropic material properties (Fig-
ure III.16.a and III.16.b). The more interesting effects are developing in the anisotropic
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parts of the material behaviour. The RD̃
0 modulus shows much of the same behaviour

as the isotropic components, which is not very surprising considering that thickness in-
formation modulates all modulus information equally as seen in the introductory section
of this chapter. An effect that goes beyond simple scaling through the thickness changes
however is the loss of the material symmetry, which is indicated by the RD̃

1 and angular
values departing from their nominal values. RD̃

1 becomes greater than its nominal value
zero. This can only be explained by a shift in the relations between the individual plies,
where the RD̃

1 components do not eliminate each other any more. Consequently, the RD̃
1

component becomes non zero. However, its values remain small.
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Fig. III.16 Histograms of layup L1 (Table III.7) with uncertain ply thickness.
The CoV of the ply thicknesses is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples.

The critical flutter velocity responds to the uncertainty much stronger than in the case
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of the angular uncertainty, as can be seen in Figure III.17. Nevertheless, the curve stays
relatively narrow and is centered at the nominal value for the critical flutter velocity.
However, other than the response to the angular uncertainty which was clearly more
stable, the response to the thickness uncertainty is comparable to other cases (e. g. the
previous case, Figure III.11).

0

0.05

0.1

0.15

0.2

60 80 100 120 140 160

p
(V

f
)

Vf [m/s]

Fig. III.17 Gaussian KDE of critical flutter velocity (Vf ) response for layup
L1 (Table III.7) on uncertain ply thicknesses with a CoV of 5%. The KDE is
obtained by Monte Carlo simulation with 105 samples.

The histograms of the polar parameters under influence of both of the uncertainties is
shown in Figure III.18. As could be expected, the isotropic parameters take up mostly
the behaviour of the uncertainty in the thickness, as the uncertainty in the angles only
had a small effect. Consequently, the distributions of the polar parameters resemble the
bell-shaped curves found for the thickness-only example.

The observation that the uncertainty in the thickness dominates the uncertainty in the
polar parameters is confirmed in the parameter RD̃

0 , which is the parameter that is nom-
inally non-zero. The limiting behaviour of the domain border in the propagation of the
angular uncertainty is not found again. Instead, the distribution of the parameter takes
again the form of a bell-shaped distribution roughly centered around the nominal value.

In contrast to the previous examples, the RD̃
1 component, whose nominal value is zero,

shows a behaviour that cannot be attributed to any of the two types of uncertainty
individually. The parameter still shifts up from its nominal zero value as for the different
uncertainties individually. Also, the distribution falls rapidly and ends in a very flat tail
beyond values of 0.2, which could be observed for both types of uncertainty. However,
in the previous example, the distribution started roughly at its maximum at the lower
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bound of the parameter RD̃
1 = 0.0. In this case, it is zero at the lower bound and rises to

its maximum at a value of about 0.05. The probability density for very low values of this
parameter is thus significantly lowered. This effect can only be explained by a coupling
of the two uncertainties, which makes it more unlikely to arrive at values of zero for the
second parameter.
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Fig. III.18 Histograms of layup L1 (Table III.7) with uncertain ply angles and
uncertain ply thicknesses. The standard deviation of the ply angles is 1◦ and
the CoV of the ply thicknesses is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples

Another coupled effect can be observed in the polar angles. In the studies with the dif-
ferent uncertainties considered individually, the probability density functions were very
narrow, with the axis of orthotropy distributed around ΦD̃

1 = ±π
4 in the thickness uncer-
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tainty case and ΦD̃
1 =

{
0, ±π

2

}
in the angular uncertainty, as well as the angular offset

ΦD̃
0 − ΦD̃

1 being distributed around ±π
4 for both uncertainties. The highest probability

density masses resemble more the thickness uncertainty case, the angles have become very
uncertain, indicating another example of a coupled influence.

The stochastic response in critical flutter velocity is shown in Figure III.19. While the
polar parameters show changes when the uncertainties are propagated together and not
be explained by one dominating type of uncertainty, the distribution of the critical flutter
velocity closely resembles the distribution in the thickness-only propagation. However,
the propagation of the angles only did not have a big effect on the critical flutter velocity
anyway. Again, the 15% criterion clearly is below any significant probability density mass.
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Fig. III.19 Gaussian KDE of critical flutter velocity (Vf ) response for layup
L1 (Table III.7) on uncertain ply angles with a standard deviation of 1◦ and
uncertain ply thicknesses with a CoV of 5%. The KDE is obtained by Monte
Carlo simulation with 105 samples.

b) R0-orthotropic layup L2

Also the L2 layup possesses a special symmetry with one of the polar moduli being zero
in the nominal configuration, which is RD̃

0 in this case. The distribution of the polar
parameters with applied ply angle uncertainty is shown in Figure III.20. As the isotropic
parameters again behave in the same way as in the previous example, they will not receive
any special comment in the following.

As in the previous example, the value of the anisotropic parameter that is nominally
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zero, i. e. RD̃
0 , shifts up and the corresponding angular direction becomes uncertain (RD̃

0

and ΦD̃
0 ). There are, however, some differences in the behaviour of the nominally non-

zero polar parameter (RD̃
1 ). Other than its counterpart in the square-symmetric case,

it has a much greater variance, and the nominal value does not limit the deviations of
the parameter in this case. Instead, the RD̃

1 parameter shows a bell-shaped distribution
centered around the value for the critical flutter velocity in the nominal configuration.

The isotropic moduli show the same behaviour as before. As this does not change sig-
nificantly for the other layups, the distributions for the isotropic moduli will not be
commented on any further.
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Fig. III.20 Histograms of layup L2 (Table III.7) with uncertain ply angles. The
standard deviation of the ply angles is 1◦. The histograms are obtained with
Monte Carlo simulation using 105 samples.
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The response in critical flutter velocity is shown in Figure III.21. The response is dis-
tributed closely around the Vf value obtained when calculating with the nominal configu-
ration. However, this distribution is much wider than in the case of L1 (see Figure III.15.
This could be the result of higher variance in the main anisotropic modulus compared
to the previous case, or generally a steeper response surface in the region around the
considered point.
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Fig. III.21 Gaussian KDE of critical flutter velocity (Vf ) response for layup L2
(Table III.7) on uncertain ply angles with a standard deviation of 1◦. The KDE
is obtained by Monte Carlo simulation with 105 samples.

As in the example on the ply angle uncertainty, the L2 layup mirrors the behaviour of
L1 for an RD̃

0 -orthotropic setting. The nominally non-zero parameter (i. e. RD̃
1 ) shows

a bell-shaped curve, while the parameter that is zero in the nominal configuration (i. e.
RD̃

0 ) shifts up.

Other than before, the principal axis of orthotropy does not change position. This is due
to the fact that the material, despite losing its special orthotropy, remains orthotropic
and only deviates little from the orthotropic case, retaining a significant orthotropic char-
acteristic dominated by RD̃

1 , which in the previous example suddenly built up. This is the
case for this example with the ΦD̃

0 characteristic axis, where such an axis position change
can be observed. This is a result from the axis deliberately being chosen as zero although
it is not clearly defined if the value of the associated modulus is zero. It also has to be
noticed that as before, the uncertainty in thickness does not affect the polar angles very
much and the distribution of the angles cover only a very narrow range.
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Fig. III.22 Histograms of layup L1 (Table III.7) with uncertain ply thickness.
The CoV of the ply thickness is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples.
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The overall similar behaviour continues also in the critical flutter velocity, as shown in
Figure III.23. Again, the critical flutter velocity shows a bell-shaped curve around the
nominal value of the critical flutter velocity. Compared to the previous example, the
nominal value is higher, which means that the curve shifts to higher values. Nevertheless,
the higher nominal value does not mean that the variance would change significantly.
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Fig. III.23 Gaussian KDE of critical flutter velocity (Vf ) response for layup L2
(Table III.7) on the uncertain ply thickness with a CoV of 5%. The KDE is
obtained by Monte Carlo simulation with 105 samples.

The results of the propagation of both the ply thickness and ply angle uncertainties for
the polar parameters for laminate L2 are shown in Figure III.24. Again, the stochastic
behaviour of the parameter that is nominally zero shows the coupling effect described
earlier: other than in the individual propagation of uncertainties, the probability density
is very low at very low values of the parameters, rises then to a maximum which is found
at about 0.1 in this case and ends in a long tail. Meanwhile, the behaviour of the non-zero
parameter takes again a bell-shaped form, which in this case cannot be clearly attributed
to one of the two types of the uncertainties. However, the distribution does not seem
to spread much further than in the thickness uncertainty case, which means that the
uncertainties do not simply add up.

Moreover, the behaviour in the ply angles is different from what was observed in the
previous case, with the distribution for the angle of the orthotropic axis ΦD̃

1 being narrowly
distributed around its nominal value even with both uncertainties applied. This could be
due to the fact that the main angles coincide for both uncertainty propagations. The axis
offset ΦD̃

0 −ΦD̃
1 however keeps the main features of its distribution under influence of only

the angular uncertainty. Again, as the uncertainties do not coincide, the angle becomes
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very uncertain and the distribution spreads all over the domain.
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Fig. III.24 Histograms of layup L2 (Table III.7) with uncertain ply angles and
uncertain ply thicknesses. The standard deviation of the ply angles is 1◦, and the
CoV on ply thicknesses is 5%. The histograms are obtained with Monte Carlo
simulation using 105 samples.

The corresponding response in critical flutter velocity is given in Figure III.25. The
response again resembles more the response to the thickness uncertainty, and any growth
of the uncertainty over this response type is not noticeable. As before, the 15% offset
seems very conservative with respect to the calculated uncertainty.
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Fig. III.25 Gaussian KDE of critical flutter velocity (Vf ) response for layup
L2 (Table III.7) on uncertain ply angles with a standard deviation of 1◦ and
uncertain ply thicknesses with a CoV of 5%. The KDE is obtained by Monte
Carlo simulation with 105 samples

III.3.3 Configurations prone to mode switching

The previous examples showed configurations which are found in a smooth vicinity in
terms of modal response and critical flutter velocity. The L5 and L6 layup sequences will
be tested where mode switches are present in the region around the composite configura-
tions. It will be observed if the uncertainties can provoke a discontinuity in behaviour.

a) Optimal configuration L5

Configuration L5 is especially critical, as it is located directly next to the mode switch
in the orthotropic plane (Figure III.2). At the same time, it represents the optimal
orthotropic configuration in terms of critical flutter velocity. Consequently, there is a
double interest to study the effects of the uncertainties onthis particular layup.

The response of the polar parameters for configuration L5 to the uncertain ply angles
is shown in Figure III.26. As it is a general orthotropic laminate, both anisotropic pa-
rameters are non-zero by default. Consequently, its behaviour is similar to the L3 and
L4 examples, with bell-shaped curves around the nominal values of the polar parame-
ters. The well-defined strong anisotropy also leads to the angular distributions being very
narrow.
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Fig. III.26 Histogram of layup L5 (Table III.7) with uncertain ply angles. The
standard deviation of the ply angles is 1◦. The histograms are obtained with
Monte Carlo simulation using 105 samples.
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The response of the critical flutter velocity to the uncertainty in the laminate is shown in
Figure III.27. Clearly, the mode switch discovered in the deterministic response surface is
trigerred, which is visible in the distribution because the curve is split into two “bumps”.
The more important one is close to the nominal value. However, its maximum probability
density point does not coincide with the critical flutter velocity of the nominal configura-
tion, but falls below. This is due to the nominal value being the maximum critical flutter
velocity. The second probability density mass is found at values between about 85 and
90[m/s]. It is smaller than the main one. It is slightly skewed to the left.
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Fig. III.27 Gaussian KDE of critical flutter velocity (Vf ) response for layup L5
(Table III.7) on uncertain ply angles with a standard deviation of 1◦. The KDE
is obtained by Monte Carlo simulation with 105 samples

Figure III.28 shows the propagation result from the thickness uncertainties to uncertain-
ties in the polar parameters. As in the previous examples of the thickness uncertainties
showing general orthotropic laminates (i. e. Figure III.10), the distributions of the
anisotropic polar parameters RD̃

0 and RD̃
1 show bell-shaped curves. The fact that the

nominal case is on the border of the orthotropic domain does not seem to impact the
propagation of the uncertainties. Also, the polar angles ΦD̃

0 and ΦD̃
1 show a higher vari-

ance than in the previous examples.
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Fig. III.28 Histograms of layup L5 (Table III.7) with uncertain ply thickness.
The CoV of the ply thickness is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples
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Figure III.29 shows the propagation results in terms of critical flutter velocity. As it can
clearly be noticed, despite the fact that the uncertainty does not change the directions
of the plies, it changes the stiffness properties sufficiently to push the flutter mode to
a different modal behaviour, leading to the previously observed switching phenomenon.
The second probability density mass, lying way below the nominal value, is even bigger
than in the case of ply angle uncertainty only.
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Fig. III.29 Gaussian KDE of critical flutter velocity (Vf ) response for layup L5
(Table III.7) on uncertain ply thickness with a CoV of 5%. The KDE is obtained
by Monte Carlo simulation with 105 samples.

In the following, it will be studied if the coupling of the two influences has consequences
for the triggering of the mode switch. For the purpose of detecting changes in the material
behaviour beforehand, the histograms for the polar parameters are given in Figure III.30.
It can be observed that the behaviour of the anisotropic parameters is a mix of the be-
haviours observed under the individual uncertainties. While in the thickness-only case,
RD̃

1 is the more uncertain parameter, RD̃
0 was in the case of the angular uncertainty. How-

ever, the distributions resemble each other more in the case of the combined uncertainty.
The polar angles, however, take over their more uncertaint behaviour from the thickness
uncertainty case.
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Fig. III.30 Histograms of layup L5 (Table III.7) with uncertain ply angles and
uncertain ply thicknesses. The standard deviation on ply angles is 1◦, and the
CoV on the ply thicknesses is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples.
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The critical flutter velocity result is shown in Figure III.31. Again, the result resembles
the thickness-only case more, but the “skewing” of the curves as in the angular uncertainty
case is perceptible. It is also noticed that the variance of the different “bumps” of the
distribution is reduced, but this could also be due to different values for the bandwidth
parameter of the kernel density estimation. In this case, the uncertainty clearly leads
to the usual 15% velocity offset security margin being undercut, which is highlighted by
the fact that the estimate for the 1% quantile is found left of the security margin. Also,
a significant probability density mass is found left of the classical margin. As the L5
layup represents the point of optimal critical flutter velocity, this means that there is a
security risk of blindly optimising without checking for robustness. Moreover, in a case
where mode switching and thus brutal changes of the critical flutter velocity occur as a
consequence of manufacturing uncertainty, the classical flutter margin does not provide
security against failures.
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Fig. III.31 Gaussian KDE of critical flutter velocity (Vf ) response for layup
L5 (Table III.7) on uncertain ply angles with a standard deviation of 1◦ and
uncertain ply thicknesses with a CoV of 5%. The KDE is obtained by Monte
Carlo simulation with 105 samples.

b) Offset from the mode switch L6

The L6 example will be used to determine if the uncertainty in the ply thicknesses is also
capable of triggering the mode switch in a more “accidental” scenario where the nominal
configuration is not tightly placed in vicinity of the mode switch.



III.3 Uncertainty propagation 61

The uncertain polar properties of the final example laminate L6 are shown in Figure III.32.
As a general orthotropic laminate of which the nominal polar properties are close to L5,
its polar parameter distributions are very similar. However, the offset between the polar
angles is more uncertain than in the previous case.
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Fig. III.32 Histogram of layup L6 (Table III.7) with uncertain ply angles. The
standard deviation of the ply angles is 1◦. The histograms are obtained with
Monte Carlo simulation using 105 samples.

The laminate L6 was deliberately chosen to have an offset from the mode switch. As can
be seen in Figure III.33, this leads to the mode switch being barely passed. However,
besides the main probability density mass distributed quite fairly around the critical
flutter velocity of the nominal configuration, a much smaller probability density “bump”
is present at around 80[m/s]. This value is lower than the secondary probability density
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mass in the previous example.
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Fig. III.33 Gaussian KDE of critical flutter velocity (Vf ) response for layup L6
(Table III.7) on uncertain ply angles with a standard deviation of 1◦. The KDE
is obtained by Monte Carlo simulation with 105 samples.

Figure III.34 shows the uncertainty in the polar parameters due to the uncertainties in
the ply thicknesses of layup L6. As the layup is close in nominal polar parameters to
the layup L5 that was examined in the last case, also the uncertainty is similar, apart
from the slightly lower nominal values in the anisotropic polar parameters. The very
different structure of the laminate does not affect the polar properties as much as in the
comparison given between the laminates L3 and L4. Features like the higher uncertainty
in the polar angles are also found in this case.
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Fig. III.34 Histograms of layup L5 (Table III.7) with uncertain ply thickness.
CoV on ply thickness is 5%, histograms obtained with Monte Carlo simulation
using 105 samples
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The propagation results for the critical flutter velocity are given in Figure III.35. Again,
the uncertainty is sufficient to trigger the mode switch, as a second probability density
mass can be identified at around 75[m/s]. However, this second probability density mass
is way smaller than in the previous example and also smaller than in the propagation of
the angular uncertainty. Contrarily to the angular uncertainty example and also the L5
case, the main probability density mass gets a narrower distribution.
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Fig. III.35 Gaussian KDE of critical flutter velocity (Vf ) response for layup L6
(Table III.7) on uncertain ply thickness with a CoV of 5%. The KDE is obtained
by Monte Carlo simulation with 105 samples.

The polar parameter distributions for L6 under the combined influences of the two types of
uncertainty are shown in Figure III.36. As in the propagation examples of the individual
uncertainties, the distributions are close to those of laminate L5 due to the polar parame-
ters being close. The differences in the layup do not lead to significant differences in polar
parameter distributions in this case. As in the L5 example, both of the anisotropic mod-
uli are distributed following bell-shaped histograms roughly centered around the nominal
value, with no noticeable difference in uncertainty. Again, the polar angles are narrowly
distributed around their nominal values which means that the direction of the anisotropic
behaviour stays well-defined despite the uncertainties.
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Fig. III.36 Histograms of layup L6 (Table III.7) with uncertain ply angles and
uncertain ply thicknesses. The standard deviation of the ply angles is 1◦, and
the CoV of the ply thicknesses is 5%. The histograms are obtained with Monte
Carlo simulation using 105 samples.
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When looking at the results for Vf given in Figure III.37, the mode switch can be noticed
again. The probability density mass on the lower-velocity side of the switch is clearly
higher than in the angular uncertainty case and roughly equivalent to the thickness un-
certainty case. The main probability density mass seems to be widened with respect to
the thickness-uncertainty-only case.

Again, there is a significant probability density mass for critical flutter velocities below
the 15% security margin. This shows that it is not necessary to have a configuration
placed directly next to a mode switch to have a significant number of realisations fall into
a range below the classical security margins, and consequently representing a great risk.
This can be visualised by the estimate of the 1% quantile, which is way lower than the
15% security margin.
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Fig. III.37 Gaussian KDE of critical flutter velocity (Vf ) response for layup
L5 (Table III.7) on uncertain ply angles with a standard deviation of 1◦ and
uncertain ply thicknesses with a CoV of 5%. The KDE is obtained by Monte
Carlo simulation with 105 samples.

III.4 Acceleration via polynomial chaos and the polar method

In the previous section, Monte Carlo simulation was used to investigate the uncertainties
in ply thickness and ply angles in the composite plate wing case. However, due to the
high number of solver runs necessary, Monte Carlo simulation becomes cost-prohibitive
already for slightly more complex solvers than the one used in the present study. In the
following, a method will be proposed in order to lower the number of direct runs of the
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solver necessary for the uncertainty quantification. A popular method for acceleration
in stochastic aeroelasticity is polynomial chaos. It is based on a spectral polynomial
expansion in the stochastic space [82]

u(θ) =
M∑

i=1

ûiφi(θ) (III.18)

where the Φi are orthogonal polynomials and the ûi are the so-called expansion coefficients
by which the polynomial base functions are weighted. The response u corresponds here
to the critical flutter velocity Vf , and the θ denote the vector of uncertain parameters.
The number of terms M is given by the following formula [75]

M =
(P + N)!

P !N !
− 1 (III.19)

where P is the polynomial order, and N is the dimension of the parameter vector θ.
In the case of interest of laminated composite structures, the number N of stochastic
parameters is directly proportional to the number of constitutive layers in the stack. In
the case of study here, the number of layers is set to sixteen, meaning sixteen uncertain
orientation angles and sixteen uncertain ply thicknesses (i.e. N = 32). In the realistic
case of more complex aeronautical structures, not only the number of constitutive layers
can be higher, but there might also be several different layups to be considered. The
dependence of the number on terms in the expansion expressed by formula (III.19) is the
reason why polynomial chaos cannot be directly applied on the uncertanties on ply angles
and thicknesses, as the computation of the expansion coefficients becomes expensive (a
phenomenon referred to as “curse of dimensionality” [29]).

Alternatively, one can use homogenised elastic parameters in order to represent the un-
certain behaviour of the laminate, such as the laminations parameters as it is done in
[114]. In this work, the polar method is used to this purpose. As already explained in sec-
tion III.1, the polar representation has several advantages with respect to the lamination
parameters:

• It can be applied to any elastic tensor. Here the tensor of interest is the modified
bending stiffness tensor D̃.

• It provides general expressions of the laminate’s homogenised tensors, so that it
does not imply any simplifying hypothesis on the selected stacking sequences nor
on the uncertainties:

– Unsymmetrical and elastically coupled layups can be considered (general un-
certainty on the ply angles),

– as well as laminates with different layers (uncertainties on ply thicknesses).

