Cédric Marchand

4 Protocoles de réconciliation de clés pour la correction des erreurs dans les réponses des PUFs 4.1 Similarités entre la réconciliation en distribution quantique de clés et la génération able de clé à partir d'une réponse de PUF

Introduction

According to the World Semiconductor Trade Statistics (WSTS), the sales of the semiconductor market reached almost $340 billion in 2016 1 . This ever-changing industry is characterised by a vigorous competitiveness, a steadily increasing complexity and a strong market pull. One of the main problems facing this industry today is the protection of design intellectual property rights. This is mainly due to the multiplicity of actors involved in the design, production and marketing of electronic products. In order to understand where the issue comes from, a historical and economical overview of the semiconductor industry is necessary.

Historical and economical context

Moore's law, rst published in 1965 [START_REF] Moore | Cramming more components onto integrated circuits[END_REF] and revised in 1975 [START_REF] Moore | Progress in Digital Integrated Electronics[END_REF] states that the number of transistors that can be integrated on a unit area of integrated circuit doubles every two years. So far, even though a slight slowdown has been observed in recent years, the microelectronics industry followed this law. This is possible by making transistors smaller and smaller, 10nm being the technology node achieved in 2017 2,3 . Such a constant decrease is due to a strong market pull, which led customers to request more and more sophisticated, powerful and small devices.

A corollary of Moore's law is Rock's law, which states that the cost of a fabrication plant for integrated circuits doubles every four years. This emerges directly from the decreasing size of the transistors, making them harder and harder to manufacture. The cost of manufacturing plants now reaches tens of billion dollars 4,5 . With such considerable investments, control over Introduction fabrication plants rose to a national priority in USA 6,7 , since most of the foundries are now located in Asia. Another consequence of this increasing up-front investment is the market domination of existing large corporations, where ve of them (Intel, Samsung, Qualcomm, Broadcom, and SK Hynix) hold 41% of the marketshares in 2016 8 . The top two companies, Intel and Samsung, use the historical Integrated Device Manufacturer (IDM) model. A single company accomplishes the design, manufacturing and selling of the integrated circuit. However, the next two, Qualcomm and Broadcom, use the fabless model. As the name suggests, fabless companies do not own any fabrication facility. Instead, they rely on manufacturing plants own by third parties. Those companies, specialised in integrated circuits manufacturing, are called foundries. They are more and more important in the semiconductor industry, exceeding 50 billion dollars in sales in 2016, with an 11% increase compared to 2015 9 . Together, fabless designers and foundries form a new business model [START_REF] Hodges | Building the Fabless/Foundry Business Model[END_REF], that appeared in the 1980s, when the process was split into two parts: design and manufacturing.

Semiconductors being a very competitive market, shorter and shorter time to market has been required. In conjugation with a strong market pull, the alloted time to design integrated circuits reduced signi cantly. In order to keep-up with this trend, integrated circuits designers massively switched to a design-and-reuse paradigm, also called core-based design [START_REF] Rajesh | Introducing Core-Based System Design[END_REF]. In this framework, a complex design is split into smaller functional blocks of manageable complexity. Thus two new types of companies appeared in the design process, dividing it further. Intellectual property (IP) providers design individual IP cores, implementing a precise function. For instance, one can nd JPEG encoder or Ethernet controller IP cores. Those IP cores are typically purchased by system integrators, who integrate them into a single modular design. The di erent types of companies taking part in the design of an integrated circuit are shown in Figure 1. Of course, such a strict division does not perfectly match reality. For instance, a fabless designer might develop some IP cores in-house and purchase others from third party IP core providers.

The next section focuses on IP cores, detailing how they are distributed and the threats associated to this business model.

IP cores distribution and business model

Following the global transition from an industrial economy to a knowledge economy [START_REF] Peter | The age of discontinuity: Guidelines to our changing society[END_REF], the semi-conductor industry now relies heavily on the exchange and monetisation of intellectual property for the design of integrated circuits. Practically, IP cores are not provided alone but can come with application-speci c integrated circuit (ASIC) synthesis scripts, eld-programmable gate array (FPGA) place & route scripts, simulation scripts, testbenches, software models, test vectors, documentation, etc. Much like software companies, IP cores design companies now make the headlines for mergers and acquisitions worth millions of dollars. For instance, Intel acquired Altera and NXP was acquired by Qualcomm in the last two years. As stated in a recent research bulletin by IC Insights 10 , "The dollar value of merger and acquisition agreements in 2015 and 2016 were both about eight times greater than the $12.6 billion annual average of M&A announcements in the ve previous years (2010-2014)".

Designers directly sell their IP cores to system integrators or rely on an intermediate IP broker. Those IP brokers, such as ChipEstimate 11 , Design-And-Reuse 12 or CAST 13 , maintain large catalogues of IP cores from multiple designers. System integrators then purchase IP cores from the brokers or from the designers directly. This is very similar to the way software products are sold.

However, even though the distributions of IP cores and pieces of software work in a similar way nowadays, their actual usage after distribution is entirely di erent. Indeed, proprietary pieces of software come with a license, either in the form of a key, a le or a server. Without them, the software cannot be executed. IP cores however, once they are sold by the designer, are much harder to keep control on. The main issue here is that once an IP core has been sold, the IP designer has no way of knowing how many times the IP core is actually instantiated. model with upfront payment. In this model, an IP designer demands a xed amount of money from a system integrator before selling the IP core. Once it has been sold, the system integrator can instantiate the IP core as many times as needed. There are two issues with this business model. Firstly, it can inhibit small scale purchases for prototyping purposes or for small companies due to a too high initial investment. Secondly, it strongly limits the advantages brought by core-based design, which could bene t greatly from features typically found in software products like an evaluation period or a premium version of the IP core with enhanced performances.

Besides the limitations brought by upfront licensing, the main issue with the designer not knowing how many times the IP core is instantiated is that it can potentially be illegally copied. For example, a system integrator could sell a previously purchased IP core to business associates for a lower price, without the original designer knowing about it.

In order to exploit the full potential and bene ts of knowledge economy and to prevent illegal copying, a designer must then be able to know how many times a particular IP core has been instantiated. Moreover, by allowing the designer to remotely activate an IP core, pay-per-use licensing would be possible. Finally, with remote activation comes pre-activation mode. If this mode is degraded, illegal copies can be e ectively made useless until they are properly activated by the original IP designer. Obviously, such a remote activation scheme should also be secure, so that ill-intentioned users cannot circumvent it and use an illegal copy of the IP core. This is one of the objectives of the SALWARE project.

Introduction unclonable function (PUF) design and lightweight cryptography implementation, which are essential components for salutary hardware, but more speci cally targeted at preventing integrated circuits counterfeiting. This PhD thesis has complementary contributions, which are presented below, focusing more precisely on IP cores.

Contributions

First of all, in order to ensure that a design data protection scheme is e cient, illegal copies must exhibit a very disturbed operation. The rst option explored in this thesis to achieve this is to controllably force the outputs of a netlist to a xed logic level. We call this logic locking.

A very e cient algorithm to select the netlist nodes to modify based on the propagation of a controlling value in a graph is presented.

The second option to provide a degraded mode of operation is to disturb the outputs of the netlist by controllably inverting speci c internal nodes. We refer to this as logic masking. Speci cally, a new method of selection of the nodes to invert based on centrality indicators from graph theory is shown. Compared to state-of-the-art selection heuristics, it scales better to large netlists and e ciently disturbs the circuit operation.

The third contribution of this thesis deals with unique identi cation of IP core instances using a PUF. PUFs are very interesting primitives since they allow to identify IP core instances by extracting device-speci c manufacturing process variations, which are known to be random. However, those PUFs are subject to instability, and the extracted identi ers are not stable enough. To deal with this, we propose an innovative method based on the CASCADE key reconciliation protocol. Originally developed for quantum key exchange, we show that this interactive protocol can be successfully applied to error-correction of silicon PUF responses. Compared to existing error-correcting codes implementations, it is around an order of magnitude more lightweight in terms of required logic resources.

Finally, these contributions and those found in [START_REF] Marchand | Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés[END_REF] are bundled together in a complete design data protection module. We show that this module ful ls the requirements of a salware by being lightweight, secure and e cient at providing di erent degraded modes of operation for an IP core. Overall, this is an industrially viable solution for IP designers who wish to protect their design data from illegal copying at reduced cost. Introduction components required to ful l these requirements. Chapter 2 describes the method based on graph-analysis for combinational logic locking of a netlist. Chapter 3 shows how centrality indicators from graph theory can be used to select the most suited nodes to modify by logic masking. Chapter 4 presents the similarities between two scenarios, quantum key exchange and error-correction for silicon PUF responses. In particular, we show how the CASCADE key-reconciliation protocol can be used to provide lightweight error correction of silicon PUF responses. Finally, Chapter 5 presents the complete hardware/software design data protection module, which is the objective of the SALWARE project.

Introduction D'après les Statistiques du Commerce Mondial des Semi-conducteurs, le marché des semiconducteurs a atteint 340 milliards de dollars de vente en 2016 14 . Cette industrie en évolution constante est caractérisée par une compétitivité intense, une complexité en constance croissance et une forte demande du marché. L'un des principaux problèmes auquel cette industrie doit aujourd'hui faire face est la protection des droits de propriété intellectuelle sur les données de conception. Cela est dû majoritairement à la multiplicité des acteurs impliqués dans la conception, la production et la commercialisation de produits électroniques. A n de comprendre d'où vient le problème, un aperçu de l'industrie des semi-conducteurs d'un point de vue historique et économique est nécessaire.

Contexte historique et économique

La loi de Moore, publiée pour la première fois en 1965 [START_REF] Moore | Cramming more components onto integrated circuits[END_REF] puis révisée en 1975 [START_REF] Moore | Progress in Digital Integrated Electronics[END_REF], dit que le nombre de transistors qui peuvent être intégrés sur une surface unitaire de circuit intégré double tous les deux ans. Jusqu'ici, même si un ralentissement certain a été observé récemment, l'industrie de la micro-électronique a suivi cette loi. Ceci est rendu possible en réduisant de plus en plus la taille des transistors, 10nm étant le noeud technologique atteint en 2017 15,16 . Cette diminution constante est due à une forte demande du marché, qui a amené les consommateurs à demander des équipements toujours plus sophistiqués, puissants et petits. Un corollaire de la loi de Moore est la loi de Rock, qui dit que le coût de fabrication d'une usine de fabrication de circuit intégrés double, lui, tous les quatre ans. Ceci est une conséquence directe de la diminution de la taille des transistors, ce qui les rend de plus en plus complexes à fabriquer. Le coût d'une usine de fabrication atteint aujourd'hui des dizaines Introduction de milliards de dollars 17,18 . Avec des investissements aussi considérables, avoir la mainmise sur les usines de fabrication est devenu une priorité nationale aux États-Unis 19,20 , puisque la plupart d'entre elles sont maintenant situées en Asie. Une autre conséquence de l'augmentation de l'investissement initial requis est la domination du marché par les grandes entreprises existantes. Cinq d'entre elles (Intel, Samsung, Qualcomm, Broadcom et SK Hynix) possèdent ainsi 41% des parts de marché en 2016 21 . Les deux premières, Intel et Samsung, suivent le modèle historique du constructeur d'équipement intégré (Integrated Device Manufacturer ou IDM). Une seule entreprise assure la conception, la fabrication et la vente du circuit intégré. Néanmoins, les deux suivantes, Qualcomm et Broadcom, suivent le modèle fabless. Comme le nom l'indique, les entreprises fabless n'ont pas de moyens de fabrication. Elles s'appuient plutôt sur des entreprises tierces possédant des usines de fabrication. Ces entreprises, spécialisées dans la fabrication de circuits intégrés, sont appelées fonderies. Elles sont de plus en plus importantes dans l'industrie de la micro-électronique, dépassant les 50 milliards de dollars de vente en 2016, avec une augmentation de 11% par rapport à 2015 22 . Ensemble, les concepteurs fabless et les fonderies forment un nouveau modèle économique [START_REF] Hodges | Building the Fabless/Foundry Business Model[END_REF], apparu dans les années 1980, où le processus global a été séparé en deux : conception et fabrication.

L'industrie des semi-conducteurs étant un marché très compétitif, les délais de commercialisation sont également réduits. Ce phénomène, associé à une forte demande des consommateurs, a réduit de manière signi cative le temps alloué à la conception des circuits électroniques. A n de suivre cette tendance, les concepteurs ont rapidement adopté un modèle de conception modulaire [START_REF] Rajesh | Introducing Core-Based System Design[END_REF] basé sur la réutilisation de blocs existants (design-and-reuse). Dans ce cadre, un composant complexe est divisé en blocs fonctionnels de taille plus réduite et de complexité gérable. Ainsi, deux nouveaux types d'entreprises sont apparus dans le processus de conception, le divisant encore. Les concepteurs de composants virtuels conçoivent des modules implémentant une fonction spéci que. Par exemple, on peut trouver des composants virtuels de décodage JPEG ou de contrôle Ethernet. Ces composants virtuels sont typiquement achetés par des intégrateurs système, qui les associent dans un système modulaire. Les di érents types d'entreprises prenant part à la conception d'un circuit intégré sont présentés dans la Figure 2. Évidemment une division stricte ne re ète pas parfaitement la réalité. Par exemple, un concepteurs fabless peut concevoir certains composants virtuels en interne et en obtenir d'autres de concepteurs tiers. La section suivante se concentre spéci quement sur les composants virtuels, la manière dont ils sont distribués et les menaces associées à ce modèle économique.

Distribution des composants virtuels et modèle économique

Suivant la transition globale d'une économie industrielle vers une économie de la connaissance [START_REF] Peter | The age of discontinuity: Guidelines to our changing society[END_REF], l'industrie des semi-conducteurs s'appuie maintenant fortement sur l'échange et la monétisation de la propriété intellectuelle pour la conception des circuits intégrés. En pratique, les composants virtuels ne sont pas fournis seuls mais sont accompagnés de scripts de synthèse pour ASIC, de scripts de placement et routage pour FPGA, de scripts de simulation, de bancs de test, de modèles logiciels, de vecteurs de tests, de documentation, etc. Comme les sociétés de logiciels, les entreprises de conception de composants virtuels font maintenant la une avec des fusions et acquisitions atteignant des milliards de dollars. Par exemple, Intel a acquis Altera et NXP a été racheté par Qualcomm dans les deux dernières années. Comme mis en évidence dans un récent rapport par IC Insights23 , le montant total des fusions et acquisitions en 2015 et 2016 était environ huit fois supérieur aux 12,6 millions de dollars qui constituaient la moyenne annuelle dans les cinq années précédentes (2010)(2011)(2012)(2013)(2014).

Les concepteurs vendent leurs composants virtuels directement aux intégrateurs système ou s'appuient sur des grossistes intermédiaires. Ces derniers, tels que ChipEstimate 24 , Design-And-Reuse 25 ou CAST 26 maintiennent d'importants catalogues de composants virtuels de nombreux concepteurs. Les intégrateurs système acquièrent ensuite les composants virtuels Introduction via ces grossistes ou directement auprès du concepteur. Ce mode de fonctionnement est très proche de la manière dont les logiciels sont vendus.

Néanmoins, même si les moyens de distribution des composants virtuels et des logiciels suivent un modèle similaire de nos jours, leur usage après distribution est entièrement di érent. En e et, les logiciels propriétaires sont accompagnés d'une licence, sous forme de clé, de chier ou de serveur. Sans ces derniers, le logiciel ne fonctionne pas. Les composants virtuels, cependant, une fois qu'ils sont vendus par le concepteur, sont beaucoup plus di ciles à contrôler. Le principal problème vient du fait qu'une fois qu'un composant virtuel a été vendu, le concepteur n'a aucun moyen de savoir combien de fois il sera instancié en pratique.

Ce problème s'oppose de manière directe au principe d'économie de la connaissance mentionné ci-dessus. En e et, puisqu'il ne connaît pas le nombre d'instances du composant virtuel, le concepteur doit se résoudre à adopter un modèle de licence à versement initial. Dans ce modèle, le concepteur demande un montant xe à l'intégrateur système avant de lui fournir le composant virtuel. Une fois la transaction réalisée, l'intégrateur système peut instancier le composant virtuel autant de fois qu'il le souhaite. Deux problèmes apparaissent dans ce modèle économique. Premièrement, cela empêche les achats en quantité limitée qui peuvent être utiles pour le prototypage ou pour les petites entreprises du fait de l'investissement initial élevé. De plus, cela limite fortement les avantages apportés par la conception modulaire, qui pourrait béné cier largement de possibilités typiquement présentes dans le domaine du logiciel telles qu'une période d'évaluation ou un version premium du composant virtuel avec des performances plus élevées.

Au delà des limitations induites par ce modèle de licence, le principal problème lorsque le concepteur ne sait pas combien de fois le composant virtuel a été instancié est qu'il peut être potentiellement copié de manière illégale. Par exemple, un intégrateur système pourrait vendre à des associés un composant virtuel qu'il a déjà acheté, à un prix réduit et sans que le concepteur original n'en ait connaissance.

A n d'exploiter pleinement le potentiel et les avantages de l'économie de la connaissance et pour empêcher la copie illégale, un concepteur doit pouvoir savoir combien de fois un composant virtuel a été instancié. En outre, en permettant au concepteur d'activer à distance le composant virtuel, un modèle de licence basé sur l'usage serait possible. En n, permettre l'activation à distance implique la présence de modes de fonctionnement dégradés. Les copies illégales sont ainsi rendues inutilisables et donc inutiles jusqu'à ce qu'elle soient activées par le concepteur original. Évidemment, un tel système d'activation à distance doit également être sécurisé, de manière à ce que des utilisateurs mal intentionnés ne puissent pas le contourner et utiliser une copie illégale du composant virtuel. C'est l'un des objectifs du projet SALWARE.

Introduction

Le projet SALWARE

Le projet SALWARE est un projet de quatre ans, nancé par l'Agence Nationale de la Recherche et la Fondation de Recherche pour l'Aéronautique et l'Espace. L'intitulé du projet est le suivant : "Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés". Le nom du projet vient du mot malware, qui signi e logiciel malicieux, et qui a été changé en salware pour matériel salutaire. L'objectif de ce projet est de concevoir des blocs matériels fournissant des informations de propriété intellectuelle et/ou permettant l'activation à distance d'un circuit intégré ou d'un composant virtuel après fabrication. Les blocs matériels conçus dans le cadre du projet SALWARE présentent les mêmes propriétés qu'un malware. Ainsi, ils doivent être discrets, ou légers, a n d'induire un coût supplémentaire en ressources logiques le plus faible possible. Ceci est une exigence très stricte pour rendre la solution proposée applicable dans un contexte industriel. En outre, ils doivent perturber e cacement le fonctionnement du circuit ou du composant virtuel, a n de rendre les copies illégales inutiles. En n, ils doivent être su samment di ciles à contourner ou à supprimer pour décourager les utilisateurs malveillants.

Contributions

En premier lieu, a n de s'assurer qu'un système de protection des données de conception est e cace, les copies illégales doivent présenter un comportement très perturbé. La première option étudiée dans cette thèse pour permettre ceci est de forcer à une valeur logique xe les sorties d'un composant virtuel, de manière contrôlée. Un algorithme très e cace permettant de sélectionner les noeuds de la netlist à modi er, basé sur la propagation d'une valeur de verrouillage dans un graphe, est présenté.

La seconde option pour fournir un mode de fonctionnement dégradé est de perturber les sorties du composant virtuel en inversant certains noeuds internes. Ceci est appelé masquage logique. Spéci quement, une nouvelle méthode permettant de sélectionner les noeuds à inverser, basée sur les indicateurs de centralité en théorie des graphes, est proposée. Comparée aux heuristiques de sélection de l'état de l'art, elle s'étend plus e cacement à des composants virtuels de grande taille et altère le fonctionnement du circuit de manière e cace.

La troisième contribution de cette thèse traite de l'identi cation unique des instances Introduction d'un composant virtuel en utilisant une PUF. Les PUFs sont des primitives très intéressantes puisqu'elles permettent d'identi er individuellement les instances en extrayant les variations apparaissant lors du processus de fabrication, qui sont spéci ques à chaque circuit produit et sont aléatoires. Toutefois, les PUFs présentent une certaine instabilité, et les identi ants extraits ne sont pas su samment stables. Pour résoudre ce problème, nous proposons une méthode innovante basée sur le protocole de réconciliation de clés CASCADE. Développé au départ pour l'échange quantique de clés, nous montrons que ce protocole interactif peut être utilisé de manière fructueuse pour la correction des erreurs présentes dans les réponses des PUFs. En comparaison des implémentations existantes de codes correcteurs d'erreurs, cette solution est une ordre de grandeur plus légère en terme de ressources logiques requises.

En n, ces contributions et celles de [START_REF] Marchand | Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés[END_REF] sont assemblées en un système complet de protection des données de conception. Nous montrons que ce système remplit les conditions pour être considéré comme un SALWARE, en étant léger, sûr et e cace pour proposer di érents modes de fonctionnement dégradés pour un composant virtuel. Finalement, ceci constitue une solution industriellement viable pour les concepteurs de composants virtuels qui souhaitent protéger leurs données de conception de la copie illégale à moindre coût.

Plan

Le chapitre 1 présente le modèle économique associé aux composants virtuels qui a été largement adopté par l'industrie des semi-conducteurs. Nous mettons en évidence les nouvelles menaces pour les données de conception qui émergent de ce nouveau modèle économique et proposons un modèle de menace détaillé. Nous présentons ensuite un état de l'art des méthodes de protection des données de conception pour les composants virtuels. Nous concluons ce chapitre en présentant les caractéristiques souhaitées pour un système de protection des données de conception et donnons un aperçu des di érents éléments requis pour mettre en oeuvre ces fonctions.

Le chapitre 2 décrit la méthode basée sur l'analyse de graphe pour le verrouillage combinatoire d'un composant virtuel. Le chapitre 3 montre de quelle manière les indicateurs de centralité de la théorie des graphes peuvent être utilisés pour sélectionner les noeuds les plus e caces pour une modi cation par masquage logique. Le chapitre 4 présente les similarités entre deux scénarios, l'échange quantique de clés et la correction des erreurs dans les réponses des PUFs. En particulier, nous montrons que le protocole de réconciliation de clés CASCADE peut être utilisé pour fournir une solution légère de correction des erreurs pour les réponses des PUFs. Finalement, le chapitre 5 présente le système logiciel/matériel complet pour la protection des données de conception, ce qui constitue l'objectif du projet SALWARE.

Chapter 1

Threats and protections for design data Following the fragmentation of the semiconductor design process mentioned before, multiple parties now participate and are involved at di erent stages. Such a multiplicity of actors comes with speci c risks for design data. Intellectual property transfers between stakeholders, even though they are necessary to the new business model, are the cause of multiple threats. In order to further understand them, a review of the various parties and their individual role is needed.

Next, we give a description of the three main threats that can be identi ed against design data: overproducing, illegal copying and reverse-engineering. We then take the point of view of an IP core designer and identify which of the parties involved in the design process are likely to perform these illegal actions. This leads us to de ne two threats models, one shared between illegal copying and overproducing and a speci c one for reverse-engineering. For each threat model, the attacker's and defender's objectives, capabilities or constraints are detailed.

We then give a state-of-the-art of existing methods that aim at the protection of design data. The methods are classi ed according to their e ciency at providing a complete protection against the aforementioned threats. This ranges from the simple identi cation of an IP core to thorough licensing schemes. We also present some solutions that are a combination of multiple design data protection methods.

This leads us to propose a set of requirements for a strong, lightweight and usable IP protection scheme. We then present how we propose to implement the features that ful l these requirements in the SALWARE project.

Chapter 1 -Threats and protections for design data Menaces sur les données de conception et méthodes de protection Suite à la fragmentation du processus de conception de circuits intégrés mentionné précédemment, de nombreux acteurs sont aujourd'hui impliqués à di érentes étapes. Cette multiplicité d'acteurs est accompagnée de risques spéci ques pour les données de conception. Les transferts de propriété intellectuelle entre les acteurs, quoique nécessaires au nouveau mode de fonctionnement de l'industrie, sont la cause de multiples menaces. A n de mieux les comprendre, passer en revue les di érents acteurs impliqués et leurs rôles est nécessaire.

Ensuite, nous décrivons les trois menaces principales qui ciblent les données de conception : surproduction, copie illégale et rétro-ingénierie. Nous nous plaçons ensuite du point de vue du concepteur de composants virtuels et identi ons quels acteurs impliqués dans le processus de conception sont susceptibles de réaliser ces actions illégales. Cela nous conduit à dé nir deux modèles de menace, l'un commun à la copie illégale et la surpodcution et l'autre spéci que à la rétro-ingénierie. Pour chaque modèle de menace, les objectifs, les possiblités et les contraintes des attaquants et des défenseurs sont détaillés.

Nous donnons ensuite un état de l'art des méthodes qui visent à protéger les données de conception. Ces méthodes sont classées d'après leur e cacité à fournir une protection complète contre les menaces mentionnées ci-dessus. Cela va de la simple identi cation d'un composant virtuel à des schémas de licence d'utilisation complets. Nous présentons également quelques solutions qui sont une combinaison de plusieurs méthodes de protection des données de conception.

Cela nous conduit nalement à proposer un ensemble de caractéristiques pour un module de protection des données de conception robuste, léger et utilisable. Nous présentons ensuite comment nous proposons d'implémenter les fonctionnalités satisfaisant à ces exigences dans le cadre du projet SALWARE.

Chapter 1 -Threats and protections for design data

Parties involved in the design process and their roles

Multiple parties are involved in the lifetime of an electronic device. We restrict ourselves to the ones present at design time. Therefore, we do not consider parties in charge of subsequent steps: manufacturing, testing, packaging, supplying, selling, recycling, etc.

IP Designer

The designer of the IP core is the rst party to take part in the design process. From the speci cations, which can be laid down by a customer, a standard or in-house, an IP core is designed. It consists in describing a hardware implementation of the speci cations. Along with the implementation, the designer can supply test vectors, place and route scripts, testbenches, software models, documentation, etc. Together, these parts form the intellectual property material that is referred to as IP core. The actual implementation can come in three main forms:

Software IP: the IP core is provided in a hardware description language like VHDL, Sys-temVerilog or SystemC, before synthesis. This type of IP core o ers the advantage of not being dependent on the nal hardware target. These descriptions can be done at several levels of abstraction, with the constraint that they must be synthesisable. For example, a VHDL description can go down to the register transfer level, while the SystemC language allows one to do a high-level behavioural description. Software IP is described in a very high-level style, possibly using language features that are close to those of a programming language. However, a soft IP must be synthesisable, otherwise it is closer to a software model.

Firmware IP: a low level description after synthesis is given, in a netlist format such as EDIF 1 . It may be technology-dependent if the IP core instantiates vendor-speci c primitives.

Hardware IP: this is the lowest level of abstraction to be found for an IP core. If the target hardware platform is ASIC, then a layout le in the GDS II, OASIS 2 or other format is provided. It directly represents the layout of the design as it will be used for the photo-lithography masks. Conversely, if the design is to be implemented on FPGA, a bitstream le is given. This bitstream le describes how the LUTs, switching matrices and RAM blocks inside FPGA must be con gured to achieve the desired logic function.

These three types of IP cores represent di erent levels of abstraction. Examples of IP core designers are ARM 3 , Dolphin Integration 4 , Intrinsic ID 5 or Rambus 6 .

1 Electronic Design Interchange Format 2 Open Artwork System Interchange Standard 3 http:// arm.com 4 http:// dolphin-integration.com 5 http:// intrinsic-id.com 6 http:// rambus.com Chapter 1 -Threats and protections for design data

Broker

A broker acts as a middleman between designers and system integrators. In order to provide more visibility to third party IP core designers, the broker maintains a catalogue of IP cores, which are classi ed by category according to the function they implement. For instance, a broker can o er several Ethernet controllers from various designers, reaching various performance targets. Some of these controllers can be low-power while others achieve very high throughput.

From a system integrator point of view, those online catalogues are very helpful. They allow to search and compare the IP cores from di erent vendors with criteria such as the performance/area/power consumption ratio, the technology node, the foundry, the hardware target, etc. Moreover, the organisations maintaining these catalogues can provide management software for those IP cores. For example, this type of software can manage an IP core repository and provide version control, so that the IP cores can be updated if revisions are done.

Examples of IP core brokers are AnySilicon7 , ChipEstimate8 , Design & Reuse9 or Open-Cores10 , the latter being specialised in open-source IP cores. It is worth noting that FPGA manufacturers Xilinx11 and Intel12 also provide a catalogue of IP cores in their respective electronic design automation (EDA) tools Vivado and Quartus Prime.

System integrator

The system integrator purchases IP cores from a broker or directly from designers. These individual IP cores, which achieve a speci c function, are then integrated together in a complex, modular system.

For a system integrator, previously mentioned IP core characteristics such as the process node or the foundry are crucial for awless integration. If an IP core has already been manufactured and validated in silicon, it is said to be "silicon ready". This information is provided by the broker or the designer and is of great help for the system integrator.

Nowadays, most of the designs integrate multiple IP cores. Therefore, the vast majority of electronics design companies are system integrators.

Trusted third party

In order to facilitate the interaction between the previously described parties, a trusted third party is sometimes involved. When two parties do not necessarily trust each other but still need to interact, they only need to trust this trusted third party.

Chapter 1 -Threats and protections for design data Sometimes, in the case of IP cores that are meant to be integrated on FPGAs, the hardware manufacturer can act as a trusted third party. For instance, the hardware manufacturer can integrate secret keys given by the designer into the FPGA. These keys can then be used for IP licensing without the system integrator knowing them.

The role of the trusted third party is described in more details in section 1.5.5, dealing with IP licensing schemes.

Interaction between parties

Figure 1.1 shows how the previously described parties interact with one another in the typical semiconductor IP business. Speci cally, it depicts how design data is transferred from one party to the other. However, there could be additional relations between these parties. For example, a system designer could request a speci c IP to be designed by the IP core designer. A designer could also provide support to the system integrator to assist in the integration of the IP core. However, those relations do not deal with design data transfer.

Business models

Di erent types of business model can be found in the semiconductor IP market. They developed in the 1980s, when the semiconductor business started shifting to a knowledge economy. Previously, semiconductor devices were simply sold by manufacturers to system integrators who combined them on boards to design a nal product. With the dematerialisation of IP cores, more sophisticated business models could emerge [START_REF]Fabless Semiconductor Association, Understanding the Semiconductor Intellectual Property (SIP) Business Process[END_REF]:

Chapter 1 -Threats and protections for design data Per-use: In the per-use model, the IP core designer gives the system integrator the right to use the IP in a certain use scope. The scope must be de ned very clearly and can consist in a speci c project for example.

Time-based:

The time-based model allows a system integrator to use an IP core as much as needed but only for a limited period of time. If needed, the contract can be later extended if it expired before the project is completed.

Royalty-based:

In this model, the nal price depends on the usage of the IP core. For example, this can be related to the number of manufactured integrated circuits. It can be very advantageous for both sides, since a system integrator can obtain an IP core for a low initial price but the original designer can also get paid signi cantly more if the nal product is successful.

Even though they di er, all those business models have in common to require a transfer of design data. This comes with associated threats, detailed in the next section.

Threats on design data

With the semiconductor IP business model presented come speci c threats on design data. This is rst visible on Figure 1.1, where all the arrows representing design data transfer are one-way. This graphically conveys the idea that these design data transfers are asymmetrical. The IP designer provides the broker with an IP core, but in return the broker does not provide any intellectual property to the designer. Similarly, when a system integrator purchases an IP core, the intellectual property material is transferred from the IP designer to the system integrator in only one direction. This poses direct threats to design data since such asymmetric transfer gives rise to intellectual property infringements [SEM06; GDT14] which have severe economic and social impacts [START_REF]Estimating the global economic and social impacts of counterfeiting and piracy, tech. rep[END_REF]. These threats are described in the following subsections.

Overproducing

The rst type of threat, emerging directly from the immaterial nature of IP cores is overproducing. It occurs when, in a per-use business model, the system integrator overrides the scope of use which was previously agreed upon. For example, an IP core which was used in a project is reused later in another design without mentioning it to the IP designer. In a time-based business model, this means that a system integrator keeps using an IP core even though the subscription period has elapsed. If royalties are owed by the system integrator to the IP core designer, the actual number of manufactured devices can be underreported to make the nal cost lower. Consequently, for all these cases, the number of instances of the IP core reported to the designer does not match reality. This prevents proper billing and compensation.

Chapter 1 -Threats and protections for design data

Illegal copying

The next type of threat is illegal copying. This occurs when an IP broker or a system integrator copies an IP core in order to provide it or sell it to another party, unbeknown to the IP core designer. For example, it can be the case if an IP broker charges a system integrator for a certain number of instances of the IP core but in fact reports only half of these instances to the IP core designer. In this case, half of the instances are illegal copies of the IP core since the original designer is unaware of their existence. In large companies, di erent business units could also share IP cores between projects without reporting it. Finally, a system integrator who obtained an IP core from one designer could sell it to a competitor IP core designer. Similarly to overproducing, these case of illegal copying result in an actual number of IP core instances which is higher that the one reported to the IP core designer, preventing correct billing.

Reverse-engineering

The third threat against design data which can be identi ed is reverse-engineering. This is a direct threat to the intellectual property material itself, since it aims at recovering how a logic function is implemented. Therefore, reverse-engineering intends to nd out the processes and techniques to go from the speci cations to the implementation of the IP core.

Depending on the form in which the IP core is provided, reverse-engineering it can be more or less demanding. In the case of a soft IP described using a hardware description language, recovering the implementation is much easier than if only a layout is available. Similarly, a bitstream for an FPGA is usually hard to reverse-engineer completely [NR08; BSH12]. However, it is safe to assume that if a motivated attacker has su cient resources and time, then reverseengineering is always possible.

Reverse-engineering can also occur later, after the device has been manufactured. From high de nition pictures of a delayered chip, automated image recognition software can recover the entire layout [START_REF] Masalskis | Reverse Engineering of CMOS Integrated Circuits[END_REF][START_REF] Torrance | The state-of-the-art in semiconductor reverse engineering[END_REF][START_REF] Mcloughlin | Reverse engineering of embedded consumer electronic systems[END_REF]. More sophisticated imaging devices can be used such as microscopes that use scanning electron, scanning capacitance or X-rays technology [START_REF] Shahed | A Survey on Chip to System Reverse Engineering[END_REF]. Using X-rays for example allows an attacker to perform non-destructive reverse-engineering, since the chip is not damaged and can still operate after. On the other hand, a delayered chip is permanently damaged and cannot be used anymore.

