
HAL Id: tel-02109304
https://theses.hal.science/tel-02109304v1

Submitted on 24 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methods for protecting intellectual property of IP cores
designers

Brice Colombier

To cite this version:
Brice Colombier. Methods for protecting intellectual property of IP cores designers. Micro and
nanotechnologies/Microelectronics. Université de Lyon, 2017. English. �NNT : 2017LYSES038�. �tel-
02109304�

https://theses.hal.science/tel-02109304v1
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2017LYSES038

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de l’

Université Jean Monnet, Saint-Étienne

Ecole Doctorale 488
Science Ingénierie Santé

Spécialité / discipline de doctorat :

Micro-électronique

Soutenue publiquement le 19/10/2017, par :

Brice Colombier

Méthodes pour la protection
de la propriété intellectuelle des

concepteurs de composants virtuels

Devant le jury composé de :

Torres, Lionel Professeur LIRMM Président

Güneysu, Tim Professeur Université de Brême Rapporteur
Coussy, Philippe Professeur Lab-STICC Rapporteur
Chotin-Avot, Roselyne MCF LIP6 Examinatrice
Le Gal, Bertrand MCF IMS Examinateur

Bossuet, Lilian Professeur LaHC Directeur de thèse
Hély, David MCF LCIS Co-encadrant de thèse
Fischer, Viktor Professeur LaHC Invité

A thesis submi�ed for the degree of Doctor of Philosophy

from University of Lyon

❧

Doctoral School of Science, Engineering and Health no 488

Topic : Microelectronics

Methods for protecting intellectual
property of IP cores designers

By : Brice Colombier

Under the supervision of Lilian Bossuet, Maître de conférences, HDR,

and co-supervision of David Hély, Maître de conférences.

Thesis jury: Lilian Bossuet LaHC, France

Roselyne Chotin-Avot LIP6, France

Philippe Coussy Lab-STICC, France

Viktor Fischer LaHC, France

Tim Güneysu University of Bremen, Germany

David Hély LCIS, France

Bertrand Le Gal IMS, France

Lionel Torres LIRMM, France

Defense date : October 19th, 2017

Cette thèse a été �nancée par

la Région Auvergne-Rhône-Alpes

Remerciements

À ajouter dans la version �nale du manuscrit

Table of contents

Notations

Introduction 1

1 Threats and protections for design data 13

1.1 Parties involved in the design process and their roles 15

1.2 Threats on design data . 18

1.3 Summary: association between parties and threats 20

1.4 Threat models . 21

1.5 Design data protection methods . 24

1.6 Summary . 56

1.7 High-level requirements for a secure remote activation scheme 57

1.8 SALWARE IP protection module . 57

2 Combinational logic locking 59

2.1 De�nition . 61

2.2 Selection of the place of insertion . 66

2.3 Experimental results . 71

2.4 Discussion . 75

2.5 Conclusion . 81

3 Centrality indicators for e�cient and scalable combinational logic masking 83

3.1 De�nition . 85

3.2 A proposal for a masking e�ciency evaluation metric 85

3.3 Selection of the place of insertion . 87

3.4 Experimental results . 96

3.5 Possible improvements . 103

3.6 A priori evaluation of the masking potential 105

3.7 Attacks aiming at recovering the activation word 105

3.8 Conclusion . 106

4 Key reconciliation protocols for error correction of silicon PUF responses 109

4.1 Similarities between reconciliation in quantum key distribution and reliable

shared key generation from a PUF response . 111

4.2 Error correction based on multiple parity checks and binary searches 112

4.3 BINARY protocol . 113

4.4 CASCADE protocol . 116

4.5 Parameters of the CASCADE protocol . 117

4.6 Implementation . 122

4.7 Experimental results . 124

4.8 Security: attacks and countermeasures . 132

4.9 Discussion . 134

4.10 Conclusion . 135

5 Complete hardware/software infrastructure IP for design protection 137

5.1 Integration into EDA tools . 139

5.2 Hardware platform: HECTOR board . 146

5.3 Overall hardware implementation results . 147

5.4 Software interface . 149

5.5 Illustrative example . 151

5.6 Use case . 152

5.7 Conclusion . 153

Conclusion 155

Publications and communications 163

Bibliography 167

Appendices 183

Examples of graphs found in graph analysis for combinational logic locking 183

List of Figures 187

List of Tables 191

Sommaire

Notations

Introduction 7

1 Menaces sur les données de conception et méthodes de protection 13

1.1 Acteurs impliqués dans le processus de conception et leur rôle 15

1.2 Menaces sur les données de conception . 18

1.3 Résumé : liens entre acteurs et menaces . 20

1.4 Modèles de menace . 21

1.5 Méthodes de protection des données de conception 24

1.6 Résumé . 56

1.7 Caractéristiques requises pour un système d’activation à distance sécurisé . . 57

1.8 Module de protection de la propriété intellectuelle SALWARE 57

2 Verrouillage de la logique combinatoire 59

2.1 Dé�nition . 61

2.2 Sélection du lieu d’insertion . 66

2.3 Résultats expérimentaux . 71

2.4 Discussion . 75

2.5 Conclusion . 81

3 Indicateurs de centralité pour le masquage logique combinatoire e�cace et

adaptable 83

3.1 Dé�nition . 85

3.2 Proposition pour une métrique d’évaluation de l’e�cacité du masquage . . . 85

3.3 Sélection du lieu d’insertion . 87

3.4 Résultats expérimentaux . 96

3.5 Améliorations possibles . 103

3.6 Évaluation a priori du potentiel de masquage 105

3.7 Attaques visant à retrouver le mot d’activation 105

3.8 Conclusion . 106

4 Protocoles de réconciliation de clés pour la correction des erreurs dans les

réponses des PUFs 109

4.1 Similarités entre la réconciliation en distribution quantique de clés et la généra-

tion �able de clé à partir d’une réponse de PUF 111

4.2 Correction des erreurs basée sur des véri�cations de parité et la recherche

dichotomique . 112

4.3 Protocole BINARY . 113

4.4 Protocol CASCADE . 116

4.5 Paramètres du protocole CASCADE . 117

4.6 Implémentation . 122

4.7 Résultats expérimentaux . 124

4.8 Sécurité : attaques et contre-mesures . 132

4.9 Discussion . 134

4.10 Conclusion . 135

5 Infrastructure matérielle/logicielle complète pour la protection des données

de conception 137

5.1 Intégration aux outils de conception électronique 139

5.2 Plateforme matérielle : carte HECTOR . 146

5.3 Résultats d’implémentation matérielle globaux 147

5.4 Interface logicielle . 149

5.5 Exemple illustratif . 151

5.6 Cas d’utilisation . 152

5.7 Conclusion . 153

Conclusion 159

Publications et communications 163

Bibliographie 166

Annexes 183

Acronyms

ASIC application-speci�c integrated circuit.

AW activation word.

BEOL back end of line.

CC0 combinational 0 controllability.

CC1 combinational 1 controllability.

CMOS complementary metal-oxide-semiconductor.

CO combinational observability.

CRP challenge-response pair.

DFF D �ip-�op.

DIP distinguishing input pattern.

EDA electronic design automation.

EEPROM electrically-erasable programmable read-only memory.

FEOL front end of line.

FPGA �eld-programmable gate array.

FSM �nite-state machine.

HDL hardware description language.

IP intellectual property.

LPN Learning parities with noise.

LUT look-up table.

NVM non-volatile memory.

OTP-NVM one-time programmable non-volatile memory.

PoS Product-of-Sums.

PUF physical unclonable function.

RO-PUF ring oscillator PUF.

ROM read-only memory.

SoC System on Chip.

SoP Sum-of-Products.

SRAM static random access memory.

TERO transient e�ect ring oscillator.

TERO-PUF transient e�ect ring oscillator PUF.

Notations

[X]K Ciphertext obtained after symmetric encryption of the plaintext X with the key K .

[X]−1K Plaintext obtained after symmetric decryption of the ciphertext X with the key K .

HD(A, B) Hamming distance between A and B.

A[i] ith bit of vector A.

Introduction

According to the World Semiconductor Trade Statistics (WSTS), the sales of the semicon-

ductor market reached almost $340 billion in 20161. This ever-changing industry is characterised

by a vigorous competitiveness, a steadily increasing complexity and a strong market pull. One

of the main problems facing this industry today is the protection of design intellectual property

rights. This is mainly due to the multiplicity of actors involved in the design, production

and marketing of electronic products. In order to understand where the issue comes from, a

historical and economical overview of the semiconductor industry is necessary.

Historical and economical context

Moore’s law, �rst published in 1965 [Moo65] and revised in 1975 [Moo75] states that the number

of transistors that can be integrated on a unit area of integrated circuit doubles every two years.

So far, even though a slight slowdown has been observed in recent years, the microelectronics

industry followed this law. This is possible by making transistors smaller and smaller, 10nm

being the technology node achieved in 20172,3. Such a constant decrease is due to a strong

market pull, which led customers to request more and more sophisticated, powerful and small

devices.

A corollary of Moore’s law is Rock’s law, which states that the cost of a fabrication plant

for integrated circuits doubles every four years. This emerges directly from the decreasing size

of the transistors, making them harder and harder to manufacture. The cost of manufacturing

plants now reaches tens of billion dollars4,5. With such considerable investments, control over

1Global Semiconductor Sales Reach $339 Billion in 2016 http://www.semiconductors.org/news/2017/02/02/
global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/

2Samsung Starts Industry’s First Mass Production of System-on-Chip with 10-Nanometer FinFET Techno-
logy. http://news.samsung.com/global/ samsung-starts-industrys-�rst-mass-production-of-system-on-chip-with-
10-nanometer-�nfet-technology

3Intel Finds Moore’s Law’s Next Step at 10 Nanometers. http:// spectrum.ieee.org/ semiconductors/devices/ intel-
�nds-moores-laws-next-step-at-10-nanometers

4China’s Tsinghua Unigroup to build $30 billion Nanjing chip plant. http://www.reuters.com/article/us-tsinghua-
plant-idUSKBN1532ED

5Samsung Breaks Ground on $14 Billion Fab. http://www.eetimes.com/document.asp?doc_id=1326565

1

http://www.semiconductors.org/news/2017/02/02/global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/
http://www.semiconductors.org/news/2017/02/02/global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/
http://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology
http://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology
http://spectrum.ieee.org/semiconductors/devices/intel-finds-moores-laws-next-step-at-10-nanometers
http://spectrum.ieee.org/semiconductors/devices/intel-finds-moores-laws-next-step-at-10-nanometers
http://www.reuters.com/article/us-tsinghua-plant-idUSKBN1532ED
http://www.reuters.com/article/us-tsinghua-plant-idUSKBN1532ED
http://www.eetimes.com/document.asp?doc_id=1326565

Introduction

fabrication plants rose to a national priority in USA6,7, since most of the foundries are now

located in Asia. Another consequence of this increasing up-front investment is the market

domination of existing large corporations, where �ve of them (Intel, Samsung, Qualcomm,

Broadcom, and SK Hynix) hold 41% of the marketshares in 20168. The top two companies, Intel

and Samsung, use the historical Integrated Device Manufacturer (IDM) model. A single company

accomplishes the design, manufacturing and selling of the integrated circuit. However, the next

two, Qualcomm and Broadcom, use the fabless model. As the name suggests, fabless companies

do not own any fabrication facility. Instead, they rely on manufacturing plants own by third

parties. Those companies, specialised in integrated circuits manufacturing, are called foundries.

They are more and more important in the semiconductor industry, exceeding 50 billion dollars

in sales in 2016, with an 11% increase compared to 20159. Together, fabless designers and

foundries form a new business model [Hod11], that appeared in the 1980s, when the process

was split into two parts: design and manufacturing.

Semiconductors being a very competitive market, shorter and shorter time to market has

been required. In conjugation with a strong market pull, the alloted time to design integrated

circuits reduced signi�cantly. In order to keep-up with this trend, integrated circuits designers

massively switched to a design-and-reuse paradigm, also called core-based design [GZ97].

In this framework, a complex design is split into smaller functional blocks of manageable

complexity. Thus two new types of companies appeared in the design process, dividing it

further. Intellectual property (IP) providers design individual IP cores, implementing a precise

function. For instance, one can �nd JPEG encoder or Ethernet controller IP cores. Those IP

cores are typically purchased by system integrators, who integrate them into a single modular

design. The di�erent types of companies taking part in the design of an integrated circuit

are shown in Figure 1. Of course, such a strict division does not perfectly match reality. For

instance, a fabless designer might develop some IP cores in-house and purchase others from

third party IP core providers.

The next section focuses on IP cores, detailing how they are distributed and the threats

associated to this business model.

IP cores distribution and business model

Following the global transition from an industrial economy to a knowledge economy [Dru69],

the semi-conductor industry now relies heavily on the exchange andmonetisation of intellectual

6Can the White House Make America’s Chip Industry Great Again? http://www.technologyreview.com/s/
602768/can-the-white-house-make-americas-chip-industry-great-again/

7Trump team backs call for crackdown on China over semiconductors. http://www.ft.com/content/bca04dfe-
de67-11e6-9d7c-be108f1c1dce

8Five Suppliers Hold 41% of Global Semiconductor Marketshare in 2016. http://www.icinsights.com/data/
articles/documents/938.pdf

9Pure-Play Foundry Market Surges 11% in 2016 to Reach $50 Billion! http://www.icinsights.com/data/articles/
documents/945.pdf

2

http://www.technologyreview.com/s/602768/can-the-white-house-make-americas-chip-industry-great-again/
http://www.technologyreview.com/s/602768/can-the-white-house-make-americas-chip-industry-great-again/
http://www.ft.com/content/bca04dfe-de67-11e6-9d7c-be108f1c1dce
http://www.ft.com/content/bca04dfe-de67-11e6-9d7c-be108f1c1dce
http://www.icinsights.com/data/articles/documents/938.pdf
http://www.icinsights.com/data/articles/documents/938.pdf
http://www.icinsights.com/data/articles/documents/945.pdf
http://www.icinsights.com/data/articles/documents/945.pdf

Introduction

IDM Fabless Foundry IP designer System integrator

Speci�cations

IP core(s)

Design

Layout

Circuit

Figure 1 – Semiconductor companies and their respective positions in the integrated circuit
design process.

property for the design of integrated circuits. Practically, IP cores are not provided alone but can

come with application-speci�c integrated circuit (ASIC) synthesis scripts, �eld-programmable

gate array (FPGA) place & route scripts, simulation scripts, testbenches, software models, test

vectors, documentation, etc. Much like software companies, IP cores design companies now

make the headlines for mergers and acquisitions worth millions of dollars. For instance, Intel

acquired Altera and NXP was acquired by Qualcomm in the last two years. As stated in a recent

research bulletin by IC Insights10, “The dollar value of merger and acquisition agreements in

2015 and 2016 were both about eight times greater than the $12.6 billion annual average of M&A

announcements in the �ve previous years (2010-2014)”.

Designers directly sell their IP cores to system integrators or rely on an intermediate IP

broker. Those IP brokers, such as ChipEstimate11, Design-And-Reuse12 or CAST13, maintain

large catalogues of IP cores from multiple designers. System integrators then purchase IP

cores from the brokers or from the designers directly. This is very similar to the way software

products are sold.

However, even though the distributions of IP cores and pieces of software work in a similar

way nowadays, their actual usage after distribution is entirely di�erent. Indeed, proprietary

pieces of software come with a license, either in the form of a key, a �le or a server. Without

them, the software cannot be executed. IP cores however, once they are sold by the designer,

are much harder to keep control on. The main issue here is that once an IP core has been sold,

the IP designer has no way of knowing how many times the IP core is actually instantiated.

This issue comes into great con�ict with the knowledge economy principle stated above.

Indeed, without knowing the number of IP core instances, IP designers must adopt a licensing

102015-2016 deals dominate semiconductor M&A ranking. http://www.icinsights.com/data/articles/documents/
946.pdf

11http://www.ipcatalog.com
12http://www.design-reuse.com
13http://www.cast-inc.com

3

http://www.icinsights.com/data/articles/documents/946.pdf
http://www.icinsights.com/data/articles/documents/946.pdf
http://www.ipcatalog.com
http://www.design-reuse.com
http://www.cast-inc.com

Introduction

model with upfront payment. In this model, an IP designer demands a �xed amount of money

from a system integrator before selling the IP core. Once it has been sold, the system integrator

can instantiate the IP core as many times as needed. There are two issues with this business

model. Firstly, it can inhibit small scale purchases for prototyping purposes or for small

companies due to a too high initial investment. Secondly, it strongly limits the advantages

brought by core-based design, which could bene�t greatly from features typically found in

software products like an evaluation period or a premium version of the IP core with enhanced

performances.

Besides the limitations brought by upfront licensing, the main issue with the designer

not knowing how many times the IP core is instantiated is that it can potentially be illegally

copied. For example, a system integrator could sell a previously purchased IP core to business

associates for a lower price, without the original designer knowing about it.

In order to exploit the full potential and bene�ts of knowledge economy and to prevent

illegal copying, a designer must then be able to know how many times a particular IP core

has been instantiated. Moreover, by allowing the designer to remotely activate an IP core,

pay-per-use licensing would be possible. Finally, with remote activation comes pre-activation

mode. If this mode is degraded, illegal copies can be e�ectively made useless until they are

properly activated by the original IP designer. Obviously, such a remote activation scheme

should also be secure, so that ill-intentioned users cannot circumvent it and use an illegal copy

of the IP core. This is one of the objectives of the SALWARE project.

SALWARE project

The SALWARE project is a 4-year project, supported by the French “Agence Nationale de la

Recherche” and by the “Fondation de Recherche pour l’Aéronautique et l’Espace”. The title of

the project is: “Salutary hardware design to �ght against integrated circuit counterfeiting and

theft”. The name of the project originates from the word malware, which stands for “malicious

software”, and was turned into salware which stands for “salutary hardware”. The aim of

the project is to design hardware components that provide intellectual property information

and/or allow for remote activation of an integrated circuit or and intellectual property core

after manufacturing. The hardware components designed in the framework of the SALWARE

project aim at exhibiting the same features as a malware. Namely, they should be stealthy, or

lightweight, in order to make the logic resources overhead as low as possible. This is a very

strict requirement to make the proposed solution industrially usable. Moreover, they should

be e�cient at disturbing the operation of the circuit or the IP core, so that illegal copies are

essentially useless. Finally, they should be su�ciently hard to remove or circumvent to deter

malicious users.

Cédric Marchand, who was another PhD student working in the frame of the SALWARE

project, defended his PhD in 2016 [Mar16]. His PhD thesis deals with watermarking, physical

4

Introduction

unclonable function (PUF) design and lightweight cryptography implementation, which are

essential components for salutary hardware, but more speci�cally targeted at preventing

integrated circuits counterfeiting. This PhD thesis has complementary contributions, which

are presented below, focusing more precisely on IP cores.

Contributions

First of all, in order to ensure that a design data protection scheme is e�cient, illegal copies

must exhibit a very disturbed operation. The �rst option explored in this thesis to achieve this

is to controllably force the outputs of a netlist to a �xed logic level. We call this logic locking.

A very e�cient algorithm to select the netlist nodes to modify based on the propagation of a

controlling value in a graph is presented.

The second option to provide a degraded mode of operation is to disturb the outputs of

the netlist by controllably inverting speci�c internal nodes. We refer to this as logic masking.

Speci�cally, a new method of selection of the nodes to invert based on centrality indicators

from graph theory is shown. Compared to state-of-the-art selection heuristics, it scales better

to large netlists and e�ciently disturbs the circuit operation.

The third contribution of this thesis deals with unique identi�cation of IP core instances

using a PUF. PUFs are very interesting primitives since they allow to identify IP core instances

by extracting device-speci�c manufacturing process variations, which are known to be random.

However, those PUFs are subject to instability, and the extracted identi�ers are not stable enough.

To deal with this, we propose an innovative method based on the CASCADE key reconciliation

protocol. Originally developed for quantum key exchange, we show that this interactive

protocol can be successfully applied to error-correction of silicon PUF responses. Compared

to existing error-correcting codes implementations, it is around an order of magnitude more

lightweight in terms of required logic resources.

Finally, these contributions and those found in [Mar16] are bundled together in a complete

design data protection module. We show that this module ful�ls the requirements of a salware

by being lightweight, secure and e�cient at providing di�erent degraded modes of operation

for an IP core. Overall, this is an industrially viable solution for IP designers who wish to

protect their design data from illegal copying at reduced cost.

Outline

Chapter 1 presents the IP business model which is widely adopted by the semiconductor

industry nowadays. We highlight the new threats on design data which emerge from this new

business model and provide a detailed threat model. We then provide a state of the art of existing

data protection methods for IP cores. We conclude this chapter by giving the requirements for

the complete design data protection module and provide a high-level overview of the di�erent

5

Introduction

components required to ful�l these requirements. Chapter 2 describes the method based on

graph-analysis for combinational logic locking of a netlist. Chapter 3 shows how centrality

indicators from graph theory can be used to select the most suited nodes to modify by logic

masking. Chapter 4 presents the similarities between two scenarios, quantum key exchange

and error-correction for silicon PUF responses. In particular, we show how the CASCADE

key-reconciliation protocol can be used to provide lightweight error correction of silicon PUF

responses. Finally, Chapter 5 presents the complete hardware/software design data protection

module, which is the objective of the SALWARE project.

6

Introduction

D’après les Statistiques du Commerce Mondial des Semi-conducteurs, le marché des semi-

conducteurs a atteint 340 milliards de dollars de vente en 201614. Cette industrie en évolution

constante est caractérisée par une compétitivité intense, une complexité en constance croissance

et une forte demande du marché. L’un des principaux problèmes auquel cette industrie doit

aujourd’hui faire face est la protection des droits de propriété intellectuelle sur les données

de conception. Cela est dû majoritairement à la multiplicité des acteurs impliqués dans la

conception, la production et la commercialisation de produits électroniques. A�n de comprendre

d’où vient le problème, un aperçu de l’industrie des semi-conducteurs d’un point de vue

historique et économique est nécessaire.

Contexte historique et économique

La loi de Moore, publiée pour la première fois en 1965 [Moo65] puis révisée en 1975 [Moo75],

dit que le nombre de transistors qui peuvent être intégrés sur une surface unitaire de circuit

intégré double tous les deux ans. Jusqu’ici, même si un ralentissement certain a été observé

récemment, l’industrie de la micro-électronique a suivi cette loi. Ceci est rendu possible en

réduisant de plus en plus la taille des transistors, 10nm étant le nœud technologique atteint

en 201715,16. Cette diminution constante est due à une forte demande du marché, qui a amené

les consommateurs à demander des équipements toujours plus sophistiqués, puissants et

petits. Un corollaire de la loi de Moore est la loi de Rock, qui dit que le coût de fabrication

d’une usine de fabrication de circuit intégrés double, lui, tous les quatre ans. Ceci est une

conséquence directe de la diminution de la taille des transistors, ce qui les rend de plus en

plus complexes à fabriquer. Le coût d’une usine de fabrication atteint aujourd’hui des dizaines

14Global Semiconductor Sales Reach $339 Billion in 2016 http://www.semiconductors.org/news/2017/02/02/
global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/

15Samsung Starts Industry’s First Mass Production of System-on-Chip with 10-Nanometer FinFET Techno-
logy. http://news.samsung.com/global/ samsung-starts-industrys-�rst-mass-production-of-system-on-chip-with-10-
nanometer-�nfet-technology

16Intel Finds Moore’s Law’s Next Step at 10 Nanometers. http:// spectrum.ieee.org/ semiconductors/devices/ intel-
�nds-moores-laws-next-step-at-10-nanometers

7

http://www.semiconductors.org/news/2017/02/02/global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/
http://www.semiconductors.org/news/2017/02/02/global_sales_report_2015/global_semiconductor_sales_reach_339_billion_in_2016/
http://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology
http://news.samsung.com/global/samsung-starts-industrys-first-mass-production-of-system-on-chip-with-10-nanometer-finfet-technology
http://spectrum.ieee.org/semiconductors/devices/intel-finds-moores-laws-next-step-at-10-nanometers
http://spectrum.ieee.org/semiconductors/devices/intel-finds-moores-laws-next-step-at-10-nanometers

Introduction

de milliards de dollars17,18. Avec des investissements aussi considérables, avoir la mainmise

sur les usines de fabrication est devenu une priorité nationale aux États-Unis19,20, puisque la

plupart d’entre elles sont maintenant situées en Asie. Une autre conséquence de l’augmentation

de l’investissement initial requis est la domination du marché par les grandes entreprises

existantes. Cinq d’entre elles (Intel, Samsung, Qualcomm, Broadcom et SK Hynix) possèdent

ainsi 41% des parts de marché en 201621. Les deux premières, Intel et Samsung, suivent le

modèle historique du constructeur d’équipement intégré (Integrated Device Manufacturer ou

IDM). Une seule entreprise assure la conception, la fabrication et la vente du circuit intégré.

Néanmoins, les deux suivantes, Qualcomm et Broadcom, suivent le modèle fabless. Comme le

nom l’indique, les entreprises fabless n’ont pas de moyens de fabrication. Elles s’appuient plutôt

sur des entreprises tierces possédant des usines de fabrication. Ces entreprises, spécialisées dans

la fabrication de circuits intégrés, sont appelées fonderies. Elles sont de plus en plus importantes

dans l’industrie de la micro-électronique, dépassant les 50 milliards de dollars de vente en 2016,

avec une augmentation de 11% par rapport à 201522. Ensemble, les concepteurs fabless et les

fonderies forment un nouveau modèle économique [Hod11], apparu dans les années 1980, où

le processus global a été séparé en deux : conception et fabrication.

L’industrie des semi-conducteurs étant un marché très compétitif, les délais de commerciali-

sation sont également réduits. Ce phénomène, associé à une forte demande des consommateurs,

a réduit de manière signi�cative le temps alloué à la conception des circuits électroniques.

A�n de suivre cette tendance, les concepteurs ont rapidement adopté un modèle de conception

modulaire [GZ97] basé sur la réutilisation de blocs existants (design-and-reuse). Dans ce cadre,

un composant complexe est divisé en blocs fonctionnels de taille plus réduite et de complexité

gérable. Ainsi, deux nouveaux types d’entreprises sont apparus dans le processus de conception,

le divisant encore. Les concepteurs de composants virtuels conçoivent des modules implémentant

une fonction spéci�que. Par exemple, on peut trouver des composants virtuels de décodage

JPEG ou de contrôle Ethernet. Ces composants virtuels sont typiquement achetés par des inté-

grateurs système, qui les associent dans un système modulaire. Les di�érents types d’entreprises

prenant part à la conception d’un circuit intégré sont présentés dans la Figure 2. Évidemment

une division stricte ne re�ète pas parfaitement la réalité. Par exemple, un concepteurs fabless

peut concevoir certains composants virtuels en interne et en obtenir d’autres de concepteurs

tiers.

17China’s Tsinghua Unigroup to build $30 billion Nanjing chip plant. http://www.reuters.com/article/us-tsinghua-
plant-idUSKBN1532ED

18Samsung Breaks Ground on $14 Billion Fab. http://www.eetimes.com/document.asp?doc_id=1326565
19Can the White House Make America’s Chip Industry Great Again ? http://www.technologyreview.com/s/

602768/can-the-white-house-make-americas-chip-industry-great-again/
20Trump team backs call for crackdown on China over semiconductors. http://www.ft.com/content/bca04dfe-

de67-11e6-9d7c-be108f1c1dce
21Five Suppliers Hold 41% of Global Semiconductor Marketshare in 2016. http://www.icinsights.com/data/

articles/documents/938.pdf
22Pure-Play Foundry Market Surges 11% in 2016 to Reach $50 Billion ! http://www.icinsights.com/data/articles/

documents/945.pdf

8

http://www.reuters.com/article/us-tsinghua-plant-idUSKBN1532ED
http://www.reuters.com/article/us-tsinghua-plant-idUSKBN1532ED
http://www.eetimes.com/document.asp?doc_id=1326565
http://www.technologyreview.com/s/602768/can-the-white-house-make-americas-chip-industry-great-again/
http://www.technologyreview.com/s/602768/can-the-white-house-make-americas-chip-industry-great-again/
http://www.ft.com/content/bca04dfe-de67-11e6-9d7c-be108f1c1dce
http://www.ft.com/content/bca04dfe-de67-11e6-9d7c-be108f1c1dce
http://www.icinsights.com/data/articles/documents/938.pdf
http://www.icinsights.com/data/articles/documents/938.pdf
http://www.icinsights.com/data/articles/documents/945.pdf
http://www.icinsights.com/data/articles/documents/945.pdf

Introduction

IDM Fabless Fonderie
Concepteur de Intégrateur

composants virtuels système

Spéci�cations

Composants virtuels

Système complet

Layout

Circuit intégré

Figure 2 – Entreprises de la micro-électronique et leur position respective dans le processus de
conception d’un circuit intégré.

La section suivante se concentre spéci�quement sur les composants virtuels, la manière

dont ils sont distribués et les menaces associées à ce modèle économique.

Distribution des composants virtuels etmodèle économique

Suivant la transition globale d’une économie industrielle vers une économie de la connaissance

[Dru69], l’industrie des semi-conducteurs s’appuie maintenant fortement sur l’échange et la

monétisation de la propriété intellectuelle pour la conception des circuits intégrés. En pratique,

les composants virtuels ne sont pas fournis seuls mais sont accompagnés de scripts de synthèse

pour ASIC, de scripts de placement et routage pour FPGA, de scripts de simulation, de bancs

de test, de modèles logiciels, de vecteurs de tests, de documentation, etc. Comme les sociétés de

logiciels, les entreprises de conception de composants virtuels font maintenant la une avec des

fusions et acquisitions atteignant des milliards de dollars. Par exemple, Intel a acquis Altera

et NXP a été racheté par Qualcomm dans les deux dernières années. Comme mis en évidence

dans un récent rapport par IC Insights23, le montant total des fusions et acquisitions en 2015 et

2016 était environ huit fois supérieur aux 12,6 millions de dollars qui constituaient la moyenne

annuelle dans les cinq années précédentes (2010-2014).

Les concepteurs vendent leurs composants virtuels directement aux intégrateurs système

ou s’appuient sur des grossistes intermédiaires. Ces derniers, tels que ChipEstimate24, Design-

And-Reuse25 ou CAST26 maintiennent d’importants catalogues de composants virtuels de

nombreux concepteurs. Les intégrateurs système acquièrent ensuite les composants virtuels

232015-2016 deals dominate semiconductor M&A ranking. http://www.icinsights.com/data/articles/documents/
946.pdf

24http://www.ipcatalog.com
25http://www.design-reuse.com
26http://www.cast-inc.com

9

http://www.icinsights.com/data/articles/documents/946.pdf
http://www.icinsights.com/data/articles/documents/946.pdf
http://www.ipcatalog.com
http://www.design-reuse.com
http://www.cast-inc.com

Introduction

via ces grossistes ou directement auprès du concepteur. Ce mode de fonctionnement est très

proche de la manière dont les logiciels sont vendus.

Néanmoins, même si les moyens de distribution des composants virtuels et des logiciels

suivent un modèle similaire de nos jours, leur usage après distribution est entièrement di�érent.

En e�et, les logiciels propriétaires sont accompagnés d’une licence, sous forme de clé, de �chier

ou de serveur. Sans ces derniers, le logiciel ne fonctionne pas. Les composants virtuels, cepen-

dant, une fois qu’ils sont vendus par le concepteur, sont beaucoup plus di�ciles à contrôler. Le

principal problème vient du fait qu’une fois qu’un composant virtuel a été vendu, le concepteur

n’a aucun moyen de savoir combien de fois il sera instancié en pratique.

Ce problème s’oppose de manière directe au principe d’économie de la connaissance men-

tionné ci-dessus. En e�et, puisqu’il ne connaît pas le nombre d’instances du composant virtuel,

le concepteur doit se résoudre à adopter un modèle de licence à versement initial. Dans ce

modèle, le concepteur demande un montant �xe à l’intégrateur système avant de lui fournir

le composant virtuel. Une fois la transaction réalisée, l’intégrateur système peut instancier

le composant virtuel autant de fois qu’il le souhaite. Deux problèmes apparaissent dans ce

modèle économique. Premièrement, cela empêche les achats en quantité limitée qui peuvent

être utiles pour le prototypage ou pour les petites entreprises du fait de l’investissement initial

élevé. De plus, cela limite fortement les avantages apportés par la conception modulaire, qui

pourrait béné�cier largement de possibilités typiquement présentes dans le domaine du logiciel

telles qu’une période d’évaluation ou un version premium du composant virtuel avec des

performances plus élevées.

Au delà des limitations induites par ce modèle de licence, le principal problème lorsque

le concepteur ne sait pas combien de fois le composant virtuel a été instancié est qu’il peut

être potentiellement copié de manière illégale. Par exemple, un intégrateur système pourrait

vendre à des associés un composant virtuel qu’il a déjà acheté, à un prix réduit et sans que le

concepteur original n’en ait connaissance.

A�n d’exploiter pleinement le potentiel et les avantages de l’économie de la connaissance

et pour empêcher la copie illégale, un concepteur doit pouvoir savoir combien de fois un

composant virtuel a été instancié. En outre, en permettant au concepteur d’activer à distance

le composant virtuel, un modèle de licence basé sur l’usage serait possible. En�n, permettre

l’activation à distance implique la présence de modes de fonctionnement dégradés. Les copies

illégales sont ainsi rendues inutilisables et donc inutiles jusqu’à ce qu’elle soient activées par le

concepteur original. Évidemment, un tel système d’activation à distance doit également être

sécurisé, de manière à ce que des utilisateurs mal intentionnés ne puissent pas le contourner et

utiliser une copie illégale du composant virtuel. C’est l’un des objectifs du projet SALWARE.

10

Introduction

Le projet SALWARE

Le projet SALWARE est un projet de quatre ans, �nancé par l’Agence Nationale de la Recherche

et la Fondation de Recherche pour l’Aéronautique et l’Espace. L’intitulé du projet est le suivant :

“Conception de matériel salutaire pour lutter contre la contrefaçon et le vol de circuits intégrés”.

Le nom du projet vient du mot malware, qui signi�e logiciel malicieux, et qui a été changé

en salware pour matériel salutaire. L’objectif de ce projet est de concevoir des blocs matériels

fournissant des informations de propriété intellectuelle et/ou permettant l’activation à distance

d’un circuit intégré ou d’un composant virtuel après fabrication. Les blocs matériels conçus dans

le cadre du projet SALWARE présentent les mêmes propriétés qu’un malware. Ainsi, ils doivent

être discrets, ou légers, a�n d’induire un coût supplémentaire en ressources logiques le plus

faible possible. Ceci est une exigence très stricte pour rendre la solution proposée applicable

dans un contexte industriel. En outre, ils doivent perturber e�cacement le fonctionnement du

circuit ou du composant virtuel, a�n de rendre les copies illégales inutiles. En�n, ils doivent

être su�samment di�ciles à contourner ou à supprimer pour décourager les utilisateurs

malveillants.

Cédric Marchand, qui était un autre doctorant travaillant dans le cadre du projet SALWARE,

a soutenu sa thèse en 2016 [Mar16]. Sa thèse traitait du watermarking, de la conception de

fonctions physiques non clonables (Physical Unclonable Function ou PUF) et de l’implémentation

de cryptographie légère, qui sont des éléments essentiels pour du matériel salutaire mais qui

sont plus spéci�quement orientés vers la prévention de la contrefaçon de circuits intégrés.

Cette thèse de doctorat a des contributions complémentaires, qui sont présentées ci-dessous, et

se concentre plus spéci�quement sur les composants virtuels.

Contributions

En premier lieu, a�n de s’assurer qu’un système de protection des données de conception est

e�cace, les copies illégales doivent présenter un comportement très perturbé. La première

option étudiée dans cette thèse pour permettre ceci est de forcer à une valeur logique �xe les

sorties d’un composant virtuel, de manière contrôlée. Un algorithme très e�cace permettant

de sélectionner les nœuds de la netlist à modi�er, basé sur la propagation d’une valeur de

verrouillage dans un graphe, est présenté.

La seconde option pour fournir un mode de fonctionnement dégradé est de perturber les

sorties du composant virtuel en inversant certains nœuds internes. Ceci est appelé masquage

logique. Spéci�quement, une nouvelle méthode permettant de sélectionner les nœuds à inverser,

basée sur les indicateurs de centralité en théorie des graphes, est proposée. Comparée aux

heuristiques de sélection de l’état de l’art, elle s’étend plus e�cacement à des composants

virtuels de grande taille et altère le fonctionnement du circuit de manière e�cace.

La troisième contribution de cette thèse traite de l’identi�cation unique des instances

11

Introduction

d’un composant virtuel en utilisant une PUF. Les PUFs sont des primitives très intéressantes

puisqu’elles permettent d’identi�er individuellement les instances en extrayant les variations

apparaissant lors du processus de fabrication, qui sont spéci�ques à chaque circuit produit

et sont aléatoires. Toutefois, les PUFs présentent une certaine instabilité, et les identi�ants

extraits ne sont pas su�samment stables. Pour résoudre ce problème, nous proposons une

méthode innovante basée sur le protocole de réconciliation de clés CASCADE. Développé au

départ pour l’échange quantique de clés, nous montrons que ce protocole interactif peut être

utilisé de manière fructueuse pour la correction des erreurs présentes dans les réponses des

PUFs. En comparaison des implémentations existantes de codes correcteurs d’erreurs, cette

solution est une ordre de grandeur plus légère en terme de ressources logiques requises.

En�n, ces contributions et celles de [Mar16] sont assemblées en un système complet de

protection des données de conception. Nous montrons que ce système remplit les conditions

pour être considéré comme un SALWARE, en étant léger, sûr et e�cace pour proposer di�érents

modes de fonctionnement dégradés pour un composant virtuel. Finalement, ceci constitue une

solution industriellement viable pour les concepteurs de composants virtuels qui souhaitent

protéger leurs données de conception de la copie illégale à moindre coût.

Plan

Le chapitre 1 présente lemodèle économique associé aux composants virtuels qui a été largement

adopté par l’industrie des semi-conducteurs. Nous mettons en évidence les nouvelles menaces

pour les données de conception qui émergent de ce nouveau modèle économique et proposons

un modèle de menace détaillé. Nous présentons ensuite un état de l’art des méthodes de

protection des données de conception pour les composants virtuels. Nous concluons ce chapitre

en présentant les caractéristiques souhaitées pour un système de protection des données de

conception et donnons un aperçu des di�érents éléments requis pour mettre en œuvre ces

fonctions.

Le chapitre 2 décrit la méthode basée sur l’analyse de graphe pour le verrouillage com-

binatoire d’un composant virtuel. Le chapitre 3 montre de quelle manière les indicateurs de

centralité de la théorie des graphes peuvent être utilisés pour sélectionner les nœuds les plus

e�caces pour une modi�cation par masquage logique. Le chapitre 4 présente les similarités

entre deux scénarios, l’échange quantique de clés et la correction des erreurs dans les réponses

des PUFs. En particulier, nous montrons que le protocole de réconciliation de clés CASCADE

peut être utilisé pour fournir une solution légère de correction des erreurs pour les réponses des

PUFs. Finalement, le chapitre 5 présente le système logiciel/matériel complet pour la protection

des données de conception, ce qui constitue l’objectif du projet SALWARE.

12

Chapter 1

Threats and protections for design data

Following the fragmentation of the semiconductor design process mentioned before, mul-

tiple parties now participate and are involved at di�erent stages. Such a multiplicity of actors

comes with speci�c risks for design data. Intellectual property transfers between stakeholders,

even though they are necessary to the new business model, are the cause of multiple threats.

In order to further understand them, a review of the various parties and their individual role is

needed.

Next, we give a description of the three main threats that can be identi�ed against design

data: overproducing, illegal copying and reverse-engineering. We then take the point of view

of an IP core designer and identify which of the parties involved in the design process are likely

to perform these illegal actions. This leads us to de�ne two threats models, one shared between

illegal copying and overproducing and a speci�c one for reverse-engineering. For each threat

model, the attacker’s and defender’s objectives, capabilities or constraints are detailed.

We then give a state-of-the-art of existing methods that aim at the protection of design data.

The methods are classi�ed according to their e�ciency at providing a complete protection

against the aforementioned threats. This ranges from the simple identi�cation of an IP core to

thorough licensing schemes. We also present some solutions that are a combination of multiple

design data protection methods.

This leads us to propose a set of requirements for a strong, lightweight and usable IP

protection scheme. We then present how we propose to implement the features that ful�l these

requirements in the SALWARE project.

13

Chapter 1 – Threats and protections for design data

Menaces sur les données de conception
et méthodes de protection

Suite à la fragmentation du processus de conception de circuits intégrés mentionné pré-

cédemment, de nombreux acteurs sont aujourd’hui impliqués à di�érentes étapes. Cette mul-

tiplicité d’acteurs est accompagnée de risques spéci�ques pour les données de conception.

Les transferts de propriété intellectuelle entre les acteurs, quoique nécessaires au nouveau

mode de fonctionnement de l’industrie, sont la cause de multiples menaces. A�n de mieux les

comprendre, passer en revue les di�érents acteurs impliqués et leurs rôles est nécessaire.

Ensuite, nous décrivons les trois menaces principales qui ciblent les données de conception :

surproduction, copie illégale et rétro-ingénierie. Nous nous plaçons ensuite du point de vue du

concepteur de composants virtuels et identi�ons quels acteurs impliqués dans le processus de

conception sont susceptibles de réaliser ces actions illégales. Cela nous conduit à dé�nir deux

modèles de menace, l’un commun à la copie illégale et la surpodcution et l’autre spéci�que à la

rétro-ingénierie. Pour chaque modèle de menace, les objectifs, les possiblités et les contraintes

des attaquants et des défenseurs sont détaillés.

Nous donnons ensuite un état de l’art des méthodes qui visent à protéger les données

de conception. Ces méthodes sont classées d’après leur e�cacité à fournir une protection

complète contre les menaces mentionnées ci-dessus. Cela va de la simple identi�cation d’un

composant virtuel à des schémas de licence d’utilisation complets. Nous présentons également

quelques solutions qui sont une combinaison de plusieurs méthodes de protection des données

de conception.

Cela nous conduit �nalement à proposer un ensemble de caractéristiques pour un module

de protection des données de conception robuste, léger et utilisable. Nous présentons ensuite

comment nous proposons d’implémenter les fonctionnalités satisfaisant à ces exigences dans le

cadre du projet SALWARE.

14

Chapter 1 – Threats and protections for design data

1.1 Parties involved in the design process and their roles

Multiple parties are involved in the lifetime of an electronic device. We restrict ourselves to

the ones present at design time. Therefore, we do not consider parties in charge of subsequent

steps: manufacturing, testing, packaging, supplying, selling, recycling, etc.

1.1.1 IP Designer

The designer of the IP core is the �rst party to take part in the design process. From the

speci�cations, which can be laid down by a customer, a standard or in-house, an IP core is

designed. It consists in describing a hardware implementation of the speci�cations. Along with

the implementation, the designer can supply test vectors, place and route scripts, testbenches,

software models, documentation, etc. Together, these parts form the intellectual property

material that is referred to as IP core. The actual implementation can come in three main forms:

Software IP: the IP core is provided in a hardware description language like VHDL, Sys-

temVerilog or SystemC, before synthesis. This type of IP core o�ers the advantage of not

being dependent on the �nal hardware target. These descriptions can be done at several levels

of abstraction, with the constraint that they must be synthesisable. For example, a VHDL

description can go down to the register transfer level, while the SystemC language allows one

to do a high-level behavioural description. Software IP is described in a very high-level style,

possibly using language features that are close to those of a programming language. However,

a soft IP must be synthesisable, otherwise it is closer to a software model.

Firmware IP: a low level description after synthesis is given, in a netlist format such as

EDIF1. It may be technology-dependent if the IP core instantiates vendor-speci�c primitives.

Hardware IP: this is the lowest level of abstraction to be found for an IP core. If the target

hardware platform is ASIC, then a layout �le in the GDS II, OASIS2 or other format is provided.

It directly represents the layout of the design as it will be used for the photo-lithography

masks. Conversely, if the design is to be implemented on FPGA, a bitstream �le is given. This

bitstream �le describes how the LUTs, switching matrices and RAM blocks inside FPGA must

be con�gured to achieve the desired logic function.

These three types of IP cores represent di�erent levels of abstraction. Examples of IP core

designers are ARM3, Dolphin Integration4, Intrinsic ID5 or Rambus6.

1Electronic Design Interchange Format
2Open Artwork System Interchange Standard
3http://arm.com
4http://dolphin-integration.com
5http:// intrinsic-id.com
6http:// rambus.com

15

http://arm.com
http://dolphin-integration.com
http://intrinsic-id.com
http://rambus.com

Chapter 1 – Threats and protections for design data

1.1.2 Broker

A broker acts as a middleman between designers and system integrators. In order to provide

more visibility to third party IP core designers, the broker maintains a catalogue of IP cores,

which are classi�ed by category according to the function they implement. For instance, a broker

can o�er several Ethernet controllers from various designers, reaching various performance

targets. Some of these controllers can be low-power while others achieve very high throughput.

From a system integrator point of view, those online catalogues are very helpful. They

allow to search and compare the IP cores from di�erent vendors with criteria such as the

performance/area/power consumption ratio, the technology node, the foundry, the hardware

target, etc. Moreover, the organisations maintaining these catalogues can provide management

software for those IP cores. For example, this type of software can manage an IP core repository

and provide version control, so that the IP cores can be updated if revisions are done.

Examples of IP core brokers are AnySilicon7, ChipEstimate8, Design & Reuse9 or Open-

Cores10, the latter being specialised in open-source IP cores. It is worth noting that FPGA

manufacturers Xilinx11 and Intel12 also provide a catalogue of IP cores in their respective

electronic design automation (EDA) tools Vivado and Quartus Prime.