However, the probability distribution of laminate’s homogenised elastic parameters, such
as polar parameters, is not Gaussian any more but arbitrary, and the polar parameters
do not behave as independent stochastic variables, but they are correlated through the
laminate’s stacking sequence.
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Soize and Ghanem [118] proposed an extension of the polynomial chaos method to arbi-
trary distributions, which was demonstrated to work with correlated distributions by [94].
This method is often referred to as “arbitrary polynomial chaos” (e. g. [101]). In the
following, the method is presented in detail and applied to the problem of the composite
plate wing.

III.4.1 Polynomial chaos for arbitrary distributions

The arbitrary polynomial chaos (aPC) approach uses Gram-Schmidt orthogonalisation
to provide the necessary orthogonal polynomial basis for the expansion Equation III.18.
Using this approach, polynomial chaos can be deployed on the composite plate wing
problem with uncertain ply thicknesses and uncertain ply angles, where the vector θ of
the stochastic parameters includes the six modified bending polar parameters T D̃

0 , etc.

In the framework of the Gram-Schmid algorithm, orthogonality of the polynomials φi is
defined by a scalar product. The scalar product with respect to the joint probability
density function p(θ) reads [94]

〈φi, φj〉 =
∫

Θ

φi(θ)φj(θ)p(θ)dθ = E{φi(θ)2}δij (III.20)

The orthogonalisation is carried out by performing a series of subtractions of newly added
monomials ej = {1, θ1, θ2, . . . , θ6, θ2

1, θ1θ2, θ1θ3, . . .} to ensure orthogonality with the poly-
nomials created in the previous steps. The steps are as follows [94]

φ0(θ) = 1 (III.21)

φj(θ) = ej(θ) −
j−1
∑

k=0

cjkφk(θ) (III.22)

The coefficients cjk are again calculated using the scalar product Equation (III.20) [94]

cjk =
〈ej(θ), φk(θ)〉
〈φk(θ), φk(θ)〉

(III.23)

The integrals can be evaluated using different methods. While quadratures are an op-
tion, Navarro Jimenez, M.I. et al. [94] use moment-generating functions. However, in the
present case, neither moment-generating functions nor an analytical form of the distri-
bution function is available for the distribution of the polar parameters. The integrals
are thus computed using the Monte Carlo method. This is computationally cheap since
only polynomial evaluations need to be carried out and no calls to solvers are involved.
However, this method limits the precision of the approach. Several tests highlighting this
problem are shown in Appendix B.
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Beside the orthogonal polynomials, the weighting coefficients ûj need to be computed in
order to obtain an approximation of the stochastic response surface. Normally, this is
done again by use of the orthogonality relation Equation (III.20) as [75]

ûi =
〈u(θ), φi(θ)〉
〈φi(θ), φi(θ)〉

(III.24)

In generalised polynomial chaos, these coefficients are computed using quadratures which
are adapted to the distribution. However, as the distribution is not known in this case,
again, quadratures are not available. Instead, a least-squares fit on a set of random points
in the polar parameter space following their distribution is performed [114].

A summary of the complete arbitrary polynomial chaos expansion for the response surface
in Vf is given in Figure III.38.

aPC metamodel (Eq. (III.18))

Expansion coefficients ûi

Least-Squares fitpolynomial basis {φi}

Gram-Schmidt

Orthogonalisation

(Eq. (III.22))

Monomials ej Samples from joint parameter pdf p(θ)

Result samples

Solver

MC samples of parameters

Fig. III.38 Flowchart of the response surface construction using arbitrary poly-
nomial chaos with Monte Carlo integration and least squares fitting of the ex-
pansion coefficients

III.4.2 Dealing with discontinuous response surfaces

While global polynomial chaos approaches like the one given in the previous section
work well for smooth response surfaces, they have difficulties when discontinuities in the
response surface occur [114]. For demonstration purposes, Figure III.39 shows the above
approach applied without any further measures in the case of laminate L5, where a mode
switch due to the uncertain material caused a discontinuity in velocity response. It is clear
that the approximation provided by global arbitrary polynomial chaos (dashed orangle
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line in Figure III.39) does not properly capture the two peaks of probability for Vf due
to the presence of the discontinuity in the random space.
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Fig. III.39 Global aPC of polynomial order three with 105 samples for orthogo-
nalisation of the polynomials and 200 samples for least squares fitting vs Monte
Carlo simulation with 105 samples

In [114], it has been proposed to split the response surface along the discontinuity using a
convex-hull approach, in order to prevent the problems associated with the global response
surface approximation. In this work, an approach based on machine-learning algorithms
is developed, which is easier to automate and avoids the problem of samples falling outside
the regions identified by a convex hull approach after a preliminary sampling.

The machine learning approach used in this work has two main steps.

• In the first step, samples from a preliminary Monte Carlo simulation with only few
samples are used to identify the modal regimes using a clustering algorithm. These
samples are reused in the fitting of the final aPC model in order to avoid additional
calls to the solver.

• In a second step, the information from the clustering step will be used to classify
samples and attribute them to one of the modal regimes identified in the first step.
The classified samples are then fed into the aPC method by modal regime.

In order to identify the different modal regimes, the method is fed with both values of the
critical flutter velocity Vf and the corresponding flutter frequency ωf , which is a strong
indicator of the change in modal regime. An example of the point cloud received in a
propagation of the ply angle and ply thickness uncertainty is given in Figure III.40, where
the uncertainty quantification example on laminate L5 is used for demonstration.
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Fig. III.40 Clouds of example points showing Vf plotted against ωf for layup
L5 (Table III.7). The colors indicate the results of the DBSCAN clustering.

As it is the case in Figure III.2, when a mode switch occurs, most of the time either the
critical flutter velocity Vf or the flutter fequency ωf change drastically (Figure III.40) .
Most of the time, even both Vf and ωf change at the same time. This leads to the points
of different modal regimes being separated by regions where practically no points occur.
This is the scenario for which the DBSCAN algorithm was designed [40]. Consequently, it
is the algorithm of choice for the clustering step in this work, where the implementation in
scikit-learn[104] in version 0.19.0 is used. Moreover, it has the advantage of not taking the
number of clusters as parameter, which is desired because generally, the number of modal
regimes cannot be guessed in advance with absolute certainty. In order to prevent the
algorithm from performing too many splits, the critical core point distance ǫ is adjusted
with respect to the typical spread of the cluster and the minimum cluster size is set to
ten samples.

The clustering assigns labels to the samples of Vf and ωf , which each correspond to a
set of polar parameters, representing the material properties that led to the result in
Vf and ωf . The labels, along with the polar parameters of the samples, but without
the information on Vf and ωf are then used to train a classification algorithm. Three
different algorithms from scikit-learn were tested and classification accuracy was evaluated
by comparison with a clustering result from a full Monte Carlo simulation providing
values of Vf and ωf on the samples in question. A normalisation of the data is performed
before training/classification. The results are shown in Table III.9. As the Multi Layer
Perceptron (MLP) Classifier produces the best results, it is retained for the remainder
of the study. A summary of how the algorithms are chained in this work is given in
Figure III.41. It is interesting to notice that this approach is very general, since it can
independently recognise how many clusters/discontinuities happen in the vicinity of the
point of interest. In partcular, when the response surface is smooth, one single cluster is
automatically detected.
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Algorithm Correctly identified samples (%)
k Nearest Neighbours 92.9%
Support Vector Machine 96.1%
Multi Layer Perceptron Classifier 98.4%

Table III.9 – Percentage of correctly identified samples in a set of 105 Monte Carlo samples
for configuration L5 (Table III.7).
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Fig. III.41 Intervention points of the machine learning approach employed in
the aPC framework

III.4.3 Results of the machine-learning-augmented aPC on the discon-
tinuty

The method introduced above is deployed on the cases L5 and L6, which showed mode
switches in their uncertain response. A preliminary sampling is performed with 1000
samples, which serves for the clustering and the fitting of the different response surfaces.
The final evaluation is performed with 105 samples.

The result for the L5 case is given in Figure III.42. The curves obtained using the
machine-learning-augmented aPC method and a comparison KDE obtained using plain
Monte Carlo simulation are in satisfactory agreement. Also the mode switch is captured
well, as the parts of the distribution are in correct proportion.
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Fig. III.42 Gaussian KDE of critical flutter velocity (Vf ) response for layup L5
(Table III.7) on uncertain ply angles with standard deviation of 1◦ and uncer-
tain ply thicknesses with a CoV of 5%, obtained by aPC with 103 preliminary
samples and 105 samples on the final response surface. Comparison Monte Carlo
simulation has 105 samples
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Fig. III.43 Gaussian KDE of critical flutter velocity (Vf ) response for layup L6
(Table III.7) on uncertain ply angles with standard deviation of 1◦ and uncer-
tain ply thicknesses with a CoV of 5%, obtained by aPC with 103 preliminary
samples and 105 samples on the final response surface. Comparison Monte Carlo
simulation has 105 samples
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In Figure III.43, the result for the L6 example is shown. This example is more challenging,
as few samples fall on the other side of the mode switch, which is difficult to capture by
the low-resolution preliminary sampling used for mode identification and the fitting. This
impacts the results. Effectively, while the main probability density mass close to the value
of Vf obtained with the nominal configuration still is well-resolved, the smaller probability
density mass at lower values of Vf shows visible deviation from the comparison obtained
with plain Monte Carlo simulation.

In cases where no mode switch occurs, the machine learning aPC method falls back to
standard global aPC. This is ensured by the clustering algorithm, which will only identify
one unique cluster in that case. The clusters are counted after this process, and when
only one cluster is found, the classification step is switched off and only one response
surface constructed. An example for that case is given in Figure III.44, where the results
are shown for layup L1. Again, the curves are in satisfactory agreement, confirming the
performance of the method and demonstrating the fallback after machine learning has
only identified one modal regime.
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Fig. III.44 Gaussian KDE of critical flutter velocity (Vf ) response for layup L1
(Table III.7) on uncertain ply angles with standard deviation of 1◦ and uncer-
tain ply thicknesses with a CoV of 5%, obtained by aPC with 1000 preliminary
samples and 105 samples on the final response surface. Comparison Monte Carlo
simulation has 105 samples
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III.5 Conclusion

As example problem, the case of a straight rectangular composite plate wing was con-
sidered for its relative simplicity, but richness in dynamic behaviour, being capable of
producing modal behaviours which also would occur in more complex structures. It was
modelled as a Kirchhoff plate model using a Rayleigh-Ritz approach to solve the dynamic
problem.

On this aeroelastic problem, an uncertainty quantification study on the ply angles and ply
thicknesses of the composite plate was performed, where the impact of the uncertainties
on the critical flutter velocity was evaluated. For purposes of analysis, the impact of the
uncertainties was first examined individually, before a combined study was carried out.

A preliminary deterministic study was performed on the composite cantilevered plate wing
problem. The polar method was employed to reduce the number of parameters to observe
as well as giving a convenient way to identify or construct special material symmetry. This
way, the preliminary study could be limited to the domain of orthotropic materials, which
thanks to the polar method could be visualised with only two parameters representing
the anisotropic part of the material behaviour. The study revealed a complex dependence
of the critical flutter velocity on the elastic properties of the material. This dependence
was shown to have its origin in the modal behaviour of the wing. Most importantly, an
abrupt change in modal behaviour was detected, which in turn leads to an equally abrupt
change in critical flutter velocity. With the modal regime changes the dependence of the
critical flutter velocity on the elastic parameters. In the examined plane of orthotropic
materials, five points were picked for uncertainty quantification, from which six laminate
layup stacking sequences were reverse-engineered.

When the uncertainties in ply angles and ply thicknesses were propagated through the
solver using Monte Carlo simulation, important deviations in the critical flutter velocity
were observed. In these deviations, both uncertainties were found to play a role, although
the uncertainty in the thickness dominates. Most importantly, the mode switch observed
in the deterministic study was triggered. The resulting discontinuity in the critical flutter
velocity clearly undercuts the classical 15% margin on the nominal flutter speed, normally
taken as security measure. This means that mode switches due to manufacturing error are
a significant threat for aeroelastic safety, especially as the most heavily affected configura-
tion in this study represents the optimum in critical flutter velocity. Another interesting
finding was that the square-symmetric layup proved very stable against uncertainties in
the ply angles. Further studies have to be taken to see if this finding can be generalised.

Although the solving methods used in this work are simple and computationally cheap,
doing the stochastic studies by Monte Carlo simulation is computationally costly. For this
reason, the author deployed a polynomial chaos surrogate model in order to accelerate
the computations. The polar method with its significantly reduced number of parameters
helped avoid the “curse of dimensionality”. Other than in previous studies using lami-
nation parameters [114], the uncertainty in the ply thicknesses could be treated, and no
restriction on the ply angle uncertainties such as an artificial symmetrisation had to be
imposed. The correlation occuring in the polar parameters was treated by using a custom
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polynomial basis constructed using the Gram-Schmidt algorithm. The discontinuities in
the response surface due to mode switching were dealt with by splitting the response
surface and modelling the different parts of the response surface individually, where the
splitting was carried out by a machine learning algorithm. This way, a more efficient, fully
automatic technique to compute the stochastic response was constructed. The number
of calls to the solver could be cut from 105 for a plain Monte Carlo simulation to 1000
needed for the training of the machine learning algorithms and the fitting of the response
surface surrogate models.



Chapter IV

Bayesian uncertainty
quantification: aerodynamic
modelling

Because of the coupled nature of the problem, simulation results for the aeroelastic re-
sponse depend very much on the aerodynamic model that is used. The choice of aero-
dynamic operators will change the characteristics of the coupled system such as restor-
ing forces, inertia via added-mass effects and damping. These effects lead to significant
changes in the predictions of the critical flutter velocity, the flutter frequency and the
modal behaviour.

The differences in results between the different aeroelastic models or even different choices
in their parameters give rise to the question which model to choose. As results vary
between scenarios, even with classical comparison with experimental results, an answer
is difficult to give. Bayesian uncertainty quantification regards this open question as
another kind of uncertainty, called epistemic uncertainty, and tries to express it in form
of probabilities and distribution.

In this chapter, this technique will be applied to the question of the choice of the aerody-
namic model and the right values of the corresponding parameters. First, the mathematic
framework will be given. During the presentation of the framework, it will be shown that
a prior belief for the distributions and probabilities is required, which will be defined for
the present models afterwards. Then, a calibration study is conducted, before assessing
different aspects of the model uncertainty.

IV.1 Mathematic framework

In order to be able to attribute distributions, the Bayesian approach defines an error term
ǫ which is used to describe the discrepancy between the simulation results y and the real
value of the quantity of interest q [23]

77
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q = y(x, θ, M) + ǫ(M) (IV.1)

where the θ are the aerodynamic parameters of the model, itself denoted as M, that are
regarded as uncertain. The x are deterministic explanatory parameters, describing the
setup used to determine the configuration that is used to obtain the data. The output of
the model is denoted y, and ǫ is the model error.

Interpretations of this error term vary. While some attribute the error to model in-
adequacy [110, 35], it is more common to regard this error term as an expression for
measurement error [9, 23]. The two interpretations can be reconciled by acknowledging
that “measurement error” includes the possibility that the data does not reflect assump-
tions behind the model. At the same time, this interpretation allows for the inclusion of
actual measurement errors by including multiple points into the set of experimental data
that share the same set of explanatory parameters.

There also is an approach by Butler et al. [21] based on measure theory that does not
possess an error term, but rather directly models the distribution of the data. Techni-
cally, through use of Gaussian kernel density approximations, the latter approach works
similarly, but offers an interpretation of Bayesian statistics that can be properly explained
using a theory of sets. However, this work will stay with the classical approach.

Practically, the error term is often assumed Gaussian, which also is a common description
for measurement error. This will also be adopted in the following. Then, data is intro-
duced as realisations of the quantity of interest. Using the distribution of the error term,
the relation between the model and the data can then be inverted and the likelihood of a
simulation result corresponding to a data point can be computed as [23]

fL(D|θ, M) =
1

√

(2π)n det(Σ)
exp

(

−
1
2

[d − y(θ, M)]T Σ−1 [d − y(θ, M)]
)

(IV.2)

where d is the vector of data points, and Σ is the covariance matrix of the data points,
which allows for including error informations on observables that are functionally linked.

Using this expression, multiple quantities can be derived. In particular,

p(θ|D, M) =
1

Cn
fL(D|θ, M)p(θ|M) (IV.3)

is the posterior distribution for the uncertain parameters θ and Cn is a normalisation
constant, which normally is not given because it is not crucial to the inference process
and thus avoided by giving a proportionality sign [56]. Note that the structure of the
expression resembles Bayes’ theorem.

In case of multiple different models, the model can also be regarded as a parameter.
The distribution between the models is then discrete. To compute the probability of the
individual models, an integration over the model parameters is performed. The individual
model probabilities are then [56]
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P (Mi|D) =
P (D|Mi)P (Mi)

∑Nm

j=1 P (D|Mj)P (Mj)
(IV.4)

where

P (D|Mi) =
∫

Θ

fL(D|θ, Mi)p(θ|Mi)dθ (IV.5)

is the marginal likelihood describing the global likelihood of one individual model with the
uncertain parameters marginalised out. P (Mi) is the prior probability for one individual
model Mi, which is usually assumed flat [56].

In order to accurately make predictions that include the aforementioned errors, there is
an expression which adds the error back onto the simulation results in order to give the
distribution of the quantity of interest [23]

p(q|D, Mi) =
∫

Θ

p(q|θ, Mi)p(θ|D, Mi)dθ (IV.6)

where

p(q|θ, Mi) =
1

√

(2π)n det(Σ)
exp

(

−
1
2

[q − y(θ, M)]T Σ−1 [d − y(θ, M)]
)

(IV.7)

is the distribution of the quantity of interest as a function of the simulation results [9].

In case of multiple models, the predictive distributions can be combined as a sum of the
individual predictive distributions weighted by their model probability, in order to take
profit from different models making different physical assumptions [23]

p(q|D) =
Nm∑

i=1

p(q|D, Mi)P (Mi|D) (IV.8)

The process is called Bayesian model averaging [56].

IV.2 Uncertainty in aerodynamic modeling

The presence of different aerodynamic models generates an uncertainty of choice. In this
work, this uncertainty will be illustrated by using the Wright model [146], as presented
in chapter II and used for plate wing modelling in chapter II.2 and the more common
Theodorsen aerodynamic model [124] as used by Hodges and Pierce [55].

Specifically, the epistemic uncertainty in the choice of parameters is pointed out in the
following.
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IV.2.1 Approximations of Theodorsen’s function

The centerpiece of the unsteady aerodynamic theory by Theodorsen [124] is a function that
models the influence of a model of the wake on the aerodynamic lift and moment. In said
work, Theodorsen derived an analytical expression for the function which depends on the
reduced frequency. However, this function is often described as complicated to implement
[55, 57]. Consequently, a number of approximations have been proposed in the literature.
As first noticed by [43], it is linked to Wagner’s function by inverse Laplace transform
[55, 42], which may have been an additional motivation to recover approximations. Most
examples are aimed at the domain of control theory [63, 64] and are often directly derived
from Theodorsen’s function, either by Padé approximation [137] or balanced truncation
development of state-space realisations of the flutter system [20]. Brunton and Rowley
[20] and Riley [109] provide lists of common approximations in use, of which a selection
sorted by their number of states is presented in Table IV.1 in the form in which they are
found in the respective source.

Nb. of states Reference Function definition
Two states Jones R.T [63] C(k) ≈ 1.0 − 0.165k

k−0.0455ı
− 0.335k

k−0.3ı

Jones W.P [64] C(k) ≈ 1.0 − 0.165k
k−0.041ı

− 0.335k
k−0.32ı

Riley [109] C(k) ≈ (1.0+10.61ık)(1.0+1.774ık)
(1.0+13.51ık)(1.0+2.745ık)

Jones rounded [109] C(k) ≈ 0.015+0.3ık−0.5k2

0.015+0.35ık−k2

Four states Brunton [20] C(k) ≈ 0.5k4
−0.703ık3

−0.2393k2+0.01894ık+2.32510−4

k4−1.158ık3−0.3052k2+0.02028ık+2.32510−4

Vepa [137] C(k) ≈ k4
−0.761ık3

−0.1021k2+2.551ı10−3k+9.55710−6

2k4−1.064ık3−0.1134k2+2.617ı10−3k+9.55710−6

Table IV.1 – Approximations of Theodorsen’s function used to construct the stochastic
lift functions [20, 109]

a) Variability in the function values and flutter results

As shown in IV.1, the different approximations deviate from the original function de-
scribed by Theodorsen. A range of k from 0 to one is examined, as this is the most
realistic range of reduced frequency [55, p. 137]. The original function takes a value of
one with no imaginary part at a reduced frequency of zero. At higher reduced frequencies,
the real part decreases until tending asymptotically to 1

2 . At the same time, the imaginary
part becomes negative, with the minimum value reached at about k = 0.15, but returns
to zero.

The real parts of the different approximations are relatively close to the original function,
with the exception of the rounded Jones’ 1938 model proposed by [109] of which the
real part decreases noticeably more slowly. The model described in [20] matches the
function the most closely in the examined range. The more clear deviations occur in the
imaginary part of the function approximations. Again, the four-states approximations
generally match better, with the model proposed in [20] matching best. The two-states
approximations tend to overestimate the magnitude of the imaginary part, again with the
rounded Jones’ model as the most visible outlier.
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Fig. IV.1 Real and imaginary part of the different approximations of
Theodorsen’s function listed in IV.1 as a function of the reduced frequency k,
compared to the analytical function representation

Obviously, the differences in the function values will affect the prediction of the critical
flutter velocity as shown in chapter II. As example, the values obtained with the different
models in the original validation case of Theodorsen are shown in Figure IV.2.
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Fig. IV.2 Flutter results of the different approximations of Theodorsen’s func-
tion listed in Table IV.1 as a function of the ratio of the natural frequencies in
pitch and plunge without coupling for the reference points given in [124, Fig. 11]
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ω Exp. Theodorsen [124] Jones 1938 [63] Jones 1945 [64] Riley [109] Jones rounded [109] Vepa [137] Brunton [20]
0.33 10.67 9.967 9.952 10.018 9.805 9.943 9.937 9.965
0.5 9.19 8.029 8.107 8.797 7.843 8.171 7.973 8.024

0.83 6.41 6.312 6.402 6.499 6.317 6.261 6.293 6.321
1.0 7.30 6.960 7.255 7.044 6.973 6.805 6.949 6.966

Table IV.2 – Results for critical flutter velocity V ∗

f with the different lift function models
presented in Table IV.1 as depicted in Fig. IV.2.

