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Sediment accumulation on the invert of sewer channels has been recognized as one of the important sources of problems for the management of sewer networks. In the two most recent decades, flushing has been put forward as one of the most common methods of sewer cleaning, to limit sediment accumulation especially in large trunk sewers. Sewer sediment transport processes are not fully understood yet, due to numerous unknown variables and difficult measuring conditions. The current research aimed firstly to setup a field experimental campaign to obtain high-quality data. This data allowed understanding of the processes associated with flushing operation in sewers. In addition, this study aimed to model the flushing processes properly in order to set-up an adequate and practical numerical tool able to predict sediment removal of flushing in the sewer network of Paris. To this purpose, two models were used: (i) a simple model for uniform sediment transport, which is the most common used approach; and (ii) a more complex model for non-uniform sediment transport of mixtures. A comparative analysis was carried out to highlight advantages and drawbacks of either. Overall, the results pointed out that the numerical modelling is able to reproduce faithfully hydrodynamics and sediment transport during flushing operations. In fact, both models enabled evaluation of flush behaviour and associated sediment transport. However, despite its higher complexity and computational burden, the latter model provides better insight into the prediction of the removal effectiveness of flushes.

v Résumé en Français L'accumulation de sédiments sur le fond des égouts à faible pente est une contrainte au bon fonctionnement hydraulique et à la gestion des réseaux d'assainissement unitaire. Le recours à la chasse hydraulique est alors une pratique envisagée par les gestionnaires de réseau pour le nettoyage des canaux souterrains.

Les processus de transport sédimentaire dans les réseaux d'assainissement unitaire est rendu complexe en raison du jeu de nombreux phénomènes tels que la variabilité de l'étendue granulométrique des sédiments et la cohésion.

La thèse présente les résultats expérimentaux et numériques obtenus avant et après une chasse hydraulique réalisée dans le réseau unitaire parisien.

Une campagne de mesures a permis d'acquérir des données hydrosédimentaires à haute résolution, permettant de caractériser et quantifier les processus d'érosion, de transport et de sédimentation agissant sous l'effet de la chasse hydraulique, du reste performante dans le nettoyage du réseau étudié.

Deux modèles de transport sédimentaire comportant un modèle simple en condition de transport uniforme, et un modèle plus complexe impliquant le transport non-uniforme ont été développés afin de mettre en place un outil prédictif des mouvements des particules solides pendant le phénomène de chasse. Les deux modèles ont été capables d'évaluer à différents niveaux de précision l'efficacité de la chasse hydraulique en termes de transport sédimentaire. La comparaison des résultats issus des deux modèles permet de déterminer les avantages et les contraintes de chacun, révélant ainsi l'importance de prendre en compte l'hétérogénéité texturale des dépôts dans l'analyse de l'érosion, du transport et de la sédimentation des particules solides sous l'effet des chasses hydrauliques. De plus, une analyse de sensibilité de la gamme d'application de certains paramètres d'entrée du modèle de transport non-uniforme des sédiments a été réalisée. Les résultats ont confirmé le bon fonctionnement du modèle.

Mots clés : Chasse hydraulique, réseau unitaire d'assainissement, modélisation numérique, transport des sédiments non-uniformes.
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État de l'art

Les réseaux d'assainissement unitaires drainent non seulement les eaux usées mais aussi les solides qui entrent dans le système par différentes voies. Ces solides ont des caractéristiques (type, nature) très variées. Les solides dans les égouts unitaires à faible pente, où les conditions hydrauliques n'assurent pas le transport des sédiments, s'accumulent et se consolident au fil du temps. Ces dépôts sont problématiques dans la gestion des réseaux d'assainissement pour plusieurs raisons e.g., baisse de la capacité hydraulique résultant à réduire la capacité d'évacuer les eaux usées, rejet des pollutions dans la nature en cas de surcharge dans les stations d'épuration lors des orages. L'une des préoccupations des gestionnaires du réseau de drainage urbain, dans les pays européens tels que la France, est l'accumulation des solides dans les canaux d'assainissement. Ce problème concerne notamment les grands collecteurs des réseaux unitaires. C'est ainsi que la maintenance des canaux (e.g., curage) est important [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]).

Des méthodes de curage des égouts existent, permettant de limiter la sédimentation sur le fond des canaux. L'application de ces méthodes peut être dans le cadre de curages préventifs ou de nettoyages de base (curage proactive). Il existe un nettoyage des réseaux de manière 'automatique' grâce à des appareils (vannes) à fonctionnement autonome et à effacement rapide. Ce système d'autocurage a pour l'objectif d'éliminer ou de diminuer l'intervention humaine lors du nettoyage régulier des réseaux. En effet, le curage des égouts à l'aide des techniques manuelles cause des problèmes de santé pour les égoutiers qui sont directement exposés à des gaz toxiques. Parmi les techniques de nettoyage existantes, la chasse hydraulique est la plus prometteuse, considérée comme une méthode à la fois pratique et économique, écologique et environnementale [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF]EPA 1999 ;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]). C'est pourquoi les gestionnaires des réseaux sont de plus en plus intéressées par cette technique.

Depuis les dernières décennies, la chasse hydraulique a été étudiée par de nombreux chercheurs de différents pays [START_REF] Pisano | Dryweather deposition and flushing for combined sewer[END_REF]Ristenpart 1998 ;[START_REF] Pisano | Sewer and Tank Sediment Flushing, Case Studies[END_REF][START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF]Bertrand-Krajewski et al. 2005). Globalement, les objectifs principaux de ces études sont de :

-Comprendre le fonctionnement hydraulique des vannes à chasse et leur capacité à produire des ondes d'écoulement tout au long des canaux (Bertran-Krajewski et al. 2003 ;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF][START_REF] Campisano | Dimensionless Approach for the Design of Flushing Gates in Sewer Channels[END_REF][START_REF] Bong | Hydraulics characteristics of tipping sediment flushing gate[END_REF] ;

-Comprendre les processus du transport solide sous l'effet de la chasse hydraulique ainsi que l'efficacité des chasses sur le transport et l'élimination des sédiments accumulés dans les égouts [START_REF] Lorenzen | Flush cleaning of sewers[END_REF]De Sutter et al. 1999 ;[START_REF] Creaco | Modelling the flushing of sediments in a combined sewer[END_REF] ;

-Obtenir des indications pratiques liées 1) au design des réseaux d'assainissement ainsi que des vannes à effacement rapide (Goormans et al. 2009 ;[START_REF] Ruiloba | Toward Sustainable Management: 2D Modelling of a Self-Cleaning System to Improve Geometry in Front of the Flushing Gate[END_REF]) et 2) à une meilleure gestion des réseaux en termes de planning [START_REF] Dettmar | A new planning procedure for sewer flushing[END_REF][START_REF] Staufer | Impact of the Level of Approximation on Modeling Flushing Waves[END_REF].

Les résultats découlent principalement des investigations expérimentales de la chasse hydrauliques ainsi que celles numériques. Ces dernières ont été validées par les données expérimentales conduites dans les laboratoires [START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]Campisano et al. 2006 ;[START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF]) et/ou sur les sites réels (Lrenzen et al. 1995 ;[START_REF] Bertrand-Krajewski | Experimental study and modelling of the hydraulic behaviour of a Hydrass flushing gate[END_REF]Dettmar and Staufer 2005 ;Bertrand-Krajewski et al. 2006). D'une part, les résultats des expérimentations hydrauliques et du transport sédimentaire réalisées dans les laboratoires ont été obtenus dans les conditions simplifiées telles que les canaux expérimentaux (texture en plexiglass, forme transversale, pente uniforme, longueur courte, etc.) avec des sédiments uniformes et synthétiques [START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF][START_REF] Shirazi | Modelling the erosive effects of sewer flushing using different sediment transport formulae[END_REF]. Ces résultats ne représentent pas pleinement les conditions réelles des réseaux d'assainissement. C'est la raison pour laquelle les modèles validés à partir des données expérimentales provenant des laboratoires ne peuvent pas être fiables dans la gestion et la maintenance des réseaux. D'autre part, les conditions hostiles et complexes dans les égouts rendent erronées les mesures hydrodynamiques, notamment celles du transport sédimentaire. De plus, à ce jour, les appareils de mesures ne sont pas tout à fait compatibles avec les conditions des égouts (e.g., forte turbidité) et ils demandent une maintenance régulière. Ce sont les raisons pour lesquelles les modèles "sophistiqués et multidimensionnels" ne pourront pas tout-à-fait être validés par les données expérimentales obtenues à partir des cas réels.

Les études expérimentales (laboratoire ou site réel) effectuées ont évalué la performance des chasses et la capacité érosive des ondes sur les dépôts uniquement à l'aide des mesures d'épaisseur des dépôts durant la chasse ou après la chasse [START_REF] Lorenzen | Flush cleaning of sewers[END_REF]Ristenpart, 1998 ;[START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF]Bertrand-Krajewski et al. 2005, 2006 ;[START_REF] Creaco | Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[END_REF]. On trouve rarement des études qui se sont intéressées à des mesures plus détaillées, concernant notamment la composition des sédiments et son évolution suite à ce phénomène [START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF][START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF]. Les études expérimentales au laboratoire se sont notamment intéressées à la mesure du pourcentage en sédiments fins (cohésion) et à son évolution après la chasse. La littérature souligne ce manque de compréhension des processus sédimentaires (l'érosion, le transport et la sédimentation) pendant la chasse hydraulique, dû à l'absence de mesures in situ des sédiments (e.g., texture, structure).

En revanche, les études numériques de chasse hydraulique ont étudié le phénomène complexe de transport sédimentaire par des approches simplifiées.

Les simplifications reposent sur les caractéristiques des sédiments, la texture (rugosité) réelle des égouts et le fonctionnement réel des vannes à chasse. De plus, la majorité des modèles ont été validés en laboratoire en raison des limites associées aux mesures sur le terrain. Il est clair que les modèles sont incapables de décrire et d'expliquer la variabilité spatiale de la taille des grains, en particulier dans des conditions instables. En outre, il n'est pas certain que l'inclusion de distributions de tailles de sédiments non uniformes affecte la hauteur du lit et d'autres paramètres obtenus à l'aide de simulations. Ainsi, l'application de modèles de sédiments non uniformes pourrait fournir des informations précieuses sur l'effet nettoyant du rinçage sur les sédiments déposés le long du canal en aval des dispositifs de rinçage. Ces informations sont pourtant essentielles pour une meilleure gestion des sédiments d'égout. Cela nécessite de disposer non seulement des modèles qui prennent en compte des granulométries variables (la composition des dépôts) et des données expérimentales fiables afin de valider ces modèles.

À cet égard, dans l'étude de la chasse hydraulique et du transport sédimentaire associé, les informations sur les propriétés physiques (et parfois chimiques) des sédiments dans les égouts sont essentielles. D'après la littérature, très peu d'études existent, qui évaluent l'évolution granulométrique fractionnée des sédiments sous l'effet de la chasse hydraulique. En effet, ce paramètre est essentiel pour comprendre l'efficacité des chasses sur les dépôts sédimentaires. Des études ont déjà montré l'importance de l'approche prenant en compte la nonuniformité des sédiments dans la quantification des processus liés à la dynamique des sédiments dans le fond des égouts [START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF][START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF].

Le réseau d'assainissement unitaire souterrain de Paris fait partie des monuments historiques nationaux qui ont été construits depuis 1857 grâce à Georges Eugène Haussmann et Eugène Belgrand. L'écoulement dans le réseau est gravitaire avec des pentes variées selon la géométrie naturelle de la surface. Certains tronçons du réseau à faible pente n'assurent pas un bon fonctionnement hydraulique, causant une accumulation des sédiments transportés dans le système. L'accumulation des solides sur le fond du radier entraîne des conséquences néfastes dans la gestion du réseau. Ces problèmes appellent à des stratégies de nettoyage afin de limiter l'accumulation des sédiments. Parmi les méthodes de nettoyage, le curage du réseau à l'aide de la chasse hydraulique est considéré en comme l'un des moyens les plus pratiques d'un point de vue environnemental et économique [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF]. 

Objectifs de l'étude

La présente recherche a pour objectif principal d'étudier la chasse hydraulique dans un collecteur appartenant au réseau unitaire parisien. Elle s'inscrit dans l'accomplissement de trois objectifs secondaires : 1) Mettre en place une campagne de mesures dans l'idée d'obtenir des données fiables et de haute qualité. Ces données permettront de mieux comprendre les processus de transport sédimentaire associé à la procédure d'opération de la chasse hydraulique.

2) Simuler les processus hydrodynamique et sédimentaire de la chasse en employant deux modèles physiques comme outils pratiques et appropriés à la prédiction des processus hydrosédimentaires.

3) Comparer l'applicabilité ainsi que les résultats des deux modèles avec deux approches différentes : sédiments uniformes vs. sédiments nonuniformes. Cette comparaison permettra de déterminer les avantages et les inconvénients de chacun des modèles.

Le premier modèle 1D (transport des sédiments uniformes) est une approche classique du transport solide dans tous les domaines et dans les procédés du curage en particulier. L'aspect novateur de la présente étude est l'élaboration du deuxième modèle 1D (transport des sédiments non-uniformes). Ce modèle prend en compte la composition et la large distribution granulométrique des dépôts : il permet donc de reproduire l'évolution de ces deux paramètres après l'opération de curage. Les deux modèles ont été développés au Département de Génie civil et d'Architecture de l'université de Catane (Italie). Les deux modèles ont été validés à partir de mesures expérimentales in situ d'une opération de chasse hydraulique. Afin d'étudier l'effet de la chasse générée par la vanne sur les dépôts sédimentaires, une campagne de mesures hydrauliques et sédimentaires a été mise en place. Un protocole de mesures a été défini, permettant de collecter les données précieuses en trois épisodes : avant la chasse, durant la chasse et après la chasse sur cinq jours consécutifs (Tableau 0.1). Les dépôts sédimentaires avant et après la chasse ont été évalués par deux procédures de mesure : 1) mesure en continue de l'épaisseur/volume des sédiments sur l'axe longitudinal ; 2) échantillonnage multiple des sédiments tout au long du collecteur. Ce dernier a été réalisé par extraction des sédiments puis analyse au laboratoire (granulométrie, teneur en matière organique). Ces mesures nous permettent d'obtenir l'évolution des dépôts sous l'effet de la chasse en comparant les sédiments en termes de volumétrie et de composition.

Résultats des analyses expérimentales

Les données ont été collectées durant les trois épisodes de mesures. Durant l'opération les variables ont été enregistrées pendant environ 1,5 h. La chasse elle-même a duré plus de 5 h. Les mesures de l'analyse des échantillons ainsi que les mesures volumétriques du dépôt initial et celui après le passage de la chasse ont été obtenues. Tout d'abord, les résultats des mesures volumétriques présentées dans la Figure 0.7, qui montre bien l'efficacité de la chasse sur les dépôts existants en termes d'érosion ou la déposition. La chasse a plus d'effet érosif sur toute la longueur du collecteur d'étude. Un volume de 5,61 m 3 a été éliminé de tout le canal (entre S-50 et S+1050) dont 0,21 m 3 dans la section avant la vanne. Les résultats montent que la chasse a éliminé seulement 21 % des sédiments par rapport au dépôt avant la chasse. En s'intéressant à la composition des sédiments qui ont été emportés par la chasse, le volume (avant et après la chasse) de chaque section est décomposé en 4 fractions de taille de sédiments (d<0.9, 0.9<d<2, 2<d<4 et d>4 mm). On observe que les sédiments les plus fins notamment <4 mm ont été considérablement éliminés quasiment tout au long du canal d'étude. Au contraire, les sédiments grossiers ont été augmentés en quantité après la chasse car celle-ci a éliminé les sédiments les plus fins (particulières moins de 2 mm). Par ailleurs, l'arrivée des nouveaux sédiments grossiers de la partie plus en amont du site d'étude pourrait également être une autre raison de l'accroissement de la taille d'une partie des sédiments.

Afin de montrer la tendance de la composition des dépôts suite au passage de la chasse, toutes les courbes granulométriques avant et après la chasse ont été moyennées (Figure 0.9). On montre clairement une augmentation de la taille moyenne des sédiments sous l'effet de la chasse avec une moyenne de 2,67 et 4,06 mm avant et après la chasse, respectivement. En approfondissant cet effet de croissance de taille, les diamètres caractéristiques des sédiments (d5, d10, d16, d50, d84, d90, d95) Un modèle de transport sédimentaire unidimensionnel a été développé sur la base des équations de Barré Saint Venant-Exner. Grâce à un schéma de résolution prédicteur-correcteur de MacCormack couplé avec TVD, le modèle est capable de simuler les écoulements non-stationnaires. Avec ce modèle deux approches ont été mises en avant pour simuler le phénomène de la chasse et le transport sédimentaire associé :

(i)
Modèle avec une approche classique qui prend en compte les sédiments uniformes, (ii) Modèle avec une approche qui prend en compte la non-uniformité des sédiments (composition). Dans cette modèle une approche de deux couches de lit sédimentaire a été mise en avant : couche active (couche d'échange des masses), couche rigide (lit de réserve des sédiments).

Le deuxième modèle calcule l'évolution de transport sédimentaire de chaque classe de sédiment. La dynamique sédimentaire est donc basée sur les caractéristiques appropriées de chaque classe des diamètres.

Comparaison des résultats de deux modèles

Les deux modèles décrivent non seulement les caractéristiques hydrauliques mais aussi ceux liés de transport des sédiments pendant la chasse hydraulique. Le niveau de précision de données est différent selon l'approche utilisée. Les sections suivantes présentent les résultats de chaque modèle. Afin de mieux présenter les résultats de façon synthétique, seulement deux sections de mesures situées avant et après la vanne ont été présentés.

Résultats hydrodynamiques des modèles

Les courbes présentées dans la Figure 0.11 et Figure 0.12 montrent que les deux modèles sont bien capables de décrire les caractéristiques hydrauliques du phénomène de la chasse. On remarque bien que le dégré de précision de deux modèles sont dans le même ordre avec une légère amélioration avec le modèle non-uniforme. Cela pourrait être expliqué par le fait que le modèle non-uniforme prend en compte les différentes tailles de sédiments permettant de mieux reproduire la rugosité du lit qui affecte les caractéristiques hydrauliques. 

Résultat de transport sédimentaires décrit par les deux modèles

Les résultats des deux modèles sont présentés dans les figures suivantes. En termes de l'épaisseur des sédiments (Figure 0.13 et Figure 0.14), les résultats montrent que le modèle uniforme n'est pas capable de reproduire toutes les épaisseurs de dépôt tout au long du collecteur. Le modèle uniforme n'est pas capable de reproduire les mêmes dépôts accumulés après la chasse notamment sur le partie aval du collecteur (indiqués en cercle rouge sur la Figure 0.13). Ce manque de précision est principalement dû au fait que le modèle uniforme ne prend en compte qu'un seul diamètre qui ne représente pas toute la gamme de diamètres existant dans les dépôts. C'est la raison pour laquelle la dynamique des sédiments n'évolue pas en fonction de leur taille. Par ailleurs, une meilleure amélioration de la prédiction de transport sédimentaire est obtenue à l'aide du modèle non-uniforme. On observe que ce modèle a bien calculé le mouvement des sédiments sous l'effet de la chasse car les tailles réelles de sédiments (par classe granulométrique) ont été prises en compte. Cette amélioration peut être montrée par la diminution de l'erreur de prédiction RMSE (Square Root of MSE) de 0,045 à 0,028. Hormis les améliorations observées, le modèle non-uniforme fournit des résultats complémentaires et consistants sur la composition des sédiments. Ces résultats sont importants dans l'étude de la chasse en s'intéressant à l'évolution de la composition des sédiments. Ces informations aident à comprendre l'effet de la chasse et sa performance sur les sédiments de différents diamètres.

Les résultats du modèle non-uniforme concernant trois différentes classes de sédiments sont présentés dans la Figure 0.16. Le coefficient de corrélation calculé (R²) entre les données d'expérimentales et modélisées est de l'ordre 0,50, 0,32 et 0,19 pour les diamètres d 16 , d 50 , et d 90 , respectivement. Ces valeurs confirment qu'une meilleure description a été obtenue pour les sédiments fins (diamètres < d50). Par ailleurs, le résultat du modèle a été moins précis pour les sédiments grossiers (d 90 ) quasiment tout au long du collecteur.

De plus, afin de vérifier le bon fonctionnement du modèle non-uniforme, une analyse de sensibilité a été conduite. Vue le temps de simulation nécessaire, cette analyse a été limitée aux paramètres de l'entrée dont les valeurs basées sur la littérature. Ces paramètres sont le coefficient d'érosion de Velikanov (ηmin) et l'épaisseur de la couche active ou pavement (δp). Un nouveau paramètre a aussi été activé afin de vérifier l'effet de la fonction hiding sur le transport sédimentaire durant la chasse. Les résultats de cette analyse de sensibilité sont présentés dans le Tableau 0.1. Ces résultats montrent que : 1) les valeurs maximale et minimale (recommandées dans la littérature) de coefficient d'érosion de Velikanov (ηmin) n'ont pas des effets considérables sur le volume simulé remobilisé par la chasse. La valeur maximale ou minimale augmente et diminue légèrement le volume des sédiments éliminés par la chasse. 2) l'épaisseur de la couche active ou pavement (δp) a un effet considérable sur le volume de sédiments mobilisé par la chasse. La diminution de l'épaisseur de la chasse (de 3×d90 à 1×d90) diminue le volume éliminé par la chasse de l'ordre 30 %. Ceci pourrait être expliqué par un manque de sédiment (moins de stock des sédiments). 3) l'effet de l'activation de la fonction de hiding a montré une forte érosion des sédiments fins (partie amont) contrairement aux sédiments (partie aval) avec moins d'érosion. 

Conclusions générales

La présente thèse a eu pour l'objectif de :

1-Produire une base de données à travers des mesures in-situ et à haute résolution permettant d'expliquer de façon exhaustive la dynamique sédimentaire pendant la chasse;

2-Élaborer deux modèles (outils potentiels de gestion) permettant de décrire les phénomènes observés avec différentes approches du transport sédimentaire : uniforme (classique) et non-uniforme (nouvelle) ;

3-Analyser et comparer les résultats des deux modèles permettant de mettre en lumière leurs avantages et inconvénients.

Les travaux de cette thèse se résument en deux parties : expérimentale et numérique. Les résultats de ces deux parties nous ont permis d'arriver aux conclusions suivantes :  L'importance des données expérimentales in-situ dans l'étude de la chasse, qui permet d'analyser les processus spécifiques à chaque site d'étude.

 Il est important de prendre en compte l'hétérogénéité des sédiments dans l'étude des processus de transport sédimentaire notamment par la modélisation numérique.

 Les deux modèles ont montré que les résultats hydrauliques sont assez fiables avec une légère amélioration pour le modèle nonuniforme.

 Le modèle uniforme est valable quand on s'intéresse seulement à l'hydraulique ou au volume global des dépôts.

 Le modèle non-uniforme apporte une meilleure définition convenablement fiable sur non seulement le comportement hydraulique mais aussi la dynamique des sédiments avec différents caractères physique (i.e., diamètre de particule). Ceci explique que le modèle non-uniforme décrit correctement l'érosion et la déposition des particules de différentes tailles pendant la chasse. Ce qui résulte à l'évolution de la composition des sédiments. De plus, ce modèle est capable de reproduire les dépôts tout au long du collecteur en termes d'épaisseurs et de volume.

 A l'issu du point ci-dessus pourrait être encore utile lorsque nous nous intéressons à l'étude des chasses consécutives et leur impact sur les dépôts.

 Les résultats montrent que les deux modèles pourront potentiellement se servir en tant que des outils de gestion selon les ressources, demande et objectifs (précision) lors des études de la chasse.
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General background

Adopted European Water Framework Directive imposes the limitation of the pollution to be entered into the environment. Urban drainage systems as one of the main sources of pollution should be controlled. Like many concerned European countries, one of the preoccupations of Parisian sewer managers is the sediment accumulation on the bed inverts of the sewer channels and pollution problems that may derive. A considerable number of large sized sewers in Europe are suffering from deposition, accumulat ion and consolidation of sediments along the channels. The sediment accumulation can occur in both stormwater and combined sewer networks. This problem is mainly due to the low hydraulic conveyance of the flat channels where the hydraulic and geometric conditions lead to determine sedimentation [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]. Maintaining combined sewers free of deposits requires a good level of management with or without human intervention. However, the risk of human intervention is known to be dangerous for health due to the emission of toxic gases during cleaning operations. This is one of the reasons that new cleaning policies of municipalities tends to reduce the human intervention by enabling automatic strategies for sewer cleaning.

Among the existing strategies, flushing of deposits over the sewer channels is considered as one of the most practicable, operative, enviroeconomic and efficient techniques to overcome problems associated to the deposited sediments.

In this perspective, during the last decades a number of researches from all around the world have spent efforts to study the conditions for optimal flushing in sewer systems. The required conditions to produce effective flushes on the sediments deposited on the channel have been studies both experimentally and numerically. Overall, the experimental and numerical studies of flushes involve mainly evaluating the shear stresses provided by the flush waves throughout the channels [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF][START_REF] Bertrand-Krajewski | Experimental study and modelling of the hydraulic behaviour of a Hydrass flushing gate[END_REF], 2005;[START_REF] Creaco | Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[END_REF]. Then, hydrodynamic and sediment-transport processes associated to the flushes have been investigated at both the laboratory and/or the field scales. The available laboratory flushing experiments led to obtain important indications concluding the theoretical results on the erosive behaviour of flushes generated by various devices. However, very of the laboratory experiments have conducted within simplified conditions including sediment conditions (e.g., use of synthetic sediments), simplified geometry of channels (e.g., rectangular flumes) that may be far from the real sewer conditions (Campisano et al. 2006;[START_REF] Todeschini | Experimental and numerical analysis of erosion and sediment transport of flushing waves, 11[END_REF]. In fact, real filed studies about flushing have shown increased complexities due to the heterogeneity of the sediments, local conditions and other unknown processes.

In addition to the experimental studies, numerical modelling investigations have so far been conducted by various researchers. These investigations were developed for various purposes such as: i) to improve flushing device design for their use in sewers with sedimentation problems; ii) to evaluate the deposit removal efficiency of flushing devices. As limitation, it can be mentioned that an appropriate numerical description of the flushing process requires a trustable quality of experimental data for model validation with an acceptable level of accuracy. However, reliable data arises from the use of suitable measurement devices specifically designed for sewer application. Many authors agree that the use of one-dimensional models could be enough detailed for predicting shear stresses and associated sediment transport during flushing. Nevertheless, the application of multidimensional models to describe the propagation of flushes in sewer channels could be an interesting option in particular in presence of singularities (e.g., shape of cross-section).

Focusing on the wide range of sediments in sewers (in terms of physical and chemical properties), according to the literature, the analysis of flushing as method to remove in-sewer deposits is far from being understood. Sediment dynamics during flushing operations requires farther observation as well as improved simulation of a number of physical processes. More performant models are mandatory to study the erosion, transport and sedimentation processes of sediment mixtures in sewers. The importance of non-uniform sediment beds in the simulation of solid transport processes has been amply demonstrated. Indeed, most of the knowledge on the processes related to the bed-load sediment dynamics in sewers is based on simplified models, in which uniform sediment is assumed. In addition, majority of these models has been validated in laboratories due to the limitations associated to field measurements. Clearly, these models are unable to describe and explain spatial grain-size variations in particular under unsteady conditions. Besides, it is uncertain whether the inclusion of non-uniform sediment size distributions affects the bed heights and other parameters obtained from simulations. Thus, the application of non-uniform sediment models could provide valuable information about the cleaning effect of flushing on the sediment deposited along the channel downstream of flushing devices. Such information would be essential for a better management of sewer sediments e.g., knowledge about flushing and corresponding transport capacity for different grain sizes of the deposits. Parisian sewer network system, one of the most important French national patrimonies works hydraulically by gravitation. Thus, over the flat channel sections of the network problematic sediment accumulation occurs and within time, it becomes quasi permanent deposits. This, oblige the Paris Municipality to deal with the deposits by strategically removing them from the network. To this end, various sewer reaches are cleaned hydraulically but by the mean of sewer operators who are exposed to the toxic gases during the cleaning operations. Therefore, the sewer network service of Paris Municipality has been engaged in finding out the most practicable, economic and performant solutions to overcome this problem and limit as maximum as possible the sediment accumulation over the channel inverts. They aimed to evaluate the feasibility and efficiency of possible and adapted gates for cleaning objectives to the sewers (e.g. collectors) and depending on sewer sector and channel conditions. Among the handled projects, an already existing gate (radial tipping gate with weir function) was considered to be a potential flushing device. In particular, the gate was initially designed to derivate water in case of high flows due to the storm events. The sewer channel downstream of the gate was prone to significant sedimentation that was cleaned yearly by the Municipality. The idea of flushing the sewer by using this gate was proposed after having made a sewer inspection and hydraulic studies of the gate performance. A single flushing operation was planned to monitor the flush by recording more variables possible related to the hydro and sediment dynamics during the event. Therefore, a protocol of a measuring campaign in co-operation with Ville de Paris, PROLOG Ingénieurs and Paris Diderot University was adopted in order to obtain high enough quality data using various apparatus that are compatible with the sewer conditions.

1.2

Aims and objectives

The current research was carried out in order to study the potential of flushing to clean the sewer channels and remove sediments. To this end, following objectives were defined: 1) to set-up a field experimental campaign to obtain high-quality data. This data allowed to understand the processes associated to the flushing operation in sewers.

2) to model the flushing hydrodynamics and associated sediment transport processes properly in order to set-up an adequate and practical numerical tool able to predict both flushing flow and associated sediment removal efficiency of in Paris sewer Network.

3) to compare model for uniform sediment transport with model for non-uniform sediment-transport mixtures and then determine the advantages and limitations of both approaches.

The study, in collaboration with the University of Catania, tries to obtain high quality and comprehensive data to develop a non-uniform sediment-transport model. Comparing to the common uniform sediment transport models, this novel approach, by taking into account a definite number of size of classes, is to be expected to reproduce the multi-grain-size distribution of the sediment after the flush operation. To this end, a nonuniform sediment-transport model developed in the University of Catania (Department of Civil and Architecture) was adapted for the analysis and validated using the experimental data. The capacity of the non-uniform sediment-transport model will be evaluated in particular, in describing the hydraulic and sediment-transport processes during the flush by reproducing the variations in the bed composition during the flush.

The experimental part of the present thesis was partially supported by PROLOG Engineering Consulting. Also, the project was supported by the Paris's sewer network (SAP) of the Paris Municipality (Ville de Paris) in 2014.
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Synopsis and feature of current thesis

The outline of this dissertation is as follow:

Chapter 1 gives an introduction to the flushing operation in flat sewers, where deposits contain highly variable sediments that generate operational problems in sewers. In this chapter an overview of the problems of this research was presented. It was also described how this research can fill the gap in understanding the sediment transport during this flushing operation in sewers.

In Chapter 2, a general overview of the scientific and literature on sediment properties and sediment-transport mechanisms in open channel flows will be presented. The chapter firstly provides a basic review of papers dealing with in-sewer deposits characteristics, internal sediment processes, as well as sediment-transport mechanisms in combined sewers during dry-and wet-weather. Also, the techniques suitable to clean sewers are presented including flushing. Finally, a synthesis of experimental and numerical investigations on sewer flushing from the literature was developed.

The experiments carried out in the Parisian combined sewer network are presented in Chapter 3. Site characteristics, measuring protocols, execution of flush operation, flushing observation, data collection, etc. are examples of information that can be found in this chapter.

Chapter 4, summarizes the experimental results of the monitoring of the flush experiment in terms of hydrodynamic-and sediment transportrelated parameters. Pre-processing and preparation of data for the analysis is firstly described. Furthermore, a comprehensive analysis of the collected experimental data is presented. An estimation of the performed flush experiment in terms of sediment removal efficiency in carried out.

In Chapter 5, a detailed description of numerical models used in this research to describe the flush process is given. Basic equations, solving methods, boundary conditions and numerical aspects can be found in this chapter.

Chapter 6 presents the application of the used models to the experimental case of flush in the Parisian large-sized sewer. The preparation of data as input to the models is firstly described. Furthermore, the initial and boundary conditions are defined for each model. Then, the results of the numerical simulations using the adapted models were presented for appropriate comparison. A sensitivity analysis of basic input parameters of the models is also presented in this chapter to evaluate the influence of the sediment transport-related outputs. 

Sediment-transport mechanisms in open channels

Sediment-transport mechanisms in natural courses are not yet completely understood due to the complexities related to the sediment dynamics. This complexity in studying the processes being as specific phenomena is increasing for mechanisms in sewer network because various reasons for example the heterogeneity of sediments in-sewer sediment in terms of density and types, the major presence of non-mineral elements in sewers e.g., microbial pollutants, micro-organisms, heavy metals, pharmaceutics.

In this chapter, a state of art on sewer flushing and on the associated sediment transport is presented. The chapter also discusses the results of literature review on cleaning techniques with emphasises on numerical and experimental studies dealing with sewer flushing operation. Preliminarily, an overview of sediment-transport processes including sewer sediment remobilisation, erosion, transport and sedimentation mechanisms is presented.

Generalities on hydrodynamics and sediment transport

After [START_REF] Vanoni | In: Sedimentation engineering: American Society of Civil En -gineers[END_REF] all processes involving the erosion, entrainment, transport and deposition of sediment particles usually constitute the research branch of "sediment engineering". These are complex processes that typically occur in the flow streams as free surface flows such as in rivers. Movements of particles depend on many parameters relating to the particle and to the flow properties as well as their interaction due to the turbulence and the velocity of the flow. In this section, basic concepts of hydrodynamics in open channel flows, which is needed to explain sedimenttransport mechanisms in sewers, are briefly presented.

Flow characteristics in open channels

Open channel flow is a flow in a channel (conduit) as schematized in Fig. 2.1 that is not completely filled and a free surface is formed between the flowing fluid (water) and the air. The gravity force is the main force that drives such flows [START_REF] Chanson | Hydraulics of Open Channel Flow: An Introduction, 2nd Edition[END_REF]). Main flow characteristics in open channels are:

1) The water discharge

A V Q  
in (m 3 /s) where V (m/s) is the flow velocity and A is flow cross-sectional area in (m²), 2) Rh the hydraulic radius

P A R h / 
in (m) where P is the wetted perimeter,

3) The friction slope Sf in (m). the flow density in (kg/m 3 ) and the averaged bed shear stress (in N/m²). The shear velocity is a measure of the flow ability to remobilize the sediments.

