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A B S T R A C T

This thesis discusses the use of deep generative models for symbolic
music generation. We will be focused on devising interactive genera-
tive models which are able to create new creative processes through
a fruitful dialogue between a human composer and a computer.

Recent advances in artificial intelligence led to the development of
powerful generative models able to generate musical content without
the need of human intervention. I believe that this practice cannot be
thriving in the future since the human experience and human appre-
ciation are at the crux of the artistic production.

However, the need of both flexible and expressive tools which
could enhance content creators’ creativity is patent; the development
and the potential of such novel A.I.-augmented computer music tools
are promising.

In this manuscript, I propose novel architectures that are able to put
artists back in the loop. The proposed models share the common char-
acteristic that they are devised so that a user can control the generated
musical contents in a creative way. In order to create a user-friendly
interaction with these interactive deep generative models, user inter-
faces were developed. I believe that new compositional paradigms
will emerge from the possibilities offered by these enhanced controls.
This thesis ends on the presentation of genuine musical projects like
concerts featuring these new creative tools.

R É S U M É

Ce mémoire traite des modèles génératifs profonds appliqués à la
génération automatique de musique symbolique. Nous nous attache-
rons tout parliculièrement à concevoir des modèles génératifs inter-
actifs, c’est-à-dire des modèles instaurant un dialogue entre un com-
positeur humain et la machine au cours du processus créatif.

En effet, les récentes avancées en intelligence artificielle permettent
maintenant de concevoir de puissants modèles génératifs capables de
générer du contenu musical sans intervention humaine. Il me semble
cependant que cette approche est stérile pour la production artistique
dans le sens où l’intervention et l’appréciation humaines en sont des
pilliers essentiels.

En revanche, la conception d’assistants puissants, flexibles et ex-
pressifs destinés aux créateurs de contenus musicaux me semble plei-
ne de sens. Que ce soit dans un but pédagogique ou afin de stimuler
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la créativité artistique, le développement et le potentiel de ces nou-
veaux outils de composition assistée (ou augmentée) par ordinateur
sont prometteurs.

Dans ce manuscrit, je propose plusieurs nouvelles architectures
remettant l’humain au centre de la création musicale. Les modèles
proposés ont en commun la nécessité de permettre à un opérateur
de contrôler les contenus générés. Afin de rendre cette interaction
aisée, des interfaces utilisateurs ont été développées ; les possibilités
de contrôle se manifestent sous des aspects variés et laissent entrevoir
de nouveaux paradigmes compositionnels. Afin d’ancrer ces avancées
dans une pratique musicale réelle, je conclue cette thèse sur la présen-
tation de quelques réalisations concrètes (partitions, concerts) résul-
tant de l’utilisation de ces nouveaux outils.
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1
I N T R O D U C T I O N

motivations

The introduction of deep learning techniques into the scope of gen-
erative modeling has led to the development of powerful and expres-
sive generative models. Recent advances showed for instance that it is
possible to generate captions from images [124, 154], images from cap-
tions [101, 129, 130] or audio from text [55, 114]. Interestingly enough,
these techniques are not easily transferable into the domain of sym-
bolic music generation i.e. generation of music sheets. Indeed, music
has its own structure and its own rules and it is intrinsically differ-
ent from all the other types of data. Devising generative models for
symbolic music gives rise to many novel and valuable computational
problems.

A natural question which is often asked when speaking about the
automatic generation of music is the following: What for? Why would
we give up our artistic faculties to computers and become mere oper-
ators?

Composing music is indeed profoundly considered as an artistic
process where artificial intelligence would have no role to play in.
Worst, we have a strong reluctance in appreciating a music which has
not been composed by a human and I think it has to be so. We can
appreciate the quality of a computer-generated piece, but this work
will never be considered as a piece of art. Art is more about com-
municating human thought processes and human experiences than
about the resulting product. However, many recent deep generative
models on music tend to produce black box models only able to spit
out an infinite number of musical pieces. There is no human inter-
vention, except when building up the model. If they participate to
the proposing of challenging problems in artificial intelligence, these
models cannot be used to actually compose music and can only be
seen as a proof of concept. This criticism has been formulated before,
but not in the context of deep generative models. This resulted in
models with which we could play with, but which did not have the
modeling and generalization capabilities of deep learning models.

Can we take the best of both worlds? Is it possible to put the hu-
man back in the loop by devising deep generative models that would
enhance composers creativity rather than putting them aside?

We will explore in this manuscript how to build upon the recent
and outstanding progresses in artificial intelligence in order to serve
artistic purposes. Since I am convinced that humans must intervene

1



2 introduction

in any artistic process, our focus will then be on interactive deep gener-
ative models for symbolic music generation; that is, devising deep gener-
ative models that users could interact with in order to help them dur-
ing composition. This theme, which has not been previously stated as
such before, is at the intersection between many domains and I hope
this thesis will participate in its acceptance and in its development.

I strongly believe that the requirement for a generative model of
music to be interactive is essential, since it anchors the related com-
putational problems onto the range of real-world problems. We must
not only design powerful generative methods but also need to re-
think about the human-machine interaction itself. This creates both
concrete and theoretical problems. Indeed, when working on inter-
active deep generative models, the theoretical machinery can only
express itself through the development of appropriate user interfaces.
This raises original and numerous questions like:

• What features are desirable for a computer-assisted composi-
tion?

• How can we boost users’ creativity or users’ productivity?

• Which kind of interaction do we need and what interface it
implies?

• Can novelties in deep generative models suggest new composi-
tional processes?

• How to design both powerful and flexible deep generative mod-
els fulfilling well-specified musical and technical requirements?

Many kind of interactions can be thought about, and each one re-
quires the design of novel approaches. Musical ideas can lead to the
development of new A.I. models and vice-versa. Not only this inter-
action is fruitful, but it can also help to have a better understanding
of how these fascinating deep generative models behave.

contributions

This thesis is composed of three parts.
Part I consists in an overview on deep generative techniques for

music composition. The focus will be on exposing general ideas on
symbolic music generation and how a careful look upon the musical
data can help in designing better models. This part starts by first pre-
senting the available symbolic musical data in Chap. 2. In this chapter,
we discuss about the various formats in which we can find musical
data and highlight what are the most important and unique features
in music that we have to bear in mind when building generative mod-
els. It finally ends with a look upon the different datasets commonly
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used for automatic music generation. A particular attention will be
paid to the dataset of the chorale harmonizations by J.S. Bach as it will
be used in many of the experiments presented in this work. Chapter 3

deals with the particular issues and challenges encountered when
building generative models for symbolic music. Namely, we discuss
about the importance of crafting appropriate data representations de-
pending on the musical data at stake and about the modeling issues
caused by the lack of an objective evaluation on the generated pieces.
We then conclude by emphasizing upon the importance of rethink-
ing the interaction between a user and the machine when designing
generative models. The following chapter, Chap. 4, is a non exhaus-
tive survey on the recent approaches on deep generative models for
music. For each, we will present its drawbacks and advantages with
respect of the issues listed in the preceding chapter. We will see that
most of the mentioned methods, despite their relatively expressive
power, cannot be used in an interactive way which is, in my opinion,
a severe limitation; one cannot really “play” or compose with them.

Part II exposes my work on polyphonic music generation. It is split
into two chapters which deal with the same problem: learning and
generating chorales in the style of J.S. Bach. Chapter 5 must be per-
ceived as an introduction to its succeeding chapter. In it, I expose and
analyze a solution which is not built using deep learning techniques.
The advantage of this solution is its clear mathematical formulation
together with a novel method to handle polyphonic music. The pro-
posed model is able to be used interactively and its invention capac-
ities are evaluated. By identifying and correcting the weaknesses of
this model, I have developed DeepBach, a major improvement over
the preceding model. This model, presented in Chap. 6, is able to
generate musically-convincing chorales in the style of Bach while be-
ing steerable. This means that composition can now be thought of
as a constructive dialogue between a composer and the model. In or-
der to make this new interactive compositional process be smooth,
we conceived a graphical interface so that a user can naturally query
the system. With it, even non experts can compose well-written com-
plex chorale music. Many of DeepBach generated chorales have been
played live and the music sheets are available in Appendix A.

In part III, I present independent techniques in the simpler case
of monophonic sequence generation. These techniques are different
approaches to the same problem: thinking about new ways of inter-
acting with a generative model. For instance, having a perceptually
“good” distance between music sequences is of great use in music
generation since we could use it to generate variations upon a given
pattern. This is considered in Chap. 7 where I propose a method to
create a transposition-invariant distance. This allows to detect pat-
terns and their variations irrespective of the key they are in. Con-
trary to other existing distances on sequences, this distance is learned
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from data and thus better matches our perception of proximity in the
space of sequences. Chapter 8 is a short chapter exposing an original
method to generate sequences with unary constraints while sampling
sequences with the correct probabilities. Adding unary constraints is
a way to explore the capabilities of a generative model and a first
step towards the instauration of a dialogue between a composer and
the machine. The great advantage of this method is its efficiency at
generation time. Having such a fast generation scheme is all the more
interesting in the context of real-time interactive applications for in-
stance. In the last chapter, Chap. 9, I propose to enrich a class of
powerful generative models by adding meaningful ways to control
its generations. The most interesting feature here is that this control
is continuous. This method is applicable not only in music, but in
almost every domain, from image generation to molecule synthesis.
In the context of sequence generation, this allows to smoothly create
variations of a given melody in an intended way. Since generation is
instantaneous and the possibilities of control infinite, I believe this
model can be used to propose an elegant, novel and intuitive way of
composing music.



Part I
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M U S I C A L S Y M B O L I C D ATA

With the advent of big data analytics, data is more and more valuable
and the amount of available data grows at an unprecedented pace.
This is true in nearly every domain... except for the one we are in-
terested in. Indeed, musical symbolic data is really scarce: contrary
to text or images, it is “hard” to produce by individuals; most of the
musical contents nowadays is not in a symbolic format and the auto-
mated production of musical symbolic data designed for learning is
nonsensical.

So, why bother with a symbolic view and concentrate directly on
the raw audio which is the true nature of music?

We think that considering only musical notations helps reducing
the variability of the datasets (all possible interpretations) and focus
on the essence or the idealized view of the music. The music notation is
always an abstraction: it is a way to represent a musical performance.
There are numerous musical notation systems, each one adapted for
notating a particular type of music, some are elusive while others can
be very precise.

A musical notation is adapted when its users (composers, perform-
ers) are able to communicate their musical intentions in a way that
suits their artistic desires with minimum effort.

In the same way, a musical data representation in automatic music
generation will be adapted if a generative model is able to easily learn
how to generate convincing musical contents. Hence, a representation
must not be too complex or detailed (so that the model focuses on
the “most important” aspects of the music) nor too simple (otherwise
the model could skip important features of the music). Finding the
correct “granularity” is all the more essential in music generation
because of the lack of huge corpora.

The aim of this chapter is to expose the singularity of the musical
symbolic data and show that it is an endless reservoir of new compu-
tational challenges.

This chapter starts in Sect. 2.1 by introducing the main formats
in which music is encoded. We describe in Sect. 2.2 the specificities
and the peculiarities of the musical data and how it differs drasti-
cally from other (apparently close) data such as textual data. With
these highlights in mind, we expose in Sect 2.3 the available datasets
commonly used in musical symbolic learning.

7
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symbolic music notation formats

The modern Western musical notation format

When talking about musical notation, we immediately think about
the modern Western musical notation (Fig. 1). This sophisticated nota-
tion include notes and rhythms and can include tempo indications,
dynamics, expressive annotations, musical phrases, lyrics, etc. so that
composers can express and transmit their musical ideas. This nota-
tion is both precise and elusive.

Precise since every played note is written on the score (in most of
the occidental music, there is few place left for improvisation); elusive
because the dynamics or the musical phrases are to be interpreted.
The player’s understanding of the piece and the music at stake is
thus essential for a decent performance.

In fact, it is more than precise since it also contains a lot of implicit
expert musical knowledge. A simple example of this is the presence
of the key signature (in Fig 1, this is represented by the first five
flats right after the clefs which denote that every time one of these
five pitches is found on the music sheet, it must be played flattened).
It does not only provide a convenient way to remove from the score
too many accidentals but conveys a musical meaning: the same music
sheet but with another key signature would appear misspelled. There
are a lot of historical conventions in occidental classical music: this
format is thus not only a way of notating notes but also bears an
additional meaning. This is also true in the spelling of the notes: in a
word, the Gb of mes.4 in Fig. 1 could not be written F♯ even if these
two notations would sound the same.

Figure 1: Example of modern Western musical notation: Impromptu Op. 12

n°2 by Scriabin (1895).

This notation with five-line staves is used by musicians of many
different genres all over the world since centuries. An interesting spe-
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cialized use of this notation is the lead sheet notation, which consists
of a staff of chord symbols together with a staff containing a melody
(Fig. 2). This notation is primarily used for notating pop songs and
jazz standards. It is more evasive than the classical music sheets. A
performer is more free in their musical choices and the lead sheet is
more an abstract guide than a high-fidelity description of a perfor-
mance: the musical ensemble is not specified; the chords are only in
a symbolic format; the tempo indication is vague; etc. It is a way to
fix some ideas while letting some other parameters free.

Figure 2: Example of a lead sheet: first measures of Beautiful Love by Wayne
King, Victor Young and Egbert Van Alstyne (1931).

However, this purely graphical notation may not be suitable from a
computational point of view. The music sheet of Fig. 1 contains in fact
far more information than the ones we already mentioned: from the
stems direction to the precise location of the dynamics. An accurate
representation, not in image format, of this notation must translate
all this complexity.

Markup languages

A first step towards a computer-readable format is the MusicXML
open format (see Fig. 3). It is a markup language providing support
for notating all “important” musical information (key, time signa-
tures, clefs, beaming information, stem directions, slurs, ornaments,
bar lines etc.). If this format is of great use for sharing musical files,
this representation is not suitable from a learning perspective since it
includes a lot of overhead.

Other related formats used to describe musical objects can be de-
vised, each one with its specificity. These formats are not easily read-
able by a human and need a music notation software to easily work
with. The advantage of the MusicXML format is that it can be read
by most of the score writing programs and focuses primarily on the
“essence” of the music sheet, while other proprietary formats (used
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<note>

<pitch>

<step>C</step>

<octave>4</octave>

</pitch>

<duration>4</duration>

<type>whole</type>

</note>

Figure 3: Example of a single note in the MusicXML format.

for instance by Finale or Sibelius notation software) also include graph-
ical and formatting information.

ABC notation

The traditional Western music notation system is the most widely
used one, but other musical notation exists. One example is the ABC
notation [157], a simple textual notation for notating simpler musical
pieces like monophonic melodies. Its simplicity and its readability
(compared to the MusicXML format) makes it widely useful for no-
tating and sharing folk and traditional tunes of Western Europe.

T:All The Way To Galway

M:C

L:1/8

K:Dmix

A|d>ef(d cA)A>c|BGG(A/B/) cAA>c|

d>ef(d cA)A>c|BG(AF) D2D:|

(a) ABC format.

(b) Rendering in traditional music notation.

Figure 4: Example of a monophonic melody in ABC format and its render-
ing in Western musical notation: All The Way To Galway, anon., Ire-
land, from Francis O’Neill’s “The Dance Music of Ireland” (1907).

This notation is primarily meant for transcribing monophonic melo-
dies: it focuses on notating pitch and rhythm. Other information are
available in the preamble of the document (such as the title, the key
signature or the default length of a note). Without entering into the
details of the notation, the name of a note is notated using its cor-
responding English notation (from A to G), its accidental is notated
by ˆ (sharp) and _ (flat) and its duration is transcribed by an integer
or a fraction following the note name. This number indicates the du-
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ration of the note as a multiplier of the default note length. Using
lowercase or uppercase letters help differentiate the different octaves.
Other symbols and several shortcuts exist in order to make this nota-
tion rich enough and as light as possible (see Fig. 4 for an example).

This notation also includes the possibility to write chord symbols
or multiple-note chords, but these features have some limitations.

MIDI

Even if it is not strictly speaking a symbolic music format, the MIDI
format can be used as such. It is in fact designed to record live per-
formances rather than symbolic data.

MIDI (Musical Instrument Digital Interface) [96] carries event mes-
sages that specify note information such as its pitch and the velocity
with which it has been played. There are five types of message and
here we only consider/describe the Channel Voice type, which trans-
mits real-time performance data over a single channel.

For a given channel, these messages are tuples of the type

(Note on/off, MIDI pitch, velocity),

where the MIDI pitch is an integer between 0 and 127, where each inte-
ger corresponds to a unique frequency. As an example, the middle C
is encoded as 60 and the C♯/Db frequency as 61. With this notation, it
is interesting to note that there is no way to differentiate between the
different spellings of enharmonic notes (two notes that sound the same
but are written differently). The velocity is also an integer between 0

and 127.
The note on event indicates that a note is being played from then

on (e.g. a key has been pressed) and the corresponding note off event
indicates that this note is no longer being played (e.g. the key has
been released).

These messages can be used to transmit real-time performances
or can be attributed a time value and stored in a file in order to
save performances. These time values must be integers and represents
the number of ticks (minimal duration between two events) since the
beginning of the piece.

MIDI files can be used for instance to transcribe music sheets (writ-
ten in the modern music notation format) by saving idealized (quan-
tized) performances. An example of extract from a MIDI file (turned
into readable ASCII) and its corresponding score is shown in Fig. 5. In
this example, there are 384 ticks per quarter note, which corresponds
to 96 ticks for an eighteenth note, and all notes have the same veloc-
ity. It is possible to play multiple notes at the same time (polyphony)
within the same channel.
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96, Note_on_c, 0, 60, 90

192, Note_off_c, 0, 60, 0

192, Note_on_c, 0, 62, 90

288, Note_off_c, 0, 62, 0

288, Note_on_c, 0, 64, 90

384, Note_off_c, 0, 64, 0

384, Note_on_c, 0, 65, 90

480, Note_off_c, 0, 65, 0

480, Note_on_c, 0, 62, 90

576, Note_off_c, 0, 62, 0

(a)

(b)

Figure 5: Extract from a (simplified) MIDI file (a) and its corresponding
score (b).

singularities of the symbolic musical data .

In this section, we focus on the specificities of the symbolic musical
data and why it differs drastically from other types of data commonly
used in machine learning such as text or images. Consider as an illus-
tration of this claim the following question: what makes monophonic
melodies in ABC format representation require a distinct treatment
from the ones used for natural language processing?

Melody, harmony and rhythm

Most of the music we hear is strongly rooted in the Western music
tradition or common-practice period and we will from then on only
focus on this kind of music. Whether it is in jazz music or in tradi-
tional Irish tunes, these music have in common the notion of melody,
harmony and rhythm, inherited from the past. If the terms melody
and rhythm are easily understandable, the notion of harmony can
be less clear. The term harmony roughly designates the principles
behind the simultaneous superposition of sounds (chords) and how
these chords are arranged into chord progressions. In this sense, it is
a “vertical” view (when written on a music sheet) of the music. This
is opposed to the melodic or “horizontal” view of the music i.e. how
a single voice evolves through time. Generally speaking, chords are
composed of three to five notes and may be rearranged as a stack of
thirds. This stems from physical principles coupled with the long and
progressive evolution of the occidental music.

When playing a given chord, playing a note belonging to that chord
at the same time will sound consonant while playing non-chord note
at the same time will sound dissonant. Dissonance is not a thing to
avoid in classical music, on the contrary, notes perceived as expressive
are often dissonant. However these notes must be carefully arranged
so that they resolve on consonant notes. Roughly speaking, we can
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say that music as we know it is based on the creation followed by the
resolution of musical tensions.

It is important to pinpoint that, even when there is only one voice in
a piece, this notion of chord is still present. For instance, in Fig. 4, the
underlying harmony is immediately perceivable: the most important
notes of the melody are notes composing the implied chords.

When speaking of rhythm, we do not only talk about the timing
between two consecutive notes, but also include the notion of meter
of the music. All the music we will consider is regularly-pulsed, but
the hierarchy between these evenly-spaced pulses can vary. This is
of great importance since it is at the crux of the differences between
dances for instance. This hierarchy between between pulses or beats
repeats itself through time which allows the perception of higher-
level groups called measures or bars. As an example, a waltz will be
composed of three-beat measures whose first beat will be more im-
portant than the two following beats. The frequency of the harmonic
changes is called the harmonic rhythm and must be in accordance with
the hierarchy imposed by the meter. Changes cannot occur too swiftly
in order to make the harmony (or implied harmony) audible. In ex-
amples of Fig. 1 and 4, the harmonic changes occur every two beats
in a four-beat measures.

To put it in a nutshell, even in the simple melody of Fig. 4, the
choice of the pitches and their organization through time relies on our
subconscious understanding of these musical rules inherited from
our perpetual exposition to music. This is why we are able to detect
“wrong notes” or “bad timings”, even if we have no musical educa-
tion.

Structure, motives and patterns

Music has its own organization. Contrary to text, music loves to re-
peat itself. Indeed, most of the songs we know alternate between
verses and a refrain. Basically, the refrain is repeated identically at
each of its occurrences while the verses have the same music but dif-
ferent lyrics.

There are many reasons why such a structure is so popular. The
aim when composing music is to attract and hold the interest of a
listener. The alternation between two contrasting parts is a way to
achieve this goal: the verses renew the interest in the music and pre-
vents the listener from getting bored, while the refrain intervenes as
a landmark, which gives coherence.

The high-level structure of a musical piece is thus a way to con-
struct long, but coherent, pieces. We will not delve into the details
of the many possible structures of musical pieces: it is the result of a
long history of musical practice [2]. Furthermore, we believe that this
notion is far from being captured by generative models.
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Music is also structured on a more local scale. Indeed, in order to
give coherence to a particular piece, some motives or patterns are intro-
duced and used throughout the musical piece. All musical examples
presented so far constitute interesting examples of such a motivic
treatment. In Fig. 1, a characteristic rhythm coupled with an ascend-
ing motif is introduced by the left hand at the beginning of the piece.
This pattern is then repeated during all the following bars; it can be
modified at some points in order to follow the underlying harmonies
but is still recognizable as a variation of the initial pattern. In Fig. 2,
the first four bars introduce a harmonized melody in the key of D
minor. This musical phrase is then transposed a third higher in the
key of F major. The subtlety here is that such a transformation seems
“natural”: we can anticipate what the following notes will be given
the initial motif and the first notes of its successor. However, there
are in fact some changes between both like a slight change of rhythm
or the fact that it is not an exact transposition: the melody or mo-
tif has been adapted to a new harmonization. The example of Fig. 4

follows another organization principle: a first musical phrase of two
bars (named antecedent phrase) is followed by a second two-bar mu-
sical phrase (named consequent phrase). The beginning of these two
phrases is the same while they have different endings and different
cadences (chord progressions that convey a sense of resolution or sus-
pension).

In all cases, these repetitions and transformations create a sequence
of fulfilled/unfulfilled expectations on an attentive listener and con-
tribute to the overall continuity and coherence of the musical pieces.
All the art (or craftsmanship) in music composition consists in the
careful and thriving interplay between musical phrases and multiple-
scale rhythmic changes, harmonic changes and motivic transforma-
tions.

Style

Until now, we have not mentioned the notion of style in music but
dwelled on general principles shared among varied musical styles
and epochs. Even if it is an ill-defined notion, it is nonetheless the
most recognizable feature which helps us distinguish, for instance,
Bach from Debussy. Which chords are used, how they are played
(voicing), how pieces are structured and how melodic lines interact
with the harmonic skeletons are characteristic elements of each com-
poser and evolved through history. Despite the shared characteristics
between musical pieces produced in two different epochs, the notion
of style appears to be crucial in our appreciation of music: transpos-
ing formulations found in Chopin’s works to Mozart’s compositions
would simply appear “out of style” and even discordant. These works
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have been composed with totally different aims and different compo-
sitional processes.

The style of a musical piece has an inarguable impact on its appre-
ciation. Therefore, a good generative model should be able to differ-
entiate clearly between different styles and epochs in order to be able
to generate musically-convincing works.

For these reasons, I believe that designing such a generative model
that would encompass all western music is for the moment out of
reach. In order to generate plausible music that we can evaluate from
a musical standpoint, I suggest that we must focus on problems of
the form: “Given a dataset in the style of X, generate a new musical
content in the same style”.

symbolic music datasets

We now quickly describe some of the most important datasets
available for automatic symbolic music composition. Each of these
datasets has its own characteristics (format, instrumentation, musi-
cal genre, etc.) and requires a specific attention. A common feature
is their relatively small size compared, for instance, to image or text
datasets (ImagetNet [42, 133] is composed of nearly 15 million im-
ages while the One Billion Word dataset [24] contains, as its name
indicates, almost one billion words of training data).

Monophonic datasets

Monophonic datasets in symbolic music are often datasets of tradi-
tional or popular music.

Folk Songs

The Nottingham dataset1 is a collection of 1200 British and American
folk tunes. It is composed of tunes in the ABC format and includes
chord labels. Its conversion in the MIDI format is often used as a
baseline in music. However, this conversion makes little sense: the
choice on how to actually play the chord symbols is always the same
and contrary to what actual musicians would do.

Another repository for folk tunes can be found on The Session web-
site2. It is an online platform about traditional Irish music which con-
tains more than 46000 transcriptions of monophonic tunes in the ABC
format3.

1 A cleaned version of the Nottingham dataset is available at https://github.com/

jukedeck/nottingham-dataset

2 https://thesession.org/

3 The latest data dumps can be found at https://github.com/adactio/

TheSession-data and a cleaned version is available at https://github.com/

IraKorshunova/folk-rnn/

https://github.com/jukedeck/nottingham-dataset
https://github.com/jukedeck/nottingham-dataset
https://thesession.org/
https://github.com/adactio/TheSession-data
https://github.com/adactio/TheSession-data
https://github.com/IraKorshunova/folk-rnn/
https://github.com/IraKorshunova/folk-rnn/
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The lead sheet database

The Lead Sheet DataBase (LSDB) [118] is a dataset of jazz and pop
songs. It includes nearly all existing jazz song books, which repre-
sents more than 15000 music sheets. All lead sheets include a melody
together with its chord progression as a sequence of chord symbols.
Contrary to the other datasets, they are notated using a markup lan-
guage similar to the MusicXML format.

Polyphonic datasets

MIDI file collections

Piano-midi.de4 is a curated collection of classical piano music. It con-
tains selected piano works from 25 composers of the baroque, classi-
cal and romantic eras. All files are in the MIDI format. They are not
live performance recordings but were entered note after note. Each of
the MIDI parameters (pitch, velocity, duration) are controlled so that
the rendering of the MIDI sequence sounds like a plausible perfor-
mance.

The MuseData repository5 is a collection of instrumental works fo-
cusing on music composed in Europe between 1700 and 1825. All
files are available in the MIDI format. These files include a variety of
genres and instrumentations, from Telemann’s solo sonatas for violin
to Mozart’s symphonies.

Other large MIDI file collections are also available on the Internet.
The problem with these files is that their encoding is not always the
same and could have been made in order to serve different purposes.
For instance, they could be live performance recordings or quantized
transcriptions; embellishments can be added or omitted; all voices
could be recorded on the same channel or separated between differ-
ent channels. These large collections can thus be inhomogeneous, not
only on the style and instrumentation they feature, but also in the
way their MIDI files were devised.

The Chorale Harmonizations by J.S. Bach

The J.S. Bach Chorales dataset is the collection of all the chorale har-
monizations composed by Johann Sebastian Bach. It is composed of
402 four-part chorales in MusicXML format. This dataset is included
in the music21[38] Python package. The corpus of the chorale harmo-
nizations by Johann Sebastian Bach is remarkable by its homogeneity
and its size.

4 http://www.piano-midi.de/

5 http://musedata.stanford.edu/

http://www.piano-midi.de/
http://musedata.stanford.edu/
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(a) Original text and melody by Georg Neumark
(1641),

(b) Four-voice harmonization by Bach: voices are determined by the
staff they are written on and the directions of the stems.

Figure 6: Two versions of “Wer nur den lieben Gott läßt walten”. The orig-
inal melody (a) and its reharmonization (b) by Johann Sebastian
Bach (BWV 434).

All these short pieces (approximately one minute long) are written
for a four-part choir (soprano, alto, tenor and bass) using similar com-
positional principles: the composer takes a well-known (at that time)
melody from a Lutheran hymn and harmonizes it i.e. it composes the
three lower parts (alto, tenor and bass) accompanying the soprano
(the highest part), see Fig. 6 for an example.