In order to go further up in abstraction, recovering the netlist is necessary. This can be done from the bitstream [NR08; BSH12] or the layout. By observing the inputs and outputs of the device, the FSM can also be recovered [START_REF] Brutscheck | Non-Invasive Reverse Engineering of CMOS Integrated Circuits[END_REF][START_REF] Smith | Reverse Engineering Integrated Circuits Using Finite State Machine Analysis[END_REF].

Reverse-engineering can be done by the system integrator. This could help in future designs by not requiring the help of a contract IP core designer anymore. With the knowledge on how to implement a function, this can be done in-house.

A competitor IP core designer could also be interested in the internal architecture of an IP core and attempt to reverse-engineer it. This gives an advantage by reducing design time and Chapter 1 -Threats and protections for design data achieving equivalent performance if similar functions must be implemented in the future.

Reverse-engineering can be linked to illegal copying. Indeed, if the reverse-engineering step is successful, the attacker owns a version IP core without the original designer knowing it. The IP core can then be instantiated again, making it an illegal copy.

It is interesting to note that reverse-engineering can also have positive aspects [START_REF] Shahed | A Survey on Chip to System Reverse Engineering[END_REF]. It helps in failure analysis and detection. It can also be used to provide intellectual property information and prove that a particular IP core has been instantiated in a device [START_REF] Guin | Counterfeit integrated circuits: Detection, avoidance, and the challenges ahead[END_REF]. Moreover, reverse-engineering is often necessary to ensure that a design has not been infected by a hardware Trojan [START_REF] Xiao | Hardware Trojans: Lessons Learned After One Decade of Research[END_REF][START_REF] Bao | On Reverse Engineering-Based Hardware Trojan Detection[END_REF]. Finally, this is also a great tool for educational purposes.

Limitations bypass

Since IP cores are increasingly following a software-like business model, another type of threat could emerge in the future. Just like pieces of software, IP cores could be distributed in evaluation mode, or o er a premium version with greater performances. So far, only softwareassisted manipulations have been demonstrated. For instance, in 2015, a tool was able to disable the hardware locks of processing units of AMD Radeon GPUs 13 . This e ectively allows to upgrade a graphics card.

We could not nd purely hardware-based attacks, partly because multi-mode IP cores are rare. Therefore, this threat is not addressed in this thesis. However, in view of how well precedented these practises are for software, one can reasonably expect them to apply to IP cores too, once they reach such a level of re nement.

Summary: association between parties and threats

The semiconductor IP business presented in Figure 1.1 can now be extended by showing the di erent threats on it. Since we aim at providing IP core designers with means of protecting their intellectual property, we should now adopt their point of view when evaluating the trustworthiness of other parties. This is shown in Figure 1.2, in which untrusted parties from the IP core designer's point of view are highlighted in dark grey and threats are in red. We considered that the trusted third party, described previously, is indeed trusted. Thus it does not appear in Figure 1.2.

In an attempt to ght these threats, a precise threat model is required. This is presented in the following sections. For each of the previously described threats, a threat model is given, comprising an attacker and a defender model. The threat model for illegal copying and overproducing is the same. Indeed, the nal purpose of illegal copying, after illegal design transfer, is to instantiate the IP core without the designer knowing it. Thus it results in the same consequences as overproducing.

Attacker model

Attacker's objectives When an attacker aims at carrying out illegal copying or overproducing of an IP core, its objective is to instantiate the IP core more times than agreed with the designer or the broker. From the attacker's point of view, a black box instantiation of a functional IP core is su cient. Even though some technical characteristics of the core may be required, the knowledge of the internals is not needed to perform the attack.

Attacker's capabilities

We assume that the attacker can obtain a copy of the IP core in a legal way. He also has the technical resources to instantiate it correctly. Namely, this means that he can obtain all the necessary technical information required such as the process node, the design rules, the foundry, etc.

Chapter 1 -Threats and protections for design data

Defender model

Defender's objectives The designer's objective here is to prevent the attacker from proceeding to a black box instantiation of the IP core without reporting it to the designer. Practically speaking, the designer wants to know how many instances of the IP core exist. However, this does not prevent black box instantiation as described above. In addition, the defender must be able to control how many instances of the IP core actually operate. The fact to know how many instances of an IP core are operating is commonly referred to as metering [START_REF] Koushanfar | Integrated Circuits Metering for Piracy Protection and Digital Rights Management: An Overview[END_REF].

Defender's constraints From the defender's point of view, the main constraint to defend against illegal copying is the cost of the protection system. Indeed, adding extra components to the IP core in order to protect it increases the logic resources, the power consumption and possibly the latency of the core. This all comes at a cost, either because the IP core layout occupies a larger area and is more expensive to manufacture or because a higher power consumption or latency makes it less competitive. Therefore, the cost of the protection system must not exceed the nancial losses caused by illegal copying or overproducing. However, the nancial losses su ered by IP core designers can be hard to estimate.

Threat model for design data exposed to reverse-engineering

This threat model addresses reverse-engineering when committed with a malicious intent, in contrast with reverse-engineering aiming at educational purposes.

Attacker model

Attacker's objectives When an attacker attempts to reverse-engineer an IP core, the aim is to nd out how speci cations have been implemented in hardware. Namely, this includes revealing the types of logic gates used and the connections between them or the layout patterns on every layer. The objective is to gain knowledge of the practical implementation methods and techniques, in order to reduce time to market for a future in-house design while achieving similar performances to competitor devices.

Attacker's capabilities

The attacker can access both the digital and physical versions of the IP core. The digital version refers to the computer le which holds the design data. For example, this can be a VHDL, GDS II or bitstream le. The attacker can also have access to a physical implementation of the IP core in an integrated circuit. Depending on the nancial support he gets, an attacker can use powerful techniques to recover design information [START_REF] Torrance | The state-of-the-art in semiconductor reverse engineering[END_REF]. Some companies, such as Texplained14 are specialised in providing this type of services.

Chapter 1 -Threats and protections for design data

Defender model

Defender's objectives From a defender's perspective, the objective is to conceal the architecture of the IP core. The ideal model for this is a black box, where only the inputs and outputs are visible. However, due to the way IP cores are distributed and supposed to be used, this objective is hard to ful l.

A more relaxed version, which is at the same time more realistic given today's attackers capabilities, is to make the reverse-engineering as hard and time consuming as possible. Given that the parties who can perform reverse-engineering are the system integrator or a competitor IP designer, the objective of a designer is to make the reverse-engineering process more expensive than in-house development of the IP core.

Defender's constraints Similarly to the constraints detailed above for illegal copying and overproducing, the cost of the protection method against reverse-engineering must be lower than the potential nancial losses caused by the intellectual property infringement.

As highlighted before, reverse-engineering can have salutary purposes like failure detection or tests. From a practical point of view, a protection against reverse-engineering can make such purposes harder to achieve.

Conclusion on threats on design data

Due to the emergence of core-based design, overproducing/illegal copying and reverse-engineering have arisen or have been ampli ed. However, they have slightly di erent characteristics.

Reverse-engineering is quite a challenging task to perform, and will only become harder with the decreasing size of transistors and their increasing density. In addition, IP designers are more and more aware of this threat and have a large panel of possibilities to ght against it. Nevertheless, the development of automated reverse-engineering tools makes progress too. Therefore, the amount of time taken to reverse-engineer a design is only due to the manual intervention of people which is still required, since not everything can be automated. This still takes a good amount of time and skills. The required tools to physically de-package and process a circuit to reverse-engineer it are costly too. Overall, the potential nancial losses for the IP core designer are high, but the increasingly fast time-to-market tends to reduce them if they are restricted to the intellectual property infringement.

Overproducing and illegal copying, on the other hand, do not require much time to be performed by an attacker. Indeed, after obtaining the design, copying it is trivial. However, obtaining it in the rst place can cost some money. After the copy has been performed, overproducing a design requires no extra skills than the ones already present in most design houses. Thus the potential losses for the IP designer are much greater. Moreover, these potential losses can also originate from reverse-engineering being used to perform the illegal Chapter 1 -Threats and protections for design data copy, beyond the infringement of intellectual property mentioned above. Overall, these are a much more important threat for IP core designers than reverse-engineering. This is summarised in Table 1.1.

Requirements

Potential nancial losses Threat Time Money (equipment) Skills for the IP core designer Reverse-engineering Overproducing/Illegal copying Table 1.1 -Threats on design data.

In order to ght these threats, many design data protection schemes were developed. They consist in adding speci c modules to a design or modifying it directly. These are developed in the following section.

Design data protection methods

Traditionally, design data protection methods are classi ed into passive and active methods. Passive protection means allow a designer to detect that an illegal action occurred. For example, by embedding an identi er inside an IP core, a designer who obtained a circuit can extract the identi er and prove that his IP core was instantiated. However, this does not prevent the illegal action to occur. Conversely, active protection means o er the designer a way to actively prevent the illegal action. For example, the circuit can exhibit an erratic behaviour until the correct activation word is fed to it.

Here, we chose to further re ne this classi cation by sorting protection means according to the help they provide to the designer. Even though those helps are hard to classify strictly according to their e ciency, we broadly make an attempt to do it. The weakest methods allow to identify an IP core, but not individual instances. Identifying individual instances is necessary to count them and ensure precise metering. On the one hand, o ering degraded modes of operation is a good way to prevent illegal copying and overproducing, since illegal copies are then essentially useless. On the other hand, concealing the internal architecture of the IP core can make reverse-engineering prohibitively expensive. Finally, the most e cient methods are referred to as licensing schemes. They are an attempt to transfer the licensing methods used for software to IP cores. This is shown in Figure 1.3.

As the pyramidal structure shown in Figure 1.3 suggests, the most e cient design data protection schemes are often built on top of weak ones, by combining them. For example, a good licensing scheme necessarily requires to identify individual instances of an IP core. Simple IP core identi cation is also useful in the rst place to ensure that the IP core has been instantiated in a particular design. Therefore, we start with weak protections before gradually describing more and more e cient ones.

Identi cation of an IP core

In order to detect that one IP core has been illegally copied, the original designer can embed an identi er inside it. Later on, when the designer suspects an IP core to be illegally integrated into a design, the identi er is retrieved to claim ownership. There are multiple ways to generate an identi er inside an IP core. The rst one is to store it in a non-volatile memory (NVM) (see Figure 1.4a). The design can also be slightly modi ed in a way that is known only to the designer, so that this slight modi cation can later be detected. This is called watermarking and is shown in Figure 1.4b, where the watermark is retrieved via side-channel analysis. Those two techniques have the drawback to identify the IP core but not individual instances. This can be achieved by storing a unique identi er for each instance inside a one-time programmable non-volatile memory (OTP-NVM), as shown in Figure 1.4c. Finally, the physical characteristics of the silicon implementation can be exploited. This can be done by direct measurement, called ngerprinting (see Figure 1.4d) or by embedding a PUF. A PUF is structure that can be challenged, extracts the intrinsic entropy coming from manufacturing process variations and turns it into a binary identi er called a response. This is shown in Figure 1.4e.

With NVM and watermarking, the identi er is identical for all the instances of the IP core. These two methods are detailed below. Conversely, using an OTP-NVM, a PUF or performing ngerprinting allows one to identify individual instances. These methods are then studied in a speci c section afterwards.

Identi er stored in NVM

The rst option to store a xed identi er is to use an NVM, that set to a value at design time and is non-rewritable. Those memories are typically referred to as mask read-only memory (ROM). Complementary metal-oxide-semiconductor (CMOS) manufacturing process o ers several technological possibilities to achieve physical hardwiring of an identi er. Contact layer/via mask ROM The rst possibility to implement a mask ROM is to modify the vias, as shown in Figure 1.5a. This is done by removing the connection vias for certain transistors, leaving them unconnected.

Active layer mask ROM Mask ROM is implemented by not creating the channel for some transistors (see Figure 1.5b).

Metal layer mask ROM The rst metallisation layer is used to create a short circuit between the source and drain contacts of the transistor (see Figure 1.5c). Chapter 1 -Threats and protections for design data

Mask ROM has the advantage of not requiring any extra steps in the manufacturing process. Moreover, they have a very high density of one transistor per bit stored and require extensive physical processing to be reverse-engineered. Finally, they o er very good resilience to removal or perturbation attacks and can be easily read out.

However, they cannot be modi ed after the circuit has been manufactured. Reverseengineering these ROMs is also feasible by de-packaging the circuit and delayering it [START_REF] Torrance | The state-of-the-art in semiconductor reverse engineering[END_REF]. With su ciently precise micro-photography, individual ROM bits are extracted by pattern recognition. Then, the common identi er is known and can be used to fake identity. Finally, designing mask ROM requires the IP core designer to carry out the design steps down to the layout level. This is not possible if the IP core is to be provided in a hardware description language (HDL) format for instance. Therefore, there is a requirement for means of embedding an identi er within an IP core at a higher level of abstraction. This can be done by watermarking techniques presented in the next section.

Watermarking

Watermarking consists in modifying a design slightly in order to incorporate a mark into it. This watermark must ful l eight properties [START_REF] Amr | A survey on IP watermarking techniques[END_REF]. As said before, a watermark is embedded at a higher abstraction level than the transistor level. Such abstraction level ranges from the layout level up to the algorithmic level. All these are detailed below.

Layout level watermarking At the lowest level of abstraction, a watermark is embedded at the layout level. For example, [START_REF] Kahng | Constraint-based watermarking techniques for design IP protection[END_REF] proposes to modify the placement and routing of an IP core and shows how these modi cations can be easily integrated into the design ow of mainstream EDA tools. They demonstrate how con guration bits of unused output multiplexers, path timing constraints or column index may be modi ed to embed a watermark.

Chapter 1 -Threats and protections for design data

In [START_REF] Adarsh K Jain | Zero overhead watermarking technique for FPGA designs[END_REF], delay constraints are generated from the watermark and are embedded in the form of a xed bit for the least signi cant bit of speci c paths delay.

Those layout-level solutions allow a system integrator to verify that an IP core originates from the correct designer. However, once the IP core has been implemented and the circuit manufactured, those watermarks are hard to retrieve. This strongly limits the application of such techniques, and calls for more usable methods.

Register transfer level watermarking Alternatively, the watermarking scheme can be added at the register transfer level. Targeting FPGA designs, authors of [START_REF] Schmid | Netlist-level IP protection by watermarking for LUT-based FPGAs[END_REF] proposed to store the watermark in unused LUT entries. This work highlights how a watermark may take advantage of existing unused resources. However, the same problem as for layout-level watermarking arises since a veri er needs access to the bitstream.

To increase veri ability, the test access ports were used. For instance, in [START_REF] Fan | Watermarking for intellectual property protection[END_REF], the watermark is generated along with output of the test circuitry and is veri ed at test time. The test infrastructure was also leveraged in [START_REF] Cui | Ultra-Low Overhead Dynamic Watermarking on Scan Design for Hard IP Protection[END_REF] where the scan-chain is speci cally modi ed. Depending on the watermark to insert, scan-chain D ip-ops (DFFs) are either connected together by their Q or Q' outputs. This modi es the output obtained from a given test input pattern, allowing one to verify that the watermark is indeed present. This approach has the advantage of incurring very low overhead. However, an access to the scan-chain is required to verify the watermark. This access could be exploited by an attacker to assist reverse-engineering.

To completely alleviate the need for a veri cation interface, side-channels are a powerful tool to verify a watermark. In 2008, Ziener et al. [START_REF] Ziener | Power Signature Watermarking of IP Cores for FPGAs[END_REF] introduced a new watermarking technique which makes the watermark detectable in the power consumption traces. By driving a large shift register with a smaller one containing the watermark, characteristic power patterns are created. The electromagnetic channel is also suited to this purpose, as shown in [START_REF] Bossuet | An Ultra-Lightweight Transmitter for Contactless Rapid Identi cation of Embedded IP in FPGA[END_REF], where a tiny BFSK15 transmitter is embedded inside a device to transmit information in a contactless manner. Thermal communication has also been considered by the company Algotronix [START_REF] Marsh | Protecting Designs with a Passive Thermal Tag[END_REF], but has a very low throughput.

Finite state machine level At the behavioural level, another good candidate to insert a watermark is the controller of a system, namely the nite-state machine (FSM). Indeed, as mentioned above, it usually has unused resources that can be exploited. For instance, if binary coding of the FSM states is used, then an FSM with states requires ⌈ 2 ()⌉ registers to store the current state. Therefore, there are 2 ⌈ 2 ()⌉ -states which could potentially be encoded but are unused. Reading out the state register provides the watermark.

One more option is to add transitions to the state-transition graph that are passed through only after a certain sequence of inputs. The watermark is veri ed by observing the outputs A known graph can also be embedded into the state transition graph of the FSM [START_REF] Lewandowski | A novel method for watermarking sequential circuits[END_REF]. Inserting the watermark boils down to a graph isomorphism problem or to nding the closest subgraph in order to modify it. Similarly, verifying the watermark requires to transition through the embedded graph states.

Finally, the states encoding itself may be modi ed to embed a watermark [START_REF] Zhang | State encoding watermarking for eld authentication of sequential circuit intellectual property[END_REF]. The state encoding is then extracted by making the outputs dependent on it or by reading out the state register using a scan chain.

Algorithmic level Finally, at the highest level of abstraction, a watermark is embedded at the algorithmic level. Targeting digital signal processing applications, [START_REF] Chapman | IP protection of DSP algorithms for system on chip implementation[END_REF] proposed to modify the parameters of a nite impulse response lter according to the watermark to insert. The response of the lter is then slightly modi ed, allowing the watermark to be veri ed.

One more solution is to send out the watermark at the output when those are considered to be not valid [START_REF] Le | Automatic low-cost IP watermarking technique based on output mark insertions[END_REF].

Conclusion on identi cation of an IP core

IP core identi cation allows a designer to embed an identi er into a design and claim ownership. They have the advantage to be deeply tied to the design and hard to remove. Nevertheless, their drawback is that they identify the IP core but not the actual instances themselves. Moreover, they can be hard to set up for software IP cores, for which the high level of abstraction does not allow for low level identi cation. This makes it impossible for a designer to identify and count instances individually. Therefore, metering, i.e. counting the number of operating instances of the IP core, is not possible with this approach.

In order to achieve metering, IP core instances must be identi able individually. The methods that enable this are presented in the following section.

Identi cation of individual instances of an IP core

Distinguishing instances of an IP core is necessary to provide information feedback to the original designer. Without knowing how many times an IP core is used, the only licensing solution is a front-end payment. Therefore, a designer must be provided with ways to distinguish and count instances. The solutions proposed to this end are presented in the following sections.

One-time programmable non-volatile memory

Instead of setting the content of the NVM at design time, a trusted third party or the designer himself writes it once the circuit has been manufactured. Yet this identi er must then be permanently stored inside the device to allow for a read-back later. A potential attacker should Chapter 1 -Threats and protections for design data also not be capable of rewriting an identi er of his choice. For this reason, so-called OTP-NVM must be used. There are three types of OTP-NVM available [START_REF] Skorobogatov | Semi-invasive attacks -A new approach to hardware security analysis[END_REF]:

Soft OTP-NVM The memory is a standard electrically programmable ROM but without erasure interface. This way, the content can be written only once. A typical erasure interface is a quartz window above the die which allows ultraviolet light to erase the content of the memory (see Figure 1.6). By closing this window permanently, the memory cannot be erased anymore.

Figure 1.6 -Examples of integrated circuits embedding an electrically erasable ROM that can be erased by shining UV light through the quartz window 16 .

Fuses By default, the value stored in the cell is a logic 1. When setting a high voltage 17across a conductor, it breaks and turns into an open circuit. Thus only logic 0s are programmed. Some technologies require a laser shot instead of a high voltage to blow the fuse. They have the disadvantage to be programmable only before die packaging, since the laser must be shot on the die directly.

Anti-fuses By default, the value stored in the cell is a logic 0. When setting a high voltage across an insulator, a conductive lament is created, turning the insulator into a conductor. Thus only logic 1s are programmed. Some non-volatile FPGAs make use of this technology for their con guration [START_REF] Microsemi | Antifuse FPGAs[END_REF]. These methods, however, require physical access to the device in order to program the identi er into it. They also have a lower density than mask ROM since they require a write circuitry, which is used only once. Providing the high voltage necessary to program the OTP-NVM can lead to area overhead too.

Therefore, a new way to obtain instance-speci c identi ers has emerged and is called ngerprinting.

Chapter 1 -Threats and protections for design data

Fingerprinting

Just like a human ngerprint is used to derive a unique identi er from random physical characteristics, ngerprinting aims at measuring the realisations of random variables that occurred in a circuit when it was manufactured. Such variations must be xed so that the identi er is reliable enough. To this end, process variations inherent to CMOS manufacturing may be extracted. If the inter-device variation is su cient, individual instances are reliably identi ed. Thus ngerprinting requires to characterise physical parameters of the device by a precise measurement of analog signals. Such parameters can be path delays or transistors threshold voltage for instance.

Paths delay

The rst solution to extract random process variations is to measure the delays of a chosen subset of the circuit paths. By applying the clock-sweeping technique [START_REF] Tuzzio | A zerooverhead IC identi cation technique using clock sweeping and path delay analysis[END_REF], individual path delays can be obtained. Gate level characterisation [START_REF] Wei | Integrated Circuit Digital Rights Management Techniques Using Physical Level Characterization[END_REF] is another technique able to measure the delay at the gate level. It consists in measuring the delay of multiple paths containing a subset of gates in order to build a system of equations and solve it to recover the individual gates length.

Transistors threshold voltage

The other parameter which is randomly in uenced by process variations is the threshold voltage of transistors. Gate level characterisation is also useful here [START_REF] Wei | Integrated Circuit Digital Rights Management Techniques Using Physical Level Characterization[END_REF]. By measuring the power consumption of small portions of a circuit involving a subset of gates, a system of equations can be built and solved to extract the threshold voltage ℎ of individual gates.

Conclusion on ngerprinting

Fingerprinting has the disadvantage of calling for measurement of analog signals to derive the device intrinsic parameters. These are highly dependent on the implementation and would be totally di erent from one technology node to another. Rapidly, structures have been proposed that can extract random physical process variations and provide a digital "digest". Such a structure is called a PUF.

Silicon Physical Unclonable Functions

Formally, a PUF is a physical entity which produces a binary string as a response to a request called a challenge. Together, they form a challenge-response pair (CRP). As the term "physical" suggests, the information in the binary string depends on physical characteristics of the PUF. Some PUFs accept a challenge before generating a response accordingly. The challenge is typically used to select which parts of the physical structure are operated to generate the response. Accordingly, CRPs (,) can be obtained. Depending on the number of challenges available, a number of CRPs can be recorded. This is done during the enrolment phase. Moreover, sending an identical challenge to multiple instances of an IP core results in di erent responses.

Chapter 1 -Threats and protections for design data Thus those CRPs identify an IP core instance in a unique manner. Therefore, in order to authenticate an IP core, a server can send a challenge to it and wait for the associated response. If it matches the CRP stored in the database, the IP core is authenticated. A toy example of an authentication protocol is shown in Figure 1.7.

Server

Device The internal structure of a PUF, since it directly relies on random manufacturing process variations, is supposedly "unclonable". However, modelling attacks have been mounted [START_REF] Rührmair | Modeling attacks on physical unclonable functions[END_REF], highlighting the gap between theoretical and practical security for PUFs [START_REF] Becker | The Gap Between Promise and Reality: On the Insecurity of XOR Arbiter PUFs[END_REF].

at = 0 Generates challenge ⟶ enrolment ,0 ← PUF() ,0 ⟵ Stores (, ,0) at = 1 Requests activation ⟶ identi cation , 1 ← PUF() , 1 ⟵ Validates if ,0 = , 1
In order to evaluate a PUF, two metrics are commonly used [START_REF] Maiti | A Systematic Method to Evaluate and Compare the Performance of Physical Unclonable Functions[END_REF]. The rst one, steadiness, characterises the stability of the PUF response over time by giving the average ratio of unreliable response bits. It is given by Equation (1.1), where is a reference response of device obtained by averaging the samples , . The di erence between a response and the average is given by the Hamming distance HD.

steadiness = 1 ∑ =1 HD(, ,) (1.1)
The target value for steadiness is 0, which corresponds to a PUF that generates identical responses to the same challenge over time.

Besides stability of responses over time, another criterion which is used to evaluate a PUF is uniqueness. It indicates how di erent the responses obtained from two PUFs implemented on separate devices are. Given devices, pairwise comparison of responses obtained from devices and leads to a de nition for uniqueness given in Equation (1.2)

uniqueness = 1 (-1) ∑ =1 ∑ =1 ≠ ∑ =1 HD(, ,) (1.2)
Those two criteria are the most commonly accepted. Some other works proposed to test randomness but the small amount of data which can be gathered leads to a lack of statistical Chapter 1 -Threats and protections for design data signi cance. In order to implement silicon PUFs, several architectures have been proposed. They are presented in the following sections.

Arbiter PUF Arbiter PUFs compare the delay of two manufactured paths which were designed to be of identical length [START_REF] Gassend | Silicon physical random functions[END_REF]. Due to manufacturing process variations, two paths of the exact same length at design time have a slightly di erent one after manufacturing. Therefore, by comparing the time of arrival of a signal after it propagated through those two paths, one bit of information can be extracted, depending on which path is the shortest.

In order to obtain the bit of information, an arbiter is used. It is a two-input one-output component which output is 0 if its A input is asserted rst or 1 if its B input is asserted rst. This is an ideal component. This can be implemented using a DFF that samples the signal from one path while using the signal from the other path as a clock. The rst path is then connected to the D input of the DFF while the second path is connected to the CLK input. If the signal going through the rst path arrives rst, then the rising edge on the signal of the second path will sample a logic 1. The extracted bit will then be a 1. Conversely, if the rising edge on the clock input occurs while the signal on the rst path did not arrive at the DFF yet, a logic 0 is sampled. The extracted bit will then be a 0. Compared to the ideal arbiter component, a DFF can behave erratically if the two signals arrive very close from one another. This could violate the setup and hold times of the DFF, leading to metastability.

Propagation paths can be shared with switch boxes. A switch box has three inputs, two for data, 0 and 1 , one for selection, , and two outputs 0 and 1 . The output values depend on the input:

0 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 , if sel = 0 1 , if sel = 1 1 = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 1 , if sel = 0 0 , if sel = 1 (1.3)
The path from input 0 to output 0 has an identical length to the path from input 1 to output 1 . Similarly, the path from input 0 to output 1 has an identical length to the path from input 1 to output 0 . The associated delays should be equal too. Let us denote the delay from input to output as , then we have for the switch box:

0 , 0 = 1 , 1 0 , 1 = 1 , 0 (1.4)
Thus the selection input of the switch box works as a challenge input, allowing one to select either one or the other pair of internal paths.

In an arbiter PUF, multiple switch boxes are chained. The set of selection inputs of all the switch boxes can be seen as an -wide challenge input when switch boxes are used. One nal arbiter is used to sample the signals as described previously. Figure 1.8 shows a schematic of chained switch boxes along with an arbiter, establishing an arbiter PUF. On the one hand, arbiter PUFs are easy to implement on ASIC where the path length is geometrically measurable. Two theoretically identical paths can then be easily constructed, as well as a balanced switch box for which Equation (1.4) is veri ed. On the other hand, the intrinsically constrained routing found in FPGAs prevents such a structure to be implemented on this type of hardware platform [START_REF] Cherif | Evaluation of delay PUFs on CMOS 65 nm technology: ASIC vs FPGA[END_REF]. Indeed, two routing paths cannot be made of perfectly equal length on an FPGA, leading to a bias toward 0 or 1 at the PUF output.

Arbiter PUFs have the advantage to incur low area overhead due to the density brought by switch boxes. They provide an exponential number of challenges with respect to the number of switch boxes used, although the responses obtained from these challenges are correlated. Moreover, they extract process variations e ciently and lead to high uniqueness. They also exhibit low steadiness.

Ring oscillator PUF Some PUF structures are much more suited for implementation on FPGA targets. Among them, the ring oscillator PUF (RO-PUF) [START_REF] Suh | Physical Unclonable Functions for Device Authentication and Secret Key Generation[END_REF] structure is easy to implement. It generates a response bit by comparing the frequency of two ring oscillators selected from a pool of theoretically identical ones. A ring oscillator is a chain of an odd number of inverters. In order to make it controllably activable, an AND gate is usually inserted in the chain, with one of its inputs connected to a control signal. This allows to stop the oscillations in the ring oscillator when it is not used, which is useful to limit power consumption and interference between ring oscillators. The output of the ring oscillator cell is tapped from the output of one of the inverters of the chain. A ring oscillator cell is shown in Figure 1.9a.

In order to compare the frequency of two ring oscillator cells, their respective outputs are sent to two counters of the same size. The rst counter to over ow shows which ring oscillator has the highest frequency. The result of this comparison is one bit of the PUF response. In a ring oscillator PUF, ring oscillator are then compared pairwise. A multiplexer is used to select which ring oscillators are compared and activate them. The general architecture of a ring oscillator PUF is shown in Figure 1.9b.

Ring oscillator PUFs have the advantage to be easy to design, both on ASIC and FPGA. They exhibit low steadiness and high uniqueness [START_REF] Maiti | A large scale characterization of RO-PUF[END_REF]. Moreover, further re nement in the architecture gives the possibility to extract more than one response bit per comparison. Indeed, instead of simply comparing the frequencies, the counter values can be subtracted [START_REF] Kodýtek | Proposal and Properties of Ring Oscillator-Based PUF on FPGA[END_REF]. Some bits of the di erence can be exploited as response bits. Previously, with simple comparison, only the sign bit was extracted. However, precise characterisation can determine which other bits are worth using. Indeed, the least signi cant bits of the di erence are greatly a ected by noise and can not be used reliably. Yet the most signi cant bits are not useful either because the counter might never reach su ciently high values if the counter is over-sized. Characterisation helps to determine the optimal counter size and exploit as many bits as possible.

Nevertheless, ring oscillator PUFs also have drawbacks. They come with high overhead, since the number of possible independent CRPs grows only linearly with the number of ring oscillator cells instantiated. Ring oscillators also have a strong electromagnetic emanation, and are sensitive to electromagnetic attacks in return [START_REF] Bayon | Contactless Electromagnetic Active Attack on Ring Oscillator Based True Random Number Generator[END_REF]. Their frequency can then be modi ed by electromagnetic injection. Moreover, when multiple ring oscillators are implemented close to one another, they tend to synchronise their frequencies [START_REF] Bochard | True-Randomness and Pseudo-Randomness in Ring Oscillator-Based True Random Number Generators[END_REF], just like two mechanical pendulums do when they are attached on the same wall. This phenomenon is referred to as "locking". If two ring oscillators are oscillating at the same frequency, comparing their frequencies obviously makes no sense.

In order to avoid the locking phenomenon, ring oscillators that oscillate only temporarily have been proposed. They are presented in the following section.

Transient e ect ring oscillator PUF

The transient e ect ring oscillator (TERO) cell [START_REF] Varchola | New universal element with integrated PUF and TRNG capability[END_REF] is a controlled ring oscillator but with the control input fed at two stages of the chain (see Figure 1.10). Both top and bottom branches of the TERO cell must have the same propagation delay. When the control signal is asserted, two events propagate in the loop. After some time, one of the events catches up with the other, stopping the oscillations. The number of oscillations is stable enough to be exploited by a PUF.

The transient e ect ring oscillator PUF (TERO-PUF) architecture presented in [START_REF] Bossuet | A PUF based on transient e ect ring oscillator and insensitive to locking phenomenon[END_REF] is similar to the one shown in Figure 1.9b, but a subtractor is used instead of a comparator. Similarly, multiple response bits can be extracted for each subtraction performed.

TERO-PUFs have very good uniqueness and steadiness characteristics (see [START_REF] Cherkaoui | Design, Evaluation and Optimization of Physical Unclonable Functions based on Transient E ect Ring Oscillators[END_REF] for ASIC and [START_REF] Marchand | Enhanced TERO-PUF Implementations and Characterization on FPGAs[END_REF] for FPGA implementations). However, they are hard to implement on FPGAs, where balancing the two branches of the TERO cell is challenging. Similarly to RO-PUFs, the number of challenges grows linearly with respect to the number of TERO cells.

All the PUFs presented so far require an additional structure to be added to the circuit. Reusing an existing structure could reduce the area overhead. This is what the static random access memory (SRAM) PUF attempts to.

SRAM PUF Due to the mismatch between the two inverters of an SRAM cell, when rst powered, a logic 0 or 1 is stored. An SRAM PUF exploits this random start-up state of an SRAM array as a response. Obtaining the PUF response then consists only in reading the uninitialised value found at a speci c address. The address at which the value is read is the challenge. Therefore, the number of challenges available only grows linearly with the number of SRAM cells.

An initialisation pattern which could be observed in an SRAM array is shown in Figure 1.11. Black cells store a logic 0, white cells store a logic 1. There are some cells, however, which start-up state is not stable. Those grey cells store either a logic 0 or a logic 1. Grey cells are unstable bits of the PUF response while black and white ones are stable. SRAM PUFs exhibit quite high steadiness in general, with a typical error-rate that can reach 10% [START_REF] Claes | Comparison of SRAM and FF-PUF in 65nm Technology[END_REF]. Moreover, the argument that it uses existing resources is tenuous since an SRAM array used for a PUF should be reserved for this usage only. Indeed, using it for common temporary data storage can lead to uneven stress of the SRAM cells. This increases both the bias for some bits of the PUF response and the PUF error-rate, since the behaviour of some cells can vary over time.

Chapter 1 -Threats and protections for design data Nevertheless, they are very easy to implement since no speci c tuning step is required. They can be implemented on any electronic system where a memory is present, be it an ASIC, and FPGA or even a micro-controller. Among PUFs, only SRAM PUFs found their way to industrial products, o ered by companies such as Intrinsic ID 18 .

Conclusion on PUFs

PUFs have been extensively studied in the last twenty years and have proved to be an e cient way to extract an instance-speci c identi er for IP cores. The advantages and drawbacks of the considered PUF architectures are summarised in Table 1 Most of the time, the uniqueness observed is satisfactory and allows to uniquely identify the instances. The problem lies in the steadiness. Indeed, a PUF with a perfectly stable response to the same challenge over time does not exist. As a consequence, some sort of error-correction mechanism must be integrated as well. Classical error-correction codes can be used to this end and are presented in the following section.

Error-correction codes for PUFs

The advantage of storing an identi er in an OTP-NVM is that it can be reliably retrieved on demand. In the case of a PUF, however, some of the response bits are not perfectly stable and vary over time with an identical challenge. This change can be caused by power supply voltage variations or environmental electromagnetic noise. Nevertheless, when one needs to authenticate a circuit, the identi er must be reliable.