1.1.3 System integrator

The system integrator purchases IP cores from a broker or directly from designers. These

individual IP cores, which achieve a speci�c function, are then integrated together in a complex,

modular system.

For a system integrator, previously mentioned IP core characteristics such as the process

node or the foundry are crucial for �awless integration. If an IP core has already been manu-

factured and validated in silicon, it is said to be “silicon ready”. This information is provided by

the broker or the designer and is of great help for the system integrator.

Nowadays, most of the designs integrate multiple IP cores. Therefore, the vast majority of

electronics design companies are system integrators.

1.1.4 Trusted third party

In order to facilitate the interaction between the previously described parties, a trusted third

party is sometimes involved. When two parties do not necessarily trust each other but still

need to interact, they only need to trust this trusted third party.

7http://anysilicon.com
8http:// chipestimate.com
9http://design-reuse.com
10http://opencores.org
11https://www.xilinx.com/
12https://altera.com/

16

http://anysilicon.com
http://chipestimate.com
http://design-reuse.com
http://opencores.org
https://www.xilinx.com/
https://altera.com/

Chapter 1 – Threats and protections for design data

Sometimes, in the case of IP cores that are meant to be integrated on FPGAs, the hardware

manufacturer can act as a trusted third party. For instance, the hardware manufacturer can

integrate secret keys given by the designer into the FPGA. These keys can then be used for IP

licensing without the system integrator knowing them.

The role of the trusted third party is described in more details in section 1.5.5, dealing with

IP licensing schemes.

1.1.5 Interaction between parties

Figure 1.1 shows how the previously described parties interact with one another in the typical

semiconductor IP business. Speci�cally, it depicts how design data is transferred from one

party to the other. However, there could be additional relations between these parties. For

example, a system designer could request a speci�c IP to be designed by the IP core designer. A

designer could also provide support to the system integrator to assist in the integration of the

IP core. However, those relations do not deal with design data transfer.

Figure 1.1 – Design data transfer in the semiconductor IP business.

1.1.6 Business models

Di�erent types of business model can be found in the semiconductor IP market. They developed

in the 1980s, when the semiconductor business started shifting to a knowledge economy.

Previously, semiconductor devices were simply sold by manufacturers to system integrators

who combined them on boards to design a �nal product. With the dematerialisation of IP cores,

more sophisticated business models could emerge [Fab06]:

17

Chapter 1 – Threats and protections for design data

Per-use: In the per-use model, the IP core designer gives the system integrator the right to

use the IP in a certain use scope. The scope must be de�ned very clearly and can consist in a

speci�c project for example.

Time-based: The time-based model allows a system integrator to use an IP core as much as

needed but only for a limited period of time. If needed, the contract can be later extended if it

expired before the project is completed.

Royalty-based: In this model, the �nal price depends on the usage of the IP core. For

example, this can be related to the number of manufactured integrated circuits. It can be

very advantageous for both sides, since a system integrator can obtain an IP core for a low

initial price but the original designer can also get paid signi�cantly more if the �nal product is

successful.

Even though they di�er, all those business models have in common to require a transfer of

design data. This comes with associated threats, detailed in the next section.

1.2 Threats on design data

With the semiconductor IP business model presented come speci�c threats on design data. This

is �rst visible on Figure 1.1, where all the arrows representing design data transfer are one-way.

This graphically conveys the idea that these design data transfers are asymmetrical. The IP

designer provides the broker with an IP core, but in return the broker does not provide any

intellectual property to the designer. Similarly, when a system integrator purchases an IP core,

the intellectual property material is transferred from the IP designer to the system integrator

in only one direction. This poses direct threats to design data since such asymmetric transfer

gives rise to intellectual property infringements [SEM06; GDT14] which have severe economic

and social impacts [Fro11]. These threats are described in the following subsections.

1.2.1 Overproducing

The �rst type of threat, emerging directly from the immaterial nature of IP cores is overproducing.

It occurs when, in a per-use business model, the system integrator overrides the scope of use

which was previously agreed upon. For example, an IP core which was used in a project is

reused later in another design without mentioning it to the IP designer. In a time-based business

model, this means that a system integrator keeps using an IP core even though the subscription

period has elapsed. If royalties are owed by the system integrator to the IP core designer, the

actual number of manufactured devices can be underreported to make the �nal cost lower.

Consequently, for all these cases, the number of instances of the IP core reported to the designer

does not match reality. This prevents proper billing and compensation.

18

Chapter 1 – Threats and protections for design data

1.2.2 Illegal copying

The next type of threat is illegal copying. This occurs when an IP broker or a system integrator

copies an IP core in order to provide it or sell it to another party, unbeknown to the IP core

designer. For example, it can be the case if an IP broker charges a system integrator for a

certain number of instances of the IP core but in fact reports only half of these instances to the

IP core designer. In this case, half of the instances are illegal copies of the IP core since the

original designer is unaware of their existence. In large companies, di�erent business units

could also share IP cores between projects without reporting it. Finally, a system integrator who

obtained an IP core from one designer could sell it to a competitor IP core designer. Similarly

to overproducing, these case of illegal copying result in an actual number of IP core instances

which is higher that the one reported to the IP core designer, preventing correct billing.

1.2.3 Reverse-engineering

The third threat against design data which can be identi�ed is reverse-engineering. This is a

direct threat to the intellectual property material itself, since it aims at recovering how a logic

function is implemented. Therefore, reverse-engineering intends to �nd out the processes and

techniques to go from the speci�cations to the implementation of the IP core.

Depending on the form in which the IP core is provided, reverse-engineering it can be more

or less demanding. In the case of a soft IP described using a hardware description language,

recovering the implementation is much easier than if only a layout is available. Similarly, a

bitstream for an FPGA is usually hard to reverse-engineer completely [NR08; BSH12]. However,

it is safe to assume that if a motivated attacker has su�cient resources and time, then reverse-

engineering is always possible.

Reverse-engineering can also occur later, after the device has been manufactured. From

high de�nition pictures of a delayered chip, automated image recognition software can recover

the entire layout [MN08; TJ11; McL11]. More sophisticated imaging devices can be used such as

microscopes that use scanning electron, scanning capacitance or X-rays technology [Qua+16].

Using X-rays for example allows an attacker to perform non-destructive reverse-engineering,

since the chip is not damaged and can still operate after. On the other hand, a delayered chip is

permanently damaged and cannot be used anymore.

In order to go further up in abstraction, recovering the netlist is necessary. This can be

done from the bitstream [NR08; BSH12] or the layout. By observing the inputs and outputs of

the device, the FSM can also be recovered [Bru+09; Smi+17].

Reverse-engineering can be done by the system integrator. This could help in future designs

by not requiring the help of a contract IP core designer anymore. With the knowledge on how

to implement a function, this can be done in-house.

A competitor IP core designer could also be interested in the internal architecture of an IP

core and attempt to reverse-engineer it. This gives an advantage by reducing design time and

19

Chapter 1 – Threats and protections for design data

achieving equivalent performance if similar functions must be implemented in the future.

Reverse-engineering can be linked to illegal copying. Indeed, if the reverse-engineering

step is successful, the attacker owns a version IP core without the original designer knowing it.

The IP core can then be instantiated again, making it an illegal copy.

It is interesting to note that reverse-engineering can also have positive aspects [Qua+16].

It helps in failure analysis and detection. It can also be used to provide intellectual property

information and prove that a particular IP core has been instantiated in a device [GDT14].

Moreover, reverse-engineering is often necessary to ensure that a design has not been infected

by a hardware Trojan [Xia+16; BFS16]. Finally, this is also a great tool for educational purposes.

1.2.4 Limitations bypass

Since IP cores are increasingly following a software-like business model, another type of

threat could emerge in the future. Just like pieces of software, IP cores could be distributed in

evaluation mode, or o�er a premium version with greater performances. So far, only software-

assisted manipulations have been demonstrated. For instance, in 2015, a tool was able to disable

the hardware locks of processing units of AMD Radeon GPUs13. This e�ectively allows to

upgrade a graphics card.

We could not �nd purely hardware-based attacks, partly because multi-mode IP cores are

rare. Therefore, this threat is not addressed in this thesis. However, in view of how well

precedented these practises are for software, one can reasonably expect them to apply to IP

cores too, once they reach such a level of re�nement.

1.3 Summary: association between parties and threats

The semiconductor IP business presented in Figure 1.1 can now be extended by showing the

di�erent threats on it. Since we aim at providing IP core designers with means of protecting

their intellectual property, we should now adopt their point of view when evaluating the

trustworthiness of other parties. This is shown in Figure 1.2, in which untrusted parties from

the IP core designer’s point of view are highlighted in dark grey and threats are in red. We

considered that the trusted third party, described previously, is indeed trusted. Thus it does not

appear in Figure 1.2.

In an attempt to �ght these threats, a precise threat model is required. This is presented in

the following sections. For each of the previously described threats, a threat model is given,

comprising an attacker and a defender model.

13New tool reawakens disabled hardware in high-end AMD Radeon graphics cards http://www.pcworld.com/
article/2960717/components-graphics/new-tool-reawakens-disabled-hardware-in-high-end-amd-radeon-graphics-
cards.html

20

http://www.pcworld.com/article/2960717/components-graphics/new-tool-reawakens-disabled-hardware-in-high-end-amd-radeon-graphics-cards.html
http://www.pcworld.com/article/2960717/components-graphics/new-tool-reawakens-disabled-hardware-in-high-end-amd-radeon-graphics-cards.html
http://www.pcworld.com/article/2960717/components-graphics/new-tool-reawakens-disabled-hardware-in-high-end-amd-radeon-graphics-cards.html

Chapter 1 – Threats and protections for design data

Figure 1.2 – Speci�c threats to design data in the semiconductor IP business. Trusted and
untrusted parties are from the IP designer point of view.

1.4 Threat models

1.4.1 Threatmodel for design data exposed to illegal copying/overpro-

ducing

The threat model for illegal copying and overproducing is the same. Indeed, the �nal purpose

of illegal copying, after illegal design transfer, is to instantiate the IP core without the designer

knowing it. Thus it results in the same consequences as overproducing.

1.4.1.1 Attacker model

Attacker’s objectives When an attacker aims at carrying out illegal copying or overpro-

ducing of an IP core, its objective is to instantiate the IP core more times than agreed with

the designer or the broker. From the attacker’s point of view, a black box instantiation of a

functional IP core is su�cient. Even though some technical characteristics of the core may be

required, the knowledge of the internals is not needed to perform the attack.

Attacker’s capabilities We assume that the attacker can obtain a copy of the IP core in a

legal way. He also has the technical resources to instantiate it correctly. Namely, this means

that he can obtain all the necessary technical information required such as the process node,

the design rules, the foundry, etc.

21

Chapter 1 – Threats and protections for design data

1.4.1.2 Defender model

Defender’s objectives The designer’s objective here is to prevent the attacker from proceed-

ing to a black box instantiation of the IP core without reporting it to the designer. Practically

speaking, the designer wants to know how many instances of the IP core exist. However, this

does not prevent black box instantiation as described above. In addition, the defender must

be able to control how many instances of the IP core actually operate. The fact to know how

many instances of an IP core are operating is commonly referred to as metering [Kou11].

Defender’s constraints From the defender’s point of view, the main constraint to defend

against illegal copying is the cost of the protection system. Indeed, adding extra components

to the IP core in order to protect it increases the logic resources, the power consumption

and possibly the latency of the core. This all comes at a cost, either because the IP core

layout occupies a larger area and is more expensive to manufacture or because a higher power

consumption or latency makes it less competitive. Therefore, the cost of the protection system

must not exceed the �nancial losses caused by illegal copying or overproducing. However, the

�nancial losses su�ered by IP core designers can be hard to estimate.

1.4.2 Threat model for design data exposed to reverse-engineering

This threat model addresses reverse-engineering when committed with a malicious intent, in

contrast with reverse-engineering aiming at educational purposes.

1.4.2.1 Attacker model

Attacker’s objectives When an attacker attempts to reverse-engineer an IP core, the aim

is to �nd out how speci�cations have been implemented in hardware. Namely, this includes

revealing the types of logic gates used and the connections between them or the layout patterns

on every layer. The objective is to gain knowledge of the practical implementation methods

and techniques, in order to reduce time to market for a future in-house design while achieving

similar performances to competitor devices.

Attacker’s capabilities The attacker can access both the digital and physical versions of

the IP core. The digital version refers to the computer �le which holds the design data. For

example, this can be a VHDL, GDS II or bitstream �le. The attacker can also have access to a

physical implementation of the IP core in an integrated circuit. Depending on the �nancial

support he gets, an attacker can use powerful techniques to recover design information [TJ11].

Some companies, such as Texplained14 are specialised in providing this type of services.

14https://www.texplained.com/

22

https://www.texplained.com/

Chapter 1 – Threats and protections for design data

1.4.2.2 Defender model

Defender’s objectives From a defender’s perspective, the objective is to conceal the archi-

tecture of the IP core. The ideal model for this is a black box, where only the inputs and outputs

are visible. However, due to the way IP cores are distributed and supposed to be used, this

objective is hard to ful�l.

A more relaxed version, which is at the same time more realistic given today’s attackers

capabilities, is to make the reverse-engineering as hard and time consuming as possible. Given

that the parties who can perform reverse-engineering are the system integrator or a competitor

IP designer, the objective of a designer is to make the reverse-engineering process more

expensive than in-house development of the IP core.

Defender’s constraints Similarly to the constraints detailed above for illegal copying and

overproducing, the cost of the protection method against reverse-engineering must be lower

than the potential �nancial losses caused by the intellectual property infringement.

As highlighted before, reverse-engineering can have salutary purposes like failure detection

or tests. From a practical point of view, a protection against reverse-engineering can make

such purposes harder to achieve.

Conclusion on threats on design data

Due to the emergence of core-based design, overproducing/illegal copying and reverse-engineering

have arisen or have been ampli�ed. However, they have slightly di�erent characteristics.

Reverse-engineering is quite a challenging task to perform, and will only become harder

with the decreasing size of transistors and their increasing density. In addition, IP designers

are more and more aware of this threat and have a large panel of possibilities to �ght against it.

Nevertheless, the development of automated reverse-engineering tools makes progress too.

Therefore, the amount of time taken to reverse-engineer a design is only due to the manual

intervention of people which is still required, since not everything can be automated. This

still takes a good amount of time and skills. The required tools to physically de-package and

process a circuit to reverse-engineer it are costly too. Overall, the potential �nancial losses for

the IP core designer are high, but the increasingly fast time-to-market tends to reduce them if

they are restricted to the intellectual property infringement.

Overproducing and illegal copying, on the other hand, do not require much time to be

performed by an attacker. Indeed, after obtaining the design, copying it is trivial. However,

obtaining it in the �rst place can cost some money. After the copy has been performed,

overproducing a design requires no extra skills than the ones already present in most design

houses. Thus the potential losses for the IP designer are much greater. Moreover, these

potential losses can also originate from reverse-engineering being used to perform the illegal

23

Chapter 1 – Threats and protections for design data

copy, beyond the infringement of intellectual property mentioned above. Overall, these are a

much more important threat for IP core designers than reverse-engineering. This is summarised

in Table 1.1.

Requirements
Potential �nancial losses

Threat Time Money (equipment) Skills for the IP core designer

Reverse-engineering
Overproducing/Illegal copying

Table 1.1 – Threats on design data.

In order to �ght these threats, many design data protection schemes were developed. They

consist in adding speci�c modules to a design or modifying it directly. These are developed in

the following section.

1.5 Design data protection methods

Traditionally, design data protection methods are classi�ed into passive and active methods.

Passive protection means allow a designer to detect that an illegal action occurred. For example,

by embedding an identi�er inside an IP core, a designer who obtained a circuit can extract

the identi�er and prove that his IP core was instantiated. However, this does not prevent the

illegal action to occur. Conversely, active protection means o�er the designer a way to actively

prevent the illegal action. For example, the circuit can exhibit an erratic behaviour until the

correct activation word is fed to it.

Here, we chose to further re�ne this classi�cation by sorting protection means according

to the help they provide to the designer. Even though those helps are hard to classify strictly

according to their e�ciency, we broadly make an attempt to do it. The weakest methods allow

to identify an IP core, but not individual instances. Identifying individual instances is necessary

to count them and ensure precise metering. On the one hand, o�ering degraded modes of

operation is a good way to prevent illegal copying and overproducing, since illegal copies are

then essentially useless. On the other hand, concealing the internal architecture of the IP core

can make reverse-engineering prohibitively expensive. Finally, the most e�cient methods are

referred to as licensing schemes. They are an attempt to transfer the licensing methods used

for software to IP cores. This is shown in Figure 1.3.

As the pyramidal structure shown in Figure 1.3 suggests, the most e�cient design data

protection schemes are often built on top of weak ones, by combining them. For example,

a good licensing scheme necessarily requires to identify individual instances of an IP core.

Simple IP core identi�cation is also useful in the �rst place to ensure that the IP core has been

instantiated in a particular design. Therefore, we start with weak protections before gradually

describing more and more e�cient ones.

24

Chapter 1 – Threats and protections for design data

Figure 1.3 – Hierarchy of design data protection methods classi�ed according to their e�ciency
at protecting design data.

1.5.1 Identi�cation of an IP core

In order to detect that one IP core has been illegally copied, the original designer can embed an

identi�er inside it. Later on, when the designer suspects an IP core to be illegally integrated

into a design, the identi�er is retrieved to claim ownership. There are multiple ways to generate

an identi�er inside an IP core. The �rst one is to store it in a non-volatile memory (NVM)

(see Figure 1.4a). The design can also be slightly modi�ed in a way that is known only to the

designer, so that this slight modi�cation can later be detected. This is called watermarking and

is shown in Figure 1.4b, where the watermark is retrieved via side-channel analysis. Those two

techniques have the drawback to identify the IP core but not individual instances. This can

be achieved by storing a unique identi�er for each instance inside a one-time programmable

non-volatile memory (OTP-NVM), as shown in Figure 1.4c. Finally, the physical characteristics

of the silicon implementation can be exploited. This can be done by direct measurement,

called �ngerprinting (see Figure 1.4d) or by embedding a PUF. A PUF is structure that can be

challenged, extracts the intrinsic entropy coming from manufacturing process variations and

turns it into a binary identi�er called a response. This is shown in Figure 1.4e.

With NVM and watermarking, the identi�er is identical for all the instances of the IP core.

These two methods are detailed below. Conversely, using an OTP-NVM, a PUF or performing

�ngerprinting allows one to identify individual instances. These methods are then studied in a

speci�c section afterwards.

1.5.1.1 Identi�er stored in NVM

The �rst option to store a �xed identi�er is to use an NVM, that set to a value at design time

and is non-rewritable. Those memories are typically referred to as mask read-only memory

(ROM). Complementary metal-oxide-semiconductor (CMOS) manufacturing process o�ers

several technological possibilities to achieve physical hardwiring of an identi�er.

25

Chapter 1 – Threats and protections for design data

(a) Non-volatile memory (b) Watermarking

(c) One-time programmable non-volatile memory (d) Fingerprinting

(e) Physical Unclonable Function

Figure 1.4 – Methods for identifying an IP core itself or the individual instances.

Contact layer/via mask ROM The �rst possibility to implement a mask ROM is to modify

the vias, as shown in Figure 1.5a. This is done by removing the connection vias for certain

transistors, leaving them unconnected.

Active layer mask ROM Mask ROM is implemented by not creating the channel for some

transistors (see Figure 1.5b).

Metal layermask ROM The �rst metallisation layer is used to create a short circuit between

the source and drain contacts of the transistor (see Figure 1.5c).

(a) Contact layer (b) Active layer (c) Metal layer

Figure 1.5 – Di�erent types of mask ROM (adapted from [Yen14]).

26

Chapter 1 – Threats and protections for design data

Mask ROM has the advantage of not requiring any extra steps in the manufacturing process.

Moreover, they have a very high density of one transistor per bit stored and require extensive

physical processing to be reverse-engineered. Finally, they o�er very good resilience to removal

or perturbation attacks and can be easily read out.

However, they cannot be modi�ed after the circuit has been manufactured. Reverse-

engineering these ROMs is also feasible by de-packaging the circuit and delayering it [TJ11].

With su�ciently precise micro-photography, individual ROM bits are extracted by pattern

recognition. Then, the common identi�er is known and can be used to fake identity. Finally,

designing mask ROM requires the IP core designer to carry out the design steps down to the

layout level. This is not possible if the IP core is to be provided in a hardware description

language (HDL) format for instance. Therefore, there is a requirement for means of embedding

an identi�er within an IP core at a higher level of abstraction. This can be done by watermarking

techniques presented in the next section.

1.5.1.2 Watermarking

Watermarking consists in modifying a design slightly in order to incorporate a mark into it.

This watermark must ful�l eight properties [ATA04].

1. Its structure must be public,

2. It must exhibit a low false positive rate as well as being hard to forge,

3. It should not alter the functionality of the system,

4. It must be hard to modify,

5. It must contain enough data to claim ownership, typically enough bits,

6. It should not induce a too high implementation overhead,

7. It should be easy to detect and track,

8. It could be asymmetric, embedding both a public and a private part.

As said before, a watermark is embedded at a higher abstraction level than the transistor

level. Such abstraction level ranges from the layout level up to the algorithmic level. All these

are detailed below.

Layout level watermarking At the lowest level of abstraction, a watermark is embedded

at the layout level. For example, [Kah+01] proposes to modify the placement and routing

of an IP core and shows how these modi�cations can be easily integrated into the design

�ow of mainstream EDA tools. They demonstrate how con�guration bits of unused output

multiplexers, path timing constraints or column index may be modi�ed to embed a watermark.

27

Chapter 1 – Threats and protections for design data

In [Jai+03], delay constraints are generated from the watermark and are embedded in the form

of a �xed bit for the least signi�cant bit of speci�c paths delay.

Those layout-level solutions allow a system integrator to verify that an IP core originates

from the correct designer. However, once the IP core has been implemented and the circuit

manufactured, those watermarks are hard to retrieve. This strongly limits the application of

such techniques, and calls for more usable methods.

Register transfer level watermarking Alternatively, the watermarking scheme can be

added at the register transfer level. Targeting FPGA designs, authors of [SZT08] proposed

to store the watermark in unused LUT entries. This work highlights how a watermark may

take advantage of existing unused resources. However, the same problem as for layout-level

watermarking arises since a veri�er needs access to the bitstream.

To increase veri�ability, the test access ports were used. For instance, in [FT03], the

watermark is generated along with output of the test circuitry and is veri�ed at test time.

The test infrastructure was also leveraged in [CQZ15] where the scan-chain is speci�cally

modi�ed. Depending on the watermark to insert, scan-chain D �ip-�ops (DFFs) are either

connected together by their Q or Q’ outputs. This modi�es the output obtained from a given

test input pattern, allowing one to verify that the watermark is indeed present. This approach

has the advantage of incurring very low overhead. However, an access to the scan-chain

is required to verify the watermark. This access could be exploited by an attacker to assist

reverse-engineering.

To completely alleviate the need for a veri�cation interface, side-channels are a powerful

tool to verify a watermark. In 2008, Ziener et al. [ZT08] introduced a new watermarking

technique which makes the watermark detectable in the power consumption traces. By driving

a large shift register with a smaller one containing the watermark, characteristic power patterns

are created. The electromagnetic channel is also suited to this purpose, as shown in [BBF15],

where a tiny BFSK15 transmitter is embedded inside a device to transmit information in a contact-

less manner. Thermal communication has also been considered by the company Algotronix

[MKM08], but has a very low throughput.

Finite state machine level At the behavioural level, another good candidate to insert a

watermark is the controller of a system, namely the �nite-state machine (FSM). Indeed, as

mentioned above, it usually has unused resources that can be exploited. For instance, if binary

coding of the FSM states is used, then an FSM withm states requires ⌈log2(m)⌉ registers to store

the current state. Therefore, there are 2⌈log2(m)⌉ − m states which could potentially be encoded

but are unused. Reading out the state register provides the watermark.

One more option is to add transitions to the state-transition graph that are passed through

only after a certain sequence of inputs. The watermark is veri�ed by observing the outputs

15Binary Frequency-Shift Keying

28

Chapter 1 – Threats and protections for design data

associated with the traversed states [Oli01; Cui+11].

A known graph can also be embedded into the state transition graph of the FSM [Lew+12].

Inserting the watermark boils down to a graph isomorphism problem or to �nding the closest

subgraph in order to modify it. Similarly, verifying the watermark requires to transition through

the embedded graph states.

Finally, the states encoding itself may be modi�ed to embed a watermark [ZC12]. The state

encoding is then extracted by making the outputs dependent on it or by reading out the state

register using a scan chain.

Algorithmic level Finally, at the highest level of abstraction, a watermark is embedded at

the algorithmic level. Targeting digital signal processing applications, [CD00] proposed to

modify the parameters of a �nite impulse response �lter according to the watermark to insert.

The response of the �lter is then slightly modi�ed, allowing the watermark to be veri�ed.

One more solution is to send out the watermark at the output when those are considered

to be not valid [LB12].

1.5.1.3 Conclusion on identi�cation of an IP core

IP core identi�cation allows a designer to embed an identi�er into a design and claim ownership.

They have the advantage to be deeply tied to the design and hard to remove. Nevertheless, their

drawback is that they identify the IP core but not the actual instances themselves. Moreover,

they can be hard to set up for software IP cores, for which the high level of abstraction does not

allow for low level identi�cation. This makes it impossible for a designer to identify and count

instances individually. Therefore, metering, i.e. counting the number of operating instances of

the IP core, is not possible with this approach.

In order to achieve metering, IP core instances must be identi�able individually. The

methods that enable this are presented in the following section.

1.5.2 Identi�cation of individual instances of an IP core

Distinguishing instances of an IP core is necessary to provide information feedback to the

original designer. Without knowing how many times an IP core is used, the only licensing

solution is a front-end payment. Therefore, a designermust be providedwithways to distinguish

and count instances. The solutions proposed to this end are presented in the following sections.

1.5.2.1 One-time programmable non-volatile memory

Instead of setting the content of the NVM at design time, a trusted third party or the designer

himself writes it once the circuit has been manufactured. Yet this identi�er must then be

permanently stored inside the device to allow for a read-back later. A potential attacker should

29

Chapter 1 – Threats and protections for design data

also not be capable of rewriting an identi�er of his choice. For this reason, so-called OTP-NVM

must be used. There are three types of OTP-NVM available [Sko05]:

Soft OTP-NVM The memory is a standard electrically programmable ROM but without

erasure interface. This way, the content can be written only once. A typical erasure interface

is a quartz window above the die which allows ultraviolet light to erase the content of the

memory (see Figure 1.6). By closing this window permanently, the memory cannot be erased

anymore.

Figure 1.6 – Examples of integrated circuits embedding an electrically erasable ROM that can
be erased by shining UV light through the quartz window16.

Fuses By default, the value stored in the cell is a logic 1. When setting a high voltage17

across a conductor, it breaks and turns into an open circuit. Thus only logic 0s are programmed.

Some technologies require a laser shot instead of a high voltage to blow the fuse. They have

the disadvantage to be programmable only before die packaging, since the laser must be shot

on the die directly.

Anti-fuses By default, the value stored in the cell is a logic 0. When setting a high voltage

across an insulator, a conductive �lament is created, turning the insulator into a conductor.

Thus only logic 1s are programmed. Some non-volatile FPGAs make use of this technology for

their con�guration [Mic17a].

These methods, however, require physical access to the device in order to program the

identi�er into it. They also have a lower density than mask ROM since they require a write

circuitry, which is used only once. Providing the high voltage necessary to program the

OTP-NVM can lead to area overhead too.

Therefore, a new way to obtain instance-speci�c identi�ers has emerged and is called

�ngerprinting.

16EPROMs 4M, 2M, 256k, 16kbit, by yellowcloud licensed under CC BY 2.0 https://www.�ickr.com/photos/
yellowcloud/4525399624

17Higher than normal operation, typically around a few volts.

30

https://www.flickr.com/photos/yellowcloud/4525399624
https://www.flickr.com/photos/yellowcloud/4525399624

Chapter 1 – Threats and protections for design data

1.5.2.2 Fingerprinting

Just like a human �ngerprint is used to derive a unique identi�er from random physical

characteristics, �ngerprinting aims at measuring the realisations of random variables that

occurred in a circuit when it was manufactured. Such variations must be �xed so that the

identi�er is reliable enough. To this end, process variations inherent to CMOS manufacturing

may be extracted. If the inter-device variation is su�cient, individual instances are reliably

identi�ed. Thus �ngerprinting requires to characterise physical parameters of the device by

a precise measurement of analog signals. Such parameters can be path delays or transistors

threshold voltage for instance.

Paths delay The �rst solution to extract random process variations is to measure the delays

of a chosen subset of the circuit paths. By applying the clock-sweeping technique [Tuz+12],

individual path delays can be obtained. Gate level characterisation [WKP11] is another tech-

nique able to measure the delay at the gate level. It consists in measuring the delay of multiple

paths containing a subset of n gates in order to build a system of n equations and solve it to

recover the individual gates length.

Transistors threshold voltage The other parameter which is randomly in�uenced by pro-

cess variations is the threshold voltage of transistors. Gate level characterisation is also useful

here [WKP11]. By measuring the power consumption of small portions of a circuit involving

a subset of n gates, a system of n equations can be built and solved to extract the threshold

voltage Vtℎ of individual gates.

Conclusion on �ngerprinting Fingerprinting has the disadvantage of calling for measure-

ment of analog signals to derive the device intrinsic parameters. These are highly dependent

on the implementation and would be totally di�erent from one technology node to another.

Rapidly, structures have been proposed that can extract random physical process variations

and provide a digital “digest”. Such a structure is called a PUF.

1.5.2.3 Silicon Physical Unclonable Functions

Formally, a PUF is a physical entity which produces a binary string as a response to a request

called a challenge. Together, they form a challenge-response pair (CRP). As the term “physical”

suggests, the information in the binary string depends on physical characteristics of the PUF.

Some PUFs accept a challenge before generating a response accordingly. The challenge

is typically used to select which parts of the physical structure are operated to generate the

response. Accordingly, CRPs (ci , ri) can be obtained. Depending on the number of challenges

available, a number of CRPs can be recorded. This is done during the enrolment phase. Moreover,

sending an identical challenge to multiple instances of an IP core results in di�erent responses.

31

Chapter 1 – Threats and protections for design data

Thus those CRPs identify an IP core instance in a unique manner. Therefore, in order to

authenticate an IP core, a server can send a challenge to it and wait for the associated response.

If it matches the CRP stored in the database, the IP core is authenticated. A toy example of an

authentication protocol is shown in Figure 1.7.

Server Device i

at t = 0 Generates challenge ci
ci

⟶

enrolment ri,0 ← PUF(ci)
ri,0
⟵

Stores (ci , ri,0)

at t = t1 Requests activation
ci

⟶

identi�cation ri,t1 ← PUF(ci)
ri,t1
⟵

Validates if ri,0 = ri,t1

Figure 1.7 – Basic protocol for IP identi�cation using a PUF.

The internal structure of a PUF, since it directly relies on random manufacturing pro-

cess variations, is supposedly “unclonable”. However, modelling attacks have been mounted

[Rüh+10], highlighting the gap between theoretical and practical security for PUFs [Bec15].

In order to evaluate a PUF, two metrics are commonly used [MGS13]. The �rst one,

steadiness, characterises the stability of the PUF response over time by giving the average ratio

of unreliable response bits. It is given by Equation (1.1), where ri is a reference response of

device i obtained by averaging the m samples Ri,t . The di�erence between a response and the

average is given by the Hamming distance HD.

steadiness =
1

m

m

∑
t=1

HD(Ri,t , ri)

n
(1.1)

The target value for steadiness is 0, which corresponds to a PUF that generates identical

responses to the same challenge over time.

Besides stability of responses over time, another criterion which is used to evaluate a PUF

is uniqueness. It indicates how di�erent the responses obtained from two PUFs implemented on

separate devices are. Given n devices, pairwise comparison of responses obtained from devices

i and j leads to a de�nition for uniqueness given in Equation (1.2)

uniqueness =
1

n(n − 1)m

n

∑
i=1

n

∑
j=1
j≠i

m

∑
t=1

HD(Ri,t , rj)

n
(1.2)

Those two criteria are the most commonly accepted. Some other works proposed to test

randomness but the small amount of data which can be gathered leads to a lack of statistical

32

Chapter 1 – Threats and protections for design data

signi�cance. In order to implement silicon PUFs, several architectures have been proposed.

They are presented in the following sections.

Arbiter PUF Arbiter PUFs compare the delay of two manufactured paths which were de-

signed to be of identical length [Gas+02]. Due to manufacturing process variations, two paths

of the exact same length at design time have a slightly di�erent one after manufacturing.

Therefore, by comparing the time of arrival of a signal after it propagated through those two

paths, one bit of information can be extracted, depending on which path is the shortest.

In order to obtain the bit of information, an arbiter is used. It is a two-input one-output

component which output is 0 if its A input is asserted �rst or 1 if its B input is asserted �rst.

This is an ideal component.

This can be implemented using a DFF that samples the signal from one path while using the

signal from the other path as a clock. The �rst path is then connected to the D input of the DFF

while the second path is connected to the CLK input. If the signal going through the �rst path

arrives �rst, then the rising edge on the signal of the second path will sample a logic 1. The

extracted bit will then be a 1. Conversely, if the rising edge on the clock input occurs while

the signal on the �rst path did not arrive at the DFF yet, a logic 0 is sampled. The extracted bit

will then be a 0. Compared to the ideal arbiter component, a DFF can behave erratically if the

two signals arrive very close from one another. This could violate the setup and hold times of

the DFF, leading to metastability.

Propagation paths can be shared with switch boxes. A switch box has three inputs, two for

data, i0 and i1, one for selection, sel, and two outputs o0 and o1. The output values depend on

the sel input:

o0 =

⎧⎪⎪
⎨⎪⎪⎩

i0, if sel = 0

i1, if sel = 1
o1 =

⎧⎪⎪
⎨⎪⎪⎩

i1, if sel = 0

i0, if sel = 1
(1.3)

The path from input i0 to output o0 has an identical length to the path from input i1 to

output o1. Similarly, the path from input i0 to output o1 has an identical length to the path from

input i1 to output o0. The associated delays should be equal too. Let us denote the delay from

input a to output b as ta,b then we have for the switch box:

ti0,o0 = ti1,o1

ti0,o1 = ti1,o0
(1.4)

Thus the selection input of the switch box works as a challenge input, allowing one to

select either one or the other pair of internal paths.

In an arbiter PUF, multiple switch boxes are chained. The set of selection inputs of all the

switch boxes can be seen as an n-wide challenge input when n switch boxes are used. One

�nal arbiter is used to sample the signals as described previously. Figure 1.8 shows a schematic

of chained switch boxes along with an arbiter, establishing an arbiter PUF.

33

Chapter 1 – Threats and protections for design data

Figure 1.8 – Arbiter PUF with challenge “011...1” applied, comparing the blue and red
path.

On the one hand, arbiter PUFs are easy to implement on ASIC where the path length is

geometrically measurable. Two theoretically identical paths can then be easily constructed,

as well as a balanced switch box for which Equation (1.4) is veri�ed. On the other hand, the

intrinsically constrained routing found in FPGAs prevents such a structure to be implemented

on this type of hardware platform [Che+13]. Indeed, two routing paths cannot be made of

perfectly equal length on an FPGA, leading to a bias toward 0 or 1 at the PUF output.

Arbiter PUFs have the advantage to incur low area overhead due to the density brought by

switch boxes. They provide an exponential number of challenges with respect to the number

of switch boxes used, although the responses obtained from these challenges are correlated.

Moreover, they extract process variations e�ciently and lead to high uniqueness. They also

exhibit low steadiness.

Ring oscillator PUF Some PUF structures are much more suited for implementation on

FPGA targets. Among them, the ring oscillator PUF (RO-PUF) [SD07] structure is easy to

implement. It generates a response bit by comparing the frequency of two ring oscillators

selected from a pool of theoretically identical ones. A ring oscillator is a chain of an odd number

of inverters. In order to make it controllably activable, an AND gate is usually inserted in the

chain, with one of its inputs connected to a control signal. This allows to stop the oscillations

in the ring oscillator when it is not used, which is useful to limit power consumption and

interference between ring oscillators. The output of the ring oscillator cell is tapped from the

output of one of the inverters of the chain. A ring oscillator cell is shown in Figure 1.9a.

In order to compare the frequency of two ring oscillator cells, their respective outputs are

sent to two counters of the same size. The �rst counter to over�ow shows which ring oscillator

has the highest frequency. The result of this comparison is one bit of the PUF response. In

a ring oscillator PUF, ring oscillator are then compared pairwise. A multiplexer is used to

select which ring oscillators are compared and activate them. The general architecture of a

ring oscillator PUF is shown in Figure 1.9b.

Ring oscillator PUFs have the advantage to be easy to design, both on ASIC and FPGA. They

exhibit low steadiness and high uniqueness [Mai+10]. Moreover, further re�nement in the

architecture gives the possibility to extract more than one response bit per comparison. Indeed,

instead of simply comparing the frequencies, the counter values can be subtracted [KL16]. Some

34

Chapter 1 – Threats and protections for design data

(a) Ring oscillator cell (b) Ring oscillator PUF

Figure 1.9 – Ring oscillator cell and PUF.

bits of the di�erence can be exploited as response bits. Previously, with simple comparison,

only the sign bit was extracted. However, precise characterisation can determine which other

bits are worth using. Indeed, the least signi�cant bits of the di�erence are greatly a�ected by

noise and can not be used reliably. Yet the most signi�cant bits are not useful either because the

counter might never reach su�ciently high values if the counter is over-sized. Characterisation

helps to determine the optimal counter size and exploit as many bits as possible.

Nevertheless, ring oscillator PUFs also have drawbacks. They come with high overhead,

since the number of possible independent CRPs grows only linearly with the number of ring

oscillator cells instantiated. Ring oscillators also have a strong electromagnetic emanation,

and are sensitive to electromagnetic attacks in return [Bay+12]. Their frequency can then be

modi�ed by electromagnetic injection. Moreover, when multiple ring oscillators are imple-

mented close to one another, they tend to synchronise their frequencies [Boc+10], just like

two mechanical pendulums do when they are attached on the same wall. This phenomenon is

referred to as “locking”. If two ring oscillators are oscillating at the same frequency, comparing

their frequencies obviously makes no sense.

In order to avoid the locking phenomenon, ring oscillators that oscillate only temporarily

have been proposed. They are presented in the following section.

Transient e�ect ring oscillator PUF The transient e�ect ring oscillator (TERO) cell [VDF13]

is a controlled ring oscillator but with the control input fed at two stages of the chain (see

Figure 1.10). Both top and bottom branches of the TERO cell must have the same propagation

delay. When the control signal is asserted, two events propagate in the loop. After some

time, one of the events catches up with the other, stopping the oscillations. The number of

oscillations is stable enough to be exploited by a PUF.

The transient e�ect ring oscillator PUF (TERO-PUF) architecture presented in [Bos+14]

is similar to the one shown in Figure 1.9b, but a subtractor is used instead of a comparator.

35

Chapter 1 – Threats and protections for design data

Figure 1.10 – Transient e�ect ring oscillator cell.

Similarly, multiple response bits can be extracted for each subtraction performed.

TERO-PUFs have very good uniqueness and steadiness characteristics (see [CBM16] for

ASIC and [MBC16] for FPGA implementations). However, they are hard to implement on

FPGAs, where balancing the two branches of the TERO cell is challenging. Similarly to RO-PUFs,

the number of challenges grows linearly with respect to the number of TERO cells.

All the PUFs presented so far require an additional structure to be added to the circuit.

Reusing an existing structure could reduce the area overhead. This is what the static random

access memory (SRAM) PUF attempts to.

SRAM PUF Due to the mismatch between the two inverters of an SRAM cell, when �rst

powered, a logic 0 or 1 is stored. An SRAM PUF exploits this random start-up state of an

SRAM array as a response. Obtaining the PUF response then consists only in reading the

uninitialised value found at a speci�c address. The address at which the value is read is the

challenge. Therefore, the number of challenges available only grows linearly with the number

of SRAM cells.

An initialisation pattern which could be observed in an SRAM array is shown in Figure 1.11.

Black cells store a logic 0, white cells store a logic 1. There are some cells, however, which

start-up state is not stable. Those grey cells store either a logic 0 or a logic 1. Grey cells are

unstable bits of the PUF response while black and white ones are stable.

Figure 1.11 – Typical initialisation pattern observed in an SRAM array.

SRAM PUFs exhibit quite high steadiness in general, with a typical error-rate that can

reach 10% [CLB11]. Moreover, the argument that it uses existing resources is tenuous since an

SRAM array used for a PUF should be reserved for this usage only. Indeed, using it for common

temporary data storage can lead to uneven stress of the SRAM cells. This increases both the

bias for some bits of the PUF response and the PUF error-rate, since the behaviour of some

cells can vary over time.

36

Chapter 1 – Threats and protections for design data

Nevertheless, they are very easy to implement since no speci�c tuning step is required.

They can be implemented on any electronic system where a memory is present, be it an ASIC,

and FPGA or even a micro-controller. Among PUFs, only SRAM PUFs found their way to

industrial products, o�ered by companies such as Intrinsic ID18.

1.5.2.4 Conclusion on PUFs

PUFs have been extensively studied in the last twenty years and have proved to be an e�cient

way to extract an instance-speci�c identi�er for IP cores. The advantages and drawbacks of

the considered PUF architectures are summarised in Table 1.2.

Architecture Advantages Drawbacks
Industrial
adoption

• easy to implement on ASIC • hard to implement on FPGA
Arbiter PUF • low area • correlation between responses ×

• high uniqueness and low steadiness

• easy to implement on ASIC • large area

RO-PUF
• easy to implement on FPGA • strong EM interaction ×
• multiple response bits per challenge • frequency locking [Boc+10]
• high uniqueness and low steadiness

• easy to implement on ASIC • hard to implement on FPGA
TERO-PUF • multiple response bits per challenge • large area ×

• high uniqueness and low steadiness

• easy to implement on ASIC • high steadiness

SRAM-PUF
• easy to implement on FPGA ✔
• use existing resources
• high uniqueness

Table 1.2 – Advantages and drawbacks of the considered PUF architectures.

Most of the time, the uniqueness observed is satisfactory and allows to uniquely identify

the instances. The problem lies in the steadiness. Indeed, a PUF with a perfectly stable response

to the same challenge over time does not exist. As a consequence, some sort of error-correction

mechanism must be integrated as well. Classical error-correction codes can be used to this end

and are presented in the following section.

1.5.2.5 Error-correction codes for PUFs

The advantage of storing an identi�er in an OTP-NVM is that it can be reliably retrieved on

demand. In the case of a PUF, however, some of the response bits are not perfectly stable

and vary over time with an identical challenge. This change can be caused by power supply

voltage variations or environmental electromagnetic noise. Nevertheless, when one needs to

authenticate a circuit, the identi�er must be reliable.

18http://www.intrinsic-id.com

37

http://www.intrinsic-id.com

Chapter 1 – Threats and protections for design data

Traditionally, the way to tackle this issue is to generate helper data from the PUF response

obtained at the enrolment phase. Later on, when the PUF is queried again with an identical

challenge, this helper data is used to get the error-prone response to match with the response

stored on the server.

A very good and thorough overview of helper data algorithms usage with PUFs is given

in [Del+15]. These helper data are generated by secure sketches that employ the code-o�set

or the syndrome construction [Dod+08]. A secure sketch is a primitive which includes two

procedures: sketch and recover. The sketching procedure outputs a string s from an input

w: SS(w) = s. Later on, s is used in the recovery procedure to correct the errors in a noisy

version w̃ of the input: Rec(w̃, s) = w. Table 1.3 gives details about those two procedures for

the code-o�set and syndrome constructions.

Sketch SS(w) Recover Rec(w′, s)

Code-o�set Select random codeword c c′ = w′ ⊕ s

(or encode random word) Correct c′ to c

SS(w) = w ⊕ c = s w = c ⊕ s

Syndrome SS(w) = syn(w) = w.H T = s Find e such that syn(e) = syn(w′) ⊕ s

w = w′ ⊕ e

Table 1.3 – Sketch (SS) and recover (Rec) procedures for code-o�set and syndrome constructions
of secure sketches.

Proposed schemes found in literature employ either the syndrome [SD07; Her+12; MHV12;

Hil+15] or the code-o�set [Bös+08; MTV09a; MTV09b; LPS12] construction. The underlying

error-correcting codes employed can be a BCH19 [SD07; Her+12], Reed-Muller [MTV09b; LPS12]

or convolutional code [HYS16] for example. In order to increase error tolerance, concatenated

codes were used in other works. Typically, a repetition code is concatenated with a BCH

[MHV12] or a Reed-Muller code [Bös+08]. In 2015, Hiller et al. [Hil+15] used generalised

concatenated Reed-Muller and repetition codes.

Speci�cally when applied to PUFs, several suited encoding methods have been proposed.

Index-based syndrome (IBS) coding [YD10] incorporates bit-speci�c con�dence information

and picks the most reliable bit among q. Complementary index-based syndrome coding [Hil+12]

improves on it by repeatedly applying IBS coding to blocks of PUF bits and picking the most

and less reliable bit alternatively. Systematic low leakage coding [HYP15] hides the data bits

of a codeword by XORing them with other remaining PUF bits. In 2016, another technique

called di�erential sequence coding [HYS16] stores the distance between stable PUF bits and the

exclusive-or of the PUF bit and a known codeword bit. Although these solutions can reduce

the error-rate, an additional error-correcting code is always required to reach acceptably low

failure rate values.

