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Résumé

Les eaux superficielles sont nécessaires à toute forme de vie en tant que parties

intégrantes de tout processus de vie sur Terre. Quantifier les eaux de surface

et suivre leurs variations est primordiale en raison du lien direct qui existe en-

tre les variables hydrologiques et le changement climatique. La télédétection par

satellite, de l’hydrologie continental offre l’opportunité unique d’étudier, depuis

l’espace, les processus hydrologiques à différentes échelles (régionale et glob-

ale). Dans cette thèse, différentes techniques ont été développées afin d’étudier

les variations des eaux superficielles ainsi que d’autres variables hydrologiques,

au niveau du bassin inférieur du Mékong (entre le Vietnam et le Cambodge) et

ce en utilisant plusieurs estimations satellitaires différentes. Cette thèse s’articule

autour de quatre points principaux.

Premièrement, l’utilisation d’observations satellitaires dans le visible et dans l’infra-

rouge (MODIS) est étudiée et comparée afin d’évaluer les eaux de surface au

niveau du bassin inférieur du Mékong. Quatre méthodes de classification ont été

utilisées afin de différencier les types de surface (inondés ou pas) dans le bassin.

Les différentes méthodes ont donné des cartes d’eaux de surface aux résultats

semblables en terme de dynamique saisonnière. La classification la plus adaptée

aux régions tropicales a été ensuite choisie pour produire une carte des eaux de

surface à la résolution de 500 m entre janvier 2001 et aujourd’hui. La compara-

ison des série temporelles issues de cette carte et de celles issues du produit de

référence MODIS donne une forte corrélation temporelle (> 95%) pour la période

2001-2007.

Deuxièmement, l’utilisation des observations issues du satellite SAR Sentinel-1

est examinée à des fins identiques. L’imagerie satellitaire optique est ici remplacée
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par les images SAR qui grâce aux longueur d’ondes utilisées dans le micro-onde,

permettent de « voir » à travers les nuages. Un jeu d’images Landsat-8-sans-nuage

est alors utilisé pour entraîner un Réseau de Neurones (RN) afin de restituer des

cartes d’eaux de surface par l’utilisation d’un seuillage sur les sortie du mod-

èle RN. Les cartes sont à la résolution spatial de 30 m et disponibles depuis jan-

vier 2015. Comparées aux cartes de référence Landsat-8-sans-nuage, les sorties

de modèles RN montre une très grande corrélation (90%) ainsi qu’une détection

"vrai" à 90%. Les cartes restituées d’eaux de surface utilisant la technologie SAR

sont enfin comparées aux cartes d’inondation issues de données topographiques.

Les résultats montrent une fois encore une très grande consistance entres les deux

cartes avec 98% des pixel considérer comme inondées dans cartes SAR se trou-

vant dans les région de très grande probabilité d’inondation selon la topographie

(>60%).

Troisièmement, la variation volumique des eaux de surface est calculée comme

le produit de l’étendue de la surface avec la hauteur d’eau. Ces deux variables

sont validées à l’aide d’autres produits hydrologiques et montrent de bons résul-

tats. La hauteur d’eau superficielle est linéairement interpolée aux régions non

inondées afin de produire des cartes mensuelles à la résolution spatiale de 500

m. La hauteur d’eau est ensuite analysée pour estimer les variations volumiques.

Ces résultats montrent une très bonne corrélation avec la variation volumique in-

duite par la mesure du contenu en eau du satellite GRACE (95%) ainsi qu’avec la

variation des mesures in situ de débit des rivières.

Finalement, deux produits globaux et multi-satellites d’eaux superficielles sont

comparés à l’échelle régionale et globale sur la période 1993-2007: GIEMS et SWAMPS.

Lorsqu’elles existent, les données auxiliaires sont utilisées afin de renforcer l’analyse.

Les deux produits montrent une dynamique similaire, mais 50% des pixels inondés

dans SWAMPS se trouvent le long des côtes. Pour les bassins de l’Amazonie et de

l’Orénoque, GIEMS and SWAMPS montrent de très grandes corrélations (respec-

tivement 95% et 99%), mais le maximum d’étendue d’eau de surface est moitié

moins dans SWAMPS que dans GIEMS et/ou SAR. De plus SWAMPS ne rend

pas compte de la dynamique des eaux de surface pour le bassin du Niger et son

estimation de la saison s’y trouve déphasée aussi bien avec les estimations issues

de GIEMS et MODIS qu’avec les données in situ de débit du Niger.
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Abstract

Surface water is essential for all forms of life since it is involved in almost all

processes of life on Earth. Quantifying and monitoring surface water and its vari-

ations are important because of the strong connections between surface water,

other hydrological components (groundwater and soil moisture, for example),

and the changing climate system. Satellite remote sensing of land surface hydrol-

ogy has shown great potential in studying hydrology from space at regional and

global scales. In this thesis, different techniques using several types of satellite

estimates have been made to study the variation of surface water, as well as other

hydrological components in the lower Mekong basin (located in Vietnam and

Cambodia) over the last two decades. This thesis focuses on four aspects.

First, the use of visible/infrared MODIS/Terra satellite observations to monitor

surface water in the lower Mekong basin is investigated. Four different classifi-

cation methods are applied, and their results of surface water maps show similar

seasonality and dynamics. The most suitable classification method, that is spe-

cially designed for tropical regions, is chosen to produce regular surface water

maps of the region at 500 m spatial resolution, from January 2001 to present time.

Compared to reference data, the MODIS-derived surface water time series show

the same amplitude, and very high temporal correlation for the 2001-2007 period

(> 95%).

Second, the use of SAR Sentinel-1 satellite observations for the same objective is

studied. Optical satellite data are replaced by SAR satellite data to benefit the abil-

ity of their microwave wavelengths to pass through clouds. Free-cloud Landsat-8

satellite imagery are set as targets to train and optimize a Neural Network (NN).
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Predicted surface water maps (30 m spatial resolution) are built for the stud-

ied region from January 2015 to present time, by applying a threshold (0.85) to

the output of the NN. Compared to reference free-cloud Landsat-8 surface water

maps, results derived from the NN show high spatial correlation (∼90%), as well

as true positive detection of water pixels (∼90%). Predicted SAR surface water

maps are also compared to floodability maps derived from topography data, and

results show high consistency between the two independent maps with 98% of

SAR-derived water pixels located in areas with a high probability of inundation

(>60%).

Third, the surface water volume variation is calculated as the product of the sur-

face water extent and the surface water height. The two components are validated

with other hydrological products, and results show good consistencies. The sur-

face water height are linearly interpolated over inundated areas to build monthly

maps at 500 m spatial resolution, then are used to calculate changes in the surface

water volume. Results show high correlations when compared to variation of the

total land surface water volume derived from GRACE data (95%), and variation

of the in situ discharge estimates (96%).

Fourth, two monthly global multi-satellite surface water products (GIEMS & SWAMPS)

are compared together over the 1993-2007 period at regional and global scales.

Ancillary data are used to support the analyses when available. Similar tempo-

ral dynamics of global surface water are observed when compared GIEMS and

SWAMPS, but ∼50% of the SWAMPS inundated surfaces are located along the

coast line. Over the Amazon and Orinoco basins, GIEMS and SWAMPS have

very high water surface time series correlations (95% and 99%, respectively), but

SWAMPS maximum water extent is just a half of what observed from GIEMS and

SAR estimates. SWAMPS fails to capture surface water dynamics over the Niger

basin since its surface water seasonality is out of phase with both GIEMS- and

MODIS-derived water extent estimates, as well as with in situ river discharge

data.

Keywords: Satellite remote sensing, surface water monitoring, surface water height,

surface water volume, discharge, precipitation, MODIS, Landsat, Sentinel-1, EN-

VISAT, Mekong Delta.
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Chapter 1 Introduction

1.1 Land surface remote sensing from satellites

1.1.1 The need for satellite observations

Earth remote sensing, by definition, is the science of acquiring information about

the Earth without actually being in contact with it. This is done by sensing and

recording reflected or emitted energy and processing, analyzing, and applying

that information [CCMEO, 2013]. Satellite remote sensing started in 1960s after

Sputnik-1, the world first man-made satellite, that was launched into space by

the Soviet Union on 4 October 1957. Since then, satellite technology has devel-

oped quickly, especially over the last few decades, providing valuable knowl-

edge for numerous fields of Earth sciences (for example, geography, oceanogra-

phy, glaciology, forestry, agriculture, and hydrology).

Applications of satellite remote sensing focusing on land surface hydrology

began with the successful launch of the first Earth Resources Technology Satellite

(ERTS-1, later renamed as Landsat-1) on 23 July 1972. It opened a new era for

hydrological studies since scientists had a new source of valuable satellite obser-

vations useful for researches of hydrological dynamics and processes [Pietroniro

and Prowse, 2002]. Compared to hydrological data provided by in situ measure-

ments, satellite remote sensing observations have obvious advantages. First, in

situ measurements can provide longer data records, however, they contain lim-

ited information about the spatial dynamics of hydrological parameters (surface

water, for instance). In contrast, satellite observations can provide not only re-

gional, but also global observations at different wavelengths and spatial resolu-

tions, with uniform quality and rapid data acquisition. Second, the distribution

of the stream gauge network is not uniform, very dense in developed countries

(in the US, for example), but very sparse in developing countries (especially in

African countries), or even not available in remote areas [Alsdorf et al., 2007].

Satellite observations can access to remote or inaccessible areas, and provide reg-

ular observations all over the globe. Third, in situ measurements are often un-

available for scientific purposes due to geopolitical reasons, but satellites can ac-

quire information over countries that are not willing to share data (that is very

important for military applications). For these reasons, nowadays, in situ data
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Chapter 1 Introduction

are normally used for calibration and validation of methodologies using land

surface satellite observations. Despite all these advantages, satellite remote sens-

ing has limitations. A satellite system is very expensive, and it takes a long and

complicated process to develop, build, test, launch and operate the system. As a

consequence, many countries have their own satellites with the ability to provide

observations, but only a few countries can master satellite technology (the US,

Russia, Japan, France, German, Italy, India, etc). Different satellites provide dif-

ferent spatial resolutions, and the applications can be affected due to large uncer-

tainties and errors in the measurements. It is also difficult for data interpretation,

especially with radar images.

In land surface satellite remote sensing, there are two types of sensors: passive

and active. Depending on the observed surfaces, the interactions between the sur-

faces and passive/active sensors will be different. Passive sensors measure sun-

light radiation reflected from the Earth surfaces, or thermal radiation naturally

emitted from objects. Active sensors create their own electromagnetic energy that

is transmitted from the sensor toward the target to be investigated. The incoming

energy interacts with the target producing a backscattered energy that is reflected

back to the sensor for measurements. Observations acquired by measuring sur-

face reflectance from the Sun is known as optical observations. Therefore, optical

imagery relies on the Sun, and can be subjected to the presence of clouds. Optical

observations are often used for applications related to surface water monitoring,

disaster monitoring, inundation mapping, or land surface change detection [Owe

et al., 2001]. Active sensors emit radar beams that are not blocked by clouds, and

radar imagery can be acquired at any time, under all weather conditions and are

independent from the Sun [Owe et al., 2001].

1.1.2 The atmospheric transmission windows

The presence of different types of molecules in the Earth’s atmosphere puts lim-

itations on the spectral regions that can be used in land surface remote sensing.

Each molecule has its absorption bands in various parts of the electromagnetic

spectrum. As a consequence, only wavelengths outside the main atmospheric ab-

sorption bands can be used in remote sensing of the Earth surface, and these
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wavelength regions are known as the atmospheric transmission windows. Some

wavelengths easily pass through the atmosphere, other wavelengths are blocked

or absorbed partly to totally by the atmosphere. Figure 1.1 shows details of the at-

mospheric transmission windows from radio to X-ray wavelengths. High energy

wavelengths (Ultraviolet, X-rays, and Gamma-rays) are absorbed by the ozone

in the Earth’s upper atmosphere. The visible wavelengths are not blocked by

the Earth’s atmosphere, but they can be scattered by dust and clouds. In the in-

frared ranges, some wavelengths are blocked by the atmosphere, but others can

pass. Similarly in the microwave ranges, the Earth’s atmosphere is transparent at

some wavelengths, but not at others. Finally, in the radio ranges, the Earth’s at-

mosphere is totally transparent to most of its wavelengths. Based on these atmo-

spheric transmission windows, satellite remote sensing instruments are designed

to operate in one or more windows where wavelengths can pass through the

Earth’s atmosphere to observe the Earth surface. More details of the atmospheric

transmission windows can be found in remote sensing books, for example Elachi

and van Zyl [2006].

FIGURE 1.1: The atmospheric transmission windows from radio to X-ray
wavelengths. Figure created by NASA (https://earthobservatory.nasa.

gov/).
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1.2 Hydrological cycle from space

Satellite observations are very useful to study land surface hydrological cycle

over large areas from space (Figure 1.2 provides an overview of the hydrologi-

cal cycle). It is possible to estimate and monitor different hydrological parame-

ters (precipitation, evaporation, groundwater, soil moisture, wetlands, and sur-

face water over rivers or lakes, for example) based on different published tech-

niques. Estimation of surface water extent or precipitation can be done from both

visible/infrared and passive/active satellite observations. Active satellite radar

altimeters are effective to estimate surface water height over rivers and lakes.

Passive microwave satellite estimates are used to extract river flow and discharge

information. Satellite-based products are also used to determine variations of sur-

face water extent or inland water storage. A quick summary of remote sensing

techniques, mainly focusing on estimation of surface water extent and height, is

presented in the following sections.

FIGURE 1.2: The hydrological cycle [Trenberth et al., 2007].
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1.2.1 Estimation of continental surface water extent from space

Surface waters can be defined as water found on the surface of the Earth, such

as in lakes, rivers, streams, ponds, wetlands, and natural watercourses. Surface

waters are replenished by precipitation and by recruitment from groundwater.

They are lost by evaporation to the atmosphere, seeping into the ground, running

off into the ocean, or used by plants, animals, as well as humans. Remote sensing

of surface waters is of interest because they have strong impacts on all forms of

life, as well as on the environment. Surface waters are essential to plants for pho-

tosynthesis, to animals for hydration, and to humans for their consumption in

living, agriculture and industries. In term of impacts on the environment, surface

waters play a key role in the biogeochemical and hydrological cycles, in biodi-

versity, and in climate variability. Surface waters are the world’s largest natural

source of methane (CH4), producing approximately 20%-40% of the world’s to-

tal annual methane emission to the atmosphere [Houweling et al., 1999]. Hence,

the variation of surface water extent contributes to changes of methane surface

emissions [Bousquet et al., 2006], that affects the global warming. As a conse-

quence, monitoring surface water extent and their seasonal dynamics, as well as

understanding global surface water distribution are necessary for water manage-

ment, and climate change studies [Alsdorf et al., 2007]. In the literature, different

methodologies have been developed for surface water extent estimation, using

visible and Near-Infrared (NIR), as well as passive and active microwave satellite

observations.

1.2.1.1 Visible and Near-Infrared (NIR) observations

Methodologies using visible and NIR satellite imagery for the estimation of sur-

face water extent are well established, and are considered to be reliable at local

and regional scales as long as the surface water target is not covered by clouds

or dense vegetation [Smith, 1997]. In principle, all water detection methodologies

are developed based on the absorption of water bodies in the visible and in the

NIR wavelengths [Smith, 1997]. Water bodies absorb almost all incoming energy

in near and shortwave infrared wavelengths, causing low to no reflection to the
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satellite sensors when the wavelength increases [Smith, 1997]. Based on this phe-

nomenon, reflectance data in the NIR wavelengths can be used as an indicator

for water bodies [Bryant and Rainey, 2002; Bergé-Nguyen and Crétaux, 2015], or

it can be combined with reflectance data in the visible bands to create water in-

dices, such as the Normalized Difference Vegetation Index (NDVI) [Tucker, 1979],

the Normalised Difference Water Index (NDWI) [McFeeters, 1996], the Modified

Normalised Difference Water Index (MNDWI) [Xu, 2006], and the Automated

Water Extraction Index (AWEI) [Feyisa et al., 2014]. Using these water indices for

surface water extent and flood estimation has been tested with different types of

visible/infrared satellite imagery, such as NOAA/AVHRR [Bryant and Rainey,

2002; Jain et al., 2006], MODIS [Martinez et al., 2008; Sakamoto et al., 2007; Bergé-

Nguyen and Crétaux, 2015], Landsat [Hallberg et al., 1973; Du et al., 2014; Ji et al.,

2015; Yamazaki et al., 2015; Pekel et al., 2016], and Sentinel-2 [Du et al., 2016; Yang

et al., 2017]. Results showed high classification accuracy.

1.2.1.2 Active microwave observations

Using active microwave estimates derived from Synthetic Aperture Radar (SAR)

satellite instruments for surface water extent and flood estimation appeared later,

but it shows great potential. Microwaves can penetrate clouds, and provide day

and night operation that are extremely useful for flood extent measurements. Ac-

tive microwaves also have the ability to penetrate vegetation, to a certain extent,

and this possibility increases when the wavelength increases [Prigent et al., 2016].

The principle of surface water mapping using active microwave satellite obser-

vations is based on very low backscatter coefficient over water bodies when the

surface is observed off nadir. Energy sent from the active instruments will be re-

flected in the specular directions, thus very low backscatter coefficient will be

received back at the satellite sensors when the incidence angle is off nadir. This

makes water bodies appear very dark in the SAR imagery. Based on this principle,

many flood events all over the globe have been estimated using SAR observations

from different satellites: ERS-2 [Nguyen and Bui, 2001], JERS-1 [Wang, 2004], EN-

VISAT [Hess et al., 2003; Bartsch et al., 2008; Kuenzer et al., 2013], RADARSAT-1

[Brisco et al., 2009], COSMO-SkyMed [Pierdicca et al., 2013], TerraSAR-X [Voor-

mansik et al., 2014], and recently Sentinel-1 [Amitrano et al., 2014]. Despite of
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these advantages, global mapping of water bodies using SAR observations is lim-

ited due to the lack of global estimations. Compared to visible/infrared observa-

tions, SAR observations are more difficult to interpret because the backscatter

coefficients are affected by complicated mechanisms. For example, the effect of

wind on backscatter coefficient over water surfaces [Smith, 1997; Alsdorf et al.,

2007; Kuenzer et al., 2013], the double-bounce scattering mechanism [Hess et al.,

1990], or the similarity between water surfaces and flat dry surfaces [Prigent et al.,

2015].

1.2.1.3 Passive microwave observations

Surface water extent estimation using passive microwave satellite observations

has been shown useful for a long time [Giddings and Choudhury, 1989]. The

principle of detecting surface water extent using passive microwave satellite esti-

mates is based on the low emissivity of water bodies in both linear polarizations

due to differences in dielectric properties of water and soil or vegetation, espe-

cially at lower frequencies. Passive microwave can provide global coverage, but

the spatial resolution is very coarse (10-50 km), and prevents their use for appli-

cations requiring higher spatial resolutions [Prigent et al., 2016]. In addition, at

this low spatial resolution, there are large ambiguities in mixture regions of open

water bodies and other types of environments (such as soil, or vegetation). To

achieve better accuracy, some authors combined passive microwave with active

microwave and visible/NIR satellite estimates to develop methodologies produc-

ing global surface water maps over long periods [Prigent et al., 2001, 2007, 2012;

Schroeder et al., 2015].

1.2.2 Estimation of surface water height from space

Satellite radar altimetry technique was originally developed for oceanographic

applications, and has been proved to be the most successful method for measur-

ing continental surface water elevations from space since the early 1990s [Alsdorf

et al., 2007]. Then this technique has been found to be a valuable source to monitor

surface water variations over large lakes [Birkett, 1995] and rivers [Birkett, 1998].
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Many authors have shown studies using satellite altimetry data for monitoring

water height of inland water bodies [Birkett et al., 2002; Coe and Birkett, 2004;

Crétaux and Birkett, 2006; Frappart et al., 2006a,b; Papa et al., 2015]. Satellite radar

altimeters are nadir-viewing instruments primarily designed to measure the two-

way time delay of radar pulses emitted from satellite sensors and reflected from

the surfaces as the satellite orbits around the Earth [Birkett et al., 2002], that gives

the distance between the satellite sensors and the reflected surface [Crétaux et al.,

2016]. This distance measurement combined with the accurate knowledge of the

satellite position (using Laser Retro-Reflector, GPS, or DORIS systems), enables

calculation of the surface water height with respect to a reference ellipsoid [Bir-

kett et al., 2002; Frappart et al., 2006b; Crétaux et al., 2016]. Although radar altime-

try is independent from weather conditions and has the unique ability to provide

data at remote or ungauged locations, there are limitations. Elevation calculations

from satellite altimeters and its accuracy can be affected by topography, size and

surface roughness of lakes or rivers. To obtain reliable accuracy in surface water

level, corrections have to be taken into account (instrument corrections, propaga-

tion corrections, atmospheric corrections, geophysical corrections, ect). Current

radar altimeters only estimate elevations at the nadir direction along the satel-

lite orbit track, therefore, it cannot provide data all over the globe [Alsdorf et al.,

2007]. However, the concept of using a constellation of several satellites at the

same time may enable monitoring surface water variation for a large area [Cré-

taux et al., 2015]. In addition, the future joint US-French Surface Water and Ocean

Topography (SWOT) mission can provide altimetry estimates on both sides of the

satellite track (up to 50 km) due to its ability to observe the Earth surface in near

nadir incidence angles (0.6°-3.9°) [Fjrtoft et al., 2014].

1.2.3 Estimation of other hydrological components from space

Other hydrological components can be estimated from space to some extent, us-

ing different satellite data and techniques.

Rainfall estimation from low-Earth and geostationary orbit satellites has a

long history since 1970s, with different techniques using wavelength ranges from

visible/infrared to microwave (both passive and active) to access to different
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cloud layers. A complete overview of rainfall estimation from space can be found

in a book edited by Levizzani et al. [2007]. Nowadays, there are several satellite-

based datasets that provide near-real time global precipitation estimations: the

gauge-calibrated Tropical Rainfall Measuring Mission Multi-satellite Precipita-

tion Analysis (TMPA, 3B42 V7), or the Global Precipitation Climatology Project

(GPCP).

The Gravity Recovery and Climate Experiment (GRACE) satellite, launched

in 2002, provides data to monitor global inland water storage. Detailed informa-

tion on the GRACE mission, as well as the processes to extract terrestrial wa-

ter storage anomalies can be found in review papers, for example Wouters et al.

[2014] or Wahr [2015]. Many studies have successfully used GRACE data to quan-

tify water storage changes in many regions all over the globe [Tapley et al., 2004;

Wahr et al., 2004; Leblanc et al., 2009; Famiglietti et al., 2011; Feng et al., 2013].

The surface water volume variations over some river basins in the world have

been studied by combining different inundation and altimetry satellite products

[Frappart et al., 2005, 2008, 2010, 2011; Papa et al., 2008a, 2013]. Recently, river

flow and discharge information of major river basins in all continents have been

estimated [Brakenridge and Nghiem, 2017] based on a methodology that uses

mainly historical and current passive microwave satellite data [Brakenridge et al.,

2005].

1.3 The study area: The Vietnam Mekong Delta and

the Tonle Sap Lake in Cambodia

1.3.1 Presentation of the region

Most parts of this thesis focus on monitoring surface water extent, surface water

height, and surface water volume over the lower Mekong basin using satellite

observations. The Mekong river is one of the longest rivers in the world, ranking

12th, at ∼4,350 km in length [MRC, 2011]. The river starts from the Himalayas

at an elevation of about 5,000 km, then it runs through China, Myanmar, Laos,
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FIGURE 1.3: Overview of the Mekong River and its catchment [MRC, 2011].
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Thailand, Cambodia and Vietnam before entering the East Sea [MRC, 2011]. The

Mekong basin is commonly divided into two parts: the upper Mekong basin,

mostly located in China, and the lower Mekong basin, located in other coun-

tries [MRC, 2011]. The lower Mekong basin is important because there are nearly

61 million people living within the catchment of the river. This corresponds to

about 35% of the total population of the four countries. It is even more impor-

tant to Cambodia and Laos because 81% and 89% of their population live in the

catchment of the Mekong river [MRC, 2011]. This study focuses on the Vietnam

Mekong Delta and the Cambodia Tonle Sap Lake as they are two regions affected

the most by climate change and global warming. The Vietnam Mekong Delta in

Southeast Asia (one of the largest deltas in the world) is a vast triangular plain of

approximately 55,000 km2, most of it lower than 5 m above the sea. The Mekong

Delta is bounded by the Gulf of Thailand in the southwest, the East Sea in the east,

and Cambodia in the northwest. The seasonal variation in water level results in

rich and extensive wetlands. For instance, the Mekong Delta region covers only

12% of Vietnam but produces ∼50% of the annual rice (with two or three har-

vests per year depending on the provinces), represents ∼50% of the fisheries, and

∼70% of the fruit production. The Tonle Sap Lake (also called the Great Lake), is

the largest freshwater lake in Southeast Asia. It is located in the middle of Cam-

bodia. The lake and its floodplain are very important for the ecosystems because

it is home to nearly 150 fish species, reptiles and birds. The lake is also impor-

tant to local inhabitants since it supports daily food and livelihood for nearly 3

million people through their fishing and farming activities. In the Mekong Delta

and the Tonle Sap Lake, the dry season extends from November to May and the

rainy season from June to October. During the rainy seasons, the Tonle Sap Lake

is filled with water flowing from the Tonle Sap River, making its water height and

flooded surface areas being maximum (10-12 m and ∼ 10,000 km2, respectively).

It is several times higher than that at their minimum states during the dry sea-

sons when water throws out from the lake to the Mekong Delta (1-2 m for water

height, and ∼ 3,000 km2 for flooded surface areas). An overview of the Mekong

River and its catchment is shown in Figure 1.3.
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1.3.2 The satellite remote sensing studies so far over the region

The Vietnam Mekong Delta and Cambodia are an attractive region to many au-

thors to study the ability of satellite observations in monitoring land surface hy-

drology. Sakamoto et al. [2007] used visible/infrared MODIS data while Nguyen

and Bui [2001] and Kuenzer et al. [2013] used SAR data to detect temporal changes

of floods in this region. Water height estimation with satellite altimetry data, as

well as water volume variations over the Mekong Delta were introduced in Frap-

part et al. [2006b]. Daily discharge records over the main stream of the Mekong

river can be found in Brakenridge and Nghiem [2017].

The use of observations from the VNREDSAT-1 satellite, the first optical Earth

observing satellite of Vietnam launched in May 2013, is still limited for hydrolog-

ical monitoring applications over large areas because of the small satellite swath

(17.5 km). In addition, long processes are required to be able to get access to

VNREDSAT-1 data. The JV-LOTUSat-1, the first Vietnam radar satellite (work-

ing in X-band), is planned to be launched in 2020 with support from Japan. JV-

LOTUSat-1 data are expected to be used for many applications (agriculture, land

use/land cover, topography, and disaster management).

1.4 Thesis objectives

Monitoring and quantifying the variation of surface water extent is essential to

study the water cycle. This thesis is developed to benefit from publicly available

satellite observations for water management. The lower Mekong basin in Viet-

nam and Cambodia is chosen as the studied area for this thesis. Results from the

thesis are distributed for further studies over the Mekong basin (e.g. flood analy-

sis and possibly flood warning, studies on the effects of the climate change on the

Mekong delta). Thesis results can be used as input for regional climate models to

predict the variation of hydrological components over the short- and long-term.

Scientific results from this study can be useful for managers, decision makers or

insurance companies to understand what is happening in the region, to predict
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the changes in the future, and to build plans for mitigation of damages caused by

extreme weather events like floods.

In this thesis, four main objectives will be pursued:

• The first objective is to build surface water extent maps over the Mekong

Delta and Cambodia based on visible/infrared MODIS/Terra satellite ob-

servations. Several classification methodologies will be studied and com-

pared to a reference dataset to find the most suitable methodology for the

area. Then, the chosen classification method will be applied to provide regu-

lar surface water estimates in the region, from January 2001 until the present

time.

• The second objective is similar to the first one, but with SAR Sentinel-1 satel-

lite observations to benefit from the advantages of SAR data over highly

cloudy areas. Free-cloud optical Landsat-8 satellite data are used as targets

to train an optimized Neural Network (NN) method. Regular SAR Sentinel-

1 surface water extent estimates in the region can be produced since Febru-

ary 2015 until the present time.

• In the third objective, a direct application of the surface water extent in the

previous chapters is studied. That is the calculation of the variation of the

surface water volume over the Mekong Delta and Cambodia. It is calculated

as the product of the MODIS-derived surface water extent and the surface

water height derived from satellite altimetry data. The validation of the two

components, the surface water extent and height, is performed first to check

their consistency, then results are evaluated with the variation of the total

land surface water volume from GRACE data, as well as with the variation

of the in situ discharge estimates of the Mekong River.

• The last objective is to analyze the variation of global surface water extent

by comparing mainly two global multi-satellite surface water datasets with

monthly time series over the 1993-2007 period. Global comparisons between

the two datasets are performed, followed by regional analyses over the 23

largest basins in the world. Ancillary data (river discharge, for example) are

used for comparisons when available.
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The structure of the thesis closely follows these objectives. Chapter 2 and 3

present the methodologies using optical and SAR satellite observations, respec-

tively, to monitor the surface water extent over the lower Mekong basin in Viet-

nam and Cambodia. Chapter 4 focuses on calculation of the monthly surface wa-

ter volume changes in the region. Chapter 5 focuses on comparisons between two

monthly multi-satellite surface water datasets globally and regionally. Chapter 6

concludes this thesis and provides scientific perspectives for future works.
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Chapter 2 Surface Water Monitoring within the Mekong Delta and Cambodia using Visible and Infrared
MODIS Satellite Observations

2.1 Introduction

In this chapter, the use of visible/infrared satellite observations for surface wa-

ter monitoring will be studied. Detecting surface water using visible/infrared

satellite observations began in the early 1970s with the use of Earth Resources

Technology Satellite (ERTS-1, later renamed as Landsat-1) data for flood map-

ping in several locations (in Iowa [Hallberg et al., 1973], in Arizona [Morrison

and Cooley, 1973], in Virginia [Rango and Salomonson, 1974], and in Australia

[Robinove, 1978], for example). Since then, many satellites equipped with optical

instruments have been launched, proving regional and global imagery at differ-

ent spatial and temporal resolutions. Observations from some satellites are free of

charge for final users (NOAA/AVHRR, Landsat, MODIS, and Sentinel-2, for ex-

ample), and have been used widely for flood and surface water monitoring appli-

cations. The Advanced Very High Resolution Radiometer (AVHRR) instrument

onboard the National Oceanic and Atmospheric Administration (NOAA) satel-

lites was first launched in 1978. The AVHRR instrument was designed to monitor

clouds and to measure the thermal emission of the Earth, but then its data were

discovered to be suitable for flood detection applications [Islam and Sado, 2000;

Nyborg and Sandholt, 2001; Domenikiotis et al., 2003; Jain et al., 2006]. Similar

to the AVHRR instrument, the Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument onboard the Terra and Aqua satellites has provided regular

long-term remote sensing data (since 2000) for surface water monitoring applica-

tions [Martinez et al., 2008; Peng et al., 2009; Sakamoto et al., 2007; Bergé-Nguyen

and Crétaux, 2015]. Although NOAA/AVHRR and MODIS instruments have a

high temporal resolution (twice a day), global coverage during a long period of

time, their spatial resolutions are rather coarse (1100 m for NOAA/AVHRR, and

maximum 250 m for MODIS) and limit their data to applications requiring low

spatial resolution. Data from the Landsat satellite series, and recently the Sentinel-

2 satellite can be a better choice for high resolution applications. Landsat satellites

provide global observations at 30 m spatial resolution, but their temporal resolu-

tion is 16 days. Landsat-8 is the latest satellite in the series and was launched in

2013. Observations provided by the Operational Land Imager (OLI) instrument

onboard the Landsat-8 satellite have been used widely to detect surface water in
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many studies [Du et al., 2014; Ji et al., 2015; Acharya et al., 2016]. Long-term Land-

sat series data are also used for creation of surface water maps at continental scale

[Mueller et al., 2016] as well as at global scale [Yamazaki et al., 2015; Pekel et al.,

2016]. The newest satellite that provides freely visible observations is Sentinel-2

that was launched in 2015. It is a pair of satellites with 5-day temporal resolution

(10 days with only one satellite). The MultiSpectral Instrument (MSI) onboard the

Sentinel-2 satellites provides observations with different spatial resolutions rang-

ing from 10 m to 60 m. Some authors started using Sentinel-2 data for mapping

surface water bodies [Du et al., 2016; Yang et al., 2017]. Detailed information of

these four "free" satellites are shown in Table 2.1.

TABLE 2.1: Four commonly used satellites providing freely visible/infrared ob-
servations. Sources: NASA & ESA.

Satellites Agency Number Temporal Spatial Swath
of bands Res. (day) Res. (m) (km)

NOAA/AVHRR NOAA 4-6 0.5 1100 2800(1978-present)
MODIS NASA 36 0.5 250-1000 2330(2000-present)
Landsat NASA 4-9 16 30-80 185(1972-present)

Sentinel-2 ESA 13 5 10-60 290(2015-present)

The principle of detecting surface water using visible/infrared satellite ob-

servations is based on the very low reflectance of water compared to other land

surface types. Surface reflectance is the amount of light reflected by the Earth

surface, and it is calculated by the ratio between surface radiance and surface ir-

radiance. It typically has values between 0 and 1. When a body is illuminated

by electromagnetic radiation, at the surface of the body, energy will be partly

transmitted, absorbed or reflected, depending on the wavelength and the inci-

dence angle of the incoming radiation, and on the material and roughness of the

surface of the body. Objects having different surface features transmit, absorb or

reflect radiation in different ways, therefore, they have different spectral signa-

tures. Therefore, by studying these spectral signatures, it is possible to identify

different surface features or materials.
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Figure 2.1 shows the spectral signatures from visible to mid-infrared (MIR)

of three common natural surfaces on the Earth: dry bare soil, green vegetation

and clear water bodies. Taking clear water bodies as an example, they absorb

effectively all wavelengths longer than the visible range. It causes a very low sur-

face reflectivity in the range of infrared wavelengths. Green vegetation has a very

special spectral signature since its surface reflectance is low in the visible range

but higher for the green light than for the blue and red light due to absorption

of chlorophyll before it increases dramatically in the domain of the near-infrared

(NIR) wavelengths. In case of the dry bare soil, its surface reflectance rises grad-

ually as a function of the wavelengths, reaching the peak in the middle of the

MIR range. Based on these basic physical principles, surface reflectance data of

NIR wavelengths are often used to detect open water bodies such as lakes or

rivers because these water surfaces appear very dark in NIR reflectance images.

Bryant and Rainey [2002] applied a threshold on NIR surface reflectances of the

NOAA/AVHRR satellite data to delineate lakes. However, using a single band

to detect surface water usually yields large errors because of misclassification be-

tween water pixels and other land surface types [Du, 2012]. A more effective way

to detect surface water with higher accuracy is to use different water indices that

are calculated from two or more bands. Several water indices have already been

proposed.

FIGURE 2.1: Spectral signatures of soil, vegetation and clear water as a func-
tion of wavelengths from visible to MIR. Numbers 1-7 indicate visible, NIR
and MIR wavelength ranges, respectively. Source: SEOS project (http://www.

seos-project.eu/home.html.)
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McFeeters [1996] introduced a technique using the Normalized Difference

Water Index (NDWI) to classify surface water bodies. NDWI is calculated as the

ratio between the green and the NIR wavelengths (equation 2.1) that makes sur-

face water have positive values.

NDWI =
GREEN −NIR

GREEN +NIR
(2.1)

Later, Xu [2006] replaced the NIR band by the MIR band to make the Modified

of Normalized Difference Water Index (MNDWI). Surface water still has positive

values, but this MNDWI is reported to reduce errors between water and build-

up land pixels [Rokni et al., 2014]. The Normalized Difference Vegetation Index

(NDVI) is the ratio between the NIR and the red wavelengths (equation 2.7). This

index was developed to study the vegetation canopy, but it can work as a wa-

ter index since surface water has negative NDVI values [Rouse Jr. et al., 1974;

Domenikiotis et al., 2003; Rokni et al., 2014]. NDVI data are also combined with

NIR reflectance data to classify water bodies [Cretaux et al., 2011]. Several indices

(the Enhanced Vegetation Index (EVI), the Land Surface Water Index (LSWI), and

the Difference Values between EVI and LSWI (DVEL)), are also combined to-

gether for flood mapping and flood monitoring [Sakamoto et al., 2007]. Recently,

a new water index called the Automated Water Extraction Index (AWEI) was in-

troduced by Feyisa et al. [2014] that improves classification accuracy in shadow

and dark surfaces. AWEI has two indices used for shadow and non-shadow situ-

ations (equations 2.2 and 2.3), and surface water has positive AWEI values.