Chapter 1 -Threats and protections for design data Traditionally, the way to tackle this issue is to generate helper data from the PUF response obtained at the enrolment phase. Later on, when the PUF is queried again with an identical challenge, this helper data is used to get the error-prone response to match with the response stored on the server.

A very good and thorough overview of helper data algorithms usage with PUFs is given in [START_REF] Delvaux | Helper Data Algorithms for PUF-Based Key Generation: Overview and Analysis[END_REF]. These helper data are generated by secure sketches that employ the code-o set or the syndrome construction [START_REF] Dodis | Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data[END_REF]. A secure sketch is a primitive which includes two procedures: sketch and recover. The sketching procedure outputs a string from an input : SS() = . Later on, is used in the recovery procedure to correct the errors in a noisy version ̃ of the input: Rec(̃ ,) = . Table 1.3 gives details about those two procedures for the code-o set and syndrome constructions.

Sketch SS()

Recover Rec(,) [START_REF] Hiller | Cherry-Picking Reliable PUF Bits With Di erential Sequence Coding[END_REF] for example. In order to increase error tolerance, concatenated codes were used in other works. Typically, a repetition code is concatenated with a BCH [START_REF] Maes | PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator[END_REF] or a Reed-Muller code [START_REF] Bösch | E cient Helper Data Key Extractor on FPGAs[END_REF]. In 2015, Hiller et al. [START_REF] Hiller | Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs[END_REF] used generalised concatenated Reed-Muller and repetition codes.

Code-o set Select random codeword = ⊕ (or encode random word) Correct to SS() = ⊕ = = ⊕ Syndrome SS() = () = . = Find such that () = () ⊕ = ⊕
Speci cally when applied to PUFs, several suited encoding methods have been proposed. Index-based syndrome (IBS) coding [START_REF] Mandel | Secure and Robust Error Correction for Physical Unclonable Functions[END_REF] incorporates bit-speci c con dence information and picks the most reliable bit among . Complementary index-based syndrome coding [START_REF] Hiller | Complementary IBS: Application speci c error correction for PUFs[END_REF] improves on it by repeatedly applying IBS coding to blocks of PUF bits and picking the most and less reliable bit alternatively. Systematic low leakage coding [START_REF] Hiller | Systematic Low Leakage Coding for Physical Unclonable Functions[END_REF] hides the data bits of a codeword by XORing them with other remaining PUF bits. In 2016, another technique called di erential sequence coding [START_REF] Hiller | Cherry-Picking Reliable PUF Bits With Di erential Sequence Coding[END_REF] stores the distance between stable PUF bits and the exclusive-or of the PUF bit and a known codeword bit. Although these solutions can reduce the error-rate, an additional error-correcting code is always required to reach acceptably low failure rate values.

Chapter 1 -Threats and protections for design data All these methods, however, have the drawback to occupy a signi cant amount of resources on the device side. Moreover, they often need a great amount of PUF bits in order to obtain su cient nal entropy to generate a 128-bit key. Table 1.4 shows implementation results of the presented schemes on FPGA when given in the original articles. The implementations that achieve the best performance for the considered criteria are in bold. These schemes can accommodate quite high error-rates, around 15% on average. With constant improvements coming for PUF implementations, such high error rates are less likely. Typically, RO-PUF [START_REF] Maiti | A large scale characterization of RO-PUF[END_REF] and TERO-PUF [START_REF] Marchand | Enhanced TERO-PUF Implementations and Characterization on FPGAs[END_REF] implementations have an average error-rate below 5%. Reducing the acceptable error-rate leads to less complex codes and more e cient hardware implementations in terms of occupied logic resources.

Conclusion on identi cation of IP core instances

In order to uniquely identify IP core instances, taking advantage of random manufacturing process variations is de nitely a good solution. To this end, PUFs are very good candidates. Most of them exhibit good uniqueness which means that the probability that two instances share an identical identi er is negligible. Therefore, individual IP core instances can be identi ed, which is the basic requirement to achieve metering.

The errors observed in PUF responses, however, are an issue. Indeed, by requiring the instantiation of an error-correction core, the logic resources occupied by the PUF grow dramatically. Thus low overhead error-correction solutions are developed and progressing [START_REF] Van Herrewege | Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs[END_REF][START_REF] Hiller | Low-Area Reed Decoding in a Generalized Concatenated Code Construction for PUFs[END_REF]. They are required to improve the stability of PUF responses and make PUFs a usable hardware root of trust. Nevertheless, identifying instances of an IP core is not enough to prevent illegal copying or reverse-engineering. To this end, modifying the design itself is necessary. The aim of these modi cations is to prevent the illegal action from happening, making it prohibitively hard to carry out. Indeed, it is important to note that the goal here is not absolute security. Instead, making illegal actions su ciently costly is considered su cient.

Chapter 1 -Threats and protections for design data

Internal architecture concealment

Protecting the intellectual property against reverse-engineering can be done at di erent levels. The aim is to prevent an attacker from recovering the internal architecture of a design.

Split manufacturing

In order to hide the architecture of a design, the rst method is to perform split manufacturing. Manufacturing a chip comes in two parts, the front end of line (FEOL) and the back end of line (BEOL), as shown in Figure 1.12. The FEOL is the set of layers that incorporate the smallest features like transistors, capacitors and resistors, without interconnect. The BEOL includes all interconnects, which are larger.

Split manufacturing consists then in having the untrusted foundry to manufacture only the FEOL part. Thus the nest process node available can be used to implement the individual transistors. Afterwards, the devices are shipped to a trusted foundry, which performs the remaining manufacturing steps of the BEOL [START_REF] Imeson | Securing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing for Obfuscation[END_REF], where the features do not need to be so small. 3D integration allows for a good assembly of the parts that were manufactured in di erent foundries [START_REF] Hu Mire | Trustworthy system security through 3-D integrated hardware[END_REF]. An attacker who has access only to the FEOL design would have to reconstruct the whole interconnect network.

However, the security of split-manufacturing is questioned. Indeed, FEOL features that are connected are usually not far from one another, leading to the possibility of mounting a so-called proximity attack [START_REF] Jeyavijayan Rajendran | Is split manufacturing secure?[END_REF]. Therefore, a way to modify the design as a whole is required. This is the aim of logic obfuscation.

Chapter 1 -Threats and protections for design data

Logic obfuscation

The second way to hide the internal architecture of an IP core is to use logic obfuscation. In a software context, a de nition of obfuscation is proposed by [START_REF] Hachez | A Comparative Study of Software Protection Tools Suited for E-Commerce with Contributions to Software Watermarking and Smart Cards[END_REF]:

Transform a program P into another program P' harder to reverse engineer with the same observable behaviour.

We can apply this de nition to our use case simply by replacing the program by the IP core. The observable behaviour are the outputs of the core. Making the design harder to reverse-engineer can be done at several level of abstraction, from the gate-level to the source code. Optimally, this should only allow for a black box usage of the IP core.

Obfuscation of the hardware implementation At the lowest level of abstraction, the logic function of individual logic gates can be obfuscated. For example, the company Syphermedia [START_REF] Cocchi | Circuit Camou age Integration for Hardware IP Protection[END_REF] o ers logic gates that look the same even though they achieve a di erent logic function. By modifying the gate topology, as shown in Figure 1.13, the NAND (Figure 1.13a) and the NOR (Figure 1.13b) gates look the same. Exploring this idea further, a standard structure can be made programmable to turn it into any logic gate. This recon gurable element can simply be a -input look-up table (LUT), as presented in [START_REF] Baumgarten | Preventing IC Piracy Using Recongurable Logic Barriers[END_REF]. In [START_REF] Rajendran | Security analysis of integrated circuit camou aging[END_REF], a structure which can act as an XOR, NAND or NOR gate is described. It contains 19 contacts that change the functionality of the gate depending on which of them are real or dummy. The number of achievable logic functions was extended in [START_REF] Rey | Functional polymorphism for intellectual property protection[END_REF] by implementing a so-called polygate. The polygate is described as a {0, 1} 2 × {0, 1} 3 → {0, 1} function. It implements any of the standard 2-input logic gates with 3 con guration bits. Another idea, developed in [START_REF] Shiozaki | Di usion Programmable Device : The device to prevent reverse engineering[END_REF], consists in changing the dopants polarity to con gure a di usion programmable ROM cell, to either 0 or 1. This allows to design cells that act as an inverter or a bu er [START_REF] Malik | Development of a Layout-Level Hardware Obfuscation Tool[END_REF]. All the layout layers are the same except the dopant layer, making reverse-engineering from a delayered circuit very di cult. These cells are aggregated around a 4-input NAND gate, one on each input and one at the output [START_REF] Malik | Development of a Layout-Level Hardware Obfuscation Tool[END_REF]. Depending on the dopants, up to 162 di erent logic functions can be implemented.

Chapter 1 -Threats and protections for design data

The more complex the solutions the larger the induced area overhead. In [START_REF] Rey | Functional polymorphism for intellectual property protection[END_REF], the area overhead ranges from 200 to 1800%. In [START_REF] Malik | Development of a Layout-Level Hardware Obfuscation Tool[END_REF], it goes from 311 to 770%. To maintain a reasonable overhead, only a few strategic gates of the circuit can be modi ed. For example, in [START_REF] Malik | Development of a Layout-Level Hardware Obfuscation Tool[END_REF], only the S-boxes of the PRESENT cipher are obfuscated.

Another solution to make reverse-engineering harder is to exploit the laws of Boolean algebra "backward" [START_REF] Colombier | From Secured Logic to IP Protection[END_REF]. For example, the implementation can follow the disjunctive normal form or the conjunctive normal form strictly, using only AND and OR gates and inverters. The function = ⋅ ⋅ , whose schematic is shown in Figure 1.14a, can be rewritten in canonical disjunctive normal form (see Equation (1.5)), using AND, OR and NOT gates. The associated schematic is shown in Figure 1.14b. Following this concept a step further, only universal logic gates, NAND or NOR, can be allowed for implementation [START_REF] Vinay | On meta-obfuscation of physical layouts to conceal design characteristics[END_REF]. Obviously, the area overhead remains very high in all these cases.

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ (1.
Dummy logic cells can also be inserted into the layout [START_REF] Cocchi | Circuit Camou age Integration for Hardware IP Protection[END_REF][START_REF] Vinay | On meta-obfuscation of physical layouts to conceal design characteristics[END_REF]. By making the layout very dense, those additional gates are hard to distinguish from the original ones.

Structural information may be obfuscated too. In [START_REF] Vinay | On meta-obfuscation of physical layouts to conceal design characteristics[END_REF], they propose to make the routing look "generic" by placing the logic gates on a grid. It makes routing less identi able by reverse-engineering tools. When an IP core is implemented, the boundaries of individual sub-components is usually visible. A boundary-blurring technique is presented in [START_REF] Parham | Hiding Circuit Components Using Boundary Blurring Techniques[END_REF] that makes sub-components overlap.

All those layout-level techniques can be e cient but they all require signi cant area overhead. Therefore, they cannot be applied to a whole design but must be focused on strategic locations instead.

Design les obfuscation When an IP core is not provided as a layout, it is usually in the form of a le written in an HDL. To obfuscate these les, several techniques exist, mostly inspired by those already used in software engineering. Those modi cations [OM95; BY07; Mey+11] include replacing locally static expressions by their values, adding dummy structural layers, adding dummy variables, renaming variables21 , loop unrolling, etc. An example of VHDL obfuscation is given in Figure 1.15, where the variables name have been changed and the indentation has not been followed.

LIBRARY i e e e ; USE i e e e . s t d _ l o g i c _ 1 1 6 4 . ALL ;

ENTITY f u l l _ a d d e r I S PORT (a : IN STD_LOGIC ; b : IN STD_LOGIC ; c _ i n : IN STD_LOGIC ; q : OUT STD_LOGIC ; c _ o u t : OUT STD_LOGIC) ; END ENTITY f u l l _ a d d e r ; ARCHITECTURE r t l OF f u l l _ a d d e r I S BEGIN --ARCHITECTURE r t l q <= a XOR b XOR c _ i n ; c _ o u t <= (a AND b) OR (c _ i n AND (a XOR b)) ; END ARCHITECTURE r t l ;
(a) VHDL description of a full-adder l i b r a r y i e e e ; use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ; e n t i t y Although these modi cations are very easy to achieve, they are essentially useless after the design is synthesised. This is indeed one role of the synthesiser to get rid of all the dummy elements that were added. Moreover, the software engineering ecosystem is full of tools that can automate de-obfuscation. Speci cally for FPGAs, the bitstream used to program the target can be compressed [START_REF] Vliegen | A Single-chip Solution for the Secure Remote Con guration of FPGAs using Bitstream Compression[END_REF]. Even though a bitstream can look undecipherable at rst sight, it turns out to be quite structured and easy to remap to a netlist [NR08; BSH12].

I I 1 I 1 0 0 O 0 O i s port (i O O O 0 1 0 1 o i i o i , O O O 0 0 0 i I I i I o o O 1 , I101OO1O0I : in s t d _ l o g i c ; II1I1O00OO , I 1 1 I I 0 0 0 0 O : out s t d _ l o g i c) ; end e n t i t y I I 1 I 1 0 0 O 0 O ; a r c h i t e c t u r e OO0OO of I I 1 I 1 0 0 O 0 O I S begin II1I1O00OO <= i O O O 0 1 0 1 o i i o i xor O O O 0 0 0 i I I i I o o O 1 xor I101OO1O0I ; I 1 1 I I 0 0 0 0 O <= (i O O O 0 1 0 1 o i i o i and O O O 0 0 0 i I I i I o o O 1) or (I101OO1O0I and (i O O O 0 1 0 1 o i i o i xor O O O 0 0 0 i I I i I o o O 1)) ;
To reach a higher level of concealment, encryption must be used instead of simple obfuscation. This is detailed in the next section.

Design les encryption

In order to conceal the architecture of a design, encryption is a useful tool. It goes further than obfuscation by preventing black-box instantiation of a design without a valid decryption key.

Most of the EDA tools integrate encryption and decryption capabilities for design les. For instance, Cadence o ers ncprotect while Mentor Calibre can also encrypt and decrypt design les. These tools make use of the principles of public-key cryptography so that designers can distribute their design les securely.

For FPGAs, bitstream encryption is a very common feature nowadays. Both Intel [START_REF] Altera | Protecting the FPGA Design From Common Threats[END_REF] and Xilinx [START_REF] Wilkinson | Using Encryption to Secure a 7 Series FPGA Bitstream[END_REF] EDA tools allow a designer to encrypt a bitstream. Since FPGAs are more and more complex, they now integrate a symmetric cryptographic core which is in charge of decrypting the bitstream when the FPGA is con gured.

The adoption of bitstream encryption for most of the products by FPGA vendors is quite recent. Previously, solutions originating from academia have also been proposed [Gas+12; MSV12; BCM16]. They all exploit partial recon guration features to allow for secure con guration.

The wide adoption of bitstream encryption by EDA tools vendors shows that this IP protection scheme is e ective. With the cost per transistor constantly decreasing, implementing a symmetric cipher in an FPGA is now easily feasible. However, Moradi et al. [Mor+11;[START_REF] Moradi | Side-channel attacks on the bitstream encryption mechanism of Altera Stratix II: facilitating black-box analysis using software reverse-engineering[END_REF][START_REF] Moradi | Improved Side-Channel Analysis Attacks on Xilinx Bitstream Encryption of 5, 6, and 7 Series[END_REF] showed that those implementations are vulnerable to side-channel attacks.

Conclusion on internal architecture concealment

Hiding the internals of a design can prove very e cient at deterring attackers. The previously described methods are well implemented and handled at di erent stages of the design process. For example for FPGAs, the bitstream encryption is done by the EDA tool while the decryption is done at runtime by the hardware. The impact on the standard design ow is then limited.

Measuring the e ciency of protection consists in estimating the amount of time required by an attacker with a speci c amount of funds available to reverse-engineer the design. The adoption of these also depends on the impact they have on the performance of the IP core. Although bitstream encryption for instance does not alter the performances, split manufacturing can induce additional delay in the interconnections [START_REF] Hill | A split-foundry asynchronous FPGA[END_REF].

Degraded modes of operation

The other solution for modifying a design to prevent illegal actions is to incorporate a degraded mode of operation into it. By default, the design operates in degraded mode. For normal usage, it can then reach the correct mode of operation but only on certain input conditions. These speci c input conditions should be su ciently hard to achieve from an attacker point of view but easy to provide for the original designer. This e ectively makes the design activable. Most of the time, the activation is done by setting a speci c value on a dedicated activation input.

There are two possibilities to make a design unusable. The rst one is to alter the outputs in a seemingly random way, so that the correlation between the normal and altered outputs is as low as possible. We refer to this as logic masking. In this case, the outputs are altered as much as possible and the alteration depends on the value fed to the activation input of the design. For all input combinations but the correct one, the outputs of the netlist are altered. The second solution is to force the outputs of the design to a xed value. We refer to this as logic locking. As opposed to masking, for locking, no matter what the value that is fed to the activation input is. For all input combinations but the correct one, the outputs of the IP core remain the same.

Logic masking

Logic masking was rst proposed in 2008 [RKM08a; RKM10]. Several terms are found in literature for this method. Originally coined as "logic locking", even though no actual locking is performed, it has been successively called "logic obfuscation" [LT15], or "logic encryption" [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF], although this cannot be related at all to obfuscation as de ned in [START_REF] Hachez | A Comparative Study of Software Protection Tools Suited for E-Commerce with Contributions to Software Watermarking and Smart Cards[END_REF] or to encryption in a cryptographic context. A formal de nition of these terms is proposed in [START_REF] Colombier | From Secured Logic to IP Protection[END_REF]. Logic masking consists in inserting linear (XOR, XNOR) gates at speci c locations in the netlist, controlled by an activation input on which an activation word (AW)22 must be fed. This makes it possible to controllably invert some nodes, altering the internal state of the netlist. The inserted gates have one of their inputs connected to the node, while the other acts as a activation input. The choice between inserting an XOR or an XNOR gate is dependent on the associated activation bit. If the activation bit is a 0, then an XOR gate is inserted. The node is then inverted if the wrong activation bit, a logic 1, is fed. Similarly, if the activation bit is a 1, an XNOR gate is inserted. This is summarised in Figure 1.16. Alternatively, instead of modifying simple nodes, inverters can be replaced. In this case, the corresponding activation bit is inverted. If an XOR gate is inserted to replace an inverter, the associated activation bit is 1. Similarly, if an XNOR gate is inserted to replace an inverter, the associated activation bit is 0.

Masking e ciency evaluation metrics By modifying the internal state of the IP core, the outputs are modi ed too. The point is to disrupt them greatly so that they di er as much as possible from the non-masked outputs. Originally, in [RKM08a; RKM10], this was dealt with by ensuring that only one AW is valid, i.e able to make the IP core operate normally. Let () be an -input combinational netlist and (,) be a masked version of it. Then ensuring that only one AW is valid can be expressed by Equation (1.7).

∃!AW valid | ∀ ∈ {0, 1} , (, AW valid) = () (1.7)
However, this requirement is not restrictive enough to ensure strong logic masking. Indeed, while it imposes a condition on the valid AW, it does not deal with invalid ones. Namely, there is no requirement on the degree of disturbance observed at the outputs when the wrong AW is fed to the IP core.

Later on, [Raj+12a; Raj+13] a criterion on the Hamming distance was proposed. On average, when a wrong AW applied, the Hamming distance between the normal and masked outputs should be as close as possible to 50%. Exhaustive search over the input patterns, both activation inputs and primary inputs, is not feasible, so simulation must be carried out with random input patterns. In [START_REF] Rajendran | Logic encryption: A fault analysis perspective[END_REF][START_REF] Rajendran | Security analysis of integrated circuit camou aging[END_REF] for example, 1000 input patterns were simulated.

When simulating, a subset in primary input patterns is chosen. Let us denote such set as inputs . This set is a subset of {0, 1} and has a cardinality of . A subset of activation input patterns is chosen. Let us denote such set as AWs . This set is a subset of {0, 1} and has a cardinality of . Then the requirement on the Hamming distance (HD) between normal and masked outputs is expressed in Equation (1.8).

∀ inputs ⊂ {0, 1} , ∀ AWs ⊂ {0, 1} ⧵ { valid } | # inputs = , # AWs = , lim (,)→(2 ,2) 1 ⋅ ∑ ∈ inputs AW ∈ AWs HD((, AW), ()) = 0.5 (1.8)
In order to ful l these requirements, the locations of the inserted masking gates matters a lot. Several heuristics have been proposed over the years and are presented in the following section.

As a side note, logic masking can also be considered to be a form of internal architecture concealment. Indeed, the functionality of the inserted gates being unknown, it makes reverseengineering the netlist harder.

Chapter 1 -Threats and protections for design data Nodes selection heuristics In the original article by Roy, Koushanfar and Markov [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], the netlist nodes to mask were selected at random. However, as pointed out in [START_REF] Rajendran | Logic encryption: A fault analysis perspective[END_REF], this method is not very e cient at altering the outputs and the Hamming distance between normal and masked outputs remains low. Rapidly, new heuristics were proposed to select more suitable nodes. In 2009, in the HARPOON design methodology [START_REF] Subhra | HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection[END_REF], the fan-in and fan-out cones of nodes were exploited. A so-called suitability metric is computed, shown in Equation (1.9), where FI and FO are the fan-in and fan-out values for the considered node, FI max and FO max are the maximum fan-in and fan-out values found in the netlist and 1 and 2 are normalisation weights which are best set to 0.5. Intuitively, this metric is maximised for nodes that have either a large fan-in or fan-out, or both.

node = 1 ⋅ FO FO max + 2 ⋅ FI FI max × FO ⋅ FI FI max ⋅ FO max (1.9)
Later on, [START_REF] Rajendran | Security analysis of logic obfuscation[END_REF] improved on the random selection heuristic. They identify several cases in which the masking gates are not inserted optimally, allowing an attacker to propagate the activation bit at one of the primary outputs. They de ne the notion of interference graph to represent the interaction between masking gates. Ideally, this graph should be complete 23 , indicating that the masking gates have maximum interaction with one another. This was re ned in [START_REF] Rajendran | Security analysis of integrated circuit camou aging[END_REF] with a corruptibility metric, ensuring that the outputs are corrupted when the wrong AW is fed to the design. All these approaches have the advantage that their associated metric is easy to compute. Thanks to this, large netlist can be handled and masked. The masking e ciency, however, is quite low for these methods, and the correlation between normal and masked outputs remains high.

A di erent approach was adopted in [Raj+12a; Raj+15] and is based on fault-analysis. This time, the metric computed for every node of the netlist is called the fault impact, detailed in Equation (1.10). The number of patterns that detect a stuck-at-0 fault at the output of the gate is called NoP 0 , while the total number of output bits a ected by this fault is called NoO 0 . NoP 1 and NoO 1 are de ned in a similar way for stuck-at-1 faults.

fault impact = NoP 0 ⋅ NoO 0 + NoP 1 ⋅ NoO 1 (1.10)
Since it exploits fault analysis, this method requires a dedicated fault simulator to compute the values of NoP 0 , NoO 0 , NoP 1 and NoO 1 . The tasks performed by such software are usually computationally demanding. Moreover, authors of [START_REF] Rajendran | Logic encryption: A fault analysis perspective[END_REF][START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF] propose to insert the masking gates iteratively. After inserting a masking gate on the node that maximises the fault impact, the fault impact values are recomputed for all the nodes in the netlist. Therefore, the nodes selection heuristic is at the same time computationally expensive and intrinsically sequential. In [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF], it is reported that it takes two hours to analyse and mask a netlist of 3,500 nodes. Thus even though this method achieves e cient masking, integrating it in EDA tools is unrealistic. A possible speed-up is presented in [START_REF] Sezer Gören | Speeding Up Logic Locking via Fault Emulation and Dynamic Multiple Fault Injection[END_REF] but requires to implement a masking gate on every node of the netlist before programming it and performing an emulation on FPGA. For very large netlists, this is clearly impractical. A summary of the strict separation between masking e ciency and computational simplicity for existing nodes selection heuristics is shown in Table 1.5.

Heuristic Masking e ciency Computational simplicity

Random [RKM08a] × ✔ Fan-in/out [CB09] × ✔ Interference graph [Raj+12b] × ✔ Corruptibility [Raj+13] × ✔ Fault analysis [Raj+15]
✔ × Table 1.5 -Masking e ciency opposed to computational complexity for existing nodes selection heuristics. The symbol × means that the property is not ful lled, the symbol ✔ means that the property is ful lled.

Those solutions aim at being integrated into EDA tools. This way, designers could add masking gates to their design on the y. The computational complexity of the selection heuristic is then a strong requirement. Obviously, the masking e ciency should be optimised as well. From what can be observed in Table 1.5, there is room for selection heuristics that o er a trade-o between masking e ciency and computational complexity.

The other solution to make an IP core unusable is to force the outputs to a xed logic value until the valid unlocking word is fed. This is referred to as logic locking and presented below.

Logic locking

Logic locking, just like logic masking, aims at making an IP core unusable until the valid AW is fed to it. However, instead of disrupting the outputs as much as possible, those are simply forced to a xed logic value. This is expressed in Equation (1.11) where is the value at which the outputs are forced when the IP core is locked. Equation (1.7) relative to the uniqueness of still holds for logic locking.

∃! | ∀AW ∈ {0, 1} ⧵ {AW }, ∀ ∈ {0, 1} , (, AW) = (1.11)
The works presented in Chapter 2 of this thesis are the rst to deal with logic locking at the combinational level. Previous work focus on higher levels of abstraction and are presented in the following sections.

Locking FSM The rst proposition is named boosted FSM [START_REF] Alkabani | Active hardware metering for intellectual property protection and security[END_REF]. It consists in adding states before the start-up state of an FSM. This is pictured in Figure 1.17, in which the original state machine is in light grey while the added states are in black. In the original article [START_REF] Alkabani | Active hardware metering for intellectual property protection and security[END_REF], the start-up state is determined by setting the state register with the output of a so-called random unique block, which is in fact a PUF. If the number of added states is large compared to the number of original states, then the probability to start in the added states is great. When a system integrator must activate the IP core, the state register value is sent to the designer, who then sends back the sequence of activation bits that lead to the original start-up state. In order to maximise the number of traversed extra states, the FSM can be set to the added initial state S' 0 when reset.

While the system is in the added states, it does not operate. The outputs can be locked while the system is in these states, achieving logic locking. These states can also be used to apply logic masking on certain nodes [START_REF] Subhra | HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection[END_REF]. When the original FSM is reached, the system operates normally.

The boosted FSM can be extended with so-called black-hole states [START_REF] Koushanfar | Provably Secure Active IC Metering Techniques for Piracy Avoidance and Digital Rights Management[END_REF]. Once the system reached one of these states, it cannot come back to the original FSM anymore. It prevents brute-forcing of the sequence of activation bits. However, an attacker can then reset the system and start again.

Implementing locking at the FSM level has the advantage to be able to exploit unused states which can be encoded in the state register. However, all the extra transitions to add between these states still need combinational logic, leading to quite high overhead [START_REF] Koushanfar | Provably Secure Active IC Metering Techniques for Piracy Avoidance and Digital Rights Management[END_REF].

Input/output locking The inputs and outputs of the circuit can integrate anti-fuses to achieve locking. As shown in [START_REF] Basak | Active defense against counterfeiting attacks through robust antifuse-based on-chip locks[END_REF], an anti-fuse can be easily integrated in a general purpose input-output pin of a circuit. When the correct key is fed to the device, the correct anti-fuses are blown and the associated ports are unlocked. Otherwise, if programmed with the wrong key, the port is unusable.

Adding anti-fuses to a circuit requires speci c write circuitry with a higher voltage than the device core. Thus placing the fuses at the input-output ports is a good option since higher voltages can be found there. This solution has also the advantage to be able to detect recycled circuits. Indeed, if some fuses of the circuit are already blown when a customer receives it, then it is clear that the circuit has already been used before.

Chapter 1 -Threats and protections for design data Communication bus locking In complex IP cores, a communication bus is usually used to interconnect the modules e ciently. For instance, the AMBA architecture is from ARM [START_REF] Arm | AMBA Speci cations[END_REF], Intel has a bus system called Avalon [START_REF]Avalon® Interface Speci cations[END_REF] and even the Opencore open-source repository proposes the Wishbone bus [START_REF] Opencores | Wishbone B4 : Wishbone System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores[END_REF]. By controllably scrambling the bus, the information transiting in it can be corrupted and made unusable [START_REF] Roy | Protecting Bus-based Hardware IP by Secret Sharing[END_REF]. This is achieved using a Beneš network, which is a grid of switch boxes as used by an arbiter PUF, described in Equation (1.3). This solution has the drawback to insert extra components on the paths where information transits on a chip. This necessarily induces delay, which is often critical for interconnection buses.

Conclusion on degraded modes of operation

O ering degraded modes of operation for an IP core is a way to implement an activation scheme. Before activation, the system does not operate correctly. Once the correct activation word is fed to it, it reaches normal operation. This is the rst step toward a licensing scheme. Some more advanced degraded modes of operation are also possible. For example, following the model proposed for pieces of software, a demonstration mode with limited functionality or performance can be available [START_REF] Parrilla | Intellectual Property Protection of P cores[END_REF]. Another possibility is to o er the demonstration mode for a limited period of time [START_REF] Couture | Periodic Licensing of FPGA Based Intellectual Property[END_REF]. These possibilities would pave the way for more ne-grained licensing models, but are still not implemented. More limited licensing schemes were developed though, but mostly focus on the security. They are presented below in the following section.

Licensing schemes

All the previously described methods deal with a speci c aspect of intellectual property protection. However, some more holistic works proposed complete licensing schemes. Depending on how they make sure that the overall process is secure, they can be divided in two categories. Some of them require a trusted third party, while others make use of public key cryptography.

When classifying the methods as either using a trusted third party or public key cryptography, this is with respect to how the IP is protected. When a trusted third party is present, it usually manages keys which are used to encrypt the design and decrypt it on board. Conversely, public key cryptography is mostly used to send activation keys to the implemented design directly. Details are given in the following sections.

Public key cryptography

The rst option is to make use of public key cryptography. Most of the times, it is used to encrypt an activation word. For example, in [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], a unique pair of public and private keys is generated by a TRNG embedded in the device. The activation word is encrypted by the Chapter 1 -Threats and protections for design data IP core designer using the device public key and his private key. It is then decrypted inside the device using the IP core designer public key and the private key of the device.

In [START_REF] Huang | IC Activation and User Authentication for Security-Sensitive Systems[END_REF], targeting ASICs, the IP core designer embeds his public key inside the design and distributes it. Later on, when a system integrator wants to activate the IP core, he enters his private key, which is concatenated with a PUF response and hashed to generate an activation word. This activation word is encrypted by the designer's public key and sent back to the designer. The designer can then authenticate the system integrator with other techniques, decrypt the activation word and send it back to the designer. Since the activation word is device-speci c, it is of no use for overproducing the IP core.

Instead of being integrated in the IP core itself, public key cryptography can be leveraged by the EDA tool. This is done in [START_REF] Guajardo | Secure IP-Block Distribution for Hardware Devices[END_REF], where the existing Synplicity Open IP protocol is improved and another IP sharing protocol is presented. This protocol is detailed in Figure 1.18. In this case, the IP core encryption and decryption is handled inside the EDA tool.

Using public key cryptography o ers strong security guarantees, but is very heavy to implement on-chip [HL08; RKM08a]. Typically, an RSA or elliptic-curve core is implemented and occupies a lot of logic resources. On the other hand, integrating these capabilities into the EDA tool can enforce the use of a speci c piece software.

Trusted third party

In some protocols, a trusted third party is required. A trusted third party participates in the protocol and behaves fairly. It serves as an intermediate and is supposed to be trusted by all parties, without these parties trusting each other. The existing protocols usually deal with IP cores provided for FPGAs.

In [START_REF] Kean | Cryptographic Rights Management of FPGA Intellectual Property Cores[END_REF], the trusted third party is the FPGA vendor, which is responsible for assigning a unique key to each FPGA and maintaining a database of keys. FPGA bitstreams are then encrypted with these keys, allowing them to be decrypted on only one hardware target that owns the key.

In [START_REF] Simpson | O ine Hardware/Software Authentication for Recon gurable Platforms[END_REF], the trusted third party has multiple roles. It handles the hardware enrolment, which consists in obtaining a list of CRPs from the PUF. It then uses one response to encrypt authentication data and sends another response to the IP provider to encrypt the IP core. Since the responses are only accessible from the hardware, only the FPGA can decrypt these messages.

A speci c metering architecture is presented in [START_REF] Maes | A Pay-per-Use Licensing Scheme for Hardware IP Cores in Recent SRAM-Based FPGAs[END_REF]. In this case, the trusted third party enrols both the hardware and the IP cores. A device-speci c metering bitstream is then generated and handles the secure con guration of di erent IP cores on the same device. This is summarised in Figure 1.19, in which the trusted third party is called "metering authority", or MA. The metering authority has multiple roles:

• Embedding a device-speci c key into every device,

• Program every device with an encrypted metering bitstream,

• Enrol and register IP core along with their speci c IP key,

• Provide system integrators with the encrypted IP-speci c key [] Table 1.6 summarises which keys are known to which parties and integrated into which devices. This clearly highlights that the only party that owns all the keys is the metering authority. All other parties rely on it for trusted communication.

× × × ✔ ✔ ✔ Metering key × × × ✔ × ✔ IP-speci c key × ✔ × ✔ × ✔ Encrypted metering key [] × × ✔ ✔ × ✔ IP core × ✔ × ✔ × ✔ Encrypted IP core [] × ✔ ✔ ✔ × ✔ Table 1
.6 -Knowledge of the keys and encrypted data among parties (✔: known, ×: unknown).

In [START_REF] Guneysu | Dynamic intellectual property protection for recon gurable devices[END_REF], a key establishment scheme derives the FPGA-speci c key from the secret key of the hardware manufacturer, the secret key of the IP core designer and the device ID, as shown in Equation (1.12) from the hardware manufacturer point of view or in Equation (1.13) from the point of view of the IP core designer. The FPGA then decrypts the bitstream internally.

= (, ,) (1.12) = (, ,) (1.13)
All these solutions show that it is not impractical to implicate a trusted third party in the design process. Moreover, an existing party like the hardware manufacturer can play this role, making the implementation and adoption easier. Alternatively, trusted third parties could be implemented just like certi cate authorities are for software.

IEEE 1735

It is worth pointing out that the IEEE 24 released a standard for "Recommended Practice for Encryption and Management of Electronic Design Intellectual Property" in 2015 [START_REF]IEEE Recommended Practice for Encryption and Management of Electronic Design Intellectual Property (IP)[END_REF]. This standard speci es some capabilities that could be added to EDA tools or to HDLs to enforce IP protection. If adopted, this would allow EDA tools to conform to a common set of IP protection techniques.