These pieces are usually part of longer vocal pieces like cantatas.
Since the aim of the composer is to put a text into music which has
to be clearly understandable, all four voices must articulate syllables
at the same time. This leads to a particular musical texture called ho-
mophony. This does not necessarily result in a homorhythmic texture,
where all voices strictly sing simultaneously, but induces a musical
texture in which the variety of rhythm is very restricted. This is also
true on a larger scale since all chorales have simple time signatures.
Bach chorales mainly focuses on the harmonic and melodic ideas
rather than on rhythm. By adding additional voices, the composer
“colors” the original melody with new harmonies. This reservoir of
harmonic ideas (there often exists several harmonizations for the
same melody) makes this dataset a privileged dataset for the study
of harmony and musical composition.

From a machine learning perspective, a great asset of this dataset
is the presence of fermatas (see Fig. 7) in order to indicate the end of
musical phrases. This particular use of the fermata is almost unique
to chorale compositions. Knowing where musical phrases begin and
end is of a particular interest when building generative models and
it is a feature one has to consider.





3
C H A L L E N G E S I N M U S I C G E N E R AT I O N

This chapter presents the challenges and issues currently found in the
domain of automatic music generation. While the preceding chapter
focused on the symbolic musical data itself, we will now observe it
from a machine learning point of view with the following question
in mind: What are the computational problems raised when building
generative models from musical data?

The first problem is the one of finding an appropriate representa-
tion for the musical data. We have seen that there exists many musical
notation formats, however, these cannot be directly used as the input
of our models and need to be converted in an efficient representation.
In Sect. 3.1 we present several ways of converting the aforementioned
datasets into a representation adapted for learning. We discuss about
the common issues and choices faced when crafting a data represen-
tation for musical contents. We end this section by proposing our own
representation that overcomes some of these issues for some specific
musical data.

Once a convenient representation has been chosen, a model, ex-
pressive enough to handle the complexity of the musical data, must
be devised. We discuss in Sect. 3.2 the many novel and original prob-
lems raised by the singularity of the musical data with respect to
other types of data.

We then see in Sect. 3.3 that the lack of objective metrics in order to
assess the quality of the generated pieces can be a major issue when
devising generative models. This chapter concludes on the following
question: What these generative models of music can be used for?
We will see in Sect. 3.4 that having a clear objective condition how we
conceive these generative models.

building representations

As seen in Chap. 2, an intermediate representation is thus needed.
Unfortunately, as for musical formats, no representation is universally
acknowledged as being the most effective nor can handle the diversity
and specificities of all types of music. We now describe encodings for
the different parameters of the music, how they are related to each
other and discuss their advantages and drawbacks.

19
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Notes

Choosing the right encoding for the notes is important. The most-
used encoding is the MIDI pitch encoding (Sect. 2.1.4). That is: each
note on a piano is given an integer value and each one is seen as a
distinct category. Nearly all existing approaches are built using this
encoding. However, we claim that it is not the right choice when deal-
ing with music sheets.

Indeed, when learning from music sheets so as to generate music
sheets, we need the output music sheet to be well-written so that it
can be played, for instance, by a musician. This is impossible using
the MIDI pitch encoding. The reason for this is that there is a loss
of information when reducing the full name of the notes (like C♯4,
E♯5 or Bb4 for instance) to their MIDI pitches because of the enhar-
monic notes. From a musical point of view, loosing this information is
problematic since most of the music we know makes this distinction
(see Sect. 2.1.1). Generated music sheets that use this encoding would
necessarily have spelling problems and would require additional treat-
ment before being considered as “correct”. A more problematic fact
is that this loss of information on training data can in fact hinder the
model performances since we decide, with no clear reason, to totally
ignore the implicit presence of music theory in the data. For instance,
this difference in Bach chorales is unambiguous and it is thus natural
to consider the full name of the notes. From a machine learning point
of view, two enharmonic notes would appear in totally different con-
texts: considering them as being identical would force the model to
learn to distinguish between both, which may be hard considering
the scarcity of the symbolic music datasets. I believe that this encod-
ing is essential in order to allow generative models to generate notes
with the correct spelling, which is of the utmost importance when we
focus on the music sheet rather than on its audio rendering.

However, as seen in Sect. 2.3, the biggest datasets are in MIDI for-
mat, which do not contain this basic information. We thus advocate
for the need of more symbolic datasets using the open MusicXML
format.

Rhythm

Symbolic music represents the organization of sounds through time.
As seen in Sect. 2.2.1, even simple melodies have a complex and hier-
archical organization and a convenient encoding of rhythm is essen-
tial.

There are mainly two ways to treat rhythm:

• using a event-based encoding,

• using a fixed time grid.
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Event-based encoding

This encoding consists in considering that music is composed of notes
with a prescribed starting and ending time or with a starting time and
prescribed duration. Examples of formats following this scheme are:

• the MIDI format (Sect. 2.1.4),

• the ABC notation (Sect. 2.1.3).

Note that it is possible to slightly modify the MIDI format so that,
instead of having note on and note off events, we have only information
about which note is played together with its starting time and its
duration. When there is only one voice, the information about the
starting time can be omitted since notes succeeds to one another and
we end up with an encoding very similar to the ABC notation.

In both cases, a musical event can be seen as a couple of a note
together with a timing information.

If this is apparently the most natural way of encoding music (since
it is more or less a straightforward adaptation of our commonly-used
musical notation (Sect. 2.1.1), it is not necessarily appropriate when
used in generative models. As an example, in a correct MIDI file, a
note on MIDI event will always be followed by a note off event. For
a generative model, learning such a structure adds unnecessary com-
plications and can lead to the generation of ill-defined sequences (see
[71] for a discussion on the advantages and drawbacks of using the
MIDI encoding for generation tasks). The great advantage of this en-
coding is that it is able, in theory, to encode any rhythm: from crotch-
ets to more complicated rhythms such as irrational rhythms. How-
ever, since in symbolic music generation the duration of the rhythms
we have are only rational (compared to an encoding of a true per-
formance), we can think about more efficient ways of encoding the
duration (rather than trying to predict real numbers). This implies
for instance to discretize time using the smallest possible subdivision.
This is not the only way of representing rhythm (see for instance [108]
where duration is represented using a five dimensional space).

There are also other difficulties provoked by using this encoding.
One, for instance, is that a generative model would have to predict
couples composed of a note and its duration. How to consider this?
Is this a Cartesian product between all the possible notes and all
the possible durations or simply consider them as independent from
each other? In a word, this adds modeling questions since we need
to model a joint distribution over couples. This is important since it
directly affects how a generative model can train. Another difficulty
stems from the fact that if a “wrong” duration is produced at gener-
ation time, this error will affect all the following notes since they can
for instance all become “out of beat”. This is why generative models
must also learn metrical information such as measure bars to avoid
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these drawbacks (see for instance the method proposed in [145] and
discussed in Sect. 4.1.1.1).

Fixed time grid encoding

Another way of thinking about music is to consider that time unfolds
regardless of the presence/absence of notes and that for each given
time t, we can list all the notes being played. The major difference
with the preceding approach is that there is no more time/duration
coupling. Concretely, time is often discretized and the set of notes
being played is represented using a binary vector. This leads to a
grid-like or piano roll encoding of the music (see Fig.8).

Figure 8: Example of a piano roll where notes are encoded using MIDI
pitches.

Discretization can cause some issues. For instance, how to choose
the minimal subdivision? This can be problematic if the corpus con-
tains tuples of different sizes or really fast rhythms. In such a case,
the encoding is mostly inefficient and it is hard to learn from musical
data encoded using this scheme: approximations and trade-offs must
be made.

The usual piano roll has two major drawbacks:

• there is no distinction between voices,

• there is no distinction between a held note and a repeated note.

Indeed, the piece in Fig. 8 seems to be written for four monophonic
parts. However, this information is lost and it is only possible to guess.
In such cases, a common solution is to put voices in different piano
roll tracks. This is more consistent with the way music is written:
the distinction between instruments or between hands (for keyboard
pieces) is always clear on the music sheets.

The second issue, which is that we are unable to distinguish be-
tween a held note and a repeated note, is more problematic since
it profoundly alters the music. In order to circumvent this problem,
we can add, following [74, 150], an additional piano roll of Boolean
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(a) (b)

Figure 9: Extract from a Bach chorale and its representation as four voice
lists. The hold symbol is displayed as “__” and considered as a
note.

values which would encode if a note is articulated or just held. As
a consequence, the generative model must generate two elements: a
note together with its articulation.

If most of the encodings used in music generation are related to the
ones described above, many add other extra information depending
on the dataset they train on.

Melodico-rhythmic encoding

Both approaches shown in Sect. 3.1.2 had in common the fact that
they had to generate couples of values (note and duration or note
articulation couples). We think that this is a disadvantage since it
forces to model particular joint distributions over pairs.

We now propose a unified encoding for monophonic sequences
which allows to treat melody and rhythm on an equal footing. In the
following, time is discretized and we have a fixed time grid.

This encoding relies on a simple trick. This is done by adding a hold
symbol “__” to the list of possible notes. This symbol codes whether
or not the preceding note is held. Since the sequences we consider are
monophonic (only one sound at a given time), this representation is
unambiguous and compact.

Furthermore, it is not only limited to monophonic music but can
be used in every music piece composed for distinct monophonic
voices. Its melodico-rhythmic encoding is then obtained by taking the
melodico-rhythmic encoding on each monophonic voice (see Fig. 9

for an example).
The requirement that all voices be monophonic is not so restrictive,

since this embraces music from chorale music to orchestral works (if
we throw away double stops).

This encoding will be used in all the experiments presented in this
thesis. In these experiments, the generative models I propose bene-
fit from the advantages offered by the melodico-rhythmic encoding
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in totally different ways. We will discuss in detail this aspect in the
corresponding sections.

complexity of the musical data

As seen in Sect. 2.2.2, musical data is complex and has greatly evolved
throughout ages. It is not however the only source of variability in
musical data: even if we choose only works by a single composer or
belonging to the same musical period, the variability between dif-
ferent musical pieces is important. There are variations in genres,
tempi, time signatures, key signatures, instrumentation, length, com-
positional processes, etc. The Cello Suites by J.S. Bach are extremely
different from its great preludes and fugues for organ. And even
within these more homogeneous subcategories, strong and crucial dif-
ferences still exist: compare for instance a prelude and a sarabande
from the Cello Suites. Only this simple observation raises important
questions:

• Is it possible to learn from data which is so heterogeneous?

• If this is possible, what would a trained model be able to gener-
ate?

• If we restrict ourselves to homogeneous (but really small) data-
sets, is it possible to generalize well?

I believe that this trade-off between the size of the datasets and
their coherence is one of the major issue when building deep gener-
ative models. If the dataset is very heterogeneous, a good generative
model should be able to distinguish the different subcategories and
manage to generalize well. On the contrary, if there are only slight
differences between subcategories, it is important to know if the “av-
eraged model” can produce musically-interesting results.

There are nonetheless techniques that reduce some factors of vari-
ability (by transposing all pieces in the same key [17, 93]) or, on the
contrary, artificially augment the size of the datasets (by transposing
the dataset in all keys [87]). However, for the majority of the other
factors of variability, not much can be done.

Another issue is that each musical piece is self-contained and can
have a lot of structure (long and short-term structure). For some mu-
sical works like sonatas or fugues, the global structure can indeed be
at the crux of the composition. To generate a convincing sonata, not
only the language must be learned from data but also the ability to
create long, balanced and coherent pieces.

These difficulties create many challenging problems like:

• How to devise data-efficient and expressive models?

• Can/should we include musical knowledge to improve the gen-
eration capabilities?
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• Which aspect of the data can we try to reproduce (patterns, vari-
ations, harmonies, structure) and how to achieve this goal?

• Can a generative model generate in a single shot a fully coher-
ent, long and interesting musical piece?

The careful choice of the dataset is therefore essential. Some, for
instance, are “easier” to learn from than others. Depending on the
music at stake, the musical interest can rely more on some parame-
ters than on others. For instance, structure, rhythm and patterns are
predominant notions in folk music 2.3.1.1; harmonies, on the contrary,
are to be simple, with clear harmonic functions. Another example is
the corpus of the chorales by J.S. Bach 2.3.4. In this case, harmony
plays a central role while long-term structure is mostly dictated by
the melody to harmonize.

Understanding the musical distinctions between datasets is thus
the very first step when building generative models. Furthermore,
some styles may be more permissive than others: in some styles, inac-
curacies in a generated piece may only slightly affect the musical qual-
ity of the whole piece or go unnoticed while in some others, slight
mistakes can ruin the whole piece.

evaluation of generative models

Generative models are often hard to evaluate using objective metrics.
This is all the more true when considering deep generative models
for symbolic music. If there exists many works on music theory [80,
126], there rarely exists musical rules that apply to all musical pieces.

It is thus impossible to have quantitative measures of accuracy or
to compare models. There is no MNIST-like task for music generation
and better log-likelihood results do not imply better musical genera-
tions [147]. This causes many hardships since designing and improv-
ing a model can only be made in a blindfolded fashion. We cannot
for instance optimize models hyperparameters on a both objective
and musical basis.

One way to evaluate or compare models is through perceptual lis-
tening tests. With the recent improvements of the quality of the gen-
erated pieces, it is now possible to devise Turing-like tests, where the
objective for the participants is to determine whether or not the mu-
sical pieces are computer-generated [62, 93]. If this is a good practice,
the results are very noisy and cannot be used as a ground base.

Another way is to simply ask experts to rate the musical quality of
the generated pieces. Through music analysis, it is possible to analyze
the advantages and drawbacks of the proposed methods. However, a
major difference with other types of data often considered (like text
or images) is that a real expertise is needed for this task.
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A feature often put aside when evaluating results about generative
models is their ability to generate new content. Even if it is rarely
considered, it is an absolute necessity that a generative model does
not plagiarize its training dataset.

generative models for music , what for?

The preceding sections seemed to be rather pessimistic about the pos-
sible achievements in music generation. In our view, we believe that
thinking about the human-machine interactions for improving com-
position rather than thinking about generating perfect musical pieces
from scratch can help overcome some of these issues and provide new
paths of research.

Bearing this objective in mind radically changes the way to think
about automatic symbolic music generation. The generative models
are now only devised to be used for specific tasks and part of a greater
interactive system. Such a system must be intuitive and powerful, but
need also to let the stylistic choices up to the composer. Doing so
breaks into smaller parts an extremely complex problem. The aim
is now to make generative models able to propose interesting ideas.
From a computational point of view, we no longer have to generate
from scratch, but need to improve over given solutions. Sometimes,
only one suggestion of a good chord is sufficient to transform a whole
song.

This will be the guide line of this thesis. For instance, the DeepBach
model (Chap. 6) stems from the following interrogation: What if I
am satisfied with the beginning and end of a generated chorale but
would like to change the middle part? Most of the existing systems
do not allow such a feature. Now suppose that you have an existing
melody, but you would like to ornate or vary it. Can we devise a
system able to do this? What kind of control can we have on this
regeneration process? These ideas are developed in Part III.

The evaluation of interactive deep generative models becomes sim-
pler: an interactive deep generative model is good if it helps to gen-
erate with little effort music that we can listen to and appreciate. The
compositional process resulting from the use of such a system must
be intuitive and let the composer play an active part in the composi-
tion. In order to achieve this goal, the generative model must be flex-
ible enough to be capable of coping with many of the user’s queries
so that a balanced and fruitful dialogue between the composer and
the machine can take place.
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D E E P L E A R N I N G M O D E L S F O R S Y M B O L I C M U S I C
G E N E R AT I O N

This chapter is an exposition of the recent approaches in music gen-
eration. We do not seek to be fully exhaustive but prefer to give a
glance at the different methods, of the problems they solve and on
the issues they suffer from. This presentation is mainly focused on
the recent data-driven deep learning generation methods.

For a more comprehensive survey, we refer the reader to [48]. The
authors of this paper review all methods in algorithmic composi-
tion up to 2013. However, since then, the generalized use of neural
network-based techniques in this domain has (almost) outpaced ev-
ery other approaches and no unified attempt at analyzing the use of
deep learning methods for generating music has been published yet.
This chapter can thus be considered as a first step in synthesizing and
analyzing the novel ideas from the machine learning community to
solve original music-specific problems. For a more complete classifi-
cation of the deep learning generative techniques for music, we refer
to the recently published survey [19].

The objective here is to give a brief overview of the existing deep
generative techniques applied to symbolic music. We will try to dis-
cuss how similar ideas are shared among apparently different ap-
proaches. We will then see in the rest of this thesis how thinking about
adding interactivity to these models help to design well-motivated
and useful generative models.

sequential models

Music unfolds through time and seems thus inherently sequential. Re-
current Neural Networks (RNNs) [58] appear as a natural solution for
a probabilistic modeling of musical data. This section presents several
recently-introduced generative models. Even if they differ from each
other on the dataset they train on, the representation of the data they
use or on their overall architecture, they all share the same character-
istic: they generate music from left to right. However, this does not
match with real compositional processes. A composer almost never
writes music from left to right but would rather start by writing
themes and harmonizing them, construct a harmonic skeleton for the
whole piece or maybe try different accompaniments.

27
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Models on monophonic datasets

Folk-RNN model

The folk-RNN model is a model introduced in [145] whose aim is
to generate Celtic melodies (Sect. 2.3.1.1). It is based on the ABC no-
tation (Sect. 2.1.3) in the sense that it learns and generates ABC no-
tations. Since folk songs are encoded using text, it seems natural to
apply generative models designed for text directly on the folk songs
in ABC format. In fact, the authors use an appropriate tokenization
of the dataset in order to discard unnecessary redundancy coming
from the encoding itself: for instance, the :| symbol, the d’ note or
the /2 duration are considered as one single token. This has the ef-
fect to improve the quality of the generations compared to a plain
character-based encoding.

For a given sequence of tokens s = (s1, . . . , sl) of length l, the folk-
RNN model consists in a discrete conditional distribution

p(st|s<t) (1)

over the set of all possible tokens, where we note by s<i the sequence
(s1, . . . , si−1). This amounts to factorizing the probability distribution
of a whole sequence as

p(s = (s1, . . . , sl)) =
l∏

t=1

p(st|s<t), (2)

with s<1 = ∅. The authors use a stack of three Long Short-Term Mem-
ory (LSTM) [58, 69] networks for an effective implementation of the
conditional distribution of Eq. 1. Training this recurrent network is
then done in an iterative way using the backpropagation through time
(BPTT) algorithm [109, 158].

Generating a sequence with such a model is easy and fast. Given
a seed s = (s1, . . . , st−1) of size t− 1, we generate the next token st
by sampling from the categorical distribution of Eq. 1 and we can
generate a sequence of any size by repeating the preceding step over
and over.

It is interesting to note that in this approach the bar lines and the
repeat bar lines are given explicitly and are to be predicted as well.
This can cause some issues since there is no guarantee that the output
sequence of tokens s would represent a valid song in ABC format.
There could be too many notes in one bar for example, but according
to the authors, this rarely occurs. This would tend to show that such
an architecture is able to learn to count [54].

The results are very convincing in the sense that the generated
melodies seem to be typical Irish tunes (see Fig. 10). One may see
and listen to the results on the following site [143]. The authors also
evaluate the novelty of the generated sequences by checking if there
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exists subsequences that are directly copied from the training dataset.
The conclusion is that even if small subsequences can be found ver-
batim in the training dataset, these subsequences are recombined in
such a way so that it produces brand new melodies. Often, these sub-
sequences are in fact characteristic elements or common patterns in
folk music. Such a behavior is thus desirable since it allows the Celtic
style to be recognizable while creating new musical material. Besides,
the generated pieces have been played by traditional Irish music play-
ers. This is, in a way, an empirical validation of the quality of the
generated pieces.

Figure 10: Score of "The Mal’s Copporim" automatically generated. Repro-
duced from [145]. Degree annotations as analyzed by the authors
are added on the bottom of each staff.

However, one has very little control over the outputs. The only way
a user can steer this model is by providing the beginning of a musical
sequence that the model would have to continue. Since key signature
and time signature information are always given in the preamble of
each sequence, this can induce some interesting and non trivial ways
to condition generation of the output sequences. Nonetheless, inter-
activity is very limited: after a sequence has been generated, a user
can only keep it or discard it.

Sequence Tutor

We have just seen that training a deep RNN on an appropriate dataset
can produce seemingly good results. However, what happens if this
does not work as expected? If, for instance, the generated sequences
do not fulfill some precise musical rules, can we devise an algorithm
to improve our generative model and enforce these rules? This prob-
lem is addressed in [73] where the authors propose to introduce Rein-
forcement Learning (RL) techniques in order to obtain a model able to
take into account musical principles while learning from a dataset of
melodies. The dataset that they consider contains the melodies from
30000 MIDI songs (Sect. 2.3.3).
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Their architecture, called Sequence Tutor, cast the iterative left-to-
right generation of tokens as a reinforcement learning problem. In
this setting, we have an agent that interacts with an environment e
following a policy π. At time t, performing action at in the environ-
ment et grants a reward r(et,at), where r is a function to define.
Given a sequence of actions (at) and environment states (et), the
quantity of interest is the return

R :=

∞∑

t=1

γtr(at|et),

defined as the discounted sum of all rewards, with discount factor
γ < 1. The aim is then to learn a policy π(at|et) which maximizes the
expected return Eπ[R], where the at are sampled using π(at|et).

In the context of sequence generation, performing action at at time
t consists in generating the tth sequence element st. The state of
the environment et up to time t is the sequence of tokens s<t =

(s1, . . . , st−1) generated so far. The interesting problem which arises
when reformulating the left-to-right generation consists in finding a
good reward function r(st|s<t). Ideally, the authors want a reward
function that would take into account both the training dataset (style)
and some prescribed musical rules. The difficulty here is that musical
rules are inherently discrete values and involve a whole sequence
of notes to be evaluated rather than only single notes. Examples of
such rules are: sequences must start with the tonic, sequence must
go down after a leap up, there should be only one highest and one
lowest note, etc. These rules are used to build a handcrafted reward
function rT based on music theory.

An easy way to take into account the training dataset is by maxi-
mizing the log-likelihood of a RNN as it is done in Sect. 4.1.1.1. This
gives rise to a trained probabilistic model p(st|s<t) as in Eq. 1 that
the authors name Note RNN. Since the log-likelihood of a sequence
is the sum of the transition log-likelihoods

log (p(s = (s1, . . . , sl))) :=
l∑

t=1

logp(st|s<t), (3)

taking rL(st|s<t) := logp(st|s<t) for a reward can then help obtain-
ing policies that generate sequences of high probability according to
the Note RNN model.

The authors then naturally consider a blend of the two preceding
reward functions, namely

r(st|s<t) := rL(st|s<t) + rT (st|s<t)/c, (4)

between the Likelihood-based reward and the music Theory reward.
There is an additional trade-off constant c which balances between
the fidelity to the style and the respect of the musical rules. The idea
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is to slightly deviate from the original “style” policy while enforc-
ing some constraints. Training is performed using a generalization
of the usual Deep Q Networks (DQN) [106] called ψ-learning [128].
Roughly, this allows the learned policy π to be non-deterministic (as
it would be the case with the policy obtain by a DQN) by considering
an entropy-regularized objective during training. A stochastic gener-
ation process is indeed an essential requirement in music generation.
Note that the Note RNN model is considered to be fixed during the
learning of the policy. The RL-Tuner architecture is illustrated at Fig-
ure 11.

Figure 11: RL-Tuner architecture. From [73].

The authors report positive results on how this method is able to
enforce the musical rules and help improve their original Note RNN
generations. The possibility to tweak an existing model so that it can
enforce complex constraints sounds appealing, but also raises other
questions. Why the original Note RNN model cannot learn these
rules from data? Furthermore, the choice of the musical rules seems
quite arbitrary and the musical aim is thus unclear. In our opinion,
this stems from the choice of the corpus which might be too heteroge-
neous to yield an interesting Note RNN model. Indeed, contrary to
the model proposed in [145] or the ones proposed in this thesis, the
training data possesses no definite style and thus no precise musical
evaluation of the output is possible. In such a setting, the Note RNN
can be enhanced in order to consider some musical principles, but in
the end, we do not think that a clear musical style can still emerge
from this approach.

The “control” that we have here is only over the choice of the musi-
cal rules, and this must be done before the training of the model. An
interaction between a user and the system at generation time cannot
be devised.

Improving left to right generation

In all these sequential approaches, some refinements in the sampling
procedure can be made. This often consists in tweaking a learned
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RNN model as in Eq. 1 so that some unwanted behaviors disappear.
Generating a “wrong” note can indeed have implications on the re-
maining of the generated sequence.

A simple trick in order to avoid the generation of “wrong” notes
(defined to be notes generated with low probability) is to add a thresh-
old parameter in Eq. 1. Following [159], this equation becomes:

pthreshold(st|s<t) :=

{
0 if p(st|s<t)/m < t,

p(st|s<t)/Z otherwise,
(5)

where m = maxstp(st|s<t) is the maximum transition probability, t
the threshold parameter and Z a normalization constant.

Similar to this approach is the introduction of an inverse temperature
parameter β > 0. Concretely, it consists in using a learned model as
in Eq. 1 to build a new model

pβ(st|s<t) :=
exp(β log(p(st|s<t)))

∑
s ′

t
exp(β log(p(s ′t|s<t)))

. (6)

For β = 1, pβ = p. However, in the low temperature regime (β >
1), some probability mass is transferred from transitions with low
probability to transitions with high probability. This approach has the
advantage to smoothly interpolate between the original conditional
probability distribution and the argmax deterministic distribution

pargmax(st|s<t) = argmaxs ′

t
p(s ′t|s<t). (7)

On the contrary, using pβ with 0 6 β < 1 smoothly interpolates be-
tween the original conditional probability distribution and a uniform
distribution (β = 0).

These techniques can sometimes be used to slightly improve the
musical results of the generated sequences by producing more “obvi-
ous” choices (in the case β > 1).

In some approaches, the aim is not to sample sequences from Eq. 2

with the correct probabilities but rather to generate sequences with
high probability. In this case, the generation of a sequence consists
in finding a path of large weight in the graph whose nodes are in-
dexed by the subsequences (s1, . . . , st) for varying t and whose edges
between (s1, . . . , st−1) and (s1, . . . , st) are weighted by logp(st|s<t).
Such an approach is however highly combinatorial and some heuris-
tics have to be chosen. The beam search heuristic algorithm is often
used in such a case. Examples of its usage as well as practical consid-
erations about beam search can be found in [20].

Polyphonic models

We have seen that deep generative models for monophonic music
tend to use a RNN in order to model the probability distribution of
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the next token given all previously-seen tokens. Generation is then
done iteratively by simply sampling tokens one at a time. When con-
sidering polyphonic music, this probability distribution is no longer a
simple histogram over all the next possible notes but a more complex
distribution. In some of the dataset considered, an arbitrary number
of notes can be played at the same time. The approaches we present
here consider different ways of modeling these complex distributions
over chords composed of an arbitrary number of notes.

RNN-RBM model

The RNN-RBM model introduced in [17] proposes the following ap-
proach in order to handle music encoded using the piano roll repre-
sentation. The datasets they consider are, among others, the Piano-
midi.de (described in Sect. 2.3.3) and the J.S. Bach chorales dataset
(see Sect. 2.3.4). For each time t, there can be any number of notes
and the idea is to have a parametrized distribution which allows
to sample from this complex distribution. The Restricted Boltzmann
machine (RBM) [68] allows to learn a probability distribution in an
unsupervised manner and to efficiently sample from it. We note
v(t) = (v

(t)
1 , . . . , v(t)128) the notes being played at time t, where each

v
(t)
i is a Boolean value indicating that note with MIDI pitch i is being

played. In order to model a complex distribution over v(t), the idea
behind the RBM is to introduce a vector of Boolean hidden units h(t)

on which depends the visible units v(t). Their interaction is modeled
by the following joint probability distribution

P(v(t),h(t)) =
1

Z
e−E(v(t),h(t)), (8)

where Z is a normalizing constant and where the energy function
E(v(t),h(t)) is given by

E(v(t),h(t)) = −(b
(t)
v )Tv(t) − (b

(t)
h )Th(t) − (v(t))TWh(t), (9)

with visible and hidden biases b(t)v , b(t)h being real vectors, W the
interaction matrix and where T denotes the transposition . Note that
there is no interaction between hidden units nor between visible units
contrary to the more general Boltzmann machine: there is no

(h(t))TWhh
(t)

term nor

(v(t))TWvv
(t)

term in the energy functional.
The probability of the vector v(t) is then obtained by marginalizing

over all hidden units which gives us

P(v(t)) =
1

Z ′

∑

h(t)

e−E(v(t),h(t)). (10)
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This is generally computationally intractable but efficient sampling
and inference algorithms exist (e.g., the Contrastive Divergence algo-
rithm [148]).