19Bose, Chaudhuri, Hocquenghem

38

Chapter 1 – Threats and protections for design data

All these methods, however, have the drawback to occupy a signi�cant amount of resources

on the device side. Moreover, they often need a great amount of PUF bits in order to obtain

su�cient �nal entropy to generate a 128-bit key. Table 1.4 shows implementation results of

the presented schemes on FPGA when given in the original articles. The implementations

that achieve the best performance for the considered criteria are in bold. These schemes can

accommodate quite high error-rates, around 15% on average. With constant improvements

coming for PUF implementations, such high error rates are less likely. Typically, RO-PUF

[Mai+10] and TERO-PUF [MBC16] implementations have an average error-rate below 5%.

Reducing the acceptable error-rate leads to less complex codes and more e�cient hardware

implementations in terms of occupied logic resources.

Article
Logic resources (Slices)

Block Failure Acceptable PUF bits required
Spartan 3 Spartan 6 RAM Bits rate error-rate for 128-bit entropy

[Bös+08] 168 0 1.49 × 10−6 15% 4640

[MTV09b] 164 192 10−6 15% 1536 (12×128)

[MHV12] 221 0 10−9 13% 2226

[Hil+12] 250 0 10−6 15% >1536 (12×128)

[Her+12] >59 0 10−6.97 21.6% 1785

[Hil+15] 179 0 1.48 × 10−9 14% >130

[HYS16] 75 27 10752 10−6 15% 974

Table 1.4 – Logic resources required by the presented error-correction schemes on FPGA.

Conclusion on identi�cation of IP core instances

In order to uniquely identify IP core instances, taking advantage of random manufacturing

process variations is de�nitely a good solution. To this end, PUFs are very good candidates.

Most of them exhibit good uniqueness whichmeans that the probability that two instances share

an identical identi�er is negligible. Therefore, individual IP core instances can be identi�ed,

which is the basic requirement to achieve metering.

The errors observed in PUF responses, however, are an issue. Indeed, by requiring the

instantiation of an error-correction core, the logic resources occupied by the PUF grow dramat-

ically. Thus low overhead error-correction solutions are developed and progressing [Her+12;

Hil+15]. They are required to improve the stability of PUF responses and make PUFs a usable

hardware root of trust. Nevertheless, identifying instances of an IP core is not enough to

prevent illegal copying or reverse-engineering. To this end, modifying the design itself is

necessary. The aim of these modi�cations is to prevent the illegal action from happening,

making it prohibitively hard to carry out. Indeed, it is important to note that the goal here is

not absolute security. Instead, making illegal actions su�ciently costly is considered su�cient.

39

Chapter 1 – Threats and protections for design data

1.5.3 Internal architecture concealment

Protecting the intellectual property against reverse-engineering can be done at di�erent levels.

The aim is to prevent an attacker from recovering the internal architecture of a design.

1.5.3.1 Split manufacturing

In order to hide the architecture of a design, the �rst method is to perform split manufacturing.

Manufacturing a chip comes in two parts, the front end of line (FEOL) and the back end of line

(BEOL), as shown in Figure 1.12.

Figure 1.12 – Front end of line and back end of line layers in the CMOSmanufacturing process20.

The FEOL is the set of layers that incorporate the smallest features like transistors, capacitors

and resistors, without interconnect. The BEOL includes all interconnects, which are larger.

Split manufacturing consists then in having the untrusted foundry to manufacture only

the FEOL part. Thus the �nest process node available can be used to implement the individual

transistors. Afterwards, the devices are shipped to a trusted foundry, which performs the

remaining manufacturing steps of the BEOL [Ime+13], where the features do not need to be

so small. 3D integration allows for a good assembly of the parts that were manufactured in

di�erent foundries [Huf+08]. An attacker who has access only to the FEOL design would have

to reconstruct the whole interconnect network.

However, the security of split-manufacturing is questioned. Indeed, FEOL features that

are connected are usually not far from one another, leading to the possibility of mounting

a so-called proximity attack [RSK13]. Therefore, a way to modify the design as a whole is

required. This is the aim of logic obfuscation.

20Cmos-chip structure in 2000s, by Cepheiden licensed under CC BY-SA 3.0 https:// commons.wikimedia.org/
wiki/File:Cmos-chip_structure_in_2000s_(en).svg

40

https://commons.wikimedia.org/wiki/File:Cmos-chip_structure_in_2000s_(en).svg
https://commons.wikimedia.org/wiki/File:Cmos-chip_structure_in_2000s_(en).svg

Chapter 1 – Threats and protections for design data

1.5.3.2 Logic obfuscation

The second way to hide the internal architecture of an IP core is to use logic obfuscation. In a

software context, a de�nition of obfuscation is proposed by [Hac03]:

Transform a program P into another program P’ harder to reverse engineer with the

same observable behaviour.

We can apply this de�nition to our use case simply by replacing the program by the IP core. The

observable behaviour are the outputs of the core. Making the design harder to reverse-engineer

can be done at several level of abstraction, from the gate-level to the source code. Optimally,

this should only allow for a black box usage of the IP core.

Obfuscation of the hardware implementation At the lowest level of abstraction, the logic

function of individual logic gates can be obfuscated. For example, the company Syphermedia

[Coc+14] o�ers logic gates that look the same even though they achieve a di�erent logic

function. By modifying the gate topology, as shown in Figure 1.13, the NAND (Figure 1.13a)

and the NOR (Figure 1.13b) gates look the same.

(a) NAND gate (b) NOR gate

Figure 1.13 – Active layer of Syphermedia gates [Coc+14].

Exploring this idea further, a standard structure can be made programmable to turn it into

any logic gate. This recon�gurable element can simply be a k-input look-up table (LUT), as

presented in [BTZ10]. In [Raj+13], a structure which can act as an XOR, NAND or NOR gate is

described. It contains 19 contacts that change the functionality of the gate depending on which

of them are real or dummy. The number of achievable logic functions was extended in [McD+16]

by implementing a so-called polygate. The polygate is described as a {0, 1}2 × {0, 1}3 → {0, 1}

function. It implements any of the standard 2-input logic gates with 3 con�guration bits.

Another idea, developed in [SHF14], consists in changing the dopants polarity to con�gure

a di�usion programmable ROM cell, to either 0 or 1. This allows to design cells that act as

an inverter or a bu�er [Mal+15]. All the layout layers are the same except the dopant layer,

making reverse-engineering from a delayered circuit very di�cult. These cells are aggregated

around a 4-input NAND gate, one on each input and one at the output [Mal+15]. Depending on

the dopants, up to 162 di�erent logic functions can be implemented.

41

Chapter 1 – Threats and protections for design data

The more complex the solutions the larger the induced area overhead. In [McD+16], the

area overhead ranges from 200 to 1800%. In [Mal+15], it goes from 311 to 770%. To maintain a

reasonable overhead, only a few strategic gates of the circuit can be modi�ed. For example, in

[Mal+15], only the S-boxes of the PRESENT cipher are obfuscated.

Another solution to make reverse-engineering harder is to exploit the laws of Boolean

algebra “backward” [CBH16a]. For example, the implementation can follow the disjunctive

normal form or the conjunctive normal form strictly, using onlyAND andOR gates and inverters.

The function Y = A ⋅ B ⋅ C , whose schematic is shown in Figure 1.14a, can be rewritten in

canonical disjunctive normal form (see Equation (1.5)), using AND, OR and NOT gates. The

associated schematic is shown in Figure 1.14b.

Y ′ = A ⋅ B ⋅ C + A ⋅ B ⋅ C + A ⋅ B ⋅ C + A ⋅ B ⋅ C + A ⋅ B ⋅ C + A ⋅ B ⋅ C + A ⋅ B ⋅ C (1.5)

(a) Original boolean function

(b) First step of obfuscation

Figure 1.14 – Logic obfuscation of a boolean function

42

Chapter 1 – Threats and protections for design data

A second step of logic obfuscation can further obfuscate the logic function. The aim is to

increase the number of gates used for the implementation. An example of backward usage of

boolean laws is given in Equation (1.6), with the corresponding schematic shown in Figure 1.14c.

Y ′′ = A⋅B+A⋅B+A⋅B+B⋅C+A⋅C+A⋅C+B⋅C+A⋅C+B⋅C+A+B+C+A ⋅ B+A⊕C+A⊕B+A ⋅ C+B ⋅ C

(1.6)

(c) Second step of obfuscation

Figure 1.14 – Logic obfuscation of a boolean function.

43

Chapter 1 – Threats and protections for design data

Following this concept a step further, only universal logic gates, NAND or NOR, can be

allowed for implementation [PVK16]. Obviously, the area overhead remains very high in all

these cases.

Dummy logic cells can also be inserted into the layout [Coc+14; PVK16]. By making the

layout very dense, those additional gates are hard to distinguish from the original ones.

Structural information may be obfuscated too. In [PVK16], they propose to make the

routing look “generic” by placing the logic gates on a grid. It makes routing less identi�able

by reverse-engineering tools. When an IP core is implemented, the boundaries of individual

sub-components is usually visible. A boundary-blurring technique is presented in [Par+10]

that makes sub-components overlap.

All those layout-level techniques can be e�cient but they all require signi�cant area

overhead. Therefore, they cannot be applied to a whole design but must be focused on strategic

locations instead.

Design �les obfuscation When an IP core is not provided as a layout, it is usually in the

form of a �le written in an HDL. To obfuscate these �les, several techniques exist, mostly

inspired by those already used in software engineering. Those modi�cations [OM95; BY07;

Mey+11] include replacing locally static expressions by their values, adding dummy structural

layers, adding dummy variables, renaming variables21, loop unrolling, etc. An example of

VHDL obfuscation is given in Figure 1.15, where the variables name have been changed and

the indentation has not been followed.

LIBRARY i e e e ;
USE i e e e . s t d _ l o g i c _ 1 1 6 4 .ALL ;

ENTITY f u l l _ a d d e r IS

PORT (
a : IN STD_LOGIC ;
b : IN STD_LOGIC ;
c _ in : IN STD_LOGIC ;
q : OUT STD_LOGIC ;
c_ou t : OUT STD_LOGIC) ;

END ENTITY f u l l _ a d d e r ;

ARCHITECTURE r t l OF f u l l _ a d d e r IS

BEGIN −− ARCHITECTURE r t l

q <= a XOR b XOR c_ in ;
c_ou t <= (a AND b) OR (c _ i n AND (a XOR b)) ;

END ARCHITECTURE r t l ;

(a) VHDL description of a full-adder

l i b ra ry i e e e ; use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ; ent i ty
I I 1 I 100O0O i s port (iOOO0101o i io i , OOO000 i I I i IooO1
, I101OO1O0I : in s t d _ l o g i c ; I I1I1O00OO , I 1 1 I I 0 0 0 0O :
out s t d _ l o g i c) ; end ent i ty I I 1 I 100O0O ;
arch i tec ture OO0OO of I I 1 I 100O0O IS begin
I I1I1O00OO <= iOOO0101o i io i xor OOO000 i I I i IooO1
xor I101OO1O0I ; I 1 1 I I 0 000O <=(iOOO0101o i i o i and
OOO000 i I I i IooO1) or (I101OO1O0I and (iOOO0101o i io i
xor OOO000 i I I i IooO1)) ; end arch i tec ture OO0OO ;

(b) Obfuscated VHDL description of a full-adder

Figure 1.15 – An example of VHDL design �les obfuscation.

21A classic example consists in replacing variable names by a sequence of ones, zeroes, and the letters ’l’ and
’O’.

44

Chapter 1 – Threats and protections for design data

Although these modi�cations are very easy to achieve, they are essentially useless after the

design is synthesised. This is indeed one role of the synthesiser to get rid of all the dummy

elements that were added. Moreover, the software engineering ecosystem is full of tools that

can automate de-obfuscation. Speci�cally for FPGAs, the bitstream used to program the target

can be compressed [VMV13]. Even though a bitstream can look undecipherable at �rst sight, it

turns out to be quite structured and easy to remap to a netlist [NR08; BSH12].

To reach a higher level of concealment, encryption must be used instead of simple obfusca-

tion. This is detailed in the next section.

1.5.3.3 Design �les encryption

In order to conceal the architecture of a design, encryption is a useful tool. It goes further than

obfuscation by preventing black-box instantiation of a design without a valid decryption key.

Most of the EDA tools integrate encryption and decryption capabilities for design �les. For

instance, Cadence o�ers ncprotect while Mentor Calibre can also encrypt and decrypt design

�les. These tools make use of the principles of public-key cryptography so that designers can

distribute their design �les securely.

For FPGAs, bitstream encryption is a very common feature nowadays. Both Intel [Alt09]

and Xilinx [Wil15] EDA tools allow a designer to encrypt a bitstream. Since FPGAs are more

and more complex, they now integrate a symmetric cryptographic core which is in charge of

decrypting the bitstream when the FPGA is con�gured.

The adoption of bitstream encryption for most of the products by FPGA vendors is quite re-

cent. Previously, solutions originating from academia have also been proposed [Gas+12; MSV12;

BCM16]. They all exploit partial recon�guration features to allow for secure con�guration.

The wide adoption of bitstream encryption by EDA tools vendors shows that this IP

protection scheme is e�ective. With the cost per transistor constantly decreasing, implementing

a symmetric cipher in an FPGA is now easily feasible. However, Moradi et al. [Mor+11; Mor+13;

MS16] showed that those implementations are vulnerable to side-channel attacks.

1.5.3.4 Conclusion on internal architecture concealment

Hiding the internals of a design can prove very e�cient at deterring attackers. The previously

described methods are well implemented and handled at di�erent stages of the design process.

For example for FPGAs, the bitstream encryption is done by the EDA tool while the decryption

is done at runtime by the hardware. The impact on the standard design �ow is then limited.

Measuring the e�ciency of protection consists in estimating the amount of time required by an

attacker with a speci�c amount of funds available to reverse-engineer the design. The adoption

of these also depends on the impact they have on the performance of the IP core. Although

bitstream encryption for instance does not alter the performances, split manufacturing can

induce additional delay in the interconnections [Hil+13].

45

Chapter 1 – Threats and protections for design data

1.5.4 Degraded modes of operation

The other solution for modifying a design to prevent illegal actions is to incorporate a degraded

mode of operation into it. By default, the design operates in degraded mode. For normal usage,

it can then reach the correct mode of operation but only on certain input conditions. These

speci�c input conditions should be su�ciently hard to achieve from an attacker point of view

but easy to provide for the original designer. This e�ectively makes the design activable. Most

of the time, the activation is done by setting a speci�c value on a dedicated activation input.

There are two possibilities to make a design unusable. The �rst one is to alter the outputs

in a seemingly random way, so that the correlation between the normal and altered outputs

is as low as possible. We refer to this as logic masking. In this case, the outputs are altered as

much as possible and the alteration depends on the value fed to the activation input of the

design. For all input combinations but the correct one, the outputs of the netlist are altered.

The second solution is to force the outputs of the design to a �xed value. We refer to this as

logic locking. As opposed to masking, for locking, no matter what the value that is fed to the

activation input is. For all input combinations but the correct one, the outputs of the IP core

remain the same.

1.5.4.1 Logic masking

Logic masking was �rst proposed in 2008 [RKM08a; RKM10]. Several terms are found in

literature for this method. Originally coined as “logic locking”, even though no actual locking

is performed, it has been successively called “logic obfuscation” [LT15], or “logic encryption”

[Raj+15], although this cannot be related at all to obfuscation as de�ned in [Hac03] or to

encryption in a cryptographic context. A formal de�nition of these terms is proposed in

[CBH16a]. Logic masking consists in inserting linear (XOR, XNOR) gates at speci�c locations

in the netlist, controlled by an activation input on which an activation word (AW)22 must be

fed. This makes it possible to controllably invert some nodes, altering the internal state of the

netlist. The inserted gates have one of their inputs connected to the node, while the other acts

as a activation input. The choice between inserting an XOR or an XNOR gate is dependent on

the associated activation bit. If the activation bit is a 0, then an XOR gate is inserted. The node

is then inverted if the wrong activation bit, a logic 1, is fed. Similarly, if the activation bit is a

1, an XNOR gate is inserted. This is summarised in Figure 1.16.

(a) Original node (b) Masked node when AW[i]=0 (c) Masked node when AW[i]=1

Figure 1.16 – Original and masked nodes depending on the associated activation bit.

22We deliberately use “activation word” instead of “key” to not imply any cryptographic property.

46

Chapter 1 – Threats and protections for design data

Alternatively, instead of modifying simple nodes, inverters can be replaced. In this case,

the corresponding activation bit is inverted. If an XOR gate is inserted to replace an inverter,

the associated activation bit is 1. Similarly, if an XNOR gate is inserted to replace an inverter,

the associated activation bit is 0.

Masking e�ciency evaluation metrics By modifying the internal state of the IP core, the

outputs are modi�ed too. The point is to disrupt them greatly so that they di�er as much as

possible from the non-masked outputs. Originally, in [RKM08a; RKM10], this was dealt with

by ensuring that only one AW is valid, i.e able to make the IP core operate normally. Let C(x)

be an l-input combinational netlist and C(x, k) be a masked version of it. Then ensuring that

only one AW is valid can be expressed by Equation (1.7).

∃!AWvalid | ∀x ∈ {0, 1}l , C(x,AWvalid) = C(x) (1.7)

However, this requirement is not restrictive enough to ensure strong logic masking. Indeed,

while it imposes a condition on the valid AW, it does not deal with invalid ones. Namely, there

is no requirement on the degree of disturbance observed at the outputs when the wrong AW is

fed to the IP core.

Later on, [Raj+12a; Raj+13] a criterion on the Hamming distance was proposed. On average,

when a wrong AW applied, the Hamming distance between the normal and masked outputs

should be as close as possible to 50%. Exhaustive search over the input patterns, both activation

inputs and primary inputs, is not feasible, so simulation must be carried out with m random

input patterns. In [Raj+12a; Raj+13] for example, 1000 input patterns were simulated.

When simulating, a subset in primary input patterns is chosen. Let us denote such set as

Iinputs. This set is a subset of {0, 1}l and has a cardinality of r . A subset of activation input

patterns is chosen. Let us denote such set as IAWs. This set is a subset of {0, 1}n and has a

cardinality of s. Then the requirement on the Hamming distance (HD) between normal and

masked outputs is expressed in Equation (1.8).

∀Iinputs ⊂ {0, 1}l , ∀IAWs ⊂ {0, 1}n ⧵ {AWvalid} | #Iinputs = r, #IAWs = s,

lim
(r ,s)→(2n ,2l)

1
r ⋅ s

∑
x ∈ Iinputs
AW ∈ IAWs

HD(C(x,AW), C(x)) = 0.5 (1.8)

In order to ful�l these requirements, the locations of the inserted masking gates matters a

lot. Several heuristics have been proposed over the years and are presented in the following

section.

As a side note, logic masking can also be considered to be a form of internal architecture

concealment. Indeed, the functionality of the inserted gates being unknown, it makes reverse-

engineering the netlist harder.

47

Chapter 1 – Threats and protections for design data

Nodes selectionheuristics In the original article by Roy, Koushanfar andMarkov [RKM08a],

the netlist nodes to mask were selected at random. However, as pointed out in [Raj+12a], this

method is not very e�cient at altering the outputs and the Hamming distance between normal

and masked outputs remains low. Rapidly, new heuristics were proposed to select more suitable

nodes. In 2009, in the HARPOON design methodology [CB09], the fan-in and fan-out cones

of nodes were exploited. A so-called suitability metric is computed, shown in Equation (1.9),

where FI and FO are the fan-in and fan-out values for the considered node, FImax and FOmax are

the maximum fan-in and fan-out values found in the netlist and w1 and w2 are normalisation

weights which are best set to 0.5. Intuitively, this metric is maximised for nodes that have

either a large fan-in or fan-out, or both.

Mnode = (w1 ⋅ FO
FOmax

+ w2 ⋅ FI
FImax) × FO ⋅ FI

FImax ⋅ FOmax
(1.9)

Later on, [Raj+12b] improved on the random selection heuristic. They identify several

cases in which the masking gates are not inserted optimally, allowing an attacker to propagate

the activation bit at one of the primary outputs. They de�ne the notion of interference graph

to represent the interaction between masking gates. Ideally, this graph should be complete23,

indicating that the masking gates have maximum interaction with one another. This was re�ned

in [Raj+13] with a corruptibility metric, ensuring that the outputs are corrupted when the wrong

AW is fed to the design. All these approaches have the advantage that their associated metric

is easy to compute. Thanks to this, large netlist can be handled and masked. The masking

e�ciency, however, is quite low for these methods, and the correlation between normal and

masked outputs remains high.

A di�erent approach was adopted in [Raj+12a; Raj+15] and is based on fault-analysis. This

time, the metric computed for every node of the netlist is called the fault impact, detailed in

Equation (1.10). The number of patterns that detect a stuck-at-0 fault at the output of the gate

is called NoP0, while the total number of output bits a�ected by this fault is called NoO0. NoP1

and NoO1 are de�ned in a similar way for stuck-at-1 faults.

fault impact = NoP0 ⋅ NoO0 + NoP1 ⋅ NoO1 (1.10)

Since it exploits fault analysis, this method requires a dedicated fault simulator to compute

the values of NoP0, NoO0, NoP1 and NoO1. The tasks performed by such software are usually

computationally demanding. Moreover, authors of [Raj+12a; Raj+15] propose to insert the

masking gates iteratively. After inserting a masking gate on the node that maximises the

fault impact, the fault impact values are recomputed for all the nodes in the netlist. Therefore,

the nodes selection heuristic is at the same time computationally expensive and intrinsically

sequential. In [Raj+15], it is reported that it takes two hours to analyse and mask a netlist of

23A graph is complete if every pair of vertices is connected by a unique edge.

48

Chapter 1 – Threats and protections for design data

3,500 nodes. Thus even though this method achieves e�cient masking, integrating it in EDA

tools is unrealistic. A possible speed-up is presented in [GGY15] but requires to implement a

masking gate on every node of the netlist before programming it and performing an emulation

on FPGA. For very large netlists, this is clearly impractical. A summary of the strict separation

between masking e�ciency and computational simplicity for existing nodes selection heuristics

is shown in Table 1.5.

Heuristic Masking e�ciency Computational simplicity

Random [RKM08a] × ✔
Fan-in/out [CB09] × ✔

Interference graph [Raj+12b] × ✔
Corruptibility [Raj+13] × ✔
Fault analysis [Raj+15] ✔ ×

Table 1.5 –Masking e�ciency opposed to computational complexity for existing nodes selection
heuristics. The symbol× means that the property is not ful�lled, the symbol✔ means that
the property is ful�lled.

Those solutions aim at being integrated into EDA tools. This way, designers could add

masking gates to their design on the �y. The computational complexity of the selection heuristic

is then a strong requirement. Obviously, the masking e�ciency should be optimised as well.

From what can be observed in Table 1.5, there is room for selection heuristics that o�er a

trade-o� between masking e�ciency and computational complexity.

The other solution to make an IP core unusable is to force the outputs to a �xed logic value

until the valid unlocking word is fed. This is referred to as logic locking and presented below.

1.5.4.2 Logic locking

Logic locking, just like logic masking, aims at making an IP core unusable until the valid AW

is fed to it. However, instead of disrupting the outputs as much as possible, those are simply

forced to a �xed logic value. This is expressed in Equation (1.11) where ylocked is the value
at which the outputs are forced when the IP core is locked. Equation (1.7) relative to the

uniqueness of AWvalid still holds for logic locking.

∃!ylocked | ∀AW ∈ {0, 1}n ⧵ {AWvalid}, ∀x ∈ {0, 1}l , C(x,AW) = ylocked (1.11)

The works presented in Chapter 2 of this thesis are the �rst to deal with logic locking at

the combinational level. Previous work focus on higher levels of abstraction and are presented

in the following sections.

Locking FSM The �rst proposition is named boosted FSM [AK07]. It consists in adding states

before the start-up state of an FSM. This is pictured in Figure 1.17, in which the original state

machine is in light grey while the added states are in black.

49

Chapter 1 – Threats and protections for design data

Figure 1.17 – Boosted FSM with added states and transitions in black and original states and
transitions in light grey.

In the original article [AK07], the start-up state is determined by setting the state register

with the output of a so-called random unique block, which is in fact a PUF. If the number of

added states is large compared to the number of original states, then the probability to start in

the added states is great. When a system integrator must activate the IP core, the state register

value is sent to the designer, who then sends back the sequence of activation bits that lead to

the original start-up state. In order to maximise the number of traversed extra states, the FSM

can be set to the added initial state S’0 when reset.

While the system is in the added states, it does not operate. The outputs can be locked

while the system is in these states, achieving logic locking. These states can also be used to

apply logic masking on certain nodes [CB09]. When the original FSM is reached, the system

operates normally.

The boosted FSM can be extended with so-called black-hole states [Kou12]. Once the system

reached one of these states, it cannot come back to the original FSM anymore. It prevents

brute-forcing of the sequence of activation bits. However, an attacker can then reset the system

and start again.

Implementing locking at the FSM level has the advantage to be able to exploit unused states

which can be encoded in the state register. However, all the extra transitions to add between

these states still need combinational logic, leading to quite high overhead [Kou12].

Input/output locking The inputs and outputs of the circuit can integrate anti-fuses to

achieve locking. As shown in [BZB14], an anti-fuse can be easily integrated in a general

purpose input-output pin of a circuit. When the correct key is fed to the device, the correct

anti-fuses are blown and the associated ports are unlocked. Otherwise, if programmed with

the wrong key, the port is unusable.

Adding anti-fuses to a circuit requires speci�c write circuitry with a higher voltage than

the device core. Thus placing the fuses at the input-output ports is a good option since higher

voltages can be found there. This solution has also the advantage to be able to detect recycled

circuits. Indeed, if some fuses of the circuit are already blown when a customer receives it,

then it is clear that the circuit has already been used before.

50

Chapter 1 – Threats and protections for design data

Communication bus locking In complex IP cores, a communication bus is usually used

to interconnect the modules e�ciently. For instance, the AMBA architecture is from ARM

[ARM17], Intel has a bus system called Avalon [Int17] and even the Opencore open-source

repository proposes the Wishbone bus [Ope10]. By controllably scrambling the bus, the

information transiting in it can be corrupted and made unusable [RKM08b]. This is achieved

using a Beneš network, which is a grid of switch boxes as used by an arbiter PUF, described

in Equation (1.3). This solution has the drawback to insert extra components on the paths

where information transits on a chip. This necessarily induces delay, which is often critical for

interconnection buses.

1.5.4.3 Conclusion on degraded modes of operation

O�ering degraded modes of operation for an IP core is a way to implement an activation

scheme. Before activation, the system does not operate correctly. Once the correct activation

word is fed to it, it reaches normal operation. This is the �rst step toward a licensing scheme.

Some more advanced degraded modes of operation are also possible. For example, following

the model proposed for pieces of software, a demonstration mode with limited functionality

or performance can be available [Par+09]. Another possibility is to o�er the demonstration

mode for a limited period of time [CK06]. These possibilities would pave the way for more

�ne-grained licensing models, but are still not implemented. More limited licensing schemes

were developed though, but mostly focus on the security. They are presented below in the

following section.

1.5.5 Licensing schemes

All the previously described methods deal with a speci�c aspect of intellectual property protec-

tion. However, some more holistic works proposed complete licensing schemes. Depending on

how they make sure that the overall process is secure, they can be divided in two categories.

Some of them require a trusted third party, while others make use of public key cryptography.

When classifying the methods as either using a trusted third party or public key crypto-

graphy, this is with respect to how the IP is protected. When a trusted third party is present, it

usually manages keys which are used to encrypt the design and decrypt it on board. Conversely,

public key cryptography is mostly used to send activation keys to the implemented design

directly. Details are given in the following sections.

1.5.5.1 Public key cryptography

The �rst option is to make use of public key cryptography. Most of the times, it is used to

encrypt an activation word. For example, in [RKM08a], a unique pair of public and private

keys is generated by a TRNG embedded in the device. The activation word is encrypted by the

51

Chapter 1 – Threats and protections for design data

IP core designer using the device public key and his private key. It is then decrypted inside the

device using the IP core designer public key and the private key of the device.

In [HL08], targeting ASICs, the IP core designer embeds his public key inside the design and

distributes it. Later on, when a system integrator wants to activate the IP core, he enters his

private key, which is concatenated with a PUF response and hashed to generate an activation

word. This activation word is encrypted by the designer’s public key and sent back to the

designer. The designer can then authenticate the system integrator with other techniques,

decrypt the activation word and send it back to the designer. Since the activation word is

device-speci�c, it is of no use for overproducing the IP core.

Instead of being integrated in the IP core itself, public key cryptography can be leveraged

by the EDA tool. This is done in [Gua+09], where the existing Synplicity Open IP protocol is

improved and another IP sharing protocol is presented. This protocol is detailed in Figure 1.18.

In this case, the IP core encryption and decryption is handled inside the EDA tool.

Using public key cryptography o�ers strong security guarantees, but is very heavy to

implement on-chip [HL08; RKM08a]. Typically, an RSA or elliptic-curve core is implemented

and occupies a lot of logic resources. On the other hand, integrating these capabilities into the

EDA tool can enforce the use of a speci�c piece software.

1.5.5.2 Trusted third party

In some protocols, a trusted third party is required. A trusted third party participates in the

protocol and behaves fairly. It serves as an intermediate and is supposed to be trusted by all

parties, without these parties trusting each other. The existing protocols usually deal with IP

cores provided for FPGAs.

In [Kea02], the trusted third party is the FPGA vendor, which is responsible for assigning

a unique key to each FPGA and maintaining a database of keys. FPGA bitstreams are then

encrypted with these keys, allowing them to be decrypted on only one hardware target that

owns the key.

In [SS06], the trusted third party has multiple roles. It handles the hardware enrolment,

which consists in obtaining a list of CRPs from the PUF. It then uses one response to encrypt

authentication data and sends another response to the IP provider to encrypt the IP core.

Since the responses are only accessible from the hardware, only the FPGA can decrypt these

messages.

A speci�c metering architecture is presented in [MSV12]. In this case, the trusted third

party enrols both the hardware and the IP cores. A device-speci�c metering bitstream is then

generated and handles the secure con�guration of di�erent IP cores on the same device. This

is summarised in Figure 1.19, in which the trusted third party is called “metering authority”, or

MA.

52

Chapter 1 – Threats and protections for design data

Trusted EDA tool
System

IP core designer
integrator

Generate random y
KAi⟵ KAi = gymodp

Generate random x
KBj = gxmodp

Derive shared key
Kij = KDF (KAi , KBj , IDI Pi , IDEDAj)

Sign with private key and
encrypt with shared key

YBAji = [Sig(KEDApr ivj ;KBj , KAi)]Kij

KBj ,YBAji⟶
Derive shared key

Secure Kij = KDF (KAi , KBj , IDI Pi , IDEDAj)
key Decrypt with shared key

exchange T ′ = [YBAji]−1Kij

Verify with EDA public key
Ver(KEDApubj , T

′)
if correct, continue,
otherwise, abort.
Sign with private key and
encrypt with shared key
YABij = [Sig(KI Pprivi ;KAi , KBj)]Kij

YABij⟵
Decrypt with shared key

T ′′ = [YABij]−1Kij

Verify with IP provider public key
Ver(KI Ppubi , T

′′)
if correct, continue,

otherwise, abort.

Encrypt core with shared key

IP block
Yi⟵ Yi = [I Pi]Kij

transmission Decrypt core with shared key
I Pi = [Yi]−1Kij

Figure 1.18 – Example of public-key cryptography usage in the EDA tool for a secure key
exchange and IP block transmission (adapted from [Gua+09]).

The metering authority has multiple roles:

• Embedding a device-speci�c key into every device,

• Program every device with an encrypted metering bitstream,

• Enrol and register IP core along with their speci�c IP key,

• Provide system integrators with the encrypted IP-speci�c key [KI P]KM

53

Chapter 1 – Threats and protections for design data

Figure 1.19 – Example of the implication of a trusted third party (MA) in the transactions
between an FPGA vendor (FV), a system integrator (SYS) and two IP core designers (CV) (from
[MSV12]).

Table 1.6 summarises which keys are known to which parties and integrated into which

devices. This clearly highlights that the only party that owns all the keys is the metering

authority. All other parties rely on it for trusted communication.

Party Devices

Key FPGA
IP core System Metering Empty

FPGA +

vendor designer integrator authority FPGA
metering
bitstream

Device-speci�c KFPGA × × × ✔ ✔ ✔
Metering key KM × × × ✔ × ✔
IP-speci�c key KI P × ✔ × ✔ × ✔
Encrypted metering key [KI P]KM × × ✔ ✔ × ✔
IP core B × ✔ × ✔ × ✔
Encrypted IP core [B]KI P × ✔ ✔ ✔ × ✔

Table 1.6 – Knowledge of the keys and encrypted data among parties (✔: known,×: unknown).

In [GMP07], a key establishment scheme derives the FPGA-speci�c key from the secret

key of the hardware manufacturer, the secret key of the IP core designer and the device ID, as

shown in Equation (1.12) from the hardware manufacturer point of view or in Equation (1.13)

from the point of view of the IP core designer. The FPGA then decrypts the bitstream internally.

KFPGA = key(PKI PO , SKHM , ID) (1.12)

= key(PKHM , SKI PO , ID) (1.13)

All these solutions show that it is not impractical to implicate a trusted third party in the

design process. Moreover, an existing party like the hardware manufacturer can play this role,

making the implementation and adoption easier. Alternatively, trusted third parties could be

implemented just like certi�cate authorities are for software.

54

Chapter 1 – Threats and protections for design data

1.5.5.3 IEEE 1735

It is worth pointing out that the IEEE24 released a standard for “Recommended Practice for

Encryption and Management of Electronic Design Intellectual Property” in 2015 [Soc14]. This

standard speci�es some capabilities that could be added to EDA tools or to HDLs to enforce IP

protection. If adopted, this would allow EDA tools to conform to a common set of IP protection

techniques.

This document is divided into several chapters that deal with di�erent aspects. Chapter 5

de�nes a set of pragmas added to the HDL code to specify interoperability parameters. Chapter

6 de�nes how keys are managed between parties, while chapter 7 de�nes how rights are

handled and granted to parties. In chapter 8, a license system is described that implements

rights management. Chapter 9 de�nes how the visibility of the IP core components is managed,

in particular the characteristics of a model that can replace the actual IP core for simulation

purposes. Finally, chapter 10 de�nes common rights that all tools of the design �ow should

be able to handle. Some companies have implemented this standard into their EDA tools, like

Xilinx in Vivado [Xil13] or Microsemi in Libero SoC [Mic17b].

1.5.5.4 Association of solutions

Finally, the last option to ensure a form of IP protection is to combine previously described

solutions. We give some examples found in the literature, showing how the combination is

actually implemented. For instance in [HL08], the activation inputs of a logic masking module

are controlled by the response obtained from a PUF. This response is compared to a value stored

in memory, fed by the system integrator. Following the principles of public key cryptography,

the system integrator obtained the PUF response from the designer after it has been encrypted

on chip by the designer’s public key and decrypted by the designer with his private key. In

[CB09], a locking FSM is used to control the activation inputs of a logic masking module. The

transitions between the extra states of the boosted FSM depend on a PUF response. In [Kou12],

a boosted FSM in integrated with a PUF, so that the start-up state depends on the PUF response.

This makes the set transitions to the original start-up state dependent on the PUF response.

Therefore, the set of transitions is device-speci�c and is a condition to unlock the IP core.

Finally, in [BZB14], a key is common to all instances of the IP core. This key is compared to one

stored in an NVM and the result of this comparison triggers the blowing of speci�c anti-fuses

located in the input-output blocks. These associations of previously described solutions are

summarised in Table 1.7.

24Institute of Electrical and Electronics Engineers

55

Chapter 1 – Threats and protections for design data

[HL08] [CB09] [Kou12] [BZB14]

Identi�cation of
key

an IP core

Identi�cation of
PUF PUF PUF

IP core instances

Degraded mode logic FSM locking + FSM Anti-fuse
of operation masking logic masking locking locking

Public key Elliptic
cryptography curve

Table 1.7 – Association of solutions to achieve complete IP protection.

1.6 Summary

After presenting which solutions exist in literature to provide IP protection, we can relate them

to the two previously described threats: illegal copying and reverse-engineering. This is shown

in Table 1.8, where the number of black dots refers to the e�ciency of the solution at �ghting

the associated threat. For example, identifying an IP core is not very e�cient at preventing

illegal copying since obtaining the key for one IP core unlocks them all. On the other hand,

o�ering degraded modes of operation is a very e�cient solution to deter potential adversaries.

Identifying individual instances of an IP core is a must for design data protection. It is the basis

of metering. Hiding the internals of a design can prevent reverse-engineering but a su�ciently

motivated and funded adversary will always manage to extract information anyway. Finally,

licensing schemes are e�cient but usually require a lot of logic resources on the device.

Solutions

IP core
IP core Internal Degraded

Licensing
Threats

identi�cation
instances architecture modes of

schemes
identi�cation concealment operation

Illegal
copying

Reverse
engineering

Table 1.8 – Suitability of IP protection solutions at addressing di�erent threats.

The most e�cient combination seems to be the one integrating a unique identi�er for every

IP core instance along with a controllable degraded mode of operation. By adding a symmetric

cipher on top of this, security can be guaranteed. Essentially, a secure remote activation scheme

must be built.

56

Chapter 1 – Threats and protections for design data

1.7 High-level requirements for a secure remote activa-

tion scheme

In the framework of the SALWARE project25, the main objective is the industrial feasibility

of the proposed solutions. From the existing state-of-the-art, we can derive the following

high-level requirements for the secure remote activation scheme.

First of all, it must be easy to operate the activation scheme in a normal way. Namely, a

legitimate system integrator should be able to activate an IP core easily if it has been obtained

under the standard procedure. Contrarily, from an attacker point of view, the protection scheme

should be su�ciently hard to circumvent, that is to say obtaining a functional copy of the

IP core. This is closely related to the security level reached by the cryptographic primitives

implemented in the system. Instead of aiming at long-term security, a moderate security level

should be the target here. Typically, symmetric ciphers would employ 80-bit keys.

In addition to those two basic requirements which form the basis of the IP protection

scheme, we can add some additional speci�cations. When an attacker obtained an IP core in

an illegal way, the IP core must operate in a very disturbed manner, as far as possible from its

original behaviour. All the modes of operation should be a�ected. However, when the IP core

has been unlocked, the protection scheme should have no impact on the performances.

Another characteristic of the protection scheme that is determinant to foster its adoption by

industrial partners is the amount of hardware resources is occupies. Clearly, we aim at making

the whole module as lightweight as possible, so that it does not incur too high additional costs

for the IP core to be protected. Similarly, ease of integration into standard design �ow is also

necessary. In particular, the protection scheme should be as universal as possible and be able

to deal with all sorts of IP cores.

1.8 SALWARE IP protection module

An overview of the IP protection module proposed in the framework of the SALWARE project

is shown in Figure 1.20. On the right-hand side, an integrated circuit that integrates three IP

cores is shown. One of them is protected by the module detailed on the left-hand side, which

communicates with a remote server shown at the bottom. This module comprises the following

components:

Lightweight block cipher It decrypts the encrypted activation word sent by the remote

server. The encryption key is the PUF response.

25http://www.univ-st-etienne.fr/ salware/

57

http://www.univ-st-etienne.fr/salware/

Chapter 1 – Threats and protections for design data

Logic locking/masking module It locks or masks the protected IP core and makes it unus-

able when not activated yet.

PUF It generates a unique identi�er for the IP core instance.

Interactive error correction It makes the device-side and server-side responses (r and r0)

match by carrying out a key reconciliation protocol.

Figure 1.20 – Overview of the IP protection module designed in the framework of the SALWARE
project.

58

Chapter 2

Combinational logic locking

Among the degraded modes of operations presented in the previous chapter, logic locking

consists in setting the outputs of a design to a �xed logic level unless the correct activation

word is fed. So far, high level features, such as the FSM, the input/outputs or the communication

bus, were targeted. This comes with a lack of generality, since most of the techniques are

dependent on the architecture or the features of the design to protect.

To overcome this limitation, directly acting at a lower level, on the combinational logic, is

a solution. The method presented in this chapter leverages the representation of a netlist as

a directed acyclic graph. By inserting so-called “locking gates”, the outputs of the netlist can

be forced to a �xed value. The contribution of this chapter is an algorithm that selects which

nodes must be modi�ed based on the propagation of a locking value through a sequence of

nodes. The nodes selection and insertion process proves to be very computationally e�cient,

allowing to process large combinational netlists of up to 200 000 nodes. At the same time, the

logic resources overhead induced by the extra logic gates is 3% on average.

The code associated with this chapter is available at:
https://gitlab.univ-st-etienne.fr/b.colombier/graph-analysis-based-logic-locking/ tree/master

59

https://gitlab.univ-st-etienne.fr/b.colombier/graph-analysis-based-logic-locking/tree/master

Chapter 2 – Combinational logic locking

Verrouillage combinatoire de la logique

Parmi les modes de fonctionnement dégradés présentés dans le chapitre précédent, le

verrouillage consiste à forcer les sorties d’un composant virtuel à un niveau logique �xe tant

que le mot d’activation correct n’a pas été fourni. Jusqu’à présent, des caractéristiques de haut

niveau, telles que la machine à états �nie, les entrées/sorties ou le bus de communication, étaient

ciblées. Ces techniques sont di�ciles à généraliser, car la plupart dépendent de l’architecture

ou des caractéristiques du composant virtuel à protéger.

Pour dépasser cette limitation, agir directement à un niveau plus bas, celui de la logique

combinatoire, est une solution. La méthode présentée dans ce chapitre s’appuie sur la représen-

tation d’une netlist comme un graphe orienté acyclique. En insérant des “portes de verrouillage”,

les sorties du composant virtuel peuvent être forcées à une valeur logique �xe. La contribution

de ce chapitre est un algorithme qui sélectionne les nœuds à modi�er en se basant sur la

propagation d’une valeur de verrouillage à travers une suite de nœuds. Le processus de sélec-

tion et d’insertion est très e�cace et permet de traiter des composants virtuels combinatoires

contenant jusqu’à 200 000 nœuds. Dans le même temps, le surcoût en ressources logiques induit

par les portes logiques supplémentaires est de 3% en moyenne.

Le code associé à ce chapitre est disponible à :
https://gitlab.univ-st-etienne.fr/b.colombier/graph-analysis-based-logic-locking/ tree/master

60

https://gitlab.univ-st-etienne.fr/b.colombier/graph-analysis-based-logic-locking/tree/master

Chapter 2 – Combinational logic locking

2.1 De�nition

Logic locking is de�ned as the fact to controllably force the outputs of a design to a �xed logic

value unless the correct AW is fed to the dedicated inputs. There can be two de�nitions of logic

locking, depending on the actual number of outputs that are locked.

Let y be the output of the netlist and AWvalid the correct activation word, then total logic

locking is de�ned in Equation (2.1). When total logic locking is applied to IP core, all the

outputs are forced to a �xed logic level unless the correct activation word is fed. The output

value is then y�xed.
∃!y�xed ∈ {0, 1}m | ∀AW ≠ AWvalid ∶ y = y�xed (2.1)

A weaker de�nition of logic locking can be derived in the case where some outputs are not

a�ected when a speci�c AW is provided. This is the more general case. AWvalid unlocks all the

outputs (see Equation (2.2)), its complement AWvalid locks all the outputs (see Equation (2.3))

and all the other possible AWs lock only a fraction of the outputs (see Equation (2.4)).

∃!AWvalid ∶ Iy = Iyunlocked (2.2)

∃!AWvalid ∶ Iy = Iylocked (2.3)

∀AW ∉ {AWvalid,AWvalid} ∶ Iy = Iylocked ∪ Iyunlocked (2.4)

In this general case (Equation (2.4)), the set of output bits, Iy can be seen as the union of

two subsets. The set Iylocked corresponds to the set of outputs which are forced to a �xed logic

value by a speci�c AW. The set Iyunlocked corresponds to the set of outputs which are not forced to

a �xed logic value by this speci�c AW. The cardinality of the sets Iylocked and Iyunlocked depends on

the AW fed. Some AWs will lock more outputs than others.

In order to implement combinational logic locking, so-called locking gates are inserted

inside the original netlist. We �rst describe a naive implementation of the weak de�nition of

logic locking, before formalising and giving details about a more e�cient method based on

graph analysis. We then provide means of achieving the de�nition of logic locking shown in

Equation (2.1).

2.1.1 Naive description

To force an output of a design to a �xed logic value, one of the inputs of the �nal logic gate

must be set to its corresponding controlling value. For example, setting a logic 0 to one of the

inputs of a NAND gate forces its output to 1. Table 2.1 gives the controlling value for the usual

non-linear logic gates. Indeed, only linear logic gates have a controlling value. The output of

linear logic gates like XOR or XNOR cannot be set to a �xed logic value by controlling only

one of the inputs.

61

Chapter 2 – Combinational logic locking

Logic gate Controlling value Forced output value

AND 0 0

OR 1 1

NAND 0 1

NOR 1 0

Table 2.1 – Controlling value of non-linear logic gates and the associated forced output value

In order to force the controlling value, locking gates are inserted. If the controlling value is

0, an AND gate is inserted to controllably force it to 0. If the controlling value is 1, an OR gate

is inserted to controllably force it to 1. An example of how an output is modi�ed is given in

Figure 2.1. In Figure 2.1a, the �nal gate before the output is a 2-input NAND. The controlling

value of an NAND gate being 0, an AND gate is added for logic locking to be able to controllably

force this input, X0 here, to 0. The lockable output is shown in Figure 2.1b.

(a) Original output logic gate (b) Locked output logic gate

Figure 2.1 – Modi�cation of an output logic gate

When the locking input AWi of the locking gate (in dark grey) is set to 0, which is the

locking value, the wire that propagates the controlling value, X0mod
is forced to 0. Since 0 is the

controlling value of the original output gate (in white), the original output Y is forced to 0.

Conversely, when the locking input of the locking gate is set to 1 which is the unlocking value,

the wire that propagates the controlling value has the same logic value as the other input X0.