This document is divided into several chapters that deal with di erent aspects. Chapter 5 de nes a set of pragmas added to the HDL code to specify interoperability parameters. Chapter 6 de nes how keys are managed between parties, while chapter 7 de nes how rights are handled and granted to parties. In chapter 8, a license system is described that implements rights management. Chapter 9 de nes how the visibility of the IP core components is managed, in particular the characteristics of a model that can replace the actual IP core for simulation purposes. Finally, chapter 10 de nes common rights that all tools of the design ow should be able to handle. Some companies have implemented this standard into their EDA tools, like Xilinx in Vivado [START_REF]Xilinx, Xilinx Plug-and-Play IP: Accelerating Productivity and Design Reuse[END_REF] or Microsemi in Libero SoC [START_REF] Microsemi | UG0533 User Guide Libero SoC Secure IP Flow[END_REF].

Summary

After presenting which solutions exist in literature to provide IP protection, we can relate them to the two previously described threats: illegal copying and reverse-engineering. This is shown in Table 1.8, where the number of black dots refers to the e ciency of the solution at ghting the associated threat. For example, identifying an IP core is not very e cient at preventing illegal copying since obtaining the key for one IP core unlocks them all. On the other hand, o ering degraded modes of operation is a very e cient solution to deter potential adversaries.

Identifying individual instances of an IP core is a must for design data protection. It is the basis of metering. Hiding the internals of a design can prevent reverse-engineering but a su ciently motivated and funded adversary will always manage to extract information anyway. Finally, licensing schemes are e cient but usually require a lot of logic resources on the device. The most e cient combination seems to be the one integrating a unique identi er for every IP core instance along with a controllable degraded mode of operation. By adding a symmetric cipher on top of this, security can be guaranteed. Essentially, a secure remote activation scheme must be built.

Chapter 1 -Threats and protections for design data 1.7 High-level requirements for a secure remote activation scheme

In the framework of the SALWARE project25 , the main objective is the industrial feasibility of the proposed solutions. From the existing state-of-the-art, we can derive the following high-level requirements for the secure remote activation scheme.

First of all, it must be easy to operate the activation scheme in a normal way. Namely, a legitimate system integrator should be able to activate an IP core easily if it has been obtained under the standard procedure. Contrarily, from an attacker point of view, the protection scheme should be su ciently hard to circumvent, that is to say obtaining a functional copy of the IP core. This is closely related to the security level reached by the cryptographic primitives implemented in the system. Instead of aiming at long-term security, a moderate security level should be the target here. Typically, symmetric ciphers would employ 80-bit keys.

In addition to those two basic requirements which form the basis of the IP protection scheme, we can add some additional speci cations. When an attacker obtained an IP core in an illegal way, the IP core must operate in a very disturbed manner, as far as possible from its original behaviour. All the modes of operation should be a ected. However, when the IP core has been unlocked, the protection scheme should have no impact on the performances.

Another characteristic of the protection scheme that is determinant to foster its adoption by industrial partners is the amount of hardware resources is occupies. Clearly, we aim at making the whole module as lightweight as possible, so that it does not incur too high additional costs for the IP core to be protected. Similarly, ease of integration into standard design ow is also necessary. In particular, the protection scheme should be as universal as possible and be able to deal with all sorts of IP cores.

SALWARE IP protection module

An overview of the IP protection module proposed in the framework of the SALWARE project is shown in Figure 1.20. On the right-hand side, an integrated circuit that integrates three IP cores is shown. One of them is protected by the module detailed on the left-hand side, which communicates with a remote server shown at the bottom. This module comprises the following components:

Lightweight block cipher It decrypts the encrypted activation word sent by the remote server. The encryption key is the PUF response.

Logic locking/masking module It locks or masks the protected IP core and makes it unusable when not activated yet.

PUF It generates a unique identi er for the IP core instance.

Interactive error correction It makes the device-side and server-side responses (r and r 0) match by carrying out a key reconciliation protocol. Chapter 2

Combinational logic locking

Among the degraded modes of operations presented in the previous chapter, logic locking consists in setting the outputs of a design to a xed logic level unless the correct activation word is fed. So far, high level features, such as the FSM, the input/outputs or the communication bus, were targeted. This comes with a lack of generality, since most of the techniques are dependent on the architecture or the features of the design to protect.

To overcome this limitation, directly acting at a lower level, on the combinational logic, is a solution. The method presented in this chapter leverages the representation of a netlist as a directed acyclic graph. By inserting so-called "locking gates", the outputs of the netlist can be forced to a xed value. The contribution of this chapter is an algorithm that selects which nodes must be modi ed based on the propagation of a locking value through a sequence of nodes. The nodes selection and insertion process proves to be very computationally e cient, allowing to process large combinational netlists of up to 200 000 nodes. At the same time, the logic resources overhead induced by the extra logic gates is 3% on average.

The code associated with this chapter is available at: https:// gitlab.univ-st-etienne.fr/ b.colombier/ graph-analysis-based-logic-locking/ tree/ master Chapter 2 -Combinational logic locking Verrouillage combinatoire de la logique Parmi les modes de fonctionnement dégradés présentés dans le chapitre précédent, le verrouillage consiste à forcer les sorties d'un composant virtuel à un niveau logique xe tant que le mot d'activation correct n'a pas été fourni. Jusqu'à présent, des caractéristiques de haut niveau, telles que la machine à états nie, les entrées/sorties ou le bus de communication, étaient ciblées. Ces techniques sont di ciles à généraliser, car la plupart dépendent de l'architecture ou des caractéristiques du composant virtuel à protéger.

Pour dépasser cette limitation, agir directement à un niveau plus bas, celui de la logique combinatoire, est une solution. La méthode présentée dans ce chapitre s'appuie sur la représentation d'une netlist comme un graphe orienté acyclique. En insérant des "portes de verrouillage", les sorties du composant virtuel peuvent être forcées à une valeur logique xe. La contribution de ce chapitre est un algorithme qui sélectionne les noeuds à modi er en se basant sur la propagation d'une valeur de verrouillage à travers une suite de noeuds. Le processus de sélection et d'insertion est très e cace et permet de traiter des composants virtuels combinatoires contenant jusqu'à 200 000 noeuds. Dans le même temps, le surcoût en ressources logiques induit par les portes logiques supplémentaires est de 3% en moyenne.

Chapter 2 -Combinational logic locking

De nition

Logic locking is de ned as the fact to controllably force the outputs of a design to a xed logic value unless the correct AW is fed to the dedicated inputs. There can be two de nitions of logic locking, depending on the actual number of outputs that are locked.

Let be the output of the netlist and AW valid the correct activation word, then total logic locking is de ned in Equation (2.1). When total logic locking is applied to IP core, all the outputs are forced to a xed logic level unless the correct activation word is fed. The output value is then xed .

∃! xed ∈ {0, 1} | ∀AW ≠ AW valid ∶ = xed (2.1)
A weaker de nition of logic locking can be derived in the case where some outputs are not a ected when a speci c AW is provided. This is the more general case. AW valid unlocks all the outputs (see Equation (2.2)), its complement AW valid locks all the outputs (see Equation (2.3)) and all the other possible AWs lock only a fraction of the outputs (see Equation (2.4)).

∃!AW valid ∶ = unlocked (2.2) ∃!AW valid ∶ = locked (2.3) ∀AW ∉ {AW valid , AW valid } ∶ = locked ∪ unlocked (2.4)
In this general case (Equation (2.4)), the set of output bits, can be seen as the union of two subsets. The set locked corresponds to the set of outputs which are forced to a xed logic value by a speci c AW. The set unlocked corresponds to the set of outputs which are not forced to a xed logic value by this speci c AW. The cardinality of the sets locked and unlocked depends on the AW fed. Some AWs will lock more outputs than others.

In order to implement combinational logic locking, so-called locking gates are inserted inside the original netlist. We rst describe a naive implementation of the weak de nition of logic locking, before formalising and giving details about a more e cient method based on graph analysis. We then provide means of achieving the de nition of logic locking shown in Equation (2.1).

Naive description

To force an output of a design to a xed logic value, one of the inputs of the nal logic gate must be set to its corresponding controlling value. For example, setting a logic 0 to one of the inputs of a NAND gate forces its output to 1. Table 2.1 gives the controlling value for the usual non-linear logic gates. Indeed, only linear logic gates have a controlling value. The output of linear logic gates like XOR or XNOR cannot be set to a xed logic value by controlling only one of the inputs. Table 2.1 -Controlling value of non-linear logic gates and the associated forced output value

In order to force the controlling value, locking gates are inserted. If the controlling value is 0, an AND gate is inserted to controllably force it to 0. If the controlling value is 1, an OR gate is inserted to controllably force it to 1. An example of how an output is modi ed is given in Figure 2.1. In Figure 2.1a, the nal gate before the output is a 2-input NAND. The controlling value of an NAND gate being 0, an AND gate is added for logic locking to be able to controllably force this input, X 0 here, to 0. The lockable output is shown in Figure 2.1b. When the locking input AW of the locking gate (in dark grey) is set to 0, which is the locking value, the wire that propagates the controlling value, 0 mod is forced to 0. Since 0 is the controlling value of the original output gate (in white), the original output is forced to 0. Conversely, when the locking input of the locking gate is set to 1 which is the unlocking value, the wire that propagates the controlling value has the same logic value as the other input 0 . In this case, the overall NAND logic function is preserved. By repeating this process for all the output gates of a design, all the outputs can be controllably forced to a xed logic value.

Logic function analysis using Boole's expansion theorem

Boole's expansion theorem [START_REF] Boole | An Investigation of the Laws of Thought: On which are Founded the Mathematical Theories of Logic and Probabilities[END_REF] states that an -input boolean function can be split into two parts containing two cofactors, later called Shannon cofactors. This is shown in Equations (2.5) and (2.6), where is the boolean function, and and are the two cofactors. The positive cofactor is equal to with the variable set to 1. The negative cofactor is equal to with the variable set to 0. Equation (2.5) shows the Sum-of-Products (SoP) form, while Equation (2.6) shows the Product-of-Sums (PoS) form.

= ⋅ + ⋅

(2.5)

= (+) ⋅ (+) (2.6)
It is possible to highlight logic locking in both these decomposition.

Lemma 1 A boolean function is locked to the value locked by the variable when = 0 if can be written as:

= ⋅ + ⋅ locked (2.7)
in SoP form, or as:

= (+ locked) ⋅ (+) (2.8)
in PoS form.

Lemma 2 A boolean function is locked to the value locked by the variable when = 1 if can be written as:

= ⋅ locked + ⋅ (2.9)
in SoP form, or as:

= (+) ⋅ (+ locked) (2.10) in PoS form.
Any boolean function that can be identi ed with Equation (2.7), (2.9), (2.8), (2.10), where is a constant, can be locked by the variable.

For a 2-input AND gate, we can write = 0 ⋅ 1 + 0 ⋅ 0. This highlights, according to Equation (2.7), that the output of an AND gate can be locked to 0 by setting its input 0 to 0.

Similarly, for a tree of seven 2-input OR gates we can write the following equality:

= 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 = (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) ⋅ (0 + 1)
This shows that such a structure can be locked by setting its input 0 to 1, according to Equation (2.10). All the other inputs could be used as well.

= (0 . 1) + 2 + 3 = 0 + 1 + 2 + 3 = (0 + 1) ⋅ (0 + 1 + 2 + 3) = (1 + 1) ⋅ (1 + 0 + 2 + 3) = (2 + 1) ⋅ (2 + 0 + 1 + 3) = (3 + 1) ⋅ (3 + 0 + 1 + 2)
These PoS forms can be identi ed with Equation (2.8) and (2.10), showing that the output of this function can be locked to 1 by forcing 0 or 1 to 0 or 2 or 3 to 1.

Conversely, on the right-hand side, Figure 2.2b, the logic function is:

= ((0 . 1) + 2) ⋅ 3 = 3 ⋅ (0 + 1 + 2) + 3 ⋅ 0
These SoP form can be identi ed with Equation (2.7), showing that the output of this function can be locked to 0 by forcing 3 to 0.

Finding such identities in the logic equation of the outputs of a circuit is tedious, since this requires the manipulation of complex equations. Moreover, most of the boolean functions cannot be locked. Finally, this does not favour the nodes that are far from the outputs. This is an issue since the locking gates could be very easily identi ed in the netlist if they are very close to the outputs. For instance, for the function shown in Figure 2.2a, X 0 or X 1 are better suited than X 3 for combinational logic locking. In order to overcome this, another point of view can be taken. By considering the schematic of the boolean function implementation, we can highlight interesting sequences of nodes in the netlist that are capable of propagating a locking value.

Chapter 2 -Combinational logic locking

Schematic view: propagation of a controlling value

Inserting the locking gates deeper in the netlist, as far as possible from the outputs, requires to identify sequences of nodes that can propagate a locking value. An example depicting how a sequence of nodes can propagate a locking value is shown in Figure 2.3, with the same logic functions as in Figure 2.2. On the left hand-side, Figure 2.3a, feeding a logic 0 at one of the inputs of the rst NAND gates forces the output of the last OR gate to 1. Conversely, in Figure 2.3b, the nal AND gate does not allow the locking value to propagate from its inputs further down the netlist. This is coherent with what has been said in Section 2.1.2. The propagation of a locking value is shown in thick red in Figure 2.3a. For a sequence of gate to behave like this, the logic value at which the output of each gate is forced must be the controlling value of the subsequent gate. For each gate, it is then necessary to own two values: the controlling value and the forced output value (see Table 2.1). Therefore, there are also two values for every node in the netlist: the value at which the preceding gate forces it and the controlling value of the subsequent gate. For a node to propagate a locking value, those two values must match. We call forced the value at which a node is forced by the preceding gate. We call locks the value at which the node should be forced to control the subsequent gate. This is the controlling value of this gate. Thus a node can propagate a locking value if it satis es the following locking criterion.

Criterion 1 A netlist node can propagate a locking value if and only if its forced value is included in the set of its locks values called locks : forced ∈ locks For example, if a node is the output of an OR gate and the input of an AND gate, then forced = 1 and locks = 0. Since, in this case, forced ∉ locks , this node cannot propagate a locking value. This is the case for the output of the OR gate in Figure 2.3b.

It can occur that a node is the input of logic gates that have a di erent controlling value. For example, a node can a fan-out of 2 and be the input of a NAND gate and an OR gate. In Chapter 2 -Combinational logic locking this case, locks is set to {0, 1}. This is why Criterion 1 uses a membership relation instead of an equality between forced and locks .

Selection of the place of insertion

In order to select the best locations of insertion for the locking gates, the representation of the netlist as a graph is leveraged. This is detailed in the following sections.

Conversion from netlist to graph

The netlist is converted to a directed acyclic graph according to the following rule. Netlist nodes are converted to vertices, which are then connected to one another using directed edges. These edges are labelled after the logic function found in the original netlist. A toy example of netlist conversion is shown in Figure 2.4.

Graph labelling

Once the graph has been built, a copy of the original graph is stored for later. The forced and locks values are computed for every vertex of the graph. forced depends on the incoming edges, while locks depends on the outgoing edges. Only internal nodes are considered. forced and locks values for the nodes of the netlist in Figure 2.4a are given in 2.5a, in which the incoming edges of G9 and G11 have been deleted.

For usual netlists, most of the nodes do not satisfy Criterion 1. Therefore, after this deletion, the graph is highly disconnected and comprises multiple connected components. Connected components of the graph that do not contain any output are not useful to implement logic locking, since only the outputs must be set to a xed logic value. Therefore, those connected components are discarded and removed from the graph (see Figure 2.5b). Eventually, the graph comprises several connected components. They all contain at least one output and nodes that are all able to propagate a locking value. However, some of these nodes are more interesting than others for logic locking.

Selection of the best nodes to modify

Since all the vertices found in the nal graph correspond to nodes that can propagate a locking value, the ones which are the furthest from the outputs must be picked. Therefore, only source vertices1 are considered. Indeed, if a vertex is not a source vertex, then it has incoming edges. It is then the child of a least one other vertex that is further from the outputs. Going up the edges one eventually reaches one or more source vertices, which are the furthest from the outputs. In the nal graph, four types of connected components can be found, according to the number and properties of the source vertices in them. These are shown in Figure 2.6. In the rst case, the connected component has only one source vertex (see Figure 2.6a). It is selected for logic locking since it covers all the outputs and is as far as possible from them.

In the second case, there are several source vertices but only one of them covers all the outputs (see Figure 2.6b). Therefore, even though it might not be the furthest source vertex from the outputs, it is selected for locking. Indeed, since it covers all the outputs, it will result in the most lightweight implementation since it requires only one locking gate.

The third type of connected component comprises multiple source vertices, and several of them cover all the outputs (see Figure 2.6c, where both G1 and G2 cover all the outputs). Since we want the locking gates to be as far from the outputs as possible, then the selected vertex is the one that maximises the sum of distances from it to the outputs, given in Equation (2.11).

() = ∑ ∈ outputs (,) (2.11)
Computing this sum of distances requires to start at the source vertex and search for the outputs. Using simple breadth-rst search or depth-rst search algorithms is the chosen solution since the connected components are of small size. Therefore, the execution time of these algorithms is manageable.

Finally, in the last type of connected component, there are multiple source vertices that cover one or several outputs, but none of them covers them all (see Figure 2.6d). In this case, the rst step is to sort the vertices according to the number of outputs they cover. This is done by using one of the search algorithms mentioned above. Then, the nodes are greedily selected until all the outputs are covered. In the considered netlist (see Figure 2.4a), nodes G1 and G11 are selected. This is shown in Figure 2.7.

Locking gates insertion

Once the nodes to lock are selected, the locking gates can be inserted. The type of locking gate is determined by the locks value of the corresponding vertex. If locks = 0, the node associated to the vertex must be forced to 0 to start propagating the locking value. Therefore, an AND gate is inserted. Conversely, if locks = 1, the node associated to the vertex must be forced to 1 to start propagating the locking value. Therefore, an OR gate is inserted. These modi cations, done on the original graph which had been saved previously, are depicted in Figure 2.8, while Figure 2.9 shows the graph with added vertices and edges for logic locking.

Conversion from graph to netlist

Once the original graph has been modi ed, it must be converted back into a netlist. This is done by following the inverse rule as previously described. Namely, vertices are converted to nodes, while edges are converted to logic gates. Figure 2.10 shows the lockable version of the netlist. Added gates are in dark grey. AW[0] allows to force the node G1 to the logic value 0. It propagates to the output G12, forcing it to 1. AW [START_REF]Overview of the IP protection module designed in the framework of the SAL-WARE project[END_REF] allows to force the node G11 to the logic value 1. It propagates to the output G13, forcing it to 0.

Experimental results

Combinational logic locking is now evaluated with respect to di erent metrics. The rst one is the area overhead induced by the extra locking gates added. The second one is the computation time required by the logic locking process. This is divided into two parts: the time taken to build the graph from the netlist le and the time required to analyse the graph and convert it back into a netlist. The third metric is the average distance from the inserted locking gates to the outputs of the netlist. It gives an indication about how deep inside the netlist the locking gates are inserted. This is a criterion against reverse-engineering. Finally, the ratio between the number of outputs and the number of inserted gates is given. This is called the locking ratio. It quanti es how many locking gates a ect each output, so this also gives how many bits of the AW a ect each output.

We implemented the logic locking algorithm in Python, making use of the igraph package [START_REF] Csardi | The igraph software package for complex network research[END_REF] to handle graphs. The computation times are obtained with a workstation embedding an Intel Core i5-4570 processor operating at 3.20GHz and 16GB of RAM. We used ITC'99 combinational benchmarks [START_REF] Davidson | ITC'99 Benchmark Circuits -Preliminary Results[END_REF], but only the ones with more than 1 000 logic gates.

Experimental results are mostly given in the form of plots, but an exhaustive list of values for all the benchmarks is given in Table 2.3. Appendix 5.7 gives an example of the graphs that where obtained when applying the logic locking algorithm described above. Figure 16 shows the graph right after it has been built from the netlist le. The netlist has around 1 000 logic gates. Figure 18 shows the graph after it has been analysed and processed for logic locking. Thus only the paths that propagate a locking value are drawn.

Logic resources overhead

The rst metric used to evaluate an IP protection scheme is the area overhead it induces. In order to remain as generic as possible, we measure it as the percentage of logic gates that must be added to the netlist to make it lockable. The added gates being of AND or OR type, the associated area for an ASIC implementation is rather low. For an FPGA implementation, the performance depends on the synthesiser. However, one can expect the overhead to be similar. The area overhead observed when applying the previously described logic locking process to the considered netlists is shown in Figure 2.11. The area overhead required to achieve logic locking ranges from roughly 1 to 5%, with an average value of 2.89%. Detailed values can be found in the "Minimum overhead (%)" column of Table 2.3. The value for each benchmark is not related to its size. At rst sight, this is coherent. Indeed, logic locking targets the outputs and the number of outputs broadly grows linearly with the benchmark size.

The overhead given here corresponds to total logic locking. Namely, all the outputs of a design can be locked to a xed logic value. On a per-design basis, this could be adapted. Indeed, for some designs, locking only a fraction of the outputs could be su cient to ensure su ciently erratic behaviour. For instance, only the outputs of the controller may be locked, e ectively disabling the whole system. This requires an intervention of the designer to guide the logic locking method to the potential nodes to lock. On the other hand, if the designer can a ord a larger area overhead, logic locking could be strengthened. This is detailed in Section 2.4 of this chapter.

Computation time

Another crucial evaluation criterion for IP protection schemes is their computational complexity. Although it is usually neglected, some works focus on reducing the execution of the heuristics used to select the nodes to modify [START_REF] Sezer Gören | Speeding Up Logic Locking via Fault Emulation and Dynamic Multiple Fault Injection[END_REF]. Nevertheless, computational complexity becomes a crucial characteristic when the protection scheme is meant to be integrated into EDA tools.

We compare our graph-based algorithm for total combinational logic locking with the state-of-the-art heuristic used for logic masking, which is based on fault-analysis [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF]. Figure 2.12 shows a comparison of the analysis times. It shows that our algorithm can handle very large combinational netlists. A netlist of 200 000 nodes takes around one hour to be be analysed and made lockable. Detailed values can be found in the "Graph building time (s)" and "Graph processing time (s)" columns of Table 2.3. On the other hand, fault analysis-based logic masking cannot cope with large netlists. As said in the original article [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF], "This method took two hours to encrypt the C7552 circuit. ", which is a benchmark of 3,500 gates. Graph analysis-based logic locking is then a very computationally e cient method compared to other heuristics used for logic modi cation of combinational aiming at IP protection.

Distance to outputs

Another metric that can be used to assess the e ciency of IP protection schemes based on logic locking is the distance from these gates to the primary outputs of the netlist. Indeed, one wants the inserted gates to lock the outputs while being as far from them as possible. This is to make their isolation and identi cation by reverse-engineering harder. The average distance from the inserted locking gates to the outputs that are reachable from them is given in Table 2.3. The de nition of distance is the one used for graphs. Namely, it is the average number of edges found between the node considered and the nodes corresponding to the outputs. Detailed values can be found in the "Average distance to outputs" column of Table 2.3. The average value of 2.02 highlights the fact that the inserted locking gates are quite close to the outputs. This is because the sequences of nodes leading to the outputs that are capable of propagating a locking value are rare. Section 2.4 discusses possible improvements to increase this distance and obfuscate the locking gates.

Number of outputs a ected

Finally, the last criterion that can evaluate the e ciency of IP protection schemes based on logic gates insertion is the average number of outputs that are a ected by each extra locking gate inserted. For logic locking speci cally, the e ect of the locking gates is maximal and completely locks the output. Therefore, this is not required that multiple locking gates a ect each output. This could be the case though, and is discussed in the following section.

We de ne the locking ratio as the number of inserted locking gates divided by the number of outputs of the netlist (see Equation (2.12)). Thus this ratio gives the average number of outputs a ected by each inserted locking gate. locking ratio = #inserted locking gates #outputs (2.12) Detailed values can be found in the "Locking ratio at minimum overhead" column of Table 2.3. One can observe that the locking ratio is usually very close to 1. This indicates that the connected components found in the nal graph after cleaning it usually contain only one Chapter 2 -Combinational logic locking output. Every output has then its own locking gate. This has bene ts and drawbacks. The bene t is that the connected components found in the nal graph are very easy to analyse using the method presented in Section 2.2.4, since they contain only one output on average. Therefore, for every source node, only one distance from it to the output must be computed. The furthest one is then selected for logic locking. The drawback of having one locking gate assigned to each output is that the associated AW bit can be easily recovered by observing the input-output patterns. Indeed, ipping the AW bits one after the other allows to recover the whole AW easily [START_REF] Plaza | Protecting Integrated Circuits from Piracy with Test-aware Logic Locking[END_REF], as discussed in Section 2.4.4.1. An -bit AW is recovered after /2 trials on average. Section 2.4 proposes several ways to avoid this direct relation between locking gates and outputs.

Discussion

All the modi cations suggested in this section consist in inserting additional logic after the locking gates have been inserted. In some cases, this extra combinational logic can be detected as redundant and simpli ed by a synthesiser. Therefore, they must be protected from such simpli cation, by specifying tool-speci c constraints.

Locking strengthening

The aim of the methods described here is to tend toward an implementation of total logic locking given in Equation (2.1). The point is then to have as many AWs as possible for which as many outputs as possible are locked.

Adding more locking gates to control one locking value

The logic resources overhead values given in Section 2.3.1 are the minimum required to be able to lock all the outputs. However, the nal graph after cleaning contains a lot of other nodes that can propagate a locking value and are not selected because they are sub-optimal. Nevertheless, these nodes can be exploited to strengthen logic locking. This is illustrated in Figure 2.13. The netlist portion in Figure 2.13a could potentially be locked by forcing X 0 or X 1 to 0. This is the optimal choice, requiring the minimum overhead and selecting the furthest nodes from the outputs. However, since all the other nodes can propagate a locking value, they could potentially all be forced. This is illustrated in Figure 2.13b, in which ve locking gates are inserted. The output of such a netlist is then locked if and only if all the AW bits are set to the correct value. This e ectively increases the brute force complexity in the average case from 1 to 2 5 /2 = 16. Indeed, only the correct AW value would allow the output to be correct. All the other combinations lock it. 2.3. The associated locking ratio values are given in the "Locking ratio at maximum overhead" column. One can observe that it di ers greatly between benchmarks. However, for most of the cases, the designer has an interesting design margin, and can select the best trade-o between area overhead and locking strength. The solution proposed here tends to increase the length of the AW. To avoid this, AW bits can be interleaved and used to lock multiple outputs.

1 4 _ 1 _ C b 1 5 _ C b 1 4 _ C b 1 5 _ 1 _ C b 2 1 _ 1 _ C b 2 0 _ 1 _ C b 2 0 _ C b 2 1 _ C b 2 2 _ 1 _ C b 2 2 _ C b 1 7 _ C b 1 7 _ 1 _ C b 1 8 _ 1 _ C b 1 8 _ C b 1 9 _ 1 _

AW bits interleaving

AW bits can be shared among connected components of the nal graph in order to reduce the size of the AW and strengthen logic locking. Figure 2.15a shows three portions that belong to the same netlist that can be locked. Figure 2.15b shows these three portions with logic locking gates inserted. In the rst portion, the locking gates inserted are the three OR gates at the top. This corresponds to a high locking strength since multiple gates participate in locking one output, as described above. AW valid is "000". The second portion can also be locked by inserting three gates. However, some AW bits must be inverted to cope with the di erent types of locking gates that are picked. Namely, AW0 and AW2 are inverted to be reused. Finally, this can happen that some other netlist portions do not contain enough nodes that propagate a locking value to make use of all the available AW bits. This is the case in the last netlist portion of Figure 2.15a, in which forcing X 8 or X 9 would not lock the output. In this case, locking gates can be cascaded as in the bottom of Figure 2.15b where the locking gates associated to AW1 and AW2 are cascaded to lock X 10 . Alternatively, fewer locking gates can be used.

In the example given in Figure 2.15b, if the 3-bit AW is di erent from "000", the three outputs are locked. Even though it is limited to a 3-bit AW, this example shows an implementation of total logic locking as described in Equation (2.1).

Extending it to larger AW would of course induce a higher area overhead. A totally interleaved implementation with an -bit AW requires to add 2 locking gates. This might not be a ordable by the designer in practise. Instead, partial interleaving is possible, in which only a fraction of the AW bits are shared. It would make the set unlocked from Equation (2.4) smaller. This also has the side-bene t to allow to select the width of the AW, to adapt it to the output of a block cipher for instance. Again, this is up to the designer to pick the most appropriate trade-o . Finally, the last option is to implement a "hardware point function". This is described in Equation (2.13). The output of this function is equal to the correct AW if it is fed at the input. Otherwise, it is equal to the complement of the correct AW.

() = AW valid if = AW valid AW valid if ≠ AW valid (2.13)
This function can also be used to adapt the width of the AW. Moreover, it can also adapt the logic value of the AW bits. This can be useful if the AW is combined internally with an instance-speci c identi er such as the response of a PUF to make each instance uniquely unlockable. This requires to map the PUF response to the AW and can be done by this function.

A hardware implementation of such a function is trivial. Each logic 0 of the AW, found at the output of the function, is driven by the sum of all the logic 0s found at the input. An AND gate with the appropriate fan-in and fan-out is then used. Similarly, each logic 1 of the AW is driven by the product of all the logic 1s found at the input. An OR gate with the appropriate fan-in and fan-out is then used.

The hardware point function is a lightweight structure, that does not require much logic resources. The experimental results obtained after implementing it on FPGA are given in Table 2.4. Only the input width matters, while the output width can be very large without a ecting the number of LUTs used. This is because increasing the output width only requires more wiring to drive the individual AW bits, which does not require additional logic resources on FPGA. Consequently, implementing a hardware point function to turn a weak logic locking implementation into total logic locking is not costly and easily achievable.

Obfuscation using extra logic layers

The main issue with the current description of combinational logic locking is the fact that the inserted gates are very close to the outputs. In order to conceal them more, adding dummy logic layers between them and the outputs is a solution. Those logic layers should have no e ect on the functionality of the netlist portion. That is, when the correct AW bit is provided, the output must be valid. When the wrong AW bit is provided, the output must be locked.

Figure 2.16 depicts an obfuscated locking OR gate. The original locking gate is in dark grey. The two additional logic gates in light grey add an extra logic layer between the locking gate and the output. Moreover, one of these obfuscation gates is fed with a value taken randomly in the netlist (X j in Figure 2.16). This connection could be obtained from a very di erent location in the netlist. The overhead brought by this additional obfuscation method is not negligible though. Indeed, the area overhead brought by logic locking is increased again by the obfuscation gates. Adding extra logic layers for obfuscation increases the locking overhead 2 times. For example, if the locking overhead is originally 3%, obfuscating with one extra logic layer brings it to 9%. Therefore, this solution might not be suited to all the cases, especially if the designer has strong area constraints.

Exploiting connected components that contain no output

In Section 2.2.3, the connected components that contain no output are deleted from the nal graph. Indeed, they do not participate directly in logic locking since they do not force any output to a xed logic value. However, they can force an internal node. Although the e ect of this internal locking is hard to estimate, it could still be studied and leveraged on a per-design basis.

Security considerations 2.4.4.1 Hill-climbing attack

Due to the fact that AW bits are directly related to the output they lock, the Hamming distance between the AW that is fed and the correct one AW valid is proportional to the number of outputs that are locked (see Equation (2.14)).

HD(AW, AW valid) ∝ #outputs locked (2.14)

Therefore, there is a gradient toward AW valid . By successively ipping the AW bits, the output bits can be unlocked one after the other. This is called the hill-climbing attack and has been described in [START_REF] Plaza | Protecting Integrated Circuits from Piracy with Test-aware Logic Locking[END_REF], originally against logic masking. Algorithm 1 shows how this attack applies to weak logic locking. Flip back the th bit of AW.

10 Return: AW valid Although originally proposed against logic masking, the hill-climbing attack a ects weak logic locking just as well. However, in the case of total logic locking, the outputs are all xed until the correct AW is fed. Therefore, the comparison done at line 8 of Algorithm 1 cannot be carried out. Thus total logic locking is not subject to the hill-climbing attack.

SAT attack

In 2015, a so-called SAT attack has been proposed [START_REF] Pramod Subramanyan | Evaluating the security of logic encryption algorithms[END_REF] which applies logic locking/masking algorithms. The attacker has access to a netlist and a functional circuit which operates normally. Th attack works by applying iteratively input patterns that have a distinguishing property. They are called distinguishing input patterns (DIPs). An input pattern is a DIP if, when two di erent AWs are fed to the dedicated inputs, the outputs are di erent. When carefully chosen, DIPs can rule out multiple AWs at a time, reducing the search space rapidly.

Weak logic locking is a ected by this attack. However, for strong logic locking, the outputs are all xed for all wrong AWs. Therefore, one cannot nd DIP in this case, since the output is always the same. Thus total logic locking is also not subject to the SAT attack.

Conclusion

Total combinational logic locking is a new way to controllably lock the combinational part of a netlist. Based on the propagation of a locking value through speci c sequences of nodes, it has the advantage to be very e cient to compute by using graph analysis. It can cope with very large netlists in a reasonable amount of time.

Hardware implementations on a wide range of benchmarks show that the area overhead to implement logic locking is limited, since it requires on average a 2.89% increase of the number of logic gates.

However, the direct relation between the inserted locking gates and the output(s) they lock makes it trivial to recover the correct AW if the AW inputs are directly exposed. We propose several solutions that allow a designer to strengthen the logic locking scheme intrinsically and make the AW bits interdependent. This highlights another interesting feature of logic locking from an industrial point of view, which is its great exibility. Indeed, it o ers a wide trade-o between area overhead and locking strength, leaving up to the designer the nal tradeo between cost and security. Another way to make the system more secure is to instantiate a lightweight cipher besides the logic locking module, with the output of the cipher driving the AW inputs. This solution is explored in the last chapter of this thesis in which a complete IP protection scheme architecture is detailed.

Chapter 3 Centrality indicators for e cient and scalable combinational logic masking

In the previous chapter, a degraded mode of operation called logic locking has been presented. However, the rst degraded mode of operation based on modi cations of combinational logic published in literature [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF] is logic masking, sometimes referred to as "logic encryption". It consists in altering the internal state of an IP core unless the correct AW is fed. To this end, XOR or XNOR logic gates are inserted at speci c locations in the netlist. The aim is to controllably disturb the internal state as much as possible, while keeping the logic resources overhead induced by the extra gates as low as possible.