This RBM models the probability distribution of a time slice at time
t. It remains to model the sequential aspect of the piano roll, namely:
how these distributions evolve through time?

The idea of the authors in [17] is to consider that the dependency
on time is only accounted for by the vectors b(t)v , b(t)h . On the contrary,
the W matrix is shared across all time steps t. To this end, a RNN is
introduced. This RNN models the time dependency of meta-variables
u(t) which influence variables b(t)v , b(t)h through the introduction of
matrices Wuv and Wuh. The authors describe efficient training and
sampling schemes for this architecture, a sketch of which is shown in
Fig. 12.

Figure 12: RNN-RBM architecture reproduced from [17]. The RBM is de-
picted using double arrows.

The interesting aspect in their approach is that they model mu-
sic by considering it as a succession (horizontal view) of time slices
(vertical view) where each aspect is modeled by a different neural net-
work architecture. This model has many generalizations, depending
on whether we change the time slice probability density estimators
or the way to implement the recurrent temporal part. For instance, a
model where the RBM part is replaced by a Neural Autoregressive
Density Estimator (NADE) [85] is also evaluated in [17]. Replacing
the RBM part by a Deep Belief Network (DBN) [67] is studied in [57].
Changing the implementation of the RNN has also been tested. We
can cite for instance the modeling in [95], which implements the RNN
part using LSTM units, or the one in [30] which implements it using
Gated Recurrent Units (GRU) (an LSTM variant).

If this model is very appealing because it can theoretically model
any type of music in a piano roll representation, the musical evalu-
ation of the generated sequences reveal some issues. On the MIDI
databases, no clear style really emerges and so we cannot have any
idea of what the model actually learned. On the more homogeneous
corpus of the J.S. Bach chorales, the results are more convincing, but
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could not been perceived as original Bach chorales. In our opinion,
the reason is that this approach may be too general for such a spe-
cific problem. Many additional information could be taken into ac-
count (see Sect. 2.3.4), like the fixed number of voices, the difference
between voices, the true spelling of the notes or the fermatas. The
model has thus too many things to learn and too few data.

Biaxial RNN

We now mention an approach which proposes another way of model-
ing the vertical view of the piano roll representation. The idea behind
the Biaxial RNN [74] is to use the same model for both the vertical
and horizontal views of the music. This results in a more symmetrical
model contrary to the previous approach which clearly differentiated
between both. This architecture is presented in Fig. 13.

Figure 13: Biaxial RNN architecture. Each column has its own LSTM unit
represented as a blue circle. The 2-layer Time-LSTM is repre-
sented by the first two columns while the 2-layer Note-LSTM is
represented by the two last columns. Reproduced from [74].

It consists in two intertwined (stacked) LSTM networks: one is in
charge of modeling the time dependence of a given note between
different time steps while the other one is in charge of modeling
the dependence between notes played during the same time step. A
LSTM network is invariant with respect to the dimension it is con-
secutively applied on: the same unit is used iteratively on each input
element and the time dependence is contained exclusively in the hid-
den state. Therefore, applying a LSTM on the vector v(t) (keeping
the notation introduced in the previous section) is supposed to be in-
variant with respect to transpositions. Combining both would lead to
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a model capable of learning and generating transposition-invariant
patterns. The advantage of this modeling is that the inference pro-
cedure is no longer approximate in this case. The author trains on
the piano-midi.de dataset and reports good generation results. Gener-
ated pieces are coherent, but lack of overall structure. It is interesting
to note that additional information has been added to the piano roll
representation, so that

• the beat is taken into account by adding a binary representation
of the position within a bar,

• the ordering between notes is considered (by providing the
MIDI pitch value, the system is able to know if a note is high or
low),

• the distinction between a held note and a repeated note is made.

BachBot

We finally present a specialized approach on the J.S. Bach chorales
dataset called BachBot [93]. The idea here is to use only one RNN for
both the horizontal and vertical view of the data. Using only one
RNN for apparently inherently multidimensional data has indeed
proved to be successful on image generation tasks [113]. The idea
consists in choosing a particular ordering of the notes so that one can
unfold a chorale composed of multiple voices into a sequence. Con-
trary to the previously cited approaches in polyphonic music genera-
tion, this work does not rely on a piano roll encoding, but considers
each voice separately. The unfolding is done by going from top to
bottom and from left to right. More precisely, for a given time step,
the model first considers the note played by the soprano part, and
then (in the following order) notes played by the alto, the tenor and
the bass parts. Similarly to the introduction of an “end of measure
symbol” described in the folk-RNN model (Sect. 4.1.1.1), a special
character ||| is added in order to indicate the end of a time slice.
This gives landmarks to the model: this information about the voice
being generated helps the model to better differentiate between the
different voices. The specific use of the fermata in Bach chorales (see
Sect. 2.3.4) is also taken into account. In this approach, all chorales
are transposed into the same key of C major/A minor.

An example of the resulting encoding is shown in Fig. 14.
The BachBot model is then very similar to the folk-RNN model,

but working on a different encoding and a different dataset. The re-
sults are extremely convincing so that an online Turing test has been
conducted in order to see if the participants could distinguish these
generations from original Bach generations.

As for the folk-RNN model and all the approaches presented so
far, this method cannot however be used in an interactive fashion.
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Figure 14: BachBot chorale encoding of part of the extract displayed in Fig. 9.
Adapted from [93].

The authors have nonetheless devised a simple modification of their
algorithm so that it can be used to reharmonize melodies: at gener-
ation time, they do not sample the soprano part but instead use the
user-given melody. This approach gives good results even if it is not
satisfactory from a theoretical point of view since the model cannot
“anticipate” what the future soprano notes will be.

autoencoder-based approaches

There are nonetheless approaches which try to generate sequences
all at once rather than note by note. The methods that we describe in
this section try to encode a whole sequence s into one point (or latent
space representation z) in a space of small dimensionality. This latent
space can be considered as the space of all (valid) sequences. A map-
ping (decoder) from the latent space to the space of sequences is then
introduced in order to generate sequences given a latent space vari-
able z. The encoding and decoding functions are jointly learned: the
aim is to perfectly reconstruct the sequence which has been encoded.
Since the latent space is of smaller dimensionality than the space of
all sequences, data-relevant codes and efficient decoding functions
must be found. This is the original idea motivating the autoencoder
architecture and its refinements [13, 153].

When transposed into the context of sequence generation, the en-
coding and decoding functions are often implemented using RNNs
which are convenient when dealing with sequential data (see Fig. 15).
Sampling from an autoencoder is easily implemented: it suffices to
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draw a random latent variable z and to decode it in order to get a
meaningful sequence. However, this sampling scheme is not satisfac-
tory since we have no guarantee that we sample sequences with the
correct probabilities.

Figure 15: Autoencoder architecture for sequence generation. Adapted from
[47]. The input sequence s = (s1, . . . , s4) is mapped to the latent
variable z using the encoding RNN. It is then decoded using the
decoding RNN. The variables h1, . . . ,h4 are the RNNs hidden
states.

Variational Autoencoder for MIDI generation

The Variational AutoEncoder (VAE) framework [78] adds a proba-
bilistic point of view to the autoencoder architecture. Basically, it in-
troduces the possibility to learn the data distribution and to sample
from it. This is done by imposing a prior distribution p(z), often a
normal distribution, over the latent space. The decoding function is
written as the conditional probability distribution p(s|z) so that the
probability of a sequence s is

p(s) =

∫

p(s|z)p(z)dz. (11)

See Sect. 9.2.1 for a more precise presentation of the variational au-
toencoder framework and its training objective.

The autoencoders perform dimensionality reduction and can be
seen as a non-linear generalization of Principal Component Analysis
(PCA). The advantage of the variational autoencoder over the autoen-
coder is that the latent space learned by a variational autoencoder
has a less “abrupt” behavior. In the settings of the variational autoen-
coders, the aim is not only to be able to achieve perfect reconstruction
but also to be able to sample from the data distribution. This forces
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However, I believe that the dataset used in [47] appears to be very
small: the generated samples1 tend to only mix between the original
sequences. Furthermore, there is no way to determine any specific
“meaningful” direction in the latent space. This means that moving
in this latent space can only be made in a random way, which is not
necessarily a feature that we want when devising tools for interactive
composition. These problems are addressed in Chap. 9 where I pro-
pose a novel way to encode additional information in the latent space
so that we can exploit its meaningful structure to generate variations
of a sequence in an intended way. This model has been applied in
a similar way in [149] on a bigger dataset of MIDI files. The inter-
esting difference in their approach is that the authors also condition
the encoding and decoding RNNs on the MIDI tracks meta informa-
tion such as the genre or the main instrument type. The generated
sequences are coherent but could hardly be identified as belonging to
a precise style.

1 Generations from [47] can be heard at http://youtu.be/cu1_uJ9qkHA

http://youtu.be/cu1_uJ9qkHA
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S T Y L E I M I TAT I O N A N D C H O R D I N V E N T I O N I N
P O LY P H O N I C M U S I C W I T H E X P O N E N T I A L
FA M I L I E S

introduction

Polyphonic tonal music is often considered as a highlight of West-
ern civilization. As discussed in Ch. 2.2, today’s music is still largely
based on complex structures invented and developed since the Re-
naissance period, and modeled, e.g. by Jean Philippe Rameau [126]
in the XVIIth century. In particular, polyphonic music is character-
ized by an intricate interplay between melody (single-voice stream of
notes) and harmony (progression of simultaneously-heard notes). Ad-
ditionally, composers tend to develop a specific style, that influences
the way notes are combined together to form a musical piece.

We presented in Ch. 4 an overview on the recent usages of deep
learning techniques for symbolic music generation, discussing both
about models for both monophonic and polyphonic models. In this
part, we will focus on polyphonic music since it requires a very spe-
cific treatment and raises original problems (see Sect. 2.2.1).

Contrary to the intuition, the first generative models on music were
devised for polyphonic music and not monophonic music.

This started in the 50s with the Illiac Suite [94], which used Markov
chains to produce 4-voice music, controlled by hand-made rules.
Since then, many models for polyphonic music generation have been
proposed.

In this chapter we address the issue of learning from a homoge-
neous dataset of polyphonic music, with the aim of producing new
musical pieces that satisfy additional user constraints. The model that
we propose is a simple model, which cannot be considered as a deep
learning model. Its advantage is its precise mathematical formulation
and the sampling procedure that it introduces. We will see how to
improve this model in Ch. 6 by introducing deep neural networks
for predictions. If the results are by far better with the deep network-
based model, we will see that the price to pay in order to obtain these
improved results is that we loose theoretical guarantees about the
convergence of our sampling procedure.

existing approaches on polyphonic music generation

In practice, an interesting model for polyphonic music generation
should satisfy three requirements: statistical accuracy (capturing faith-
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fully statistics of correlations at various ranges, horizontally and ver-
tically), flexibility (coping with arbitrary user constraints), and general-
ization capacity (inventing new material, while staying in the style of
the training corpus).

Models proposed so far fail on at least one of these requirements.
In [46], the authors propose a chord invention framework. However,
this framework is not based on agnostic learning, and requires a hand-
made ontology. The approach described in [117] consists in a dynamic
programming template enriched by constrained Markov chains. This
approach generates musically convincing results [116] but is ad hoc
and specialized for jazz. Furthermore it cannot invent any new voic-
ing (the vertical ordering of the notes in a chord) by construction. In
[66] and [4], the authors describe an approach using Hidden Markov
Models (HMMs) trained on an annotated corpus. This model imitates
the style of Bach chorales and the authors report good cross entropy
measures. However, the described model is also not able to produce
new voicings but can only replicate ones that are found in the training
corpus. Another related approach is [76], which uses HMMs on spe-
cific hand-crafted chord representations to generate homorhythmic
sequences. These representations are based on an expert knowledge
of the common-practice harmony and are called General Chord Type
(GCT) [22]. A drawback of these models is that they are not agnostic,
in the sense that they include a priori knowledge about music such
as the concept of dissonance, consonance, tonality or scale degrees.

Agnostic neural-network based approaches have been investigated
with promising results. We presented the architectures as well as the
pros and cons of these models in Sect. 4.1.2.1 and we refer the reader
to this section. In short, the drawbacks of these models are that they
require large and coherent training sets which are not always avail-
able. More importantly, how to enforce additional user constraints
(flexibility) it is not clear and their invention capacity is not demon-
strated.

In this chapter we introduce a graphical model based on the max-
imum entropy principle for learning and generating polyphonic mu-
sic. Such models have been used for music retrieval applications [123],
but never, to our knowledge, for polyphonic music generation. This
model requires no expert knowledge about music and can be trained
on small corpora. Moreover, generation is extremely fast.

We show that this model can capture and reproduce pairwise statis-
tics at possibly long range, both horizontally and vertically. These
pairwise statistics are also able, to some extent, to capture implic-
itly higher order correlations, such as the structure of 4-note chords.
The model is flexible, as it allows the user to post arbitrary unary
constraints on any voice. We also show that this model exhibits a re-
markable capacity to invent new but “correct” chords. In particular
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we show that it produces harmonically consistent sequences using
chords which did not appear in the original corpus.

In Sect. 5.3 we present the model for n-parts polyphony generation.
In Sect. 5.4.2, we report experimental results about chord invention.
In Section 5.4.4 we discuss a range of interactive applications in mu-
sic generation. Finally, we discuss how the “musical interest” of the
generated sequences depends on the choice of our model’s hyperpa-
rameters in Sect. 5.4.5.

the model

The model we propose is based on the maximum entropy model for
monophonic music generation that is described in [134]. The latter is
extended to handle several voices instead of one. In order to do so,
we introduce a graphical model on a grid-like representation of the
music which models

• horizontal interactions (interactions between two notes belong-
ing to the same voice),

• vertical interactions (interactions between two notes played at
the same time but belonging to different voices)

• diagonal interactions (interactions between notes played at dif-
ferent time steps and different voices).

We formulate this model as a discrete exponential family obtained by
a product of experts (one for each voice).

Description of the model

We aim to learn sequences s of n-part chord sequences. A sequence
s = [c1, . . . , cl] is composed of l chords where the jth chord is denoted
by

cj := [s1j, s2j, . . . , snj],

where the note sij is an integer pitch belonging to the pitch range
Ai ⊂ N. The ith part or voice corresponds to

vi := [si1, si2, . . . , sil].

Our model is based on the idea that chord progressions can be gen-
erated by replicating the occurrences of pairs of neighboring notes. In
order to generate sequences of any size, we suppose that our model
is invariant by translation in time: its aim is more to capture the local
“texture” of the chord sequences than to capture long-range correla-
tions. It is worth noting that similar ideas have been shown to be
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successful in modeling highly combinatorial and arbitrary structures
such as English four-letter words [142].

We denote by K the model scope, which means that we consider that
chords distant by more than K time steps are conditionally indepen-
dent given all other variables. We focus on the interaction between
neighboring notes and try to replicate the co-occurrences between
notes. A natural way to formalize this is to introduce a family of func-
tions (or features) such that each member of this family counts the
number of occurrences of a given pair of notes. As a result, the finite
number of features we want to learn can be written as a family

{

fab,ijk s.t.
a ∈ Ai, b ∈ Aj

i, j ∈ [1,n], k ∈ [−K,K]

}

(12)

of functions over chord sequences, where

fab,ijk(s) := ♯
{
m s.t. si,m = a and sj,m+k = b

}
(13)

stands for the number of occurrences of pairs of notes (a,b) in the
chord sequence s such that note a at voice i is played k time steps
before note b at voice j. We can represent this family of binary connec-
tions as a graphical model as can be seen in Fig. 17. On this illustra-
tion, each subfamily

{fab,ijk, ∀a ∈ Ai, b ∈ Aj}

is represented by a link between two notes. Our model has also unary
parameters, acting on single notes and modeling the single notes
marginal distributions. For notational convenience we will treat these
unary parameters as binary connections between pairs of identical
notes (connections such that a=b, i=j, k=0) and call them local fields
after the corresponding statistical physics terminology [103]. We dif-
ferentiate four types of connections: unary (local fields) and binary
“horizontal”, “vertical” and “diagonal” connections. We implicitly
identify fab,ijk with fba,ji(−k), for all k ∈ [−K,K], i, j ∈ [1,n].

From now on, we will denote the set of indexes of the family
{fab,ijk} by P. We note that there is approximately

n2(2K+ 1) |A|
2 (14)

indexes, where |A| stands for the mean alphabet size

|A| =
1

n

n∑

i=1

|Ai|.

Using only a subset of the family {fab,ijk} given by (12) can reduce
the number of parameters while leading to good results. Indeed, if we
consider that notes in different voices are conditionally independent
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if they are distant by more than L 6 K time steps, we obtain an index
set of size approximately equal to

(n×K+
n2 −n

2
L)|A|2.

In the following, P can designate the whole set of indexes within
scope K as well as any of its subset.

Let {µab,ijk} for (ab, ijk) ∈ P be real numbers. From all distribu-
tions P(s) over sequences such that the averages over all possible se-
quences of length l verify

∑

s

P(s)fab,ijk(s) = µ
ab,ijk, ∀(ab, ijk) ∈ P, (15)

it is known that the exponential distribution with statistics {fab,ijk}

and parameters {µab,ijk} is the one of maximum entropy (i.e. the one
with the greatest “uncertainty”).

We consider an energy-based model of parameter

θ :=
{
θab,ijk ∈ R, ∀(ab, ijk) ∈ P

}

given by

P(s|θ) =
e−E(s,θ)

Z(θ)
, (16)

where

E(s, θ) := −
∑

ab,ijk

θab,ijkfab,ijk(s) (17)

is usually called the energy of the sequence s, and where

Z(θ) := log(
∑

s

e−E(s,θ))

is called the normalizer or the partition function (the function such that
P defines a probability function over sequences of size l). The sum
in the partition function is for every s of size l. There are approxi-
mately |A|l such sequences, which makes the exact computation of
the partition function intractable in general.

Training

We consider a training dataset D composed of N n-part sequences
s(1), . . . , s(N). In the following, we suppose for clarity that all these
sequences are concatenated into one long sequence s, so that we can
drop the exponents. Since we are dealing with discrete data, gradi-
ent techniques such as score matching [72] cannot be used. Instead,
we choose to minimize the negative pseudo-log-likelihood of the data
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Figure 17: Example of binary connections involving the first voice’s fourth
note (on the left) and the fourth chord (on the right). Horizontal
connections are in black, vertical in green and diagonal in blue.

[45, 127] in order to find an approximation of the true maximum
likelihood estimator. It consists in approximating the negative log-
likelihood function

L(θ, s) = − logP(s|θ) (18)

by the mean of conditional log-likelihoods of a note given the others.
That is

L(θ, s) ≈ −
1

nl

∑

ij

logP(sij|s\sij , θ), (19)

where s\sij denotes all notes in s except sij. The conditional probabil-
ities are calculated as

P(sij|s\sij , θ) =
P(s, θ)

∑
c∈Ai

s ′

\s ′
ij
=s\sij

s ′

ij=c

P(s ′, θ)
(20)

where the sum in the denominator is on chord sequences s ′ equal to
s except for the note in position ij.

Due to the particular structure of the probability density function
(16) and the choice of the statistics (12), we note that we can write

P(sij|s\sij , θ) = P(sij|NK(i, j, s), θ),

where NK(i, j, s) stands for the neighbors of note sij in s that are at
a distance inferior to K time steps. We now express our dataset D

as a set of samples (x,N) consisting of a note x together with its K-
distant neighbors, ignoring border terms whose effect is negligible.
More precisely, we write the dataset

D = {
(

sij,NK(i, j, s)
)

,

∀i ∈ [1,n], ∀j ∈ [K+ 1, l−K− 1]}
(21)

and split it into n datasets Di such that

Di =
{(
sij,NK(i, j, s)

)

, ∀j ∈ [K+ 1, l−K− 1]
}

.
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Each element of this dataset consists in a pair of an input N (the
neighborhood of a given note) and a label y ∈ Ai where i ∈ [1,n].
Those notations set, we can rewrite Eq. 19 as

L(θ,D) ≈ −
1

♯D

∑

(y,N)∈D

logP(y|N, θ)

:=
1

n

n∑

i=1

Li(θ,Di),

(22)

where

Li(θ,Di) = −
1

♯Di

∑

(y,N)∈Di

logP(y|N, θ)

is the negative conditional log-likelihood function for voice i. This
consists in minimizing the mean of n negative log-likelihood func-
tions Li (one for each voice) over the data Di. This method has the
advantage of being tractable since there are only ♯Ai terms in the de-
nominator of Eq. 20 and lead to good estimates [8]. This can be seen
as the likelihood of a product of experts using n modified copies (fea-
turing also vertical and diagonal connections) of the model presented
in [134].

We need to find the parameters that minimize the sum of n convex
functions. Computing the gradient of Li for i ∈ [1,n] with respect to
any parameter θ∗ with ∗ ∈ P gives us

∂Li(θ,Di)

∂θ∗
=

1

♯Di

∑

s=(y,N)
(y,N)∈Di







f∗(s)e
−E(s,θ)

∑
s ′:=(y ′,N)

y ′
∈Ai

f∗(s ′)e−E(s ′,θ) − f∗(s)






.

(23)

This can be written as

∂Li(θ,Di)

∂θ∗
= 〈f∗〉P(.|N,θ) − 〈f∗〉Di

which is the difference between the average value of f∗ taken with
respect to the conditional distribution (20) and its empirical value.

A preprocessing of the corpus is introduced in order to efficiently
compute the gradient sums.

Finally, the function g(θ) that we optimize is the L1-regularized
version of L(θ,D) with regularization parameter λ. Concretely, this
means that we consider as our objective function

g(θ) = L(θ,D) + λ‖θ‖1, (24)

where ‖.‖1 is the usual L1-norm, which is the sum of the absolute
values of the coordinates of the parameter. This is known as the
Lasso regularization whose effects (overfitting reduction, sparsity) are
widely discussed throughout statistical learning literature [50].
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Generation

Generation is performed using the Metropolis-Hastings algorithm,
which is an extensively used sampling algorithm (see [27] for an
introduction). Its main feature is the possibility to sample from an
unnormalized distribution since it only requires to compute ratios of
probabilities

α :=
P(s ′, θ)
P(s, θ)

(25)

between two sequences s ′ and s.
It is an iterative algorithm that starts from a random sequence s

and iteratively modifies it. The main loop of this algorithm is as fol-
low: we draw a sequence proposal s ′ (which depends on the current
sequence s) and compute the α ratio (25. We then accept s ′ as our cur-
rent sequence with probability min(α, 1) or reject this proposal with
probability 1− min(α, 1) and keep s as our current sequence. We are
assured that the sequences obtained are distributed according the ob-
jective distribution P(.|θ) after a sufficient number of iterations of this
procedure i.e. once we have attained the mixing time of the Monte
Carlo Markov Chain (MCMC) described above. We chose as our pro-
posal distribution for s ′ to draw s ′ uniformly among all sequences
that differ by only one note from s.

By slightly modifying the proposal distribution on s ′, we can
use this algorithm to enforce unary constraints on the produced se-
quences. Indeed, if we only propose sequences s ′ that contains a se-
quence {nij}(ij)∈C of imposed notes, i.e. such that

sij = nij, ∀(ij) ∈ C,

where C contains the indexes of the constrained notes, the Metropolis-
Hastings algorithm samples from the distribution

P(s|sij = nij), ∀(ij) ∈ C.

This enables us, for instance, to provide reharmonizations of a given
melody. Other types of constraints are possible: we can, for example,
add pitch range constraints on given notes, which means that we are
given a set

{
Aij ⊂ Ai, ∀(ij) ∈ C

}

such that we only propose sequences s ′ where

sij ∈ Aij, ∀(ij) ∈ C.

A musical application of this constraint is that we can impose a chord
label without imposing its voicing.
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experimental results

We report experiments made using a set of 343 four-voice (n = 4)
chorale harmonizations by Johann Sebastian Bach [10]. In order to
evaluate the chord creation capabilities, we only retained the notes
that are heard on beats. Sect.5.4.6 shows how we can easily produce
rhythm using our model.

We transposed every chorale in the key of C and considered 2

corpora: a corpus with chorales in a major key and a corpus with
chorales in a minor key.

The quadratic number of parameters (thanks to the exclusive use
of binary connections) makes the learning phase computationally
tractable.

We used the L-BFGS method from Stanford CoreNLP optimization
package [100] to perform the gradient descent.

In the next sections, we report on the model’s accuracy (its style
imitation capacity), invention capacity, and flexibility.

Style imitation

We investigated the capabilities of the proposed model to reproduce
pair-wise correlations of the training set. Figure 18 shows a scatter
plot comparing the (normalized) values of each binary connection
fab,ijk in the generated sequences versus the ones of the original
training corpus. The model was trained on a corpus of 51 major
chorales, which represents the equivalent of a 3244-beat long chord
sequence. We chose to differentiate horizontal connections from ver-
tical and diagonal ones by introducing a parameter L as mentioned
in Sect. 5.3.1. We took K = 4, L = 2, λ = 3e−5 as parameters and gen-
erated a 100000-beat long sequence. For a discussion on the choice
of the regularization parameter, we refer the reader to Sect. 5.4.5. We
see that despite the small amount of data, the alignment between the
generated pair occurrences and the original ones is quite convincing.

The generation procedure needs solely to compute the ratios (25),
which can be done in approximately O(nK) operations. Indeed, since
the sequences differ by only one note, only contributions of its neigh-
boring notes have to be taken into account. This has to be compared
with the approximate number of parameters (14). Experimentally, we
find that the number of metropolis steps to achieve convergence is
of order O(nlA) which enables these models to be used in real-time
applications.

We argue that this model does not only reproduce pairwise statis-
tics but can also capture higher-order interactions, which makes it
suitable for style imitation. Indeed, the way that the binary connec-
tions are combined in Eq. 16 makes the model able to reproduce cor-
rect voicings. This is interesting knowing that the interaction between
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Figure 20: Evolution of the repartition (in %) between cited, discovered and
invented chords during Metropolis-Hastings generation as a func-
tion of the normalized number of iterations).

invented chords which do not belong to any of the above categories.
We used the same model as above to plot in Fig. 20 the repartition be-
tween the different categories of chords as a function of the number of
Metropolis steps (divided by |A|nl) during the Metropolis-Hastings
generation. These curves highly depend on the model parameters
and on the structure and the size of the corpus. Nonetheless we can
note the characteristic time for the model to sample from the equi-
librium distribution. For every parameter set we tested, we observed
that when convergence is reached, the proportion of invented and
discovered chords seems fixed and significant.

A closer investigation shows that most of these “invented” chords
can in fact be classified as valid in the style of Bach by an expert.
The majority of the invented chords is composed of “correct” voic-
ings of minor or major triads, seventh chords and chords with non-
chord tones. Fig. 19 exhibits interesting “inventions” such as an (un-
prepared) 9− 8 resolution, a dominant ninth and a diminished sev-
enth. Other invented chords are discordant. A blindfolded evaluation
was conducted to assess to which extent listeners are able to distin-
guish invented chords from cited ones. Three non professional music-
loving adult listeners were presented with a series of invented chords
extracted from generated sequences, and played with their context
(i.e. 4 chords before and 4 chords after). They were asked whether
the central chord was “good” or not. Results show that, in average,
75% of the invented chords were considered as acceptable.

Higher-order interactions

The same analysis as in Sec. 5.4.2 can be made for other structures
than chords. We chose to investigate to which extent the model is able
to reproduce the occurrences of quadrilateral tuples. For a sequence s,
we define the quadrilateral tuple between voices i and i ′ at position j
to be the tuple

(si(j), si(j+1), si ′(j), si ′(j+1)).
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Table 1: Percentage of cited/discovered/invented quadrilateral tuples

cited discovered invented

K = 4,L = 2 61.5 9.6 28.9

K = 0,L = 0 24.1 7.8 63.1

independent 8.4 4.4 87.2

These tuples are of particular interest since many harmonic rules
apply to them, e.g. such as the prohibition of consecutive fifths and
consecutive octaves, often considered to be forbidden in counterpoint.
Table. 1 compares the percentage of cited/discovered/invented qua-
drilateral tuples generated by different models. The models we con-
sidered are: the model of Sec. 5.4.1; a model containing only vertical
interactions and an independent model which only reproduces pitch
frequencies.