In this case, the overall NAND logic function is preserved. By repeating this process for all the

output gates of a design, all the outputs can be controllably forced to a �xed logic value.

2.1.2 Logic function analysis using Boole’s expansion theorem

Boole’s expansion theorem [Boo54] states that an n-input boolean function can be split into two

parts containing two cofactors, later called Shannon cofactors. This is shown in Equations (2.5)

and (2.6), where F is the boolean function, and Fx and F ′
x are the two cofactors. The positive

cofactor Fx is equal to F with the variable x set to 1. The negative cofactor F ′
x is equal to

F with the variable x set to 0. Equation (2.5) shows the Sum-of-Products (SoP) form, while

Equation (2.6) shows the Product-of-Sums (PoS) form.

62

Chapter 2 – Combinational logic locking

F = x ⋅ Fx + x ⋅ F ′
x (2.5)

= (x + F ′
x) ⋅ (x + Fx) (2.6)

It is possible to highlight logic locking in both these decomposition.

Lemma 1 A boolean function F is locked to the value ylocked by the variable x when x = 0 if F
can be written as:

F = x ⋅ Fx + x ⋅ ylocked (2.7)

in SoP form, or as:

F = (x + ylocked) ⋅ (x + Fx) (2.8)

in PoS form.

Lemma 2 A boolean function F is locked to the value ylocked by the variable x when x = 1 if F
can be written as:

F = x ⋅ ylocked + x ⋅ F ′
x (2.9)

in SoP form, or as:

F = (x + F ′
x) ⋅ (x + ylocked) (2.10)

in PoS form.

Any boolean function that can be identi�ed with Equation (2.7), (2.9), (2.8), (2.10), where

ylocked is a constant, can be locked by the x variable.

For a 2-input AND gate, we can write Y = X0 ⋅ X1 + X0 ⋅ 0. This highlights, according to

Equation (2.7), that the output of an AND gate can be locked to 0 by setting its input X0 to 0.

Similarly, for a tree of seven 2-input OR gates we can write the following equality:

Y = X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7

= (X0 + X1 + X2 + X3 + X4 + X5 + X6 + X7) ⋅ (X0 + 1)

This shows that such a structure can be locked by setting its input X0 to 1, according to

Equation (2.10). All the other inputs could be used as well.

Figure 2.2 shows two slightly di�erent 4-input logic functions.

63

Chapter 2 – Combinational logic locking

(a) X0, X1, X2 or X3 can lock the output to 1 (b) Only X3 can lock the output to 0

Figure 2.2 – Two examples of logic functions and the inputs that can lock their output

On the left-hand side, Figure 2.2a, the logic function is:

F = (X0.X1) + X2 + X3

= X0 + X1 + X2 + X3

= (X0 + 1) ⋅ (X0 + X1 + X2 + X3)
= (X1 + 1) ⋅ (X1 + X0 + X2 + X3)
= (X2 + 1) ⋅ (X2 + X0 + X1 + X3)
= (X3 + 1) ⋅ (X3 + X0 + X1 + X2)

These PoS forms can be identi�ed with Equation (2.8) and (2.10), showing that the output

of this function can be locked to 1 by forcing X0 or X1 to 0 or X2 or X3 to 1.

Conversely, on the right-hand side, Figure 2.2b, the logic function is:

F = ((X0.X1) + X2) ⋅ X3

= X3 ⋅ (X0 + X1 + X2) + X3 ⋅ 0

These SoP form can be identi�ed with Equation (2.7), showing that the output of this function

can be locked to 0 by forcing X3 to 0.

Finding such identities in the logic equation of the outputs of a circuit is tedious, since

this requires the manipulation of complex equations. Moreover, most of the boolean functions

cannot be locked. Finally, this does not favour the nodes that are far from the outputs. This is

an issue since the locking gates could be very easily identi�ed in the netlist if they are very

close to the outputs. For instance, for the function shown in Figure 2.2a, X0 or X1 are better

suited than X3 for combinational logic locking. In order to overcome this, another point of

view can be taken. By considering the schematic of the boolean function implementation, we

can highlight interesting sequences of nodes in the netlist that are capable of propagating a

locking value.

64

Chapter 2 – Combinational logic locking

2.1.3 Schematic view: propagation of a controlling value

Inserting the locking gates deeper in the netlist, as far as possible from the outputs, requires

to identify sequences of nodes that can propagate a locking value. An example depicting

how a sequence of nodes can propagate a locking value is shown in Figure 2.3, with the same

logic functions as in Figure 2.2. On the left hand-side, Figure 2.3a, feeding a logic 0 at one

of the inputs of the �rst NAND gates forces the output of the last OR gate to 1. Conversely,

in Figure 2.3b, the �nal AND gate does not allow the locking value to propagate from its

inputs further down the netlist. This is coherent with what has been said in Section 2.1.2. The

propagation of a locking value is shown in thick red in Figure 2.3a.

(a) The locking value set on X0
is propagated at the output

(b) The locking value set on X0
is not propagated at the output

Figure 2.3 – Propagation of a locking value through a sequence of nodes (in thick red)

For a sequence of gate to behave like this, the logic value at which the output of each gate is

forced must be the controlling value of the subsequent gate. For each gate, it is then necessary

to own two values: the controlling value and the forced output value (see Table 2.1). Therefore,

there are also two values for every node in the netlist: the value at which the preceding gate

forces it and the controlling value of the subsequent gate. For a node to propagate a locking

value, those two values must match. We call Vforced the value at which a node is forced by

the preceding gate. We call Vlocks the value at which the node should be forced to control the

subsequent gate. This is the controlling value of this gate. Thus a node can propagate a locking

value if it satis�es the following locking criterion.

Criterion 1 A netlist node can propagate a locking value if and only if its Vforced value is included

in the set of its Vlocks values called IVlocks
:

Vforced ∈ IVlocks

For example, if a node is the output of an OR gate and the input of an AND gate, then

Vforced = 1 and Vlocks = 0. Since, in this case, Vforced ∉ IVlocks
, this node cannot propagate a locking

value. This is the case for the output of the OR gate in Figure 2.3b.

It can occur that a node is the input of logic gates that have a di�erent controlling value.

For example, a node can a fan-out of 2 and be the input of a NAND gate and an OR gate. In

65

Chapter 2 – Combinational logic locking

this case, Vlocks is set to {0, 1}. This is why Criterion 1 uses a membership relation instead of an

equality between Vforced and Vlocks .

2.2 Selection of the place of insertion

In order to select the best locations of insertion for the locking gates, the representation of the

netlist as a graph is leveraged. This is detailed in the following sections.

2.2.1 Conversion from netlist to graph

The netlist is converted to a directed acyclic graph according to the following rule. Netlist

nodes are converted to vertices, which are then connected to one another using directed edges.

These edges are labelled after the logic function found in the original netlist. A toy example of

netlist conversion is shown in Figure 2.4.

(a) Netlist (b) Graph

Figure 2.4 – Conversion of a netlist to a directed acyclic graph

2.2.2 Graph labelling

Once the graph has been built, a copy of the original graph is stored for later. The Vforced and

Vlocks values are computed for every vertex of the graph. Vforced depends on the incoming edges,

while Vlocks depends on the outgoing edges. Only internal nodes are considered. Vforced and

Vlocks values for the nodes of the netlist in Figure 2.4a are given in Table 2.2.

66

Chapter 2 – Combinational logic locking

Node Vforced Vlocks
Ful�ls

Criterion 1 ?

G8 0 0 ✔
G9 1 0 ×
G10 0 {0, 1} ✔
G11 0 1 ×

Table 2.2 – Vforced and Vlocks values for the internal nodes of the netlist in Figure 2.4a

2.2.3 Identi�cation of the nodes that propagate a locking value to an

output

Incoming edges of vertices for which Criterion 1 is not satis�ed are deleted. Indeed, these

vertices correspond to nodes that are not able to propagate a locking value. This is shown in

Figure 2.5a, in which the incoming edges of G9 and G11 have been deleted.

For usual netlists, most of the nodes do not satisfy Criterion 1. Therefore, after this deletion,

the graph is highly disconnected and comprises multiple connected components. Connected

components of the graph that do not contain any output are not useful to implement logic

locking, since only the outputs must be set to a �xed logic value. Therefore, those connected

components are discarded and removed from the graph (see Figure 2.5b).

(a) Processed graph (b) Cleaned graph

Figure 2.5 – Deletion of the incoming edges of vertices that do not satisfy Vforced ∈ Vlocks and
removal of connected components that do not contain any output.

Eventually, the graph comprises several connected components. They all contain at least

one output and nodes that are all able to propagate a locking value. However, some of these

nodes are more interesting than others for logic locking.

67

Chapter 2 – Combinational logic locking

2.2.4 Selection of the best nodes to modify

Since all the vertices found in the �nal graph correspond to nodes that can propagate a locking

value, the ones which are the furthest from the outputs must be picked. Therefore, only source

vertices1 are considered. Indeed, if a vertex is not a source vertex, then it has incoming edges.

It is then the child of a least one other vertex that is further from the outputs. Going up the

edges one eventually reaches one or more source vertices, which are the furthest from the

outputs. In the �nal graph, four types of connected components can be found, according to the

number and properties of the source vertices in them. These are shown in Figure 2.6.

(a) One source vertex.
(b) Multiple source vertices,
only one covers all the outputs.

(c) Multiple source vertices,
several of them cover all the outputs.

(d) Multiple source vertices,
none of them covers all the outputs.

Figure 2.6 – Di�erent types of connected components that are found in the �nal graph. The
node(s) select to be modi�ed for logic locking are highlighted in orange.

In the �rst case, the connected component has only one source vertex (see Figure 2.6a). It is

selected for logic locking since it covers all the outputs and is as far as possible from them.

In the second case, there are several source vertices but only one of them covers all the

outputs (see Figure 2.6b). Therefore, even though it might not be the furthest source vertex

from the outputs, it is selected for locking. Indeed, since it covers all the outputs, it will result

1Source vertices are vertices that have no incoming edges.

68

Chapter 2 – Combinational logic locking

in the most lightweight implementation since it requires only one locking gate.

The third type of connected component comprises multiple source vertices, and several of

them cover all the outputs (see Figure 2.6c, where both G1 and G2 cover all the outputs). Since

we want the locking gates to be as far from the outputs as possible, then the selected vertex is

the one that maximises the sum of distances from it to the outputs, given in Equation (2.11).

md (v) = ∑
o ∈ outputs

d(v, o) (2.11)

Computing this sum of distances requires to start at the source vertex and search for

the outputs. Using simple breadth-�rst search or depth-�rst search algorithms is the chosen

solution since the connected components are of small size. Therefore, the execution time of

these algorithms is manageable.

Finally, in the last type of connected component, there are multiple source vertices that

cover one or several outputs, but none of them covers them all (see Figure 2.6d). In this case,

the �rst step is to sort the vertices according to the number of outputs they cover. This is done

by using one of the search algorithms mentioned above. Then, the nodes are greedily selected

until all the outputs are covered. In the considered netlist (see Figure 2.4a), nodes G1 and G11

are selected. This is shown in Figure 2.7.

Figure 2.7 – Vertices selected for logic locking.

2.2.5 Locking gates insertion

Once the nodes to lock are selected, the locking gates can be inserted. The type of locking gate

is determined by the Vlocks value of the corresponding vertex. If Vlocks = 0, the node associated
to the vertex must be forced to 0 to start propagating the locking value. Therefore, an AND

gate is inserted. Conversely, if Vlocks = 1, the node associated to the vertex must be forced to 1

to start propagating the locking value. Therefore, an OR gate is inserted. These modi�cations,

done on the original graph which had been saved previously, are depicted in Figure 2.8, while

Figure 2.9 shows the graph with added vertices and edges for logic locking.

69

Chapter 2 – Combinational logic locking

(a) Original vertex
(b) Locked vertex
when Vlocks = 0

(c) Masked vertex
when Vlocks = 1

Figure 2.8 – Original and locked vertices depending on the associated activation bit

Figure 2.9 – Locking vertices and edges added to the graph

2.2.6 Conversion from graph to netlist

Once the original graph has been modi�ed, it must be converted back into a netlist. This is

done by following the inverse rule as previously described. Namely, vertices are converted to

nodes, while edges are converted to logic gates. Figure 2.10 shows the lockable version of the

netlist. Added gates are in dark grey. AW[0] allows to force the node G1 to the logic value 0. It

propagates to the output G12, forcing it to 1. AW[1] allows to force the node G11 to the logic

value 1. It propagates to the output G13, forcing it to 0.

Figure 2.10 – Lockable version of the netlist

70

Chapter 2 – Combinational logic locking

2.3 Experimental results

Combinational logic locking is now evaluated with respect to di�erent metrics. The �rst one is

the area overhead induced by the extra locking gates added. The second one is the computation

time required by the logic locking process. This is divided into two parts: the time taken to

build the graph from the netlist �le and the time required to analyse the graph and convert it

back into a netlist. The third metric is the average distance from the inserted locking gates to

the outputs of the netlist. It gives an indication about how deep inside the netlist the locking

gates are inserted. This is a criterion against reverse-engineering. Finally, the ratio between

the number of outputs and the number of inserted gates is given. This is called the locking

ratio. It quanti�es how many locking gates a�ect each output, so this also gives how many bits

of the AW a�ect each output.

We implemented the logic locking algorithm in Python, making use of the igraph package

[CN06] to handle graphs. The computation times are obtained with a workstation embedding

an Intel Core i5-4570 processor operating at 3.20GHz and 16GB of RAM. We used ITC’99

combinational benchmarks [Dav99], but only the ones with more than 1 000 logic gates.

Experimental results are mostly given in the form of plots, but an exhaustive list of values

for all the benchmarks is given in Table 2.3.

Appendix 5.7 gives an example of the graphs that where obtained when applying the logic

locking algorithm described above. Figure 16 shows the graph right after it has been built from

the netlist �le. The netlist has around 1 000 logic gates. Figure 18 shows the graph after it has

been analysed and processed for logic locking. Thus only the paths that propagate a locking

value are drawn.

2.3.1 Logic resources overhead

The �rst metric used to evaluate an IP protection scheme is the area overhead it induces. In

order to remain as generic as possible, we measure it as the percentage of logic gates that must

be added to the netlist to make it lockable. The added gates being of AND or OR type, the

associated area for an ASIC implementation is rather low. For an FPGA implementation, the

performance depends on the synthesiser. However, one can expect the overhead to be similar.

The area overhead observed when applying the previously described logic locking process

to the considered netlists is shown in Figure 2.11. The area overhead required to achieve logic

locking ranges from roughly 1 to 5%, with an average value of 2.89%. Detailed values can be

found in the “Minimum overhead (%)” column of Table 2.3. The value for each benchmark is

not related to its size. At �rst sight, this is coherent. Indeed, logic locking targets the outputs

and the number of outputs broadly grows linearly with the benchmark size.

The overhead given here corresponds to total logic locking. Namely, all the outputs of a

design can be locked to a �xed logic value. On a per-design basis, this could be adapted. Indeed,

71

Chapter 2 – Combinational logic locking

1k 10k 100k
#logic gates

0

1

2

3

4

5
A

re
a

ov
er

he
ad

 (%
)

2.89

Average overhead

Figure 2.11 – Area overhead as the percentage of extra logic gates required to implement logic
locking

for some designs, locking only a fraction of the outputs could be su�cient to ensure su�ciently

erratic behaviour. For instance, only the outputs of the controller may be locked, e�ectively

disabling the whole system. This requires an intervention of the designer to guide the logic

locking method to the potential nodes to lock. On the other hand, if the designer can a�ord a

larger area overhead, logic locking could be strengthened. This is detailed in Section 2.4 of this

chapter.

2.3.2 Computation time

Another crucial evaluation criterion for IP protection schemes is their computational complexity.

Although it is usually neglected, some works focus on reducing the execution of the heuristics

used to select the nodes to modify [GGY15]. Nevertheless, computational complexity becomes

a crucial characteristic when the protection scheme is meant to be integrated into EDA tools.

We compare our graph-based algorithm for total combinational logic locking with the

state-of-the-art heuristic used for logic masking, which is based on fault-analysis [Raj+15].

1k 10k 100k
#logic gates

0

5000

10000

15000

A
na

ly
sis

 ti
m

e
(s)

Total combinational
logic locking
Quadratic fit
Fault analysis-based
logic masking

Figure 2.12 – Computation time required to process a netlist for logic locking and for fault
analysis-based logic masking

72

C
h
apter

2
–
C
om

binationallogic
locking

Ben
chm

ark

O
utp

uts

G
ate

s
Gra

ph
bui

ldin
g t
im
e (s

)

Gra
ph

pro
ces

sin
g t
im
e (s

)

G
ate

s a
t m

ini
mu

m ove
rhe

ad

Mi
nim

um
Ov

erh
ead

(%)

Av
era

ge
dis

tan
ce
to
out

put
s

Loc
kin

g r
atio

at m
ini
mu

m ove
rhe

ad

G
ate

s a
t m

axi
mu

m ove
rhe

ad

Ma
xim

um
ove

rhe
ad

(%)

Loc
kin

g r
atio

at m
axi

mu
m ove

rhe
ad

c2670 64 1117 0.22 0.77 1156 3.49 5.26 1.64 1406 25.87 4.52
c3540 22 1669 0.28 1.18 1690 1.26 1.90 1.05 1828 9.53 7.23
c5315 123 2307 0.39 2.55 2381 3.21 3.70 1.66 2863 24.10 4.52
c6288 32 2416 0.4 1.77 2448 1.32 1.00 1.00 2512 3.97 3.00
c7552 107 3511 0.58 3.68 3604 2.65 1.82 1.15 3834 9.20 3.02

b14_1_C 245 6567 1.12 6.7 6781 3.26 1.70 1.14 7731 17.72 4.75
b15_C 449 8367 1.48 12.64 8769 4.80 1.89 1.12 10961 31.00 5.78
b14_C 245 9765 1.66 17.07 9978 2.18 1.64 1.15 11014 12.79 5.10
b15_1_C 449 12543 2.18 25.16 12945 3.20 2.30 1.12 15358 22.44 6.27
b21_1_C 512 13898 2.44 35.28 14348 3.24 1.51 1.14 16207 16.61 4.51
b20_1_C 512 13899 2.42 45.25 14348 3.23 1.51 1.14 16152 16.21 4.40
b20_C 512 19682 3.44 59.29 20130 2.28 1.56 1.14 22130 12.44 4.78
b21_C 512 20027 3.49 73.41 20476 2.24 1.47 1.14 22554 12.62 4.94
b22_1_C 757 20983 3.77 94.05 21646 3.16 1.54 1.14 24378 16.18 4.48
b22_C 757 29162 5.27 122.22 29824 2.27 1.56 1.14 32850 12.65 4.87
b17_C 1445 30777 6.02 180.25 32079 4.23 1.96 1.11 39363 27.90 5.94
b17_1_C 1445 38116 7.21 252.01 39418 3.42 2.18 1.11 46870 22.97 6.06
b18_1_C 3342 105102 22.41 742.71 108096 2.85 1.94 1.12 124199 18.17 5.71
b18_C 3342 111241 23.61 1265.64 114233 2.69 1.95 1.12 130478 17.29 5.76
b19_1_C 6669 212728 53.35 3787.02 218701 2.81 1.97 1.12 250943 17.96 5.73

Average values: 2.89 2.02 1.17 17.38 5.07

Table 2.3 – Experimental results obtained when applying combinational logic locking on ITC’99 benchmarks.

73

Chapter 2 – Combinational logic locking

Figure 2.12 shows a comparison of the analysis times. It shows that our algorithm can

handle very large combinational netlists. A netlist of 200 000 nodes takes around one hour to

be be analysed and made lockable. Detailed values can be found in the “Graph building time (s)”

and “Graph processing time (s)” columns of Table 2.3. On the other hand, fault analysis-based

logic masking cannot cope with large netlists. As said in the original article [Raj+15], “This

method took two hours to encrypt the C7552 circuit.”, which is a benchmark of 3,500 gates. Graph

analysis-based logic locking is then a very computationally e�cient method compared to other

heuristics used for logic modi�cation of combinational aiming at IP protection.

2.3.3 Distance to outputs

Another metric that can be used to assess the e�ciency of IP protection schemes based on logic

locking is the distance from these gates to the primary outputs of the netlist. Indeed, one wants

the inserted gates to lock the outputs while being as far from them as possible. This is to make

their isolation and identi�cation by reverse-engineering harder. The average distance from the

inserted locking gates to the outputs that are reachable from them is given in Table 2.3. The

de�nition of distance is the one used for graphs. Namely, it is the average number of edges

found between the node considered and the nodes corresponding to the outputs. Detailed

values can be found in the “Average distance to outputs” column of Table 2.3. The average

value of 2.02 highlights the fact that the inserted locking gates are quite close to the outputs.

This is because the sequences of nodes leading to the outputs that are capable of propagating a

locking value are rare. Section 2.4 discusses possible improvements to increase this distance

and obfuscate the locking gates.

2.3.4 Number of outputs a�ected

Finally, the last criterion that can evaluate the e�ciency of IP protection schemes based on

logic gates insertion is the average number of outputs that are a�ected by each extra locking

gate inserted. For logic locking speci�cally, the e�ect of the locking gates is maximal and

completely locks the output. Therefore, this is not required that multiple locking gates a�ect

each output. This could be the case though, and is discussed in the following section.

We de�ne the locking ratio as the number of inserted locking gates divided by the number

of outputs of the netlist (see Equation (2.12)). Thus this ratio gives the average number of

outputs a�ected by each inserted locking gate.

locking ratio = #inserted locking gates

#outputs (2.12)

Detailed values can be found in the “Locking ratio at minimum overhead” column of

Table 2.3. One can observe that the locking ratio is usually very close to 1. This indicates that

the connected components found in the �nal graph after cleaning it usually contain only one

74

Chapter 2 – Combinational logic locking

output. Every output has then its own locking gate. This has bene�ts and drawbacks. The

bene�t is that the connected components found in the �nal graph are very easy to analyse

using the method presented in Section 2.2.4, since they contain only one output on average.

Therefore, for every source node, only one distance from it to the output must be computed.

The furthest one is then selected for logic locking. The drawback of having one locking gate

assigned to each output is that the associated AW bit can be easily recovered by observing

the input-output patterns. Indeed, �ipping the AW bits one after the other allows to recover

the whole AW easily [PM14], as discussed in Section 2.4.4.1. An n-bit AW is recovered after

n/2 trials on average. Section 2.4 proposes several ways to avoid this direct relation between

locking gates and outputs.

2.4 Discussion

All the modi�cations suggested in this section consist in inserting additional logic after the

locking gates have been inserted. In some cases, this extra combinational logic can be detected

as redundant and simpli�ed by a synthesiser. Therefore, they must be protected from such

simpli�cation, by specifying tool-speci�c constraints.

2.4.1 Locking strengthening

The aim of the methods described here is to tend toward an implementation of total logic

locking given in Equation (2.1). The point is then to have as many AWs as possible for which

as many outputs as possible are locked.

2.4.1.1 Adding more locking gates to control one locking value

The logic resources overhead values given in Section 2.3.1 are the minimum required to be

able to lock all the outputs. However, the �nal graph after cleaning contains a lot of other

nodes that can propagate a locking value and are not selected because they are sub-optimal.

Nevertheless, these nodes can be exploited to strengthen logic locking.

This is illustrated in Figure 2.13. The netlist portion in Figure 2.13a could potentially be

locked by forcing X0 or X1 to 0. This is the optimal choice, requiring the minimum overhead

and selecting the furthest nodes from the outputs. However, since all the other nodes can

propagate a locking value, they could potentially all be forced. This is illustrated in Figure 2.13b,

in which �ve locking gates are inserted. The output of such a netlist is then locked if and only if

all the AW bits are set to the correct value. This e�ectively increases the brute force complexity

in the average case from 1 to 25/2 = 16. Indeed, only the correct AW value would allow the

output to be correct. All the other combinations lock it.

75

Chapter 2 – Combinational logic locking

(a) Netlist portion
that can propagate
a locking value

(b) Logic locking with maximum overhead
for the considered netlist portion

Figure 2.13 – Maximum logic locking of a netlist portion that can propagate a locking value

Figure 2.14 shows what the minimum and maximum overhead values for all the benchmarks

we considered. Detailed maximum values can be found in the “Maximum overhead (%)” column

of Table 2.3. The associated locking ratio values are given in the “Locking ratio at maximum

overhead” column. One can observe that it di�ers greatly between benchmarks. However,

for most of the cases, the designer has an interesting design margin, and can select the best

trade-o� between area overhead and locking strength.

c26
70

c35
40

c53
15

c62
88

c75
52

b14
1

C
b15

_C
b14

_C

b15
1

C

b21
1

C

b20
1

C
b20

_C
b21

_C

b22
1

C
b22

_C
b17

_C

b17
1

C

b18
1

C
b18

_C

b19
1

C
b19

_C
0

10

20

30

A
re

a
ov

er
he

ad
 (%

) Maximum
overhead
Minimum
overhead

Figure 2.14 – Minimum and maximum overhead values for logic locking strength tuning

The solution proposed here tends to increase the length of the AW. To avoid this, AW bits

can be interleaved and used to lock multiple outputs.

2.4.1.2 AW bits interleaving

AW bits can be shared among connected components of the �nal graph in order to reduce the

size of the AW and strengthen logic locking. Figure 2.15a shows three portions that belong to

the same netlist that can be locked. Figure 2.15b shows these three portions with logic locking

gates inserted. In the �rst portion, the locking gates inserted are the three OR gates at the

76

Chapter 2 – Combinational logic locking

top. This corresponds to a high locking strength since multiple gates participate in locking

one output, as described above. AWvalid is “000”. The second portion can also be locked by

inserting three gates. However, some AW bits must be inverted to cope with the di�erent types

of locking gates that are picked. Namely, AW0 and AW2 are inverted to be reused. Finally, this

can happen that some other netlist portions do not contain enough nodes that propagate a

locking value to make use of all the available AW bits. This is the case in the last netlist portion

of Figure 2.15a, in which forcing X8 or X9 would not lock the output. In this case, locking gates

can be cascaded as in the bottom of Figure 2.15b where the locking gates associated to AW1

and AW2 are cascaded to lock X10. Alternatively, fewer locking gates can be used.

In the example given in Figure 2.15b, if the 3-bit AW is di�erent from “000”, the three out-

puts are locked. Even though it is limited to a 3-bit AW, this example shows an implementation

of total logic locking as described in Equation (2.1).

Extending it to larger AW would of course induce a higher area overhead. A totally

interleaved implementation with an n-bit AW requires to add n2 locking gates. This might not

be a�ordable by the designer in practise. Instead, partial interleaving is possible, in which only

a fraction of the AW bits are shared. It would make the set Iyunlocked from Equation (2.4) smaller.

This also has the side-bene�t to allow to select the width of the AW, to adapt it to the output

of a block cipher for instance. Again, this is up to the designer to pick the most appropriate

trade-o�.

(a) Set of netlist portions (b) Logic locking applied on a set of netlist portions
with interleaved AW bits

Figure 2.15 – Interleaving the AW bits to strengthen logic locking

77

Chapter 2 – Combinational logic locking

2.4.1.3 Hardware point function

Finally, the last option is to implement a “hardware point function”. This is described in

Equation (2.13). The output of this function is equal to the correct AW if it is fed at the input.

Otherwise, it is equal to the complement of the correct AW.

F (x) =
{

AWvalid if x = AWvalid

AWvalid if x ≠ AWvalid

(2.13)

This function can also be used to adapt the width of the AW. Moreover, it can also adapt

the logic value of the AW bits. This can be useful if the AW is combined internally with an

instance-speci�c identi�er such as the response of a PUF to make each instance uniquely

unlockable. This requires to map the PUF response to the AW and can be done by this function.

A hardware implementation of such a function is trivial. Each logic 0 of the AW, found at

the output of the function, is driven by the sum of all the logic 0s found at the input. An AND

gate with the appropriate fan-in and fan-out is then used. Similarly, each logic 1 of the AW is

driven by the product of all the logic 1s found at the input. An OR gate with the appropriate

fan-in and fan-out is then used.

The hardware point function is a lightweight structure, that does not require much logic

resources. The experimental results obtained after implementing it on FPGA are given in

Table 2.4. Only the input width matters, while the output width can be very large without

a�ecting the number of LUTs used. This is because increasing the output width only requires

more wiring to drive the individual AW bits, which does not require additional logic resources

on FPGA. Consequently, implementing a hardware point function to turn a weak logic locking

implementation into total logic locking is not costly and easily achievable.

Input width Output width # 4-LUTs # 6-LUTs
(bits) (bits) required required

64 64 17 12
64 128 16 13
64 256 17 14
64 512 17 14
64 1024 16 14
64 2048 16 14

128 64 33 22
128 128 33 22
128 256 33 22
128 512 33 22
128 1024 33 22
128 2048 33 22

Table 2.4 – Logic resources required to implement a hardware point function for di�erent input
and output widths

78

Chapter 2 – Combinational logic locking

2.4.2 Obfuscation using extra logic layers

The main issue with the current description of combinational logic locking is the fact that the

inserted gates are very close to the outputs. In order to conceal them more, adding dummy

logic layers between them and the outputs is a solution. Those logic layers should have no

e�ect on the functionality of the netlist portion. That is, when the correct AW bit is provided,

the output must be valid. When the wrong AW bit is provided, the output must be locked.

Figure 2.16 depicts an obfuscated locking OR gate. The original locking gate is in dark grey.

The two additional logic gates in light grey add an extra logic layer between the locking gate

and the output. Moreover, one of these obfuscation gates is fed with a value taken randomly in

the netlist (Xj in Figure 2.16). This connection could be obtained from a very di�erent location

in the netlist.

Figure 2.16 – OR locking gate (in dark grey) obfuscated by two extra gates (in light grey) with
logic values shown in red and blue depending on the value of the AW bit

The overhead brought by this additional obfuscation method is not negligible though.

Indeed, the area overhead brought by logic locking is increased again by the obfuscation

gates. Adding n extra logic layers for obfuscation increases the locking overhead 2n times. For

example, if the locking overhead is originally 3%, obfuscating with one extra logic layer brings

it to 9%. Therefore, this solution might not be suited to all the cases, especially if the designer

has strong area constraints.

2.4.3 Exploiting connected components that contain no output

In Section 2.2.3, the connected components that contain no output are deleted from the �nal

graph. Indeed, they do not participate directly in logic locking since they do not force any

output to a �xed logic value. However, they can force an internal node. Although the e�ect of

this internal locking is hard to estimate, it could still be studied and leveraged on a per-design

basis.

79

Chapter 2 – Combinational logic locking

2.4.4 Security considerations

2.4.4.1 Hill-climbing attack

Due to the fact that AW bits are directly related to the output they lock, the Hamming distance

between the AW that is fed and the correct one AWvalid is proportional to the number of outputs

that are locked (see Equation (2.14)).

HD(AW,AWvalid) ∝ #outputs locked (2.14)

Therefore, there is a gradient toward AWvalid. By successively �ipping the AW bits, the

output bits can be unlocked one after the other. This is called the hill-climbing attack and has

been described in [PM14], originally against logic masking. Algorithm 1 shows how this attack

applies to weak logic locking.

Algorithm 1:Hill climbing attack on weak logic locking

Input: Locked IP core with an n-bit AW

Output: Unlocked IP core

1 Randomly pick one AW

2 for i ranging from 0 to n − 1 do
3 Feed random input values to the netlist

4 nlocked_1 ← #outputs locked
5 Flip the ith bit of AW.

6 Feed random input values to the netlist

7 nlocked_2 ← #outputs locked
8 if nlocked_2 > nlocked_1 then

9 Flip back the ith bit of AW.

10 Return: AWvalid

Although originally proposed against logic masking, the hill-climbing attack a�ects weak

logic locking just as well. However, in the case of total logic locking, the outputs are all �xed

until the correct AW is fed. Therefore, the comparison done at line 8 of Algorithm 1 cannot be

carried out. Thus total logic locking is not subject to the hill-climbing attack.

2.4.4.2 SAT attack

In 2015, a so-called SAT attack has been proposed [SRM15] which applies logic locking/masking

algorithms. The attacker has access to a netlist and a functional circuit which operates normally.

Th attack works by applying iteratively input patterns that have a distinguishing property.

They are called distinguishing input patterns (DIPs). An input pattern is a DIP if, when two

80

Chapter 2 – Combinational logic locking

di�erent AWs are fed to the dedicated inputs, the outputs are di�erent. When carefully chosen,

DIPs can rule out multiple AWs at a time, reducing the search space rapidly.

Weak logic locking is a�ected by this attack. However, for strong logic locking, the outputs

are all �xed for all wrong AWs. Therefore, one cannot �nd DIP in this case, since the output is

always the same. Thus total logic locking is also not subject to the SAT attack.

2.5 Conclusion

Total combinational logic locking is a new way to controllably lock the combinational part of a

netlist. Based on the propagation of a locking value through speci�c sequences of nodes, it has

the advantage to be very e�cient to compute by using graph analysis. It can cope with very

large netlists in a reasonable amount of time.

Hardware implementations on a wide range of benchmarks show that the area overhead to

implement logic locking is limited, since it requires on average a 2.89% increase of the number

of logic gates.

However, the direct relation between the inserted locking gates and the output(s) they lock

makes it trivial to recover the correct AW if the AW inputs are directly exposed. We propose

several solutions that allow a designer to strengthen the logic locking scheme intrinsically and

make the AW bits interdependent. This highlights another interesting feature of logic locking

from an industrial point of view, which is its great �exibility. Indeed, it o�ers a wide trade-o�

between area overhead and locking strength, leaving up to the designer the �nal tradeo�

between cost and security. Another way to make the system more secure is to instantiate a

lightweight cipher besides the logic locking module, with the output of the cipher driving the

AW inputs. This solution is explored in the last chapter of this thesis in which a complete IP

protection scheme architecture is detailed.

81

Chapter 2 – Combinational logic locking

82

Chapter 3

Centrality indicators for e�cient and

scalable combinational logic masking

In the previous chapter, a degraded mode of operation called logic locking has been presen-

ted. However, the �rst degraded mode of operation based on modi�cations of combinational

logic published in literature [RKM08a] is logic masking, sometimes referred to as “logic en-

cryption”. It consists in altering the internal state of an IP core unless the correct AW is fed. To

this end, XOR or XNOR logic gates are inserted at speci�c locations in the netlist. The aim is to

controllably disturb the internal state as much as possible, while keeping the logic resources

overhead induced by the extra gates as low as possible.

Based on the article presenting the principle of logic masking in 2008 [RKM08a], several

heuristics have been proposed to select the best locations of insertion for the extra masking

gates in the netlist. A closer look reveals, however, that these heuristics are either easy to

compute or e�cient at disrupting the internal state, but cannot meet both requirements. For

industrial feasibility, one needs a selection heuristic that can cope with large netlists while

o�ering e�cient disruption of the outputs when the wrong AW is fed. In order to bridge the

gap and o�er a balance between computational e�ciency and masking e�ciency, we propose

to use centrality indicators. Originating from graph theory, they allow to rank the nodes of a

graph according to their relative signi�cance.

We start by giving an overview of common centrality indicators before comparing them

for application to logic locking. We show that they disturb the outputs of the netlist e�ciently,

e�ectively reducing the correlation between normal and masked outputs to low values. At the

same time, they are e�cient to compute, approximately one thousand times faster than the

heuristic with the highest making e�ciency, based on fault analysis [Raj+15]. This allows to

handle netlists of up to 100 000 nodes, paving the way for integration into EDA tools.

The code associated with this chapter is available at:
https://gitlab.univ-st-etienne.fr/b.colombier/ centrality-based-logic-masking/ tree/master

83

https://gitlab.univ-st-etienne.fr/b.colombier/centrality-based-logic-masking/tree/master

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

Indicateurs de centralité pour lemasquage
logique combinatoire e�cace et adaptable

Dans le chapitre précédent, un mode de fonctionnement appelé verrouillage logique a été

présenté. Néanmoins, le premier mode de fonctionnement dégradé basé sur une modi�cation

de la logique combinatoire, publié en 2008 [RKM08a], est le masquage logique. Cela consiste

à perturber l’état interne du composant virtuel à moins que le bon mot d’activation ne soit

fourni. Pour ceci, des portes XOR ou XNOR sont insérées à des positions spéci�ques dans le

composant virtuel. L’objectif est de perturber l’état interne autant que possible tout en limitant

le surcoût en ressources logiques induit par les portes supplémentaires.

Se basant sur le premier article sur le sujet publié en 2008 [RKM08a], plusieurs heuristiques

ont été proposées pour sélectionner le meilleurs lieux d’insertion pour les portes de masquage

à ajouter au composant virtuel. Une étude plus approfondie révèle, néanmoins, que ces heuris-

tiques sont soit faciles à calculer soit e�caces pour perturber l’état interne, mais ne satisfont

jamais ces deux critères simultanément. Dans un contexte d’utilisation industriel, l’heuristique

de sélection doit être facile à calculer pour pouvoir gérer des composants virtuels de grande

taille tout en o�rant une perturbation e�cace des sorties si le mauvais mot d’activation est

appliqué. Pour un compromis entre ces deux objectifs, nous proposons d’utiliser les indicateurs

de centralité. Venant de la théorie des graphes, ils permettent de classer les sommets d’un

graphe en fonction de leur importance.

Nous commençons par donner ue vue d’ensemble des indicateurs de centralité communs

avant de les comparer pour une utilisation dans le cadre du masquage logique. Nous montrons

qu’ils permettent de perturber e�cacement les sorties du composant virtuel, réduisant la

corrélation entre les sorties normale et masquée à des valeurs faibles. Dans le même temps,

leur complexité est limitée, et ils sont mille fois plus rapides à calculer que l’heuristique la

plus e�cace de l’état de l’art basée sur l’analyse de fautes [Raj+15]. Cela permet de gérer des

composants virtuels incluant jusqu’à 100 000 nœuds, ouvrant la voie à une intégration dans les

outils de conception électronique.

Le code associé à ce chapitre est disponible à :
https://gitlab.univ-st-etienne.fr/b.colombier/ centrality-based-logic-masking/ tree/master

84

https://gitlab.univ-st-etienne.fr/b.colombier/centrality-based-logic-masking/tree/master

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.1 De�nition

Logic masking consists in inserting linear logic gates (XOR or XNOR) at well-chosen locations

inside the netlist so that the outputs of the netlist are maximally corrupted if the wrong AW is

fed to the dedicated activation inputs [RKM08a; RKM10]. These activation inputs are connected

to one of the inputs of the inserted masking gates while their other input is connected to the

internal node to mask (see Section 1.5.4.1, Figure 1.16) We call normal output values the ones

obtained with the original netlist or with the masked one when the correct AW is fed to the

activation input. We call masked output values the ones obtained with the masked netlist when

the wrong AW is fed to the activation input. The aim is to alter the internal state of the netlist

so that the similarity between the normal and masked output values is as low as possible.

3.2 A proposal for a masking e�ciency evaluationmetric

3.2.1 Existing metrics for masking e�ciency and their weaknesses

As detailed in Chapter 1, the �rst metric which is used to evaluate logic masking was cor-

ruptibility [RKM08a; RKM10]. Given in Equation (1.7), it makes sure that the output is valid

only when the correct AW is applied. However, it does not qualify the masking e�ciency.

Indeed, inverting only one output bit is su�cient to ensure that the corruptibility requirement

is satis�ed. Later on, a requirement on the Hamming distance between the normal and masked

output was derived [Raj+12a; Raj+13] (see Equation (1.8)). This Hamming distance should be

of 50% on average.

However, this requirement alone is still not su�cient. Indeed, just as inverting one output

permanently satis�es the corruptibility criterion, inverting half the outputs permanently satis-

�es the Hamming distance criterion. Thus there is a need for a stronger, more restrictive metric

that could evaluate the masking e�ciency. In [Raj+15], it is said that e�cient masking “can be

done by minimizing the correlation between the corrupted and the original outputs”. Therefore,

we propose to develop a metric based on correlation to measure the masking e�ciency.

3.2.2 A new metric based on correlation

The two previous approaches fail at handling the cases described above since they deal with

the output bits as a whole instead of considering them separately. Instead of considering an

output vector, we will then deal with output bits as binary variables. The correlation between

two binary variables can be computed in its simplest form by the Phi coe�cient. Table 3.1 is

the contingency table of the two binary variables y[i] and ymasked[i]. P00 and P11 represent the
proportion of positions where the variables are identical. Conversely, P01 and P10 represent the
proportion of positions where the variables are di�erent.

85

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

y[i]
0 1 Totals

ymasked[i]
0 P00 P01 p1
1 P10 P11 q1

Totals p2 q2 1

where : p1 = P00 + P01
q1 = P10 + P11
p2 = P00 + P10
q2 = P01 + P11

Table 3.1 – Contingency table of the binary variables y[i] and ymasked[i].

The Phi coe�cient is then given by Equation (3.1).

� = P00P11 − P01P10√p1q1p2q2
(3.1)

In order to account for all the output bits and get a global metric, we propose to compute the

quadratic mean of the Phi coe�cients obtained for all the outputs. This way, Phi coe�cients

with an opposite sign for di�erent outputs cannot compensate themselves. The masking

e�ciency metric is given in Equation (3.2).

Em = 1 −
√
1
n

#outputs−1
∑
i=0

�2 (y[i], ymasked[i]) (3.2)

If the outputs are not masked, P00 = P11 = 1, so � = 1 for all the outputs. Thus Em = 0. If the
outputs are perfectly masked, then for each output there is a 50% probability that it is inverted.

Therefore, for every output, P00 = P11 = P01 = P10 = 0.25 and � = 0. Thus Em = 1. The masking

e�ciency evaluation metric Em is then more constraining than the ones that were previously

used [RKM08a; Raj+12a], based on corruptibility or Hamming distance.

Table 3.2 summarises how these metric perform at evaluating the masking e�ciency. The

�rst column correspond to the case where one output is inverted, as described above. The

second columns correspond to the case where half the outputs are inverted. The last column

shows the case where one XOR gate is added on every output. When measuring the masking

e�ciencywith corruptibility, Hamming distance or bitwise correlationwith Em, this architecture
is optimal. Indeed, it implements a kind of one-time pad on the outputs. Therefore, randomly

picking an AW makes the correlation drop to 0.

3.2.3 Further requirements for a logic masking scheme

Even though inserting one XOR gate on every output achieves good masking e�ciency accord-

ing to Em, looking at other criteria makes this architecture unusable. The �rst drawback is the

fact that one bit of the AW is responsible for masking only one outputs bit. Therefore, the hill

climbing attack presented in Section 2.4.4.1 and Algorithm 1 is very much applicable in this

case too. Instead of observing which outputs are �xed, comparing with test vectors is su�cient

to detect the wrong output bits, as it is done in the original article [PM14].

86

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

Masked IP cores

Metric

Corruptibility ✔ ✔ ✔
[RKM08a]

Hamming × ✔ ✔
distance [Raj+12a]

Proposed × × ✔
metric Em

Table 3.2 – Masking e�ciency evaluation by di�erent metrics. ✔ stands for the masking
e�ciency being evaluated as good by the metric. × stands for the masking e�ciency being
evaluated as bad by the metric.

Moreover, another greater drawback is that a much simpler attack can be carried out if the

attacker has access to a functional copy of a circuit that implements the IP core. By comparing

a correct input-output pair (x, y) obtained from the functional circuit with an input-output pair

(x, ymasked) obtained from the masked one then the correct AW can be trivially computed (see

Equation (3.3)).

AWvalid = y ⊕ ymasked (3.3)

In order to avoid this, the masking gates must be inserted deeper inside the netlist, so

that each output is a�ected by multiple masking gates. To this end, various heuristics have

been proposed to select the nodes to modify (see Section 1.5.4.1 for details). The following

sections describe two heuristics that we investigated, based on controllability/observability

and centrality indicators.

3.3 Selection of the place of insertion

3.3.1 Combinational controllability and observability

The �rst metric we investigated is based on the concepts of combinational controllability and

observability. They were �rst described in [Gol79], along with their sequential counterparts.

They are very useful for testing a circuit, because they characterise how easy it is to set the value

of a node from the primary inputs and observe this value at the primary outputs. Since we only

deal with combinational logic masking here, we consider only combinational controllability

and combinational observability.

87

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.3.1.1 Description

The combinational controllability of a netlist node measures how hard it is to set this particular

node to a given logic value. Combinational 0 controllability (CC0) (respectively combinational

1 controllability (CC1)) measures how hard it is to set the node to 0 (respectively to 1). For a

node N , CC0(N) (respectively CC1(N)) is then related to the number of primary inputs that

must be set to a �xed logic value to set N to 0 (respectively to 1).

For example, in order to set the output of a 2-input AND gate to 1, both its inputs must be

set to 1. Therefore, the hardness to set the output to 1 is the sum of hardnesses to set each

input to 1. Conversely, setting the output to 0 only requires to set one input to 0. Let Y = A ⋅ B
be the equation of this logic gate, then the values of CC0 and CC1 for the output are given in

Equations (3.4) and (3.5).

CC1(Y) = CC1(A) + CC1(B) + 1 (3.4)

CC0(Y) = min(CC0(A),CC0(B)) + 1 (3.5)

By convention, the controllability of the primary inputs of the netlist is 0. Therefore, a

high controllability value corresponds to a node that is hard to control. Table 3.3 gives the

formulas to compute the controllability for the output of usual 1 and 2-input logic gates. For

each of them, their logic equation is of the form Y = F (A) if F is a unary boolean function or

Y = F (A, B) if F is a binary boolean function.