Based on the article presenting the principle of logic masking in 2008 [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], several heuristics have been proposed to select the best locations of insertion for the extra masking gates in the netlist. A closer look reveals, however, that these heuristics are either easy to compute or e cient at disrupting the internal state, but cannot meet both requirements. For industrial feasibility, one needs a selection heuristic that can cope with large netlists while o ering e cient disruption of the outputs when the wrong AW is fed. In order to bridge the gap and o er a balance between computational e ciency and masking e ciency, we propose to use centrality indicators. Originating from graph theory, they allow to rank the nodes of a graph according to their relative signi cance.

We start by giving an overview of common centrality indicators before comparing them for application to logic locking. We show that they disturb the outputs of the netlist e ciently, e ectively reducing the correlation between normal and masked outputs to low values. At the same time, they are e cient to compute, approximately one thousand times faster than the heuristic with the highest making e ciency, based on fault analysis [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF]. This allows to handle netlists of up to 100 000 nodes, paving the way for integration into EDA tools.

The code associated with this chapter is available at: https:// gitlab.univ-st-etienne.fr/ b.colombier/ centrality-based-logic-masking/ tree/ master Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking Indicateurs de centralité pour le masquage logique combinatoire e cace et adaptable Dans le chapitre précédent, un mode de fonctionnement appelé verrouillage logique a été présenté. Néanmoins, le premier mode de fonctionnement dégradé basé sur une modi cation de la logique combinatoire, publié en 2008 [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], est le masquage logique. Cela consiste à perturber l'état interne du composant virtuel à moins que le bon mot d'activation ne soit fourni. Pour ceci, des portes XOR ou XNOR sont insérées à des positions spéci ques dans le composant virtuel. L'objectif est de perturber l'état interne autant que possible tout en limitant le surcoût en ressources logiques induit par les portes supplémentaires.

Se basant sur le premier article sur le sujet publié en 2008 [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], plusieurs heuristiques ont été proposées pour sélectionner le meilleurs lieux d'insertion pour les portes de masquage à ajouter au composant virtuel. Une étude plus approfondie révèle, néanmoins, que ces heuristiques sont soit faciles à calculer soit e caces pour perturber l'état interne, mais ne satisfont jamais ces deux critères simultanément. Dans un contexte d'utilisation industriel, l'heuristique de sélection doit être facile à calculer pour pouvoir gérer des composants virtuels de grande taille tout en o rant une perturbation e cace des sorties si le mauvais mot d'activation est appliqué. Pour un compromis entre ces deux objectifs, nous proposons d'utiliser les indicateurs de centralité. Venant de la théorie des graphes, ils permettent de classer les sommets d'un graphe en fonction de leur importance.

Nous commençons par donner ue vue d'ensemble des indicateurs de centralité communs avant de les comparer pour une utilisation dans le cadre du masquage logique. Nous montrons qu'ils permettent de perturber e cacement les sorties du composant virtuel, réduisant la corrélation entre les sorties normale et masquée à des valeurs faibles. Dans le même temps, leur complexité est limitée, et ils sont mille fois plus rapides à calculer que l'heuristique la plus e cace de l'état de l'art basée sur l'analyse de fautes [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF]. Cela permet de gérer des composants virtuels incluant jusqu'à 100 000 noeuds, ouvrant la voie à une intégration dans les outils de conception électronique.

Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking

De nition

Logic masking consists in inserting linear logic gates (XOR or XNOR) at well-chosen locations inside the netlist so that the outputs of the netlist are maximally corrupted if the wrong AW is fed to the dedicated activation inputs [RKM08a; RKM10]. These activation inputs are connected to one of the inputs of the inserted masking gates while their other input is connected to the internal node to mask (see Section 1.5.4.1, Figure 1.16) We call normal output values the ones obtained with the original netlist or with the masked one when the correct AW is fed to the activation input. We call masked output values the ones obtained with the masked netlist when the wrong AW is fed to the activation input. The aim is to alter the internal state of the netlist so that the similarity between the normal and masked output values is as low as possible.

A proposal for a masking e ciency evaluation metric 3.2.1 Existing metrics for masking e ciency and their weaknesses

As detailed in Chapter 1, the rst metric which is used to evaluate logic masking was corruptibility [RKM08a; RKM10]. Given in Equation (1.7), it makes sure that the output is valid only when the correct AW is applied. However, it does not qualify the masking e ciency. Indeed, inverting only one output bit is su cient to ensure that the corruptibility requirement is satis ed. Later on, a requirement on the Hamming distance between the normal and masked output was derived [Raj+12a; Raj+13] (see Equation (1.8)). This Hamming distance should be of 50% on average. However, this requirement alone is still not su cient. Indeed, just as inverting one output permanently satis es the corruptibility criterion, inverting half the outputs permanently satises the Hamming distance criterion. Thus there is a need for a stronger, more restrictive metric that could evaluate the masking e ciency. In [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF], it is said that e cient masking "can be done by minimizing the correlation between the corrupted and the original outputs". Therefore, we propose to develop a metric based on correlation to measure the masking e ciency.

A new metric based on correlation

The two previous approaches fail at handling the cases described above since they deal with the output bits as a whole instead of considering them separately. Instead of considering an output vector, we will then deal with output bits as binary variables. The correlation between two binary variables can be computed in its simplest form by the Phi coe cient. Table 3.1 is the contingency table of the two binary variables y[i] and y masked [i]. 00 and 11 represent the proportion of positions where the variables are identical. Conversely, 01 and 10 represent the proportion of positions where the variables are di erent. where : p 1 = 00 + 01 q 1 = 10 + 11 p 2 = 00 + 10 q 2 = 01 + 11 (3.1)

In order to account for all the output bits and get a global metric, we propose to compute the quadratic mean of the Phi coe cients obtained for all the outputs. This way, Phi coe cients with an opposite sign for di erent outputs cannot compensate themselves. The masking e ciency metric is given in Equation (3.2).

= 1 - 1 #outputs-1 ∑ =0 2 (y[i], y masked [i]) (3.2)
If the outputs are not masked, 00 = 11 = 1, so = 1 for all the outputs. Thus = 0. If the outputs are perfectly masked, then for each output there is a 50% probability that it is inverted. Therefore, for every output, 00 = 11 = 01 = 10 = 0.25 and = 0. Thus = 1. The masking e ciency evaluation metric is then more constraining than the ones that were previously used [RKM08a; Raj+12a], based on corruptibility or Hamming distance.

Table 3.2 summarises how these metric perform at evaluating the masking e ciency. The rst column correspond to the case where one output is inverted, as described above. The second columns correspond to the case where half the outputs are inverted. The last column shows the case where one XOR gate is added on every output. When measuring the masking e ciency with corruptibility, Hamming distance or bitwise correlation with , this architecture is optimal. Indeed, it implements a kind of one-time pad on the outputs. Therefore, randomly picking an AW makes the correlation drop to 0.

Further requirements for a logic masking scheme

Even though inserting one XOR gate on every output achieves good masking e ciency according to , looking at other criteria makes this architecture unusable. The rst drawback is the fact that one bit of the AW is responsible for masking only one outputs bit. Therefore, the hill climbing attack presented in Section 2.4.4.1 and Algorithm 1 is very much applicable in this case too. Instead of observing which outputs are xed, comparing with test vectors is su cient to detect the wrong output bits, as it is done in the original article [START_REF] Plaza | Protecting Integrated Circuits from Piracy with Test-aware Logic Locking[END_REF]. Moreover, another greater drawback is that a much simpler attack can be carried out if the attacker has access to a functional copy of a circuit that implements the IP core. By comparing a correct input-output pair (,) obtained from the functional circuit with an input-output pair (, masked) obtained from the masked one then the correct AW can be trivially computed (see Equation (3.3)).

AW valid = ⊕ masked (3.3) In order to avoid this, the masking gates must be inserted deeper inside the netlist, so that each output is a ected by multiple masking gates. To this end, various heuristics have been proposed to select the nodes to modify (see Section 1.5.4.1 for details). The following sections describe two heuristics that we investigated, based on controllability/observability and centrality indicators.

Selection of the place of insertion 3.3.1 Combinational controllability and observability

The rst metric we investigated is based on the concepts of combinational controllability and observability. They were rst described in [START_REF] Lawrence | Controllability/Observability analysis of digital circuits[END_REF], along with their sequential counterparts. They are very useful for testing a circuit, because they characterise how easy it is to set the value of a node from the primary inputs and observe this value at the primary outputs. Since we only deal with combinational logic masking here, we consider only combinational controllability and combinational observability.

Description

The combinational controllability of a netlist node measures how hard it is to set this particular node to a given logic value. Combinational 0 controllability (CC0) (respectively combinational 1 controllability (CC1)) measures how hard it is to set the node to 0 (respectively to 1). For a node , CC0(N) (respectively CC1(N)) is then related to the number of primary inputs that must be set to a xed logic value to set N to 0 (respectively to 1).

For example, in order to set the output of a 2-input AND gate to 1, both its inputs must be set to 1. Therefore, the hardness to set the output to 1 is the sum of hardnesses to set each input to 1. Conversely, setting the output to 0 only requires to set one input to 0. Let = ⋅ be the equation of this logic gate, then the values of CC0 and CC1 for the output are given in Equations (3.4) and (3.5).

CC1(

) = CC1() + CC1() + 1 (3.4) CC0() = min(CC0(), CC0()) + 1 (3.5)
By convention, the controllability of the primary inputs of the netlist is 0. Therefore, a high controllability value corresponds to a node that is hard to control. Table 3.3 gives the formulas to compute the controllability for the output of usual 1 and 2-input logic gates. For each of them, their logic equation is of the form = () if is a unary boolean function or = (,) if is a binary boolean function. In addition to controllability, we also considered observability. The observability of a netlist node measures how hard it is to observe its value at the primary outputs of the netlist. For example, observing the value of one of the inputs of a 2-input OR gate requires to propagate it at the output by setting the other node to 0. Therefore, the observability of this input node depends on the combinational observability (CO) of the output and the CC0 value of the other input. Let = + be the equation of this logic gate, then the CO value for input is given in Equation (3.6).

CO() = CO() + CC0() + 1 (3.6)

Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking By convention, the observability of the primary outputs of the netlist is 0. Therefore, a high observability value corresponds to a node that is hard to observe. Table 3.4 gives the formulas to compute the observability for the input(s) of usual 1 and 2-input logic gates. For the logic gates that implement a binary boolean function, we consider only the input. Since those inputs are identical, simply replacing by gives the formulas for the input. Table 3.4 -Observability values of the input(s) of usual 1 and 2-input logic gates.

Selection heuristic for logic masking

Ideally for logic masking, our rst approach was to select the nodes with high controllability (i.e. nodes that are hard to control) as well as low observability (i.e. nodes that are visible at the outputs). Unfortunately, this is exactly the de nition of the primary outputs of the netlist.

Using this metric, we ended up selecting the primary outputs, which is not a good option as described above.

The nodes selected for logic masking should be located deeper inside the netlist. This led us to de ne a metric for the selection heuristic given in Equation (3.7).

() = CC0() 2 + CC1() 2 + CO() 2 (3.7)

We then selected for logic masking the nodes for which this metric is maximised. However, using this selection heuristic turned out to be unsuccessful. The nodes that are selected have a low impact on the outputs.

We managed to obtain good results individually for some benchmarks by assigning di erent weights to controllability and observability values: CC and CO , see Equation (3.8).

() = CC CC0() 2 + CC CC1() 2 + CO CO() 2 (3.8)
However, this requires to tune the coe cients for each benchmark speci cally. The values that we observed were still considerably high, indicating that logic masking was not very e cient. The trade-o between inserting the masking gates deep inside the netlist and having them to disturb the outputs e ciently is hard to balance. In order to insert the masking gates more e ciently and have a greater impact on the outputs, we investigated the use of centrality indicators. This is detailed in the following section.

Centrality indicators

Centrality indicators originate from graph theory. As their name suggests, they measure how central or signi cant a particular node is inside a given graph. Of course, the notion of centrality or signi cance is very broad. Therefore, a large range of centrality indicators have been proposed in literature. For some applications, some centrality indicators are more suited than others. For example, the PageRank indicator, used by Google to measure the popularity of web pages, is a centrality indicator that has been speci cally designed for this usage.

Centrality indicators, depending on how they are de ned, can give a centrality value that belongs to very di erent ranges. We chose to normalise it by dividing the raw centrality value for the vertex of interest by the maximum value obtained for the vertices of the graph (see Equation (3.9) where is the considered vertex and is the set of all the vertices of the graph). The centrality values then range from 0 to 1.

() = raw () max(()) , ∈ (3.9)
For some centrality indicators, the literal formulas given in the original articles include a normalising factor. We chose to not take them into account, since we are only interested in the relative values for the centrality.

Conversion from netlist to graph

Converting the netlist into a graph is done as described in Section 2.2.1. The nodes of the netlist are converted to vertices and connected by directed edges labelled after the logic function.

Degree centrality

Degree centrality measures the signi cance of a vertex by its number of incoming and outgoing edges. The in-degree deg -() is computed by counting incoming edges only. The out-degree deg + () is computed by counting outgoing edges only. The centrality value is the degree deg(), computed by summing the two previous values (see Equation (3.10)). Figure 3.1 illustrates the degree centrality values of the vertices of a random graph.

() = deg() = deg -() + deg + () (3.10)
This is not a good indicator for logic masking though. Indeed, by synthesising the netlist in di erent ways, some vertices can have their degree centrality changed even if the original logic

Closeness centrality

Closeness centrality [START_REF] Sabidussi | The centrality index of a graph[END_REF] is the inverse of farness. The farness of a vertex is the sum of distances from this vertex to all the other vertices of the graph. Closeness centrality of a vertex is given in Equation (3.11), where is the set of all the vertices of the graph and (,) stands for the distance between vertices and .

() = 1 ∑ ∈ (,) (3

.11)

A vertex is considered as important by the closeness centrality indicator if it is close to most of the other vertices of the graph. The vertices with the highest closeness centrality correspond to the nodes that are "in the middle" of the netlist. For logic masking, it is a more interesting indicator than degree centrality because it is global. Therefore, it is in uenced by the graph structure and identi es the important nodes e ciently. Figure 3.3 shows the values of closeness centrality on an example graph. Note that a very e cient algorithm for approximating closeness centrality was proposed in [START_REF] Eppstein | Fast approximation of centrality[END_REF] and runs in near-linear time.

Betweenness centrality

Proposed in [Ant71; Fre77], betweenness centrality is the ratio of shortest paths between all the other pairs of vertices of the graph that go through the vertex of interest. Equation (3.12) shows the expression of betweenness centrality, in which stands for the number of shortest paths from to , and stands for the number of shortest paths that go from to through .

() = ∑ ≠ { , } ∈ (3.12)
For a netlist, betweenness centrality is the highest for the nodes that are on the shortest paths from the inputs to the outputs. This is depicted in Figure 3.4 on an example graph. This indicator, however, has the drawback to only take shortest paths, also referred to as geodesic paths, into account. This restriction is pointed out in [START_REF] Stephenson | Rethinking centrality: Methods and examples[END_REF], implying that the information transits mostly on the shortest paths, which is not always the case. Instead of taking into account the shortest paths only, authors of [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF] propose to assign a weigh to paths according to their length. This is done by considering the graph as a network of unit resistors and measuring the current owing through the nodes. This accounts for the fact that information, just like current, can split and spread in the network. These centrality indicators, based on current ow, are detailed below.

Current-ow betweenness centrality

In order to compute current-ow betweenness centrality [START_REF] Newman | A measure of betweenness centrality based on random walks[END_REF], the graph is considered as an electrical network. Vertices are converted to nodes. If two vertices are connected in the original graph, a unit resistor is added between the corresponding nodes in the electrical network.

Once the network is built, pairs of vertices are picked one after the other and set as current inputs and outputs. The current owing through the node of interest for which the centrality is computed is added for all the possible pairs of vertices. An example is given in Figure 3.5. On the left-hand side, Figure 3.5a, an example graph is shown for which current-ow betweenness centrality is computed for the vertex G3. On the right-hand side, Figure 3.5b, the equivalent electrical network of the graph is shown. An example of current input/output selected is given although all pairs of nodes are selected iteratively for the centrality computation.

The expression for the current-ow betweenness centrality of vertex is given in Equation (3.13), where () is the current owing through node when is the current input and is the current output. The current owing through a node is computed using Kirchho 's current law.

Approximated current-ow betweenness centrality

The running time and space for computing current-ow betweenness centrality become rapidly impractical. In [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF], authors show that instead of selecting all the possible nodes pairs, a subset of them can be used. This comes at the cost of a loss in the precision of the centrality indicator. In the use case we consider here, we are only interested in the relative centrality of the nodes in order to select the most important ones. Therefore, a lack of precision is not strictly prohibitive.

Current-ow closeness centrality

A second centrality indicator that leverages the transformation of a graph into an electrical network of unit resistors is current-ow closeness centrality [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF]. This has been shown to be equivalent to information centrality, originally proposed in [START_REF] Stephenson | Rethinking centrality: Methods and examples[END_REF].

The expression of current-ow closeness centrality of a vertex is given in Equation (3.14), in which e (,) stands for the e ective resistance between the nodes and . The notion of e ective resistance intuitively conveys the notion of "distance" between the nodes which is necessary to measure the closeness. Just like the current accounted for non-geodesic paths in current-ow betweenness centrality, the e ective resistance accounts for non-geodesic paths in current-ow closeness centrality. An example of current-ow closeness centrality values is shown in Figure 3.7.

Masking gates insertion

Once the centrality value has been computed for all the nodes of the netlist, they are sorted according to their value. The nodes with the highest centrality are selected to be modi ed by logic masking. The number of nodes to modify is a parameter of the logic masking algorithm and is chosen by the designer, since it is directly related to the logic resources overhead.

The masking gates of type XOR or XNOR are inserted in the same way AND and OR gates are inserted in Section 2.2.5 but taking the AW bits into account as shown in Figure 1.16. If the AW bit is a 0, an XOR gate is inserted. If the AW bit is a 1, an XNOR gate is inserted. Then the resulting graph is converted back into a netlist as described in Section 2.2.6.

Time complexity of centrality indicators

Before giving the performance of the centrality indicators at logic masking, we consider their time complexity. This is a good indicator of the scalability of these indicators to real-world netlists. Let be the number of edges and the number of vertices in the graph. We recall that the single-source shortest paths problem can be solved in linear time (+) on graphs with unit edge weights.

For betweenness centrality computation, the time complexity per node is (2), since it is required to compute both the shortest paths from to and from to in order to nd those that go through . Naively, computing it for all the vertices of the graph leads to a time complexity of (3). An improved betweenness centrality computation algorithm is given in [START_REF] Brandes | A faster algorithm for betweenness centrality[END_REF] and runs in () time. For the graphs derived from netlists that we consider here, the number of edges is approximately two times larger that the number of vertices, since most of the gates that are used have two inputs. Therefore, the actual time complexity of computing the betweenness centrality is close to (2).

For closeness centrality, only one instance of the single-source shortest paths problem must be solved for every vertex of the graph. Therefore, the time complexity of the closeness centrality computation is (2).

Although these complexities are polynomial, they remain expensive to compute for large graphs. The authors of [START_REF] Eppstein | Fast approximation of centrality[END_REF] showed that closeness centrality can be approximated in (log 2 (log +)) time, with an additive error of at most Δ where is a xed constant and Δ is the diameter of the graph. This was extended to betweenness centrality in [START_REF]Network Analysis: Methodological Foundations[END_REF], leading to the same time complexity with an additive error of (-2) .

Centrality indicators based on current-ow are more complex to compute. As shown in [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF], the algorithms for computing current-ow betweenness centrality runs in ((-1) + log) time with () ∈ (3) while current-ow closeness centrality has a time complexity of (() +). This is because computing these centrality indicators requires to invert a matrix. Matrix inversion using Gaussian elimination runs in (3) time. However, since the matrices we are dealing with here are sparse, speci c methods can be used to invert them leading to a computation time of (1.5). More details can be found in [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF]. The approximated version of current-ow betweenness centrality [START_REF] Brandes | Centrality Measures Based on Current Flow[END_REF], taking only a subset of the vertices into account, runs in (1 2 √ log) time with an absolute error of . The time complexities of computing the di erent centrality indicators are summarised in Table 3.5.

Experimental results

We implemented the logic masking algorithm in Python, making use of the igraph package [START_REF] Csardi | The igraph software package for complex network research[END_REF] to handle graphs. The computation times are obtained with a workstation embedding an Intel Core i5-4570 processor operating at 3.20GHz and 16GB of RAM. We used ITC'99 0.74 Fan-in/out [START_REF] Subhra | HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection[END_REF] 0.83 Fault analysis [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF] 0.185

Computation time

The second metric that we used to evaluate the proposed node selection heuristic based on centrality indicators is the computation time. Indeed, this criterion is essential for a smooth integration into EDA tools. Figure 3.9 shows a plot of the computation time required for each benchmark, as well as a baseline that accounts for the time taken to build the graph from the netlist le. The outliers on this baseline, that appear as small peaks, are the EPFL benchmarks. Indeed, they are provided in the BLIF description format, which is more time-consuming to parse than the BENCH format of ITC-99 benchmarks. Detailed computation time values for each benchmark and centrality indicator considered are given in Table 3.7, in the "Graph processing time (s)" column. The plots shown in Figure 3.9 are coherent with the quadratic time complexities described in Section 3.3.4. Closeness and betweenness are quite e cient to compute, allowing large netlists of up to 100 000 gates to be processed. The rst centrality indicator to become impractical to compute with our workstation is current-ow betweenness. However, the approximated version can be used to handle larger designs. Current-ow closeness is almost equivalent in computation time to current-ow betweenness centrality, but can be used for netlists of up to 30 000 gates.

Parallel computation

In order to speed-up the centrality computations, parallel algorithms can be used. For example, in [START_REF] Bader | Parallel Algorithms for Evaluating Centrality Indices in Real-world Networks[END_REF], parallel approaches for betweenness and closeness centrality are described. Implementing these methods would allow to speed up the computations. However, this might not allow to handle larger netlists, due to the space complexity requirements. This aspect should be further evaluated.

Trade-o between masking e ciency and computation time

To allow for a better comparison between the existing node selection heuristics and the ones that use centrality indicators, it is interesting to plot the computation time ratio against the average value for each. The computation time ratio is de ned as the time taken to compute the heuristic of interest divided by the time to perform random selection. The result is shown in Figure 3.10. It is important to consider that the value (see Equation 3.2) obtained for the node selection heuristic based on fault-analysis is only averaged on benchmarks of up to 3 500 gates, after the results provided by the authors of [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF]. This limitation for the size of the considered benchmarks could potentially lead to an underestimation of . This plot clearly shows that existing heuristics are either easy to compute or e cient at masking. Conversely, using centrality indicators allows for a nice trade-o between those two criteria. Even though current-ow betweenness centrality seems to be the best performing heuristic, the results presented in Table 3.7 show that it can not be used for large netlists. Current-ow closeness centrality exhibits a similar masking e ciency and computational complexity, while being able to handle larger netlists. Therefore, among centrality indicators, current-ow closeness centrality is the most usable one for e cient logic masking.

Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking

Distance to inputs/outputs

Finally, as discussed in Section 3.2.3, the masking gates must be inserted as deep as possible in the netlist to avoid bitwise dependencies between the AW bits and the outputs. Table 3.8 shows the average distance from the masking gates to the inputs/outputs of the netlist. 0% means that the masking gates are inserted at the inputs, 100% means that the masking gates are inserted at the outputs and 50% means that the masking gates are inserted as far from the inputs as from the outputs.

Centrality indicator

Average distance from the masking gates to the inputs/outputs Betweenness 56% Closeness 57% Current-ow betweenness 59% Approximated current-ow betweenness 53% Current-ow closeness 54%

Table 3.8 -Distance from the inserted logic masking gates to the inputs/outputs when using di erent centrality indicators. 0% means that the masking gates are inserted at the inputs, 100% means that the masking gates are inserted at the outputs and 50% means that the masking gates are inserted as far from the inputs as from the outputs.

These results indicate that the inserted masking gates are approximately as far from the inputs as from the outputs. Therefore, they are in the middle of the netlist and can a ect multiple output bits. A more strict evaluation of the impact of each masking gate could be developed by exploiting the avalanche criterion. A good masking scheme should then get half the output bits to ip on average when the AW bits are ipped consecutively.

Possible improvements

Deleting selected nodes from the graph

For some graphs, selecting the vertices with the highest centrality for logic masking does not alter the outputs as much as it could if the selection process was carried out di erently. An example of such a graph is shown in Figure 3.11.

In this example graph, we can observe that the three vertices with the highest centrality are adjacent. Therefore, two problems arise when selecting them for logic masking. First of all, since the masking gates are inserted in a row, their e ciency will be reduced. Indeed, if two masking gates are inserted one after the other, then both AW bits combinations "00" and "11" make the design operate normally. This increases the number of valid AWs. The second concern is that if there are some outputs outside the output logic cone of the masking gates, then they are not a ected by logic masking. Therefore, the masking e ciency is reduced. In order to avoid this phenomenon, a modi cation could be applied to the node selection process. The vertices that have been selected because they have the highest centrality could be removed from the graph. This way, they do not participate anymore in the measurement of path lengths or current-ow that are used by centrality indicators. Thus this allows other vertices, that are far from the selected ones, to be reconsidered by recomputing the centrality indicator.

In [START_REF] Rajendran | Fault Analysis-Based Logic Encryption[END_REF], the fault-impact, used as the selection heuristic, is recomputed every time a node is selected for logic masking. Instead, in order to reduce processing time, a larger number of nodes could be selected every time the heuristic is computed. Fine tuning this number should be done for each heuristic, after considering the computing power and time available.

Vitality indicators

Following the idea of removing high-importance vertices from the graph, vitality indicators could be considered in the development of future node selection heuristics. As de ned in [BE05, p. 36], for a graph : "Given an arbitrary real-valued function on a vitality measure quanti es the di erence between the value on with and without the vertex or edge". By de ning the mentioned real-valued function as a measure of the correct operation of the netlist, the vitality measure allows to target speci c nodes that alter the operation as much as possible. This could be investigated in future works.

Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking

Very-low overhead logic masking

Another interesting criterion that could also be exploited to evaluate the nodes selection heuristics is their masking e ciency at low overhead. Indeed, as shown by the results in Table 3.7, increasing the logic resources overhead from 5 to 10% does not necessarily lead to better logic masking (i.e. lower value). At low overhead of 1%, current-ow betweenness centrality already allows to reach = 0.50 on average, indicating quite e cient masking. By considering how fast the masking e ciency varies when the logic resources overhead increases, the designer's choice about the a ordable overhead for e cient masking could be better guided.

A priori evaluation of the masking potential

As illustrated by the plots in Figure 3.8, the masking e ciency varies a lot from one benchmark to another. The benchmarks for which the value drops the fastest when the logic resources overhead increases are the multiplier (c6288) and the sine benchmarks. Intuitively, this can be explained by the fact that the output can take a lot of di erent values. The output space is very large. Moreover, when one output changes, it is very likely that the others change as well. Conversely, for the arbiter for example, the outputs can take much less di erent values. Since the aim of such IP core is to grant access to peripherals, it can only take output values if it has outputs, since it cannot grant access to two peripherals at the same time. In addition, if one output changes, only one other output changes.

Moreover, the multiplier and sine benchmarks have the property that changing one input bit changes the output bits a lot. This property is related to the avalanche criterion used to assess the di usion property of ciphers. This criterion states that when one input bit ips, half the output bits should ip on average. These properties of some benchmarks should be formalised in order to evaluate a priori how well a benchmark can be masked. The two main paths that could be investigated are the following. First, the avalanche criterion could be evaluated on the nodes of the benchmark. This would allow to evaluate the e ciency at propagating the disturbance from the nodes of interest to the outputs. The other option is, for every output, to evaluate how many outputs change when the output of interest changes. This could highlight the relation between the outputs. These methods, allowing to assess the masking potential of a benchmark a priori, could be very helpful to IP core designers.

Attacks aiming at recovering the activation word

The logic masking schemes have been subject to a variety of attacks aiming at recovering the AW from a masked IP core. If the attacker has access to the gate-level netlist, he can determine paths inside the netlist that can sensitise the AW bits to the outputs. This is called the sensitisation attack [START_REF] Rajendran | Security analysis of logic obfuscation[END_REF]. However, it requires the attacker to have full access to the design le of the gate-level netlist, which is quite a restrictive constraint.

Later on, attacks that do not require access to a gate-level netlist were proposed. In [START_REF] Plaza | Solving the Third-Shift Problem in IC Piracy With Test-Aware Logic Locking[END_REF], a hill-climbing attack leverages the bitwise dependency between AW bits and output bits. This is detailed in Section 2.4.4.1.

The state-of-the-art attack on logic masking schemes is the SAT attack [START_REF] Pramod Subramanyan | Evaluating the security of logic encryption algorithms[END_REF]. The principle of this attack is given in Section 2.4.4.2.

To thwart this attack, various additions to the masking gates were proposed. The rst observation is that the inputs associated to the AW bits should not be exposed directly, but a one-way random function could be inserted before them. To this end, [START_REF] Yasin | On Improving the Security of Logic Locking[END_REF] proposed to use an AES block cipher with a xed secret key, since it performs as a pseudo-random function.

To reduce the logic resources overhead, the AES core can be replaced by several structures that are known to be hard to handle by a SAT solver. These structures tend toward a point function behaviour [Yas+16a; XS16; Yas+17c], and alter the outputs only for a few number of input patterns. An example of such structure is an AND tree, which can be detected inside a netlist and exploited to harden the logic masking scheme [START_REF] Li | Provably secure camou aging strategy for IC protection[END_REF].

However, as pointed out in [START_REF] Yasin | SARLock: SAT attack resistant logic locking[END_REF], there is a dichotomy between SAT resistance and corruptibility. Indeed, the SAT attack is very e cient because it exploits the fact that the masked outputs are altered a lot. By reducing the Hamming distance between the normal and masked outputs, the attack becomes harder. However, the masking e ciency drops considerably in this case. The extreme case is TTLock [START_REF] Yasin | What to Lock?: Functional and Parametric Locking[END_REF], in which the outputs are altered for only one input pattern. In such case, we do not believe that the logic modi cation can be labelled "masking" anymore, considering its extremely poor e ciency at disturbing the outputs.

Several attacks have also been published against anti-SAT blocks. The signal skew towards 0 or 1 can help in identifying functions that tend to behave like point functions [START_REF] Yasin | Security analysis of Anti-SAT[END_REF]. These functions can then be removed from the netlist [START_REF] Yasin | Removal Attacks on Logic Locking and Camou aging Techniques[END_REF] so that it operates normally. Of course, these attacks imply that an attacker has access to the netlist. Finally, it is our feeling that security should not be the primary concern of a logic masking scheme, as highlighted by this whole chain of attack-defense articles. We believe that security can only be guaranteed by a cryptographic core. Making a cryptographic core secure is already a complex, challenging task. Trying to obtain security in a cryptographic sense from a few masking gates inserted inside an IP core with its own functional purpose seems impossible.

Conclusion

This chapter proposes a new set of heuristics based on centrality indicators to select the nodes to modify by logic masking. We rst reviewed existing centrality indicators before highlighting which ones perform the best in the frame of logic masking. When compared to existing selection heuristics, it o ers a nice trade-o between masking e ciency and computational complexity. Thus, heuristics based on centrality indicators, particularly current-ow closeness, are the only ones to date that can mask large netlists e ciently. This makes them suitable candidates for integration into EDA tools.

Chapter 4 Key reconciliation protocols for error correction of silicon PUF responses

PUFs, presented in Section 1.5.2.3, are now a widely known root of trust and bring features such as hardware identi cation, authentication and key generation to electronic systems. Their main drawback, however, is that the response that is generated by querying the PUF with a xed challenge varies from time to time. This is due to the intrinsic properties of the PUF, that extracts manufacturing process variations. In order to obtain a reliable response, an error correction module must then be integrated as well.

Correction is currently performed by a classical decoder, BCH, Reed-Muller or convolutional for instance. The rst time the PUF is challenged, helper data is generated. This helper data, which should leak a limited amount of information about the PUF response, is later used by the decoder to regenerate the original response if the same challenge is fed. Some encoding methods were proposed as well, to take into account the speci c properties of PUF responses. All these methods, however, require a signi cant amount of logic resources.

In this chapter, we show that the CASCADE key reconciliation protocol, originating from quantum key distribution, can be successfully used to reconcile two slightly di erent PUF responses obtained at di erent times. We give several sets of parameters for the protocol that can be used depending on the error rate observed at the PUF output. The amount of information leaked when executing the protocol is manageable and is evaluated for several use cases. Finally, implementation results on the device side show that this is the most lightweight solution for error correction, with at least a three times improvement in logic resources occupation at least over state-of-the-art error correction codes.

Chapter 4 -Key reconciliation protocols for error correction of silicon PUF responses

Protocoles de réconciliation de clés pour la correction des erreurs dans les réponses des PUFs

Les PUFs sont aujourd'hui des primitives matérielles bien connues et permettent l'identi cation matérielle, l'authenti cation ou encore la génération de clés. Leur inconvénient principal, néanmoins, est le fait que la réponse générée en envoyant un challenge xe à la PUF change d'une fois à l'autre. Ceci est du aux propriétés intrinsèques de la PUF, qui extrait les variations de process de fabrication. A n d'obtenir une réponse able, un module de correction des erreurs doit donc être ajouté également.

Actuellement, ceci est réalisé en implantant un décodeur classique, de type BCH, Reed-Muller ou convolutif par exemple. Lorsqu'un challenge est envoyé à la PUF pour la première fois, des données auxiliaires sont générées. Ces dernières, qui doivent fuiter le moins d'information possible sur la réponse de la PUF, sont utilisées plus tard par le décodeur pour regénérer la réponse originale si le même challenge est envoyé. Des méthodes d'encodage ont également été proposées, qui prennent en compte les propriétés spéci ques des réponses des PUFs. Toutes ces méthodes, néanmoins, ont un coût important en ressources logiques.

Dans ce chapitre, nous montrons que le protocole de réconciliation de clés CASCADE, utilisé en distribution quantique de clés, peut être utilisé pour réconcilier deux réponses de PUF légèrement di érentes obtenues à deux moments distincts. Nous donnons plusieurs jeux de paramètres pour le protocole qui peuvent être utilisés en fonction du taux d'erreur observé à la sortie de la PUF. La quantité d'information fuitée pendant l'exécution du protocole est gérable et évaluée pour di érents cas d'usage. Finalement, les résultats d'implémentation côté composant virtuel montrent que c'est la solution la plus légère à ce jour pour la correction des erreurs, avec un coût en ressources logiques au moins trois fois moindre par rapport aux codes correcteurs d'erreurs les plus adaptés.