AWEInsh = 4 × (GREEN −MIR1) − (0.25 ×NIR + 2.75 ×MIR2) (2.2)

AWEIsh = BLUE + 2.5×GREEN − 1.5× (NIR+MIR1)− 0.25×MIR2 (2.3)

Comparisons between different water indices in different environments using

Landsat data are performed in some studies [Yang et al., 2011; Rokni et al., 2014;

Zhai et al., 2015]. It is concluded that the accuracy of each water index depends

on studied areas and the reference information. Therefore, there is no best in-

dex among all of them, and the selection of the most suitable water index can

be different depending on specific situations. Although using water indices can

provide water surface maps with a good accuracy, cloud contamination is still
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the greatest limitation for the use of water indices since nearly 60% of the Earth

surface is cloud covered at any moment. This makes their applications are only

suitable for cloud-free conditions, which is very restrictive in some regions (e.g.,

in the Tropics). Vegetation can also mask the surface water partly or totally, mak-

ing the water detection difficult or even impossible under canopy. In addition, the

NIR reflectance over highly turbid water can be higher than over the visible re-

flectance, introducing confusions in the indices used for the water detection. De-

spite these limitations, flood and surface water mapping using visible/infrared

satellite observations can be efficient, and provide good agreements with results

derived from aerial photography [Smith, 1997]. Among all available visible/in-

frared satellite data, Landsat and MODIS data are widely used because their data

are now free of charge, quick to download, and cover a long period of time.

This chapter focuses on using visible/infrared MODIS/Terra observations

for detecting and monitoring surface water extent over the Vietnamese Mekong

Delta and Cambodia, from 2001 to present time. MODIS images have moderate

spatial resolution (500 m) compared to Landsat one (30 m), but the temporal res-

olution is much higher (twice a day compared to 16 days) making MODIS data

more suitable for monitoring applications. Section 2.2 provides more details of the

MODIS/Terra observations, as well as 4 different methodologies that use MOD-

IS/Terra observations for surface water detection. Pre-processing steps applied

to the data are described in Section 2.3. Results are shown in Section 2.4. Section

2.5 concludes this chapter.

2.2 Different methodologies using MODIS/Terra ob-

servations for surface water monitoring

2.2.1 MODIS/Terra observations

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument is one

of the key instruments onboard the Terra satellite (launched on 18 December

1999), and the Aqua satellite (launched on 4 May 2002) from NASA. The two

satellites are sun-synchronous, near-polar, and are orbiting at an altitude of ∼ 705
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km. The two satellites were designed so that the Terra satellite passes the equa-

tor from north to south at 10.30 am (local time) and the Aqua satellite passes

the equator from south to north at 1.30 pm (local time). MODIS instrument pro-

vides global Earth observations in 36 spectral bands ranging from visible (0.4

µm) to infrared wavelengths (14.4 µm). MODIS instrument provides observa-

tions at different spatial resolutions (250 m, 500 m, and 1 km depending on the

wavelength). The two satellites can cover the entire Earth’s surface every 1-2

days. MODIS Terra atmospherically corrected surface reflectance 8-day Level-3

(L3) Global 500 m (MOD09A1) products used in this study are provided freely

through the NASA’s Earth Observing System Data and Information System (EOS-

DIS; https://reverb.echo.nasa.gov/reverb/). MOD09A1 data provide

atmospherically corrected surface reflectance information of seven different bands

from optical to infrared wavelengths in two native spatial resolutions. Band 1

(red) and band 2 (NIR) are at the highest spatial resolution of 250 m, and bands

3-7 are at 500 m spatial resolution. MODIS data are available from 20 Febru-

ary 2000 until present. Each MOD09A1 image was created by selecting the best

Level-2 gridded (L2G) observation during an 8-day period on the basis of high

observation coverage, low view angle, absence of clouds or cloud shadow, and

aerosol loading [Vermote, 2015]. Table 2.2 shows details of the MOD09A1 seven

bands and their main applications. Each MOD09A1 image has the dimension of

2400×2400 (rows/columns) at 500 m spatial resolution. One image covers an area

of approximately 10°×10°, projected on the sinusoidal projection.

TABLE 2.2: MOD09A1 seven bands and their main applications. Source: NASA.

Band Wavelength Resolution Key
number range (µm) (m) applications

1 0.620-0.670 250 Absolute Land cover Transformation
Vegetation Chlorophyll

2 0.841-0.876 250 Cloud Amount Vegetation
Land cover Transformation

3 0.459-0.479 500 Soil/Vegetation Differences
4 0.520-0.600 500 Green Vegetation
5 1.230-1.250 500 Leaf/Canopy Differences
6 1.628-1.652 500 Snow/Cloud Differences
7 2.105-2.155 500 Cloud Properties, Land Properties
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2.2.2 Sakamoto et al. [2007] methodology

FIGURE 2.2: Flowchart describing the methodology for detecting the spatio-
temporal changes of flood inundation by Sakamoto et al. [2007].

Sakamoto et al. [2007] presented a methodology for detecting the spatio-

temporal changes in the extent of annual flooding over the Mekong River Delta in

Vietnam using MOD09A1 time series imagery. Details of the algorithm are shown

in Figure 2.2. First, the Enhanced Vegetation Index (EVI), the Land Surface Wa-

ter Index (LSWI), and the Different Value between EVI and LSWI (DVEL) are
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calculated at pixel level, from the original atmospherically corrected surface re-

flectance data derived from the MOD09A1 8-day composite products. The EVI

and the LSWI are obtained using equation 2.4 and equation 2.5, while the DVEL

is calculated from equation 2.6:

EV I = 2.5 ∗ NIR−RED

NIR + 6 ∗RED − 7.5 ∗BLUE + 1
(2.4)

LSWI =
NIR−MIR

NIR +MIR
(2.5)

DV EL = EV I − LSWI (2.6)

where RED, NIR, BLUE and MIR are the surface reflectance values of visible band

1 (red band; 0.62 - 0.67 µm), NIR band 2 (0.841 - 0.876 µm), visible band 3 (blue

band; 0.459 - 0.479 µm) and MIR band 6 (1.628 - 1.652 µm), respectively. Next step,

a linear interpolation is used to deal with missing data such as cloud-covered

pixels (pixels where surface reflectance values of the blue band are greater than

0.2), then a wavelet transformation is applied to reduce noise for the indices. After

this step, all the EVI, LSWI, and DVEL indices are smoothed and ready for the

classification step.

For the classification, all pixels with smoothed EVI values greater than 0.3 are

classified as non-flood pixels. Water-related pixels are marked when the smoothed

DVEL values are smaller than or equal to 0.05 and the smoothed EVI values are

smaller than or equal to 0.3. If a pixel has the smoothed EVI value smaller than or

equal to 0.05 and the smoothed LSWI value smaller than or equal to 0, it is also

marked as a water-related pixel. At the final step, a threshold of the smoothed EVI

values is used to distinguish between mixture pixels and fully inundated pixels

from water-related pixels. Mixture pixels are defined as pixels that are partly in-

undated. The smoothed EVI values in open water bodies such as lakes or the

ocean are normally low, therefore, if the smoothed EVI values are smaller than

or equal to 0.1, these water-related pixels are set as the fully inundated pixels. If

the smoothed EVI values are greater than 0.1 and smaller than or equal to 0.3,

then these water-related pixels are marked as the mixture pixels. Based on these

conditions, inundation maps over the Mekong River Delta can be re-built. Results

are shown in section 2.4.

26



Chapter 2 Surface Water Monitoring within the Mekong Delta and Cambodia using Visible and Infrared
MODIS Satellite Observations

2.2.3 Bergé-Nguyen and Crétaux [2015] methodology

Bergé-Nguyen and Crétaux [2015] also developed a methodology for flood and

wetland mapping over the Inner Niger Delta (IND), based on the same MOD09A1

time series imagery . This methodology is simpler than Sakamoto et al. [2007] one

since it uses mainly surface reflectance information derived from visible band 1

(red band; 0.62 - 0.67 µm), NIR band 2 (0.841 - 0.876 µm) and NIR band 5 (1.23

- 1.25 µm) to classify surfaces into five different types, including open water,

mix water/dry land, aquatic vegetation, vegetation, and dry land. Details of this

methodology are described in Table 2.3. First, the Normalized Difference Vege-

tation Index (NDVI) for each single pixel is calculated using equation 2.7. Since

open water bodies absorb most of radiation in the infrared wavelengths, values

of surface reflectance of NIR band 5 (1.23 - 1.25 µm) is selected to determine open

water bodies. When band 5 surface reflectance value of a pixel is smaller than 0.12,

that pixel is marked as a fully inundated pixel. When that value increases to the

threshold value of 0.27, that pixel is marked as a water-related pixel, and when it

overcomes the threshold of 0.27 that pixel is marked as a non water-related pixel.

For these water-related pixels, the NDVI is used to distinguish between mix of

water/dry land and aquatic vegetation. If the NDVI of a water-related pixel is

smaller than 0.4, the pixel is considered as a mix water/dry land and if the NDVI

is greater than 0.4, the pixel is classified as an aquatic vegetation pixel. For these

non water-related pixels, the NDVI is tested to detect the presence of vegetation

on dry land. If the NDVI of one pixel in this class is smaller than 0.4, this pixel

is called a dry land pixel, and if the NDVI is greater than 0.4, then this pixel is

considered to be covered by vegetation. Due to its simple criterion, this method-

ology is reported to be more suitable for the arid and semi-arid regions (like the

Inner Niger Delta), but less precise for the equatorial and boreal regions where

the cloud contamination is high [Bergé-Nguyen and Crétaux, 2015]. However,

this methodology is still applied over the Mekong River Delta and Cambodia

for comparison to results obtained from the Sakamoto et al. [2007] methodology.

More details will be shown in the section 2.4.

NDV I =
NIR−RED

NIR +RED
(2.7)
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TABLE 2.3: Threshold values used for classifying terrain surface into five differ-
ent classes by Bergé-Nguyen and Crétaux [2015].

Index Open Mix Water/ Aquatic Vegetation Dry LandWater Dry Land Vegetation
Band 5 <0.12 >0.12 & <0.27 >0.12 & <0.27 >0.27 >0.27
NDVI No test <0.4 >0.4 >0.4 <0.4

2.2.4 Unsupervised and supervised classification techniques

Beside using criterion and indices to classify, image classification can be done

based on two major techniques: unsupervised and supervised classifications. Each

technique has its own advantages and disadvantages, and they are used for dif-

ferent purposes. More information on classification techniques can be found in re-

mote sensing books, such as Jensen [1995]. Unsupervised and supervised are per-

formed here to calibrate classification results obtained from the two approaches

described in the two previous sections.

2.2.4.1 Unsupervised classification

The principle of unsupervised classification methodology is to group pixels within

an image that have similar spectral signature together into the same groups. The

most popular algorithms used in unsupervised classification are K-means and

ISODATA methods. For the K-means classification, the user selects the number

of classes to obtain, n classes, for example. At the very first step, n pixels in the

image are chosen randomly as n bary-centers. The second step, each single pixel

in the image is associated with one bary-center by calculating and comparing the

Euclidean distance from all pixel to each n bary-centers. The third step, new n

bary-centers are re-calculated based on classification results in the previous step,

and again each single pixel in the image is associated with a bary-center. This pro-

cess runs several times until all pixels in the image stop changing their classes.

Finally, all pixels in the image are classified into n classes (or groups) as expected.

The ISODATA algorithm has the same principle as the K-means one, but the num-

ber of classes may be varied by splitting a cluster into smaller ones or merging
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FIGURE 2.3: Classification results with 8 clusters after applying K-means algo-
rithm to a MODIS image over land areas of Vietnam and Cambodia in February

2007.

several clusters together to create a bigger one. If the distance between two clus-

ters is smaller than a given threshold, they will be merged together making a

bigger cluster. And if the standard deviation in any dimension is greater than a

given threshold for a cluster, it will be split into two different ones. In addition, if

a cluster has the total number of individual pixel smaller than a given number, it

could be deleted from the calculation. The unsupervised classification method is

easy to perform, however, this method is often used when the users do not know

very well about the environment of the studied areas.

An unsupervised classification is designed to classify each MODIS image into

three clusters (water, mixed and non-water). First, using the K-means algorithm,

the image is classified into 8 clusters. Several tests have been made to conclude

that classifying into 8-10 clusters is optimal for this purpose. Water-related clus-

ters are determined based on the low values of their bary-centers, and the spatial
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structure of the classification map (see Figure 2.3, colors 1 and 7). Then, pixels as-

sociated to the other 6 clusters are marked as non-water pixels. Next, the K-means

algorithm is used another time to classify the remaining water-related pixels into

mixed-pixel or water-pixel clusters. Finally, the image is completely classified,

as expected. Bary-centers of the two clusters at the seven MODIS bands derived

from the unsupervised classification method are shown in Table 2.4.

2.2.4.2 Supervised classification

The supervised classification is guided by a training dataset provided by the user.

The user defines "training sites" in the image to be classified. "Training sites" are

regions known as a particular land cover type. The algorithm calculates and de-

fines the spectral signature of all the pixels within each "training site". Then, based

on the spectral signature of each pixel in the image, the algorithm determines

possibilities belonging to each land cover type in the training dataset. By compar-

ing its possibilities, a pixel is associated with a land cover type it matches most

closely. Defining "training sites" is very important for supervised classification be-

cause it strongly affects the accuracy of the classification. Classification accuracy

increases with accuracy of the training dataset. Supervised classification method

is often used when the user knows very well the studied area.

A supervised classification method using the minimum distance algorithm is

designed for the same objective to classify MODIS imagery into three classes, as

described above. Four surface water maps created based on the Sakamoto et al.

[2007] method are used as training dataset. The four images are selected in Jan-

uary, April, July and October 2007, to improve the ability to capture the wetland

dynamics in a year. The training dataset contains ∼ 9 million pixels already classi-

fied into three classes. First, mixed pixels and water pixels in the training dataset

are merged into one class, called the water-related class. At this step, the train-

ing dataset only has two clusters (non-water and water-related). Then, each pixel

in the MODIS image is classified into either non-water group or water-related

group, using the minimum distance algorithm. Next, the water-related pixels

are classified one more time to put them into the mixed-pixel or the water-pixel
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group. The bary-centers of the two clusters derived from the supervised classifi-

cation technique are also shown in Table 2.4.

Bary-centers of mixed-pixel and water-pixel classes derived from both un-

supervised and supervised classification techniques are very close, meaning that

surface water maps derived from the two techniques are also close. More com-

parisons will be shown in section 2.4.

TABLE 2.4: Bary-centers of surface reflectance at the MODIS seven bands for
mixed-pixel and water-pixel clusters derived from unsupervised and supervised

classification techniques.

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
Mixed pixels

Unsupervised 0.08 0.20 0.06 0.08 0.19 0.13 0.07
Supervised 0.10 0.21 0.07 0.10 0.19 0.13 0.07

Water pixels
Unsupervised 0.08 0.08 0.05 0.08 0.07 0.05 0.02

Supervised 0.09 0.09 0.06 0.09 0.07 0.05 0.03

2.2.4.3 Hybrid classification

Unsupervised and supervised classifications can also be used together in a pro-

cess called hybrid classification. Unsupervised classification can be used first to

determine the number of land cover types that can be defined, then supervised

classification can be used to classify the image into the land cover classes of in-

terest. However, in this chapter, unsupervised and supervised classification tech-

niques are applied separately to build surface water maps. The same MOD09A1

products used in Sakamoto et al. [2007] and Bergé-Nguyen and Crétaux [2015]

are used to run both unsupervised and supervised classifications.
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2.3 MOD09A1 pre-processing

2.3.1 MOD09A1 quality and reliability checking

85%-95% of the Mekong River Delta is often covered by thick clouds during

the rainy seasons [Leinenkugel et al., 2013], causing problems to optical sensors

like MODIS because these observations cannot penetrate clouds. The relation-

ship between the presence of clouds and the variability of MOD09A1 surface

reflectance needs to be checked to quantify the quality as well as the reliability

of the MOD09A1 products. Surface reflectance pixels located over the ocean are

removed from the original data using a land/ocean mask to obtain only surface

reflectances over land area. Figure 2.4 shows land surface reflectance maps from

the seven MODIS bands over Cambodia and Vietnam, after applying the land/o-

cean mask.

A MOD09A1 data file contains a quality assurance flag (4 states) and two

cloud flags. The first cloud flag is the internal cloud algorithm flag (two states:

cloud or no cloud), and the second one is the MOD35 cloud flag (four states:

clear, cloud, mixed, or not set and assumed clear). Figure 2.5 shows cloud covered

FIGURE 2.4: MOD09A1 land surface reflectance maps from the seven MODIS
bands, over Cambodia and Vietnam in January, 2007.
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FIGURE 2.5: MOD09A1 cloud covered maps derived from the two cloud flags
(internal cloud flag and MOD35 cloud flag), and quality assurance maps over

Cambodia and Vietnam in January (top) and in October (bottom), 2007.

maps derived from the two cloud flags, and quality assurance maps over Cam-

bodia and Vietnam in January (top) and in October (bottom), 2007. It is clear that

the internal cloud algorithm map is totally different, and covers much less than

the one derived from the MOD35 cloud flag for both seasons. The quality assur-

ance flags are supposed to be very good (even during the wet season in October)

since they are mostly marked as 1, meaning that it is corrected at ideal quality

for all the seven MODIS bands. Relationships between the seven MOD09A1 sur-

face reflectance bands, the two cloud flags, and the quality assurance flags are

assessed by analyzing time series of these variables for four different pixels dur-

ing the year 2007 (see Figure 2.6). It confirms that information from the two cloud

flags are totally different for all the four pixels since the same pixels are cloud

covered at different times in the year. Quality assurance flags seem to be good for
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most of the time during the year. However, the times when the quality assurance

flags are not good do not occur at the same time when these pixels are marked as

cloud covered. Clearly, there is no strong connection between the quality assur-

ance flags and these two cloud flags. The same conclusion can be made for the

seven surface reflectance bands and the two cloud flags since the peaks of surface

reflectance do not occur at the same time when these pixels are marked as cloud

covered. For example, for the second pixel that is located in the middle of the

ocean, time series of these surface reflectance bands show two straight peaks in

July and August. It is believed that these peaks are due to the presence of clouds,

but it is not confirmed by any cloud flag.

To conclude, there is no clear relationship between the seven MOD09A1 sur-

face reflectance bands, the two cloud flags, and the quality assurance flag over the

Mekong River Delta and Cambodia. This hypothesis is confirmed by Crétaux and

Soudani (personal communication). In addition, surface reflectance values of all

the seven bands are not very smooth and they must be filtered before being used

in the next steps. The blue band surface reflectance values (band 3) will be used

to detect cloud covered pixels using the Sakamoto et al. [2007] criterion (greater

than 0.2).

FIGURE 2.6: Time series of the seven surface reflectance bands, the cloud flags
and the quality assurance flags for four selected pixels.
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2.3.2 Smoothing method selection

To reproduce surface water maps based on the Sakamoto et al. [2007] method-

ology, it is required to use smoothed indices to reduce noise on the classifica-

tion methodology. Three smoothing methods (simple moving average, weighted

moving average, and Gaussian smoothing), with the same window size (5), are

tested for the area shown in Figure 2.4. Surface water time series (from the origi-

nal Sakamoto work) are used as the reference. Comparisons between the Sakamoto

reference and results derived from the three smoothing methods are shown in

Figure 2.7 and Table 2.5. In general, results derived from all the three smooth-

ing methods are close and similar to the reference data. The weighted moving

average method always gives the lowest temporal correlation to the Sakamoto

reference data. The Gaussian and simple moving average smoothing give higher

temporal correlations with the Sakamoto reference (greater than 94%), but the

simple moving average smoothing provides higher correlations to the reference

than the Gaussian smoothing. As the simple moving average smoothing fits bet-

ter to the reference, this method is selected to smooth surface reflectance data

and indices (EVI, LSWI, and DVEL, for example) before moving to the classifying

step.
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FIGURE 2.7: Surface water time series (2007) derived from three smoothing meth-
ods for the area shown in Figure 2.4, and comparisons with the Sakamoto results.

TABLE 2.5: Linear temporal correlations between surface water time series (2007)
derived from the three smoothing methods and the Sakamoto reference data.

Weighted Gaussian Moving
Mixed pixels 88% 94% 96%
Water pixels 93% 97% 99%
Water-related pixels 92% 96% 98%
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2.4 Results

2.4.1 Comparing Sakamoto et al. [2007] and Bergé-Nguyen and

Crétaux [2015] methodologies

In this section, comparisons between surface water maps and surface water time

series for the year 2007 over Cambodia the Mekong River Delta, derived from

Bergé-Nguyen and Crétaux [2015] and Sakamoto et al. [2007] methodologies,

are discussed. A few changes are applied for the two classification methods. For

Bergé-Nguyen and Crétaux [2015] method, only three classes (open water pixels,

mixed pixels, and non-water related pixels) are classified instead of five classes as

in the original work. It is assumed that vegetation pixels and dry land pixels be-

long to the non-water related class, and the aquatic vegetation pixels belong to the

mixed-pixel class. Band 5 surface reflectance and NDVI data are also smoothed

using the simple moving method. For the Sakamoto et al. [2007] method, the

wavelet transformation for noise reduction is not applied. The original results

from Sakamoto et al. [2007] for the year 2007 are used as the reference, but it has

a spatial resolution of 230 m. Therefore, the original images have been re-gridded

to a common spatial resolution of 500 m by averaging every 230 m pixels within

each 500 m pixel, to match the other surface water maps.

Figure 2.8 shows the surface water maps over the Vietnam Mekong Delta

and Cambodia, derived from the three methods in January (top) and October

(bottom) 2007, respectively. During the dry season, Bergé-Nguyen and Crétaux

[2015] method detects more mixed pixels than the Sakamoto et al. [2007] one, and

most of the mixed pixels are not located around the Tonle Sap Lake or the Mekong

river. During the rainy season, Bergé-Nguyen and Crétaux [2015] method marks

most of pixels located around the Tonle Sap Lake and the lower Vietnam Mekong

delta as fully inundated pixels. Surface water maps derived from the modification

of the Sakamoto et al. [2007] method and from their original work have a strong

agreement, especially for the water pixels. Linear spatial correlations of the sur-

face water maps based on these classification methods are shown in Table 2.6. As

expected, the spatial correlations between surface water maps derived from the

original and modified Sakamoto et al. [2007] methods are very high for both the
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FIGURE 2.8: Surface water maps over the Vietnam Mekong Delta and Cambodia
derived from Bergé-Nguyen and Crétaux [2015] (left), modified Sakamoto et al.
[2007] (middle) and original Sakamoto et al. [2007] (right) methods in January
(top) and October (bottom), 2007. Original Sakamoto surface water maps are re-

gridded from 230 m to 500 m spatial resolution.

TABLE 2.6: Spatial correlations between surface water maps shown in Figure 2.8.

Dry season Rainy season
Bergé-Nguyen & Crétaux/Modified Sakamoto 76% 94%
Bergé-Nguyen & Crétaux/Original Sakamoto 78% 95%
Modified Sakamoto/Original Sakamoto 95% 96%

dry and wet seasons (always greater than 95%), while the spatial correlations of

surface water maps derived from the Bergé-Nguyen and Crétaux [2015] method

and the two other surface water maps are lower in the dry seasons (around 77%)

and it increases during the rainy seasons (to 94% and 95%, respectively).

Figure 2.9 shows surface water time series for the area shown in Figure 2.8,

derived from the three classification methods, for the year 2007. The Bergé-Nguyen

and Crétaux [2015] method fails to capture the dynamics of mixed pixels dur-

ing the dry season when it shows an increase and a high peak of surface water

in February while it is decreasing with the reference data (Figure 2.9a). This is

mainly because of the wrong detection of mixed pixels over local areas (mostly

located in the northwest of the Tonle Sap Lake, and the east of the Mekong River).
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FIGURE 2.9: Surface water extent time series over the Vietnam Mekong Delta and
Cambodia, derived from three classification methods for 2007.

For the water pixels, all classification methods have a similar seasonal cycles with

a small peak in June and a larger one in November, but the Bergé-Nguyen and

Crétaux [2015] method detects less water pixels than the Sakamoto et al. [2007]

method most of the time, except in the middle of the wet season (Figure 2.9b).

To conclude, classification results derived from the Bergé-Nguyen and Crétaux

[2015] and the Sakamoto et al. [2007] classifications methods show similar sea-

sonal cycle with higher spatial and temporal correlations for water pixels and

lower for mixed pixels, as expected. The Sakamoto et al. [2007] algorithm seems

to be better and more suitable than the Bergé-Nguyen and Crétaux [2015] one, for

surface water and flood detection over the Vietnamese Mekong delta and Cam-

bodia. The Bergé-Nguyen and Crétaux [2015] method does not work very well in

this region because its simple algorithm was originally developed to detect water

in arid and semi-arid regions.

2.4.2 Comparing unsupervised and supervised methodologies

In this section, surface water maps derived from supervised and unsupervised

classification techniques (section 2.2) are compared to results obtained when ap-

plying the modified Sakamoto method. Figure 2.10 shows surface water maps

in January (top) and October (bottom) 2007, while Figure 2.11 presents surface

water extent time series derived from unsupervised, supervised and modified

Sakamoto methods, respectively. Both unsupervised and supervised classifica-

tions detect more water-related pixels than Sakamoto method, but the surface

water dynamic is very similar. Supervised classification uses the training dataset

based on the Sakamoto criterion, therefore, surface maps and water extent time
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series derived from these two methodologies are very close, with high spatial

and temporal correlations. Table 2.7 shows confusion matrix between surface wa-

ter maps derived from supervised classification and Sakamoto method for the

high-water period (Figure 2.10 - bottom). The supervised classification detects

correctly ∼95% water pixels and ∼98% non-water pixels compared to Sakamoto

results.

FIGURE 2.10: Surface water maps derived from (left) unsupervised classification,
(middle) supervised classification and (right) modified Sakamoto et al. [2007]
methods for (top) the dry season and (bottom) the rainy season of the year 2007,

over the Mekong River Delta and Cambodia.
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FIGURE 2.11: Surface water extent time series for the year 2007 over the area
in Figure 2.8 derived from (left) unsupervised, (middle) supervised, and (right)

modified Sakamoto classification methods.
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TABLE 2.7: Confusion matrix of inundated maps derived from supervised clas-
sification and Sakamoto method for the high-water period.

Supervised
Mixed Non-water Water

Sa
ka

m
ot

o Mixed 77.2% 0.4% 1.1%
Non-water 1.7% 97.8% 0%
Water 0.99% 0% 94.6%

A surface reflectance curve of a mixed environment (with water, submerged

and emergent vegetation) derived from the SAILHFlood radiative transfer model

[Beget et al., 2013], is plotted in Figure 2.12, along with the bary-centers of mixed-

pixel clusters derived from the unsupervised and supervised techniques. The

mixed-pixel bary-centers are mostly close to that from the SAILHFlood model,

except for band 1 (the red band, at ∼ 0.6 µm). Differences may come from differ-

ent conditions between a real mixing complex environment and a simpler mixing

environment created by the SAILHFlood model.

Although results from the unsupervised and supervised classification meth-

ods are close and share similar dynamics, and in good agreement with the SAIL-

HFlood model, there are still differences in term of the total surface water extent

detected by each method, especially for the mixed pixels. Dominated bands for
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FIGURE 2.12: Seven MODIS band bary-centers of mixed-pixel cluster derived
from unsupervised and supervised classifications, along with surface reflectance
curve for a mixing environment derived from the SAILHFlood radiative transfer

model [Beget et al., 2013].
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the two classification methods are bands 1, 2, 6 and 7 because bands 1, 3 and 4

are highly correlated, as well as between bands 2 and 5. In this section, using the

unsupervised and supervised classification methods for surface water detection

is like a training exercise, and results are used to confirm performance of other

classification methods.

2.4.3 Expanding Sakamoto methodology

After comparing surface water maps and surface water extent time series de-

rived from two different classification methods (Sakamoto et al. [2007] and Bergé-

Nguyen and Crétaux [2015]), along with tests with an unsupervised and a su-

pervised classifications, it is concluded that the Sakamoto et al. [2007] algorithm

is suitable for flood and surface water detection over the Vietnamese Mekong

Delta and Cambodia using visible/infrared MODIS/Terra MOD09A1 products.

Sakamoto et al. [2007] method is expanded to build surface water maps for the

2001-2016 period. Figure 2.13 shows new surface water extent time series (2001-

2016), in comparison with the original data from Sakamoto (2001-2007) for the

area shown in Figure 2.10. The seasonal dynamics and variability of the new sur-

face water estimate is very close to the original one for the common period (2001-

2007), with very high temporal correlations (0.95, 0.99 and 0.98 for mixed pixels,

water pixels and water-related pixels, respectively). In addition, the new mixed-

pixel time series is smoother than the original data. This 16-year surface water
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FIGURE 2.13: Surface water extent time series for the 2001-2016 period over the
Mekong River Delta shown in Figure 2.8.
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extent record allows us to identify recent drought years (2010, 2014 and 2015, for

example) when the total surface water extents were low.

The Sakamoto et al. [2007] method is continuously expanded to the north-

west to make surface water maps for a larger area. Tests have been made, but

this classification method does not work well over the Tibetan Plateau with the

presence of the Himalaya mountains because this method cannot distinguish be-

tween water pixels and snow/ice pixels. Open water bodies and snow/ice have

similar signatures to the EVI that is the main indicator for this method. Finally,

this method is applied for the area lower than latitude 20°N. An example of sur-

face water maps for that area is shown in Figure 2.14-left, and the corresponding

surface water extent time series (2001-2016) is presented in Figure 2.14-right.
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FIGURE 2.14: Left: An example of the extended surface water map. Right: Surface
water time series (2001-2016) for area shown on the left.

2.5 Discussions and conclusions

As all visible/infrared satellite measurements, MODIS/Terra surface reflectance

observations (MOD09A1) have limitations due to their inability to penetrate clouds

and vegetation. Over the Vietnamese Mekong River Delta and Cambodia, infor-

mation provided from the two MODIS cloud flags are not very useful. Surface

reflectance data of band 3 (blue band) are used to identify cloud-covered pixels

(values greater than 0.2), and a linear interpolation is applied to fill the missing
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data. A simple moving smoothing method is used to reduce noise before the clas-

sifying step. Four classification methods have been applied to MOD09A1 data to

create and compare surface water maps over the Vietnamese Mekong Delta and

Cambodia, for 2007. The surface water maps and time series derived from all the

four methods are comparable, showing similar seasonality and dynamics. Out-

put surface water maps show significant differences in detecting mixed pixels.

Sakamoto et al. [2007] classification method is chosen to be applied to a longer

period (2001-present) because this method has been specifically designed to de-

tect flood and to monitor surface water extent over tropical regions like the Lower

Mekong River Delta. As already observed in Figure 2.13, the new surface water

extent is in a strong agreement with the original Sakamoto et al. [2007] estimate,

for the 2001-2007 period.

For the larger area shown in Figure 2.14-left, the result surface water map

looks reasonable. The Sakamoto et al. [2007] classification algorithm can detect the

Mekong River, smaller lakes, reservoirs and a big inundated area over the Gulf

of Martaban in the south of Myanmar. This region has a strong wetland seasonal

dynamics as shown in Figure 2.14-right. Maximum states of mixed pixels (red

curve) and fully inundated pixels (blue curve) do not always occur at the same

time. At the time of this study, there is no other available inundated product with

similar spatial resolution for this large area over the same period for comparison.

MODIS surface water maps in a regular basic (every 8 days) at 500 m spa-

tial resolution over the Vietnamese Mekong Delta and Cambodia can be a helpful

product for scientific community. It could be an input for regional hydrological

models to study the impacts of the climate change to the Lower Mekong basin.

Regular MODIS surface water maps (from 2001 to present time) over the studied

region are stored on the University of Science and Technology of Hanoi (USTH)

Space and Aeronautics Department website, and they are provided freely to final

users. Data are updated regularly.

English version: http://space.usth.edu.vn/en/news/projects/

Vietnamese version: http://space.usth.edu.vn/vi/news/du-an/
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3.1 Introduction

In this chapter, the use of Synthetic Aperture Radar (SAR) satellite observations

for surface water monitoring will be studied. The use of SAR satellites started

in 1978 with the launch of the Seasat, the first civil SAR satellite. Since then the

SAR instruments have been available on many sensors and platforms with dif-

ferent frequencies, polarizations, swaths and resolutions (see Table 3.1 for a list

of some recent SAR satellite instruments). SAR images have become an impor-

tant source of data for a wide range of applications in remote sensing to map

the Earth surfaces (for topography, oceanography, interferometry, glaciology, ge-

ology, forestry, volcano, earthquake, flood and surface water monitoring, for ex-

ample). SAR remote sensing has some basic advantages compared to optical re-

mote sensing. SAR sensors can provide observations in all weather conditions re-

gardless of cloud presence, with spatial resolution comparable to optical satellite

images. They are also independent from the sunlight, providing day and night

operation that will be very useful in some urgent situations. In addition, SAR ob-

servations are not affected by atmospheric constituents. These advantages make

SAR observations more suitable than visible/infrared observations for many ap-

plications, especially in tropical regions.

Flood detection using different SAR observations has been studied by many

authors, showcasing the advantages of SAR instruments compared to optical in-

struments. Wang [2004] used a single decision tree classifier on two sets of JERS-1

SAR data to classify surface water within the states of North Carolina and South

Carolina into five land cover types (water, marsh, flooded forest, field, and non-

flooded forest). Although the classifier was simple, they reported an overall clas-

sification accuracy of nearly 90%. Pierdicca et al. [2013] showed the potential of

the COSMO-SkyMed data for flood detection by showing case studies in several

locations all over the globe (e.g., Tarano River overflow, Italy, April 2009; Pak-

istan inundation, July–September 2010; Thailand flood, October 2010; and Aus-

tralia flood, January 2011). COSMO-SkyMed instruments provided very high res-

olution X-band SAR images, but covered limited areas (the highest spatial reso-

lution is ∼1 m for an observation area of 10 km × 10 km). X-band data from

47



Chapter 3 Surface Water Monitoring within the Mekong Delta and Cambodia using SAR Sentinel-1
Satellite Observations

TerraSAR-X instrument were also reported suitable for flood mapping under for-

est canopy in a temperate forest zone in Estonia [Voormansik et al., 2014]. Mar-

tinis et al. [2015] compared four flood detection approaches over several areas

(the Netherlands, Mali, Germany, and China) using SAR data from the TanDEM-

X mission. Although these four approaches were designed according to different

requirements, their performances were satisfactory over the studied areas (17 out

of 20 water masks reaching an overall accuracy larger than 90%). Other studies

using SAR data for water monitoring locally and regionally under different envi-

ronments can be listed (e.g., Bartsch et al. [2008]; Brisco et al. [2009]; Reschke et al.

[2012]). There are some studies that used SAR observations to monitor surface

water, focusing on the Vietnam Mekong Delta. Nguyen and Bui [2001] mapped

flood occurrence for the year 1996 over the Delta using five ERS-2 observations.

Kuenzer et al. [2013] used 60 Envisat ASAR observations during the years 2007–

2011 to study the flood regime in the Delta. Mapping water bodies at global scale

using SAR data was limited due to the lack of global observations, and the fact

that SAR data were not easy to access freely. Santoro et al. [2015a] used multi-

year (2005–2012) Envisat ASAR observations to create, for the first time, a global

potential water body map at a spatial resolution of 150 m from SAR data. Errors

concentrated along shorelines and coastline, but this global water map has an

accuracy of ∼80% compared to reference data.

Since 2014, the free and open data access policy of the European Space Agency

(ESA) within the Copernicus space program makes SAR Sentinel-1 observation

now regularly and freely accessible for scientific and educational purposes, over

large parts of the globe. Similar to previous SAR instruments, Sentinel-1 instru-

ments show strong potential for detecting open water bodies at high spatial reso-

lution [Amitrano et al., 2014; Santoro et al., 2015b]. With the advantage of higher

temporal resolution than previous SAR instruments, Sentinel-1 has the ability to

monitor the seasonal cycle of water extent every six days over Europe and the

boreal region, and with slightly reduced temporal sampling elsewhere. In this

study, I propose a methodology using Sentinel-1A SAR observation for monitor-

ing water surface extent within the Mekong Delta and Cambodia since the begin-

ning of 2015. It is based on a Neural Network (NN) algorithm, trained on visible

Landsat-8 images (30 m spatial resolution). The Sentinel-1 SAR data and the ancil-

lary observations are described in Section 3.2, including the pre-processing steps.
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TABLE 3.1: List of recent SAR instruments on board satellites. Sources: NASA,
ESA & JAXA.