It can be noted that the models tend to underestimate the critical flutter velocity in the
shown cases, as does Theodorsen’s original function. Most approximations are closest
at point C, where the approximations give results distributed around the experimental
value. In point B, the Jones 1945 [64] model acts as an outlier and provides a prediction
significantly closer to the experimental value than the other models.

The differences highlight the influence of different choices for the parameters on the pre-
dictions. Therefore, a stochastic calibration model will be established in the following.
As the Bayesian approach needs a formulation for the prior belief, prior distributions for
the parameters will be determined first, before adding the data and performing the actual
calibration.

b) Construction of the priors

As the Bayesian uncertainty quantification method is based on Bayes’ theorem, a prior
distribution is necessary to build the stochastic model. The challenge is to specify a prior
distribution that does not include more information than necessary or even available, as
the prior distribution chosen too tight would result in conclusions that are false [21]. A
good indicator can be the information entropy, which assesses the amount of information
contained in a distribution [9].

Observing the approximations from Table IV.1, it is noticed that they can be casted in a
common form [97]

C(k) ≈ 1 −
N∑

j=1

αjk

k − βjı
(IV.9)

where N is the number of states of the model. The values for the coefficients αj and βj

are given in Table IV.3.

α1 α2 α3 α4 β1 β2 β3 β4

Jones R.T (1938) [63] 0.165 0.335 0.0455 0.3
Jones W.P (1945) [64] 0.165 0.335 0.041 0.32

Riley (2011) [109] 0.2346 0.2664 0.074 0.3643
Jones rounded [109] 0.1 0.4 0.05 0.3
Brunton (2013) [20] 0.0396 0.1555 0.2438 0.0612 0.0144 0.0786 0.2522 0.8128
Vepa (1977) [137] 0.0128 0.0333 0.2279 0.2259 0.0045 0.0257 0.1042 0.3976

Table IV.3 – Coefficients of the approximations of C(k) according to Eq. (IV.9).
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In order to highlight the physical meaning of the parameters, the inverse Laplace trans-
form of the functions is examined, which can be used to calculate the response of a wing
profile to a gust and relates the function to the time domain [43, 64, 20]

L−1{C} = 1 −
N∑

j=1

αj exp(−βjτ) (IV.10)

In this form parametrised using the non-dimensional time τ = V t/b, the coefficients βj

can be identified as time scale parameters, whereas the coefficients αj take the role as
weights.

Based on these considerations, a prior belief on their value range can be established by
making the following assumptions:

1. When the wing does not move, thus when the frequency is zero, the lift and moment
are required to be the same as for the stationary solution. Consequently, the real
value of the function at k = 0 has to be one and the imaginary value, which corre-
sponds to a phase shift, has to be zero. limk→0 ℜ(C(k)) → 1, limk→0 ℑ(C(k)) → 0

2. Corresponding to the original function, it is also required that for infinite fre-
quencies, the aerodynamic lift and moment are half of the stationary solution
limk→∞ ℜ(C(k)) → 1

2 , limk→∞ ℑ(C(k)) → 0.

3. The real part of the function has to monotonically decrease between its limit values.

4. The imaginary part of the function must always be smaller than or equal to zero
ℑ(C(k)) ≤ 0, which means that there is a positive phase shift between the flow
motion and the displacmeent of the wing. This is explained by the fact that the
flow cannot anticipate wing movements, but reacts to its changes in position.

For assumptions 1, 3 and 4 to be met, the parameter values have to be positive, which is
also the sufficient condition. However, for assumption number 2 to be true, the sum of
the αj parameters has to be

∑N
j=1 αj = 1

2 . As only two-states models will be treated, this
is ensured by setting α2 = 1

2 − α1.

According to these constraints, the bounds of the domains for the αj parameters are clearly
defined. For given bounds, the maximum entropy distribution is the uniform distribution
[81]. Consequently, the distribution of α1 is set to U

[

0, 1
2

]

The marginal distribution of α2

can be easily calculated to be the same. It has to be noted that because of its functional
dependence on α1, there is correlation. The same approach is also adopted by Sandhu
et al. [113].

For the βj parameters, only the lower bound is given by the above assumptions with
βj = 0. For the upper bound, the limit is less clear. For the constraint of positivity,
an exponential distribution, which has no upper bound, could be adopted. Sandhu et al.
[113] employs a lognormal prior, which does not exclude infinite values, but disencourages
low values, which are observed in almost all models in Table IV.3. However, in the models
listed in Table IV.3, no model has values of βj > 0.813. For this reason, in this work, a
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practical limit of βj = 0.9 is supposed, which is about 10% higher and should cover any
value relevant in practice. This leads to a uniform prior with βj ∼ U [0, 0.9].

The distributions for the parameters αj and βj can thus be summarised as

αj ∼ U

[

0,
1
2

]

(IV.11)

βj ∼ U [0, 0.9] (IV.12)

IV.2.2 Bayesian calibration of Wright’s aerodynamic model

Wright’s model is based on quasi-steady potential flow with an aerodynamic unsteady
moment derivative Mα̇. Although Wright and Cooper [146, p. 168] states that the
derivative depends on the flutter frequency, the value of Mα̇ value is set to Mα̇ = −1.2
for a number of different problems and very different frequency regimes, which suggests
that this can be used as a universal value.
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Fig. IV.3 Flutter results using the Wright model with Mα̇ = −1.2, as a function
of the ratio of the natural frequencies in pitch and plunge without coupling for
the reference points given in [124, Fig. 11].

Results for the flutter cases shown before using this model with Mα̇ = −1.2 are given
in Figure IV.3. While the results match the experimental results quite well for ω = 0.5
and ω = 0.83 and are close to the results obtained with Theodorsen’s function, the
discrepancy is even larger for natural frequency ratios of ω = 0.33 and ω = 1.0. As the
negative of Mα̇ is a damping term and adding damping usually raises the flutter velocity,
this suggests that the value of Mα̇ might actually be lower. It can also be remarked that
the Wright model systematically estimates lower values for the critical flutter velocity
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than the Theodorsen fully unsteady model. Other than the approximated Theodorsen-
type models, it also systematically estimates the critical flutter velocity to be below the
experimental values.

In this work, the Bayesian framework is used to verify the choice of the model parameter
Mα̇ by performing a Bayesian calibration. Afterwards, the pertinence of this model will
be evaluated by setting it up in Bayesian Model Averaging/ Bayesian Model Selection
against the approximations of Theodorsen’s more complex approach.

Again, a reasonable prior has to be established using the available knowledge. Wright
and Cooper [146, p. 168] states that the Mα̇ value is negative, which is also suggested
by Hancock [54]. Finally, the universal use of Mα̇ = −1.2 suggests it to be a kind of
mean value. For −Mα̇ which would be positive, the maximum entropy distribution is an
exponential distribution [81]. The distribution for Mα̇ can thus be given as

p(Mα̇) =







1
β

exp
(

1
β

Mα̇

)

∀Mα̇ < 0

0 otherwise
(IV.13)

and β = 1.2.

IV.3 Parameter calibration

The prior distributions have been set to the minimum of prior knowledge. In the following,
the parameters of the two models are updated using the experimental data from [124]
first shown in this work in Table IV.2. A forward propagation of the prior distribution is
performed. Then, the calibration is performed and its results are analysed with respect
to the propagation of the prior distribution as well as the experimental results.

The calibration is carried out using importance sampling [6], which consists in this case
of a forward propagation of the distribution and an assignment of weights to the samples.
No re-sampling is performed. As sampling distribution, the prior distribution is used.

In order to be able to perform the calibration, the parameters of the error term ǫ and
consequently, the likelihood function Eq. (IV.2), have to be determined. In this case,
starting from the assumption that the error is Gaussian and has zero mean, the only
parameter to be estimated is the error standard deviation σ. This parameter is determined
using the evidence method [6], which means optimising the integrated likelihood. The
curves of the log of the integrated likelihoods are shown in Figure IV.4.
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Fig. IV.4 Log likelihoods log P (D|M) as a function of the error standard devi-
ation for the Wright aerodynamic model and the Theodorsen type approximated
model. Optimal points at σ = 0.6 for the Theodorsen type aerodynamic model
and σ = 1.1 for the Wright type model.

While the standard deviation of the error for the Theodorsen model can be found accord-
ing to the Figure IV.4 to be σ = 0.6, the offset for the Wright model can be found to be
at σ = 1.1. Already, the values are relatively high, given that the nondimensional exper-
imental values for the critical flutter velocities are between V ∗

f = 6.41 and V ∗

f = 10.67
(Table IV.2). Although critical flutter velocities are hard to determine experimentally, an
error of 10% would be unusual. The difference between the two values suggests that at
least a part of the discrepancy between the experimental values and the computational
results can be attributed to model error. Therefore, setting the term for σ just to the
experimental error could be problematic in that case.

IV.3.1 Bayesian calibration of approximations to Theodorsen’s aerody-
namic model

a) Propagation of the prior

Starting from the definitions of the prior distributions defined in Equations (IV.11),(IV.12),
samples are generated from said distributions and propagated through a k-method solver
for the PAPA problem as given in section II.1.2. The results are given in Figure IV.51.

1If the distributions are cut off, this is due to a faulty automatic estimation of their support
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Fig. IV.5 Kernel density estimations for Monte Carlo propagation of prior dis-
tributions through the data points defined in Table IV.2, with 105 samples. The
experimental results are given by the black arrows.

In all of the cases, a significant offset of the maximum probability density from the
experimental value can be found. Only in scenario C, the distribution actually covers
the experimental result with a non-negligible probability density. In scenarios A, B and
D, spikes in probability density can be found where the majority of results of the initial
models fall, too (see Table IV.2).

b) Calibration

Model calibrated Theodorsen-type
Hyperparameters σ = 0.6
Calibrated parameters α1, α2, β1, β2 (aerodynamics)
Data used Scenarios A,B,C,D (Table IV.2)[124]

Table IV.4 – Summary of parameters and data for calibration.

In order to improve the results from Figure IV.5, calibration is performed using the frame-
work used before on all the four data points from [124] which were given in Table IV.2.
The results of this process are given in Figure IV.6. The weighting parameters α can be
found to remain almost flat, meaning they do not change in a meaningful way from the
prior and that no possible value is preferred from another. This is substantially differ-
ent from the value for the β type parameters, where the model shows a clear preference
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for values on the upper end of the given spectrum. Below values of 0.3, the probability
density drops rapidly. However, a small spike remains at values below values of 0.1. This
is consistent with the models shown in Table IV.3, which all have at least one β type
parameter at values between 0.0 and 0.1. However, the results given here do not reflect
that in the literature, there is a cumulation of parameters between about 0.25 and 0.4
(Table IV.3). This could be explained by the frequency range of the experimental results
being limited and thus searching for higher accuracy in low frequency regions, cumulating
parameters at high values.
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Fig. IV.6 Posterior distributions for the two parameter types for the
Theodorsen model using the four data points from [124] given in Table IV.2.

In the previous figure, only marginal distributions for individual parameters were shown.
However, the parameter values are linked via the common model, so correlations are
possible. Figure IV.7 shows pairs of parameters. As the parameters are organised by α, β
pairs in the model, on the left, the marginal distribution of such a pair is shown.
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Fig. IV.7 Posterior distributions for pairs of the parameters for the Theodorsen
model using the four data points from [124] given in Table IV.2.
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Unfortunately, due to the small degree of information obtained during the calibration,
little information about the correlation between the parameters is gained. However, a
drop in probability density on the right lower corner of the figure can be noticed, meaning
that it is more unlikeliy to encounter low values of the β parameters at high values of α
parameters. This is consistent with the models in the literature (see Table IV.3).

While the relation between the α parameters is fixed due to the requirement that their
sum has to give 0.5, no such condition for the β parameters exist. Therefore, the common
marginal distribution for the two betas is shown on the right of Figure IV.7. Again, the
information gain is not high. A drop in probability density can be noticed towards the
lower left corner, which means that is less probable to encounter two β parameters in the
same model that have low values.

The simulation results for the updated parameter distributions are shown in Figure IV.8.
The improvements that are obtained are relatively small. Generally, the probability
density peaks closest to the experimental results get stronger than in the prior distribution,
while the distributions retreat from the end far from the experimental values. However,
despite the probability density mass getting closer to the experimental result, there seems
to be a limit of adaption of the model, beyond which the distributions fail to extend. This
means that the prediction capacities of the model are quite limited for the present data.
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Fig. IV.8 Posterior critical flutter velocity simulation results for the Theodorsen
mdoel using the four data points from [124] given in Table IV.2.

c) Prediction
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Model calibrated Theodorsen-type
Hyperparameters σ = 0.6 (attention: found with 4 datapoints evaluated)
Calibrated parameters α1, α2, β1, β2 (aerodynamics)
Data used Scenarios A,C,D (Table IV.2) [124]
Predicted V ∗

f , scenario B (Table IV.2) [124]

Table IV.5 – Summary of parameters and data for calibration.

In order to give an example for the prediction capabilities of the Bayesian approach,
another calibration will be performed on the three scenarios A,C and D, and the calibrated
model will be used to perform a prediction on scenario B, as it was performed in [97].The
predictive distribution is the forward propagation of the posterior samples with the error
term added. In case of a Gaussian error, this will result in a smoothing effect on the
results.

The example for the predictive distribution is given in Figure IV.9. It has to be noted
that as when calibrating with the three scenarios mentioned, the distribution does not
get informed any better than with four points. Consequently, the predictive distribution
changes only very little when compared to forward propagation with the error added
(“prior predictive distribution”).
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Fig. IV.9 Predictive distribution before and after calibration using scenarios
A,C and D (Table IV.2) with the Theodorsen-type model, setting σ = 0.6,
obtained using importance sampling with 105 samples.
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IV.3.2 Bayesian calibration of Wright’s model

a) Propagation of the prior

As before, the prior distribution is propagated through the model for analysis purposes.
Samples are generated from the exponential prior distribution on Mα̇ Equation (IV.13)
and propagated through the solver, which is a p-method solver in this case (see sec-
tion II.1.1). The corresponding pdf of V ∗

f is given in Figure IV.10.
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Fig. IV.10 Kernel density estimations for Monte Carlo propagation of prior
distributions through the data points defined in Table IV.2, with 105 samples.
The experimental results are given by the black arrows.

Results show that the critical flutter velocity is systematically underestimated by this
model, even when its principal parameter is considered uncertain. The distributions
peak at the side where they are closest to the experimental result, and the probability
density values fall off more or less quickly at velocity values below the peak. The biggest
variations, i. e. higher critical flutter velocity, can be observed in scenarios A and B,
whereas for scenario C, there is only a small variation.

Other than in case of the Theodorsen model, the result of the propagation of the prior
reveals that in no case, the model is actually able to reproduce the experimental value
with Mα̇ within the range of the prior.

b) Calibration
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Model calibrated Wright-type
Calibrated parameters Mα̇ (aerodynamics)
Hyperparameters σ = 1.1
Data used [124], scenarios A,B,C,D (Table IV.2)

Table IV.6 – Summary of parameters and data for calibration.

As on the Theodorsen type model, a calibration is performed on the parameters of the
model, which are here limited to Mα̇. Figure IV.11 shows the calibration results in
comparison to the prior distribution. The distribution for the Mα̇ parameter clearly
shifts to lower values. Below a value of −2, the probability density is zero or almost zero,
also ruling out the value of −1.2 given to the parameter in [146, 123, 114]. Actually, the
probability maximum for Mα̇ can be found at about Mα̇ = −3. Considering that the Mα̇

parameter adds damping to the system, this means that there is much more damping
in the system, which could be of aerodynamic origin. However, the distribution having
non-negligible probability density values between −2 and −6, considerable uncertainty
concerning the value is still present. Moreover, as the right flank of the curve descends
smoothly and has higher values than the prior everywhere, it is possible that the posterior
is not independent from the prior in this case either.
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Fig. IV.11 Posteriors for the Mα̇ parameter of the Wright model using the four
data points from [124] given in Table IV.2.

Figure IV.12 shows the posterior pdf for the non-dimensional critical flutter velocity V ∗

f .
It can be seen that the velocity distributions after calibration are, for cases A, B and
D, much more peaked. Their “tail” on the side off the experimental results is very
much reduced. Although the probability density maximum was already on the side of
the experimental result, the maxima get much higher and in most cases closer to the
experimental value.

The C case, in which the distribution was very peaked and close to the experimental
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result before, actually does show the contrary. The distribution gets flatter, attributing
significant probability density to a much wider range of values. The maximum of prob-
ability density even shifts away from the experimental result. This could be a result of
different effects working on the C case as in the other three scenarios.

Similarly to Theodorsen’s model, it is observed that the models reach a kind of barrier,
beyond which it cannot be improved. Contrarily to the Theodorsen-type models, this is
also the case for case C. While the difference in scenario C is probably due to the ability
of the Theodorsen type models of modelling unsteady effects more correctly, this could
indicate phenomena present in the real-world experiences that are not taken into account
by the models.
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Fig. IV.12 Posterior critical flutter velocity simulation results for the Hancock
model using the four data points from [124] given in Table IV.2.

c) Prediction

Model calibrated Wright-type
Calibrated parameters Mα̇ (aerodynamics)
Hyperparameters σ = 1.1 (attention: found with 4 datapoints evaluated)
Data used [124], scenarios A,C,D (Table IV.2)
Predicted V ∗

f , [124], scenario B

Table IV.7 – Summary of parameters and data for calibration

Again, the calibration is used to perform a prediction for the quantity of interest q, thus
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here values of the normalised critical flutter velocity V ∗

f . The scenarios used for calibration
remain A, C and D, while B is again the scenario for which the critical flutter velocity is
predicted.

Other than in the Theodorsen model case Figure IV.9, the predictive distribution of V ∗

f

for the Wright model changes significantly after calibration as shown in Figure IV.13. A
shift towards the experimental value, which is indicated by the black vertial arrow, is
observed in the distribution. However, the very large standard deviation for the error
term makes that the distribution is very widely spread and heavily smoothed.
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Fig. IV.13 Predictive distribution before and after calibration using scenarios
A,C and D (Table IV.2) with the Wright-type model, setting σ = 1.1, obtained
using importance sampling with 100000 samples.

IV.4 Model uncertainty

As the two models represent different approaches for the aerodynamic forces, and both are
applied to similar use cases, there is the question of which model to choose. This difficulty
leads to a kind of epistemic uncertainty that is an uncertainty of choice, the model or
model-form uncertainty [109]. In this work, this source of uncertainty is addressed by
Bayesian Model Averaging, which calculates model probabilities in order to calculate a
weighted average of the different models [56]. The model probabilities have also been
used to perform model selection [112].

In order to determine the model probabilities for the present case, Equation (IV.4) is
used with the integrated likelihoods of the two models. In both cases, the error standard
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deviation σ is set to the value producing the maximum integrated likelihood, respectively.
The prior model probabilities are supposed to be discrete uniform. As two models are
studied, this corresponds to equal prior model probabilities of 0.5 each. The results for
the posterior model probabilities are given in Table IV.8.

Theodorsen Wright
P (M|D) 0.956 0.044

Table IV.8 – Posterior model probabilities for the Wright and Theodorsen models using
Equation (IV.4). Integrated likelihoods found using σ = 0.6 for the Theodorsen model
and σ = 1.1 for the Wright model (see Figure IV.4), scenarios A,C and D and 105 Monte
Carlo samples for integration.

The Theodorsen aerodynamic approximation has a much higher model probability than
the Wright model. The two models take very different approaches, produce very different
results and would be interesting to average, but the averaging degenerates to a model
selection. Consequently, the Wright model has virtually no influence in the total distri-
bution. This is illustrated in Figure IV.14. The total distribution is very close to the
predictive distribution generated using the Theodorsen-type model alone.
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Fig. IV.14 Individual and total predictive distributions, obtained after calibra-
tion using A,C and D (Table IV.2) and the respective hyperparameter settings
and importance sampling with 105 samples.

This means that probably, the Theodorsen model models the aerodynamics a lot more
accurately. This might come from the fact that the Theodorsen model is designed to
better account for unsteady effects.
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IV.5 Considerations on the choice of the hyperparameters

The choice of the hyperparameters is crucial for the calibration problem. Often they are
chosen as the parameters of the distribution of the experimental error [23]. In the context
of the present work, this approach has, however, two important shortcomings. First, the
experiments furnishing the data were not conducted in the facility where the author works
and information about the experimental error was not provided in the literature. The
author would have to resort to an educated guess, which, due to the complex nature of
the experiments and the dependence on the experimental facilities is difficult to make.
Second, the error starts often from the notion that it can be determined by solely knowing
a number of outputs from the experiments, but without knowing the model, and that the
mean of the experiments and the model output should correspond more or less. However,
when a large discrepancy is present which has its origin in the model, taking solely the
experimental measures as a basis for the definition of the error term is problematic.

As it was demonstrated in [97], the hyperparameters, and most importantly the standard
deviation of the error, determine how well the parameters are informed. For illustration
purposes, Figure IV.15 is reproduced from [97].
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Fig. IV.15 Demonstration of the dependence of the Theodorsen model param-
eters on the error term standard deviation σ from [97]. Differences to the distri-
butions found in this work come from a different definition of the priors.