Logic gate CC0(Y) CC1(Y)

NOT CC1(A) + 1 CC0(A) + 1
AND min(CC0(A), CC0(B)) + 1 CC1(A) + CC1(B) + 1
NAND CC0(A) + CC0(B) + 1 min(CC1(A), CC1(B)) + 1
OR min(CC1(A), CC1(B)) + 1 CC0(A) + CC0(B) + 1
NOR CC1(A) + CC1(B) + 1 min(CC0(A), CC0(B)) + 1
XOR min(CC0(A) + CC0(B), CC1(A) + CC1(B)) + 1 min(CC0(A) + CC1(B), CC1(A) + CC0(B)) + 1
XNOR min(CC0(A) + CC1(B), CC1(A) + CC0(B)) + 1 min(CC0(A) + CC0(B), CC1(A) + CC1(B)) + 1

Table 3.3 – Controllability values of the output of usual 1 and 2-input logic gates. Their logic
equation is of the form Y = F (A) if F is a unary boolean function or Y = F (A, B) if F is a binary
boolean function.

In addition to controllability, we also considered observability. The observability of a netlist

node measures how hard it is to observe its value at the primary outputs of the netlist. For

example, observing the value of one of the inputs of a 2-input OR gate requires to propagate it

at the output by setting the other node to 0. Therefore, the observability of this input node

depends on the combinational observability (CO) of the output and the CC0 value of the other

input. Let Y = A + B be the equation of this logic gate, then the CO value for input A is given

in Equation (3.6).

CO(A) = CO(Y) + CC0(B) + 1 (3.6)

88

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

By convention, the observability of the primary outputs of the netlist is 0. Therefore, a high

observability value corresponds to a node that is hard to observe. Table 3.4 gives the formulas

to compute the observability for the input(s) of usual 1 and 2-input logic gates. For the logic

gates that implement a binary boolean function, we consider only the A input. Since those

inputs are identical, simply replacing B by A gives the formulas for the B input.

Logic gate CO(A)
NOT CO(Y) + 1
AND CO(Y) + CC1(B) + 1
NAND CO(Y) + CC1(B) + 1
OR CO(Y) + CC0(B) + 1
NOR CO(Y) + CC0(B) + 1
XOR CO(Y) + min(CC0(B), CC1(B)) + 1
XNOR CO(Y) + min(CC0(B), CC1(B)) + 1

Table 3.4 – Observability values of the input(s) of usual 1 and 2-input logic gates.

3.3.1.2 Selection heuristic for logic masking

Ideally for logic masking, our �rst approach was to select the nodes with high controllability

(i.e. nodes that are hard to control) as well as low observability (i.e. nodes that are visible at

the outputs). Unfortunately, this is exactly the de�nition of the primary outputs of the netlist.

Using this metric, we ended up selecting the primary outputs, which is not a good option as

described above.

The nodes selected for logic masking should be located deeper inside the netlist. This led

us to de�ne a metric for the selection heuristic given in Equation (3.7).

M(e) =
√
CC0(e)2 + CC1(e)2 + CO(e)2 (3.7)

We then selected for logic masking the nodes for which this metric is maximised. However,

using this selection heuristic turned out to be unsuccessful. The nodes that are selected have a

low impact on the outputs.

We managed to obtain good results individually for some benchmarks by assigning di�erent

weights to controllability and observability values: wCC and wCO, see Equation (3.8).

M(e) =
√
wCCCC0(e)2 + wCCCC1(e)2 + wCOCO(e)2 (3.8)

However, this requires to tune the coe�cients for each benchmark speci�cally. The Em
values that we observed were still considerably high, indicating that logic masking was not

very e�cient. The trade-o� between inserting the masking gates deep inside the netlist and

having them to disturb the outputs e�ciently is hard to balance.

89

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

In order to insert the masking gates more e�ciently and have a greater impact on the

outputs, we investigated the use of centrality indicators. This is detailed in the following

section.

3.3.2 Centrality indicators

Centrality indicators originate from graph theory. As their name suggests, they measure

how central or signi�cant a particular node is inside a given graph. Of course, the notion of

centrality or signi�cance is very broad. Therefore, a large range of centrality indicators have

been proposed in literature. For some applications, some centrality indicators are more suited

than others. For example, the PageRank indicator, used by Google to measure the popularity of

web pages, is a centrality indicator that has been speci�cally designed for this usage.

Centrality indicators, depending on how they are de�ned, can give a centrality value that

belongs to very di�erent ranges. We chose to normalise it by dividing the raw centrality value

for the vertex of interest by the maximum value obtained for the vertices of the graph (see

Equation (3.9) where v is the considered vertex and V is the set of all the vertices of the graph).

The centrality values then range from 0 to 1.

C(v) = Craw(v)
max(C(i)) , i ∈ V (3.9)

For some centrality indicators, the literal formulas given in the original articles include a

normalising factor. We chose to not take them into account, since we are only interested in the

relative values for the centrality.

3.3.2.1 Conversion from netlist to graph

Converting the netlist into a graph is done as described in Section 2.2.1. The nodes of the netlist

are converted to vertices and connected by directed edges labelled after the logic function.

3.3.2.2 Degree centrality

Degree centrality measures the signi�cance of a vertex by its number of incoming and outgoing

edges. The in-degree deg−(v) is computed by counting incoming edges only. The out-degree

deg+(v) is computed by counting outgoing edges only. The centrality value is the degree deg(v),
computed by summing the two previous values (see Equation (3.10)). Figure 3.1 illustrates the

degree centrality values of the vertices of a random graph.

CD(v) = deg(v) = deg−(v) + deg+(v) (3.10)

This is not a good indicator for logic masking though. Indeed, by synthesising the netlist in

di�erent ways, some vertices can have their degree centrality changed even if the original logic

90

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Figure 3.1 – Degree centrality values for the vertices of a random graph

function is identical. An example is given in Figure 3.2. The logic function G5 = G1⋅G2⋅G3⋅G4
can be synthesised into two di�erent forms, using one 4-input AND gate (see Figure 3.2a)

or three 2-input AND gates (see Figure 3.2b). In the resulting associated graphs, shown in

Figures 3.2c and 3.2d, the same vertex G5 has a di�erent degree centrality. In Figure 3.2c,

CD(G5) = 4, while in Figure 3.2d, CD(G5) = 2. This discrepancy makes the centrality indicator

dependent on the implementation, when it should only depend on the overall structure of the

logic function.

(a) 4-input AND gate
(b) Three 2-input AND gates

(c) Graph obtained from the 4-inputAND gate (d) Graph obtained from the three 2-input AND gates

Figure 3.2 – Boolean function G5 = G1 ⋅ G2 ⋅ G3 ⋅ G4 synthesised using a 4-input AND gate
(a) or three 2-input AND gates (b). The resulting graphs (c) and (d) lead to di�erent degree
centrality values for the vertex G5.

Moreover, the degree centrality is a local indicator. Thus it is only in�uenced by the direct

neighbours of the vertex. Instead, global indicators should be used, because they take the whole

graph into account.

91

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.3.2.3 Closeness centrality

Closeness centrality [Sab66] is the inverse of farness. The farness of a vertex v is the sum of

distances from this vertex to all the other vertices of the graph. Closeness centrality of a vertex

v is given in Equation (3.11), where V is the set of all the vertices of the graph and d(v, y)
stands for the distance between vertices v and y .

CC(v) =
1

∑
y ∈V

d(v, y) (3.11)

A vertex is considered as important by the closeness centrality indicator if it is close to

most of the other vertices of the graph. The vertices with the highest closeness centrality

correspond to the nodes that are “in the middle” of the netlist. For logic masking, it is a more

interesting indicator than degree centrality because it is global. Therefore, it is in�uenced

by the graph structure and identi�es the important nodes e�ciently. Figure 3.3 shows the

values of closeness centrality on an example graph. Note that a very e�cient algorithm for

approximating closeness centrality was proposed in [EW01] and runs in near-linear time.

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1
Ce

nt
ra
lit

y

Figure 3.3 – Closeness centrality values for the vertices of a random graph

3.3.2.4 Betweenness centrality

Proposed in [Ant71; Fre77], betweenness centrality is the ratio of shortest paths between all

the other pairs of vertices of the graph that go through the vertex of interest. Equation (3.12)

shows the expression of betweenness centrality, in which �st stands for the number of shortest

paths from s to t , and �svt stands for the number of shortest paths that go from s to t through v.

CB(v) = ∑
s ≠ t {s, t} ∈V

�svt
�st

(3.12)

For a netlist, betweenness centrality is the highest for the nodes that are on the shortest

paths from the inputs to the outputs. This is depicted in Figure 3.4 on an example graph.

92

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Figure 3.4 – Betweenness centrality values for the vertices of a random graph

This indicator, however, has the drawback to only take shortest paths, also referred to

as geodesic paths, into account. This restriction is pointed out in [SZ89], implying that the

information transits mostly on the shortest paths, which is not always the case. Instead of

taking into account the shortest paths only, authors of [BF05] propose to assign a weigh to

paths according to their length. This is done by considering the graph as a network of unit

resistors and measuring the current �owing through the nodes. This accounts for the fact that

information, just like current, can split and spread in the network. These centrality indicators,

based on current �ow, are detailed below.

3.3.2.5 Current-�ow betweenness centrality

In order to compute current-�ow betweenness centrality [New05], the graph is considered

as an electrical network. Vertices are converted to nodes. If two vertices are connected in

the original graph, a unit resistor is added between the corresponding nodes in the electrical

network.

Once the network is built, pairs of vertices are picked one after the other and set as current

inputs and outputs. The current �owing through the node of interest for which the centrality

is computed is added for all the possible pairs of vertices. An example is given in Figure 3.5. On

the left-hand side, Figure 3.5a, an example graph is shown for which current-�ow betweenness

centrality is computed for the vertex G3. On the right-hand side, Figure 3.5b, the equivalent

electrical network of the graph is shown. An example of current input/output selected is given

although all pairs of nodes are selected iteratively for the centrality computation.

The expression for the current-�ow betweenness centrality of vertex v is given in Equa-

tion (3.13), where I (st)v is the current �owing through node v when s is the current input and

t is the current output. The current �owing through a node is computed using Kirchho�’s

current law.

CCFB(v) = ∑
s ≠ t∶{s, t} ∈V

I (st)v (3.13)

93

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

(a) Graph in which current-�ow betweenness centrality is
computed for the vertex G3.

(b) Equivalent electrical network show-
ing the node of interest and the current
input/output (adapted from [New05])

Figure 3.5 – Current-�ow betweenness centrality computation on a graph and equivalent
electrical network

Figure 3.6 shows the current-�ow betweenness centrality values obtained for the previously

considered random graph.

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Figure 3.6 – Current-�ow betweenness centrality values for the vertices of a random graph

Approximated current-�ow betweenness centrality The running time and space for

computing current-�ow betweenness centrality become rapidly impractical. In [BF05], authors

show that instead of selecting all the possible nodes pairs, a subset of them can be used. This

comes at the cost of a loss in the precision of the centrality indicator. In the use case we consider

here, we are only interested in the relative centrality of the nodes in order to select the most

important ones. Therefore, a lack of precision is not strictly prohibitive.

94

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.3.2.6 Current-�ow closeness centrality

A second centrality indicator that leverages the transformation of a graph into an electrical

network of unit resistors is current-�ow closeness centrality [BF05]. This has been shown to

be equivalent to information centrality, originally proposed in [SZ89].

The expression of current-�ow closeness centrality of a vertex v is given in Equation (3.14),

in which Re�(v, y) stands for the e�ective resistance between the nodes v and y . The notion of

e�ective resistance intuitively conveys the notion of “distance” between the nodes which is

necessary to measure the closeness. Just like the current accounted for non-geodesic paths in

current-�ow betweenness centrality, the e�ective resistance accounts for non-geodesic paths

in current-�ow closeness centrality. An example of current-�ow closeness centrality values is

shown in Figure 3.7.

CCFC(v) =
1

∑
y ∈V

Re�(v, y)
(3.14)

0.04 0.02 0.00 0.02 0.04
0.050

0.025

0.000

0.025

0.050

0

0.5

1

Ce
nt

ra
lit

y

Figure 3.7 – Current-�ow closeness centrality values for the vertices of a random graph

3.3.3 Masking gates insertion

Once the centrality value has been computed for all the nodes of the netlist, they are sorted

according to their value. The nodes with the highest centrality are selected to be modi�ed by

logic masking. The number of nodes to modify is a parameter of the logic masking algorithm

and is chosen by the designer, since it is directly related to the logic resources overhead.

The masking gates of type XOR or XNOR are inserted in the same way AND and OR gates

are inserted in Section 2.2.5 but taking the AW bits into account as shown in Figure 1.16. If the

AW bit is a 0, an XOR gate is inserted. If the AW bit is a 1, an XNOR gate is inserted. Then the

resulting graph is converted back into a netlist as described in Section 2.2.6.

95

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.3.4 Time complexity of centrality indicators

Before giving the performance of the centrality indicators at logic masking, we consider their

time complexity. This is a good indicator of the scalability of these indicators to real-world

netlists. Let n be the number of edges and m the number of vertices in the graph. We recall

that the single-source shortest paths problem can be solved in linear time (m + n) on graphs

with unit edge weights.

For betweenness centrality computation, the time complexity per node is (n2), since it
is required to compute both the shortest paths from s to v and from v to t in order to �nd

those that go through v. Naively, computing it for all the vertices of the graph leads to a time

complexity of (n3). An improved betweenness centrality computation algorithm is given in

[Bra01] and runs in (nm) time. For the graphs derived from netlists that we consider here,

the number of edges is approximately two times larger that the number of vertices, since most

of the gates that are used have two inputs. Therefore, the actual time complexity of computing

the betweenness centrality is close to (n2).
For closeness centrality, only one instance of the single-source shortest paths problem

must be solved for every vertex of the graph. Therefore, the time complexity of the closeness

centrality computation is (n2).
Although these complexities are polynomial, they remain expensive to compute for large

graphs. The authors of [EW01] showed that closeness centrality can be approximated in

(log n
"2 (n log n + m)) time, with an additive error of at most "ΔG where " is a �xed constant

and ΔG is the diameter of the graph. This was extended to betweenness centrality in [BE05],

leading to the same time complexity with an additive error of (n − 2)".
Centrality indicators based on current-�ow are more complex to compute. As shown in

[BF05], the algorithms for computing current-�ow betweenness centrality runs in (I (n − 1) +
mn log n) time with I (n) ∈ (n3) while current-�ow closeness centrality has a time complexity

of (I (n) + n). This is because computing these centrality indicators requires to invert a matrix.

Matrix inversion using Gaussian elimination runs in (n3) time. However, since the matrices

we are dealing with here are sparse, speci�c methods can be used to invert them leading to a

computation time of (mn1.5). More details can be found in [BF05]. The approximated version

of current-�ow betweenness centrality [BF05], taking only a subset of the vertices into account,

runs in (1
"2m

√
k log n) time with an absolute error of ". The time complexities of computing

the di�erent centrality indicators are summarised in Table 3.5.

3.4 Experimental results

We implemented the logic masking algorithm in Python, making use of the igraph package

[CN06] to handle graphs. The computation times are obtained with a workstation embedding

an Intel Core i5-4570 processor operating at 3.20GHz and 16GB of RAM. We used ITC’99

96

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

Centrality indicator Time complexity

Betweenness (nm) [Bra01]
Closeness (n2) [BE05]
Current-�ow betweenness (I (n − 1) +mn log n) with I (n) ∈ O(n3) [BF05]
Approximated current-�ow betweenness

(1
"2m

√
k log n) [BF05]

with absolute error " by picking k pairs
Current-�ow closeness (I (n) + n) with I (n) ∈ O(n3) [BF05]

Table 3.5 – Time complexity of centrality indicators

combinational benchmarks [Dav99], but only the ones with more than 1,000 logic gates. In

addition, we also considered some more recent benchmarks from EPFL [AGM15], released in

2015. Although they include benchmarks of up to 23 million gates, we restricted to the ones of

up to 100 000 gates for run-time considerations.

Experimental results are mostly given in the form of plots, but an exhaustive list of values

for all the benchmarks is given in Table 3.7. In this table, a “—” symbol means that the centrality

value could not be computed by the workstation we used.

3.4.1 Masking e�ciency Em based on bitwise correlation

In order to estimate the masking e�ciency of the di�erent centrality indicators, we consider

three logic resources overheads: 1%, 5% and 10%. For each of them, one hundred random AW

were fed to the netlist, with one hundred random input patterns fed at the primary inputs for

each of them. Thus ten thousand random test patterns are fed in total to each netlist.

Figure 3.8 shows a plot of the Em values (see Equation (3.2)) obtained for the benchmarks of

di�erent sizes with the three logic resources overhead considered. Overall, increasing the logic

resources decreases the Em value in general. We can also see that the masking e�ciency di�ers

greatly from one benchmark to another. For instance, the sin benchmark, that implements

the sine function, is very easy to mask. Even at 1% overhead, masking it using approximated

current-�ow betweenness centrality as the node selection heuristic makes the Em value drop to

0.10 (see Table 3.7d). Conversely, the mem_ctrl benchmark is hard to mask. Using betweenness

centrality as the node selection heuristic only reduces Em down to 0.89 at 10% overhead.

Among centrality indicators, some perform better than others. They lead to lower Em at

the same overhead. The ones that account for geodesic paths only, namely closeness and

betweenness centrality, exhibit the highest Em values on average, 0.64 and 0.71 respectively at

5% overhead. This is because, in a netlist, the information transits on non-geodesic paths as well.

It follows that centrality indicators based on current �ow perform much better. The average

Em values obtained for current-�ow betweenness, approximate current-�ow betweenness and

current-�ow closeness are 0.33, 0.47 and 0.38 respectively at 5% overhead. These low values

indicate a good masking e�ciency. For comparison, the Em values obtained with other selection

heuristics at 5% logic resources are given in Table 3.6.

97

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

1k 10k 100k
logic gates

0.0

0.2

0.4

0.6

0.8

1.0

E m

Closeness Betweenness Current-flow
betweenness

Approximated
current-flow
betweenness

Current-flow
closeness

(a) 1% logic resources overhead

1k 10k 100k
logic gates

0.0

0.2

0.4

0.6

0.8

1.0

E m

(b) 5% logic resources overhead

1k 10k 100k
logic gates

0.0

0.2

0.4

0.6

0.8

1.0

E m

(c) 10% logic resources overhead

Figure 3.8 – Em values obtained for several logic resources overhead

Heuristic Em value at 5% logic resources overhead

Random [RKM08a] 0.74
Fan-in/out [CB09] 0.83
Fault analysis [Raj+15] 0.185

Table 3.6 – Em values obtained with other selection heuristics at 5% logic resources overhead

98

C
h
apter

3
–
C
entrality

indicators
for

e�
cient

and
scalable

com
binationallogic

m
asking

Ben
chm

ark

Ou
tpu

ts

G
ate

s
Gra

ph
bui

ldin
g t
im
e (s

)

Gra
ph

pro
ces

sin
g t
im
e (s

)

Em a
t 1%

ove
rhe

ad

Em a
t 5%

ove
rhe

ad

Em a
t 10

% ove
rhe

ad

adder 129 1020 0.67 0.38 0.98 0.94 0.91
i2c 142 1342 0.81 0.42 0.99 0.94 0.91

c3540 22 1669 0.28 0.51 0.47 0.17 0.3
c5315 123 2307 0.39 0.95 0.85 0.76 0.62
c6288 32 2416 0.40 0.91 0.21 0.03 0.18
sin 25 5416 3.39 6.05 0.27 0.2 0.23

b14_1_C 245 6567 1.12 6.89 0.79 0.65 0.5
b15_C 449 8367 1.48 12.12 0.85 0.79 0.61
b14_C 245 9765 1.66 16.59 0.95 0.71 0.52
b15_1_C 449 12543 2.18 23.64 0.82 0.62 0.49
arbiter 129 11839 8.36 52.56 0.95 0.86 0.84
b21_1_C 512 13898 2.44 36.60 0.97 0.55 0.35
b20_1_C 512 13899 2.42 34.40 0.98 0.55 0.4
b20_C 512 19682 3.44 71.96 0.96 0.65 0.43
b21_C 512 20027 3.49 78.30 0.99 0.64 0.55
b22_1_C 757 20983 3.77 74.21 0.95 0.66 0.64
b22_C 757 29162 5.27 170.33 0.98 0.72 0.52

mem_ctrl 1231 46836 43.84 768.46 0.98 0.92 0.83
div 128 57247 66.66 1068.01 0.66 0.64 0.65

b18_1_C 3342 105102 22.41 1653.32 0.95 0.81 0.66

Average values: 0.83 0.64 0.56

(a) Closeness centrality

Ben
chm

ark

Gra
ph

pro
ces

sin
g t
im
e (s

)

Em a
t 1%

ove
rhe

ad

Em a
t 5%

ove
rhe

ad

Em a
t 10

% ove
rhe

ad

adder 0.69 0.97 0.86 0.71
i2c 0.71 0.98 0.92 0.85

c3540 0.79 0.64 0.36 0.25
c5315 1.34 0.93 0.73 0.68
c6288 1.40 0.54 0.24 0.18
sin 10.67 0.24 0.26 0.22

b14_1_C 12.57 0.94 0.83 0.50
b15_C 18.28 0.97 0.80 0.51
b14_C 25.11 0.94 0.77 0.48
b15_1_C 37.16 0.82 0.58 0.46
arbiter 51.84 0.97 0.85 0.69
b21_1_C 54.76 0.94 0.84 0.38
b20_1_C 99.63 0.94 0.79 0.43
b20_C 108.41 0.89 0.72 0.35
b21_C 114.13 0.96 0.77 0.53
b22_1_C 119.25 0.92 0.80 0.63
b22_C 246.37 0.95 0.79 0.51

mem_ctrl 1866.95 0.99 0.94 0.89
div 2731.64 0.65 0.64 0.65

b18_1_C 3258.28 0.95 0.80 0.63

Average values: 0.86 0.71 0.53

(b) Betweenness centrality

Table 3.7 – Experimental results obtained when applying logic masking on ITC’99 and EPFL benchmarks for di�erent centrality indicators.

99

C
h
apter

3
–
C
entrality

indicators
for

e�
cient

and
scalable

com
binationallogic

m
asking

Ben
chm

ark

Gra
ph

pro
ces

sin
g t
im
e (s

)

Em a
t 1%

ove
rhe

ad

Em a
t 5%

ove
rhe

ad

Em a
t 10

% ove
rhe

ad

adder 15.57 0.95 0.74 0.59
i2c 23.51 0.28 0.19 0.18

c3540 13.43 0.25 0.03 0.27
c5315 27.15 0.81 0.68 0.64
c6288 39.31 0.20 0.03 0.18
sin — — — —

b14_1_C — — — —
b15_C — — — —
b14_C — — — —
b15_1_C — — — —
arbiter — — — —
b21_1_C — — — —
b20_1_C — — — —
b20_C — — — —
b21_C — — — —
b22_1_C — — — —
b22_C — — — —

mem_ctrl — — — —
div — — — —

b18_1_C — — — —

Average values: 0.50 0.33 0.37

(c) Current-�ow
betweenness centrality

Ben
chm

ark

Gra
ph

pro
ces

sin
g t
im
e (s

)

Em a
t 1%

ove
rhe

ad

Em a
t 5%

ove
rhe

ad

Em a
t 10

% ove
rhe

ad

adder 1.67 0.91 0.76 0.68
i2c 1.65 0.30 0.28 0.23

c3540 1.38 0.74 0.26 0.51
c5315 2.43 0.86 0.79 0.71
c6288 2.31 0.26 0.02 0.40
sin 9.01 0.10 0.12 0.01

b14_1_C 7.39 0.80 0.30 0.35
b15_C 20.19 0.89 0.63 0.51
b14_C 30.32 0.62 0.37 0.30
b15_1_C 32.70 0.77 0.65 0.85
arbiter 42.89 0.94 0.89 0.83
b21_1_C 45.42 0.57 0.44 0.51
b20_1_C 50.24 0.70 0.37 0.51
b20_C 75.02 0.66 0.74 0.72
b21_C 79.26 0.66 0.36 0.65
b22_1_C 93.17 0.83 0.59 0.60
b22_C — — — —

mem_ctrl — — — —
div — — — —

b18_1_C — — — —

Average values: 0.66 0.47 0.52

(d) Approximated current-�ow
betweenness centrality

Ben
chm

ark

Gra
ph

pro
ces

sin
g t
im
e (s

)

Em a
t 1%

ove
rhe

ad

Em a
t 5%

ove
rhe

ad

Em a
t 10

% ove
rhe

ad

adder 21.84 0.97 0.95 0.94
i2c 20.71 0.28 0.20 0.38

c3540 11.38 0.46 0.22 0.45
c5315 21.67 0.80 0.63 0.62
c6288 22.75 0.29 0.01 0.25
sin 334.16 0.22 0.01 0.01

b14_1_C 166.29 0.97 0.76 0.77
b15_C 337.45 0.65 0.41 0.43
b14_C 444.58 0.65 0.31 0.30
b15_1_C 781.16 0.64 0.29 0.31
arbiter — — — —
b21_1_C 957.94 0.43 0.40 0.39
b20_1_C 949.88 0.44 0.40 0.38
b20_C 1702.18 0.56 0.35 0.35
b21_C 1780.25 0.61 0.36 0.36
b22_1_C 2056.71 0.45 0.38 0.36
b22_C 4068.99 0.59 0.35 0.34

mem_ctrl — — — —
div — — — —

b18_1_C — — — —

Average values: 0.56 0.38 0.42

(e) Current-�ow
closeness centrality

Table 3.7 – Experimental results obtained when applying logic masking on ITC’99 and EPFL benchmarks for di�erent centrality indicators.

100

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.4.2 Computation time

The second metric that we used to evaluate the proposed node selection heuristic based on

centrality indicators is the computation time. Indeed, this criterion is essential for a smooth

integration into EDA tools. Figure 3.9 shows a plot of the computation time required for each

benchmark, as well as a baseline that accounts for the time taken to build the graph from the

netlist �le. The outliers on this baseline, that appear as small peaks, are the EPFL benchmarks.

Indeed, they are provided in the BLIF description format, which is more time-consuming to

parse than the BENCH format of ITC-99 benchmarks. Detailed computation time values for

each benchmark and centrality indicator considered are given in Table 3.7, in the “Graph

processing time (s)” column.

1k 10k 100k
logic gates

1

10

100

1k

Co
m

pu
ta

tio
n

tim
e

(s)

1s

1min

1h

Graph building
Closeness

Betweenness
Current-flow
betweenness

Approximated current-flow
betweenness
Current-flow
closeness

Figure 3.9 – Computation time required for the centrality indicators considered for di�erent
benchmark sizes.

The plots shown in Figure 3.9 are coherent with the quadratic time complexities described in

Section 3.3.4. Closeness and betweenness are quite e�cient to compute, allowing large netlists

of up to 100 000 gates to be processed. The �rst centrality indicator to become impractical

to compute with our workstation is current-�ow betweenness. However, the approximated

version can be used to handle larger designs. Current-�ow closeness is almost equivalent in

computation time to current-�ow betweenness centrality, but can be used for netlists of up to

30 000 gates.

3.4.2.1 Parallel computation

In order to speed-up the centrality computations, parallel algorithms can be used. For example,

in [BM06], parallel approaches for betweenness and closeness centrality are described. Imple-

menting these methods would allow to speed up the computations. However, this might not

101

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

allow to handle larger netlists, due to the space complexity requirements. This aspect should

be further evaluated.

3.4.3 Trade-o� between masking e�ciency and computation time

To allow for a better comparison between the existing node selection heuristics and the ones

that use centrality indicators, it is interesting to plot the computation time ratio against the

average Em value for each. The computation time ratio is de�ned as the time taken to compute

the heuristic of interest divided by the time to perform random selection. The result is shown

in Figure 3.10. It is important to consider that the Em value (see Equation 3.2) obtained for the

node selection heuristic based on fault-analysis is only averaged on benchmarks of up to 3 500

gates, after the results provided by the authors of [Raj+15]. This limitation for the size of the

considered benchmarks could potentially lead to an underestimation of Em.

0.0 0.2 0.4 0.6 0.8 1.0
Em

1

10

100

1k

10k

100k

Co
m

pu
ta

tio
n

tim
e

ra
tio

Other heuristics
Random [RKM08a]
Fan-in/Fan-out cones [CB09]
Fault-analysis [Raj+15]

Centrality indicator

Closeness
Betweenness
Current-flow
betweenness

Approximated
current-flow
betweenness
Current-flow
closeness

Figure 3.10 – Trade-o� between masking e�ciency and computation time for di�erent node
selection heuristics at 5% logic resources overhead.

This plot clearly shows that existing heuristics are either easy to compute or e�cient at

masking. Conversely, using centrality indicators allows for a nice trade-o� between those two

criteria. Even though current-�ow betweenness centrality seems to be the best performing

heuristic, the results presented in Table 3.7 show that it can not be used for large netlists.

Current-�ow closeness centrality exhibits a similar masking e�ciency and computational

complexity, while being able to handle larger netlists. Therefore, among centrality indicators,

current-�ow closeness centrality is the most usable one for e�cient logic masking.

102

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.4.4 Distance to inputs/outputs

Finally, as discussed in Section 3.2.3, the masking gates must be inserted as deep as possible in

the netlist to avoid bitwise dependencies between the AW bits and the outputs. Table 3.8 shows

the average distance from the masking gates to the inputs/outputs of the netlist. 0% means that

the masking gates are inserted at the inputs, 100% means that the masking gates are inserted at

the outputs and 50% means that the masking gates are inserted as far from the inputs as from

the outputs.

Centrality indicator
Average distance from the masking

gates to the inputs/outputs

Betweenness 56%
Closeness 57%
Current-�ow betweenness 59%
Approximated current-�ow betweenness 53%
Current-�ow closeness 54%

Table 3.8 – Distance from the inserted logic masking gates to the inputs/outputs when using
di�erent centrality indicators. 0% means that the masking gates are inserted at the inputs, 100%
means that the masking gates are inserted at the outputs and 50% means that the masking gates
are inserted as far from the inputs as from the outputs.

These results indicate that the inserted masking gates are approximately as far from the

inputs as from the outputs. Therefore, they are in the middle of the netlist and can a�ect

multiple output bits. A more strict evaluation of the impact of each masking gate could be

developed by exploiting the avalanche criterion. A good masking scheme should then get half

the output bits to �ip on average when the AW bits are �ipped consecutively.

3.5 Possible improvements

3.5.1 Deleting selected nodes from the graph

For some graphs, selecting the vertices with the highest centrality for logic masking does not

alter the outputs as much as it could if the selection process was carried out di�erently. An

example of such a graph is shown in Figure 3.11.

In this example graph, we can observe that the three vertices with the highest centrality

are adjacent. Therefore, two problems arise when selecting them for logic masking. First of

all, since the masking gates are inserted in a row, their e�ciency will be reduced. Indeed, if

two masking gates are inserted one after the other, then both AW bits combinations “00” and

“11” make the design operate normally. This increases the number of valid AWs. The second

concern is that if there are some outputs outside the output logic cone of the masking gates,

then they are not a�ected by logic masking. Therefore, the masking e�ciency is reduced.

103

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

Figure 3.11 – Graph for which selecting the vertices with the highest centrality does not alter
the outputs optimally

In order to avoid this phenomenon, a modi�cation could be applied to the node selection

process. The vertices that have been selected because they have the highest centrality could

be removed from the graph. This way, they do not participate anymore in the measurement

of path lengths or current-�ow that are used by centrality indicators. Thus this allows other

vertices, that are far from the selected ones, to be reconsidered by recomputing the centrality

indicator.

In [Raj+15], the fault-impact, used as the selection heuristic, is recomputed every time a

node is selected for logic masking. Instead, in order to reduce processing time, a larger number

of nodes could be selected every time the heuristic is computed. Fine tuning this number should

be done for each heuristic, after considering the computing power and time available.

3.5.2 Vitality indicators

Following the idea of removing high-importance vertices from the graph, vitality indicators

could be considered in the development of future node selection heuristics. As de�ned in

[BE05, p. 36], for a graph G: “Given an arbitrary real-valued function on G a vitality measure

quanti�es the di�erence between the value on G with and without the vertex or edge”. By

de�ning the mentioned real-valued function as a measure of the correct operation of the netlist,

the vitality measure allows to target speci�c nodes that alter the operation as much as possible.

This could be investigated in future works.

104

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

3.5.3 Very-low overhead logic masking

Another interesting criterion that could also be exploited to evaluate the nodes selection

heuristics is their masking e�ciency at low overhead. Indeed, as shown by the results in

Table 3.7, increasing the logic resources overhead from 5 to 10% does not necessarily lead to

better logic masking (i.e. lower Em value). At low overhead of 1%, current-�ow betweenness

centrality already allows to reach Em = 0.50 on average, indicating quite e�cient masking. By

considering how fast the masking e�ciency varies when the logic resources overhead increases,

the designer’s choice about the a�ordable overhead for e�cient masking could be better guided.

3.6 A priori evaluation of the masking potential

As illustrated by the plots in Figure 3.8, the masking e�ciency varies a lot from one benchmark

to another. The benchmarks for which the Em value drops the fastest when the logic resources

overhead increases are the multiplier (c6288) and the sine benchmarks. Intuitively, this can

be explained by the fact that the output can take a lot of di�erent values. The output space is

very large. Moreover, when one output changes, it is very likely that the others change as well.

Conversely, for the arbiter for example, the outputs can take much less di�erent values. Since

the aim of such IP core is to grant access to peripherals, it can only take m output values if it

has m outputs, since it cannot grant access to two peripherals at the same time. In addition, if

one output changes, only one other output changes.

Moreover, the multiplier and sine benchmarks have the property that changing one input

bit changes the output bits a lot. This property is related to the avalanche criterion used to

assess the di�usion property of ciphers. This criterion states that when one input bit �ips, half

the output bits should �ip on average.

These properties of some benchmarks should be formalised in order to evaluate a priori

how well a benchmark can be masked. The two main paths that could be investigated are the

following. First, the avalanche criterion could be evaluated on the nodes of the benchmark.

This would allow to evaluate the e�ciency at propagating the disturbance from the nodes of

interest to the outputs. The other option is, for every output, to evaluate how many outputs

change when the output of interest changes. This could highlight the relation between the

outputs. These methods, allowing to assess the masking potential of a benchmark a priori,

could be very helpful to IP core designers.

3.7 Attacks aiming at recovering the activation word

The logic masking schemes have been subject to a variety of attacks aiming at recovering

the AW from a masked IP core. If the attacker has access to the gate-level netlist, he can

determine paths inside the netlist that can sensitise the AW bits to the outputs. This is called

105

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

the sensitisation attack [Raj+12b]. However, it requires the attacker to have full access to the

design �le of the gate-level netlist, which is quite a restrictive constraint.

Later on, attacks that do not require access to a gate-level netlist were proposed. In [PM15],

a hill-climbing attack leverages the bitwise dependency between AW bits and output bits. This

is detailed in Section 2.4.4.1.

The state-of-the-art attack on logic masking schemes is the SAT attack [SRM15]. The

principle of this attack is given in Section 2.4.4.2.

To thwart this attack, various additions to the masking gates were proposed. The �rst

observation is that the inputs associated to the AW bits should not be exposed directly, but a

one-way random function could be inserted before them. To this end, [Yas+15] proposed to use

an AES block cipher with a �xed secret key, since it performs as a pseudo-random function.

To reduce the logic resources overhead, the AES core can be replaced by several structures

that are known to be hard to handle by a SAT solver. These structures tend toward a point

function behaviour [Yas+16a; XS16; Yas+17c], and alter the outputs only for a few number of

input patterns. An example of such structure is an AND tree, which can be detected inside a

netlist and exploited to harden the logic masking scheme [Li+16].

However, as pointed out in [Yas+16a], there is a dichotomy between SAT resistance and

corruptibility. Indeed, the SAT attack is very e�cient because it exploits the fact that the masked

outputs are altered a lot. By reducing the Hamming distance between the normal and masked

outputs, the attack becomes harder. However, the masking e�ciency drops considerably in

this case. The extreme case is TTLock [Yas+17c], in which the outputs are altered for only

one input pattern. In such case, we do not believe that the logic modi�cation can be labelled

“masking” anymore, considering its extremely poor e�ciency at disturbing the outputs.

Several attacks have also been published against anti-SAT blocks. The signal skew towards

0 or 1 can help in identifying functions that tend to behave like point functions [Yas+17b].

These functions can then be removed from the netlist [Yas+17a] so that it operates normally.

Of course, these attacks imply that an attacker has access to the netlist.

Finally, it is our feeling that security should not be the primary concern of a logic masking

scheme, as highlighted by this whole chain of attack-defense articles. We believe that security

can only be guaranteed by a cryptographic core. Making a cryptographic core secure is already

a complex, challenging task. Trying to obtain security in a cryptographic sense from a few

masking gates inserted inside an IP core with its own functional purpose seems impossible.

3.8 Conclusion

This chapter proposes a new set of heuristics based on centrality indicators to select the nodes

to modify by logic masking. We �rst reviewed existing centrality indicators before highlighting

which ones perform the best in the frame of logic masking. When compared to existing selection

heuristics, it o�ers a nice trade-o� between masking e�ciency and computational complexity.

106

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

Thus, heuristics based on centrality indicators, particularly current-�ow closeness, are the only

ones to date that can mask large netlists e�ciently. This makes them suitable candidates for

integration into EDA tools.

107

Chapter 3 – Centrality indicators for e�cient and scalable combinational logic masking

108

Chapter 4

Key reconciliation protocols for error

correction of silicon PUF responses

PUFs, presented in Section 1.5.2.3, are now a widely known root of trust and bring features

such as hardware identi�cation, authentication and key generation to electronic systems. Their

main drawback, however, is that the response that is generated by querying the PUF with a

�xed challenge varies from time to time. This is due to the intrinsic properties of the PUF,

that extracts manufacturing process variations. In order to obtain a reliable response, an error

correction module must then be integrated as well.

Correction is currently performed by a classical decoder, BCH, Reed-Muller or convolutional

for instance. The �rst time the PUF is challenged, helper data is generated. This helper data,

which should leak a limited amount of information about the PUF response, is later used by

the decoder to regenerate the original response if the same challenge is fed. Some encoding

methods were proposed as well, to take into account the speci�c properties of PUF responses.

All these methods, however, require a signi�cant amount of logic resources.

In this chapter, we show that the CASCADE key reconciliation protocol, originating from

quantum key distribution, can be successfully used to reconcile two slightly di�erent PUF

responses obtained at di�erent times. We give several sets of parameters for the protocol that

can be used depending on the error rate observed at the PUF output. The amount of information

leaked when executing the protocol is manageable and is evaluated for several use cases. Finally,

implementation results on the device side show that this is the most lightweight solution for

error correction, with at least a three times improvement in logic resources occupation at least

over state-of-the-art error correction codes.

The code associated with this chapter is available at:
https://gitlab.univ-st-etienne.fr/b.colombier/ cascade/ tree/master

109

https://gitlab.univ-st-etienne.fr/b.colombier/cascade/tree/master

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Protocoles de réconciliation de clés pour
la correction des erreurs dans les réponses
des PUFs

Les PUFs sont aujourd’hui des primitives matérielles bien connues et permettent l’identi�ca-

tion matérielle, l’authenti�cation ou encore la génération de clés. Leur inconvénient principal,

néanmoins, est le fait que la réponse générée en envoyant un challenge �xe à la PUF change

d’une fois à l’autre. Ceci est du aux propriétés intrinsèques de la PUF, qui extrait les variations

de process de fabrication. A�n d’obtenir une réponse �able, un module de correction des erreurs

doit donc être ajouté également.

Actuellement, ceci est réalisé en implantant un décodeur classique, de type BCH, Reed-

Muller ou convolutif par exemple. Lorsqu’un challenge est envoyé à la PUF pour la première fois,

des données auxiliaires sont générées. Ces dernières, qui doivent fuiter le moins d’information

possible sur la réponse de la PUF, sont utilisées plus tard par le décodeur pour regénérer la

réponse originale si le même challenge est envoyé. Des méthodes d’encodage ont également

été proposées, qui prennent en compte les propriétés spéci�ques des réponses des PUFs. Toutes

ces méthodes, néanmoins, ont un coût important en ressources logiques.

Dans ce chapitre, nous montrons que le protocole de réconciliation de clés CASCADE,

utilisé en distribution quantique de clés, peut être utilisé pour réconcilier deux réponses de

PUF légèrement di�érentes obtenues à deux moments distincts. Nous donnons plusieurs jeux

de paramètres pour le protocole qui peuvent être utilisés en fonction du taux d’erreur observé

à la sortie de la PUF. La quantité d’information fuitée pendant l’exécution du protocole est

gérable et évaluée pour di�érents cas d’usage. Finalement, les résultats d’implémentation côté

composant virtuel montrent que c’est la solution la plus légère à ce jour pour la correction des

erreurs, avec un coût en ressources logiques au moins trois fois moindre par rapport aux codes

correcteurs d’erreurs les plus adaptés.

Le code associé à ce chapitre est disponible à :
https://gitlab.univ-st-etienne.fr/b.colombier/ cascade/ tree/master

110

https://gitlab.univ-st-etienne.fr/b.colombier/cascade/tree/master

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.1 Similarities between key reconciliation in quantum

key distribution and reliable shared key generation

from a PUF response

Originally proposed in the context of quantum key distribution, key reconciliation protocols

allow two parties who exchanged a stream of bits through a quantum channel to reconcile

their respective information [BS93]. Indeed, because the quantum channel is noisy and can be

eavesdropped, the message that is received is slightly di�erent from the one that was sent. In

order to make these messages identical, the two parties involved carry out a key reconciliation

protocol. This key reconciliation consists in a public discussion. Obviously, since the discussion

is public, some information is leaked in the process. Depending on the actual amount of

information that is leaked, an appropriate privacy ampli�cation method is applied to obtain a

shared secret with a su�cient amount of entropy per bit. The protocol is shown in Figure 4.1a.

This use case is very similar to the one of shared key generation between a circuit embedding

a PUF and a server. At enrolment, the circuit generates r0 and sends it to the server. Thus both

the circuit and the server own r0. However, later on, when the circuit must be identi�ed, the

response rt generated by the PUF is noisy. Error correction is carried out on the server side,

like in [Her+12], so that the server owns rt as well. The PUF response is then turned into a

cryptographic key. This is illustrated in Figure 4.1b.

(a) Key reconciliation protocol (b) Reliable shared key generation with a PUF

Figure 4.1 – Illustration of the similarities between key reconciliation and reliable shared key
generation from a PUF response

In order to understand how the CASCADE key reconciliation protocol can be applied to

correct the errors in PUF responses, we �rst present the foundations of the protocol, namely

parity checks and binary search. We then show how they are extended to make the full

CASCADE protocol.

111

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.2 Error correction based on multiple parity checks and

binary searches

4.2.1 Method

Given two responses r0 and rt of length n, identifying, isolating and correcting errors between

them can be done by multiple parity checks followed by binary searches. We consider that n

is a power of two in the rest of the chapter. First, both strings are split into blocks of size m,

which is a power of two as well. A block is a list of indexes, like [12, 13, 14, 15] for example, that

are the indexes of the bits of interest in the PUF response. From the parity of both associated

blocks B0 and Bt from r0 and rt , the relative parity, Pr , is computed (see Equation (4.1)).

Pr (B0, Bt) = (m−1⨁
i=0

r0[B0[i]])
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Parity of B0

⊕(m−1⨁
i=0

rt[Bt[i]])
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Parity of Bt

(4.1)

If the relative parity is even, then no error is detected. If the relative parity is odd, then

the CONFIRM method [BS93] is applied on both blocks B0 and Bt from r0 and rt . This method

consists in splitting the blocks in two and computing the relative parity of the �rst half. If it

is even, then the error is in the second half. If it is odd, then the error is in the �rst half. The

half for which the parities di�er is then subsequently split in two. The process is repeated

until the block size is two bits. The �rst bit from Bt is then transmitted. If this bit is the same

as the corresponding bit in B0 then the other bit is �ipped. If this bit is di�erent from the

corresponding bit in B0, then this bit is �ipped. Algorithm 2 summarises the CONFIRMmethod,

while Figure 4.2 illustrates it on 16-bit blocks.

Algorithm 2: CONFIRM

Input: B0, Bt

1 while size(B0) > 1 do
2 Split B0 into two parts B0,0 and B0,1

3 Split Bt into two parts Bt,0 and Bt,1

4 if Pr (B0,0, Bt,0) = 1 then
5 B0 = B0,0

6 Bt = Bt,0

7 else

8 B0 = B0,1

9 Bt = Bt,1

10 return B0
Figure 4.2 – CONFIRM applied on 16-bit blocks

112

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.2.2 Failure rate

The failure rate of the CONFIRM method depends on the location of the faulty bits in the PUF

response. The failure rate is de�ned as the ratio of responses in which some errors are left

uncorrected. If two faulty bits end up in the same block, then they are not detected by the

parity check and cannot be corrected. To maximise the probability to isolate faulty bits, the

block size must be reduced. Therefore, the smaller the block size, the lower the failure rate is.

4.2.3 Associated leakage

4.2.3.1 Initial parity checks

Every time the parity is computed on a block, one bit of information is leaked. Therefore, when

an n-bit response is split into blocks of size m, performing parity checks on every block leaks

n/m bits, which is the number of blocks. Therefore, the smaller the block size is, the higher the

information leakage associated to the initial parity checks is.

4.2.3.2 Error isolation and correction

When a block exhibits a di�erent parity in r0 and rt , the CONFIRM method is applied on it.

Since the blocks are of size m, which is a power of two, then successively splitting in two and

computing the parity of the �rst half leaks log2(m) bits. Therefore, the smaller the block size is,

the lower the information leakage associated with binary search and error correction is.

4.2.4 Drawback

The drawback of this method for error correction is that if two errors are found in the same

block, then they are undetected. This is solved in the BINARY protocol.

4.3 BINARY protocol

The BINARY protocol improves on CONFIRM by repeating it multiple times. Moreover,

responses are shu�ed randomly between two passes, spreading the errors across and preventing

two originally adjacent errors to always end up in the same block for parity checks.