Similarities between key reconciliation in quantum key distribution and reliable shared key generation from a PUF response

Originally proposed in the context of quantum key distribution, key reconciliation protocols allow two parties who exchanged a stream of bits through a quantum channel to reconcile their respective information [START_REF] Brassard | Secret-Key Reconciliation by Public Discussion[END_REF]. Indeed, because the quantum channel is noisy and can be eavesdropped, the message that is received is slightly di erent from the one that was sent. In order to make these messages identical, the two parties involved carry out a key reconciliation protocol. This key reconciliation consists in a public discussion. Obviously, since the discussion is public, some information is leaked in the process. Depending on the actual amount of information that is leaked, an appropriate privacy ampli cation method is applied to obtain a shared secret with a su cient amount of entropy per bit. The protocol is shown in Figure 4.1a. This use case is very similar to the one of shared key generation between a circuit embedding a PUF and a server. At enrolment, the circuit generates 0 and sends it to the server. Thus both the circuit and the server own 0 . However, later on, when the circuit must be identi ed, the response generated by the PUF is noisy. Error correction is carried out on the server side, like in [START_REF] Van Herrewege | Reverse Fuzzy Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs[END_REF], so that the server owns as well. The PUF response is then turned into a cryptographic key. This is illustrated in Figure 4.1b. In order to understand how the CASCADE key reconciliation protocol can be applied to correct the errors in PUF responses, we rst present the foundations of the protocol, namely parity checks and binary search. We then show how they are extended to make the full CASCADE protocol.

Error correction based on multiple parity checks and binary searches 4.2.1 Method

Given two responses 0 and of length , identifying, isolating and correcting errors between them can be done by multiple parity checks followed by binary searches. We consider that is a power of two in the rest of the chapter. First, both strings are split into blocks of size , which is a power of two as well. A block is a list of indexes, like [12, 13, 14, 15] for example, that are the indexes of the bits of interest in the PUF response. From the parity of both associated blocks 0 and from 0 and , the relative parity, , is computed (see Equation (4.1)).

(0 ,) = -1 ⨁ =0 0 [0 []] ⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟ Parity of 0 ⊕ -1 ⨁ =0 [[]] ⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟ Parity of (4.1)
If the relative parity is even, then no error is detected. If the relative parity is odd, then the CONFIRM method [BS93] is applied on both blocks 0 and from 0 and . This method consists in splitting the blocks in two and computing the relative parity of the rst half. If it is even, then the error is in the second half. If it is odd, then the error is in the rst half. The half for which the parities di er is then subsequently split in two. The process is repeated until the block size is two bits. The rst bit from is then transmitted. If this bit is the same as the corresponding bit in 0 then the other bit is ipped. If this bit is di erent from the corresponding bit in 0 , then this bit is ipped. Algorithm 2 summarises the CONFIRM method, while Figure 4.2 illustrates it on 16-bit blocks. The initial block size is determined from the error rate . In the original protocol, is estimated by transmitting a dummy public frame through the quantum channel. In the case of PUF responses, the error rate can be estimated by characterisation of the PUF of interest.

For every pass, the parity checks and binary search-based error correction is done. This ends by applying the CONFIRM method on the blocks that have a relative parity of 1 (lines 7 and 8 of Algorithm 3). After this, the block size is doubled to reduce the leakage brought by the parity checks in subsequent passes. Although doubling the block size increases the probability to nd an even number of errors in a block, most of the errors are corrected in the rst passes since the blocks are then smaller. Therefore, a small block size is no longer necessary. Afterwards, the responses are scrambled again with another public random permutation.

After all the passes have been carried out, the responses must be unscrambled by using the inverse permutations -1 0 , -1 1 , ..., -1 . If the number of passes is su ciently high, then the responses 0 and are correctly reconciled with a very high probability.

A toy example of applying the BINARY algorithm on 16-bit PUF responses is shown in Figure 4.4. In this example, an integrated circuit that embeds a PUF tries to authenticate to a server. To achieve this, one step is to have a shared secret. The communication goes both ways. The server sends the response indexes contained in the block on which the parity must be computed. The circuit then sends back the associated parity value.

Integrated circuit Server

Owns -bit response Owns -bit response 0

Authentication request ← →
Chooses a public random permutation 1 Computes block size 1 from Pass 1

Scrambles 0 using 1 (public) Splits 0 into blocks of size 1

Block 1 (no error)

Indexes of block 1: 2, 12, 1, 4

← Computes parity Computes parity = [2] ⊕ [12] ⊕ [1] ⊕ [4] 0 = 0 [2] ⊕ 0 [12] ⊕ 0 [1] ⊕ 0 [4] ← ← ← ← ← ← ← ← ← ← ← ← ← ← → Veri es 0 = Block 2 (no error)
... Block 3 (no error) ... Block 4 (with error) Indexes of block 4: 13, 15, 0, 3

← Computes parity Computes parity = [13] ⊕ [15] ⊕ [0] ⊕ [3] 0 = 0 [13] ⊕ 0 [15] ⊕ 0 [0] ⊕ 0 [3] ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ≠ 0 CONFIRM on block 4
Indexes of rst half: 13, 15 Starting with a small initial block size 1 decreases the failure rate. Indeed, the probability to isolate one error per block is higher. Therefore, the smaller the initial block size is, the lower the failure rate is.

← Computes parity Computes parity = [13] ⊕ [15] 0 = 0 [13] ⊕ 0 [15] ← ← ← ← ← ← ← ← ← ← ← ← ← ← → ≠ 0 Request rst bit ← [13] ← → Flips 0 [13]
Chapter 4 -Key reconciliation protocols for error correction of silicon PUF responses

In uence of the number of passes

Increasing the number of passes also reduces the failure rate. By performing more parity checks, more errors can be detected and corrected. Therefore, the higher the number of passes is, the lower the failure rate is.

Associated leakage 4.3.3.1 In uence of the block size

Initial parity checks Just as discussed before, computing the parity of -bit blocks in an -bit response leaks / bits. Therefore, the smaller the block size is, the higher the information leakage associated to the initial parity checks is.

Error isolation and correction When an error is detected by parity check, performing binary search on an -bit block leaks log 2 () bits. Therefore, the smaller the block size is, the lower the information leakage associated with binary search and error correction is.

In uence of the number of passes

If more passes are carried out, more parity checks are performed. Even though nal passes leak less, since the block size is greater, some bits are still leaked. Therefore, the higher the number of passes is, the higher the leakage is.

Improvement

The BINARY protocol can be improved by noticing the following. If, in a pass, two blocks have a even relative parity, then if in a subsequent pass an error is corrected at an index that was in these blocks, then the blocks now have an odd relative parity. Thus these blocks can be processed by CONFIRM again to isolate the error and correct it.

CASCADE protocol 4.4.1 Method

The CASCADE protocol consists in adding a backtracking step at the end of each pass of the protocol. After each pass, since all detected errors have been corrected, all the blocks have an even relative parity. Therefore, if an error is detected and corrected at index in a pass, then all the blocks from previous passes that contain index are now of odd relative parity. Therefore, they contain an error that can be located and corrected using CONFIRM.

The extra requirement compared to BINARY is to have two lists holding the blocks depending on their relative parity: and . The backtracking step starts by applying CONFIRM on the smallest block of , minimising the associated leakage. This corrects an error at position . All the blocks from and that contain are now moved from one list to the other. This process is repeated until is empty, meaning that no more erroneous blocks are known. Another pass can then start. Overall, since it corrects more errors than BINARY for the same number of passes, the CASCADE protocol is more e cient. The CASCADE protocol is detailed in Algorithm 4. Scramble 0 and using a public random permutation

18 Unscramble 0 and with -1 0 , -1 1 , ..., -1 19 return 0 , A toy example of running the CASCADE protocol on a 16-bit response with ve errors is shown in Figure 4.5. Only the extra features found in the CASCADE protocol compared to BINARY are shown. For example, the indexes and parities exchanges between the server and the device are hidden. The backtracking step, on the other hand, is detailed.

Parameters of the CASCADE protocol

Computing the exact number of bits leaked during an execution of the CASCADE protocol remains an open question [START_REF] Seet | An Accurate Analysis of the BINARY Information Reconciliation Protocol by Generating Functions[END_REF][START_REF] Martinez-Mateo | Demystifying the Information Reconciliation Protocol CASCADE[END_REF]. However, the leakage can still be analysed by considering its lower and upper bounds.

Upper and lower bound on the information leakage

The information needed to recover a variable from a noisy version is given by the conditional entropy (|), as highlighted in [START_REF] Martinez-Mateo | Demystifying the Information Reconciliation Protocol CASCADE[END_REF]. The conditional entropy is related to the error rate . The minimum amount of information that must be exchanged between the two parties to reconcile their respective responses is given in Equation (4.2), where is the size of the response and ℎ() is the Shannon entropy.

ℎ() = (-log 2 () -(1 -)log 2 (1 -)) (4.2)
This then gives a lower bound on the leakage value. Because information is leaked, the maximum number of PUF bits that can be expected to remain secret is given in Equation (4.3)

-ℎ() = (1 -ℎ()) (4.3)
For instance, if the error rate is 5%, one cannot expect to keep secret more than 182 bits from an initial 256-bit response. Of course, if the error rate is lower, 1% for example, then up to 235 bits can be kept secret. In practise, since there is no exact literal formula for the leakage, one can nd a higher bound on the leakage value by considering that one bit is leaked every time one parity value is sent over the channel. This is an overestimation of the leakage and tighter bounds can be found in literature [START_REF] Li | A Probabilistic Analysis of CASCADE[END_REF]. In order to limit the leakage, the CASCADE protocol parameters must be carefully chosen. This is presented in the next section.

Choice of parameters

There are three parameters for the CASCADE protocol. The rst one is the initial block size and the second one is the number of passes. The third one, not present in the original article, is the multiplication factor for the block size between two successive passes. These parameters are not set in stone but can be changed on the eld when the protocol starts. This could be useful to adapt to a higher error rate if the operating conditions of the PUF have changed.

Initial block size

The initial block size should be set so that, after the initial scrambling step, there is one error per block on average. This would make the error detectable by the initial parity checks. Therefore, the initial block size 1 depends on the error rate . In the original article [START_REF] Brassard | Secret-Key Reconciliation by Public Discussion[END_REF], 1 ≈ 0.73/ . Optimised versions of the protocol presented in [START_REF] Martinez-Mateo | Demystifying the Information Reconciliation Protocol CASCADE[END_REF], however, tend to increase it up to 1/ . Moreover, [START_REF] Martinez-Mateo | Demystifying the Information Reconciliation Protocol CASCADE[END_REF] emphasises that 1 should be a power of two to reach the best reconciliation e ciency. Finally, the initial block size given in [START_REF] Pacher | An information reconciliation protocol for secret-key agreement with small leakage[END_REF] is shown in Equation (4.4).

1 = min(2 ⌈log 2 (1) , 2) (4.4)
This initial block size, however, is only valid for very long frames, typically found in quantum key distribution. Using the value obtained from Equation (4.4) for PUF responses leaves errors in them most of the time. Next, 1 values from 4 to 32 bits are investigated.

Number of passes

Performing more passes corrects more errors, but increases the leakage. The number of passes is limited by the fact that the block size cannot exceed half the response size /2. This limitation is already present for the frames of 2 14 bits found in quantum key distribution, but is much more problematic for PUF responses, that are much shorter. For example, the passes must stop when reaches 128 bits if the response has 256 bits. One solution [Mar+15; Pac+15] is to add passes with a block size of /2 to reduce the failure rate. Each extra pass requires only two parity checks, leaking two bits.

Multiplication factor for the block size

As detailed in [START_REF] Martinez-Mateo | Demystifying the Information Reconciliation Protocol CASCADE[END_REF], the block size can be multiplied by another factor than two, but the best e ciency is achieved when the block size is a power of two. Therefore, we investigated multiplication factors of values two, four and eight, leading to the block sizes given in Table 4.1.

Design ow

Setting the parameters of the CASCADE protocol requires to know the error rate and the target failure rate. The PUF can be characterised to know the error rate. The target application characteristic de nes the failure rate. From the simulation results, the initial block size and the number of passes can then be obtained. This also gives the leakage. If the leakage is too high for the application, more bits from the PUF can be requested to obtain a secret of su cient length. Table 4.2 shows which parameters can be chosen for the CASCADE protocol in real-life examples to achieve a failure rate of 10 -4 , 10 -6 or 10 -8 and to keep at least 128 bits secret. Three PUF architectures are considered: TERO-PUF, RO-PUF and SRAM-PUF (see Section 1.5.2.3 for detailed descriptions). The error rates for these PUFs provided in the original articles are used to obtain the initial block size 1 , the number of passes and the number of bits required from the PUF.

Implementation

The implementation of the CASCADE protocol in the context of error correction of silicon PUF responses is done both on the device side and on the server side. The server is assumed to have high computational capabilities, while the device-side implementation should be as lightweight as possible.

The only feature that must be implemented on the device is the parity computation. Upon receiving a list of indexes, the device computes the parity of the block composed of the PUF response bits found at these indexes. This parity value is then sent back to the server. All the other operations required by the protocol, namely the block size computation, the choice of random permutations and the error detection and correction, are done on the server. This distribution of operations between the device and the server is summarised in Table 4

✔

There are several possibilities to implement the parity computation module on the device. They are detailed below.

Large multiplexer

The rst option to implement the parity computation module is shown in Figure 4.6. This architecture computes the parity of a block, given the indexes, by multiplexing the associated response bits one after the other to an XOR gate. The parity value is sampled by a DFF. In this rst implementation, we assume that the response obtained from the PUF is stored in an -bit shift register. This shift register can be made circular to individually select the response bits.

Circular shift register

Among the classical PUF architectures, the ones based on ring oscillators have the characteristic to not directly generate the whole response. For example, the RO-PUF compares the frequencies of two ring-oscillators, generating the response bit by identifying the fastest one. Individual bits are generated one after the other, and must be stored in a shift register that will eventually hold the full response. Such shift register can be made circular by connecting its output to its input. It reduces the amount of logic resources required to implement the parity computation module. The architecture is shown in Figure 4.7, where [] is the response bit generated by the PUF that is going to be stored in the shift register. In order to select the individual response bits, a log 2 ()-bit counter is required. It holds the number of positions of which the register must be shifted to obtain the response bit. In order to pre-load this number, the counter has a Δ input (see Figure 4.7). The value fed to the Δ input is computed in the following manner. Let two response bits that must be selected for the parity computation be called [] and []. [] must then be selected after []. There are two possible cases when selecting these response bits:

• If > , the counter must be preloaded to -, which is the number of positions that must be shifted to go from [] to [].

• If < , the counter must be preloaded to + -, which is the number of positions that must be shifted to go from [] to [] when wrapping beyond the response length .

The counter must then be preloaded to the Δ value shown in Equation (4.5).

Δ = (-) mod (4.5)

Therefore, the counter must be log 2 ()-bit wide to index all the response bits. A list of Δ values is computed by the server and sent to the device, instead of the list of indexes.

RAM

The last implementation option is to have the PUF response stored in RAM. In order to store 256, 512 or 1024-bit responses, 32×8, 64×8 and 128×8 RAM blocks are used respectively, and the response is split into bytes. Since the RAM has an intrinsic multiplexing capability for the bytes, only one 8:1 multiplexer is needed to access the response bits individually. The index input is split into two parts. The three least signi cant bits drive the selection input of the multiplexer, while the other bits are sent to the address input of the RAM.

Experimental results

In this section, we observe how the leakage, the failure rate and the execution time change with respect to the CASCADE parameters: the initial block size and the number of passes. These results were obtained after simulating one hundred million executions of the protocol in parallel on a computing server that embeds two Intel Xeon E5-2667 CPUs. Each CPU has eight cores, operating at 3.20GHz. The PUF response 0 and were randomly generated with the error rate of interest. The added errors were assumed to be independent and identically distributed. This might not be the case for real PUF implementations and will be discussed in Section 4.8.1.1.

Leakage

When considering the leakage induced by the CASCADE protocol execution, we arbitrarily de ne a security threshold at 128 bits. This means that the objective is to keep secret at least 128 bits of the response. In case the PUF response is then processed to generate a symmetric cryptographic key, this value of 128 bits is in accordance with the recommendations made by known agencies and institutes 1 . The leakage values obtained for di erent sets of parameters are shown in Figure 4.9, while detailed values can be found in Table 4.4.

As mentioned before, increasing the number of passes leads to leaking more bits. For some cases, the the security threshold of 128 bits is crossed. For example, for a 15% error rate, 30 passes with 8-bit initial blocks leaks the whole response. Conversely, starting with smaller An interesting phenomenon occurs for = 15%. Starting with small blocks leaks less. This is because, when the initial blocks are larger, the amount of blocks in the rst passes is not su cient to detect all the errors. Therefore, they are corrected in later passes, when the blocks are even larger. Then, the binary search carried out in the CONFIRM method leaks more information to isolate the error than when it is carried on smaller blocks.

The second criterion that must be taken into account is the failure rate. Indeed, keeping 128 bits secret is of no use if some errors are left uncorrected. This is detailed in the following section.

Failure rate

The failure rate values obtained for di erent sets of parameters are shown in Figure 4.10, while detailed values can be found in Table 4.5. Increasing the number of passes makes it possible to detect and correct more errors, reducing the failure rate. Additionally, starting with smaller blocks also detects and corrects more errors, reducing the failure rate even further. These results show that for all the considered error rates, a failure rate below 10 -6 can be reached. This is in accordance with the failure rates typically achieved with classical error correction codes used for PUFs [MTV09b; Hil+12; HYS16]. Figure 4.10d shows the failure rate pattern observed for a 15% error rate. It clearly shows that the only solution when the error rate is so high is to start with small blocks of four bits. All other con gurations starting with larger blocks cannot reach satisfactory failure rates.

Logic resources

We implemented the three proposed architectures given in Figures 4.6, 4.7 and 4.8, based on a large multiplexer, a circular shift register or a RAM block. The implementation is done on cost-optimised FPGAs Xilinx Spartan and Intel Cyclone, since those are typically used for applications that require low cost in logic resources. We only report the implementation cost of the parity computation module itself. The controller is not taken into account, as it is done for the majority of existing works. We give the implementation results in Table 4.6 with low level metrics: number of LUTs, number of DFFs and number of RAM bits. This allows for a fair comparison between FPGAs from di erent vendors. For comparison with existing work, we also provide the implementation results in number of Slices/ALMs2 /LCs3 .

As one can see by comparing these implementation results with the ones obtained with classical error correction codes, given in Table 1.4, the CASCADE protocol has a very lightweight device-side implementation.

1 10 -1 10 -1 1 1 1 1 1 1 1 1 1 1 - --- 3
10 -2 10 -2 10 -1 10 -1 10 -1 10 -1 1 1 10 -1 1 1 1 ----5 10 -3 10 -2 10 -2 10 -1 10 -2 10 -1 10 -1 1 10 -1 10 -1 1 1 ----10 10 -4 10 -4 10 -3 10 -3 10 -3 10 -3 10 -2 10 -1 10 -3 10 -2 10 -1 10 -1 1 1 1 1 15 10 -6 <10 -6 10 -5 10 -4 10 -5 10 -4 10 -3 10 -3 10 -4 10 -3 10 -2 10 -2 ----20 <10 -6 <10 -6 10 -6 10 -6 <10 -6 10 -5 10 -5 10 -4 <10 -6 10 -5 10 -3 10 -3 10 -4 1 1

1 30 - - - - - - - - - - - - <10 -6 1 1 1 40 - - - - - - - - - - - - <10 -6 1 1 1
Table 4.5 -Order of magnitude of the failure rate values obtained with di erent error rates, initial block sizes and number of passes When choosing the rst implementation option, most of the resources are occupied by the large to 1 multiplexer. The number of LUTs required to implement it grows linearly with the response length. Such implementation option is better suited for ASIC. Indeed, a large multiplexer is costly to implement using LUTs, while an ASIC implementation is more compact.

The second implementation option, that consists in reusing an existing shift register and make it circular, is much more lightweight. The size of the counter that must be added to index the response bits grows logarithmically with respect to the number of bits in the PUF response. When the response size is doubled, only one extra DFF is required. This option is suited for both ASICs and FPGAs.

Finally, the third option is clearly better suited for FPGAs. On such devices, distributed or block RAM is available and easily usable. Since the RAM has an intrinsic capability to multiplex bytes, the logic resources required is much lower than for other implementation options. The extra 8:1 multiplexer that selects the response bits individually has a constant size, no matter the response length. The number of RAM bits required to store the response grows linearly with the response length. The implementation results show that this implementation option takes between 3 and 6 LUTs and only one DFF. This makes it the most lightweight error correction module to date.

Execution time

The last criterion is the execution time of the protocol. In order to remain independent on the target device, the execution times are given in clock cycles. The rst and third implementation options, based on a large multiplexer or a RAM, have an identical way to select the PUF bits. Therefore, their execution time is identical. The second implementation option, based on a circular shift register, has a longer execution time though. Indeed, it requires to shift the register to select the response bit of interest.

The protocol has both a xed and a variable execution time parts. The xed part corresponds to the initial parity checks. The variable part corresponds to the execution of the CONFIRM method. This is variable because the block size in uences the time taken by the CONFIRM method. If the errors are detected when the blocks are small, the binary search is faster. Therefore, the sooner the errors are detected, the faster the overall protocol.

Implementation options based on a large multiplexer or a RAM

For these two implementation options, the response bits are multiplexed to the XOR gate in one clock cycle, no matter how long the response is. Accessing the response bits has then (1) time complexity. For the initial parity checks, it then takes clock cycles to compute the parity of all the blocks for an -bit response. Applying the CONFIRM method on -bit blocks takes -1 clock cycles. This is the run time of the binary search, as given in Equation (4.6). This corresponds to computing parities on blocks of size from /2 bits down to 1 bit. We now consider the previous case of a 256-bit response with an error-rate of 2%. This means that, on average, ve bits are faulty. Choosing the best CASCADE parameters for this situation leads to pick 1 = 32 and 15 passes.

As mentioned before, the execution time depends on when the errors are detected by the parity checks. Therefore, we must distinguish an upper and a lower bound for the execution time. In the best case, giving the lower bound for the execution time, the errors are corrected as soon as possible in the execution of the protocol. The binary search is then done on smaller blocks. We consider in this case that the ve errors are corrected in the rst pass of the protocol. The device-side execution time is then: 256 × 15 + 5 × (32 -1) = 3 995 clock cycles If we take the worst case, the number of errors can be higher. For example, we consider here that 14 bits are faulty, which can occur with a probability of 5.10 -4 Since we consider the worst case scenario, the errors are corrected as late as possible. Therefore, CONFIRM is applied on larger blocks and takes longer. In this case, that is the upper bound, since the errors are corrected in the last passes, the execution time is: 256 × 14 + 14 × (128 -1) = 5 362 clock cycles

Implementation option based on a circular shift register

In order to select an individual response bit, the circular shift register must be shifted by an amount Δ ∈ [1; -1]. On average, reaching the next response bit then takes /2 shifts. It follows that accessing the response bits has an () time complexity in this case, for an -bit response.

For a -bit block, computing its parity then takes /2 clock cycles on average. Since carrying out the initial parity checks requires to compute the parity of the / blocks found in the response, then it takes 2 /2 clock cycles on average. This is much longer than for the previously considered implementation options, that take only clock cycles.

The number of clock cycles required to apply the CONFIRM method on a -bit block is given in Equation (4.7)

log 2 () ∑ =1 . 2 2 = .(-1) 2 (4.7)
Again, we consider the best and worst cases here, with a 256-bit response and a 2% error rate. The protocol starts with 32-bit blocks and runs for 15 passes. When the second implementation option is picked, the execution time grows dramatically. This is because of the PUF response bit selection that has an () time complexity in this case. This option might then only be suitable for small responses and low error rates. Otherwise, the other implementation options should be preferred.

Depending on the target device on which the error correction module must be implemented, these results could be improved. Indeed, the logic function is very simple here and has a very short critical path. A higher clock frequency could then be used for this module speci cally, reducing the overall latency of the protocol.

Nevertheless, due to the great interactivity of the CASCADE protocol, the main execution time bottleneck is the communication between the device and the server. Depending on the target platform, this could be an order of magnitude slower than intra-device communication. Therefore, the actual time taken to execute the whole protocol is very dependent on the nal hardware target.

Security: attacks and countermeasures

We investigate three types of attacks against the CASCADE protocol: server impersonation, device impersonation and eavesdropping. We then make some propositions for countermeasures to thwart these attacks.

Server impersonation: chosen indexes scenario

In the case of server impersonation, the objective of the attacker is to recover the generated PUF response. This can be done by sending chosen indexes and observing the resulting parity value sent back by the device. Thus is a chosen indexes scenario. If done for a su cient amount of times, the attacker can build a system of linear equations that is su ciently determined to be solved by Gaussian elimination.

Countermeasure: deterministic shu ling

Instead of picking a random permutation at the beginning of each pass in order to spread the errors, a deterministic set of permutations could be prede ned to maximise the probability to separate faulty bits into di erent blocks. It prevents the attacker from adding new independent equations to the system that would need to be solved to recover the response. Another interesting point of choosing a deterministic set of permutations is to account for the error rate of each response bit individually. The stability of each PUF response bit can be obtained by characterisation [START_REF] Maes | An Accurate Probabilistic Reliability Model for Silicon PUFs[END_REF][START_REF] Marchand | Enhanced TERO-PUF Implementations and Characterization on FPGAs[END_REF]. Also, in the case of TERO-PUF for example for which multiple response bits are obtained for each challenge, some response bits are known to be less stable than others. Consequently, choosing a set of permutations would separate in di erent blocks the bits that are known to be the most unstable. The method of choosing the best set of permutations could be studied in future works. In the use case of remote activation of integrated circuits that we consider in the SALWARE project, the circuit must be activated only once and remains active afterwards. Therefore, allowing for only one execution the protocol could be a countermeasure to server impersonation. However, this would require to hold one permanent bit of state on the device to know if the protocol has already been executed or not. A fuse could be blown to implement this, but it may not be possible to have this on the device depending on the technology used.

Countermeasure: limitation of the number of parity values sent out

The attacker must obtain a su cient amount of parity information to build a system of equation that can be solved. Therefore, a hard limit could be set on the number of parity values that could be obtained from the device. By setting this limit at the security requirement of the application, the designer can make sure that a su cient number of bits are kept secret. However, storing the number of parity bits extracted is problematic. Indeed, if an attacker resets the system, this information is lost and the protocol can be carried-out again to obtain more parity values. Moreover, nothing stops an attacker to execute the protocol multiple times. The number of parity values could be stored in NVM so that it cannot be reset. However, it might not be technologically feasible to add non-volatile memory to the IP core. In addition, an attacker could reset the circuit at the end of the protocol, before the number of parity values is written to the NVM.

Countermeasure: generation of a response at each protocol execution

The last countermeasure that we propose to thwart server impersonation is to force the generation of a new PUF response every time the protocol is initiated. This way, the parity values that an attacker would obtain correspond to di erent responses and cannot be merged into a system that is su ciently determined to be solved.

Of course, in order for this countermeasure to work, two responses generated one after the other should always be di erent. This could be checked by always storing the previous response on the device, in an electrically-erasable programmable read-only memory (EEPROM) for instance, and comparing it to the newly generated one. Moreover, a potential attacker has no way of knowing if two consecutive responses are indeed identical or not.

The attack that consists in recovering the response from contradictory parity values is similar to the Learning parities with noise (LPN) problem, which is considered a hard problem and that has been used as the hardness assumption for some cryptographic constructs [START_REF] Pietrzak | Cryptography from Learning Parity with Noise[END_REF]. Solving the LPN problem has an equivalent complexity to decoding from a random linear code [START_REF] Berlekamp | On the inherent intractability of certain coding problems[END_REF], which is known to be NP-hard. Proving rigorously the equivalence between the LPN problem and the attack we described on the CASCADE protocol would require further investigation.

Device impersonation: chosen parities scenario

Another attack consists in impersonating the device with the aim of setting the reference response stored on the server to a chosen value. This could be achieved by sending speci c parity values to the server. We propose to implement the following countermeasure on the server side against this threat.

Countermeasure: limitation of the number of server-side modi cations

Device impersonation is prevented by limiting the number of bits that can be modi ed in the reference response stored on the server. Since the error rate is , the number of bits that are ipped in an -bit response follows the binomial distribution (,). This sets a hard limit on the number of bits that ip, so that the probability that so many bits are ipped is lower than the failure rate of the protocol. For example, if 256-bit responses are used and exhibit a 2% error rate, if a failure rate of 10 -6 is required, then the limit is set to so that (=) < 10 -6 . Therefore, in this case, up to 20 bits can be modi ed on the server side, but not more.

The maximum number of bits that are allowed to be modi ed on the server side is given in Equation (4.8), in which is the failure rate and is the number of bits modi ed during one execution of the CASCADE protocol.

∶ (=) < (4.8)
Beyond the threshold , the probability that an attacker is trying to impersonate a device and force the reference response is higher that the failure rate of the protocol. Therefore, no further modi cations are done to the reference response stored on the server and the protocol is aborted.

Discussion

Privacy ampli cation

The number of bits leaked during one execution of the CASCADE protocol is known. The remaining entropy is then not only located on speci c bits, but is spread over the PUF response bits. Therefore, the individual bits cannot be selectively discarded. Moreover, the initial response can exhibit poor statistical properties, and the response bits may not be independent. The next step consists then in processing the PUF response to have a higher entropy per bit. This is called privacy ampli cation. Since we place ourselves in the random oracle model, a hash function can be used to this end. Figure 4.11 illustrates how the number of bits changes at di erent stages. During the key reconciliation protocol execution, bits from the PUF response are leaked because of the parity checks. Consequently, the hash function that is used for privacy ampli cation should have an output of sizeat most, so that all the output bits have maximum entropy. In order to limit the amount of logic resources required to implement the privacy ampli cation step, a lightweight hash function can be selected. SPONGENT [START_REF] Bogdanov | SPONGENT: A Lightweight Hash Function[END_REF] was chosen in [START_REF] Maes | PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator[END_REF] and takes only 22 Slices on a Xilinx Spartan 6 FPGA, with an output block size of 128 bits. In [START_REF] Maes | Analysis and Design of Active IC Metering Schemes[END_REF], Toeplitz hashing [START_REF] Krawczyk | LFSR-based Hashing and Authentication[END_REF] was used. It occupies 59 Slices on Xilinx Spartan 3. The SHA-3 webpage provides other options for this use case in the "low area implementations" section4 .

Replacing parity checks with hashing

In some works, it is suggested to replace the simple parity checks with hashing [BBR88; YI01]. This is su cient to detect if errors occurred and has the advantage to detect an even number of errors in a block. However, this idea cannot be applied to our use case because of the small block size. Indeed, an attacker would only need to precompute the 2 1 possible values of the hash during the rst parity check step. Since in our case 1 ranges from 4 to 32, this is computationally feasible. By observing the hash values sent by the device to the server, the attacker could then look up the associated response values and recover the whole response.

Conclusion

This chapter proposes a new way of correcting the errors found in silicon PUF responses, by using the existing key reconciliation protocol CASCADE. Originally proposed in the frame of quantum key distribution, we show that this protocol can be successfully applied to reconcile two slightly di erent PUF responses obtained from the same challenge but at di erent times. A server and a device then own a shared secret, that can later be processed to generate a cryptographic key.

When using the CASCADE protocol for PUF responses though, some adaptations are necessary. We show by simulation that, by tuning the protocol parameters, it can cope with the short response sizes and typical error rates found in usual PUF architectures. We propose several sets of parameters that account for common error rates, response length and failure rates.

From a practical point of view, implementation results show that the device-side implementation of the CASCADE protocol is very lightweight in logic resources. We propose three architectures to implement the parity computation module, all leading to implementations that occupy at least three times less logic resources than existing ones that use classical error correction codes. The most lightweight implementation, when the PUF response is stored in RAM, takes less than six LUTs and one DFF.

Finally, we give a thorough security analysis of the use case of the protocol for PUF responses. We propose countermeasures against the described attacks, that do not hamper the area performance of the scheme.

In the use case of remote activation of IP cores, the CASCADE protocol is then a lightweight solution to correct the errors found in PUF responses. The tunable parameters allow to accommodate common PUF error rates and comply with the failure rates found in common applications.

Integration into EDA tools

The IP protection module depicted in Figure 5.1 must be integrated into an existing design. Therefore, since the original IP core is modi ed to incorporate it, the design ow must be adapted. First the combinational logic is modi ed to incorporate extra logic gates that implement logic locking (see Chapter 2) or logic masking (see Chapter 3). Then, the extra modules like the lightweight cipher, the PUF, the parity computation module (see Chapter 4), etc. are added.

Modi cations of combinational logic

The rst step is to modify the combinational part of the design by logic locking or logic masking to ensure that, when not activated, the design does not operate correctly. First, the netlist is converted into a directed acyclic graph, following the conversion rules given in Section 2.2.1, Figure 2.4. When integrated into EDA tools, this conversion should handle several netlist formats: EDIF, BLIF, SLIF, gate-level VHDL or gate-level Verilog. The input netlist must be described at the gate-level. This is necessary for logic locking to identify the paths that propagate a locking value, and for logic masking to identify the best nodes to modify. The netlist to protect can be a description made by the designer directly, but in the most likely scenario a post-synthesis netlist is used. These netlists are typically found in various formats. A dedicated parser has been developped and is used to convert these di erent formats into a graph.

The graph can then be processed by the logic locking algorithm presented in Chapter 2. This step is optional, in case a designer only wants to implement logic masking, not locking. It is not recommended to implement both logic modi cations on the same netlist. The compatibility and interaction between those two techniques could be studied in future works. The algorithm is driven by the number of outputs to lock. The designer does not chose the associated overhead, although a threshold could be set to limit it. In this case however, if the acceptable overhead is not su cient, some outputs are left unlocked. Conversely, the designer could choose to increase the overhead in order to obtain a stronger locking, as described in Section 2.4.1. The type of locking gates that are inserted depends on the value that must be forced to propagate the locking value to the outputs. Therefore, the associated AW bits are not chosen by the designer in this case.

Then, the logic masking algorithm presented in Chapter 3 is applied to the graph. This step is optional, in case a designer only wants to implement logic locking, not masking. This algorithm is driven by the logic resources overhead the designer can a ord. The higher the overhead, the more e cient the masking is. A typical EDA interface for the logic masking scheme will then let the designer pick the overhead as well as the selection heuristic used to select the nodes to mask. The choice of logic gates to insert, either XOR or XNOR, depends on the associated AW bit (see Section 1.5.4.1, Figure 1.16). Therefore, a random AW should rst be generated inside the EDA tool. The width of the AW depends on the logic resources overhead picked by the designer. The greater the overhead, the more masking gates are inserted, the longer the AW is. Obviously, the AW value should be truly random and not manipulable.