Different methods for determining the hyperparameters exist. The evidence method was
used in this work, which relies on an optimisation of the integrated likelihood. This is
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equivalent to [97], where it was used under a form commonly known in the context of model
selection as the BIC. However, as the BIC normally implies a number of approximations
not applied in this work [77], it is simply referred to the log-likelihood as parameter to be
optimised.

The other possibility is to calibrate the hyperparameters together with the uncertain
model parameters [76, 34] and was also used in [97]. This is referred to as hyper parame-
ter inference (HPI). To highlight the difference between the two methods, the comparison
between a calibrated pdf with hpi and a pdf obtained using a fixed value for the hyper-
parameter obtained using the evidence method is shown in Figure IV.16.
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Fig. IV.16 Demonstration of the difference between critical velocity distribu-
tions after calibration of the corresponding parameters, conducted with hyper-
parameter inference (HPI) and a fixed hyperparameter value obtained using the
evidence method, taken from [97].

While the hpi procedure calibrates the distributions more easily, it adds some ambiguity
to the calibration result, because the error does not necessarily have to be optimal for all
points of data at all times, but can adapt when one set of parameters produces results
close to one of the datapoints. With respect to a fixed value obtained by the evidence
method, this can lead to certain parameter values being “overpronounced” in probability
density. Obviously, this ambiguity disappears in the context of a maximum a posteriori
(MAP) estimate of parameters, as only one optimal value of the hyperparameter is picked.
To avoid the ambiguity, this work used the evidence method.

IV.6 Introducing a bias

The fact that the prediction show high error standard deviations even after calibration
indicates that there is considerable model inadequacy in the present aeroelastic calibration
analysis. The deterministic results as well as the propagations of the prior and posterior
distributions systematically underestimate the critical flutter velocity. In this subsection,
the error term will be modified, as was already demonstrated in [97] in order to account
for this offset and better model the model inadequacy. Specifically, in order to model the
discrepancy, a constant, positive offset will be introduced into the error term of Equation
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(IV.1), which is repeated below as a reminder.

q = y(x, θ) + ǫ (IV.14)

The introduction of the discrepancy term into the error represents a deviation from the
common assumption of a Gaussian zero-mean error; in this case, the error will have
a mean. In the following, instead of being distributed ǫ ∼ N (0, σ), the error will be
modelled as

ǫ ∼ N (µ, σ) (IV.15)

The mean µ of the error term on the critical flutter velocity V ∗

f is an additional hyper-
parameter. It is determined together with σ as before by using the integrated likelihood
obtained from integration using the likelihood involving the full dataset. The optimal set
of hyperparameters is presented in Table IV.9.

Wright Theodorsen
µ 0.9 0.4
σ 0.3 0.4

Table IV.9 – Optimal hyperparameters for the different aerodynamic models obtained
by optimising the integrated likelihood. The likelihood is calculated on full dataset (Ta-
ble IV.2). The integration is performed using Monte Carlo integration with 105 samples.
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Fig. IV.17 Posterior distribution for Wright model parameter Mα̇ obtained by
calibration on scenarios A, C and D from [124] and the hyperparameters for the
non-zero mean error given in Table IV.9. Posterior distribution obtained using
importance sampling with 105 samples.

Of course, the parameter calibration is affected by the use of the bias. The posterior
distribution for the parameter Mα̇ corresponding to the prediction result in Figure IV.18
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is shown in Figure IV.17. The distribution is shifted to the left with respect to the result of
the ordinary calibration. In addition to that, it only starts to show significant probability
density values at parameter values of below Mα̇ < −2. The tail of the distribution also
extends to lower values of the parameter.

The corresponding predictive distribution in V ∗

f is shown in Figure IV.18. A clear improve-
ment can be noticed. The standard deviation of the predictive distribution is significantly
reduced, and the main probability density mass moves towards the experimental value.
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Fig. IV.18 Predictive distribution for scenario B obtained using the Wright
model calibrated on scenarios A, C and D from [124] and the hyperparameters
for the non-zero mean error given in Table IV.9. Predictive distribution obtained
using importance sampling with 105 samples.

The predictive distribution for the Theodorsen type model is shown in Figure IV.19. As
in the case of the Wright model, the distribution shifts towards the experimental value
that is tried to predict, and the standard deviation of the distribution is significantly
reduced, albeit the difference is not as pronounced as in the Wright aerodynamic model.
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Fig. IV.19 Predictive distribution for scenario B obtained using the Theodorsen
model calibrated on scenarios A, C and D from [124] and the hyperparameters
for the non-zero mean error given in Table IV.9. Predictive distribution obtained
using importance sampling with 105 samples.
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obtained by calibration on scenarios A, C and D from [124] and the hyperpa-
rameters for the non-zero mean error given in Table IV.9. Posterior distribution
obtained using importance sampling with 100000 samples.
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As in the Wright example, the posterior parameter distributions are also influenced by
the bias in the likelihood used for the calibration, as shown in Figure IV.20. The α
weight parameter values now tend more towards moderate values at the center of the
priors instead of the extremes. The maximum probability density of the β time scale
parameter values, before to be found at values between 0.3 and 0.4 can now be found at
values significantly lower, between 0.1 and 0.2.

In conclusion, the adaptation of the error term can improve the prediction. However, it
influences the calibration. It is thus preferable to put more intelligence in the models in
order to suppress eventual errors. However, in this process, a well-adapted error term can
give additional clues about the nature of the error.

IV.7 Critical discussion

In this chapter, a calibration study was performed on two different aeroelastic models
in order to improve the prediction results. While in some cases, an improvement could
actually be achieved, this was not the case for all the scenarios taken into account, and
propagation results were systematically off in many scenarios despite calibration.

The remaining discrepancies point to inadequacies in the models that cannot be fixed by
a calibration of the model parameters as done in the framework of this thesis. Possible
sources of these model errors are listed in the following.

• Friction in the apparatus was not taken into account by the calculation. Adding
friction probably would rise the critical flutter velocity [124], which could be an
explanation why the model so heavily underestimates it.

• The wing used in the PAPA case has a profile [124], while the aerodynamic model is
made for a flat plate. The profile could alter the behaviour of the aerodynamic lift
and moment as a function of the degrees of freedom, as well as make their behaviour
in time more complicated. However, it is difficult to estimate how this would change
the prediction of the flutter response.

The usefulness of the calibrations is further limited by the fact that the aerodynamic
models used in this work, especially the approximations of Theodorsen’s function, are
difficult to calibrate. This comes from the fact that almost any parameter in the models is
frequency-related and will deliver different performances for each scenario. Moreover, the
mapping of parameter values to velocity values is not unique in the case of Theodorsen’s
function’s approximation, which makes calibration harder. Sandhu et al. [113] apparently
tried to solve that problem by a partitioning of the prior parameter space, which would
explain the choice of priors. The approach adopted in this work tried to let the Bayesian
techniques do the work, which led to the posteriors being very ambiguous, and providing
little scientific benefit.

Bayesian model uncertainty quantification methods quickly come to a limit in cases where
the discrepancy between model and experiment is big. The controversy if the error term
in the classical Bayesian framework is a “modelling error” or a “measurement error”
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points to this problematic. Most of the time, it is supposed that the model is perfect
and any error comes from the experiment having deviances (e. g. [50]). In this case,
this means in the case of the Wright model that the experiment would actually create a
quasi-steady potential flow plus some airstream velocity-dependent damping term. In the
case of the Theodorsen model, it would mean that it would have to be some modulated
vortex sheet that is transported in a potential flow. Of course, any experiment can not
even come close to that. The set-theory based Bayesian framework by [21] would not
even allow any deviation, because it assumes that for any point in the data space, there
is a parameter value that accurately predicts the data. In this work, this issue is adressed
by demonstrating the use of a bias term in the PAPA case. This has the inconvenient
that the bias term is not physically motivated, but just describes the error. In this work,
the bias term does not shift the calibration results to values that would be completely
contradicted by different experiments, but nevertheless, the bias term has to be regarded
as a band aid. The author recommends to use more complex physical models that is able
to reproduce the data with its parameters.

A last but considerable weakness is the number of available data points. In this study,
four datapoints with only one feature were available. In the data science domain, this
is considered too small a number in order to reproduce reliable results [69], nor do they
cover enough scenarios to give a universal stochastic model as an output. Moreover, the
aim of any Bayesian study is to get the posteriors independent from the choice of the
priors, but this is clearly not achieved here: in limits and shape of the distributions, the
posteriors clearly remain influenced by the shape and scale of the prior distributions. As
physical considerations were incorporated into the priors and great attention was paid to
pick priors with the biggest entropy possible, the conclusions are prevented from getting
unphysical. Combining data from different experiments may have helped the calibration.
Still, the reader should be clearly warned that any conclusion is tied to the datasets used in
this work and may not be generalisable. In [97] which relied on the same data points and
consequently suffered from the same problem, a study was conducted using interpolated
data to demonstrate that the distributions change from the state that is achieved by the
calibration using the four points “naturally” present. In this work, it will be tried to
solve the problem by adding data from different types of experiments that can contribute
information on the parameters. This will be, together with the problem of calibration in
presence of aleatory uncertainties, the subject of the next chapter.

IV.8 Conclusions

In this chapter, Bayesian calibration was performed in order to obtain stochastic estimates
for the aerodynamic models by Wright and Cooper [146] and approximated versions of
the model by Theodorsen [124]. The calibration was performed using flutter velocity data
from PAPA experiments from Theodorsen [124].

Prior distributions were defined based on information entropy considerations, where phys-
ical constraints and indications on the values of the model parameters given in the liter-
ature were taken into account. As no indications on the experimental error was given in
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the reference, the hyperparameter, namely the standard deviation of the critical flutter
velocity in the likelihood function, was determined using the evidence method.

Using this setup, calibration of the two models was performed. Wright’s model was very
responsive to the calibration, while Theodorsen’s model reacted less clearly. In both cases,
considerable uncertainty was left in the model parameters. The results of the calibrated
models in critical flutter velocity were improved in both models. However, neither of the
models could reproduce the data exactly and in many examples, calibration seemed to be
limited by a barrier.

Model probabilities were calculated for both models using Bayesian Model Averaging.
However, the model probability of the Theodorsen-type models were at 95%, effectively
dismissing Wright’s model. This confirms the expectation that the Theodorsen-type mod-
els due to their unsteady nature are much more effective at predicting the critical flutter
velocities. Consequently, the total predictive distribution was very close to a prediction
using the Theodorsen model alone.

As the models were observed to underestimate the critical flutter velocity even after cali-
bration, a bias term in form of a mean in the error was introduced to improve predictions.
While this approach succeeded in reducing the variance of the predictive distributions and
more accurately predicting the flutter velocity, it had repercussions on the calibration of
the parameters, which could lead to unphysical results.

Finally, several weaknesses of the study were pointed out, the most important of them
being the limited accuracy of the models and the lack of data. In the last part of the
following chapter, this issue will be adressed by incorporating multiple data sources from
different experiment types.
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Chapter V

Application to a composite plate
wing

The examples in the previous chapter relied on a rather simple test case, which was
a pitch and plunge airfoil. A number of experimental data were used to calibrate the
aerodynamic model parameters of selected models. Any additional parameters further
defining the problem were assumed to be deterministic. While this focus on the non-
accessible model parameters is common in Bayesian calibration studies, the assumption
that the other, more accessible parameters in the model are deterministic is not always a
reasonable choice. Uncertainties in other parameters can significantly affect the prediction
and also influence the calibration.

In the following, such a case will be considered by performing the Bayesian calibration,
which was introduced in the previous chapter, on the aerodynamic model parameters
of the composite plate wing problem discussed in chapter III. First, the calibration will
be performed assuming that the composite material is deterministic. Afterwards, the
uncertainty in the composite material as given in chapter III will be inserted into the
problem. Finally, further steps will be taken to refine the uncertainty definitions, separate
the different effects and optimally exploit all given data. In particular, the calibration
procedure will use data from the different kinds of experiments.

V.1 Reference data

In this chapter, the reference data are taken from Hollowell and Dugundji [58], who
performed wind tunnel experiments for flutter on composite plates. The composite plates
used were six-layer layups made of AS1-3501 graphite-epoxy composite material. Its basic
properties are repeated in Table V.1 for convenience.

105
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E1[GPa] E2[GPa] G12[GPa] ν12 ρ[kg/m3] tp[m]
98 7.9 5.6 0.28 1520 0.134 · 10−3

Table V.1 – Engineering moduli and other basic properties for the base layer AS1 3501
composite graphite-epoxy material used in [58].

The layup sequences are given in Table V.2 alongside with the nominal values of the polar
parameters. It must be noted that with respect to [58], the signs of the angles are inverted
because a different sign and axis convention is used. It has to be noted that except for
layup A, none of the layups possesses any particular elastic symmetries, as R0 and R1

are non-zero and the angular difference Φ0 − Φ1 is not a multiple of π
4 (see Table III.1).

Also, all layups have a strong directional character.

Scenario Layup T D̃
0 [Nm] T D̃

1 [Nm] RD̃
0 [Nm] RD̃

1 [Nm] ΦD̃
0 ΦD̃

1

A [02/90]S 0.674 0.601 0.432 0.455 0 0
B [∓45/0]S 0.674 0.601 0.400 0.219 −π

4 −0.744
C [−452/0]S 0.674 0.601 0.400 0.473 −π

4 −0.766
D [+452/0]S 0.674 0.601 0.400 0.473 π

4 0.766
E [−302/0]S 0.674 0.601 0.408 0.482 −0.515 −0.507
F [+302/0]S 0.674 0.601 0.408 0.482 0.515 0.507

Table V.2 – Layups of [58] and the corresponding polar parameters.

In the following, the data from Hollowell’s [58] experiments will be given for free vibration
as well as for the aeroelasticity problem, and compared to the original numeric results as
well as the deterministic results from the solvers presented in Chapter II .

V.1.1 Free vibration data

Scenario Layup ω1[rad/s] ω2[rad/s] ω3[rad/s]
A [02/90]S 69.74 (69.54) 263.89 (248.76) 433.54 (435.80)
B [∓45/0]S 38.33 (40.48) 238.76 (252.44) 483.81 (461.54)
C [−452/0]S 30.16 (30.88) 188.50 (190.77) 320.44 (463.15)
D [+452/0]S 30.16 (30.88) 188.50 (190.77) 320.44 (463.15)
E [−302/0]S 37.70 (39.90) 226.19 (238.34) 364.42 (441.06)
F [+302/0]S 37.70 (39.90) 226.19 (238.34) 364.42 (441.06)

Table V.3 – Free vibration experimental results from Hollowell and Dugundji [58]. Numer-
ical results using eight modes in span-wise and two modes in chord-wise direction given
in parentheses. Note the changed signs, which are due to the z axis pointing downwards
in the framework of this work.

Table V.3 shows the results from the free vibration experiments from [58]. Note that
configurations C and D as well as E and F are identical with respect to free vibration, as
they are just flipped. However, in flutter experiments, this will make a difference.
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It must be noted that the frequencies for the third mode are estimated too high for the
cases C-F, which is due to the number of modes in chord-wise direction being limited to
two. As this shortcoming would affect the estimation of the material properties, modes
above the second mode are left out of the analysis. However, the limitation of chord-wise
modes is necessary for the flutter models which assume the plate to be rigid in direction
of the chord. Nevertheless, this is not expected to affect the flutter prediction by much,
as flutter modes are often of low-order kind [28].

V.1.2 Flutter experimental data

In fact, only the flutter points from cases A, C and E are fully usable for the Bayesian
study (see [58]). Case B’s flutter limit exceeded the maximum speed of the wind tunnel,
so no experimental data had been obtained. Cases D and F are subject to aeroelastic
divergence before they start to flutter. Aside from the fact that the k-type aeroelastic
solver used in this work cannot predict divergence, only the quasi-stationary part of
the aerodynamic model contributes to the limit speed. Consequently, these scenarios are
useless for calibrating the model parameters identified as epistemically uncertain, because
these are all related to unstationary effects.

The original results from [58] are given in Table V.4, along with the numerical results of
the original article, which are given in parentheses. Hollowell and Dugundji [58] article
uses beam functions and a camber correction as the mode shapes, and Theodorsen aero-
dynamics with Jones’ 1938 approximation to Theodorsen’s function [57]. In case A, both
the flutter velocity and the flutter frequency are significantly lower than the values found
by experiment. In contrast, the flutter velocity calculated for the C and E cases is very
close to the experimental results, while the calculated flutter frequencies are considerably
higher than their equivalents found experimentally.

Case Flutter speed Vf [m/s] Flutter circular frequency ωf [rad/s]
A 25 (21.0) 182.21 (157.08)
C 28 (27.8) 150.80 (175.93)
E 27 (27.8) 175.93 (194.78)

Table V.4 – Flutter data from [58], obtained for the wings with geometric specification
given in Table III.2 and material configurations given in Tables V.1 and V.2. Only usable
points with experimental data for flutter are given. The numerical results from the original
article are given in parentheses

The numerical flutter results obtained by applying the two aerodynamic models pre-
viously introduced in this work, namely the Wright model and the implementation of
Theodorsen’s model as described in Chapter II, are shown in Table V.5.
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Case Flutter speed Vf [m/s] Flutter circular frequency ωf [rad/s]

Wright
A 13.49 201.30
C 28.64 176.25
E 22.68 193.84

Theodorsen
A 21.00 159.00
C 30.89 161.03
E 27.02 176.25

Table V.5 – Deterministic numerical results using Wright’s original model with Mα̇ = −1.2
and Theodorsen’s model with the original function from [124]. Geometric specifications
for the plate wings are given in Table III.2 and material configurations given in Tables V.1
and V.2

The Wright model delivers mixed results for the choice of the instationary parameter
Mα̇ = −1.2. In scenario A, the frequency is overestimated, while the result for the critical
flutter velocity lies considerably below the experimental or original numerical results.
The results for scenario C are much closer, with the critical flutter velocity predicted
to within below 1[m/s], and the flutter frequency predicted to within 20[rad/s]. The E
scenario lies in between the two extremes, with the critical flutter velocity considerably
underestimated, albeit not by as much as in the A scenario, and the flutter frequency is
once again overestimated by ≈ 20[rad/s].

The Theodorsen model delivers much more consistent results with respect to the experi-
ments, with the predicted critical flutter velocity being much closer to the experimental
values than the Wright model. Again, the prediction for scenario A is the worst. The
model does worse for the C scenario than its Wright counterpart, but better for the E
scenario, where the velocity matches the experimental result very closely. The frequency
estimates are also closer, but consistently underestimated except for the E scenario, where
the frequency calculation is remarkably close. It is to be noted that these results are differ-
ent from the original numerical results from [57, 58], which is partly due to the different
assumed mode shapes, but also to the use of Theodorsen’s function instead of Jones’
approximation.

V.2 Bayesian study on the aerodynamic models with de-
terministic material

In this section, the data presented in the beginning of this chapter will be used to perform
a calibration of the aerodynamic parameters, as it was done in Section IV.3 for the PAPA
case from [124]. However, for the plate wing, frequency data is available, which is expected
to alter the results. Moreover, the modal shapes play a more fine-grained role in the
ratio between the pitch and plunge movements that the two models depend on, which
could provide additional information. Nevertheless, the physical assumptions made to
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construct the priors remain valid. Therefore, the same priors as in the previous chapters
are employed.

The hyperparameters are identified using the evidence method introduced in section IV.3,
where different σ values for frequency σω and velocity σV are searched for. As before, the
experiments are supposed independent. Moreover, it is assumed that the flutter frequency
and the flutter velocity are not correlated. This gives the covariance matrix a diagonal
structure. Each of the two hyperparameters is supposed to have the same value for each
experiment in this case. Consequently, only two values have to be calibrated. Hollowell
and Dugundji [58] gives the frequency results in steps of 1[Hz] = 2π[rad/s] and the
velocity results in steps of 1[m/s]. Consequently, the optimisation of the hyperparameter
values is performed in the same way.

Results are given in Table V.6, where the lines are a function of the standard deviation in
critical flutter velocity, while the columns represent the flutter frequency. The maximum
value of the integrated likelihood is found for the Wright model at σV = 5[m/s] and σω =
2[Hz], while for the Theodorsen model, the maximum value is obtained for σV = 4[m/s]
and σω = 2[Hz]. The method thus claims the Theodorsen model to be slightly more
precise.

Wright
σV [m/s]/σω[Hz] 1 2 3 4 5 6
1 -45.89 -33.02 -30.76 -30.38 -30.47 -30.70
2 -30.83 -25.95 -25.09 -25.08 -25.32 -25.63
3 -27.46 -23.74 -23.56 -23.84 -24.22 -24.60
4 -26.56 -23.03 -23.01 -23.38 -23.81 -24.22
5 -26.39 -22.88 -22.89 -23.29 -23.72 -24.15
6 -26.47 -22.98 -22.97 -23.36 -23.80 -24.22

Theodorsen
σV [m/s]/σω[Hz] 1 2 3 4 5 6
1 -34.81 -28.89 -28.13 -28.11 -28.28 -28.53
2 -26.04 -22.37 -22.19 -22.50 -22.88 -23.26
3 -24.68 -21.28 -21.26 -21.66 -22.09 -22.50
4 -24.54 -21.14 -21.16 -21.66 -22.09 -22.50
5 -24.72 -21.29 -21.32 -21.73 -22.19 -22.61
6 -24.99 -21.54 -21.56 -21.97 -22.44 -22.86

Table V.6 – log(P (D|M)) for the aerodynamic models in the plate flutter problem, using
the nominal values of the composite stiffnesses as deterministic explanatory parameters.
The maximum value is best. Integrated likelihood obtaines using Monte Carlo simulation
with 105 samples.