5) The specific weight  in (N/m 3 ) equals to

g    
where g is the gravity acceleration (m/s²).

6) The Reynolds number Re used as the parameter to determine the flow types.

Sediment characteristics

The bed sediment resistance to the flow in open channels is affected by several factors such as the bed characteristics and the sediment features. Main physical sediment characteristics for sediments in open channel flows are as follows:

1) The grain size: as natural particles have irregular shape, the grain size refers to the corresponding spherical diameter (by universal common definitions). Therefore, the sieve diameter equals to the fine mesh size through which the particle can pass. Sediment size is measured in mm as presented in Table 2.1. 2) The density s  in (kg/m 3 ) and the specific weight of sediments s  in (kg/m 3 ) being the mass and weight of sediment per unit volume, respectively.

Q(x,t) ) , ( t x A 𝛼 = 𝑠𝑖𝑛𝛼 x ) , ( t x B ) , ( t x A ) , ( t x P
3) The porosity (-): that quantifies the fraction of a given volume of sediment that is composed of pore or void spaces between the solid particles. Sorting is in relation with porosity ratio of samples. Sandy sediments present often porosity around 0.4.

Other important parameters are:

1) The grain-size distribution: that represents the range of sediment diameters and their weight percentages in a given mixture. Cumulative or frequency grain-size distribution curves are derived from this data. Characteristic diameters (e.g., mean diameter: d50) are typically issued from such curves.

2) The volumetric sediment concentration of suspension: is a sediment mixture property by volume or weight (unitless) or sometimes by dried weight or mass of sediments per unit volume of water-sediment mixture (in N/m 3 or kg/m 3 ). The volumetric sediment concentration can modify the fall velocity of particles in a given flow due to the particle interactions in the water column.

3) The fall or settling velocity (ws) being the terminal fall velocity of a particle in still water. In open channels the fall velocity of particles in suspension is affected by the turbulence characteristics as well as by the volumetric sediment concentration [START_REF] Graf | Bed-shear stress in non-uniform and unsteady open-channel flows[END_REF]Nielson 1993;[START_REF] Van Rijn | Principles of sediment transport in rivers, estuaries and coastal seas[END_REF]. According to the Stock's law this parameter could be expressed as follows.
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where cD is the drag coefficient, s is the specific gravity of the sediment (

  / s s 
), d is particle diameter (in m).

General aspects of sediment transport in open channels

Incipient motion

Threshold conditions to initiate sediment transport are usually described by observing motion of sediment grains. Flow acts on the grains and, in turn, resistant forces (including gravity and internal cohesion forces) to entrainment can develop depending on the grain size as well as the distribution of the whole grain sizes in the bed sediments. The sediment motion will initiate when the downslope component of the gravity and sediment mass exceeds the total resistant forces to the movement. In order to understand the initiation of motion of a particle, it is necessary to take account all forces that impact a particle at equilibrium. In an open channel flow with loose bed sediments, the forces acting on each sediment particle are shown in Fig. 2

.2. Such forces comprise:

The drag force (FD) is friction of the flow on the exposed surface of the grain. This force is a function of the grain surface exposed to the flow as well as of the flow velocity.

The lift force (FL) is due to vertical flows. This come into play when turbulent eddies aim to carry the particles.

The gravity force (FG) is related to the weight of the particle and is calculated from the universal Einstein equation

W g F G    
where W is the volume of the particle (in m 3 ) [START_REF] Einstein | Can the rate of wash load be predict ed from the bed-load function[END_REF].

The buoyancy force (FL) is the pressure-difference force on a single grain size that makes submerging the specific weight of the particle in water. Fluctuating forces are caused by the turbulence, including the occurrence of coherent structures, as well as the interactions among the whole hydrodynamic system. In high Reynold number flows, due to the turbulence fluctuations and diffusion, particles on the bed may be expo sed to instantaneous forces through different directions. However, the gravity force is always acting on the gravity centre of the particle. So, turbulent flow involves the instants in which resultant force on the grain is varying rapidly instantaneously. Moreover, at the same instance, as the particle geometry as well as the exposed position to the flow varies from one to another, the exerted forces are varying too due to the turbulence velocity in the field. Unfortunately, predicting the evolution of the sediment flux suspended within a turbulent carrier fluid is complicated. The complexity is due to a multitude of difficulties that stem from how the particles are organized within the flow structure, and how the dynamics of the particle feedback alters the turbulence characteristics of the carrier flow. Regarding to this point, highly stochastic particle movements lead to the difficulty to define bed initiation of motion and then to establish a unique sediment-transport capacity in time and space. In this regard, various sediment-related factors (e.g., bed specific weight, angle of repose) play the role in determining the threshold motion of bed-load.

Drag and lift forces acting on particles are related to flow conditions. So, the threshold condition of movement for uniform sediment can be approximated by the [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] diagram which can be applied for noncohesive particles ranged from silt to gravel sizes (Fig. 2.3). The diagram shows the roughness (shear) Reynolds number (equal to

v d u / *
, where d and  is the particle diameter (in m) and kinematic viscosity of water (in N×s/m²), respectively) against dimensionless critical shear stress ( ) by the flow on the grain size represented on abscissa and ordinate, respectively. The dimensionless form of the bed shear stress (known also as Shields stress or Shields parameter) can be estimated from the following relationship:
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in which

s is the specific gravity of particle (   s s 

). From this relationship, the critical Shields number can be also derived which allows determining the threshold condition of sediment motion within given flow.

The critical Shields shear stress relationship commonly applied to describe the conditions under which bed sediment particles does not still move but are at the verge of entrainment. The Shields value obtained from the diagram for the critical condition is 0.06 for highly turbulent flow. However, further laboratory experiments suggest smaller values for the dimensionless critical shear stress for mixed size gravels such as 0.03 [START_REF] Neill | A re-examination of the beginning of movement for coarse granular bed materials[END_REF]) and 0.046 [START_REF] Gessler | Design of self-cleansing sanitary sewer systems with the use of flushing devices[END_REF].

The value of Shields parameter is linked to the bed state. In reality, the work of Shields to assess initiation of motion of the grains is originally limited to non-cohesive sediments for uniform flows.

It should be noticed that the incipient motion of non-uniform sediment particles has been investigated by various authors who proposed empirical relationships or modified previous formulas such as [START_REF] Qin | Incipient motion of nonuniform sediment[END_REF]; [START_REF] Parker | Bedload and size distribution in paved gravel-bed streams[END_REF]. These formulas try to account for existing interactions among the various size classes within the sediment mixture [START_REF] Wu | Computational River Dynamics[END_REF]. Nevertheless, the Shields diagram is widely used to approximate measure of grain size that is in the threshold conditions of movement for all flow conditions.

As the threshold motion condition is achieved, when instantaneous vertical component of flow exceeds the settling velocity of particles, transport of grains occurs. Since the grain size goes into the motion, it is transported by the flow within two possible transport modes upon the flow conditions. The bed-load refers to the materials that are transported in the bed region whereas transporting at higher position in water column is known as suspended load (see next sections). These two modes can be roughly inferred from the ratio of settling velocity to shear velocity ( * / u w s

). Typically, values of this ratio smaller than 0.5 and larger than 1.0 denote dominant particles travelling in suspension and as bed-load, respectively.

Rouse (1937) proposed the number from the following relationship to evaluate the threshold of sediments transport modes [START_REF] Armanini | Principles of River Hydraulics[END_REF]:

* u w R s    Eq. 2.3
where  is the Von Karman coefficient equal to 0.4. Calculation of R for each grain size (size class) requires estimating the settling velocity ( s w ) of the various grain sizes. Among the authors (Hallemeier 1981;[START_REF] Ackers | Design of Sewers to c ontrol Sediment Problems[END_REF], Stockes 1851) that have proposed empirical formulas to assess the fall velocity and then, to categorize particle transport regime, [START_REF] She | Fall velocities of natural sediment particles: A simple mathematical presentation of the fall velocity law[END_REF] have established a relationship to estimate this parameter [START_REF] Armanini | Principles of River Hydraulics[END_REF].

The fall velocity of each particle is calculated from the equation presented below (Eq. 2.4). In this equation, the left term denotes the dimensionless particle Reynold's number. where * D is a non-dimensional parameter value that is calculated from the following empirical formula [START_REF] Bonnefille | Essais de synthèse des lois de début d'entraînement des sédiments sous l'action dun courant en régime continu[END_REF]:
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Type of transport for each particle is different upon various main particle physical characteristics and, in particular the size of grain. A particle in motion can be kept in suspension or move as bed-load regarding to the flow properties. These modes of displacement are explained hereafter.

Bed-load transport

A large literature exists on sediment transport in open channel flows. This section discusses fundamentals of sediment transport with reference to different authors such as [START_REF] Graf | Bed-shear stress in non-uniform and unsteady open-channel flows[END_REF]; [START_REF] Vanoni | In: Sedimentation engineering: American Society of Civil En -gineers[END_REF]; [START_REF] Chanson | Hydraulics of Open Channel Flow: An Introduction, 2nd Edition[END_REF]; [START_REF] Garcìa | Sedimentation engineering: processes, measurements, modeling, and practice[END_REF] and [START_REF] Armanini | Principles of River Hydraulics[END_REF].

Commonly, total sediment-transport discharge comprises all the particles in motion in the whole water column that are transported within two main modes of displacement: bed-load transport and suspended-load transport (Fig. 2.4). Other classifications introduce a third mode of transport in which very fine particles are transported without interact with the existing bed of sediments (Einstein and Chien 1953). This mode of transport, called wash load, and is often included by much of the authors as suspended load.

Sediment goes into movement in different stages when the boundary shear stress just exceeds its critical value. At the beginning, sediment is transported by sliding and rolling over the upper layer of the bed. Saltation may occur when flow increases. In other words, as illustrated in Fig. 2.4, bed-load occurs when the flow velocity is high enough leading particles to roll, slide, and finally saltate. In the later mode of bed transport (rolling and sliding), particle makes short jumps into the water for a short time while in the two other modes, the particle remains always in contact to the bed [START_REF] Vanoni | In: Sedimentation engineering: American Society of Civil En -gineers[END_REF]). Thus, bed-load transport is tangential to the bed. However, because distinguishing saltation mode from other is not easy, all these three modes are therefore considered as bed-load transport. In any case bed-load transport is considered as tangential to the bed and to occur within the bedload layer. According to Garcia (2008), such a layer, serves as an exchange zone between bed and suspension zone for the sediments going in to the flow.

In the nature, bed-load sediment transport presents many phenomena such as sediment armouring, hiding/exposure and downstream fining that result in grain-size sorting or segregation. Such phenomena may explain transport selectivity of the flow. In particular, selective transport of bed particles is enabled when the shear stress is smaller than the critical shear stress corresponding to d50. In contrast, when shear stress exceeds the critical value, then, selectivity has no more significations because the particle interactions become much more dominant and influence the transport mechanism (Armanini and Di Salvio 1991).

Bed-load transport of sediments can be quantified by the bed-load flux ( sb q in m 3 /m×s, being as bed-load transport rate of non-suspended sediments by volume per unit time and width). The maximum value of sb q that a flow of prefixed characteristics can transport is called bed-load transport capacity and can be determined using empirical relationships.

Examples of these relationships are presented in Table 2.3. The most used formulas are a function of excess shear stress (i.e., the difference between the flow shear stress and the critical shear stress) which causes the bed sediment to be transported. In these formulas shear stress of the flow is usually related to the critical shear stress taking into account a grain size representative of the bed sediment. Table 2.3 More commonly used sediment-transport formulas for bed-load sediment transport.

References Sediment-transport discharge equation Range of validity

Parameter definition
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Suspended load

When the ratio of ) / ( * u w s  is smaller than 1.0, then sediment particles start to move as suspension. This means that the fluctuating lift force (upward turbulent component of velocity) overcomes the gravity force (fall velocity) in the balance of the acting forces on a particle. Transport as suspension concern particles in motion far from the bed due to the vertical component of the turbulence eddied carrying particles into the flow water column. Practically, comparing to the bed-load transport, particles in suspension do not show a precise transport mechanism due to the chaotic turbulent fluctuations. Indeed, differences between bed-load and suspended load are related to the ratio of tangential and normal shear stresses excreting on the grain by the flow. Suspended sediment concentration profile (gradient) occurs when downward settling velocity and upward turbulent velocity tend to occur independently. So, the concentration of particles C (in mg/L) in the water column (wetted area) is the volume of sediment per total volume of the control volume (comprises fluid + solids). It is necessary to undertake an adequate law to describe the variation of the suspended sediment transport (concentration) through the vertical flow direction. For example, d istribution of the sediment concentration can be numerically approximated by using the method of Rouse based on the parabolic distribution of the turbulent (velocity) in the depth direction. The Rouse solution proposes distribution of the particles based on the turbulent diffusion of eddies (i.e., shear stress distribution) taking account the friction velocity through the water column.

Vertical concentration profile of the particles within the water column C(y) can be described from the following general relationship [START_REF] Davis | Principles of tidal sedimentology[END_REF]:

    h a ss dz z c z V q ) ( ) ( Eq. 2.6
where a and h are bed surface and water surface levels, respectively and z is the vertical coordinate representing water depth.

Total sediment-transport rate

In order to estimate the total sediment-transport rate (discharge), various empirical relationships based on laboratory experiments have been proposed by several authors in the past. Most of the formulations covers the steady uniform (flow and sediment) conditions. However, other authors have experimentally used approaches to evaluate the sediment transport under unsteady flow conditions and the reliability of these relationships (e.g., [START_REF] Graf | Sediment transport in unsteady flow[END_REF]. In practice, total load of sediment consists of the sum of bed-load and suspended-load discharges (

ss sb st q q q  
). Some of the existing sediment-transport formulas used to predict bed-load transport are also calibrated for the evaluation of total load transport. Many formulas such as [START_REF] Einstein | Can the rate of wash load be predict ed from the bed-load function[END_REF] and Van Rijn (1984 a and b) cover the ranges from suspension to bed-load transport.

It should be noticed that the selection and the application of the formulas is varying from case to case. No global assumption exists that can be taken into account to derive adequate sediment-transport formulas for all the conditions. (2018) / Paris Diderot University (Paris 7) 44 2.2 In-sewer solids
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Generalities

Sewers being as underground galleries, drain not only different origins of wastewaters (e.g., domestic, industrial), but also all types of runoff waters from the urban catchment area (Fig. 2.5). Therefore, sewer systems allow entering a high variety of solids together with these flows from different origins and activities. Further, solids entering the combined sewer systems originate not only from these wastewaters, but also from the atmosphere, erosion of urban surface during storm flow events and deterioration of sewer structure [START_REF] Dessoy | Contribution à l'étude du comportement des matières en suspension dans un tronçon de collecteur d'eaux usées[END_REF]Artière 1987, adapted from Laplace 1990;[START_REF] Butler | Urban Drainage. 3rd Editio[END_REF]. Different reasons could cause and accelerate solids entering into the sewers within the runoff flows (e.g., broken street gratings or the mesh sizes of gutters that make discharge of 'unusual' solids into the sewers and change the bed characteristics). It is recognised that the impact and behaviour of the solid entering on the sewer system could be various according to the local and punctual circumstances and sewer channel-types (Ashley et al. 1992). The presence of unwanted solids and associated pollutants in sewers creates problems for all components of the sewer network. In particular, during heavy rain events, these sediments could be remobilized and be discharged directly without treatment into receiving waters.

According to the European Water Framework Directive that is set up in the water and wastewater sector to protect the environment, it is mandatory to control and manage the solids and associated pollutants in sewer networks. Therefore, to have control on sedimentation for making strategic and operational decisions in the point view of sewer management, it is essential to acknowledge the sediment origin, nature and their movements within the sewers. Around years 90s, a large number of studies was conducted through different research programs aiming to characterize the sewer sediments and to categorize the potential ranges of the sediments. Table 2.4 highlights several examples of field-based researches and the motivations of the research programs (Ashley et al. 2005). Later, other studies were undertaken to understand how sediments settle, accumulate, consolidate and erode with time (processes during dry and wet weather) [START_REF] Nalluri | The influence of cohesion on sediment behaviour in pipes and channels[END_REF]Ristenpart and Uhl 1993;[START_REF] Tait | A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[END_REF]). However, the mechanism and processes related to the sewer sediments are far from being completely understood, despite the existing large literature. Table 2.4 Example of research programs aimed to study the in-sewer deposits.

Reference

Country

Research project motivation(s) [START_REF] Crabtree | Sediment in sewers[END_REF][START_REF] Crabtree | A Classification of Combined Sewer Sediment Types and Characteristics[END_REF] UK Understanding the function of sewer system in management point of view to permit flow quality simulation Ashley and Crabtree (1992) UK . Model development . Knowledge improvement on cohesive behaviour of sediments . Sediment management in sewers Michelbach (1995) Germany Design of sewers in order to protect the receiving water bodies from the pollution. [START_REF] Aiguier | Methods for determining the settling velocity profiles of solids in storm sewage[END_REF]; [START_REF] Lacour | Apport de la mesure en continu pour la gestion de la qualité des effluents de temps de pluie en réseau d'assainissement (Contribution of continuous turbidity measurements to the management of effluent quality in sewer systems during wet weather[END_REF]; [START_REF] Hannouche | Analyse du transport solide en réseau d'assainissement unitaire par temps de pluie : exploitation de données acquises par les observatoires français en hydrologie urbaine (Analysis of solid transport in combined sewer network during wet wea[END_REF] France

Qualify the potential pollutants discharging [START_REF] Pisano | Procedures for Estimating Dry Weather Deposition in Sewerage Systems[END_REF]; [START_REF] Pisano | Dry-Weather Deposition and Flushing for Combined Sewer Overflow Pollution Control[END_REF] USA Assess flushing effect by high precipitations on deposits in combined sewer channels to manage solids [START_REF] Verbanck | Sewer Sediment and its Relation with the Quality Characteristics of Combined Sewer Flows[END_REF]; [START_REF] Verbanck | International workshop on origin, occurrence and behaviour of sediments in sewer systems: Summary of conclusions[END_REF] 

Belgium

Quantifying the impact of the combined sewer overflows (CSO) on natural receiving streams.

Understanding sewer sediment processes via their nature and origin which is varying in each site [START_REF] Ahyerre | Sources and erosion of organic solids in a combined sewer[END_REF]; [START_REF] Ahyerre | Identification of in-sewer sources of organic solids contributing to combined sewer overflows[END_REF] France

Identifying the sources of pollution contributing in the storm events Vollertsen and Hvitved-Jacobsen, (2000)

Denmark

Understanding the deposition and accumulation processes in sewers Ristenpart and Uhl (1993); Ristenpart (1995) 

Germany

Quantifying the pollutants discharging into receiving water systems Kukla et al. (2012) Myanmar Solid management in WWTP operations [START_REF] Regueiro-Picallo | Characterization of sediments during transport of solids in circular sewer pipes[END_REF] Spain Solid management in urban system

In the scope of this chapter, a literature review will be presented on the sewer sediment characteristics and their behaviour in sewers. Then, the state of art on sewer cleaning methods and principally on the flushing techniques will be presented.

Negative effects of sediments in sewer networks

Authors such as [START_REF] Thornton | Some quality characteristics of combined sewer overflows[END_REF] and Clegg et al. (1992) have pointed out main problems resulting from sediment accumulation in sewers networks. Negative effects in combined sewer networks are exacerbated due to the presence of bioorganic elements causing the occurrence of biochemical processes.

Multiple potential impacts of sediments in sewers exits that can be harmful for the environment, for the sewer infrastructures, as well as for the health of sewer workers. A summary of impacts of sediment deposits in sewers is reported in Table 2.5. For example, it has been shown that, during high flows, bed sediments, depending on the local conditions, can be entirely eroded and contribute to the pollutant discharge (Ristenpart 1995;[START_REF] Butler | Urban Drainage. 3rd Editio[END_REF]. The erosion and resuspension of sediments and attached pollutants during storm flows may affect severely the fauna and flora in the receiving water bodies because of non-treated overflowing wastewaters. Moreover, high flows could overload the WWTPs if their dimension does not permit to treat high-polluted discharges such as bacteria, heavy metals and hydrocarbons [START_REF] Chebbo | Solides des rejets urbains par temps de pluie -Caractérisation and traitabilité[END_REF]). Consequently, pollution can enter directly the nature habitats thus creating a number of severe long-lasting environmental and ecological impacts depending on the concentration, load and frequency of the pollution. Authors have observed a high contribution (up to 80%) of the remobilised deposits due to the high storms [START_REF] Krejci | Contribution of different sources to pollutant loads in combined sewers[END_REF][START_REF] Crabtree | Sediment in sewers[END_REF][START_REF] Gromaire | La pollution des eaux pluviales urbaines en réseau d'assainissement unitaire, caractéristiques and origines[END_REF][START_REF] Ahyerre | Bilan and mécanismes de migration de la pollution organique en réseau d'assainissement unitaire[END_REF]: Banasiak et al. 2005). Indeed, the major part of pollutions is originating from the accumulated and developed bed sediments over the sewer channels that can potentially re-entrained during the storm flows. A very recent work has been conducted to investigate experimentally the effect of cohesion of the bed-load on the erosion and accumulation processes in sewers [START_REF] Regueiro-Picallo | Characterization of sediments during transport of solids in circular sewer pipes[END_REF]. According to their observations, 25-50% of the pollutants within the bed deposits can be realised into the sewer during high flows. In addition, researches have highlighted the acute and chronic impact of high-pollution load of the overflows during the storms in the combined sewers that are provenance of the accumulated sediments on the sewer inverts [START_REF] Verbanck | Sewer Sediment and its Relation with the Quality Characteristics of Combined Sewer Flows[END_REF][START_REF] Butler | Urban Drainage. 3rd Editio[END_REF].

Another considerable impact of sewer sediment deposits (from the operational point of view) is threatening the performance of the sewer network as well as reduction of hydraulic conveyance [START_REF] Crabtree | Sediment in sewers[END_REF]. This has been a real problem for Parisian sewers over sections with flat slope. Also, sewer deposits by emitting gases and corrosive acids can cause detachment of the wall cladding and degrade the infrastructures. Table 2.5 Outline of the potential negative impacts resulting from the deposits. 

Impact and problematics

Secondary effects References

Hydraulic

Content of deposited load in sewers

Early experimental researches about sewer solids and pollutants are referenced by [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF] and show the existence of problems due to solids in sewers since many centuries. Several studies have shown the interest to observe in-sewer sediment related processes mainly in the context of the qualification and quantification of pollutants associated to solids [START_REF] Laursen | The Hydraulics of a Storm-Drain System for Sediment-Transport Flow[END_REF]American Public Works Association 1969;Bertrand-Krajewski 2003). Nonetheless, an increase of the awareness of the need to study sediment characteristics and related processes has started by the end of the 80s. This was due to the progresses of informatics that permitted to model hydraulic performance of sewer flows thus allowing exploring such complex systems. An extensive literature review related to sewer solid characterization is presented by [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF] that explores various types of in-sewer sediments, origins and their sources.

Combined sewers may drain and transport particles including elements such as food wastes, faeces, hygienic articles, paper, mineral particles (sand, gravel, etc.). A large number of factors exists that vary the source, composition and properties of the sewer sediments. These elements are variable place to place and depend also on local circumstances such as the population, domestic and cultural habits, public education, and sewer characteristics (Ashley and Crabtree 1992;Spence et al. 2016). Also, sediment entry into the sewers depends on dry or wet-weather conditions, as well as on the geographic area drained by the sewers that affects the composition of the bed in a different way (Ashley andCrabtree (1992 (CIRIA 1986;Michelbach 1995).

A large body of knowledge has been built-up for solids in sewers showing a wide heterogeneity of the sediments in terms of physical, chemical and biological characteristics [START_REF] Pisano | Procedures for Estimating Dry Weather Deposition in Sewerage Systems[END_REF]Ashley et al. 1990;[START_REF] Brombach | Sedimentations-und Remobilisierungsvorgange im Abwasserkanal, Schlubericht des Teilprojektes 3 im BMFT -Verbundprojekt NIEDERSCHLAG[END_REF]Clegg et al. 1992;[START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF]. The main objective of several studies was to understand and quantify the contribution of the pollutants associated to bed deposits into the flow during dry and wet weather conditions. Other researches have shown that the composition of deposits varies on time and in space due to the occurrence of non-stationary sewer flows. [START_REF] Ristenpart | Behaviour and pollution of sewer sediments[END_REF]Ristenpart ( , 1995) ) experimentally evaluated in details the temporal evolution of physical and chemical characteristics of the bed deposits of the Hildesheim sewer in Germany. By monitoring several characteristics of sediments during nine months, he showed even rapid temporal variations of the sediment sizes, densities and therefore chemical parameters during dry-weathers [START_REF] Ristenpart | Organic near -bed fluid and particulate transport in combined sewers[END_REF]. In addition, it has been showed that the characteristics of deposits may vary also vertically (in time and space) through the bed depth (Schmitt 1992, cited by Ristenpart 1995;[START_REF] Lacour | Apport de la mesure en continu pour la gestion de la qualité des effluents de temps de pluie en réseau d'assainissement (Contribution of continuous turbidity measurements to the management of effluent quality in sewer systems during wet weather[END_REF][START_REF] Hannouche | Analyse du transport solide en réseau d'assainissement unitaire par temps de pluie : exploitation de données acquises par les observatoires français en hydrologie urbaine (Analysis of solid transport in combined sewer network during wet wea[END_REF].

The most common physical property of sediments is the grain-size distribution of bed deposits since sewer sediments contain a wide range of sizes from very small microorganisms to particles of tens of centimetres (Levine et al. 1985). These particles on composed of organic and inorganic (in particular mineral) matters that are why many authors use sediment mixtures of organic and mineral solids for laboratory experiments [START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF]Rushforrt et al. 2003;Banasiak et al. 2005). A summary of studies that aimed to investigate the range of in-sewer sediments are presented in Table 2.6. The table shows also the motivation of these studies to characterize the sediment highlighting the importance of knowledge about the nature of sediments. Globally, research programs have concluded that insewer sediment origins are highly variable. For example, [START_REF] Crabtree | Sediment in sewers[END_REF], Laplace (1993[START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF] and [START_REF] Ahyerre | Bilan and mécanismes de migration de la pollution organique en réseau d'assainissement unitaire[END_REF] experimentally observed large ranges of sediments in sewers.

Size distribution of the solids accumulated in sewers during dryweathers has been measured in a number of studies. Table 2.6 shows also the ranges of the bed sediments found by authors which are found to be variable. [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF] have discussed variability of ranges from very fine to large gravel-size particles. For example, up to 18% of the bed sediment composition was found to be more than 20 mm in French trunk sewers). Marseille data (La Place 1993) has showed a d50 of more than 8 mm for the bed deposits. Furthermore, authors have classified sewer deposits differently. [START_REF] Verbanck | International workshop on origin, occurrence and behaviour of sediments in sewer systems: Summary of conclusions[END_REF] have mainly categorized in-sewer sediments into three classes of sewer grits, sanitary solids and materials coming toward surface run-off. According to the observations of [START_REF] Crabtree | Sediment in sewers[END_REF], five categories of sediments were recognized within the sewers. Each class of sediment was identified regarding to its physical and chemical properties as well as the behaviour of the particles. The work of Crabtree has led to characterize the in-sewer deposits. He examined deposits from real field in a combined sewer in the UK [START_REF] Crabtree | A Classification of Combined Sewer Sediment Types and Characteristics[END_REF][START_REF] Crabtree | Sediment in sewers[END_REF]. Various locations of sediment accumulation were identified that led to separately sample the observed deposits. Fig. 2.6 schematizes the results of the classification of sewer deposits based on their characteristics identified from the samples [START_REF] Crabtree | Preparation Protocols for the Analy sis of Combined Sewer Sediment Samples[END_REF]).

Crabtree's observation showed the evidence of a stratified bed layers constituted from two classes of sediments indicated by A and C. The lower layer of the bed (A), with tens of centimetres, constitutes the larger sizes of materials (mainly from mineral particles). This layer is eroded only during extreme storms because of the high yield stress that they need to be remobilized. Conversely, he found that, above this layer, a finer layer exists that contains mainly organic matter (layer C) which is eroded during minor storms and partly during dry-weather flows [START_REF] Crabtree | Sediment in sewers[END_REF][START_REF] Verbanck | International workshop on origin, occurrence and behaviour of sediments in sewer systems: Summary of conclusions[END_REF]. Layer C shows a smaller thickness, contains finer sediments (with d<1.5 mm. Later, this stratification of the bed was confirmed by other studies such as those by [START_REF] Verbanck | International workshop on origin, occurrence and behaviour of sediments in sewer systems: Summary of conclusions[END_REF][START_REF] Berlamont | The characterisation of cohesive sediment properties[END_REF]Torfs (1996). In particular, the investigations done by [START_REF] Ahyerre | Sources and erosion of organic solids in a combined sewer[END_REF] and Oms ( 2003) using a monitoring equipment to film the bed/sediment interface and its temporal evolution, showed clearly this stratification and the dynamics of deposits specific to each layer.

As discussed, combined sewer sediments consist of organic and inorganic types (called also mineral or non-cohesive material; Artières 1987). Researches have concluded that the organic substances modify the bed characteristics as well as the sedimentation processes in particular the erosion condition of the sediments on the bottom of the sewer [START_REF] Wotherspoon | Rheological Measurement of the Yield Strength of Combined Sewer Sediment Deposits[END_REF]Williams and Crabtree 1989). In fact, the presence of organic matters (in any forms such as dissolve form or as particulates with different sizes) within deposits can cause the development of cohesive effects in the sewer deposits [START_REF] Beyer | Contribution à l'étude de l'érosion des dépôts en réseau d'assainissement unitaire[END_REF]Williams et al. 1989;[START_REF] Verbanck | Sewer Sediment and its Relation with the Quality Characteristics of Combined Sewer Flows[END_REF]). Fine organic matters among minerals create the biochemical binding between bed particles. [START_REF] Berlamont | The characterisation of cohesive sediment properties[END_REF]; [START_REF] Wotherspoon | Rheological Measurement of the Yield Strength of Combined Sewer Sediment Deposits[END_REF] and [START_REF] Ristenpart | Organic near -bed fluid and particulate transport in combined sewers[END_REF] pointed out the variable distribution of organic matters within time and space affecting the yield stress (shear resistance) of the bed. [START_REF] Crabtree | Sediment in sewers[END_REF] by measuring the rheological parameter of the sewer solids assessed the cohesion between the sampled bed sediments. He concluded that the cohesion effect of sewer deposits is not universal in all the areas. Based on his results, the presence of organic matter was much related to the bed with higher bulk density of sediment because of the biological and chemical oxygen demand (BOD and COD, respectively;Ristenpart 1995). Further studies were led aiming at identifying the sources and behaviour of the organic mass and the possibility of 'artificial' erosion to limit their accumulation (e.g., substantial organic, nutrient and heavy metal; [START_REF] Pisano | Dry-Weather Deposition and Flushing for Combined Sewer Overflow Pollution Control[END_REF][START_REF] Ahyerre | Sources and erosion of organic solids in a combined sewer[END_REF][START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF][START_REF] Rocher | Hydrocarbons and heavy metals in the different sewer deposits in the "Le Marais" catchment (Paris, France): stocks , distributions and origins[END_REF][START_REF] Berndtsson | Storm water quality of first flush urban runoff in relation to different traffic characteristics[END_REF]).

Looking at the bed structure of deposits in sewers, the upper layer of the bed (layer C) contains high-polluted organic sediments. In fact, it was shown that the organic content has been the responsible of the bed stratification (Banasiak et al. 2005). This layer is called "mobile organic layer", "near-bed layer", "mobile fluid sediment" or "interface layer between deposited bed and sewage" in to various field studies and observations [START_REF] Ristenpart | Organic near -bed fluid and particulate transport in combined sewers[END_REF][START_REF] Verbanck | Capturing and releasing settleable solids: the significance of dense undercurrents in combined sewer flows[END_REF][START_REF] Ahyerre | Bilan and mécanismes de migration de la pollution organique en réseau d'assainissement unitaire[END_REF][START_REF] Chebbo | The nature and pollutant role of solids at the watersediment interface in combined sewer networks[END_REF][START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF]. One of the main properties of this layer is the cohesive-like characteristics denoting the cohesive binding among the mineral (granular) particles. Many authors who investigated the cohesive-like property used this property to describe the erosive behaviour of bed sediments [START_REF] Tait | A laboratory study of the erosion and transport of cohesive-like sediment mixtures in sewers[END_REF][START_REF] Skipworth | Erosion of Sediment Beds in Sewers: Model Development[END_REF]Rushforth et al. 2003;Banasiak et al. 2005).

Consolidation of deposits in combined sewers

Combined sewer deposits show complex processes such as bed consolidation that distinguish them from "classical" sediment beds. Consolidation (or self-weight consolidation) of sewer deposits occurs to an accumulated bed over time principally during dry-weather. This complex time-dependent process depends mainly on the presence of the (fine) organic matters and microorganisms that create the bio-chemical binding between particles [START_REF] Berlamont | The characterisation of cohesive sediment properties[END_REF][START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF]. Torfs (1995) has estimated 10-20% of fine (<63µm) organic within cohesive-like bed. Indeed, the cohesiveness of sediments is one of the key-components of consolidation conditions. Results from experimental investigations conducted by Ristenpart and Uhl (1993), show that consolidation modifies the erosive shear stress of the bed during dry-weather flows by increasing the threshold of motion. Recent researches have outlined that not only the organic matters but also the oxygen content for bacterial activity can have significant influence in the consolidation processes [START_REF] Vollertsen | Resuspension and oxygen uptake of sediments in combined sewers[END_REF]Tait 2008;[START_REF] Seco | Erosion resistance and behaviour of highly organic in-sewer sediment[END_REF].