Satellites Agency Freq.-Pol. Resolution-Swath
ERS-1 ESA C-VV 25 m - 100 km(1991-2000)
JERS JAXA L-HH 20 m - 100 km(1992-1998)

ERS-2 ESA C-VV 25 m - 100 km(1995-2011)
RADARSAT-1 CSA C-HH 10-100 m - 45-500 km(1995-2013)

ENVISAT ESA C-HH/VV/HV 25-1000 m - 50-500 km(2002-2012)
ALOS-PALSAR JAXA L Polarimetric 10-100 m - 100-350 km(2006-2011)

DLR X Polarimetric

HR SpotLight: 1 m-10×5 km
Terra-X SpotLight: 2 m-10×10 km

(2007-present) StripMap: 3 m-30×50 km
ScanSAR: 18 m-100×150 km

RADARSAT-2 CSA C Polarimetric UltraFine: 3 m - 20 km
(2007-present) Standard: 25 m - 100 km

ScanSAR: 100 m - 500 km
ALOS-PALSAR-2 JAXA L Polarimetric SpotLight: 3×1 m - 25×25 km

(2013-present) Stripmap: 3-10 m - 30-70 km
ScanSAR: 60,100 m - 350,490 km

Sentinel-1 ESA C-HH/VV/VH/HV StripMode: 5 m - 80 km
(2013-present) Interfero WS: 5×20 m - 250 km

Extra WS: 20×40 m - 400 km

Section 3.3 presents the NN methodology, along with sensitivity tests. Results and

comparisons with other products are provided and discussed in Section 3.4. An

improvement of the NN methodology is presented in Section 3.5. Section 3.6 con-

cludes this study.

49



Chapter 3 Surface Water Monitoring within the Mekong Delta and Cambodia using SAR Sentinel-1
Satellite Observations

3.2 Sentinel-1 SAR data and the ancillary datasets

3.2.1 Sentinel-1 SAR data

Sentinel-1 is a satellite project funded by the European Union and carried out by

the European Space Agency. It is a two satellite constellation working at C-band

(5.405 GHz). The major objective of the satellites is the observation and moni-

toring of land and ocean surfaces day and night, under all weather conditions

[ESA, 2015]. The satellite operates in four exclusive imaging modes with differ-

ent spatial resolutions (the highest being 5 m) and swaths (up to 400 km). The

first Sentinel-1A satellite of the pair was launched on 3 April 2014, and the sec-

ond Sentinel-1B satellite was launched on 22 April 2016. The Sentinel-1 satellites

fly along a sun-synchronous, near-polar circular orbit at an altitude of ∼693 km.

The incidence angle varies between 29° and 46°. The two satellites provide a re-

visiting time of 6 days (it was 12 days before the launch of the Sentinel-1B satel-

lite). Sentinel-1 satellites have dual polarization capabilities (HH, VV, HH + HV

and VV + VH), giving final users the ability to access a large variety of appli-

cations, including the monitoring of surface water. SAR images from Sentinel-1

satellites are freely downloaded from the Sentinel scientific data hub (https:

//scihub.copernicus.eu/).

20 m resolution (10 m pixel spacing) Level-1 Ground Range Detected (GRD)

Sentinel-1 images from the Interferometric WideSwath (IW) mode are used in this

study. These images have been detected and projected to ground range using an

Earth ellipsoid model provided by ESA. Over the Mekong Delta and Cambodia,

there are two polarizations available: the VH and VV polarizations. Some pre-

processing steps have to be carried out using the free Sentinel Application Plat-

form (SNAP) software developed by ESA, before the analysis steps (Figure 3.1).

These pre-processing steps are described in the “SAR Basics with the Sentinel-1

Toolbox in SNAP tutorial” (http://step.esa.int/main/doc/tutorials/).

FIGURE 3.1: Synthetic Aperture Radar (SAR) Sentinel-1 pre-processing steps.
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FIGURE 3.2: Sentinel-1 backscatter coefficient VH polarization over a lake de-
rived from four different filters. The image was acquired on 10 May 2015.

First, multi-looking processing is applied to each single Sentinel-1 image (both

polarizations) to convert to 30 m spatial resolution (to match with Landsat-8 im-

ages). Applying multi-looking at the beginning of the chain reduces the process-

ing time for the next steps since the size of the image is several times smaller

than the original one. Second, the image is calibrated to convert values of the

raw image from digital number to radar backscatter coefficient (σ0). Third, the

Refined Lee filter is applied to reduce the speckle noise and to smooth the radar

backscatter coefficient data because this filter maintains details of the standing

water boundary [Liu, 2016]. Other filters (Lee, Lee Sigma or Median, for exam-

ple) were tested, and results showed little differences in terms of water detection

(see Figure 3.2). Next, the "terrain correction" tool is used to compensate for dis-

tortions in the SAR images, so that the geometric presentation of the image will

be as close as possible to the real world. At the end of this step, the image is also

re-projected from the satellite projection to the Earth geographic projection, and

is ready for applications. To fully cover the Vietnamese Mekong Delta and Cam-

bodia, at least five Sentinel-1 SAR images are needed. Figure 3.3 (top) provides
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examples of the SAR backscatter coefficients for VH (a) and VV (b) polarizations,

along with the incidence angle (c), over the Tonle Sap Lake, on 17 December 2015.

N
50 km

water pixels

non-water pixels

non-analysis pixels

FIGURE 3.3: Examples of satellite observations from Sentinel-1 (top) and from
Landsat-8 (bottom), over the southeast of the Tonle Sap Lake (Cambodia) after
the pre-processing steps: (a) SAR backscatter coefficient at VH polarization; (b)
SAR backscatter coefficient at VV polarization; (c) SAR incidence angle; (d) The
Normalized Difference Vegetation Index (NDVI) from Landsat-8; (e) Surface wa-
ter estimated from Landsat-8; and (f) Landsat-8 quality flags. The white areas
are cloud-covered pixels detected by the Landsat quality flags, and have been
removed. Both Sentinel-1 and Landsat-8 images were acquired on 17 December

2015.

3.2.2 Ancillary datasets

3.2.2.1 Inundation maps derived from Landsat-8 data

Landsat-8 satellite collects visible and shortwave images (30 m spatial resolution).

NIR wavelength reflects less solar radiation than the red wavelength over wa-

ter bodies [McFeeters, 1996; Xu, 2006], and surface water maps can be derived

from the NDVI maps (water pixels and non-water pixels correspond to negative

and positive values of NDVI, respectively) [Rouse Jr. et al., 1974; Rokni et al.,

2014]. Other indices have been used to detect water, but the NDVI is effective
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when properly corrected from the atmospheric contamination. In this study, of-

ficial and reliable atmospherically corrected Landsat-8 NDVI images are ordered

directly from the U.S. Geological Survey (USGS) website (https://espa.cr.

usgs.gov/index/). To limit cloud effects, only images with less than 10% of

cloud contamination are used. The selected images are further filtered using the

Landsat-8 quality assessment to remove pixels that might be affected by instru-

ment artifacts or subject to cloud contamination. Figure 3.3 (bottom) shows the

NDVI from Landsat-8 (d), the resulting surface water map based on negative

NDVI values (e), and the quality flag (f), for the same regions and the same

day (17 December 2015) as previously presented. Over the Lower Mekong basin

(lower than latitude number 15), there are ∼250 Landsat-8 images available be-

tween January 2015 and January 2016. However, there is only ∼10% (27 images)

with less than 10% cloud contamination. Among the remaining images, only 1/3

was selected for this study since they were observed with a time difference of less

than 3 days from a Sentinel-1 image.

3.2.2.2 Inundation maps derived from MODIS/Terra data

In this study, the MODIS/Terra surface reflectance products (MOD09A1) described

in Chapter 2 are used to create surface water maps based on the Sakamoto method-

ology [Sakamoto et al., 2007]. MODIS surface water maps (500 m spatial resolu-

tion) over the Vietnam Mekong Delta and Cambodia will be compared to the

corresponding surface water maps derived from SAR Sentinel-1 observations for

2015.

All Sentinel-1, Landsat-8 and MODIS/Terra observations used in this study

are listed in Tables 3.2 and 3.3. Sentinel-1 and Landsat-8 training observations are

used to train the NN (Section 3.2). Sentinel-1 and Landsat-8 test observations are

used to test, optimize, and evaluate the performance of the NN (Sections 3.3.3 and

3.4.1). NN evaluation is also based on comparisons with MODIS surface water

estimates (Section 3.4.3).
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TABLE 3.2: List of 9 Sentinel-1 and corresponding Landsat-8 training (top) and
test (bottom) observations used in this study over the Vietnamese Mekong Delta
and Cambodia. Maximum gap between Sentinel-1 and Landsat-8 observations is
only 3 days. The cloud cover percentage is indicated for each Landsat-8 observa-

tion.

Sentinel-1 and Landsat-8 Training Observations
Image No Sentinel-1 Landsat-8 Clouds

1 16 April 2015 14 April 2015 6.29%
2 21 April 2015 21 April 2015 0.05%
3 19 August 2015 18 August 2015 7.94%
4 17 December 2015 17 December 2015 4.84%
5 29 March 2016 31 March 2016 6.22%
6 9 June 2016 10 June 2016 3.94%

Sentinel-1 and Landsat-8 Test Observations
Image No Sentinel-1 Landsat-8 Clouds

1 5 January 2016 2 January 2016 0.16%
2 3 February 2016 3 February 2016 7.5%
3 22 February 2016 19 February 2016 0.29%

TABLE 3.3: List of 20 Sentinel-1 and corresponding MODIS/Terra observations
used in this study over the Vietnamese Mekong Delta and Cambodia.

Sentinel-1 and MODIS/Terra Observations
Image No Date Image No Date

1 10 January 2015 11 14 August 2015
2 3 February 2015 12 26 August 2015
3 15 February 2015 13 7 September 2015
4 11 March 2015 14 19 September 2015
5 4 April 2015 15 1 October 2015
6 28 April 2015 16 13 October 2015
7 15 June 2015 17 25 October 2015
8 27 June 2015 18 6 November 2015
9 9 July 2015 19 30 November 2015

10 21 July 2015 20 24 December 2015
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3.3 Methodology

3.3.1 Surface water information from the Sentinel-1 SAR images

Flat water surfaces act like mirrors and reflect almost all incoming energy in the

specular direction, thus providing very low backscatter for large observation in-

cidence angles. With this physical principle, detection of surface water is often

based, at least partly, on the application of a threshold on the SAR backscatter co-

efficient, with the low backscatter values attributed to water bodies [Nguyen and

Bui, 2001; Wang, 2004; Pierdicca et al., 2013; Kuenzer et al., 2013]. However, SAR

backscatter coefficients over water surfaces are also affected by several mecha-

nisms related to the interaction of the signal with vegetation or with possible sur-

face roughness. The backscattered signals over flooded vegetation in wetlands

can be enhanced due to the double-bounce scattering mechanism [Hess et al.,

1990; Kasischke and Bourgeau-Chavez, 1997; Pope et al., 1997]. On the other side,

the backscatter coefficients can be affected by vegetation canopy (e.g., rice) above

the water surfaces due to volume scattering from the plant components (stems

or leaves) [Liu et al., 2016b]. The backscatter coefficients (especially the VV polar-

ization) can also be influenced by the wind-induced surface roughness over open

water [Gstaiger et al., 2012; Kuenzer et al., 2013]. Finally, there might be ambigui-

ties between surface water and other very flat surfaces (such as arid regions), that

could provide very similar backscatter signatures [Prigent et al., 2015].

Based on a reference water mask derived from Landsat-8 NDVI, Figure 3.4

presents the histograms of the backscatter coefficients for VH and VV polariza-

tions, separately for water and non-water pixels over the incidence angle range

of 30°–45° for the area shown in Figure 3.3. For both polarizations, the water and

non-water histograms are rather well separated, with thresholds of −22 dB and

−15 dB for the VH and VV polarizations, respectively. Using these thresholds, the

surface water has been classified separately for each polarization. The classifica-

tion derived from the VH polarized image had a stronger spatial linear correla-

tion with the reference water mask than the one derived from the VV polarized
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FIGURE 3.4: For surface water delineated with Landsat-8, histograms of the wa-
ter and non-water pixels for the SAR backscatter coefficients in VH and VV po-
larizations for the area shown in Figure 3.3 (over the incidence angle range of 30°

to 45°).

image (72% compared to 62%), confirming a higher sensitivity of the VH polariza-

tion to the presence of surface water [Santoro et al., 2015b]. Using both polariza-

tions for the classification increased the correlation (76%), confirming that the two

polarizations carry different information and that using both of them increases

the retrieval accuracy. These findings confirmed the study by Henry et al. [2006]

where water detection with VV polarization was further refined using multiple-

polarizations.

The effect of the backscatter incidence angle is also tested here. For a collec-

tion of pixels located over water (rivers, reservoirs, or lakes), the backscatter coef-

ficient is plotted as a function of the incidence angle between 30° and 45° (Figure

3.5). Similar negative correlations between incidence angle and backscatter coef-

ficients can also be found in Santoro et al. [2015a] with ASAR data over water

bodies (from ∼ −5 dB at 20° to ∼ −20 dB at 45° of incidence angle).

As a conclusion, the SAR backscatter coefficients (VH and VV polarizations)

are both sensitive to the presence of water, but with slightly different sensitivi-

ties. The effect of the incidence angle, although rather limited within the 29°–46°

range of Sentinel-1 SAR, has to be accounted for if a high detection accuracy is re-

quired. Simple tests on thresholding techniques illustrated the limitations of these

approaches and here I suggest developing a new scheme to delineate the surface
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FIGURE 3.5: The SAR backscatter coefficients (VH and VV polarizations) from
the Sentinel-1 as a function of the incidence angle over water bodies. The linear

regression lines are also plotted.

water based on Neural Networks (NN). The temporal dynamics of the backscat-

ter coefficients can also be a source of information and can help disentangle the

influence of the other surface parameters [Santoro et al., 2015a]. This temporal

information will be investigated and discussed in Section 3.5.

3.3.2 A Neural Network-based classification

Here, I propose training a NN to produce surface water maps from SAR Sentinel-

1 observations, over the Vietnam Mekong Delta and Cambodia. In remote sens-

ing, NNs are often used as a regression tool to estimate a quantity. For each pixel,

NN input satellite observations are represented by a vector x, and the network

outputs (i.e., the retrieval) is represented by a vector y. However, NNs can also

be used as classifiers. In this case, when trained with binary output values (y = 0

for non-water, 1 for water surfaces), the NN becomes a statistical model for the

conditional probability y = P (surface = water/x), i.e., the probability of the sur-

face being covered by water knowing the satellite observations x. The NN output

can then directly be used as an index for water presence probability, but a thresh-

old can also be applied to classify the state as being covered by water or not. The

threshold needs to be optimized in order to satisfy some quality criteria, such as

overall accuracy or false alarm rates.
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FIGURE 3.6: The block diagram of the proposed Neural Network (NN) algo-
rithm.

The NN classifier needs to be trained in order to perform an optimal discrim-

ination between water and non-water states. A supervised learning is chosen: the

NN will be designed to reproduce an already existing classification. A dataset

including a collection of SAR information x and associated surface water state

y is first built. Part of it is then used during the training stage in order to de-

termine the optimal parameters of the NN model. The reference dataset in the

selected area is provided here by a Landsat-8 surface water map (NN outputs),

in spatial and temporal coincidence with the SAR Sentinel-1 data (NN inputs). A

maximum time difference of 3 days is tolerated, as the two satellites do not fly in

phase. Six Landsat-8 surface water maps are selected, along with the correspond-

ing Sentinel-1 observations (see Table 3.2 for details on the training dataset). The

selection process for the Landsat-8 images has been described in Section 3.2.2.1.

For each image in the training dataset, the number of non-water pixels is much

higher than the number of water pixels. To avoid giving too much weight to the

non-water pixels, an equalization of the training dataset is performed: an equal

number of non-water and water pixels is selected in the training dataset. For

this purpose, non-water pixels are selected randomly in the images, to match the
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number of water pixels. The total number of training samples is ∼10 million pix-

els, half water pixels, half non-water pixels. It takes ∼5 h to train the NN (with

the use of a personal computer), but when the training is completed, a surface

water map can be produced quickly (after ∼3–4 minutes) from any new set of

satellite inputs x. A test dataset is chosen to measure the performance of the NN

retrieval scheme with data not used in the training process. The NN methodology

is summarized in Figure 3.6.

Several tests are necessary to determine the optimum inputs to the NN, in

addition to the obvious ones, i.e., the backscatter coefficients for both polariza-

tions. To limit ambiguities between flat arid surfaces and surface water, and to

better capture small rivers, the spatial homogeneity of the backscatter coefficients

appeared to be a relevant parameter. The standard deviations of the backscatter

water pixels non-water pixels

non-analysis pixels

N
50 km

FIGURE 3.7: Example of the five inputs and the target for the NN. (a) SAR
backscatter coefficient VH polarization; (b) SAR backscatter coefficient VV po-
larization; (c) SAR incidence angle; (d) SAR standard deviation of backscatter
coefficient VH polarization; (e) SAR standard deviation of backscatter coefficient
VV polarization; and (f) Target surface water map based on NDVI from Landsat-
8. The white areas are cloud-covered pixels detected by the Landsat quality flags,
and they have been removed. Sentinel-1 and Landsat-8 images were acquired on

16 and 14 April 2015, respectively.
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coefficients are computed locally over 150 m × 150 m boxes. As a result, the NN

uses five different inputs x:

• SAR backscatter coefficient VH polarization (BS_VH);

• SAR backscatter coefficient VV polarization (BS_VV);

• SAR standard deviation of backscatter coefficient VH over 150 m × 150 m

(STD_VH);

• SAR standard deviation of backscatter coefficient VV over 150 m × 150 m

(STD_VV);

• and SAR incidence angle.

Figure 3.7 presents an example of the set of five inputs and the target surface wa-

ter map used to train the NN. Missing areas in the maps correspond to Landsat-8

low quality pixels and are excluded from the training. The NN model is asked

to find a relationship between these five input parameters and the corresponding

water and non-water state.

3.3.3 NN sensitivity tests

In this section, a test dataset of three SAR Sentinel-1 images and three correspond-

ing Landsat-8 reference surface water maps is used to make several sensitivity

tests in order to optimize the performance of the NN classification (see details

of the test data sets in Table 3.2). Three different sensitivity tests are carried out:

(1) selecting the best threshold of the NN output to classify land/water surface;

(2) understanding the effect of the equalization of the water and non-water pix-

els in the NN training dataset; and (3) finding the most important satellite NN

inputs. The NN performances have been evaluated based on: spatial correlation

between the SAR and Landsat-8 surface water maps, overall accuracy of the NN,

as well as higher values of true positive (TP) and true negative (TN) percentages.

True positive value indicates the NN ability to correctly detect water pixels, while

true negative value illustrates its ability to correctly detect non-water pixels (com-

pared to the Landsat-8 surface water maps).
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3.3.3.1 Selection of an optimized threshold for the NN output

The first test is conducted to optimize the output threshold to distinguish wa-

ter from non-water pixels. Figure 3.8 shows the histogram of the output of the

NN, separating the water and non-water pixels according to the related Landsat-

8 surface water map. The histograms of the water and non-water clusters intersect

around 0.9, meaning that the optimal threshold to separate water from non-water

pixels is close to this number. Different thresholds on the NN output values are

tested (0.80, 0.85, and 0.90): for each one, the confusion matrix and the overall

accuracy are calculated, with the corresponding Landsat-8 images as references.

The overall accuracy and the spatial correlation increase from 98% to 99% when

the threshold increases from 0.80 to 0.90 (Table 3.4), but the true positive pixel de-

tection decreases from 92% (with threshold 0.80) to 89% (with threshold 0.90) and

the false negative pixel detection increases from 8% to 11%. A threshold of 0.85

is selected here because of its good water detection performance and because it

results in the predicted water surface closest to the reference map: 4430 km2 from

the Landsat-8 versus 4420 km2 from the SAR results, i.e., a limited overestimation

of 0.4% as compared to the reference map.
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FIGURE 3.8: Histograms of the NN outputs, for water (blue) and non-water
(dashed red) pixels separately, according to the corresponding Landsat-8 surface
water maps. The NN uses the five initial inputs and the training dataset is equal-
ized. The y axis range is selected to illustrate the peak of the water histogram.

The black vertical line shows the chosen threshold (0.85).
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TABLE 3.4: Confusion matrix of the NN classification for different thresholds.
The NN uses the five initial inputs and the training dataset is equalized.

Output Threshold: 0.80

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 99.3% 0.7%
98% 91%(Actual)

Water(1) 8% 92%(Actual)

Output Threshold: 0.85

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 99.5% 0.5%
99% 92%(Actual)

Water(1) 9% 91%(Actual)

Output Threshold: 0.90

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 99.6% 0.4%
99% 91%(Actual)

Water(1) 11% 89%(Actual)

3.3.3.2 Equalization of water and non-water pixel number

For this test, instead of using an equal number of water and non-water pixels

in the training dataset, 10% of each Sentinel-1 image is selected randomly to

train the neural network, meaning that the number of non-water pixels is sev-

eral times higher (10–15 times depending on each image in the training dataset)

than the number of water pixels (as seen in Figure 3.8). The intersection between

histograms of the NN outputs for water pixels (blue) and non-water pixels (red)

moves to 0.5 (see the histogram in Figure 3.9), meaning that the value 0.5 should

be selected to separate water and non-water clusters. As shown in Table 3.5, the

resulting NN is very efficient at detecting non-water pixels with a true negative
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detection of 99.7%, but it misses 14% of the actual water pixels (86% of true pos-

itive detection only, compared to 91% with the equalized training dataset—Table

3.4). The true positive detection of water pixels decreases because in the training

database the non-water pixels are more numerous and as such have more weight

in the retrieval than the water pixels. As a consequence, the NN is more effec-

tive at detecting non-water pixels, and less effective at detecting water pixels. It is

concluded that the use of an equalized training data set is very important in this

classification framework.
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FIGURE 3.9: Histograms of the NN outputs, for water (blue) and non-water
(dashed red) pixels separately, according to the corresponding Landsat-8 sur-
face water maps. The NN uses the five initial inputs but the training dataset is
not equalized. The y axis range is selected to illustrate the peak of the water his-

togram. The black vertical line shows the chosen threshold (0.5).

TABLE 3.5: Confusion matrix of the NN without equalization of the training
dataset, for an optimum threshold of 0.5 on the NN outputs.

Non-water (0) Water (1)
(Predicted) (Predicted)

Non-water(0) (Actual) 99.7% 0.3%
Water(1) (Actual) 14% 86%

3.3.3.3 Analyzing the weight of each NN satellite input

To identify the most relevant inputs for the NN classification of the water surface,

15 NNs are trained based on all 15 different combinations from the five input pa-

rameters, and their performances are evaluated following various criteria. Table
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3.6 presents the best results with one to five inputs and illustrates how the overall

accuracy of the NN classification increases when the number of satellite inputs

increases, as compared to the reference Landsat-8 dataset. The NN trained with

only the VH backscatter coefficient has a spatial correlation of 78% and a true pos-

itive accuracy (correctly detecting water pixels) of 77% compared to the reference

data. The spatial correlation increases to 79%, and the true positive accuracy rises

to 85% when the standard deviation of the VV backscatter coefficient is added as

an input to the NN. The VV backscatter coefficient helps to increase the perfor-

mance of the NN since both spatial correlation and true positive accuracy increase

to 87% and 90%, respectively. The standard deviation of the VH backscatter coef-

ficient does not significantly improve the accuracy of the NN classification. This

is due to the strong linear correlation (88%) between the spatial standard devia-

tions of the VH and the VV backscatter coefficients (the other linear correlations

among the five input parameters of the NN are provided in Table 3.7). Similar to

the standard deviation of the VH backscatter coefficient, the incidence angle does

not have a strong impact on the performance of the NN since its accuracy remains

nearly the same after adding the incidence angle as a new input. The input pa-

rameters of the NN classification are listed below, from the most important to the

least important one in the NN processing:

• Backscatter coefficient VH polarization (BS_VH)

• Standard deviation of backscatter coefficient VV polarization (STD_VV)

• Backscatter coefficient VV polarization (BS_VV)

• Incidence angle

• Standard deviation of backscatter coefficient VH polarization (STD_VH)

To conclude, the water detection ability of the proposed NN increased when the

input parameters are carefully selected and when an optimal output threshold is

selected. An equal number of water and non-water pixels should be used in the

training dataset to ensure that the NN performs equally well in classifying water

and non-water clusters. The STD_VH provides limited additional information

to the NN due to its strong linear correlations with the other NN inputs. The

incidence angle also plays a limited role in the NN performance. This is partly

due to the rather narrow range of incidence angles, from 29° to 46°.
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TABLE 3.6: The NN classification performances when adding input parameters,
one at a time.

One Input: BS_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2%
78%(Actual)

Water(1) 23% 77%(Actual)

Two Inputs: BS_VH + STD_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2% 79%(Actual)

Water(1) 15% 85%(Actual)

Three Inputs: BS_VH + STD_VV + BS_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99% 1%
87%(Actual)

Water(1) 10% 90%(Actual)

Four Inputs: BS_VH + STD_VV + BS_VV + Angle

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99.5% 0.5%
91%(Actual)

Water(1) 10% 90%(Actual)

Five Inputs: BS_VH + STD_VV + BS_VV + Angle + STD_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-Water(0) 99.5% 0.5%
92%(Actual)

Water(1) 9% 91%(Actual) 65
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TABLE 3.7: Linear correlations among the five potential NN inputs.

BS_VH BS_VV STD_VH STD_VV ANGLE

BS_VH 100%
BS_VV 84% 100%

STD_VH 24% 20% 100%
STD_VV 21% 21% 88% 100%
ANGLE 25% 22% 11% 6% 100%

3.4 Results and comparisons with other surface water

products

The following results and comparisons involve the optimized version of the NN

classification with five input parameters (an equalization of water and non-water

pixels, and an output threshold at 0.85). In Section 3.4.1, the SAR-predicted sur-

face water maps are calculated for two test areas, then compared to Landsat-8

surface water maps over the Tonle Sap Lake in Cambodia and over the Mekong

river in Vietnam (see test dataset in Table 3.2). Other regions are tested but the

results are not shown here. Due to the lack of in situ local surface water maps at

the time of this study, a reference dataset is not available to confirm the accuracy

of the Landsat-8 based maps. Therefore, an inter-comparison between Sentinel-1

estimate and other existing estimates is the only way to evaluate the new wet-

land product based on SAR Sentinel-1 data. First, the results are evaluated with

respect to the floodability map derived mainly from the HydroSHEDS topogra-

phy dataset [Lehner et al., 2006], developed by Aires et al. [2017] (Section 3.4.2).

Second, time series of the SAR-derived surface water over the Mekong Delta is

compared to the MODIS/Terra-derived inundation maps based on the method-

ology described by Sakamoto et al. [2007], for 2015 (Section 3.4.3)
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3.4.1 Evaluation of the SAR NN classification method with Landsat-

8 images

Figure 3.10 shows results of the NN classification applied over the Tonle Sap Lake

in Cambodia (top) and over the Mekong river in Vietnam (bottom), in February

2016. Figure 3.10a,d shows the SAR-predicted surface water maps, Figure 3.10b,e

presents the reference Landsat-8 surface water maps, whereas the differences be-

tween these two surface water maps are shown in Figure 3.10c,f.

Over the Tonle Sap Lake, both Sentinel and Landsat images were acquired on

the same day (3 February 2016). The spatial correlation between the two surface

water maps is 94%. The confusion matrix for this area is given in Table 3.8 (top).
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FIGURE 3.10: (a,d) SAR surface water maps; (b,e) Landsat-8 surface water maps;
and (c,f) their differences; over the Tonle Sap Lake (left), and over the Mekong
river (right), for February 2016. Blue color presents water pixels while orange
color presents non-water pixels detected by both Sentinel and Landsat, green
color is Landsat water/Sentinel non-water pixels, and light blue color is Sentinel

water/Landsat non-water pixels.
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TABLE 3.8: Confusion matrices (in numeric and percentage forms) of the SAR-
predicted surface water maps and the Landsat-8 reference surface water maps,

over the Tonle Sap Lake (top) and over the Mekong River (bottom).

Tonle Sap Lake

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 11,641,078 44,493
(Actual) (99.6%) (0.4%)

Water(1) 71,884 1,023,457
(Actual) (6.5%) (93.5%)

Mekong River

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 10,983,583 85,096
(Actual) (99.2%) (0.8%)

Water(1) 51,611 309,982
(Actual) (14.3%) (85.7%)

Overall accuracy of the classification is 99%, with a true positive water detec-

tion of 93.5%, and a false negative percentage of 6.5%. The classification correctly

detects more than 99.6% of non-water pixels compared to the reference map. The

classification slightly underestimates the surface water coverage by ∼2.5%. This is

961 km2 compared to the reference surface water map derived from the Landsat-8

images of 986 km2.

The second case study is carried out over the Mekong River and its sur-

rounding areas (latitude range [10.8°N–11.8°N] and longitude range [104.6°E–

105.6°E]). The optical Landsat-8 images were taken on 19 February 2016 and

the SAR Sentinel-1 images were taken 3 days later, on 22 February 2016. These

Sentinel and Landsat images were not acquired on the same day, but within 3

days in the middle of the dry season when land surfaces in this area are not ex-

pected to change much. Similar to the first case study, the classification works

well, even though the environment here is rather complex, with rivers and vege-

tated wetlands. The overall accuracy is 98.8%, with a spatial correlation of nearly

82% with the Landsat-8 reference surface water map. Confusion matrix for this
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area is shown in Table 3.8 (bottom) where the true positive percentage is 85.7%,

the false negative percentage 14.3%, and 99.2% of non-water pixels are classified

correctly. The total surface water area derived from Landsat data is 325 km2, and

it is 355 km2 predicted from the NN.

Similar results are found when applying the NN classification to other areas.

To conclude this comparison, the proposed NN methodology correctly detected

∼90% of the water pixels observed by Landsat-8, with a spatial correlation of

∼90%. The NN works better over open water bodies than over other heteroge-

neous environments. For instance, the NN has difficulties detecting small river

branches (Southeast of the Tonle Sap Lake in Figure 3.10—top panel) although

they are clearly detected with Landsat-8 images. The NN can provide water maps

with high accuracy compared to the reference Landsat-8 water maps. Errors could

come from the following factors:

• The SAR responses can be affected by complex interactions with the terrain

and the vegetation, especially along small river banks. It can be difficult to

account for this local complexity in the methodology.

• In the SAR water detection method, as in any other classifications method

scheme, different parameters are selected to optimize the overall perfor-

mance of the method, but local ambiguities can still exist.

• Sentinel-1 and Landsat-8 data are not always acquired on the same day.

• Using Landsat-8 quality flags, cloud-covered pixels are expected to be re-

moved, but some cloud and cloud-shadow pixels can still be present. This

can cause some ambiguities in the NN training dataset.

• Reference surface water maps derived from negative NDVI values on the

Landsat-8 images are not always perfect. Water under vegetation can be

difficult to detect with Landsat-8 observations. The NDVI values can also be

impacted for highly turbid waters where the NIR reflectance can be higher

than the red reflectance.

69



Chapter 3 Surface Water Monitoring within the Mekong Delta and Cambodia using SAR Sentinel-1
Satellite Observations

3.4.2 Evaluation using a topography-based floodability index

A global floodability index based on topography has been developed by Aires

et al. [2017]. It uses mainly the hydrological data and maps based on the SHut-

tle Elevation Derivatives at multiple Scales (HydroSHEDS) dataset [Lehner et al.,

2006] that has been derived from elevation measured by the Shuttle Radar To-

pography Mission (SRTM) satellite. This floodability index provides a static map

of an estimate of the probability for a pixel to be inundated (between 0% and

100%) at the spatial resolution of 90 m, based only on topography information

(such as slope in the pixel, distance to the closest river, difference of elevation

with the closest river). Figure 3.11a presents this floodability index map over the

Mekong Delta and Cambodia. As expected, all rivers and lakes in this area have

a very high probability of being inundated (over 80%). Since this index is based

only on topography, its reliability is higher for natural environments and it can

be less precise over regions with strong anthropic impact such as irrigated areas.

The floodability data are down-scaled from 90 m to 30 m spatial resolution to

compare with predicted SAR surface water maps over the Tonle Sap Lake and

the Vietnamese Mekong Delta. Each floodability pixel is divided into a 3 × 3 ma-

trix with the same value, and projected onto the Sentinel-1 grid. By comparing

these two products, it is possible to see where and how Sentinel-1 water pixels

are located with respect to the floodability index, and test the consistency be-

tween these two independent products. Figure 3.11b–e shows floodability maps

at 30 m spatial resolution and predicted Sentinel-1 water maps, over four differ-

ent areas in the Mekong Delta. SAR surface water areas are generally located in

areas with high predicted inundation probabilities, as expected (see Table 3.9). A

total of 98% of the SAR surface water pixels are located in areas where the flood-

ability index is greater than 60%, while only 2% of the SAR surface water pixels

are located in areas with a lower floodability index (≤60%). As mentioned ear-

lier, the floodability index only relies upon topography information, and it can be

less precise over regions with strong anthropic activities, such as irrigation. There

are many rice paddies in the Lower Mekong Delta, and these irrigated fields can

be missed by the floodability index, contributing to the 15% errors of SAR water

pixels located in areas with a floodability index less than 80%. In the future, in

complex-topography environments where SAR only data could not provide the
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required accuracy for the water classification (the Red River Delta in the North

of Vietnam, for example), the floodability index information could be added as

another input to the NN to improve the classification performance.

TABLE 3.9: Performance of the SAR surface water classification for different
ranges of floodability index.

Floodability Index ≤40 40–60 60–80 ≥80

Percentage of surface water pixels 1% 1% 13% 85%detected by the NN classification

N

water pixels

non-water pixels

non-analysis pixels
60 km

N

N

200 km

(a)

(b)

(c)

(d)

(e)

FIGURE 3.11: (a) Topography-based floodability index map over the Mekong
Delta from Aires et al. [2017]. (b–e) Comparisons of floodability index maps and
SAR-predicted surface water maps for four areas over the Vietnamese Mekong

Delta and Cambodia.
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3.4.3 Comparisons with MODIS/Terra-derived inundation maps

In this section, the 30 m SAR surface water maps are compared to the 500 m

MODIS/Terra-derived surface water maps, for a region in the Mekong Delta. One

year (2015) of SAR Sentinel-1 and MODIS/Terra data are extracted, over the same

region (latitude [9.8°N–11.3°N]; longitude [104.75°E–107°E]). The MODIS surface

water maps are derived from the method described by Sakamoto et al. [2007]. The

methodology is re-produced to calculate surface water maps with three different

states of non-water, water, and mixed pixels, respectively (as already described

in Chapter 2) . The total MODIS surface water is the sum of the water pixels

(100% area is inundated) and mixed pixels (part of these pixels is inundated). For

a mixed pixel, two hypothesis are tested: 25% or 50% of the pixel is inundated.
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FIGURE 3.12: Time series of the surface water detected by SAR (red) and
MODIS data (black), over the Mekong Delta (Latitude [9.8°N–11.3°N]; Longitude
[104.75°E–107°E]), for 2015. Two hypotheses are tested for the MODIS mixed pix-

els: 50% inundated (top Panel), and 25% inundated (bottom Panel).

Twenty SAR Sentinel-1 observations are available over the selected region for

the year 2015 (less than two images per month—see Table 3.3). The surface wa-

ter extent calculated from the SAR and MODIS data are presented in Figure 3.12.

With the first assumption (25% of a mixed MODIS pixel is covered by water), the

two surface water extents have very similar seasonal cycles and amplitudes, with

a correlation of ∼99% (Figure 3.12-bottom). For the second assumption (the sur-

face water extent of a mixed pixel increases to 50%), the difference in surface wa-

ter areas increases, but without significant changes in the seasonal cycle and still
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with high correlation to the SAR surface water time series. For both hypotheses,

the SAR and MODIS surface water extents reach their maximum at the same time

(around 20 October 2015). Total inundated areas derived from SAR and MODIS

are very close during the dry season (January to July). The cloud contamination

of the MODIS estimate is low during that season. During the rainy season, more

cloud contamination is expected in the MODIS estimates, and the discrepancies

between the two surface water extents increase. The SAR-derived surface water

estimate is expected to be more reliable due to its insensitivity to the cloud cover,

but at this stage there is no convincing dataset at this spatial resolution to confirm

it, as mentioned before.

water pixels

mixed pixels

N

100 km
(d)(c)

(b)(a)

FIGURE 3.13: (a,c) SAR and (b,d) MODIS surface water maps at 500 m resolution
over the Mekong Delta in May (a,b) and October (c,d) 2015.
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To evaluate the consistency of the spatial structure between the SAR-derived

and the MODIS-derived surface water maps, 10 SAR Sentinel-1 images were

downloaded to cover the Mekong Delta and the Tonle Sap Lake (five images in

May and five images in October 2015). For comparison purposes and to calculate

the spatial correlation, the SAR surface water maps are aggregated from the 30 m

resolution to the 500 m resolution of the MODIS-derived inundation maps (see

Figure 3.13a,c). As a consequence, Sentinel-1-derived inundation maps are not

binary (0 for non-water pixels or 1 for water pixels), but they are converted into a

percentage of surface water at 500 m spatial resolution. For the dry season (Figure

3.13a,b—May 2015), the spatial correlation between the two surface water maps

is 68%. A total of 4% of the area is inundated for the SAR estimation, while it is

5% for the MODIS estimates. For the rainy season (October 2015), the spatial cor-

relation of the two maps increases to 78%, with 8% inundated area with the SAR

and 11% with MODIS. For these calculations, the hypothesis of 25% inundation

of the MODIS mixed pixels is used. Although SAR-derived and MODIS-derived

water maps have a very similar seasonal cycle and similar spatial distribution of

the water bodies, confirming the wetland seasonal cycle over this region, there

are differences in the total surface of inundated areas. It comes mainly from the

difference of spatial resolution between the two satellites. First, MODIS sensors

cannot detect very small surface water fractions due to their spatial resolution.