4.3.1 Method

Given two responses r0 and rt , the BINARY protocol starts by shu�ing them identically using

a public random permutation �0. Indeed, in a quantum channel, errors usually occur in burst.

Therefore, these errors must be spread among the blocks so that they are detected by the parity

checks and corrected (see Figure 4.3). When using the protocol with PUF responses, however,

this initial shu�ing step can be omitted since the errors do not occur in burst.

113

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Figure 4.3 – Spreading a burst of errors among multiple blocks

The initial block size is determined from the error rate ". In the original protocol, " is
estimated by transmitting a dummy public frame through the quantum channel. In the case of

PUF responses, the error rate can be estimated by characterisation of the PUF of interest.

For every pass, the parity checks and binary search-based error correction is done. This

ends by applying the CONFIRM method on the blocks that have a relative parity of 1 (lines

7 and 8 of Algorithm 3). After this, the block size is doubled to reduce the leakage brought

by the parity checks in subsequent passes. Although doubling the block size increases the

probability to �nd an even number of errors in a block, most of the errors are corrected in the

�rst passes since the blocks are then smaller. Therefore, a small block size is no longer necessary.

Afterwards, the responses are scrambled again with another public random permutation.

After all the passes have been carried out, the responses must be unscrambled by using the

inverse permutations �−1
0 , �−1

1 , ..., �−1
npasses . If the number of passes is su�ciently high, then the

responses r0 and rt are correctly reconciled with a very high probability.

A toy example of applying the BINARY algorithm on 16-bit PUF responses is shown in

Figure 4.4. In this example, an integrated circuit that embeds a PUF tries to authenticate to

a server. To achieve this, one step is to have a shared secret. The communication goes both

ways. The server sends the response indexes contained in the block on which the parity must

be computed. The circuit then sends back the associated parity value.

Algorithm 3: BINARY
Input: r0, rt , ", npasses

1 Scramble r0 and rt using a public random permutation �0

2 Estimate the initial block size k1 from the error rate "

3 for i = 1 to npasses do

4 Split r0 and rt into blocks of size ki

5 forall blocks do

6 Compute the relative parity Pr (B0,i , Bt,i)
7 if Pr (B0,i , Bt,i) = 1 then
8 CONFIRM(B0,i , Bt,i)

9 Double the block size ki+1 = 2 × ki

10 Scramble r0 and rt using a public random permutation �i

11 Unscramble r0 and rt with �−1
0 , �−1

1 , ..., �−1
npasses

12 return r0, rt

114

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Integrated circuit Server

Owns n-bit response rt Owns n-bit response r0

Authentication request
←←→

Chooses a public random permutation �1
Computes block size k1 from "

Pass 1

Scrambles r0 using �1 (public)

Splits r0 into blocks of size k1

Block 1 (no error)
Indexes of block 1: 2, 12, 1, 4←←

Computes parity Computes parity
Pt = rt [2] ⊕ rt [12] ⊕ rt [1] ⊕ rt [4] P0 = r0[2] ⊕ r0[12] ⊕ r0[1] ⊕ r0[4]

Pt←←←←←←←←←←←←←←→
Veri�es P0 = Pt

Block 2 (no error)

...
Block 3 (no error)

...
Block 4 (with error)
Indexes of block 4: 13, 15, 0, 3←←

Computes parity Computes parity
Pt = rt [13] ⊕ rt [15] ⊕ rt [0] ⊕ rt [3] P0 = r0[13] ⊕ r0[15] ⊕ r0[0] ⊕ r0[3]

Pt←←←←←←←←←←←←←←→
Pt ≠ P0

CONFIRM on block 4
Indexes of �rst half: 13, 15←←←

Computes parity Computes parity
Pt = rt [13] ⊕ rt [15] P0 = r0[13] ⊕ r0[15]

Pt←←←←←←←←←←←←←←→
Pt ≠ P0

Request �rst bit
←←←

rt [13]←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
Flips r0[13]

Figure 4.4 – Example of executing the BINARY protocol on 16-bit responses with one error.

4.3.2 Failure rate

4.3.2.1 In�uence of the block size

Starting with a small initial block size k1 decreases the failure rate. Indeed, the probability to

isolate one error per block is higher. Therefore, the smaller the initial block size is, the lower

the failure rate is.

115

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.3.2.2 In�uence of the number of passes

Increasing the number of passes also reduces the failure rate. By performing more parity checks,

more errors can be detected and corrected. Therefore, the higher the number of passes is, the

lower the failure rate is.

4.3.3 Associated leakage

4.3.3.1 In�uence of the block size

Initial parity checks Just as discussed before, computing the parity of m-bit blocks in an

n-bit response leaks n/m bits. Therefore, the smaller the block size is, the higher the information

leakage associated to the initial parity checks is.

Error isolation and correction When an error is detected by parity check, performing

binary search on an m-bit block leaks log2(m) bits. Therefore, the smaller the block size is, the

lower the information leakage associated with binary search and error correction is.

4.3.3.2 In�uence of the number of passes

If more passes are carried out, more parity checks are performed. Even though �nal passes

leak less, since the block size is greater, some bits are still leaked. Therefore, the higher the

number of passes is, the higher the leakage is.

4.3.4 Improvement

The BINARY protocol can be improved by noticing the following. If, in a pass, two blocks

have a even relative parity, then if in a subsequent pass an error is corrected at an index that

was in these blocks, then the blocks now have an odd relative parity. Thus these blocks can be

processed by CONFIRM again to isolate the error and correct it.

4.4 CASCADE protocol

4.4.1 Method

The CASCADE protocol consists in adding a backtracking step at the end of each pass of the

protocol. After each pass, since all detected errors have been corrected, all the blocks have an

even relative parity. Therefore, if an error is detected and corrected at index i in a pass, then all

the blocks from previous passes that contain index i are now of odd relative parity. Therefore,

they contain an error that can be located and corrected using CONFIRM.

The extra requirement compared to BINARY is to have two lists holding the blocks depend-

ing on their relative parity: Leven and Lodd . The backtracking step starts by applying CONFIRM

116

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

on the smallest block of Lodd , minimising the associated leakage. This corrects an error at

position j. All the blocks from Leven and Lodd that contain j are now moved from one list to the

other. This process is repeated until Lodd is empty, meaning that no more erroneous blocks are

known. Another pass can then start. Overall, since it corrects more errors than BINARY for

the same number of passes, the CASCADE protocol is more e�cient. The CASCADE protocol

is detailed in Algorithm 4.

Algorithm 4: CASCADE
Input: r0, rt , ", npasses

1 Scramble r0 and rt using a public permutation �0

2 Estimate the initial block size k1 from the error rate "

3 Create two list of blocks of even and odd relative parity: Leven and Lodd

4 for i = 1 to npasses do

5 Split r0 and rt into blocks of size ki

6 forall blocks do

7 Compute the relative parity Pr (B0,i , Bt,i)
8 if Pr (B0,i , Bt,i) = 1 then
9 CONFIRM(B0,i , Bt,i): correct an error at index j

10 Move all blocks containing j from Leven to Lodd or from Lodd to Leven

11 Add all blocks to Leven

12 while Lodd is not empty do

// Backtracking step

13 Find the smallest block B from Lodd

14 CONFIRM(B0, Bt): correct an error at index j

15 Move all blocks containing j from Leven to Lodd or from Lodd to Leven

16 Double the block size ki+1 = 2 × ki

17 Scramble r0 and rt using a public random permutation �i

18 Unscramble r0 and rt with �−1
0 , �−1

1 , ..., �−1
npasses

19 return r0, rt

A toy example of running the CASCADE protocol on a 16-bit response with �ve errors is

shown in Figure 4.5. Only the extra features found in the CASCADE protocol compared to

BINARY are shown. For example, the indexes and parities exchanges between the server and

the device are hidden. The backtracking step, on the other hand, is detailed.

4.5 Parameters of the CASCADE protocol

Computing the exact number of bits leaked during an execution of the CASCADE protocol

remains an open question [SNK13; Mar+15]. However, the leakage can still be analysed by

considering its lower and upper bounds.

117

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Integrated circuit Server

Owns n-bit response rt Owns n-bit response r0

Pass 0

Splits r0 into 4-bit blocks

Executes BINARY to correct the error at position 2

Update the lists Leven and Lodd
Leven :
Lodd : ∅

Pass 1

Scrambles r0 and splits it into 8-bit blocks

Executes BINARY
⟷

Correct the errors at positions 14 and 10

Move to Lodd since it contains 10
Move to Lodd since it contains 14
Update the lists Leven and Lodd

Leven :
Lodd :

Backtracking: CONFIRM on the smallest block of Lodd :
⟷

Corrects the error at position 9

Move to Leven since it contains 9
Move to Lodd since it contains 9

Leven :
Lodd :

Backtracking: CONFIRM on the smallest block of Lodd :
⟷

Corrects the error at position 13

Move to Leven since it contains 13
Move to Leven since it contains 13

Leven :

Lodd : ∅

Terminates the pass since Lodd is now empty

Figure 4.5 – Example of executing the CASCADE protocol on 16-bit responses with �ve errors.

118

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.5.1 Upper and lower bound on the information leakage

The information needed to recover a variable X from a noisy version Y is given by the condi-

tional entropy H(X |Y), as highlighted in [Mar+15]. The conditional entropy is related to the

error rate ". The minimum amount of information that must be exchanged between the two

parties to reconcile their respective responses is given in Equation (4.2), where n is the size of

the response and ℎ(") is the Shannon entropy.

nℎ(") = n(−" log2(") − (1 − ")log2(1 − ")) (4.2)

This then gives a lower bound on the leakage value. Because information is leaked, the

maximum number of PUF bits that can be expected to remain secret is given in Equation (4.3)

n − nℎ(") = n(1 − ℎ(")) (4.3)

For instance, if the error rate is 5%, one cannot expect to keep secret more than 182 bits

from an initial 256-bit response. Of course, if the error rate is lower, 1% for example, then up to

235 bits can be kept secret. In practise, since there is no exact literal formula for the leakage,

one can �nd a higher bound on the leakage value by considering that one bit is leaked every

time one parity value is sent over the channel. This is an overestimation of the leakage and

tighter bounds can be found in literature [Ng14]. In order to limit the leakage, the CASCADE

protocol parameters must be carefully chosen. This is presented in the next section.

4.5.2 Choice of parameters

There are three parameters for the CASCADE protocol. The �rst one is the initial block size

and the second one is the number of passes. The third one, not present in the original article, is

the multiplication factor for the block size between two successive passes. These parameters

are not set in stone but can be changed on the �eld when the protocol starts. This could be

useful to adapt to a higher error rate if the operating conditions of the PUF have changed.

4.5.2.1 Initial block size

The initial block size should be set so that, after the initial scrambling step, there is one error per

block on average. This would make the error detectable by the initial parity checks. Therefore,

the initial block size k1 depends on the error rate ". In the original article [BS93], k1 ≈ 0.73/".

Optimised versions of the protocol presented in [Mar+15], however, tend to increase it up to 1/".

Moreover, [Mar+15] emphasises that k1 should be a power of two to reach the best reconciliation

e�ciency. Finally, the initial block size given in [Pac+15] is shown in Equation (4.4).

k1 = min(2⌈log2(
1
p),

n

2
) (4.4)

119

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

This initial block size, however, is only valid for very long frames, typically found in

quantum key distribution. Using the value obtained from Equation (4.4) for PUF responses

leaves errors in them most of the time. Next, k1 values from 4 to 32 bits are investigated.

4.5.2.2 Number of passes

Performing more passes corrects more errors, but increases the leakage. The number of passes

is limited by the fact that the block size cannot exceed half the response size n/2. This limitation

is already present for the frames of 214 bits found in quantum key distribution, but is much

more problematic for PUF responses, that are much shorter. For example, the passes must stop

when ki reaches 128 bits if the response has 256 bits. One solution [Mar+15; Pac+15] is to add

passes with a block size of n/2 to reduce the failure rate. Each extra pass requires only two

parity checks, leaking two bits.

4.5.2.3 Multiplication factor for the block size

As detailed in [Mar+15], the block size can be multiplied by another factor than two, but the

best e�ciency is achieved when the block size is a power of two. Therefore, we investigated

multiplication factors of values two, four and eight, leading to the block sizes given in Table 4.1.

Table 4.1 – Block sizes used for the �rst passes and after

(a) 256-bit responses

k1 k2 k3 ... ki

4 32 128 ... 128
8 32 128 ... 128
16 64 128 ... 128
32 64 128 ... 128

(b) 1024-bit responses

k1 k2 k3 k4 k5 ... ki

4 8 32 128 512 ... 512
8 32 128 512 512 ... 512
16 32 128 512 512 ... 512
32 128 512 512 512 ... 512

4.5.3 Design �ow

Setting the parameters of the CASCADE protocol requires to know the error rate and the

target failure rate. The PUF can be characterised to know the error rate. The target application

characteristic de�nes the failure rate. From the simulation results, the initial block size and the

number of passes can then be obtained. This also gives the leakage. If the leakage is too high

for the application, more bits from the PUF can be requested to obtain a secret of su�cient

length. Table 4.2 shows which parameters can be chosen for the CASCADE protocol in real-life

examples to achieve a failure rate of 10-4, 10-6 or 10-8 and to keep at least 128 bits secret. Three

PUF architectures are considered: TERO-PUF, RO-PUF and SRAM-PUF (see Section 1.5.2.3 for

detailed descriptions). The error rates for these PUFs provided in the original articles are used

to obtain the initial block size k1, the number of passes and the number of bits required from

the PUF.

120

C
h
apter

4
–
K
ey

reconciliation
protocols

for
error

correction
of

silicon
P
U
F
responses

Table 4.2 – Examples of parameters to achieve failure-rates of 10−4, 10−6 and 10−8 for di�erent PUF architectures, aiming at keeping at least 128 bits
secret.

Target failure rate

10−4 10−6 10−8

PUF Article Target
Technology Error rate k1 #passes

PUF bits k1 #passes
PUF bits k1 #passes

PUF bits
node " [bits] required [bits] required [bits] required

RO
[Mai+10] FPGA 90 nm 0.9% 8 10 256 8 20 256 8 30 256
[Mae+12] ASIC 65 nm 2.8% 8 15 256 8 25 256 8 30 256

[Bos+14] FPGA 90 nm 1.7% 8 15 256 8 25 256 8 30 256
TERO [MBC16] FPGA 28 nm 1.8% 8 15 256 8 25 256 8 30 256

[CBM16] ASIC 350 nm 0.6% 8 10 256 8 20 256 8 30 256

[Gua+07] FPGA — 4% 8 15 256 8 20 512 8 30 512

SRAM
[Ays+15] FPGA — 10% 4 15 512 8 25 512 4 44 512
[MTV09a] FPGA 65 nm 15% 4 15 1024 4 20 1024 4 50 1024
[CLB11] ASIC 65 nm 5.5% 8 18 256 8 20 512 8 30 512

121

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.6 Implementation

The implementation of the CASCADE protocol in the context of error correction of silicon

PUF responses is done both on the device side and on the server side. The server is assumed

to have high computational capabilities, while the device-side implementation should be as

lightweight as possible.

The only feature that must be implemented on the device is the parity computation. Upon

receiving a list of indexes, the device computes the parity of the block composed of the PUF

response bits found at these indexes. This parity value is then sent back to the server. All the

other operations required by the protocol, namely the block size computation, the choice of

random permutations and the error detection and correction, are done on the server. This

distribution of operations between the device and the server is summarised in Table 4.3.

Table 4.3 – Distribution of operations between device and server.

Feature Device side Server side

Block-size computation ✔
Parity computations ✔ ✔
Permutations ✔
Error detection ✔
Error correction ✔

There are several possibilities to implement the parity computation module on the device.

They are detailed below.

4.6.1 Large multiplexer

The �rst option to implement the parity computation module is shown in Figure 4.6. This

architecture computes the parity of a block, given the indexes, by multiplexing the associated

response bits one after the other to an XOR gate. The parity value is sampled by a DFF.

Figure 4.6 – Implementation of the parity computation module using one large multiplexer

In this �rst implementation, we assume that the response obtained from the PUF is stored

in an n-bit shift register. This shift register can be made circular to individually select the

response bits.

122

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

4.6.2 Circular shift register

Among the classical PUF architectures, the ones based on ring oscillators have the characteristic

to not directly generate the whole response. For example, the RO-PUF compares the frequencies

of two ring-oscillators, generating the response bit by identifying the fastest one. Individual

bits are generated one after the other, and must be stored in a shift register that will eventually

hold the full response. Such shift register can be made circular by connecting its output to its

input. It reduces the amount of logic resources required to implement the parity computation

module. The architecture is shown in Figure 4.7, where r[k] is the response bit generated by

the PUF that is going to be stored in the shift register.

Figure 4.7 – Implementation of the parity computation module by making an existing shift
register circular

In order to select the individual response bits, a log2(n)-bit counter is required. It holds the
number of positions of which the register must be shifted to obtain the response bit. In order

to pre-load this number, the counter has a Δ input (see Figure 4.7). The value fed to the Δ input

is computed in the following manner. Let two response bits that must be selected for the parity

computation be called r[i] and r[j]. r[j]must then be selected after r[i]. There are two possible
cases when selecting these response bits:

• If j > i, the counter must be preloaded to j − i, which is the number of positions that must

be shifted to go from r[i] to r[j].

• If j < i, the counter must be preloaded to n + j − i, which is the number of positions that

must be shifted to go from r[i] to r[j] when wrapping beyond the response length n.

The counter must then be preloaded to the Δ value shown in Equation (4.5).

Δ = (j − i)mod n (4.5)

Therefore, the counter must be log2(n)-bit wide to index all the response bits. A list of Δ
values is computed by the server and sent to the device, instead of the list of indexes.

4.6.3 RAM

The last implementation option is to have the PUF response stored in RAM. In order to store

256, 512 or 1024-bit responses, 32×8, 64×8 and 128×8 RAM blocks are used respectively, and

123

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

the response is split into bytes. Since the RAM has an intrinsic multiplexing capability for the

bytes, only one 8:1 multiplexer is needed to access the response bits individually. The index

input is split into two parts. The three least signi�cant bits drive the selection input of the

multiplexer, while the other bits are sent to the address input of the RAM.

Figure 4.8 – Implementation of the parity computation module when the response is stored in
RAM

4.7 Experimental results

In this section, we observe how the leakage, the failure rate and the execution time change

with respect to the CASCADE parameters: the initial block size and the number of passes.

These results were obtained after simulating one hundred million executions of the protocol

in parallel on a computing server that embeds two Intel Xeon E5-2667 CPUs. Each CPU has

eight cores, operating at 3.20GHz. The PUF response r0 and rt were randomly generated with

the error rate of interest. The added errors were assumed to be independent and identically

distributed. This might not be the case for real PUF implementations and will be discussed in

Section 4.8.1.1.

4.7.1 Leakage

When considering the leakage induced by the CASCADE protocol execution, we arbitrarily

de�ne a security threshold at 128 bits. This means that the objective is to keep secret at least

128 bits of the response. In case the PUF response is then processed to generate a symmetric

cryptographic key, this value of 128 bits is in accordance with the recommendations made by

known agencies and institutes1. The leakage values obtained for di�erent sets of parameters

are shown in Figure 4.9, while detailed values can be found in Table 4.4.

As mentioned before, increasing the number of passes leads to leaking more bits. For some

cases, the the security threshold of 128 bits is crossed. For example, for a 15% error rate, 30

passes with 8-bit initial blocks leaks the whole response. Conversely, starting with smaller

1https://www.keylength.com/

124

https://www.keylength.com/

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Error rate and initial block sizes

Passes 1% 3% 5% 15%

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

1 68 39 24 17 78 50 36 25 86 59 42 27 — — — —
3 79 49 32 26 91 67 55 50 104 86 73 63 — — — —
5 83 54 26 31 95 72 61 59 109 92 86 81 — — — —
10 93 64 47 41 105 82 72 72 119 103 102 104 811 685 565 330
15 103 74 57 51 115 92 82 82 129 113 113 116 — — — —
20 113 84 67 61 125 102 92 92 139 123 123 126 831 878 763 527
30 — — — — — — — — — — — — 851 1024 958 724
40 — — — — — — — — — — — — 872 1024 1024 920

Table 4.4 – Leakage values (in bits) obtained with di�erent error rates, initial block sizes and
number of passes

0 1 3 5 10 15 20
Passes

0
16
32
64

128

235
256

Fi
na

l r
es

po
ns

e
le

ng
th

 (b
its

)

4-bit initial blocks
8-bit initial blocks

16-bit initial blocks
32-bit initial blocks

Security threshold
Shannon bound

(a) 1% error rate

0 1 3 5 10 15 20
Passes

0
16
32
64

128

206

256

Fi
na

l r
es

po
ns

e
le

ng
th

 (b
its

)

(b) 3% error rate

0 1 3 5 10 15 20
Passes

0
16
32
64

128

182

256

Fi
na

l r
es

po
ns

e
le

ng
th

 (b
its

)

(c) 5% error rate

0 10 20 30 40
Passes

0
128
256
399
512

1024

Fi
na

l r
es

po
ns

e
le

ng
th

 (b
its

)

(d) 15% error rate

Figure 4.9 – Leakage values (in bits) obtained with di�erent error rates, initial block sizes and
number of passes.

125

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

blocks of 4 bits keeps 128 bits secret. Up to a 5% error rate, which is typically observed for

RO-PUFs and TERO-PUF responses, stopping at 20 passes keeps 128 bits secret in all the cases.

An interesting phenomenon occurs for " = 15%. Starting with small blocks leaks less. This

is because, when the initial blocks are larger, the amount of blocks in the �rst passes is not

su�cient to detect all the errors. Therefore, they are corrected in later passes, when the blocks

are even larger. Then, the binary search carried out in the CONFIRM method leaks more

information to isolate the error than when it is carried on smaller blocks.

The second criterion that must be taken into account is the failure rate. Indeed, keeping

128 bits secret is of no use if some errors are left uncorrected. This is detailed in the following

section.

4.7.2 Failure rate

The failure rate values obtained for di�erent sets of parameters are shown in Figure 4.10, while

detailed values can be found in Table 4.5. Increasing the number of passes makes it possible to

detect and correct more errors, reducing the failure rate. Additionally, starting with smaller

blocks also detects and corrects more errors, reducing the failure rate even further. These

results show that for all the considered error rates, a failure rate below 10-6 can be reached.

This is in accordance with the failure rates typically achieved with classical error correction

codes used for PUFs [MTV09b; Hil+12; HYS16]. Figure 4.10d shows the failure rate pattern

observed for a 15% error rate. It clearly shows that the only solution when the error rate is

so high is to start with small blocks of four bits. All other con�gurations starting with larger

blocks cannot reach satisfactory failure rates.

4.7.3 Logic resources

We implemented the three proposed architectures given in Figures 4.6, 4.7 and 4.8, based on

a large multiplexer, a circular shift register or a RAM block. The implementation is done on

cost-optimised FPGAs Xilinx Spartan and Intel Cyclone, since those are typically used for

applications that require low cost in logic resources. We only report the implementation cost

of the parity computation module itself. The controller is not taken into account, as it is done

for the majority of existing works. We give the implementation results in Table 4.6 with low

level metrics: number of LUTs, number of DFFs and number of RAM bits. This allows for a fair

comparison between FPGAs from di�erent vendors. For comparison with existing work, we

also provide the implementation results in number of Slices/ALMs2/LCs3.

As one can see by comparing these implementation results with the ones obtained with clas-

sical error correction codes, given in Table 1.4, the CASCADE protocol has a very lightweight

device-side implementation.

2ALM: Adaptative Logic Module
3LC: Logic cell

126

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

Error rate and initial block sizes

Passes 1% 3% 5% 15%

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

1 10-1 10-1 1 1 1 1 1 1 1 1 1 1 — — — —
3 10-2 10-2 10-1 10-1 10-1 10-1 1 1 10-1 1 1 1 — — — —
5 10-3 10-2 10-2 10-1 10-2 10-1 10-1 1 10-1 10-1 1 1 — — — —
10 10-4 10-4 10-3 10-3 10-3 10-3 10-2 10-1 10-3 10-2 10-1 10-1 1 1 1 1
15 10-6 <10-6 10-5 10-4 10-5 10-4 10-3 10-3 10-4 10-3 10-2 10-2 — — — —
20 <10-6 <10-6 10-6 10-6 <10-6 10-5 10-5 10-4 <10-6 10-5 10-3 10-3 10-4 1 1 1
30 — — — — — — — — — — — — <10-6 1 1 1
40 — — — — — — — — — — — — <10-6 1 1 1

Table 4.5 – Order of magnitude of the failure rate values obtained with di�erent error rates,
initial block sizes and number of passes

0 1 3 5 10 15 20
Passes

1

10 1

10 2

10 3

10 4

10 5

< 10 6

Fa
ilu

re
 ra

te

4-bit initial blocks
8-bit initial blocks

16-bit initial blocks
32-bit initial blocks

(a) 1% error rate

0 1 3 5 10 15 20
Passes

1

10 1

10 2

10 3

10 4

10 5

< 10 6

Fa
ilu

re
 ra

te

(b) 3% error rate

0 1 3 5 10 15 20
Passes

1

10 1

10 2

10 3

10 4

10 5

< 10 6

Fa
ilu

re
 ra

te

(c) 5% error rate

0 10 20 30 40
Passes

1

10 1

10 2

10 3

10 4

10 5

< 10 6

Fa
ilu

re
 ra

te

(d) 15% error rate

Figure 4.10 – Failure rate values obtained with di�erent error rates, initial block sizes and
number of passes.

127

C
h
apter

4
–
K
ey

reconciliation
protocols

for
error

correction
of

silicon
P
U
F
responses

256-bit response

Target device
Option 1: Large multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 133 1 0 67 Slices 26 12 0 17 Slices 5 1 256 3 Slices
Xilinx Spartan 6b 67 1 0 19 Slices 17 12 0 7 Slices 3 1 256 1 Slice

Intel Cyclone IIIa 170 1 0 170 LCs 25 20 0 26 LCs 6 1 256 6 LCs
Intel Cyclone Vc 86 1 0 46 ALMs 23 20 0 13 ALMs 4 1 256 3 ALMs

512-bit response

Target device
Option 1: Large multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 265 1 0 133 Slices 26 13 0 18 Slices 5 1 512 3 Slices
Xilinx Spartan 6b 171 1 0 92 Slices 25 13 0 11 Slices 3 1 512 1 Slice

Intel Cyclone IIIa 342 1 0 342 LCs 28 22 0 29 LCs 6 1 512 6 LCs
Intel Cyclone Vc 171 1 0 87 ALMs 26 22 0 14 ALMs 4 1 512 3 ALMs

1024-bit response

Target device
Option 1: Large multiplexer Option 2: Circular shift register Option 3: RAM

LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic LUTs DFFs RAM bits Logic

Xilinx Spartan 3a 529 1 0 265 Slices 28 14 0 18 Slices 5 1 1024 3 Slices
Xilinx Spartan 6b 341 1 0 182 Slices 27 14 0 10 Slices 3 1 1024 1 Slice

Intel Cyclone IIIa 683 1 0 683 LCs 30 24 0 31 LCs 6 1 1024 6 LCs
Intel Cyclone Vc 342 1 0 176 ALMs 28 24 0 15 ALMs 4 1 1024 3 ALMs

a 4-input LUTs
b 6-input LUTs
c 7-input LUTs

Table 4.6 – Logic resources required for three implementation options of the parity computation module and three response sizes.

128

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

When choosing the �rst implementation option, most of the resources are occupied by the

large n to 1 multiplexer. The number of LUTs required to implement it grows linearly with

the response length. Such implementation option is better suited for ASIC. Indeed, a large

multiplexer is costly to implement using LUTs, while an ASIC implementation is more compact.

The second implementation option, that consists in reusing an existing shift register and

make it circular, is much more lightweight. The size of the counter that must be added to index

the response bits grows logarithmically with respect to the number of bits in the PUF response.

When the response size is doubled, only one extra DFF is required. This option is suited for

both ASICs and FPGAs.

Finally, the third option is clearly better suited for FPGAs. On such devices, distributed

or block RAM is available and easily usable. Since the RAM has an intrinsic capability to

multiplex bytes, the logic resources required is much lower than for other implementation

options. The extra 8:1 multiplexer that selects the response bits individually has a constant size,

no matter the response length. The number of RAM bits required to store the response grows

linearly with the response length. The implementation results show that this implementation

option takes between 3 and 6 LUTs and only one DFF. This makes it the most lightweight error

correction module to date.

4.7.4 Execution time

The last criterion is the execution time of the protocol. In order to remain independent on the

target device, the execution times are given in clock cycles. The �rst and third implementation

options, based on a large multiplexer or a RAM, have an identical way to select the PUF bits.

Therefore, their execution time is identical. The second implementation option, based on a

circular shift register, has a longer execution time though. Indeed, it requires to shift the register

to select the response bit of interest.

The protocol has both a �xed and a variable execution time parts. The �xed part corresponds

to the initial parity checks. The variable part corresponds to the execution of the CONFIRM

method. This is variable because the block size in�uences the time taken by the CONFIRM

method. If the errors are detected when the blocks are small, the binary search is faster.

Therefore, the sooner the errors are detected, the faster the overall protocol.

4.7.4.1 Implementation options based on a large multiplexer or a RAM

For these two implementation options, the response bits are multiplexed to the XOR gate in

one clock cycle, no matter how long the response is. Accessing the response bits has then (1)
time complexity. For the initial parity checks, it then takes n clock cycles to compute the parity

of all the blocks for an n-bit response. Applying the CONFIRM method on t-bit blocks takes

t − 1 clock cycles. This is the run time of the binary search, as given in Equation (4.6). This

129

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

corresponds to computing parities on blocks of size from t/2 bits down to 1 bit.

log2(t)
∑
i=1

t

2i = t − 1 (4.6)

We now consider the previous case of a 256-bit response with an error-rate of 2%. This

means that, on average, �ve bits are faulty. Choosing the best CASCADE parameters for this

situation leads to pick k1 = 32 and 15 passes.

As mentioned before, the execution time depends on when the errors are detected by the

parity checks. Therefore, we must distinguish an upper and a lower bound for the execution

time. In the best case, giving the lower bound for the execution time, the errors are corrected

as soon as possible in the execution of the protocol. The binary search is then done on smaller

blocks. We consider in this case that the �ve errors are corrected in the �rst pass of the protocol.

The device-side execution time is then:

256 × 15 + 5 × (32 − 1) = 3 995 clock cycles

If we take the worst case, the number of errors can be higher. For example, we consider

here that 14 bits are faulty, which can occur with a probability of 5.10−4 Since we consider
the worst case scenario, the errors are corrected as late as possible. Therefore, CONFIRM is

applied on larger blocks and takes longer. In this case, that is the upper bound, since the errors

are corrected in the last passes, the execution time is:

256 × 14 + 14 × (128 − 1) = 5 362 clock cycles

4.7.4.2 Implementation option based on a circular shift register

In order to select an individual response bit, the circular shift register must be shifted by an

amount Δ ∈ [1; n − 1]. On average, reaching the next response bit then takes n/2 shifts. It

follows that accessing the response bits has an (n) time complexity in this case, for an n-bit

response.

For a t-bit block, computing its parity then takes nt/2 clock cycles on average. Since

carrying out the initial parity checks requires to compute the parity of the n/t blocks found
in the response, then it takes n2/2 clock cycles on average. This is much longer than for the

previously considered implementation options, that take only n clock cycles.

The number of clock cycles required to apply the CONFIRM method on a t-bit block is

given in Equation (4.7)
log2(t)
∑
i=1

t.n2
2i = n.(t − 1)

2 (4.7)

Again, we consider the best and worst cases here, with a 256-bit response and a 2% error

rate. The protocol starts with 32-bit blocks and runs for 15 passes.

130

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

In the best case, the errors are corrected as early as possible, in the �rst pass and on 32-bit

blocks. The execution time is then:

2562
2 × 15 + 5 × 256 × (32 − 1)

2 = 511 360 clock cycles

When the errors are corrected as late as possible, the block size is 128 bits. If there are 15

errors, the execution time is:

2562
2 × 15 + 15 × 256 × (128 − 1)

2 = 735 360 clock cycles

4.7.4.3 Comparison with the execution time of existing codes

In order to compare the execution time of the CASCADE protocol with existing codes, we

consider two corner cases. First, the protocol is carried out with 256-bit response, an error

rate of 1% and errors that are corrected as early as possible In the other case, the protocol is

carried out with 1024-bit responses, an error rate of 15% and errors that are corrected as late

as possible. Table 4.7 shows the execution times for these cases as well as other previously

considered codes.

Table 4.7 – Device-side execution time in clock cycles of di�erent codes with di�erent construc-
tions.

Article Construction and code(s)
Execution time
(clock cycles)

[MHV12] Concatenated: Repetition (7, 1, 3) and BCH (318, 174, 17) 50 831
[Hil+15] Reed-Muller (4, 7) 108 000
[MTV09b] Reed-Muller (2, 6) 10 298
[Bös+08] Concatenated: Repetition (5, 1, 5) and Reed-Muller (1, 6) 6 505
[Bös+08] Concatenated: Repetition (11, 1, 11) and Golay (24, 13, 7) 1 210
[HYS16] Di�erential Sequence Coding 29 243

CASCADE on 256-bit responses and " = 1%, 15 passes starting 3 933
with MUX or RAM with 32-bit blocks (errors corrected as early as possible)

CASCADE on 1024-bit responses and " = 15%, 45 passes, starting 203 622
with MUX or RAM with 4-bit blocks (errors corrected as late as possible)

CASCADE on 256-bit responses and " = 1%, 15 passes, starting 503 424
with circular SR with 32-bit blocks (errors corrected as early as possible)

As the results show, the execution time of the CASCADE protocol is very dependent on

the size of the response to correct as well as the error rate. Implementation options based on

a large multiplexer or a RAM have execution times between 4 000 and 200 000 clock cycles

approximately. This is in the same order of magnitude as the other codes that are considered,

131

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

that range from 1 210 to 108 000 clock cycles.

When the second implementation option is picked, the execution time grows dramatically.

This is because of the PUF response bit selection that has an (n) time complexity in this case.

This option might then only be suitable for small responses and low error rates. Otherwise, the

other implementation options should be preferred.

Depending on the target device on which the error correction module must be implemented,

these results could be improved. Indeed, the logic function is very simple here and has a very

short critical path. A higher clock frequency could then be used for this module speci�cally,

reducing the overall latency of the protocol.

Nevertheless, due to the great interactivity of the CASCADE protocol, the main execution

time bottleneck is the communication between the device and the server. Depending on the

target platform, this could be an order of magnitude slower than intra-device communication.

Therefore, the actual time taken to execute the whole protocol is very dependent on the �nal

hardware target.

4.8 Security: attacks and countermeasures

We investigate three types of attacks against the CASCADE protocol: server impersonation,

device impersonation and eavesdropping. We then make some propositions for countermeas-

ures to thwart these attacks.

4.8.1 Server impersonation: chosen indexes scenario

In the case of server impersonation, the objective of the attacker is to recover the generated

PUF response. This can be done by sending chosen indexes and observing the resulting parity

value sent back by the device. Thus is a chosen indexes scenario. If done for a su�cient amount

of times, the attacker can build a system of linear equations that is su�ciently determined to

be solved by Gaussian elimination.

4.8.1.1 Countermeasure: deterministic shu�ling

Instead of picking a random permutation at the beginning of each pass in order to spread the

errors, a deterministic set of permutations could be prede�ned to maximise the probability to

separate faulty bits into di�erent blocks. It prevents the attacker from adding new independent

equations to the system that would need to be solved to recover the response. Another

interesting point of choosing a deterministic set of permutations is to account for the error

rate of each response bit individually. The stability of each PUF response bit can be obtained

by characterisation [Mae13; MBC16]. Also, in the case of TERO-PUF for example for which

multiple response bits are obtained for each challenge, some response bits are known to be less

stable than others. Consequently, choosing a set of permutations would separate in di�erent

132

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

blocks the bits that are known to be the most unstable. The method of choosing the best set of

permutations could be studied in future works.

4.8.1.2 Countermeasure: limitation to only one execution of the protocol

In the use case of remote activation of integrated circuits that we consider in the SALWARE

project, the circuit must be activated only once and remains active afterwards. Therefore,

allowing for only one execution the protocol could be a countermeasure to server impersonation.

However, this would require to hold one permanent bit of state on the device to know if the

protocol has already been executed or not. A fuse could be blown to implement this, but it may

not be possible to have this on the device depending on the technology used.

4.8.1.3 Countermeasure: limitation of the number of parity values sent out

The attacker must obtain a su�cient amount of parity information to build a system of equation

that can be solved. Therefore, a hard limit could be set on the number of parity values that could

be obtained from the device. By setting this limit at the security requirement of the application,

the designer can make sure that a su�cient number of bits are kept secret. However, storing

the number of parity bits extracted is problematic. Indeed, if an attacker resets the system,

this information is lost and the protocol can be carried-out again to obtain more parity values.

Moreover, nothing stops an attacker to execute the protocol multiple times. The number of

parity values could be stored in NVM so that it cannot be reset. However, it might not be

technologically feasible to add non-volatile memory to the IP core. In addition, an attacker

could reset the circuit at the end of the protocol, before the number of parity values is written

to the NVM.

4.8.1.4 Countermeasure: generation of a response at each protocol execution

The last countermeasure that we propose to thwart server impersonation is to force the

generation of a new PUF response every time the protocol is initiated. This way, the parity

values that an attacker would obtain correspond to di�erent responses and cannot be merged

into a system that is su�ciently determined to be solved.

Of course, in order for this countermeasure to work, two responses generated one after

the other should always be di�erent. This could be checked by always storing the previous

response on the device, in an electrically-erasable programmable read-only memory (EEPROM)

for instance, and comparing it to the newly generated one. Moreover, a potential attacker has

no way of knowing if two consecutive responses are indeed identical or not.

The attack that consists in recovering the response from contradictory parity values is

similar to the Learning parities with noise (LPN) problem, which is considered a hard problem

and that has been used as the hardness assumption for some cryptographic constructs [Pie12].

Solving the LPN problem has an equivalent complexity to decoding from a random linear code

133

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

[BMT78], which is known to be NP-hard. Proving rigorously the equivalence between the

LPN problem and the attack we described on the CASCADE protocol would require further

investigation.

4.8.2 Device impersonation: chosen parities scenario

Another attack consists in impersonating the device with the aim of setting the reference

response stored on the server to a chosen value. This could be achieved by sending speci�c

parity values to the server. We propose to implement the following countermeasure on the

server side against this threat.

4.8.2.1 Countermeasure: limitation of the number of server-side modi�cations

Device impersonation is prevented by limiting the number of bits that can be modi�ed in the

reference response stored on the server. Since the error rate is ", the number of bits that are

�ipped in an n-bit response follows the binomial distribution (n, "). This sets a hard limit

on the number of bits that �ip, so that the probability that so many bits are �ipped is lower

than the failure rate of the protocol. For example, if 256-bit responses are used and exhibit a 2%

error rate, if a failure rate of 10−6 is required, then the limit is set to m so that P (X = m) < 10−6.
Therefore, in this case, up to 20 bits can be modi�ed on the server side, but not more.

The maximum number of bits m that are allowed to be modi�ed on the server side is given

in Equation (4.8), in which f is the failure rate and X is the number of bits modi�ed during one

execution of the CASCADE protocol.

m ∶ P (X = m) < f (4.8)

Beyond the threshold m, the probability that an attacker is trying to impersonate a device

and force the reference response is higher that the failure rate of the protocol. Therefore, no

further modi�cations are done to the reference response stored on the server and the protocol

is aborted.

4.9 Discussion

4.9.1 Privacy ampli�cation

The number of bits leaked during one execution of the CASCADE protocol is known. The

remaining entropy is then not only located on speci�c bits, but is spread over the PUF response

bits. Therefore, the individual bits cannot be selectively discarded. Moreover, the initial

response can exhibit poor statistical properties, and the response bits may not be independent.

The next step consists then in processing the PUF response to have a higher entropy per bit.

134

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

This is called privacy ampli�cation. Since we place ourselves in the random oracle model, a

hash function can be used to this end. Figure 4.11 illustrates how the number of bits changes at

di�erent stages.

Figure 4.11 – Changes in the number of bits in the response at di�erent steps.

During the key reconciliation protocol execution, t bits from the PUF response are leaked

because of the parity checks. Consequently, the hash function that is used for privacy ampli�c-

ation should have an output of size n − t at most, so that all the output bits have maximum

entropy. In order to limit the amount of logic resources required to implement the privacy

ampli�cation step, a lightweight hash function can be selected. SPONGENT [Bog+11] was

chosen in [MHV12] and takes only 22 Slices on a Xilinx Spartan 6 FPGA, with an output block

size of 128 bits. In [Mae+09], Toeplitz hashing [Kra94] was used. It occupies 59 Slices on

Xilinx Spartan 3. The SHA-3 webpage provides other options for this use case in the “low area

implementations” section4.

4.9.2 Replacing parity checks with hashing

In some works, it is suggested to replace the simple parity checks with hashing [BBR88; YI01].

This is su�cient to detect if errors occurred and has the advantage to detect an even number

of errors in a block. However, this idea cannot be applied to our use case because of the

small block size. Indeed, an attacker would only need to precompute the 2k1 possible values
of the hash during the �rst parity check step. Since in our case k1 ranges from 4 to 32, this is

computationally feasible. By observing the hash values sent by the device to the server, the

attacker could then look up the associated response values and recover the whole response.

4.10 Conclusion

This chapter proposes a new way of correcting the errors found in silicon PUF responses, by

using the existing key reconciliation protocol CASCADE. Originally proposed in the frame of

quantum key distribution, we show that this protocol can be successfully applied to reconcile

two slightly di�erent PUF responses obtained from the same challenge but at di�erent times.

A server and a device then own a shared secret, that can later be processed to generate a

cryptographic key.

4http:// ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

135

http://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations

Chapter 4 – Key reconciliation protocols for error correction of silicon PUF responses

When using the CASCADE protocol for PUF responses though, some adaptations are

necessary. We show by simulation that, by tuning the protocol parameters, it can cope with

the short response sizes and typical error rates found in usual PUF architectures. We propose

several sets of parameters that account for common error rates, response length and failure

rates.

From a practical point of view, implementation results show that the device-side imple-

mentation of the CASCADE protocol is very lightweight in logic resources. We propose three

architectures to implement the parity computation module, all leading to implementations

that occupy at least three times less logic resources than existing ones that use classical error

correction codes. The most lightweight implementation, when the PUF response is stored in

RAM, takes less than six LUTs and one DFF.

Finally, we give a thorough security analysis of the use case of the protocol for PUF

responses. We propose countermeasures against the described attacks, that do not hamper the

area performance of the scheme.

In the use case of remote activation of IP cores, the CASCADE protocol is then a lightweight

solution to correct the errors found in PUF responses. The tunable parameters allow to

accommodate common PUF error rates and comply with the failure rates found in common

applications.

136

Chapter 5

Complete hardware/software infrastruc-

ture IP for design protection

The �nal chapter of this thesis presents the integration of previously described individual

components into a complete IP protection module. Besides the three contributions of this

thesis, namely logic locking, logic masking and error correction based on key reconciliation

protocols, it also presents other required primitives (such as the PUF and the lightweight block

cipher, see Figure 5.1). It details the di�erent implementation choices that can be made, as

well as extra components that may be integrated to extend the features or the security of the

IP protection module. A typical use case is then detailed, along with an illustrative example,

giving the di�erent steps that a designer should follow to protect an IP core at design time and

activate it remotely later on.

Figure 5.1 – IP protection module

The code associated with this chapter is available at:
https://gitlab.univ-st-etienne.fr/b.colombier/demonstrator/ tree/master

137

https://gitlab.univ-st-etienne.fr/b.colombier/demonstrator/tree/master

Chapter 5 – Complete hardware/software infrastructure IP for design protection

Infrastructure matérielle/logicielle pour
la protection des données de conception

Le dernier chapitre de cette thèse présente l’intégration des modules individuels décrits

précédemment dans un système de protection des données de conception. Au delà des trois

contributions de cette thèse, le verrouillage logique, le masquage logique et la correction d’er-

reurs utilisant les protocoles de réconciliaiton de clés, il présente également d’autres primitives

nécessaires tels que la PUF et le chi�reur léger (voir Figure 5.2). Ce chapitre présente les

di�érents choix d’implémentation qui peuvent être faits, ainsi que les modules supplémentaires

qui peuvent être intégrés pour étendre les possiblités ou la sécurité du module de protection.

Un cas d’utilisaiton typique est ensuite détaillé, ainsi qu’un exemple illustratif, donnant les

di�érentes étapes à suivre par un concepteur pour protéger un composant virtuel lors de sa

conception et l’activer à distance plus tard.

Figure 5.2 – Module de protection des données de conception

Le code associé à ce chapitre est disponible à :
https://gitlab.univ-st-etienne.fr/b.colombier/demonstrator/ tree/master

138

https://gitlab.univ-st-etienne.fr/b.colombier/demonstrator/tree/master

Chapter 5 – Complete hardware/software infrastructure IP for design protection

5.1 Integration into EDA tools

The IP protection module depicted in Figure 5.1 must be integrated into an existing design.

Therefore, since the original IP core is modi�ed to incorporate it, the design �ow must be

adapted. First the combinational logic is modi�ed to incorporate extra logic gates that implement

logic locking (see Chapter 2) or logic masking (see Chapter 3). Then, the extra modules like the

lightweight cipher, the PUF, the parity computation module (see Chapter 4), etc. are added.