Moreover, the age of deposits accumulated during dry-weather plays an important role in the degree of the bed consolidation that increases the threshold value to remobilize the bed [START_REF] Lau | Influence of antecedent conditions on critical shear stress of bed sediments[END_REF][START_REF] Regueiro-Picallo | Characterization of sediments during transport of solids in circular sewer pipes[END_REF]. However, dry-weather duration depends on the climate (and seasons) and environmental conditions (Gupta and Saul 1996;Tait et al. 2003a). Ristenpart (1995) experimentally observed the relation of the bed history and sediment properties such as cohesion and thus consolidation. Further, exhaustive laboratory studies investigated this process more in details and showed that the level of consolidation depends on the time length (dry-weather duration) of the consolidation as well as the biological activity within the deposits (Skipworth et al. 1996;Tait et al. 2003;Banasiak et al. 2005).
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Movement of solids in sewers

Sewer sediments are transported by gravity flow conditions along the sewer channels through different modes of transport. In addition, many processes exist that influence the movement of sediments due to the presence of the organic content.

Understanding sediment-transport mechanisms in sewers requires knowledge of complex processes and interactions between sediments and water during both dry-and wet-weather flows. Chemical, physical and (micro) biological processes in sewers are different from typical river sediment-transport processes (Berlamont and Torfs 1996;[START_REF] De Sutter | Validation of Existing Bed Load Transport Formulas Using In-Sewer Sediment[END_REF]. Moreover, these processes affect significantly the sediment transport in addition to the flow conditions (Ristenpart and Uhl 1993;[START_REF] Arthur | The influence of near bed solids transport on first foul flush in combined sewers[END_REF]. Based on [START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF], compared to the natural streams, sediment transport in sewers shows the following elements that influence the sediment transport: the cross-sectional shape of the sewers, the availability of sediment source as well as the spatio-temporal variations of the hydraulic and sediment characteristics. In this regard, sediment transport in sewers needs more experimental and numerical efforts to progress the comprehension of the processes. Following, the in-sewer modes of transport including deposition, accumulation, erosion and transport are discussed in detail.

Deposition (settling) and accumulation of sediments in sewers

Particle settlement

Intermittence of sewer flows cannot appropriately transport the (mineral) sediments due to decreased flow energy. Therefore, particles in suspension in the water column start to settle down over the bed invert. The settling velocity, being as a property of particles in suspension, is one of the parameters that govern transport processes [START_REF] Berlamont | The characterisation of cohesive sediment properties[END_REF]. This is usually represented by 50 s w (median settling velocity) by various authors. Physically, deposition processes within the flow can occur since the buoyant weight force component is greater than the lift forces. Conversely, a higher lifting force than buoyant weight tends to retain the particle in suspension. Various values of settling velocities are reported in the literature that may be due to the variability of local conditions and measurement techniques [START_REF] Bertrand-Krajewski | Modelling of Sewer Solids Production and Transport[END_REF]. [START_REF] Aiguier | Methods for determining the settling velocity profiles of solids in storm sewage[END_REF] evaluated settling velocity of the solids in sewer by comparing three selected methods. Observing the differences between the results from the used methods, they highlighted various factors that can change the settling velocity. It has been shown that the rate of settling depends on the hydraulic conditions, particle characteristics as well as on flow concentration. It should be noticed that the quantity and quality of the settable mass are connected to the available source of material entering the sewers. Basically, availability of materials depends not only on solid entrance rate but also on the weak shear resistance locally existing in the sewer channels [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]).

The settling characteristics of solids during dry and wet-weather are variable [START_REF] Piro | Assessing settleability of dry and wet weather flows in an urban area serviced by combined sewers[END_REF]. According to the results obtained from field investigations by Krishnappan et al. (2012) who used four methods to measure the settling velocity, higher settling velocities were measured during wet-weather. This could be explained by the presence of finer particles that cause the aggregation/degradation of flocs, as well as the remobilized inorganic materials with faster settling velocity [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]).

Sediment accumulation

Depending on the flow conditions and the settling velocity of the particles, sediments can form permanent deposits at specific points (in particular at the entry) of the sewer channels [START_REF] Pisano | Dryweather deposition and flushing for combined sewer[END_REF][START_REF] Fan | Sewer and Tank Flushing for Sediment, Corrosion, and Pollution Control[END_REF]2003).

Sedimentation and deposit build-up in sewers take place mainly during dry-weather as well as during the recession of the storms [START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF]. It was outlined that deposition takes place during dry-weather period when equilibrium state is obtained with the formation of deposits stable sediment height (Ristenpart and Uhl 1993). However, the build-up rates and the composition of accumulated sediments are different depending on a large number of factors, mainly related to the hydraulic parameters (Ashley and Crabtree 1992;Ashley et al. 1992).

Several authors have observed sediment deposition and accumulation processes in sewer channels by long-term monitoring to understand the reasons and potential locations of deposits [START_REF] Ashley | The quality of sewage flows and sediment in Dundee[END_REF]Lin 1993;Bertrand-Krajewski et al. 2006). As result of the extensive fieldwork investigation by Laplace (1991) in a French man-entry sewer trunk, he observed various locations prone to sediment accumulation along the sewer channel bed such as junctions, confluences, bed-invert bumps and hollows were identified. According to observations, bed deposits tend to be finer in sediment sizes. This behaviour called downstream fining (observed also by [START_REF] Sanchez | Curage des ouvrages visitables des réseaux d'assainissement -Synthèse des principales méthodes appliquées en France[END_REF]) reveals the selective (sorting) mechanism of the flow along the channel that makes varying spatially sediment characteristics. Globally, various locations can potentially trap sediments (during dry-and wetweathers) that are affected by the obstacles, slopes and discontinuities [START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF]. [START_REF] Lorenzen | Flush cleaning of sewers[END_REF], by monitoring sewer deposits along the sewer channel, found that sewer diameters widening cause considerable sedimentation. Ashley et al. (1992) observed coarser particles with a granular texture at the sewer head confirming the downstream fining phenomenon.

Many reasons can be the origin of particle accumulation and buildup. Discontinuities such as abrupt changes in the invert slope and irregularities, junctions and flow inlet/outlets through the sewer channels are able to modify the flow conditions (i.e., reduced velocity) resulting in the local sediment accumulation (Laplace 1991;[START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF]. In fact, the flow capacity together with sewer physical conditions (e.g., shape, roughness and size) is one main responsible of sediments accumulation within the sewers [START_REF] Perrusquía | Flow capacity of sewers with a sediment bed[END_REF].

Globally, although the accumulation of solids in sewers is an important issue for pollution in urban areas, more research efforts are still needed to make a clear conclusion about the potential areas and mechanisms of sedimentation in sewers (Bertrand-Krajewski et al. 2006).

Erosion of sewer deposits

The self-cleaning condition of sewers depends principally on the boundary shear distribution needed to remobilize the bed deposits [START_REF] Butler | Self-Cleansing Sewer Design Based on Sediment Transport Principles[END_REF]. Deposits can be (partly) remobilized and carried by diurnal or storm flows as the exerted shear stresses begin to increase more than a certain threshold value. The critical shear stress separates the deposited from transported particles in sewers. Once the bed shear stress exceeds the threshold value to initiate the motion, due the increase of the flow velocity and turbulences, particles can be remobilized. However, the shear stress is a main but not the only parameter determining the erosion in sewers (Ristenpart and Uhl 1993;[START_REF] Verbanck | International workshop on origin, occurrence and behaviour of sediments in sewer systems: Summary of conclusions[END_REF]. Indeed, the erosion is also affected by other factors such as sediment properties as well as geometry of sewers. For example, the role of geometry on local bed and mean shear stresses was highlighted by Oms et al. (2008), who led a series of experiments in real combined sewers. They highlighted the role of slope in the estimation of the average shear stress.

Using different approaches, authors from different countries have tried to define critical bed shear stresses needed to initiate the particle motion in sewer systems. Table 2.7 summarizes values obtained at both field or laboratory scales (Nalluri and Alvrez 1992;Ristenpart 1995). [START_REF] Novak | Incipient motion of sediment particles over fixed beds[END_REF] carried out investigations in a laboratory flume with a rectangular cross-section and proposed a formulation to obtain the incipient motion of the bed deposit for sewer channels. Later, [START_REF] Hrissanthou | Measurements o f critical shear stress in sewers[END_REF] measured the critical shear stress using the automatic image processing using the videos taken to observe the bed particle motions in the laboratory. Taking into account the real conditions, they estimated the critical shear stress in terms of its corresponding critical discharge with good results compared to the data from the literature. Very recently, [START_REF] Bong | Hydraulics characteristics of tipping sediment flushing gate[END_REF] by investigating incipient motion in a laboratory flume have proposed a developed version of the relationship proposed by [START_REF] Novak | Incipient motion of sediment particles over fixed beds[END_REF]. They confirmed that this equation provides an estimation of the threshold condition of sediment incipient motion by taking into account the depth of bed deposits. During high flows in sewers when the erosion condition is obtained, particles can be remobilized from the bed deposits since the shear velocity is higher than the threshold value. Therefore, the in-situ estimation of the parameters such as the critical shear stress over the bed is of permanent importance to estimate the bed-load sediment-transport discharge in sewers. Due to the complex conditions of the sewers, obtaining this value from the real field is a difficult task. Therefore, the Shields diagram remains the most practical mean to estimate the critical shear stress. Ever if shear stresses in the real sewers are much higher than the values obtained from laboratory cases [START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF][START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]). 57

The critical bed shear stress in real sewers can also vary on time due to the internal processes among the bed particles, the sewer geometry, the sewage and sediment properties. As previously mentioned the presence of organic matters (in any percentages) can vary the sediments behaviour [START_REF] Vollertsen | Resuspension and oxygen uptake of sediments in combined sewers[END_REF]. Hence, the erosion of deposited bed is affected by the cohesion originating from these substances. Nevertheless, once the particles go into the flow, they are transported as the inorganic sediments (Nalluri and Alvarez 1992). The relation between the organic content and the erosional resistance was investigated by [START_REF] Seco | Erosion resistance and behaviour of highly organic in-sewer sediment[END_REF] undertaking a complete series of laboratory experiments using in-sewer high organic matter sediments. By evaluating erosion rate, they outlined that the magnitude of critical shear stress is not only affected by the presence of organic matter but also by the nature of sediments as well as the bacterial reactions. For instance, [START_REF] Ahyerre | Nature and dynamics of water sediment interface in combined sewers[END_REF] by in-situ measurements in various flow conditions in a combined sewer observed that the (organic) erosion occurs even at low shear stresses conditions (i.e., 0.5 N/m 2 ).

Another interesting aspect concerns the erosion of fine-grained sediments deposited at the top layer of the bed (NBS), being this potentially the main source of the pollution, during wet weather flows. This phenomenon, called as "First Foul flush", indicates the important erosional effect of the initial part of the storm flow hydrograph. Different authors tried to characterize this phenomenon by linking it to the pollution transport , thus aiming to quantify the downstream impacts [START_REF] Ashley | Fluid sediment in combined sewers[END_REF][START_REF] Barco | First flush in a combined sewer system[END_REF][START_REF] Sakrabani | Biodegradability of organic matter associated with sewer sediments during first flush[END_REF]. [START_REF] Arthur | The influence of near bed solids transport on first foul flush in combined sewers[END_REF] observed the flow and sediment characteristics during first flush of three real sites in Dundee. It was demonstrated that the top layer of the bed containing heterogeneous solids mainly (almost 90% of organic matters), can be easily eroded and transported in suspension during sewer flow and the eroded amount depends on the time length of antecedent dry-weather. Many authors, such as [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF], Verbank (1990), by characterizing physical and chemical properties of these solids in suspension during wet weather, reported the considerable portion of fine solids (25% of the mass) in the flow.

Transport of sediments

Once sediments entrain from the bed deposits, they can be separated and transported by the flow forces as bed-load and suspended load. The particle remobilisation can be obtained when particles are exposed to the critical flow conditions allowing the beginning of transport. Critical shear stresses can be determined for a non-cohesive bed particle based on [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF] method. This method is also applicable for sewer systems to study the transport conditions of particles.

Being composed of a variety of properties and characteristics, sewer particles are transported differently in response to a given hydraulic and sewer condition. In addition, sediment-transport processes are different during dry-and wet-weather conditions. A number of studies have been carried out in an attempt to comprehend solid transport processes in sewers (combined and storm sewers) during dry-and wet-weathers (Nalluri et al. 1994;[START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF][START_REF] Coghlan | Empirical equations for solids transport in combined sewers[END_REF][START_REF] Ghani | Gene-expression programming for sediment transport in sewer pipe systems[END_REF]. Various phenomena inside sewers might modify the 'classical' mechanism of sediment transport (previously discussed). Sometimes the biochemical reactions (agglomeration, degradation, etc.) cause changing in characteristics and therefore affect the movement of sediments [START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF]. Other factors that can influence the transport of solids are related to the sewer conditions [START_REF] Walski | Transport of large solids in unsteady flow in sewers[END_REF][START_REF] Ab | Experimental studies of selfcleansing drainage system design: a review[END_REF]. For example, the sewer cross-sectional shape and longitudinal slope can influence the sediment-transport processes by increasing the shear and flow resistance [START_REF] Verbanck | Assessment of sediment behaviour in a cunette-shaped sewer section[END_REF][START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]. Other significant factor is the existing sediment bed that modifies the transport of particle in movement [START_REF] Novak | Incipient motion of sediment particles over fixed beds[END_REF]. Indeed, the presence of fixed or mobile bed changes the roughness and consequently the boundary conditions that influence the flow velocity and the energy of the solid in motion.

Generally, particles in sewers are continuously interchanging the transport modes as bed, near-bed and suspended load. Basically, two modes of sewer sediment transport can be distinguished especially when talking about low-organic content sewers (non-cohesive deposits with <5% organic which is particularly the case for large sewers; Kleijwegt 1992): suspended load and "non-suspended load". The latter type consists of bed-load and nearbed-load in which particles are considered to be in contact with the bed. These two modes of transport are hereafter explained in more details.

Bed-load transport

This transport mode consists of particles in movement being as sliding, saltation and rolling which is the most observed by studies on combined and storm sewers [START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF]Ab Ghabi et al. 1999). The modes of sediment transport within the flow are depending on a variety of factors. Theoretically, several methods exist to classify particles in modes of transport. Since solids in sewers have very large differences in their movements, many authors have used different criteria categorizing the transport mode of particles according to their characteristics [START_REF] Ota | Graded sediment. transport-the influence of particle size on sediment. transport over deposited loose beds in sewers[END_REF]. Many authors such as [START_REF] Raudkivi | Loose boundary hydraulics[END_REF] have classified the transport modes using the Rouse criterion related to the settling velocity of a characteristic particle and the shear velocity of the flow [START_REF] Ashley | Fluid sediment in combined sewers[END_REF]). This criterion, has been used by many researchers using various ranges to define the transport modes used for sewer cases.

Sewer deposits are continuously in evolution even under small shear stress that may be able to remobilize the very fine sediments (OMS 2003). Higher shear stresses (i.e., wet-weather) cause the erosion and the transport of wider range of particle sizes containing mainly coarser particles (Laplace 1992). The bed erosion of both A and C layers usually occur during storms. However, followed by the storms, during the recession limb of the hydrograph, the (re-)deposition and therefore deposit build-up may take place again at the same locations. This mechanism can hide the occurrence of the erosion if the whole process is not appropriately monitored.

The build-up processes of the bed deposits were experimentally observed in various studies by monitoring the bed heights and its evolution within time in various contexts. These experimental works were conducted both at the field (Laplace 1992;Lin and Le Guennec 1996;Bertrand-Krajewski et al. 2005) and the laboratory scales (Banasiak et al. 2005;[START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF]. It was shown that the mechanisms of the bed-load transport are highly affected by the flow, sediment and geometrical sewer conditions.

Suspended-load transport

Suspension occurs from the moment that particles are transported without any contact with the bed. In fact, particles in suspension (predominantly organic matters with about 40µm in size) within the flow column are maintained by the turbulence eddies. The suspended sedimenttransport capacity of the flow can be related not only to the flow conditions (turbulent velocity) but also to the solids characteristics such as the settling velocity. Settling velocity information generally represented by 50 s w is considered as an important factor to describe the suspension in sewers [START_REF] Chebbo | Solides des rejets urbains par temps de pluie -Caractérisation and traitabilité[END_REF]).

Several authors have estimated various values of shear stresses for erosion during dry-weather. For example, [START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF] reported an average flow velocity of 0.35-0.4 m/s corresponding to 1N/m² for a trunk sewer in Marseille. These values are sometimes small to remobilise even fresh deposits in flat sewers. Moreover, during dry-weathers, the concentration of the suspended particles in the flow is linked to the presence of organic substances within deposits. Indeed, during dry-weather higher amount of organic matters of deposits can reduce the suspended load because the organic binding to the mineral particles does not allow the bed-load going into suspension (Skipworth et al. 1996;Du Sutter et al. 2000). It was outlined that by increasing the flow velocity, resuspension of particles (including organic and inorganic) may occur, leading to potentially contribute to the transport of pollution [START_REF] Krejci | Contribution of different sources to pollutant loads in combined sewers[END_REF]Chabbo et al. 1990;[START_REF] Field | Innovative Urban Wet -Weather Flow Management Systems[END_REF]. Nevertheless, once the bed particles start moving into the flow, all particles transported by the flow behave as inorganic solids and the cohesion can be ignored [START_REF] Ristenpart | Organic near -bed fluid and particulate transport in combined sewers[END_REF]Gupta and Saul 1996).

Available studies concerning modelling sewer sediment transport

In the recent decades the progresses of sewer sediment-transport models have been significant due to the increase of demand for reliable approaches for the management of sewer networks (Bertrand-Krajewski et al. 1992). Although, modelling in-sewer sediment processes such as consolidation, chemical and biological interactions in addition to their temporal and spatial changes is a complex task (Ashley et al. 1999). Therefore, a variety of models has been applied to simulate sewer sediment transport but they had to encounter such complexities related to the real sewer conditions. Table 2.8 presents a summary of investigations dealing with of sediment-transport modelling in sewers. The table shows that authors have tried to predict the in-sewer processes by generally focusing on a couple or few aspects of sediment transport. In fact, description of these processes, require an appropriate model that is a challenge for researchers. In this context, good quality of data becomes essential for reliable model simulations [START_REF] Gaume | Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water qualitymodel[END_REF]. Apart from experimental data features, the quality of models plays a crucial role in decision-making strategies in urban networks. This is why the numerical errors and uncertainty of modelling results are important issues when talking about sewer sediment models. Freni et al. (2008) relate the uncertainties to the number of parameters to measure or to describe that can increase model complexity and therefore the uncertainty of models.

Therefore, correct prediction of in-sewer sediment transport maybe strictly affected by the choice of formulas that are used. Since many years, researchers are trying to obtain or develop appropriate relationships for sediment-transport prediction for sewer cases. Several experimental and numerical researches were undertaken at the laboratory scale using uniform synthetic or real deposits from sewers to evaluate the application of various formulas [START_REF] De Sutter | The erosion of cohesive mixed deposits: implications for sewer fow quality modelling[END_REF][START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF]Rushforth et al. 2003). On one hand, the aim of these studies was to validate sediment-transport formulas for uniform sediments deriving from the parental area of river engineering using, for example, correction factors. Nalluri et al. (1994) investigated bed-load transport of non-cohesive particles in laboratory using two channel shapes for the purpose of achieving design indications. Formulas were validated for various sewer shapes with a relatively good level of performance. Lin and LeGuennec (1996) derived a relationship able to predict the bed evolution that takes into account the erosion and On the other hand, other researchers have been interested in the study of non-uniform sediment transport. For example, [START_REF] Einstein | Can the rate of wash load be predict ed from the bed-load function[END_REF] proposed the fractional sediment-transport theory for non-uniform sediment bed mixtures in estimating bed-load discharge for each grain-size class in sediment mixtures. Since sediment-transport processes in the nature are strictly associated to the grain-size distribution of the sediments [START_REF] Verbanck | Computing near-bed solids transport in sewers and similar sedimentcarrying open-channel flows[END_REF], it is also important to take into account the variety of sediment grain sizes using an accurate theory to include mixture properties to predict the rate of transport. This is particularly important for low-organic content sewers with granular texture. However, up to now, few studies attempted to simulate transport mechanisms of sediment mixtures for sewer flows [START_REF] Ota | Graded sediment. transport-the influence of particle size on sediment. transport over deposited loose beds in sewers[END_REF][START_REF] Ota | Graded sediment. transport-the influence of particle size on sediment. transport over deposited loose beds in sewers[END_REF]. Different authors (Ashley et al. 1999;[START_REF] De Sutter | The erosion of cohesive mixed deposits: implications for sewer fow quality modelling[END_REF], adapted from Ashley et al. 2004) have remarked the importance of modelling sediment-transport processes using non-uniform particle sizes. For example, De Sutter et al. (2000) based on laboratory investigations on the erosion and transport of sediment, concluded that modelling sediment transport is useless without taking into account the heterogeneity of sediments. In fact, it has been clearly highlighted that modelling sediment-transport processes using single-sized sediment cannot represent the entire real sediment compositions [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]). The simplification of the heterogeneity in size and in density of sewer sediments for easy modelling, affects, in particular, the realistic estimation of bed-load transport discharge. Therefore, in order to appropriately describe sediment-transport processes in sewers, it is of parameter importance to include information about the variety of sizes of particles as model input information about deposit properties [START_REF] Mark | Principles and approaches for numerical modelling of sediment transport in sewers, Water Science and Technology[END_REF]Rushforth et al. 2003a;Rushforth et al. 2003b;[START_REF] Bertrand-Krajewski | Modelling of Sewer Solids Production and Transport[END_REF]. Indeed, the non-uniformity of sizes in the composition of the bed requires the modelling of various phenomena such as sorting, armoring, differential erosion and hiding/exposure that affect the transport of solids (Rahuel and Simon 1985;[START_REF] Holly | Simulation of Missouri River bed degradation[END_REF]Armanini and Di Salivio 1988;Rahuel et al. 1989;[START_REF] Parker | Transport of gravel and sediment mixtures[END_REF].

Models that account for the information related not only to flow conditions but also particle properties based on the real-field data can be more successful in describing the behaviour of in-sewer transport [START_REF] Tränckner | Model -based assessment of sediment sources in sewers[END_REF][START_REF] Mouri | Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO2 emissions[END_REF]. However, collecting the real field data to observe and monitor the sediment-transport processes presents various constraints due to the hostile conditions of the sewer. That is why many researchers attempted to experimentally and numerically investigate the insewer sediments transport in laboratory using real sediments [START_REF] De Sutter | Erosie and transport van cohesieve sedimentmen -gels in niet-permanent regime Erosion and transport of cohesive sedi-ment mixtures in unsteady flow[END_REF][START_REF] De Sutter | The erosion of cohesive mixed deposits: implications for sewer fow quality modelling[END_REF][START_REF] De Sutter | Validation of Existing Bed Load Transport Formulas Using In-Sewer Sediment[END_REF].

Transport of sediment during dry-weather was subjected to a large number of studies [START_REF] Mark | Principles and approaches for numerical modelling of sediment transport in sewers, Water Science and Technology[END_REF][START_REF] Coghlan | Empirical equations for solids transport in combined sewers[END_REF]Schlütter 1999;[START_REF] Seco | Erosion resistance and behaviour of highly organic in-sewer sediment[END_REF]. Attempts were made to describe the movements of nearbed particles transported during dry-weather by proposing novel equations or models (Arthur and Ashley 1997;[START_REF] Verbanck | Computing near-bed solids transport in sewers and similar sedimentcarrying open-channel flows[END_REF]. In parallel, attention has been also paid to high flow conditions in sewers and consequently associated sediment transport in particular during wet-weather (storms; [START_REF] Coghlan | Empirical equations for solids transport in combined sewers[END_REF]Tait et al. 2003;[START_REF] Celestini | Sediment transport in sewers[END_REF][START_REF] Bong | Potential of tipping flush gate for sedimentation management in open stormwater sewer[END_REF]). These Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 63 numerical studies of suspended sediment transport in the context of sewer pollution management allowed setting up acceptable pattern for the first foul flush (Ashley et al. 1992;[START_REF] Skipworth | Erosion of Sediment Beds in Sewers: Model Development[END_REF]Rushforth et al. 2003;Saul et al. 2003;[START_REF] Lacour | Apport de la mesure en continu pour la gestion de la qualité des effluents de temps de pluie en réseau d'assainissement (Contribution of continuous turbidity measurements to the management of effluent quality in sewer systems during wet weather[END_REF]).

In the past decades, with the increase of computational power, m any authors have tried to use fully CFD models to simulate the sediment-transport problems in sewers [START_REF] Faram | A method for the numerical assessment of sediment interceptors[END_REF]Harwood 2000, 2003;[START_REF] Yan | Expérimentations and modélisations tridimensionnelles de l'hydrodynamique, du transport particulaire, de la décantation and de la remise en suspension en régime transitoire dans un bassin de retenue d'eaux pluviales urbaines[END_REF]. They were able to predict on detailed infrastructures mainly for design aims in order to obtain indications about the sediment deposition to identify for example sediment trap or chambers (Fraser et al. 2001 adapted from Faram and[START_REF] Faram | A method for the numerical assessment of sediment interceptors[END_REF].
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Sewer cleaning methods

Due to the structural effects as well as the management plans, deposits could be formed over time on the bed invert of sewer channels. Since hydraulic and geometrical conditions of old and flat sewers do not ensure self-cleaning conditions, appropriate actions for deposited on the sewer network are mandatory.

Literature shows that sewer cleaning is an exercise that has been practiced from centuries as a method to overcome the sedimentation problems in sewer channels [START_REF] Bertrand-Krajewski | Flushing urban sewers until the beginning of the 20th century[END_REF][START_REF] De Feo | The Historical Development of Sewers Worldwide[END_REF]. Nowadays, cleaning strategies become part of the normal operation of sewers to reserve the existing infrastructure (Schellart et al. 2007). The necessity of appropriate techniques for removing deposits from the bed invert in combined sewers is essential for keeping sewers clean [START_REF] Sanchez | Curage des ouvrages visitables des réseaux d'assainissement -Synthèse des principales méthodes appliquées en France[END_REF][START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF][START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF]. Appropriate choice of the cleaning techniques depends, above all on the channel characteristics (e.g., cross-sectional shape and size, longitudinal slope); bed deposit features (e.g., sediment age, grainsize distribution and bed depth) and flow characteristics (e.g., flow velocity, shear stress, etc.) [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]). However, from the managerial point of view, proactive cleaning should take into account the economical, ecological and operational aspects. [START_REF] May | Low-Cost Options for Prevention of Flooding from Sewers[END_REF] investigated low-cost options of cleaning, including those that are the most practicable and able to minimize the deposition on time. Various sewer cleaning techniques exist that help to manage the formation of deposits in sewer (EPA 1999). Cleaning techniques include traditional (e.g., surface runoff), mechanical (e.g., bucket machines) and hydraulic methods (e.g., water jets; Bertrand-Krajewski 2002; Pisano et al. 2003;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]). The two latter techniques are implemented by the mean of devices to remove deposits. Among all cleaning practices, those that artificially make transporting the sediments in suspension (hydraulic techniques) are considered to be the most promising solutions (Gupta and Saul 1996;[START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF]. However, it should be noticed that cleaning solutions could be applied not only as reactive systems but also as preventive solutions to minimize the sedimentation in sewers [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]. Detailed description of all cleaning methods and their application can be found in EPA (1999), [START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]; [START_REF] Schaffner | Numerical investigations on the function of flush waves in a reservoir sewer[END_REF] and [START_REF] Shirazi | Application of Flushing Devices in sewer systems[END_REF]. During the last decades a large number of case studies and numerical investigations from all around the world have been conducted to evaluate and understand the removal efficiency of cleaning techniques in sewers (for example Laplace et al. 1992;[START_REF] Lorenzen | Flush cleaning of sewers[END_REF][START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF][START_REF] Creaco | Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[END_REF]Dettmar and Staufer 2005;Sequeiros et al. 2014).

According to the literature, examples of practical hydraulic cleaning (high-pressure) methods are mentioned as follows:

Ballig

Being as hydraulic cleaning method, the pressure of a water head generates high velocity flow around an inflated rubber ball. A scrubbing action of the water along the pipe happens by rotating the ball through the sewer channel due to the existence of an outside spiral thread and swivel connection. Therefore, the ball is able to remobilize and remove the settled grit and built-up grease inside the sewer line. This technique is limited to the sewer sizes smaller than 600 mm in diameter (Pisano et al. 2003;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF].

Water jetting

This method is also a hydraulic cleaning way which is implemented by directing high water velocities (and water pressure) against the sewer internal walls at various angles. The basic jetting machine is typically setup on a truck or trailer which is equipped with a water supply tank (with a capacity of at least 3.8 m 3 ), a high-pressure water pump, an auxiliary engine, a powered drum reel that holds a hose of at least 150-m long with a minimum diameter of 25 mm on a reel (with speed and direction controls), and a variety of nozzles. Jetting is practical for routine cleaning of small diameter low-flow sewers, and can efficiently remove grease build-up and debris from sewer reaches (Pisano et al. 2003;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]). The disadvantage of this method is high demand of fresh water and energy, creation of large noise levels, and occasionally unacceptable working conditions (Schaffner et al. 2004).

Flushing

Flushing consists of accumulating water behind a flushing device and then suddenly releasing it through downstream of the device. This method of cleaning of sewer pipes requires the application of hydraulic flushing devices that are variable in terms of characteristics such as form and functionality for different sewers. This technique is proposed by designers and researchers because of the cost-effectiveness of the application [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]. Other reasons exist such as economic, environmental and ecological that lead sewer managers to use this technique mainly in large-size sewers. The advantage of implementing these devices could be in situations when it is not feasible to regularly cleanse the sewers by means of other hydraulic devices, e.g. high-pressure jetting [START_REF] Bertrand-Krajewski | Sewer Sediment Management: Some Historical Aspects of Egg-Shape Sewers and Flushing Tanks[END_REF]. Since manual application of this technique for cost, time and health reasons is no more recommended, researchers and designers are particularly focusing on the application of automated cleaning devices. However, in many countries (in particular in Europe), the cleaning of the sewers is led by human intervention. For example, in Germany 95% of sewer channels are cleaned manually [START_REF] Schaffner | Numerical investigations on the function of flush waves in a reservoir sewer[END_REF]. A number of studies have been carried out to investigate and identify the optimal devices principally in terms of potential efficiency to remove the bed deposits in a regular and continuous way. Studies such as those of [START_REF] Lorenzen | Flush cleaning of sewers[END_REF]; [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF][START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF][START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF][START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]Bertrand-Krajewski et al. 2005;Bong et al. 2015), shows that sedimentation in sewers concerns a very large number of countries. This cleaning method is the main focus of the current research that will be detailed in the following sections.

Sewer flushing

One of the most common and efficient technique for cleaning large sewers is flushing. The basic concept of this technique is to release a large volume of stored water in the channel to increase abruptly the flow velocity and the shear stress), thus creating flushing waves able to remove sediment deposits accumulated on the invert of the sewer [START_REF] Pisano | Dryweather deposition and flushing for combined sewer[END_REF]). The use of flushing is dated back to more than a century. As an example, Fig. 2.7 shows a scheme of an historical flushing method to store the sewer flow and release it towards downstream channel. The flush device provides the same effect as the "dam-break" phenomenon. This technique can be considered both a reactive and preventive method to limit the accumulation of sediments thus maintaining the proper functioning of the network. Various devices with different level of 'cleaning' capacity can generate flush waves in sewers. Fig. 2.8 shows scheme of types of the gates could be used in sewers. They are different based on different operative conditions: automatic or manual, hydraulic electrical control, etc. [START_REF] Pisano | Sewer and Tank Sediment Flushing, Case Studies[END_REF]. Under controlled conditions, an automatic flushing device can be operated in two manners depending on the local circumstances and the sewer management: hydraulically or pneumatically with variable gate opening speeds. Further, it is possible to use fixed or mobile flushing gates. Some devices are installed in a fixed sewer location and work "automatically" when the level of water achieves a certain threshold value. Water for flushing is typically stored using in-line pipe storage or specific reservoirs. Generally, reservoirs can be filled by off-line intake (using a tank and inject water) or in-line reservoir sewer. Globally, the application, implementation, result and management of each flushing device could vary from case to case. Depending on sewer circumstances, both manual and automated flushing could have potential ability to be performant. The performance and efficiency of flushes are strictly linked to the characteristics of the deposited sediments. Other parameters also play important roles in the performance of flushes such as the geometrical and hydraulic sewer conditions, the device mechanical characteristics [START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]). Of course, the role of flushing gate setting (e.g., stored water head, flushing volume) as well as the sewer conditions (e.g., slope, cross-sectional shape) effect significantly the flushing performance. Staufer and Pinnekamp (2008) have pointed out that information about the bottom boundary helps to optimize the installation of flushing device. As the cleaning performance is concerned, it can be expected that flushing waves can provide removal effects up to several hundred meters downstream of the flushing device. Not only downstream but also upstream, flushing can affect the channel deposits due to the development of upstream surges that affect sediment build-up upstream the device (Staufer et al. 2008;[START_REF] Schaffner | Numerical investigations of sewer flushing sunk waves -Analysis of hydraulic boundary conditions and cleaning effectiveness[END_REF]2011;Reichstetter and Chanso 2013).

Flushing can be obtained by the mean of various devices with different level of performance [START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF]. Gate devices are very common because of their automated operation, which does not need power supply. The Hydrass® gate [START_REF] Sikora | Vanne cyclique autocurante à décantation[END_REF]) and various types of tipping gates belong to this type of devices. The application of other flushing devices has been also investigated in sewers. For example, Hydroguard®, HydroFlush® and Hydroself® being developed by Steinhardt Company© [START_REF] Pisano | Sewer and Tank Sediment Flushing, Case Studies[END_REF][START_REF] Morin | Un dispositif de chasses préventives pour le nettoyage de siphons and de collecteurs[END_REF].