This table shows that an important part of those higher order struc-
tures is reproduced. However, analysis exhibits limitations on the
higher-order statistics that can be captured (see for instance Fig. 19).
Indeed, even if our preprocessed corpus contains some of these “rules
violations”, our model is unable to statistically reproduce the number
of such structures (they are 2 to 10 times more frequent than in the
original corpus). We discuss non agnostic methods that can integrate
these particular rules in Sec. 5.5.

Flexibility

As claimed in Sec. 5.3.3, we can use our model to generate new harmo-
nizations of a melody. Indeed, the simplicity and adaptability of this
model allows it to be “twisted” in order to enforce unary constraints
while still generating sequences in the learned style. As our model is
in a specified key (all chorales were transposed in the same key), we
can thus provide convincing Bach-like harmonizations of plainsong
melodies provided they “fit” in the training key. Fig. 21 shows two
reharmonizations of Beethoven’s Ode to Joy with different unary con-
straints1. It is worth noting that even if we put constraints on isolated
notes, and not on full chords, the constraints propagate well both
vertically (the voicings are correct) and horizontally (the progression
of chords around the constrained notes is coherent). This opens up
a wide range of applications. Those examples show how enforcing
simple unary constraints can be used to produce interesting musical
phenomena during reharmonization such as:

• original harmonies (see for instance the 1st, 2nd and 4th con-
straints in Fig. 21)

1 Music examples can be heard on the http://flowmachines.jimdo.com/ website





56 style imitation with exponential families

Constrained Unconstrained

0

25

50

75

100

10−8 10−6 10−4 10−2 100 10−8 10−6 10−4 10−2 100

λ

%

classification cited discovered invented

Figure 22: Cited/discovered/invented repartition at equilibrium as a func-
tion of λ in the unconstrained and constrained cases.

trained in key kj. By doing so, we choose the appropriate model for
each chunk of the melody and “glue” the results together seamlessly.

Impact of the regularization parameter

In this section we discuss the choice of the regularization parameter λ
of Eq. 24. The benefits of introducing a L1-regularization are multiple:
it makes the loss function (24) strictly convex (in our case, we do not
need to determine if the family (12) is a sufficient family), tends to
obtain sparse parameters and prevents overfitting As our model pos-
sesses an important number of parameters compared to the number
of samples, adding a regularization term during the training phase
appears to be mandatory for obtaining good results in the applica-
tions we mentioned in Sect. 5.3.3 and Sect. 5.4.4.

We evaluate the impact of the choice of λ on the cited/discov-
ered/invented classification curves (Fig. 19). We compare the mean
repartition of chords in the unconstrained generation case and in
the reharmonization case, in which the first voice is constrained. The
training corpus used is the same as the one used in Sect. 5.3.3, with
K = 4, L = 2 and varying λ . We use the first voice of the chorales from
the testing corpus as constraints. Results are presented in Fig. 22.

A clear influence of λ appears for both the unconstrained and con-
strained generations. However, these curves are not sharply peaked
and it seems not clear which regularization parameter could be the
most musically-interesting one.

In order to answer this question, we investigated to which extent
the regularization parameter influences the model’s ability to repro-
duce a wide variety of chords, chords that are either seen in the train-
ing set or rediscovered in the testing set.

We introduce two quantities revealing the diversity of the gener-
ated sequences: the percentage of restitution of the training corpus
(the number of cited chords counted without repetition and normal-
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Figure 23: Plot of the restitution and discovery percentages as a function of
λ in the unconstrained and constrained cases.

ized by the total number of different chords in the training corpus)
and the percentage of discovery of the testing corpus (the number of
different discovered chords, normalized by the number of chords in
the testing corpus which are not in the training corpus and counted
without repetition). The evolution of the restitution/discovery per-
centages as a function of λ is plotted in Fig. 23 for both the con-
strained and unconstrained generation cases.

Both figures exhibit the same behavior. High values of λ lead to
uniform models and low values of λ lead to models which overfit the
training data. But the most interesting observation is that their maxi-
mum is not attained for the same value of λ revealing the possibility
to control the trade-off between the invention capacity, the diversity
and the faithfulness with respect to the training corpus in the gener-
ated sequences.

Rhythm

We focused in this work on chord reproduction and invention. Since
the model is by construction pairwise and chords are, in our exam-
ples, four-notes objects, it is in itself a non-trivial question to assess
the capacity of such a model to accurately model the style of the
corpus. In order to simplify the analysis on four-notes chords, we
thus chose to work on homorhythmic sequences and we discarded
all notes from the training corpus that do not fall on the beat. How-
ever, real music is not necessarily homorhythmic: notes have varying
durations and form temporal patterns which take place with respect
to some periodic pulse on a temporal canvas.

We propose a simple way to extend our model in order to account
for rhythmic patterns. The model initially presented in [134] and ex-
tended in 5.3 is translation invariant. For rhythmic patterns to emerge,
we need to break this translation invariance. We do so by introducing
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Figure 24: Generated polyphonic music with rhythm. The original corpus
on which the model is trained is Missa Sanctorum Meritis, Credo
by Giovanni Pierluigi da Palestrina.

position-dependent parameters. More specifically, we choose a cycle
which is repeated over time and within which the translation invari-
ance is broken. Such cycle can be for example one or two bars of
music. We then divide this cycle in equal time bins which correspond
to all possible positions where a note can start or end. We call these
time bins metrical positions. We could then define different parame-
ters between notes having different metrical positions. However, that
would lead to a very large number of parameters and would lead to a
very inaccurate learning (it can be argued that the number of parame-
ters must be smaller than the number of data points). We have found
that a good compromise is to let the unary parameters (local fields)
be position-dependent while keeping the translation invariance for
the true binary parameters. This leads to a negligible increase in the
number of parameters since the unary parameters are of order |A|

whereas the binary ones are of order |A|2. Finally, in order to obtain a
variety of note durations as well as rests, we introduce two additional
symbols in the alphabet. One symbol for rests and one symbol that
signifies the continuation of the previous note in the current metrical
position.

The above procedure has the following effect: the position-depen-
dent parameters are biasing locally the occurrence of symbols
(pitches, rests or continuations of the previous pitch) in a way that
is consistent with the original corpus. This leads to the emergence of
rhythmic patterns of the same kind as the ones found in the corpus.
An example can be seen in 24. In order to generate this example, we
used a cycle of one bar and divided it in 8 equal parts. This subdivi-
sion corresponds to considering eighth notes (quavers) as the smallest
duration, which is also the smallest division found in the corpus (here
Missa Sanctorum Meritis, Credo by Giovanni Pierluigi da Palestrina).

discussion and future work

We proposed a probabilistic model for chord sequences that captures
pairwise dependencies between neighboring notes. The model is able
to reproduce harmonic progressions without any prior information
and invent new “stylistically correct” chords. The possibility to sam-
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ple with arbitrary unary user-defined constraints makes this model
applicable in a wide range of situations. We focused mainly on the
chord creation and restitution capabilities which is, from our point
of view, its most interesting feature, an analysis of the plagiarism of
monophonic graphical models being made in [134]. We showed that
even if the original training set is highly combinatorial, these prob-
abilistic methods behave impressively well even if high-order hard
constraints such as parallel fifths of octaves cannot be captured. This
method is general and applies to all discrete n-tuple sequences. In-
deed, we used as features the occurrences of notes, but any other fam-
ily of functions could be selected. For instance, adding occurrences of
parallel fifths or parallel octaves in the family (12) would be possi-
ble and would only require O(n2|A|2) parameters, which does not
increase our model complexity.

The utmost importance of the regularization parameter suggests to
investigate finer and more problem-dependent regularizations such
as group lasso [51] or other hierarchical sparsity-inducing norms [9].
We believe that having more than a single scalar regularization param-
eter λ can lead to a better control of the “creativity” of our model.
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D E E P B A C H : A S T E E R A B L E M O D E L F O R B A C H
C H O R A L E S G E N E R AT I O N

introduction

The composition of polyphonic chorale music in the style of J.S. Bach
has represented a major challenge in automatic music composition
over the last decades. We refer the reader to Sect. 2.3.4 for a presenta-
tion of this dataset.

In the preceding chapter, we introduced a statistical for the gener-
ation of multi-part music and studied its generation properties. The
results are promising on the corpus of J.S. Bach chorales, but the gen-
erated outputs cannot be confounded with original compositions by
Bach. In this chapter, we will focus exclusively on the corpus of the
chorale harmonizations by Johann Sebastian Bach. The aim is to ob-
tain a generative model that can learn the style of the chorale harmo-
nizations and generate high-quality chorales that could be considered
as “composed by J.S. Bach”, even by experts.

We will not lose sight of the importance of inventing new ways to
interact with this generative model (as evoked in Sect. 3.4). The dif-
ferences with the model introduced in Ch. 5 are notable, but links
between the two methods exist. We believe that the transition from
the shallow model of Sect. 5.3, which is more interpretative but gen-
erates less convincing samples, to the deep model of Sect. 6.2.2, which
is less interpretative but generates state-of-the-art Bach-like chorales,
worth noting.

As discussed in Sect. 2.3.4, this corpus of harmonizations is re-
markable by its homogeneity and its size (389 chorales in [10], 402

in the music21 [38] Python package). Each of these short pieces are
composed following similar principles. This implies characteristic
rhythms, variety of harmonic ideas as well as characteristic melodic
movements and makes the style of these chorale compositions easily
distinguishable, even for non experts.

The difficulty, from a compositional point of view comes from the
intricate interplay between harmony (notes sounding at the same
time) and voice movements (how a single voice evolves through
time). Furthermore, each voice has its own “style” and its own coher-
ence. Finding a chorale-like reharmonization which combines Bach-
like harmonic progressions with musically interesting melodic move-
ments is a problem which often takes years of practice for musicians.

From the point of view of automatic music generation, the first
solution to this apparently highly combinatorial problem was pro-

61
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posed by [44] in 1988. This problem is seen as a constraint satisfac-
tion problem, where the system must fulfill numerous hand-crafted
constraints characterizing the style of Bach. It is a rule-based expert
system which contains no less than 300 rules and tries to reharmo-
nize a given melody with a generate-and-test method and intelligent
backtracking. Among the short examples presented at the end of the
paper, some are flawless. The drawbacks of this method are, as stated
by the author, the considerable effort to generate the rule base and
the fact that the harmonizations produced “do not sound like Bach,
except for occasional Bachian patterns and cadence formulas.” In our
opinion, the requirement of an expert knowledge implies a lot of sub-
jective choices.

A neural-network-based solution was later developed by [66]. This
method relies on several neural networks, each one trained for solv-
ing a specific task: a harmonic skeleton is first computed then refined
and ornamented. A similar approach is adopted in [4], but uses Hid-
den Markov Models (HMMs) instead of neural networks. Chords are
represented as lists of intervals and form the states of the Markov
models. These approaches produce interesting results even if they
both use expert knowledge and bias the generation by imposing their
compositional process. In [159, 160], authors elaborate on these meth-
ods by introducing multiple viewpoints and variations on the sam-
pling method (generated sequences which violate “rules of harmony”
are put aside for instance). However, this approach does not produce
a convincing chorale-like texture, rhythmically as well as harmon-
ically. Furthermore the resort to hand-crafted criteria to assess the
quality of the generated sequences might rule out many musically-
interesting solutions.

Recently, approaches which use neural networks and require no
knowledge about harmony, Bach’s style or music have been inves-
tigated with promising results. In [17] (developed in Sect. 4.1.2.1),
chords are modeled with Restricted Boltzmann Machines (RBMs).
Their temporal dependencies are learned using Recurrent Neural
Networks (RNNs). Variations of these architectures based on Long
Short-Term Memory (LSTM) units [69, 105] or GRUs (Gated Recur-
rent Units) have been developed by [95] and [30] respectively. How-
ever, these models which work on piano roll representations of the
music are too general to capture the specificity of Bach chorales. Also,
a major drawback is their lack of flexibility. Generation is performed
from left to right. A user cannot interact with the system: it is impos-
sible to do reharmonization for instance which is the essentially how
the corpus of Bach chorales was composed. Moreover, their invention
capacity and non-plagiarism abilities are not demonstrated.

A method that addresses the rigidity of sequential generation in
music was first proposed in [134, 135] for monophonic music and
later generalized to polyphony in the model described in Ch. 5. These
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approaches advocate for the use of Gibbs sampling as a generation
process in automatic music composition.

The most recent advances in chorale harmonization is arguably the
BachBot model [93], a LSTM-based approach specifically designed to
deal with Bach chorales. This approach relies on little musical knowl-
edge (all chorales are transposed in a common key) and is able to
produce high-quality chorale harmonizations. However, compared to
our approach, this model is less general (produced chorales are all
in the C key for instance) and less flexible (only the soprano can be
fixed). Similarly to our work, the authors evaluate their model with
an online Turing test to assess the efficiency of their model. They also
take into account the fermata symbols (Fig. 7) which are indicators of
the structure of the chorales.

In this chapter we introduce DeepBach, a dependency network [65]
capable of producing musically convincing four-part chorales in the
style of Bach by using a Gibbs-like sampling procedure. Contrary to
models based on RNNs, we do not sample from left to right which
allows us to enforce positional, unary user-defined constraints such
as rhythm, notes, parts, chords and cadences. DeepBach is able to
generate coherent musical phrases and provides, for instance, varied
reharmonizations of melodies without plagiarism. Its core features
are its speed, the possible interaction with users and the richness of
harmonic ideas it proposes. Its efficiency opens up new ways of com-
posing Bach-like chorales for non experts in an interactive manner
similarly to what is proposed in [120] for leadsheets.

In Sect. 6.2 we present the DeepBach model for four-part chorale
generation. We discuss in Sect. 6.3 the results of an experimental
study we conducted to assess the quality of our model. Finally, we
provide generated examples in Sect. 6.4.3 and elaborate on the possi-
bilities offered by our interactive music composition editor in Sect. 6.4.
All examples can be heard on the accompanying web page1 and the
code of our implementation is available on GitHub2. Even if our pre-
sentation focuses on Bach chorales, this model has been successfully
applied to other styles and composers including Monteverdi five-
voice madrigals to Palestrina masses.

deepbach

We introduce a generative model which takes into account the distinc-
tion between voices. Sect. 6.2.1 presents the data representation we
used. This representation is both fitted for our sampling procedure
and more accurate than many data representation commonly used
in automatic music composition. Sect. 6.2.2 presents the model’s ar-
chitecture and Sect. 6.2.3 our generation method. Finally, Sect. 6.2.4

1 https://sites.google.com/site/deepbachexamples/

2 https://github.com/Ghadjeres/DeepBach

https://sites.google.com/site/deepbachexamples/
https://github.com/Ghadjeres/DeepBach
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provides implementation details and indicates how we preprocessed
the corpus of Bach chorale harmonizations.

Data Representation

Notes and voices

We consider that only one note can be sung at a given time and dis-
card chorales with voice divisions.

Since Bach chorales only contain simple time signatures, we dis-
cretize time with sixteenth notes, which means that each beat is sub-
divided into four equal parts. Since there is no smaller subdivision in
Bach chorales, there is no loss of information in this process.

In this setting, a voice Vi = {Vt
i}t is a list of notes indexed by t ∈

[T ]3, where T is the duration piece (in sixteenth notes).

Rhythm

We use the melodico-rhythmic encoding described in Sect. 3.1.3.
Namely, we choose to model rhythm by simply adding a hold sym-
bol “__” coding whether or not the preceding note is held to the list
of existing notes. This representation is thus unambiguous, compact
and well-suited to our sampling method (see Sect. 6.2.3.4).

Metadata

The music sheet (Fig. 6b) conveys more information than only the
notes played. We can cite:

• the lyrics,

• the key signature,

• the time signature,

• the beat index,

• an implicit metronome (on which subdivision of the beat the
note is played),

• the fermata symbols (see Fig. 7),

• current key,

• current key signature,

• current mode (major/minor/dorian).

3 We adopt the standard notation [N] to denote the set of integers {1, . . . ,N} for any
integer N.
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(a) (b)

Figure 25: Extract from a Bach chorale and its representation as four voice
lists and two metadata lists (S and F). The hold symbol is dis-
played as “__” and considered as a note.

In the following, we will only take into account the fermata sym-
bols, the subdivision indexes and the current key signature. To this
end, we introduce:

• The fermata list F that indicates if there is a fermata symbol, see
Fig. 7, over the current note, it is a Boolean value. If a fermata
is placed over a note on the music sheet, we consider that it is
active for all time indexes within the duration of the note.

• The subdivision list S that contains the subdivision indexes of
the beat. It is an integer between 1 and 4: there is no distinction
between beats in a bar so that our model is able to deal with
chorales with three and four beats per measure.

Chorale

We represent a chorale as a couple

(V,M) (26)

composed of voices and metadata. For Bach chorales, V is a list of 4

voices Vi for i ∈ [4] (soprano, alto, tenor and bass) and M a collection
of metadata lists (F and S).

Our choices are very general and do not involve expert knowledge
about harmony or scales but are only mere observations of the corpus.
The list S acts as a metronome. The list F is added since fermatas in
Bach chorales indicate the end of each musical phrase. The use of
fermata to this end is a specificity of Bach chorales that we want to
take advantage of.

Model Architecture

We choose to consider the metadata sequences in M as given. For
clarity, we suppose in this section that our dataset is composed of



66 deepbach : a steerable model for bach chorales generation

only one chorale written as in Eq. 32 of size T . We define a dependency
network on the finite set of variables V = {Vt

i } by specifying a set of
conditional probability distributions (parametrized by parameter θi,t)

{
pi,t(V

t
i |V\i,t,M, θi,t)

}

i∈[4],t∈[T ]
, (27)

where Vt
i indicates the note of voice i at time index t and V\i,t all

variables in V except from the variable Vt
i . As we want our model to

be time invariant so that we can apply it to sequences of any size, we
share the parameters between all conditional probability distributions
on variables lying in the same voice, i.e.

θi := θi,t, pi := pi,t ∀t ∈ [T ].

Finally, we fit each of these conditional probability distributions on
the data by maximizing the log-likelihood. Due to weight sharing,
this amounts to solving four classification problems of the form:

max
θi

∑

t

logpi(Vt
i |V\i,t,M, θi), for i ∈ [4], (28)

where the aim is to predict a note knowing the value of its neigh-
boring notes, the subdivision of the beat it is on and the presence of
fermatas. The advantage with this formulation is that each classifier
has to make predictions within a small range of notes whose ranges
correspond to the notes within the usual voice ranges (see 6.2.4).

For accurate predictions and in order to take into account the se-
quential aspect of the data, each classifier is modeled using four neu-
ral networks: two Deep Recurrent Neural Networks [122], one sum-
ming up past information and another summing up information com-
ing from the future together with a non-recurrent neural network for
notes occurring at the same time. Only the last output from the up-
permost RNN layer is kept. These three outputs are then merged
and passed as the input of a fourth neural network whose output
is pi(Vt

i |V\i,t,M, θ). Figure 26 shows a graphical representation for
one of these models. Details are provided in Sect. 6.2.4. These choices
of architecture somehow match real compositional practice on Bach
chorales. Indeed, when reharmonizing a given melody, it is often sim-
pler to start from the cadence and write music “backwards.”

Generation

Algorithm

Generation in dependency networks is performed using the pseudo-
Gibbs sampling procedure. This Markov Chain Monte Carlo (MCMC)
algorithm is described in Alg.1. It is similar to the classical Gibbs
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sampling procedure [52] on the difference that the conditional distri-
butions are potentially incompatible [25]. This means that the condi-
tional distributions of Eq. 27 do not necessarily comes from a joint
distribution p(V) and that the theoretical guarantees that the MCMC
converges to this stationary joint distribution vanish. We experimen-
tally verified that it was indeed the case by checking that the Markov
Chain of Alg.1 violates Kolmogorov’s criterion [77]: it is thus not re-
versible and cannot converge to a joint distribution whose conditional
distributions match the ones used for sampling.

However, this Markov chain converges to another stationary distri-
bution and applications on real data demonstrated that this method
yielded accurate joint probabilities, especially when the inconsistent
probability distributions are learned from data [65]. Furthermore, non
reversible MCMC algorithms can in particular cases be better at sam-
pling that reversible Markov Chains [155].

Algorithm 1 Pseudo-Gibbs sampling
1: Input: Chorale length L, metadata M containing lists of length
L, probability distributions (p1,p2,p3,p4), maximum number of
iterations M

2: Create four lists V = (V1,V2,V3,V4) of length L
3: {The lists are initialized with random notes drawn from the

ranges of the corresponding voices (sampled uniformly or from
the marginal distributions of the notes)}

4: for m from 1 to M do

5: Choose voice i uniformly between 1 and 4

6: Choose time t uniformly between 1 and L
7: Re-sample Vt

i from pi(V
t
i |V\i,t,M, θi)

8: end for

9: Output: V = (V1,V2,V3,V4)

Flexibility of the sampling procedure

The advantage of this method is that we can enforce user-defined
constraints by tweaking Alg. 1:

• instead of choosing voice i from 1 to 4 we can choose to fix the
soprano and only resample voices from 2, 3 and 4 in step (3) in
order to provide reharmonizations of the fixed melody

• we can choose the fermata list F in order to impose end of mu-
sical phrases at some places

• more generally, we can impose any metadata



6.2 deepbach 69

• for any t and any i, we can fix specific subsets Rt
i of notes within

the range of voice i. We then restrict ourselves to some specific
chorales by re-sampling Vt

i from

pi(V
t
i |V\i,t,M, θi,Vt

i ∈ Rt
i)

at step (5). This allows us for instance to fix rhythm (since the
hold symbol is considered as a note), impose some chords in a
soft manner or restrict the vocal ranges.

Performance

Note that it is possible to make generation faster by making parallel
Gibbs updates on GPU. Steps (3) to (5) from Alg. 1 can be run simulta-
neously to provide significant speedups. Even if it is known that this
approach is biased [41] (since we can update simultaneously vari-
ables which are not conditionally independent), we experimentally
observed that for small batch sizes (16 or 32), DeepBach still gener-
ates samples of great musicality while running ten times faster than
the sequential version. This allows DeepBach to generate chorales in
a few seconds.

It is also possible to use the hard-disk-configurations generation al-
gorithm (Alg.2.9 in [81]) to appropriately choose all the time indexes
at which we resample so that:

• every time index is at distance at least δ from the other time
indexes

• configurations of time indexes satisfying the relation above are
equally sampled.

This trick allows to assert that we do not update simultaneously a
variable and its local context and makes parallel updates possible
and accurate.

Importance of the data representation

We emphasize on this section the importance of our particular choice
of data representation with respect to our sampling procedure. The
fact that we obtain great results using pseudo-Gibbs sampling relies
exclusively on our choice to integrate the hold symbol into the list of
notes.

Indeed, Gibbs sampling fails to sample the true joint distribution
p(V|M, θ) when variables are highly correlated, creating isolated re-
gions of high probability states in which the MCMC chain can be
trapped. However, many data representations used in music model-
ing such as

• the piano roll representation,
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• the couple (pitch, articulation) representation where articulation
is a Boolean value indicating whether or not the note is played
or held,

tend to make the musical data suffer from this drawback.
As an example, in the piano roll representation, a long note is rep-

resented as the repetition of the same value over many variables. In
order to only change its pitch, one needs to change simultaneously a
large number of variables (which is exponentially rare) while this is
achievable with only one variable change with our representation. In
Fig. 27 we show on a toy example that “simple” steps in the space of
sequences (like changing the pitch of a quarter note from a C4 to a
D4) require many iterations of Gibbs sampling procedure if musical
data is encoded using a piano roll representation while it takes less
iterations using the melodico-rhythmic encoding.

Figure 27: Comparison between the melodico-rhythmic encoding and the
piano roll encoding in order to change a C quarter note into a D
quarter note. Less steps are required to make simple steps in the
space of sequences. This makes the melodico-rhythmic encoding
compatible with the proposed pseudo-Gibbs sampling.

Implementation Details

We implemented DeepBach using Keras [29] with the Tensorflow [1]
backend. We used the database of chorale harmonizations by J.S. Bach
included in the music21 toolkit [38]. After removing chorales with
instrumental parts and chorales containing parts with two simultane-
ous notes (bass parts sometimes divide for the last chord), we ended
up with 352 pieces. Contrary to other approaches which transpose all
chorales to the same key (usually in C major or A minor), we choose
to augment our dataset by adding all chorale transpositions which fit
within the vocal ranges defined by the initial corpus. This gives us a
corpus of 2503 chorales and split it between a training set (80%) and a
validation set (20%). The vocal ranges contains less than 30 different
pitches for each voice (21, 21, 21, 28) for the soprano, alto, tenor and
bass parts respectively.

As shown in Fig. 26, we model only local interactions between a
note Vt

i and its context (V\i,t, M) i.e. only elements with time index t
between t−∆t and t+∆t are taken as inputs of our model for some
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scope ∆t. This approximation appears to be accurate since musical
analysis reveals that Bach chorales do not exhibit clear long-term de-
pendencies.

The reported results in Sect. 6.3 and examples in Sect. 6.4.3 were
obtained with ∆t = 16. We chose as the “neural network brick” in
Fig. 26 a neural network with one hidden layer of size 200 and ReLU
[110] non-linearity and as the “Deep RNN brick” two stacked LSTMs
[69, 105], each one being of size 200 (see Fig. 2 (f) in [92]). The “em-
bedding brick” applies the same neural network to each time slice
(Vt,Mt). There are 20% dropout on input and 50% dropout after
each layer.

We experimentally found that sharing weights between the left and
right embedding layers improved neither validation accuracy nor the
musical quality of our generated chorales.

experimental results

We evaluated the quality of our model with an online test conducted
on human listeners. These experiments were made with an early ver-
sion of the DeepBach algorithm where notes were using their MIDI
pitches.

Setup

For the parameters used in our experiment, see Sect 6.2.4. We com-
pared our model with two other models: a Maximum Entropy model
(MaxEnt) as in [63] and a Multilayer Perceptron (MLP) model.

The Maximum Entropy model is a neural network with no hidden
layer. It is given by:

pi(V
t
i |V\i,t,M,Ai,bi) = Softmax(AX+ b) (29)

where X is a vector containing the elements in V\i,t ∪ Mt, Ai a
(ni,mi) matrix and bi a vector of size mi with mi being the size
of X, ni the number of notes in the voice range i and Softmax the
softmax function given by

Softmax(z)j =
ezj

∑K
k=1 e

zk
for j ∈ [K],

for a vector z = (z1, . . . , zK).
The MLP model that we chose takes as input elements in V\i,t ∪M,

is a neural network with one hidden layer of size 500 and uses a ReLU
[110] non-linearity.

All models are local and have the same scope ∆t, see Sect. 6.2.4.
Subjects were asked to give information about their musical exper-

tise. They could choose what category fits them best between:
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Figure 28: Results of the “Bach or Computer” experiment. The figure shows
the distribution of the votes between “Computer” (blue bars) and
“Bach” (red bars) for each model and each level of expertise of the
voters (from 1 to 3), see Sect. 6.3.2 for details.

1. I seldom listen to classical music

2. Music lover or musician

3. Student in music composition or professional musician.

The musical extracts have been obtained by reharmonizing 50 cho-
rales from the validation set by each of the three models (MaxEnt,
MLP, DeepBach). We rendered the MIDI files using the Leeds Town
Hall Organ soundfont4 and cut two extracts of 12 seconds from each
chorale, which gives us 400 musical extracts for our test: 4 versions for
each of the 100 melody chunks. We chose our rendering so that the
generated parts (alto, tenor and bass) can be distinctly heard and dif-
ferentiated from the soprano part (which is fixed and identical for all
models): in our mix, dissonances are easily heard, the velocity is the
same for all notes as in a real organ performance and the sound does
not decay, which is important when evaluating the reharmonization
of long notes.