5.1.1 Modi�cations of combinational logic

The �rst step is to modify the combinational part of the design by logic locking or logic masking

to ensure that, when not activated, the design does not operate correctly. First, the netlist is

converted into a directed acyclic graph, following the conversion rules given in Section 2.2.1,

Figure 2.4. When integrated into EDA tools, this conversion should handle several netlist

formats: EDIF, BLIF, SLIF, gate-level VHDL or gate-level Verilog. The input netlist must

be described at the gate-level. This is necessary for logic locking to identify the paths that

propagate a locking value, and for logic masking to identify the best nodes to modify. The

netlist to protect can be a description made by the designer directly, but in the most likely

scenario a post-synthesis netlist is used. These netlists are typically found in various formats.

A dedicated parser has been developped and is used to convert these di�erent formats into a

graph.

The graph can then be processed by the logic locking algorithm presented in Chapter 2. This

step is optional, in case a designer only wants to implement logic masking, not locking. It is not

recommended to implement both logic modi�cations on the same netlist. The compatibility and

interaction between those two techniques could be studied in future works. The algorithm is

driven by the number of outputs to lock. The designer does not chose the associated overhead,

although a threshold could be set to limit it. In this case however, if the acceptable overhead

is not su�cient, some outputs are left unlocked. Conversely, the designer could choose to

increase the overhead in order to obtain a stronger locking, as described in Section 2.4.1. The

type of locking gates that are inserted depends on the value that must be forced to propagate

the locking value to the outputs. Therefore, the associated AW bits are not chosen by the

designer in this case.

Then, the logic masking algorithm presented in Chapter 3 is applied to the graph. This

step is optional, in case a designer only wants to implement logic locking, not masking. This

algorithm is driven by the logic resources overhead the designer can a�ord. The higher the

overhead, the more e�cient the masking is. A typical EDA interface for the logic masking

scheme will then let the designer pick the overhead as well as the selection heuristic used to

select the nodes to mask. The choice of logic gates to insert, either XOR or XNOR, depends on

the associated AW bit (see Section 1.5.4.1, Figure 1.16). Therefore, a random AW should �rst be

139

Chapter 5 – Complete hardware/software infrastructure IP for design protection

generated inside the EDA tool. The width of the AW depends on the logic resources overhead

picked by the designer. The greater the overhead, the more masking gates are inserted, the

longer the AW is. Obviously, the AW value should be truly random and not manipulable.

The designer can �nally save the AW associated to the modi�ed design. Afterwards, the

�nal graph is converted back into a gate-level netlist as detailed in Section 2.2.6. The overall

process is shown in Figure 5.3.

Figure 5.3 – Part of the design �ow augmented for logic locking or logic masking

140

Chapter 5 – Complete hardware/software infrastructure IP for design protection

5.1.2 Additions to the original design

5.1.2.1 Lightweight block cipher

The modi�ed design has extra inputs that must be driven by the correct AW. However, for

security reasons these inputs are not directly exposed. As suggested in [Yas+15], a one way

random function should be inserted before the AW inputs. Even though they propose to

implement an AES encryption core with a �exd key to this end, we focus here on lightweight

block cipher alternatives in order to limit the logic resources overhead. Implementations of

lightweight block ciphers were done by Cédric Marchandwhowas a PhD student working in the

framework of the SALWARE project as well [Mar16; MBG17]. The selected algorithms are recent

and have a key size of 80 bits (KLEIN [GNL11], LILLIPUT [Ber+16] and KTANTAN[CDK09]) or

128 bits (LED [Guo+11]). In the threat model we use, 80-bit security is su�cient. The hardware

implementation results are provided in Table 5.1. According to these, the most suited block

cipher is KTANTAN [CDK09] since it takes less resources.

The EDA tool could give the possibility to the designer to pick the block cipher. The width of

the key input should be identical to the one of the PUF response, since it is used as a symmetric

encryption key. Another option is to hash the PUF response before using it as a key. This is

detailed in Section 5.1.3.1.

For simplicity, in our demonstrator, we implemented only a one-time pad between the AW

and the PUF response.

Cipher 4-input LUTs DFFs

KLEIN [GNL11] 633 194
LED [Guo+11] 555 218
LILLIPUT [Ber+16] 558 205
KTANTAN [CDK09] 222 153

Table 5.1 – Logic resources required to implement a lightweight block cipher (from [Mar16;
MBG17])

5.1.2.2 AW storage options during operation

The AW must be stored inside the IP core once it has been received in order to drive the

activation inputs and make the IP core operate properly. The way the AW is stored depends on

the mode of operation used for the lightweight block cipher. If used in Cipher Block Chaining,

feedback (Output Feedback Mode or Cipher Feedback Mode) or stream cipher-like (Counter

Mode or Galois Counter Mode [PP09]) modes, the AW is decrypted and then stored in a large

register. The other option, if the cipher is used in Electronic Codebook Mode [PP09], is to use a

decoder to adapt the AW size to the outputs of the block cipher.

141

Chapter 5 – Complete hardware/software infrastructure IP for design protection

Large register If the AW is larger than the output size of the cipher, the latter can be used

in Cipher Block Chaining, feedback (Output Feedback Mode or Cipher Feedback Mode) or

stream cipher-like (Counter Mode or Galois Counter Mode [PP09]) mode. The decrypted

plaintext is then stored in a large register, as large as the AW. The output of this register drives

the activation inputs of the IP core, activating it only if the correct AW encrypted with the

reconcilied PUF response is provided.

Decoder The cipher could also be used in Electronic Codebook Mode [PP09]. In this case,

only one block is decrypted and stored in a register of the same size as the output of the cipher.

However, this is usually the case that the block cipher has an output block size that is di�erent

from the width of the AW. Therefore, a decoder is required to map the n-bit output of the block
cipher to the m-bit AW, as depicted in Figure 5.4.

Figure 5.4 – Position of the AW decoder

We can distinguish three cases when implementing the AW decoder. In the �rst case, there

are less 0s (respectively 1s) at the output of the cipher than in the AW. For logic masking

and for logic locking, each 0 (respectively 1) found at the cipher output drives multiple 0s

(respectively 1s) found at the activation input. The decoder then implements an injective

function {0, 1}n → {0, 1}m.
In the second case, there are as many 0s (respectively 1s) at the output of the cipher as in

the AW. For logic masking and for logic locking, each 0 (respectively 1) found at the cipher

output is connected to a 0 (respectively 1) found at the activation input. The decoder then

implements an bijective function {0, 1}n → {0, 1}m.
In the last case, there are more 0s (respectively 1s) at the output of the cipher than in the

AW. For logic masking and for logic locking, each 0 (respectively 1) found in the AW is driven

by the disjunction (logical OR) of multiple 0s (respectively the conjunction (logical AND) of

multiple 1s) found at the cipher output. The decoder then implements a surjective function

{0, 1}n → {0, 1}m.
In the case of total logic locking, the AW decoder implements the mapping from {0, 1}n to

the AW that is required to force all the outputs to a �xed logic value unless the correct AW is

provided. Thus each 0 (respectively 1) found in the AW is driven by the disjunction of all the

0s (respectively the conjunction of multiple 1s) found at the cipher output. The decoder then

implements a surjective function {0, 1}n → AW.

All these possibilities for the AW decoder architecture are illustrated in Table 5.2, while

associated implementation results are given in Table 5.3. The logic resources required to

implement the AW decoder for total logic locking are the same as the ones given for the

hardware point function in Chapter 2, Table 2.4, but are provided for comparison.

142

Chapter 5 – Complete hardware/software infrastructure IP for design protection

Case Logic locking/Logic masking Total logic locking

Less 0s or 1s at the
cipher output than
in the AW.

Same number of 0s
or 1s at the cipher
output as in the
AW.

More 0s or 1s at
the cipher output
than in the AW.

Table 5.2 – AW decoder architectures

143

Chapter 5 – Complete hardware/software infrastructure IP for design protection

These results show that, in the case where the number of 0s or 1s is lower or the same at

the cipher output than in the AW, the AW decoder does not occupy logic resources. This is

because the decoder is then just made of connections, that are already present in the FPGA.

Since no logic function is implemented, no LUTs are occupied. In the other case, there are

more more 0s or 1s at the output of the cipher than in the AW. Due to the fact that the logic

function is very simple but has a lot of inputs/outputs, it prevents grouping inside the LUTs. In

the example given in Table 5.3, a mapping from 126 to 64 bits requires to implement on average

64 2-input AND/OR logic functions. Since all the inputs of these functions are di�erent, 64

LUTs are required, but only two inputs out of four or six are then used. In most real-life cases,

however, the AW is wider than the output of the block cipher. For instance, a small benchmark

of 5 000 gates locked or masked at 3% overhead leads to an AW of 150 bits. The output of the

block cipher is usually 64 bits. Therefore, the decoder is implemented at zero cost most of the

time. This is only valid for FPGA implementation. On ASIC, such AW decoder consists in a lot

of routing, which cost must be evaluated on a per-design basis.

Logic locking/masking Total logic locking

Input width Output width # 4-LUTs # 6-LUTs # 4-LUTs # 6-LUTs
(bits) (bits) required required required required

64 64 0 0 17 12
64 128 0 0 16 13
64 256 0 0 17 14
64 512 0 0 17 14
64 1024 0 0 16 14
64 2048 0 0 16 14

128 64 64 64 33 22
128 128 0 0 33 22
128 256 0 0 33 22
128 512 0 0 33 22
128 1024 0 0 33 22
128 2048 0 0 33 22

Table 5.3 – Logic resources required to implement the AW decoder

5.1.2.3 TERO-PUF

Once the block cipher has been picked, the PUF that generates the symmetric key is implemen-

ted. We implemented a TERO-PUF by combining TERO cells (see Figure 1.10) in the architecture

shown in Section 1.5.2.3, Figure 1.9b. With this architecture, we extract two bits per comparison

of the number of oscillations of two TERO cells. Therefore, if an n-bit response is required by

the block cipher, two banks of n/2 TERO cells are required. This is in case the PUF response is

directly used as a symmetric key (see Section 5.1.3.1 if a hash function is added to derive the

key).

144

Chapter 5 – Complete hardware/software infrastructure IP for design protection

The �nal PUF response that we use here is 128-bit long. In our implementation, we

implemented two banks of 64 TERO cells. Pairs of cells are selected from those banks and

compared. Two response bits are generated per comparison. The �nal response is then obtained

after 64 comparison.

There are eight delay elements per TERO cell branch in our implementation (see Figure 5.5):

seven inverters and one NAND gate.

Figure 5.5 – TERO cell with 8 delay elements per branch (7 bu�ers and 1 NAND gate)

5.1.2.4 CASCADE module

The CASCADE module can then be implemented on the device side. Depending on the chosen

hardware target, an architecture based on RAM (see Figure 4.8) or a large multiplexer (see

Figure 4.6) can be chosen by the designer. As said before, the parameters of the protocol are

not �xed but are chosen by the server when the protocol starts. Therefore, the device-side

implementation is generic. The only constraint is the size of the RAM or the size of the

multiplexer, which sould be the same at the size of the PUF response. For our implementation,

since we deal with 128-bit responses, we allow for initial block sizes of 4, 8, 16, 32 or 64 bits,

with a number of passes from 1 to 40.

5.1.2.5 Controller and communication interface

Finally, a controller must also be added to the system to sequence the operations, as well as

a communication interface. In order to minimise the communication time, as many parities

as possible are computed one the device before sending them to the server. In our case, the

smallest initial block size we consider is 4 bits. Since the PUF response we use is 128-bit long,

the initial parity checks result in at most 32 parity bits. These parity values are accumulated and

sent out all together. The controller and communication interface could be further optimised

to reduce the logic resources overhead.

5.1.3 Optional additions

5.1.3.1 Hash function

When assuming to be in the random oracle model, a hash function can be used to achieve the

privacy ampli�cation done at the end of the key reconciliation protocol (see Section 4.9.1). In

145

Chapter 5 – Complete hardware/software infrastructure IP for design protection

that case, the output block size of the hash function should be of the same size as the key input

of the block cipher. The PUF response, which is then fed to the hash function to generate the

key, can be of any size. To limit the logic resources required, the PUF response should be of the

size of the smallest possible message that can be hashed without padding. The designer could

then pick the hash function of his choice.

5.1.3.2 Watermark

The PUF described above allows to identify individual instances so that the key used to encrypt

the AW is unique to each device. However, it may be necessary to identify the IP core itself

in the �rst place. This can be easily achieved for example by inserting a small transmitter as

proposed in [BBF15]. This transmitter, shown in Figure 5.6, can �t in only two 4-input LUTs

on FPGA or less than 5 gate-equivalent in ASIC.

Figure 5.6 – BFSK transmitter from [BBF15]

5.2 Hardware platform: HECTOR board

The HECTOR board is composed of one motherboard, on which di�erent daughterboards can

be plugged. These boards have been developped in the framework of the European Union

H2020 HECTOR project1.

Motherboard

The HECTOR motherboard (see Figure 5.7) embeds a Microsemi SmartFusion 2 System on

Chip (SoC) FPGA. The microcontroller subsystem allows to communicate easily with the PC

by using Tcl scripts. This is interfaced with the FPGA fabric, which can then communicate

with the daughterboard. The daughterboard is plugged directly on the motherboard using a

SATA connector. Thus the motherboard is typically used for communication while the design

to test is implemented on the daughterboard.

1https://hector-project.eu/

146

https://hector-project.eu/

Chapter 5 – Complete hardware/software infrastructure IP for design protection

Figure 5.7 – HECTOR motherboard

Daughterboards

The HECTOR daughterboards embed three di�erent FPGAs: Xilinx Spartan 6 (see Figure 5.8a),

Intel Cyclone V (see Figure 5.8b) and Microsemi Smartfusion 2 (see Figure 5.8c).

(a) Xilinx Spartan 6 (b) Intel Cyclone V (c) Microsemi SmartFusion 2

Figure 5.8 – HECTOR daughterboards

5.3 Overall hardware implementation results

The implementations results for the overall IP protection module are shown in Table 5.4. We

implemented it on two FPGA families, Intel Cyclone V and Microsemi SmartFusion 2. For

the implementation of the parity computation module used by the CASCADE protocol, we

chose the option of using a large multiplexer. Using RAM would reduce the logic resources

requirements. In our implementation, the communication between the server and the device is

done with frames of up to 1024 bits, that contain the indexes or the parity values. Therefore,

two 1024-bit registers are used as input and output registers for the communication. This

implementation choice requires a large multiplexer to select the received indexes individually

147

Chapter 5 – Complete hardware/software infrastructure IP for design protection

for the CASCADE protocol execution. This could be adapted depending on the requirements

and limitations of the target application.

The results presented in Table 5.4 are obtained from the synthesis tools Intel Quartus II

13.1 and Microsemi Libero SoC 11.7. The logic resources individually occupied by each entity

can be obtained. However, for complex designs such as this one, separating the logic resources

between the entities does not always give meaningful results. Indeed, the synthesis performs

a lot of merging of logic to save logic resources. As a consequence, the values provided in

Table 5.4 should be analysed while maintaining a critical perspective. The absolute values do

not have much intrinsic value. Conversely, the relative implementation cost of each entity is

more interesting. On the one hand, as mentionned before, the CASCADE module is extremely

lightweight. On the other hand, the large multiplexer used to select the PUF response indexes

occupies a lot of LUTs.

Intel Cyclone V Microsemi SF2

Entities 6-LUTs DFFs 4-LUTs DFFs

PUF 4841 160 2258 158
Response shift register 0 128 0 128

Communication 321 2560 2664 2478
IP protection module 444 357 1030 376

MUX indexes 128x7:7 301 0 595 0
MUX response bits 128:1 37 0 85 0
One time pad 128 0 128 0
AW storage 0 128 0 128
CASCADE module 1 1 1 1
Controller 104 90 101 69

Parities shift register 0 35 0 32

Total 5606 2949 5746 2803

Table 5.4 – Device-side implementation results for the whole design data protection module

The logic resources overhead brought by the logic locking scheme is dependent on the

design to protect and is not shown here. As said in the associated chapter, the overhead is 2.9%

on average. The logic resources overhead associated to logic masking is also not shown, since

it is up to the designer to choose it depending on the required masking e�ciency.

Overall, these results show that the IP protection module is lightweight. Further optimisa-

tions could be carried out to reduce the cost. Vendor-speci�c FPGA resources can be used to

implement speci�c functions. For example, Xilinx SRL16 can be exploited to implement the

shift registers. We chose to make our implementation as generic as possible and did not use

them.

148

Chapter 5 – Complete hardware/software infrastructure IP for design protection

5.4 Software interface

The graphical user interface described here is what could be integrated into EDA tools to allow

a designer to protect an IP core from counterfeiting and illegal copying. The interface is split

into four tabs, described below and meant to be used at di�erent stages of the design process.

Logic modi�er

The Logic modi�er tab, shown in Figure 5.9, performs the actions described in Section 5.1.1.

Figure 5.9 – Logic modi�er tab of the graphical user interface

In the Current design frame, a design is loaded and converted into a directed acyclic graph

from di�erent netlist formats. In the Modify design frame, the designer can choose to lock or

mask the design, setting the associated area overheads and the selection heuristic for logic

masking. The modi�ed netlist is then generated using the Generate modi�ed design frame,

along with the associated AW, that is stored in a dedicated �le. Finally, the modi�ed design is

wrapped and associated with other building blocks such as the lightweight cipher, the parity

computation module, the AW decoder, etc. This is done in theWrap modi�ed design frame. The

formatted activation word that can be saved at this stage is the one that must be encrypted by

the reconciled PUF response at activation time. It is the input of the AW decoder.

149

Chapter 5 – Complete hardware/software infrastructure IP for design protection

HECTOR board management

The HECTOR board management tab, shown in Figure 5.10, allows to connect to the HECTOR

board. This is necessary to perform the enrolment and activation phases.

Figure 5.10 – HECTOR board management tab of the graphical user interface

Enrolment

This tab (see Figure 5.11) allows the designer to perform the enrolment phase: obtaining the

reference PUF response before storing it on the server. It is later used in the CASCADE protocol.

Figure 5.11 – Enrolment tab of the graphical user interface

Activation

The last tab is dedicated to the activation phase (see Figure 5.12).

Figure 5.12 – Activation tab of the graphical user interface

150

Chapter 5 – Complete hardware/software infrastructure IP for design protection

This phase starts with the CASCADE protocol. The interface allows to load the reference

response stored on the server. The parameters of the CASCADE protocol can then be set: the

initial block size and the number of passes. After performing the protocol, the interface shows

how many bits were leaked during its execution. Then, the reconciled PUF response is stored

as is as a key, or optionnally hashed before. The designer can then load the AW, encrypt it with

the PUF response and send the obtained ciphertext to the HECTOR board. This is decrypted

internally and the design implemented on the board is activated.

5.5 Illustrative example

To illustrate the use of the IP protection scheme, we applied it on a test benchmark. It is a 64×64
bits combinational multiplier, entirely implemented in LUTs. We also designed a graphical user

interface to allow for easy tests for di�erent inputs. The di�erent cases obtained are depicted

in Figures 5.13 and 5.14. In the �rst pictures on the left, Figures 5.13a and 5.14a, an example

input is shown. The results obtained when the IP core is locked are shown in Figures 5.13b

and 5.14b. Whatever the input operands are, when this particular design is locked, the output

is always 0. The results obtained when the IP core is masked are shown in Figures 5.13c and

5.14c. The output is di�erent for each input, but is always wrong. Finally, after activation has

been carried out, the correct result is obtained. This is shown in Figures 5.13d and 5.14d.

(a) Example input (b) Locked output (c) Masked output (d) Correct output

Figure 5.13 – Graphical user interface to the hardware multiplier with input 500×2

(a) Example input (b) Locked output (c) Masked output (d) Correct output

Figure 5.14 – Graphical user interface to the hardware multiplier with input 25×4

151

Chapter 5 – Complete hardware/software infrastructure IP for design protection

5.6 Use case

The typical use case of the software/hardware infrastructure is the following, shown in Fig-

ure 5.15. For each step of the design process, the evolution of the IP core is depicted. Designer’s

constraints are also shown for several steps.

Figure 5.15 – Simpli�ed design �ow with steps implementing secure remote activation high-
lighted.

First, the designer opens the netlist with the EDA tool, and choses to modify it with logic

locking or logic masking, selecting the associated overheads. The associated AW is then

stored on the server. The overall wrapper for the modi�ed design is generated, comprising

the submodules described above. The security threshold is de�ned at this step, setting the

152

Chapter 5 – Complete hardware/software infrastructure IP for design protection

PUF response size and the cipher key size. The design can then be instantiated by a system

integrator, before being manufactured.

Afterwards, it is sent to a facility trusted by the original designer for enrolment. The

reference PUF response is obtained and stored. PUF characterisation can be done at this stage

for some of the devices to estimate the error rate. Then, the PUF response must be made

inaccessible, typically by blowing a fuse inside the circuit. The device must later be activated.

The activation phase starts by challenging the PUF in the circuit to regenerate a response.

The CASCADE key reconciliation protocol is then carried out to reconcile the PUF found in

the circuit and on the server. The AW encrypted with this response is fed to the circuit to

activate it. The circuit can then be used for its original purpose.

One aspect worth noting is the fact that, in this simpli�ed design �ow, testing of the chip

is done after the activation. The implications of activating the device before or after test are

discussed in [Yas+16b].

5.7 Conclusion

The implementation of the overall IP protection module is presented in this chapter. Imple-

mentation details are discussed as well as extra modules such as the AW decoder that are

required. The results of implementation on Intel Cyclone V and Microsemi SmartFusion 2

are given, demonstrating that the hardware resources occupied are limited. We present the

implementation of a demonstrator that illustrates the concepts discussed in this thesis. This

demonstrator comprises a software interface and an hardware implementation done on the

HECTOR board. For illustration purposes, a test design was modi�ed following the proposed

methodology. Finally, we present the typical use case for the overall scheme, showing how it

can be integrated into the design �ow. This demonstrates the practical usability and relevance

of the IP protection scheme described in this thesis.

153

Chapter 5 – Complete hardware/software infrastructure IP for design protection

154

Conclusion

Due to the ever-increasing complexity of integrated circuits, core-based design is now

the main paradigm but comes with new threats for design data. Reported cases of illegal

copying and counterfeiting have risen in recent years. The aim of this thesis was to propose

an industrially relevant solution to actively prevent those illegal actions. The solution should

provide hardware licensing capabilities, allowing for a remote and secure activation of the

electronic system.

Summary of contributions

The second and third chapter of this thesis propose to modify the combinational logic of a

design to allow for IP protection. Combinational logic locking, presented in Chapter 2, proposes

a new method to achieve logic locking at the combinational level. By detecting the sequences

of logic gates that can propagate a locking value, it allows to controllably force the outputs of a

design to a �xed logic value. AND or OR gates are inserted to controllably force these sequences

of gates to the desired value. The algorithm that detects such sequences of gates, that leverages

the representation of a netlist as a graph, is very e�cient and can handle large netlists. So far,

this is the only method for IP protection based on modi�cations of combinational logic that can

deal with very large netlists of hundreds of thousands of logic gates. Moreover, we showed that

the extra locking gates that must be inserted result in a low logic resources overhead of 2.9% on

average. This is when all the outputs can be locked. The overhead brought by combinational

logic locking can be reduced by locking only a subset of the outputs, or increased to make logic

locking stronger.

In Chapter 3, another method for IP protection based on modi�cations of the combinational

logic is studied. Logic masking, proposed in 2008 [RKM08a], consists in inserting XOR or XNOR

gates at speci�c locations inside the netlist to controllably alter the internal state, disturbing

the outputs. Current heuristics used to determine the place of insertion, however, could not

handle large netlists while providing su�ciently low correlation at the outputs. We proposed to

bridge the gap between computational complexity and masking e�ciency by using centrality

indicators. They allow to detect the most relevant nodes in a netlist, namely the ones through

155

Conclusion

which the information �ow is the greatest. We give an overview of existing centrality indicators

before showing that the ones based on current-�ow can be e�ciently used as the node selection

heuristic for logic masking. Experimental results show that netlists of up to 30 000 nodes can be

processed in around one hour, reducing the correlation at the outputs to low levels. This makes

this selection heuristic the only one to be e�cient and usable in a real-world context with

medium-sized netlists. The designer can again pick the acceptable logic resources overhead for

the target level of correlation.

The fourth chapter presents the CASCADE key reconciliation before showing how it can be

successfully implemented alongside a PUF to correct the errors found at its output. Compared

to existing error correcting codes, the device-side implementation can be an order of magnitude

less costly in logic resources. This makes it very usable in a resource-constrained context, which

is typically the case when a PUF is employed. Experimental results show that the protocol can

accomodate the error rates observed for usual PUF architectures. The extensive simulation

performed allowed us to provide several sets of parameters for error rates ranging from 1 to

15%, while maintaining very low failure rates down to 10-8. The protocol is very �exible, since

the parameters can be changed at each execution. Therefore, the error correction can meet the

required failure rate even if the error rate increases due to poor operating conditions. Again,

this is up to the designer to choose the most suitable compromise.

All those propositions have in common to be very adaptable to the target application. For

logic locking, the designer can balance the locking strength and the logic resources overhead.

Similarly, for logic masking, the designer can balance the masking e�ciency and the logic

resources overhead. For the CASCADE protocol as well, the parameters can be easily tuned

to deal with various error rates and target failure rates. These trade-o�s allow the designer

to balance the cost of implementation with the target security level, ensuring feasibility in an

industrial context.

The �nal chapter of this thesis presents the integration of all the contributions of the

SALWARE project in a complete IP protection module. Implementation results show that the

scheme is suitable for industrial use, providing e�cient protection of design data at reduced

cost.

Perspectives

Several perspectives can be identi�ed that could extend the contributions of this thesis. For

modi�cations of combinational logic targetting IP protection, the interaction between logic

locking and logic masking could be studied. In particular, exploiting the sequences of nodes that

propagate a locking value inside the netlist could be useful to interact with the masking gates.

One could also design a two-step scheme that both locks and masks the outputs. Recovering

the original behaviour would then require to deactivate both protections. Combining those

two techniques would certainly lead to an e�cient method to controllably disturb the outputs.

156

Conclusion

Another possibility to leverage logic locking is to adapt it to sequential systems. Locking

the registers that store the current state of the system allows to force the system to a known,

�xed state. Conversely, logic masking may not be used in this case since it could force the

system into an unknown state.

Logic masking may be improved by analysing the design to protect before applying the node

selection heuristic on it. It may be possible to determine a lower bound on the correlation that

is achievable by applying logic masking on a particular design. Indeed, experimental results

show that increasing the number of inserted masking gates does not necessarily reduce the

bitwise output correlation. Analysing the netlist before modi�cation could allow the designer

to know the lowest level of correlation that is achievable and determine the associated logic

resources overhead that would be optimal.

Regarding the CASCADE protocol, the sets of parameters that we give for di�erent error

rates and failure rates were obtained by simulation. However, those simulations took extensive

time to perform, and were only done for the considered error rates and failure rates. A generic

method to derive the parameters of the protocol given the error rate and failure rate could be

developped. However, it should be speci�cally targeted at the application we consider here,

namely correcting the errors in PUF responses. Indeed, the methods used in the context of

quantum key distribution deal with very long bit frames, making them unsuitable for our use

case. Speci�cally, some asymptotically valid approximations are not correct anymore, since

PUF responses are much shorter. Integrated into the activation software, such method would

allow the designer to enter the expected error rate and the required failure rate before executing

the protocol.

Finally, the overall IP protection scheme should be evaluated as well. Even though the

security and the leakage associated to the CASCADE protocol have been discussed, some

weaknesses might be exploited. This would require further investigations, while keeping the

same threat model as de�ned in Chapter 1. Considering other threat models could be interesting

as well, while keeping in mind that the main objective of this work is industrial applicability.

In order to broaden the scope of this work, more �ne-grained licensing could be investigated

as well. Indeed, we only considered two modes of operation, activated or not. However, on a

per design basis, some evaluation or premium modes are possible. For example, an Ethernet

controller could be provided for evaluation with a throughput of 10Mbps, in a normal mode

with a throughput of 100Mbps or in premium mode at 1Gbps. Similarly, a H.264 video decoder

could decode in 720p in evaluation mode, in 1080p in normal mode and in 4K in premium mode.

This type of feature-based licensing is very interesting from a marketing point of view, but is

hard to make generic.

Some IP cores that are well suited for feature-based licensing are analog IP cores. Indeed,

analog-to-digital converters or �lters, for instance, must be calibrated to achieve the best

performance. By acting on the calibration system, a wide range of performances can be

obtained, paving the way for �ne-grained performance-based licensing. The state-of-the-art in

157

Conclusion

IP protection for analog IP cores is scarce and speci�c protection schemes should be developped

in the future.

Finally, one can also take the point of view of the system integrator, who wishes to integrate

an IP core provided by an untrusted IP core designer. For example, an IP core designer

could provide a cryptographic core with a hidden backdoor or with deliberately high side-

channel leakage. Moreover, complex IP core like softcore microprocessors are meant to execute

embedded code. How can a designer ensure that the IP core will remain harmless to the overall

system if the code is malicious? How can a system integrator ensure that the IP cores integrated

in the �nal system are connected and interacting with one another while being su�ciently

isolated so that one malicious IP core cannot take down the whole system? These are important

questions, that would require di�erent threat models, and could also be studied in future works.

158

Conclusion

Du fait de la complexité croissante des circuits intégrés, la conception modulaire est à

présent le paradigme de conception dominant, mais est associé à de nouvelles menaces pour

les données de conception. Les cas de copie illégale et de contrefaçon signalés ont considérable-

ment augmentés ces dernières années. L’objectif de cette thèse était de proposer une solution

applicable dans un contexte industriel a�n d’empêcher ces actes illégaux. La solution proposée

doit mettre en place un système de licence matérielle, permettant l’activation sécurisée et à

distance du système électronique.

Résumé des contributions

Les deuxième et troisième chapitres de cette thèse proposent de modi�er la logique combinatoire

d’un composant virtuel pour permettre la protection des données de conception. Le verrouillage

combinatoire de la logique, présenté dans le chapitre 2, propose une nouvelle méthode pour

permettre le verrouillage logique au niveau de la logique combinatoire. En identi�ant des suites

de portes logiques qui peuvent propager une valeur de verrouillage, cette méthode permet de

forcer les sorties d’un composant virtuel à une valeur �xe. Des portes logiques ET ou OU sont

insérées a�n de pouvoir forcer ces suites de portes logiques à la valeur souhaitée. L’algorithme

qui détecte ces suites de portes logiques, qui exploite la représentation d’une netlist sous forme

de graphe, est très e�cace et peut gérer des netlists de grande taille. Actuellement, c’est la seule

méthode visant à protéger les données de conception basée sur une modi�cation de la logique

combinatoire qui puisse gérer des netlists de très grande taille, de l’ordre d’une centaine de

milliers de portes logiques. De plus, nous avons montré que les portes logiques supplémentaires

à insérer n’entraînent un surcoût que de 2,9% en moyenne, et ce dans le cas où toutes les sorties

peuvent être verrouillées. Le coût en ressources logiques induit par le verrouillage combinatoire

de la logique peut être réduit en ne verrouillant qu’une partie des sorties, ou augmenté pour

renforcer le verrouillage.

Dans le chapitre 3, une autre méthode basée sur une modi�cation de la logique combina-

toire permettant la protection des données de conception est étudiée. Le masquage logique,

proposé en 2008 [RKM08a], consiste à insérer des portes OU exclusif ou NON-OU exclusif à

159

Conclusion

des endroits spéci�ques dans une netlist a�n de pouvoir altérer son état interne de manière

contrôlée, perturbant ainsi les sorties. Néanmoins, les heuristiques utilisées actuellement pour

déterminer le lieu d’insertion ne permettaient pas de gérer des netlists de grande taille tout

en obtenant une corrélation su�samment basse aux sorties. Nous proposons de combler ce

manque entre complexité algorithmique et e�cacité de masquage en utilisant les indicateurs

de centralité. Ces derniers permettent d’identi�er les nœuds les plus importants d’une netlist,

c’est à dire ceux à travers lesquels le �ux d’information est le plus important. Nous donnons un

aperçu des indicateurs de centralité existants avant de montrer que ceux basés sur le courant

électrique peuvent être utilisés de manière e�cace comme heuristique de sélection pour les

nœuds à modi�er par masquage logique. Les résultats expérimentaux montrent que des netlists

contenant jusqu’à 30 000 nœuds peuvent être analysées en environ une heure, tout en réduisant

la corrélation en sortie à des niveaux bas. Cela fait de cette heuristique de sélection la seule

e�cace et utilisable dans un contexte concret de protection de netlists de taille moyenne. Encore

une fois, le concepteur peut choisir le surcoût en ressources logiques jugé acceptable pour le

niveau de corrélation en sortie souhaité.

Le quatrième chapitre présente le protocole de réconciliation de clés CASCADE avant de

montrer comment ce dernier peut être utilisé en présence d’une PUF pour corriger les erreurs

observées à sa sortie. Comparée aux codes correcteurs d’erreurs existants, l’implantation coté

circuit peut être plus légère d’un ordre de grandeur en terme de ressources logiques. Cela le

rend particulièrement utilisable dans un contexte où les ressources disponibles sont limitées, ce

qui est typiquement le cas lorsqu’une PUF est utilisée. Les résultats expérimentaux montrent

que le protocole peut gérer les taux d’erreur observés avec les architectures de PUF courantes.

Les simulations poussées que nous avons menées nous ont permis de fournir plusieurs jeux de

paramètres pour des taux d’erreurs allant de 1 à 15%, tout en maintenant des taux d’échecs très

bas jusqu’à 10-8. Le protocole est très adaptable, puisque les paramètres peuvent être modi�és

à chaque exécution. Ainsi, la correction des erreurs peut atteindre des taux d’échecs très bas

même si le taux d’erreur augmente à cause de conditions de fonctionnement mauvaises. Encore

une fois, c’est au concepteur de choisir le meilleur compromis.

Toutes ces propositions ont en commun d’être très facilement adaptables à l’application

ciblée. Pour le verrouillage combinatoire de la logique, le concepteur peut équilibrer la force du

verrouillage et le coût en ressources logiques. De même, pour le masquage logique, le concepteur

peut équilibrer l’e�cacité de masquage et le coût en ressources logiques. Pour le protocole

CASCADE, les paramètres peuvent également être facilement ajustés pour gérer di�érents

taux d’erreur et taux d’échec. Ces compromis permettent d’équilibrer le coût l’implantation et

le niveau de sécurité souhaité, assurant la faisabilité dans un contexte industriel.

Le chapitre �nal de cette thèse présente l’intégration de toutes les contributions du projet

SALWARE dans un module complet de protection des données de conception. Les résultats

l’implantation montrent que le système est adéquat pour une utilisation industrielle, fournissant

une protection e�cace des données de conception à un coût réduit.

160

Conclusion

Perspectives

Plusieurs perspectives peuvent être envisagées pour étendre les contributions de cette thèse.

Concernant les modi�cations de la logique visant à protéger les donnée de conception, l’interac-

tion entre le verrouillage et le masquage logiques pourrait être étudié. En particulier, exploiter

les suites de nœuds qui propagent une valeur de verrouillage à l’intérieur de la netlist pourrait

être utile pour interagir avec les portes logiques de masquage. Un système en deux étapes

qui assure à la fois le verrouillage et le masquage des sorties pourrait également être conçu.

Combiner ces deux techniques résulterait sûrement en une méthode e�cace pour altérer les

sorties.

Une autre possibilité pour mettre à pro�t le verrouillage logique est de l’appliquer aux

systèmes séquentiels. Verrouiller les registres qui stockent l’état courant du système permet

de forcer le système dans un état �xe connu. À l’inverse, le masquage logique ne pourrait

sûrement pas être utilisé dans ce cas car le système serait alors placé dans un état inconnu.

Le masquage logique pourrait être amélioré en analysant le design à protéger avant d’y

appliquer l’heuristique de sélection des nœuds. Il serait peut être possible d’identi�er une

borne inférieure pour le niveau de corrélation en sortie atteignable en appliquant la méthode

de masquage logique à un design spéci�que. En e�et, les résultats expérimentaux montrent

qu’augmenter le nombre de portes de masquage logique insérées ne réduit pas nécessairement

le niveau de corrélation des sorties. Analyser la netlist avant modi�cation pourrait permettre

au concepteur de connaître le niveau minimal de corrélation atteignable et de déterminer le

coût en ressources logiques associé, qui serait optimal.

En ce qui concerne le protocole CASCADE, les jeux de paramètres que nous donnons pour

di�érents taux d’erreur et d’échec ont été obtenus par simulation. Néanmoins, réaliser ces

simulations a pris beaucoup de temps, et ces dernières n’ont été faites que pour les taux d’erreur

et d’échec considérés. Une méthode générique pour déduire les paramètres du protocole à

partir des taux d’erreur et d’échec pourrait être mise au point. Néanmoins, elle devrait cibler

particulièrement l’application que nous considérons ici, à savoir la correction des erreurs dans

les réponses des PUFs. En e�et, les méthodes utilisées dans le contexte de distribution quantique

de clés utilisent des messages de très grande taille, ce qui les rend inapplicables dans notre

cas. En particulier, des approximations valables asymptotiquement ne le sont plus, puisque

les réponses des PUFs sont beaucoup plus courtes. Intégrée dans le logiciel d’activation, une

telle méthode permettrait au concepteur d’entrer seulement le taux d’erreur attendu et le taux

d’échec requis avant d’exécuter le protocole.

En�n, le module complet de protection des données de conception devra être évalué. Même

si la sécurité et la fuite d’information associées au protocole CASCADE ont été discutées, des

faiblesses pourraient être exploitées. Cela nécessite une étude plus approfondie, tout en gardant

un modèle de menace identique à celui dé�ni au chapitre 1. Considérer d’autres modèles de

menace pourrait également être intéressant, tout en gardant à l’esprit que l’objectif principal

161

Conclusion

de ces travaux est l’applicabilité industrielle.

A�n d’étendre la portée de ces travaux, un système de licence plus �n pourrait également

être exploré. En e�et, nous n’avons envisagé que deux modes de fonctionnement, activé ou

non. En revanche, au cas par cas pour chaque design, des modes d’évaluation ou premium sont

envisageables. Par exemple, un contrôleur Ethernet pourrait être proposé avec un débit de

10Mbps en mode évaluation, en mode normal avec un débit de 100Mbps ou en mode premium

à 1Gbps. De la même façon, un décodeur vidéo H.264 pourrait décoder en 720p en mode

évaluation, en 1080p en mode normal et en 4K en mode premium. Ce type de licence basé sur

les fonctionnalités est très intéressant d’un point de vue commercial, mais est di�cile à dé�nir

de manière générique.

Certains composant virtuels particulièrement adaptés à ce type de licence basé sur les

fonctionnalités sont les composants virtuels analogiques. En e�et, les convertisseurs analogique-

numérique ou les �ltres, par exemple, doivent être calibrés pour atteindre les meilleurs perfor-

mances. En agissant sur le système de calibration, une large gamme de performances peut être

obtenue, jetant les bases d’un système de licence basé sur les performances. Les méthodes de

protection des données de conception adaptées aux composants virtuels analogiques sont rares

dans la littérature et des techniques de protection spéci�ques pourront être mises au point à

l’avenir.

En�n, il est également possible de se placer du point de vue de l’intégrateur système, qui

souhaite utiliser un composant virtuel fourni par un concepteur de composants virtuels qui

n’est pas approuvé. Par exemple, un concepteur pourrait fournir un module cryptographique

avec une backdoor cachée ou avec une fuite sur le canal auxiliaire délibérément élevée. De plus,

des composants virtuels complexes tels que les processeurs doivent exécuter du code embarqué.

Comment un concepteur peut-il s’assurer que le composant virtuel demeurera ino�ensif vis à vis

du système complet si le code exécuté est malveillant ? Comment un concepteur peut-il s’assurer

que les composants virtuels intégrés dans le système �nal sont connectés et interagissent les

uns avec les autres tout en étant su�samment isolés de manière à ce que le fonctionnement du

système complet ne puisse pas être compromis par un composant virtuel malveillant ? Toutes

ces questions sont importantes, requièrent des modèles de menace di�érents et pourrait être

étudiées à l’avenir.

162

Publications and communications

Peer-reviewed journals

[Col+17a] Brice Colombier, Lilian Bossuet, David Hély and Viktor Fischer, “Key Reconcili-

ation Protocols for Error Correction of Silicon PUF Responses”, IEEE Transactions

on Information Forensics and Security 12.8 (Aug. 2017), pp. 1988–2002.

[BC16] Lilian Bossuet and Brice Colombier, “Comments on ’A PUF-FSM Binding Scheme

for FPGA IP Protection and Pay-per-Device Licensing’”, IEEE Transactions on

Information Forensics and Security 11.11 (Nov. 2016), pp. 2624–2625.

[CBH16a] Brice Colombier, Lilian Bossuet and David Hély, “From Secured Logic to IP Pro-

tection”, Elsevier Microprocessors and Microsystems 47 (Nov. 2016), pp. 44–54 (cited

on pp. 42, 46).

[CB14] Brice Colombier and Lilian Bossuet, “Survey of Hardware Protection of Design

Data for Integrated Circuits and Intellectual Properties”, IET Computers & Digital

Techniques 8.6 (Nov. 2014), pp. 274–287.

International peer-reviewed conferences with proceedings

[CBH17a] Brice Colombier, Lilian Bossuet andDavid Hély, “Centrality Indicators For E�cient

And Scalable Logic Masking”, IEEE Computer Society Annual Symposium on VLSI,

Bochum, Germany, July 2017.

[CBH15a] Brice Colombier, Lilian Bossuet and David Hély, “Reversible Denial-of-Service by

Locking Gates Insertion for IP Cores Design Protection”, IEEE Computer Society

Annual Symposium on VLSI, Montpellier, France, July 2015, pp. 210–215.

163

Publications and communications

Book chapters

[CBH17c] Brice Colombier, Lilian Bossuet and David Hély, “Logic Modi�cation-Based IP

Protection Methods: An Overview and a Proposal”, Foundations of Hardware IP

Protection, 2017, pp. 37–64.

[CBH17d] Brice Colombier, Lilian Bossuet and David Hély, “Turning Electronic Circuits

Features into On-Chip Locks”, Foundations of Hardware IP Protection, 2017, pp. 15–

36.

Workshops without proceedings

[CBH17b] Brice Colombier, Lilian Bossuet andDavid Hély, “Centrality Indicators For E�cient

And Scalable Logic Masking”, Cryptarchi Workshop, Smolenice, Slovaquia, June

2017.

[CBH16b] Brice Colombier, Lilian Bossuet and David Hély, “Key reconciliation protocol

application to error correction in silicon PUF responses”, TRUDEVICE Workshop,

Design, Automation & Test in Europe Conference, Dresden, Germany, Mar. 2016.

[CBH16c] Brice Colombier, Lilian Bossuet and David Hély, “Key reconciliation protocol

application to error correction in silicon PUF responses”, Cryptarchi Workshop, La

Grande Motte, France, June 2016.

[CBH15b] Brice Colombier, Lilian Bossuet and David Hély, “Reversible Denial-of-Service by

Locking Gates Insertion for IP Cores Design Protection”, Cryptarchi Workshop,

Leuven, Belgium, June 2015.

Demonstrations

[Col+17b] Brice Colombier, Ugo Mureddu, Marek Laban, Oto Petura, Lilian Bossuet and

Viktor Fischer, “Hardware Demo: Complete Activation Scheme for IP Design

Protection”, International Symposium on Hardware Oriented Security and Trust,

McLean, VA, USA, May 2017.

[Col+17c] Brice Colombier, Ugo Mureddu, Marek Laban, Oto Petura, Lilian Bossuet and

Viktor Fischer, “Hardware Demo: Complete Activation Scheme for IP Design

Protection”, International Conference on Field-Programmable Logic and Applications,

Ghent, Belgium, Sept. 2017.

164

Publications and communications

Seminar

[CBH16d] Brice Colombier, Lilian Bossuet and David Hély, “Key reconciliation protocol

application to error correction in silicon PUF responses”, Journé Sécurité Numérique

du GDR SoC-SiP : 11ème édition, La génération d’aléa dans le matériel : TRNG &

PUF, Paris, France, May 2016.

Posters

[CBH16e] Brice Colombier, Lilian Bossuet and David Hély, “Key reconciliation protocol

application to error correction in silicon PUF responses”, Colloque national du

GDR SoC/SiP, Nantes, France, June 2016.

[CBH16f] Brice Colombier, Lilian Bossuet and David Hély, “Secure remote activation scheme

for integrated circuits”, Journée de la recherche de l’École doctorale EDSIS, Saint-

Étienne, France, June 2016.

[CB15a] Brice Colombier and Lilian Bossuet, “Functional Locking Modules for Design Pro-

tection of Intellectual Property Cores”, TRUDEVICE Workshop, Design, Automation

& Test in Europe Conference, Grenoble, France, Mar. 2015.

[CB15b] Brice Colombier and Lilian Bossuet, “Functional Locking Modules for Design

Protection of Intellectual Property Cores”, IEEE International Symposium on Field-

Programmable Custom Computing Machines, Vancouver, Canada, May 2015, p. 233.

[CBH15c] Brice Colombier, Lilian Bossuet and David Hély, “Système sécurisé d’activation

à distance de circuits intégrés et de composants virtuels”, Journée scienti�que de

l’ARC6, Grenoble, France, Nov. 2015.

Popular science communications

• Science & You, mai-juin 2015, Université de Lorraine, Nancy.

• Fête de la Science, octobre 2016, Université Jean Monnet, Saint-Étienne.

• Ramène ta science, mai 2017, Université Jean Monnet, Saint-Étienne.

165

Publications and communications

166

Bibliography

[ATA04] Amr T. Abdel-Hamid, So�ène Tahar and El Mostapha Aboulhamid, “A survey on
IP watermarking techniques”, Design Automation for Embedded Systems 9.3 (2004),
pp. 211–227 (cited on p. 27).