Introduced by [START_REF] Sikora | Vanne cyclique autocurante à décantation[END_REF] and also called in French "Vanne cyclique autocurante à décantation", this type of gate has been largely used in France with a relatively good performance in particularly for ovoidal sewer channels. Fig. 2.9 shows a simple scheme of the function of Hydrass gate in different phases of water storage and releasing. The gate has the capacity of discharging a volume of stored water during a short period of time. This is the reason why this gate has been subject to several studies to characterize the hydraulic performance and associated sediment-transport capacity in sewers of various sizes [START_REF] Chebbo | The transfer of solids in combined sewer networks[END_REF]1996;[START_REF] Lorenzen | Flush cleaning of sewers[END_REF][START_REF] Pisano | Sewer and Tank Sediment Flushing, Case Studies[END_REF]Pisano et al. , 2003;;[START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]Bertrand-Krajewski et al. 2006) (2006). The optimal setup and operation of gate can be obtained by controlling parameters such as flush frequency, stored water head, etc. Several authors have assessed the gate performance in sewer system under various sediment conditions [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF]Bertrand-Krajewski et al. 2006). Other investigations by Gendreau et al. (1993), Gatke and Borcherding 1996, Ristenpart 1998and Linehan (2001) have confirmed that the Hydrass gate allows performing repetitive flushes in order to scour deposits downstream. Fig. 2.9 Hydrass gate function in four steps [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF].

Other types of tipping gate were mainly explored by [START_REF] Bong | Potential of tipping flush gate for sedimentation management in open stormwater sewer[END_REF] and [START_REF] Bong | Potential of tipping flush gate for sedimentation management in open stormwater sewer[END_REF] that aimed to assess the efficiency of such gate in a real open storm network in Malaysia. In their study, a storm channel that drains a small catchment of 0.11 km² was used to undertake flushing experiments. They monitored a channel trunk of almost 40 m downstream the gate by measuring the sediment heights at every 2 m. They concluded that compared to the flushes generated by Hydrass gates, the tipping gate shows a better efficiency in terms of the time length of the flush. The hydraulic behaviour of the tipping gate for the application in sewer storm network was studied and a discharge relationship and discharge coefficient were determined. Besides, the flushing efficiency of the tipping gate was experimentally (at laboratory) and numerically evaluated using non-cohesive uniform sediments [START_REF] Bong | Hydraulics characteristics of tipping sediment flushing gate[END_REF].

Moreover, the erosional and depositional behaviour of a downstream-type (sluice) gate was investigated by [START_REF] Williams | In-sewer sedimentation associated with active flow control[END_REF]) in laboratory scale by using granular deposits. They demonstrated that such upstream control gate is able to provide effective successive flushes rather than a single one to erode granular deposits.

General evaluation of flush performance

Looking into the literature, different ways have been used to determine the performance of flushing in sewers. Indeed, flush efficiency prevalently evaluated based on the removal effects on the downstream deposits.

Flush efficiency is a function of the volume of the released hydrograph as well as of the sewer characteristics [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]). Geometrical singularities of the channel bed invert (counter slopes, junctions, bed degradations, etc.) are the causes of sediment accumulations on the bed. Such discontinuities result in the loss of the flow energy that influences the downstream flushing performance on its way (Bertrand-Krajewski et al. 2003;[START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]). Thus, propagation distance (length) of flushing waves as well as the magnitude of sediment deposits significantly affects the flushing performance in sewers.

One of the key parameters for flush performance evaluation is the shear stress (and flow velocity) values. In particular, shear stresses estimate the flush strength and its capacity to remove sediments (Schaffner and Steinhardt 2011). However, shear stress evaluation needs a reliable measurement of the flow variables during the flush [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF]. Several authors who evaluated flushing performance used information such as duration and distance over which the bottom shear stress exceeds the critical shear stress. Different critical bed shear stress for flushing condition is reported in the literature to ensure the bed erosion (cleaning performance). Dettmar and Staufer (2005a and b) suggest a value of 5 N/m² to optimize the flushing system while Ristenpart (1994) found values between 2.2-5.6 N/m².

According to [START_REF] Schaffner | Numerical investigations on the function of flush waves in a reservoir sewer[END_REF] who investigated the flushing boundary conditions, a value of between 3-5 N/m² would be necessary to remove sediments. Studies confirm the erosional behaviour of even small flushes as compared with dry-weather conditions. Furthermore, numerical investigations of shear stress values conducted by [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF] for a simplified unsteady flow using a non-dimensional approach. Regressive relationships were provided by the authors to estimate the channel length with erosive effects. An exhaustive series of numerical investigation of flushing and shear stress distribution was undertaken by Dettmar and Staufer (2005a) who aimed to obtain key parameters influencing the flush performance using a tipping gate. By varying the values of flushing-and geometrical-related parameters (sewer and slope diameter, storage length, flushing volume and water head) they performed simulations to analyse the propagation of shear stresses and consequently cleaning distance due to the flush. Unsurprisingly, they pointed out optimal flushes can be obtained with high slopes, high water heads and high volume of flushes. It was shown that the flushing volume on the longer distances. However, this efficiency can be satisfying when the water head is high enough to provide significant flush energy.

Globally, flushing can be evaluated by maximum shear stress values along the sewer channel downstream of the flushing device. This can explain the distance of the sewer channel where sediments were remobilized. Indeed, a critical value to shear stress larger than 5 N/m² can remobilize bed deposits during the flushing in sewers. For example, Staufer and Pinnekamp (2008) have observed a maximum shear stress value of 29 N/m² at 54 m downstream of the gate in t=5s. A maximum shear stress of 14 N/m² was observed by Dettmar and Staufer (2005a) which was able to transport bed deposits with d50=2.2mm. Further, flushing performance over three flat combined sewer sections with various sizes (D: 1, 1.2 and 2 m) and shapes were analysed to investigate three different flushing devices [START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF]. They observed a potential efficiency of more than 400m depending on the characteristics of the flushing gate. A later study of single flushing by Dettmar and Staufer (2005b) over 400 m (300 m downstream of the flushing gate) in a German combined sewer with variable diameters (2.5-3.4 m) and slopes (3.6-4.2 ‰) has shown promising results. The flushing operation with 1.6 m (mean maximum velocity of 3.6 m/s) of water head and 290 m 3 of volume over a deposited bed with d50 ranging between 1-18 mm (mean d50=1cm) has generated a long-lasting shear stress that exceeded the critical value of 5 N/m². Flush frequency is another element that allows increasing the removal efficiency on the bed deposits, which is confirmed by a number of authors: [START_REF] Balayn | Modélisation du transfert de sédiments lors d'un lâcher d'eau en réseau d'assainissement -approche numérique[END_REF], [START_REF] Lorenzen | Flush cleaning of sewers[END_REF], Ristenpart (1998), Bertand-Krajewski et al. (2005). Various laboratory [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF] and field [START_REF] Chebbo | Technical solutions envisaged in managing solids in combined sewer networks[END_REF][START_REF] Creaco | Modelling the flushing of sediments in a combined sewer[END_REF] experiments have been conducted showing the advantages of the successive flushes. Other authors such as [START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF] and [START_REF] Reichstetter | Negative Surges in Open Channels: Physical and Numerical Modeling[END_REF] have demonstrated the effect of the successive flushes through upstream of the flushing device. However, various parameters such as sediment age, longitudinal bed slope, can play the role to limit number of flushes as the more efficient to remove the sediments [START_REF] Lorenzen | Flush cleaning of sewers[END_REF]Ristenpart 1998).

In addition, the use of automatic or continuous cleaning of the sewers has become the goal of sewer managers of different sewer networ ks. It is necessary to calculate the potential number of flushing during dryweather is necessary when talking about the automatic flushing. 

Experimental and Numerical investigations on flushing

Experimental analysis of flushing in sewers

In the last decades, several authors have described the hydrodynamics of the flush and how the flushing wave affects sediment transport in sewers. Studies from various authors around the world have concerned both sanitary sewers (Brombach 1982;[START_REF] Lorenzen | Flush cleaning of sewers[END_REF]Ristenpart 1998) and storm sewers [START_REF] Ghani | Sediment Flushing using Tipping Flush Gate in an Open Storm Concrete Drain-A Case Study in Nibong Tebal, Penang, Malaysia[END_REF]Bong et al. 2015). Nevertheless, a very limited number of flushing experiments in real sewer systems has been conducted to evaluate the feasibility and the performance of flushing devices as cleaning systems for sewer channels. Table 2.9 reports types of flushing devices used during field experiments. For most of the reported studies the flush impact on the downstream bed deposits of the flushing device has been evaluated in terms of:

-bed height modification (topography); -bed structure modification (vertical layers); -bed composition modification (grain-size distribution).

The bed height is probably the most common way in the literature to measure the evolution of the bed due to flushes [START_REF] Balayn | Modélisation du transfert de sédiments lors d'un lâcher d'eau en réseau d'assainissement -approche numérique[END_REF][START_REF] Lorenzen | Flush cleaning of sewers[END_REF]Ristenpart 1998;[START_REF] Creaco | Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[END_REF]. The structural evolution of the bed was studied by few authors (e.g., [START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF]. The interest of such observation is principally associated to follow the organic layer in highly cohesive combined sewers. The modification of the bed composition can be rarely found in the literature which may be explained by the complexity of monitoring as well as the cost and the time of experimentation, which requires appropriate sediment sampling in sewer. Furthermore, models that take into account the variation of the sediment composition during the flush are very complex to setup and validate. [START_REF] Lorenzen | Flush cleaning of sewers[END_REF] have presented the results of a measurement campaign including both a single and a set of successive flushing tests in a German combined sewer with fine sand sediments. It was aimed at evaluating the effectiveness of a flushing gate within a channel trunk of about 2400 m and with different diameter (1.8-2.4 m), hydraulic capacity (average mean velocity equals to 0.5 m/s), slope (average slope equals to 0.66‰. Mean particle size was reported to be 0.6 mm with deposits having maximum bed height of about 20 cm. According to the adopted flushing protocol, bed thickness was measured every 5 m along the longitudinal sewer channel before and after each flush. A long flush duration was observed downstream the gate. The comparison between the initial bed heights and those impacted by the flushes revealed a trunk length of that more than 600 m downstream of the gate was subject to considerable erosion. The authors pointed out the important impact of the flushing initial water head. Moreover, a coarsening of the bed composition was observed since the finer sediments were mainly flushed out of the channel.

The experimental work by Ristenpart (1998) in other German combined sewers has provided interesting results regarding the mechanism of sediment transport during the flushing. The geometrical conditions of the considered sewer (with two parallel channels of 1.5 m allowed to carry out different flushing operations with different water heads (0.8 and 1.5 m) and different flushing volumes. The continuous measuring of the bed level and of the suspended solid concentration (SSC) allowed associating the peak of suspended solid to the eroded bed deposits during the flush. Apart the erosional aspects of the flush, a considerable re-depositional impact along the downstream channel was also observed including mainly coarse mineral sediments that were transported as bed-load. Based on the volume of sediments washed out by each flush, the following parameters were considered to play important roles in the flushing performance: the deposit age, the sewer geometry and the flushing characteristics. Most efficient flushes were obtained using higher initial head. Before and after each flush was the thickness of the bed was measured [START_REF] Creaco | Devices for the removal of solids from sewer channels: Experimental investigations and numerical models[END_REF]Bertrand-Krajewski 2007, 2009). These studies were conducted, in particular, aiming to numerically describe the flushing that is presented in "numerical investigations". According to the results also bed irregularities play a role in reducing the flushing performance in removing the sediments.

One of the limitations of in-situ monitoring processes during flushing is the need of reliable measuring devices. Uncertain flow measurements can influence significantly the evaluation of the flush and hide the sudden increase of the shear stress (Staufer and Pinnekamp 2008). The measurement resolution (interval) of the flow data is then very important in particular at the early stage of the flush close to the peak of the generated flow [START_REF] Staufer | Impact of the Level of Approximation on Modeling Flushing Waves[END_REF]. Another example found in the literature is the water level measurement of automatic flushes. In such case the data can be missed when recording sudden increase of water level that lead to erratic estimation of the shear stress [START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF].

Laboratory studies

Due to the field complexity, experimentations under laboratory controlled conditions have been carried out to study the detailed mechanisms of the flushing (Satufer and Pinnekamp 2008). On the one hand, at laboratory scale, studies on the flushing in flumes by using synthetic particles allowed to evaluate flush performance and to develop improved design indications. On the other hands, the simplifications needed at laboratory scale are evident limitations for the transformability of the obtained results. Within laboratory conditions, many processes (e.g., sediment heterogeneity) cannot be fully reproduced as in real sewers. However, many restrictions are relevant in field cases, e.g., sampling conditions, lack of appropriate high-quality devices for sewer systems and monitoring cost. In this respect, a number of researchers have focused on flushing and associated sediment transport in small laboratory flumes [START_REF] Bertrand-Krajewski | Experimental study and modelling of the hydraulic behaviour of a Hydrass flushing gate[END_REF][START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF][START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF][START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF][START_REF] Shirazi | Modelling the erosive effects of sewer flushing using different sediment transport formulae[END_REF].

Laboratory experiments on flushing have been developed by the research group of the Catania University. Laboratory (Laboratory of hydraulics of the Dipartimento di Ingegneria Civile e Ambientale (DICAR) at the University of Catania) investigations of the erosional performance of successive flushes were undertaken by [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF]. Two sets of experiments with 30 cm of uniform volcanic sands and without sediment in a 4 m flume were developed using a sluice gate as flushing gate device. Different flushes were generated by varying the water head and the flushing volume. Flow-related (water heads) and sediment-related (bed thickness and flushed-out sediments) were evaluated for each flush. Based on the results of flushing performance, variable flush efficiency was observed with reference to the thickness of the bed deposits. Based on the observations, successive flushes were more performant to remove the sediments. Relationships to correlate the needed number of flushes to scour sediments were developed for each flush type. Later, Bertrand-Krajewski et al. (2005) have investigated the behaviour of a Hydrass flushing device. Reliable series of data were obtained that allowed to investigate field and numerical experimental analysis of the flushing performance.

Further investigations of the effect of single flushes over the cohesive deposits were conducted in laboratory by [START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF] who realized two sets of experiments without (to evaluate the flushing waves and propagations) and with sediments (to consider the removal capacity of the flush) with different slopes and water depths. [START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF] performed laboratory analysis on successive flushes over both non-cohesive (consisting of quartz sands) and cohesive sediments (consists of both quartz sands and silt-clay particles). Different cohesive bed mixtures were moreover adopted in the experiments. Two sets of experiments with different slopes and water levels were carried out. The authors have evaluated the flush performance upon bed thickness evolution along the flume and accumulated sediment mass flushed out by consecutive flushes. According to the observations, it was found that sediment bed behaves as non-uniform granular mixtures that cause variable flushing efficiency in terms of consecutive flushes. Moreover, the effect of cohesion of the deposited bed was highlighted with an increase of the erosive effect of the flushes as the cohesive matrix of the sediment is broken.

Other laboratory investigations on the performance of successive flushes (with two water heads) over 30 cm uniform bed sediments (d50=1.8 mm) in an 18 m long flume were carried out by [START_REF] Shirazi | Modelling the erosive effects of sewer flushing using different sediment transport formulae[END_REF]. Flushed sediment and characteristics of the scoured deposits at the end of each flush was compared with estimated values using four sediment-transport formulas. The comparative results by the formulas highlighted the importance of the chosen sediment-transport formulas implemented in models to describe the bed erosion.

Numerical studies of flushing in sewers

Sewer flushing has been commonly described using one-dimensional models because of the 1D nature of sewer systems. The hydrodynamic and sediment-transport characteristics of the flushing phenomenon have similarities with the dam-beak process. Predicting dam break flows and their consequential impacts over the movable river bed has been numerically investigated by many researchers (e.g., [START_REF] Zhang | 1D finite volume model of unsteady flow over mobile bed[END_REF]. The literature shows that the propagation of the flushing flow throughout sewer channels has been so far the subject of various numerical investigations during the recent decades. Numerical studies have been undertaken for the following main motivations: o obtaining design and management indications for flush operatiob scheduling plans [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF][START_REF] Campisano | Dimensionless Approach for the Design of Flushing Gates in Sewer Channels[END_REF]Tdeschini et al. 2010). Various authors aimed to obtain a proper relationship to estimate sewer sediment-transport discharge during the flush operations. The removal efficiency of flushing was assessed experimentally by [START_REF] Creaco | Modelling the flushing of sediments in a combined sewer[END_REF] by leading a number of flushes during 5 months over a 36months age deposits. Data from this experimental case was used to calibrate and validate a model, based on 1D DSV-Exner equations, in order to describe the sediment-transport processes during the flushing propagation. The [START_REF] Meyer-Peter | Formulas for bed load transport[END_REF] formula was also used to evaluate the sediment-transport discharge. The authors highlighted the role of deposits age and accumulation history in the critical shear stress and therefore in the erosional effect of the flush. The same authors [START_REF] Creaco | Numerical simulation of flushing effect on sewer sediments and comparison of four sediment transport formulas[END_REF] have tested four formulas that gave a good agreement to predict the bed evolution due to successive flushes. It was pointed out that numerical simulations of flushing and associated sediment transport require taking into account the bed irregularities, detailed sediment data ( e.g., heterogeneity) to obtain more coherent description of the phenomenon. More recently, Shirazi et al. 2014 using a 1D effort compared four sedimenttransport formulas showing that the use of such formulas is case-dependent and that to setup a general methodology to estimate the transport capacity of flushes is complicated. [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF] investigated the flushing performance as a function of sewer pipe characteristics. Realistic simulations of flushing by using a 1D dimensionless approach were performed showing the relationship between the bed shear stresses and flush parameters (e.g., flushing distance). They finally obtained useful and practical indications on the length of the trunk where the critical shear stress is achieved. The erosive behaviour of the flushing waves over deposited bed including cohesive particles (clay) was evaluated by [START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF] who investigated various flush types using a 1D model. They confirmed the increase of the critical shear stress of the bed sediment mixture in presence of cohesion.

Some interesting investigation concerning flushing modelling are reported in the

In general, the precision level of numerical analysis of sediment transport depends mainly on the aim of the study to assess the dynamic of the sediments. From the hydrodynamic point of view, flush procedure is considered as an unsteady rapidly varying flow which can be analysed by different dimensional flows (1D, 2D or 3D). The choice of the dimensions is limited to many conditions such as the scale size of the case study the computing time and power, as well as the amount of field data to be analysed. A comparative numerical study using a 1D and 3D models was led by [START_REF] Staufer | Impact of the Level of Approximation on Modeling Flushing Waves[END_REF], who aimed to describe the bed shear stresses of large-sized sewers in two different levels of accuracy. They highlighted the complexity of 1D-models in particular in terms of geometry. By simulating the flush head, an underestimation an overestimation of the estimated shear stresses were remarked for 3D and 1D, respectively.

As a flow caused by dam break, flushing produces the positive and negative celerity surges resulting from sudden release of water instore. [START_REF] Schaffner | Numerical investigations on the function of flush waves in a reservoir sewer[END_REF] has considered the flow turbulent effects in both directions and the erosive actions of the flushing waves on the deposits using 3D commercial software. Furthermore, mechanism of flushing behaviour and turbulence waves were numerically described by Staufer and Pinnekamp (2008). Relatively good agreement between experimental and numerical results was demonstrated for the peak value of the shear stresses. They explained the differences (16%) by the overestimation of the numerical approach that simplifies the flow conditions comparing to the reality.

Interestingly, the literature review has shown that the analysis of the sediment transport associated to flushing events (both in laboratory and field scales) has neglected the heterogeneity of the sewer sediment, thus considering the presence of uniform sediments simplify the problem [START_REF] Lin | A one-dimensional model of mixed cohesive and non-cohesive sediment transport in open channels[END_REF]. This limitation comes also from the existing formulas to estimate sediment-transport discharge during the flush. Evidently, a research gap exists on this topic and efforts are needed to include processes associated to the non-uniformity of the bed sediments in the modelling of sewer flushing. In sewer cases, various authors have already highlighted the need of taking into account the granular mixtures of the bed to describe the sedimenttransport processes (Ashley et al. 1999;Rushforth et al. 2003;Banasiak et al. 2005) under flushing circumstances [START_REF] Balayn | 1-D sediment transport model : presentation of mixtures and calibration[END_REF][START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF][START_REF] Todeschini | Experimental and numerical analysis of erosion and sediment transport of flushing waves, 11[END_REF][START_REF] Todeschini | Laboratory Experiments and Numerical Modelling of the Scouring Effects of Flushing Waves on Sediment Beds[END_REF]. 

Generality

The already mentioned gap of knowledge to understand the transport of sediments in sewers during the flush has motivated this study to investigate real sewer deposits. It was expected that these experiments lead to better understand the processes of bed mixture of grain sizes during the flushing event. Such examinations of the flushing effect (including the variation of the bed composition) previously have never been introduced in the literature. Then the available data from the experimental campaign will allow establishing models able to reproduce sediment-transport processes. Building-up such models could be a tool to predict the same processes in other cases.

In this regard, the present chapter is dedicated to detail the effectuated experimental protocol to observe the flushing event and consequently bed material modifications due to the flush. To this purpose, the pilot field is firstly presented which is following by the experimentation setup and facilities. It should be informed that the experimental setup is already explained in the published Water Research paper [START_REF] Shahsavari | A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits[END_REF].

Ch3. Experimental methodology and measurement campaign
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3.2

The experimental pilot sewer channel

Aim of the flushing test and choice of the pilot channel

Based on information provided by the SAP's (Section de l'Assainissement de Paris) information, the Parisian combined sewer network comprises a number of man-entry trunk sewers with a total length in the order of several tens of kilometres. Several of these sewers are affected by problems of sediment accumulation discussed in Chapter 2 of the thesis. Therefore, the Paris municipality decided to explore through experiments the potential of various flushing devices to perform the "automatic" cleaning of sewer channel and reduce human intervention in the high-risk cleansing procedures. Based on the available information (personal communication, June 6, 2016), almost 250 sewer workers attended yet in manual cleaning of about 130 km trunk sewer channels of the Parisian network. Thus, acknowledging the local particularities of each sewer channel, the SAP intended to consider the most performant and applicable flushing device to help the sewer management strategy. Different sites of Paris sewer network were initially proposed for the study. The proposed sites had specials common particularities: (i) they were subject to significant sedimentation due to the channel geometry; (ii) an online gate was already installed on these channels to reduce cost of installation. Moreover, a preliminary hydraulic study of the gates and their capacity to generate flush waves through downstream channel was carried out for each site. The results of the study led to choose the experimental site called Chemin Vert (Fig. 3.1).

In this regard, the municipality was interested in exploring the possibility to reconvert the existing mobile gate (used to derivate flow during storm flow events) as a flushing gate device to evaluate its removal efficiency on the existing deposits. The channel trunk downstream of the gate was selected as pilot system as it is prone to large sedimentation. To this end, the experimental campaign was designed and planned to obtain high -fidelity data able to characterize he flushing performance and to allow validating a reliable model with a novel approach.

Characteristics of the pilot system

Characteristics of the study site

The Chemin Vert pilot trunk channel is a part of the Des Coteaux collector with a man-entry size (Fig. 3.1) which is belong to the Parisian combined sewer network. This name is given from the place where the gate is already installed gate that is situated under the Chemin vert street. The chosen combined trunk sewer (collector) is situated at the 11 th arrondissement of Paris city. Based on the data provided by Paris municipality, this trunk is designed to drain partly the wastewater from 12 th and 20 th arrondissements. At the studied site location, the trunk sewer site collects wastewater of about 180.000 inhabitant equivalents over a surface area of about 640 ha. The collector also intercepts runoff from the catchment surface. The hebdomad/daily merchants, commercial and industrial activities are also presenting in this catchment. It should be noted that 1.700 street gutters exist on the catchment, which intake the water from surface runoff. APUR (2016) has highlighted the commercial surface of about 27.8 ha over the 11 th arrondissement of Paris. The overall slope of Des Coteaux trunk channel is about 0.6 mm/m and the studied sewer channel being as 0.8 mm/m.

Geometry of the channel

The flushing test concerned a 1.1 km long trunk of the collector. The average longitudinal slope of the trunk (over 1.1 km) is almost 0.08‰. This weak slope is the reason why the channel is subject to deposition and accumulation of sediments on the pipe invert. Bed invert elevations on every 1 m along the longitudinal direction of the channel were collected by Paris Municipality by using a simple measuring stick (Fig. 3.2). The figure shows the longitudinal profile of the pilot sewer channel. The bottom of the channel shows both negative and positive slopes with the irregularities through the upstream part of the trunk that are other causes of sedimentation. Sewer channel walls are made of cement. From the picture of Fig. 3.3 it can be seen that inside the channel three main pipes collecting firefighter and cooling water as well as electrical tube are installed on the top of the channel. At the downstream of the sewer channel, a storage chamber was designed to trap sediments during high flows. The downstream segment of the channel has a higher slope with almost no considerable irregularities comparing to the upstream segment. The gate is placed at 50 m from the upstream entrance of the channel (section S0 as indicated in Fig. 3.2). It should be noted that the channel sections are referred to S0 (e.g., section 250 m downstream the gate is called S+250). For simplicity, the channel was divided into two portions: upstream and downstream of the gate. The figure reports also the names of the sewer sections significant for the experiment and for the numerical analysis.

Studied segment

Gate position

The trunk sewer conveys an average daily flow rate of around 0.35 m 3 /s during dry-weather. Also, the average maximum flow velocity during dry-weather time is almost 0.5 m/s. Moreover, the channel has various flow inlets in the downstream trunk. The largest inflow discharge is at S+170 (Voltaire Boulevard) with an average value of 200 l/s recorded during dryweather flow. Fig. 3.4 shows the channel cross-section: ovoidal shape with cunette for conveyance of the dry-weather flow. Two lateral walk-ways are used for various aims: channel inspection, manually operated cleaning procedure using the wagon vanne [START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF]).

Due to the geometrical characteristics of the channel, the sewer trunk is prone to deposition of sediments on the channel invert. Preliminary sampling carried out by sewer operators, has revealed sediment deposits in the order of 0-30 cm/year in depth. 

Characteristics of the flushing gate

A tipping gate is installed in-line within the experimental channel trunk at section S0. It was implemented in 1995 and is used to derivate overflows toward the Seine River in the Paris city in the case of storm and high flows. Fig. 3.5 shows a picture taken from upstream of the gate illustrating the implementation of the gate in the sewer. The gate is electrically-driven and opens by means of two hydraulic jacks installed on the side walls. Overflows are discharged over the crest.

The gate is schematized in Fig. 3.6. In the closed position, the gate prevents wastewaters flowing downstream by storing it in the upstream trunk behind the gate. Based on the gate design, the maximum stored water level can achieve almost 2.2 m just upstream the gate location. Conversely, in the open position, the gate find room within a compartment in the sewer invert to minimize the disturbance of the flow. It is important to note that the gate opening takes place in a short period of time within almost 1 min (56 s). This characteristic allows the gate to act as a flushing gate.

Successive detailed surveys of the sewer channel have been carried out at the beginning of the research in order to observe directly the sewer conditions as well as the depositional patterns. The survey allowed taking decisions about types of device to use and their installation inside t he sewer.

In geometrical point of view, along the studied channel, the size of the sewer structure was slightly varying going toward downstream. In this study this slight variation is negligible. During in-sewer survey, bed sediments were roughly examined using a simple stick and a shovel. Fig. 3.7 shows two photos taken during the inspection from sediments upstream segment (at left) and downstream segment (at right). Remarkably, it was observed that:

(i) the sediment deposited in the segment downstream of S+500 was coarser than upstream of S+500, containing fine to large sands up to gravel.

(ii) sediments tended to accumulate more in correspondence of singular points such as inlets or bumps;

(iii) finer sediments seemed to show a granular-type texture typical of loose sediment with low cohesion;

(iv) in the lower part of the channel (almost at the end), the bed sediment was observed to be compact as "armoured";

(v) other solids of different nature and origins were found among the bed particles in the downstream of the channel (pieces of metal from the pipeline reparation inside the collector, asphalt and other construction pieces coming from the catchment surface;

(vi) in many sections of the channel, a significant amount of resintype sediments and rags were found to partly form the sewer deposits (Fig.

3.8).

Upstream segment Downstream segment 

Protocol of the flush experimentation

Due to the complexities of the sewers coming from a wide range of factors (e.g., difficulties of direct measurement, lack of appropriate devices, non-adapted method), the choice of measuring apparatus and techniques becomes a challenge in particular regarding to the experiment costs (Ashley et al. 1999;[START_REF] De Sutter | The erosion of cohesive mixed deposits: implications for sewer fow quality modelling[END_REF]. Indeed, measuring equipment is one of the important sources for operators and municipalities to improve sewer sediment management (Bertrand-Krajewski et al. 2006). That is why device factories aim to more and more develop/design/adapt measuring devices to better monitor sediments and study processes within sewers and consequently the sediment-transport models. The hostile conditions of the sewers mainly due to the aggressive gas and flow as well as high turbidity of the water do not allow applying measuring devices used for clear waters. Besides, the use of non-suitable classical devices in sewers can lead to errors in experimental data (flow and bed deposits). Therefore, in this study, efforts were made to reduce as much as possible, the errors coming from equipment and installations.

Phases of the flush test

A protocol was proposed to monitor the flushing experiment and to measure the effects of the flush in the pilot channel. The whole measurement campaign was carried out during five consecutive days since 07/07/2014 to 11/07/2014. The overall schedule is summarized in Table 3.1. In-sewer access time restriction was imposed by the Paris Municipality provided that the experimental procedure was developed over five days. During the first two days, the bed deposits before the flush was examined which was followed by device setup into the sewer channel during the third day. During the fourth day (10 th July), the flushing procedure was carried out including the storage and releasing phase. Finally the bed deposited after the flush was examined during the last day by applying the same procedure done as before the flush. So, the measurement campaign of the sediments was carried out in two phases before the flush (called hereafter BF) and after the flush (called hereafter AF).

The day the flushing test was carried out, the sewer network flows were, modified to limit inlets into the trunk sewer. Furthermore, before the flushing test all devices that were in contact with the sewer flow, were cleaned to minimize the impacts on the quality of data. The gate closing procedure was launched to store inflows upstream the gate. The storage phase took almost 2 h. Then the gate was opened at 12:04:05 of the same day to release the flush in the downstream channel trunk. A sensor was installed on the gate to measure the crest position of the gate during the operation. 

Measuring flow-and sediment-related parameters

A set of measurement devices was installed within the channel to monitor the flush experiment. Based on the results of the preliminary survey, the general idea was to measure as much as possible parameters related to the flow (e.g., shear stress) and to the sediment transport. Researchers have outlined that obtaining high-quality flow-related parameters allows estimating more accurate values shear stress that lead to better study the sediment-transport processes (Hughes et al. 1996;Staufer and Pinnekamp 2008;[START_REF] Lepot | Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater[END_REF][START_REF] Momplot | Modélisation tridimensionnelle des écoulements multiphasiques en régime instationnaire au droit d'ouvrages spéciaux présents en réseau d'assainissement : performances des modèles and analyse de sensibilité[END_REF][START_REF] Lepot | Measurement of sewer sediments with acoustic technology: from laboratory to field experiments[END_REF].

Therefore, the measuring devices were selected based on their capability to 'catch' the evolution of rapidly varying flows due to the flush (in particular at the beginning of the flush). The choice of the devices was also influenced by the need of using probes able to resist to the sewer harsh environment. The other important limitation that was taken into account for the selection of devices was the level of turbidity of the sewer flow in particular during the flush. It should be noted that resistance to corrosion in the sewer was not considered as a problem because of the short period of use of the measurement equipment for the experiment. During the experiments the devices were set to record with the maximum data acquisition frequency.

Five cross-sections of the pilot trunk sewer were identified to install measuring devices for monitoring the flush performance. Devices were place in the exact positions for each cross-section. Indeed, the importance of device position to limit experimental errors has been emphasized by Bonakdari and Zinatizadeh (2011) who concluded that measuring methods are unique and specific to each experimental site. Fig. 3.9 shows the position of the installation of the sensors in each sewer section. The figure illustrates also the locations of the five cross-sections along the sewer channel (located at S-50, S-5, S+5, S+50 and S+100). The location of the measuring sections was determined to be almost close to the gate in both upstream and downstream of the flushing device to obtain more information about the flush waves. Moreover, Table 3.2 summarizes the information on the used measuring devices for the experimental test. Main flow parameters were measured by using a pulsed doppler velocimeter and an ultrasound (US) device. The first device manufactured by SonTek Company is able to measure the flow velocity [m/s]. The measure of the flow discharge [m 3 /s] is obtained based on the observed flow velocity and the associated wetted area at the given section. The device diffuses 5 signals towards different directions at a given an instance into the water column. According to the mode of operation the device provides both flow velocities and water levels separately and calculates time-averaged velocity over a lap of time.

The US device was manufactured by IJINUS© Company which calculates the depth of water based on the measure of distance between the device and the water free surface. The flow turbidity was measured at three elevations at each cross-section (15, 25 and 65 cm above the channel invert). Used devices are manufactured by PONSEL Company that measures the turbidity of water using optical technique in Nephelometric system. It should be emphasized that, as indicated in technical description of the device, measurement range of turbidimeters are between 0 and 4500 NTU. This is the range that sensor's error remains below 5% of the real value which is indicated by the company. All the described devices were set to synchronize reading times and frequencies. An already existing measuring station belonging to the Paris Municipality that permanently records water levels at section S+1050 was also checked for use during the test. This section can give valuable information on the flow during the flush operation. The station equipped with an ultrasonic flow meter by transit time. The probes record the water level with variable time steps with an average interval of 150 s.

Devices were firstly tested in laboratory before using then in the field. The calibration of turbidity devices was carried out using certified reference Formazin solution of 2000 Nephelometric Turbidity Unit (NTU). Table 3.2 General information on the used measuring devices based on factory notifications. 