Discrimination Test: the “Bach or Computer” experiment

Subjects were presented series of only one musical extract together
with the binary choice “Bach” or “Computer”. Fig. 28 shows how the
votes are distributed depending on the level of musical expertise of
the subjects for each model. For this experiment, 1272 people took
this test, 261 with musical expertise 1, 646 with musical expertise 2

and 365 with musical expertise 3.
The results are quite clear: the percentage of “Bach” votes augment

as the model’s complexity increase. Furthermore, the distinction be-
tween computer-generated extracts and Bach’s extracts is more accu-

4 https://www.samplephonics.com/products/free/sampler-instruments/

the-leeds-town-hall-organ

https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ


6.4 interactive composition 73

0

25

50

75

100

P
e
rc

e
n
ta

g
e
 o

f 
B

a
c
h
 v

o
te

s

Reharmonization extract ID

Model

J.S. Bach

DeepBach

MaxEnt

MLP

Figure 29: Results of the “Bach or Computer” experiment. The figure shows
the percentage of votes for Bach for each of the 100 extracts for
each model. For each model, a specific order for the x-axis is cho-
sen so that the percentage of Bach votes is an increasing function
of the x variable, see Sect. 6.3.2 for details.

Figure 30: DeepBach’s plugin minimal interface for the MuseScore music
editor

rate when the level of musical expertise is higher. When presented a
DeepBach-generated extract, around 50% of the voters would judge
it as composed by Bach. We consider this to be a good score know-
ing the complexity of Bach’s compositions and the facility to detect
badly-sounding chords even for non musicians.

We also plotted specific results for each of the 400 extracts. Fig. 29

shows for each reharmonization extract the percentage of Bach
votes it collected: more than half of the DeepBach’s automatically-
composed extracts has a majority of votes considering them as being
composed by J.S. Bach while it is only a third for the MLP model.

interactive composition

Description

We developed a plugin on top of the MuseScore music editor allow-
ing a user to call DeepBach on any rectangular region of the score.
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(a)

(b)

(c)

Figure 31: Examples produced using DeepBach as an interactive composi-
tion tool. Examples (a) and (b) share the same metadata.

Even if the interface is minimal (see Fig. 30), the possibilities are
numerous: we can generate a chorale from scratch, reharmonize a
melody and regenerate a given chord, bar or part. We believe that
this interplay between a user and the system can boost creativity and
can interest a wide range of audience.

Adapting the model

We made two major changes between the model we described for the
online test and the interactive composition tool.

Note encoding

We changed the MIDI encoding of the notes to an encoding of the
notes using their full name. As explained in Sect. 3.1.1, some informa-
tion is lost when reducing a music sheet to its MIDI representation
since we cannot differentiate between two enharmonic notes. We no-
ticed that this improvement enables the model to generate notes with
the correct spelling and prevented the model to make some unex-
pected modulations.
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Steering modulations

We added the current key signature list K to the metadata M. This
allows users to impose modulations and key changes. Each element
Kt of this list contains the number of sharps of the estimated key for
the current bar. It is a integer between -7 and 7. The current key is
computed using the key analyzer algorithm from music21.

Generation examples

We now provide and comment on examples of chorales generated
using the DeepBach plugin. Our aim is to show the quality of the
solutions produced by DeepBach. For these examples, no note was
set by hand and we asked DeepBach to generate regions longer than
one bar and covering all four voices.

Despite some compositional errors like parallel octaves, the musical
analysis reveals that the DeepBach compositions reproduce typical
Bach-like patterns, from characteristic cadences to the expressive use
of nonchord tones. As discussed in Sect. 6.4.2, DeepBach also learned
the correct spelling of the notes. Among examples in Fig. 31, exam-
ples (a) and (b) share the same metadata (S,F and K). This demon-
strates that even with fixed metadata it is possible to generate con-
trasting chorales.

Since we aimed at producing music that could not be distinguished
from actual Bach compositions, we had all provided extracts sung
by the Wishful Singing choir. These audio files can be heard on the
accompanying website5.

discussion and future work

We described DeepBach, a probabilistic model together with a sam-
pling method which is flexible, efficient and provides musically con-
vincing results even to the ears of professionals. The strength of
our method is the possibility to let users impose unary constraints,
which is a feature often neglected in probabilistic models of music.
Through our graphical interface, the composition of polyphonic mu-
sic becomes accessible to non-specialists. The playful interaction be-
tween the user and this system can boost creativity and help explore
new ideas quickly. We believe that this approach could form a start-
ing point for a novel compositional process that could be described as
a constructive dialogue between a human operator and the computer.
This method is general and its implementation simple. It is not only
applicable to Bach chorales but embraces a wider range of polyphonic
music.

5 https://sites.google.com/site/deepbachexamples/

https://sites.google.com/site/deepbachexamples/
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Future work aims at refining our interface, speeding up generation
and handling datasets with small corpora.
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D E E P R A N K - B A S E D T R A N S P O S I T I O N - I N VA R I A N T
D I S TA N C E S O N M U S I C A L S E Q U E N C E S

introduction

Determining whether two musical sequences are similar or not is
a key ingredient in music composition. Indeed, the repeated occur-
rences of a given pattern (transformed or not) is easily perceived by
an attentive listener. Among possible transformations of a pattern, we
can cite

• transposition

• mode change

• augmentation / diminution

• ornamentation / simplification.

These patterns in music gives the listener expectations of what
could follow. This latter is then gratified to have guessed right or
can be surprised by a pleasing or unexpected change. The musical
pieces may then appear more coherent and organized. It is then up
to the composer to play with this series of fulfilled/unfilled expecta-
tions. From a compositional point of view, this allows a composer to
create long pieces of music while retaining the listener’s attention.

Many musical pieces are intrinsically-based on the different repe-
titions of a given pattern. Fugues or sonatas are examples of such
pieces where the overall structure results from how the occurrences
and transformations of a given pattern unfold through time. But this
is also true on a local scale in many musical genres since patterns give
coherence between musical phrases. This is particularly observable in
pop and jazz songs (see Fig. 2 for instance for an example of a pattern
and its transformation).

Due to the omnipresence of patterns in music, good distances on
musical sequences are essential and can be used for a wide variety of
tasks:

• plagiarism detection [23]

• music retrieval [3]

• automatic musical analysis [40, 56]

• automatic music generation [132].

79
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The traditional distance used for sequence comparison is the edit-
distance (also known as the Levenshtein distance [91]). On sequences
of symbols, it basically consists in assigning a cost to different basic
edit operations such as the insertion, the deletion or the substitution
of a single symbol. The distance between two sequences is then the
cost of the minimal sequences of basic edit operations allowing to
change the first sequence into the second one. This minimal cost is
easily calculated using a dynamic programming algorithm.

Most of the existing distances on musical sequences are based on
generalizations of the aforementioned distance by taking into account
the specificity of the set of musical sequences (the edit distance was
primarily designed for text and widely used in biology).

For instance, [107] proposes to extend the set of basic edit oper-
ations with two other operations that are more specific to musical
sequences: fragmentation and consolidation.

The main issue with this approach is that the edit-distance strongly
depends on the choice of the encoding of the musical content. In-
deed, contrary to textual data, musical content (such as monophonic
melodies) can be encoded in many ways and there are a priori no rep-
resentation which is better than another.

The importance of the choice of the data representation is pin-
pointed in [21]. In this paper, the authors argue that the MIDI pitch
representation is insufficient for applications in tonal music as it dis-
regards the hierarchical importance of diatonic scale tones over the
12-tone discrete pitch space. To address this issue, they propose a
new representation, called the General Pitch Interval Representation.
It is a representation that takes into account the diatonic intervals in
scale steps and other more abstract representations such as contour
strings (the contour string of a melody is a representation where only
the following events are considered: repeat, ascending or descending
step, ascending or descending leap).

The interest in such a representation is that it introduces perceptu-
ally salient information directly into the sequence encoding.

This idea is further explored in [59] where they propose to encode
a melody using its Implication/Realization structure. It is a concept
drawn from the theory of perception and cognition of melodies from
[111] which is based on the Gestalt theory. It consists in assigning
different basic structures depending on the contour of a sequence and
can be considered as a generalization of the contour string encoding.

Using contour strings encoding imply that a melody is only con-
sidered up to a transposition since only intervals with respect to the
previous note is considered [90]. The same idea can also be used by
considering ratios of rhythmic patterns instead of their absolute val-
ues. We refer the reader to [64] where the authors study the advan-
tages and drawbacks of many monophonic sequence representations
on the edit-distance algorithms.
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Geometric interpretations of the distance between two musical se-
quences have also been proposed [102, 151]. Their advantage is to be
applicable on polyphonic sequences contrary to the methods based
on the edit-distance. [89] compares the two approaches on a variety
of music retrieval tasks.

However, defining how close two sequences are is in fact an ill-
defined problem. This notion is very subjective and it seems implau-
sible to find a universal rule applying to every musical style and se-
quences: sequences can be “close” with respect to a given music style
and “far” in another music style. Furthermore, attempts to ground
it on a psychological basis using an appropriate representation still
suffer from the arbitrariness of the underlying distance.

In this work, we introduce a corpus-dependent distance between
two musical sequences. Our distance relies on a permutation-based
distance [7] applied on high-level features obtained via a sequence-
to-sequence autoencoder. This approach is general and we believe
more independent of the choice of the representation than all pre-
vious methods, and can be applied to both monophonic and poly-
phonic music.

We then extend our method in order to obtain a way to generate
transposition-invariant distances, which means that a sequence and
its transposition should be close. Contrary to other methods, this dis-
tance is made transposition-invariant without changing the sequence
encoding.

In the following, we focus on monophonic sequences with a given
representation, but these ideas can easily be generalized to other rep-
resentations of musical material, from monophonic to polyphonic
ones.

Our contributions are the following:

• introduction of a framework to build distances on sequences,

• introduction of corpus-dependent musical distances in music,

• extension of this approach in order to construct invariant dis-
tances with respect to a given set of transformations.

We believe that linking the distance between musical sequences
to the specific genre of these musical sequences is a way to address
issues related to the choice of a perceptually-appropriate distance and
is more likely to yield better results.

The outline of this paper is the following: In Sect. 7.2, we expose
related works about transformation-invariant features and transfor-
mation-invariant distances; Section 7.3 introduces our method to con-
struct a data-dependent distance on sequences and Sect. 7.4 improves
this method in order to obtain a distance which is invariant with re-
spect to a set of transformations; Finally, in Sect. 7.5 we present ex-
perimental results about the introduced distances and highlight their
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efficiency on the dataset of the chorale melodies from the J.S. Bach chorale
harmonizations.

related works

Finding transformation-invariant distances is a problem which was
primarily addressed on image datasets. Indeed, learning distances
from a corpus of images is crucial in many applications (classification,
clustering, or retrieval tasks) and it is often desirable that this distance
be independent under some natural transformations on images such
as rotations, scalings and translations.

Taking into account the “natural” set of transformations which acts
on a dataset is of a great interest since we can use this information to
obtain more robust and more informative feature representations.

The feature representations need not necessarily be invariant with
respect to a set of transformations, but sometimes only equivariant
[34]. Equivariance here means that the feature representation of a
transformed image can be obtained by applying a known transforma-
tion directly to the feature representation of the original image; that
is

φ(t.x) = t.φ(x), ∀t ∈ T (30)

for a feature map φ : X→ Y and a group of transformation T acting
on X and Y.

Convolutional Neural Networks (CNNs) [82, 140] for instance take
into account the importance of translations on image datasets by us-
ing the same transposed filter. A generalization of the regular CNN
filters has been proposed [161]. It aims at obtaining a CNN which
is equivariant to both translations and rotations. It is in fact possible
to devise more general approaches which are able to deal with any
symmetry group acting on images as shown in [16, 33, 53]. In [16],
the proposed model is suitable for a theoretical analysis about the
stability of the learned invariant representations.

However, equivariant feature representations are not particularly
suitable for building invariant feature representations. Indeed, in or-
der to obtain an invariant representation, one would have to average
all feature representations of all possible image transformations un-
der the chosen group, which is either intractable or computationally
demanding.

An approach in the context of shape matching which shares the
same motivations as ours can be found in [99]. Contrary to images,
two shapes are considered to be identical if we can obtain one by ap-
plying a group transformation on the other one. These group transfor-
mations can be as above the group of displacements (translations and
rotations), but can also be, in the context of shapes, the affine group
(translations, rotations and rescalings). A distance between shapes is
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Figure 32: (a) a 2-bar sequence and (b) its transposition a major third lower.

then constructed by introducing a distance on the integral invariants
of a shape. These handcrafted quantities are invariant with respect
to the group of transformations acting on shape contours and thus
assert that the constructed distance is well-defined on shapes. The
main difference with the approaches in image is that the feature rep-
resentations (here the integral invariants) is not learned from data but
constructed by hand.

In comparison, our method is able to learn transformation-
invariant feature representations from data resulting in a
transformation-invariant distance.

corpus-based distance

Rank-based distance

Our method to construct distances on sequences relies on the rank-
based (or permutation-based) distances described in [7]. The idea is
to define a distance solely based on the ranking of the high-level ac-
tivations of a Deep Neural Network (DNN) [58]. Indeed, activations
of neurons from high-level hidden layers can be used as features for
describing the input. Each of this feature can encode a particular con-
cept about the input and how these concepts are ranked with respect
to one another is sufficient to determine if two inputs are similar.

More precisely, let x be a N-dimensional feature vector. We define
Π(x) to be the vector of ranks of x. This vector is a permutation of the
N-tuple [N] such that

∀i, j ∈ [N], i < j =⇒ xΠ(x)i > xΠ(x)j . (31)

With this notation, Π(x)1 is the index i such that xi is the greatest
coordinate of x and Π(x)N the index of the smallest coordinate of x.

Given two feature vectors x and y, we can define their distance to be
the distance between their permutations Π(x) and Π(y) using popular
distances between permutations. In the following, we will consider
two popular rank correlation measures: Spearman’s rho distance and
Kendall’s tau distance.
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In its simplest formulation, Spearman’s rho distance ρ between fea-
ture vectors x and y is defined to be the ℓ2 norm between their vectors
of ranks. This gives us:

ρ(x,y) =

√

√

√

√

N∑

i=1

(Π(x)i −Π(y)i)2. (32)

The Kendall tau distance is a measure of similarity between two
rank variables. It is based on the number of pairwise inversions need-
ed to change one ordering into the other. Given two vectors of ranks
Π(x),Π(y) of size N, we say that a pair of integers i < j is

• concordant if Π(x)i < Π(x)j and Π(y)i < Π(y)j,

• discordant if Π(x)i < Π(x)j and Π(y)i > Π(y)j,

and these definitions also hold when we reverse all inequalities. Since
there are N(N− 1)/2 such pairs, we can define a similarity on feature
vectors x and y by

τ(x,y) =
♯ {concordant pairs}− ♯ {discordant pairs}

N(N− 1)/2
, (33)

where ♯ {concordant pairs} indicates the number of concordant pairs
when considering the rank vectors of x and y. This similarity measure
is in [−1, 1] and equals 1 when the ranks are all equal.

Sequence-to-Sequence autoencoder

In the following, we consider that we have a i.i.d. dataset D of K
sequences of length L

D :=
{

s(k) = (s
(k)
1 , . . . , s(k)L ), si ∈ [A]

}

k∈[K]
, (34)

where sequences are composed of tokens in [A] with A the size of
the alphabet. The objective is to obtain a mapping from the space of
sequences AL to a feature representation in RN.

In order to build a high-level representation of musical sequences
in an unsupervised manner, we consider using a sequence-to-sequence
model [28, 146] (Fig. 33a) as an autoencoder [58]. An autoencoder
is a Neural Network (NN) parametrized by θ which is composed
of two parts: an encoding NN encθ which usually maps the high-
dimensional observation space to a feature representation (or code)
of smaller dimensionality and a decoding NN decθ whose aim is to
predict the original sequence given its code.

In our case, these neural networks are implemented using Recur-
rent Neural Network (RNN) [58]. The feature representation encθ(s)
for a sequence s is obtained by considering only the output of the
RNN on the last time step.
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(a) sequence-to-sequence autoencoder
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(b) transposing sequence-to-sequence archi-
tecture

Figure 33: Sequence-to-sequence autoencoder and its generalization. Boxes
represent RNN cells. Only the output of the last RNN cell is used.
The feature representation is displayed as an oval.

The decoder returns a probability distribution π = (π1, . . . ,πL) over
the sequences in AL where each πi = (πi,1, . . . ,πi,A) is a categorical
distribution over [A] (πi,a > 0 and

∑A
a=1 πi,a = 1 for all i).

The parameters θ of the RNN are chosen to minimize the following
loss:

L(θ;D) :=

K∑

k=1

N∑

i=1

H
[

ski ; decθ(encθ(sk))i
]

(35)

where

H
[

ski ; decθ(encθ(sk))i
]

:=

−

A∑

a=1

δa(s
k
i ) log

[

decθ(encθ(sk))i,a
]

, (36)

denotes the categorical cross-entropy with δa such that δa(x) = 1 iff.
x = a and 0 otherwise.

Details about our implementation are discussed in Sect. 7.5.1.

ReLU non-linearity and truncated Spearman rho distance

In exposing the rationale behind the permutation-based distance in
Sect. 7.3.1, we put forward the idea that each feature of a sequence
encodes a particular high-level concept. An ordering of these con-
cepts would then act like a fingerprint for this sequence. However, in
the model described above, the “most-relevant concepts” (the coordi-
nates xi which have supposedly the greatest impact on the sequence
decoding) are the coordinates with the greatest absolute value. Coor-
dinates near zero are unlikely to be particularly relevant but have a
great influence on the ordering Π(x) of Eq. 31 and on the distance
Eq. 32.
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A way to deal with this problem consists in adding a Rectifier Lin-
ear Unit (ReLU) activation [110] on top of the encoder RNN. The
resulting feature vector will then contain only non-negative elements
with a substantial number of null elements. In doing so, we impose
that the “most-relevant concepts” are within the first values of the
permutation Π(x). It is then possible to modify the Spearman rho dis-
tance by only considering the l most important coordinates, which
results in the truncated Spearman rho distance of order l < N:

ρl(x,y) =

√

√

√

√

l∑

i=1

(Π(x)i −Π(y)i)2. (37)

We finally define the corpus-dependent distance DD between two
sequences s and s ′ truncated up to l by

DD(s, s ′; l) = ρl(encθ(s), encθ(s ′)), (38)

where encθ is the encoder RNN (with a ReLU non-linearity on its
top-most layer) of a trained sequence-to-sequence autoencoder.

transformation-invariant distances

We now suppose that we have a set of transformations T that act on
sequences. We suppose that this action defines an equivalence relation
on D. This means that if there exists t ∈ T such that s = t.s ′ for
sequences s, s ′ ∈ D, then there exists t ′ ∈ T such that s ′ = t ′.s. In
such a case, we note s ∼ s ′ and their equivalence class is notated T.s.

A typical example on musical sequences would be the set of trans-
positions (see Fig. 36). The sequence dataset is then split between the
different equivalence classes T.s. Our objective is to devise a distance
between sequences that would be invariant relatively to this set of
transformations, i.e. the distance only depends on the equivalence
classes and not on the sequences themselves.

A simple way to achieve this goal is to directly obtain transforma-
tion-invariant feature representations. For this, we need to modify the
preceding architecture so that the feature representation (represented
as a circle in Fig. 33a) is the same for a sequence and all its transforma-
tions. We introduce the sequence-to-sequence architecture depicted in
Fig. 33b. It is a model which takes as an input a sequence s ∈ D and a
transformation t ∈ T and learns to predict the transformed sequence
t.s. In this model, the encoder encθ(s) is only a function of s while
the decoder decθ(x, t) takes as an input a feature representation x

together with the transformation t applied to s.
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This architecture is trained using the following loss function:

L(θ;D,T) :=

∑

t∈Tk

K∑

k=1

N∑

i=1

H
[

(t.sk)i; decθ(encθ(sk), t)i
]

, (39)

where the first sum over t ∈ Tk denotes the set of transformations
t ∈ T such that t.sk ∈ D.

Note that, in the case of musical transpositions, we can specify how
we want to transpose our input sequence s by two means:

• relatively to s, by specifying the interval by which we transpose
s (relative representation),

• independently of s, by specifying, for instance, the name of the
starting note of t.s (absolute representation).

Since we want a feature representation which depends only on
equivalence classes T .s and not on its representatives s ′ ∈ T .s, we
must use an absolute representation when specifying the transforma-
tions t ∈ T. Indeed, using a relative representation would otherwise
force the feature representation to contain absolute information. Plug-
ging this representation in a rank-based distance would lead to a dis-
tance which is not transformation-invariant.

Even when doing so, the distances we obtain are not fully-invariant:
the feature representation can still contain absolute information about
sequence s. We propose to overcome this issue by forcing the model
to compute averaged feature representations. Ideally, using the mean
representation

encθ(T.s) :=
1

|T.s|

∑

s ′∈T.s

encθ(s ′) (40)

for an equivalence class T.s gives a transformation-invariant represen-
tation, but it is computationally-expensive. A simple approximation
is to compute this mean representation using only two sequences be-
longing to the same equivalent class. For two sequences s, s ′ ∈ T.s,
we consider the averaged representation

encθ(s, s ′) :=
1

2

(

encθ(s) + encθ(s ′)
)

; (41)

this representation is then passed to the decoder together with the ab-
solute transformation representation. This architecture is represented
in Fig. 34.

We finally add a ℓ1-penalty on the difference between the two fea-
ture representations to encourage the model to make these two repre-
sentations equal. The loss function we obtain in this case is then given
by
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mean

          

  
transposition

Figure 34: Proposed architecture for computing transformation-invariant
feature representations. The input and output sequences belong
to the same equivalence class.

Linvariant(θ;D,T, λ) :=

∑

t,t ′∈Tk

K∑

k=1

N∑

i=1

(

H
[

(t ′.sk)i ; decθ
(

encθ
(

sk, t.sk
)

, t ′
)

i

]

+

λℓ1
[

encθ(sk) − encθ(t.sk)
])

, (42)

where λ is a hyper-parameter controlling the trade-off between accu-
racy and enforcing the invariance property.

We thus define a transformation-invariant DD,T distance relative
to a corpus D and a set of transformations T as in Eq. 38, except that
the encoder network encθ is the encoder network of the modified
architecture schematically displayed in Fig. 34 and trained with loss
Linvariant(θ;D,T, λ) given by Eq. 42.

This transposition-invariant distance has the advantage that the no-
tion of invariance is directly encoded into the learned model. Indeed,
a simpler way to produce a transposition-invariant distance would
be to apply the corpus-based distance of Eq. 38 to a corpus where
all sequences would start with the same note, say C4. The distance
between any two sequences would thus be the distance between their
transposed version starting in C4. However, these transpositions can-
not be implemented effectively: the first note has to be found in order
to know how to transpose (we can have rests or hold symbols, see
Sect. 7.5.1). This operation takes some time and it cannot be easily
parallelizable on a GPU. The proposed transposition-invariant dis-
tance thus transfer these costly operations from the evaluation phase
to the data-preprocessing phase.

experimental results

We report experiments on the chorale melodies from the chorale harmo-
nizations by J.S. Bach presented in Sect. 2.3.4. This dataset is obtained
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by extracting all soprano parts from the J.S. Bach chorales dataset
included in the music21 [38] Python package.

Implementation details

We choose to encode our data using the melodico-rhythmic encod-
ing described in Sect. 3.1.3. More specifically, time is quantized with
sixteenth notes and we use the full name of the notes instead of the
traditional MIDI pitch representation. We introduce two additional
tokens in order to handle rhythm and pitch in a unified fashion: a
hold symbol HOLD indicating that a note is being played but not at-
tacked, and a rest symbol REST. In this setting, a musical sequence is
only an ordered sequence of tokens drawn from the set of all possible
notes {C3, C#3, Db3, D3, D#3, . . . } together with the HOLD and REST
tokens.

The set of transformations T we choose is the set of all transposi-
tions. But for a given sequence s, we only define as its equivalence
class the set of its transpositions which fits within the original voice
range. In doing so, we do not need the set of transformations to be a
group, but require only that it defines an equivalence relation.

The RNN we use is a 2-layer stacked LSTM [69] with 512 hidden
units each. The ReLU non-linearity is used and the truncation order
l of Eq. 37 is set to 256.

Nearest neighbor search

We empirically demonstrate the efficiency of these distances by dis-
playing examples of nearest neighbor requests. Fig. 35a shows exam-
ples of melodies which are “close” according to the corpus-dependent
distance DD. All the results that we display are obtained using Spear-
man’s rho distance, but we obtain similar results by replacing it with
Kendall’s tau similarity measure.

The nearest neighbors query of Fig. 35a reveals interesting behav-
iors of the corpus-dependent distance DD. The overall shape of the
target melody (ascending then descending) is present in every neigh-
boring sequence under various aspects. There are interesting rhyth-
mic variations and also key changes. But, what is the most striking
here, is that some other characteristic elements of the target sequence
are also taken into account. For instance, the importance of the as-
cending leap on the fourth beat is present in many sequences. An-
other such example is the note repetition at beats 2 and 3 which also
occurs in some neighboring sequences. We believe that the last se-
quence in the example displayed in Fig. 35a is a good illustration of
how characteristic elements are captured with our distance. Even if
there are only two notes in common with the target sequence, we still
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(a) Corpus-dependent distance DD con-
structed using Spearman’s rho distance

(b) Edit distance

Figure 35: A target melody and its nearest neighbors according to different
distances on sequences. Duplicates have been removed.
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have an impression of proximity between both. This may be due to
the following facts

• the most important notes of the target sequence (the highest
and the lowest) are replicated,

• the key and the rhythm are identical,

• there is an ascending fourth in both (on beat 2 for the neighbor-
ing sequence instead of on beat 4 for the target sequence),

• there is a note repetition on beats 2 and 3,

• they both conclude by a descending conjunct movement.

This has to be compared with the nearest neighbors returned us-
ing the edit distance on the same target sequence. This is displayed
in Fig. 35b. This presents some unwanted behaviors. For instance,
sequences identical to the target sequence but with a sixteenth note
offset are considered to be almost identical. However, from a musical
point of view, the importance of the difference between notes on and
notes off the beat is crucial. In the other cases, the edit only manages
to find sequences containing common notes (and played at the exact
same time) with the target sequence. Since the HOLD symbol is seen
as note like any other one, we can see that replacing a half note by
a quarter note has a cost of only one, independently of the chosen
note. The importance here is not on the melodic contours nor on an
intuitive perception of similarity.

The behavior of the edit distance seems more erratic and less pre-
dictable. It is also “less smooth” than our proposed distances (see
Fig. 36) since the edit distance can only take a finite (and smaller)
number of values. The important difference is that the number of pos-
sible values returned by the edit distance depends on the sequences
size, while it depends on the feature vector size in the case of corpus-
dependent distances.

Invariance by transposition

In this section, we check to which extent the distance DD,T is invari-
ant under the set of transformations T. In Fig. 36, we plot the distance
DD,T(s, s ′) when s and s ′ are in the same equivalence class under T

and when they are not.
Two things are two be noted in this example. Firstly, the obvi-

ous difference between the two densities and the sharp peak when
the sequences are in the same equivalence class show that our dis-
tance indeed captures the invariance by transposition on musical se-
quences. Secondly, the behavior of the density of the distance between
two randomly-chosen sequences is interesting: it is multimodal and
widespread. This distance can take numerous different values and
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Figure 36: Density estimations of distances DD,T(s, s ′) between two se-
quences s and s ′ belonging to the same or to different equivalence
classes. The two proposed rank distances are displayed. Our ar-
chitecture allows to capture the invariance by transposition for
musical sequences (peaked blue). The images are truncated for
clarity.

can then have more discriminative power. We have experimentally
seen in Sect. 7.5.2 that the corpus-dependent distance is able to cap-
ture high-level musical concepts. It is the same for its transposition-
invariant counterpart.

To show this, we do not replicate the results about the nearest
neighbor search of Fig. 35a since it only returns exact transpositions
of the target sequence. Instead, we only make a nearest neighbor
search on a small subset of the J.S. Bach chorales using DD,T . The
result is displayed in Fig. 37.