The designer can nally save the AW associated to the modi ed design. Afterwards, the nal graph is converted back into a gate-level netlist as detailed in Section 2.2.6. The overall process is shown in Figure 5. The modi ed design has extra inputs that must be driven by the correct AW. However, for security reasons these inputs are not directly exposed. As suggested in [START_REF] Yasin | On Improving the Security of Logic Locking[END_REF], a one way random function should be inserted before the AW inputs. Even though they propose to implement an AES encryption core with a exd key to this end, we focus here on lightweight block cipher alternatives in order to limit the logic resources overhead. Implementations of lightweight block ciphers were done by Cédric Marchand who was a PhD student working in the framework of the SALWARE project as well [START_REF] Marchand | Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés[END_REF][START_REF] Marchand | Area-oriented comparison of lightweight block ciphers implemented in hardware for the activation mechanism in the anti-counterfeiting schemes[END_REF]. The selected algorithms are recent and have a key size of 80 bits (KLEIN [START_REF] Gong | KLEIN: A New Family of Lightweight Block Ciphers[END_REF], LILLIPUT [START_REF] Thierry | Extended Generalized Feistel Networks Using Matrix Representation to Propose a New Lightweight Block Cipher: Lilliput[END_REF] and KTANTAN [START_REF] De Cannière | KATAN and KTANTAN -A Family of Small and E cient Hardware-Oriented Block Ciphers[END_REF]) or 128 bits (LED [START_REF] Guo | The LED Block Cipher[END_REF]). In the threat model we use, 80-bit security is su cient. The hardware implementation results are provided in Table 5.1. According to these, the most suited block cipher is KTANTAN [START_REF] De Cannière | KATAN and KTANTAN -A Family of Small and E cient Hardware-Oriented Block Ciphers[END_REF] since it takes less resources.

The EDA tool could give the possibility to the designer to pick the block cipher. The width of the key input should be identical to the one of the PUF response, since it is used as a symmetric encryption key. Another option is to hash the PUF response before using it as a key. This is detailed in Section 5.1.3.1.

For simplicity, in our demonstrator, we implemented only a one-time pad between the AW and the PUF response. Decoder The cipher could also be used in Electronic Codebook Mode [START_REF] Paar | Understanding Cryptography[END_REF]. In this case, only one block is decrypted and stored in a register of the same size as the output of the cipher. However, this is usually the case that the block cipher has an output block size that is di erent from the width of the AW. Therefore, a decoder is required to map the -bit output of the block cipher to the -bit AW, as depicted in Figure 5.4. We can distinguish three cases when implementing the AW decoder. In the rst case, there are less 0s (respectively 1s) at the output of the cipher than in the AW. For logic masking and for logic locking, each 0 (respectively 1) found at the cipher output drives multiple 0s (respectively 1s) found at the activation input. The decoder then implements an injective function {0, 1} → {0, 1} .

In the second case, there are as many 0s (respectively 1s) at the output of the cipher as in the AW. For logic masking and for logic locking, each 0 (respectively 1) found at the cipher output is connected to a 0 (respectively 1) found at the activation input. The decoder then implements an bijective function {0, 1} → {0, 1} .

In the last case, there are more 0s (respectively 1s) at the output of the cipher than in the AW. For logic masking and for logic locking, each 0 (respectively 1) found in the AW is driven by the disjunction (logical OR) of multiple 0s (respectively the conjunction (logical AND) of multiple 1s) found at the cipher output. The decoder then implements a surjective function {0, 1} → {0, 1} .

In the case of total logic locking, the AW decoder implements the mapping from {0, 1} to the AW that is required to force all the outputs to a xed logic value unless the correct AW is provided. Thus each 0 (respectively 1) found in the AW is driven by the disjunction of all the 0s (respectively the conjunction of multiple 1s) found at the cipher output. The decoder then implements a surjective function {0, 1} → AW.

All these possibilities for the AW decoder architecture are illustrated in Table 5.2, while associated implementation results are given in Table 5.3. The logic resources required to implement the AW decoder for total logic locking are the same as the ones given for the hardware point function in Chapter 2, Table 2.4, but are provided for comparison.

Case

Logic locking/Logic masking Total logic locking Less 0s or 1s at the cipher output than in the AW.

Same number of 0s or 1s at the cipher output as in the AW.

More 0s or 1s at the cipher output than in the AW.

Table 5.2 -AW decoder architectures

The nal PUF response that we use here is 128-bit long. In our implementation, we implemented two banks of 64 TERO cells. Pairs of cells are selected from those banks and compared. Two response bits are generated per comparison. The nal response is then obtained after 64 comparison.

There are eight delay elements per TERO cell branch in our implementation (see Figure 5.5): seven inverters and one NAND gate. Figure 5.5 -TERO cell with 8 delay elements per branch (7 bu ers and 1 NAND gate)

CASCADE module

The CASCADE module can then be implemented on the device side. Depending on the chosen hardware target, an architecture based on RAM (see Figure 4.8) or a large multiplexer (see Figure 4.6) can be chosen by the designer. As said before, the parameters of the protocol are not xed but are chosen by the server when the protocol starts. Therefore, the device-side implementation is generic. The only constraint is the size of the RAM or the size of the multiplexer, which sould be the same at the size of the PUF response. For our implementation, since we deal with 128-bit responses, we allow for initial block sizes of 4, 8, 16, 32 or 64 bits, with a number of passes from 1 to 40.

Controller and communication interface

Finally, a controller must also be added to the system to sequence the operations, as well as a communication interface. In order to minimise the communication time, as many parities as possible are computed one the device before sending them to the server. In our case, the smallest initial block size we consider is 4 bits. Since the PUF response we use is 128-bit long, the initial parity checks result in at most 32 parity bits. These parity values are accumulated and sent out all together. The controller and communication interface could be further optimised to reduce the logic resources overhead.

Optional additions

Hash function

When assuming to be in the random oracle model, a hash function can be used to achieve the privacy ampli cation done at the end of the key reconciliation protocol (see Section 4.9.1). In that case, the output block size of the hash function should be of the same size as the key input of the block cipher. The PUF response, which is then fed to the hash function to generate the key, can be of any size. To limit the logic resources required, the PUF response should be of the size of the smallest possible message that can be hashed without padding. The designer could then pick the hash function of his choice.

Watermark

The PUF described above allows to identify individual instances so that the key used to encrypt the AW is unique to each device. However, it may be necessary to identify the IP core itself in the rst place. This can be easily achieved for example by inserting a small transmitter as proposed in [START_REF] Bossuet | An Ultra-Lightweight Transmitter for Contactless Rapid Identi cation of Embedded IP in FPGA[END_REF]. This transmitter, shown in Figure 5.6, can t in only two 4-input LUTs on FPGA or less than 5 gate-equivalent in ASIC.

Hardware platform: HECTOR board

The HECTOR board is composed of one motherboard, on which di erent daughterboards can be plugged. These boards have been developped in the framework of the European Union H2020 HECTOR project1 .

Motherboard

The HECTOR motherboard (see Figure 5.7) embeds a Microsemi SmartFusion 2 System on Chip (SoC) FPGA. The microcontroller subsystem allows to communicate easily with the PC by using Tcl scripts. This is interfaced with the FPGA fabric, which can then communicate with the daughterboard. The daughterboard is plugged directly on the motherboard using a SATA connector. Thus the motherboard is typically used for communication while the design to test is implemented on the daughterboard.

Overall hardware implementation results

The implementations results for the overall IP protection module are shown in Table 5.4. We implemented it on two FPGA families, Intel Cyclone V and Microsemi SmartFusion 2. For the implementation of the parity computation module used by the CASCADE protocol, we chose the option of using a large multiplexer. Using RAM would reduce the logic resources requirements. In our implementation, the communication between the server and the device is done with frames of up to 1024 bits, that contain the indexes or the parity values. Therefore, two 1024-bit registers are used as input and output registers for the communication. This implementation choice requires a large multiplexer to select the received indexes individually for the CASCADE protocol execution. This could be adapted depending on the requirements and limitations of the target application.

The results presented in Table 5.4 are obtained from the synthesis tools Intel Quartus II 13.1 and Microsemi Libero SoC 11.7. The logic resources individually occupied by each entity can be obtained. However, for complex designs such as this one, separating the logic resources between the entities does not always give meaningful results. Indeed, the synthesis performs a lot of merging of logic to save logic resources. As a consequence, the values provided in Table 5.4 should be analysed while maintaining a critical perspective. The absolute values do not have much intrinsic value. Conversely, the relative implementation cost of each entity is more interesting. On the one hand, as mentionned before, the CASCADE module is extremely lightweight. On the other hand, the large multiplexer used to select the PUF response indexes occupies a lot of LUTs. The logic resources overhead brought by the logic locking scheme is dependent on the design to protect and is not shown here. As said in the associated chapter, the overhead is 2.9% on average. The logic resources overhead associated to logic masking is also not shown, since it is up to the designer to choose it depending on the required masking e ciency.

Overall, these results show that the IP protection module is lightweight. Further optimisations could be carried out to reduce the cost. Vendor-speci c FPGA resources can be used to implement speci c functions. For example, Xilinx SRL16 can be exploited to implement the shift registers. We chose to make our implementation as generic as possible and did not use them.

Software interface

The graphical user interface described here is what could be integrated into EDA tools to allow a designer to protect an IP core from counterfeiting and illegal copying. The interface is split into four tabs, described below and meant to be used at di erent stages of the design process.

Logic modi er

The Logic modi er tab, shown in Figure 5.9, performs the actions described in Section 5.1.1. Figure 5.9 -Logic modi er tab of the graphical user interface In the Current design frame, a design is loaded and converted into a directed acyclic graph from di erent netlist formats. In the Modify design frame, the designer can choose to lock or mask the design, setting the associated area overheads and the selection heuristic for logic masking. The modi ed netlist is then generated using the Generate modi ed design frame, along with the associated AW, that is stored in a dedicated le. Finally, the modi ed design is wrapped and associated with other building blocks such as the lightweight cipher, the parity computation module, the AW decoder, etc. This is done in the Wrap modi ed design frame. The formatted activation word that can be saved at this stage is the one that must be encrypted by the reconciled PUF response at activation time. It is the input of the AW decoder.

HECTOR board management

The HECTOR board management tab, shown in Figure 5.10, allows to connect to the HECTOR board. This is necessary to perform the enrolment and activation phases.

Activation

The last tab is dedicated to the activation phase (see Figure 5.12). Figure 5.12 -Activation tab of the graphical user interface This phase starts with the CASCADE protocol. The interface allows to load the reference response stored on the server. The parameters of the CASCADE protocol can then be set: the initial block size and the number of passes. After performing the protocol, the interface shows how many bits were leaked during its execution. Then, the reconciled PUF response is stored as is as a key, or optionnally hashed before. The designer can then load the AW, encrypt it with the PUF response and send the obtained ciphertext to the HECTOR board. This is decrypted internally and the design implemented on the board is activated.

Illustrative example

To illustrate the use of the IP protection scheme, we applied it on a test benchmark. It is a 64×64 bits combinational multiplier, entirely implemented in LUTs. We also designed a graphical user interface to allow for easy tests for di erent inputs. The di erent cases obtained are depicted in Figures 5.13 First, the designer opens the netlist with the EDA tool, and choses to modify it with logic locking or logic masking, selecting the associated overheads. The associated AW is then stored on the server. The overall wrapper for the modi ed design is generated, comprising the submodules described above. The security threshold is de ned at this step, setting the PUF response size and the cipher key size. The design can then be instantiated by a system integrator, before being manufactured.

Afterwards, it is sent to a facility trusted by the original designer for enrolment. The reference PUF response is obtained and stored. PUF characterisation can be done at this stage for some of the devices to estimate the error rate. Then, the PUF response must be made inaccessible, typically by blowing a fuse inside the circuit. The device must later be activated.

The activation phase starts by challenging the PUF in the circuit to regenerate a response. The CASCADE key reconciliation protocol is then carried out to reconcile the PUF found in the circuit and on the server. The AW encrypted with this response is fed to the circuit to activate it. The circuit can then be used for its original purpose.

One aspect worth noting is the fact that, in this simpli ed design ow, testing of the chip is done after the activation. The implications of activating the device before or after test are discussed in [START_REF] Yasin | Activation of logic encrypted chips: Pre-test or post-test?[END_REF].

Conclusion

The implementation of the overall IP protection module is presented in this chapter. Implementation details are discussed as well as extra modules such as the AW decoder that are required. The results of implementation on Intel Cyclone V and Microsemi SmartFusion 2 are given, demonstrating that the hardware resources occupied are limited. We present the implementation of a demonstrator that illustrates the concepts discussed in this thesis. This demonstrator comprises a software interface and an hardware implementation done on the HECTOR board. For illustration purposes, a test design was modi ed following the proposed methodology. Finally, we present the typical use case for the overall scheme, showing how it can be integrated into the design ow. This demonstrates the practical usability and relevance of the IP protection scheme described in this thesis.

Conclusion

Due to the ever-increasing complexity of integrated circuits, core-based design is now the main paradigm but comes with new threats for design data. Reported cases of illegal copying and counterfeiting have risen in recent years. The aim of this thesis was to propose an industrially relevant solution to actively prevent those illegal actions. The solution should provide hardware licensing capabilities, allowing for a remote and secure activation of the electronic system.

Summary of contributions

The second and third chapter of this thesis propose to modify the combinational logic of a design to allow for IP protection. Combinational logic locking, presented in Chapter 2, proposes a new method to achieve logic locking at the combinational level. By detecting the sequences of logic gates that can propagate a locking value, it allows to controllably force the outputs of a design to a xed logic value. AND or OR gates are inserted to controllably force these sequences of gates to the desired value. The algorithm that detects such sequences of gates, that leverages the representation of a netlist as a graph, is very e cient and can handle large netlists. So far, this is the only method for IP protection based on modi cations of combinational logic that can deal with very large netlists of hundreds of thousands of logic gates. Moreover, we showed that the extra locking gates that must be inserted result in a low logic resources overhead of 2.9% on average. This is when all the outputs can be locked. The overhead brought by combinational logic locking can be reduced by locking only a subset of the outputs, or increased to make logic locking stronger.

In Chapter 3, another method for IP protection based on modi cations of the combinational logic is studied. Logic masking, proposed in 2008 [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], consists in inserting XOR or XNOR gates at speci c locations inside the netlist to controllably alter the internal state, disturbing the outputs. Current heuristics used to determine the place of insertion, however, could not handle large netlists while providing su ciently low correlation at the outputs. We proposed to bridge the gap between computational complexity and masking e ciency by using centrality indicators. They allow to detect the most relevant nodes in a netlist, namely the ones through which the information ow is the greatest. We give an overview of existing centrality indicators before showing that the ones based on current-ow can be e ciently used as the node selection heuristic for logic masking. Experimental results show that netlists of up to 30 000 nodes can be processed in around one hour, reducing the correlation at the outputs to low levels. This makes this selection heuristic the only one to be e cient and usable in a real-world context with medium-sized netlists. The designer can again pick the acceptable logic resources overhead for the target level of correlation.

The fourth chapter presents the CASCADE key reconciliation before showing how it can be successfully implemented alongside a PUF to correct the errors found at its output. Compared to existing error correcting codes, the device-side implementation can be an order of magnitude less costly in logic resources. This makes it very usable in a resource-constrained context, which is typically the case when a PUF is employed. Experimental results show that the protocol can accomodate the error rates observed for usual PUF architectures. The extensive simulation performed allowed us to provide several sets of parameters for error rates ranging from 1 to 15%, while maintaining very low failure rates down to 10 -8 . The protocol is very exible, since the parameters can be changed at each execution. Therefore, the error correction can meet the required failure rate even if the error rate increases due to poor operating conditions. Again, this is up to the designer to choose the most suitable compromise.

All those propositions have in common to be very adaptable to the target application. For logic locking, the designer can balance the locking strength and the logic resources overhead. Similarly, for logic masking, the designer can balance the masking e ciency and the logic resources overhead. For the CASCADE protocol as well, the parameters can be easily tuned to deal with various error rates and target failure rates. These trade-o s allow the designer to balance the cost of implementation with the target security level, ensuring feasibility in an industrial context.

The nal chapter of this thesis presents the integration of all the contributions of the SALWARE project in a complete IP protection module. Implementation results show that the scheme is suitable for industrial use, providing e cient protection of design data at reduced cost.

Perspectives

Several perspectives can be identi ed that could extend the contributions of this thesis. For modi cations of combinational logic targetting IP protection, the interaction between logic locking and logic masking could be studied. In particular, exploiting the sequences of nodes that propagate a locking value inside the netlist could be useful to interact with the masking gates. One could also design a two-step scheme that both locks and masks the outputs. Recovering the original behaviour would then require to deactivate both protections. Combining those two techniques would certainly lead to an e cient method to controllably disturb the outputs.

Conclusion

Another possibility to leverage logic locking is to adapt it to sequential systems. Locking the registers that store the current state of the system allows to force the system to a known, xed state. Conversely, logic masking may not be used in this case since it could force the system into an unknown state. Logic masking may be improved by analysing the design to protect before applying the node selection heuristic on it. It may be possible to determine a lower bound on the correlation that is achievable by applying logic masking on a particular design. Indeed, experimental results show that increasing the number of inserted masking gates does not necessarily reduce the bitwise output correlation. Analysing the netlist before modi cation could allow the designer to know the lowest level of correlation that is achievable and determine the associated logic resources overhead that would be optimal.

Regarding the CASCADE protocol, the sets of parameters that we give for di erent error rates and failure rates were obtained by simulation. However, those simulations took extensive time to perform, and were only done for the considered error rates and failure rates. A generic method to derive the parameters of the protocol given the error rate and failure rate could be developped. However, it should be speci cally targeted at the application we consider here, namely correcting the errors in PUF responses. Indeed, the methods used in the context of quantum key distribution deal with very long bit frames, making them unsuitable for our use case. Speci cally, some asymptotically valid approximations are not correct anymore, since PUF responses are much shorter. Integrated into the activation software, such method would allow the designer to enter the expected error rate and the required failure rate before executing the protocol.

Finally, the overall IP protection scheme should be evaluated as well. Even though the security and the leakage associated to the CASCADE protocol have been discussed, some weaknesses might be exploited. This would require further investigations, while keeping the same threat model as de ned in Chapter 1. Considering other threat models could be interesting as well, while keeping in mind that the main objective of this work is industrial applicability.

In order to broaden the scope of this work, more ne-grained licensing could be investigated as well. Indeed, we only considered two modes of operation, activated or not. However, on a per design basis, some evaluation or premium modes are possible. For example, an Ethernet controller could be provided for evaluation with a throughput of 10Mbps, in a normal mode with a throughput of 100Mbps or in premium mode at 1Gbps. Similarly, a H.264 video decoder could decode in 720p in evaluation mode, in 1080p in normal mode and in 4K in premium mode. This type of feature-based licensing is very interesting from a marketing point of view, but is hard to make generic. Some IP cores that are well suited for feature-based licensing are analog IP cores. Indeed, analog-to-digital converters or lters, for instance, must be calibrated to achieve the best performance. By acting on the calibration system, a wide range of performances can be obtained, paving the way for ne-grained performance-based licensing. The state-of-the-art in IP protection for analog IP cores is scarce and speci c protection schemes should be developped in the future.

Finally, one can also take the point of view of the system integrator, who wishes to integrate an IP core provided by an untrusted IP core designer. For example, an IP core designer could provide a cryptographic core with a hidden backdoor or with deliberately high sidechannel leakage. Moreover, complex IP core like softcore microprocessors are meant to execute embedded code. How can a designer ensure that the IP core will remain harmless to the overall system if the code is malicious? How can a system integrator ensure that the IP cores integrated in the nal system are connected and interacting with one another while being su ciently isolated so that one malicious IP core cannot take down the whole system? These are important questions, that would require di erent threat models, and could also be studied in future works.

Conclusion

Du fait de la complexité croissante des circuits intégrés, la conception modulaire est à présent le paradigme de conception dominant, mais est associé à de nouvelles menaces pour les données de conception. Les cas de copie illégale et de contrefaçon signalés ont considérablement augmentés ces dernières années. L'objectif de cette thèse était de proposer une solution applicable dans un contexte industriel a n d'empêcher ces actes illégaux. La solution proposée doit mettre en place un système de licence matérielle, permettant l'activation sécurisée et à distance du système électronique.

Résumé des contributions

Les deuxième et troisième chapitres de cette thèse proposent de modi er la logique combinatoire d'un composant virtuel pour permettre la protection des données de conception. Le verrouillage combinatoire de la logique, présenté dans le chapitre 2, propose une nouvelle méthode pour permettre le verrouillage logique au niveau de la logique combinatoire. En identi ant des suites de portes logiques qui peuvent propager une valeur de verrouillage, cette méthode permet de forcer les sorties d'un composant virtuel à une valeur xe. Des portes logiques ET ou OU sont insérées a n de pouvoir forcer ces suites de portes logiques à la valeur souhaitée. L'algorithme qui détecte ces suites de portes logiques, qui exploite la représentation d'une netlist sous forme de graphe, est très e cace et peut gérer des netlists de grande taille. Actuellement, c'est la seule méthode visant à protéger les données de conception basée sur une modi cation de la logique combinatoire qui puisse gérer des netlists de très grande taille, de l'ordre d'une centaine de milliers de portes logiques. De plus, nous avons montré que les portes logiques supplémentaires à insérer n'entraînent un surcoût que de 2,9% en moyenne, et ce dans le cas où toutes les sorties peuvent être verrouillées. Le coût en ressources logiques induit par le verrouillage combinatoire de la logique peut être réduit en ne verrouillant qu'une partie des sorties, ou augmenté pour renforcer le verrouillage.

Dans le chapitre 3, une autre méthode basée sur une modi cation de la logique combinatoire permettant la protection des données de conception est étudiée. Le masquage logique, proposé en 2008 [START_REF] Roy | EPIC: Ending Piracy of Integrated Circuits[END_REF], consiste à insérer des portes OU exclusif ou NON-OU exclusif à Conclusion des endroits spéci ques dans une netlist a n de pouvoir altérer son état interne de manière contrôlée, perturbant ainsi les sorties. Néanmoins, les heuristiques utilisées actuellement pour déterminer le lieu d'insertion ne permettaient pas de gérer des netlists de grande taille tout en obtenant une corrélation su samment basse aux sorties. Nous proposons de combler ce manque entre complexité algorithmique et e cacité de masquage en utilisant les indicateurs de centralité. Ces derniers permettent d'identi er les noeuds les plus importants d'une netlist, c'est à dire ceux à travers lesquels le ux d'information est le plus important. Nous donnons un aperçu des indicateurs de centralité existants avant de montrer que ceux basés sur le courant électrique peuvent être utilisés de manière e cace comme heuristique de sélection pour les noeuds à modi er par masquage logique. Les résultats expérimentaux montrent que des netlists contenant jusqu'à 30 000 noeuds peuvent être analysées en environ une heure, tout en réduisant la corrélation en sortie à des niveaux bas. Cela fait de cette heuristique de sélection la seule e cace et utilisable dans un contexte concret de protection de netlists de taille moyenne. Encore une fois, le concepteur peut choisir le surcoût en ressources logiques jugé acceptable pour le niveau de corrélation en sortie souhaité.

Le quatrième chapitre présente le protocole de réconciliation de clés CASCADE avant de montrer comment ce dernier peut être utilisé en présence d'une PUF pour corriger les erreurs observées à sa sortie. Comparée aux codes correcteurs d'erreurs existants, l'implantation coté circuit peut être plus légère d'un ordre de grandeur en terme de ressources logiques. Cela le rend particulièrement utilisable dans un contexte où les ressources disponibles sont limitées, ce qui est typiquement le cas lorsqu'une PUF est utilisée. Les résultats expérimentaux montrent que le protocole peut gérer les taux d'erreur observés avec les architectures de PUF courantes. Les simulations poussées que nous avons menées nous ont permis de fournir plusieurs jeux de paramètres pour des taux d'erreurs allant de 1 à 15%, tout en maintenant des taux d'échecs très bas jusqu'à 10 -8 . Le protocole est très adaptable, puisque les paramètres peuvent être modi és à chaque exécution. Ainsi, la correction des erreurs peut atteindre des taux d'échecs très bas même si le taux d'erreur augmente à cause de conditions de fonctionnement mauvaises. Encore une fois, c'est au concepteur de choisir le meilleur compromis.

Toutes ces propositions ont en commun d'être très facilement adaptables à l'application ciblée. Pour le verrouillage combinatoire de la logique, le concepteur peut équilibrer la force du verrouillage et le coût en ressources logiques. De même, pour le masquage logique, le concepteur peut équilibrer l'e cacité de masquage et le coût en ressources logiques. Pour le protocole CASCADE, les paramètres peuvent également être facilement ajustés pour gérer di érents taux d'erreur et taux d'échec. Ces compromis permettent d'équilibrer le coût l'implantation et le niveau de sécurité souhaité, assurant la faisabilité dans un contexte industriel.

Le chapitre nal de cette thèse présente l'intégration de toutes les contributions du projet SALWARE dans un module complet de protection des données de conception. Les résultats l'implantation montrent que le système est adéquat pour une utilisation industrielle, fournissant une protection e cace des données de conception à un coût réduit.

Conclusion

Perspectives

Plusieurs perspectives peuvent être envisagées pour étendre les contributions de cette thèse. Concernant les modi cations de la logique visant à protéger les donnée de conception, l'interaction entre le verrouillage et le masquage logiques pourrait être étudié. En particulier, exploiter les suites de noeuds qui propagent une valeur de verrouillage à l'intérieur de la netlist pourrait être utile pour interagir avec les portes logiques de masquage. Un système en deux étapes qui assure à la fois le verrouillage et le masquage des sorties pourrait également être conçu. Combiner ces deux techniques résulterait sûrement en une méthode e cace pour altérer les sorties.

Une autre possibilité pour mettre à pro t le verrouillage logique est de l'appliquer aux systèmes séquentiels. Verrouiller les registres qui stockent l'état courant du système permet de forcer le système dans un état xe connu. À l'inverse, le masquage logique ne pourrait sûrement pas être utilisé dans ce cas car le système serait alors placé dans un état inconnu.

Le masquage logique pourrait être amélioré en analysant le design à protéger avant d'y appliquer l'heuristique de sélection des noeuds. Il serait peut être possible d'identi er une borne inférieure pour le niveau de corrélation en sortie atteignable en appliquant la méthode de masquage logique à un design spéci que. En e et, les résultats expérimentaux montrent qu'augmenter le nombre de portes de masquage logique insérées ne réduit pas nécessairement le niveau de corrélation des sorties. Analyser la netlist avant modi cation pourrait permettre au concepteur de connaître le niveau minimal de corrélation atteignable et de déterminer le coût en ressources logiques associé, qui serait optimal.

Conclusion de ces travaux est l'applicabilité industrielle.

A n d'étendre la portée de ces travaux, un système de licence plus n pourrait également être exploré. En e et, nous n'avons envisagé que deux modes de fonctionnement, activé ou non. En revanche, au cas par cas pour chaque design, des modes d'évaluation ou premium sont envisageables. Par exemple, un contrôleur Ethernet pourrait être proposé avec un débit de 10Mbps en mode évaluation, en mode normal avec un débit de 100Mbps ou en mode premium à 1Gbps. De la même façon, un décodeur vidéo H.264 pourrait décoder en 720p en mode évaluation, en 1080p en mode normal et en 4K en mode premium. Ce type de licence basé sur les fonctionnalités est très intéressant d'un point de vue commercial, mais est di cile à dé nir de manière générique.

Certains composant virtuels particulièrement adaptés à ce type de licence basé sur les fonctionnalités sont les composants virtuels analogiques. En e et, les convertisseurs analogiquenumérique ou les ltres, par exemple, doivent être calibrés pour atteindre les meilleurs performances. En agissant sur le système de calibration, une large gamme de performances peut être obtenue, jetant les bases d'un système de licence basé sur les performances. Les méthodes de protection des données de conception adaptées aux composants virtuels analogiques sont rares dans la littérature et des techniques de protection spéci ques pourront être mises au point à l'avenir.

En n, il est également possible de se placer du point de vue de l'intégrateur système, qui souhaite utiliser un composant virtuel fourni par un concepteur de composants virtuels qui n'est pas approuvé. Par exemple, un concepteur pourrait fournir un module cryptographique avec une backdoor cachée ou avec une fuite sur le canal auxiliaire délibérément élevée. De plus, des composants virtuels complexes tels que les processeurs doivent exécuter du code embarqué. Comment un concepteur peut-il s'assurer que le composant virtuel demeurera ino ensif vis à vis du système complet si le code exécuté est malveillant ? Comment un concepteur peut-il s'assurer que les composants virtuels intégrés dans le système nal sont connectés et interagissent les uns avec les autres tout en étant su samment isolés de manière à ce que le fonctionnement du système complet ne puisse pas être compromis par un composant virtuel malveillant ? Toutes ces questions sont importantes, requièrent des modèles de menace di érents et pourrait être étudiées à l'avenir.

After processing the graph for combinational logic locking (see Chapter 2), the remaining paths that can propagate a locking value are shown in Figure 18. This graph shows a wide variety of connected components. Some examples are given in Figure 18. The very large connected component depicted in Figure 18a comprises 75 vertices. The node to modify for logic locking, in green, is six logic levels away from the two outputs it locks. Conversely, the connected component shown in Figure 18b has only 3 vertices. This is a nal OR gate before the output, where none of its inputs could propagate a locking value. In that case, the locking gate inserted locks only one output and is very close to it. The last connected component shown in Figure 18c shows a connected component with ve outputs. Only one locking gate is necessary to lock them all, which is interesting from a logic resources overhead perspective. However, the inserted locking gate is very close to the outputs it locks.

Figure 1 -

 1 Figure 1 -Semiconductor companies and their respective positions in the integrated circuit design process.

F 2 -

 2 Entreprises de la micro-électronique et leur position respective dans le processus de conception d'un circuit intégré.

Figure 1 . 1 -

 11 Figure 1.1 -Design data transfer in the semiconductor IP business.

Figure 1 . 2 -

 12 Figure 1.2 -Speci c threats to design data in the semiconductor IP business. Trusted and untrusted parties are from the IP designer point of view.

Figure 1 . 3 -

 13 Figure 1.3 -Hierarchy of design data protection methods classi ed according to their e ciency at protecting design data.

Chapter 1 -Figure 1 . 4 -

 114 Figure 1.4 -Methods for identifying an IP core itself or the individual instances.

Figure 1 . 5 -

 15 Figure 1.5 -Di erent types of mask ROM (adapted from [Yen14]).

1 .

 1 Its structure must be public, 2. It must exhibit a low false positive rate as well as being hard to forge, 3. It should not alter the functionality of the system, 4. It must be hard to modify, 5. It must contain enough data to claim ownership, typically enough bits, 6. It should not induce a too high implementation overhead, 7. It should be easy to detect and track, 8. It could be asymmetric, embedding both a public and a private part.

Chapter 1 -

 1 Threats and protections for design data associated with the traversed states [Oli01; Cui+11].

Figure 1 . 7 -

 17 Figure 1.7 -Basic protocol for IP identi cation using a PUF.

Chapter 1 -

 1 Threats and protections for design data

Figure 1 .

 1 Figure 1.8 -Arbiter PUF with challenge "011...1" applied, comparing the blue and red path.

Chapter 1 -

 1 Figure 1.9 -Ring oscillator cell and PUF.

Chapter 1 -

 1 Threats and protections for design data

Figure 1 .

 1 Figure 1.10 -Transient e ect ring oscillator cell.

Figure 1 .

 1 Figure 1.11 -Typical initialisation pattern observed in an SRAM array.

Figure 1 .

 1 Figure 1.12 -Front end of line and back end of line layers in the CMOS manufacturing process 20 .

 Figure 1.13 -Active layer of Syphermedia gates [Coc+14].

1 -Chapter 1 -

 11 Figure 1.14 -Logic obfuscation of a boolean function

Chapter 1 -

 1 Figure 1.15 -An example of VHDL design les obfuscation.

Figure 1 . 16 -Chapter 1 -

 1161 Figure 1.16 -Original and masked nodes depending on the associated activation bit.

Figure 1 .

 1 Figure 1.17 -Boosted FSM with added states and transitions in black and original states and transitions in light grey.

Figure 1 . 18 -

 118 Figure 1.18 -Example of public-key cryptography usage in the EDA tool for a secure key exchange and IP block transmission (adapted from [Gua+09]).

Figure 1 .

 1 Figure 1.19 -Example of the implication of a trusted third party (MA) in the transactions between an FPGA vendor (FV), a system integrator (SYS) and two IP core designers (CV) (from [MSV12]).

Figure 1 .

 1 Figure 1.20 -Overview of the IP protection module designed in the framework of the SALWARE project.

Chapter 2 -

 2 Combinational logic lockingLogic gate Controlling value Forced output value

Figure 2 . 1 -

 21 Figure 2.1 -Modi cation of an output logic gate

Figure 2 .

 2 Figure 2.2 shows two slightly di erent 4-input logic functions.

Chapter 2 -Figure 2 . 2 -

 222 Figure 2.2 -Two examples of logic functions and the inputs that can lock their output

 (a) The locking value set on 0 is propagated at the output (b) The locking value set on 0 is not propagated at the output

Figure 2 . 3 -

 23 Figure 2.3 -Propagation of a locking value through a sequence of nodes (in thick red)

Figure 2 . 4 -

 24 Figure 2.4 -Conversion of a netlist to a directed acyclic graph

Figure 2 . 5 -

 25 Figure 2.5 -Deletion of the incoming edges of vertices that do not satisfy forced ∈ locks and removal of connected components that do not contain any output.

 (a) One source vertex. (b) Multiple source vertices, only one covers all the outputs. (c) Multiple source vertices, several of them cover all the outputs. (d) Multiple source vertices, none of them covers all the outputs.

Figure 2 . 6 -

 26 Figure 2.6 -Di erent types of connected components that are found in the nal graph. The node(s) select to be modi ed for logic locking are highlighted in orange.

Figure 2 .

 2 Figure 2.7 -Vertices selected for logic locking.

= 1 Figure 2 . 8 -

 128 Figure 2.8 -Original and locked vertices depending on the associated activation bit

Figure 2 . 2 -

 22 Figure 2.10 -Lockable version of the netlist

Figure 2 .

 2 Figure 2.11 -Area overhead as the percentage of extra logic gates required to implement logic locking

Figure 2 .

 2 Figure 2.12 -Computation time required to process a netlist for logic locking and for fault analysis-based logic masking

 (a) Netlist portion that can propagate a locking value (b) Logic locking with maximum overhead for the considered netlist portion

Figure 2 .