Devices

Measurements before and after the flush experiment

Recent researches aimed to quantify sewer deposits by using new techniques to draw the bed topography in sewer channels [START_REF] Bertrand-Krajewski | A new technique to measure cross-section and longitudinal sediment profiles in sewers[END_REF]. The recent techniques based 3D morphological draw of the sediments [START_REF] Lepot | Monitoring Sediments in Sewer With Sonar Technology : From Laboratory Experiments to In Situ Tests[END_REF] or image-based methods [START_REF] Laplace | Removal of the organic surface layer in combined sewer sediment using a flushing gate[END_REF][START_REF] Nguyen | Vision-based system for the control and measurement of wastewater flow rate in sewer systems[END_REF][START_REF] Regueiro-Picallo | Characterization of sediments during transport of solids in circular sewer pipes[END_REF] try to fill the knowledge gaps on the sediment processes. In the context of the current study, protocols to measure the sediments forming the deposits in the channel BF and AF were also defined. The bed topography was measured using radar scanner techniques. Also, measurement included sampling of the deposits in various cross-sections of the sewer channel upstream and downstream of the gate. The details of procedure to realize these two investigations are presented in the next sections. Bed scanning using radar/sonar technique A bed-scan system was adapted to the sewer channel cross-section by GEOSCAN Company to scan the deposited bed topography. This technique is a combination of two measurement methods: radar and sonar monitoring which together allow obtaining the transversal cross-section of the bed (Fig. 3.10). The radar measures the longitudinal bed profiles in the axis of the channel while the sonar provides the transversal cross-section occupied by the sediments on the bed invert. The combination of these two data provided a 3D vision of the deposits throughout the whole channel. The more the spatial steps for sonar acquisition are short, the more the precision in the volume of deposits increases. Measurements BF and AF were carried out enabling comparison to establish erosional impact by the flush. This technique is a novel method to scan the reliefs of deposits by capturing two types of data:

1. Radar records: deposit height through longitudinal axis of the channel as it can be seen in Fig. 3.11. 2. Sonar measures: transversal information of deposits in each section as can be seen in Fig. 3.12. So the combination of both types of data gives the volume of sediments in height of sediments between two specific sections with a determined distance.

Sediment sampling procedures

Several studies were undertaken to examine also methods to extract sewer sediments samples. Many indications were obtained regarding various factors such as sewer sizes, sediment availabilities, and the complications to handle [START_REF] Laplace | Protocole de prélèvement de dépôt dans les collecteurs d'assainissement[END_REF][START_REF] Ristenpart | Examination of Sediment Samplers[END_REF][START_REF] Jefferies | The behaviour of gross solids in sewer systems[END_REF]. More indications concerning measuring protocol and devices such as settling velocity [START_REF] Aiguier | Methods for determining the settling velocity profiles of solids in storm sewage[END_REF], organic matter [START_REF] Ahyerre | Sources and erosion of organic solids in a combined sewer[END_REF], rheological property [START_REF] Wotherspoon | Rheological Measurement of the Yield Strength of Combined Sewer Sediment Deposits[END_REF][START_REF] Berlamont | The characterisation of cohesive sediment properties[END_REF], flow and turbidity measurement (Bertrand-Krajewski et al. 2003;[START_REF] Bertrand-Krajewski | TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables[END_REF]) can be found in the literature.

In the context of the present research, a sampling plan was defined to collect and analyse samples representative of the bed deposits: on the initial bed BF and on the bed AF. Comparison of the bed samples at same sections BF and AF allowed successive analysis of modifications induced by the flush on the distribution of grain sizes within the sediment deposits in the sewer. Protocols for bed sampling were finalized to multiple purposes that are summarized in the diagram of the Fig. 3.13. The diagram shows the number of samples and the analyses proceeded over the samples.

Firstly, to investigate vertical bed distribution of the existing deposits BF. To this purpose each section was sampled at two elevations from the bottom: bottom layer (with in average depth of almost 4 cm) and surface layer of the bed (with in average depth of almost 2 cm; Fig. 3.14). The surface layer was expected to be highly organic while the mineral sediments were expected to be deposited at the bottom layer of the bed. This sampling protocol was applied over a distance of almost 450 m from the channel entrance (S-50 to S+400) where the sediment particles were found to be finer. Globally, 18 (9 sections × 2 surface and bottom layers) samples were collected from the initial bed deposits (BF). The number of samples was defined during the field experiments. The use of the sampler, as a function of its internal diameter of the tube, did allow to extract sediments with a maximum range of diameters. Secondly, other samples were collected to analyse the sediment composition of the bed. In this case the sampling procedure aimed to obtain a good description of the characteristics of the sediment along the whole channel. It was planned to collect the samples as following: on every 20 m on average for the first segment of the channel (where the major deposits take place), and on every 50 m on average for the downstream segment of the channel (>S+500).

As mentioned previously, during the prelaminar observation of the bed sediments of the studied sewer channel, sediments were found to be different in terms of the composition and texture. Therefore, two sampling techniques were used regarding to encountered sediment types in different sections. Finer sediments in the upstream of the channel were sampled using a cylindrical device was used to extract cores (carrots) from deposits. The main usefulness of this device was that it extracts the samples without disturbing the rest of the deposits. This device was the same used to separate the lower from the upper layer of the deposited bed. Conversely, for larger sediments in the downstream segment of the channel the use of a shovel was the more appropriate way to collect sediments from the invert. [START_REF] Ristenpart | Examination of Sediment Samplers[END_REF] have introduced shovel as a simple way to extract the sediments but under a good handling condition.

As illustrated in Fig. 3.15, 20 samples in total were extracted from the bed before the flush experiment while the 17 samples were collected AF. Not all of the sampling sections after the flush corresponded to those locations selected for sampling BF because of modifications induced by the flush on the deposits. Sediment samples were transported to the laboratory of Physical Geography at Paris Diderot University in special kits in three packing layers specifically designed for high-polluted samples (Fig. 3.16). Then, the procedure of analysing on the samples was begun. Laboratory analyses (summarized in the flowchart of Fig. 3.13) that will be detailed in the next paragraphs. Grain-size distribution of the samples. Deposited sediments were characterized by determining the grain-size distribution of dried mass of all the sample cores using sieve analysis or gradation tests (Fig. 3.17). In particular, samples were dried at 105°C in the oven for 24h. After being dried, fine coagulated grain sediments as pulverized by using mortar and pestle. A sieve shaker was used for grading particles larger than 1 mm. Sieve contents were weighted separately using an analytical balance with 0.01 g accuracy. The fraction with diameters under 1 mm were initially weighted and treated by laser diffraction technique using the Coulter LS300 device, to obtain their distribution within the samples.

Results from the sieve and the diffraction analyses were combined to determine the grain-size distribution (of passing by weight) and related cumulated frequency curves. Furthermore, statistical analyses were carried out from these results to evaluate the composition and texture class of each sample. Organic matter content. Sediment cores from the samples extracted by the segments were further subject to evaluation of organic matter fraction. The used method is based on the removal of organic matter by Hydrogen peroxide based on the French ORSTOM protocol. This method was introduced by [START_REF] Robinson | Note on the mechanical analysis of humus soils[END_REF], which is widely used for abatement of organic matter in the soil texture. The following specific procedure was undertaken:

1. Separation of 20 g of dry sediment from the samples containing particles smaller than 2 mm and their placement in a beaker;

2. Addition of 100 g Hydrogen peroxide (H2O2) for reaction at room temperature (Stirring with a glass rod to better expose the organic matter to H2O2);

3. Re-drying of sediments after the complete reaction;

4. Determination of the loss mass portion of organic matter lost by reweighting the amount of remained sediments.

The later step was obtained by using the following relationship: Volumetric mass density. Density of three samples from S-50, S+150, S+790 was determined by the method of pycnometer which is considered to be a precise technique. The volume of measured solid object VS is the difference between the volume of water that fills the empty pycnometer V and volume VH2O. Density of the solid mass was calculated from the general relation indicated below:

s s s V m   [kg/m 3 ] Eq. 3.2
where s m and s V are the mass and volume of the sediment, respectively. Porosity. The porosity of four samples was determined from the difference between sediment pore volume and sediment volume. Dried sample was put in a graduated cylinder and after softly shake it, the volume was read. A known volume of water was added to fill the pores up to sample saturation. The porosity is then obtained from 

Video recording during the flush

In addition to the previous devices flow and sediment transport were also monitored through installation of video cameras at different monitoring sections. In total, four cameras were installed into the sewer to record videos during the flush (Fig. 3.9). Two cameras were placed in the cunette wall of the channel in order to capture the sediment-transport processes at the bed level. To this end, a hermetic Plexiglas box was designed to install the camera inside (cf. Fig. 3.18). A side of the channel was modified to make place for the boxes. The cameras were installed in two different locations at S+50 and at S+100 (Fig. 3.9). Description of the used cameras and generated output videos is summarized in Table 3.3. The cameras were able to film the flushing procedure for almost 1.5 h with a relatively good quality of images. 

Recorded data during the experiment

Collected data and missing information

Raw flow-and sediment-related data obtained during the flush experiment were analysed mainly in order to understand the sediment-transport processes due to the flush. Table 4.1 summarizes the state of measured variables acquired from all 5 sections during the flush test. The black cells in the table show data missing or invalid records. Yellow and green cells indicate the partly missing and validated data, respectively. Doppler flowmeters simultaneously measured the flow variables of velocity, discharge, water level and wetted area, etc. at each time step (10s) for a given section. Unfortunately, flow variables did not recorded at section S+100 because of a malfunction of the doppler velocimeters. However, the water level measurement was obtained by the US device at this section. The ultrasound meters did register time series of the water levels every 15s during the flush in all the monitoring sections. The reliability of water level measurements obtained by US meters was double-checked with the same measurements as obtained by the doppler device. Missing values can be seen in the recorded turbidity values, in particular at 15 cm (T15) over the bed invert. 

Data preparation

The collected data (i.e., flow parameters, bed scan output, turbidity records and sediment samples) were re-processed to make easier the analysing of the flush impact.

The output results of the bed scan procedure for deposits before and after the flush consisted of sediment volume deposited in the different sections of the channel. The values of volume were then converted easily to sediment heights at each section. Since data on deposited volumes were available at variable spatial steps, interpolation was required to obtain deposits heights with a fixed spatial step along the longitudinal sewer channel (every 1 m).

Concerning the turbidity measurements, time series provided by the used optical sensors contained a high number of spikes and "noise" with various magnitudes. Sometimes, recorded values were out of the measurement range indicated by the device manufacturer. The noise was caused by (for example) ephemeral fouling or sensor blinding due to objects trapped by the sensor. It was therefore necessary to filter raw data and eliminate outlier values from the turbidity time series of all measuring section. Then, the generated missing values due to these ephemeral fouling were examined and interpolated. In addition, the invalid records were filtered using a threshold value indicated by the company as a maximum reliable limit of the ranges. Finally, all of the turbidity time series were averaged over every 1 min to show better the trends and fluctuations. This interval of time (considered as an average of 6 values) was chosen based on the literature and previous references in sewer conditions. However, the conditions, context of the studies found in the literature are not the same [START_REF] Joannis | Turbidity monitoring in sewage[END_REF][START_REF] Lacour | Apport de la mesure en continu pour la gestion de la qualité des effluents de temps de pluie en réseau d'assainissement (Contribution of continuous turbidity measurements to the management of effluent quality in sewer systems during wet weather[END_REF]). Considering these studies with different intervals, objectives and aims, the most appropriate and representative value was determined for the flushing phenomenon. It is worth mentioning that unfortunately turbidity time series (in NTU) could not be converted into concentration units such as in mg/l. The reason refers to the fact that sewer conditions during the flushing experiment did not allow taking flow samples corresponding to the turbidity records. Consequently, the sediment concentration in the flow was not estimated from turbidity time series. However, turbidity trends provided valuable information of the flushing evolution.

Pre-processing of data from sediment sampling was performed as follows. Firstly, a few sediments that were considered as outliers (such as gross solids) were eliminated from the samples. In fact, such solid particles were not representative of the sediment that generate deposits on the sewer channel but artificial elements as pieces of electrical cables, large-diameter stones from construction sites or broken asphalts. Fig. 4.1 shows an example of such elements which were eliminated. 

Results of the experimental test

Gate operation during the test

According to the database and duration of time series, the flush lasted at least more than 1.5 h (devices were set to measure only 1.5 h). The storing phase of the flush took almost 2 h before releasing phase. The gate was opened at 12:04 at 10/07/2014 after the storage phase. The storing phase was started about 2 h before the gate opening. Based on the calculations, taking into account the dryweather flow, a volume of more than 8000 m 3 of wastewater was accumulated behind the gate. The high volume of stored water during the storage phase was accumulated without specific sewer dysfunction. The gate sensor recorded opening heights of the gate in time so, a speed of 4.85 cm/s from the maximum elevation of 2.12 to 0.8 m height from the bed invert. For the flush test the opening procedure of the gate took 56 s with an opening speed with almost 5 cm/s set by the hydraulic jacks.

Videos recorded from surface and cunette cameras

The video cameras captured the flush process. In total about 1.5 h (5 videos × 17.5 min duration) video was recorded. Fig. 4.2 shows a screen shot of the video taken by one of the cunette cameras placed at S+50 that gave clear images of the bed load and, partly, the sediments in suspension. The second cunette camera placed further downstream at S+100 was also filmed the transport of the sediments during the flushing test. However, the images were less clear and did not allow to fully observe the behaviour of the sediments during the entire flush test. The analysis of the videos from both cameras showed the sediment wash-off process due to the transit of the flush at sections S+50 and S+100. High turbulence and secondary flows visibly affected the behaviour of the sediments within the flow column, mainly at the beginning of the flush. A few minutes after the flow peak, well defined sediment-transport modalities were observed, with distinguished bed-load and suspended-load transport patterns at S+50. Conversely, suspension was identified as the prevalent mode of transport at S+100. Sanitary solids such as papers and fine miscellaneous sewage litter were also observed to be transported in the water column during the experiment. During the flow receding phase, the flush erosional effects visibly tended to decrease. As expected, during this phase, the transport involved mainly the fine and medium sediment sizes, while the flow was not able to scour large grain-sizes anymore, thus leading to the partial re-establishment of bed deposits.

Surface cameras on the top of the sewer channel at S+5 and S+50 showed that the flush test was operated in appropriate way (the gate opening procedure was operated correctly. The camera slow showed that, as already observed in oth-er experiments [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF]), an up-going negative wave associated with the emptying/release process developed upstream of the gate. It should be noted that a further preliminary investigation of the video images recorded from the camera installed at S+50 was carried out to evaluate the bed-load sediment transport over the bed. A summary of this investigation was presented at ICUD2017 conference in Prague (The Czech Republic) -10-15 September 2017 (Grasso et al. 2017 in Appendix B).

Analysis of the hydrodynamics of the flush operation

Flow-related variables were recorded during the flush at various sections as presented in Fig. 4.3. These graphs are drawn based on 1-min averaged data allowing smoothing the curves and better illustrating the flow parameters. The figure shows the sudden increase in flow discharge at the different sections after the flush release. According to the figure, a maximum flow discharge of 3.9 m 3 /s can be observed at sections close to the gate. Almost after 1 h since the beginning of the flush, the discharge yet remains high close to 1.4 m 3 /s. Unfortunately, due to a malfunctioning of the flow measurement device, flow discharge data was not recorded at S+100. A similar concern regarded also section S+50 where the flow was not recorded for a relatively long period including the peak time. In addition, the figure shows also the sudden drop-off of the water level in sections before the gate (around 0.65 m drop just behind the gate); while downstream of the gate shows an increase of almost 1 m within few minutes. It should be mentioned that the water level downstream of the gate before the gate opening and flush releasing was almost 0.5 m. This could be due to the bed slope downstream of the gate. Another reason that can explain this water level is the water flowing through the closed gate that was not completely hermetic to retain the stored water. This was observed thank to the surface cameras. However, based on the recorded data by the Doppler, the velocity before the gate opening is small and negligible. Concerning the turbidity records, globally the figure illustrates the high variations for all the sensors occurring during the flushing event. Results show that, the rising limb of the flow discharge (up to the flow peak value) was accompanied, at least for sensors T15 and T25, by a sudden increase in turbidity for almost all the sections downstream the gate. Fluctuations can be observed for the curves registered by sensors placed close to the bed (T15). Conversely, the sensors at higher levels have provided minor dispersion of the sensors. As expected the turbidity values decrease vertically from the bed to the water surface. Moreover, for the majority of sensors installed near the bed, an increasing trend of the turbidity can be perceived during the flush. The standard deviation of the turbidity values for each sensor is presented in Table 4.2. Overall, as fluctuation of turbidity is concerned, evaluation of the standard deviation provided average values of 1168.2, 463.6, and 180.3 NTU for sensors T15, T25 and T65, respectively. The values confirm major variability for the sensors near the bed. In addition, from upstream to downstream of the channel, but no clear trend can be observed. Conversely, lower values of turbidity were recorded by sensors T25 and T65. Unexpectedly, a peak value for sensor T65 was achieved at S+100 (about 4500 NTU) after almost 45 min since the start of the experiment. Later, the analysis of the video clip captured by the camera at S+100 helped explaining this turbidity peak with the temporary blockage of sanitary paper in front of the turbidity sensor. 

Deposit evolution due to the flush

Results from radar/sonar scanner output in terms of bed heights are illustrated in Fig. 4.4. The figure shows that before the flush the major part of the initial sediments deposits were accumulated upstream of S+500. This sewer segment shows flat slope but also various bed irregularities such as hollows and bumps and counter slopes. Based on the results of the scanner, average and maximum thickness of the deposit in this segment were about 5.6 and 31.5 cm, respectively. In contrast, less sediment accumulation was observed over the segment downstream of S+500. This segment exhibited an initial average height of the deposits of about 1.2 cm with a maximum of 17.9 cm.

The accumulation of sediments is influenced by many factors related to the geometrical conditions (e.g. bed slope, inflow/outflows) of the sewer. Therefore, the different spatial distributions of the existing deposits before the flush reveals the influence of the local channel longitudinal slope (average 0.07% and 0.1% for the segments upstream and downstream of S+500, respectively) on the sediment erosional/depositional attitude of the different channel sections. Also, the figure shows that the irregularities of channel invert locally impact the sediment transport, causing sediment accumulation due to the reduced sewer selfcleansing capacity. Moreover, as it can be seen from the figure, accumulation in the channel also occurs close to the lateral inlets due to sediments supplied by such inlets. Globally, the comparison of bed profiles BF and AF highlights the significant erosive effect of the flush over bed deposits up to S+850, which shows an appreciable cleaning efficiency of the gate on the most of the channel length. However, depositional effects over few sections of this trunk can be observed. As the figure shows, erosion was prevalently concentrated between S0 and S+120, whereas limited deposition occurred between S+10 and S+20 due to the local negative slope of the channel. Erosion was also observed (even if to a minor extent) downstream of section S+250. Conversely, deposition occurred in the channel portion between S+120 and S+250.

The volumetric analysis of the deposits BF and AF provided an estimation of the cleaning performance of the flush. The comparison of radar/sonar output data confirmed a significant reduction of the deposits in the channel. Overall, the total sediment volume accumulated in the whole channel trunk downstream of the gate (from S0 to S+1050) decreased (up to 5.4 m 3 ) from 27.2 m 3 to 21.8 m 3 . Fig. 4.4 shows that the sediment removed from S0 to S+850 summed up to about 5.3 m 3 , thus providing a flush cleaning performance of 21.4% sediment reduction (the initial sediment in this segment was about 25 m 3 ). 

Modification of the deposit grain-size distribution

Grain-size distributions for the sediment samples extracted from BF and AF were determined. Since the characteristics of sediments upstream and downstream segments were a bit different (see Chapter 3), bed composition of the initial bed (BF) was studied with reference to segments (upstream S+500 and downstream S+500), respectively. Before the section S+500, the bed mixture prevalently contained fine particles (mainly sand-type particles) while downstream of this section the deposits was constituted principally by large size particles (gravel-type particles). According to the data and textural analysis of the deposits BF revealed dominant mode diameters of 0.8, 1.6, 2.5, 4.2 and 8.0 mm, thus indicating potential for sediment-transport selectivity by the flush [START_REF] Vanoni | In: Sedimentation engineering: American Society of Civil En -gineers[END_REF]Garcia 2008).

After having analysed the samples, characteristic sizes including d5, d10, d16, d50, d84, d90, d95 were calculated and averaged over both segments, and separately for the upstream and downstream segments of the channel. Results are illustrated in the graph of Fig. 4.5. Firstly, the figure shows clearly the diffence of global diameter sizes for two channel segments for both BF and AF. Looking more in detail the graph, the effects of the flush on the various sediment fractions composing the deposits can be observed. The figure reports the "average" grainsize distributions relative to all the samples extracted from the channel segments upstream and downstream of S+500, respectively. The distributions representing the initial bed composition (BF) show that -excluding very fine particles (smaller than d1) -grain sizes ranged between 0.08-8.5 mm (d50=0.90 mm, d90=4.15 mm) upstream of S+500 (see BF<S+500) and between 0.17-34.9 mm (d50=6.78 mm, d90=22.51 mm) downstream of S+500 (see BF>S+500). The plotted distributions analytically confirm qualitative information acquired during the preliminary sewer survey. Therefore, according to the quantitative evaluation of the initial deposits, about 73% of the sediment bed upstream of S+500 was composed of sand-sized particles (63 µm -2 mm) while the gravel-sized particle fraction (2-64 mm) was nearby 26%. Conversely, the initial bed downstream of S+500 was in large part made of gravel-sized particles (close to 74%) with a minor fraction of sand (25%). The fine fraction (sediments smaller than 63 µm) was less than 1% all over the channel trunk. Due to the flushing operation, deposits have been subject to considerable changes in terms of compositions. Bed compositions were altered and different impacts on the different segments have been observed. Globally, Fig. 4.5 shows an evident right-shift of the distribution AF<S+500 as compared to the analogous curve BF<S+500, thus revealing sediment bed coarsening for all the characteristic grain sizes in the upstream part of the trunk. Similar sediment coarsening effects were observed also downstream of S+500. Accordingly, the evolution of average median size of the bed samples is as follows: for the upper segment (< S+500) an increased from 0.90 to 2.23 mm and for the lower segment (> S+500) an increase from 6.78 to 9.99 mm. From the graph it can be seen also that the range of sediments was reduced under the effect of the flush. So, the averaged d90 has increased from 4.15 to 14.87 and from 22.51 to 32.24 for < S+500 and > S+500, respectively. In addition, results show also that, due to the flush experiment, the percentages of sand-sized particles in the bed deposits decreased from 73% to 47% and from 25% to 16% upstream and downstream of S+500, respectively; correspondingly, gravel-sized fractions increased from 26% to 52% and from 74% to 83% upstream and downstream of S+500, respectively.

Gashin

The coarsening effects of the flushing operation on the bed deposit were quantified by using a statistical index describing the average skewness Sk for all the grain-size distributions. This factor can be calculated from the equation introduced by Inman, 1952. This equation is one of the most used formulas for the sediments which is well supported by the literature and gives idea of how samples are. This equation is written as following:  is the geometric mean size and
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is the geometric standard deviation of each sample. A summary of the results is presented in Table 4.3. The table shows the skewness to increase from 0.20 (BF) to 0.27 (AF) and from -0.29 (BF) to -0.23 (AF) for the segments upstream and downstream of S+500, respectively, thus confirming a shift of the asymmetry of the distributions toward the large particle sizes. Due to the flush, sediments were subjected not only to qualitative but also quantitative modification of the composition in terms of fractional volumes. The accumulated fractional volumes of deposits AF are compared to the same values BF as shown in Fig. 4.6. The graphs in the figure highlight the different impacts of the event on the non-uniform sediment mixtures forming the mobile bed in the channel. As it can be seen, the plotted results are referred to four selected fractions (d<d50; d50<d<dsand; dsand<d<d90; and d>d90 with dsand= 2 mm being the limit of sand size). The fractions were chosen on the basis of average characteristics (d50 and d90) of the deposits BF<S+500. These fractions could help better describing the evolution of the sediments due to the flush operation.

Overall, the plotted graphs reveal the non-uniformity of flush erosion effects for the different fractions (Fig. 4.6 a-b-c). As expected, the figure confirms the considerable erosional effect of the flush over the existing deposits. It shows, in particular, that the major part of the sediment eroded by the flush from the entire channel was made of particles finer than d50 (Fig. 4.6 a). Smaller contribution of sediments to erosion were associated with fractions d50<d<d90 containing fine gravels with diameters between 2 to 4.15 mm (Fig. 4.6 b-c). Conversely, an increase in the volume of sediments coarser than d90 occurred prevalently in the first 300 m long segment downstream of the gate (Fig. 4.6 d). This behaviour reveals the deposition of coarser sediments that were remobilized from upstream sections by the flush and re-deposited during the flow recession further downstream. As summary, it can be highlighted that the flush had a significant erosional effect on the fine and sand sediments almost over the entire sewer channel. However, the presented data cannot provide information about the "real" eroded volume over each section due to the occurred re-depositions of the eroded sediments originated from upstream bed. Table 4.4 shows the volume of sediment size classes BF comparing to AF. Besides, a detailed analysis of the bed evolution in terms of the sediment composition due to the flush event was undertaken. The textural analysis consisted of evaluating selected characteristics sizes (d5, d10, d16, d50, d84, d90, d95) of the bed BF and AF along the entire channel results are presented in Fig. 4.7. The grain diameter for each characteristic size BF and AF is shown in the left and right sides of the figure for the channel segments upstream and downstream of S+500, respectively. For example, the figure shows that the d90 at S+70 (second to last graph in the left side of the figure) increased from 3.4 mm to about 19.4 mm after the flush. As the graphs show, composition for almost all the deposits has been subject to coarsening determined by the flush compared to their initial state. According to the graphs, coarsening in the larger size classes of sediments < S+500 is much more evident in particular the curves containing larger particles > d50. In other words, the distribution of the grain sizes over the segment upstream of the gate has largely eroded by the flush rather than the lower segment. This can be explained by the wash-off of the finer sediments and/or with a lower probability arrival of "new" sediments. In contrast, for the bed sediments > S+500, the coarsening of the deposits occurred for the sediments with smaller sizes.

As expected, such an effect is much more evident for the large grain sizes (>d50) than for the fine ones (<d50). In fact, the calculated Mean Absolute Percentage Error (MAPE) of the samples BF and AF showed deviations of 34.0% and 305.9% for particles smaller and larger than d50, respectively. 

Organic fraction in bed sediments

In addition to grain-size distribution, the organic content of the samples before and after the flush was also determined. The results of the laboratory analyses of the organic content of the samples are presented in Fig. 4.8. From the graph, it can be seen that the organic fraction contained in all the extracted samples did not exceed 7% in weight (average content was 2.9%) before the flush experiment. This average amount decreased down to about 2% after the flush. According to [START_REF] Crabtree | Sediment in sewers[END_REF] such result would allow classifying sewer solid particles in the Collecteur des Coteaux as class A sediment type (granular sediments with weak organic content). A relatively minor organic matter content after the flush was found in the sediment samples extracted from the sections close to the gate. Based on the results presented in Fig. 4.6, such sections were also affected by the largest removal of fine sediments due to the flush; this result is in agreement with findings by Michelbach (1995) who highlighted that the organic matter is highly related to the presence of fine sediments in the bed mixture. Interestingly, Fig. 10 also confirms that the organic matter content AF tends to decrease as the distance from the gate increases, in agreement with the observed decrease in fine sediments along the channel. 

Complementary parameters

The density for three samples was measured at Paris Diderot laboratory of Geography physics. Obtained values are presented in Table 4.5. The average value of deposit densities 2338 kg/m 3 was obtained from the results of density measurement.

Table 4.5 Measured density of selected samples of deposits obtained from laboratory analysis.

Section

Density of deposits (in kg/m 3 ) S-50 2263 S+150 2220 S+790 2532 In addition, Table 4.6 shows the determined porosity from the laboratory test for four selected sewer samples. An average porosity of 0.41 was obtained for these samples. 

Performance of the experimental flushing test in Des Coteaux combined sewer

Beyond the effects of the geometry and operation of the used gate device, the flush release can be hydraulically assimilated to a "dam-break" process characterized by an initial sharp increase in the flow and by a relatively slow decreasing phase after the achievement of the flow peak.

The generated flow hydrograph and associated shear stresses highly depend on the water head and on the stored volume upstream of the gate at the time of the beginning of the flush release phase. The initial water level is the most crucial parameter affecting the magnitude of the shear stress generated by the flush, as it is a measure of the initial energy held by the water behind the gate. Dettmar and Staufer (2005) have shown that such a parameter mostly affects the maximum distance from the gate that could be impacted by flush erosion, thus providing insight on the potentially "cleanable" channel length. Differently, the stored volume available for the flush allows sustaining the shear stresses during time, thus having a key role on the duration of the erosional process, and consequently on the amount of sediment removed during the whole flush [START_REF] Campisano | Dimensionless Approach for the Design of Flushing Gates in Sewer Channels[END_REF]). Combination of flow data presented in in Fig. 4.3 allowed calculating the average shear stress RJ    (  is the water specific weight, R is the hydraulic radius, and J is the energy line slope) generated by the flush during the experiment throughout the pilot channel. The average peak shear stress achieved in proximity to the gate (at S+5) was close to peak  =10.3 N/m². Dissipation processes associated with the flush propagation did not reduce significantly the shear stress, which was observed to assume values at the peak larger than 9.5 N/m² also in the downstream part of the channel. The average shear stress in the section is different from that evaluated on the sediment. The later parameter takes into account not only the value of the wall roughness but also that of the bed (sediments) represented by the d50. Therefore, this allows to estimate a real shear stress which differs from the average shear stress that neglects the roughness effect.

The large stored water volume released by the gate during the flush allowed sustaining the flush with shear stress values after the flow peak always larger than 2.8 N/m² in the whole channel for more than 1 h. Based on Shields' theory [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF], such a shear stress value would be able to remobilize grains with maximum size around 4.0 mm. Notably, this is consistent with the results presented in Fig. 4.6, that show prevalent erosion and transport of fine/medium sediment sizes and stability of coarse sediments in the deposits during the flush. More in detail, Fig. 4.6 shows that more than two thirds of the total eroded sediments were smaller than the d50 of the segment upstream of S+500 BF (0.90 mm), thus confirming the high non-uniformity of sediment transport determined by the flush in the channel. This result suggests that any evaluations of the sediment transport due to the flush which would rely on the use of single sediment sizes (e.g., the median sediment size) would lead to a simplistic interpretation of the process as it would not allow taking into account the transport selectivity attitude of sediment mixtures.

Although the flush conserved erosive shear stress up to a long distance from the gate, most of the eroded sediment was remobilized from the segment between the gate location and S+500. Conversely, downstream of this section the flush did not determine a significant modification of the bed, mainly due to the presence of coarser sediments forming the deposits. Furthermore, as observed during the preliminary survey, deposits close to the downstream end of the channel were also characterized by gross solids of various nature (e.g., residuals of construction, pieces of asphalt, etc.) and by elements originating from sewer maintenance (e.g., bolts, nuts, spikes, etc.). Much of these solids were observed to overlay granular sediments in the bed, thus potentially triggering bed armouring effects during the flush. Based on these results, sediment transport in this final segment was probably occurring mainly as wash-load without relevant exchange of sediments at the water-bed interface.

The comparison of bed profiles BF and AF presented in Fig. 4.4 shows that the flush determined sediment erosion also upstream of the flushing gate, affecting the bed up to a relatively long distance from the device. This result confirms previous findings by Ristenpart (1998) and [START_REF] Dettmar | Performa nce and Operation of Flushing Devices -Results of a Field and Laboratory Study[END_REF], that have reported erosional capacity of the up-going sunk wave generated by the flush up to tenths meters behind the gate. As a peculiarity of the considered sewer, due to the steeper invert slope of upstream stretch, the calculated shear stress behind the gate locally achieved values close to 5.5 N/m², thus potentially determining effects of re-mobilization and transport of relatively large sediments. The occurrence of such effects is supported by the results of Fig. 4.6-d that show an increase in the volume of sediments larger than d90 in the pilot channel AF.

Globally, erosion upstream of the gate may have had a role on the global performance of the flush. In fact, although the overall volume of sediments removed downstream of S0 was relatively high (about 5.4 m 3 ), such a volume was the result of a balance between fine outgoing material (about 7.8 m 3 smaller than 4.15 mm) and more coarse incoming material (about 2.4 m 3 larger than 4.15 mm), which ended re-depositing in the channel, most likely in the first 300 m downstream of the gate. Such a hypothesis would find confirmation from Fig. 4.7 that shows sediments at sections between S+100 and S+300 to be subject to major coarsening after the flush.

Although the used equipment was one of the strength points of the experiment, unavailability of direct sediment discharge measurements during the flush was identified as one important limitation of the study. However, combined use of turbidity records and radar/sonar output, and analysis of video clips extracted by the video-cameras installed in the channel bank allowed basic interpretation of the main sediment-transport processes occurred during the flush. For example, the intermittent transport of sanitary litter observed in the video-clips at S+50 and S+100 as well as the incidental dislodgement of bed sediment packages and their en- trainment into the flow provided potential explanation of fluctuations in the turbidity records.

A final aspect deserving discussion concerns the adopted experimental conditions for the flush. As the normal functionality of the sewer system was conserved during the period of the experiments, the normal flow (dry-weather flow and eventual flow from runoff) may have contributed to sediment erosion and transport in the channel between BF and AF sampling phases, thus leading, in principle, to overestimate the sediment removal performance of the flush. However, considering that the total period needed to develop the experiment was relatively short, contribution to sediment transport of this flow may be assumed as negligible, being eventually limited to very fine fractions only. In addition, it has to be stressed that the presence of dry weather flow at the beginning of the flush (although due to lateral inlets only) in the channel downstream of the gate may have played a role in reducing the erosive effect of the flush wave over the deposits, thus potentially leading to underestimate the flush cleaning performance. Overall, it is believed that such considerations may be valid suggestions to improve protocols for future flush monitoring tests planned by the municipality. 

General overview

The complexity of sediment-transport dynamics in sewers is associated not only to factors related to the sediments (for example, variety in range of particle sizes, origin, response to a given flow discharge, etc.), but also to a number of interrelated processes including erosion, transport and sedimentation. Nowadays, with improvement in performance of the computers and informatics progresses, numerical simulations provide a major contribution to the analysis of sediment transport in sewer systems. However, the quality of the prediction of sediment related processes in sewer pipes through use of numerical models mainly depends on the correct calibration/validation that is on the availability of reliable experimental data [START_REF] Gent | A review of model development based on sewer sediments research in the UK[END_REF][START_REF] Ashley | The management of sediment in combined sewers[END_REF][START_REF] Ashley | Solids in Sewers -Characteristics, Effects and Control of Sewer Solids and Associated Pollutants[END_REF].