Second, the MODIS mixed pixels include water surfaces, vegetation surface and

bare soil, and the percentage of each surface type within the pixel is not quanti-

fied.

3.5 Improvement of the Neural Network

One of the limitations of the proposed NN is its inability to classify perfectly be-

tween water surfaces and very dry, flat surfaces because of their similar backscat-

ter signatures [Prigent et al., 2001, 2007, 2015]. Both surface types reflect almost

all incoming signals to other directions, making their backscatter coefficient very

low, and they all appear very dark in the images for both VH and VV polariza-

tions. In this section, temporal information from a set of several SAR Sentinel-1
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(a) (b)

FIGURE 3.14: (a) Minimum backscatter and (b) Temporal variability of the VH
polarization over the Vietnam Mekong Delta and Cambodia, calculated from 12

other SAR Sentinel-1 observations in 2016.

observations are added to the NN to examine if they can improve the perfor-

mance of the NN over these problematic areas.

Two new parameters derived from the VH polarization are added to the in-

put of the NN: the temporal variability (TV_VH) and the minimum backscatter

(MB_VH). The temporal variability is defined as the standard deviation of the

multi-temporal of the backscatter dataset, and the minimum backscatter is de-

fined as the 5th percentile of the backscatter dataset [Santoro et al., 2015b] . These

two new parameters are calculated from 12 other Sentinel-1 observations. The TV

and MB from the VV polarization are not studied because of its high linear cor-

relations with that derived from the VH polarization (more than 85% as seen in

Table 3.7 between BS_VH and BS_VV, or between spatial STD_VH and STD_VV).

Examples of TV_VH and MB_VH maps, calculated from 12 other Sentinel-1 ob-

servations between January and December 2016, are shown in Figure 3.14. As a

consequence, a new NN with 7 input parameters is trained. Performance compar-

isons between the 5-input NN (NN5) and the 7-input NN (NN7) are discussed in

the following section.
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3.5.1 Performance comparisons between NN5 and NN7
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FIGURE 3.15: Histograms of the 5-input (left) and 7-input (right) NNs, for wa-
ter (blue) and non-water (dashed-red) pixels separately, according to the corre-
sponding Landsat-8 surface water maps. The training datasets is equalized. The
y axis range is selected to illustrate the water histogram. The black vertical lines

show the chosen threshold (0.85).

TABLE 3.10: Confusion matrices of the SAR-predicted surface water maps de-
rived from the NN5 (top) and from the NN7 (bottom), and the Landsat-8 surface

water reference maps. The output threshold 0.85 is used.

5-Input NN

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 98.7% 1.3%
97.6% 85%(Actual)

Water(1) 13.4% 86.6%(Actual)

7-Input NN

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 99% 1%
98.2% 88.3%(Actual)

Water(1) 11.2% 88.8%(Actual)

The NN7 is trained the same way as the NN5, except that it has two more

input parameters as already introduced. A test dataset is used to compare per-

formances of the two NNs. Histograms of the outputs of the two NNs are shown

in Figure 3.15, along with the corresponding Landsat-8 surface water reference
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maps. It is clear that the small peak of the non-water curve (dashed red) from the

NN7 (right) is lower than that from the NN5 (left). This means that the perfor-

mance of the NN7 is better than the NN5, because the NN7 shows less ambigu-

ities than the NN5. The chosen output threshold (0.85) is applied to outputs of

the two NNs to make SAR-predicted surface water maps, then compared to the

Landsat-8 surface water reference maps. Detailed comparisons are shown by the

confusion matrices in Table 3.10. All indices (true positive and true negative de-

tection, overall accuracy and spatial correlation) from the NN7 are slightly higher

than that from the NN5. The spatial correlation increase from 85% with the NN5

to 88.3% with the NN7, while the overall accuracy increases by 0.6% (from 97.6%

to 98.2%). The NN7 is better than the NN5 in detecting water pixels since the true

positive detection increases by more than 2%, from 86.6% to 88.8%.

water pixels

non-water pixels

non-analysis pixels

Sentinel water/Landsat non-water

both water

both non-water

Landsat water/Sentinel non-water

FIGURE 3.16: (a,b) SAR surface water maps derived from the NN5 and NN7; (c)
Landsat-8 surface water map; and (d,e) their differences. Sentinel-1 images were
acquired on 10 April 2016, while Landsat-8 images were acquired 4 days earlier
on 6 April 2016. Landsat-8 cloud-covered pixels is less than 1%, and have been

removed.
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TABLE 3.11: Confusion matrices of the SAR-predicted surface water maps de-
rived from the NN5 (top) and from the NN7 (bottom), and the Landsat-8 surface
water reference maps, for an 1°× 1° area shown in Figure 3.16. The output thresh-

old 0.85 is used.

5-Input NN

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 12,531,691 410,031

96.4% 60%(Actual) (96.8%) (3.2%)

Water(1) 58,440 315,208
(Actual) (15.6%) (84.4%)

7-Input NN

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) 12,860,918 80,804

98.9% 80%(Actual) (99.4%) (0.6%)

Water(1) 62,834 310,814
(Actual) (16.8%) (83.2%)

Surface water maps derived from the NN5 and NN7, focusing on a prob-

lematic area (latitude [10.9°N–11.9°N]; longitude [104.9°E–105.9°E]), are shown

in Figure 3.16a,b, along with the reference Landsat-8 surface water map (Figure

3.16c), as well as the differences between SAR-derived and Landsat-derived wa-

ter maps (Figure 3.16d,e). For this 1°× 1° area, the NN5 detects much more water

pixels than the NN7. Total inundated surface derived from the NN5 is 652 km2,

nearly double that derived from the NN7 and from Landsat-8 data (352 km2 and

336 km2, respectively). Compared to the Landsat-8 reference water map, most of

the wrong classified water pixels from the NN5 are corrected as non-water pixels

by the NN7. Confusion matrices of the SAR and Landsat derived surface water

maps for this area are shown in Table 3.11. Although the true positive detection

slightly decreases (84.4% to 83.2%), but all other indices increase when using the

NN7. The spatial correlation with the Landsat-8 reference surface water map rise

by 20% (from 60% to 80%). True negative detection increases from 96.8% to 99.4%,

making the overall accuracy going from 96.4% to 98.9%.

By comparing the NN5 and NN7 over a problematic area, it is proved that
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the NN performance can be slightly improved by adding temporal information

derived from the temporal variability and the minimum backscatter of the VH

polarization. Adding two more parameters to the NN input partly solves prob-

lems related to the similar backscatter signatures between water surfaces and dry,

flat surfaces.

The new trained NN7 is used to produce regular surface water maps for the

area shown in Figure 3.14, for the period from January 2015 to June 2017. Its sur-

face water time series is shown in Figure 3.17. It shows clearly the effect of the

super drought in the Mekong basin in 2015 that made the maximum surface wa-

ter just a half of that in 2016. An inundated frequency map (for the 2015-2017

period) is created based on all available SAR-derived surface water maps (Fig-

ure 3.18). Comparisons with the same inundated frequency maps derived from

optical MODIS, and Landsat data will be shown in Chapter 4. Monthly temporal

surface water changes over the Mekong Delta and Cambodia are illustrated in

Figure 3.19, showing when and where the surface water has changed in 2016.

Jan15 Jan16 Jan17
0.5

1

1.5
10

4 SAR Sentinel-1 surface water extent (km
2
)

FIGURE 3.17: SAR Sentinel-1 surface water time series from January 2015 to May
2017 for the area shown in Figure 3.14.

3.6 Conclusions and perspectives

This study presents a methodology to monitor and quantify surface water under

all weather conditions within the Vietnam Mekong Delta and Cambodia, using
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FIGURE 3.18: Inundation frequency between January 2015 and June 2017 derived
from SAR-predicted surface water maps over the Vietnam Mekong Delta and

Cambodia.

high quality Sentinel-1 SAR observations, freely available online. The method-

ology is based on a neural network classification trained with optical Landsat-8

images at 30 m spatial resolution. The information content of each satellite input

is analyzed and the inputs are selected to optimize the performance of the classifi-

cation. This method allows for the detection of surface water with good accuracy

when compared to results derived from visible and NIR data under clear sky

conditions, as well as when compared to a floodability map derived from topog-

raphy data. Surface water maps derived from the proposed NN show a spatial

correlation of ∼90% when compared to Landsat-8 water maps, with a true pos-

itive water detection of ∼90%. Compared to MODIS/Terra water maps over the

Delta in 2015, this product shares the same wetland seasonal cycle and dynamics,

with a temporal correlation of ∼99%. Temporal information in the SAR backscat-

ter (i.e., minimum and standard deviation of the VH polarization time series)

80



Chapter 3 Surface Water Monitoring within the Mekong Delta and Cambodia using SAR Sentinel-1
Satellite Observations

are also useful for the NN to improve its ability in detecting water pixels. More

detailed comparisons with MODIS surface water maps, as well as other hydro-

logical parameters will be shown and discussed in Chapter 4.

In the future, the NN methodology will be applied to other areas under sim-

ilar environments in Southeast Asia and in other parts of the globe, then in more

vegetated environments. The final goal is to develop a general method capable of

performing at the global scale to exploit the full spatial coverage of the Sentinel-1

mission. For this purpose, several approaches will be tested to improve the re-

trieval scheme. First, the introduction of a priori information from a topography-

based floodability index will increase information on flooding and reduce ambi-

guities in the SAR signal with other surface parameters. Second, with the launch

of the optical Sentinel-2 satellite, Sentinel-2 observations could be used to replace

Landsat-8 data, and to train the SAR surface water classification under clear sky

conditions. The classification could then be extended to the cloudy areas using

the SAR data. Third, the high-resolution inundation extent retrieval maps could

be post-processed in order to reduce the inherent noise in such high-spatial re-

trievals. Random walk techniques are planned to test for that purpose.

Part of the work in this chapter was selected to write a paper named "Surface

Water Monitoring within Cambodia and the Vietnamese Mekong Delta over a

Year, with Sentinel-1 SAR Observations", published in Water in May 2017.

Regular (twice a month) Sentinel-1 surface water maps for this area from Jan-

uary 2015 to present time are stored on the University of Science and Technology

of Hanoi (USTH) Space and Aeronautics Department website, and they are pro-

vided freely to final users. The surface water maps are updated monthly.

English version: http://space.usth.edu.vn/en/news/projects/

Vietnamese version: http://space.usth.edu.vn/vi/news/du-an/
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FIGURE 3.19: Monthly temporal changes of surface water extent in the Vietnam
Mekong Delta and Cambodia, for 2016.
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4.1 Introduction

Understanding the variation of surface water storage is now recognized as a ma-

jor task in climate research and in water resource management because it is a key

component to study the terrestrial branch of the global water cycle [Bullock and

Acreman, 2003]. Quantifying the temporal variation of the surface water volume

has many applications, and our current knowledge of the interannual variabil-

ity of the land surface water storage is still rather limited [Alsdorf et al., 2007].

Estimations of surface water volume variations within large river basins mostly

relied on in situ observations and hydrological models [Coe et al., 2002; Goteti

et al., 2008]. Recently, variations of the surface water volumes at different river

basins can be estimated using satellite remote sensing techniques [Frappart et al.,

2006a,b, 2011; Papa et al., 2013, 2015].

This chapter is developed to take advantages of satellite observations to esti-

mate the variation of the surface water volume in the lower Mekong basin over

the last decades. By definition, the surface water volume is the product of the

surface water extent and the surface water height. The MODIS-derived surface

water extent dataset is used as the first component. The methodology is well de-

scribed in Chapter 2. Here, MODIS-derived surface water extent is evaluated with

other datasets, including SAR-derived surface water extent, precipitation and in

situ water level data. It is also compared to the Multivariate ENSO index to un-

derstand the effects of the ENSO index to variation of surface water extent. The

surface water height at satellite virtual stations are extracted from satellite altime-

try data, then are also evaluated by comparing with results from previous studies

and with in situ water level data at gauge stations when available. The consis-

tency between the two components, surface water extent and height, is checked

first by comparing their monthly variations for the common period. Then the sur-

face water volume variation is calculated from the two components, based on a

methodology described in Frappart et al. [2008, 2011]. Results are evaluated by

comparing with the total land surface water volume variation from GRACE data,

and with variation of the discharge of the Mekong River from in situ measure-

ments.
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Section 4.2 introduces all datasets used in this chapter. Evaluations of the

MODIS-derived surface water extent are presented in section 4.3. The analyses

of the satellite altimeter data to produce surface water level maps are described

in section 4.4. Section 4.5 presents the methodology to calculate the water volume

variation and evaluates its results. Section 4.6 concludes this chapter.

4.2 Datasets

4.2.1 Satellite altimetry data

Radar satellite altimetry data from three satellites (ENVISAT, JASON-2 and SARAL)

are used to estimate time series of surface water level over the Tonle Sap Lake,

and along the main stream of the Mekong River. Altimetry data used in this

study were developed, validated, and distributed by the Centre of Topography

of the Oceans and the Hydrosphere (CTOH) in the Laboratoire d’Études en Géo-

physique et Océanographie Spatiales (LEGOS), France (http://ctoh.legos.

obs-mop.fr/). The Environmental Satellite (ENVISAT), the successor of the

ESA European Remote Sensing satellites (ERS-1 and ERS-2), is the largest civilian

Earth observation mission with ten instruments onboard, including an altime-

ter. The Joint Altimetry Satellite Oceanography Network satellite series (JASON-

1,2,3) are the successors of the TOPEX/Poseidon mission. It is a joint project be-

tween NASA and the Centre National d’Études Spatiales (CNES) with the main

objective focusing on oceanography (measurement of ocean surface topography,

surface wind speed and mean wave height). The Satellite with ARgos and AL-

tiKa (SARAL), is a joint project between the Indian Space Research Organization

(ISRO) and CNES. SARAL/ALTIKA instrument was designed to fill the gap be-

tween ENVISAT and Sentinel-3, and it provides a better spatial resolution and

a higher vertical resolution for oceanographic applications (sea surface height,

wave height, wind speed, ice, coastal areas, and continental water bodies, for ex-

ample). A summary of the satellites with altimeters is presented in Table 4.1. EN-

VISAT/SARAL (left) and JASON-2 (right) ground tracks in the Mekong basin are

displayed in Figure 4.1. Note that ENVISAT and SARAL satellites are designed
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to have the same ground tracks until the ENVISAT had to change to a lower orbit

in 22 October 2010.

TABLE 4.1: Several commonly used satellites providing altimetry data.

Satellites Agency Re-visiting Altitude Instrument Frequency
(days) (km) (GHz)

ENVISAT ESA 35 800 Radar Altimeter 2 13.575
(2002-2012) 3.2
JASON-1 NASA/ 10 1336 Poseidon 2 13.575

(2001-2013) CNES 5.3
JASON-2 NASA/ 10 1336 Poseidon 3 13.575

(2008-present) CNES 5.3
JASON-3 NASA/ 10 1336 Poseidon 3b 13.575

(2016-present) CNES 5.3
SARAL CNES/ 35 800 ALTIKA 35.75(2013-present) ISRO

FIGURE 4.1: ENVISAT/SARAL (left) and JASON-2 (right) ground tracks over the
Mekong basin (from China to Vietnam).

4.2.2 GRACE data

The Gravity Recovery And Climate Experiment (GRACE) data can be used to de-

rive the monthly variation of the total land water storage in the lower Mekong
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basin with an accuracy of ∼1.5 cm of equivalent water thickness [Papa et al.,

2013]. It is based on measurements of the spatiotemporal changes in the grav-

ity field of the Earth. Since its launch in March 2002, monthly GRACE grav-

ity solutions data are provided by three different processing centers: the Geo-

forschungsZentrum Potsdam (GFZ), the Center for Space Research at University

of Texas, Austin (CSR), and the Jet Propulsion Laboratory (JPL). To reduce noise

in the gravity field solutions, the average of the three products is used in this

study as suggested in Sakumura et al. [2014].

4.2.3 In situ water level and river discharge data

In situ water level provided by the Mekong River Commission (MRC) are used as

the reference for comparisons with results derived from satellite altimetry data.

Daily in situ water level data at 8 gauge stations along the main stream of the

Mekong River in Laos PDR and Cambodia, over the 2008-2016 period, can be

found at the MRC’s webpage: http://ffw.mrcmekong.org/historical_

rec.htm. Water level data were available only during rainy seasons between

2008 and 2012, before the full records for each year were provided from 2013

until present time. Table 4.2 shows locations of the 8 MRC gauge stations and the

distances to its closest ENVISAT/SARAL satellite virtual stations (VS). A "virtual

station" can be defined as intersections between the satellite ground tracks and a

water surface [Roux et al., 2010].

TABLE 4.2: Locations of 8 in situ gauge stations along the Mekong River
main stream in Laos PDR and Cambodia, and the distance to its closest EN-

VISAT/SARAL satellite virtual station.

Stations Latitude Longitude Country Distance to the
(°N) (°E) closest VS (km)

Tonle Sap 11.48 104.48 Cambodia ∼80
Kompong Cham 11.59 105.29 Cambodia ∼25
Kratie 12.28 106.00 Cambodia ∼30
Pakse 15.06 105.48 Laos PDR ∼35
Mukdahan 16.35 104.44 Laos PDR ∼65
Nakhon Phanom 17.25 104.46 Laos PDR ∼12
Pak Sane 18.22 103.39 Laos PRD ∼20
Nong Khai 17.52 102.43 Laos PRD ∼20
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Monthly in situ discharge data at Tan Chau (latitude: 10.48°N, longitude:

105.13°E) and Chau Doc (latitude: 10.42°N, longitude: 105.06°E) stations in Viet-

nam are also collected for comparisons, but data are available only for a limited

period (2002-2010). The sum of discharge at the two stations is almost equal to the

total discharge of the Mekong river when it flows from Cambodia to Vietnam. In

situ discharge data are provided by the Vietnam Southern Regional Hydromete-

orological Center (http://www.kttv-nb.org.vn/).

4.2.4 Precipitation data

Precipitation rate data derived from the gauge-calibrated Tropical Rainfall Mea-

suring Mission Multi-satellite Precipitation Analysis (TRMM/TMPA, 3B42 V7)

over the Mekong basin are also used for comparisons. Precipitation rate data are

available from 1998 to 2012, but only data for the common period (2001-2012)

are used. To understand the contribution of local and upstream rainfall of the

Mekong basin to the variation of surface water over the Mekong Delta and Cam-

bodia areas, precipitation data are divided into two main parts. The first part is

located lower than latitude 15°N to the Mekong River mouths, and it represents

the local rainfall. The second part is located between latitude 15° until the source

of the basin in China, and it represents the upstream rainfall.

The Asian Precipitation Highly Resolved Observational Data Integration To-

wards Evaluation of Water Resources (APHRODITE) dataset [Yatagai et al., 2012]

can be used for comparisons, but this dataset is more suitable for historical stud-

ies because it only provides precipitation data for the 1951-2007 period.

4.2.5 The El Niño-Southern Oscillation index

The El Niño-Southern Oscillation (ENSO) is a naturally occurring phenomenon

that involves fluctuating of winds and sea surface temperature over the tropical

eastern Pacific Ocean. ENSO is one of the most important climate phenomena

on Earth because it can influence temperature and precipitation in many regions

across the globe. ENSO has three phases: the two opposite phases are known as
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"El Niño" and "La Niña", and a "Neutral" phase is in the middle of the continuum.

During the El Niño phase (or the warm phase), the sea surface temperature in the

Pacific Ocean is usually warmer than the normal state. In contrast, the sea surface

temperature in the Pacific Ocean is cooler than the normal state during the La

Niña phase (or the cool phase). El Niño and La Niña events occur on average

every two to seven years, and typically, El Niño occurs more frequently than La

Niña.

In this chapter, the effects of the ENSO on the variations of surface water

extent and precipitation in the lower Mekong basin are examined by comparing

their time series variations with an ENSO index. The Multivariate ENSO Index

(MEI) is chosen because this index integrates multiple climate variables that make

it suitable for climate-land-atmosphere interaction studies [Wolter and Timlin,

1998]. MEI has a long monthly record back to 1950, and it is updated monthly.

MEI data are developed by Wolter and Timlin [1993, 1998], and are provided on

a National Oceanic & Atmospheric Administration’s (NOAA) webpage: https:

//www.esrl.noaa.gov/psd/enso/mei/.

4.3 Evaluations of the MODIS-derived surface water

extent

As already mentioned previously, variation of the surface water volume is calcu-

lated as the product of the surface water extent and height. The accuracy of the

two components need to be checked to guarantee good quality of the surface wa-

ter volume variation. For validation of the first component, the MODIS-derived

surface water extent is evaluated with the SAR-derived surface water extent (the

output of Chapter 3), precipitation data, and in situ water level data before be-

ing used to calculate surface water volume variation in the lower Mekong basin.

The MODIS-derived surface water extent is also compared to the ENSO index to

understand the relationship between them.
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4.3.1 Comparison with SAR-derived surface water extent

Time series of surface water extent derived from optical MODIS observations and

SAR Sentinel-1 observations over a common area in the Mekong basin (latitude:

8.5°- 13.5°N; longitude: 103°- 107°E) for two years (2015-2016) are shown in Figure

4.2. Similar to findings in Chapter 3 (see Figure 3.12), there is an amplitude gap

between MODIS- and SAR-derived surface water extent, but the two products

share the same dynamics with a high linear temporal correlation (94%) over the

common period. The two surface water extent time series confirm the wetland

seasonality and its variation in the lower Mekong basin. However, it is impossible

to conclude which dataset is better because no reference dataset for comparison

is available. SAR-derived products are expected to be more reliable and closer to

the reality than MODIS-derived ones because of its cloud penetration ability, as

well as its higher spatial resolution (30 m compared to 500 m of MODIS imagery).

Inundation frequency maps in the studied area, calculated from different op-

tical Landsat, MODIS and SAR Sentinel-1 satellite observations are shown in Fig-

ure 4.3. Landsat inundation frequency map is calculated from the global water

occurence product by Pekel et al. [2016], based on ∼3 million optical Landsat

satellite images during 32 years (from March 1984 to October 2015). This product

gives the frequency of global water occurrence at 30 m spatial resolution. MODIS

inundation frequency map is calculated based on 16-year optical MODIS observa-

tions (2001-2016, as presented in Chapter 2), and Sentinel-1 inundation frequency

map is calculated based on 2-year SAR observations (2015-2016, as presented in
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FIGURE 4.2: Surface water extent time series derived from optical MODIS and
SAR Sentinel-1 observations in the Mekong Delta and Cambodia, over the com-

mon period (2015-2016).
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(a) (b) (c)

FIGURE 4.3: Inundation frequency derived from 32-year optical Landsat obser-
vations (a) [Pekel et al., 2016], 16-year optical MODIS observations (b), and 2-year

SAR Sentinel-1 obsrvations (c), over the Mekong Delta and Cambodia.

Chapter 3). Although the total number of Landsat, MODIS, and Sentinel-1 ob-

servations used to produce the three inundation frequency maps are different,

spatial distributions of wetlands, rivers, lakes and water bodies are very similar

in these maps. Lakes and rivers appear clearly in all the three maps, with high

inundation frequency. The wetland distribution for the area over the Cambodia-

Vietnam border (latitude: 10°–11.5°N, longitude: 104.5°–106°E) is similar in the

three maps, especially between the two maps derived from optical data. It is less

extended in the SAR map because the map was created based on limited SAR

observations in just 2 years. In addition, the southern part of the Mekong Delta

(latitude: 8.5°–9.5°N, longitude: 105°–106°E) appears similarly in the three maps,

with high inundation frequency. There are water fields in this area where local

farmers raise aquatic animals all along the year. Despite the similarity, there are

differences among the three maps. Inundation frequency of the Tonle Sap Lake

derived from the Landsat map (Figure 4.3a) is lower than that from the MODIS

and SAR maps (Figure 4.3b,c). It may due to the lack of free-cloud images ob-

served by the optical Landsat sensors. For a region located to the east of the

Mekong delta (latitude: 10°–11°N, longitude: 106°–107°E), it is dryer in MODIS

and SAR inundation frequency maps than in Landsat map. The land use change

due to urban development in this area could be the reason to explain the differ-

ence in the three maps.

92



Chapter 4 Toward the analyses of the change in surface water volume within the lower Mekong Delta

4.3.2 Comparison with precipitation data

Time series of the MODIS-derived surface water extent are compared to satellite-

based TMPA precipitation data. Relationships between surface water extent and

local precipitation (over the Mekong basin lower than latitude 15°N) are pre-

sented in Figure 4.4, while Figure 4.5 shows comparisons with precipitation over

the higher Mekong basin (higher than latitude 15°N). Local precipitation partly

contributes to the variation of surface water extent. For example, less local rainfall

than mean values during the wet season in 2010 contributed to a lower peak of

surface water extent at the same time. The year after, local rainfall increased mak-

ing an increase to the maximum of surface water extent. Peaks of local precipi-

tation normally occur in Septembers, 2-3 weeks before the peaks of surface wa-

ter extent. Their anomalies show some good agreements during wet years (2002,

2003, 2005, 2006 and 2011), as well as during dry years (2002, 2004, 2007, 2010,

and 2012). Rainfall over the higher Mekong basin affects less the variation of sur-

face water extent over the Mekong Delta than the local rainfall. Over the higher

Mekong basin, precipitation reaches their maximum 1-month earlier, normally in

Augusts, compared to the maximum of surface water extent in the Mekong Delta.
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FIGURE 4.4: (a) Time series, (b) Monthly-mean annual cycle, and (c) Anomaly of
MODIS-derived surface water extent over the Mekong Delta and Cambodia, and
satellite-based precipitation over the Mekong basin located lower than latitude

15°N, over the 2001-2012 period.
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FIGURE 4.5: Similar to Figure 4.4, but satellite-based precipitation data cover the
Mekong basin located higher than latitude 15°N.

There is no strong relationships between their anomalies, except for some strong

events like the drought in 2012.

4.3.3 Comparison with in situ water level data
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FIGURE 4.6: Left: Time series of MODIS-derived surface water extent over the
Mekong Delta and Cambodia, and in situ water level at the Tonle Sap Lake gauge
station, over the common period (2008-2016). Right: Monthly-mean annual cycle

from the two time series.

Time series of the MODIS-derived surface water are compared to in situ water

level data at the Tonle Sap gauge station, over the 2008-2016 period (Figure 4.6).

Similar dynamics between surface water extent and in situ water level can be
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observed for the common period, with a high linear temporal correlation (93%).

Monthly-mean annual cycles extracted from the two time series are shown in

Figure 4.6-right.

4.3.4 Comparison with the Multivariate ENSO Index

Figure 4.7 shows comparisons between time series and anomalies of the MODIS-

derived surface water extent, TMPA precipitation and GIEMS-derived surface

water extent in the lower Mekong basin, and the Multivariate ENSO index (MEI)

over their common periods. Details of the Global Inundation Extent from Multi-

Satellites (GIEMS) will be presented in Chapter 5. Relationships between the vari-

ation of MODIS-derived surface water extent in the lower Mekong basin and the

MEI over the 2001-2016 period, are shown in Figure 4.7a,b. A linear correlation

of 62% is found between MODIS-derived surface water extent anomaly and the

MEI during a 5-year period (from May 2001 to June 2016). The effects of the strong

2014-2016 El Niño event on the lack of surface water extent in the lower Mekong

basin is clearly observed. The link between surface water extent and the MEI
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FIGURE 4.7: Comparisons between time series (left) and anomalies (right) of
MODIS-derived surface water extent (a & d), precipitation (b & e) and GIEMS-
derived surface water extent (c & f) over the lower Mekong basin, and the Mul-

tivariate ENSO Index, over their common periods.
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is not obvious in other years when the ENSO is in its "Neutral" phase, as ex-

pected. Similar conclusion can be made between variation of local precipitation

in the Mekong Delta and the MEI over the 2002-2012 period (Figure 4.7b,e). Up-

dated TMPA precipitation data for recent years are not available to evaluate the

effects of the 2014-2016 El Niño event on the variation of local precipitation in

the Mekong Delta. Surface water extent in the Mekong basin, derived from the

GIEMS dataset over the 1993-2007 period [Prigent et al., 2007, 2012], is also ac-

cessed to study the relationships between surface water extent and the ENSO in

previous years. Similar to what have been observed during the 2014-2016 El Niño

event, there was a decrease of GIEMS-derived surface water extent in the lower

Mekong basin during the 1997-1998 El Niño event (Figure 4.7c,f).

4.4 Surface water height from altimetry data

In this section, the principle of radar satellite altimeter is described first, then

is applied to extract surface water height at all possible satellite virtual stations

along the Mekong River and in the Mekong Delta. Similar to the surface water ex-

tent, the surface water height need to be evaluated by comparing to results from

previous studies, and to variation of the in situ water level data at the closest

gauge stations when available. Then, surface water height at virtual stations are

linearly interpolated to build monthly maps of surface water height at 500 m spa-

tial resolution to prepare for the calculation of the surface water volume variation

in the next section.

4.4.1 The principle of radar satellite altimeter

The principle of using radar satellite altimetry data to measure surface water

height is well documented in the literature, and can be found elsewhere [Birkett,

1995, 1998; Fu and Cazenave, 2001; Crétaux and Birkett, 2006; Frappart et al.,

2006a,b, 2017; Papa et al., 2015]. A summary is provided here (see Figure 4.8):

the satellite altimeter transmits a microwave pulse in the nadir direction to the

Earth surface, and receives the echo reflected back by the observed surface. The
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FIGURE 4.8: The principle of radar satellite altimetry to measure surface water
height. Source: CNES.

round-trip time between the satellite and the Earth surface (t) can be measured

precisely by analyzing the returned signal. Assuming that the microwave pulse

is propagating at the speed of light (c), the distance between the satellite and the

Earth surface (R) can be calculated using equation 4.1

R =
ct

2
(4.1)

Several systems (Laser Retro-Reflector, GPS, or DORIS) allow for an accurate

measurement of the satellite altitude (S), with respect to a reference ellipsoid. The

surface water height (H) with respect to the reference ellipsoid is determined by

the difference between the satellite altitude (S) and the altimeter range (R), taking

into account various corrections (see equation 4.2).

H = S −R− ΣCorrections (4.2)

There are many factors needed to be corrected to take into account various phys-

ical phenomena in order to increase the accuracy of the satellite measurements.

Instrument corrections have to be applied because the altimeter instruments are

not perfect, and the satellite is moving when making measurements. Propagation

corrections have to be applied because the electromagnetic waves are perturbed

when they propagate and interact with the atmosphere. Atmospheric corrections
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are also important to correct for the atmospheric dynamics. Surface state correc-

tion is another factor needed to take into account since the water surface is not

always flat. Last but not least, geophysical corrections for the tides (solid earth,

or polar tides) need to be applied to increase the accuracy of measurements.

4.4.2 Satellite-based surface water height estimations along the

Mekong River

Along the Mekong River main stream (from China to Vietnam), there is a total

of 38 satellite virtual stations between the satellite ground tracks (from ENVISAT

and SARAL) and the Mekong River (Figure 4.9). Using the Multi-mission Altime-

try Processing Software (MAPS) provided by CTOH/LEGOS, ENVISAT/SARAL

FIGURE 4.9: Locations of 38 virtual stations between ENVISAT/SARAL ground
tracks and the Mekong River. Blue presents VSs where altimetry data are good

enough to extract surface water height. Figure is created on Google Earth.
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satellite altimetry data over all the 38 VSs are processed using the Ice-1 retracker

algorithm [Frappart et al., 2006a]. Among all 38 VSs, there are only 14 VSs where

altimetry data are good enough to extract the surface water height of the water

bodies (blue VSs numbered: 1-4, 7-11, 14-15, and 31-33). The accuracy of surface

water level estimations over rivers strongly depends on the width and the mor-

phology of the rivers and their banks [Papa et al., 2015]. Over the 24 other VSs,

the river banks are too steep and the river widths are too narrow (smaller than

500 m) limiting the number of interactions between the satellite ground tracks

and the Mekong River. As a consequence, altimetry data are too noisy to extract

the surface water level information at these 24 VSs. For the 14 working VSs, most

of them (11 VSs) are located under latitude 19°N where the river widths are large

enough (larger than 1 km).
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FIGURE 4.10: Water level time series derived from ENVISAT, SARAL and
JASON-2 satellite altimetry at 14 VSs along the Mekong River, over the 2002-2016

period.

99



Chapter 4 Toward the analyses of the change in surface water volume within the lower Mekong Delta

Surface water level time series at the 14 working VSs, over the 2002-2016 pe-

riod, are shown in Figure 4.10. For most VSs (except the station numbered 1),

there was a period without any data (from November 2010 to August 2013) as

neither ENVISAT nor SARAL altimetry data were available. The VS numbered

1 (located over the Tonle Sap Lake) is the only VS where ENVISAT/SARAL and

JASON-2 ground tracks overlap. By removing the bias in the reference ellipsoid

between the three satellites, all satellite altimetry data can be jointly used to ex-

tract a continuous surface water level time series at the Tonle Sap VS, over the

2002-2016 period.

4.4.3 Evaluations of satellite-based surface water height data

In this section, satellite-based surface water height time series at 14 working VSs

(see section 4.4.2) are evaluated by comparing to results from other studies, and

to in situ surface water level data at gauge stations when available.

4.4.3.1 Comparison with other studies

From Figure 4.10, reasonable surface water height variations and dynamics can

be captured at the 14 working VSs. VSs 1-4 are located over the Tonle Sap Lake

and near the intersections between the Tonle Sap Lake and the Tonle Sap river,

have mean annual amplitudes range between 8-12 m. It is similar to findings in

other altimetry studies over the Mekong basin [Frappart et al., 2006b]. VSs 7-

11, and 14-15 are located in the center of Laos PRD. Annual surface water level

amplitudes in these VSs vary between 10-12 m, and their water level peaks occur

at the same time in a year (around September - October). VSs 31-33 are located 10-

25 km above the Jinghong Dam in China (latitude: 22.05°N, longitude: 100.77°E),

where the river width is rather small (∼ 0.5 km). This small river width limits the

number of intersection between the satellite tracks and the river. However, the

most interesting finding is that the satellite altimetry data can capture an increase

of water height (∼ 50 m) in these three VSs after April 2008 when the Jinghong

Dam started its operation. This finding is similar to results from Liu et al. [2016a]
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FIGURE 4.11: Water level time series for the 2008-2016 period, derived from
JASON-2 satellite altimetry data at 2 VSs located ∼20 km and ∼40 km above

the Manwan and Nouzhadu Dams, respectively.

where they used ENVISAT altimetry data and found the same impressive trend

of water height above the Jinghong Dam after the first half of 2008.

The impact of dam and reservoir construction to the water height is also an-

alyzed for two other Chinese dams: the Xiaowan Dam [latitude: 24.70°N, longi-

tude: 100.09°E] and the Nouzhadu Dam [latitude: 22.40°N, longitude: 100.25°E].

JASON-2 altimetry data at 2 VSs located ∼20 km and ∼40 km, respectively, above

these two dams are collected and processed. Figure 4.11 shows surface water

height time series at these two VSs for the 2008-2016 period. For the first JASON-

2 VS located ∼20 km above the Xiaowan Dam, a ∼60-m increase (blue line) can

be observed at the beginning of September 2009, just after the first generator was

commissioned. Same conclusion can be found in Liu et al. [2016a]. For the second

JASON-2 VS located ∼40 km above the Nouzhadu Dam, an increase of ∼150 m

can be observed (red line) since the dam started operating its first generator at the

beginning of 2012.

To conclude, my findings on the variation of the surface water height in

the lower Mekong basin are consistent with previous results. Satellite altimetry

data are not good enough when the river widths are too narrow (like rivers in

China). However, satellite altimeters can capture the variations of the surface wa-

ter height at VSs located 40-50 km above electrical dams.
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4.4.3.2 Comparison with in situ water level data

Daily in situ water level data at 8 gauge stations along the Mekong River are used

for comparisons to satellite-derived surface water height data at the correspond-

ing VSs (see details of these gauge stations in Table 4.2).
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FIGURE 4.12: Water level time series derived from satellite altimetry, and in-situ
measurements at three stations within Cambodia, for the 2008-2016 period.