The same analysis as the one conducted for Fig. 35a can be made,
except that it is now irrespective of the transposition of the neighbor-
ing sequences. We conclude that this transposition-invariant distance
allows to detect characteristic patterns and musical motives indepen-
dently of the key they are in.

conclusion

We proposed a novel framework to build distances learned from musi-
cal corpora. Because they take into account the style to which musical
sequences belong, these learned distances are not subject to the usual
problems encountered using the edit-distance generalizations: they
are less dependent on the input encoding while being more satisfac-
tory from a perceptive point of view. Indeed, using neural-network-
learned features instead of handcrafted features allows to define a
natural notion of proximity between sequences which is rooted on
an objective and non-biased a priori basis. The choice of the rank-
based distance applied on the feature representations does not seem
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Figure 37: A target melody and its nearest neighbors among 20000 se-
quences randomly drawn from all possible subsequences using
the transposition-invariant distanceDD,T based on the Spearman
rank-based distance.

to influence much the final distance behavior. This framework can
be modified so that the distances we obtain are invariant with re-
spect to a given a set of transformations. This is made possible by
the fruitful combination between a quasi-invariant feature represen-
tation learned from a regularized sequence-to-sequence architecture
and a rank-based distance. Since the feature representations are not
necessarily equal for sequences within the same equivalence class,
the usage of a rank-based distance over these representations helps
to make the distance over sequences invariant.

Future work will aim at improving the proposed method by taking
into account multiple hidden layers in the rank-based distance. On a
more practical side, we will also aim at using this distance on music
generation tasks in order to design algorithms capable of generating
highly-structured melodies.
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I N T E R A C T I V E M U S I C G E N E R AT I O N W I T H U N A RY
C O N S T R A I N T S U S I N G A N T I C I PAT I O N - R N N S

introduction

We have seen in Ch. 4 that a number of powerful generative models
on symbolic music have been proposed recently. If they now perform
well on a variety of different musical datasets, from monophonic folk-
music (Sect. 4.1.1.1) to polyphonic Bach chorales (Sect. 4.1.2.3), these
models tend to face similar limitations: they do not provide musically-
interesting ways for a user to interact with them. Most of the time,
only an input seed can be specified in order to condition the model
upon: once the generation is finished, the user can only accept the
result or regenerate another musical content. As exposed in Sect. 3.4,
we believe that this restriction hinders creativity since the user do not
play an active part in the music creation process.

Generation in these generative models is often performed from left
to right (Sect. 4.1.1); Recurrent Neural Networks (RNNs) [58] are gen-
erally used to estimate the probability of generating the next musical
event, and generation is done by iteratively sampling one musical
event after another. This left-to-right modeling seems natural since
music unfolds through time and this holds both for monophonic [35,
145] and polyphonic [17, 93] music generation tasks. However, this
does not match real compositional principles since composition is
mostly done in an iterative and non-sequential way [11]. As a simple
example, one may want to generate a melody that ends on a specific
note, but generating such melodies while staying in the learned style
(the melodies are sampled with the correct probabilities) is in general
a non trivial problem when generation is performed from left to right.
This problem has been solved when the generative model is a Markov
model [119] but remains hard when considering arbitrary RNNs.

In order to solve issues raised by the left-to-right sampling scheme,
approaches based on MCMC methods have been proposed, in the
context of monophonic sequences with shallow models [136] or on
polyphonic musical pieces using deeper models [62, 63]. If these
MCMC methods allow to generate musically-convincing sequences
while enforcing many user-defined constraints, the generation pro-
cess is generally order of magnitudes longer than the simpler left-to-
right generation scheme. This can prevent for instance using these
models in real-time settings.

Another related approach is the one proposed in [88] where the
authors address the problem of enforcing deterministic constraints

95
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on the output sequences. Their approach relies on performing a gra-
dient descent on a regularized objective that takes into account the
amount of constraints that are violated in the output sequence. They
start from a pre-trained unconstrained model and then “nudge” its
weights until it produces a valid sequence. If their model is able to
handle a wide range of constraints (such as requiring the output se-
quence to belong to a context-free language), it enforces these con-
straints using a costly procedure, namely Stochastic Gradient Descent
(SGD). Sequences are generated using the deterministic argmax de-
coding procedure while our sampling scheme is non-deterministic,
which we believe is an essential asset in the context of interactive
music generation. The approach of [87] is similar to the latter ap-
proach in the sense that the authors enforce constraints via gradient
descent. However, since they rely on convolutional restricted Boltz-
mann Machines, their sampling scheme is no longer deterministic.
Their method is a way to sample polyphonic music having some im-
posed high-level structure (repetitions, patterns) which is imposed
through the prescription of some predefined auto-correlation matrix.

The particularity of our approach is that it focuses on a smaller
subset of constraints, namely unary constraints which allows our sam-
pling scheme to be faster since the proposed model takes into account
the set of constraints during the training phase instead of the genera-
tion phase.

Except from the approaches cited above, the problem of generating
sequences while enforcing user-defined constraints is rarely consid-
ered in the general machine learning literature but it is of crucial
importance when devising interactive generative models. In this arti-
cle, we propose a neural network architecture called Anticipation-RNN
which is capable of generating in the style learned from a database
while enforcing user-defined unary constraints. Our model relies on
two stacked RNNs, a Constraint-RNN going from right to left whose
aim is to take into account future constraints and a Token-RNN going
from left to right that generates the final output sequence. This ar-
chitecture is very general and works with any RNN implementation.
Furthermore, the generation process is fast as it only requires two
neural network calls per musical event.

Even if the proposed architecture is composed of two RNNs going
in opposite directions, it has not to be confused with the Bidirectional-
RNNs (BRNNs) architectures [137] which are commonly used to ei-
ther summarize an entire sequence as in [131] or in the context of su-
pervised learning [60]. Even if there has been attempts to use BRNNs
in an unsupervised setting [15], these methods are intrinsically-based
on a MCMC sampling procedure which make them much slower than
our proposed method. The idea of integrating future information to
improve left to right generation using RNNs has been considered in
the Variational Bi-LSTM architecture [139] or in the Twin Networks
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architecture [138]. The aim of these architectures is to regularize the
hidden states of the RNNs so that they better model the data distri-
bution. If ideas could appear to be similar to the ones developed in
this paper, these two approaches do not consider the generation of se-
quences under constraints but are a method to improve the existing
RNNs architectures.

The plan for this article is the following: In Sect. 8.2, we precisely
state the problem we consider and Sect. 8.3 describes the proposed
architecture together with an adapted training procedure. Finally, we
demonstrate experimentally the efficiency of our approach on the
dataset of the chorale melodies by J.S. Bach in Sect. 8.4. In Sect. 8.5,
we discuss about the generality of our approach and about future
developments.

Code is available at https://github.com/Ghadjeres/

Anticipation-RNN and the musical examples presented in this
article can be listened to on the accompanying website: https:

//sites.google.com/view/anticipation-rnn-examples/accueil.

statement of the problem

We consider an i.i.d. dataset D := {s = (s1, . . . , sN) ∈ AN} of se-
quences of tokens st ∈ A of arbitrary length N over a vocabulary A.
We are interested in probabilistic models over sequences p(s) such
that

p(s) =
∏

t

p(st|s<t), (43)

where

s<t =






(s1, . . . , st−1) for t > 0

∅, if t = 0.
(44)

This means that the generative model p(s) over sequences is defined
using the conditional probabilities p(st|s<t) only. Generation with
this generative model is performed iteratively by sampling st from
p(st|s<t) for t = 1..N where N is arbitrary. Due to their simplicity
and their efficiency, Recurrent Neural Networks (RNNs) are used to
model the conditional probability distributions p(st|s<t): they allow
to reuse the same neural network over the different time steps by
introducing a hidden state vector in order to summarize the previous
observations we condition on. More precisely, by writing f the RNN,
int its input, outt+1 its output and ht its hidden state at time t, we
have

outt+1,ht+1 = f(int,ht) (45)

for all time indices t. When int = st, the vector outt+1 is used to
define p(st+1|s<t+1) for all time indices t without the need to take as
an input the entire sequence history s<t+1.

https://github.com/Ghadjeres/Anticipation-RNN
https://github.com/Ghadjeres/Anticipation-RNN
https://sites.google.com/view/anticipation-rnn-examples/accueil
https://sites.google.com/view/anticipation-rnn-examples/accueil
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If this approach is successful on many applications, such a model
can only be conditioned on the past which prevents some possible
creative use for these models: we can easily fix the beginning s<t

of a sequence and generate a continuation s>t = (st, . . . , sN) but it
becomes more intricate to fix the end s>t of a sequence and ask the
model to generate a beginning sequence.

We now write p-(s) the probability of a sequence s when no con-
straint is set. For simplicity of notation, we will suppose that we only
generate sequences of fixed length N and denote by S := AN the set
of all sequences over A. The aim of this article is to be able to enforce
any set C of unary constraints given by:

C = {(i, ci)}i∈I, (46)

where I is the set of constrained time indexes and ci ∈ A the value
of the constrained note at time index i. Ideally, we want to sample
constrained sequences

S+(C) := {s ∈ S, si = ci ∀(i, ci) ∈ C} (47)

with the “correct” probabilities. If we denote by p+(s|C) the probabil-
ity of a sequence s in the constrained model conditioned on a set of
constraints C, this means that we want, for all set of constraints C:

p+(s|C) = 0, ∀s /∈ S+(C), (48)

and

p+(s|C) =
1

α
p−(s), ∀s ∈ S, (49)

where

α :=
∑

s∈S+(C)

p−(s).

To put it in words, each set of constraints C defines a subset S+(C)
of S from which we want to sample from using the probabilities (up to
a normalization factor) given by p−. However, sampling from S+(C)

using the acceptance-rejection sampling method is not efficient due
to the arbitrary number of constraints. Exact sampling from S+(C) is
possible when the conditional probability distributions are modeled
using models such as Markov models but is intractable in general.
This problem in the case of Markov models can in fact be exactly
solved when considering more complex constraints on the space of
sequences such as imposing the equality or the difference between
two sequences symbols si and sj. Generalizations of this problem to
other types of constraints are discussed in Sect. 8.5.
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+ + + +

Figure 38: Anticipation-RNN architecture. The aim is to predict (s1, . . . , sN)

given (c1, . . . , cN) and (s0, . . . , sN−1).

the model

The problem when trying to enforce a constraint c := (i, ci) is that im-
posing such a constraint on time index i “twists” the conditional prob-
ability distributions p−(st|s<t) for t < i. However, the direct compu-
tation of p−(st|s<t, si = ci) (using Bayes rule when only p−(st|s<t)

is known) is computationally expensive.
The idea to overcome this issue is to introduce a neural network in

order to summarize the set of constraints C. To this end, we introduce
an additional token NC (No Constraint) to A indicating that no unary
constraint is set at a given position. By doing this, we can rewrite
the set C as a sequence c = (c1, . . . , cN) where ci ∈ A ∪ {NC}. We
then introduce a RNN called Constraint-RNN in order to summarize
the sequence of all constraints. This RNN goes backward (from cN
to c1) and all its outputs are used to condition a second RNN called
Token-RNN.

This architecture, called Anticipation-RNN since the Token-RNN is
conditioned on what may come next, is depicted in Fig. 38. We no-
tated by (o1, . . . ,oN) the output sequence of the Constraint-RNN (for
notational simplicity, we reversed the sequence numbering: the first
output of the Constraint-RNN is oN in our notation). The aim of the
output vector ot is to summarize all information about constraints
from time t up to the end of the sequence. This vector is then concate-
nated to the input st−1 of the Token-RNN at time index t whose aim
is to predict st.

Basically, this amounts to modeling the conditional probability dis-
tribution p+(s|c) using the following factorization:

p+(s|c) =
∏

t

p+(st|s<t, c>t) =
∏

t

p+(st|s<t,ot), (50)

where c>t is defined similarly as in (44).
Our approach differs from the approaches using Markov models

in the sense that we directly train the conditional probability distribu-
tion (50) rather than trying to sample sequences in S+(C) using p−:
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we want our probabilistic model to be able to directly enforce hard
constraints.

The Anticipation-RNN thus takes as an input both a sequence of
tokens (s0, . . . , sN−1) and a sequence of constraints (c1, . . . , cN) and
has to predict the shifted sequence (s1, . . . , sN). The only requirement
here is that the constraints have to be coherent with the sequence:
ci = si if ci 6= NC. Since we want our model to be able to deal with
any unary constraints, we consider the dataset of couples of token-
sequences and constraint-sequences D+ such that

D+ :=
{
(s,m(s)) , ∀s ∈ D, ∀m ∈ {0, 1}N

}
, (51)

where {0, 1}N is the set of all binary masks: the sequence of constraints
m(s) is then defined as the sequence (c1, . . . , cN) where ci = si if
mi = 1 and ci = NC otherwise.

It is important to note that this model is able to handle not only
unary constraints, but can also include additional metadata informa-
tion about the sequence of tokens whose changes we have to antic-
ipate. Indeed, by including such temporal information in the c vari-
ables, this model can then learn to anticipate how to generate the to-
kens that will lead to a sequence complying with the provided meta-
data in a smooth way. These metadata can be musically-relevant fea-
tures such as the current key or mode, or the position of the cadences
as it is done in [62].

This sampling procedure is fast since it only needs two RNN passes
on the sequence. This modeling is thus particularly well-suited for
the real-time interactive generation of music. Furthermore, once the
output of the Constraint-RNN o is computed, sampling techniques
usually applied in sequence generation tasks such as beam search
[17, 156] can be used without additional computing costs.

experimental results

Dataset preprocessing

We evaluated our architecture on the dataset of the melodies from the
four-part chorale harmonizations by J.S. Bach. This dataset is avail-
able in the music21 Python package [38] and we extracted the soprano
parts from all 402 chorales that are in 4/4. In order to encode these
monophonic sequences, we used the melodico-rhythmic encoding de-
scribed in [62]. In this encoding, time is quantized using a sixteenth
note as the smallest subdivision (each beat is divided into four equal
parts). On each of these subdivisions, the real name of the note is
used as a token if it is the subdivision on which the note is played,
otherwise, an additional token denoted as “__” is used in order to
indicate that the current note is held. A “rest” token is also used in
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D4 __ E4 __ A4 __ __ __ G4 __ F#4 __ E4 __ __ __

Figure 39: Melodico-rhythmic encoding of the first bar of the melody of
Fig. 45a. Each note name such as D4 or F#4 is considered as a
single token.

order to handle rests. An example of an encoded melody using this
encoding is displayed in Fig. 39.

The advantage of using such an encoding is that it allows to encode
a monophonic musical sequence using only one sequence of tokens.
Furthermore, it does not rely on the traditional MIDI pitch encoding
but on the real note names: among other benefits, this allows to gener-
ate music sheets which are immediately readable and understandable
by a musician and with no spelling mistakes. From a machine learn-
ing perspective, this has the effect of implicitly taking into account the
current key and not throwing away this important piece of informa-
tion. The model is thus more capable of generating coherent musical
phrases. A simple example for this is that this encoding helps to dis-
tinguish between a E# and a F by considering them as two different
notes. Indeed, these two notes would appear in contexts that are in
different keys (in C# major or F# minor in the first case, in C major or
F major in the second case for instance).

We also perform data augmentation by transposing all sequences
in all possible keys as long as the transposed sequence lies within the
original voice range. We end up with an alphabet of tokens A of size
125.

Implementation details

We used a 2-layer stacked LSTM [69] for both the Constraint-RNN
and the Token-RNN using the PyTorch [125] deep learning frame-
work. Both LSTM networks have 256 units and the constraints tokens
ci and the input tokens si are embedded using the same embedding
of size 20. Sequences are padded with START and END symbols so
that the model can learn when to start and when to finish. We add
dropout on the input and between the LSTM layers and discuss the
effect of the choice of these hyperparameters in Sec. 8.4.3. We found
that adding input on the input is crucial and set this value to 20%..

We fixed the length of the training sub-sequences to be 20-beat long
which means that, using the encoding described in Sect. 8.4.1 that
we consider sequences of tokens of size 80. The network is trained
to minimize the categorical cross-entropy between the true token at
position 40 and its prediction. For each training sequence, we sample
the binary masks m(s) of (51) by uniformly sampling a masking ratio
p ∈ [0, 1] and then setting each unary constraint with probability p.

We perform stochastic gradient descent using the Adam algorithm
[79] using the default settings provided by PyTorch for 10 epochs
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Figure 40: Sets of constraints Ci described in Sec. 8.4.3, for i ranging from
1 to 5. In this particular figure, rests denote the absence of con-
straints.

with a batch size of 256. In this setting, our best model achieves a val-
idation accuracy of 92.9% with a validation loss of 0.22. These figures
are of course highly-dependent on our modeling choices such as the
number of subdivision per beat, the preprocessing of our corpus as
well as the way we sampled the binary masks.

The sampling procedure is then done iteratively from left to right
by sampling the token at time t according to the probabilities given
by p+(st|s<t,ot), where s<t is the sequence of previously generated
tokens and ot the output of the Constraint-RNN at position t.

Enforcing the constraints

We first check that the proposed architecture is able to enforce unary
constraints, namely, that it fulfills the requirement (48).

In order to evaluate this property, we compute the amount of con-
straints that are enforced for various set of constraints C. We chose
for these sets of constraints different “kinds” of constraints, from con-
straints that are in the “style of the corpus” to constraints that are
totally “out-of-style”. More precisely, we considered:

• C1: the beginning and the ending of an existing chorale melody
(first five bars of the chorale melody “Wer nur den lieben Gott
läßt walten” with two ablated bars),

• C2: the beginning and the ending of the same chorale melody,
but where the ending has been transposed to a distant key (from
G minor to C# minor),

• C3: constraints forcing the model to make “big” leaps (chorale
melodies tend to be composed of conjunct melodic motions),
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• C4: a chromatic ascending scale,

• C5: random notes every eighth note,

• C6: the same random notes as above, but every quarter note.

These set of unary constraints are displayed in Fig. 40.
We measure the influence of the amount of the dropout that we use

in our models (dropout between the LSTM layers) on the following
task: for each set of constraints Ci and for each model, we generate
1000 sequences using p+(.|Ci) and compute the percentage of con-
strained notes that are sampled correctly. We report the results in
Tab. 2.

C1 C2 C3 C4 C5 C6

LSTM dropout=0.2 99.78 99.73 98.78 99.77 41.28 57.06

LSTM dropout=0.5 99.90 99.01 99.32 98.68 43.83 62.08

Table 2: Percentage of correctly-sampled constrained notes for different
models p+ differing only by the amount of dropout they use and
constrained on different sets of constraints.

These results show that for all sets of constraints that define a
“possibly-in-style” musical constraint (constraint sets C1 to C4), the
model manages to enforce the constraints efficiently: even if such con-
straints could not be encountered in the original dataset (constraint
sets C2 and C4) . On the contrary, for truly out-of-style constraints
(constraint sets C5 and C6), the model performs poorly on the task
of enforcing these constraints. We do not think that it is a drawback
of the model since its aim is to generate melodies in the style of the
corpus which is made impossible when constrained with these inco-
herent constraints.

Table. 2 also reveals the non-trivial effects of the choice of the
amount of dropout of the models upon their performance on this
task.

Anticipation capabilities

If the preceding section demonstrated that the Anticipation-RNN ar-
chitecture is able to enforce a wide variety of sets of unary constraints,
we will explore in this section the role of the Constraint-RNN and in
particular how it is able to learn how to “propagate” the constraints
backwards, making the Token-RNN able to anticipate what will come
next.

For this, we will evaluate how the constrained model deviates from
the unconstrained model. We compare the constrained model p+ on
the same set of constraints C with its unconstrained counterpart p−.
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Figure 41: Plot of the evolution of the Jensen-Shannon divergence
JS(p+(st|si<t,Ci)||p−(st|si<t)) between the constrained model
p+ and the unconstrained model p− during generation for two
sets of constraints C1 and C3. Each point represents the average
value of the divergence over one beat. The location of the con-
straints has been highlighted in red.

The latter is obtained by conditioning the model of Fig. 38 on a se-
quence of constraints in the special case where no constraint is set:
the sequence of constraints is (NC, . . . , NC).

More precisely, for a set of constraints C, we quantify how the prob-
ability distributions p+(.|s<t,C) differ from the probability distribu-
tions p−(.|s<t) by computing how dissimilar they are. We chose as
a measure of dissimilarity [12, 43] the Jensen-Shannon divergence [6,
112] which is defined by:

JS(p||q) :=
1

2
KL(p||m) +

1

2
KL(q||m), (52)

where m = p+q
2 , with KL denoting the Kullback-Leibler: divergence

KL(p||q) :=
∑

i

pi log
(

pi

qi

)

. (53)

The Jensen-Shannon divergence has the property of being symmetric,
bounded (and thus always definite) and its square root satisfies the
triangle inequality [115] which is an important feature compared to
other divergences.

In Fig. 41 we plot the evolution of the between the two distributions
p+(.|s<t,C) and p−(.|s<t) during generation for different set of con-
straints C. We generated 1000 sequences using the constrained model
and computed the average Jensen-Shannon divergence between the
two models for each time step. We then averaged the values over
each beat in order not to take into account the intra-beat variations.
Indeed, due to encoding we chose as well as to the singularity of the
musical data we considered, patterns of oscillations appear. Indeed,
both models agree in putting much of their probability mass on the
hold symbol “__” on the second sixteenth note of each beat since the
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beat index

(a) Constrained case: p = p+(.|C3)

beat index

(b) Unconstrained case: p = p−

Figure 42: Plot of p(st|s<t) as a function of t during the generation of
the melody displayed in Fig. 45a in the constrained and uncon-
strained cases. Beats on which a constraint is set are circled.
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beat index

Figure 43: Difference between p+(st|s<t) and p−(st|s<t) as a function of t
during the generation of the melody displayed in Fig. 45a. Beats
on which a constraint is set are circled. We see that between
beats 9 to 13, the probability mass of the constrained model p+ is
shifted upwards (compared to the probability distribution given
by the unconstrained model p−) in order to enforce the unary
constraint D5 set at beat 13 . From beat 13 to 17, the situation
is reversed: the probability mass of the constrained model p+ is
shifted downwards in order to enforce the unary constraint D4
on beat 17.
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soprano parts in Bach chorales are mostly composed of half notes,
quarter notes and eighth notes. This is independent of the presence
or absence of constraints so the constrained and unconstrained mod-
els make similar predictions on these time steps resulting in a low
divergence.

This plot confirms that the constraints are propagated backwards
in time and the Token-RNN is not only able to enforce constraints but
also to anticipate how to do so.

We now illustrates this feature on a specific example. Figure 42

shows the evolution of p+(st|s<t,C3) and p−(st|s<t) during gener-
ation. It is interesting to note that the conditional probability distri-
butions returned by p+(st|s<t,C3) are more concentrated on specific
values than the ones returned by p−(st|s<t). The concentration of the
all probability mass of p+(st|s<t,C3) on constrained notes confirms,
on this specific example, that the proposed architecture has learned
to enforce hard unary constraints.

In order to understand the effect of the constraints, we plot the dif-
ference between the two distributions of Fig. 42 for each time step in
Fig. 43. This highlights the fact that the probability mass distribution
of p+ is “shifted upwards” few beats in advance when the next unary
constraint is higher than the current note, and “downwards” in the
opposite case.

Sampling with the correct probabilities

We now evaluate that the sampling using p+ fulfills the requirement
(49). This means that for any set of constraints C, the ratio between
the probabilities of two sequences in S+(C) is identical if probabilities
are computed using the unconstrained model p−(.) or if they are
computed using the constrained model p+(.|C). We introduce the set
of constraints C0 consisting of a single constrained note.

For a given set of constraints C, we generated 500 sequences and
verified that the requirement (48) is fulfilled for all of these sequences
(i.e. all constraints are enforced). In order to check the fulfillment
of the requirement (49), we plot for each sequence s its probability
in the constrained model p+(s) (defined as in Eq. 43) as a function
of p−(s) in logarithmic space. We compute these probabilities using
(50), but only kept the time steps on which notes are not constrained.
The resulting plots are shown in Fig. 44. Table. 3 quantifies to which
amount the two distributions are proportional on the subsets S+(C

i)

for different set of constraints Ci and for different models.
The translation in logarithmic space indicates the proportionality

between the two distributions as desired.
The conclusion is that our model is able to correctly enforce all

constraints for sets of constraints that are plausible with respect to
the training dataset (Sect. 8.4.3), and that on these specific sets of
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C0 C1 C2 C3

LSTM dropout=0.2, dropout on input=0.2 0.99 0.99 1.05 0.96

LSTM dropout=0.5, dropout on input=0.2 0.99 0.93 1.00 0.92

Table 3: Slopes of the linear interpolations displayed in Fig. 44 for different
models and different set of constraints Ci. The closer the values are
to one, the better the requirement (49) is achieved.
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Figure 44: Point plots in logarithmic scale of lnp+(s|Ci) (y-axis) versus
p−(s) (x-axis) on a set of 500 sequences generated using p+(s|Ci),
for C0 and C3. The identity map is displayed in red and the linear
regression of the data points in blue. The lines are closed to being
parallel indicating the proportionality between the two distribu-
tions.

constraints, our sampling procedure respects the relative probabilities
between the sequences. In other words, the Anticipation-RNN is able
to sample with the correct probabilities a subset of sequences defined
by a set of unary constraints.

Musical examples

We end this section with the discussion over some generated con-
strained sequences. Figure 45 shows examples of the enforcement
and the propagation of the constraints for the set of constraints C3:
even if generation is done from left to right, the model is able to gen-
erate compelling musical phrases while enforcing the constraints. In
particular, we see that the model is able to “anticipate” the moment
when it has to “go” from a low-pitched note to a high-pitched one
and vice versa. The use of the melodico-rhythmic encoding allows
to only impose that a note should be played at a given time, with-
out specifying its rhythm. It is interesting to note that such a wide
melodic contour (going from a D4 to a D5 and then going back to
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(a)

(b)

(c)

Figure 45: Examples of generated sequences in the style of the soprano parts
of the J.S. Bach chorales. All examples are subject to the same set
of unary constraints C3 which is indicated using green notes.

a D4 in only two bars) is unusual for a chorale melody. Nonetheless,
the proposed model is able to generate a convincing Bach-like chorale
melody. The three displayed examples show that there is a great vari-
ability in the generated solutions: even when constrained on the same
set of constraints, the generated melodies have distinct characteristics
such as, for example, the key they are in or where cadences could be.

Similarly to [62], we provide a plugin for the MuseScore music
score editor which allows to call the Anticipation-RNN in an intuitive
way.

conclusion

We presented the Anticipation-RNN, a simple but efficient way to
generate sequences in a learned style while enforcing unary con-
straints. This method is general and can be used to improve many ex-
isting RNN-based generative models. Contrary to other approaches,
we teach the model to learn to enforce hard constraints at training
time. We believe that this approach is a first step towards the genera-
tion of musical sequences subjected to more complex constraints.

The constrained generation procedure is fast since it requires only
2N RNN calls, where N is the length of the generated sequence; as it
does not require extensive computational resources and provides an
interesting user-machine interaction, we think that this architecture
paves the way to the development of creative real-time composition
software. We also think that this fast sampling could be used jointly
with MCMC methods in order to provide fast initializations.

Our approach can be seen as a general way to condition RNN mod-
els on time-dependent metadata. Indeed, the variable c in (50) is not
only restricted to the value of the unary constraints, but can contain
more information such as the location of the cadences or the current
key. We successfully applied the Anticipation-RNN in this setting and
report that it manages to enforce these interesting and natural musical
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constraints in a smooth way while staying in the style of the training
corpus.

Future work will aim at handling other types of constraints (impos-
ing the rhythm of the sequences, enforcing the equality between two
notes or introducing soft constraints) and developing responsive user
interfaces so that all the possibilities offered by this architecture can
be used by a wide audience.
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introduction

Autoencoders [14] are useful for learning to encode observable data
into a latent space of smaller dimensionality. They perform dimen-
sionality reduction (manifold learning) and can be seen as a non-
linear generalization of the Principal Component Analysis [39]. How-
ever, the latent variable space often lacks of structure [153] and it is
impossible, by construction, to sample from the data distribution. The
Variational Autoencoder (VAE) framework [78] addresses these two
issues by introducing a regularization on the latent space together
with an adapted training procedure. This allows to train complex gen-
erative models with latent variables while providing a way to sample
from the learned data distribution, which makes it useful for unsu-
pervised density modeling.

Once trained, a VAE provides a decoding function, i.e. a mapping
from a low-dimensional latent space to the observation space which
defines what is usually called a data manifold (see Fig. 46b). It is inter-
esting to see that, even if the observation space is discrete, the latent
variable space is continuous which allows one to define continuous
paths in the observation space i.e. images of continuous paths in the
latent variable space. This interpolation scheme has been successfully
applied to image generation [61, 98] or text generation [18]. However,
any continuous path in the latent space can produce an interpolation
in the observation space and there is no way to prefer one over an-
other a priori; thus the straight line between two points in latent space
will not necessary produce the “best” interpolation in data space.