Models for proper evaluation of cleaning performance of flushes in sewers must have capability to describe accurately erosion, transport and deposition of sediments under highly unsteady flow conditions. To address such requirements, simulation of the flushing test carried out in Paris (described in Chapter 4), was conducted using a research-oriented numerical model developed by the urban drainage research group of the University of Catania, Italy. The model was originally setup to simulate the behaviour of flush propagation in sewer channels with fixed beds and it has been successively upgraded for the study of several physical and biochemical (cohesion) processes in sewers including sediment transport under unsteady flow conditions [START_REF] Campisano | Flow velocities and shear stresses during flushing operations in sewer collectors[END_REF]Campisano et al. 2007a). In the recent years, the model has been integrated with new subroutines to simulate the scouring behaviour of flushes generated by various types of gate devices on sewer mobile sediment beds (Campisano et al. 2005a and b;[START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF][START_REF] Campisano | Laboratory investigation on the effects of flushes on cohesive sediment beds[END_REF]. The model results have also been validated against field and laboratory experiments (Bertrand-Krajewski et al. 2005;Campisano et al. 2006;[START_REF] Shirazi | Modelling the erosive effects of sewer flushing using different sediment transport formulae[END_REF]).

The actual model allows the use of two different approaches for the analysis of sediment transport in sewers, based on the assumption of transport of uniform sediments or transport of non-uniform sediment mixtures. The conventional approach based on uniform sediment transport is simpler and may support the analysis of sewer processes involving mobile beds of sediment characterized by a relatively narrow grain-size distribution. Conversely, approaches based on sediment transport of non-uniform mixtures is expected to provide more accurate results in scenarios characterized by large spatial variation of sediment characteristics. While the use of the first approach is generally sufficient to predict the evolution of the bed profile during the flush development, the second approach is required to explore in detail the spatial evolution of the bed composition as well as to take into account a number of secondary processes occurring in sediment mixtures. A detailed description of the structure of the two modelling approaches is reported in the successive sections.
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The unsteady flow model for uniform sediment transport

General introduction to the flushing mechanism

Sewer flushing is characterized by flow conditions similar to those of dam-break processes [START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]). Thus, this high flow consists, in practice, in the development and propagation of a surge wave over the sediment bed of the sewer channel downstream of the flushing device. The generated flow is highly unsteady because the quick opening of the flushing device typically determines the full release of large amounts of water in a relatively short time [START_REF] Pisano | Sewer and Tank Sediment Flushing, Case Studies[END_REF][START_REF] Fan | Sewer and Tank Flushing for Sediment, Corrosion, and Pollution Control[END_REF][START_REF] Guo | Gate and Vacuum Flushing of Sewer Sediment: Laboratory Testing[END_REF]).

In general, the flushing process can be summarized as follows. At time t=0, when the flushing device (in Fig. 5.1a) flushing gate is closed, water is stored upstream the gate (initial water level h0). At this stage the flow discharge Q and the velocity V at the gate section are equal to zero (Fig. 5.1a). When the gate opens, a positive (advancing wave front moving downstream) and a negative (wave front moving upstream) water surges generate at the gate location and propagate towards two directions [START_REF] Chanson | Hydraulics of Open Channel Flow: An Introduction, 2nd Edition[END_REF]Fig. 5.1b).

The effect of the two waves on the bed sediments is different depending on the hydraulic characteristics of the flush (i.ee. velocity, shear stress, etc.) as well as on the bed conditions (i.e., fixed or mobile bed, dry or wet bed). 

Governing equations for flow and sediment phases

Under the usual hypotheses of prismatic channel and neglecting lateral inflows and outflows, the 1-D De Saint Venant (DSV) equations for free-surface flows can be written in the following form: Additionally, the evolution of the bed of sediments can be described by the sediment mass balance equation as:
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Eq. 5.3

where p [-] is the sediment porosity; As [m 2 ] the sediment cross-section area; Qs [m 3 /s] the volumetric sediment discharge, qs [m 2 /s] lateral sediment discharge per unit length (Fig. 5.2). refers to the sediment concentration in the water column. In the formula, C is the average volumetric concentration of sediments in the cross section A (corresponding to water level h) as obtained from:
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being cc the local concentration in the cross section.

Assuming the bed-load transport to be preponderant over the suspended-load in a given flow, then it is possible to write the equation as Exner (1920).
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Eq. 5.5

Equation (5.5) is valid for bed with uniform sediments. The set of equations (5.1), (5.2) and ( 5.3) written in vectorial form is:

) ( ) ( U D x U F t U       Eq. 5.6
where U , ) (U F and D(U) are written as follows:

           s A Q A U
, dependent variable vector, Eq. 5.7

                       s h Q p F Q V Q U F 1 1 ) (  , flux vector, Eq. 5.8                       s b q p J S A g U D 1 1 ) ( 0 ) (
, source term vector.

Eq. 5.9

The vectorial equation (5.6) allows describing the transport of sediments under unsteady flow conditions by the determining the unknown vector V of state conservative variables as a function of x and t.

In absence of lateral sediment inflow and outflow (qs=0), the last term becomes:
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Eq. 5.10

To evaluate the friction slope, the Strickler equation, can be used as:
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Eq. 5.11

being R [m] and eq k [m 1/3 /s] the hydraulic radius and the composite roughness coefficient, respectively. Coefficient eq k is typically evaluated by the Einstein equation [START_REF] Einstein | Fluid resistance of composite roughness[END_REF], by assuming different roughness values on the wetted perimeter P [m]: Eq. 5.13

where d50 is the median size of sediment bed. k as:
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Eq. 5.14

Bed-load transport evaluation

For the evaluation of the bed-load and the suspended-load transport the models use the approach proposed by Rouse (see Chapter 2). Accordingly, the sediment particles are assumed to be transported at the bed or in suspension based on the threshold values of

* u w R s   in Table 2.2.
The solution of the system of equations (5.6) requires estimating the sediment-transport discharge s Q [in m 3 /s], which depends on the chosen sediment-transport formulas.

From more than one century, a large number of empirical relationships have been proposed by researchers to predict sediment discharge in natural/artificial channels. As already discussed in Chapter 2, many formulas have been tested with precious success in sewer systems. Several of these formulas with different range of application domains are implemented in the model. Some of the implemented formulas are summarized in Table 5.1. Generally, for the majority of the formulas, only one single representative grain size (such as d50) is used to approximate sedimenttransport discharge. The Meyer-Peter and Müller (1948) formula (Eq. 5.15) was used in this thesis to estimate the bed-load sediment transport associated to the flush experiment in Paris sewer system. Sediment discharge is estimated as a function of the bottom shear stress (over the bed surface), rather than the average shear stress. This empirical relationship is suggested 135 for ranges of sediments between sand and gravel materials. In sewer cases, this formula has been successfully applied several times to estimate the bedload discharge [START_REF] Bertrand-Krajewski | Sewer sediment production and transport modelling: A literature review[END_REF][START_REF] Ashley | Mechanics of sewer sediment erosion and transport[END_REF]Lin and LeGuennec 1996). The bed-load sediment-transport discharge is calculated based on d50, as a function of the grain shear stress (Shen 1971;[START_REF] Wu | Computational River Dynamics[END_REF]). For the critical shear stress ( c  ) to transport the bed sediments.

Meyer-Peter and Müller (1948) suggested the value 0.047 for well-sorted sand and fine gravel.

Suspended sediment-transport evaluation

The Velikanov approach (1954) is implemented in the model to estimate the amount of sediments transported by the flow as suspended particles. Relationships 5.16 and 5.17 are used to calculate limit sediment concentrations into suspension as proposed by the author of the formula.
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Eq. 5.16

J w V C s s m s ) ( max max       
Eq. 5.17 According to Velikanov, erosion takes place if the flow real concentration in the flow is lower than min C while particle deposition occurs for concentrations higher than max C . Any value between these two limits indicates that particles are in transport without erosion or deposition, in other words, the turbulence energy keeps particles in suspension (Schlütter 1999).

In these relations the choice of the threshold coefficient values ( min  and max  ) is important as parameters that impacts significantly the suspended load. Bertrand-Krajewski et al. (2006) report the use of Velikanov model to be of interest for the study of flushes and associated sediment transport in sewer systems.

Velikanov method has been previously applied in sewers by different authors. [START_REF] Zug | Sediment transport model in sewer networks -A new utilisation of the Velikanov model[END_REF] used it for sediment-transport analysis in sewers in both dry and wet weather conditions. Calibration of min  and max  was performed through experimental data from French sewers. Table 5.2 summarizes values of these coefficients as reported in literature. Furthermore, a specific module of the code allows implementing a number of flush devices with different geometry and operation in the sewer systems. Various specifications can be given to this module to describe right function of each device. All the devices are treated in the module as boundary or internal conditions within the numerical domain.

Numerical scheme and solution

The hyperbolic system of Eqs. 5.1 and 5.2 is discretized by means of the finite difference explicit McCormack scheme. The scheme is a two-step predictor -corrector with a second-order accuracy in both time and space. This scheme is suitable to predict 1D dam-break flows (e.g., MacCormack 1969) because it is a "shock-capturing" scheme, i.e., it is able to model shock waves caused by rapidly varied flows as well as discontinuities in the bed slope and and in the flow variables. Although the used model is not fully coupled (i.e., it does not solve DVS and Exner equations simultaneously), the use of the predictor-corrector scheme enables resulting semi-coupled solution [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF]).

In the first step of prediction, F(U) and D(U) corresponding to the flux and sources terms, respectively, are estimated based on the values of V vector at previous time step of t. Then the derivative forms of F in the space scale of x F   / are calculated backwards. The following equation accounts for approximating variables of the Eq. 5.7-9 in finite differences (Finitedifference method approximates the partial derivatives by divided differences on a space-time grid).
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where i and j are representative nodes in space and in time, respectively, and ∆x is the spatial step.

Therefore, this equation is applied to all the internal grid nodes of the whole domain which allows evaluating the predicted value of p i U (index p abbreviates predicted) of the unknown vector

1  j i U .
In the second step, the scheme estimates both flux F and source D terms referring to the already predicted values of the vector p i U . So, the derivative terms x F   / are calculated forwards. For this aim, the following equation accounts for approximating variables of the Eq. 5.7-9 in finite differences. Therefore, this equation is applied to all the internal grid nodes of the whole domain which allows evaluating the corrected value of c i U (index c abbreviates corrected) of the unknown vector
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The procedure ends with calculating the weighted average of estimated predicted and corrected values. To this end, all internal grid nodes of the domain are subject to the following relation (see Eq. 5.23) to obtain weighted average between the predicted and the corrected values [START_REF] Creaco | Devices for the removal of solids from sewer channels: Experimental investigations and numerical models[END_REF]:
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Eq. 5.20

If the space step is constant during the whole flow
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, therefore, Eq. 5.23 can be written as:
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A complementary third step based on Total Variation Diminishing (TVD) dissipation theory is incorporated in the solution (Garcia-Navarro et al. 1992;Garcia-Navarro and Saviron 1992). This solution is an efficient convective scheme to compute sharp gradient in unsteady flow with two main properties of making the solution oscillation-free by keeping the secondorder accuracy both in space and time. To this aim, this additional step was applied to the mean velocity 1  j i U obtained after the explained steps of McCormack method.

Domain discretization

The domain was split in time and space. Suitable time (∆t) and space (∆x) steps were chosen allowing to better reproduce the flush as a rapidly varying flow and the associated sediment transport. Moreover, the computer capacity and time consumption for simulation were also taken into account in the spatial mesh choice. The used numerical scheme is explicit, thus requires to satisfy the stability conditions. The Courant -Friedrichs -Lewy (CFL) condition was used. This means assuming values of the Courant number,

1  r C
to obtain the stability of the solution (Bhallamudi and Chaudhry 1991). In particular, Courant number was fixed equal to 0.8 for the successive simulations thus enabling calculation of adequate time step:

c V x C t r     Eq. 5.22
where, V is the mean flow velocity and c is the celerity of the disturbance.

The celerity is obtained from

B A g c  
for irregular cross-sections (A and B being as wetted area and free surface width, respectively).

The space-time integrated scheme written in meshes t x    in finite difference grid for solving the domain is shown in Fig. 5.3. This scheme enables the forward or backward difference scheme in each time space.

Initial and boundary conditions

The boundary conditions provide the information about boundary limits of the domain. They determine the flow and the sediment properties at the inlet and outlet of the channel [START_REF] Wu | Computational River Dynamics[END_REF]. Modelling the unsteady flow determined during flushing, requires prescribing flowing conditions at the upstream (inlet) and downstream (outlet) ends of the domain. The application of the McCormack numerical scheme to solve the DSV-Exner equation system requires to know hydrodynamic data of the U vector (i.e., A(t) and Q(t) at both boundaries of the numerical domain. In particular, concerning the flow variables, the method of characteristics is implemented to determine the values of unknown variables which are not prescribed at the boundaries (Garcia-Navarro and Saviron 1992). In case of supercritical flow, in particular, two conditions are requested at the upstream boundary such as the functions: Q(t) and A(t) for entering hydrograph. At the downstream boundary, one can use the positive and negative characteristic lines along which the 1D DSV equations turn from partial differential equations into ordinary differential equations. Conversely, in case of subcritical flow at the upstream boundary one can prescribe the function Q(t) correspond to the negative characteristic line. At the downstream boundary, a boundary condition such as a function Q(t) can be prescribed together with using the positive characteristic line. As for sediment continuity equation can be used at the boundary where the physical conditions have been prescribed.

The model allows to prescribe specific boundary conditions at the upstream and downstream ends of the domain. It allows also adopting specific conditions allow defining correctly the hydraulic behaviour of various flushing devices inside the domain as internal conditions. In particular, the numerical domain is solved through separation into sub- domains by only internal conditions. Fig. 5.4 illustrates a general scheme of application of boundary and internal conditions that is possible to impose for the flush modelling. 

The unsteady flow model for non-uniform sediment transport

A novel aspect of the present modelling analysis is to take into account the non-uniformity of sediments for the analysis of the flush impact. The use of models for non-uniform sediments allows predicting the bed evolution not only in terms of bed heights but also in terms of modification of the composition of the deposits [START_REF] Armanini | Variation of Bed and Sediment Load Mean Diameters due to Erosion and Deposition Processes[END_REF][START_REF] Di Silvio | Modelling sediment transport under different hydrological and morphological circumstances[END_REF]. Collected data from experimental flushing test (in Chapter 3) were then used also to validate the non-uniform sediment-transport model.

Governing equations for flow and sediment phases

Compared to the described model for uniform sediments, the used model for transport of non-uniform sediments is more complex. A two-layer approach is used to schematize the sediment bed (Fig. 5.5), with :  pavement layer (as active layer) having thickness p  that contains sediment particles that are liable to frequent vertical movements (entrainment to and settlement from the upper transport layers).

 sub-pavement layer, having thickness s  , that contains particles liable to occasional vertical movements to and from the upper transport layers.

As compared to other models (e.g., Di Silvio, 1992) that have been originally developed for mobile river beds, the used model does not include the third storage layer under the sub-pavement where particles are assumed to be undisturbed (unless degradation takes place). Instead, being developed for artificial channels, the used model assumes that the sub-pavement overlays the rigid bed of the channel (concrete); therefore, elevation of s p    represents sewer deposits as well as the mobile bed level for sewer flows. Based on this schematization of the system, the following equations are used for the mass balance of the pavement layer: It should be noticed that, it is assumed that the interactions between sediment particles are neglected and sediment population is supposed to be low concentrated. Thus, each grain size's transport behaves separately as uniform sediment. Therefore, each moving class size of sediments within the sediment mixture will be assumed to have its own sediment-transport discharge as in the uniform sediment-transport approach [START_REF] Wu | Computational River Dynamics[END_REF]. The total sediment-transport discharge (Qs in the Exner equation) is thereby provided by the sum of discharges
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for all the J classes.

Differential equations (5.26) and (5.27) for pavement and subpavement mass balance are solved together with the DSV-Exner equations and enable the possibility to take into account deposition and erosion processes for each class of sediment grain-size distribution. The used approach allows also including a number of important processes associated to the mobility of non-uniform sediments mixtures, i.e., hiding/exposure, differential erosion, armoring, etc. (Rahuel et al. 1989;[START_REF] Holly | Simulation of Missouri River bed degradation[END_REF][START_REF] Holly | New numerical/physical framework for mobile-bed modelling: Part 1: Numerical and physical principles[END_REF].

Function for hiding/exposure

Hiding function takes into account the explained sheltering effect being as an important phenomenon in natural flows [START_REF] Einstein | Can the rate of wash load be predict ed from the bed-load function[END_REF][START_REF] Egiazaroff | Calculation of nonuniform sediment concentra-tions[END_REF][START_REF] Andrews | Formation of a coarse surface layer as the response to gravel mobility[END_REF]. In fact, bed material sorting accounts for the hiding and exposure phenomena (Rahuel et al. 1989). This factor indicates the increase or reduction of a specific size class in the sediment mixture discharge [START_REF] Campisano | Sensitivity analysis of the formulas for predicting hiding processes in simulating bed aggradation[END_REF].

Hiding /exposure factor ( k  ) was implemented in the model from the relationship provided by Ashida and Michiue (1972).

  Another relationship for the hiding factor is implemented into the model which is used in the current thesis (see Eq. 5.27). In this formula the exponential value of n is an empirical parameter for the transport condition of the given particle; n=1 denotes the incipient motion condition while n<1 indicates the sediment-transport condition.

n k k d d           Eq. 5.27
Different values for n are suggested in the literature. [START_REF] Andrews | Entrainment of gravel from naturally sorted riverbed material[END_REF] by studying the mobility of sediment mixture, proposed a value of 0.872 to calculate the critical shear stress. For the same study goal, Parker and Klingenman (1982) used n=0.982. In any case, the n value must be smaller than 1. In the current thesis the value of n=0.982 is applied to the simulations.

Function for bed surface armoring process

Being one of the most typical phenomena encountered in gravel beds, the bed armoring process is a vertical sorting of the surface bed. This phenomenon consists of hiding or "trapping" fine particles in substrate below by the coarse ones. Such phenomenon is taken into account by hiding effect because fine sediments are hidden by the large-diameter particles at the bed surface that are more exposed to the flow. Armored bed is achieved when the equilibrium condition for bed sediments is obtained due to the vertical sorting mechanism. Many researchers [START_REF] Armanini | Non-uniform sediment transport: Dynamics of the active layer[END_REF][START_REF] Hirano | River-bed degradation with armoring[END_REF][START_REF] Holly | Simulation of Missouri River bed degradation[END_REF][START_REF] Little | Stability of channel beds by armoring[END_REF][START_REF] Parker | Sorting of bedload sediments by flow in meander bends[END_REF][START_REF] Sanford | Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring[END_REF]) have extensively investigated this topic. In the context of this research this function was not used.

Scheme, initial and boundary conditions in non-uniform model

Initial conditions

The model allows:

1) bed sediment heights from BF 2) grain-size distributions at the different sections with linearization between the sampling sections.

Boundary conditions

Upstream allows introducing a sediment discharge curve on time with specific grain-size distribution.

Solution scheme

The same scheme as for uniform sediment-transport model was applied for the non-uniform model to solve the system equations. An additional procedure was implemented into the numerical scheme (predictorcorrector) to take into account the transport of class of sediment sizes between pavement and sub-pavement layers.

In particular, the following equations were implemented in the numerical solution using predictor-corrector scheme. For pavement layer corrector and predictors are as written in Eq. 5.28 and 5.29, respectively. Also for the sub-pavement the same relationships are: 
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Data preparation for simulation by both uniform and nonuniform sediment-transport models

Numerical models described in the previous chapter were applied to the experiment carried out in the sewer trunk of Paris Municipality. The collected experimental data were therefore, prepared as input to the model. Both models take into account various input files containing data such as hydro-and sediment-graphs entering the sewer channel, geometry data of the sewer channel as well as other parameters concerning the sediment characteristics. The following sections are aimed to present data preparation procedure for both models.

Modelling the geometry of the sewer channel

The cross-section of the channel was provided as input both models. A unique cross-section was prescribed through a detailed elevation widthcross-sectional area curve. Also, along the longitudinal axis of the channel, elevation of the bed invert was specified on every 1  x m based on the data provided during the experiment campaign. The used x  was considered to be sufficiently small as compared to the total channel length (more than 1 km) for appropriate description of the flush propagation and impact on sediment transport. Use of such x  determined the channel discretization into a numerical domain of 1101 numerical sections. The following parameters (Table 6.1) summarize basic input values provided to the model for simulations. In particular:

(1) A unique grain size was obtained for the whole sewer channel for the simulation with the model for uniform sediment, which was calculated as average av d 50 for all the channel (i.e., based on the grain-size distribution curves sampled along the channel). This grain size was determined from the equation below: (5) min  was set for the condition in which sediments are going into suspen- sion (erosional threshold) (see Section 5.2.2). The value reported in Table 6.1 is the average value proposed by different authors (see Chapter 5). Since direct observation of the flush (through the installed cameras) as well as the analysis of the experimental results (see Chapter 4) showed suspension of sediments with negligible re-deposition during the flush, only Cmin was used for the simulations. In other words, this would mean assuming that bed particles from the entire channel are remobilized by the flush and then put into suspension are flushed out from the channel as wash load. (6) Courant Number ( r C ) was defined as 0.8 for the stability of the scheme. The same value was used for previous studies in sewer such as in [START_REF] Campisano | Experimental and numerical analysis of the scouring effects of flushing waves on sediment deposits[END_REF]. [START_REF] Ab | Experimental studies of selfcleansing drainage system design: a review[END_REF] The time step was calculated based on the McCormack scheme using the following relationship.
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Eq. 6.2 being c as flow wave celerity (in m/s).

(8) The model was run with a computing time of 18000 s (5 h) that was shown as sufficient to describe the whole flush process and its impact on the bed deposits.

Additionally, the previous information, the heights of the initial sediment deposits was provided as input to the model for each section of the numerical domain (i.e., 1101 values of sediment heights throughout the channel) based on the data collected by the experimental campaign BF. channel. In particular, the inflow hydrograph Q(t), which was recorded during the experimental campaign was provided as input file to the model. The method of characteristics was used through determination of the negative characteristics line to determine the corresponding unsteady flow value of the upstream water level h(t).

Up to the complete opening of the gate, the channel was numerically described by two sub-domains: upstream (S-50, S0) and downstream (S-50, S0) of the gate. Later, when the gate opening phase was ended (so that the gate was physically embedded in the sewer bottom), the domain was considered as one, thus eliminates any internal condition due to the gate. Internal condition at the gate upstream section (S0) was the gate outflow relationship coupled with the positive characteristic line for determining the value of the water level. Similarly, the internal condition at the gate downstream section (S +1) was obtained through prescription of Q(t) relationship as well as use of the negative characteristic line. Fig. 6.2 schematizes the above description of the boundary condition for both during the gate opening (Fig. 6.2 a) and after the gate opening (Fig. 6.2 b).

As the downstream end of the channel is considered (S+1050), the critical flow curve Q(h) was prescribed (provided the presence of the free outfall conditions). Similarly to the upstream section end, the method of characteristics was used to determine the value of the corresponding water level. 

Boundary and internal conditions for the sediments

As for the flow, the sediment conditions were imposed also for the sediments at the boundaries. At upstream end of the domain (S-50) the sediment discharge Qs(t) was prescribed as calculated with the sedimenttransport formulas based on local time varying flow conditions determined by the entering flow hydrograph Q(t). The Exner mass continuity equation is then used to determine the value of the sediment height hs(t) at the downstream channel end (S+1050). The same approach is used to calculate the values of Qs and hs.

As coupled to the flow, no additional conditions are required at the gate sections for the sediments. During the gate opening phase, as well as, later, during the release phase, the domain for sediment transport is automatically determined by local flow variables of Q(t) and h(t) at the gate site. This is done without need of superimposition of internal conditions for the sediments.

Results from the simulations with the uniform sedimenttransport model

Simulations with the uniform sediment-transport model were performed that allowed to provide results concerning both flow and sediment parameters. Hereafter, the analysis of the results will be presented.

Results of the hydraulics of the flush

Hydraulic variables (i.e., water level and flow discharge) at the monitoring sections (S-50, S-5, S+5, S+50, S+100) were compared to the values obtained experimentally to evaluate the model capacity to reproduce the hydraulics of the flush. Graphs in Fig. 6.3 and Fig. 6.4 show the comparison between experimental and modelled water levels and flow discharges for all the five measuring sections. In these graphs, the x-axis shows the variable of time. According to the graphs, it can be seen that globally the uniform sediment-transport model provides relatively good results hydraulically reproducing the flush propagation in the channel. In particular, the water level is shown to increase abruptly for all sections downstream of the gate device (form about 0.5 m to about 1.5 m) in the instants after the gate opening. Oppositely, the negative (entering) wave propagating upstream the gate provides water levels at section S-50 and S-5 to drop down from 2.15 m to about 1.5 m. The differences between simulated and measured water levels at the five monitoring sections of the channel are shown for the first 1.5 h of the flush simulation. For example, Table 6.2 presents the calculated standard deviation from the mean for the flow discharge obtained from the model compared to the experimental data over 1 h from the beginning of the flush. A good match of observed and simulated values is also observed for flow discrepancies of the five sections including time and magnitude of the flush peak value. Unfortunately, missing data did not allow visualizing how the model reproduced the flow time series at the downstream sections: S+50 and S+100. 

Bottom shear stress due to the flush

In addition to water level and flow discharge, Fig. 6.5 shows the bed shear stress evaluated in five channel cross-sections. The figure shows the evolution of the shear stress for the first 30 min from the beginni ng of the flush for both upstream (S-30) and downstream (S+10, S+180, S+810) of the gate. As it was expected, the peak shear stress is obtained at the beginning of the flush. The peak of about 14.5 N/m² at S+10 is in agreement with experimental results [START_REF] Shahsavari | A field experiment to evaluate the cleaning performance of sewer flushing on non-uniform sediment deposits[END_REF]). The peak is evidently delayed for the downstream sections due to the flush propagation. The shear stress is then observed to decrease on time. Spatially, the flush had a considerable effect throughout the entire channel. Based on the plotted curves, in fact, the shear stresses remained high enough (>5 N/m²) to allow bed erosion in the downstream segment of the channel (see S+180 and S+810). Erosional effects of the flush in the upstream segment occurred instead only during the first minutes of the flush. The difference in the long-term value of the shear stress may be principally imputed to the increase by the channel invert slope between upstream and downstream segments. Moreover, the figure shows a significant effect of the negative waves behind the gate with peak values in the order of 9 N/m² through S-30. Thus, the numerical results confirm the erosional effects of the flushing surge after the gate opening. 

Sediment-transport discharge due to the flush

The simulations carried out using the uniform sediment-transport model led to obtain the sediment-transport discharge during the flush flow. The results of the simulation conducted with parameter values summarized in Table 6.1 showed that the considered sediment size was transported as bed load only because of the high value of the rouse number corresponding to the generated shear stresses. Then the total sediment transported by the flush was evaluated through the Meyer-Peter and Müller (1948) formula. Fig. 6.6 illustrates the simulated bed-load transport at three sections of the sewer channel downstream of the gate (S+200, S+500, S+1000). Interestingly, the flush provided erosional effects that covered the whole channel downstream the gate. Moreover, Fig. 6.7 shows the simulated bed heights (average value of the experimental and simulated being 29 and 30 cm, respectively) at the end of the flush (AF) against the experimental data. Globally, the model allowed to describe the bed modifications due to the flush, although peaks and sections of simulated sediments accumulation were not in good agreement with observed values. Differences highlight the model inability to correctly reproduce the flush bed profile after the flush. The maximum and average values of the measured sediment heights are 26 and 3 cm, respectively, while the model reproduced a smaller value of the maximum (20 cm). However, model results and experimental data showed almost the same averaged height of the deposits. Example of the sections over which the model was not able to reproduce is remarked with hatched polyline on the Fig. 6.7. For example, at nearby end of the channel, no accumulation of sediment was reproduced conversely to the observed data form the experimental campaign. Also, mismatches can be observed for the peaks close to the gate.

The fitting degree between experimental and numerical results is evaluated by calculating three indices presented in Table 6.3. The Root Mean Squared error (RMSE) of the sediment profiles obtained considering is equal to 0.045 m. According to the graphics and mismatching between observed and modelled data, this indicator value of error, corresponds to less-accurate but acceptable results. The volumetric estimation of the deposits by the model (results schematized in Fig. 6.8), showed that 3.69 m 3 (against 5.4 m 3 ) of the bed sediments were flushed out from the channel trunk downstream of the gate (S0 to S+1050). However, it was considered that the results of deposits profile at the end of the flush includes a balanced between the sediment flushed out (at S+1050) and the sediments entering from upstream of the gate (at S0). In fact, the flush eroded about 0.83 m 3 sediment upstream of the gate transporting such volume through the channel downstream of the gate. Based on model simulations, all the sediment flushed out from the channel was transported as bed load. In agreement with [START_REF] Shields | Application of similarity principles and turbulence research to bed-load movement[END_REF], in fact, the uniform sediments grain size considered for the simulation (2.176 mm) could not be transported as suspended load with the developed shear stresses. Evidently, this clearly shows that the model for uniform sediment transport may provide a limited capacity to fully describe all the processes occurred during the flush test (e.g., flow selectivity or correspondent transport of different sediment size and bed or suspended load). Consequently, the above results obtained from the uniform sedimenttransport model have showed relatively acceptable hydraulic performance of the model. However, in terms of the sediment related parameters, the uniform model did not provide accurate-enough results for a detailed investigation on sediment transport processes.

The following sections will present the application of the nonuniform sediment-transport model to the experimental data using more sophisticated model that is able to take into account a variety of sediment sizes found in the sewer bed deposits. It is expected to achieve more improved and realistic results as the non-uniformity of sewer sediments is one of the main properties of such environment. 

Gate

6.3

Results from the simulation with the non-uniform sediment-transport model

Model consistency test

Preliminary to the simulation analysis with the model for sediment transport of mixtures, tests were carried out to verify the consistency of the model with the model for uniform sediment transport. In particular, initial simulations were carried out with the two models using the same input data, as well as by "forcing" the developed model for sediment mixtures to simulate cores characterized by uniform characteristics of the bed sediment. This test included, for example, running the model for sediment mixtures with initial bed conditions characterized by grain distribution curves with a single size if the particles.

As an example of these test, the results of the simulation run using the same parameters of Table 6.1 (i.e., all the mixtures were assumed to be made of uniform sand with d=2.176 mm) are shown in Fig. 6.9. The simulation provided almost identical results in terms of flow parameters (water levels, flow discharge, shear stress), as well as in terms of final bed configuration as compared to Fig. 6.7. Sediment heights were basically reproduced by the two models at the same way. Also, the model has remarkably shown that the same sediment volumes were flushed out from the sewer channel (3.67 m 3 ).

Similar tests conducted under other conditions allowed to obtain a consistency proof of the two models, thus enabling appropriate comparison of the relative results.

Hydraulics of the flush

The non-uniform sediment transport model needs a longer calculating time (more than 24 hours) than for the uniform-approached model (5 hours). Simulated and experimental values of the hydraulic variables of the flush (i.e., water head and flow discharge) in all the measuring sections are compared in Fig. 6. 10 and Fig. 6.11. Globally the model has reproduced better curves comparing to the uniform sediment-transport model. In particular, the comparison of the simulated values with the experiments at initial stage of the flush including the peak discharge of the flushing is shows an improved model flushing. According to the simulation results, a maximum instantaneous flow discharge of 4.2 and 4.0 m 3 /s were reproduced against 4.1 and 3.9 m 3 /s for S-5 and S+5, respectively. The slight amelioration of the results by this model is the results of a better description of the bed composition and then of the bottom roughness that contributes to the friction slope and in terms of the flow parameters. The graphs show a good reproduction of the hydraulic parameters (in particular at the peak flow discharge) for all the measuring sections. The same as uniform sedimenttransport model, the abrupt chute the water level and increasing of flow discharge is visible due to the wave propagation at the initial stage. Table 6.2 presents the calculated standard deviation from the mean for the flow discharge obtained from the model compared to the experimental data over 1 h from the beginning of the flush. The table confirms the amelioration and perfect agreement of the results using non-uniform sediment-transport model rather than using the uniform sediment-transport model. Bottom shear stress due to the flush Bottom shear stress through the channel was calculated as output of the non-uniform sediment-transport model. Results are presented for four selected cross-sections and illustrated in Fig. 6.12 during about the first 30 min. According to the shear stresses, almost the same trends as found for the uniform sediment-transport model can be seen for the evolution of the shear stresses on time. A remarkable difference can be observed for the maximum values provided by the results. Comparing the results from the non-uniform model and the estimated shear stresses by the uniform sediment-transport model, it can be concluded that the uniform sediment-transport model overestimates the values of shear stress values at the initial stage of the flushing event. In particular this overestimation was observable at the sections near the gate (both upstream and downstream). For example, the maximum shear stress obtained using the non-uniform sediment-transport model for the closest section downstream of the gate (at S+10) was estimated to be around 10 N/m² against almost 11.5 N/m² from the uniform sedimenttransport model. The value from the non-uniform is considered to be much close to the experimental one. As already explained above, the non-uniform model takes into account the bed sediment roughness represented by the d50 to estimate the bed shear stress. As this characteristic diameter is different for each section, thus the shear stress is more reliable. In the contrast, in the uniform model, the d50 is the same everywhere, thus the shear stress is overestimated. This would confirm the results by [START_REF] Staufer | Impact of the Level of Approximation on Modeling Flushing Waves[END_REF] who concluded that 1D uniform sediment-transport model overestimates the bed shear stress generated by flushing. 

Results of the sediment-transport processes

The main results of the non-uniform sediment-transport model have concerned the deposited bed in terms of bed heights and composition under the flushing effect. It was aimed to consider the evolution of these two elements longitudinally through the entire sewer channel due to the flush. In the next sections these parameters will be presented.