Figure 4.12 compares surface water level time series derived from satellite al-

timetry data to that from in situ measurements, at three Cambodia stations (Tonle

Sap, Kompong Cham, and Kratie), for the common 2008-2016 period. Note that

altimetry-derived surface water level data are calculated with respect to a refer-

ence ellipsoid, therefore, there is no common height when comparing to in situ

water level data, but very high temporal correlation and same amplitude of the
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annual signal. The Tonle Sap station (Figure 4.12a) is the only location where EN-

VISAT/SARAL and JASON-2 VSs are close enough, and their data can be used

jointly. The satellite VSs are located ∼80 km upstream compared to the Tonle Sap

gauge station. Satellite-derived surface water levels over the Tonle Sap VS show

a very good agreement with in situ data, with similar dynamics in the peak-to-

peak height variations over the common period. Similar to the Tonle Sap station,

satellite-derived surface water level data at the Kompong Cham (Figure 4.12b)

and the Kratie (Figure 4.12c) VSs agree very well with in situ data.
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FIGURE 4.13: Water level time series derived from satellite altimetry, and in-situ
measurements at five stations within Laos PRD, for the 2008-2016 period.

Figure 4.13 compares satellite-derived surface water height time series to in

situ data at five locations located in Laos PRD (Pakse, Mukdahan, Nakhon, Pak

Sane and Nong Khai), over the same period as already mentioned. JASON-2 data
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are not available in this area due to the limitation of intersections between the

satellite ground track and the Mekong River (see Figure 4.1-right). Because of the

small river width of the Mekong River in Laos PDR, the number of intersections

between the SARAL satellite ground track and the Mekong River is limited. As a

consequence, surface water height information derived from the SARAL satellite

are not regular compared to that derived from the ENVISAT satellite over the 5

VSs in Laos PDR.

Compared to in situ water level data, satellite-derived surface water height

data are rather close, with the same seasonality and amplitude. ENVISAT-derived

surface water height data fit better to the in situ data than SARAL-derived data. It

is because the number of intersections between ENVISAT and the Mekong River

at satellite VSs is much higher than that between SARAL and the river.

By comparing satellite-derived surface water height data to the results from

previous studies by other authors, and to in situ water level observation at gauge

stations, it is concluded that the processes I applied to extract river height infor-

mation from satellite observations are correct. More comparisons between surface

water extent over the Mekong Delta, and satellite-based surface water height over

the Tonle Sap Lake will be shown in the next sections.

4.4.4 Interpolated surface water height maps

Monthly maps of surface water height over the Mekong delta and Cambodia can

be estimated based on satellite altimetry surface water level data at VSs. Monthly

time series of surface water level at 45 ENVISAT VSs are collected for the 2003-

2009 period. Figure 4.14 shows locations of the 45 ENVISAT VSs in the Mekong

delta and Cambodia. Due to the 35-day revisit time of the ENVISAT, some data

are lacking during 1 month. Water level data between two consecutive months are

interpolated to complete the water level dataset at all 45 VSs. At a given month,

satellite altimetry surface water level data at the VSs are linearly interpolated over

the inundated areas (from the corresponding MODIS-derived surface water ex-

tent map in Chapter 2) to create a surface water level map. Figure 4.15 shows ex-

amples of surface water level maps at 500 m spatial resolution in January, April,
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July, and October 2003, respectively. Over the Tonle Sap Lake, water levels de-

crease from January to April, and then increase from July to October. Water levels

over the southern part of the Mekong delta remain stable all along the year. Note

that surface water level data are respected to the reference ellipsoid.

FIGURE 4.14: Locations of 45 ENVISAT VSs in the lower Mekong basin.

FIGURE 4.15: Surface water level maps (500 m spatial resolution) in the Mekong
delta and Cambodia in January, April, July and October 2003, respectively.
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4.5 Surface water volume variations

4.5.1 Comparison between MODIS-derived surface water extent

and satellite-based surface water height

Time series of the MODIS-derived surface water extent and time series of surface

water height at a satellite VS are compared to check the consistency between the

two components. The Tonle Sap Lake VS (latitude: 12.40°N, longitde: 104.20°E) is

chosen because the Lake is the largest water body in the lower Mekong basin. Fig-

ure 4.16 shows the two time series over the common period (2002-2015). MODIS-

derived surface water extent and satellite-derived surface water height data at

the Tonle Sap Lake show similar seasonal dynamics, with a linear temporal cor-

relation of 90%. During rainy seasons, both surface water extent and water level

data show low peaks in 2003, 2010, 2014 and 2015, as well as higher peaks in

2009, 2011 and 2013. MODIS-derived surface water extent normally reaches its

maximum levels at the same time as the maximum states of the surface water

height at the Tonle Sap Lake, but its minimum levels occur before that of the sur-

face water height at the Lake. This is consistent with reality because during rainy

seasons (June-October), the floodwater of the Lower Mekong River Delta flows

directly into the Tonle Sap Lake through the Tonle Sap River, then the Tonle Sap

Lake stores and slowly releases water to the Mekong Delta during dry seasons

(November-May) [Cochrane et al., 2014].
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FIGURE 4.16: Time series of MODIS-derived surface water extent over the
Mekong Delta and Cambodia, and satellite-based surface water height at the
Tonle Sap Lake VS (latitude: 12.40°N, longitde: 104.20°E), over the common pe-

riod (2002-2015).
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4.5.2 Methodology

The variation of surface water volume in the Mekong delta and Cambodia corre-

sponds to the difference of surface water heights integrated over the inundated

areas (output of the Chapter 2). According to Papa et al. [2013]; Frappart et al.

[2008, 2011], the variation δV(ti,ti−1), between two consecutive months numbered

i and i - 1, over the floodplain S, are the sum of the products of the difference of

surface water heights δhj(i,i-1) with j = 1, 2,... inside S, by the elementary surfaces

R2
e sin(θj) δθ δλ and the percentage of inundation Pj :

δV (i, i − 1) = R2
eδλδθ Σ

j∈S
Pjδhj(θ, λ, i, i− 1)sin(θj) (4.3)

where δλ and δθ are the sampling grid steps along longitude λ and latitude θ

(0.0045°), respectively, and Re is the mean radius of the Earth (6378 km). The sur-

face water volume variations are expressed in km3/month. Results and compar-

isons with total water volume changes derived from the GRACE data are shown

in the next section.

4.5.3 Results

The differences between two consecutive months of the surface water volume

(blue) in the lower Mekong basin for the 2003-2009 period, calculated by equa-

tion 4.3, are shown in Figure 4.17. Compared to the differences between two con-

secutive months of the total land water volume (red) derived from GRACE data,

they are in strong agreement (∼ 95% of linear temporal correlation). Positive vari-

ations are observed from May to October, while negative variations are between

November and April. By definition, the total water storage (TWS) is the sum of

the surface water storage (SWS), the soil moisture and the groundwater. There-

fore, the variation of soil moisture and groundwater (called "sub-surface water

storage (Sub-SWS)") over the lower Mekong basin can be estimated by calculat-

ing the difference between the TWS and the SWS. Variation of the Sub-SWS is

presented as the green line in Figure 4.17. Clearly, the contributions of the SWS

and the Sub-SWS to the TWS are very close (∼ 50% for each component). To bet-

ter validate these results, monthly variation of the surface water volume in the
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lower Mekong basin is evaluated with monthly variation of the in situ discharge

data of the Mekong River over the 2003-2009 period (Figure 4.18). Monthly in situ

discharge data are the sum of the discharge at the Tan Chau and the Chau Doc

gauge stations. Monthly variation of the surface water volume agrees very well to

monthly variation of the in situ discharge data of the Mekong River, with a linear

temporal correlation of 96%.
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FIGURE 4.17: Left: Monthly variations of surface water volume change from
ENVISAT radar altimetry and MODIS-derived surface water extent (blue), and
monthly variation of the total land water volume change from GRACE data (red)
in the lower Mekong basin over the 2003-2009 period. The difference, which rep-
resents the sum of soil moisture and groundwater, is represented by the green

line. Right: Averaged over the 2003-2009 period.
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FIGURE 4.18: Left: Monthly variations of the surface water volume change from
ENVISAT radar altimetry and MODIS-derived surface water extent (blue), and
monthly variation of the in situ discharge of the Mekong River (red) in the lower
Mekong basin over the 2003-2009 period. Right: Averaged over the 2003-2009

period.

4.6 Discussions and conclusions

This chapter focuses on the calculation of the variation of the surface water vol-

ume in the lower Mekong basin based on monthly variations of the surface wa-

ter extent and the surface water height. The surface water extent are estimated
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from optical MODIS observations (as presented in Chapter 2). It is then evalu-

ated with SAR-derived surface water extent, precipitation and in situ water level

data, as well as with an ENSO index. Results show high correlations between the

MODIS-derived surface water extent and these datasets (94% with SAR-derived

estimates, 93% with in situ water level data). Comparisons between the surface

water extent and the MEI show that strong El Niño events can result in a reduc-

tion of the surface water extent compared to the normal state. Satellite-based sur-

face water height data at satellite VSs are extracted from altimetry data, provided

by CTOH/LEGOS. It is then evaluated by comparing to results in previous stud-

ies in the region, and to in situ water height estimates at the closest gauge stations,

provided by the MRC. Satellite-based surface water height at VSs are linearly in-

terpolated over inundated areas to construct maps of surface water height at 500

m spatial resolution. Surface water extent and surface water height data are com-

pared directly to check their consistency before being used for surface water vol-

ume calculation. Results show a 90% linear temporal correlation between the two

independent products. The monthly variation of the surface water volume over

the 2003-2009 period is estimated based on a methodology described in Frap-

part et al. [2008, 2011]. Results are evaluated with monthly variation of the total

water volume derived from GRACE data, and with monthly variation of the in

situ discharge data of the Mekong River over the same period. The surface water

volume and the total water volume have similar seasonality, with 95% temporal

correlation in their monthly variations. The surface water volume shares similar

dynamics with in situ discharge estimates (96% temporal correlation).

Variations of groundwater and soil moisture could be estimated by removing

the surface water volume from the total water volume. For validation, soil mois-

ture variation from models (the ISBA-TRIP, for example) could be used. Then, it

would be possible to quantify the contribution of the groundwater and soil mois-

ture separately. Monitoring temporal and spatial variations of groundwater and

soil moisture is also important because they are essential elements that drive land

surface water. Information on their variations could be useful for agriculture ap-

plications, or drought prediction (like the 2014-2015 drought in the region due to

a strong El Niño event).

Effects of dam constructions in Laos and China to the variation of surface
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water height is also studied in this chapter. However, it cannot be done system-

atically because of the limitations of the satellite altimeters in this region. The

river widths are too small (< 0.5 km) and it limits the number of intersections be-

tween the satellite track and the river. As a consequence, it is impossible to extract

good records of the surface water height there. However, satellite altimeters can

capture significant increases of the surface water height at VSs located 40-50 km

above electrical dams after they started their operations.
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5.1 Introduction

In the last three chapters, I focused on the use of satellite remote sensing data

(visible/infrared, active microwave, and altimetry observations) for surface wa-

ter extent and surface water height monitoring regionally over the lower Mekong

basin. However, satellites can provide global observations. Therefore, in this chap-

ter, the variation of global surface water extent is studied by comparing several

global surface water datasets that derived mainly from passive and active mi-

crowave satellite data. Results from these comparisons are useful to the commu-

nity in choosing the most suitable surface water product for global and regional

studies at major river basins of the world.

Continental surface waters only cover a few percent of the land surface [Lehner

and Döll, 2004; Downing et al., 2006; Prigent et al., 2007], but they have a strong

impact on the environment, as well as on human life [Vörösmarty et al., 2010].

Surface freshwaters comprise wetlands, rice paddies, rivers, lakes, reservoirs, and

episodically inundated areas. Note that the definition of wetlands varies with ap-

plications and there is not an overall consensus on the subject (e.g., Reichhardt

[1995]). Surface waters play a key role in the biogeochemical and hydrological

cycles, in biodiversity, and in climate variability. They show very diverse natures,

from wetlands to inundated urban areas or rice paddies, associated with different

dynamics from the tropics to the boreal regions. Wetlands are considered one of

the most biologically diverse of all ecosystems since they support plant and wild

animal species during important states of their life cycles. They are the world’s

largest natural source of methane (CH4), and they provide about one-third of the

total global emission (∼165 Tg yr-1; [Bousquet et al., 2006; Bridgham et al., 2013;

Wania et al., 2013]). Consequently, monitoring surface freshwater extent and dy-

namics is a high priority in water management and climate research (e.g., Alsdorf

et al. [2007]).

Nevertheless, our understanding about the global distribution of the surface

waters and their dynamics is still limited, with only a few datasets providing

information at the global scale. Efforts have been made to collect information

on water surfaces to produce static maps of surface waters, for example, the

Global Lakes and Wetlands Database (GLWD) from Lehner and Döll [2004] or the
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Matthews and Fung [1987] wetlands dataset. These maps are representative of the

maximum surface water extent, and they do not provide any information on the

temporal dynamics. Satellite observations in the visible, infrared, or microwave

domains have the potential to detect surface water extent and their variations

(Verpoorter et al. [2014]; Yamazaki et al. [2015]; Mueller et al. [2016]; Feng et al.

[2016]; Pekel et al. [2016]), with different degree of success depending on the envi-

ronments. Optical and near-infrared satellite measurements provide good spatial

resolution but are limited by their inability to penetrate clouds and dense veg-

etation. Microwave, passive or active, have the ability to penetrate clouds and

vegetation, to a certain extent. With Synthetic Aperture Radar (SAR) data, high

spatial resolution is obtained, but global products describing the surface water

dynamics are not available yet. Passive microwave observations have long been

used to detect surface water extents, but used alone, it is difficult to disentan-

gle the vegetation contribution from the measured signal. Prigent et al. [2016]

propose a review on the use of different satellite techniques to monitor surface

water, discussing in detail their advantages and limitations regarding the diverse

applications.

These considerations lead to the conclusion that there is currently not a unique

satellite technique for detecting surface water dynamics globally from tropical

to boreal regions. In the following, surface waters will include all surface wa-

ter types (wetlands, rice paddies, rivers, lakes, reservoirs, and episodically inun-

dated areas), as the satellite observations cannot distinguish between the different

natures of the surface water. A multi-satellite methodology has been developed

to derive surface water extent and dynamics at the global scale, benefiting from

complementary strengths of satellite observations in the visible, passive and ac-

tive microwave [Prigent et al., 2001, 2007, 2012; Papa et al., 2010]: the Global In-

undation Extent from Multi-Satellites (GIEMS). More recently, the Surface WA-

ter Microwave Products Series (SWAMPS) has been produced, also based on the

merging of passive and active microwave satellite observations [Schroeder et al.,

2015]. Long time series of global surface water estimates are necessary today

to analyze the changes in the wetland-related methane emissions (e.g., Melton

et al. [2013]; Wania et al. [2013]), and climate modelers are in strong need of wet-

land extent information to understand the methane variability over past decades

[Ringeval et al., 2010; Pison et al., 2013] for a better prediction of its evolution
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in the upcoming decades. GIEMS has been extensively evaluated and is limited

to 1993-2007 (time extensions is underway). SWAMPS is a recent dataset that ex-

tends from 1992 to 2013. They have a similar spatial resolution (∼0.25°× 0.25°).

As these two datasets are similar global surface water datasets with monthly time

series, a thorough comparison of these estimates is needed for the user commu-

nity.

In this chapter, global surface water datasets are systematically and objec-

tively compared, including the two multi-satellite datasets, GIEMS and SWAMPS,

along with two static datasets. The analysis covers the common period of the two

satellite-derived products (1993-2007), and both the spatial and temporal vari-

ability of the databases are studied. The surface water datasets are described in

section 5.2. Global and regional comparisons are described in section 5.3. A dis-

cussion is presented in section 5.4, and section 5.5 concludes this chapter.

5.2 Data

5.2.1 GIEMS

GIEMS was the first global surface water dataset that provided monthly dis-

tribution of wetland and surface water extent (including lakes, rivers, and irri-

gated agriculture). GIEMS data cover the period 1993-2007, and are mapped on

an equal-area grid of 0.25°× 0.25° spatial resolution at the equator (pixels of 773

km2). Inundated surfaces were detected and their extent was estimated by the

method developed by Prigent et al. [2001, 2007, 2012]. Global monthly inundation

maps are derived from daily data of the following satellite observations: 1) pas-

sive microwave emissivity from the Special Sensor Microwave Image (SSM/I),

2) active microwave backscatter coefficients from the scatterometer on board the

European Remote-Sensing (ERS) satellite, and 3) the normalized difference veg-

etation index (NDVI) derived from visible and near-IR reflectances of the Ad-

vanced Very High Resolution Radiometer (AVHRR). Instead of using directly the

brightness temperature, surface emissivities are calculated to avoid modulation

of the signal by atmospheric effects and surface temperature variations [Prigent
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et al., 2006]. Passive microwave emissivities from SSM/I are primarily used to de-

tect inundation of the land surface while active microwave backscatter is used to

assess the vegetation contribution to the passive microwave signal. NDVI infor-

mation is necessary to distinguish between bare surfaces and inundated surface

in semi-arid regions where they can produce similar passive microwave signa-

tures. Because of the lack of continuity and consistency in the ERS and AVHRR

products, the current version of GIEMS uses monthly mean climatology of ERS

and AVHRR, calculated over 1993-2000. Other solutions were carefully tested,

such as using other instruments like QuikSCAT instead of ERS, but this was not

satisfactory [Papa et al., 2010]. The snow-covered areas are filtered out using the

National Snow and Ice Data Center (NSIDC) datasets ([Brodzik and Armstrong,

2013]; http://nsidc.org/data/NSIDC-0046). Inland seas (Caspian Sea and

Aral Sea), big lakes (e.g., Great Lakes in North America), and coastal pixels (pos-

sibly contaminated by radiation from the ocean because of the large microwave

fields of view) were also carefully suppressed from the GIEMS data. GIEMS has

been thoroughly evaluated by comparisons with static surface water databases,

and its consistency with other hydrological information (e.g., precipitation and

river height) has been assessed [Papa et al., 2006, 2007, 2008a, 2010]. Recent works

have been performed to downscale GIEMS using ancillary high-resolution data.

GIEMS-D15 has a 15-arc-second resolution (nearly 500 m at the equator) for three

different temporal states of the inundation extent [Fluet-Chouinard et al., 2015].

First, the original 12-year time series data of GIEMS (1993-2004) were aggregated

to get mean annual minimum, mean annual maximum, and long-term maximum

at the pixel level. Second, GLWD data [Lehner and Döll, 2004] were added to

supplement missing data or to correct GIEMS underestimation for low water frac-

tion. Finally, a global inundation probability map derived from the HydroSHED

dataset [Lehner et al., 2008] was used to downscale GIEMS from the original reso-

lution to 15-arc-second [Fluet-Chouinard et al., 2015]. In this chapter, GIEMS-D15

is averaged to the GIEMS grid (0.25° at the equator) for comparison with other

datasets. More recently, a new version (GIEMS-D3) at 3-arc-second resolution

[Aires et al., 2017] has been produced with an improved downscaling scheme.
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5.2.2 SWAMPS

SWAMPS is a daily global surface water dataset, mapping open water areas and

water under low-density vegetation, for the period 1992-2013 [Schroeder et al.,

2015], on an equal-area grid of 25 km resolution at the equator (similar to GIEMS).

It is derived from combined passive and active microwave observations: SSM/I

and the Special Sensor Microwave Image/Sounder (SSMI/S) for the passive mi-

crowave and the backscatter coeffcient from ERS, QuikSCAT, and the Advanced

Scatterometer (ASCAT). The microwave polarization difference index (MPDI),

the ratio of the difference between the brightness temperatures in the two orthog-

onal polarizations over the sum, is the main indicator to detect the water bodies

in this methodology. Backscatter coefficient from the ERS (5 GHz), QuikSCAT (10

GHz), ans ASCAT (5 GHz) satellites are used to reduce the vegetation effect on the

MPDI. The three instruments do not observe with the same angles and frequen-

cies, and ad hoc corrections are performed to limit the effects of the changes on

the time series [Schroeder et al., 2015]. Snow cover and frozen ground are filtered

using the method developed by Grody and Basist [1996] and Chang et al. [1987].

Daily global SWAMPS data were averaged to obtain monthly global SWAMPS

estimates at 0.25°× 0.25° for comparison with the other datasets.

5.2.3 GLWD

GLWD is a global open water and wetland dataset developed by Lehner and

Döll [2004]. The dataset is derived from the combination of a variety of exist-

ing maps and information. Among these, the Digital Chart of the World (DCW)

of the Environmental System Research Institute was the main source map to

identify lakes and reservoirs. GLWD is not a satellite product, but a static map

with three data levels: GLWD-1, GLWD-2, and GLWD-3. The GLWD-3 dataset

used in this chapter includes three main types of open water (rivers, lakes, and

reservoirs) and nine different natural wetland classes in the form of a global

raster map at 30-second resolution. For each wetland category, (0%-25%, 25%-

50%, 50%-100%), the averaged value (i.e., 12.5%, 37.5%, 75%) is used. GLWD is

designed to present the maximum level of surface water extent regionally and
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globally. GLWD has been used extensively and compared favorably with differ-

ent satellite-based land-cover datasets [Nakaegawa, 2011]. For comparison with

the other datasets, GLWD is aggregated to the GIEMS grid.

5.2.4 Other ancillary datasets

Matthews and Fung [1987] wetland fractions come from aeronautical charts, the

information for which is more likely acquired during warm seasons of maximum

flooding [Matthews and Fung, 1987]. It is a static dataset on a 1°×1° regular grid.

It has been extensively used in the past by climate groups to estimate the methane

emission from wetlands.

Satellite products such as GIEMS and SWAMPS detect all surface water, in-

cluding inundated areas associated with cultivation (such as the rice paddies in

Asia) that are not accounted for in GLWD dataset or in the Matthews and Fung

[1987] wetland estimate. The global monthly irrigated and rain-fed crop areas

(MIRCA) around the year 2000 [Portmann et al., 2010] provides information about

irrigated and rain-fed agriculture globally. Irrigated rice is inundated during most

of its growing season, and the MIRCA dataset provides an estimate of these inun-

dated surfaces that are especially important in Asia [Adam et al., 2010]. MIRCA

is averaged from the 5-arc-minute resolution to the common 0.25°-resolution grid

of GIEMS dataset.

River discharge data in some important basins of the world (e.g., Amazon,

Orinoco, Niger, Mississippi, Congo, Mekong, and Ob) are collected as an ancillary

source of information to compare with time series of the surface water datasets.

In this chapter, a total of 23 different basins are studied, but comparisons between

wetland time series and river discharge over only 6 basins are shown, including

Amazon, Orinoco, Niger, Ganges, Ob and Mississippi. For the Amazon River, I

use the in situ monthly discharges observed at Obidos, Brazil, which is the clos-

est gauge to the mouth of the river (∼800 km from the ocean), and for which

data are available for 1993-2007 at the Observation Service for the Geodynam-

ical, Hydrological and Biogeochemical control of Erosion/Alteration and Mate-

rial Transport in the Amazon, Orinoco, and Congo basins (SO HYBAM) website

118



Chapter 5 Comparisons between Global Terrestrial Surface Water Datasets

(http://www.ore-hybam.org/). For the Orinoco River basin, river discharge

data are also obtained from the HYBAM project, but available only for the 2003-

2007 period. Daily river discharge at the Lokoja gauge (1998-2005) are used to

get monthly river discharge data for the Niger River basin. The data are collected

from the Global Runoff Data Center (GRDC; http://www.bafg.de/GRDC/EN/

Home/homepage_node.htm). Over the Ganges River basin, river discharge data

for the studied period (1993-2007) are obtained from a combination of in situ data

and altimetry observations as in Papa et al. [2010]. Over the Ob River basin, I use

in situ river discharge records from the Russian Hydrometeorological Service that

are available on a monthly basis until 2004 in the archives of the R-Arctic project

(http://www.r-arcticnet.sr.unh.edu/v4.0/index.html). Finally, river

discharge data over the Mississippi River basin are also collected from the GRDC

database for the 1993-2006 period.

5.3 Comparisons of the surface water datasets

The satellite-derived surface water datasets are compared over their common pe-

riod 1993-2007, first globally and then at basin scale. The 23 largest river basins

in the world have been analyzed. However, the results are presented only for

the lower Mekong basin, and 6 other river basins located in contrasted types of

environments: the Amazon and the Orinoco River basins in the tropics of South

America, the Mississippi River basin in North America, the Niger River basin in a

semi-arid area of Africa, the Ganges River basin in South Asia, and the Ob River

basin over the boreal region. The comparisons are also systematically performed

with the two static datasets previously described: GLWD and the Matthews and

Fung [1987] estimates.

5.3.1 Global comparisons

Figure 5.1a shows the GIEMS long-term monthly-mean maximum inundation for

each pixel over the 1993-2007 period, along with the SWAMPS equivalent infor-

mation (Figure 5.1b), for comparison with GLWD (Figure 5.1c). Even at this global
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scale, large differences are evident between the three datasets. GIEMS and GLWD

show much larger inland water fractions than SWAMPS. GLWD has particularly

large inundation extent in Canada, where many small lakes are located. The major

large river floodings (e.g., Amazon, Orinoco, and Ganges-Brahmaputra) appear

clearly on both GIEMS and GLWD maps. The large water fractions in SWAMPS

are concentrated on the coastal regions (see Indonesia or Japan, for example). That

is very likely related to the contamination of the retrieval by the ocean. Close to

the coastal line, part of the energy observed by the microwave instruments can

come from the ocean, and the signal can be misinterpreted as coming from ter-

restrial inundated surfaces, if a careful filtering is not applied. Here I propose to

filter the SWAMPS data to eliminate the ocean contamination close to the coast.

Figure 5.1d represents the SWAMPS data where the contaminated coastal pixels

are masked. SWAMPS also detects water almost everywhere on the globe, even

in the North African desert. Histograms of the maximum fractional water surface

are presented in Figure 5.2 for the four datasets in Figure 5.1. GLWD shows a large

number of highly inundated pixels (>90%), mostly located in Canada (see Figure

5.1c). SWAMPS has a very large number of fractional water surfaces below 0.2,

much more than the two other datasets. However, it has much less larger water

fractions, especially after filtering of the coastal pixels.

FIGURE 5.1: Global maps of fractional surface water for different datasets on the
equal-area grid at 0.25°× 0.25° at the equator (773 km2 pixels). (a) GIEMS long-
term monthly-mean maximum over 1993-2007, (b) original SWAMPS long-term
monthly-mean maximum over 1993-2007, (c) GLWD, and (d) SWAMPS long-

term monthly-mean maximum over 1993-2007 after coastal filtering.
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FIGURE 5.2: Histograms of long-term maximum fractional water surfaces for the
four datasets in Figure 5.1.

FIGURE 5.3: Global-mean annual minimum (top) and maximum (middle) of the
fractional inundation and amplitude (bottom) for GIEMS (left), SWAMPS (cen-
ter), and their differences (right). The information is presented on the 773 km2

equal-area grid.

For each pixel and each satellite-derived dataset, the mean fractional inun-

dation at annual maximum and minimum has been calculated, along with the

mean yearly amplitude of the fractional inundation (see Figure 5.3; note that the

coastal filtering is applied for SWAMPS). Maps of the differences of these values

between GIEMS and SWAMPS datasets are also presented. Compared to GIEMS,

SWAMPS shows very limited amplitude in the annual cycle of the inundation,

even in regions where large seasonal variations are expected.
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FIGURE 5.4: Time series of surface water extent derived from GIEMS (red),
original SWAMPS (dashed blue), SWAMPS with coastal filtering (blue), GLWD
(black), Matthews and Fung [1987] dataset (cyan), and MIRCA irrigated fields

(green), at three latitude bands and globally, for the period 1993-2007.

Time series of the surface water from GIEMS and SWAMPS are compared

globally and for three latitude bands [tropical (30°S-30°N), mid-latitude (30°-55°N),

and boreal (55°-70°N)] in Figure 5.4, along with the corresponding values from

GLWD, from the Matthews and Fung [1987] wetland dataset, and from the irri-

gated fields from MIRCA. GLWD (black) shows the maximum level of surface

water both globally (∼13 ×106 km2) and regionally. This is expected as it is rep-

resentative of the maximum inundation and it has a better spatial resolution than

the Matthews and Fung [1987] dataset (that is also expected to present the max-

imum inundation, but with a much lower spatial resolution, and thus likely to

miss the small water surfaces). The Matthews and Fung [1987] dataset (cyan)
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has much less water extent in the boreal and the mid-latitude regions, as it is

representative of the wetlands only and does not include the lakes and rivers

(∼5.3 ×106 km2). The maximum global surface water extent derived from GIEMS

is (∼6.2 ×106 km2), smaller than that derived from GLWD. From comparisons

with high-resolution SAR estimates over the Amazon basin, the accuracy of the

GIEMS products has been estimated at 10% of the 773 km2 equal-area grid: be-

cause of the low-spatial-resolution satellite sensors, GIEMS tends to miss the

small water fraction below 10% of the pixels or to overestimate the large inun-

dation fraction above 90% [Prigent et al., 2007]. However, this problem is party

correctly in GIEMS-D15 [Fluet-Chouinard et al., 2015], which merges GIEMS low-

inundation pixels with GLWD. The maximum of the original SWAMPS inun-

dation extent at global scale (∼10.3 ×106 km2) is close to the GLWD extent, as

mentioned in Schroeder et al. [2015]. Over the tropical region, the maximum sur-

face water derived from the original SWAMPS (dashed blue) is very close to

that of GLWD (black), ∼4.9 ×106 km2 and ∼4.4 ×106 km2, respectively. How-

ever, it is surprising to observe that the global maximum values is reduced to

∼5 ×106 km2 (i.e., a reduction of nearly 51%) when the coasts are filtered out.

Over the tropical region, SWAMPS decreases by nearly 53% after coastal mask-

ing to reach ∼2.3 ×106 km2. The original SWAMPS dataset detects more water

surface than GIEMS dataset for all three latitude bands. After coastal filtering,

the yearly-mean temporal SWAMPS water surface extent is similar to the GIEMS

one, but the seasonal amplitude of SWAMPS is much lower than the GIEMS one.

Table 5.1 shows monthly long-term minimum, long-term maximum, and long-

term mean, as well as seasonal amplitude between monthly long-term minimum

and maximum of surface water extent derived from GIEMS and SWAMPS af-

ter coastal filtering globally, and at three latitude bands, for the studied period

(1993-2007). Long-term mean values between GIEMS and SWAMPS are close, but

GIEMS shows larger amplitude than SWAMPS regionally and globally. From Fig-

ure 5.4 we can see that wetland surfaces derived from GIEMS (red) and SWAMPS

(dashed blue) have strong temporal correlations globally (92%) and over the bo-

real region (88%), but lower temporal correlations over mid-latitude (58%) and

over tropical areas (48%). Furthermore, in these two regions, GIEMS has a much

stronger seasonal cycle than SWAMPS.

For the rest of this chapter, the coastal filter is applied to the SWAMPS dataset.
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TABLE 5.1: Monthly long-term minimum, long-term maximum, long-term mean,
and seasonal amplitude between monthly long-term maximum and minimum of
surface water extent derived from GIEMS and SWAMPS after coastal filtering at

three latitude bands and globally, for the period 1993-2007. Unit is × 106 km2.

Min Max Mean Amplitude
Boreal

GIEMS 0.0 1.5 0.4 1.5
SWAMPS 0.2 1.2 0.6 1.0

Mid-latitude
GIEMS 0.3 1.6 0.8 1.3

SWAMPS 0.7 1.2 0.9 0.5
Tropical

GIEMS 1.3 3.0 1.8 1.7
SWAMPS 1.7 2.3 1.9 0.6

Global
GIEMS 1.7 6.2 3.2 4.5

SWAMPS 3.0 5.0 3.9 2.0

5.3.2 Basin-scale comparisons

5.3.2.1 Comparisons over the lower Mekong basin

Long-term maximum inundation maps (1993-2007) over the lower Mekong basin,

derived from GIEMS and SWAMPS, are shown in Figure 5.5. The distribution of

surface water extent is very similar between the two datasets, with a spatial cor-

relation of 83%, but surface water amplitude from SWAMPS is very limited com-

pared to what observed from GIEMS. It is clear in Figure 5.6-top where the max-

imum surface water extent from SWAMPS is only one third of that derived from

GIEMS, although the variations of surface water extent over the lower Mekong

basin from GIEMS and SWAMPS share similar dynamics with high temporal cor-

relations (96% for their time series, and 85% for their anomalies, respectively).

The monthly-mean annual cycle from January to December is computed by av-

eraging values from all Januaries to Decembers between 1993 and 2007. Then

these values are subtracted from the time series for each given month, to obtain

the anomaly time series. Combined monthly in situ river discharge data of the

Mekong River in Vietnam (at Tan Chau and Chau Doc stations, from 2002-2007)

are used to confirm the variation of surface water extent from the two datasets
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over the lower Mekong basin. It is clear that GIEMS and SWAMPS capture cor-

rectly the seasonality of wetlands in this basin, compared to results derived from

in situ measurements. Temporal correlations between GIEMS/SWAMPS and the

discharge are around 80%, and it increases to more than 90% when calculated

with 1-month lag.
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FIGURE 5.5: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS over the lower Mekong basin.
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FIGURE 5.6: Time series (top) and anomaly (bottom) of surface water extent de-
rived from GIEMS and SWAMPS (1993-2007), along with the river discharge
(2002-2007), over the lower Mekong basin. Anomaly is calculated by removing

the monthly-mean annual cycle from time series.
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5.3.2.2 Comparisons over the Amazon basin

The Amazon basin is the largest drainage basin in the world with the largest dis-

charge, and it is mostly located in the tropical rain forest. Figure 5.7 shows the

long-term maximum inundation maps (1993-2007) over the Amazon basin, de-

rived from the different wetland datasets. The spatial distribution of the surface

water datasets are similar. Although the spatial correlation between long-term

maximum inundated maps of GIEMS and SWAMPS is nearly 90%, SWAMPS frac-

tional surface water is much lower than the GIEMS and GLWD ones. In Schroeder

et al. [2015], it is noted that SWAMPS has problems detecting water underneath

dense forest canopy. The ability of passive microwaves to detect surface water

below dense forest was demonstrated early by Giddings and Choudhury [1989]

or Sippel et al. [1994] in their pioneer works. It is rather surprising that SWAMPS

cannot detect these surface waters. GIEMS-D15 corrects GIEMS by adding the

small surface water fractions that are likely misses by GIEMS, and this is clearly

seen when comparing GIEMS and GIEMS-D15 inundation maps in Figure 5.7.

FIGURE 5.7: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the different
surface water datasets over the Amazon basin. Shown are GIEMS, GIEMS-D15,

SWAMPS, GLWD, and Matthews and Fung [1987] datasets.
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FIGURE 5.8: Mean annual minimum (top) and maximum (bottom) of the inunda-
tion derived from different surface water datasets over the Amazon basin from

GIEMS (left), GIEMS-D15 (center), and SWAMPS (right).

Mean annual minimum and maximum inundation maps of GIEMS, GIEMS-

D15, and SWAMPS are shown in Figure 5.8. Similar to the long-term maximum

inundated maps, the spatial distributions of the GIEMS ans SWAMPS datasets

are similar (spatial correlation of 80% and 90% for the minimum and maximum,

respectively), but SWAMPS detects much less surface water than the two GIEMS

versions.

Monthly time series of the surface water extents have been calculated over

the basin, along with the river discharge at the mouth of the river (Figure 5.9,

top). Time series and anomaly correlations are shown in Table 5.2. The behaviors

TABLE 5.2: Time series and anomaly correlations between GIEMS, SWAMPS, and
river discharge Q over the Amazon basin for the period 1993-2007. Numbers in
parentheses are calculated with 1-month lag between GIEMS/SWAMPS and Q.

Time series correlation Anomaly correlation
GIEMS/SWAMPS 95% 77%
GIEMS/Q 78% (91%) 54% (58%)
SWAMPS/Q 74% (88%) 57% (61%)
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FIGURE 5.9: Time series (top) and anomaly (bottom) of surface water extent de-
rived from the different wetland datasets, along with the river discharge over the

Amazon basin from 1993 to 2007.

of time series of GIEMS (red) and SWAMPS (blue) are very similar to that of the

river discharge (brown), with very high correlations. Time series correlation be-

tween GIEMS and SWAMPS is 95%. It is 78% and 74% with the river discharge

for GIEMS and SWAMPS, respectively. Time series correlations with the river dis-

charge increase when calculated with 1-month lag, as expected, reaching 91% and

88%, respectively. The anomaly correlation between GIEMS and SWAMPS is sur-

prisingly high (77%).

5.3.2.3 Comparisons over the Orinoco basin

The Orinoco basin is also located in the South American tropical region, north of

the Amazon basin. Similar analyses as over the Amazon basin are conducted in

this river basin. Long-term maximum inundations maps for the 1993-2007 period

are shown in Figure 5.10. Similar to what was observed over the Amazon basin,

spatial correlations between these datasets are high (93% between GIEMS and

SWAMPS), but SWAMPS fractional water is again much lower than the GIEMS

and GLWD ones. Monthly time series and anomalies of the surface water ex-

tents of these datasets are shown in Figure 5.11, and their correlations are shown
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FIGURE 5.10: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the different
surface water datasets over the Orinoco basin. Shown are GIEMS, GIEMS-D15,

SWAMPS, GLWD, and Matthews and Fung [1987] datasets.

in Table 5.3. River discharge data for the 2003-2007 period (also obtained from

the HYBAM project) are used to calculate time series and anomaly correlations.