When dealing with data that contains more information, such as
labels or interpretive quantities, it is interesting to see if and how
this information has been encoded into the latent space (see Fig. 46a).
Understanding the latent space structure can be of great use for the
generation of new content as it can provide a way to manipulate high-
level concepts in a creative way.

One way to control the generating process on annotated data is
by conditioning the VAE model, resulting in the Conditional Vari-
ational AutoEncoder (CVAE) architectures [141, 162]. These models
can be used to generate images with specific attributes but also allow
to generate interpolation between images by changing only a given
attribute. In these approaches, the CVAE latent spaces do not con-
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(a) VAE encoding of the MNIST dataset in a
latent variable space Z := R2. Each point
corresponds to a dataset point and col-
ors. Reproduced from [98].

(b) Visualization of the learned data
manifold. Reproduced from [78].

Figure 46: Two visualizations of the latent space of a VAE trained on the
MNIST dataset.

tain the high-level information but the randomness of the produced
images for fixed attributes.

Another approach, where there is no decoupling between the at-
tributes and the latent space representation, consists in finding at-
tribute vectors which are vectors in the latent space that could encode
a given high-level feature or concept. Translating an encoded input
vector by an attribute vector before decoding it should ideally add an
additional attribute to the data. This has been successfully used for
image generation with VAEs (coupled with an adversarially learned
similarity metric) in [86] and even directly on the high-level feature
representation spaces of a classifier [152]. However, these approaches
rely on finding a posteriori interpretations of the learned latent space
and there is no theoretical reason that simple vector arithmetic has a
particular significance in this setting (even if it has proved successful
in real applications like word2vec [104]). Indeed, in the original VAE
article [78] the MNIST manifold (reproduced in Fig. 46b) has been ob-
tained by transforming a linearly spaced coordinate grid on the unit
square through the inverse CDF of the normal distribution in order to
obtain “equally-probable” spaces between each decoded image. This
advocates for the fact that the latent space coordinates of the data
manifold need not be perceived as geodesic normal coordinates. That
is, decoding a straight line drawn in the latent space does not give
rise to elements whose attributes vary uniformly.

In this chapter, we focus on fixing a priori the geometry of the la-
tent space when the dataset elements possess continuous (or discrete
and ordered) attributes. By introducing a Geodesic Latent Space Regular-
ization (GLSR), we show that it is possible to relate variations in the
latent space to variations of the attributes of the decoded elements.
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Augmenting the VAE training procedure with a regularizing term
has been recently explored in [84] in the context of image generation
where the introduction of a discriminative regularization is aimed at im-
proving the visual quality of the samples using a pre-trained classifier.
Our approach differs from the one above in the fact that the GLSR fa-
vors latent space representations with fixed attribute directions and
focuses more on the latent space structure.

We show that adding this regularization grants the latent space a
meaningful interpretation while retaining the possibility to sample
from the learned data distribution. We demonstrate our claim with
experiments on musical data. Our experiments suggest that this reg-
ularization also helps to learn latent variable spaces with little corre-
lation between regularized and non regularized dimensions. Adding
the possibility to gradually alter a generated sample according to some
user-defined criteria can be of great use in many generative tasks; it
introduces a new human-machine interaction that is accordance with
the objectives described in Sect. 3.4. Since decoding is fast, we believe
that this technique can be used in real time for interactive and creative
purposes in many interesting and novel ways.

regularized variational autoencoders

Background on Variational Autoencoders

We define a Variational AutoEncoder (VAE) as a deep generative model
(like Generative Adversarial Networks (GANs) [70]) for observations
x ∈ X that depends on latent variables z ∈ Z by writing the joint
distribution pθ(x, z) as

pθ(x, z) = p(z)pθ(x|z),

where p(z) is a prior distribution over z and pθ(x|z) a conditional distri-
bution parametrized by a neural network NN(θ). Given a i.i.d. dataset
X = {x1, . . . , xN} of elements in X, we seek the parameter θ maximiz-
ing the dataset likelihood

logpθ(X) =
N∑

i=1

logpθ(xi). (54)

However, the marginal probability

pθ(x) =

∫

pθ(x, z)dz

and the posterior probability

pθ(z|x) =
pθ(x, z)
pθ(x)

=
pθ(x, z)

∫
pθ(x, z)dz
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are generally both computationally intractable which makes maxi-
mum likelihood estimation unfeasible. The solution proposed in [78]
consists in preforming Variational Inference (VI) by introducing a
parametric variational distribution qφ(z|x) to approximate the mo-
del’s posterior distribution and lower-bound the marginal log-likeli-
hood of an observation x; this results in:

logpθ(x) >

Eqφ(z|x) [logpθ(x|z)] −DKL(qφ(z|x)||p(z))

:= L(x; θ,φ),

(55)

where DKL denotes the Kullback-Leibler divergence [37].
Training is performed by maximizing the Evidence Lower BOund

(ELBO) of the dataset

L(θ,φ) :=
N∑

i=1

L(xi; θ,φ) (56)

by jointly optimizing over the parameters θ and φ. Depending on the
choice of the prior p(z) and of the variational approximation qφ(z|x),
the Kullback-Leibler divergence DKL(q(z|x)||p(z)) can either be com-
puted analytically or approximated with Monte Carlo integration.

Equation 55 can be understood as an autoencoder with stochas-
tic units (first term of L(x; θ,φ)) together with a regularization term
given by the Kullback-Leibler divergence between the approximation
of the posterior and the prior. In this analogy, the distribution qφ(z|x)
plays the role of the encoder network while pθ(x|z) stands for the de-
coder network.

Geodesic Latent Space Regularization (GLSR)

We now suppose that we have access to additional information about
the observation space X, namely that it possesses ordered quantities
of interest that we want to take into account in our modeling process.
These quantities of interest are given as K independent differentiable
real attribute functions {gk} on X, with K less than the dimension of
the latent space.

In order to better understand and visualize what a VAE has learned,
it can be interesting to see how the expectations of the attribute func-
tions

Gk : z 7→ Epθ(x|z)[gk(x)] (57)

behave as functions from Z to R. In the Information Geometry (IG)
literature [5, 6], the Gk functions are called the moment parameters of
the statistics gk.

Contrary to other approaches which try to find attribute vectors or
attribute directions a posteriori, we propose to impose the directions of
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interest in the latent space by linking changes in the latent space Z to
changes of the Gk functions at training time. Indeed, linking changes
of Gk (that have meanings in applications) to changes of the latent
variable z is a key point for steering (interactively) generation.

This can be enforced by adding a regularization term over z =

(z1, . . . , zdimZ) to the ELBO L(θ,φ) of Eq. 56. We define the Geodesic
Latent Space Regularization for the Variational Auto-Encoder (GLSR-VAE)
by

Rgeo(z; {gk}, θ) :=
K∑

k=1

Rk(z; θ) (58)

where

Rk(z; θ) = log rk

(

∂Gk

∂zk
(z)

)

. (59)

The distributions rk over the values of the partial derivatives of Gk

are chosen so that Eu[rk(u)] > 0, and preferably peaked around its
mean value (small variance). Their choice is discussed in Sect. 9.5.

Ideally (in the case where the distributions rk are given by Dirac
delta functions with strictly positive means), this regularization forces
infinitesimal changes dzk of the variable z to be proportional (with a
positive factor) to infinitesimal changes of the functions Gk (Eq. 72).
In this case, for zK+1, . . . , zdimZ ∈ Z fixed, the mapping

(z1, . . . , zK) 7→ (G1(z), . . . ,GK(z)) ∈ RK, (60)

where z = (z1, . . . , zK, zK+1, . . . , zdimZ) defines a Euclidean manifold
in which geodesics are given by all straight lines.

To summarize, we are maximizing the following regularized ELBO:

Lreg(x; θ,φ) :=

Eqφ(z|x)

[

logpθ(x|z) +Rgeo(z; {gk}, θ)
]

−DKL(qφ(z|x)||p(z)).
(61)

Note that we are taking the expectation of Rgeo with respect to the
variational distribution qφ(z|x).

Equation (61) can be maximized with stochastic gradient ascent
using Monte-Carlo estimates of the intractable estimations. We also
use the reparametrization trick [78] on stochastic variables to obtain
low-variance gradients.

experiments

In this section, we report experiments on training a VAE on the task
of modeling the distribution of chorale melodies in the style of J.S. Bach
(see Sect. 2.3.4) with a geodesic latent space regularization. Learning
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good latent representations for discrete sequences is known to be a
challenging problem with specific issues (compared to the continu-
ous case) as pinpointed in [75]. Sect. 9.3.1 describes how we used
the VAE framework in the context of sequence generation, Sect. 9.3.2
exposes the dataset we considered and Sect. 9.3.3 presents experimen-
tal results on the influence of the geodesic latent space regularization
tailored for a musical application. A more detailed account on our
implementation is deferred to Sect. 9.4.

VAEs for Sequence Generation

We focus in this paper on the generation of discrete sequences of a
given length using VAEs. Contrary to recent approaches [31, 47, 49],
we do not use recurrent latent variable models but encode each entire
sequence in a single latent variable.

In this specific case, each sequence x = (x1, . . . , xT ) ∈ X is com-
posed of T time steps and has its elements in [A], where A is the
number of possible tokens while the variable z is a vector in Z.

We choose the prior p(z) to be a standard Gaussian distribution
with zero mean and unit variance.

The approximated posterior or encoder qφ(z|x) is modeled using a
normal distribution N(µ(x),σ2(x)) where the functions µ and σ2 are
implemented by Recurrent Neural Networks (RNNs) [58].

When modeling the conditional distribution pθ(x|z) on sequences
from X, we suppose that all variables xi are independent, which
means that we have the following factorization:

pθ(x|z) :=

T∏

i=1

piθ(xi|z). (62)

In order to take into account the sequential aspect of the data and
to make our model size independent of the sequence length T , we
implement pθ(x|z) using a RNN. The particularity of our implemen-
tation is that the latent variable z is only passed as an input of the
RNN decoder on the first time step. To enforce this, we introduce a
binary mask m ∈ {0, 1}T such that m1 = 1 and mi = 0 for i > 1 and
finally write

pθ(x|z) :=

T∏

i=1

piθ(xi|mi ∗ z,m<i), (63)

where the multiplication is a scalar multiplication and where m<i :=

{m1, . . . ,mi−1} for i > 1 and is ∅ for i = 1. In practice, this is im-
plemented using one RNN cell which takes as input mi ∗ z,mi and
the previous hidden state hi−1. The RNN takes also the binary mask
itself as an input so that our model differentiates the case z = 0 from
the case where no latent variable is given.
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The decoder pθ(x|z) returns in fact probabilities over X. In order
to obtain a sequence in X we have typically two strategies which are:
taking the maximum a posteriori (MAP) sequence

x = argmaxx ′∈Xpθ(x
′|z) (64)

or sampling each variable independently (because of Eq. 63). These
two strategies give rise to mappings from Z to X which are either
deterministic (in argmax sampling strategy case) or stochastic. The
mapping

z 7→ argmaxx ′∈Xpθ(x
′|z) (65)

is usually thought of defining the data manifold learned by a VAE.
Our approach is different from the one proposed in [26] since the

latent variable z is only passed on the first time step of the decoder
RNN and the variables are independent. We believe that in doing so,
we “weaken the decoder” as it is recommended in [26] and force the
decoder to use information from latent variable z.

We discuss more precisely the parametrization we used for the con-
ditional distribution pθ(x|z) and the approximated posterior qφ(z|x)
in Sect. 9.4.

Data Preprocessing

We extracted all monophonic soprano parts from the J.S. Bach
chorales dataset as given in the music21 [38] Python package. We
chose to discretize time with sixteenth notes and used the real name
of notes as an encoding. Following the approach described in Chap. 6,
we use the melodico-rhythmic encoding of Sect. 3.1.3 by adding an
extra symbol which encodes that a note is held and not replayed. Ev-
ery chorale melody is then transposed in all possible keys provided
the transposition lies within the original voice ranges. Our dataset is
composed of all contiguous subsequences of length ∆t = 32 and we
use a latent variable space with 12 dimensions. Our observation space
is thus composed of sequences x = (x1, . . . , x32) ∈ X where each el-
ement of the sequence xi can be chosen between A = 53 different
tokens.

Experimental Results

We choose to regularize one dimension by using as a function g(x) :=
g1(x) the number of played notes in the sequence x (it is an integer
which is explicitly given by the representation we use).
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implementation details

We report the specifications for the model used in Sect. 9.3. All RNNs
are implemented as 2-layer stacked LSTMs [69, 105] with 512 units
per layer and dropout between layers; we do not find necessary to
use more recent regularizations when specifying the non stochastic
part model like Zoneout [83] or Recurrent batch normalization [36].
We choose as the probability distribution r1 on the partial gradient
norm a normal distribution with parameters N(2, 0.1).

We find out that the use of KL annealing was crucial in the training
procedure. In order not to let the geodesic latent space regularization
to be too important at the early stages of training, we also introduce
an annealing coefficient for this regularization. This means we are
maximizing the following regularized ELBO

Eqφ(z|x)

[

logpθ(x|z) +βRgeo(z; {gk}, θ)
]

−βDKL(qφ(z|x)||p(z)) (66)

with β slowly varying from 0 to 1. We also observe the necessity of
early stopping which prevents from overfitting.

Structure of the latent space

Adding this regularization directly influences how the embedding
into the latent space is performed by the VAE. We experimentally
check that an increase ∆z1 in the first coordinate of the latent space
variable z = (z1, . . . , zdimZ) leads to an increase of

gZ := z 7→ g(argmax(pθ(x|z))). (67)

The (non-differentiable) function (Eq. 67) is in fact the real quantity
of interest, even if it is the differentiable function G1 (Eq. 72) which is
involved in the geodesic latent space regularization (Eq. 59). In order
to visualize the high-dimensional function gZ, we plot it on a 2-D
plane containing the regularized dimension. In the remaining of this
article, we always consider the plane

Pz1,z2 = {(z1, z2, 0, . . . , 0), z1, z2 ∈ R} (68)

Fig. 47 shows plots of the gZ function restricted to the 2-D plane
Pz1,z2 . The case where no geodesic latent space regularization is ap-
plied is visible in Fig. 47a while the case where the regularization is
applied on one latent space dimension is shown in Fig. 47b. There
is a clear distinction between both cases: when the regularization is
applied, the function gZ is an increasing function on each horizon-
tal line while there is no predictable pattern or structure in the non-
regularized case.

In order to see if the geodesic latent space regularization has only
effects on the regularized quantity (given by gZ) or also affects other
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Figure 47: Plot of a 2-D plane in the latent variable space Z. The x-axis cor-
responds to the regularized dimension.

(non regularized) attribute functions, we plot as in Fig. 47 these at-
tribute functions (considered as real functions on Z as in Eq. 67). Fig-
ure 48 show plots of different attribute functions such as the highest
and lowest MIDI pitch of the sequence and the presence of sharps or
flats. We remark that adding the latent space regularization tends to
decorrelate the regularized quantities from the non-regularized ones.

Generating Variations by moving in the latent space

Reducing correlations between features so that each feature best ac-
counts for only one high-level attribute is often a desired property
[32] since it can lead to better generalization and non-redundant
representations. This kind of “orthogonal features” is in particular
highly suitable for interactive music generation. Indeed, from a mu-
sical point of view, it is interesting to be able to generate variations
of a given sequence with more notes for instance while the other at-
tributes of the sequence remain unchanged.

The problem of sampling sequences with a fixed number of notes
with the correct data distribution has been, for example, addressed in
[121] in the context of sequence generation with Markov Chains. In
our present case, we have the possibility to progressively add notes
to an existing sequence by simply moving with equal steps in the
regularized dimension. We show in Fig. 49 how moving only in the
regularized dimension of the latent space gives rise to variations of
an initial starting sequence in an intended way.

Effect on the aggregated distribution and validation accuracy

A natural question which arises is: does adding a geodesic regulariza-
tion on the latent space deteriorates the effect of the Kullback-Leibler
regularization or the reconstruction accuracy? The possibility to sam-
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Figure 48: Plot of a 2-D plane in the latent variable space Z. The x-axis corre-
sponds to the regularized dimension. Different non-regularized
quantities of the decoded sequences are displayed: the highest
pitch, the lowest pitch and if the sequence contains no accidental,
sharps or flats.

                  
               

             

               
            4

4        

Figure 49: Image of straight line in the data manifold obtained by starting
from a random z and then only increasing its first (regularized)
coordinate z1. The argmax decoding procedure (Eq. 64) was used.
All generated sequences are two-bar long and separated by dou-
ble bar lines. This generates variations of the initial motif by
adding more notes.
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Figure 50: Plot of the aggregated distribution projected on a 2-D plane in
the latent space which contains the regularized dimension as its
x-axis. Each point is attributed a color depending on the number
of notes contained in the decoded sequence.

ple from the data distribution by simply drawing a latent variable
z ∼ p(z) from the prior distribution and then drawing x ∼ pθ(x|z)

from the conditional distribution indeed constitutes one of the great
advantage of the VAE architecture.

We check this by looking at the aggregated distribution defined by

qφ(z) :=

∫

x

qφ(z|x)pd(x)dx, (69)

where pd(x) denotes the data distribution. In an ideal setting, where
qφ(z|x) perfectly matches the posterior pθ(z|x), the aggregated distri-
bution qφ(z) should match the prior p(z). We experimentally verify
this by plotting the aggregated distribution projected on a 2-D plane
in Fig. 50. By assigning colors depending on the regularized quan-
tity, we notice that even if the global aggregated distribution is nor-
mally distributed and approach the prior, the aggregated distribution
of each cluster of sequences (clustered depending on the number of
notes they contain) is not, and depends on the regularized dimension.

We report a slight drop (1%) of the reconstruction accuracy when
adding the geodesic latent space regularization. The fact that adding
a regularization term reduces the reconstruction accuracy has also
been noted in [84] where they nonetheless report a better visual qual-
ity for their regularized model.

The geodesic latent space regularization thus permits to obtain
more meaningful posterior distributions while maintaining the pos-
sibility to sample using the prior distribution at the price of a small
drop in the reconstruction accuracy. We believe that devising adap-
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tive geodesic latent space regularizations could be a way to prevent
this slight deterioration in the model’s performance and provide us
with the best of both worlds. Having the possibility to navigate in the
latent space seems an important and desired feature for generative
models in creative applications.

choice of the regularization parameters

We highlight in this section the importance of the choice of the reg-
ularization distributions rk on the partial gradients (Eq. 59). Typical
choices for rk seem to be univariate normal distributions N(µ,σ2) of
mean µ > 0 and standard deviation σ.

In practice, this distribution’s mean value must be adapted to the
values of the attribute functions gk over the dataset. Its variance must
be small enough so that the distribution effectively regularizes the
model but high enough so that the model’s performance is not dras-
tically reduced and training still possible. Fig. 51 displays the same
figure as in Fig. 47b, but with a regularization distribution r1 being a
normal distribution N(5, 1). We see that imposing too big an increase
to fit in the prior’s range can cause unsuspected effects: we see here
a clear separation between two phases.
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Figure 51: Same plot as in Fig. 47b but with r1 = N(5, 1).

What is the best choice for the rk distributions depending on the
values of the gk functions over the dataset is an open question we
would like to address in future works.

discussion and conclusion

We introduced a new regularization function on the latent space of
a VAE. This geodesic latent space regularization aims at binding a
displacement in some directions of the latent space to a qualitative
change of the attributes of the decoded sequences. We demonstrated
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its efficiency on a music generation task by providing a way to gener-
ate variations of a given melody in a prescribed way.

Our experiments shows that adding this regularization allows in-
terpolations in the latent space to be more meaningful, gives a notion
of geodesic distance to the latent space and provides latent space vari-
ables with less correlation between its regularized and non-regulari-
zed coordinates.

Future work will aim at generalizing this regularization to varia-
tional autoencoders with multiple stochastic layers. It could indeed
be a way to tackle the issue of inactive units in the lower stochastic
layers as noted in [26, 97], by forcing these lower layers to account for
high-level attributes.

Our regularization scheme is general and can be applied to the
most recent generalizations of variational autoencoders which intro-
duce generative adversarial training in order to obtain better approx-
imations of the posterior distributions [75, 98] or in order to obtain a
better similarity metric [86].

We believe that applying this regularization to conditional VAEs
[141, 162] opens up new ways to devise interactive applications in a
variety of content generation tasks.
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A
E X A M P L E S O F G E N E R AT E D M U S I C

This appendix presents generations using the DeepBach model. Sec-
tion A.1 displays non interactive generations. These samples are
shown in order to assess that the DeepBach model has good gen-
erative performance: it does not overfit the training data (or plagia-
rize) since it is able to generate original reharmonizations of existing
melodies. We also discuss about the quality of the generated pieces
from a musical point of view by analyzing its flaws and achievements.
Section A.2 then shows many pieces produced using the interactive
editor (Sect. 6.4). The aim is to show that it is possible to generate
contrasting pieces in a simple way1.

non interactive generations

We now provide three complete chorale reharmonizations composed
by DeepBach. One is a reharmonization of a chorale melody used by
Bach (see Fig. 6) while the other two are different reharmonizations
of the traditional hymn “God Save the Queen”(see Fig. 53 and 54).

These examples demonstrate the ability of DeepBach to learn and
generate characteristic elements of J.S. Bach chorales while reharmo-
nizing. To make our claim clearer, we highlighted particular aspects
on the music sheets using three different colors:

• in green, we indicated:

– characteristic melodic movements:

* Fig 52 bars 1, 3, 6, 7, 9, 14

* Fig 53 bars 13-14

* Fig 54 bars 5, 13-14

– good voicings and voice leading:

* Fig 52 bars 2, 11

* Fig 53 bars 2, 9

* Fig 54 bars 2, 4, 13

– characteristic suspensions2 and passing tones:

* Fig 52 bars 4, 8, 8-9, 14

* Fig 53 bars 4, 13

1 Audio and videos of some of these pieces played live can be watched on https:

//sites.google.com/site/deepbachexamples/

2 For explanations for technical musical terms see
https://en.wikipedia.org/wiki/Nonchord_tone
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* Fig 54 bar 4

• in blue:

– musically interesting ideas:

* Fig 52:

· Starting on a dominant bar 1

· Chromatic neighboring tone on the second degree
bars 1, 13

· Two different harmonizations between bars 1 and
8

· Harmonization in A major bars 5-6

· Bass in eighth notes bars 11-13

· Cadence bar 12

* Fig 53:

· Starting in E minor bar 1

· Harmonization in G minor bar 5

· Chromatic line bars 11-12

· Proximity between F and F# bars 11-12

* Fig 54:

· Dominant of the sixth degree

· Minorization after a half cadence bars 6-7

· Considering G at soprano to be an escape tone

• in red:

– parallel fifths and octaves indicated by lines

– mistakes:

* Fig 52:

· D missing bar 4

· C should resolve to B bar 9

* Fig 53:

· E should be removed in order to prevent parallel
fifths bar 1

· Seventh chord cannot be played without prepara-
tion bar 9

· Repetition in eighth notes bar 11

* Fig 54:

· Starting on an inverted chord of the first degree
bar 1
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· Strange resolution for 9-8 suspension bar 10

· Melodic movement is not Bach-like bar 11 (but it
is imposed by the user and not generated by Deep-
Bach)

Despite some compositional errors like parallel octaves, the musical
analysis reveals that the DeepBach compositions reproduce typical
Bach-like patterns, from characteristic cadences to the expressive use
of nonchord tones. Furthermore, our model is able to propose varied
and contrasting ideas when reharmonizing the same melody as can
be seen by comparing the two versions of “God Save the Queen”.

interactive generations

We now report some DeepBach generations made using the interac-
tive editor described in Sect. 6.4. These pieces were first played dur-
ing a concert called “Partnership” on May 23, 2017 which premiered
“new musical works composed by or co-composed with systems cre-
ated using different machine learning methods”. The pieces we pro-
vided were meant to be reharmonizations of automatically-generated
folk songs by the folk-rnn system (Sect. 4.1.1.1). A more complete
presentation of all the musical pieces can be found in [144]. Since
the editor allows to change every note, we wanted the generations to
look like compositions typical of the style learned by DeepBach. For
this, we restricted ourselves to only regenerate whole measures us-
ing the music editor. We took the freedom to adjust the timing of the
given melodies, e.g., doubling the duration of the notes, adapting the
rhythm for pieces in 6/8, or transposing them so that they fit within
the soprano voice range.

Even when a folk-rnn tune features some unusual or rare melodic
motions (compared to most of the Lutheran hymns used in J.S. Bach
chorale harmonisations), DeepBach is still able to produce a fluid
chorale texture and provides new insights and harmonic contours to
the original melody. It is also worth noting how identical passages of
the soprano part are harmonised differently.

Borrowing musical material from one source to adapt it in a par-
ticular language is a common technique. It is an important aspect of
the music creation and has been practiced throughout ages, from J.S.
Bach (Sect. 2.3.4) to Stravinsky or Messiaen [11].
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(b)

Figure 56: Generated folk-RNN tune #7153 (a) and its reharmonization by
DeepBach (b).
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(a)

(b)

Figure 57: Generated folk-RNN tune named “The Glas Herry Comment” (a)
and its reharmonization by DeepBach (b).



136 examples of generated music

(a)

(b)

Figure 58: Generated folk-RNN tune named “The Deep Pint” (a) and its
reharmonization by DeepBach (b).



B
R É S U M É D E L A T H È S E

Cette partie est un résumé de cette thèse en français. L’objectif est
de décrire de manière concise mais détaillée quelles ont été les mo-
tivations à ce travail et quelles sont les solutions proposées dans ce
document. J’espère que ce court appendice donnera une idée claire
des contributions de cette thèse et encouragera le lecteur intéressé à
parcourir l’intégralité du manuscrit.

Les sources des programmes présentés dans cette thèse sont
disponibles librement.

introduction

Les avancées récentes dans le domaine de l’apprentissage profond
(ou deep learning) permettent maintenant la création de modèles
génératifs extrêmement performants. Avec les techniques actuelles, il
est par exemple possible de générer une description textuelle à partir
d’une image, une image correspondant à une description textuelle
ainsi que de générer de générer du contenu audio à partir d’un
texte. Si ces quelques exemples tirés de la littérature laissent entrevoir
de nombreuses applications, les techniques utilisées ne s’appliquent
pas aisément à la génération de partitions musicales (que nous ap-
pelleront également musique symbolique par opposition à la génération
de musique dans le domaine audio).

En effet, la musique symbolique possède sa propre structure, dis-
tincte des autres types de données cités précédemment (audio, texte,
images). Ainsi, la création de modèles génératifs pour la musique
symbolique soulève de nouveaux problèmes en apprentissage pro-
fond et nécessite une approche spécifique.

Mais avant de poursuivre, interrogeons nous sur l’intérêt que peut
avoir un algorithme générant automatiquement des partitions. Quel
peut être son intérêt et pourquoi vouloir abandonner nos capacités
artistiques au profit d’algorithmes ?

La composition musicale est en effet considérée comme un proces-
sus artistique dans lequel une intelligence artificielle n’aurait aucun
rôle à jouer. Une oeuvre d’art est avant tout, à mon sens, la commu-
nication d’un processus créatif et d’une expérience humains. Détru-
ire ce lien ténu entre l’artiste et son public n’est donc pas désirable.
Si l’on peut apprécier la qualité d’une pièce générée par ordinateur,
celle-ci sera difficilement acceptée telle quelle (c’est-à-dire sans la
compréhension du processus créatif sous-jacent) en tant qu’oeuvre
d’art.

137
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Néanmoins, les systèmes de génération automatique de parti-
tions de musique récemment proposés peuvent être perçus comme
des boîtes noires capables de produire des partitions au kilomètre.
Hormis lors de la conception du modèle génératif, aucune interven-
tion humaine n’est présente. Ces systèmes, une fois entraînés, con-
stituent “l’oeuvre d’art” et ne requièrent pas la présence d’une tierce
personne.

Ces critiques ont déjà été formulées par le passé et certaines
solutions ont été proposées, mais en dehors du contexte de
l’apprentissage profond. Ces modèles permettent à utilisateur tiers
(différent du concepteur du système) d’avoir une valeur ajoutée en
composant à l’aide de ces outils. Cependant, ces systèmes, sont plus
rigides et moins compétents que les modèles génératifs profonds.