Sediment-transport discharge due to the flush

Transport of particles as bed load as well as suspended load was obtained with the simulation. According to the simulation results sediments were flushed with both transport modalities. According to the results, much of the suspension occurred immediately with a sudden and high peak of the beginning of the flush. The bed load is then predominant for the rest of the sediments. The main part of the suspension occurred during almost the first 7 min after the beginning of the flush. Interestingly, this process was also observed from the videos recorded from the "cunette camera", with the suspension being the predominant mode of transport before the peak arrival, then switching into bed-load mode, after the peak. However, very small amounts of sediment are transported during the flow recession as suspended load. In contrast, according to the same graph, bed-load mode of transport took place along the whole flushing time with a decreasing trend after the peak.

In particular, the bed-load discharge was extracted from various sections downstream of the channel (S+50, S+680, S+970, S+1050) to show the bed-load transport discharge and its evolution along the sewer channel. Fig. 6.13 presents the bed-load discharge of the mentioned sections. The figure shows that a high and at the same time sudden value of the bed load discharge took place at the closest section to the gate with almost 0.016 m 3 /s. This shows a quick transport of the bed sediments as bed load due to the flush head energy with a short effect. Interestingly, the value of the bed load discharge in downstream segment of the channel peak increases toward downstream end of the channel that may be explained by the effect of the sleep bed slope together with the effect of the flushing waves. Moreover, the decreasing phase of the bed load discharge is slow demonstrating continuously transporting the sediments from upstream segment. 

Results of the sediment heights after the flush event

Results of the simulations related to the longitudinal topography of the bed along the sewer channel are presented in Fig. 6.14. The graphics illustrate good performance of the non-uniform sediment-transport model. In According to the data, maximum and average of the modelled sediment heights over the entire studied channel are 24.5 and 3.0 cm, respectively, against 26 and 2.9 cm obtained experimentally. From the Table 6.5, the Root Mean Squared error (RMSE) value for the sediment heights is equal to 0.028 while the uniform sediment-transport model has provided the same value in the order of 0.045. Therefore, the results the developed model showed clearly its ability to describe the impacts of the flushing flow on the bed sediments thus fitting better the experimental with numerical bed heights after the flushing operation. However, the figure shows some sections for example those indicated by circles where the model was reproduced unsatisfied results. Such mismatch between the results can be explained by the accumulated rags as presented in section 3.2.2 (and see Fig. 6.15) that was observed during the experiments that are not considered as typical sediments. Thus, the model was not able to consider such deposits that are different from particle-type sediments. 

Results of sediment grain-size distribution (composition)

During the flush operation deposits over these reaches were eroded and based on the flow conditions were redeposited over downstream or flushed out from the sewer channel. Other important result of the nonuniform sediment-transport model is the estimation of eroded and transported volumes of the initial bed deposits from the channel downstream of the gate (being initially 27.2 m 3 ). The simulation results in terms of transported sediment volume are schematized in Fig. 6.16. A variety of sedimenttransport processes are shown to occur over the downstream reach of gate. Other effect of the flush is through the channel section upstream of the gate. Therefore, according to the results of the simulation, a total volume of 4.49 m 3 was flushed out from the downstream sewer channel (between S0 and S+1050) against 5.4 m 3 measured volume that provides a reliability of 83%.

The same values regarding to the sediments eliminated from the entire channel (S-50 to S+1050) shows almost an accuracy of 91% comparing to the experimental data (5.09 against 5.61 m 3 ). Thus, the model has shown a deposited volume of 22.74 m 3 against 21.82 m 3 obtained experimentally (0.92 m 3 higher). Results have also shown additional information about the volume of sediments transported as bed or suspended load thanks to the Velikanov method (i.e., minimum efficiency coefficient). This module was allowed to estimate the volume of suspended load transported by the flush and thus estimate the bed load separately. It should be reminded that the suspended load comprises only the particles that go into suspension and "disappear" (no re-deposition occurs) without any interaction with deposited bed. In this regard, as indicated on the Fig. 6.16, almost half (48%) of the estimated total flushed volume from the entire channel (2.40 from 5.06 m 3 ) were transported as bed load that contains variable sediment class of sizes.

Results from the simulations showed that a volume of 0.6 m 3 was eroded from the upstream part of the gate that is greater than the measurement from the experimental campaign. The difference of the eroded volume from upstream of the gate (S-50 to S0) between measured and modelled values can be partially explained by the probable entrance of only fine particles to the studied sewer channel. Probably, this was occurred during the storage or evacuation phases. Unfortunately, no information exists about the amount of sediments entered to the studied channel from upstream of S-50.

Simulation results allow evaluating other valuable information concerning the compositions of sediment in terms of the modification of the . The results showing the evolution of specific characteristic grain sizes (i.e., d16, d50 and d90) are presented in the graphs of Fig. 6.17. In this graph the numerical results for all the sampled locations taken before and after the flush (in total 28 points taken with the experimental values along the sewer channel from before and/or after the flush) are compared. Overall, simulated results show similar trend to the experimental values. In particular, a good fit was obtained for d16 and d50. More discrepancies can be observed for the larger fractional size (i.e., d90). This might rise from the in-sewer sampling conditions that may have minor accuracy of the samples in particular from the downstream segments of the channel (>500 m). In particular, the downstream section (e.g., S+1003) shows a considerable difference as compared to the experimental value, which may be explained by experimental errors at the downstream segment of the channel. In particular downstream near the end of the channel, the number of samples taken and relative sampling intervals may not be enough to explain correctly the composition. As another reason, the small accuracy in results can be also explained by the influence of the downstream boundary conditions imposed at the downstream channel end.

Moreover, simulation of a real flushing phenomenon cannot be expected to have a long accuracy in sediment data. In fact, due to the complexity of sewers as well as presence of variable singularities along the sewer channel, sewer sediment transport cannot follow its normal process. Further, in these graphs, corresponding bed heights along the sewer channel are also added to the results. Over some sections mainly along the downstream segment (>500 m) bed height are small where the size distributions range up to gravel-type particles (This is the channel section where the sediment seemed to be as pavement form that was not took into account in the model). This could be a reason of the poor agreement between experimental and numerical results over the concerned sections. Fig. 6.17 Comparison of the measured and simulated the characteristic grain sizes (d16, d50 and d90) BF and AF along the studied sewer channel using the non-uniform sedimenttransport approach obtained from the basic simulation set up (Sim16).

Described trend of evolution for sediment sizes is confirmed by three statistical parameters of the results as presented in Table 6.6. The table indicates that the average magnitude of the errors in terms of RMSE and MAE indicate a good fit in particular for d16, d50 between experimental and modelled results mainly at the upstream segment of the channel. Such results are valuable when it is aimed to study the detailed impact of the flushing over sediments and analyse the sediment transport processes during the flushing flow.

Sensitivity analysis of the model parameters

Values of much of the parameters used for the described simulations are known from the experiments. However, values for some other parameters have been fixed based on the literature results. A sensitivity analysis of the model is then required for these parameters in order to evaluate potential range of validation of the results. Firstly, a number of simulations were carried out to evaluate the response of the model to different values of the efficiency coefficient min  in Eq. 5.16 for suspended solid estimation. Secondly, the response of the model to modifications of different values of the bed pavement thickness was evaluated as this parameter affects the sediment transport in the channel. Moreover, the sensitivity of the model results was tested with reference to the introduction of a formula to model the sediment hiding processes. Each sensitivity analysis was carried out with reference to basic case simulated in section 6.3.

Model sensitivity to coefficient min  Parameter min  constitutes a critical erosion coefficient to consider the particles eroded during the flush that leave the bed-load zone and go into suspension. The basic simulation (called hereafter Sim16, discussed in Section 6.3) was carried out using min  equal to 0.00125 being this the average value of the experimental campaign which was identified by [START_REF] Combes | Etude de modèles mathématiques de transporte mauriau solides en réseau d'assainissement[END_REF] for the sewer systems. For the sensitivity analysis of the model to this parameter further simulations were carried out using the minimum (0.0005, simulation called hereafter Sim24) and the maximum (0.002, simulation called hereafter Sim24) values of the range suggested by the author. Both values are comprised inside the rage of this parameter recommended by other authors (e.g., [START_REF] Combes | Etude de modèles mathématiques de transporte mauriau solides en réseau d'assainissement[END_REF][START_REF] Zug | Sediment transport model in sewer networks -A new utilisation of the Velikanov model[END_REF].

All the results (hydraulic and sediment-transport performance) of the two simulations are presented in Appendix D. As expected, min  did not affect significantly the hydraulics of the flush and almost the same hyd raulic results as Sim16 were obtained in all measuring sections along the entire sewer channel. The results obtained from Sim24 provide also bed heights AF through the sewer channel. Major modifications determined by the different values of this parameter include differences in the bed heights. In particular, modifications are considered as increasing of the heights in the upstream segment (with predominant finer sediment bed) and a decreasing of heights in the downstream segment (with coarser-type sediment bed). According to the graphs, remarkable changes can be seen over first 100 m downstream the gate comparing to Sim16. Based on the simulation, results show mean and maximum values of 3.1 and 24.6 cm, respectively for the modelled bed heights AF against 2.9 and 26.4 cm of experimental values. Comparison between simulations 16 and 24 is shown in Table 6.7 in terms of RMSE and MAE. Based on the table slightly higher value of error was obtained with 005 . 0 min   . Despite this, the differences between two model simulations in terms of bed heights AF were relatively small. Values of the sediment volume flushed out of the channel was also compared (Table 6.8). Based on the table results, difference between the two models was small with reduction of about 5% in total sediment transported out of the channel. As expected much of the reduction can be imputed to the reduced suspended sediment transport. Interesting negligible differences were observed upstream of the gate (S-50 -S0), thus revealing a very limit sensitivity of the model to min  . Relatively, small differences of d50 in the bed composition AF as comped to Sim16 (Appendix A). Table 6.9 shows RMSE and MAE values as compared to experimental values for the two simulations. Similarly, a synthesis of results of the simulation using 002 . 0 min   is shown in Table 6.10. Although relatively small, as expected, an increase of (15%) the volume transported as suspended bed was obtained as compared to Sim16. Concerning the bed height, the results from Sim32 show the same values of the statistics as Sim24 and Sim16 (Table 6.11). In addition, for the test of completeness, Table 6.12 reports the detailed results concerning the bed composition AF and the comparison between Sim16, Sim24 and Sim32. Globally, variation of min  in the whole range of values had a relatively minor effect on the results, thus revealing a limited sensitivity of the model for non-uniform sediment transport to this parameter. These results could find same confirmation from the previous numerical sensitivity analysis carried out by Bertrand-Krajewski et al. (2006) who used a simple uniform sediment-transport model for a long-term sediment-transport monitoring.

Model sensitivity to the pavement thickness (Sim31)

The effect of choosing different values of the thickness of the pavement layer ( p  ) on the transport of sediments by the model was examined. To this end, the thickness of the pavement layer (from 3×d90 in Sim16) was reduced to 1×d90. Although this value is not recommended in the literature for the types of sediments present in the channel, the sensitivity of the results in terms of erosional pattern was explored. Indeed, reducing the thickness of the pavement layer means reducing the source of the available sediments for eroding and transport. Table 6.13 shows the comparison of the basic simulation (Sim16) with Sim31 and also the experimental data. The last column indicates the evolution of the results comparing to the results of the basic simulation. As expected, the lower value of p  determines a significant reduction of the volume of sediments flushed out from the channel (about minus 27%). Moreover, such reduction is more evident in the upstream part of the channel where the values of sediment bed heights are larger. Further, results of Sim31 concerning the bed heights are statistically evaluated and summarized in Table 6.14 with the corresponding results of Sim16 to enable a comparison. Based on the simulated data from Sim31, maximum and mean value of 28.04 and 3.2 cm, respectively, were obtained. These values show a considerable increase comparing to the basic model. In addition to the previous results, details of the fractional sediment transport presented in Table 6.15 for Sim31, show that the transport of fine sediments increased while the larger particles was not available to be transported as in Sim16. Such behaviour might be a reflect of the model with a poor ability to accurately predict the phenomenon mainly for the transport of coarser particles (i.e., d90). This can explain the decrease of the total volume of the bed flushed out by the flow. From the above simulation, it can be concluded that significant modification of parameter has an important impact on the results of the model for non-uniform sediment transport. The selection of proper values of this parameter according to the results from the literature and to the sediment size in the channels is of parameter importance. This would confirm the need of experimental data concerning sediment characteristics for the correct model setup.

Model sensitivity to the effect of the hiding (Sim29)

The aim of this simulation was to consider the effect of hiding/exposure amongst the bed particles. This effect is a natural phenomenon existing in non-uniform bed materials. Integrating this effect into the model could modify the behaviour of the sediment transport during the entrainment of the particles. In fact, this empirical coefficient is a correcting function to adjust the threshold prediction of the different grain sizes (Sutherland 1922, adapted from Ashley et al. 2004;[START_REF] Wu | Computational River Dynamics[END_REF]. Numerically, hiding effect handles the influence of the size classes on each other during while sediment transport or entrainments. Application of this effect into the basic has shown relatively significant modifications in particular in terms of eroded sediment volume (Table 6.16). A total volume of 3.44 m 3 was estimated as the volume of the sediments flushed out from the sewer channel downstream of the gate against 5.4 obtained experimentally (almost 63.7 m 3 was reproduced). Application of the hiding factor had different effect on the flushed volumes of bed load and suspended load downstream of the gate by increasing (20.5%) and decreasing (12.8%), respectively comparing to Sim16. Therefore, the major transport of sediment by the flush occurs as bed load though the entire sewer channel. The graphics representing the simulated bed heights by Sim29 are illustrated in Appendix D, showing that the correction factor of hiding phenomenon had a considerable effect on the transport of the particles and thus the bed heights through the entire sewer channel. By comparing the graphs between results of Sim16 and Sim29 Table 6.17, it can be observed that the peaks of have subjected to changes in over almost a long length of the sewer channel. Some sections were found to have a smoother or sharper peak of the bed heights; in other sections the accumulated sediment was eroded faster. The observations can be supported by Garcia (2008) indicating that the use of hiding correcting factor can increase or decrease the transported volume of a particular class of size in a bed mixture. The fractional sizes within the bed composition AF obtained from Sim29 are illustrated in graphs in Appendix D. Further, statistical errors are presented in Table 6.18. According to the table, finer fraction has subjected to small degradation (higher value of error indexes) of the particles whereas two other sizes (d50 and d90) have shown a better agreement with the experimental data. Globally, it can be concluded that implementing hiding effect among non-uniform sediment particles did not improve the total and fractional modelled sediment-transport volumes. Indeed, hiding behaviour of the coarse sediment to make expose fine particle to the flow can be negligible for the current studied case.

It is worth to highlight that the higher thickness of the pavement layer (and therefore the availability of sediment size classes) plays a role in determining more evident hiding effect by supplying the materials for the remobilisation process. Therefore, these two mechanisms can be complementary elements to study in the future to improve the results.
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Summary and general conclusions

Cleaning sewer channel is a primordial task to avoid negative consequences of deposited sediments in sewers. Among cleaning techniques to tackle sedimentation problems, practice of flushing (manual or automatic) method has been developed since many years in Parisian combined sewer system. The municipalities around the world are more and more trying to reduce the manual application of flushing in large-size sewers mainly because of the significant costs of management. Manual cleaning of sewers is difficult, time-consuming and very harmful for the health of sewer operators who are involved in cleaning procedures every year or month. Thus, a main reason of this study is to contribute to the reduction of their intervention inside sewers during cleaning performance. In this regard, automatic cleaning devices have become an ideal, economic and efficient option to overcome solid accumulation in sewers in large-size sewer channels. This is the reason why from many decades, the possibility to generate big and efficient flushes in such sewers has incited sewer managers/device designers/researchers to explore flushing performance at both laboratory or field scales. On the one hand, laboratory experiments allowed evaluating various parameters such as volume and cleaned distance along the downstream flushing line under indoor controlled experimental conditions. On the other hand, the simplified conditions of the laboratory experiments are sometimes limited in terms of transferability to the field. To this end, it is worth to study flushing operation in real sewers to reduce the existing gap of knowledge in understanding the dynamics of sediments associated to the flushes. Indeed, flushes cause altering the deposited bed in terms of bed physical properties as well as bed composition. Such impacts still require experimental efforts. The complex behaviour of highly-variable sewer solids needs to be better described.

In the context of the current work, as a summary, three main objectives was achieved:

A field measurement campaign was undertaken allowed to obtain a series of data with a relatively high degree of accuracy. The data analysis has led to obtain an analytic understanding of the processes associated to the flushing operation in sewers.

A model was adopted to the studied case that was able to simulate the observed flushing flow. Moreover, a novel approach was developed based on the same numerical code for modelling non-uniform sediment transports during the flushing. Both model were able to describe the flushing impacts on the sediments with different level of accuracy in prediction. The second model has provided further detailed description and information on the evolution of the sediments. disadvantages as a tool for management of the sediments in sewers.

Firstly, using a downstream gate, a flush experiment was performed in a large size sewer (man-entry trunk) of the Parisian combined sewer network was carried out. The full-scale flush was experimentally and numerically investigated in order to describe the potential sediment removal efficiency of the used gate. The experimental study allowed evaluating several parameters within three time-periods: before the flush, during the flush and after the flush. During the flushing operation many parameters were monitored at specific monitoring sections through the entire sewer channel to record variables related to hydraulic as well as turbidity. Such observation allowed characterizing the flush event in terms of wave propagations and distributed shear stresses in time and in space. Besides, both before and after the flush, identical sediment measuring, sampling and analysing procedures were realized along the entire sewer channel. Data were acquired using novel techniques and high-quality measuring apparatus that were relatively adapted to the flushing in sewer conditions. Because the main focus of this research was on the sediment dynamics, various examinations of deposits were carried out. For example, implemented cameras inside sewer were used to visualize directly movements of the bed sediments. Moreover, a sonar/radar technique was applied, which allowed sampling the bed deposits (3D topographic estimation) before and after the flush with reasonable intervals along the whole sewer channel. Globally, various aspects of deposited bed before and after the flush were provided that permitted various qualitative and quantitative analyses of sediments. Results from the field experiment showed that such gate was able to provide a significant erosional effect which remobilized sediments through the whole channel.

Results from the experimental investigation include:  complexity of the sewer conditions made difficult measuring parameters and observing processes related to the sediment transport. Measuring instruments were installed for few hours, thus they were protected against corrosion.

 due to various sources of inaccuracy, full-scale measurement of flow and sediment parameters present uncertainties. However, field data for modelling sediment-transport processes were considered as important parameter compared to laboratory data.

 importance of non-uniformity of sewer sediments as mixtures to estimate the sediment-transport capacity of the flush was highlighted.

Even more, the non-uniformity of the mixtures is unique to each location and is varying in time and in space along the sewer channels.

Thus, realistic description of sediment transport requires considering the heterogeneity of sewer sediments dynamics.

 the importance of flush characteristics (i.e., flushing volume and water level) regarding to the erosional impacts on the bed sediment was confirmed to be factors of 'sustainable' wave propagation.

Another objective of the thesis was to investigate the hydrodynamics and associated sediment transport of the in-sewer mobile bed sediments during the flush. Two models developed by the urban drainage research group of the University of Catania were used for this scope: (i) a simple model for uniform sediment transport being as the most common used approach; and (ii) a more complex model for nonuniform sediment transport of mixtures. Flow and sediment boundary as well as internal conditions were imposed to the models. In particular, the latter model was developed and used for the first time for application to the flush experiment in Paris. Overall, both models have described hydraulics of the flushing with a good level of performance as was observed during the experiment. However, a very slight amelioration was provided using the non-uniform model principally at the initial stage of the flushing (flow peak) where the flow is highly unsteady.

Main results of the simulations are:

From uniform sediment-transport model:  fairly good hydraulic description of the variables comparing to the experimental data;

 poor results of the bed heights for almost the entire sewer channel;

 poor results of the volume of the flushed-out sediment because the sediment-transport discharge can be easily underestimated or overestimated;

 overestimation of the average shear stress;

 apart from the bed heights, no more information about different aspects of the bed sediment can be provided.

From non-uniform sediment-transport model:

 excellent hydraulic description of the variables comparing to the experimental data;

 very good description of the bed evolution because of the correct estimation of the shear stresses;  very good evaluation of the of the transported sediment volumes;

 ability of the model to provide different aspects of the bed sediments e.g. erosional/depositional behaviour;

 And additional useful information about the evolution of the bed composition by class sizes.

Additionally, time consumption of the non-uniform model could be less suitable for practical applications depending on the study objectives. Uniform models can be sufficient enough when only a rough estimation of the shear stresses or furthermore the study of bed heights evolution due to the flush are required. Conversely, the need of detailed information about the fractional sediment dynamics and the composition of the bed requires the use of the model for non-uniform sediment transport. Thus, the choice of model to simulate sediment transport relates to many elements e.g., economic (time/expertise/cost of the software development), time, required level of accuracy.

Besides, a sensitivity analysis was conducted for the non-uniform sediment transport model. To this end, the input parameters of which the values are based on the literature were subjected to this analysis: 1) threshold of erosion (ηmin) in the Veliknaov module; 2) the pavement thickness of the bed layer (δp). In addition, the hiding effect of the sediments was activated to observe the impacts on results. This analysis has showed that:  Changing the value of the erosional threshold of the Velikanov does not modify the results in a significant way.

 Reducing the pavement's thickness of the bed layer has considerable effect as this layer is responsible for sediment availability to be eroded by the flush.

 Hiding effect does not have considerable effect on the results.

Future works and perspective

Different areas for future research can be stated regarding to the limitations and eventual possibilities to develop the actual work that were outside of this PhD dissertation time.

Numerical analysis could be carried out to identify flush design patterns as well as flushing operation scheduling for optimal sewer cleaning and sediment management (e.g., number of flushes per year, type of flush device, and hydraulic parameters of the flush for effective cleaning of sewers. Since the used models were observed to successfully describe the conditions and the impacts of the flush experiment in Paris. Such data can help sewer managers to schedule efficient flushes as basic and preventive mean that can allow overcoming the sedimentation in channels.

Further investigations to process the obtained videos images from the cunette cameras are required to contribute to estimate the bed-load discharge transported over the bed during the flush.

Apart from being heterogeneous in terms of sizes, sewer sediments are also wide in range in terms of densities. Measuring density of each sample together with the grain-size distribution within the non-uniform sediment-transport model could improve the results. Such information can provide appropriate description of the sediment transport in time and space.

Moreover, the possibility to incorporate the effect of organic matter (obtained from the field samples) by inducing cohesion for critical shear stress evaluation in both models could be another interesting aspect to develop.

As a suggestion for future flush experiments in sewers, is important to undertake more precision to limit the number missing data. This would require a prelaminar study of the sewer and sediment conditions. In addition, as such experiences cost too much to the municipalities, many standard precisions should be headed e.g., installation of turbidimeters and further experimental investigation related to this parameter. Also, external factors such as climate conditions (i.e., rainfall) need to be taken into account in order to observe only the influence of the flushing on the deposited bed.

And finally, the comparison between results from the 1D nonuniform sediment transport model with a 3D model could be valuable to conduct.
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  d'une chasse hydraulique dans un collecteur parisien Un tronçon de 1,1 km du collecteur Des Coteaux, faisant partie du réseau d'assainissement unitaire situé dans le 11 ème arrondissement de la ville de Paris, a été choisi pour réaliser ces expérimentations. La situation géographique est présentée dans les Figure 0.1 et Figure 0.2. Le profil longitudinal du collecteur étudié représente une faible pente (0,09 %). La forme transversale du collecteur est de type cunette avec des banquettes à circulation latérale. Les détails de la coupe du collecteur sont illustrés dans les Figure 0.3 et Figure 0.4. Ce tronçon d'étude présente des singularités sur sa pente longitudinale tout au long du canal. Étant par sa géométrie favorable à une sédimentation considérable, ce tronçon fait objet d'un curage annuel de façon manuelle par les égoutiers. En plus de la sédimentation, sur ce canal d'étude une vanne est déjà installée à 50 m en aval du tronçon étudié, ce qui permet potentiellement de générer des effets importants de chasse hydraulique. La position de la vanne est indiquée sur la Figure 0.3. Figure 0.4 montre la forme du collecteur (cunette avec des banquettes latérales de circulation).

Figure 0 . 1

 01 Figure 0.1 Situation géographique du site d'étude dans la ville de Paris.

Figure 0 . 3

 03 Figure 0.3 Profil longitudinal du collecteur d'étude (la position de la vanne est indiquée).

  Tableau 0.1 Détails du déroulement de la campagne de mesures. Date [j/m/a] Activités expérimentales 07-08/08/2014 Collecte des données avant la réalisation de la chasse :  Échantillonnage des sédiments  Mesure Radar/sonar measurement 09/08/2014 Mise en place des équipements de mesures 10/08/2014  Déroulement de la chasse hydraulique (stockage d'eau, lâché d'eau)  Mesures des variables pendant la chasse 11/08/2014 Collecte des données après la réalisation de la chasse :  Échantillonnage des sédiments  Mesure Radar/sonar measurement Cinque sections de mesures ont été déterminées afin que les paramètres hydrauliques (i.e., les variables d'écoulement) et sédimentaires (i.e., la turbidité) soient relevés. Les paramètres mesurés avec le nom des appareils des mesures sur cinq sections sont présentés dans la Figure 0.5 et leur installation dans chaque section est illustrée dans la Figure 0.6.
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 05 Figure 0.5 Emplacement des sections de mesures avec les appareils de mesures installés.

Figure 0 . 6

 06 Figure 0.6 Installation des appareils de mesures hydro-sédimentaires sur la coupe transversale.
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 07 Figure 0.7 Résultats des mesures volumétriques des dépôts avant et après la chasse.
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 08 Figure 0.8 Evolution volumétrique des sédiments après la chasse décomposés en quatre fractions de sédiments.
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 09 Figure 0.9 Moyenne granulométrique de toutes les courbes avant et après la chasse.
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 0 Figure 0.10 Effet de la chasse sur les diamètres caractéristiques des sédiments.
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 0 Figure 0.11 Résultats hydrodynamiques du modèle avec une approche de transport sédimentaire uniforme.
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 0 Figure 0.12 Résultats hydrodynamiques du modèle avec une approche de transport sédimentaire non-uniforme.
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 0 Figure 0.13 Résultats du transport sédimentaire obtenus par le modèle uniforme.
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 00 Figure 0.14 Résultats du transport sédimentaire obtenus par le modèle non-uniforme.
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 0 Figure 0.16 Résultats du transport sédimentaire obtenus par le modèle non-uniforme.

Finally, in Chapter 7 ,

 7 outcome of the present study is summarized and then concluding remarks are drawn. At the end, an outlook to the future work is presented.
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 27 Fig. 2.7 Bag for flushing large sewers used in 1897 (source: www.sewerhistory.org).
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 28 Fig. 2.8 Example of Storage-Volume-Activated-Devices (SVAD) used in sewers (Dettmar and Staufer 2005).

  . Bertrand-Krajewski et al. (2003) described the hydraulic behaviour of this gate in a real sewer channels (channel height of 1.8 m). Investigations were carried out to obtain a discharge relationship by taking into account the upstream water head, and to evaluate the flushing performance. This gate was also investigated at laboratory small scale by authors such as Bertrand-Krajewski et al. (2004), Bertrand-Krajewski et al. (2005), Campisano et al.

  For example , Bertrand-Krajewski et al. (2003) have observed 25-30 flushing per day in combined sewer channel with H=1.8 m. The number of flushing depends on the diurnal flow discharge and gate characteristics. The gate blockage plays the role in the number of flushes. Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 72

  Other in-sewer flushing experiments have been done by various authors who monitored the sediment evolution under the flush experiment by monitoring the bed height (Bertrand-Krajewski et al. 2005; Abderrezak and Paquier 2007). In the context of a research program (Bertrand-Krajewski et al. 2006), bed heights were recorded after each flushing operation of a large set of flushes generated using a Hydrass gate in an ovoidal combined sewer channel in Lyon. The mean grain size of particles was reported as fine sand.

o

  understanding the hydraulic boundary shear conditions and cleaning performance of flushes in terms of scoured distance; o determining sediment removal efficiency of flushing operations; o evaluating the hydraulic behaviour of flushing to select the appropriate device for sewer systems under study; o testing various sediment-transport formulas to develop or find a better relationship estimating the sediment-transport discharge under flushing operation (Creaco and Bertrand-Krajewski 2009; Shirazi et al. 2014);

b:

  Bottom shear stress RS: Real case; LS: Laboratory scale; C: Circular, R: Rectangular, O: Ovoid, Co: Compound, L: downstream studied sewer length; S:slope, D: sewer Diameter, H=sewer height, Q=discharge (m 3 /s) Hw: Flushing water head, Sl: Storage length, Vol: Flushing volume (m 3 ), Hs: sediment thickness, SF: Single flush; MF: Multiple flushes;

Fig. 3

 3 Fig. 3.1 Administrative arrondissement of Paris city; hatched area is the entire catchment zone drained by the whole collector of Des Coteaux. The figure below shows the position of the pilot channel in the city.

Fig. 3 . 2

 32 Fig. 3.2 Bottom elevation of the experimental pilot sewer channel. Flow inlet/outlet locations of the studied channel are illustrated.

Fig. 3 . 3

 33 Fig. 3.3 Studied sewer channel with pipelines installed on the top of the channel.

Fig. 3

 3 Fig. 3.4 Channel cross-section profile.

Fig. 3

 3 Fig. 3.5 Implemented gate being as a radial tipping gate with weir function.

Fig. 3 . 7

 37 Fig. 3.7 Sediment types during preliminary visual observations of the sediments. Photo at left: taken from sediments of upstream segment of the channel (<S+500); and photo at right: taken from sediments of downstream segment (>S+500).

Fig. 3 . 8 Ch3.

 38 Fig. 3.8 Image of floating sewer deposits of rags/resin-type sediments through the studied channel.

Fig. 3

 3 Fig. 3.9 Measuring cross-sections and device positions in the experimental sewer channel.

  called hereafter T15, T25 and T65 designing the vertical positions.

Ch3.
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Fig. 3 .

 3 Fig. 3.10 The bed scan apparatus developed to measure the sewer bed topography before and after the flush.

Fig. 3 .

 3 Fig. 3.11 Example of recorded data from radar technique.

Fig. 3 .

 3 Fig. 3.12 Example of recorded data from sonar technique.

  Fig. 3.14 Scheme of vertical bed sampling of the bed.

Fig. 3 .

 3 Fig. 3.15 Sediment sampling locations taken from deposits BF and AF.

Fig. 3 .

 3 Fig. 3.16 Image of security transporting kit containing samples.

Fig. 3 .

 3 Fig. 3.17 Laboratory procedures for determination of the deposits grain-size distribution including drying (top-left), grinding (top-right), vibrating (bottom-left) and weighting (bottom-right).

W

  is the initial is weight of the sample (e.g., 20 g) and d W is the redried sample after destructing the organic fraction.

  of pores (i.e., the volume of the added water) and the total volume, respectively.Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 105

Fig. 3 .

 3 Fig. 3.18 Camera placed in a hermetic Plexiglas box to be placed inside the channel wall.

Fig. 4

 4 Fig. 4.1 Example of samples containing atypical particles that were finally eliminated from the samples (marked particles).

Fig. 4

 4 Fig. 4.2 A screenshot of the video recorded by the bed-load camera located at S+50.

Fig. 4

 4 Fig. 4.3 Flow and sediment-related variables recorded during the flush experiment in various measuring sections along the sewer channel.
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Fig. 4

 4 Fig. 4.4 Bed profiles along the sewer channel obtained from bed scan technique.
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Fig. 4

 4 Fig. 4.5 Grain-size distribution of samples averaged over two segments before and after S+500.
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Fig. 4

 4 Fig. 4.6 Volumes of deposits BF comparing to the AF by size classes of four sediment fractions.

Fig. 4 . 7

 47 Fig. 4.7 Fractional grain-size distributions of the bed sediments AF compared to BF along the entire sewer channel.

Fig. 4 . 8

 48 Fig. 4.8 Comparaison of the orgnaic content of the sewer sediment samples collected before and after the flush.
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Fig. 5

 5 Fig. 5.1 Scheme of the flush process: a) still water upstream of the gate while closed at t =0, b) flush release after the gate opening at t >0 (Chanson 2006).

  5.2 being x [m] and t [s] the spatial and temporal independent variables, respectively; A [m 2 ] the cross-section of the wetted area; Q [m 3 /s] and V [m/s] the flow discharge and the average flow velocity, respectively; Fh [N] the hydrostatic force over the cross-section; ρ [kg/m 3 ] the water density; g [m/s 2 ] the gravity acceleration; Sb [-] the slope of the mobile bed; J [m/m] the energy friction slope.

Fig. 5 . 2

 52 Fig. 5.2 Scheme of sediment mass balance in a given control volume.

  w and b relative to the channel walls (e.g., concrete) and to the channel bed. In case of bed deposits, b k can be evaluated as a function of the sediment characteristic size using the well-known formula by Strickler:

Ch. 5 .

 5 Unsteady flow numerical modelling of sediment transport under sewer flushing Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 134 Further, the shear stress exerted over the sediment bed ( b  ) is evaluated as a function of the ratio between eq k and b



  are respectively non-dimensional effective bed and critical shear stresses.



  is the density of water-sediments mixture (in kg/m 3 ); s  is the density of the sediment (in kg/m 3 ); s w is the sediment settling velocity (in m/s).

  Fig. 5.3 Discretization scheme of domain in terms of time and space. Initial conditions at (t=0)

Fig. 5 . 4

 54 Fig. 5.4 General scheme of the boundary conditions for domains upstream and downstream of the gate (D1, D2 are domains upstream and downstream of the gate, respectively).

Fig. 5

 5 Fig. 5.5 Simple scheme of bed and suspended load in an open flow used in the non-uniform model.



  is the percent (concentration) of sediments of size class k in the pavement layer, p s A is the sediment area of the pavement (equal to

  of sediment (per unit length), i.e., the transport capacity of the class k of the sediment.



  sediment discharge (as sum of bed and suspended-load transport capacity) of the k size class of the sediment in the pavement and As is the area of the sediment deposits. mixing volume of the pavement" and represents the volume of the sediments of class k that is present in the pavement (per unit channel length). temporal variation of the sediment area of the pavement for the k-class.Similarly, the "mixing volume in the sub-pavement" the sediments belonging to the k-class in the sub-pavement layer. In particular, based on the mass balance equation for the subpavement: belonging to each class-k in the sub- pavement is then calculated based on the following relationship where M is the number of grain sizes that constitute the mixture:

  is generally the mean diameter (d50) of the mixture (m), and k d is the diameter of k th fraction of grain-size distribution (in m).