As before, the calibration study will start with the Wright model. In Table V.7, the
calibrated parameters, and the choices for the datapoints used for calibration and the
hyperparameters are summarised.
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Model calibrated D Wright-type
Calibrated parameters θ Mα̇ (aerodynamics)
Hyperparameters σVf

= 5, σω = 4π

Data used D [58], scenarios A,C,E (flutter data) (Table V.4)

Table V.7 – Summary of calibrated parameters, settings and data for calibration of the
Wright model supposing deterministic material stiffnesses

Figure V.1 shows the calibration results for the Wright model obtained using the plate
flutter dataset from [58] in comparison to the calibration results obtained using the PAPA
dataset, which were presented in Chapter IV.3. While the shape of the posterior is
confirmed, the distribution curve gets steeper and narrower, which means that more
information is drawn from the plate flutter dataset. This could be due to the fact that
contrarily to the PAPA dataset, the plate flutter dataset also contains information on
the flutter frequency. Moreover, the curve shifts more to the left, with the maximum
probability density now at about Mα̇ = −3. This could be due to the fact that the two
datasets map computationally to different frequency ranges and would support the claim
by [146] that the value of the parameter could be frequency-dependent. Another possible
reason for the difference could be the presence of structural damping in the PAPA used
by [124], which the model does not account for. As Mα̇ adds to the global damping in
the model, information about damping could instead go into the parameter originally
intended for aerodynamic modelling.
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Fig. V.1 Posterior for the Wright model aerodynamic parameter obtained us-
ing the plate flutter data from [58] compared to posterior obtained using the
PAPA data from [124]. Distribution obtained using importance sampling with
105 samples.

The corresponding frequency and velocity distributions are shown in Figure V.2. While



V.2 Bayesian study on the aerodynamic models with deterministic material111

the propagations of the priors often are relatively widely spread, the model response
approaches the experimental value in all cases. The most clear case is scenario C, where
the model had a split in the frequency range and thus considered two modal regimes. The
final distribution has only one modal regime. However, this restricts the modeling capacity
in a way that in comparison to the prior, less samples fall on the experimental result for
the velocity. Generally, the model does not cover all experimental results with significant
probability density, meaning that it is not capable of simulating all experimental results
with one set of parameters.
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Fig. V.2 Posterior velocity and frequency results of the Wright aerodynamic
model with the nominal material properties used and using only the flutter data
from [58] (Table V.4). Distribution obtained using importance sampling with
105 samples.

.
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Model calibrated M Theodorsen-type
Calibrated parameters θ α1, α2, β1, β2 (aerodynamics)
Hyperparameters σVf

= 4, σω = 4π

Data used D [58], scenarios A,C,E (flutter problem) (Table V.4)

Table V.8 – Summary of calibrated parameters, settings and data for the Theodorsen
model on the plate wing case from [58], supposing deterministic material stiffnesses.

The calibration results for the Theodorsen model are shown in Figure V.3 and compared
to the previous calibration results using the data from Theodorsen’s experiments, which
were given in Figure IV.6. Generally, it can be stated that the parameters are better
informed. The distributions for the weighting parameters αj that were previously stated
flat have become more accentuated, with the maximum between 0.1 and about 0.35, which
corresponds to the model in use. The time scale parameters βj generally shift to the left,
and a new local maximum at values between 0.3 and 0.4 develops. The small local peak
at values below 0.1 is confirmed and considerably strenghtened.
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Fig. V.3 Posteriors for the Theodorsen model aerodynamic parameters ob-
tained using the PAPA flutter data from [124] compared to posteriors obtained
using plate flutter data from [58] (Table V.4). Distribution obtained using im-
portance sampling with 105 samples.

Figure V.4 shows the corresponding results in critical flutter velocity Vf and flutter
frequency ωf . The improvements in Vf remain relatively small, but the maximum of
probability density moves nevertheless towards the experimental result. In contrast, the
reduction of uncertainty for the critical flutter velocity is visible more clearly.

However, the model takes less profit from the data than the Wright model. This might
come from the fact that in comparison to the latter, already the prior propagation results
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were quite close to the experimental results. Again, coverage of the experimental results
with samples is not ideal, and during calibration, often the probability density for the
individual experimental value is even lowered, as for the velocity and the frequency in
scenario A and C. This means that this model is not capable of perfectly simulating all
results at once, either.

The gain in information in both scenarios may come from the fact that in the Hollowell
and Dugundji [58] dataset, frequency data is available, which was not the case in the [124]
dataset. Moreover, in the Hollowell and Dugundji [58] scenarios, the modal behaviour is
more complex than in the two-degree-of-freedom configuration in the PAPA scenarios,
which might also contribute to the fact that more information is obtained.
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Fig. V.4 Posterior velocity and frequency results for the Theodorsen aerody-
namic model with the nominal material properties used and using only the flut-
ter data from [58] (Table V.4). Distribution obtained using importance sampling
with 105 samples.

.

The differences in the distributions can have multiple sources. It is possible that the avail-
ability of frequency information in the composite plate wing scenarios also contributed to
the shift in value, as the Bayesian technique just shifts the values of the parameters to the
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combination that is “easiest” to obtain, meaning different results can be obtained when
the model just has to predict the velocity data as when it has to respect both velocity and
frequency constraints. Another probable reason for the shift could be that the two sets
of scenarios cover different frequency ranges, which could provoke a difference notably
in any parameter linked to time scales. This would also explain the big differences in
calibrations for the β parameters of the Theodorsen models.

Finally, the model probabilities for the two models are evaluated as in the previous chap-
ter. The results are given in Table V.9.

Wright Theodorsen
P (M|D) 0.15 0.85

Table V.9 – Model probabilities for the plate wing problem with deterministic material
parameters, calculated using Monte Carlo simulation with 105 samples.

Again, the Theodorsen model has a much higher model probability. However, compared
with the PAPA problem (see Table IV.8), the model probabilities are more favourable for
the Wright model. This could possibly indicate that the role of the unsteady modeling
provided by the Theodorsen model is less important in this case, making the decision
between the two models less clear. Another possibility is that the Wright model is more
suited for the frequency range of the plate wing experiments [58] used as data than for the
frequency range of the PAPA data. However, as no explicit information on the frequency
in the PAPA data was given, this remains speculation.

V.3 Bayesian study including uncertainty in the composite
material

The aerodynamic models benefit from stochastic calibration, as demonstrated by the re-
sults shown for a PAPA model in section IV.3 and for a composite plate wing model in
the previous section V.2. However, in the latter case, the material can be a considerable
source of uncertainty. As this uncertainty originates in the manufacturing process and
in measurement errors, it is assumed to be aleatory in nature, as discussed in chapter I.
The consequences of such an uncertainty on the critical flutter velocity have been demon-
strated in chapter III. Not taking this uncertainty into account could obviously distort
the calibration results. In this section, an attempt is made to calibrate the aerodynamic
model while taking into account an aleatory uncertainty in the material in the prediction
of the flutter onset for the composite plate wing.

Two approaches are possible. Jakeman et al. [61] proposes to sample the aleatory un-
certainty and for each sample of the aleatory uncertainty choice, sample the conditional
posterior pdf for the given sample. In the end, the results for the different samples of
the aleatory uncertainty are combined. In this work, another approach is taken such that
the aleatory uncertainty is treated as epistemic uncertainty and added to the parameters
θ. If the uncertainty is aleatory, i.e. irreducible, its distribution will not change and the
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result should be the same for both methods. Otherwise, this approach will show that the
distribution selected for the uncertainty is not actually represented by the data.

Technically, the calibration of the material will be performed supposing the error in
the stacking sequence being the same. Consequently, common error terms are sampled,
which are then added to the nominal stacking sequences in order to obtain the disturbed
sequences. These realisations are then used to calculate the polar parameters which are
presented. I will nevertheless refer to the polar parameters as the uncertain parameters.

Model calibrated M Wright-type
Calibrated parameters θ Mα̇ (aerodynamics), T D̃

0 , T D̃
1 , RD̃

0 , RD̃
1 , ΦD̃

0 , ΦD̃
1

Hyperparameters σVf
= 5, σω = 4π

Data used D [58], scenarios A,C,E (flutter problem) (Table V.4)

Table V.10 – Summary of calibrated parameters, settings and data for the Wright model
on the plate wing case from [58], with uncertain material stiffnesses.
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Fig. V.5 Posterior distributions for the polar parameters for scenario A from
[58], calibrated together with the Wright model on scenarios A, C and E, in com-
parison to the assumed distribution, used here as a prior. Distribution obtained
using importance sampling with 105 samples.
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The marginal posterior distributions for the polar parameters when calibrated together
with the Wright model on the three flutter scenarios from Table V.4 are shown in Fig-
ure V.5. While the distributions for the module parameters remain relatively close to the
assumed distribution, they still are informed by the added data, which leads to a slight
change, which can nevertheless be noticed.

The probability density functions for the parameters T0, T1, R0, R1 all show a shift to lower
values, which could indicate that the stiffness is lower than initially assumed. At the same
time, as all the parameter distributions shift in the same way, the material symmetry
behaviour is not assumed to be altered with respect to the assumption underlying the
prior distribution. One possible reason for the lower parameter values could be that the
plies tend to be thinner than initially assumed. An alternative explanation would be
lower elastic properties of the base material, even if those were not initially considered
to be uncertain. However, the two effects are indistinguishable in the homogenised polar
parameters, so neither of the two reasons can be ruled out.

The small changes in distribution of the stiffness properties could have multiple meanings.
One interpretation could be that the supposed distribution used as a prior is close to the
actual aleatory distribution, which would be the most favorable outcome. In that case,
it could be used as a reasonable guess for the aleatory uncertainty. Another possible
interpretation is that the experiments do not provide much information on the material,
or that the other uncertainties present in the problem “drown” the material uncertainty,
which cannot be determined further. In that case, this would mean that the supposed
distribution does not picture the uncertainty in the material parameters correctly. In
that case, an epistemic uncertainty about the true distribution of the material parameters
arises.
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Fig. V.6 Posterior distributions for the aerodynamic parameters of the Wright-
type model, calibrated on scenarios A, C and E with uncertain material parame-
ters, in comparison to the posterior distributions obtained by calibration on the
same dataset assuming the nominal values of the polar parameters to be deter-
ministic. Distribution obtained using importance sampling with 105 samples.

The inclusion of the uncertainty in the stiffness of the composite material has almost
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no effect on the calibration of the aerodynamic unsteady angular moment derivative Mα̇

in this case, as shown in Figure V.6. The maximum of probability density is slightly
lower, and the maximum moves towards higher values by a small amount. However, these
changes are not significant.
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Fig. V.7 Posterior results for critical flutter velocity and flutter frequency ob-
tained with the Wright model after calibration using plate flutter data from [58]
(Table V.4). Distribution obtained using importance sampling with 105 samples.

In contrast, the posterior results for the velocities and frequencies shown in Figure V.7
are more clearly affected, especially in the critical flutter velocity. In most cases, the
distribution is widened, which comes from the added entropy through the inclusion of
the uncertainty in the material stiffness. The biggest effect can be observed in scenario
C, in which the velocity was previously resolved best. In the other cases, especially
for the frequencies, the difference is smaller, with the extreme in scenario A where the
distribution nearly does not change.

In the following, the calibration study will be repeated with the Theodorsen model, for
which the parameters calibrated as well as the choices for hyperparameters and datapoints
are given in Table V.11. Note that other than for the Wright model, the error standard
deviation in frequency has become bigger and is now 3 · 2π due to the added uncertainty.
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Model calibrated M Theodorsen-type
Calibrated parameters θ α1, α2, β1, β2 (aerodynamics),

T D̃
0 , T D̃

1 , RD̃
0 , RD̃

1 , ΦD̃
0 , ΦD̃

1 (material)
Hyperparameters σVf

= 4, σω = 6π

Data used D [58], scenarios A,C,E (flutter problem) (Table V.4)

Table V.11 – Summary of calibrated parameters, settings and data for the Theodorsen
model on the plate wing case from [58], with uncertain material stiffnesses.
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Fig. V.8 Posterior distributions for the polar parameters for scenario A from
[58], calibrated together with the Theodorsen model on scenarios A, C and E,
in comparison to the assumed distribution, used here as a prior. Distribution
obtained using importance sampling with 105 samples.

Again, the calibration results for the material parameters are shown first for the A sce-
nario. The estimates of their probability density functions are given in Figure V.8. As in
the previous study using the Wright model (Figure V.8), the distributions of the param-
eters do not change much with respect to the given prior, but hint again that it may not
be a purely aleatory distribution. Moreover, the uncertainty is reduced slightly. How-
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ever, instead of a small shift to lower stiffness values as in the case of the Wright model,
the curves of the posterior distributions show a tendency towards higher values for the
moduli. This indicates that with the Theodorsen model, the material is expected to be
globally stiffer. Finally, the polar angles are predicted to be slightly more uncertain than
assumed in the prior.

The posterior distribution for the weight parameters αj gets slightly more flat, which
means that the uncertainty in these parameters are increased. Moreover, a clear maximum
can no longer be distinguished.

In the distribution of the time scale parameters βj , two important changes can be noticed.
The local peak which was between values of 0.3 and 0.4 when calibrated assuming the
composite material to be deterministic has shifted left, with the maximum probability
density now to be found between 0.2 and 0.3. Moreover, the second peak at values
between 0.0 and 0.1 is not as marked as with calibration assuming a deterministic material.
This shift in the β values can be interpreted that the uncertainty in the material has a
considerable effect mostly on the time scale of the flutter phenomenon and gives way to
lower time scale parameters.

0.5

1.0

1.5

2.0

2.5

3.0

0 0.1 0.2 0.3 0.4 0.5

p
(α

1
)

α1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8

p
(β

1
)

β1

plate wing, deterministic material
plate wing, stochastic material

Fig. V.9 Posterior distributions for the aerodynamic parameters of the
Theodorsen-type model, calibrated on scenarios A, C and E with uncertain
material parameters, in comparison to the posterior distributions obtained by
calibration on the same dataset assuming the nominal values of the polar pa-
rameters to be deterministic. Distribution obtained using importance sampling
with 105 samples.

The results are reflected in the posterior results for the critical flutter velocity and the
flutter frequency, which are shown for the Theodorsen model in Figure V.10. While
the probability density maximum for the velocity in scenario A and E approaches the
experimental result, it shifts away in scenario C, and the frequency adjusts in the “right”
way in scenario E. However the probability density maximum shifts away from the
experimental result in scenario A, and remains alsmost indifferent in scenario C.
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Fig. V.10 Posterior results for critical flutter velocity and flutter frequency
obtained using the Theodorsen type model after calibration using plate flutter
data from [58] (Table V.4). Distribution obtained using importance sampling
with 105 samples.

The model probabilities are re-evaluated for the case of the uncertain material. They are
given in Table V.12.

Wright Theodorsen
P (M|D) 0.232 0.768

Table V.12 – Model probabilities for the plate wing problem with stochastic material
parameters, calculated using Monte Carlo simulation with 105 samples.

The added uncertainty in the material parameters leads to a rise in the model probability
for the Wright model compared to the case for the deterministic material (Table V.9).
Several explanations can be given for this change. One possibility that the model is more
stable in its response to the changes in stiffness. Another possible explanation is that
the model probabilities are only able to highlight differences between the models, which
are blurred by the added uncertainty in the material parameters. As a consequence, the
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model probabilities would be closer to each other.

V.4 Using multiple sources of data

As the material has been shown to have a significant influence on flutter predictions and
the material uncertainty having an impact on calibration of the aerodynamic parameters,
it will be investigated in the following how the use of the free vibration data can improve
the calibration of the aerodynamic parameters.
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Fig. V.11 Priors and posteriors obtained using free vibration data from [58] for
scenario A as given in Table V.3. The nominal values are indicated by the vertical
arrow. Distributions obtained using importance sampling with 105 samples.
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To have a base for comparison, a calibration of the material parameters has ben carried
out using the Bayesian formalism and the free vibration data from Hollowell and Dugundji
[58]. The same plate model as for the wing was used to evaluate the frequency response
of the first two modes. In Figure V.11, an example is given for scenario A. For the
modulus parameters, the uncertainty was significantly reduced in that scenario, while
the uncertainty in the polar angles augments slightly. Moreover, the material is found
to be less stiff than assumed when using the nominal values from the original article.
The results for the other layups are similar. A full account of the Bayesian study of the
material parameters by exploiting the given free vibration data is given in appendix C.
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Fig. V.12 Posteriors obtained for the composite material parameters calibrated
together with the Theodorsen model using data from flutter experiments and
free vibration experiments from [58] and PAPA flutter experiments from [124],
compared to posteriors obtained using [58] free vibration data only. Distribution
obtained using importance sampling with 106 samples.

As the material parameters can thoroughly be determined from the free vibration data
alone and the flutter problem is highly related to the free vibration problem, the changes
in the calibration of the aerodynamic model do not affect the composite material distri-
butions. Effectively, the distributions remain virtually unchanged, as is shown in Fig-
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ure V.12. Note that for the combined study, for reasons of a convergence problem, 106

samples are used instead of 105.

This combined calibration can be shown as equivalent to gaining priors using Bayesian
techniques and adding them to the model afterwards, provided the errors made in the
different experiments are independent.

Consider two sets of epistemically uncertain parameter vectors θI , θII which are inde-
pendent a priori. Consider furthermore two sets of data DI and DII , where DI contains
data from experiments where both the parameters from θI , θII play a role, whereas DII

contains only data for which only θII is relevant. Then, the joint posterior for common
calibration is written similarly to Equation (IV.3)

p(θI , θII |DI , DII , M) ∝ f(DI , DII |θI , θII , M)p(θI |M)p(θII |M) (V.1)

Assuming a posterior for θII can be constructed such that

p(θII |DII , M) ∝ f(DII |θII , M)p(thetaII |M) (V.2)

and that the errors are independent, the likelihood function may be factorised such that

p(θI , θII |DI , DII , M) ∝ f(DI |θI , θII , M)f(DII |θII , M)p(θI |M)p(θII |M)

∝ f(DI |θI , θII , M)p(θII |DII , M)p(θI |M)
(V.3)

which means that p(θII |DII , M) takes the role of a prior.

Consequently, it can be stated that the additional information provided by the flutter
experiments does not change a “prior” that would be gained by Bayesian calibration
using the free vibration experiments. This reinforces the claim stated before that a well-
defined prior does not change further when tried to be calibrated together with other
parameters with epistemic uncertainty.

Model calibrated M Wright-type
Calibrated parameters θ Mα̇ (aerodynamics), T D̃

0 , T D̃
1 , RD̃

0 , RD̃
1 , ΦD̃

0 , ΦD̃
1 (structure)

Hyperparameters σVf
= 5, σω = 4π (plate flutter problem),

σV ∗

f
= 1.1 (PAPA flutter), σω1 = 0.15 · 2π, σω2 = 1.5 · 2π

Data used D [58], scenarios A,C,E (plate flutter problem, Table V.4),
[58], scenarios A,B,C,D,E,F (free vibration problem, Table V.3),
[124] A,B,C,D (PAPA flutter problem, Table IV.2)

Table V.13 – Summary of calibrated parameters, settings and data for the Wright model
for all data points from [58] and [124] combined.

Figure V.13 shows the results of the calibration of the Wright model using all available
data points. That is, the flutter results using the PAPA data from [124], the free vibration
data from [58] and the plate flutter data from that same article. The results are compared
to the previous calibration using only flutter data from [58].
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Fig. V.13 Posterior obtained for the Wright model parameter using data from
flutter experiments and free vibration experiments from [58] and PAPA flutter
experiments from [124], compared to posteriors obtained using [58] flutter data
only. The distributions obtained using importance sampling with 106 samples.

It can be observed that the shape of the posterior distribution resembles very strongly
the calibrated curve from the previous plate flutter studies and is much narrower than
its equivalent only calibrated on the PAPA data. Spikes in the curve may be numerical
artefacts.

Figure V.14 shows the results for the four PAPA scenarios defined in [124] obtained with
the Wright model, after calibration with all the data available, free vibration data in the
plate case included. The results for the PAPA data points can be shown to be improved,
as the probability density distributions for the critical flutter velocity all get narrower in
place or even move towards the experimental data. This can be interpreted as result of
the information gain provided by the plate flutter problem, while the added uncertainty
of the material parameters does not play as much of a role. Nevertheless, the “invisible
limit” of the model is still preserved, the improvements stopping at an imaginary barrier.
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Fig. V.14 Posterior velocity results for the PAPA datapoints for the Wright
model after calibrations using datasets A-D from [124], free vibration datapoints
on the first two modes from scenarios A-F from [58] as well as velocity and
frequency data from scenarios A,C and E from the same paper, compared to
calibration using only the Theodorsen data. The distributions are obtained using
importance sampling with 106 samples.

Also in the plate flutter case depicted in Figure V.15, improvements are observed after
calibration with all the data available, in scenarios C and E. Actually, the experimen-
tal values are captured quite well in case of the velocity in scenario C and especially in
frequency in scenario E. However, the remaining offsets still point out the model inad-
equacy discovered earlier. It is remarkable that especially in scenario A, the results do
not improve much in neither of the quantities of interest, and even get much worse in
the frequency. This could be due to some more complex modal behaviour, which was
discovered by [28].
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Fig. V.15 Posterior velocity results for the plate flutter datapoints for the
Wright model after calibrations using datasets A-D from [124], free vibration
datapoints on the first two modes from scenarios A-F from [58] as well as veloc-
ity and frequency data from scenarios A,C and E from the same paper, compared
to calibration using only the Theodorsen data.Distribution obtained using im-
portance sampling with 106 samples.