GIEMS and SWAMPS show exactly the same seasonal cycle for the 1993-2007

period, with an extremely high time series correlations (99%). Time series cor-

relations between river discharge (Q) and GIEMS/SWAMPS are 93% and 92%,

respectively (for the common 2003-2007 period). Anomaly correlation between

GIEMS and SWAMPS is even more surprising, being 97%, while it is only 62% and

60% between river discharge (Q) and GIEMS/SWAMPS, respectively. Consider-

ing GIEMS and SWAMPS products were developed based on totally independent

algorithms (although they used similar passive and active satellite observations

as the input), it is suspected that this extremely high anomaly correlation should

be almost impossible to achieve without fine tuning of the SWAMPS algorithm to

the GIEMS temporal structure over this river basin.
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FIGURE 5.11: Time series (top) and anomaly (bottom) of surface water extent
derived from the different wetland datasets (1993-2007), along with the river dis-

charge (2003-2007) over the Orinoco basin.

TABLE 5.3: Time series and anomaly correlations between GIEMS, SWAMPS, and
river discharge Q over the Orinoco basin. Q is available for the 2003-07 period.

Time series correlation Anomaly correlation
GIEMS/SWAMPS 99% 97%
GIEMS/Q 93% 62%
SWAMPS/Q 92% 60%

5.3.2.4 Comparisons over the Niger basin

The Niger basin is characterized by a large inner delta that results in a region

of braided streams with seasonal floods. Long-term maximum inundation maps

over the Niger basin are shown in Figure 5.12, while their minimum and max-

imum are presented in Figure 5.13, and Figure 5.14 shows their time series and

anomalies, as well as that derived from the river discharge data. Time series and

anomaly correlations between GIEMS/SWAMPS and other ancillary datasets are

shown in Table 5.4. Time series of GIEMS and SWAMPS are in opposite phase

(Figure 5.14), making the time series correlation negative (-40%, see Table 5.4).

Again, GIEMS shows a much stronger seasonal cycle than SWAMPS over the

Niger River basin. GIEMS (red) and the river discharge (brown) show similar be-

havior with a time series correlation of nearly 81% (for the common 1998-2005
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FIGURE 5.12: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the differ-
ent surface water datasets over the Niger basin. Shown are GIEMS, GIEMS-D15,

SWAMPS, GLWD, and Matthews and Fung [1987] datasets.

period). In contrast, SWAMPS does not capture the same seasonal cycle, making

its time series correlation with the river discharge negative (-60%, see Table 5.4).

Note that other studies have analyzed GIEMS over the Niger River basin, for ex-

ample, Pedinotti et al. [2012] or Aires et al. [2014]. Pedinotti et al. [2012] evaluated

the ability of the ISBA-Total Runoff Integrating Pathways (TRIP) continental hy-

drologic system to represent key processes (surface water, rivers and floodplain

dynamics, and water storage) related to the hydrological cycle of the Niger River

basin. To this end, GIEMS is used to evaluate the long-term simulations which

showed that the flooding scheme leads to a non-negligible increase of evapora-

tion over large flooded areas, which in turns improved the Niger River discharge

estimates at several locations. The objective of Aires et al. [2014] is to develop

downscaling methodology to obtain a long time record of inundation extent over

the inner Niger River delta at high spatial resolution (500 m) based on the ex-

isting low-spatial-resolution results of the GIEMS dataset and observations from

MODIS.

Time series of the surface water derived from MODIS visible images over the
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FIGURE 5.13: Mean annual minimum (top) and maximum (bottom) of the in-
undation derived from different surface water datasets over the Niger basin for

GIEMS (left), GIEMS-D15 (center), and SWAMPS (right).

TABLE 5.4: Time series and anomaly correlations between GIEMS, SWAMPS, and
river discharge Q over the Niger basin for the period 1993-2007. Numbers in
parentheses are calculated with 2-month lag between GIEMS/SWAMPS and Q.

Time series correlation Anomaly correlation
GIEMS/SWAMPS -40% 20%
GIEMS/Q 81% (51%) -3% (44%)
SWAMPS/Q -60% (10%) -2% (12%)

Niger River basin for the 2000-2007 period [Bergé-Nguyen and Crétaux, 2015] are

also compared to the behavior of GIEMS and SWAMPS over this region. From

Figure 5.14 (top) and Figure 5.15, it is clear that GIEMS and MODIS surface water

time series have similar seasonal dynamics over the common period (2000-2007).

However, GIEMS has higher maximum values than MODIS, which could sug-

gest an overestimation from GIEMS over the Niger River basin. In addition, the

interannual variability is not totally similar between GIEMS and MODIS. Sim-

ilar passive microwave signatures can be observed over arid regions and over

water: these two surface types have low emissivities with rather large emissiv-

ity polarization differences. As a consequence, reliable and accurate detection of

surface water in arid and semiarid regions is not trivial. In GIEMS dataset, NDVI
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FIGURE 5.14: Time series (top) and anomaly (bottom) of surface water extent
derived from the different wetland datasets (1993-2007), along with the river dis-
charge (1998-2005) over the whole Niger basin. MODIS surface water extent time

series for the inner delta only (dashed brown) is available from 2000.
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FIGURE 5.15: Time series of surface water extent derived from GIEMS, SWAMPS,
and MODIS for the inner Niger delta.

information are used in the process to help solve these ambiguities. SWAMPS ob-

viously encounters difficulties in this type of environment, with false detection

of water in deserts and underestimation of water in inundated deltas. This is in

agreement with Schroeder et al. [2015]. As a result, over the Niger River basin,

SWAMPS does not capture at all the water surface dynamics.
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5.3.2.5 Comparisons over the Ganges basin

The Ganges basin is part of the Ganges-Brahmaputra-Meghna basin, located be-

tween India, Nepal, and China. It is one of the world major floodings. Figure 5.16

shows the long-term maximum inundation maps derived from different datasets,

while their time series and anomalies are presented in Figure 5.17. Over the Ganges

River basin, GIEMS surface water extent time series (red) is higher than the max-

imum surface water extent derived from GLWD dataset (black), as GIEMS also

detects inundated areas associated to cultivation activities, such as rice paddies,

which are not taken into account in GLWD. SWAMPS surface water extent (blue)

is much lower, compared to both GIEMS and GLWD datasets. However, GIEMS

and SWAMPS have a high time series correlation (87% in Table 5.5). River dis-

charge data collected from the Ganges River basin also show high time series cor-

relation with GIEMS and SWAMPS, being 83% and 64%, respectively. The same

high correlation is observed when comparing GIEMS and SWAMPS anomalies

data (74%), but it is much lower when calculated with river discharge data (Table

FIGURE 5.16: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the different
surface water datasets over the Ganges basin. Shown are GIEMS, GIEMS-D15,

SWAMPS, GLWD, and Matthews and Fung [1987] datasets.
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5.5). This low correlation might also be explained by the human influence with

several dams along the reaches.

TABLE 5.5: Time series and anomaly correlations between GIEMS, SWAMPS, and
river discharge Q over the Ganges basin for the period 1993-2007. Numbers in
parentheses are calculated with 1-month lag between GIEMS/SWAMPS and Q.

Time series correlation Anomaly correlation
GIEMS/SWAMPS 87% 74%
GIEMS/Q 83% (80%) 23% (5%)
SWAMPS/Q 64% (88%) 35% (19%)
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FIGURE 5.17: Time series (top) and anomaly (bottom) of surface water extent
derived from the different wetland datasets, along with the river discharge over

the Ganges basin from 1993 to 2007.

5.3.2.6 Comparisons over the Ob basin

The Ob River basin in western Siberia is selected to represent the boreal envi-

ronments. Over the Ob River basin, SWAMPS surface waters are again much less

extended than the other estimates (see Figure 5.18). SWAMPS surface water peaks

generally in May, one month earlier than the GIEMS maximum peaks occurring

generally in June (see Figure 5.19). Time series correlation between GIEMS (resp.

SWAMPS) and the river discharge data for the 1993-2004 period is 91% (resp.

62%). When calculated with 1-month lag, the time series correlation decreases to
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FIGURE 5.18: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the differ-
ent surface water datasets over the Ob basin. Shown are GIEMS, GIEMS-D15,

SWAMPS, GLWD, and Matthews and Fung [1987] datasets.
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FIGURE 5.19: Time series (top) and anomaly (bottom) of surface water extent
derived from the different wetland datasets, along with the river discharge over

the Ob basin (available until 2004).

80% with GIEMS, but it increases to 91% with SWAMPS (see Table 5.6). The same

conclusions can be found for the anomaly correlations between GIEMS (resp.
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SWAMPS) and the river discharge data over the Ob River basin (also Table 5.6).

The lag between GIEMS and SWAMPS could be partly related to differences in the

snow filtering performed monthly with GIEMS and daily with SWAMPS. GIEMS

estimates are flagged earlier in the season by the NSIDC snow mask, so the ends

of the high-water-stage season (September-October) are missing. The river dis-

charges from the Ob River basin have been compared in Papa et al. [2008b], and

the use of the snow mask was well discussed. The snow flag in GIEMS is under

analysis and will be refined for the next version of the dataset.

5.3.2.7 Comparisons over the Mississippi basin

The Mississippi River is the chief river of the largest drainage system in the North

American continent. The long-term maximum inundation maps, and the time se-

ries and anomalies are shown in Figure 5.20 and Figure 5.21, respectively. Time

series and anomaly correlations between GIEMS (resp. SWAMPS) and river dis-

charge data are also shown in Table 5.6. Similar to most of the studied regions,

SWAMPS fractional water extent over the Mississippi River basin is lower than

that derived from the GIEMS dataset, but the two products still have high time

series and anomaly correlations (84% for time series, and 74% for anomaly).

TABLE 5.6: Time series and anomaly correlations between GIEMS, SWAMPS, and
river discharge Q over the Ob basin (left) and over the Mississippi basin (right),
for the period 1993-2004. Numbers in parentheses are calculated with 1-month

lag between GIEMS/SWAMPS and Q.

Time series correlation Anomaly correlation
Ob Mississippi Ob Mississippi

GIEMS/SWAMPS 70% 84% 38% 74%
GIEMS/Q 91% (80%) 75% 49% (40%) 59%
SWAMPS/Q 62% (91%) 68% 28% (59%) 39%
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FIGURE 5.20: Long-term maximum inundation maps averaged over 1993-2007
from GIEMS and SWAMPS, and maximum inundation maps from the different
surface water datasets over the Mississippi basin. Shown are GIEMS, GIEMS-

D15, SWAMPS, GLWD, and Matthews and Fung [1987] datasets.
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FIGURE 5.21: Time series (top) and anomaly (bottom) of surface water extent
derived from the different wetland datasets, along with the river discharge over

the Mississippi basin (available until 2006).
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5.4 Discussions

As already observed in Figure 5.1, the maximum surface water extent estimated

by SWAMPS for the major basins is limited, compared to the other estimates. The

annual maximum SWAMPS surface extent (including the coasts) and the GLWD

surfaces are similar, and this feature is advertised in Schroeder et al. [2015]. How-

ever, ∼50% of the surface water with SWAMPS are located along the coasts. This

clearly relates to contamination by the ocean in the observation field-of-views of

the passive microwave observations and to the lack of adequate filtering in the re-

trieval algorithm. The SWAMPS algorithm fits the global maximum water extent

of GLWD, but as the coastal waters were mistakenly included in the tuning, the

inland water extent is therefore strongly underestimated. The range of seasonal

variability of SWAMPS is also strongly reduced because coastal regions do not

evolve in time.

The underestimation of the SWAMPS extent under dense vegetation is partic-

ularly significant, as observed in the Amazon and the Orinoco basins. In the Ama-

zon basin, the well-established SAR estimates from Hess et al. [2003] is 243,000

km2 at the high stage, very close to the GIEMS values, and very different from

the PALSAR estimates (40,000 km2) provided by Schroeder et al. [2015] in their

paper.

For the passive microwaves, the surface emissivity of water and desert sur-

faces are both rather low, with large polarization differences. As a consequence,

there can be confusion between deserts and surface waters. This is typically what

happens over deserts with SWAMPS, with anomalous detection of surface wa-

ter over arid regions. In GIEMS, the systematic use of visible and near-infrared

observations helps suppress these ambiguities.

Figure 5.22 (top) shows the time series correlations between the two datasets

and Figure 5.22 (bottom) shows time correlations between their anomalies, for the

major 23 river basins in the world. The correlation is important for most basins,

for the time series as well as for their anomalies. It is even very high for some

tropical basins (Orinoco, Mekong). This tends to confirm the seasonal variations
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of the surface water estimates, despite their different seasonal amplitudes. Note

that correlations on time series or anomalies can be high despite large bias errors.

Over Asia (i.e., North East India, Bangladesh, Vietnam), GIEMS estimates

large surface water extents that are related partly to rice paddies (see the MIRCA

estimation of the rice paddies extent over the Tropical region in Figure 5.4). It

is also suspected that GIEMS is very sensitive to saturated soil, and as a conse-

quence might overestimate the surface water extent in these regions.

FIGURE 5.22: Basin-wide global (top) time series and (bottom) anomaly corre-
lations for the 23 largest basins in the world between GIEMS and SWAMPS

datasets.
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5.5 Conclusions

Two global satellite-derived surface water datasets are compared on a monthly

mean basis from 1993 to 2007 (GIEMS and SWAMPS), along with two widely

used static maps of the surface water (GLWD and Matthews and Fung [1987]).

The 23 largest basins in the world have been studied and 6 basins representative

of different environments (the Amazon and the Orinoco basins in the Tropics,

the Mississippi in North America, the Niger basin in semi arid environment, the

Ganges basin in South Asia, and the Ob River basin in the boreal region) have

been presented. Although they are based on similar observations, mainly pas-

sive and active microwaves, the satellite-derived datasets show large differences,

globally and regionally, in terms of surface extents both at minimum and max-

imum inundation in the year. The global maximum inundation extent over the

1993-2007 period is ∼6.2×106 km2 for GIEMS, ∼10.3×106 km2 for SWAMPS, to

compare to ∼13×106 km2 for GLWD and to ∼5.3×106 km2 for the Matthews and

Fung [1987] wetland dataset. ∼50% of the SWAMPS inundated surfaces are lo-

cated along the coast at the maximum annual inundation. This is clearly related to

contamination by the ocean in the observation field-of-views. Once this problem

is filtered out, the long-term maximum surface water from SWAMPS is reduced

to ∼5×106 km2. Globally and for the studied basins, the annual amplitude of the

inundation extend is very limited in SWAMPS compared to GIEMS (47% lower).

Despite their large difference in the seasonal amplitude, GIEMS and SWAMPS

have similar temporal dynamics for most parts of the globe.

Over the Amazon River basin, GIEMS and SWAMPS show a very high tem-

poral correlation for water surface time series (95%), but with SWAMPS maxi-

mum water extent a half of what is observed from GIEMS and from previous SAR

estimates. Similar conclusions are found when comparing GIEMS and SWAMPS

datasets over the Orinoco River basin, showing extremely high correlations for

both their time series (99%) and anomaly values (97%). Over the Niger River

basin, SWAMPS seasonal cycle is out of phase with both GIEMS and MODIS-

derived estimates, as well as with river discharge data. This confirms the fact that

SWAMPS fails to capture the seasonal dynamic of wetlands here. GIEMS and

MODIS surface water time series agree in the seasonal variability, but GIEMS
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water extent is significantly larger than the MODIS one. Over the Ganges River

basin, GIEMS and SWAMPS datasets show similar seasonal wetland dynamics,

but are very different in term of fractional water. Comparing to GLWD data over

the Ganges River basin, it might suggest that GIEMS is overestimated while SWAMP

is underestimated. In the Ob region, the different snow detection method could

explain part of the difference in the seasonal cycle.

A clear advantage of the SWAMPS dataset today is its longer time period,

up to 2013. The current version of the GIEMS algorithm requires a large quan-

tity of ancillary satellite products to run, including outputs from the GEWEX In-

ternational Satellite Cloud Climatology Project [Rossow and Schiffer, 1999] that

stopped in 2008. Efforts are underway to extend the GIEMS time series to current

times, to provide the community with a long time record of carefully evaluated

surface wate extent all over the globe, using a reduced number of ancillary pa-

rameters for more robustness.

Part of the work in this chapter was selected to write a paper named "Com-

parisons of Global Terrestrial Surface Water Datasets over 15 Years", published

in Journal of Hydrometeorology in April 2017.
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6.1 Conclusions

Monitoring surface water and their dynamics, as well as understanding the link

between variations of surface water and other hydrological components (precip-

itation, discharge, or groundwater) are important for water management and cli-

mate change studies [Alsdorf et al., 2007]. This thesis has been developed to in-

vestigate potential of using different types of satellite observations to study the

variations of hydrology from space over the last two decades, focusing on the

lower Mekong basin located in Vietnam and Cambodia as this region is vulner-

able to climate change impacts, and to extreme weather events like floods and

droughts. This is also a preparation to the exploitation of Vietnamese satellite

data (VNREDSat and JV-LOTUSat), as well as other satellite observations that

are now free available to the community (such as Sentinel data). With the results

from this thesis, I provide to the community surface water dynamics of the lower

Mekong basin, and it can be used to predict the variation of local hydrology in

the future. This thesis focuses on the following aspects:

• potential of using visible/infrared MODIS/Terra satellite observations to

monitor surface water extent within the lower Mekong basin;

• potential of using SAR Sentinel-1 satellite observation to monitor surface

water extent within the lower Mekong basin;

• potential of combining satellite-based products (surface water extent and

height) to analyze the variation of the surface water volume within the

lower Mekong basin;

• analyzing global surface water variations from 1993 to 2007, based on two

global surface water datasets with monthly time series (GIEMS and SWAMPS)

at global scale and basin scale.

6.1.1 Surface water monitoring with visible/infrared MODIS satel-

lite observations

The first part of this thesis (Chaper 2) focuses on the use of visible/infrared

MODIS satellite observations to detect and monitor surface water over the Mekong
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Delta and Cambodia. As there are many well-known remote sensing techniques

using different water indices (NDVI, NDWI, MNDWI, EVI, or AWEI) for this

purpose, I do not try to develop a new methodology. A modified version of the

Sakamoto et al. [2007] methodology is applied to produce regular surface wa-

ter estimates at 500 m spatial resolution. This surface water product has a 8-day

temporal resolution, starting from January 2001 until the present time. Each com-

pleted classified map contains three states: 0 for non-water pixels, 1 for mixed

pixels, and 2 for water pixels. The Sakamoto et al. [2007] methodology is chosen

because it has been specifically designed to detect flood and to monitor surface

water over tropical regions like the Lower Mekong River Delta. Compared to the

original reference Sakamoto et al. [2007] data for the common period (2001-2007),

my reproduced surface water product is very similar. They share similar surface

water seasonality, similar surface water amplitudes, and the total water-related

areas detected are very close. This methodology is specially designed to work in

tropical regions, it cannot be applied globally or in different environments (for

example, over the boreal regions where surface water bodies and snow/ice sur-

faces have similar signatures for the EVI index that is the main indicator in this

methodology). Regular MODIS-derived surface water maps (since January 2001)

for the Mekong Delta and Cambodia are updated monthly, then provided free of

charge to the community at the following address: http://space.usth.edu.

vn/en/news/projects/.

6.1.2 Surface water monitoring with SAR Sentinel-1 satellite ob-

servations

The Mekong Delta is often covered by clouds, especially during the rainy season

causing difficulties to visible/infrared satellite sensors (like MODIS ones). SAR

satellite sensors can overcome this problem with their ability to work day and

night, under all weather conditions. In the second part of the thesis (Chapter 3),

SAR Sentinel-1 satellite observations are used for the same purposes as in the

first part to detect and monitor surface water over the Mekong Delta and Cambo-

dia. A Neural Network (NN) classification trained with optical Landsat-8 satellite

observations is designed to classify each SAR Sentinel-1 pixel into non-water or
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water pixel. SAR Sentinel-1 images are converted to 30-m spatial resolution to

match with Landsat-8 spatial resolution. Sensitivity tests are carried out to define

the number of the NN input parameters, then to optimize the performance of the

NN classification. Comparisons between the SAR predicted surface water maps

and the reference Landsat-8 surface water maps over the Mekong basin show a

true positive water detection of ∼90%. SAR predicted surface water maps are also

compared to the floodability maps derived from high spatial resolution topogra-

phy data. Results show a high consistency between the two independent prod-

ucts, with 98% of SAR-derived surface water pixels located in areas with a high

probability of inundation. Results from the second part highlight the applicabil-

ity of the SAR Sentinel-1 observations for surface water monitoring, especially in

tropical regions where cloud cover can be very high during the rainy seasons. The

output SAR Sentinel-1 derived surface water maps (since February 2015) for the

Mekong Delta and Cambodia are also updated monthly, and provided freely to

the community at the same location as the MODIS-derived products previously

described (http://space.usth.edu.vn/en/news/projects/).

Work presented in this chapter were selected to write a paper that has been

published in Water in May 2017 (see Appendix A).

6.1.3 Toward the variation of the surface water volume

The third part of the thesis (Chapter 4) is an development of the two previous

chapters. It is dedicated to analyze monthly variation of the surface water volume

in the Mekong Delta and Cambodia. Surface water volume changes are calculated

as the product of the MODIS-derived surface water extent and the satellite-based

surface water height, based on the methodology described in Frappart et al. [2008,

2011]. The surface water extent are validated by compared to SAR-derived sur-

face water extent, precipitation and in situ water level data, while the surface wa-

ter height are validated with results from previous studies, as well as with in situ

water level data. Then the two components are directly compared, and results

always show high temporal correlations between them (> 90%). Surface water

height at VSs are linearly interpolated over inundated areas to construct monthly

maps of surface water height at the same spatial resolution as the MODIS-derived
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surface water extent (500 m), before the monthly variation of the surface water

volume is extracted. Results show high temporal correlations with both GRACE-

derived total land surface water volume changes (95%) and changes of discharge

estimates of the Mekong River derived from in situ measurements (96%). Varia-

tion of soil moisture derived from models could be used to quantify the contribu-

tion of the surface water volume, the groundwater and the soil moisture on the

total land surface water volume.

6.1.4 Comparisons between two global terrestrial surface water

datasets

The last part of the thesis expands the satellite analysis of surface water extent

to the globe by comparing mainly two global multi-satellite surface water ex-

tent datasets with monthly time series (GIEMS and SWAMPS), for the common

1993-2007 period. Global comparisons between GIEMS and SWAMPS show that

they have similar temporal dynamics for most parts of the globe, but ∼50% of

the SWAMPS inundated surfaces are located along the coast at the maximum an-

nual inundation. This problem is related to the contamination by the ocean as

the SWAMPS algorithm did not use a careful land/ocean filter to remove sig-

nals emitted by the ocean. Compared to GIEMS, SWAMPS detects surface wa-

ter almost everywhere even in areas where surface water are not expected to be

presented like the North African desert. In addition, SWAMPS also shows very

limited amplitude in the annual inundation cycle in many regions where large

seasonal variations are expected (for example over the Amazon, the Ganges, or

the Mekong basins).

Comparisons between surface water time series and anomalies of GIEMS and

SWAMPS over the 23 largest river basins in the world confirm the surface water

seasonal variations in most locations, but there are still differences between the

two products. Over the Amazon and Orinoco basins, GIEMS and SWAMPS have

similar surface water spatial distributions at both low and high water states. They

also share the same dynamics for their surface water tim series, and even their

anomalies for the 15-year period. However, the total surface water area detected

from SWAMPS is 2-3 times lower than that detected from GIEMS, and SWAMPS
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surface water amplitude is much more limited than GIEMS. Similar conclusions

can be made over the Ganges basin, but GIEMS seems to overestimate the sur-

face water extent while SWAMPS seems to underestimate it, compared to the

maximum derived from GLWD. Over the Niger basin, SWAMPS fails to capture

correctly the surface water dynamics since its seasonal surface water time series

is out of phase with GIEMS, MODIS-derived estimates from Bergé-Nguyen and

Crétaux [2015], or in situ river discharge data.

Work presented in this chapter were selected to write a paper that has been

published in Journal of Hydromoteorology in April 2017 (see Appendix B).

6.1.5 Other activities during my PhD

6.1.5.1 Participation to another paper

During my PhD, I also participated to the work of Aires et al. [2017] on producing

the high-spatial-resolution (90 m) version of the GIEMS dataset (GIEMS-D3). My

contribution focuses on validation of the GIEMS-D3 dataset to other independent

satellite observations from MODIS, Landsat, and SAR over the Amazon and the

Mekong basins.

6.1.5.2 Teaching experience

Since the 2016/2017 academic year, I started to give practical training for the mod-

ule 21.16 (Remote Sensing of Continental Surfaces) to master students at the Uni-

versity of Science and Technology of Hanoi (USTH). This has been a great op-

portunity to train myself to prepare for the future when I come back to work as

a lecturer and a researcher at USTH after finishing my PhD training in LERMA.

Through the practical training, students can see the great potential of using satel-

lite products to study Earth sciences since more and more high quality remote

sensing data are provided free of charge to the community.
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6.2 Perspectives

This thesis has shown various applications of satellite observations in studying

hydrology variation from space. More work could be done to benefit from all

different types of satellite products in several directions. First, same techniques

as in Chapters 2,3 can be applied for surface water monitoring, or flood detec-

tion in other types of environment in Vietnam (over the Red River Delta in the

North Vietnam, for example) and in other countries in Southeast Asia. Second,

the closure of the water cycle over the lower Mekong basin can be checked using

different satellite products. Last but not least, some techniques presented in this

thesis can be further developed to adapt to data from the JV-LOTUSat-1 satellite

(planned to be launched in 2020), or from the US-French Surface Water and Ocean

Topography (SWOT) mission (planned to be launched in April 2021).

6.2.1 Surface water monitoring over the Vietnam Red River Delta

The Red River Delta (located in the North Vietnam) is the second largest river

delta in Vietnam, after the Mekong Delta, as well as the second most important

rice-producing area in the country (accounting for ∼20% of the national crop)

[Tran, 2003]. Monitoring surface water, and especially floods over this delta is

important because floods can cause serious damages for this highly dense popu-

lation area (almost a third of the Vietnam population lives in the Red River basin,

including over 17 million inhabitants in the delta itself [Tran, 2003]. Using optical

satellite observations for this task is very challenging because this area is cloud-

covered most of the year. During one year (November 2016 - November 2017),

there is no optical Landsat-8 observations with less than 5% cloud contamination

available in this area, and there are only 4 imagery with cloud contamination less

than 10%. Therefore, SAR satellite observations (like Sentinel-1 or JV-LOTUSat)

are the best choice for monitoring applications over the Red River Delta.

Due to heavy local precipitation in July, August and October 2017, there were

several floods occurring in the North Vietnam that caused serious damages and

deaths to local communities (more than 100 people dead or missing during the

floods from 9-14 October 2017, according to reports from the Vietnam National
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Hydro-Meteorological Service). Some tests have been done using SAR Sentinel-

1A observations (data from the Sentinel-1B satellite are not available in this area)

to have an overview of areas affected by the floods. Primary results of flooded

areas are shown in Figures 6.1 & 6.2 for June-August, and October 2017 periods,

respectively. Figure 6.1 shows the evolution of inundation over the North Viet-

nam from 28 May to 1 September 2017. Floods occurred mostly over the northeast

FIGURE 6.1: Flooded areas over the North Vietnam from June to August 2017,
derived by applying a threshold (T = -21.18 dB) directly to SAR Sentinel-1A VH
polarization observations. The spatial resolution is converted to 550 m for a better

visualization of the effected areas.
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FIGURE 6.2: Same as Figure 6.1, but for the floods from 9-14 October 2017

provinces (Hai Phong, Thai Binh, Nam Dinh, and Ninh Binh). The soil started to

saturate in late June, then the food peak occurred middle of July, before going

back to a normal state at the beginning of August. Figure 6.2 shows the second

flood event occurring in October 2017 before and after the starting day of the

flood (9 October).

As these flood maps are produced based on the simple threshold method

applied directly to the SAR Sentinel-1 VH polarized backscatter coefficient (T =

-21.18 dB), results are very sensitive to change of the threshold. As seen in Table

6.1, the inundated area will increase (decrease) from 14% to 16% when the thresh-

old is increased (decreased) by 0.5 dB. More work need to be done to find a robust

threshold working well for this area. There are many mountains located in North

Vietnam, that can affect the backscattering signal, and the method needs to be

refined to better distinguish surface water and mountain shadows. In situ mea-

surements of local precipitation and water level can be collected for validation.

Results from this technique can be useful for management activities. Warnings

can be sent to local communities if soil saturation is observed, the next precipita-

tion likely leading to floods.
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TABLE 6.1: Threshold sensitivity when increasing (decreasing) the threshold by
0.5 dB. The total area is ∼138,233 km2. Numbers in parenthesis indicate inunda-

tion percentages for area shown in Figure 6.1.

Total inundated area (km2)
Date T = -21.68 dB T = -21.18 dB T = -20.68 dB
2017 May 28 1276 (0.92%) 1430 (1.04%) 1621 (1.17%)
2017 June 09 1336 (0.97%) 1550 (1.12%) 1796 (1.30%)
2017 June 21 1861 (1.35%) 2303 (1.67%) 2813 (2.03%)
2017 July 07 3269 (2.36%) 4027 (2.90%) 4843 (3.50%)
2017 July 18 3403 (2.46%) 4223 (3.06%) 5094 (3.69%)
2017 July 27 1571 (1.14%) 1813 (1.31%) 2123 (1.54%)
2017 August 08 1522 (1.10%) 1722 (1.25%) 1971 (1.43%)
2017 August 20 1588 (1.15%) 1745 (1.26%) 1916 (1..38%)
2017 September 01 1630 (1.18%) 1784 (1.29%) 1948 (1.40%)

6.2.2 Closure of the water cycle over the Mekong Delta and Cam-

bodia

An other research direction after this thesis is to check the closure of the water

cycle over the lower Mekong basin, using satellite products. By definition, the ter-

restrial water budget is composed from four water budget components, including

precipitation (P), evapotranspiration (E), runoff (surface and sub-surface flows -

R), and surface and sub-surface water storage variation (∆S). The relationship

between the four water budget components is shown in equation 6.1, meaning

that the fluxes of precipitation, evapotransoiration and runoff are balanced by

the change of the total water storage.

dS/dt = P − E −R (6.1)

Some of the water budget components have been collected and studied in this

thesis. Evapotranspiration will be calculated from the Global Land Surface Flux

Product Dataset (LandFlux) and the Global Land-surface Evaporation (GLEAM).

For other variables (P, E, and R), different global datasets exist, but they show sig-

nificant differences in time and spatial variation, with strong difficulties to evalu-

ate the accuracy of each individual dataset. The consistency of each single water

budget component will be examined first to identify the most reliable dataset.
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Then, the closure of the water cycle over the Mekong Delta and Cambodia will be

checked.

6.2.3 The future with the SWOT and JV-LOTUSat satellites

Data from the future SWOT and JV-LOTUSat satellites can be used for hydrology

and water management applications. The SWOT mission is specially designed

to provide major improvement in oceanography and inland hydrology thank to

its new altimeter instrument concept working in a Ka-band radar interferometer

(KaRIn). The SWOT mission configuration is presented in Figure 6.3. All the past

and present satellite altimeters emit microwave pulses in the nadir direction, the

SWOT satellite emits microwave pulses in near nadir incidence angles (0.6°- 3.9°)

[Fjrtoft et al., 2014]. As a consequence, altimetry observations are not limited just

along the satellite track, the SWOT satellite can provide altimetry observations on

both sides of the satellite track up to 50 km wide. In addition, each point inside

the swath will be observed by two different sensors onboard the satellite, that will

provide very precise estimations of the elevation at each point. The SWOT will

FIGURE 6.3: The SWOT mission configuration. Figure is credited by NASA.
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provide the water heights of water bodies larger than 250 m×250 m, and the water

heights and discharge of rivers wider than 100 m. Global long-term high-spatial-

resolution surface water product can be produce by combining SWOT data with

GIEMS dataset.

The configuration of the JV-LOTUSat-1,2 satellites is presented in Figure 6.4.

LOTUSat-1 will be the first SAR satellite of Vietnam to operate in the X-band,

and provides high resolution observations (maximum at 1 m spatial resolution).

The JV-LOTUSat-1,2 satellites will help Vietnam to take the initiative in acquiring

satellite imagery for management of natural resources and environment.

FIGURE 6.4: The JV-LOTUSat-1,2 configuration. Figure is credited by the Vietnam
National Space Center.

Satellite data, especially from SAR satellites, are very important for countries

located in tropical regions (like Vietnam). Satellite SAR data are the most effective

source of imagery from space for monitoring applications over for these highly

cloudy regions. All exercises in this thesis can be considered as training for the

use of the different types of satellite data in the future (Sentinel-2,3, SWOT, JV-

LOTUSat-1,2, or Jason-3, for example).
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Abstract: This study presents a methodology to detect and monitor surface water with Sentinel-1
Synthetic Aperture Radar (SAR) data within Cambodia and the Vietnamese Mekong Delta. It is based
on a neural network classification trained on Landsat-8 optical data. Sensitivity tests are carried out to
optimize the performance of the classification and assess the retrieval accuracy. Predicted SAR surface
water maps are compared to reference Landsat-8 surface water maps, showing a true positive water
detection of ∼90% at 30 m spatial resolution. Predicted SAR surface water maps are also compared to
floodability maps derived from high spatial resolution topography data. Results show high consistency
between the two independent maps with 98% of SAR-derived surface water located in areas with
a high probability of inundation. Finally, all available Sentinel-1 SAR observations over the Mekong
Delta in 2015 are processed and the derived surface water maps are compared to corresponding
MODIS/Terra-derived surface water maps at 500 m spatial resolution. Temporal correlation between
these two products is very high (99%) with very close water surface extents during the dry season
when cloud contamination is low. This study highlights the applicability of the Sentinel-1 SAR data
for surface water monitoring, especially in a tropical region where cloud cover can be very high
during the rainy seasons.

Keywords: SAR; Sentinel-1; surface water monitoring; neural network; Mekong Delta; Landsat-8; MODIS

1. Introduction

Studying the spatial and temporal distribution of surface water resources is critical, especially
in highly populated areas and in regions under climate change pressure. With an increased number
of Earth-observation satellites providing a large diversity of remote sensing data, there is now the
potential to monitor the surface water at regional to global scale. However, mapping surface water
is still challenging. It is difficult to provide products with the accuracy required for a large range of
applications (e.g., agriculture, disaster management, and hydrology).

Several methods have already been proposed to detect and monitor surface water with visible and
Near-Infrared (NIR) images. Ref. [1] used positive values of the Normalized Difference Water Index
(NDWI) to classify water bodies. Ref. [2] applied a threshold on NIR reflectances of the NOAA/AVHRR
satellite to delineate lakes. Ref. [3] detected surface water by identifying the positive values of the
Modification of Normalized Difference Water Index (MNDWI). Ref. [4] combined NIR data and the
Normalized Difference Vegetation Index (NDVI) to detect surface water bodies. However, cloud
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contamination is a stringent constraint for these methods, limiting their application to cloud-free
conditions which is very restrictive in some regions (e.g., in the Tropics). Vegetation can also mask
the surface water partly or totally. This makes the water detection difficult or impossible under
canopy. In addition, the NIR reflectance over highly turbid water can be higher than the red reflectance,
introducing confusions in the indices used for the water detection.

Synthetic Aperture Radar (SAR) have become an important source of data to detect flood or
monitor surface water as they allow observations regardless of the cloud cover, day and night, with
spatial resolution comparable to visible and near-infrared satellite images [5]. SAR instruments have
been available on many sensors and platforms (Envisat ASAR, PALSAR, or RADARSAT, for example)
providing observations for different areas all over the globe (but normally with a limited number of
images available per year in some regions). Flood detection using different SAR observations has
been studied by many authors, showcasing the advantages of SAR instruments compared to optical
instruments in monitoring floods. Ref. [6] used a single decision tree classifier on two sets of JERS-1
SAR data to classify surface water within the states of North Carolina and South Carolina into five land
cover types (water, marsh, flooded forest, field, and non-flooded forest). Although the classifier was
simple, they reported an overall classification accuracy of nearly 90%. Ref. [7] showed the potential
of the COSMO-SkyMed data for flood detection by showing case studies in several locations all over
the globe (e.g., Tarano River overflow, Italy, April 2009; Pakistan inundation, July–September 2010;
Thailand flood, October 2010; and Australia flood, January 2011). COSMO-SkyMed instruments
provided very high resolution X-band SAR images, but covered limited areas (the highest spatial
resolution is ∼1 m for an observation area of 10 km × 10 km). X-band data from TerraSAR-X instrument
were also reported suitable for flood mapping under forest canopy in the temperate forest zone
in Estonia [8]. Ref. [9] compared four flood detection approaches over five areas (Vietnam, the
Netherlands, Mali, Germany, and China) using SAR data from the TanDEM-X mission. Although
these four approaches were designed according to different requirements, their performances were
satisfactory over the studied areas (17 out of 20 water masks reaching an overall accuracy larger
than 90%). Other studies using SAR data for water monitoring locally and regionally under different
environments can be listed, such as [10–12]. Mapping water bodies at global scale using SAR data was
limited due to the lack of global observations, and the fact that SAR data are not easy to access freely.
Ref. [13] used multi-year (2005–2012) Envisat ASAR observations to create, for the first time, a global
potential water body map at a spatial resolution of 150 m. Errors concentrated along shorelines and
coastline, but this global water map has an accuracy of ∼80% compared to the reference data.