 2 Figure 2.13 -Maximum logic locking of a netlist portion that can propagate a locking value

Figure 2 .

 2 Figure 2.14 -Minimum and maximum overhead values for logic locking strength tuning

2 -

 2 Figure 2.15 -Interleaving the AW bits to strengthen logic locking

Figure 2 . 16 -

 216 Figure 2.16 -OR locking gate (in dark grey) obfuscated by two extra gates (in light grey) with logic values shown in red and blue depending on the value of the AW bit

Algorithm 1 : 3 Feed random input values to the netlist 4 locked_1 ← #outputs locked 5 Flip the th bit of AW. 6 Feed random input values to the netlist 7 locked_2 ← #outputs locked 8 if

 1345678 Hill climbing attack on weak logic locking Input: Locked IP core with an -bit AW Output: Unlocked IP core 1 Randomly pick one AW 2 for ranging from 0 to -1 do locked_2 > locked_1 then 9

Chapter 3 -

 3 Centrality indicators for e cient and scalable combinational logic masking y

2 -

 2 Masking e ciency evaluation by di erent metrics. ✔ stands for the masking e ciency being evaluated as good by the metric. × stands for the masking e ciency being evaluated as bad by the metric.

 (), CC1()) + 1 OR min(CC1(), CC1()) + 1 CC0() + CC0() + 1 NOR CC1() + CC1() + 1 min(CC0(), CC0()) + 1 XOR min(CC0() + CC0(), CC1() + CC1()) + 1 min(CC0() + CC1(), CC1() + CC0()) + 1 XNOR min(CC0() + CC1(), CC1() + CC0()) + 1 min(CC0() + CC0(), CC1() + CC1()) + 1

 + min(CC0(), CC1()) + 1 XNOR CO() + min(CC0(), CC1()) + 1

Chapter 3 -

 3 Centrality indicators for e cient and scalable combinational logic masking

Chapter 3 -Figure 3 . 1 -

 331 Figure 3.1 -Degree centrality values for the vertices of a random graph

Figure 3 . 2 -Chapter 3 -

 323 Figure 3.2 -Boolean function 5 = 1 ⋅ 2 ⋅ 3 ⋅ 4 synthesised using a 4-input AND gate (a) or three 2-input AND gates (b). The resulting graphs (c) and (d) lead to di erent degree centrality values for the vertex 5.

Figure 3 . 3 -

 33 Figure 3.3 -Closeness centrality values for the vertices of a random graph

Chapter 3 -Figure 3 . 4 -

 334 Figure 3.4 -Betweenness centrality values for the vertices of a random graph

Chapter 3 -Figure 3 . 5 -Figure 3 .

 3353 Figure 3.5 -Current-ow betweenness centrality computation on a graph and equivalent electrical network

Figure 3

 3 Figure 3.6 -Current-ow betweenness centrality values for the vertices of a random graph

Figure 3

 3 Figure 3.7 -Current-ow closeness centrality values for the vertices of a random graph

 Figure 3.8 -values obtained for several logic resources overhead

Figure 3 .

 3 Figure 3.9 -Computation time required for the centrality indicators considered for di erent benchmark sizes.

Figure 3 .

 3 Figure 3.10 -Trade-o between masking e ciency and computation time for di erent node selection heuristics at 5% logic resources overhead.

Figure 3 .

 3 Figure 3.11 -Graph for which selecting the vertices with the highest centrality does not alter the outputs optimally

 (a) Key reconciliation protocol (b) Reliable shared key generation with a PUF

Figure 4 . 1 -

 41 Figure 4.1 -Illustration of the similarities between key reconciliation and reliable shared key generation from a PUF response

Algorithm 2 : 2 Split 0 1 3 4 if

 22014 CONFIRMInput: 0 , 1 while size(0) > 1 do into two parts 0,0 and 0,Split into two parts ,0 and ,1

Figure 4 . 2 -

 42 Figure 4.2 -CONFIRM applied on 16-bit blocks

Figure 4 . 3 -

 43 Figure 4.3 -Spreading a burst of errors among multiple blocks

Algorithm 3 :12 4 Split 0 and into blocks of size 5 forall blocks do 6 9Chapter 4 -

 34564 BINARYInput: 0 , , , Scramble 0 and using a public random permutation 0 Estimate the initial block size 1 from the error rate3 for i = 1 to doCompute the relative parity (0, , ,)Double the block size +1 = 2 × 10 Scramble 0 and using a public random permutation 11 Unscramble 0 and with -1 0 , -1 1 , ..., -1 12 return 0 , Key reconciliation protocols for error correction of silicon PUF responses

Figure 4 . 4 -

 44 Figure 4.4 -Example of executing the BINARY protocol on 16-bit responses with one error.

4. 3 . 2

 32 Failure rate 4.3.2.1 In uence of the block size

Algorithm 4 :2 5 Split 0 MoveFind the smallest block from 14 CONFIRM(0

 450140 CASCADEInput: 0 , , , 1 Scramble 0 and using a public permutation 0 Estimate the initial block size 1 from the error rate 3 Create two list of blocks of even and odd relative parity: and 4 for i = 1 to do and into blocks of size 6 forall blocks do 7 Compute the relative parity (0, , ,) 8 if (0, , ,) = 1 then 9 CONFIRM(0, , ,): correct an error at index 10 ,): correct an error at index 15 Move all blocks containing from to or from to 16 Double the block size +1 = 2 × 17

Chapter 4 -Figure 4 . 5 -

 445 Figure 4.5 -Example of executing the CASCADE protocol on 16-bit responses with ve errors.

Figure 4 .

 4 Figure 4.6 -Implementation of the parity computation module using one large multiplexer

Figure 4 .

 4 Figure 4.7 -Implementation of the parity computation module by making an existing shift register circular

Figure 4 .

 4 Figure 4.8 -Implementation of the parity computation module when the response is stored in RAM

Figure 4 .Chapter 4 -

 44 Figure 4.9 -Leakage values (in bits) obtained with di erent error rates, initial block sizes and number of passes.

Figure 4 .

 4 Figure 4.10 -Failure rate values obtained with di erent error rates, initial block sizes and number of passes.

Chapter 4 -

 4 Key reconciliation protocols for error correction of silicon PUF responses that range from 1 210 to 108 000 clock cycles.

4.8. 1 . 2

 12 Countermeasure: limitation to only one execution of the protocol

Figure 4 .

 4 Figure 4.11 -Changes in the number of bits in the response at di erent steps.

 3.

Figure 5 . 3 -

 53 Figure 5.3 -Part of the design ow augmented for logic locking or logic masking

Figure 5 . 4 -

 54 Figure 5.4 -Position of the AW decoder

Figure 5 .

 5 Figure 5.6 -BFSK transmitter from [BBF15]

Figure 5 .

 5 Figure 5.7 -HECTOR motherboard

2 Figure 5

 25 Figure 5.8 -HECTOR daughterboards

Figure 5 .

 5 Figure 5.10 -HECTOR board management tab of the graphical user interface

Figure 5 .

 5 Figure 5.11 -Enrolment tab of the graphical user interface

 and 5.14. In the rst pictures on the left, Figures 5.13a and 5.14a, an example input is shown. The results obtained when the IP core is locked are shown in Figures 5.13b

 and 5.14b. Whatever the input operands are, when this particular design is locked, the output is always 0. The results obtained when the IP core is masked are shown in Figures 5.13c and 5.14c. The output is di erent for each input, but is always wrong. Finally, after activation has been carried out, the correct result is obtained. This is shown in Figures 5.13d and 5.14d.

 Figure 5.13 -Graphical user interface to the hardware multiplier with input 500×2

Figure 5 .

 5 Figure 5.15 -Simpli ed design ow with steps implementing secure remote activation highlighted.

Figure 17 -

 17 Figure 17 -Example of graph after analysis for combinational logic locking.

 (a) Large connected component with a locking gate inserted very far from the outputs. (b) Small connected component (c) Locking gate spanning ve outputs but very close to them.

Figure 18 -

 18 Figure 18 -Example of connected components found in the nal graph after analysis for combinational logic locking.

 .2.

	Architecture	Advantages	Drawbacks	Industrial adoption
	• easy to implement on ASIC Arbiter PUF • low area • high uniqueness and low steadiness	• hard to implement on FPGA • correlation between responses	×
		• easy to implement on ASIC	• large area	
	RO-PUF	• easy to implement on FPGA	• strong EM interaction	

× • multiple response bits per challenge • frequency locking [Boc+10] • high uniqueness and low steadiness • easy to implement on ASIC • hard to implement on FPGA TERO-PUF • multiple response bits per challenge • large area × • high uniqueness and low steadiness • easy to implement on ASIC • high steadiness SRAM-PUF • easy to implement on FPGA ✔ • use existing resources • high uniqueness Table 1.2 -Advantages and drawbacks of the considered PUF architectures.

Table 1 .

 1

3 -Sketch (SS) and recover (Rec) procedures for code-o set and syndrome constructions of secure sketches. Proposed schemes found in literature employ either the syndrome [SD07; Her+12; MHV12; Hil+15] or the code-o set [Bös+08; MTV09a; MTV09b; LPS12] construction. The underlying error-correcting codes employed can be a BCH 19 [SD07; Her+12], Reed-Muller [MTV09b; LPS12] or convolutional code

Table 1 .

 1

	Article	Logic resources (Slices)	Block	Failure	Acceptable PUF bits required
		Spartan 3 Spartan 6 RAM Bits	rate	error-rate for 128-bit entropy
	[Bös+08] 168		0	1.49 × 10 -6	15%	4640
	[MTV09b] 164		192	10 -6	15%	1536 (12×128)
	[MHV12]		221	0	-	13%	2226
	[Hil+12] 250		0	10 -6	15%	>1536 (12×128)
	[Her+12]		>59	0	10 -6.97	21.6%	1785
	[Hil+15]		179	0	1.48 × 10 -9	14%	>130
	[HYS16] 75	27	10752	10 -6	15%	974

4

-Logic resources required by the presented error-correction schemes on FPGA.

Chapter 1 -

 1 Threats and protections for design data

			Trusted EDA tool	System integrator	IP core designer
						Generate random
					⟵	=
			Generate random x
				=	
			Derive shared key
		=	(, ,	,)
			Sign with private key and
			encrypt with shared key
			= [(; ,)]
					, ⟶
						Derive shared key
	Secure					=	(, ,	,)
	key					Decrypt with shared key
	exchange					= [] -1
						Verify with EDA public key
						(,)
						if correct, continue,
						otherwise, abort.
						Sign with private key and
						encrypt with shared key
						= [(;	,)]
					⟵
			Decrypt with shared key
				= [] -1
		Verify with IP provider public key
				(,)
			if correct, continue,
			otherwise, abort.
						Encrypt core with shared key
	IP block				⟵	= []
	transmission	Decrypt core with shared key
				= [] -1

Chapter 1 -

 1 Threats and protections for design data

		[HL08]	[CB09]	[Kou12] [BZB14]
	Identi cation of an IP core				key
	Identi cation of IP core instances	PUF	PUF	PUF	
	Degraded mode	logic	FSM locking +	FSM	Anti-fuse
	of operation	masking logic masking locking	locking
	Public key	Elliptic			
	cryptography	curve			

Table 1 .

 1 7 -Association of solutions to achieve complete IP protection.

Table 1 .

 1 8 -Suitability of IP protection solutions at addressing di erent threats.

			Solutions
	Threats	IP core identi cation	IP core instances identi cation concealment operation Internal Degraded Licensing architecture modes of schemes
	Illegal		
	copying		
	Reverse		
	engineering		

Table 2 .

 2 2.

	Chapter 2 -Combinational logic locking
	Node	forced	locks	Ful ls Criterion 1 ?
	G8 G9 G10 G11	0 1 0 0	0 0 {0, 1} 1	✔ × ✔ ×

Table 2 .

 2 2forced and locks values for the internal nodes of the netlist in Figure2.4a2.2.3 Identi cation of the nodes that propagate a locking value to an outputIncoming edges of vertices for which Criterion 1 is not satis ed are deleted. Indeed, these vertices correspond to nodes that are not able to propagate a locking value. This is shown in Figure

Table 2 .

 2 3 -Experimental results obtained when applying combinational logic locking on ITC'99 benchmarks.

	c2670	64	1117	0.22	0.77	1156	3.49 5.26 1.64	1406	25.87 4.52
	c3540	22	1669	0.28	1.18	1690	1.26 1.90 1.05	1828	9.53 7.23
	c5315		2307	0.39	2.55	2381	3.21 3.70 1.66	2863	24.10 4.52
	c6288	32	2416	0.4	1.77	2448	1.32 1.00 1.00	2512	3.97 3.00
	c7552		3511	0.58	3.68	3604	2.65 1.82 1.15	3834	9.20 3.02
	b14_1_C		6567	1.12	6.7	6781	3.26 1.70 1.14	7731	17.72 4.75
	b15_C		8367	1.48	12.64	8769	4.80 1.89 1.12 10961 31.00 5.78
	b14_C		9765	1.66	17.07	9978	2.18 1.64 1.15 11014 12.79 5.10
	b15_1_C		12543	2.18	25.16	12945 3.20 2.30 1.12 15358 22.44 6.27
	b21_1_C		13898	2.44	35.28	14348 3.24 1.51 1.14 16207 16.61 4.51
	b20_1_C		13899	2.42	45.25	14348 3.23 1.51 1.14 16152 16.21 4.40
	b20_C		19682	3.44	59.29	20130 2.28 1.56 1.14 22130 12.44 4.78
	b21_C		20027	3.49	73.41	20476 2.24 1.47 1.14 22554 12.62 4.94
	b22_1_C		20983	3.77	94.05	21646 3.16 1.54 1.14 24378 16.18 4.48
	b22_C		29162	5.27	122.22	29824 2.27 1.56 1.14 32850 12.65 4.87
	b17_C	1445 30777	6.02	180.25	32079 4.23 1.96 1.11 39363 27.90 5.94
	b17_1_C 1445 38116	7.21	252.01	39418 3.42 2.18 1.11 46870 22.97 6.06
	b18_1_C 3342 105102 22.41 742.71 108096 2.85 1.94 1.12 124199 18.17 5.71
	b18_C	3342 111241 23.61 1265.64 114233 2.69 1.95 1.12 130478 17.29 5.76
	b19_1_C 6669 212728 53.35 3787.02 218701 2.81 1.97 1.12 250943 17.96 5.73
					Average values: 2.89 2.02 1.17		17.38 5.07

Table 2 .

 2

	Input width Output width # 4-LUTs # 6-LUTs
	(bits)	(bits)	required required
	64	64	17	12
	64	128	16	13
	64	256	17	14
	64	512	17	14
	64	1024	16	14
	64	2048	16	14
	128	64	33	22
	128	128	33	22
	128	256	33	22
	128	512	33	22
	128	1024	33	22
	128	2048	33	22

4

-Logic resources required to implement a hardware point function for di erent input and output widths

Table 3 .

 3 1 -Contingency table of the binary variables y[i] and y masked [i].

	The Phi coe cient is then given by Equation (3.1).
	=	00 11 -01 10 √
		1 1 2 2

Table 3 . 3

 33

-Controllability values of the output of usual 1 and 2-input logic gates. Their logic equation is of the form = () if is a unary boolean function or = (,) if is a binary boolean function.

Table 3

 3

	.6 -	values obtained with other selection heuristics at 5% logic resources overhead

Table 3 .

 3 7 -Experimental results obtained when applying logic masking on ITC'99 and EPFL benchmarks for di erent centrality indicators.

Table 4 .

 4 1 -Block sizes used for the rst passes and after

	(a) 256-bit responses		(b) 1024-bit responses	
	1	2	3	...	1	2	3	4	5	...
	4 32 128 ... 128	4	8	32 128 512 ... 512
	8 32 128 ... 128	8	32 128 512 512 ... 512
	16 64 128 ... 128	16 32 128 512 512 ... 512
	32 64 128 ... 128	32 128 512 512 512 ... 512

Table 4 .

 4 2 -Examples of parameters to achieve failure-rates of 10 -4 , 10 -6 and 10 -8 for di erent PUF architectures, aiming at keeping at least 128 bits secret.

	Target failure rate

Table 4 .

 4 .3. 3 -Distribution of operations between device and server.

	Feature	Device side Server side
	Block-size computation Parity computations Permutations Error detection	✔	✔ ✔ ✔ ✔
	Error correction		

Chapter 4 -

 4 Key reconciliation protocols for error correction of silicon PUF responses

					Error rate and initial block sizes				
	Passes		1%		3%			5%				15%
		4	8 16 32	4	8	16 32	4	8	16	32	4	8	16	32
	1	68 39 24 17 78	50 36 25 86	59	42	27	-	-	-	-
	3	79 49 32 26 91	67 55 50 104 86	73	63	-	-	-	-
	5	83 54 26 31 95	72 61 59 109 92	86	81	-	-	-	-
	10	93 64 47 41 105 82 72 72 119 103 102 104 811 685	565 330
	15	103 74 57 51 115 92 82 82 129 113 113 116 -	-	-	-
	20	113 84 67 61 125 102 92 92 139 123 123 126 831 878	763 527
	30	-	---	-	-	--	-	-	-	-851 1024 958 724
	40	-	---	-	-	--	-	-	-	-872 1024 1024 920
	Table 4.4 -Leakage values (in bits) obtained with di erent error rates, initial block sizes and
	number of passes										

Chapter 4 -

 4 Key reconciliation protocols for error correction of silicon PUF responses

						Error rate and initial block sizes				
	Passes	1%				3%				5%				15%
	4	8	16	32	4	8	16	32	4	8	16	32	4	8 16 32

Table 4 .

 4 6 -Logic resources required for three implementation options of the parity computation module and three response sizes.

	Chapter 4 -Key reconciliation protocols for error correction of silicon PUF responses

Table 5 .

 5 The AW must be stored inside the IP core once it has been received in order to drive the activation inputs and make the IP core operate properly. The way the AW is stored depends on the mode of operation used for the lightweight block cipher. If used in Cipher Block Chaining, Large register If the AW is larger than the output size of the cipher, the latter can be used in Cipher Block Chaining, feedback (Output Feedback Mode or Cipher Feedback Mode) or stream cipher-like (Counter Mode or Galois Counter Mode[START_REF] Paar | Understanding Cryptography[END_REF]) mode. The decrypted plaintext is then stored in a large register, as large as the AW. The output of this register drives the activation inputs of the IP core, activating it only if the correct AW encrypted with the reconcilied PUF response is provided.

	1 -Logic resources required to implement a lightweight block cipher (from [Mar16;
	MBG17])
	5.1.2.2 AW storage options during operation

feedback (Output Feedback Mode or Cipher Feedback Mode) or stream cipher-like (Counter Mode or Galois Counter Mode

[START_REF] Paar | Understanding Cryptography[END_REF]

) modes, the AW is decrypted and then stored in a large register. The other option, if the cipher is used in Electronic Codebook Mode

[START_REF] Paar | Understanding Cryptography[END_REF]

, is to use a decoder to adapt the AW size to the outputs of the block cipher.

Table 5 .

 5 4 -Device-side implementation results for the whole design data protection module

		Intel Cyclone V	Microsemi SF2
	Entities	6-LUTs DFFs	4-LUTs DFFs
	PUF	4841	160	2258	158
	Response shift register	0	128	0	128
	Communication	321	2560	2664	2478
	IP protection module	444	357	1030	376
	MUX indexes 128x7:7	301	0	595	0
	MUX response bits 128:1 37	0	85	0
	One time pad	128	0	128	0
	AW storage	0	128	0	128
	CASCADE module	1	1	1	1
	Controller	104	90	101	69
	Parities shift register 0	35	0	32
	Total 5606	2949	5746	2803

2015-2016 deals dominate semiconductor M&A ranking. http:// www.icinsights.com/ data/ articles/ documents/ 946.pdf

http:// www.ipcatalog.com

http:// www.design-reuse.com

http:// www.cast-inc.com

Cédric Marchand, qui était un autre doctorant travaillant dans le cadre du projet SALWARE, a soutenu sa thèse en 2016[START_REF] Marchand | Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés[END_REF]. Sa thèse traitait du watermarking, de la conception de fonctions physiques non clonables (Physical Unclonable Function ou PUF) et de l'implémentation de cryptographie légère, qui sont des éléments essentiels pour du matériel salutaire mais qui sont plus spéci quement orientés vers la prévention de la contrefaçon de circuits intégrés. Cette thèse de doctorat a des contributions complémentaires, qui sont présentées ci-dessous, et se concentre plus spéci quement sur les composants virtuels.

http:// anysilicon.com

http:// chipestimate.com

http:// design-reuse.com

http:// opencores.org

https:// www.xilinx.com/

https:// altera.com/

New tool reawakens disabled hardware in high-end AMD Radeon graphics cards http:// www.pcworld.com/ article/ 2960717/ components-graphics/ new-tool-reawakens-disabled-hardware-in-high-end-amd-radeon-graphicscards.html

https:// www.texplained.com/

Binary Frequency-Shift Keying

EPROMs 4M, 2M, 256k, 16kbit, by yellowcloud licensed under CC BY 2.0 https:// www. ickr.com/ photos/ yellowcloud/ 4525399624

Higher than normal operation, typically around a few volts.

http:// www.intrinsic-id.com

Bose, Chaudhuri, Hocquenghem

Cmos-chip structure in 2000s, by Cepheiden licensed under CC BY-SA 3.0 https:// commons.wikimedia.org/

A classic example consists in replacing variable names by a sequence of ones, zeroes, and the letters 'l' and 'O'.

We deliberately use "activation word" instead of "key" to not imply any cryptographic property.

A graph is complete if every pair of vertices is connected by a unique edge.

1.5.5.4 Association of solutionsFinally, the last option to ensure a form of IP protection is to combine previously described solutions. We give some examples found in the literature, showing how the combination is actually implemented. For instance in[START_REF] Huang | IC Activation and User Authentication for Security-Sensitive Systems[END_REF], the activation inputs of a logic masking module are controlled by the response obtained from a PUF. This response is compared to a value stored in memory, fed by the system integrator. Following the principles of public key cryptography, the system integrator obtained the PUF response from the designer after it has been encrypted on chip by the designer's public key and decrypted by the designer with his private key. In[START_REF] Subhra | HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection[END_REF], a locking FSM is used to control the activation inputs of a logic masking module. The transitions between the extra states of the boosted FSM depend on a PUF response. In[START_REF] Koushanfar | Provably Secure Active IC Metering Techniques for Piracy Avoidance and Digital Rights Management[END_REF], a boosted FSM in integrated with a PUF, so that the start-up state depends on the PUF response. This makes the set transitions to the original start-up state dependent on the PUF response. Therefore, the set of transitions is device-speci c and is a condition to unlock the IP core. Finally, in[START_REF] Basak | Active defense against counterfeiting attacks through robust antifuse-based on-chip locks[END_REF], a key is common to all instances of the IP core. This key is compared to one stored in an NVM and the result of this comparison triggers the blowing of speci c anti-fuses located in the input-output blocks. These associations of previously described solutions are summarised in Table1.7.24 Institute of Electrical and Electronics Engineers

http:// www.univ-st-etienne.fr/ salware/

Source vertices are vertices that have no incoming edges.

Chapter 3 -Centrality indicators for e cient and scalable combinational logic masking

The code associated with this chapter is available at: https:// gitlab.univ-st-etienne.fr/ b.colombier/ cascade/ tree/ master

Le code associé à ce chapitre est disponible à : https:// gitlab.univ-st-etienne.fr/ b.colombier/ cascade/ tree/ master

https:// www.keylength.com/

ALM: Adaptative Logic Module

LC: Logic cell

http:// ehash.iaik.tugraz.at/ wiki/ SHA-3_Hardware_Implementations

https:// hector-project.eu/

Chapter 5 -Complete hardware/software infrastructure IP for design protection

En ce qui concerne le protocole CASCADE, les jeux de paramètres que nous donnons pour di érents taux d'erreur et d'échec ont été obtenus par simulation. Néanmoins, réaliser ces simulations a pris beaucoup de temps, et ces dernières n'ont été faites que pour les taux d'erreur et d'échec considérés. Une méthode générique pour déduire les paramètres du protocole à partir des taux d'erreur et d'échec pourrait être mise au point. Néanmoins, elle devrait cibler particulièrement l'application que nous considérons ici, à savoir la correction des erreurs dans les réponses des PUFs. En e et, les méthodes utilisées dans le contexte de distribution quantique de clés utilisent des messages de très grande taille, ce qui les rend inapplicables dans notre cas. En particulier, des approximations valables asymptotiquement ne le sont plus, puisque les réponses des PUFs sont beaucoup plus courtes. Intégrée dans le logiciel d'activation, une telle méthode permettrait au concepteur d'entrer seulement le taux d'erreur attendu et le taux d'échec requis avant d'exécuter le protocole.En n, le module complet de protection des données de conception devra être évalué. Même si la sécurité et la fuite d'information associées au protocole CASCADE ont été discutées, des faiblesses pourraient être exploitées. Cela nécessite une étude plus approfondie, tout en gardant un modèle de menace identique à celui dé ni au chapitre 1. Considérer d'autres modèles de menace pourrait également être intéressant, tout en gardant à l'esprit que l'objectif principal

Publications and communications

Remerciements

À ajouter dans la version nale du manuscrit

Nanjing chip plant. http:// www.reuters.com/ article/ us-tsinghuaplant-idUSKBN1532ED 5 Samsung Breaks Ground on $14 Billion Fab. http:// www.eetimes.com/ document.asp?doc_id=1326565 6 Can the White House Make America's Chip Industry Great Again? http:// www.technologyreview.com/ s/ 602768/ can-the-white-house-make-americas-chip-industry-great-again/ 7 Trump team backs call for crackdown on China over semiconductors. http:// www.ft.com/ content/ bca04dfe-de67-11e6-9d7c-be108f1c1dce 8 Five Suppliers Hold 41% of Global Semiconductor Marketshare in 2016. http:// www.icinsights.com/ data/ articles/ documents/ 938.pdf 9 Pure-Play Foundry Market Surges 11% in 2016 to Reach $50 Billion! http:// www.icinsights.com/ data/ articles/ documents/ 945.

SALWARE project

The SALWARE project is a 4-year project, supported by the French "Agence Nationale de la Recherche" and by the "Fondation de Recherche pour l'Aéronautique et l'Espace". The title of the project is: "Salutary hardware design to ght against integrated circuit counterfeiting and theft". Tsinghua Unigroup to build $30 billion Nanjing chip plant. http:// www.reuters.com/ article/ us-tsinghuaplant-idUSKBN1532ED 18 Samsung Breaks Ground on $14 Billion Fab. http:// www.eetimes.com/ document.asp?doc_id=1326565 19 Can the White House Make America's Chip Industry Great Again ? http:// www.technologyreview.com/ s/ 602768/ can-the-white-house-make-americas-chip-industry-great-again/ 20 Trump team backs call for crackdown on China over semiconductors. http:// www.ft.com/ content/ bca04dfe-de67-11e6-9d7c-be108f1c1dce 21 Five Suppliers Hold 41% of Global Semiconductor Marketshare in 2016. http:// www.icinsights.com/ data/ articles/ documents/ 938.pdf 22 Pure-Play Foundry Market Surges 11% in 2016 to Reach $50 Billion ! http:// www.icinsights.com/ data/ articles/ documents/ 945.pdf

http:// www.cast-inc.com

Table 3.5 -Time complexity of centrality indicators combinational benchmarks [START_REF] Davidson | ITC'99 Benchmark Circuits -Preliminary Results[END_REF], but only the ones with more than 1,000 logic gates. In addition, we also considered some more recent benchmarks from EPFL [START_REF] Amarú | The EPFL Combinational Benchmark Suite[END_REF], released in 2015. Although they include benchmarks of up to 23 million gates, we restricted to the ones of up to 100 000 gates for run-time considerations.

Experimental results are mostly given in the form of plots, but an exhaustive list of values for all the benchmarks is given in Table 3.7. In this table, a "-" symbol means that the centrality value could not be computed by the workstation we used.

Masking e ciency based on bitwise correlation

In order to estimate the masking e ciency of the di erent centrality indicators, we consider three logic resources overheads: 1%, 5% and 10%. For each of them, one hundred random AW were fed to the netlist, with one hundred random input patterns fed at the primary inputs for each of them. Thus ten thousand random test patterns are fed in total to each netlist. Figure 3.8 shows a plot of the values (see Equation (3.2)) obtained for the benchmarks of di erent sizes with the three logic resources overhead considered. Overall, increasing the logic resources decreases the value in general. We can also see that the masking e ciency di ers greatly from one benchmark to another. For instance, the sin benchmark, that implements the sine function, is very easy to mask. Even at 1% overhead, masking it using approximated current-ow betweenness centrality as the node selection heuristic makes the value drop to 0.10 (see Table 3.7d). Conversely, the mem_ctrl benchmark is hard to mask. Using betweenness centrality as the node selection heuristic only reduces down to 0.89 at 10% overhead. Among centrality indicators, some perform better than others. They lead to lower at the same overhead. The ones that account for geodesic paths only, namely closeness and betweenness centrality, exhibit the highest values on average, 0.64 and 0.71 respectively at 5% overhead. This is because, in a netlist, the information transits on non-geodesic paths as well.

Failure rate

The failure rate of the CONFIRM method depends on the location of the faulty bits in the PUF response. The failure rate is de ned as the ratio of responses in which some errors are left uncorrected. If two faulty bits end up in the same block, then they are not detected by the parity check and cannot be corrected. To maximise the probability to isolate faulty bits, the block size must be reduced. Therefore, the smaller the block size, the lower the failure rate is.

Associated leakage 4.2.3.1 Initial parity checks

Every time the parity is computed on a block, one bit of information is leaked. Therefore, when an -bit response is split into blocks of size , performing parity checks on every block leaks / bits, which is the number of blocks. Therefore, the smaller the block size is, the higher the information leakage associated to the initial parity checks is.

Error isolation and correction

When a block exhibits a di erent parity in 0 and , the CONFIRM method is applied on it. Since the blocks are of size , which is a power of two, then successively splitting in two and computing the parity of the rst half leaks log 2 () bits. Therefore, the smaller the block size is, the lower the information leakage associated with binary search and error correction is.

Drawback

The drawback of this method for error correction is that if two errors are found in the same block, then they are undetected. This is solved in the BINARY protocol.

BINARY protocol

The BINARY protocol improves on CONFIRM by repeating it multiple times. Moreover, responses are shu ed randomly between two passes, spreading the errors across and preventing two originally adjacent errors to always end up in the same block for parity checks.

Method

Given two responses 0 and , the BINARY protocol starts by shu ing them identically using a public random permutation 0 . Indeed, in a quantum channel, errors usually occur in burst. Therefore, these errors must be spread among the blocks so that they are detected by the parity checks and corrected (see Figure 4.3). When using the protocol with PUF responses, however, this initial shu ing step can be omitted since the errors do not occur in burst.

In the best case, the errors are corrected as early as possible, in the rst pass and on 32-bit blocks. The execution time is then: As the results show, the execution time of the CASCADE protocol is very dependent on the size of the response to correct as well as the error rate. Implementation options based on a large multiplexer or a RAM have execution times between 4 000 and 200 000 clock cycles approximately. This is in the same order of magnitude as the other codes that are considered, Chapter 5 Complete hardware/software infrastructure IP for design protection

The nal chapter of this thesis presents the integration of previously described individual components into a complete IP protection module. Besides the three contributions of this thesis, namely logic locking, logic masking and error correction based on key reconciliation protocols, it also presents other required primitives (such as the PUF and the lightweight block cipher, see Figure 5.1). It details the di erent implementation choices that can be made, as well as extra components that may be integrated to extend the features or the security of the IP protection module. A typical use case is then detailed, along with an illustrative example, giving the di erent steps that a designer should follow to protect an IP core at design time and activate it remotely later on.

Figure 5.1 -IP protection module

The code associated with this chapter is available at: https:// gitlab.univ-st-etienne.fr/ b.colombier/ demonstrator/ tree/ master Chapter 5 -Complete hardware/software infrastructure IP for design protection Infrastructure matérielle/logicielle pour la protection des données de conception Le dernier chapitre de cette thèse présente l'intégration des modules individuels décrits précédemment dans un système de protection des données de conception. Au delà des trois contributions de cette thèse, le verrouillage logique, le masquage logique et la correction d'erreurs utilisant les protocoles de réconciliaiton de clés, il présente également d'autres primitives nécessaires tels que la PUF et le chi reur léger (voir Figure 5.2). Ce chapitre présente les di érents choix d'implémentation qui peuvent être faits, ainsi que les modules supplémentaires qui peuvent être intégrés pour étendre les possiblités ou la sécurité du module de protection. Un cas d'utilisaiton typique est ensuite détaillé, ainsi qu'un exemple illustratif, donnant les di érentes étapes à suivre par un concepteur pour protéger un composant virtuel lors de sa conception et l'activer à distance plus tard.

F

-Module de protection des données de conception

Le code associé à ce chapitre est disponible à : https:// gitlab.univ-st-etienne.fr/ b.colombier/ demonstrator/ tree/ master Chapter 5 -Complete hardware/software infrastructure IP for design protection These results show that, in the case where the number of 0s or 1s is lower or the same at the cipher output than in the AW, the AW decoder does not occupy logic resources. This is because the decoder is then just made of connections, that are already present in the FPGA. Since no logic function is implemented, no LUTs are occupied. In the other case, there are more more 0s or 1s at the output of the cipher than in the AW. Due to the fact that the logic function is very simple but has a lot of inputs/outputs, it prevents grouping inside the LUTs. In the example given in Table 5.3, a mapping from 126 to 64 bits requires to implement on average 64 2-input AND/OR logic functions. Since all the inputs of these functions are di erent, 64 LUTs are required, but only two inputs out of four or six are then used. In most real-life cases, however, the AW is wider than the output of the block cipher. For instance, a small benchmark of 5 000 gates locked or masked at 3% overhead leads to an AW of 150 bits. The output of the block cipher is usually 64 bits. Therefore, the decoder is implemented at zero cost most of the time. This is only valid for FPGA implementation. On ASIC, such AW decoder consists in a lot of routing, which cost must be evaluated on a per-design basis. [CBH15c] Brice Colombier, Lilian Bossuet and David Hély, "Système sécurisé d'activation à distance de circuits intégrés et de composants virtuels", Journée scienti que de l'ARC6, Grenoble, France, Nov. 2015.

Popular science communications

• Science & You, mai-juin 2015, Université de Lorraine, Nancy.

• Fête de la Science, octobre 2016, Université Jean Monnet, Saint-Étienne.

• Ramène ta science, mai 2017, Université Jean Monnet, Saint-Étienne.

Appendices

Examples of graphs found in graph analysis for combinational logic locking