Model calibrated M Theodorsen-type
Calibrated parameters θ α1, α2, β1, β2 (aerodynamics), T D̃

0 , T D̃
1 , RD̃

0 , RD̃
1 , ΦD̃

0 , ΦD̃
1 (structure)

Hyperparameters σVf
= 4, σω = 6π (plate flutter), σV ∗

f
= 1.1 (PAPA flutter),

σω1 = 0.15 · 2π, σω2 = 1.5 · 2π

Data used D [58], scenarios A,C,E (plate flutter, Table V.4),
[58], scenarios A,B,C,D,E,F (free vibration problem, Table V.3),
[124] A,B,C,D (PAPA flutter, Table IV.2)

Table V.14 – Summary of calibrated parameters, settings and data for the Theodorsen
model for all data points from [58] and [124] combined.
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The calibration results of the aerodynamic parameters are presented in Figure V.9. In
comparison to the calibration performed with only the plate flutter data taken into ac-
count, almost the same distribution for the weight parameters αj is found. A more
important change is noticed in the time scale parameters βj . The peak for low values of
βj < 0.1 is strengthened, while the second local probability density maximum situated
roughly between βj = 0.2 and βj = 0.3 gets lower. Other than could be expected, the ten-
dency towards higher time scale parameters found in the calibration of the aerodynamic
parameters on the PAPA data cannot be noticed much in the present example.
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Fig. V.16 Posteriors obtained for the Theodorsen model parameters using data
from flutter experiments and free vibration experiments from [58] and PAPA
flutter experiments from [124], compared to posteriors obtained using [58] flutter
data only. The distributions are obtained using importance sampling with 106

samples.

The PAPA results for the Theodorsen model after calibration using all the data available
are shown in Figure V.18. The model does not profit as much from the additional data
as the Wright model, which might come from the fact that generally, it is not very well
informed by the data.
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Fig. V.17 Posterior velocity results for the PAPA datapoints for the Theodorsen
model after calibrations using datasets A-D from [124], free vibration datapoints
on the first two modes from scenarios A-F from [58] as well as velocity and
frequency data from scenarios A,C and E from the same paper, compared to
calibration using only the Theodorsen data. The distributions are obtained using
importance sampling with 106 samples.

On the contrary, the information gain has significant influence on the plate flutter results,
which are shown in Figure V.18. However, results are very inconsistent between the
scenarios. While the calibration leads to almost perfectly predicting Vf in the scenario
C, the critical flutter velocity shifts down in scenarios A and E. While slight shifts
in frequency towards the experimental result are observed in all results (small bumps
facing from the main mode towards the experimental value can be recognised) and the
frequencies get narrowed down, no significant improvement neither in probability density
for the experimental value nor in the distance from the maximum to the experimental
value can be found, and the distributions do not change that much. However, the updated
distribution aligns well with the previously found trend that the Theodorsen model, as its
Wright counterpart, tends to underestimate the critical flutter velocity. Moreover, with
the additional data, both models become more consistent in their predictions.



V.4 Using multiple sources of data 129

0
0.05
0.1

0.15
0.2

0.25

10 15 20 25 30

p
(V

f
)

Vf

Sc
en

ar
io

A

0
0.01
0.02
0.03
0.04
0.05

120 140 160 180 200 220

p
(ω

f
)

ωf

0

0.2

0.4

0.6

20 25 30 35 40

p
(V

f
)

Vf

Sc
en

ar
io

C

0

0.02

0.04

0.06

0.08

120 140 160 180 200 220
p
(ω

f
)

ωf

0

0.1

0.2

0.3

15 20 25 30 35

p
(V

f
)

Vf

Sc
en

ar
io

E

0
0.01
0.02
0.03
0.04
0.05
0.06

120 140 160 180 200 220

p
(ω

f
)

ωf

plate wing, flutter data
plate wing, combined data

Fig. V.18 Posterior velocity results for the plate flutter datapoints for the
Theodorsen model after calibrations using datasets A-D from [124], free vibra-
tion datapoints on the first two modes from scenarios A-F from [58] as well as
velocity and frequency data from scenarios A,C and E from the same paper,
compared to calibration using only the Theodorsen data. The distributions are
obtained using importance sampling with 106 samples.

Although the use of multiple data sources improved the results and helped to reduce the
uncertainty, the posteriors for the critical flutter velocity and the flutter frequency still
show significant deviations from the experimental data for both of the models. These
deviations cannot be explained by neither the uncertainty assumed in the parameters of
the aerodynamic models, nor the uncertainty in the material. In the previous chapter, an
attempt was made to explain parts of the difference by typical flaws of PAPA modelling,
which do not apply in the case of a plate. For example, friction is negligible and other
than the PAPA used in the study in the previous chapter, the plate does actually not have
any profile as assumed by the model. However, different flaws inherent to the modelling
of the plate wing are present which could explain parts of the difference.

• Both aerodynamic models require the structural model to assume that the plate is
rigid in the chordwise direction. This is a nuisance in modeling the modal behaviour
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of the plate. Remaining deviations in the frequency after calibration of the material
parameters for the free vibration model could come from this fact. As the aeroelastic
flutter problem is also dependent on the modal behaviour of the plate, prediction
accuracy is lowered by this fact.

• On lifting surfaces, the lift gets smaller towards their tip due to wingtip vortices
coming from air flowing from below the wing to its upper side due to the pressure
difference that creates the lift in the first place. The strip theory approaches chosen
in this chapter do not reflect that. While there are empirical approaches to mimic
that effect (e.g. [123], which was used in the chapter III), these were omitted in this
study to be closer to the original article [58].

Nevertheless, it cannot be proven that these would be the only causes of the model
discrepancies. For example, the models have a tendency to underestimate the critical
flutter velocity in most cases after calibration points regardless of the experiment type.
This tendency is also present in the individual calibrations. Consequently, it points to
the fact that there might be a common explanation for the discrepancy not to be found
in the individual modelling flaws.

Finally, the model probabilities for the two aerodynamic models are given in Table V.15.
With all the points from the PAPA data and the plate flutter data combined and the

Wright Theodorsen
P (M|D) 0.0095 0.9905

Table V.15 – Model probabilities for the plate wing problem with stochastic material
parameters, calculated using Monte Carlo simulation with 106 samples.

additional information provided by the free vibration data, the model probability for the
Wright model drops with respect to the previous two studies where only the plate flutter
data was taken into account. Again, multiple possible reasons for this can be considered.
First, the Wright model was already performing badly with the calibration executed only
on the PAPA data. When the cases are combined, this weakness continues to exist in the
combined study.

The lower model probability could also indicate that the Wright model does not generalise
well in comparison with the Theodorsen type model. As stated before, Theodorsen’s
PAPA experiments and the plate flutter studied by Hollowell probably belong to different
frequency regimes. It is possible that the Theodorsen model is better at taking the two
into account at the same time. Finally, the added data from the free vibration problem
added information to the flutter problem. This could have the opposite effect of the
addition of the material uncertainty, which in the previous example made the model
probability rise.
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V.5 Conclusion

In this chapter, the Bayesian methods, which were introduced in the previous chapter,
have been applied to the plate wing. First, a study with the material of the wing supposed
deterministic was conducted. Later, the uncertainty in the material as assumed in the
chapter III was added. Differences in the calibration results with the material uncertainty
taken into account with respect to the study assuming a deterministic material showed
that uncertainties assumed aleatory cannot be omitted in a Bayesian study, even if the
calibration does not alter the aleatory distributions.

To conclude the study and to exploit a maximum number of data points, the data from
the PAPA case and available free vibration data from [58] are considered. It could be
demonstrated in a preliminary study that the uncertainty in the material could be further
reduced, even if the information contained in the plate flutter data alone was not sufficient
to do so. The free vibration data was then integrated into the common calibration, which
could be shown to be equivalent to using the distribution obtained in a previous study as
a prior.

The big difference in the calibration results between the calibration using PAPA data
only, the plate flutter study and the combined study especially in the Theodorsen model
highlights the necessity to combine a maximum number of data points. As the parameters
are sensitive to the flutter regime, different experiments help to construct a more general
model. The study showed how these different sources can be used. Moreover, with the
addition of free vibration data, it could be shown that adding data sources providing
information only on partial aspects of the problem can be beneficial.

The number and kind of data also affects the model probabilities, further highlighting
the need for data. With a maximum number of data points added to the study, the
Theodorsen-type model proved clearly superior with a model probability of nearly one.
This could mean that it is more generalisable than the Wright model and can handle the
different flutter regimes represented by the different data points better.

While this study could serve as a demonstrator to calibration in aeroelasticity and show
a path towards handling different types of uncertainties as well as a path to robust pre-
dictions, the limits of the underlying models and the small number of data prevent the
study to conclude with usable predictions. The calibrations may be specific to the data
and the calculated errors are big. Further studies will aim at diminishing the number of
calls to the solver in order to be able to use more advanced models at reasonable cost.
These advanced models would also be capable to take into account a bigger number of
scenarios, opening up possibilities to use bigger databases.
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Chapter VI

Conclusion and perspectives

VI.1 Conclusion

In this work, quantification of aleatory and epistemic uncertainties was performed on
example problems in aeroelasticity. The study of the uncertainties was focused primarily
on the critical flutter velocity, which is the freestream velocity at which the linearly
coupled aeroelastic behaviour of structures subject to aerodynamic loads become unstable.

In a first study, effects of uncertainties in ply angles and ply thicknesses, as they often
occur in the manufacturing of composite layups were investigated in the example of a
straight rectangular plate wing made of a 16-layer composite laminate. These uncertain-
ties, as they are supposed to be known, were considered as aleatory. The use of the polar
method reduced the dimension of the random space from 2·16 to six, making the surrogate
modeling step affordable. Compared to earlier studies using the lamination parameters
[114], desymmetrisation of the laminates by the uncertainties as well as changes in the
thickness of the individual plies could be taken into account.

A preliminary deterministic study in the domain of orthotropic laminates was performed,
which, thanks to the polar method, could be achieved by varying only two structural
parameters. The analysis of the aeroelastic response revealed a sharp step in critical flutter
velocity and frequency due to a mode switch. This step represents a risk in optimisation
problems as it was found to be directly next to the point of optimal critical flutter velocity
in the plane of study.

The results of the deterministic analysis were used to identify points of interest, for which
actual laminate stacking sequences were reconstructed. Then, the ply angle and ply
thickness uncertainties were applied to these layup configurations. Important deviations
of the critical flutter velocity were found, where the uncertainty in the ply thickness
was observed to be the dominating one. Both types of uncertainties were shown to
trigger the mode switch when the nominal configuration was close to it. The resulting
distribution showed considerable probability for the critical velocity to fall below the
classical 15% flutter margin. This means that stochastic methods provide additional
safety. The fact that the optimal configuration in terms of critical flutter velocity was

133
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most severely affected by the mode switch points to a need of robust optimisation.

In order to reduce computational cost over plain Monte Carlo simulations, a polynomial
chaos surrogate model was developed to model the stochastic response more efficiently.
The reduced set of parameters of the polar method was exploited in the computation of
the stochastic flutter velocity to avoid the “curse of dimensionality”. To deal with the
correlation in the random input parameters resulting from the use of the polar method,
arbitrary polynomial chaos was used, where a Gram-Schmidt algorithm was employed to
construct the necessary orthogonal polynomial bases. In order to deal with the discon-
tinuities in the random space, the response surface was split using a machine learning
algorithm and the resulting sub-response surfaces modelled by the arbitrary polynomial
chaos algorithm. This way, the number of calls to the solver could be reduced from 105

for a plain Monte Carlo simulations to just 1000 samples, while accurately reproducing
the resulting multi-modal probability density functions.

Another source of uncertainty is in the need for aerodynamic modelling, which mostly
comes from lack of knowledge on the choice of the appropriate model or the choice of
parameters. In a first step, the common Pitch And Plunge Airfoil aeroelastic configura-
tion was chosen as example, for which experimental data was retrieved from literature.
Two aerodynamic models based on both quasi-steady and fully unsteady potential flow
theory in the incompressible regime found in different aeroelastic studies were analysed
for parametric uncertainties. Prior distributions were defined summarising prior knowl-
edge on the values of the parameters of each model. On that basis, the models were
updated using Bayesian calibration, with importance sampling employed to estimate the
distributions of parameters and critical flutter velocity predictions.

In the case of the approximated Theodorsen model, the calibration provided hints that
the parameters indeed fall in the combinations that can also be found in the literature.
However, most instances of this type of model include one of the parameters chosen very
low, which the calibration using the PAPA data does not support. For the quasi-steady
Wright model, which also was used in the forward propagation study in a similar form, the
calibration led to values for the only model parameter that were significantly lower than
what was given in the literature. As expected, the Bayesian Model Averaging procedure to
calculate model probabilities gave a much higher model probability for the approximated
Theodorsen model. The distributions of the critical flutter velocity samples corresponding
to the posterior parameter distributions showed a significant offset to the experimental
results. The author tried to compensate this by adding a bias term to the error term
which is the basis for the Bayesian methods. Prediction results could be significantly
improved. However, the bias has a repercussion on the parameter calibrations and alters
the distributions, which can lead to physically questionable parameter values.

The Bayesian method was also applied to the composite plate wing case. First, a study was
done with the composite material supposed to be fixed at the nominal value. Generally,
the parameters were informed better than in the calibration using the PAPA data. In the
case of the Theodorsen model, the choice of low values for the time scale parameters could
be confirmed. The better degree of information could be due to the fact that the plate
flutter case is richer in features (i. e. it contained frequency data). In a second step, the
uncertainty in the stiffness was added to the calibration, where the uncertainty assumed
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in the forward propagation case was taken as prior. The addition of this uncertainty
changed the calibration results. The corresponding flutter velocity and flutter frequency
responses became more uncertain, but in some cases the prediction was improved.

As the uncertainty in the material parameters was shown to be reducible by the flutter
data, free vibration data was added to the study in order to narrow down their un-
certainty. The calibration of the material parameters was performed together with the
aeroelastic models. It could be demonstrated that this is equivalent to perform the cali-
brations sequentially and to reuse the posteriors of the previous calibrations as prior for
the subsequent calibrations, provided the different experiments are assumed to be inde-
pendent in error. Moreover, it could be shown that when the distribution for the material
parameters obtained as posterior from the calibration of the free vibration experiment
was used as a prior, it could not be further reduced, thus confirming the aleatory nature
of the reduced uncertainty.

Using the methods described above, influences of aleatory and epistemic uncertainties on
the critical flutter velocity could be shown. Estimates for the distributions were derived
in both cases as well as for scenarios where the two types of uncertainties come into play.
The approaches were demonstrated to offer a more rigorous view on the flutter risk than
classical security margins, which could be proven to be insufficient in some cases. In
addition to providing robust estimates for the critical velocity, Bayesian approaches allow
identification or verification of parameter values. With this demonstration of possible
solutions to the uncertainty quantification problem, the door is opened to address further
challenges.

VI.2 Perspectives

Bayesian studies require a considerable amount of experimental data. The datasets used in
the Bayesian studies in this work are quite small, as data in literature is quite limited and
not necessarily adapted to suit this kind of study. This means that the results obtained
are probably specific to the datasets, which is also shown by the fact that the posterior
distributions change when data sets are added. For the results to be generalisable, the
datasets would have to be much larger. This could be adressed by specially designing
series of experiments to be used for Bayesian calibration, with the aim of having as many
realistic scenarios at hand as possible. A specially-designed flutter database could also
give acces to information not given in the literature such as mode shapes, which could
be used to further improve the calibrations. It would also allow to distinguish between
model and experimental error more clearly.

Despite calibration, the models used in the study do not produce very precise stochastic
predictions. This can only partially be mitigated by adaption of the error term, which has
different drawbacks. Obviously, it can be hoped that more precise predictions could be
obtained by using higher fidelity models. The aPC/Machine Learning method developed
in this work for the treatment of uncertainty in composite materials paves the way to
stochastic studies on more complex computational models. This includes also handling
more complex configurations such as swept wings and entire airframes. However, as the
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number of polar parameters would increase when loading of the structure goes beyond
pure bending, the aPC method has to be developed further to handle the bigger polar
parameter space of those problems. The use of sparse quadrature rules instead of the
sampling- and fitting-based mechanisms could provide a possible way.

Further work could be done to integrate the surrogate modelling into the Bayesian cali-
bration framework. A simple approach would be to simply construct a polynomial chaos
on the prior. However, different approaches exist to adapt the polynomial basis to the
posterior, boosting efficiency (e.g. [14]). It has to be investigated if the orthogonalisation
method used for the aPC can be used to take the posterior into account. Moreover, as
it has been shown that aleatory uncertainties can influence calibration results, measures
have to be taken to take into account a higher number of parameters.

As the flutter boundary is an instability limit, it is the lower limit which is interesting.
Consequently, the limiting factor in aircraft design would be the lower quantiles of the
flutter velocity distribution. Industry requirements on the corresponding confidence in-
tervals are rather strict, for example in “Six Sigma” frameworks, demanding confidence
intervals of 99.99966 per cent confidence level. However, the methods presented in this
work are not designed with respect to precise estimation of quantiles.

The first necessary improvement would be to eliminate sampling-based methods as far as
possible, as high-resolution sampling is computationally expensive. In the aPC method,
orthogonalisation and the fitting of the response surfaces would have to be eliminated in
favour of quadrature-based methods. The work of Navarro Jimenez et al. [93], who pro-
vide a method to derive collocation points for scenarios with correlated variables, could be
useful in this setting. First steps to obtain them in the case of the polar method for com-
posite materials have been taken. This step would also enable the development of a multi-
element polynomial chaos approach for the composite material uncertainties, which then
could help improve the resolution of discontinuous response surface, another important
challenge that was demonstrated in this work. A further advantage of quadrature-based
polynomial chaos is that error estimates are available. In combination with adaptivity,
this feature can help to improve the precision of the stochastic surrogate models.

With augmented precision, stochastic methods like the ones presented in this work could
help to reach improved security and performance over classical deterministic security mar-
gin methods. Integration of these methods into robust optimisation could help engineers
to take into account relevant uncertainties already in the design phase. The Bayesian
methodologies can help to identify uncertainties of aleatory and epistemic nature in this
framework and make predictions of aeroelastic instabilities robust.



Appendix A

System matrices for the plate
wing

In this chapter, the system matrices needed for the calculation of the critical flutter
velocity in the case of a rectangular plate wing made of a general anisotropic material
are developed. The elements of the approach were already described in chapter II.2. The
goal of this chapter is to describe the path from the Lagrange equation (II.1) [117]

d

dt
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(A.1)

to the system matrices and provide explicit expressions, using a Rayleigh-Ritz approach
of assumed modes in harmonic motion.

The assumed modes were already given in Equation (II.44), but are recalled here [107]

w(x, y, t) =
nx∑

i=1

ny∑

j=1

wij(t)
(

x

S

)j+1 (y

c

)j−1

(A.2)

A.1 Mass matrix

The mass matrix describes the inertial behaviour of the wing and thus depends on move-
ment. It is consequently derived from the expression of the kinetic energy T . For the
plate wing as described by the scheme II.5, the kinetic energy is given as follows [4]

T =
1
2

∫ b

−b

∫ S

0
ρttotalẇ

2dxdy (A.3)

Using the assumed mode shapes Equation (II.44), the kinetic energy becomes

137
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Preparing the expression for injection into the Lagrange equation, the derivative by the
generalised coordinates is carried out using the product rule

∂T
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where the δ(·)(·) are Kronecker’s deltas, not to be confounded with variational deltas.

Consolidating the indices such that (ij) is the external index and (kl) the internal sum-
mation index, eliminating the Kronecker’s deltas in the process and carrying out the
integration,
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is the mass matrix, which multiplies the vector of generalised coordinates q which consists
of the wkl.

A.2 Stiffness matrix

The stiffness matrix describes the elastic part of the system. As the elastic effects are
those storing the energy in the system, its associated energy is the potential energy. It
can be given as [4]
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U =
1
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where κ is the curvature vector in Voigt notation
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and D is the bending stiffness tensor in Voigt notation, which in turn can be replaced by
the modified bending stiffness tensor D̃.

As fully anisotropic plates will be considered, Equation (A.8) is fully written out, using
the tensor symmetry
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Inserting the mode shape functions
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D23

[

∂2

∂x∂y

nx∑

k=1

ny∑

l=1

ŵkl

(x

S

)k+1 (y

c

)l−1
]

+4




∂2

∂x∂y

nx∑

i=1

ny∑

j=1

ŵij

(x

S

)i+1 (y

c

)j−1



D33

[

∂2

∂x∂y

nx∑

k=1

ny∑

l=1

ŵkl

(x

S

)k+1 (y

c

)l−1
]

dxdy

(A.11)



140 Appendix A. System matrices for the plate wing

Executing the partial derivatives in x and y

U =
1
2

∫ b

−b

∫ S

0




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D11

[

1
S2

nx∑

k=1

ny∑

l=1

wkl(k + 1)k
(x

S

)k−1 (y

c

)l−1
]

+




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D12

[

1
c2

nx∑

k=1

ny∑

l=1

wkl

(x

S

)k+1

(l − 1)(l − 2)
(y

c

)l−3
]

+4




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D13

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

+




1
c2

nx∑

i=1

ny∑

j=1

wij(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3



D22

[

1
c2

nx∑

k=1

ny∑

l=1

wkl(l − 1)(l − 2)
(x

S

)k+1 (y

c

)l−3
]

+4




1
c2

nx∑

i=1

ny∑

j=1

wij(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3



D23

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

+4




1

Sc

nx∑

i=1

ny∑

j=1

wij(i + 1)(j − 1)
(x

S

)i (y

c

)j−2



D33

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

dxdy

(A.12)

as the most general expressions for j ≥ 3. Note that the second derivatives in y become
zero for j < 3 and the first derivatives in y for j < 2 (there are no negative exponents).

Afterwards, the partial derivatives in the generalised coordinates are carried out in order
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to simplify the expression. As for the mass matrix, the product rule is applied.