The Mekong Delta in Southeast Asia (one of the largest deltas in the world) is a vast triangular
plain of approximately 55,000 km2, most of it lower than 5 m above sea level. The seasonal variation
in water level results in rich and extensive wetlands. For instance, the Mekong Delta region covers
only 12% of Vietnam but produces ∼50% of the annual rice (with two or three harvests per year
depending on the provinces), represents ∼50% of the fisheries, and ∼70% of the fruit production.
In the Delta, the dry season extends from November to April and the rainy season from May to October.
Many researches have been carried out to monitor the surface water in the Delta, using both optical
and active microwave satellite images. Ref. [14] produced a monthly mean climatology of the water
extent from 2000 to 2004 with a spatial resolution of 500 m, using visible and NIR MODIS/Terra
data. However, with 85% to 95% cloud cover during the wet season over the Mekong Delta [15],
remote sensing methods derived from visible and NIR images present some limitations. Different
SAR observations have also been exploited to study floods and wetlands over the Delta. Ref. [16]
mapped flood occurrence for the year 1996 over the Delta using five ERS-2 observations. Ref. [17]
used 60 Envisat ASAR observations during the years 2007–2011 to study the flood regime in the Delta.
Thanks to the launch of the Sentinel-1A &B satellites, as well as the free data policy of the European
Space Agency (ESA), Sentinel-1 SAR observations are now regularly and freely accessible for scientific
and educational purposes, over large parts of the globe. Similar to previous SAR instruments, Sentinel-1
instruments show strong potential for detecting open water bodies at high spatial resolution [18,19].
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With the advantage of higher temporal resolution than previous SAR instruments, Sentinel-1 has the
ability to monitor the seasonal cycle of water extent every six days over Europe and the boreal region,
and with slightly reduced temporal sampling elsewhere. In this study, we propose a methodology
using Sentinel-1A SAR observation for monitoring water surface extent within Cambodia and the
Mekong Delta for the year 2015. It is based on a Neural Network (NN) algorithm, trained on visible
Landsat-8 images (30 m spatial resolution). At the time of this study, the temporal resolution of
Sentinel-1 over the Delta was 12 days: it reduced to 6 days after the launch of the Sentinel-1B in
April 2016.

The Sentinel-1 SAR data and the ancillary observations are described in Section 2, including the
pre-processing steps. Section 3 presents the NN methodology, along with sensitivity tests. Results and
comparisons with other products are provided and discussed in Section 4. Section 5 concludes this study.

2. Sentinel-1 SAR Data and the Ancillary Datasets

2.1. Sentinel-1 SAR Data

Sentinel-1 is a satellite project funded by the European Union and carried out by the European
Space Agency. It is a two satellite constellation working at C-band (5.405 GHz). The major objective of
the satellites is the observations and monitoring of land and ocean surfaces day and night, under all
weather conditions [20]. The satellite operates in four exclusive imaging modes with different spatial
resolutions (the highest being 5 m) and swaths (up to 400 km). The first Sentinel-1A satellite of the
pair was launched on 3 April 2014, while the second Sentinel-1B satellite was launched on 22 April
2016. The Sentinel-1 satellites fly along a sun-synchronous, near-polar circular orbit at an altitude of
∼693 km. Incidence angle varies between 29◦ and 46◦. The two satellites provide a re-visiting time of
6 days (it was 12 days before the launch of the Sentinel-1B satellite). Sentinel-1 satellites have dual
polarization capabilities (HH, VV, HH + HV and VV + VH), giving final users the ability to access
a large variety of applications, including the monitoring of surface water. SAR images from Sentinel-1
satellites are freely downloaded from the sentinel scientific data hub [21].

In this project, 20 m resolution (10 m pixel spacing) Level-1 Ground Range Detected (GRD)
Sentinel-1 images are used, from the Interferometric WideSwath (IW) mode. These images have
been detected and projected to ground range using an Earth ellipsoid model provided by ESA.
Over the Mekong Delta, there are two polarizations available: the VH and VV polarizations. Some
pre-processing steps have to be carried out using the free Sentinel Application Platform (SNAP)
software developed by ESA, before moving to the analysis steps (see Figure 1). These pre-processing
steps are described in the “SAR Basics with the Sentinel-1 Toolbox in SNAP tutorial” [22].

First, multi-looking processing is applied to each single Sentinel-1 image (both polarizations) to
convert to 30 m spatial resolution (to match with Landsat-8 images). Applying multi-looking at the
beginning of the chain reduces the processing time for the next steps since the size of the image is
several times smaller than the original one. Second, the image is calibrated to convert values of the
raw image from digital number to radar backscatter coefficient (σ0). Third, the Refined Lee filter is
applied to reduce the speckle noise and to smooth the radar backscatter coefficient data because this
filter maintains details of the standing water boundary [23]. Other filters (Lee, Lee Sigma or Median,
for example) were tested, and results showed little differences in terms of water detection. Next, the
“terrain correction” tool is used to compensate for distortions in the SAR images, so that the geometric
presentation of the image will be as close as possible to the real world. At the end of this step, the image
is also re-projected from the satellite projection to the Earth geographic projection, and is ready for
applications. To fully cover Cambodia and the Vietnamese Mekong Delta, at least five Sentinel-1 SAR
images are needed. Figure 2 (top) provides examples of the SAR backscatter coefficients for VH (a) and
VV (b) polarizations, along with the incidence angle (c), over the Tonle Sap Lake, on 17 December 2015.
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Figure 1. Pre-processing steps for Sentinel-1 Synthetic Aperture Radar (SAR) images.

N
50 km

water pixels

non-water pixels

non-analysis pixels

Figure 2. Examples of satellite observations from Sentinel-1 (top) and from Landsat-8 (bottom), over
the lower part of the Tonle Sap Lake (Cambodia) after the pre-processing steps: (a) SAR backscatter
coefficient at VH polarization; (b) SAR backscatter coefficient at VV polarization; (c) SAR incidence
angle; (d) The Normalized Difference Vegetation Index (NDVI) from Landsat-8; (e) Surface water
estimated from Landsat-8; and (f) Landsat-8 quality flags. The white areas are cloud-covered pixels
detected by the Landsat quality flags, and have been removed. Both Sentinel-1 and Landsat-8 images
were taken on 17 December 2015.

2.2. Ancillary Datasets

2.2.1. Inundation Maps Derived from Landsat-8 Data

Landsat-8 satellite collects visible and shortwave images (30 m spatial resolution). NIR wavelength
reflects less solar radiation than the red wavelength over water bodies [1,3], and surface water maps
can be derived from the NDVI maps (water pixels and non-water pixels correspond to negative and
positive values of NDVI, respectively) [24,25]. Other indices have been used to detect water, but
the NDVI is effective when properly corrected from the atmospheric contamination. In this study,
official and reliable atmospheric corrected Landsat-8 NDVI images are ordered directly from the U.S.
Geological Survey (USGS) website (https://espa.cr.usgs.gov/index/). To limit cloud effects, only
images with less than 10% of cloud contamination are used. The selected images are further filtered
using the Landsat-8 quality assessment to remove pixels that might be affected by instrument artifacts
or subject to cloud contamination. Figure 2 (bottom) shows the NDVI from Landsat-8 (d), the resulting
surface water map based on negative NDVI values (e), and the quality flag (f), for the same regions and
the same day (17 December 2015) as previously presented. Over the Lower Mekong Delta (lower than
latitude number 15), there are ∼250 Landsat-8 images available between January 2015 and January
2016. However, there is only ∼10% (27 images) with less than 10% cloud contamination. Among the
remaining images, only 1/3 was selected for this study since they were observed with a time difference
of less than 3 days from a Sentinel-1 image.
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2.2.2. Inundation Maps Derived from MODIS/Terra Data

In this study, the surface reflectance 8-Day L3 Global 500 m products from MODIS/Terra
(MOD09A1) are used to create surface water maps, mainly based on values of the Enhanced Vegetation
Index (EVI), the Land Surface Water Index (LSWI), and the difference between EVI and LSWI by
a methodology described in [14]. MODIS surface water maps (500 m spatial resolution) over the
Mekong Delta will be used to compare to the corresponding surface water maps derived from SAR
Sentinel-1 observations for 2015. MODIS/Terra data can be downloaded from http://reverb.echo.nasa.
gov/reverb/.

All Sentinel-1, Landsat-8 and MODIS/Terra observations used in this study are listed in Tables 1
and 2. Sentinel-1 and Landsat-8 training observations are used to train the NN (Section 3.2). Sentinel-1
and Landsat-8 test observations are used to test, optimize, and evaluate the performance of the NN
(Sections 3.3 and 4.1). NN evaluation is also based on comparisons with MODIS surface water estimates
(Section 4.3).

Table 1. List of 9 Sentinel-1 and corresponding Landsat-8 training (top) and test (bottom) observations
used in this study over Cambodia and the Vietnamese Mekong Delta. Maximum gap between
Sentinel-1 and Landsat-8 observations is only 3 days. The cloud cover percentage is indicated for each
Landsat-8 observation.

Sentinel-1 and Landsat-8 Training Observations

Image No Sentinel-1 Landsat-8 Clouds

1 16 April 2015 14 April 2015 6.29%
2 21 April 2015 21 April 2015 0.05%
3 19 August 2015 18 August 2015 7.94%
4 17 December 2015 17 December 2015 4.84%
5 29 March 2016 31 March 2016 6.22%
6 9 June 2016 10 June 2016 3.94%

Sentinel-1 and Landsat-8 Test Observations

Image No Sentinel-1 Landsat-8 Clouds

1 5 January 2016 2 January 2016 0.16%
2 3 February 2016 3 February 2016 7.5%
3 22 February 2016 19 February 2016 0.29%

Table 2. List of 20 Sentinel-1 and corresponding MODIS/Terra observations used in this study over
Cambodia and the Vietnamese Mekong Delta.

Sentinel-1 and MODIS/Terra Observations

Image No Date Image No Date

1 10 January 2015 11 14 August 2015
2 3 February 2015 12 26 August 2015
3 15 February 2015 13 7 September 2015
4 11 March 2015 14 19 September 2015
5 4 April 2015 15 1 October 2015
6 28 April 2015 16 13 October 2015
7 15 June 2015 17 25 October 2015
8 27 June 2015 18 6 November 2015
9 9 July 2015 19 30 November 2015
10 21 July 2015 20 24 December 2015
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3. Methodology

3.1. Surface Water Information from the Sentinel-1 SAR Images

Flat water surfaces act like mirrors and reflect almost all incoming energy in the specular direction,
thus providing very low backscatter. With this physical principle, detection of surface water is often
based, at least partly, on the application of a threshold on the SAR backscatter coefficient, with the low
backscatter values attributed to water bodies [6,7,16,17]. However, SAR backscatter coefficients over
water surfaces are also affected by several mechanisms related to the interaction of the signal with
vegetation or with possible surface roughness. The backscattered signals over flooded vegetation in
wetlands can be enhanced due to the double-bounce scattering mechanism [26–28]. On the other side,
the backscatter coefficients can be affected by vegetation canopy (e.g., rice) above the water surfaces
due to volume scattering from the plant components (stems or leaves) [29]. The backscatter coefficients
(especially the VV polarization) can also be influenced by the wind-induced surface roughness over
open water [17,30]. Finally, there might be ambiguities between surface water and other very flat
surfaces (such as arid regions), that could provide very similar backscatter signatures [31].

Based on a reference water mask derived from Landsat-8 NDVI, Figure 3 presents the histograms
of the backscatter coefficients for VH and VV polarizations, separately for water and non-water pixels
over the incidence angle range of 30◦–45◦ for the area shown in Figure 2. For both polarizations, the
water and non-water histograms are rather well separated, with thresholds of −22 dB and −15 dB
for the VH and VV polarizations, respectively. Using these thresholds, the surface water has been
classified separately for each polarization. The classification derived from the VH polarized image had
a stronger spatial linear correlation with the reference water mask than the one derived from the VV
polarized image (72% compared to 62%), confirming a higher sensitivity of the VH polarization to the
presence of surface water [19]. Using both polarizations for the classification increased the correlation
(76%), confirming that the two polarizations carry different information and that using both of them
increases the retrieval accuracy. These findings confirmed the study by [32] where water detection
with VV polarization was further refined using multiple-polarization.

Figure 3. For surface water delineated with Landsat-8, histograms of the water and non-water pixels
for the SAR backscatter coefficients in VH and VV polarizations for the area shown in Figure 2 (over
the incidence angle range of 30◦ to 45◦).
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The effect of the backscatter incidence angle is also tested here. For a collection of pixels located
over water (rivers, reservoirs, or lakes), the backscatter coefficient is plotted as a function of the
incidence angle between 30◦ and 45◦ (Figure 4). Similar negative correlations between incidence angle
and backscatter coefficients can also be found in [13] with ASAR data over water bodies (from ∼−5 dB
at 20◦ to ∼−20 dB at 45◦ of incidence angle).
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Figure 4. The SAR backscatter coefficients (VH and VV polarizations) from the Sentinel-1 as a function
of the incidence angle over water bodies. The linear regression lines are also plotted.

As a conclusion, the SAR backscatter coefficients (VH and VV polarizations) are both sensitive
to the presence of water, but with slightly different sensitivities. The effect of the incidence angle,
although rather limited within the 29◦–46◦ range of Sentinel-1 SAR, has to be accounted for if a high
detection accuracy is required. Simple tests on thresholding techniques illustrated the limitations of
these approaches and here we suggest developing a new scheme to delineate the surface water based
on Neural Networks.

The temporal dynamics of the backscatter coefficients can also be a source of information and can
help disentangle the influence of the other surface parameters [13]. However, this temporal information
will not be investigated here.

3.2. A Neural Network-Based Classification

Here, we propose training a NN to produce surface water maps from SAR images, over the
Mekong Delta. In the remote sensing field, NNs are often used as a regression tool to estimate a
quantity. For each pixel, NN input satellite observations are represented by a vector x, and the network
outputs (i.e., the retrieval) is represented by a vector y. However, NNs can also be used as classifiers.
In this case, when trained with binary output values (y = 0 for non-water, 1 for water surfaces), the
NN becomes a statistical model for the conditional probability y = P(sur f ace = water/x), i.e., the
probability of the surface being covered by water knowing the satellite observations x. The NN output
can then directly be used as an index for water presence probability, but a threshold can also be applied
to classify the state as being covered by water or not. The threshold needs to be optimized in order to
satisfy some quality criteria, such as overall accuracy or false alarm rates.

The NN classifier needs to be trained in order to perform an optimal discrimination between
water and non-water states. A supervised learning is chosen: the NN will be designed to reproduce an
already existing classification. A dataset including a collection of SAR information x and associated
surface water state y is first built. Part of it is then used during the training stage in order to determine
the optimal parameters of the NN model. The reference dataset in the selected area is provided here by
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a Landsat-8 surface water map (NN outputs), in spatial and temporal coincidence with the Sentinel-1
SAR data (NN inputs). A maximum time difference of 3 days is tolerated, as the two satellites do not
fly in phase. Six Landsat-8 surface water maps are selected, along with the corresponding Sentinel-1
SAR observations (see Table 1 for more details on the training dataset). The selection process for the
Landsat-8 images has been described in Section 2.2.1. The images cover parts of the lower Mekong
Delta in Vietnam and Cambodia. For each image in the training dataset, the number of non-water
pixels is much higher than the number of water pixels. To avoid giving too much weight to the
non-water pixels, an equalization of the training dataset is performed: an equal number of non-water
and water pixels is selected in the training dataset. For this purpose, non-water pixels are selected
randomly in the images, to match the number of water pixels. The total number of training samples is
∼10 million pixels, half water pixels, half non-water pixels. It takes ∼5 h to train the NN (with the use
of a personal computer), but when the training is completed, a surface water map can be produced
quickly (after ∼3–4 min) from any new set of satellite inputs x. A test dataset is chosen to measure
the performance of the NN retrieval scheme with data not used in the training process. The NN
methodology is summarized in Figure 5.

Figure 5. The block diagram of the proposed Neural Network (NN) algorithm.

Several tests were necessary to determine the optimum inputs to the NN, in addition to the
obvious ones, i.e., the backscatter coefficients for both polarizations. To limit ambiguities between
flat arid surfaces and surface water, and to better capture small rivers, the spatial homogeneity of the
backscatter coefficients appeared to be a relevant parameter. The standard deviation of the backscatter
coefficients are computed locally over 100 m × 100 m boxes. As a result, the NN uses a maximum of
five different inputs x:

• SAR backscatter coefficient VH polarization (BS_VH);
• SAR backscatter coefficient VV polarization (BS_VV);
• SAR incidence angle;
• SAR standard deviation of backscatter coefficient VH over 100 m × 100 m (STD_VH);
• SAR standard deviation of backscatter coefficient VV over 100 m × 100 m (STD_VV);
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Figure 6 presents an example of the set of five input images and the target surface water map
used to train the NN. Missing areas in the maps correspond to Landsat-8 low quality pixels and are
excluded from the training. The NN model is asked to find a relationship between these five input
parameters and the corresponding water and non-water state.

water pixels non-water pixels

non-analysis pixels

N
50 km

Figure 6. Examples of the five inputs and the target for the NN. (a) SAR backscatter coefficient
VH polarization; (b) SAR backscatter coefficient VV polarization; (c) SAR incidence angle; (d) SAR
standard deviation of backscatter coefficient VH polarization; (e) SAR standard deviation of backscatter
coefficient VV polarization; and (f) Target surface water map based on NDVI from Landsat-8. The white
areas are cloud-covered pixels detected by the Landsat quality flags, and they have been removed.
Sentinel-1 and Landsat-8 images were acquired on 16 and 14 April 2015, respectively.

3.3. NN Sensitivity Tests

In this section, we use a test dataset of three SAR Sentinel-1 images and three corresponding
Landsat-8 reference surface water maps to make several sensitivity tests in order to optimize the
performance of the NN classification (see details of the test data sets in Table 1). Three different sensitivity
tests were carried out: (1) selecting the best threshold of the NN output to classify land/water surface;
(2) understanding the effect of the equalization of the water and non-water pixels in the NN training
dataset; (3) finding the most important satellite NN inputs. The NN performances have been evaluated
based on: spatial correlation between the SAR and Landsat-8 surface water maps, overall accuracy of
the NN, as well as higher values of true positive (TP) and true negative (TN) percentages. True positive
value indicates the NN ability to correctly detect water pixels, while true negative value illustrates its
ability to correctly detect non-water pixels (compared to the Landsat-8 surface water maps).

3.3.1. Selection of an Optimized Threshold for the NN Output

The first test is conducted to optimize the output threshold to distinguish water from non-water
pixels. Figure 7 shows the histogram of the output of the NN, separating the water and non-water pixels
according to the related Landsat-8 surface water map. The histograms of the water and non-water
clusters intersect around 0.9, meaning that the optimal threshold to separate water from non-water
pixels is close to this number. Different thresholds on the NN output values were tested (0.80, 0.85, and
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0.90): for each one, the confusion matrix and the overall accuracy are calculated, with the corresponding
Landsat-8 images as references. The overall accuracy and the spatial correlation increase from 98%
to 99% when the threshold increases from 0.80 to 0.90 (Table 3), but the true positive pixel detection
decreases from 92% (with threshold 0.80) to 89% (with threshold 0.90) and the false negative pixel
detection increases from 8% to 11%. A threshold of 0.85 is selected here because of its good water
detection performance and because it results in the predicted water surface closest to the reference
map: 4430 km2 from the Landsat-8 versus 4420 km2 from the SAR results, i.e., a limited overestimation
of 0.4% as compared to the reference map.
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Figure 7. Histograms of the NN outputs, for water (blue) and non-water (dashed red) pixels separately,
according to the corresponding Landsat-8 surface water maps. The NN uses the five initial inputs
and the training dataset is equalized. The y axis range is selected to illustrate the peak of the water
histogram.

Table 3. Confusion matrix of the NN classification for different thresholds. The NN uses the five initial
inputs and the training dataset is equalized.

Output Threshold: 0.80

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.3% 0.7% 98% 91%
Water(1) (Actual) 8% 92%

Output Threshold: 0.85

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.5% 0.5% 99% 92%
Water(1) (Actual) 9% 91%

Output Threshold: 0.90

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.6% 0.4% 99% 91%
Water(1) (Actual) 11% 89%

3.3.2. Equalization of Water and Non-Water Pixel Number

For this test, instead of using an equal number of water and non-water pixels in the training
dataset, 10% of each Sentinel-1 image is selected randomly to train the neural network, meaning that
the number of non-water pixels is several times higher (10–15 times depending on each image in
the training dataset) than the number of water pixels (as seen in Figure 7). The intersection between
histograms of the NN outputs for water pixels (blue) and non-water pixels (red) moves to 0.5 (see the
histogram in Figure 8), meaning that the value 0.5 should be selected to separate water from non-water
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clusters. As shown in Table 4, the resulting NN is very efficient at detecting non-water pixels with a true
negative detection of 99.7%, but it misses 14% of the actual water pixels (86% of true positive detection
only, compared to 91% with the equalized training dataset—Table 3). The true positive detection of
water pixels decreases because in the training database, the non-water pixels are more numerous and
as such have more weight in the retrieval than the water pixels. As a consequence, the NN is more
effective at detecting non-water pixels, and less effective at detecting water pixels. It is concluded that
the use of an equalized training data set is very important in this classification framework.
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Figure 8. Histograms of the NN outputs, for water (blue) and non-water (dashed red) pixels separately,
according to the corresponding Landsat-8 surface water maps. The NN uses the five initial inputs
but the training dataset is not equalized. The y axis range is selected to illustrate the peak of the
water histogram.

Table 4. Confusion matrix of the NN without equalization of the training dataset, for an optimum
threshold of 0.5 on the NN outputs.

Non-water(0) (Predicted) Water(1) (Predicted)

Non-water(0) (Actual) 99.7% 0.3%
Water(1) (Actual) 14% 86%

3.3.3. Analyzing the Weight of Each NN Satellite Input

To identify the most relevant inputs for the NN classification of the water surface, 15 NNs are
trained based on all 15 different combinations of five input parameters, and their performances are
evaluated following various criteria. Table 5 presents the best results with one to five inputs and
illustrates how the overall accuracy of the NN classification increases when the number of satellite
inputs increases, as compared to the reference Landsat-8 dataset. The NN trained with only the VH
backscatter coefficient has a spatial correlation of 78% and a true positive accuracy (correctly detecting
water pixels) of 77% compared to the reference data. The spatial correlation increases to 79%, and the
true positive accuracy rises to 85% when the standard deviation of the VV backscatter coefficient is
added as an input to the NN. The VV backscatter coefficient helps to increase the performance of the
NN since both spatial correlation and true positive accuracy increase to 87% and 90%, respectively.
The standard deviation of the VH backscatter coefficient does not significantly improve the accuracy
of the NN classification. This is due to the strong linear correlation (88%) between the spatial standard
deviations of the VH and the VV backscatter coefficients (the other linear correlations among the
five input parameters of the NN are provided in Table 6). Similar to the standard deviation of the
VH backscatter coefficient, the incidence angle does not have a strong impact on the performance of
the NN since its accuracy remains nearly the same after adding the incidence angle as a new input.
The input parameters of the NN classification are listed below, from the most important to the least
important one in the NN processing:
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• Backscatter coefficient VH polarization (BS_VH)
• Standard deviation of backscatter coefficient VV polarization (STD_VV)
• Backscatter coefficient VV polarization (BS_VV)
• Incidence angle
• Standard deviation of backscatter coefficient VH polarization (STD_VH)

Table 5. The NN classification performances when adding input parameters, one at a time.

One Input: BS_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2%
78%(Actual)

Water(1) 23% 77%(Actual)

Two Inputs: BS_VH + STD_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2% 79%(Actual)

Water(1) 15% 85%(Actual)

Three Inputs: BS_VH + STD_VV + BS_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99% 1%
87%(Actual)

Water(1) 10% 90%(Actual)

Four Inputs: BS_VH + STD_VV + BS_VV + Angle

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99.5% 0.5%
91%(Actual)

Water(1) 10% 90%(Actual)

Five Inputs: BS_VH + STD_VV + BS_VV + Angle + STD_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-Water(0) 99.5% 0.5%
92%(Actual)

Water(1) 9% 91%(Actual)
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Table 6. Linear correlations among the five potential NN inputs.

BS_VH BS_VV STD_VH STD_VV ANGLE

BS_VH 100%
BS_VV 84% 100%

STD_VH 24% 20% 100%
STD_VV 21% 21% 88% 100%
ANGLE 25% 22% 11% 6% 100%

To conclude, the water detection ability of the proposed NN increased when the input parameters
are carefully selected and when an optimal output threshold is selected. An equal number of water
and non-water pixels should be used in the training dataset to ensure that the NN performs equally
well in classifying water and non-water clusters. The STD_VH provides limited additional information
to the NN due to its strong linear correlations with the other NN inputs. The incidence angle also
plays a limited role in the NN performance. This is partly due to the rather narrow range of incidence
angle, from 29◦ to 46◦.

4. Results and Comparisons with Other Surface Water Products

The following results and comparisons involve the optimized version of the NN classification
with five input parameters (an equalization of water and non-water pixels, and the output threshold
is 0.85). In Section 4.1, the SAR-predicted surface water maps are calculated for two test areas in the
Mekong Delta, and compared to Landsat-8 surface water maps over the Tonle Sap Lake in Cambodia
and over the Mekong river in Vietnam (see test dataset in Table 1). Other regions were tested but the
results are not shown here. Due to the lack of in-situ local inundation maps at the time of this study,
we do not have a reference dataset to confirm the accuracy of the Landsat-8 based maps. Therefore,
an inter-comparison between Sentinel-1 estimate and other existing estimates is the only way to
evaluate the new wetland product based on SAR Sentinel-1 data. First, the results are evaluated
with respect to the floodability map derived mainly from the HydroSHEDS topography dataset [33],
developed by [34] (Section 4.2). Second, time series of the SAR-derived surface water over the Mekong
Delta is compared to the MODIS/Terra-derived inundation maps based on the methodology described
by [14], for 2015 (Section 4.3)

4.1. Evaluation of the SAR NN Classification Method

Figure 9 shows the results of the classification applied over the Tonle Sap Lake in Cambodia (top)
and over the Mekong river in Vietnam (bottom), in February 2016. Figure 9a,d show the SAR-predicted
surface water maps, Figure 9b,e present the reference Landsat-8 surface water maps, whereas the
differences between these two surface water maps are shown in Figure 9c,f.

Over the Tonle Sape Lake, both Sentinel and Landsat images were acquired on the same day
(3 February 2016). The spatial correlation between the two surface water maps is 94%. The confusion
matrix for this area is given in Table 7 (left). Overall accuracy of the classification is 99%, with a true
positive water detection of 93.5%, and a false negative percentage of 6.5%. The classification correctly
detects more than 99.6% of non-water pixels compared to the reference map. The classification slightly
underestimates the surface water coverage by ∼2.5%. This is 961 km2 compared to the reference
surface water map derived from the Landsat-8 images of 986 km2.

The second case study is carried out over the Mekong river and its surrounding areas (latitude
range [10.8◦N–11.8◦N] and longitude range [104.6◦E–105.6◦E]). The optical Landsat-8 images were
taken on 19 February 2016 and the SAR Sentinel-1 images were taken 3 days later, on 22 February 2016.
These Sentinel and Landsat images were not acquired on the same day, but within 3 days in the middle
of the dry season when land surfaces in this area are not expected to change much. Similar to the first
case study, the classification works well, even though the environment here is rather complex, with
rivers and vegetated wetlands. The overall accuracy is 98.8%, with a spatial correlation of nearly 82%
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with the Landsat-8 reference surface water map. Confusion matrix for this area is shown in Table 7
(right) where the true positive percentage is 85.7%, the false negative percentage 14.3%, and 99.2% of
non-water pixels are classified correctly. The total surface water area derived from Landsat data is
325 km2, and it is 355 km2 predicted from the NN.

Sentinel water/Landsat non-water

N

45 km

water pixels

non-water pixels

non-analysis pixels

both water

both non-water

Landsat water/Sentinel non-water

Figure 9. (a,d) SAR surface water maps; (b,e) Landsat-8 surface water maps; and (c,f) their differences;
over the Tonle Sap Lake (left), and over the Mekong river (right), for February 2016. Blue color presents
water pixels while orange color presents non-water pixels detected by both Sentinel and Landsat,
green color is Landsat water/Sentinel non-water pixels, and light blue color is Sentinel water/Landsat
non-water pixels.

Table 7. Confusion matrices (in numeric and percentage forms) of the SAR-predicted surface water
maps and the Landsat-8 reference surface water maps, over the Tonle Sap Lake (Left) and over the
Mekong River (Right).

Tonle Sap Lake

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 11,641,078 44,493
(Actual) (99.6%) (0.4%)

Water(1) 71,884 1,023,457
(Actual) (6.5%) (93.5%)

Mekong River

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 10,983,583 85,096
(Actual) (99.2%) (0.8%)

Water(1) 51,611 309,982
(Actual) (14.3%) (85.7%)

The same results are found when applying the NN classification to other areas. To conclude this
comparison, the proposed NN methodology correctly detected ∼90% of the water pixels observed
by Landsat-8, with a spatial correlation of ∼90%. The NN works better over open water bodies
than over other heterogeneous environments. For instance, the NN has difficulties detecting small
river branches (Southeast of the Tonle Sap Lake in Figure 9—top panel) although they are clearly
detected with Landsat-8 images. The NN can provide water maps with high accuracy compared to
the reference Landsat-8 water maps; there are differences between them. Errors could come from the
following factors:
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• The SAR responses can be affected by complex interactions with the terrain and the vegetation,
especially along small river banks. It can be difficult to account for this local complexity in
the methodology.

• In the SAR water detection method, as in any other classifications method scheme, different
parameters were selected to optimize the overall performance of the method, but local ambiguities
can still exist.

• Sentinel-1 and Landsat-8 data are not always acquired on the same day.
• Using Landsat-8 quality flags, we can remove cloud-covered pixels, but we cannot detect

cloud-shadow pixels causing ambiguities in the NN training dataset.
• Reference surface water maps derived from negative NDVI values on the Landsat-8 images are

not always perfect. Water under vegetation can be difficult to detect with Landsat-8 observations.
The NDVI values can also be impacted for highly turbid waters where the NIR reflectance can be
higher than the red reflectance.

4.2. Evaluation Using a Topography-Based Floodability Index

A global floodability index based on topography has been developed by [34]. It uses mainly the
Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS)
dataset [33] that has been derived from elevation measured by the Shuttle Radar Topography Mission
(SRTM) satellite. This floodability index provides a static map of an estimate of the probability for
a pixel to be inundated (between 0% and 100%) at the spatial resolution of 90 m, based only on
topography information (such as slope in the pixel, distance to the closest river, difference of elevation
with the closest river). Figure 10a presents this floodability index map over the whole Mekong Delta.
As expected, all rivers and lakes in this area have a very high probability of being inundated (over 80%).
Since this index is based only on topography, its reliability is higher for natural environments and it can
be less precise over regions with strong anthropic impact such as irrigated areas. The floodability data
is upscaled from 90 m to 30 m spatial resolution to compare with predicted SAR surface water maps
over the Tonle Sap Lake and the Vietnamese Mekong Delta. Each floodability pixel is divided into
a 3 × 3 matrix with the same value, and projected onto the Sentinel-1 grid. By comparing these two
products, we can see where and how Sentinel-1 water pixels are located with respect to the floodability
index, and test the consistency between two independent products. Figure 10b–e show floodability
maps at 30 m spatial resolution and predicted Sentinel-1 water maps, over four different areas in the
Mekong Delta. SAR surface water areas are generally located in areas with high predicted inundation
probabilities, as expected (see Table 8). A total of 98% of the SAR surface water pixels are located in
areas where the floodability index is greater than 60%, while only 2% of the SAR surface water pixels
are located in areas with a lower floodability index (≤60%). As mentioned earlier, the floodability index
only relies upon topography information, and it can be less precise over regions with strong anthropic
activities, such as irrigation. There are many rice paddies in the Lower Mekong Delta, and these
irrigated fields can be missed by the floodability index, contributing to the 15% errors of SAR water
pixels located in areas with a floodability index less than 80%. In the future, in complex-topography
environments where SAR only data could not provide the required accuracy for the water classification
(the Red River Delta in the North of Vietnam, for example), the floodability index information could
be added as another input to the NN to improve the classification performance.

Table 8. Performance of the SAR surface water classification for different ranges of floodability index.

Floodability Index ≤40 40–60 60–80 ≥80

Percentage of surface water pixels 1% 1% 13% 85%detected by the NN classification
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Figure 10. (a) Topography-based floodability index map over the Mekong Delta from [34]. (b–e)
Comparisons of floodability index maps and SAR-predicted surface water maps for four areas over
Cambodia and the Vietnamese Mekong Delta.

4.3. Comparisons with MODIS/Terra-Derived Inundation Maps

In this section, the 30 m SAR surface water maps are compared to the 500 m MODIS/Terra-derived
inundation maps, for a region in the Mekong Delta. One year (2015) of SAR Sentinel-1 and MODIS/Terra
data are extracted, over the same region (latitude [9.8◦N–11.3◦N]; longitude [104.75◦E–107◦E]).
The MODIS inundation maps are derived from the method described by [14]. We re-produced their
methodology to calculate inundation maps with three different states of non-water, water, and mixed
pixels, respectively. The total MODIS surface water is the sum of the water pixels (100% area is
inundated) and mixed pixels (part of these pixels is inundated). For a mixed pixel, we tested two
hypothesis: 25% or 50% of the pixel is inundated.

Twenty Sentinel-1 SAR observations are available over the selected region for the year 2015
(less than two images per month—see Table 2). The surface water extent calculated from the SAR and
MODIS data are presented in Figure 11. With the first assumption (25% of a mixed MODIS pixel is
covered by water), the two surface water extents have very similar seasonal cycles and amplitudes,
with a correlation of ∼99% (Figure 11-bottom). For the second assumption (the surface water extent of
a mixed pixel is increased to 50%), the difference in surface water areas increases (without significant
changes in the seasonal cycle with still high correlation with the SAR surface water time series).
With both hypotheses, the SAR and MODIS surface water extents reach their maximum at the same
time (around 20 October 2015). Total inundated areas derived from SAR and MODIS are very close
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during the dry season (January to July). The cloud contamination of the MODIS estimate is low during
that season. During the rainy season, more cloud contamination is expected in the MODIS estimates,
and the discrepancies between the two surface water extents increase. The SAR-derived surface water
estimate is expected to be more reliable due to its insensitivity to the cloud cover, but at this stage there
is no convincing dataset at this spatial resolution to confirm it, as mentioned before.

To evaluate the consistency of the spatial structure between the SAR-derived and the
MODIS-derived surface water maps, 10 SAR Sentinel-1 images were downloaded to cover the
whole Mekong Delta and the Tonle Sap Lake (five images in May and five images in October 2015).
For comparison purposes and to calculate the spatial correlation, the SAR surface water maps are
aggregated from the 30 m resolution to the 500 m resolution of the MODIS-derived inundation
maps (see Figure 12a,c). As a consequence, Sentinel-1-derived inundation maps are not binary (0 for
non-water pixels or 1 for water pixels), but they are converted into a percentage of surface water
at 500 m spatial resolution. For the dry season (Figure 12a,b—May 2015), the spatial correlation
between the two surface water maps is 68%. A total of 4% of the area is inundated for the SAR
estimation, while it is 5% for the MODIS estimates. For the rainy season (October 2015), the spatial
correlation of the two maps increases to 78%, with 8% inundated area with the SAR and 11% with
MODIS. For these calculations, we used the hypothesis of 25% inundation of the MODIS mixed
pixels. Although SAR-derived and MODIS-derived water maps have a very similar seasonal cycle
and similar spatial distribution of the water bodies, confirming the wetland seasonal cycle over
this region, there are differences in the total surface of inundated areas. It comes mainly from the
difference of spatial resolution between the two satellites. First, MODIS sensors cannot detect very
small surface water fractions due to their spatial resolution. Second, the MODIS mixed pixels include
water surfaces, vegetation surface and bare soil, and the percentage of each surface type within the
pixel is not quantified.
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Figure 11. Time series of the surface water detected by SAR (red) and MODIS data (black), over the
Mekong Delta (Latitude [9.8◦N–11.3◦N]; Longitude [104.75◦E–107◦E]), for 2015. Two hypotheses are
tested for the MODIS mixed pixels: 50% inundated (top Panel), and 25% inundated (bottom Panel).
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Figure 12. (a,c) SAR and (b,d) MODIS surface water maps at 500 m resolution over the Mekong Delta
in May (a,b) and October (c,d) 2015.