Ch. 6 .

 6 Model application to the flush experiment Paris sewer Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 150 6.1.2 Basic input data for the uniform sediment-transport model

  average porosity of 0.41 was calculated for the four samples analysed in laboratory. (3) The specific weight of the sediments measured from the laboratory analysis was based on the weighted average of all the measured values along the longitudinal sewer channel. (4) The Strickler coefficient for the walls of the channel was (according to the literature) determined as 50 [in m 1/3 /s] based on the bottom texture Ch.6. Model application to the flush experiment Paris sewer Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 151 coupled water level-flow measurements under (quasi-)uniform flow conditions in the sewer channel.

Fig. 6 . 2

 62 Fig. 6.2 Simple scheme representing the flow boundary conditions for the entire channel when a) the gate is in opening operation (first 56 s); b) when the gate 'numerically eliminated' after 56. s.

Fig. 6

 6 Fig. 6.3 Comparison of the measured and simulated flow discharge for all five measuring sections using the uniform sediment-transport approach.

Fig. 6 . 4

 64 Fig. 6.4 Comparison of the measured and simulated water levels for all five measuring sections using the uniform sediment-transport approach.

Ch. 6 .

 6 Model application to the flush experiment Paris sewer Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 159

Fig. 6 . 5

 65 Fig. 6.5 Propagation of the bed shear stress upstream and downstream of the gate along in sections S-30, S+10, S+180 et S+810 for the first half an hour (uniform sediment-transport model).

Fig. 6

 6 Fig. 6.6 Bed-load sediment-transport discharge from three sections through the channel downstream the gate.

Fig. 6 . 7

 67 Fig. 6.7 Comparison of the simulated and experimental bed heights after the flush event using the uniform sediment-transport approach.

Fig. 6 . 8

 68 Fig. 6.8 Summary of the numerical results of uniform sediment-transport model in terms of the transported volume of sediments.

Fig. 6

 6 Fig. 6.9 Comparison of the simulated and experimental bed heights after the flush event using non-uniform sediment-transport model with uniform sediment condition.

Fig. 6 .

 6 Fig. 6.10 Comparison of the measured and simulated flow discharges for all five measuring sections using the non-uniform sediment-transport approach.

Fig. 6 .

 6 Fig. 6.11 Comparison of the measured and simulated water levels for all five measuring sections using the non-uniform sediment-transport approach.
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Fig. 6 .

 6 Fig. 6.12 Propagation of the bed shear stress upstream and downstream of the gate along in sections S-30, S+10, S+180, S+810, S+970 for the first half an hour (non-uniform sedimenttransport model).

Fig. 6 .

 6 Fig. 6.13 Bed-load sediment-transport discharge from four sections through the channel downstream the gate.

Ch. 6 .

 6 Model application to the flush experiment Paris sewer Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 169 particular, the model has properly reproduced the peaks of the bed heights with a relatively good match. On the figure, various sections are indicated by dashed polylines are those improved by the developed model that were not (well-) drawn by the uniform sediment-transport model. Thus, results indicates well-reproduction of deposit peaks through quasi the whole channel. Also, data from simulation shows a good agreement of the results against the experimental obtained measured from the flushing campaign.

Fig. 6 .

 6 Fig. 6.14 Comparison of the measured and simulated bed heights along the studied sewer channel using the non-uniform sediment-transport approach.

Fig. 6 .

 6 Fig. 6.15 Example of the accumulated rags in the studied channel.

Fig. 6 .

 6 Fig.6.16 Schematic summary of the experimental and numerical results from non-uniform sediment-transport model in terms of the transported volume of sediments.

  Both model were compared by analysing the advantages and Ch7. Conclusions and future perspectives Gashin Shahsavari (2018) / Paris Diderot University (Paris 7) 184

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Tableau 0.1 Détails du déroulement de la campagne de mesures. ............................. Table 2.1 Sediment size classification. ........................................................................ Table 2.2 Rouse method for classifying the transport regimes of particles. .............. Table 2.3 More commonly used sediment-transport formulas for bed-load sediment transport. ............................................................................................................ Table

Table 2 .

 2 6. Example of fieldworks which measured size ranges of the bed deposits in sewers. ................................................................................................................Table 2.7 Example of studies who obtained the minimum (critical bed) shear stress corresponding to the beginning of erosion of a given particle .......................... Table 2.8 Numerical simulations of sewer of sewer sediment movements .............. Table 2.9 Summary of example of experimental flushes in field cases......................

Table 2 .

 2 10 Example of numerical research (field and laboratory-based) studies on flushing operation. .............................................................................................. Table 3.1 Detail of the activities developed for the field measurement campaign. .. Table 3.2 General information on the used measuring devices based on factory notifications. Table 4.1 Evaluation of the recorded data. Colours indicate the status of collected data as green: complete data; yellow: data with missing values; black: no recorded data. Value inside each cell signifies the time interval of sampling. Table 4.2 standard deviation of turbidity records obtained from all the measuring sections.

....................................................................................................... Table 3.3 Description of the implemented cameras inside the cunette wall if the channel. ............................................................................................................. ............................................................................................................ Table 4.3 Statistical sediment grain-size characteristics BF and AF for the upstream and downstream segments of the channel ......................................................

Table 4 .

 4 4 Fractional volumes of sediments BF and AF. ............................................ Table4.5 Measured density of selected samples of deposits obtained from laboratory analysis. .

..........................................................................................

Table 4 .

 4 6 Dimensionless porosity of selected samples obtained at laboratory. ...... Table 5.1 Example of formulas used in the model to estimate sediment-transport discharge. .......................................................................................................... Table 5.2 Velikanov coefficients found in the literature. ......................................... Table 6.1 Summary of the input parameters defined into the uniform sedimenttransport model. ............................................................................................... Table 6.2 Standard deviation from the mean for the measured flow discharges compared to the experimental data for the first 1 h. ...................................... Table 6.3. Statistical indices to evaluate the agreement between simulated resultsand measured bed heights between S0 and S+1050 using the uniform

sediment-transport model................................................................................ Table 6.4 Standard deviation from the mean for the measured flow discharges compared to the experimental data for the first 1 h. ...................................... xviii

Table 6 .

 6 5. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model................................................................................ 169 Table 6.6 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model compared to the experimental values for all the sampled sections (Sim16)......................... 173 Table 6.7. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model obtained from Sim24. ........................................... 175 Table 6.8. Comparison of the quantitative results of the sensitivity analyses obtained from Sim24. ....................................................................................................... 175 Table 6.9 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim24) compared to the experimental values for all the sampled sections. ............... 175 Table 6.10. Comparison of the quantitative results of the sensitivity analyses obtained from Sim32. ....................................................................................... 176 Table 6.11. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model obtained from Sim32. ........................................... 176 Table 6.12 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model using equal to 0.00125, 0.005 and 0.002 (in Sim16, Sim24 and Sim32, respectively) compared to the experimental values for all the sampled sections. ............... 176 Table 6.13. Comparison of the quantitative results of the sensitivity analyses obtained from Sim31. .

...................................................................................... 177 Table 6.14. Statistical indices to evaluate the agreement between simulated results and measured bed heights using the non-uniform sediment-transport model obtained from Sim31. ....................................................................................... 178

Table 6 .

 6 15 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim31) compared to the experimental values for all the sampled sections. ............... 178 Table6.16. Comparison of the quantitative results of the sensitivity analyses obtained from Sim29. .

...................................................................................... 179

Table 6 .

 6 17. Statistical indices to evaluate the agreement between simulated results and measured bed heights using the non-uniform sediment-transport model obtained from Sim29. ....................................................................................... 179 Table 6.18 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim31) compared to the experimental values for all the sampled sections. ....................... 180

	xix

  ont été évalués (Figure 0.10). Les diamètres choisis sont représentatifs des courbes granulométriques. La Figure 0.10 montre la comparaison des diamètres avant et après la chasse. Elle présente l'effet croissance dominant sur tous diamètres tout au long du collecteur.

		0,12										
		0,08					< 0.9 MM				
	HS	0,04			Avant la chasse	Après la chasse		
		0										
		-50	50	150	250	350	450	550	650	750	850	950	1050
		0,08										
						0.9 < D < 2 MM			
	HS	0,04										
		0										
		-50	50	150	250	350	450	550	650	750	850	950	1050
		0,08										
	HS	0,04				2 < D < 4 MM			
		0										
		-50	50	150	250	350	450	550	650	750	850	950	1050
	0,08										
							> 4 MM				
	0,04 HS										
		0										
		-50	50	150	250	350	450 DISTANCE 550	650	750	850	950	1050

  Tableau 0.1 Résultats de l'analyse de la sensibilité du modèle non-uniforme et comparaison avec les données expérimentales.Tableau 0.2 présente une synthèse des avantages et des inconvenients de deux modèles de transport solide avec deux approches : uniforme et nonuniforme. Le deuxième modèle apporte plus d'avantages. Cependant, le premier pourrait être avantageux quand on s'intéresse seulement à une reproduction globale des épaisseurs/volumes déposés après la chasse.

		Distance	Modèle approche non-uniforme (modèle de base)	ηmin= 0.0005	ηmin = 0.002	Sim16 + pave-ment avec 1*d90	Sim16 + effet hiding	Données expé-
	Nom de simulation all channel (-50 to 1050) Tableau 0.2 Synthèse avantages et inconvenants de deux modèles de transport solide uniforme et Sim16 Sim24 Sim32 5,06 4,81 5,09 non-uniforme.	Sim31 3,67	Sim29 5,22	rimentales 5,61
	Upstream gate Downstream gate Prédiction de l'état des sédiments après la (-50 to 0) 0,60 (0 to 1050) 4,46 chasse	Uniforme	0,60 4,22 Non-uniforme 0,60 4,49	0,24 3,42	1,10 4,11	0,21 5,39
	Remained	(0 to 1050)		22,74			22,98			22,71	23,78	23,09	21,82
			Max Temps de calcul		24,47	+ (5h)	24,62	-(24h)	24,65	28,04	20,21	26
	Bed heights	Mean Hydrodynamique		3,0	+		3,1	+		3,1	3,2	3,0	2,9
		RMSE Taux de cisaillement sur le lit	0,028	+		0,029	++		0,029	0,028	0,041	-
	.	Épaisseur des sédiments (profil)		+			++	
		Volume éliminé/restant de sédiments	+			++	
			Composition/texture			-			++	
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Table 2 .

 2 1 Sediment size classification.

	Size range	Aggregate class	Size range	Aggregate class
	64-256 mm	Cobbles	0.5-1 mm	Coarse sand
	32-64 mm	Very coarse gravel	0.25-0.5 mm Medium sand
	16-32 mm	Coarse gravel	125-250 µm	Fine sand
	8-16 mm	Medium gravel	62.5-125 µm Very fine sand
	4-8 mm	Fine gravel	3.9-62.5 µm	Silt
	2-4 mm	Very fine gravel	< 3.9 µm	Clay
	1-2 mm	Very coarse sand	< 1 µm	Colloid

Table 2 .

 2 2 provides the range of values of R corresponding to the various modes of transport of the sediments. According to the table, Rouse number should remain larger than 2.5 to account for the bed-load transport, while values smaller than 1.2 ensure the presence of suspended load.

Table 2 .

 2 2 Rouse method for classifying the transport regimes of particles.

		Rouse number
	Transport mode	(	/ s  u * w	)
	Bed-load	R>2.5	
	Incipient suspended load (50% suspended load)	1.2<R<2.5
	100% suspended load	0.8<R<1.2
	Wash load	R<0.8	

Table 2 .

 2 6. Example of fieldworks which measured size ranges of the bed deposits in sewers.

	Reference	Sampling motiva-	Observed sewer in-	Average size (d50)
		tion	formation	(from A, C or A/C
				for bed-load in
				general)
	Crabtree (1989)	study bed deposits	Combined sewers in	(A): 100µm -10mm
		and pollution	UK	(C): < 170µm
		sources		
	Laplace (1993)	Bed deposits dy-	Man-entry Collector	A/C: 0.35-8.5mm
		namics et evolution	N°13 in Marseille	
		during dry and wet	(France)	
		weather		
	Ashley et al.	Investigate linking	3 combined sewers	(A): 0.15->20 mm
	(1994)	bed deposits to the	with different sizes in	
		foul flush pollutant	Dundee (UK) and in	
		load	Marseille (France)	
	Michelbach	First foul flush pol-	Combined sewer of	A/C: 0.6-2 mm
	(1995)	lution	"Schellenhauschen"	
			in Germany	
	Verbanck (1990) Pollution quantifica-	Combined sewer in	(A/C): 350 µm
		tion	Brussels (Belgium)	
	Bertrand-	Operational solid	Combined sewer in	(A/C): 270 µm
	Krajewski et al.	management to un-	Lyon (France)	
	(2006)	derstand sediment		
		accumulation		

Table 2 .

 2 [START_REF] Ab | Experimental studies of selfcleansing drainage system design: a review[END_REF] Example of studies who obtained the minimum (critical bed) shear stress corresponding to the beginning of erosion of a given particle

	Author(s)	Obtained shear stress for sedimentation (in N/m²)	Case study location
	Ashley et al. (1992)	Mean shear stress Type C: >1.8	Real field -Dundee, UK
	Wotherspoon and Ashley (1992)	>10	Laboratory measurements of real cohesive sediments, UK
		Mean shear stress	
	Nalluri and Alvrez (1992)	Type C: >2.5	Laboratory measurements-UK
		Type A: >6-7	
	Ristenpart and Uhl (1993)	> 0.7 Long dry-weather: >3.3	
	Ristenpart (1995)	>0.44 -1.02	Real field -Hildesheim, Ger-many
	Skipworth et al. (1996)	>0.5	Laboratory synthetic cohesive particles
	Ahyerre (1999)	>0.1	Real field -Paris, France
	Laplace et al. (2003)	>0.1	Real field -Marseille, France
	Johanson (2015)	Type C: >2.5 Type A: >6-7	Laboratory measurements-UK

Table 2 .

 2 8 Numerical simulations of sewer of sewer sediment movements

	Reference	Motivation	Used model	Modelling method for
				transport
	Ashley et al.	Erosion and behaviour of the	MOSQUITO	Ackers-White equation
	(1992)	particles and associated pollu-		to predict the sediment
		tants during foul flush events		transport
	Lin (1992)	Modelling sewer sediment pro-	MEDCA	Meyer-Peter and Müller
		cesses (i.e., evolution of bed		equation
		profiles and composition)		
	Coghlan et al.	Suspended sediment transport	SWMM + MOS-	Regression equation
	(1996)	during dry-and wet-weather	QUITO	
	Faram and Har-	Assessment of particle removal	Fluent CFD	Lagrangeian particle
	wood (2002)	and retention efficiency at		tracking
		sewer inlets		
	Schütze et al.	Controlling discharge of aes-	Simba# simulator	Regression after Mont-
	(2000); Schütze	thetic pollution (gross solids)		Carlo
	et al. (2014)			
	Digman et al.	The movement of gross solids	Gross Solid Simu-	Mathematical model
	(2002)	in combined systems	lator (GSS)	
	Bertrand-	Simulation of sediment accu-	Empiric model,	
	Krajewski et al.	mulation	Model Velikanov	
	(2006)			
	Celestini et al.	Modelling sediment transport	SWMM	
	(2007)	to identify deposition loca-		
		tions, characterize and quantify		
		bed deposits		
	Thinglas and	Simulating invert trap to assess	FLUENT	CFD + Renormalization
	Kaushal (2007)	the effect of model precision		Group (RNG) k-ε mod-
				el along with discrete
				phase model (DPM)
	Wu and He	Settling mechanism of sewage	Developed model	Interactions between the
	(2010)	solids		particles
	Verbanck	Sewage quality modelling of	Innovative model	Two-layer suspended-
	(2001)	near-bed solids		load
	Mouri and Oki	In-sewers sediment-transport	Developed model	Taking account the spe-
	(2010)	processes in the context of		cific in-sewer transport
		flooding		phenomena
	Park et al.	Control sewer pollution during	XP-SWMM	Probability density
	(2010)	first flush		function
	Campisano et	Bed evolution (deposi-	1D DSV-Exner	Semi-coupled modelling
	al. (2013)	tion/transport) associated with	model	approach for uniform
		aggradation process		sediments
	Wan Mohtar et	Predicting the incipient sedi-	feed forward neu-	Neural network algo-
	al. (2018)	ment motion	ral network	rithms
			(FFNN) and radial	
			basis function	
			(RBF)	

Table 2 .

 2 9 Summary of example of experimental flushes in field cases.

	References	Used gate	Site characteristics	Sediment di-	Sewer type
		type	(units in m)	ameter	
				(in mm)	
	Laplace et al.	Hydrass	L(150), Ovoid (1.7)	Upstream:	Sewer net-
	(2003)	gate	Slope: 0.02%	d50(8)	work
				Downstream:	
				d50(0.6)	
	Ab Ghani et al.	Tipping	L(40), D(1.2×0.6)	d50(1.11)	Storm net-
	(2013)	gate			work
	Ristenpart	Sewer gate	L(170), D(1.5),	No info	Combined
	(1998)	valve	Slope: -0.6 and		sewer (Inter-
			0.7‰		ceptor)
	Lorenzen et al.	Hydrass	L(2400), D(1.8-4)	d50(0.6 mm)	Combined
	(1996)	gate	Slope: 0-1.2‰		sewer (circu-
		H(1.9m)			lar and rec-
					tangular)
	Fan et al. (2004)	Tipping	Sanitary sewer: L:	No info	Sewer and
		gate	L(555), D(0.46-		storm net-
			0.6),		works
			Strom sewer:		
			L(1620), D(0.0975-		
			1.83)		
			Slope: 0.3-0.5‰		
	Balayn (1996)	Hydrass	L(155),	d50(2 mm)	Combined
		gate	ovoid(1.7×1.0),		sewer (Col-
			Slope: 0.2-2.6%		lector)
	Dettmar and	SVAD-type	L(400), circu-	Mean d50(1-	Combined
	Staufer (2005b)	gate	lar(2.5-3.4),	18 mm,	sewer (Col-
			Slope: 3.6-4.6‰	mean=10mm)	lector)
	Bertrand-	Hydrass	L(300), ovoid(1.8-	No info	Sewer reach
	Krajewski et al.	gate	1.1),		
	(2005)		Slope: 4.54‰		
	Bertrand-	Hydrass	Ovoid(1.8-1.1),	d50(270 µm) ,	Combined
	Krajewski et al.	gate	Slope: 4.54‰	90% sedi-	sewer
	(2006); Creaco			ment mixture	(Trunk)
	and Bertrand-			< 2 mm	
	Krajewski				
	(2007, 2009)				

D: Sewer diameter, L: flushing distance, H: water head

Table 2 .

 2 10. 

Table 2 .

 2 10 Example of numerical research (field and laboratory-based) studies on flushing operation.

	References	Site characteris-	Flushing charac-	Used model	Investigation aim
		tics	teristics		(s)	
	Balayn et al.	RS, O, L=160,	Qmax=0.5	1D model	Relation between
	(2003)	D=(1.7×1), mean		Rubarbe	Q and Hw during
		d50=2 mm			sediment transport
	Bertrand-	RS, Co, L=300,	Mean Q= 51.1 L/s,	Model-based	Hydraulic behav-
	Krajewski et	D=(1.8×1)	Mean Vol= 44.4	outflow rela-	iour of Hydrass
	al. (2003)			tionship	gate	
	Bertrand-	LS, R, L=3.9, S=	(Bertrand-Krajewski	Model-based		
	Krajewski et	variable	et al. 2003)	outflow rela-		
	al. (2004)			tionship, dis-		
	Bertrand-	1)LS, R, L=3.9, S=	1) Q=0.34-5.71L/s,	charge coeffi-		
	Krajewski et	variable;	H=variable	cient		
	al. (2005)	2)RS, Co, L=300,	2) S=4.2‰ (Ber-			
		D=(1.8×1.1)	trand-Krajewski et			
			al. 2003)			
	Staufer et al.	RS, Co, L=513,	Vol=217, Hw=1.8,	Fluvius 1Di	1D and 3D com-
	(2007)	D=3, H=2.5	Sl=50m, Qmax=2	and SSIIM	parison of flushing
				(3D)		
	Staufer and	RS, C, D=2.5,	Sl=101, SF,	Fluvius 1Di	Effect of flushing
	Pinnekamp (2008)	S=4.2‰,	Hw=1.02		waves on the		b
	El Kadi Ab-	See Balayn et al.	Hw=0.72, Sl=31m,	1D numerical	Removal effect of
	derrezzak and	2003	Qmax=2	model	flushing waves
	Paquier (2007)					
	Creaco and	RS, Co, L=400,	Hw=0.8	Model-based	Evaluating the
	Bertrand-	ovoid (1.8×1.1),		outflow rela-	flushing efficiency
	Krajewski	d50=270µm		tionship	by 4 formulas of
	(2009)	Mean slope0			sediment transport
	Todeschini et	LS, R, L=5.5, S=	Hw=0.15-0.25	1D DSV-Exner	Scouring effect of
	al. (2010)	0.5, 2%, d50=0.25,		TVD-McCor-	flushing waves
		0.48, 0.9 mm,		mack		
		Hs=0.5-1 cm)				
	Schaffner and	Similar real scenar-	Vol=15, Hs=0.6,	1D SWMM	Evaluate flushing
	Steinhardt	ios: Circular		model	performance
	(2011)	(D=0.5-1)			(shear stresses) in
					siphons	
	Shirazi et al.	LS, R(0.4×0.65),	Vol=0.144, 0.48,	1D DSV-Exner	Performance of
	(2014)	L=18, S= 1.5, 3%,	Hs=0.12, 0.4 cm,	TVD-McCor-	successive flushes
		d50=1.8 mm	Sl=50m, Qmax=2	mack	and validate
					transport formulas
	Schaffner	Similar real scenar-	For 1D: Vol=42.3,	1D: EDWA	Influence of flush-
	(2016)	ios:	145.8, Hs=0.4-1.6	model	ing vol. and Hs on
		C, D=800, 1600,	For 3D: Vol=112.5,	3D: SSIIM	modelling	
		S=0.1, 0.15%,	Hs=1-3	model		
		L(650, 1500)				
		Units are in m;			

b 

Table 3 .

 3 1 Detail of the activities developed for the field measurement campaign.

	Date [d/m/y]	Experimental activities
		Data collection:
	07-08/July/2014	 Bed samples before the flush
		 Radar/sonar measurement before the flush
	09/July/2014	Setup of experimental equipment
	10/July/2014	Execution of the flush test and data acquisition dur-ing the flush
		Data collection:
	11/July/2014	 Bed samples after the flush
		 Radar/sonar measurement after the flush

Table 4 .

 4 1 Evaluation of the recorded data. Colours indicate the status of collected data as green: complete data; yellow: data with missing values; black: no recorded data. Value inside each cell signifies the time interval of sampling.

	Device Section	Doppler (time step)	Ultrasound (time step)	Turbidimeter (time step) T15 T25	T65
	S-50	(10)	(15)	(10)	(10)	(10)
	S-5	(10)	(15)	(10)	(10)	(10)
	S+5	(10)	(15)		(10)	(10)
	S+50	(10)	(15)	(10)		(10)
	S+100		(15)	(10)	(10)	(10)
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Table 4 .

 4 2 standard deviation of turbidity records obtained from all the measuring sections. of the turbidity data was done in the context of a conference preceding paper (Appendix B). The paper entitled "Preliminary analysis of turbidity measurements during a flushing operation in combined sewer channel" was presented in the 8 th International Conference on Sewer Processes and Networks held in Rotterdam, The Netherlands on August 31 st September 2016.

	Turbidimeter	S-50	S-5	S+5	S+50	S+100
	T15	480.0	1870.7	-	2141.6	1153.8
	T25	90.2	313.4	1063.6	-	837.2
	T65	25.6	241.8	9.4	31.0	593.5
	A further analysis				

Table 4 .

 4 3 Statistical sediment grain-size characteristics BF and AF for the upstream and downstream segments of the channel

	index	BF < S+500	BF > S+500	AF < S+500	AF > S+500
	d50	0.90	6.78	2.23	9.99
	d90	4.15	22.51	14.86	32.24
	Sk	0.20	-0.29	0.27	-0.23

Table 4 .

 4 4 Fractional volumes of sediments BF and AF.

	Fraction (mm)	BF < S+500	BF > S+500	AF < S+500	AF > S+500
	<0.9	15.72	0.73	9.66	0.65
	0.9<d<2	5.74	0.63	4.12	0.43
	2<d<4	3.23	0.73	2.54	0.38
	d>4	2.97	3.28	7.20	2.43

Table 4 .

 4 6 Dimensionless porosity of selected samples obtained at laboratory.

	Sample locations	Obtained porosity
	S-5	0.425
	S+10	0.4
	S+30	0.421
	S+50	0.4
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Table 5 .

 5 1 Example of formulas used in the model to estimate sediment-transport discharge.

	Author	Application range for d (in mm)	Notes
	Meyer-Peter and Müller (1948)	0.4 -30	Coarse gravel Uniform unsteady flow
	Engelund-Hansen (1967)	> 0.15	Gradually varied flow
	Ackers-White (1980)	> 2.4	Coarse sediments
	Van Rijn (1984)	> 0.2	Coarse sediments
	Parker (1990)	> 2	Gravel particles

Table 5 .

 5 2 Velikanov coefficients found in the literature.

	Author(s)		min		max
	Combes (1982)	0.0005-0.002	0.002-0.007
	Bujon (1988)	0.018	0.022
	Zug et al. (1998)	0.00225	0.00275
	Chebbo (1992)	0.001-0.005	0.001-0.005
	Bertrand-Krajewski et al. (2006) Bertrand-Krajewski (2006)	2×10 -6	1024×10 -6

Table 6 .

 6 1 Summary of the input parameters defined into the uniform sediment-transport model.

	Number	Parameter	Given value
	(1)	Grain size (uniform) (in mm)	2.176
	(2)	Sediment porosity (-)	0.41
	(3)	Sediment specific weight (in kg/m 3 )	2317
	(4)	Flow density (kg/m 3 )	1000
	(5)	Strickler coefficient of channel walls (in	50
		m 1/3 /s)	
	(6)	Minimum Velikanov efficiency coef. (-)	min  = 0.00125
	(7)	Courant number (-)	0.8
	(8)	Spatial step (s)	1 m
	(9)	Flush duration (in s)	18,000 (5 h)

Table 6 .

 6 2 Standard deviation from the mean for the measured flow discharges compared to the experimental data for the first 1 h.

Table 6 .

 6 4 Standard deviation from the mean for the measured flow discharges compared to the experimental data for the first 1 h.

Table 6 .

 6 5. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model.

	Coefficient	Root Mean Square Error (RMSE)	MAE
	value	0.028	0.018
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Table 6 .

 6 6 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model compared to the experimental values for all the sampled sections (Sim16).

	Characteristic size	RMSE	MAE
	d16	0.641	0.395
	d50	4.030	2.240
	d90	13.870	10.320

Table 6 .

 6 [START_REF] Ab | Experimental studies of selfcleansing drainage system design: a review[END_REF]. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model obtained from Sim24.

	Coefficient	Root Mean Square Error (RMSE)	MAE
	Sim16	0.028	0.018
	Sim24	0.029	0.019

Table 6 .

 6 8. Comparison of the quantitative results of the sensitivity analyses obtained from Sim24.

	Flushed volume	Experimental	Sim16	Sim24	Evolution from
	(in m 3 )				Sim16 to Sim24
	From S-50 to S1050	5.61	5.06	4.81	-4.9%
	From S-50 to S0	0.21	0.6	0.60	-0.8%
	From S0 to S+1050	5.4	4.46	4.22	-5.5%

Table 6 .

 6 9 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim24) compared to the experimental values for all the sampled sections.

	Characteristic	RMSE	MAE
	size	Sim16	Sim24	Sim16	Sim24
	d16	0.641	0.624	0.395	0.389
	d50	4.030	3.577	2.240	2.156
	d90	13.870	14.427	10.320	10.667

Table 6 .

 6 [START_REF] Staufer | In situ measurements of shear stresses of a flushing wave in a circular sewer using ultrasound[END_REF]. Comparison of the quantitative results of the sensitivity analyses obtained from Sim32.

	Flushed vol-	Exper-		Sim16		Sim24		Sim32	Evolution
	ume (m 3 )	imental		min 	00125 . 0		min 	0005 . 0		min 	002 . 0	Sim32 com-
												paring to
												Sim16
	From S-50 to S1050	5.61		5.06		4.81		5.09	+0.5%
	From S-50 to S0	0.21		0.60		0.60		0.60	-1.2%
	From S0 to S+1050	5.4		4.46		4.22		4.49	+0.8%

Table 6 .

 6 11. Statistical indices to evaluate the agreement between simulated results and measured bed heights of the studied channel using the non-uniform sediment-transport model obtained from Sim32.

	Coefficient	Root Mean Square Error (RMSE)	MAE
	Sim16	0.028	0.018
	Sim24	0.029	0.019
	Sim32	0.029	0.019

Table 6 .

 6 12 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model using min  equal to 0.00125, 0.005 and 0.002 (in Sim16, Sim24 and Sim32, respectively) compared to the experimental values for all the sampled sections.

	Characteris-	tic size	Sim16	RMSE Sim24	Sim32	Sim16	MAE Sim24	Sim32
	d16	0.641	0.624	0.564	0.395	0.389	0.336
	d50	4.030	3.577	4.027	2.240	2.156	2.132
	d90	13.87 14.427	14.117 10.32 10.667	10.393

Table 6 .

 6 13. Comparison of the quantitative results of the sensitivity analyses obtained from Sim31.

	Flushed volume	Experimental Sim16 Sim31	Evolution Sim31
	(m 3 )				comparing to Sim16
	From S-50 to S1050	5.61	5.06	3.67	-27.6%
	From S-50 to S0	0.21	0.60	0.24	-59.8%
	From S0 to S+1050	5.4	4.46	3.42	-23.2%

Table 6 .

 6 14. Statistical indices to evaluate the agreement between simulated results and measured bed heights using the non-uniform sediment-transport model obtained from Sim31.

	Coefficient	Root Mean Square Error (RMSE) MAE
	Sim16	0.028	0.018
	Sim31	0.028	0.018

Table 6 .

 6 15 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim31) compared to the experimental values for all the sampled sections.

	Characteristic size	RMSE Sim16 Sim31 Sim16 Sim31
	d16	0.64	1.47	0.50	0.23
	d50	4.03	2.90	0.32	0.60
	d90	13.87	13.22	0.19	0.25

Table 6 .

 6 16. Comparison of the quantitative results of the sensitivity analyses obtained from Sim29.

	Flushed volumes	Experimental Sim16 Sim29	Evolution Sim29
	(m 3 )				comparing to Sim16
	From S-50 to S1050	5.61	5.06	5.22	+3.0%
	From S-50 to S0	0.21	0.60	1.10	+82.6%
	From S0 to S+1050	5.4	4.46	4.11	-7.8%

Table 6 .

 6 17. Statistical indices to evaluate the agreement between simulated results and measured bed heights using the non-uniform sediment-transport model obtained from Sim29.

	Coefficient	Root Mean Square Error (RMSE)	MAE
	Sim16	0.028	0.018
	Sim29	0.041	0.024

Table 6 .

 6 18 Statistical evaluation factors calculated for three sediment sizes (d16, d50 and d90) simulated by the non-uniform sediment-transport model (Sim31) compared to the experimental values for all the sampled sections.

	Characteristic	RMSE	MAE
	size	Sim16	Sim29	Sim16	Sim29
	d16	0.641	0.653	0.395	0.403
	d50	4.030	3.116	2.240	2.110
	d90	13.870	12.025	10.320	10.107
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Comparison of the measured and simulated the characteristic grain sizes ( d16, d50 and d90) BF and AF along the studied sewer channel using the non-uniform sediment transport approach obtained from Sim29.
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6.1.3 Basic input data for the non-uniform sediment-transport model

The non-uniform sediment-transport model required further information mainly concerning the initial deposit bed before the flush (i.e., the bed composition and relative grain-size distribution curves). In particular, the grain-size distribution for the different channel sections were discretized into twenty classes of grain size with variable ranges from 0.075 to 50 mm as model input. The percentage of particles for each size class is constituted the matrix of the initial concentration k  of the different k-lasses in the initial pavement and sub-pavement layers of the bed. Since information on grainsize distribution was available only at 20 locations (see Chapter 4 and Fig. 6.1), spatial linearization of grain-size distribution was used to estimate the initial bed composition for all the channel sections. The percent of twenty classes of size are presented in Appendix C.  of the bed deposits at each section. However, this was not respected if the thickness of the real bed was smaller or higher. In other words, if p  is smaller than 90 3 d  , so the whole thickness of the bed deposits were given to the corresponding section. In this case no sub-pavement was exist. Otherwise, when p  is larger than 90 3 d  , so the thickness of the subpavement is equal to the reste of the bed height. 

Initial conditions for the flow

Before gate opening for flush releasing, at 0  t , while the 'reservoir' behind the gate was filled to the maximum level, the following settings for flow parameters were applied for the two models:

 Initial water levels in the upstream reach of the gate (upstream domain) were assumed under stationary conditions (Q=0). Consistently, with the maximum water level in store of 2.15 m immediately behind the flushing gate;

 Similarly, water levels in the downstream domain were assumed under stationary conditions, consistently to water level measurements recorded by all the water level probes before the flush release (average value of 0.5 m).

Initial conditions for the sediments

For the uniform sediment-transport model, the initial condition for the sediments was described in terms of height over the fixed bed, on every 1m along the sewer channel, as regarded from the real experiment.

The same bed heights were provided as input for the non-uniform sediment-transport model for each mesh node. Additionally, the real composition of the non-uniform bed mixture of the entire channel was provided to the model as the initial bed sediment BF as described in the previous sections.

Boundary and internal conditions for the flow at the upstream and downstream channel ends
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Boundary conditions were imposed at the upstream end of the

Comparison of the measured and simulated flow discharges for all five measuring sections using the non-uniform sediment transport approach obtained from Sim24. 

Expérimentations et