∂U

∂w(mn)
=

1
2

∫ b

−b

∫ S

0



1

S2

nx∑

i=1

ny∑

j=1

δ(ij)(mn)(i + 1)i
(x

S

)i−1 (y

c

)j−1



D11

[

1
S2

nx∑

k=1

ny∑

l=1

wkl(k + 1)k
(x

S

)k−1 (y

c

)l−1
]

+




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D11

[
1

S2
δ(kl)(mn)(k + 1)k

(x

S

)k−1 (y

c

)l−1
]

+
[

1
S2

δ(ij)(mn)(i + 1)i
(x

S

)i−1 (y

c

)j−1
]

D12

[

1
c2

nx∑

k=1

ny∑

l=1

wkl

(x

S

)k+1

(l − 1)(l − 2)
(y

c

)l−3
]

+




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D12

[
1
c2

δ(kl)(mn)

(x

S

)k+1

(l − 1)(l − 2)
(y

c

)l−3
]

+4
[

1
S2

δ(ij)(mn)(i + 1)i
(x

S

)i−1 (y

c

)j−1
]

D13

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

+4




1

S2

nx∑

i=1

ny∑

j=1

wij(i + 1)i
(x

S

)i−1 (y

c

)j−1



D13

[
1

Sc
δ(kl)(mn)(k + 1)(l − 1)

(x

S

)k (y

c

)l−2
]

+
[

1
c2

δij(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3
]

D22

[

1
c2

nx∑

k=1

ny∑

l=1

wkl(l − 1)(l − 2)
(x

S

)k+1 (y

c

)l−3
]

+




1
c2

nx∑

i=1

ny∑

j=1

wij(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3



D22

[
1
c2

δ(kl)(mn)(l − 1)(l − 2)
(x

S

)k+1 (y

c

)l−3
]

+4
[

1
c2

δ(ij)(mn)(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3
]

D23

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

+4




1
c2

nx∑

i=1

ny∑

j=1

wij(j − 1)(j − 2)
(x

S

)i+1 (y

c

)j−3



D23

[
1

Sc
δ(kl)(mn)(k + 1)(l − 1)

(x

S

)k (y

c

)l−2
]

+4
[

1
Sc

δ(ij)(mn)(i + 1)(j − 1)
(x

S

)i (y

c

)j−2
]

D33

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl(k + 1)(l − 1)
(x

S

)k (y

c

)l−2
]

+4




1

Sc

nx∑

i=1

ny∑

j=1

wij(i + 1)(j − 1)
(x

S

)i (y

c

)j−2



D33

[
1

Sc
δ(kl)(mn)(k + 1)(l − 1)

(x

S

)k (y

c

)l−2
]

dxdy

(A.13)

Collecting terms and, as before, renaming the indices such that (ij) is the external index and
(kl) the internal summation index during which the Kronecker’s deltas are removed, as well as
carrying out the integration, gives
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∂U

∂w(ij)
=

[

c

S3

nx∑

k=1

ny∑

l=1

wkl

(i + 1)i(k + 1)k
(i + k − 1)(j + l − 1)

[(x

S

)i+k−1
]S

0

[(y

c

)j+l−1
]b

−b

]

D11

+2

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl

(i + 1)i(l − 1)(l − 2)
(i + k + 1)(j + l − 3)

[(x

S

)i+k+1
]S

0

[(y

c

)j+l−3
]b

−b

]

D12

+4

[

1
S2

nx∑

k=1

ny∑

l=1

wkl

(i + 1)i(k + 1)(l − 1)
(i + k)(j + l − 2)

[(x

S

)i+k
]S

0

[(y

c

)j+l−2
]b

−b

]

D13

+

[

S

c3

nx∑

k=1

ny∑

l=1

wkl

(j − 1)(j − 2)(l − 1)(l − 2)
(i + k + 3)(j + l − 5)

[(x

S

)i+k+3
]S

0

[(y

c

)j+l−5
]b

−b

]

D22

+4

[

1
c2

nx∑

k=1

ny∑

l=1

wkl

(j − 1)(j − 2)(k + 1)(l − 1)
(i + k + 2)(j + l − 4)

[(x

S

)i+k+2
]S

0

[(y

c

)j+l−4
]b

−b

]

D23

+4

[

1
Sc

nx∑

k=1

ny∑

l=1

wkl

(i + 1)(j − 1))(k + 1)(l − 1)
(i + k + 1)(j + l − 3)

[(x

S

)i+k+1
]S

0

[(y

c

)j+l−3
]b

−b

]

D33

(A.14)

so that the final stiffness matrix components are

K(ij)(kl) =

[

c

S3

(i + 1)i(k + 1)k
(i + k − 1)(j + l − 1)

[(x

S

)i+k−1
]S

0

[(y

c

)j+l−1
]b

−b

]

D11

+2

[

1
Sc

(i + 1)i(l − 1)(l − 2)
(i + k + 1)(j + l − 3)

[(x

S

)i+k+1
]S

0

[(y

c

)j+l−3
]b

−b

]

D12

+4

[

1
S2

(i + 1)i(k + 1)(l − 1)
(i + k)(j + l − 2)

[(x

S

)i+k
]S

0

[(y

c

)j+l−2
]b

−b

]

D13

+

[

S

c3

(j − 1)(j − 2)(l − 1)(l − 2)
(i + k + 3)(j + l − 5)

[(x

S

)i+k+3
]S

0

[(y

c

)j+l−5
]b

−b

]

D22

+4

[

1
c2

(j − 1)(j − 2)(k + 1)(l − 1)
(i + k + 2)(j + l − 4)

[(x

S

)i+k+2
]S

0

[(y

c

)j+l−4
]b

−b

]

D23

+4

[

1
Sc

(i + 1)(j − 1))(k + 1)(l − 1)
(i + k + 1)(j + l − 3)

[(x

S

)i+k+1
]S

0

[(y

c

)j+l−3
]b

−b

]

D33

(A.15)

A.3 Aerodynamic matrices for the Wright aerodynamic op-
erator

To obtain the aerodynamic matrices for the Wright model detailed in chapter II.1.1, the elements
described in chapter II.2.2 are used. However, this description is derived for a 2D wing section.
In order to be able to use it for the plate wing, several assumptions have to be made.

The first assumption is the so-called “strip theory” assumption, which describes the aerodynamics
of the wing as a series of infinitesimally thin identical “strips” along the wing span, which are not
influenced by their neighbour environment.
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The infinitesimally small lift and moment “strips” are described as (see also Equations (II.10),(II.11))
[146, 123]

dL = 2ρaπbV 2

(

α +
ẇ

V

)

dx (A.16)

dM = 2ρaV 2b2

[
1
2

π

(

α +
ẇ

V

)

+ Mα̇

α̇b

2V

]

dx (A.17)

where the wing is assumed to be a flat plate with its aerodynamic centre situated at a quarter of
the chord from the leading edge.

The virtual work can be obtained by integrating along the half-span of the plate.

δW =
∫ S

0

(−δw)dL +
∫ S

0

δαdM (A.18)

This however is expressed in terms of heave in pitch motion, whereas a plate is much richer in
degrees of freedom. To circumvent this problem, a restriction is put on the chordwise modes such
that ny = 2. This restricts the assumed mode shapes Equation (A.2) to modes where the chord is
rigid. For j = 1, the movement of an arbitrary strip of the plate corresponds then to pure plunge
motion at midchord, which is taken as the reference axis anyway.

To obtain the angular motion, a small displacement assumption is made. This way, the angle of
attack can be approximated via putting

dw

dy
≈ sin(α) ≈ α (A.19)

Inserting the assumed mode shapes,

α ≈
nx∑

i=1

wi2
1
c

(x

S

)i+1

(A.20)

The virtual work can then be calculated as

δW =
∫ S

0

2ρaV 2bπ

(

1
V

[
nx∑

k=1

ẇk1

(x

S

)k+1
]

+
1
c

[
nx∑

k=1

wk2

(x

S

)k+1
])[

−
nx∑

i=1

δwi1

(x

S

)i+1
]

dx

+
∫ S

0

2ρaV 2b2

[

1
2

π

(

1
V

[
nx∑

k=1

ẇk1

(x

S

)k+1
]

+
1
c

[
nx∑

k=1

wk2

(x

S

)k+1
])

+ Mα̇

(

1
4V

nx∑

k=1

ẇk2

(x

S

)k+1
)][

nx∑

i=1

δwi2
1
c

(x

S

)i+1
]

dx

(A.21)
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Collecting terms

δW = −

∫ S

0

2ρaV 2bπ

(

1
V

[
nx∑

i=1

nx∑

k=1

ẇk1δwi1

(x

S

)i+k+2
]

+
1
c

[
nx∑

i=1

nx∑

k=1

wk2δwi1

(x

S

)i+k+2
])

dx

+
∫ S

0

2ρaV 2b2

[

1
2

π

(

1
V

[
nx∑

i=1

nx∑

k=1

ẇk1δwi2
1
c

(x

S

)i+k+2
]

+
1
c

[
nx∑

i=1

nx∑

k=1

wk2δwi2
1
c

(x

S

)i+k+2
])

+ Mα̇

(

1
4V

nx∑

i=1

nx∑

k=1

ẇk2δwi2

(x

S

)i+k+2
)]

dx

(A.22)

Integrating

δW = − 2ρaV 2bπ

(

S

V

[
nx∑

i=1

nx∑

k=1

ẇk1δwi1
1

i + k + 3

(x

S

)i+k+3
]

+
S

c

[
nx∑

i=1

nx∑

k=1

wk2δwi1
1

i + k + 3

(x

S

)i+k+3
])

+2ρaV 2b2

[

1
2

π

(

S

V

[
nx∑

i=1

nx∑

k=1

ẇk1δwi2
1
c

1
i + k + 3

(x

S

)i+k+3
]

+
S

c

[
nx∑

i=1

nx∑

k=1

wk2δwi2
1

i + k + 3
1
c

(x

S

)i+k+3
])

+ Mα̇

(

S

4V

nx∑

i=1

nx∑

k=1

ẇk2δwi2
1

i + k + 3

(x

S

)i+k+3
)]

(A.23)

To prepare the insertion in the Lagrange equation, the partial derivatives by the gener-
alised coordinates are carried out.

∂δW

∂δwi1
= −2ρaV 2bπ

nx∑

k=1

(
S

V
ẇk1 +

S

c
wk2

)[

1
i + k + 3

(
x

S

)i+k+3
]

(A.24)

∂δW

∂δwi2
= 2ρaV 2b2

nx∑

k=1

[
1
2

π

(
S

V

1
c

ẇk1 +
S

c

1
c

wk2

)

+ 2ρaV 2b2 Mα̇

(
S

4V
ẇk2

)] [

1
i + k + 3

(
x

S

)i+k+3
]

(A.25)

The components of the aerodynamic “stiffness” matrix A and the aerodynamic “damping”
matrix B can then be given as

A(i1)(k1) = A(i2)(k1) = 0 (A.26)

A(i1)(k2) = −2ρaV 2bπ
S

c

[

1
i + k + 3

(
x

S

)i+k+3
]

(A.27)

A(i2)(k2) = ρaV 2b2π
S

c2

[

1
i + k + 3

(
x

S

)i+k+3
]

(A.28)
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B(i1)(k1) = −2ρaV 2bπ
S

V

[

1
i + k + 3

(
x

S

)i+k+3
]

(A.29)

B(i1)(k2) = 0 (A.30)

B(i2)(k1) = ρaV 2b2π
S

V

1
c

[

1
i + k + 3

(
x

S

)i+k+3
]

(A.31)

B(i2)(k2) = 2ρaV 2b2Mα̇

(
S

4V

)[

1
i + k + 3

(
x

S

)i+k+3
]

(A.32)

A.4 Aerodynamic matrix for the Theodorsen aerodynamic
operator

For the Theodorsen approach, a simpler approach to derive the lift and moment expres-
sions is taken. Other than in the Wright approach, the time derivatives are not separated.
Instead, they are executed directly and the aerodynamic operator is given as a function
of the reduced frequency.

The lift and moment in dimensional form were expressed in Equations (II.22), (II.23) as

L = ρaπb2 (V α̇ + ẅ − bahα̈) + 2πρV bC

[

V α + ẇ + b

(
1
2

− ah

)

α̇

]

(A.33)

M = −ρab2
[

π

(
1
2

− ah

)

V bα̇ + πb2
(

1
8

+ a2
h

)

α̈ − ahπbẅ

]

+2ρaV b2π

(

ah +
1
2

)

C

[

V α + ẇ + b

(
1
2

− ah

)

α̇

]

(A.34)

Assuming harmonic motion and executing the time derivatives, these expressions are
reformulated so they can be given in terms of the reduced velocity k and the airspeed V
does no longer appear explicitely in the lift and moment terms. Other than in Equations
(II.26), (II.27), the dimensions are kept, as certain nondimensional quantities do not exist
in the framework of the plate wing.

dL = ω2ρaπb2
(

ı

k
bα − w + bahα

)

+ω22ρaπb2C(k)
[

1
k2

bα +
ı

k
w =

ı

k
b

(
1
2

− ah

)

α

]

(A.35)

dM = −ω2ρaπb2
[

ı

k

(
1
2

− ah

)

b2α − b2
(

1
8

+ a2
h

)

α + ahbw

]

+ω22ρaπb2
(

ah +
1
2

)

C(k)
[

1
k2

b2α +
i

k
bw +

i

k
b2
(

1
2

− ah

)

α

]

dx (A.36)
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Grouping by degree of freedom results in

dL = ω2ρaπb2
(

−1 + 2C(k)
ı

k

)

wdx

+ω2ρaπb3
[

ı

k
+ ah + 2

(

ah +
1
2

)

C(k)
[

1
k2

+
ı

k

(
1
2

− ah

)]]

αdx (A.37)

dM = ω2ρaπb3
[

−ah + 2
(

ah +
1
2

)

C(k)
ı

k

]

wdx (A.38)

ω2ρπb4
[

−

(
1
2

− ah

)
ı

k
+
(

1
8

+ a2
h

)

+2
(

ah +
1
2

)

C(k)
[

1
k2

+
ı

k

(
1
2

− ah

)]]

αdx (A.39)

Using the mode shapes Equation (A.2) and the approximation for the angle Equation
(A.20)

δW =
∫ S

0
−δwdL +

∫ S

0
δαdM

= −
∫ S

0
ω2ρaπb2

(

−1 + 2C(k)
ı

k

) nx∑

i=1

nx∑

m=1

wi1δwm1

(
x

S

)i+1 (x

S

)m+1

dx

+
∫ S

0
ω2ρaπb3

[
ı

k
+ ah + 2

(

ah +
1
2

)

C(k)
[

1
k2

+
ı

k

(
1
2

− ah

)]]

[
nx∑

i=1

nx∑

m=1

1
c

wi2δwm1

(
x

S

)i+1 (x

S

)m+1
]

dx

+
∫ S

0
ω2ρaπb3

[

−ah + 2
(

ah +
1
2

)

C(k)
ı

k

] [ nx∑

i=1

nx∑

m=1

1
c

wi1δwm2

(
x

S

)i+1 (x

S

)m+1
]

dx

+
∫ S

0
ω2ρπb4

[

−

(
1
2

− ah

)
ı

k
+
(

1
8

+ a2
h

)

+2
(

ah +
1
2

)

C(k)
[

1
k2

+
ı

k

(
1
2

− ah

)]] [ nx∑

i=1

nx∑

m=1

1
c2

wi2δwm2

(
x

S

)i+1 (x

S

)m+1
]

dx
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Collecting terms and executing the integration results in
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By executing the partial derivatives by the coefficients of the virtual displacements δwop

as in the previous examples, and again renaming the indices, the components of the
aerodynamic matrix can be recovered as

A(i1)(m1) = ρaπb2
(

−1 + 2C(k)
ı

k
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(A.40)
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(A.43)

where the term of ω2 was factored out of the matrix. In the final system, it is divided
by and is finally part of the eigenvalues. Finally, it has to be noticed that plates have no
“elastic axis”, which means that the parameter ah has no meaning. Instead, a reference
axis is defined. In this work, the reference axis is midchord. ah is consequently zero
ah = 0.
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Appendix B

aPC validation

The arbitrary polynomial chaos approach is employed in this work to provide a faster
surrogate model for the stochastic response of the aeroelastic problem. The present
implementation has been derived following Navarro Jimenez, M.I. et al. [94], who provide a
simple test case, consisting in the propagation of a multivariate Gaussian variable through
an ODE problem.

In the case of a multivariate Gaussian, the analytical form of the distribution is known,
and therefore the polynomial base for the chaos expansion can be computed analytically.
Navarro Jimenez, M.I. et al. [94] use moment-generating functions. The equivalent can
be achieved using the characteristic function of the multivariate Gaussian, which is its
Fourier transform

Ψ = exp
(

ıµTω −
1
2

ωTΣω

)

(B.1)

where t is the transformed variable, µ is the mean and Σ is the covariance matrix.
The integrals are then calculated by monomial, which is just the moment, which can be
retrieved from the characteristic function by [? ]

∫

xnφ(x)dx = ı−n dnΨ

dtn
(B.2)

However, in the aeroelastic problem, no analytical form of the distribution is available,
and therefore, the polynomials cannot be computed analytically. In this work, the orthog-
onalisation is performed using Monte Carlo integration, and the expansion coefficients are
determined by a fitting procedure. Obviously, this represents a compromise in the preci-
sion of the method. In order to find how the error due to the Monte Carlo integrations
manifests in the expressions of the polynomials, a comparison of the method with Hermite
polynomials, of which the expressions are known, is carried out. Furthermore, a compar-
ison is made with the test case of the original paper from [94]. In order to distinguish
between the error from the Monte Carlo integration and the fitting, we use the exact
polynomial base which is derived using the characteristic function as described above.

149
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B.1 Finding 1D Hermite polynomials

Although in the 1D case, there is no correlation by definition, the 1D study will permit
to explore the precision issues and some properties of the proposed approach. In the fol-
lowing, it is assumed without proof that the 1D orthogonal polynomials with respect to a
given probability density function are the unique solution. As the test law, a standard nor-
mal probability density function is assumed as the weight function for the creation of the
polynomials. The result of the Gram-Schmidt algorithm should consequently correspond
to the probabilist’s Hermite polynomials.

In the following, a 1D polynomial will be noted as

p(ξ) = a0 + a1ξ + a2ξ2 + a3ξ3 + a4ξ4 + . . . (B.3)

The analytical expressions for the six first Hermite polynomials are given in Tab. (B.1).

Polynôme a0 a1 a2 a3 a4 a5

H0(ξ) 1 0 0 0 0 0
H1(ξ) 0 1 0 0 0 0
H2(ξ) −1 0 1 0 0 0
H3(ξ) 0 −3 0 1 0 0
H4(ξ) 3 0 −6 0 1 0
H5(ξ) 0 15 0 −10 0 1

Table B.1 – 1D probabilist’s Hermite polynomials up to order p = 5.

The orthogonal polynomials with respect to the standard normal law are recalculated
in the following using the Gram-Schmidt algorithm, where the integrals for the scalar
products are evaluated by the Monte Carlo method with 104 samples. The results are
shown in Tab. (B.2).

Polynôme a0 a1 a2 a3 a4 a5

H0(ξ) 1.0 0.0 0.0 0.0 0.0 0.0
H1(ξ) 0.0016 1.0 0.0 0.0 0.0 0.0
H2(ξ) −0.9994 0.0106 1.0 0.0 0.0 0.0
H3(ξ) −0.0205 −3.0218 0.0278 1.0 0.0 0.0
H4(ξ) 3.0365 −0.2206 −6.0596 0.0835 1.0 0.0
H5(ξ) 0.3875 15.1042 −0.9418 −10.0521 0.1841 1.0

Table B.2 – 1D orthogonal polynomials up to order p = 5, calculated using the Gram-
Schmidt algorithm. Integrals for the functional scalar products are evaluated using the
Monte Carlo method with 104 samples.

The structure of Hermite polynomials is clearly recognisable in the results. For low poly-
nomial orders, the errors on the coefficients are small (of the order of 10−2). Contrarily,
it can be see that the errors accumulate for higher orders. The problem can be alleviated
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using more samples. Increasing the number of samples to 106 lowers the errors for the
coefficients of the polynomials of order 5 by about 50%, but the general problem of preci-
sion limitation persists. Evaluating the integrals analytically, the exact values are found.
Thus, the precision issues are not a problem of the Gram-Schmidt method itself.

B.2 Finding 2D Hermite polynomials

In the framework of classical generalised polynomial chaos, the polynomials for higher-
dimensional spaces are constructed using tensorial products of 1D base polynomials. How-
ever, as the case of interest in this work is composed of correlated variables, the polyno-
mials of higher dimensional spaces cannot be recovered by such tensorial products any
more, but the polynomials have to be calculated taking into account multiple dimensions
at the same time.

In this section, it is attempted to find 2D Hermite polynomials on a two-dimensional,
uncorrelated standard normal distributed random variable using the Gram-Schmidt algo-
rithm without employing a direct tensor product in the process. It has to be noted that
the polynomials in 2D are not unique, but depend on the sequence of the input monomials
[93]. A set of monomials that produces the polynomials in order is chosen.

The result for a 2D-polynomial of order 3 is shown in Tab. (B.3).
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k = 6
b0 b1 b2 b3

a0 −0.0247269769 −0.000195823 −0.0192252715 0.0
a1 −2.93376876 0.0117545865 0.0 0.0
a2 0.0754135822 1.0 0.0 0.0
a3 1.0 0.0 0.0 0.0

k = 7
b0 b1 b2 b3

a0 −0.01149774 −0.98083283 −0.00176277 0.0
a1 0.03501909 −0.01840475 0.0 0.0
a2 0.00853065 1.0 0.0 0.0
a3 −0.00430495 0.0 0.0 0.0

k = 8
b0 b1 b2 b3

a0 0.00990975 −0.03140393 0.00905575 0.0
a1 −1.06225378 0.03111905 1.0 0.0
a2 −0.02460403 0.03320619 0.0 0.0
a3 0.01404496 0.0 0.0 0.0

k = 9
b0 b1 b2 b3

a0 0.00135357160 −3.01176333 0.0611448150 1.0
a1 −0.00736285682 −0.106945128 −0.00316963305 0.0
a2 −0.0278692908 0.0159679779 0.0 0.0
a3 −0.00131020290 0.0 0.0 0.0

Table B.3 – The four last polynomials for a 2D orthogonalisation up to polynomials of
order 3, calculated by the Gram-Schmidt algorithm. Integrals for the functional scalar
products are evaluated by the Monte Carlo method using 104 samples.