Serait-il possible d’obtenir le meilleur des deux mondes ? Pouvons-
nous concevoir des systèmes génératifs puissants remettant l’humain
au centre de la composition ?

Ce sont ces problématiques que nous traiterons dans ce manuscrit.
Plus précisément, nous chercherons à construire des modèles générat-
ifs expressifs pouvant être utilisés à des fins artistiques par des utilisa-
teurs extérieurs. Le thème de cette thèse se porte donc sur les modèles
génératifs profonds appliqués à la génération interactive de musique sym-
bolique, c’est-à-dire la conception de modèles génératifs avec lesquels
un utilisateur peut interagir durant la composition. Cette thématique
à l’intersection entre plusieurs domaine n’a jusqu’à lors jamais été
énoncée de la sorte et j’espère que cette thèse ne sera pas la dernière
sur ce sujet.

Je suis en effet convaincu qu’il est essentiel pour ces modèles
génératifs appliqués à la musique de proposer une interaction avec
un utilisateur externe. Cela permet de relier ces problèmes théoriques
à des problématiques réelles. Ainsi, concevoir de puissants modèles
génératifs pour la musique symbolique n’est pas suffisant, mais il
faut également repenser l’interaction entre l’utilisateur et la machine.
De cela découle une pléthore de problèmes tantôt concrets, tantôt
théoriques. En effet, le potentiel de ces nouveaux outils de composi-
tion ne peut s’exprimer pleinement que par le biais d’interfaces util-
isateur adaptées. Cette intrication entre les modèles génératifs d’une
part et leur utilisation d’autre part pose de nouvelles questions :

• Quelles fonctionnalités sont nécessaires au cours de la composi-
tion assistée par ordinateur ?

• Peut-on améliorer la créativité ou la productivité des utilisa-
teurs ?

• Sous quelle forme se présente l’interaction entre l’utilisateur et
la machine ? Quel type d’interface utilisateur cette interaction
implique-t-elle ?
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• Inversement, les innovations dans le domaine des modèles
génératifs profonds peuvent-elles suggérer de nouveaux proces-
sus compositionnels ?

• Comment concevoir des modèles génératifs expressifs et flex-
ibles pouvant satisfaire des contraintes à la fois techniques et
musicales ?

À mon sens, des motivations artistiques peuvent motiver le
développement de nouveaux modèles en intelligence artificielle et
vice-versa. Ce lien entre les deux domaines que sont l’intelligence
artificielle et la musique est, selon moi, fructueux et à double sens.
Utiliser ces modèles d’apprentissage profonds comme des outils artis-
tiques permet de mieux cerner le comportement de ces modèles
génératifs.

contributions

Cette thèse est composée de trois parties.

données musicales , challenges et critique de l’état de

l’art

La première partie est une vue d’ensemble sur l’utilisation des mod-
èles génératifs profonds appliqués à la musique symbolique. Le
but n’est pas de constituer un état de l’art exhaustif mais plutôt
d’identifier à travers quelques exemples représentatifs les différentes
approches présentées ces dernières années. Cette partie est constituée
de trois chapitres.

Données musicales symboliques

Le chapitre 2, Données musicales symboliques, présente de manière dé-
taillée les différents formats utilisés pour noter, de manière symbol-
ique, la musique. En effet, contrairement au texte ou aux images, il
n’existe pas de standard pour les données musicales. Une partition
(dans le système de musique occidentale) est avant tout une représen-
tation graphique, et il semble évident que ce format n’est pas adapté
à une approche algorithmique.

L’important dans le choix d’une notation est donc, comme dans
tout système de communication, de trouver “le juste milieu” entre
la précision de celle-ci, sa concision et son utilité. Une notation mu-
sicale sera particulièrement adaptée si ses utilisateurs, compositeurs
et interprètes, sont capables de communiquer et comprendre leurs
intentions musicales avec un minimum d’effort.

Les formats les plus courants sont présentés (notation occidentale
sur cinq portées, leadsheets, MusicXML, notation ABC, MIDI) et leurs
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avantages et désavantages discutés. Tout au long de cette thèse, nous
feront la distinction entre le format sous lequel se présentent les don-
nées brutes (la notation musicale) et leur encodage (ou représentation)
utilisé par l’ordinateur.

Les données musicales symboliques présentent des qualités dis-
tinctes des autres types données, ce qui fait qu’il n’est pas néces-
sairement aisé pour un public non musicien de comprendre ces
spécificités. Ce chapitre se poursuit donc par une présentation suc-
cincte des aspects les plus importants à prendre en compte lors d’un
traitement algorithmique de ces données. Les notions de rythme, de
mélodie, d’harmonie, de style ainsi que les problématiques liées à
la structure à petite ou grande échelle sont mises en avant. Il appa-
raît alors que le traitement algorithmique de la musique symbolique
nécessite des modèles génératifs dédiés capables de capturer ces spé-
cificités.

Ce chapitre se termine par la présentation des jeux de données
de musique symbolique les plus importants. Une attention partic-
ulière est dévolue au dataset des harmonisations de chorals par Jean-
Sébastien Bach. La particularité de ce corpus est son homogénéité et
sa taille. En effet, celui-ci est composé d’environ 400 courtes pièces
d’environ une minute et composées suivant les mêmes principes et
pour la même formation (chorale à 4 voix). L’écriture des chorals
de Bach est remarquable et est étudiée dans la plupart des cours
d’écriture musicale depuis des siècles. Il est donc aisé pour un ex-
pert d’évaluer la qualité d’un choral généré par ordinateur, ce qui
n’est pas nécessairement le cas avec d’autres styles de musique. Pour
les raisons avancées ci-dessus, ces harmonisations de chorals con-
stitueront le dataset de choix tout au long de cette thèse.

Les challenges de la génération de musique symbolique

Le chapitre 3, Les challenges de la génération de musique symbolique,
traite l’ensemble des données musicales symboliques présentées au
chapitre précédent sous l’angle de l’apprentissage automatique. En
particulier, nous discutons des problèmes rencontrés lors de la con-
ception de modèles génératifs profonds pour la musique symbolique.

La première observation est qu’une représentation adaptée doit être
trouvée. Comme pour les notations musicales, la représentation ou
l’encodage parfait n’existent pas. En revanche, il est important de
connaître les différentes possibilités à disposition lors de la concep-
tion d’une représentation pour la musique symbolique ainsi que
l’influence de ces choix sur le résultat de la génération. Les encodages
usuellement utilisés pour les notes et le rythme sont présentés et leurs
avantages respectifs analysés. De cette analyse découle la proposi-
tion d’un nouvel encodage nommé encodage mélodico-rythmique partic-
ulièrement adapté pour représenter des séquences monophoniques.
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(a) (b)

Figure 59: Extrait d’un choral de J.S. Bach chorale à côté de son encodage
mélodico-rythmique. Le symbole de continuation est noté “__”.

Cette représentation peut également être utilisée pour des pièces
écrites pour plusieurs instruments monophoniques. Le but de cet
encodage est de représenter une séquence monophonique en une
séquence de symboles. Contrairement à d’autres représentations ex-
istantes, il n’y a pas de dissociation entre le rythme et la mélodie
(on pourrait représenter une mélodie comme une séquence de cou-
ples (note, durée)). Cet encodage mélodico-rythmique repose sur
l’introduction d’un symbole additionnel “__” nommé symbole de con-
tinuation indiquant que la note précédente est tenue. Appliqué à des
séquences monophoniques, cet encodage est non ambigu, sans perte
d’information et compact.

Un exemple de cette encodage appliqué à un choral à quatre voix
de J.S. Bach est montré à la Fig. 59.

Cet encodage se révélera particulièrement adapté pour échantillon-
ner des séquences à l’aide de méthodes de Monte-Carlo par chaînes
de Markov.

Le second challenge traité dans ce chapitre est le problème de
l’évaluation de ces modèles génératifs pour la musique. En effet,
comparer deux modèles génératifs sur une base objective est possi-
ble mais peu informative: une meilleure vraisemblance des données
n’implique pas nécessairement la capacité de générer de la “meilleure
musique”. Il est cependant possible de mener des évaluations à l’aide
de tests de perception. Mais là encore, les résultats obtenus sont diffi-
cilement généralisables et sont extrêmement dépendant de la manière
dont l’expérience a été menée (l’expérience musicale des sujets étant
un facteur important). Se pose également le problème du plagiat:
quels critères intégrer afin de différencier une recopie d’un morceau
existant d’une inspiration ou de la reprise d’un élément caractéris-
tique ?

En revanche, l’évaluation des modèles génératifs interactifs couplés
à des interfaces utilisateurs peut prendre un sens nouveau: un sys-
tème génératif peut alors être considéré comme bon s’il permet aux
utilisateurs de s’exprimer de manière intuitive, ergonomique et si la
musique qu’il produit est écoutée. En d’autres mots, évaluer un sys-
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tème génératif revient à évaluer si c’est un bon “produit” ou un bon
outil. Cela répond d’une certaine manière au problème du plagiat : si
un système génératif est performant et permet de créer de nouveaux
contenus (considérés comme non plagiant) quand il est utilisé, cela
est suffisant. Évaluer cette propriété au niveau du modèle génératif
uniquement me semble manquer de sens.

Les modèles génératifs profonds pour la musique symbolique

Le dernier chapitre de la première partie présente certains mod-
èles génératifs pour la musique récemment publiés. Un effort
d’unification a été fait afin de percevoir les similitudes et différences
entre ces approches. Nous verrons que la principale limitation de ces
modèles est que l’interaction avec un utilisateur est faible voire inex-
istante, ce qui réduit grandement leur usage.

modélisation de la musique polyphonique

La seconde partie de cette thèse se concentre sur la modélisation de la
musique polyphonique, et plus particulièrement sur la modélisation
des chorals de J.S. Bach. La musique polyphonique a l’avantage d’être
beaucoup plus “stricte” et plus “combinatoire” que la musique mono-
phonique. En d’autres termes, il est beaucoup plus facile de repérer
une “fausse note”, même pour une personne non musicienne, dans
le premier cas.

Cette partie est composée de deux chapitres. Le premier, Familles
exponentielles pour l’imitation du style et l’invention d’accords dans la
musique polyphonique , présente un modèle probabiliste pour la
musique de style choral. Cette approche introduit une méthode
de Monte-Carlo par chaînes de Markov pour échantillonner de la
musique polyphonique. L’avantage de cette méthode est sa flexibilité
et sa formulation théorique claire. En revanche, le modèle probabiliste
utilisé manque de capacité et les pièces générées, si elles sont convain-
cantes, ne sont pas en mesure d’être confondues avec les pièces origi-
nales de J.S. Bach. Le second chapitre, DeepBach: un modèle contrôlable
pour la génération de chorals, raffine et améliore cette approche. Le mod-
èle probabiliste est remplacé par un réseau de neurones profond ce
qui améliore grandement la qualité des pièces générées. Cette amélio-
ration s’effectue au détriment de la formulation théorique plus claire.
Un plug-in pour l’éditeur de partitions MuseScore a été développé
afin rendre l’interaction avec un utilisateur possible. Cela permet
d’introduire une part d’intelligence artificielle dans le processus com-
positionnel de manière naturelle et intuitive.
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Familles exponentielles pour l’imitation du style et l’invention d’accords
dans la musique polyphonique

Ce chapitre introduit un modèle probabiliste sur des séquences
polyphoniques ayant une représentation matricielle similaire à celle
présentée Fig. 59. L’idée est d’écrire la probabilité paramétrée par le
paramètre θ d’une séquence s sous la forme

P(s|θ) =
e−E(s,θ)

Z(θ)
, (70)

où l’énergie d’une séquence E(s, θ) est écrite :

E(s, θ) := −
∑

ab,ijk

θab,ijkfab,ijk(s). (71)

Dans l’expression précédente,

Z(θ) := log(
∑

s

e−E(s,θ))

est la fonction de partition telle que la somme des probabilités soit
égale à 1. Les statistiques fab,ijk considérées ici représentent le nom-
bre de co-occurrences de la note a à la voix i et de la note b à la voix
j étant séparées de k pas de temps.

L’optimisation du paramètre θ s’effectue en maximisant la pseudo-
log-vraisemblance des données d’entraînement, c’est-à-dire la max-
imisation de la log-vraisemblance des probabilités conditionnelles
d’une note sachant les autres notes.

Le point intéressant dans ce modèle est que la probabilité d’une
note donnée dépend des notes la précédent, comme dans la ma-
jorité des approches existantes où la génération s’effectue de gauche
à droite, mais également des notes qui la suivent. Les contextes passé
et futur sont donc utilisés.

La génération s’effectue à l’aide de l’algorithme de Metropolis-
Hastings. C’est une méthode de Monte-Carlo avec chaînes de Markov
qui modifie incrémentalement les échantillons. Dans les faits, et étant
donné notre choix de P(s|θ), cet algorithme ne requiert que la connais-
sance des probabilités conditionnelles qui ont une expression partic-
ulièrement simple. La force de cette approche est qu’il est possible
de modifier légèrement cet algorithme génératif afin de pouvoir con-
traindre certaines notes à avoir une valeur prédéfinie. Cela permet
par exemple de pouvoir réharmoniser une mélodie donnée ou de
commencer et terminer par un accord donné.

Ces deux éléments (prise en compte du contexte passé et futur ainsi
que la génération non séquentielle et itérative) sont à mon sens plus
proches des pratiques compostionnelles réelles. Il est en effet très rare
qu’un compositeur compose de gauche à droite en une seule passe.
Au contraire, certains éléments sont écrits, puis arrangés et agencés
correctement.
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(a) (b)

Figure 60: Extrait d’un choral de J.S. Bach chorale à côté de son encodage
mélodico-rythmique. Le symbole de continuation est noté “__-
”. Les cinquième et sixième voix contiennent respectivement des
indications métronomiques et la présence ou absence de points
d’orgue.

DeepBach: un modèle contrôlable pour la génération de chorals

Ce chapitre apporte une solution aux lacunes du modèle précédent
tout en en conservant ses avantages. La modélisation des données
est plus précise et repose utilise l’encodage mélodico-harmonique.
Les spécificités du corpus des chorales de J.S. Bach sont également
prises en compte. En particulier, la présence des points d’orgue (qui
dans les chorals de Bach indiquent une fin de phrase) est consid-
érée et des informations rythmiques sont ajoutées. Cela se manifeste
par l’introduction de voix supplémentaires dans la représentation
mélodico-harmonique (voir Fig. 60).

L’amélioration essentielle provient du modèle probabiliste utilisé.
Le constat est le suivant : dans le modèle exposé au chapitre précé-
dent, seules les probabilités conditionnelles (la probabilité d’une
note sachant toutes les autres notes) sont utilisées, que ce soit
durant l’entraînement du modèle en maximisant la pseudo-log-
vraisemblance ou durant l’échantillonnage à l’aide de l’algorithme de
Metropolis-Hastings. Le modèle DeepBach approxime alors directe-
ment à l’aide de réseaux profonds ces probabilités conditionnelles et
abandonne donc l’expression en forme close Eq. 70 de la probabilité
globale d’une séquence. Cette modélisation, où seules les probabilités
conditionnelles sont approximées sans que celles-ci soient obtenues à
partir d’une probabilité globale sur toutes les variables, est un exem-
ple de réseau de dépendances.

Afin de modéliser la probabilité conditionnelle d’une note sachant
toutes les autres notes (son contexte), l’architecture retenue repose
sur deux réseaux de neurones récurrents chargés de résumer respec-
tivement les contextes passé et futur ainsi qu’un réseau de neurones à
propagation avant pour résumer le contexte présent (les notes jouées
simultanément). Une représentation graphique de cette architecture
est visible Fig. 61.
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L’échantillonnage est alors possible en utilisant le pseudo-
échantillonnage de Gibbs. Ce chapitre commente alors le choix de
la représentation utilisée. En particulier, son adéquation avec cette
méthode d’échantillonage est mise en avant.

Afin d’évaluer la qualité des générations produites par ce modèle,
une expérience en ligne a été mise en place à laquelle plus de mille
participants ayant des éducations musicales différentes ont pris part.
L’objectif pour les participants était de déterminer si un extrait de
choral était original, composé par J.S. Bach, ou généré en utilisant
DeepBach. Les résultats sont très satisfaisant : environ la moitié des
votes (incluant des musiciens professionnels) ont attribué des chorals
générés par DeepBach à J.S. Bach.

Une interface utilisateur permettant d’utiliser DeepBach de
manière aisée a été développée. Celle-ci se présente sous la forme
d’un plug-in pour l’éditeur de partitions MuseScore. L’idée est de
pouvoir générer une sélection quelconque à l’aide de DeepBach di-
rectement depuis cet éditeur de partitions. Ainsi, l’utilisateur béné-
ficie de toutes les possibilités de micro-édition disponibles dans cet
éditeur, mais peut également interagir avec DeepBach afin de com-
poser plus rapidement ou explorer rapidement des idées nouvelles.
Un exemple de cette interface et de son intégration dans MuseScore
est montrée Fig. 62.

Figure 62: Interface du plug-in DeepBach pour Musescore.

Avec cette interface, une personne n’étant pas musicienne ou
n’étant pas experte peut composer des chorals de bonne facture en
très peu de temps. J’espère que cela permettra de rendre plus acces-
sible et plus attractive cette musique à un public non initié. Il y a
en effet un aspect ludique indéniable dans cette nouvelle manière de
composer.

De nombreux exemples de chorals générés, de manière interactive
ou non, sont présentés en appendice. Une analyse musicale a été faite
pour certains d’entre eux afin de mettre en lumière les capacités et
lacunes de ce modèle génératif.

techniques nouvelles pour la génération séquentielle

Cette dernière partie est composée de trois chapitres distincts.
Chaque chapitre est consacré au développement d’une nouvelle tech-
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nique motivée par et ayant des applications pour la génération
de musique symbolique. Ces techniques sont dans les faits plus
générales et s’appliquent à la génération de séquences quelconques.
Dans toute cette partie, on considère les séquences musicales comme
des séquences de symboles.

Le premier chapitre, Distances de rang invariantes par transposition
pour des séquences musicales, introduit une distance entre séquences
musicales ayant propriété d’être invariante par transposition. Cela est
particulièrement intéressant puisque notre conception de la similarité
est relative et ne dépend pas d’une hauteur de référence. Le second
chapitre, Anticipation-RNN: Génération interactive de musique sujette à
des contraintes unaires, développe une architecture efficace permettant
de générer des séquences musicales satisfaisant un ensemble de con-
traintes unaires. L’intérêt est de pouvoir se passer des méthodes de
Monte-Carlo par chaînes de Markov, plutôt lentes par nature, tout en
conservant des possibilités de contrôles similaires à celles présentes
dans l’échantillonnage du modèle DeepBach. Cette thèse se conclue
par le chapitre GLSR-VAE: Régularisation géodésique de l’espace latent
pour les auto-encodeurs variationnels. La motivation derrière cette con-
tribution est de pouvoir structurer l’espace latent des auto-encodeurs
variationnels afin que ceux-ci puissent être utilisés de manière inter-
active. En effet, dans l’espace latent d’un auto-encodeur variationnel
classique, il n’existe pas de direction privilégiée et les axes des coor-
données ne possèdent pas de signification particulière. Le but de ce
chapitre est une régularisation de l’objectif usuel visant à rendre inter-
prétables et utilisables certaines directions de l’espace latent. Ainsi, il
est possible d’avoir un certain contrôle sur la génération de variations
d’une séquence donnée.

Distances de rang invariantes par transposition pour des séquences musi-
cales

Posséder une distance entre séquences musicales est utile dans un
grand nombre de tâches parmi lesquelles nous pouvons citer :

• la détection de plagiat

• l’analyse automatique de musique

• la génération automatique de musique.

Étant donné l’importance et l’omniprésence en musique de la no-
tion de pattern ou de motif, le pré-requis pour une telle distance est
d’être invariante par transposition. Aussi, il ne peut pas exister de dis-
tance entre séquences unique, utilisable sans distinction sur tous les
corpus. En effet, la notion de similarité évolue en fonction des styles
et des époques et deux séquences perceptuellement “proches” dans
un style pourraient être fort éloignées dans un autre.
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Figure 63: Auto-encodeur sur des séquences musicales

Cependant, la plupart des distances existantes pour la comparaison
entre séquences musicales ne sont pas dépendantes d’un corpus. Je
propose dans ce chapitre comment construire, dans un premier temps
une distance adaptée à un corpus donné et, dans un second temps,
de rendre cette distance invariante par transposition afin de pouvoir
capturer la notion de motif indépendamment de la hauteur de la note
initiale.

Cette distance est obtenue de la manière suivante : un auto-
encodeur est tout d’abord entraîné sur les séquences du corpus, ce
qui permet d’encoder chaque séquence musicale comme un vecteur
latent de taille fixe. Étant données deux séquences, une distance de
rang est alors utilisé entre les deux représentations latentes de ces
séquences. Cette architecture est représentée dans la Fig. 63.

Cette distance jouit de bonnes propriétés mais n’est néanmoins
pas invariante par transposition. Deux séquences, dont l’une est la
transposition de l’autre posséderont deux représentations latentes dif-
férentes. L’objectif afin d’obtenir une distance invariante par transpo-
sition est alors de forcer ces deux représentations à être identiques.
Ceci est fait grâce à un réseau de neurones dont l’architecture est mon-
trée Fig. 64. L’objectif est, étant donné deux séquences, dont l’une est
une transposition de l’autre, de prédire une transposition inconnue
de cette séquence en connaissant uniquement sa note de départ. Afin
d’obtenir une représentation invariante par transposition, la prédic-
tion s’effectue à l’aide de la moyenne des représentations latentes des
deux séquences d’entrée. Un terme de régularisation est également
ajouté afin de réduire la distance entre les représentations latentes
des séquences données en entrée du réseau.

L’application d’une distance de rang sur ces représentations la-
tentes est particulièrement adaptée. En effet, même si les représen-
tations latentes de deux transpositions d’une même séquence ne sont
pas strictement égales, le fait de considérer une distance de rang sur
ces vecteurs tend à gommer ces différences.

L’observation des plus proches voisins selon cette distance révèle sa
pertinence d’un point de vue musical et son invariance par transpo-
sition. À terme, l’objectif est de pouvoir intégrer cette distance dans
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Figure 64: Architecture proposée permettant d’obtenir des représentations
latentes invariantes par transposition. Les trois séquences musi-
cales, en entrée comme en sortie, sont toutes des transpositions
exactes d’une même séquence.

les algorithmes de composition existants afin de pouvoir imposer des
contraintes de similarité entre différentes parties.

Anticipation-RNN: Génération interactive de musique sujette à des con-
traintes unaires

Ce chapitre introduit une architecture permettant de générer itérative-
ment et de gauche à droite des séquences satisfaisant un ensemble de
contraintes unaires. L’intérêt est l’efficacité de l’échantillonnage dans
ce cas en comparaison des méthodes de Monte-Carlo par chaînes
de Markov. Contrairement à l’échantillonnage classique de gauche à
droite des réseaux récurrents qui ne permettent que de conditionner
la génération par rapport au début de la séquence, Anticipation-RNN
permet de conditionner la génération sur un ensemble arbitraire de
contraintes unaires.

Étant donné un modèle génératif récurrent nommé Token-RNN, il
s’agit donc de pouvoir échantillonner un sous-ensemble de séquences
définies par des contraintes unaires avec les bonnes probabilités rela-
tives. Les méthodes d’échantillonage avec rejet ont dans ce cas peu de
chance d’aboutir. L’idée derrière l’architecture de Anticipation-RNN
est d’introduire un second réseau récurrent nommé Constraint-RNN,
traitant séquentiellement, mais de droite à gauche, l’ensemble des
contraintes unaires fournies. Son but est alors de fournir au Token-
RNN, celui-ci allant de gauche à droite, un résumé des contraintes
unaires présentes dans le futur. L’architecture du Anticipation-RNN
est présentée Fig. 65.

Les propriétés de ce réseau de neurones sont ensuite étudiées. Il
est vérifié expérimentalement que cette architecture est capable de
générer des séquences satisfaisant des contraintes unaires et que ces
séquences auraient les mêmes probabilités relatives si elles avaient
été échantillonnées avec un modèle sans contrainte. L’influence pré-
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+ + + +

Figure 65: Architecture du Anticipation-RNN. l’objectif est de prédire la
séquence décalée (s1, . . . , sN) sachant les contraintes (c1, . . . , cN)

et la séquence initiale (s0, . . . , sN−1). Le symbole “+” entouré
désigne la concaténation en si et oi+1

cise des contraintes unaires sur la génération est également mise en
avant sur des exemples détaillés. Cela montre que ce modèle est ef-
fectivement capable d’anticiper les événements à venir tout en échan-
tillonnant avec les bonnes probabilités.

La simplicité de cette approche est selon moi un atout majeur,
puisque cela permet de rendre interactifs de nombreux modèles
génératifs existants pour la musique symbolique.

GLSR-VAE: Régularisation géodésique de l’espace latent pour les auto-
encodeurs variationnels

Ce dernier chapitre introduit une régularisation nommée Régularisa-
tion géodésique de l’espace latent pour les objectifs classiques utilisés
pour l’entraînement des auto-encodeurs variationnels. Cette régulari-
sation est générale et s’applique à de nombreuses architectures basées
sur les auto-encodeurs variationnels.

L’intérêt de cette régularisation est de structurer l’espace latent des
auto-encodeurs variationnels afin de rendre interprétables certaines
directions de l’espace latent. Cela permet d’ajouter plus de contrôle
aux générations produites par un auto-encodeur variationnel. En ef-
fet, la majorité des applications créatives de ces modèles commencent
par entraîner un auto-encodeur variationnel pour ensuite effectuer
des interpolations entre deux éléments. Il existe également certaines
approches visant à trouver des directions interprétables a posteri-
ori, notamment par le calcul de vecteurs d’attribut. Ces approches ne
sont pas satisfaisantes à plusieurs titres : dans le premier cas, il ex-
iste une infinité de chemins effectuant une interpolation entre deux
éléments et il n’est pas clair comment choisir la “meilleure” interpo-
lation ; dans le second cas, on suppose implicitement que l’espace
latent va structurer les données suivant des critères non définis du-
rant l’apprentissage. Des méthodes existent pour choisir une inter-
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Figure 66: Visualisation du comportement de la quantité G (nombre de
notes) sur un plan bidimensionnel de l’espace latent. L’axe z1
correspond à la dimension où la régularisation est effective.

polation perceptuellement intéressante, mais elles sont coûteuses en
ressources de calcul car elles reposent intrinsèquement sur des méth-
odes d’optimisation.

L’idée directrice dans ce chapitre est de se fixer certaines quantités
d’intérêt sur nos données (cela peut-être par exemple le nombre de
notes d’une séquence ou sa hauteur globale) et de relier les variations
de ces quantités à des variations dans l’espace latent.

Supposons que l’on ait un auto-encodeur variationnel donné par
p(x, z) = p(z)p(x|z) ayant pour prior p(z) et pour approximation de
la distribution postérieure q(z|x), ainsi que des mesures gk sur nos
données. On considère alors l’application suivante

Gk : z 7→ Ep(x|z)[gk(x)] (72)

qui relie l’espace latent à la valeur moyenne de nos mesures.
Il est possible de relier les variations dans l’espace latent aux varia-

tions des quantités Gk(z) en imposant une contrainte sur les dérivées
partielles des Gk. Idéalement, nous aimerions pouvoir fixer cette
valeur à une constante. Dans les faits, on impose une loi normale
sur la distribution des valeurs des dérivées partielles.

Les résultats expérimentaux montrent que cette démarche aboutit.
La quantité d’intérêt considérée dans ce chapitre est le nombre de
notes contenues dans la séquence. Un exemple de l’influence de cette
régularisation est visible dans la Fig. 66. Sur cet exemple, pour un z2
fixé, le nombre de notes croît lorsque la coordonnée z1 croît.

Connaître la “direction” pour augmenter le nombre de notes d’une
séquence est un moyen de générer, par exemples, des variations au-
tour de cette séquence. Il est intéressant de souligner qu’ajouter cette
régularisation semble décorréler les axes de l’espace latent.

Cette méthode permet donc de fournir la possibilité pour un utilisa-
teur de générer des variations étant donné une séquence. Par rapport
aux approches existantes qui consistent à effectuer des interpolations
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dans l’espace latent et qui requièrent donc à un utilisateur de fournir
deux séquences en entrée, il me semble que cette possibilité est plus
intéressante et plus naturelle quant à la démarche compositionnelle.
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