5. Conclusions and Perspectives

This study presents a methodology to monitor and quantify surface water under all weather
conditions within Cambodia and the Mekong Delta in Vietnam, using high quality Sentinel-1 SAR
observations, freely available online. The methodology is based on a neural network classification
trained with optical Landsat-8 images at 30 m spatial resolution. The information content of each
satellite input is analyzed and the inputs are selected to optimize the performance of the classification.
This method allows the detection of surface water with good accuracy when compared to visible
and NIR data under clear sky conditions, as well as when compared to a floodability map derived
from topography data. Surface water maps derived from the proposed NN show a spatial correlation
of ∼90% when compared to Landsat-8 water maps, with a true positive water detection of ∼90%.
Compared to MODIS/Terra water maps over the Delta in 2015, our products share the same wetland
seasonal cycle and dynamics, with a temporal correlation of ∼99%.

In the future, we will first apply the method to other areas under similar environments in southeast
Asia and in other parts of the globe, and second we will test it in more vegetated environments.
The final goal is to develop a general method capable of performing at the global scale to exploit the
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full spatial coverage of the Sentinel-1 mission. For this purpose, several approaches will be tested to
improve the retrieval scheme. First, the introduction of a priori information from a topography-based
floodability index will increase information on flooding and reduce ambiguities in the SAR signal
with other surface parameters. Second, with the launch of the optical Sentinel-2 satellite, Sentinel-2
observations could be used to replace Landsat-8 data, and to train the SAR surface water classification
under clear sky conditions. The classification could then be extended to the cloudy areas using the SAR
data. Third, the temporal information in the SAR backscatter could also be exploited (i.e., minimum or
standard deviation of the time series) as this information has been shown to improve the detection
of floods [13]. Finally, the high-resolution inundation extent retrieval maps could be post-processed
in order to reduce the inherent noise in such high-spatial retrievals. We plan to test random walk
techniques for that purpose.
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ABSTRACT

Continental surface water extents and dynamics are key information to model Earth’s hydrological and

biochemical cycles. This study presents global and regional comparisons between two multisatellite surface

water extent datasets, the Global Inundation Extent from Multi-Satellites (GIEMS) and the Surface Water

Microwave Product Series (SWAMPS), for the 1993–2007 period, along with two widely used static in-

undation datasets, the Global Lakes and Wetlands Database (GLWD) and the Matthews and Fung wetland

estimates. Maximum surface water extents derived from these datasets are largely different: ;13 3 106 km2

fromGLWD,;5.33 106 km2 fromMatthews and Fung,;6.23 106 km2 fromGIEMS, and;10.33 106 km2

from SWAMPS. SWAMPS global maximum surface extent reduces by nearly 51% (to ;5 3 106 km2) when

applying a coastal filter, showing a strong contamination in this retrieval over the coastal regions. Anomalous

surface waters are also detected with SWAMPS over desert areas. The seasonal amplitude of the GIEMS

surface waters is much larger than the SWAMPS estimates, and GIEMS dynamics is more consistent with

other hydrological variables such as the river discharge. Over the Amazon basin, GIEMS and SWAMPS

show a very high time series correlation (95%), but with SWAMPSmaximum extent half the size of that from

GIEMS and from previous synthetic aperture radar estimates. Over theNiger basin, SWAMPS seasonal cycle

is out of phase with both GIEMS and MODIS-derived water extent estimates, as well as with river

discharge data.

1. Introduction

Continental surface waters only cover a few percent of

the land surface (Lehner and Döll 2004; Downing et al.

2006; Prigent et al. 2007), but they have a strong impact

on the environment, as well as on human life

(Vorosmarty et al. 2010). Surface freshwaters comprise

wetlands, rice paddies, rivers, lakes, reservoirs, and epi-

sodically inundated areas. Note that the definition of

wetlands varies with applications and there is not an

overall consensus on the subject (e.g., Reichhardt 1995).

Surface waters play a key role in the biogeochemical and

hydrological cycles, in biodiversity, and in climate vari-

ability. They show very diverse natures, from wetlands to

inundated urban areas or rice paddies, associated with

different dynamics from the tropics to the boreal regions.

Wetlands are considered one of the most biologically

diverse of all ecosystems since they support plant andwild

animal species during important states of their life cycles.

They are the world’s largest natural source of methane

(CH4), and they provide about one-third of the total
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global emission (;165Tgyr21; Bousquet et al. 2006;

Bridgham et al. 2013; Wania et al. 2013). Consequently,

monitoring surface freshwater extent and dynamics is a

high priority in water management and climate research

(e.g., Alsdorf et al. 2007).

Nevertheless, our understanding about the global

distribution of the surface waters and their dynamics is

still limited, with only a few datasets providing in-

formation at the global scale. Efforts have been made to

collect information on water surfaces to produce static

maps of surface waters, for example, the Global Lakes

andWetlandsDatabase (GLWD) fromLehner andDöll
(2004) or the Matthews and Fung (1987) wetland data-

set. These maps are representative of the maximum

surface water extent, and they do not provide any in-

formation on the temporal dynamics. Satellite observa-

tions in the visible, infrared, or microwave domains have

the potential to detect surface water extent and their

variations (Verpoorter et al. 2014; Yamazaki et al. 2015;

Mueller et al. 2016; Feng et al. 2016), with different

degrees of success depending on the environments.

Optical and near-infrared satellite measurements pro-

vide good spatial resolutions but are limited by their

inability to penetrate clouds and dense vegetation. Mi-

crowaves, passive or active, have the ability to penetrate

clouds and vegetation, to a certain extent. With syn-

thetic aperture radar (SAR) data, high spatial resolution

is obtained, but global products describing the surface

water dynamics are not available yet. Passive microwave

observations have long been used to detect surface wa-

ter extents, but used alone, it is difficult to disentangle

the vegetation contribution from the measured signal.

Prigent et al. (2016) propose a review on the use of

different satellite techniques to monitor surface water,

discussing in detail their advantages and limitations re-

garding the diverse applications.

These considerations lead to the conclusion that there

is currently not a unique satellite technique for detecting

surface water dynamics globally from tropical to boreal

regions. In the following, surface waters will include all

surface water types (wetlands, rice paddies, rivers, lakes,

reservoirs, and episodically inundated areas), as the

satellite observations cannot distinguish between the

different natures of the surface water. A multisatellite

methodology has been developed to derive surface wa-

ter extent and dynamics at the global scale, benefiting

from complementary strengths of satellite observations

in the visible, passive, and active microwaves (Prigent

et al. 2001, 2007, 2012; Papa et al. 2010): the Global

Inundation Extent from Multi-Satellites (GIEMS).

More recently, the Surface Water Microwave Product

Series (SWAMPS) has been produced, also based on

the merging of passive and active microwave satellite

observations (Schroeder et al. 2015). Long time series of

global surface water estimates are necessary today to

analyze the changes in the wetland-related methane

emission (e.g.,Melton et al. 2013;Wania et al. 2013), and

climate modelers are in strong need of wetland extent

information to understand the methane variability over

past decades (Ringeval et al. 2010; Pison et al. 2013) for a

better prediction of its evolution in the upcoming de-

cades. GIEMS has been extensively evaluated and is

limited to 1993–2007 (time extension is underway).

SWAMPS is a recent dataset that extends from 1992 to

2013. They have a similar spatial resolution (;0.258 3
0.258). As these two datasets are currently the only

global surface water datasets with monthly time series, a

thorough comparison of these estimates is needed for

the user community.

Here, global surface water datasets are systematically

and objectively compared, including the two multi-

satellite databases, GIEMS and SWAMPS, along with

two static datasets. The analysis covers the common

period of the two satellite-derived products (1993–

2007), and both the spatial and temporal variabilities of

the databases are studied. The surface water datasets are

described in section 2. Global and regional comparisons

are described and discussed in section 3. A discussion is

presented in section 4, and section 5 concludes this

study.

2. Data

a. GIEMS

GIEMS was the first global surface water dataset that

provided monthly distribution of wetland and surface

water extent (including lakes, rivers, and irrigated agri-

culture). GIEMS data cover the period 1993–2007

and are mapped on an equal-area grid of 0.258 3 0.258
spatial resolution at the equator (pixels of 773km2). In-

undated surfaces were detected and their extent was es-

timated by the method developed by Prigent et al. (2001,

2007, 2012).Globalmonthly inundationmaps are derived

from daily data of the following satellite observations:

1) passive microwave emissivity from the Special Sensor

Microwave Imager (SSM/I), 2) active microwave back-

scatter coefficients from the scatterometer on board the

European Remote-Sensing (ERS) satellite, and 3) the

normalized difference vegetation index (NDVI) derived

from visible and near-IR reflectances of the Advanced

Very High Resolution Radiometer (AVHRR). Instead

of directly using the brightness temperatures from the

passive microwave instruments, surface emissivities

are calculated to avoid modulation of the signal by

atmospheric effects and surface temperature variations

(Prigent et al. 2006). Passive microwave emissivities
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from SSM/I are primarily used to detect inundation of

the land surface while active microwave backscatter is

used to assess the vegetation contribution to the passive

microwave signal. NDVI information is necessary to

distinguish between bare surfaces and inundated sur-

faces in semiarid regions where they can produce similar

passive microwave signatures. Because of the lack of

continuity and consistency in the ERS and AVHRR

products, the current version of GIEMS uses monthly-

mean climatology of ERS andAVHRR, calculated over

1993–2000. Other solutions were carefully tested, such

as using other instruments like QuikSCAT instead of

ERS, but this was not satisfactory (Papa et al. 2010). The

snow-covered areas are filtered out using the National

Snow and Ice Data Center (NSIDC) dataset (Brodzik

and Armstrong 2013; http://nsidc.org/data/NSIDC-

0046). Inland seas (Caspian Sea and Aral Sea), big

lakes (e.g., Great Lakes in North America), and coastal

pixels (possibly contaminated by radiation from the

ocean because of the large microwave fields of view)

were also carefully suppressed from the GIEMS data.

GIEMS has been thoroughly evaluated by comparison

with static surface water databases, and its consistency

with other hydrological information (e.g., precipitation

and river height) has been assessed (Papa et al. 2006,

2007, 2008a, 2010). Recent works have been performed

to downscale GIEMS using ancillary high-resolution

data. GIEMS-D15 has a 15-arc-s resolution (nearly

500m at the equator) for three different temporal states

of the inundation extent (Fluet-Chouinard et al. 2015).

First, the original 12-yr time series of GIEMS (1993–

2004) were aggregated to get mean annual minimum,

mean annual maximum, and long-term maximum at the

pixel level. Second, GLWDdata (Lehner andDöll 2004)
were added to supplement missing data or to correct

GIEMS underestimation for low water fraction.

Finally, a global inundation probability map derived

from the HydroSHEDS dataset (Lehner et al. 2008) was

used to downscale GIEMS from the original resolution

to 15 arc s (Fluet-Chouinard et al. 2015). In this project,

we averaged GIEMS-D15 to the GIEMS grid (0.258 at
the equator) for comparison with the other datasets.

More recently, a new version (GIEMS-D3) at 3-arc-s

resolution (Aires et al. 2017) has been produced with an

improved downscaling scheme.

b. SWAMPS

SWAMPS is a daily global surface water dataset,

mapping open water areas and water under low-density

vegetation, for the period 1992–2013 (Schroeder et al.

2015), on an equal-area grid of 25 km resolution at the

equator (similar to GIEMS). It is derived from com-

bined passive and activemicrowave observations: SSM/I

and the Special Sensor Microwave Imager/Sounder

(SSMI/S) for the passive microwave and the backscatter

coefficients from ERS, QuikSCAT, and the Advanced

Scatterometer (ASCAT). The microwave polarization

difference index (MPDI), the ratio of the difference

between the brightness temperatures in the two or-

thogonal polarizations over their sum, is the main in-

dicator to detect the water bodies in this methodology.

Backscatter coefficients from the ERS (5GHz),

QuikSCAT (10GHz), and ASCAT (5GHz) satellites

are used to reduce the vegetation effect on the MPDI.

The three instruments do not observe with the same

angles and frequencies, and ad hoc corrections are per-

formed to limit the effects of the changes on the time

series (Schroeder et al. 2015). Snow cover and frozen

ground are filtered using the method of Grody and

Basist (1996) and Chang et al. (1987). Daily global

SWAMPS data were averaged to obtain monthly global

SWAMPS estimates at 0.258 3 0.258 for comparison

with the other datasets.

c. GLWD

GLWD is a global open water and wetland dataset

developed by Lehner and Döll (2004). The dataset is

derived from the combination of a variety of existing

maps and information. Among these, the Digital Chart

of the World (DCW) of the Environmental System

Research Institute (ESRI) was the main source map to

identify lakes and reservoirs. GLWD is not a satellite

product, but a staticmapwith three data levels: GLWD-1,

GLWD-2, and GLWD-3. The GLWD-3 data used here

include three main types of open water (rivers, lakes,

and reservoirs) and nine different natural wetland clas-

ses in the form of a global raster map at 30-s resolution.

For each wetland category (50%–100%, 25%–50%, and

0%–25%) the average value (i.e., 75%, 37.5%,

and 12.5%) is used. GLWD is designed to represent the

maximum level of surface water extent regionally and

globally. GLWD has been used extensively and com-

pared favorably with different satellite-based land-cover

datasets (Nakaegawa 2012). For comparison with the

other datasets, GLWD is aggregated to theGIEMS grid.

d. Other ancillary datasets

Matthews and Fung (1987) wetland fractions come

from aeronautical charts, the information for which is

more likely acquired during warm seasons of maximum

flooding (Matthews and Fung 1987). It is a static dataset

on a 18 regular grid. It has been extensively used in the

past by climate groups to estimate the methane emission

from wetlands.

Satellite products such as GIEMS and SWAMPS

detect all surface water, including inundated areas
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associated with cultivation (such as the rice paddies in

Asia) that are not accounted for in GLWD or in the

Matthews and Fung (1987) wetland dataset. The global

monthly irrigated and rain-fed crop areas (MIRCA)

around the year 2000 (Portmann et al. 2010) provide

information about irrigated and rain-fed agriculture

globally. Irrigated rice is inundated during most of its

growing season, and the MIRCA dataset provides an

estimate of these inundated surfaces that are especially

important in Asia (Adam et al. 2010). MIRCA is av-

eraged from the 5-arc-min resolution to the common

0.258-resolution grid.

River discharge data in some important basins of

the world (e.g., Amazon, Orinoco, Niger, Mississippi,

Congo, and Ob) were collected as an ancillary source of

information to compare with time series of the surface

water datasets. In the present study, we show the com-

parisons with river discharge for three basins we focused

on (Amazon, Niger, and Ob Rivers). For the Amazon

River, we use the in situ monthly discharges observed at

Obidos, Brazil, which is the closest gauge to the mouth

of the river (;800 km from the ocean), and for which

data are available for 1993–2007 at the Observation

Service for the Geodynamical, Hydrological and Bio-

geochemical Control of Erosion/Alteration and Mate-

rial Transport in the Amazon, Orinoco, and Congo

basins (SO HYBAM) website (http://www.ore-hybam.

org/). Daily river discharge at the Lokoja gauge (1998–

2005) is used to get the monthly river discharge data for

the Niger basin. The data are collected from the Global

Runoff Data Centre (GRDC; http://www.bafg.de/

GRDC/EN/Home/homepage_node.html). Over the Ob

River, we use the in situ records from the Russian Hy-

drometeorological Service that are available on

a monthly basis until 2004 in the archives of the

R-Arctic project (http://www.r-arcticnet.sr.unh.edu/

v4.0/index.html).

3. Comparisons of the surface water datasets

The satellite-derived surface water datasets are com-

pared over their common period 1993–2007, first globally

and then at a basin scale. The 23 largest river basins in the

world have been analyzed. However, the results are pre-

sented only for three basins located in contrasted types of

environments: the Amazon basin in the tropics, the Niger

basin in a semiarid area, and the Ob basin in the boreal

region. The comparison is also systematically performed

with the two static datasets previously described: GLWD

and the Matthews and Fung (1987) dataset.

a. Global comparisons

Figure 1a shows the GIEMS long-termmonthly-mean

maximum inundation for each pixel over 1993–2007,

along with the SWAMPS equivalent information

(Fig. 1b), for comparison with GLWD (Fig. 1c). Even at

this scale, large differences are evident between the

three datasets. GIEMS and GLWD show much larger

inland water fractions than SWAMPS. GLWD has

particularly large inundation extent in Canada, where

many small lakes are located. The major large river

floodings (e.g., Amazon, Orinoco, and Ganges–

Brahmaputra) appear clearly on both GIEMS and

GLWD maps. The large water fraction in SWAMPS is

concentrated on the coastal region (see, e.g., Indonesia).

That is very likely related to the contamination of the

retrieval by the ocean. Close to the coast, part of the

energy observed by the microwave instruments can

FIG. 1. Global maps of fractional surface water for different datasets on the equal-area grid at 0.258 3 0.258 at the
equator (773 km2 pixels). (a) GIEMS long-term monthly-mean max over 1993–2007, (b) original SWAMPS long-

termmonthly-mean max over 1993–2007, (c) GLWD, and (d) SWAMPS long-termmonthly-mean max over 1993–

2007 after coastal filtering.
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come from the ocean, and the signal can be mis-

interpreted as coming from terrestrial inundated sur-

faces, if a careful filtering is not applied. Here we

propose to filter the SWAMPS data to eliminate the

ocean contamination close to the coast. Figure 1d rep-

resents the SWAMPS data where the contaminated

coastal pixels are masked. SWAMPS also detects water

almost everywhere on the globe, even in the North

African desert. Histograms of the maximum frac-

tional water surface are presented in Fig. 2 for the

four datasets in Fig. 1. GLWD shows a large number

of highly inundated pixels (.90%), mostly located in

Canada (see Fig. 1c). SWAMPS has a very large

number of fractional water surfaces below 0.2, much

more than the two other datasets. However, it has

much less large water fractions, especially after fil-

tering of the coasts.

For each pixel and each satellite-derived dataset, the

mean fractional inundation at annual maximum and

minimum has been calculated, along with the mean

yearly amplitude of the fractional inundation (Fig. 3;

note that for SWAMPS the coastal filtering is applied).

Maps of the differences of these values betweenGIEMS

and SWAMPS data are also presented. Compared to

GIEMS, SWAMPS shows very limited amplitude in the

annual cycle of the inundation, even in regions where

large seasonal variations are expected.

Time series of the surface water from GIEMS and

SWAMPS are compared globally and for three latitude

bands [tropical (308S–308N), midlatitude (308–558N),

and boreal (558–708N)] in Fig. 4, along with the corre-

sponding values from GLWD, from the Matthews and

Fung (1987) wetland dataset, and from the irrigated

fields from MIRCA. GLWD (black) shows the maxi-

mum level of surfacewater both globally (;133 106km2)

and regionally. This is expected as it is representative of

the maximum inundation and it has a better spatial

resolution than the Matthews and Fung (1987) dataset

(that is also expected to present the maximum in-

undation, but with a much lower spatial resolution and

thus likely to miss the small water surfaces). The

Matthews and Fung (1987) dataset (cyan) has much less

water extent in the boreal and the midlatitude regions,

as it is representative of the wetlands only and does not

include the lakes and rivers (;5.3 3 106 km2). The

maximum global surface water extent derived from

FIG. 2. Histograms of long-term max fractional water surfaces for

the four datasets in Fig. 1.

FIG. 3. Global-mean annual (top) min and (middle) max of the fractional inundation and (bottom) amplitude for (left) GIEMS, (center)

SWAMPS, and (right) their differences. The information is presented on the 773 km2 equal-area grid.
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GIEMS is ;6.2 3 106 km2, smaller than that derived

from GLWD. From comparison with high-resolution

SAR estimates over the Amazon basin, the accuracy of

the GIEMS product has been estimated at 10% of the

773 km2 equal-area grid: because of the low-spatial-

resolution satellite sensors, GIEMS tends to miss the

small water fraction below 10% of the pixels or to

overestimate the large inundation fraction above 90%

(Prigent et al. 2007). However, this problem is partly

corrected in GIEMS-D15 (Fluet-Chouinard et al. 2015),

which merges GIEMS low-inundated pixels with

GLWD. The maximum of the original SWAMPS in-

undation extent at global scale (;10.3 3 106 km2) is

close to the GLWD extent, as mentioned in Schroeder

et al. (2015). Over the tropical region, the maximum

surface water derived from the original SWAMPS

(dashed blue) is very close to that of GWLD (black),

;4.93 106 and ;4.43 106 km2, respectively. However,

it is surprising to observe that the global maximum value

is reduced to ;5 3 106 km2 (i.e., a reduction of nearly

51%) when the coasts are filtered out. Over the tropical

region, SWAMPS decreases by nearly 53% after coastal

masking to reach ;2.3 3 106 km2. The original

SWAMPS dataset detects more water surfaces than

GIEMS for all three latitude bands. After coastal fil-

tering, the yearly-mean temporal SWAMPS water sur-

face extent is similar to theGIEMSone, but the seasonal

amplitude of SWAMPS is much lower than the GIEMS

one. Table 1 shows monthly long-term minimum, long-

termmaximum, and long-termmean, as well as seasonal

amplitude between monthly long-term maximum and

minimum of surface water extent derived from GIEMS

and SWAMPS after coastal filtering globally, and at

three latitude bands, for the studied period (1993–2007).

FIG. 4. Time series of surface water extent derived from GIEMS (red), original SWAMPS

(dashed blue), SWAMPS with coastal filtering (blue), GLWD (black), Matthews and Fung

(1987) dataset (cyan), and MIRCA irrigated fields (green), at three latitude bands and

globally, for the period 1993–2007.
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Long-term mean values between GIEMS and

SWAMPS are close, but GIEMS shows larger ampli-

tude than SWAMPS regionally and globally. FromFig. 4

we can see that wetland surfaces derived from GIEMS

(red) and SWAMPS (dashed blue) have strong temporal

correlations globally (92%) and over the boreal region

(88%), but lower temporal correlations over mid-

latitudes (58%) and the tropics (48%). Furthermore, in

these two regions, GIEMS has a much stronger seasonal

cycle than SWAMPS.

In the rest of the study, the coastal filter is applied to

the SWAMPS data.

b. Basin-scale comparisons

1) COMPARISONS OVER THE AMAZON BASIN

The Amazon basin is the largest drainage basin in the

world with the largest discharge, and it is mostly located in

the tropical rain forest. Figure 5 shows the long-term

maximum inundationmaps (1993–2007) over theAmazon

basin, derived from the different wetland datasets. Spatial

distributions of surface water datasets are similar. Al-

though the spatial correlation between long-term maxi-

mum inundated maps of GIEMS and SWAMPS is nearly

90%, SWAMPS fractional surface water is much lower

than the GIEMS and GLWD ones. In Schroeder et al.

(2015), it is noted that SWAMPS has problems detecting

water underneath dense forest canopy. The ability of

passive microwaves to detect surface water below dense

forest was demonstrated early by Giddings and

Choudhury (1989) or Sippel et al. (1994) in their pioneer

works. It is rather surprising that SWAMPS cannot detect

these surface waters. GIEMS-D15 corrects GIEMS by

adding the small surface water fractions that are likely

TABLE 1. Monthly long-term min, long-term max, long-term

mean, and seasonal amplitude between monthly long-term max

and min of surface water extent derived from GIEMS and

SWAMPS after coastal filtering at three latitude bands and glob-

ally, for the period 1993–2007. Unit is 3 106 km2.

Min Max Mean Amplitude

Boreal

GIEMS 0.0 1.5 0.4 1.5

SWAMPS 0.2 1.2 0.6 1.0

Midlatitude

GIEMS 0.3 1.6 0.8 1.3

SWAMPS 0.7 1.2 0.9 0.5

Tropical

GIEMS 1.3 3.0 1.8 1.7

SWAMPS 1.7 2.3 1.9 0.6

Global

GIEMS 1.7 6.2 3.2 4.5

SWAMPS 3.0 5.0 3.9 2.0

FIG. 5. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Amazon basin. Shown are GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.
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missed byGIEMS, and this is clearly seenwhen comparing

GIEMS and GIEMS-D15 inundation maps in Fig. 5.

Mean annual minimum and maximum inundation

maps of GIEMS, GIEMS-D15, and SWAMPS are

shown in Fig. 6. Similar to the long-term maximum in-

undated maps, the spatial distributions of the GIEMS

and SWAMPS datasets are similar (spatial correlation

of 80% and 90% for the minimum and maximum, re-

spectively), but SWAMPS detects much less surface

water than the two GIEMS versions.

Monthly time series of the surface water extents have

been calculated over the basin, along with the river

discharge at the mouth of the river (Fig. 7, top). The

monthly-mean annual cycle from January to December

FIG. 6. Mean annual (top) min and (bottom) max of the inundation derived from different surface water datasets over the Amazon basin

for (left) GIEMS, (center) GIEMS-D15, and (right) SWAMPS.

FIG. 7. (top) Time series and (bottom) anomaly of surface water extent derived from the

different wetland datasets, along with the river discharge over theAmazon basin from 1993 to

2007. Anomaly is calculated by removing the monthly-mean annual cycle from time series.
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is computed by averaging values from all Januaries to

Decembers between 1993 and 2007. Then these values

are subtracted from the time series for each given

month, to obtain the anomaly time series (Fig. 7, bot-

tom). Time series and anomaly correlations are shown in

Table 2. The behaviors of time series of GIEMS (red)

and SWAMPS (blue) are very similar to that of the river

discharge (brown), with very high correlations. Time

series correlation between GIEMS and SWAMPS is

95%. It is 78% and 74% with the river discharge for

GIEMS and SWAMPS, respectively. Time series cor-

relations with the river discharge increase when calcu-

lated with 1-month lag, as expected, reaching 91% and

88%, respectively. The anomaly correlation between

GIEMS and SWAMPS is surprisingly high (77%). The

same analysis has been carried out over the Orinoco

basin, showing a correlation of 99% between time series

of GIEMS and SWAMPS and a correlation of 97%

between their anomalies. More details can be found in

the supplemental material.

2) COMPARISONS OVER THE NIGER BASIN

The Niger basin is characterized by a large inner delta

that results in a region of braided streams and has

marked seasonal floods. Long-term maximum in-

undation maps are shown over the Niger basin in Fig. 8,

while their minimum and maximum are presented in

Fig. 9, and Fig. 10 shows their time series and anomalies,

as well as that derived from the river discharge data.

Time series and anomaly correlations between GIEMS/

SWAMPS and other ancillary datasets are shown in

Table 3. Time series of GIEMS and SWAMPS are in

opposite phase (Fig. 10), making the time series corre-

lation negative (240%). Again, GIEMS shows a much

stronger seasonal cycle than SWAMPS over this basin.

GIEMS and the river discharge (brown) show similar

behavior with a time series correlation of nearly 81%

(for the common period 1998–2005). In contrast,

SWAMPS does not show the same seasonal cycle,

making its time series correlation with the river dis-

charge negative (260%). Note that other studies

TABLE 2. Time series and anomaly correlations between

GIEMS, SWAMPS, and river dischargeQ over the Amazon basin

for the period 1993–2007. Numbers in parentheses are calculated

with 1-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 95% 77%

GIEMS/Q 78% (91%) 54% (58%)

SWAMPS/Q 74% (88%) 57% (61%)

FIG. 8. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Niger basin. Shown are the GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.
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analyzed GIEMS over the Niger region, for example,

Pedinotti et al. (2012) or Aires et al. (2014). Pedinotti

et al. (2012) evaluate the ability of the ISBA–Total

Runoff Integrating Pathways (TRIP) continental hy-

drologic system to represent key processes (surface

water, rivers and floodplain dynamics, and water stor-

age) related to the hydrological cycle of the Niger basin.

To this end, GIEMS is used to evaluate the long-term

simulations that showed that the flooding scheme leads

to a nonnegligible increase of evaporation over large

flooded areas, which in turns improved the Niger River

discharge estimates at several locations. The objective of

Aires et al. (2014) is to develop downscaling methodolo-

gies to obtain a long time record of inundation extent over

FIG. 9. Mean annual (top) min and (bottom) max of the inundation derived from different surface water datasets over the Niger basin for

(left) GIEMS, (center) GIEMS-D15, and (right) SWAMPS.

FIG. 10. (top) Time series and (bottom) anomaly of surface water extent derived from the

different wetland datasets (1993–2007), along with the river discharge (1998–2005) over the

whole Niger basin. MODIS surface water extent time series for the inner delta only (dashed

brown) is available from 2000.
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the inner Niger delta at high spatial resolution (500m)

based on the existing low-spatial-resolution results of the

GIEMS dataset and observations from MODIS.

Time series of the surface water derived fromMODIS

visible images over theNiger basin for the period 2000–07

(Bergé-Nguyen and Crétaux 2015) were also compared

to the behavior of GIEMS and SWAMPS over this re-

gion. From Fig. 10 (top) and Fig. 11, it is clear that

GIEMS and MODIS surface water time series have

similar seasonal dynamics over the common period

(2000–07). However, GIEMS has a higher maximum

value than MODIS, which could suggest an over-

estimation from GIEMS over this region. In addition,

the interannual variability is not totally similar between

GIEMS and MODIS. Similar passive microwave sig-

natures can be observed over arid regions and over

water: these two surface types have low emissivities with

rather large emissivity polarization differences. As a

consequence, reliable and accurate detection of surface

water in arid and semiarid regions is not trivial. In

GIEMS, NDVI information is used in the process to

help solve these ambiguities. SWAMPS obviously en-

counters difficulties in this type of environment, with

false detection of water in deserts and underestimation

of water surfaces in inundated deltas. This is in agree-

ment with Schroeder et al. (2015). As a result, over the

Niger delta, SWAMPS does not capture at all the water

surface dynamics.

3) COMPARISONS OVER THE OB BASIN

The Ob basin in western Siberia is selected to repre-

sent the boreal environments. SWAMPS surface waters

are again much less extended than the other estimates

(see Figs. 12 and 13). SWAMPS surface water peaks

generally in May, one month earlier than GIEMS. Time

series correlation between GIEMS (SWAMPS) and the

river discharge for the studied period is 91% (62%).

When calculated with 1-month lag, time series correla-

tion decreases for GIEMS to 80%, while it increases for

SWAMPS to 91% (Table 4). The same conclusions can

be found for the anomaly correlations between GIEMS,

SWAMPS, and river discharge over the Ob basin (also

Table 4). The lag between GIEMS and SWAMPS could

be partly related to differences in the snow filtering per-

formed monthly with GIEMS and daily with SWAMPS.

GIEMS estimates are flagged too quickly by the NSIDC

snow mask, so we are missing the end of the high-water-

stage season (September–October). The river discharge

from the Ob River and GIEMS have been compared in

Papa et al. (2008b), and the use of the snowmaskwas well

discussed. The snow flag in GIEMS is under analysis and

will be refined for the next version of the dataset.

4. Discussion

As already observed in Fig. 1, the maximum surface

water extent estimated by SWAMPS for the major ba-

sins is limited compared to the other estimates. The

annual maximum SWAMPS surface extent (including

TABLE 3. Time series and anomaly correlations between

GIEMS, SWAMPS, and river dischargeQ over the Niger basin for

the period 1993–2007. Numbers in parentheses are calculated with

2-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 240% 20%

GIEMS/Q 81% (51%) 23% (44%)

SWAMPS/Q 260% (10%) 22% (12%)

FIG. 11. Time series of surfacewater extent derived fromGIEMS, SWAMPS, andMODIS for

the inner Niger delta.
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the coasts) and the GLWD surfaces are similar, and this

feature is advertised in Schroeder et al. (2015). How-

ever, ;50% of the surface water with SWAMPS is lo-

cated along the coasts. This clearly relates to

contamination by the ocean in the observation fields of

view of the passive microwave observations and to the

lack of adequate filtering in the retrieval algorithm. The

SWAMPS algorithm fits the global maximum water

extent of GLWD, but as the coastal waters were

mistakenly included in the tuning, the inland water ex-

tent is therefore strongly underestimated. The range of

seasonal variability of SWAMPS is also strongly re-

duced because coastal regions do not evolve in time.

The underestimation of the SWAMPS extent under

dense vegetation is particularly significant, as observed

in the Amazon basin. The well-established SAR esti-

mate from Hess et al. (2003) is 243 000 km2 at the high

stage, very close to the GIEMS values, and very

FIG. 12. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Ob basin. Shown are the GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.

FIG. 13. As in Fig. 7, but for the Ob basin. River discharge (brown) is available until 2004.
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different from the Phased Array type L-band Synthetic

Aperture Radar (PALSAR) estimates (40 000km2)

provided by Schroeder et al. (2015) in their paper.

In the microwaves, the surface emissivities of water

and desert surfaces are both rather low, with large po-

larization differences. As a consequence, there can be

confusion between deserts and surface waters from

passive microwave observations. This is typically what

happens over deserts with SWAMPS, with anomalous

detection of surface water over arid regions. In GIEMS,

the systematic use of visible and near-infrared obser-

vations helps suppress these ambiguities.

Figure 14 (top) shows the time correlation between the

two datasets and Fig. 14 (bottom) shows the time corre-

lation between their anomalies, for the major 23 river

basins in the world. The correlation is important for most

basins, for the time series as well as for their anomalies. It

is even very high for some tropical basins (Orinoco and

Mekong). This tends to confirm the seasonal variations of

the surface water estimates, despite their different sea-

sonal amplitudes. Note that correlations on time series or

anomalies can be high despite large bias errors.

Over Asia (i.e., northeastern India and Bangladesh),

GIEMS estimates large surface water extents that are

related partly to rice paddies (see theMIRCAestimation

of the rice paddies extent over the tropical region in

Fig. 4). It is also suspected thatGIEMS is very sensitive to

saturated soil in this region, and as a consequence might

overestimate the surface water extent in these regions.

5. Conclusions

Two global satellite-derived surface water datasets

are compared on a monthly-mean basis from 1993 to

2007 (GIEMS and SWAMPS), along with two widely

used static maps of the surface water. The 23 largest

basins in the world have been studied, and three basins

representative of different environments (the Amazon

basin in the tropics, the Niger basin in a semiarid envi-

ronment, and the Ob River in the boreal region) have

been presented. Although they are based on similar

observations, mainly passive and active microwaves, the

satellite-derived datasets show large differences, glob-

ally and regionally, in terms of surface extents both at

minimum and maximum inundation in the year. The

TABLE 4. Time series and anomaly correlations between

GIEMS, SWAMPS, and river discharge Q over the Ob basin for

the period 1993–2007. Numbers in parentheses are calculated with

1-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 70% 38%

GIEMS/Q 91% (80%) 49% (40%)

SWAMPS/Q 62% (91%) 28% (59%)

FIG. 14. Basinwide global (top) time series and (bottom) anomaly correlations for the 23 largest

basins in the world between GIEMS and SWAMPS datasets.
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global maximum inundation extent over 1993–2007 is

;6.2 3 106 km2 for GIEMS and ;10.3 3 106 km2 for

SWAMPS, compared to;133 106 km2 for GLWD and

;5.3 3 106 km2 for the Matthews and Fung (1987)

wetland dataset. Approximately 50% of the SWAMPS

inundated surfaces are located along the coast at the

maximum annual inundation. This is clearly related to

contamination by the ocean in the observation fields of

view. Once this problem is filtered out, the long-term

maximum surface water from SWAMPS is reduced to

;5 3 106 km2. Globally and for the studied basins, the

annual amplitude of the inundation extent is very lim-

ited in SWAMPS compared to GIEMS (47% lower).

Despite their large difference in the seasonal amplitude,

GIEMS and SWAMPS have similar temporal dynamics

for most parts of the globe. Over the Amazon basin,

GIEMS and SWAMPS show a very high temporal cor-

relation (95%), but with SWAMPS maximum extent is

half the size of that observed with GIEMS and

with previous SAR estimates. Over the Niger basin,

SWAMPS seasonal cycle is out of phase with both

GIEMS and MODIS-derived estimates, as well as with

river discharge data. This confirms the fact that

SWAMPS fails to capture the seasonal dynamic of

wetlands here. GIEMS and MODIS surface water time

series agree in the seasonal variability, but GIEMS wa-

ter extent is significantly larger than the MODIS one. In

the Ob region, the different snow detection method

could explain part of the difference in the seasonal cycle.

A clear advantage of the SWAMPS dataset today is its

longer time period, up to 2013. The current version of

the GIEMS algorithm requires a large quantity of an-

cillary satellite products to run, including outputs from

the GEWEX International Satellite Cloud Climatology

Project (Rossow and Schiffer 1999) that stopped in 2008.

Efforts are underway to extend the GIEMS time series

to current times, to provide the community with a long

time record of carefully evaluated surface water extent

all over the globe, using a reduced number of ancillary

parameters for more robustness.
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