As there are coefficients for every dimension and also mixed terms are well represented,
the algorithm also respects the weights in the 2D space. At the same time, it is noted that
the errors already found in 1D spread to the 2D space, but do not seem to accumulate
further than in the 1D case. This leads to the expectation that the error will rise more
with the order of the polynomials than with a higher dimension of the random space.

B.3 The test case of Navarro et al., 2014

In this section, the test case of the paper [94] is reevaluated using the proposed method.
It consists of a solution of the first order decomposition equation [94]

y′(t; α, β) = −α(y(t; α, β) − β) (B.4)

of which the stochastic parameters are [94]
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µ =

(

1
1

)

and Σ =

(

σ2
α ρσασβ

ρσασβ σ2
β

)

, with σα = σβ = 0.25 (B.5)

B.3.1 Correlated variables

For ρ 6= 0, the stochastic input variables are correlated. In this work, only ρ = 0.5 is
considered.

The polynomial basis for the surrogate model is constructed by evaluating the functional
scalar products using Monte Carlo integration with 104 samples. Afterwards, the solver
is sampled with 100 points. The development coefficients are then fitted using the least-
squares method [114].

A histogram of the samples propagated through the surrogate model is shown in Fig. B.1

Histograms: Monte Carlo vs. aPC
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Fig. B.1 Histograms obtained by direct sampling of the solver for t = 1.0,
compared with samples propagated through the aPC surrogate, with 104 samples
each.

The histograms show that the aPC method reproduces results that are in satisfactory
agreement with a direct propagation using Monte Carlo Simulation. The position of the
peak and the form of the queues of the distributions match well. In the region used by
the sampling, which is shown in Fig. B.2, the surrogate model is apparently sufficiently
accurate. As a consequence, the aPC method can be used to obtain samplings of the
probability density functions of y.

The low order of the aPC model, which is limited to order two in the example, can clearly
be seen in the response surface. It is most notable on the limits of the domain, where the
curvature of the surrogate does not correspond to the solver’s response surface. However,
in the center of the domain, which is the region with high probability density, the surfaces
are nevertheless in good agreement.
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Solver response surface vs. aPC order 2
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Fig. B.2 Total aPC response surface in comparison with the response surface
by direct calculus using the solver. The color indicates the probablity density of
the parameters on the corresponding points on the response surface.

Fig. B.3 shows the decomposition of the response surface into the individual orthogonal
polynomials, which mimics Figs. 1,2 in [94]. Results are similar to those presented in
[94].

Finally, the moments are obtained by directly exploiting the weighting coefficients of the
polynomial chaos model [82]. The results for the mean and the variance are given in
Table B.4 and compared to the results given by Monte Carlo simulation. The results are
in satisfactory agreement with the results given graphically in Fig. 3 of [94].

Method µ σ

MC 0.6315 0.2147
aPC 0.6335 0.2170

Table B.4 – Moments for t = 1.0,ρ = +0.5 by Monte Carlo with 104 samples and with
second-order aPC
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aPC response surfaces
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Fig. B.3 Response surfaces of the individual polynomials without weighting
coefficients, obtained for the example from Navarro Jimenez, M.I. et al. [94] with
ρ = 0.5

B.4 Decorrelated variables and comparison to classical Her-
mite Polynomial Chaos

For ρ = 0 the input variables become decorrelated, degenerating the input distribution
to independent Gaussians. In that particular case, the classical polynomial chaos with
Hermite polynomials can be applied. This classical approach will serve as a reference
for the convergence properties of the aPC approach. For the construction of the polyno-
mial chaos, [82] is used for the general procedure and [47] for the details on Hermite’s
polynomials.

Fig. B.4 shows the total response surfaces for fifth order polynomial chaos with 104

samples for the evaluation of the integrals and 100 points for the least-squares fit, com-
pared to Hermite polynomial chaos, also of order five. The curves are in good agreement.
Due to the higher polynomial order, the curvature of the response surface also matches
satisfactorily on the border of the domains.
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aPC and gPC response surfaces, order 5
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Fig. B.4 Total aPC response surface (right) in comparison with the correspond-
ing Hermite gPC response surface (left). The polynomial order is 5 in both cases.
104 samples for the evaluation of the integrals for the aPC.

A comparison of the estimate of the first two moments of the response done with the two
methods is given in Table B.5. the corresponding errors are shown in Fig. B.5.

Wiener-Hermite-PC Gram-Schmidt-PC, nmc = 104 Gram-Schmidt-PC, nmc = 106

Ordre µ σ µ σ µ σ

1 0.6321206 0 0.6205076 0.1020561 0.6158589 0.0924467
2 0.6205643 0.1823312 0.6221902 0.1852516 0.6203117 0.1832563
3 0.6204436 0.1841526 0.6186309 0.1846591 0.6201870 0.1839390
4 0.6204428 0.1842037 0.6175228 0.1837377 0.6203902 0.1843192
5 0.6204428 0.1842046 0.6186208 0.1845447 0.6200298 0.1841010
10 0.6204428 0.1842046 − − 0.6203153 0.1842849

Table B.5 – Mean and standard deviation for ρ = 0.0 and t = 1.0 for polynomial chaos of
Wiener-Hermite and arbitrary polynomial chaos of Gram-Schmidt type with least-squares
fitting with 100 calls to the solver in comparison

.
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Error: gPC vs. aPC
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Fig. B.5 Error between a 10th-order Wiener-Hermite solution, gPC of inferior
order and aPC as a function of the order, and, for aPC, the number of samples
for evaluating the integrals used in the orthogonalisation process.

For the Wiener-Hermite polynomial chaos, the result for the mean converges to seven
significant digits for an integration order of four. The result for the standard deviation is
accurate to the fourth significant digit starting from that order.

It must be noted that the arbitrary polynomial chaos suffers from numeric noise coming
from the Monte Carlo integrations used during the orthogonalisation of the polynomials.
Using 104 samples, the precision does not rise starting from order two. Using 106 samples,
the precision saturates at order three. Consequently, the noise from the Monte Carlo
integration represents a limit for the precision, which seems to be independent from the
polynomial order.

Of course, the accuracy of the approximation of the expansion coefficients also plays an
important role, but this effect is less strong thatn the noise of the Monte Carlo integration
if the system for the least-squares method stays overdetermined. This can be seen if the
polynomials for the aPC are calculated analytically, which gives exact values for the
polynomial basis. Then, the precision of the arbitrary polynomial chaos only depends on
the fitting of the expansion coefficients. Despite the noise in the result and the fact that
fitting of polynomial chaos expansion coefficents does not necessarily converge [29], it can
be distinguished that the spectral convergence property is kept in this case so the error
decreases with rising polynomial order. Contrarily to the development of the aPC using
Monte Carlo integration, no saturation effect can be determined for orders inferior to six.

B.5 Conclusion

According to the test case of Navarro Jimenez, M.I. et al. [94] which has been reproduced
in this work, the arbitrary polynomial chaos procedure with Monte Carlo integration and
least-squares fitting appears to be usable and produces satisfactory results for the given
test case. Good results are obtained for the histogram of the result distribution and the
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first two moments, which have been compared with the results from the original paper.
However, the test case does not challenge the method much, as the response surface is
very smooth in the region of interest and can be approximated by polynomial chaos of
relatively low order.

The comparison with analytical polynomial chaos shows that the accuracy of the approach
is limited by the precision of the integration method chosen for the orthogonalisation of
the polynomial base. An analytical development of the polynomial base showed potential
for augmenting the precision of the results. Finally, a replacement for the least-squares
fitting would be desirable, as convergence of this approach cannot be guaranteed. [94]
resort to an intrusive Galerkin approach. Classical polynomial chaos relies on quadrature
rules, but depends also in this aspect on the independence of its input variables. An
integration strategy that takes into account the correlation between the variables would
have to be employed for the aPC approach.



Appendix C

Bayesian study of material
parameters using free vibration
data

Throughout the thesis, it was difficult to find data on errors. This was also true for the
uncertainty in the composite material. Sources could mostly be found for the angular
uncertainty [114, 127], where the more optimistic value for the standard deviation was
assumed. Concerning the thickness uncertainty, very little data on the standard deviations
could be found, with some indications given in U.S. Department of Defense [128]. Based
on this data, an educated guess was made for the distribution in the forward propagation
study in chapter III.

In this appendix, it will be tried to add data to the Bayesian uncertainty quantification
procedure specifically aimed at providing information on the composite material in ques-
tion. This data will be sourced from the experimental data that on free vibration that
is given in the same article as the flutter data used before [58]. Bayesian estimation of
material parameters using free vibration has already been performed before, for example
by Beck and Au [7],Gogu et al. [49] or [116], with very good results.

It is recalled that the configuration of interest are cantilevered rectangular composite
plates with six layers [58], of which the geometry is recalled in Table C.1. The elasticity
parameters of the base material AS1-3501 used in the same article are given along with
the material density in Table C.2

Half-span S[m] chord c[m] Ply thickness t[mm]
0.3048 0.0762 0.134

Table C.1 – Geometric parameters for the plate studied.

159
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E1[GPa] E2[GPa] G12[GPa] ν12 Ply material density ρ[kg/m3]
98 7.9 5.6 0.28 1520

Table C.2 – Engineering moduli and density for AS1-3501, the composite material used
in [58].

From this material, Hollowell and Dugundji [58] construct six different layups, of which
the stacking sequences, together with the stiffness properties in form of polar parameters,
are repeated in Table C.3.

Scenario Layup T D̃
0 [Nm] T D̃

1 [Nm] RD̃
0 [Nm] RD̃

1 [Nm] ΦD̃
0 ΦD̃

1

A [02/90]S 0.674 0.601 0.432 0.455 0 0
B [∓45/0]S 0.674 0.601 0.400 0.219 −π

4 −0.744
C [−452/0]S 0.674 0.601 0.400 0.473 −π

4 −0.766
D [+452/0]S 0.674 0.601 0.400 0.473 π

4 0.766
E [−302/0]S 0.674 0.601 0.408 0.482 −0.515 −0.507
F [+302/0]S 0.674 0.601 0.408 0.482 0.515 0.507

Table C.3 – Layups of [58] and the corresponding polar parameters.

For validation purposes and to have a first idea of the results, a deterministic free vi-
bration study is performed using the framework given in chapter II. To conform to the
requirements of the aerodynamic methods, the study is performed with the number of
chordwise modes (parallel to the clamping) restricted to ny = 2, while a nx = 8 modes
are used in the spanwise direction. The results of this study are presented in Table C.4).
It has to be noted that configurations C and D behave in the same way due to symmetry.
The same holds for layups E and F .

Case Layup ω1[rad/s] ω2[rad/s] ω3[rad/s]
A [02/90]S 69.74 (69.54) 263.89 (248.76) 433.54 (435.80)
B [∓45/0]S 38.33 (40.48) 238.76 (252.44) 483.81 (461.54)
C [−452/0]S 30.16 (30.88) 188.50 (190.77) 320.44 (463.15)
D [+452/0]S 30.16 (30.88) 188.50 (190.77) 320.44 (463.15)
E [−302/0]S 37.70 (39.90) 226.19 (238.34) 364.42 (441.06)
F [+302/0]S 37.70 (39.90) 226.19 (238.34) 364.42 (441.06)

Table C.4 – Free vibration experimental results from [58]. Numerical results using eight
modes in span-wise and two modes in chord-wise direction given in parentheses. Note the
changed signs, which are due to the z axis pointing downwards in the framework of this
work.

The results show that the frequencies for the third mode for configurations C-F are
overestimated. To get reasonable calibration results, only the first two modes will be
used.

First, the assumed measurement error has to be determined. To this end, the evidence
method is used and the integrated likelihood is maximised. Hollowell and Dugundji [58]
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in his original article gives the values with a precision of cscale = 0.1[Hz] for the first mode
and cscale = 1[Hz] for the following modes. Moreover, it is assumed that the experimental
error can be determined with a constant scale with respect to the scale that the results
are given σ = cσ · cscale. The logs of the integrated likelihoods are shown in Figure C.1
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Fig. C.1 Log likelihoods of assumed values for the experimental error, expressed
as a factor for the scale with which the results are given. The maximum is at 1.6

The evidence method analysis reveals that the maximum is obtained at 1.6 times the
minimum scale in the article [58]. For practical reasons, a value of cσ of cσ = 1.5 is
adopted in the following. Using this precision parameter, posterior distributions for the
polar parameters are obtained.

Model calibrated Free vibration
Calibrated parameters T D̃

0 , T D̃
1 , RD̃

0 , RD̃
1 , ΦD̃

0 , ΦD̃
1

Hyperparameters σω1 = 0.15 · 2π, σω2 = 1.5 · 2π

Data used [58], scenarios A,B,C,D,E,F (free vibration problem) (Table V.3)

Table C.5 – Summary of the data used and the calibrated parameters for the free vibration
study on the first two modes.
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The results are given in Figures C.2- C.11. Other than in the test case where only data
from the flutter experiments are used, an important gain in information can be noted as
the distributions generally differ much from the priors. Nevertheless, the shapes of the
distributions are globally confirmed. It can be stated that the estimates on the uncertainty
were too pessimistic. The uncertainty after calibration is considerably reduced in most
cases. However, the maxima of the distributions being shifted to the left in all the
modules and thus being below the nominal value given by [58] indicate that the materials
may originally be estimated too stiff. This could either be caused by the layers being
thinner than given in the original article [58] or a deviation in the stiffness of the base
layer material. In the following, specifics will be detailed for each scenario.

The posteriors for scenario A are given in Figure C.2. As described before, the distri-
butions for the moduli shift down and get much narrower than assumed in chapter III.
However, the distributions for the polar angles get wider. This could either come from
the angular uncertainty contained in the layup or indicate an error in the clamping for
the experiment. However, the angular deviations remain small.
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Fig. C.2 Priors and posteriors obtained using free vibration data from [58] for
scenario A as given in Table V.3. The nominal values are indicated by the vertical
arrow.
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The corresponding frequency distributions are given in Figure C.3. The figure clearly
shows how the frequencies are narrowed down and the uncertainty significantly reduced.
The calculation for the first mode matches the experimental value quite well, while the
value for the second mode is calibrated to a value significantly below.
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Fig. C.3 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario A as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.

Scenario B shows essentially the same picture, as can be seen in Figure C.4. Polar param-
eter RD̃

0 , of which the distribution changes only slightly, represents the only exception.
A reason for this could be that the mode does not involve much of a RD̃

1 -type stiffness.
Moreover, the posterior distributions of the polar angles can be found to be slightly off-
center, with the offset being oriented in the same direction. It has also to be noted that
the uncertainty in ΦD̃

0 is significantly reduced, while the ΦD̃
1 distribution does not show

such a change. However, polar material parameter ΦD̃
0 had a much higher coefficient of

variation before the calibration, leaving much space for an information gain, while ΦD̃
1

was less uncertain.
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Fig. C.4 Priors and posteriors obtained using free vibration data from [58] for
scenario B as given in Table V.3
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The corresponding frequency distributions for the first two modes are depicted in Fig-
ure C.5. In this case, the calibration of the material parameters leads to a clear improve-
ment for the frequency results in both of the first modes, with the probability density
maximum shifting towards the experimental values. Again, the uncertainty is significantly
reduced.
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Fig. C.5 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario B as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.

Scenarios C and D, of which the calibration results are shown in Figure C.6 and Fig-
ure C.7, can be evaluated together, as the configurations are just mirrored. Again, the
moduli are observed to shift down, but also being narrowed down. Other than in the B
configuration, all modules benefit from calibration. Another difference can be observed in
the polar angles, where the distributions seem to remain centered. Finally, the uncertainty
in the ΦD̃

1 parameter gets stronger, which is also different from the previous case and the
behaviour of its sister parameter ΦD̃

0 , but similar to the behaviour of its counterparts in
A, E and F .
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Fig. C.6 Priors and posteriors obtained using free vibration data from [58] for
scenario C as given in Table V.3
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Fig. C.7 Priors and posteriors obtained using free vibration data from [58] for
scenario D as given in Table V.3

Figures C.8 and C.9 show the corresponding frequency distributions for the first two
modes. The uncertainty is again significantly reduced, and the frequency distributions
align with the experimental values. In case of the first mode, this works better than in
case of the second mode, where the maximum probability density value is still very close
to the experimental value.
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Fig. C.8 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario C as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.
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Fig. C.9 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario D as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.

Finally, scenarios E and F can be evaluated together as C and D were, because again,
the layup sequence is just flipped from one example to the other. Their calibration results
are shown in Figure C.10 and Figure C.11. As before, uncertainty in the modulus values
is reduced and the distribution curves are shifted to the left, indicating that the material
is less stiff than nominally given. The angles are slightly more uncertain than expected
a priori. Also, a slight offset can be remarked, which again goes into the same direction
for both angles, but goes to the opposite direction from scenario B.
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Fig. C.10 Priors and posteriors obtained using free vibration data from [58] for
scenario E as given in Table V.3
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Fig. C.11 Priors and posteriors obtained using free vibration data from [58] for
scenario F as given in Table V.3

The corresponding frequency distributions for the first two modes are shown in Fig-
ure C.12 and C.13. Again, the uncertainty in the frequencies is narrowed down, and
both distributions adjust to the experimental values. However, other than in the previ-
ous example, in this case, they fail to exactly hit the experimental value. However, the
probability density maxima are very close to the experimental value.
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Fig. C.12 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario E as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.
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Fig. C.13 Propagation of prior and posterior distribution for the first two modes
using free vibration data from [58] for scenario F as given in Table V.3. The
nominal experimental frequency values are indicated by the arrow.

In this chapter, it could be shown that the guess for the distributions of the error due to
manufacturing in the composite material was too pessimistic. Standard deviations of the
polar stiffness parameters could be significantly reduced, which means that the amount
of information contributed by the free vibration experiments is important. Furthermore,
it could be shown that the materials are very likely less stiff than given in Hollowell and
Dugundji [58].
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The precision of the study could be further augmented by using more modes, notably in
the chordwise direction of the plates. This was avoided to be consistent with the model
used for flutter analysis in the main part of the thesis. Alternatively, a higher-fidelity
finite element model could also be used in future work.
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Sujet : Quantification d’incertitudes aléatoires et épistémiques dans
la prédiction d’instabilités aéroélastiques

Résumé : La vitesse critique de flottement est un facteur essentiel à la conception aéronautique
car elle caractérise le régime de vol au-delà duquel l’aéronef risque de subir un mécanisme de
ruine. L’objectif de cette thèse est d’étudier l’impact des incertitudes d’origines aléatoires et
épistémiques sur la limite de stabilité linéaire pour des configurations aéroélastiques idéalisées.
Dans un premier temps, un problème de propagation directe d’incertitudes aléatoires relatives
à des paramètres de fabrication d’une aile en forme de plaque en matériau composite stratifié a
été considéré. La représentation du matériau par la méthode polaire lève la contrainte de grande
dimensionnalité du problème stochastique initial et permet l’utilisation du Chaos Polynômial.
Cependant, la corrélation introduite par cette paramétrisation nécessite une adaptation de la
base polynômiale. Enfin, un algorithme d’apprentissage automatique a été employé pour traiter
des discontinuités dans le comportement modal des instabilités aéroélastiques. Le second volet
de la thèse concerne la quantification d’incertitudes de modélisation de caractère épistémique
qui sont introduites au niveau de l’opérateur aérodynamique. Ces travaux, menés à partir d’un
formalisme Bayésien, permettent non seulement d’établir des probabilités de modèle, mais aussi
de calibrer les coefficients des modèles dans un contexte stochastique afin d’obtenir des prédictions
robustes pour la vitesse critique. Enfin, une étude combinée des deux types d’incertitude permet
d’améliorer le processus de calibration.

Mots clés : quantification d’incertitude, aéroelasticité, incertitudes aléatoires, incertitudes
épistémiques, matériaux composites, calibration bayésienne, melange bayésien de modèles, chaos
polynômial

Subject : Quantification of aleatory and epistemic uncertainties in
the prediction of aeroelastic instabilities

Abstract: The critical flutter velocity is an essential factor in aeronautic design because it
caracterises the flight envelope outside which the aircraft risks to be destroyed. The goal of this
thesis is the study of the impact of uncertainties of aleatory and epistemic origin on the lin-
ear stability limit of idealised aeroelastic configurations. First, a direct propagation problem of
aleatory uncertainties related to manufacturing parameters of a rectangular plate wing made of
a laminated composite material was considered. The representation of the material through the
polar method alleviates the constraint of the high number of dimensions of the initial stochastic
problem, which allows the use of polynomial chaos. However, the correlation which is intro-
duced by this parametrisation requires an adaption of the polynomial basis. Finally, a machine
learning algorithm is employed for the treatment of discontinuities in the modal behaviour of the
aeroelastic instabilities. The second part of the thesis is about the quantification of modelling
uncertainties of epistemic nature which are introduced in the aerodynamic operator. This work,
which is conducted based on a Bayesian formalism, allows not only to establish model probabili-
ties, but also to calibrate the model coefficients in a stochastic context in order to obtain robust
predictions for the critical velocity. Finally, a combined study of the two types of uncertainty
allows to improve the calibration process.

Keywords : Uncertainty Quantification, Aeroelasticity, Aleatory Uncertainty, Epistemic Un-
certainty, Composite Materials, Bayesian Calibration, Bayesian Model Averaging, Polynomial
Chaos