[AK07] Y. Alkabani and F. Koushanfar, “Active hardware metering for intellectual property
protection and security”, USENIX Security, Boston MA, USA, Aug. 2007, pp. 291–
306 (cited on pp. 49, 50).

[Alt09] Altera, Protecting the FPGA Design From Common Threats, 2009, url: https://www.
altera.com/content/dam/altera-www/global/ en_US/pdfs/ literature/wp/wp-01111-
anti-tamper.pdf (cited on p. 45).

[AGM15] Luca Amarú, Pierre-Emmanuel Gaillardon and Giovanni De Micheli, “The EPFL
Combinational Benchmark Suite”, International Workshop on Logic & Synthesis,
Mountain View, CA, USA, June 2015 (cited on p. 97).

[Ant71] Jac M. Anthonisse, “The rush in a directed graph”, Mathematische Besliskunde BN
9/71 (1971), pp. 1–10 (cited on p. 92).

[ARM17] ARM, AMBA Speci�cations, 2017, url: http:// www.arm.com/ products/ system-
ip/amba-speci�cations (cited on p. 51).

[Ays+15] Aydin Aysu, Ege Gulcan, Daisuke Moriyama, Patrick Schaumont and Moti Yung,
“End-To-End Design of a PUF-Based Privacy Preserving Authentication Protocol”,
International Workshop on Cryptographic Hardware and Embedded Systems, Saint-
Malo, France, Sept. 2015 (cited on p. 121).

[BM06] David A. Bader and Kamesh Madduri, “Parallel Algorithms for Evaluating Central-
ity Indices in Real-world Networks”, International Conference on Parallel Processing,
Columbus, Ohio, USA, Aug. 2006, pp. 539–550 (cited on p. 101).

[BFS16] Chongxi Bao, Domenic Forte and Ankur Srivastava, “On Reverse Engineering-
Based Hardware Trojan Detection”, IEEE Trans. on CAD of Integrated Circuits and
Systems 35.1 (2016), pp. 49–57 (cited on p. 20).

[BCM16] Mario Barbareschi, Alessandro Cilardo and Antonino Mazzeo, “Partial FPGA
bitstream encryption enabling hardware DRM in mobile environments”, ACM
International Conference on Computing Frontiers, Como, Italy, May 2016, pp. 443–
448 (cited on p. 45).

[BZB14] Abhishek Basak, Yu Zheng and Swarup Bhunia, “Active defense against counter-
feiting attacks through robust antifuse-based on-chip locks”, IEEE 32nd VLSI Test
Symposium, Napa CA, USA, Apr. 2014, pp. 1–6 (cited on pp. 50, 55, 56).

167

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01111-anti-tamper.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01111-anti-tamper.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/wp/wp-01111-anti-tamper.pdf
http://www.arm.com/products/system-ip/amba-specifications
http://www.arm.com/products/system-ip/amba-specifications

BIBLIOGRAPHY

[BTZ10] A. Baumgarten, A. Tyagi and J. Zambreno, “Preventing IC Piracy Using Recon-
�gurable Logic Barriers”, IEEE Design & Test of Computers 27.1 (2010), pp. 66–75
(cited on p. 41).

[Bay+12] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, François Poucheret,
Bruno Robisson and PhilippeMaurine, “Contactless Electromagnetic Active Attack
on RingOscillator Based True RandomNumber Generator”, InternationalWorkshop
on Constructive Side-Channel Analysis and Secure Design, vol. 7275, Darmstadt,
Germany, May 2012, pp. 151–166 (cited on p. 35).

[Bec15] Georg T. Becker, “The Gap Between Promise and Reality: On the Insecurity of XOR
Arbiter PUFs”, International Workshop on Cryptographic Hardware and Embedded
Systems, vol. 9293, Saint-Malo, France, Sept. 2015, pp. 535–555 (cited on p. 32).

[BBR88] Charles H. Bennett, Gilles Brassard and Jean-Marc Robert, “Privacy Ampli�cation
by Public Discussion”, SIAM Journal on Computing 17.2 (1988), pp. 210–229 (cited
on p. 135).

[BSH12] Florian Benz, André Se�rin and Sorin A. Huss, “Bil: A tool-chain for bitstream
reverse-engineering”, International Conference on Field Programmable Logic and
Applications, Oslo, Norway, Aug. 2012, pp. 735–738 (cited on pp. 19, 45).

[Ber+16] Thierry P. Berger, Julien Francq, Marine Minier and Gaël Thomas, “Extended
Generalized Feistel Networks Using Matrix Representation to Propose a New
Lightweight Block Cipher: Lilliput”, IEEE Trans. Computers 65.7 (2016), pp. 2074–
2089 (cited on p. 141).

[BMT78] Elwyn R. Berlekamp, Robert J. McEliece and Henk C. A. van Tilborg, “On the in-
herent intractability of certain coding problems”, IEEE Transactions on Information
Theory 24.3 (1978), pp. 384–386 (cited on p. 134).

[Boc+10] Nathalie Bochard, Florent Bernard, Viktor Fischer and Boyan Valtchanov, “True-
Randomness and Pseudo-Randomness in Ring Oscillator-Based True Random
Number Generators”, Int. J. Recon�g. Comp. 2010 (2010), pp. 1–13 (cited on pp. 35,
37).

[Bog+11] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici
and Ingrid Verbauwhede, “SPONGENT: A Lightweight Hash Function”, Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, Nara, Japan,
Sept. 2011, pp. 312–325 (cited on p. 135).

[Boo54] George Boole, An Investigation of the Laws of Thought: On which are Founded the
Mathematical Theories of Logic and Probabilities, 1854 (cited on p. 62).

[Bös+08] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi and
Pim Tuyls, “E�cient Helper Data Key Extractor on FPGAs”, InternationalWorkshop
on Cryptographic Hardware and Embedded Systems, Washington, D.C., USA, Aug.
2008, pp. 181–197 (cited on pp. 38, 39, 131).

[BBF15] Lilian Bossuet, Pierre Bayon and Viktor Fischer, “An Ultra-Lightweight Trans-
mitter for Contactless Rapid Identi�cation of Embedded IP in FPGA”, Embedded
Systems Letters 7.4 (2015), pp. 97–100 (cited on pp. 28, 146).

[Bos+14] Lilian Bossuet, Xuan Thuy Ngo, Zouha Cherif and Viktor Fischer, “A PUF based
on transient e�ect ring oscillator and insensitive to locking phenomenon”, IEEE
Transaction on Emerging Topics in Computing 2.1 (2014), pp. 30–36 (cited on pp. 35,
121).

168

BIBLIOGRAPHY

[Bra01] Ulrik Brandes, “A faster algorithm for betweenness centrality”, Journal of math-
ematical sociology 25.2 (2001), pp. 163–177 (cited on pp. 96, 97).

[BE05] Ulrik Brandes and Thomas Erlebach, eds., Network Analysis: Methodological Found-
ations, vol. 3418, Lecture Notes in Computer Science, Springer, 2005 (cited on
pp. 96, 97, 104).

[BF05] Ulrik Brandes and Daniel Fleischer, “Centrality Measures Based on Current Flow”,
Annual Symposium on Theoretical Aspects of Computer Science, vol. 3404, Stuttgart,
Germany, Feb. 2005, pp. 533–544 (cited on pp. 93–97).

[BS93] Gilles Brassard and Louis Salvail, “Secret-Key Reconciliation by Public Discussion”,
EUROCRYPT, Lofthus, Norway, May 1993, pp. 410–423 (cited on pp. 111, 112, 119).

[Bru+09] M. Brutscheck, M. Franke, A. Th. Schwarzbacher and St. Becker, “Non-Invasive
Reverse Engineering of CMOS Integrated Circuits”, IEEE 17th Telecommunications
Forum TELFOR, Belgrade, Serbia, Nov. 2009 (cited on p. 19).

[BY07] Maciej Brzozowski and Vyacheslav N. Yarmolik, “Obfuscation as Intellectual Rights
Protection in VHDL Language”, International Conference on Computer Information
Systems and Industrial Management Applications, Elk, Poland, June 2007, pp. 337–
340 (cited on p. 44).

[CDK09] Christophe De Cannière, Orr Dunkelman and Miroslav Knezevic, “KATAN and
KTANTAN -A Family of Small and E�cient Hardware-Oriented Block Ciphers”, In-
ternationalWorkshop on Cryptographic Hardware and Embedded Systems, Lausanne,
Switzerland, Sept. 2009, pp. 272–288 (cited on p. 141).

[CB09] Rajat Subhra Chakraborty and Swarup Bhunia, “HARPOON: An Obfuscation-
Based SoC Design Methodology for Hardware Protection”, IEEE Transations on
Computer-Aided Design of Integrated Circuits and Systems 28.10 (2009), pp. 1493–
1502 (cited on pp. 48–50, 55, 56, 98).

[CD00] Roy Chapman and Tariq S Durrani, “IP protection of DSP algorithms for system on
chip implementation”, IEEE Transactions on Signal Processing. 48.3 (2000), pp. 854–
861 (cited on p. 29).

[Che+13] Zouha Cherif, Jean-Luc Danger, Florent Lozach, Yves Mathieu and Lilian Bossuet,
“Evaluation of delay PUFs on CMOS 65 nm technology: ASIC vs FPGA”, The Second
Workshop on Hardware and Architectural Support for Security and Privacy, ed. by
Ruby B. Lee and Weidong Shi, Tel-Aviv, Israel: ACM, June 2013, p. 4 (cited on
p. 34).

[CBM16] Abdelkarim Cherkaoui, Lilian Bossuet and Cédric Marchand, “Design, Evaluation
and Optimization of Physical Unclonable Functions based on Transient E�ect Ring
Oscillators”, IEEE Transactions on Information Forensics and Security 11.6 (2016),
pp. 1291–1305 (cited on pp. 36, 121).

[CLB11] Mathias Claes, Vincent van der Leest and An Braeken, “Comparison of SRAM and
FF-PUF in 65nm Technology”, Nordic Conference on Secure IT Systems, vol. 7161,
Tallinn, Estonia, Oct. 2011, pp. 47–64 (cited on pp. 36, 121).

[Coc+14] Ronald P. Cocchi, James P. Baukus, Lap Wai Chow and Bryan J. Wang, “Circuit
Camou�age Integration for Hardware IP Protection”, Annual Design Automation
Conference, San Francisco, CA, USA, June 2014, 153:1–153:5 (cited on pp. 41, 44).

169

BIBLIOGRAPHY

[CBH17c] Brice Colombier, Lilian Bossuet and David Hély, “Logic Modi�cation-Based IP
Protection Methods: An Overview and a Proposal”, Foundations of Hardware IP
Protection, 2017, pp. 37–64.

[CBH17d] Brice Colombier, Lilian Bossuet and David Hély, “Turning Electronic Circuits
Features into On-Chip Locks”, Foundations of Hardware IP Protection, 2017, pp. 15–
36.

[Col+17b] Brice Colombier, Ugo Mureddu, Marek Laban, Oto Petura, Lilian Bossuet and
Viktor Fischer, “Hardware Demo: Complete Activation Scheme for IP Design
Protection”, International Symposium on Hardware Oriented Security and Trust,
McLean, VA, USA, May 2017.

[Col+17c] Brice Colombier, Ugo Mureddu, Marek Laban, Oto Petura, Lilian Bossuet and
Viktor Fischer, “Hardware Demo: Complete Activation Scheme for IP Design
Protection”, International Conference on Field-Programmable Logic and Applications,
Ghent, Belgium, Sept. 2017.

[CK06] N. Couture and K. B. Kent, “Periodic Licensing of FPGA Based Intellectual Prop-
erty”, IEEE International Conference on Field Programmable Technology, Bangkok,
Thailand, Dec. 2006, pp. 357–360 (cited on p. 51).

[CN06] Gabor Csardi and Tamas Nepusz, “The igraph software package for complex
network research”, InterJournal Complex Systems 1695.5 (2006), pp. 1–9 (cited on
pp. 71, 96).

[Cui+11] Aijiao Cui, Chip-Hong Chang, So�éne Tahar and Amr T. Abdel-Hamid, “A Robust
FSM Watermarking Scheme for IP Protection of Sequential Circuit Design”, IEEE
Transactions on CAD of Integrated Circuits and Systems 30.5 (2011), pp. 678–690
(cited on p. 29).

[CQZ15] Aijiao Cui, GangQu and Yan Zhang, “Ultra-LowOverhead DynamicWatermarking
on Scan Design for Hard IP Protection”, IEEE Transactions on Information Forensics
and Security 10.11 (2015), pp. 2298–2313 (cited on p. 28).

[Dav99] Scott Davidson, “ITC’99 Benchmark Circuits - Preliminary Results”, IEEE Interna-
tional Test Conference, Atlantic City, NJ, USA, Sept. 1999, p. 1125 (cited on pp. 71,
97).

[Del+15] Jeroen Delvaux, Dawu Gu, Dries Schellekens and Ingrid Verbauwhede, “Helper
Data Algorithms for PUF-Based Key Generation: Overview and Analysis”, IEEE
Transactions on CAD of Integrated Circuits and Systems 34.6 (2015), pp. 889–902
(cited on p. 38).

[Dod+08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin and Adam D. Smith, “Fuzzy
Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data”,
SIAM J. Comput. 38.1 (2008), pp. 97–139 (cited on p. 38).

[Dru69] Peter F. Drucker, The age of discontinuity: Guidelines to our changing society, 1969
(cited on pp. 2, 9).

[EW01] David Eppstein and Joseph Wang, “Fast approximation of centrality”, Symposium
on Discrete Algorithms, Washington, DC, USA., Jan. 2001, pp. 228–229 (cited on
pp. 92, 96).

[Fab06] Fabless Semiconductor Association, Understanding the Semiconductor Intellectual
Property (SIP) Business Process, tech. rep., 2006 (cited on p. 17).

170

BIBLIOGRAPHY

[FT03] Yu-Cheng Fan and Hen-Wai Tsao, “Watermarking for intellectual property protec-
tion”, IET Electronics Letters 39.18 (2003), pp. 1316–1318 (cited on p. 28).

[Fre77] Linton C. Freeman, “A Set of Measures of Centrality Based on Betweenness”,
Sociometry 40.1 (1977), pp. 35–41 (cited on p. 92).

[Fro11] Frontier-Economics, Estimating the global economic and social impacts of counter-
feiting and piracy, tech. rep., Business Action to Stop Counterfeiting and Piracy
(BASCAP), 2011 (cited on p. 18).

[Gas+12] L. Gaspar, V. Fischer, T. Guneysu and Z. C. Jouini, “Two IP Protection Schemes for
Multi-FPGA Systems”, International Conference on Recon�gurable Computing and
FPGAs, Cancun, Mexico, Dec. 2012, pp. 1–6 (cited on p. 45).

[Gas+02] Blaise Gassend, Dwaine E. Clarke, Marten van Dijk and Srinivas Devadas, “Silicon
physical random functions”, ACM Conference on Computer and Communications
Security, Washington, DS, USA, Nov. 2002, pp. 148–160 (cited on p. 33).

[Gol79] Lawrence H. Goldstein, “Controllability/Observability analysis of digital circuits”,
IEEE Transactions on Circuits and Systems 26.9 (Sept. 1979), pp. 685–693 (cited on
p. 87).

[GNL11] Zheng Gong, Svetla Nikova and Yee Wei Law, “KLEIN: A New Family of Light-
weight Block Ciphers”, International Workshop on RFID Security and Privacy, Am-
herst, USA, June 2011, pp. 1–18 (cited on p. 141).

[GGY15] Sezer Gören, Cemil Cem Gürsoy and Abdullah Yildiz, “Speeding Up Logic Locking
via Fault Emulation and Dynamic Multiple Fault Injection”, Journal of Electronic
Testing 31.5-6 (2015), pp. 525–536 (cited on pp. 49, 72).

[Gua+09] J. Guajardo, T. Guneysu, S. S. Kumar and C. Paar, “Secure IP-Block Distribution for
Hardware Devices”, IEEE International Workshop on Hardware-Oriented Security
and Trust, San Francisco CA, USA, July 2009, pp. 82–89 (cited on pp. 52, 53).

[Gua+07] Jorge Guajardo, Sandeep S Kumar, Geert-Jan Schrijen and Pim Tuyls, “FPGA
intrinsic PUFs and their use for IP protection”, International Workshop on Crypto-
graphic Hardware and Embedded Systems, Vienna, Austria, Sept. 2007, pp. 63–80
(cited on p. 121).

[GDT14] Ujjwal Guin, Daniel DiMase and Mohammad Tehranipoor, “Counterfeit integrated
circuits: Detection, avoidance, and the challenges ahead”, Journal of Electronic
Testing 30.1 (2014), pp. 9–23 (cited on pp. 18, 20).

[GMP07] Tim Guneysu, Bodo Moller and Christof Paar, “Dynamic intellectual property pro-
tection for recon�gurable devices”, International Conference on Field-Programmable
Technology, Kitakyushu, Japan, Dec. 2007, pp. 169–176 (cited on p. 54).

[Guo+11] Jian Guo, Thomas Peyrin, Axel Poschmann and Matthew J. B. Robshaw, “The LED
Block Cipher”, International Workshop on Cryptographic Hardware and Embedded
Systems, Nara, Japan, Sept. 2011, pp. 326–341 (cited on p. 141).

[GZ97] Rajesh K. Gupta and Yervant Zorian, “Introducing Core-Based System Design”,
IEEE Design & Test of Computers 14.4 (1997), pp. 15–25 (cited on pp. 2, 8).

[Hac03] Gaël Hachez, “A Comparative Study of Software Protection Tools Suited for E-
Commerce with Contributions to Software Watermarking and Smart Cards”, PhD
thesis, Université Catholique de Louvain, Mar. 2003 (cited on pp. 41, 46).

171

BIBLIOGRAPHY

[Her+12] Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel Peeters, Ahmad-
Reza Sadeghi, Ingrid Verbauwhede and Christian Wachsmann, “Reverse Fuzzy
Extractors: Enabling Lightweight Mutual Authentication for PUF-Enabled RFIDs”,
International Conference on Financial Cryptography and Data Security, Kralendijk,
Bonaire, Feb. 2012, pp. 374–389 (cited on pp. 38, 39, 111).

[Hil+13] Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero, Jonathan Tse and
Rajit Manohar, “A split-foundry asynchronous FPGA”, CICC, 2013, pp. 1–4 (cited
on p. 45).

[Hil+15] Matthias Hiller, Ludwig Kurzinger, Georg Sigl, Sven Müelich, Sven Puchinger
and Martin Bossert, “Low-Area Reed Decoding in a Generalized Concatenated
Code Construction for PUFs”, IEEE Computer Society Annual Symposium on VLSI,
Montpellier, France, July 2015, pp. 143–148 (cited on pp. 38, 39, 131).

[Hil+12] Matthias Hiller, Dominik Merli, Frederic Stumpf and Georg Sigl, “Complementary
IBS: Application speci�c error correction for PUFs”, IEEE International Symposium
on Hardware-Oriented Security and Trust, San Francisco, CA, USA, June 2012, pp. 1–
6 (cited on pp. 38, 39, 126).

[HYP15] Matthias Hiller, Meng-Day Yu and Michael Pehl, “Systematic Low Leakage Coding
for Physical Unclonable Functions”, ACM Symposium on Information, Computer
and Communications Security, Singapore, Apr. 2015, pp. 155–166 (cited on p. 38).

[HYS16] Matthias Hiller, Meng-Day Yu and Georg Sigl, “Cherry-Picking Reliable PUF Bits
With Di�erential Sequence Coding”, IEEE Trans. Information Forensics and Security
11.9 (2016), pp. 2065–2076 (cited on pp. 38, 39, 126, 131).

[Hod11] David A. Hodges, “Building the Fabless/Foundry Business Model”, IEEE Solid-State
Circuits Magazine 3.4 (2011), pp. 7–44 (cited on pp. 2, 8).

[HL08] J. Huang and J. Lach, “IC Activation and User Authentication for Security-Sensitive
Systems”, IEEE International Workshop on Hardware-Oriented Security and Trust,
Anaheim CA, USA, June 2008, pp. 76–80 (cited on pp. 52, 55, 56).

[Huf+08] Ted Hu�mire, Jonathan Valamehr, Timothy Sherwood, Ryan Kastner, Timothy
Levin, Thuy D Nguyen and Cynthia Irvine, “Trustworthy system security through
3-D integrated hardware”, IEEE International Workshop on Hardware-Oriented
Security and Trust, Anaheim CA, USA, June 2008, pp. 91–92 (cited on p. 40).

[Ime+13] Frank Imeson, Ariq Emtenan, Siddharth Garg and Mahesh V Tripunitara, “Secur-
ing Computer Hardware Using 3D Integrated Circuit (IC) Technology and Split
Manufacturing for Obfuscation”, USENIX Security Symposium, Washington DC,
USA, Aug. 2013, pp. 495–510 (cited on p. 40).

[Int17] Intel, Avalon® Interface Speci�cations, tech. rep., 2017 (cited on p. 51).

[Jai+03] Adarsh K Jain, Lin Yuan, Pushkin R Pari and Gang Qu, “Zero overhead watermark-
ing technique for FPGA designs”, 13th Great Lakes symposium on VLSI, Washington
DC, USA, Apr. 2003, pp. 147–152 (cited on p. 28).

[Kah+01] Andrew B. Kahng, John Lach, William H. Mangione-Smith, Stefanus Mantik, Igor
L. Markov, Miodrag Potkonjak, Paul Tucker, Huijuan Wang and Gregory Wolfe,
“Constraint-based watermarking techniques for design IP protection”, IEEE Trans.
on CAD of Integrated Circuits and Systems 20.10 (2001), pp. 1236–1252 (cited on
p. 27).

172

BIBLIOGRAPHY

[Kea02] T. Kean, “Cryptographic Rights Management of FPGA Intellectual Property Cores”,
ACM/SIGDA 10th International Symposium on Field-programmable gate arrays,
Monterey CA, USA, Feb. 2002, pp. 113–118 (cited on p. 52).

[KL16] Filip Kodýtek and Róbert Lórencz, “Proposal and Properties of Ring Oscillator-
Based PUF on FPGA”, Journal of Circuits, Systems, and Computers 25.3 (2016) (cited
on p. 34).

[Kou11] F. Koushanfar, “Integrated Circuits Metering for Piracy Protection and Digital
Rights Management: An Overview”, Great Lakes Symposium on VLSI, Lausanne,
Switzerland., May 2011, pp. 449–454 (cited on p. 22).

[Kou12] F. Koushanfar, “Provably Secure Active IC Metering Techniques for Piracy Avoid-
ance and Digital Rights Management”, IEEE Transactions on Information Forensics
and Security 7.1 (2012), pp. 51–63 (cited on pp. 50, 55, 56).

[Kra94] Hugo Krawczyk, “LFSR-based Hashing and Authentication”, Annual International
Cryptology Conference, vol. 839, Santa Barbara, California, USA, Aug. 1994, pp. 129–
139 (cited on p. 135).

[LB12] Bertrand Le Gal and Lilian Bossuet, “Automatic low-cost IP watermarking tech-
nique based on output mark insertions”, Design Automation for Embedded Systems
16.2 (2012), pp. 71–92 (cited on p. 29).

[LT15] Yu-Wei Lee and Nur A. Touba, “Improving logic obfuscation via logic cone ana-
lysis”, 16th Latin-American Test Symposium, Puerto Vallarta, Mexico, Mar. 2015,
pp. 1–6 (cited on p. 46).

[LPS12] Vincent van der Leest, Bart Preneel and Erik van der Sluis, “Soft Decision Error
Correction for Compact Memory-Based PUFs Using a Single Enrollment”, Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, vol. 7428,
Leuven, Belgium, Sept. 2012, pp. 268–282 (cited on p. 38).

[Lew+12] Matthew Lewandowski, Richard Meana, Matthew Morrison and Srinivas Katkoori,
“A novel method for watermarking sequential circuits”, IEEE International Sym-
posium on Hardware-Oriented Security and Trust, San Francisco, CA, USA, June
2012, pp. 21–24 (cited on p. 29).

[Li+16] Meng Li, Kaveh Shamsi, Travis Meade, Zheng Zhao, Bei Yu, Yier Jin and David
Z. Pan, “Provably secure camou�aging strategy for IC protection”, International
Conference on Computer-Aided Design, Austin, TX, USA, Nov. 2016, p. 28 (cited on
p. 106).

[Mae+09] R. Maes, D. Schellekens, P. Tuyls and I. Verbauwhede, “Analysis and Design of
Active IC Metering Schemes”, IEEE International Workshop on Hardware-Oriented
Security and Trust, San Francisco CA, USA, July 2009, pp. 74–81 (cited on p. 135).

[MSV12] R. Maes, D. Schellekens and I. Verbauwhede, “A Pay-per-Use Licensing Scheme
for Hardware IP Cores in Recent SRAM-Based FPGAs”, IEEE Transactions on
Information Forensics and Security 7.1 (2012), pp. 98–108 (cited on pp. 45, 52, 54).

[Mae13] Roel Maes, “An Accurate Probabilistic Reliability Model for Silicon PUFs”, Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, vol. 8086,
Santa Barbara, CA, USA, Aug. 2013, pp. 73–89 (cited on p. 132).

173

BIBLIOGRAPHY

[MHV12] Roel Maes, Anthony Van Herrewege and Ingrid Verbauwhede, “PUFKY: A Fully
Functional PUF-Based Cryptographic Key Generator”, International Workshop on
Cryptographic Hardware and Embedded Systems, vol. 7428, Leuven, Belgium, Sept.
2012, pp. 302–319 (cited on pp. 38, 39, 131, 135).

[Mae+12] Roel Maes, Vladimir Rozic, Ingrid Verbauwhede, Patrick Koeberl, Erik van der Sluis
and Vincent van der Leest, “Experimental evaluation of Physically Unclonable
Functions in 65 nm CMOS”, European Solid-State Circuit Conference, Bordeaux,
France, Sept. 2012, pp. 486–489 (cited on p. 121).

[MTV09a] Roel Maes, Pim Tuyls and Ingrid Verbauwhede, “A soft decision helper data
algorithm for SRAM PUFs”, IEEE International Symposium on Information Theory,
Seoul, Korea, June 2009, pp. 2101–2105 (cited on pp. 38, 121).

[MTV09b] Roel Maes, Pim Tuyls and Ingrid Verbauwhede, “Low-Overhead Implementation
of a Soft Decision Helper Data Algorithm for SRAM PUFs”, International Workshop
on Cryptographic Hardware and Embedded Systems, Lausanne, Switzerland, Sept.
2009, pp. 332–347 (cited on pp. 38, 39, 126, 131).

[Mai+10] Abhranil Maiti, Je� Casarona, Luke McHale and Patrick Schaumont, “A large scale
characterization of RO-PUF”, IEEE International Symposium on Hardware-Oriented
Security and Trust, Anaheim CA, USA, June 2010, pp. 94–99 (cited on pp. 34, 39,
121).

[MGS13] Abhranil Maiti, Vikash Gunreddy and Patrick Schaumont, “A Systematic Method
to Evaluate and Compare the Performance of Physical Unclonable Functions”,
IACR Cryptology ePrint Archive (2013), pp. 245–267 (cited on p. 32).

[Mal+15] Shweta Malik, Georg T. Becker, Christof Paar and Wayne P. Burleson, “Devel-
opment of a Layout-Level Hardware Obfuscation Tool”, IEEE Computer Society
Annual Symposium on VLSI, Montpellier, France, July 2015, pp. 204–209 (cited on
pp. 41, 42).

[Mar16] Cédric Marchand, “Conception de matériel salutaire pour lutter contre la contre-
façon et le vol de circuits intégrés”, PhD thesis, Université Jean Monnet, 24th Nov.
2016 (cited on pp. 4, 5, 11, 12, 141).

[MBC16] Cédric Marchand, Lilian Bossuet and Abdelkarim Cherkaoui, “Enhanced TERO-
PUF Implementations and Characterization on FPGAs”, International Symposium
on Field-Programmable Gate Arrays, Monterey, CA, USA, Feb. 2016, p. 282 (cited
on pp. 36, 39, 121, 132).

[MBG17] Cédric Marchand, Lilian Bossuet and Kris Gaj, “Area-oriented comparison of
lightweight block ciphers implemented in hardware for the activation mechanism
in the anti-counterfeiting schemes”, International Journal of Circuit Theory and
Applications 45.2 (2017), CTA-16-0095.R3, pp. 274–291 (cited on p. 141).

[MKM08] C. Marsh, T. Kean and D. McLaren, “Protecting Designs with a Passive Thermal
Tag”, 15th IEEE International Conference on Electronics, Circuits and Systems, St.
Julians, Malta, Aug. 2008, pp. 218–221 (cited on p. 28).

[Mar+15] Jesus Martinez-Mateo, Christoph Pacher, Momtchil Peev, Alex Ciurana and Vi-
cente Martin, “Demystifying the Information Reconciliation Protocol CASCADE”,
Quantum Information & Computation 15.5&6 (2015), pp. 453–477 (cited on pp. 117,
119, 120).

174

BIBLIOGRAPHY

[MN08] G. Masalskis and R. Navickas, “Reverse Engineering of CMOS Integrated Circuits”,
Elektronika ir Elektrotechnika - Electronics and Electrical Engineering 8.88 (2008),
pp. 28–31 (cited on p. 19).

[McD+16] Je�rey Todd McDonald, Yong C. Kim, Todd R. Andel, Miles A. Forbes and James
McVicar, “Functional polymorphism for intellectual property protection”, IEEE
International Symposium on Hardware Oriented Security and Trust, McLean, VA,
USA, May 2016, pp. 61–66 (cited on pp. 41, 42).

[McL11] I. McLoughlin, “Reverse engineering of embedded consumer electronic systems”,
IEEE 15th International Symposium on Consumer Electronics, Singapore, Singapore,
June 2011, pp. 352–356 (cited on p. 19).

[Mey+11] Uwe Meyer-Bäse, Encarni Castillo, Guillermo Botella, L. Parrilla and Antonio
García, Intellectual property protection (IPP) using obfuscation in C, VHDL, and
Verilog coding, 2011 (cited on p. 44).

[Mic17a] Microsemi, Antifuse FPGAs, 2017, url: https://www.microsemi.com/products/ fpga-
soc/antifuse-fpgas (cited on p. 30).

[Mic17b] Microsemi, UG0533 User Guide Libero SoC Secure IP Flow, tech. rep., 2017 (cited on
p. 55).

[Moo65] Gordon E. Moore, “Cramming more components onto integrated circuits”, Elec-
tronics 38.8 (1965), pp. 114–117 (cited on pp. 1, 7).

[Moo75] Gordon E. Moore, “Progress in Digital Integrated Electronics”, Technical Digest of
International Electron Devices Meeting, 1975, pp. 11–13 (cited on pp. 1, 7).

[Mor+11] Amir Moradi, Alessandro Barenghi, Timo Kasper and Christof Paar, “On the vul-
nerability of FPGA bitstream encryption against power analysis attacks: extracting
keys from xilinx Virtex-II FPGAs”, Conference on Computer and Communications
Security, Chicago, Illinois, USA, Oct. 2011, pp. 111–124 (cited on p. 45).

[Mor+13] Amir Moradi, David Oswald, Christof Paar and Pawel Swierczynski, “Side-channel
attacks on the bitstream encryption mechanism of Altera Stratix II: facilitating
black-box analysis using software reverse-engineering”, International Symposium
on Field Programmable Gate Arrays3, Monterey, CA, USA, Feb. 2013, pp. 91–100
(cited on p. 45).

[MS16] Amir Moradi and Tobias Schneider, “Improved Side-Channel Analysis Attacks
on Xilinx Bitstream Encryption of 5, 6, and 7 Series”, International Workshop on
Constructive Side-Channel Analysis and Secure Design, vol. 9689, Graz, Austria, Apr.
2016, pp. 71–87 (cited on p. 45).

[New05] M. E. J. Newman, “A measure of betweenness centrality based on random walks”,
Social Networks 27.1 (2005), pp. 39–54 (cited on pp. 93, 94).

[Ng14] Ruth Li-Yung Ng, “A Probabilistic Analysis of CASCADE”, International conference
on quantum cryptography, 2014 (cited on p. 119).

[NR08] Jean-Baptiste Note and Éric Rannaud, “From the bitstream to the netlist”, Interna-
tional Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, Feb.
2008, p. 264 (cited on pp. 19, 45).

[OM95] Kevin O’Brien and Serge Maginot, “KRYPTON: Portable, Non-Reversible Encryp-
tion for VHDL”, Model Generation in Electronic Design, Boston, MA, 1995, pp. 127–
151 (cited on p. 44).

175

https://www.microsemi.com/products/fpga-soc/antifuse-fpgas
https://www.microsemi.com/products/fpga-soc/antifuse-fpgas

BIBLIOGRAPHY

[Oli01] Arlindo L Oliveira, “Techniques for the creation of digital watermarks in sequential
circuit designs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 20.9 (2001), pp. 1101–1117 (cited on p. 29).

[Ope10] Opencores,Wishbone B4 : Wishbone System-on-Chip (SoC) Interconnection Archi-
tecture for Portable IP Cores, tech. rep., 2010 (cited on p. 51).

[PP09] Christof Paar and Jan Pelzl, Understanding Cryptography, Springer, 2009 (cited on
pp. 141, 142).

[Pac+15] Christoph Pacher, Philipp Grabenweger, Jesus Martinez-Mateo and Vicente Mar-
tin, “An information reconciliation protocol for secret-key agreement with small
leakage”, IEEE International Symposium on Information Theory, Hong Kong, Hong
Kong, June 2015, pp. 730–734 (cited on pp. 119, 120).

[Par+10] James D. Parham, J. ToddMcDonald, Yong C. Kim andMichael R. Grimaila, “Hiding
Circuit Components Using Boundary Blurring Techniques”, IEEE Annual Sym-
posium on VLSI, 2010 (cited on p. 44).

[Par+09] L. Parrilla, E. Castillo, A. García, E. Todorovich, D. González and A. Lloris, “Intel-
lectual Property Protection of �P cores”, Design of Circuits and Integrated Systems,
Saragossa, Spain, Nov. 2009 (cited on p. 51).

[PVK16] Vinay C. Patil, Arunkumar Vijayakumar and Sandip Kundu, “On meta-obfuscation
of physical layouts to conceal design characteristics”, IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Storrs, CT, USA,
Sept. 2016, pp. 147–152 (cited on p. 44).

[Pie12] Krzysztof Pietrzak, “Cryptography from Learning Parity with Noise”, 38th Con-
ference on Current Trends in Theory and Practice of Computer Science, Špindlerův
Mlýn, Czech Republic, Jan. 2012, pp. 99–114 (cited on p. 133).

[PM14] Stephen M. Plaza and Igor L. Markov, “Protecting Integrated Circuits from Piracy
with Test-aware Logic Locking”, International Conference on Computer Aided
Design, San Jose, CA, USA, Nov. 2014 (cited on pp. 75, 80, 86).

[PM15] Stephen M. Plaza and Igor L. Markov, “Solving the Third-Shift Problem in IC
Piracy With Test-Aware Logic Locking”, IEEE Trans. on CAD of Integrated Circuits
and Systems 34.6 (2015), pp. 961–971 (cited on p. 106).

[Qua+16] Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina Shah-
bazmohamadi, Lei Wang, John Chandy and Mark Tehranipoor, “A Survey on Chip
to System Reverse Engineering”, JETC 13.1 (2016), 6:1–6:34 (cited on pp. 19, 20).

[Raj+12a] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu and Ramesh Karri, “Logic
encryption: A fault analysis perspective”, Design, Automation & Test in Europe
Conference, Dresden, Germany, Mar. 2012, pp. 953–958 (cited on pp. 47, 48, 85–87).

[Raj+12b] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu and Ramesh Karri, “Se-
curity analysis of logic obfuscation”, Annual Design Automation Conference, San
Francisco CA, USA, June 2012, pp. 83–89 (cited on pp. 48, 49, 106).

[Raj+13] Jeyavijayan Rajendran, Michael Sam, Ozgur Sinanoglu and Ramesh Karri, “Security
analysis of integrated circuit camou�aging”, ACM Conference on Computer &
communications security, Berlin, Germany, Nov. 2013, pp. 709–720 (cited on pp. 41,
47–49, 85).

176

BIBLIOGRAPHY

[RSK13] Jeyavijayan Rajendran, Ozgur Sinanoglu and Ramesh Karri, “Is split manufacturing
secure?”, Design, Automation and Test in Europe, Grenoble, France, Mar. 2013,
pp. 1259–1264 (cited on p. 40).

[Raj+15] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang, Garrett S. Rose, Youngok Pino,
Ozgur Sinanoglu and Ramesh Karri, “Fault Analysis-Based Logic Encryption”,
IEEE Transactions on Computers 64.2 (2015), pp. 410–424 (cited on pp. 46, 48, 49,
72, 74, 83–85, 98, 102, 104).

[RKM08a] J. A. Roy, F. Koushanfar and I. Markov, “EPIC: Ending Piracy of Integrated Circuits”,
Design, Automation and Test in Europe, 2008, pp. 1069–1074 (cited on pp. 46–49,
51, 52, 83–87, 98, 155, 159).

[RKM08b] J. A. Roy, F. Koushanfar and I. Markov, “Protecting Bus-based Hardware IP by
Secret Sharing”, 45th Design Automation Conference, Anaheim CA, USA, June 2008,
pp. 846–851 (cited on p. 51).

[RKM10] J. A. Roy, F. Koushanfar and I. Markov, “Ending Piracy of Integrated Circuits”,
Computer 43.10 (2010), pp. 30–38 (cited on pp. 46, 47, 85).

[Rüh+10] Ulrich Rührmair, Frank Sehnke, Jan Sölter, Gideon Dror, Srinivas Devadas and
Jürgen Schmidhuber, “Modeling attacks on physical unclonable functions”, ACM
Conference on Computer and Communications Security, Chicago, IL, USA, Oct. 2010,
pp. 237–249 (cited on p. 32).

[Sab66] Gert Sabidussi, “The centrality index of a graph”, Psychometrika 31.4 (1966),
pp. 581–603 (cited on p. 92).

[SZT08] Moritz Schmid, Daniel Ziener and Jürgen Teich, “Netlist-level IP protection by wa-
termarking for LUT-based FPGAs”, International Conference on Field-Programmable
Technology, Taipei, Taiwan, Dec. 2008, pp. 209–216 (cited on p. 28).

[SNK13] Sean Seet, Ruth Li-Yung Ng and Khoongming Khoo, “An Accurate Analysis of the
BINARY Information Reconciliation Protocol by Generating Functions”, Interna-
tional Conference on Quantum Cryptography, Waterloo, Canada, Aug. 2013 (cited
on p. 117).

[SEM06] SEMI, Intellectual Property (IP) Challenges and Concerns of the Semiconductor Equip-
ment and Materials Industry, tech. rep., SEMI, 2006 (cited on p. 18).

[SHF14] Mitsuru Shiozaki, Ryohei Hori and Takeshi Fujino, “Di�usion Programmable
Device : The device to prevent reverse engineering”, IACR Cryptology ePrint
Archive 2014 (2014), p. 109 (cited on p. 41).

[SS06] E. Simpson and P. Schaumont, “O�ine Hardware/Software Authentication for
Recon�gurable Platforms”, International Workshop on Cryptographic Hardware
and Embedded Systems, Yokohama, Japan, Oct. 2006 (cited on p. 52).

[Sko05] Sergei P. Skorobogatov, Semi-invasive attacks - A new approach to hardware security
analysis, tech. rep., University of Cambridge, Apr. 2005 (cited on p. 30).

[Smi+17] Jessica Smith, Kiri Oler, Carl Miller and David Manz, “Reverse Engineering Integ-
rated Circuits Using Finite State Machine Analysis”, Hawaii International Confer-
ence on System Sciences, Koloa, HI, USA, Jan. 2017 (cited on p. 19).

[Soc14] IEEE Computer Society, ed., IEEE Recommended Practice for Encryption and Man-
agement of Electronic Design Intellectual Property (IP), 2014 (cited on p. 55).

177

BIBLIOGRAPHY

[SZ89] Karen Stephenson and Marvin Zelen, “Rethinking centrality: Methods and ex-
amples”, Social Networks 11.1 (1989), pp. 1–37 (cited on pp. 93, 95).

[SRM15] Pramod Subramanyan, Sayak Ray and Sharad Malik, “Evaluating the security of
logic encryption algorithms”, IEEE International Symposium on Hardware Oriented
Security and Trust, Washington, DC, USA, May 2015, pp. 137–143 (cited on pp. 80,
106).

[SD07] G. Edward Suh and Srinivas Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation”, Design Automation Conference, San
Diego, CA, USA, June 2007, pp. 9–14 (cited on pp. 34, 38).

[TJ11] Randy Torrance and Dick James, “The state-of-the-art in semiconductor reverse
engineering”, Proceedings of the Design Automation Conference, DAC 2011, San
Diego, California, USA, June 5-10, 2011, 2011, pp. 333–338 (cited on pp. 19, 22, 27).

[Tuz+12] Nicholas Tuzzio, Kan Xiao, Xuehui Zhang and Mohammad Tehranipoor, “A zero-
overhead IC identi�cation technique using clock sweeping and path delay ana-
lysis”, Great Lakes Symposium on VLSI, Salt Lake Cit, UT, USA, May 2012, pp. 95–98
(cited on p. 31).

[VDF13] Michal Varchola, Milos Drutarovský and Viktor Fischer, “New universal element
with integrated PUF and TRNG capability”, International Conference on Recon-
�gurable Computing and FPGAs, Cancun, Mexico, Dec. 2013, pp. 1–6 (cited on
p. 35).

[VMV13] Jo Vliegen, Nele Mentens and Ingrid Verbauwhede, “A Single-chip Solution for
the Secure Remote Con�guration of FPGAs using Bitstream Compression”, In-
ternational Conference on Recon�gurable Computing and FPGAs, Cancun, Mexico,
Dec. 2013 (cited on p. 45).

[WKP11] S. Wei, F. Koushanfar and M. Potkojnak, “Integrated Circuit Digital Rights Manage-
ment Techniques Using Physical Level Characterization”, Annual ACM workshop
on Digital rights management, Chicago, USA, Oct. 2011, pp. 3–14 (cited on p. 31).

[Wil15] Kyle Wilkinson, Using Encryption to Secure a 7 Series FPGA Bitstream, tech. rep.,
Xilinx, 2015 (cited on p. 45).

[Xia+16] Kan Xiao, Domenic Forte, Yier Jin, Ramesh Karri, Swarup Bhunia and Mohammad
Tehranipoor, “Hardware Trojans: Lessons Learned After One Decade of Research”,
ACM Transactions on Design Automation of Electronic Systems 22.1 (May 2016),
pp. 1–23 (cited on p. 20).

[XS16] Yang Xie and Ankur Srivastava, “Mitigating SAT Attack on Logic Locking”, In-
ternational Conference on Cryptographic Hardware and Embedded Systems, Santa
Barbara, CA, USA, Aug. 2016, pp. 127–146 (cited on p. 106).

[Xil13] Xilinx, Xilinx Plug-and-Play IP: Accelerating Productivity and Design Reuse, tech.
rep., 2013 (cited on p. 55).

[YI01] Akihiro Yamamura and Hirokazu Ishizuka, “Error Detection and Authentication
in Quantum Key Distribution”, Australasian Conference on Information Security
and Privacy, vol. 2119, Sydney, Australia, July 2001, pp. 260–273 (cited on p. 135).

[Yas+16a] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan J. V. Rajendran and Ozgur
Sinanoglu, “SARLock: SAT attack resistant logic locking”, IEEE International Sym-
posium on Hardware Oriented Security and Trust, McLean, VA, USA, May 2016,
pp. 236–241 (cited on p. 106).

178

BIBLIOGRAPHY

[Yas+17a] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu and Jeyavijayan
Rajendran, “Removal Attacks on Logic Locking and Camou�aging Techniques”,
IACR Cryptology ePrint Archive 2017 (2017), p. 348 (cited on p. 106).

[Yas+17b] Muhammad Yasin, Bodhisatwa Mazumdar, Ozgur Sinanoglu and Jeyavijayan Ra-
jendran, “Security analysis of Anti-SAT”, Asia and South Paci�c Design Automation
Conference, Chiba, Japan, Jan. 2017, pp. 342–347 (cited on p. 106).

[Yas+15] Muhammad Yasin, Jeyavijayan Rajendran, Ozgur Sinanoglu and Ramesh Karri,
“On Improving the Security of Logic Locking”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 35.9 (2015), pp. 1411–1424 (cited
on pp. 106, 141).

[Yas+16b] Muhammad Yasin, Samah Mohamed Saeed, Jeyavijayan Rajendran and Ozgur
Sinanoglu, “Activation of logic encrypted chips: Pre-test or post-test?”, Design,
Automation & Test in Europe Conference, Dresden, Germany, Mar. 2016, pp. 139–144
(cited on p. 153).

[Yas+17c] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrión Schäfer, Yiorgos Makris,
Ozgur Sinanoglu and Jeyavijayan Rajendran, “What to Lock?: Functional and
Parametric Locking”, Great Lakes Symposium on VLSI, Ban�, AB, Canada, May
2017, pp. 351–356 (cited on p. 106).

[Yen14] Bülent Yener, Hardware Reverse-engineering, Rensselaer Polytechnic Institute, 2014
(cited on p. 26).

[YD10] Meng-Day (Mandel) Yu and Srinivas Devadas, “Secure and Robust Error Correction
for Physical Unclonable Functions”, IEEE Design & Test of Computers 27.1 (2010),
pp. 48–65 (cited on p. 38).

[ZC12] Li Zhang and Chip-Hong Chang, “State encoding watermarking for �eld authen-
tication of sequential circuit intellectual property”, IEEE International Symposium
on Circuits and Systems, Seoul, South Korea, May 2012, pp. 3013–3016 (cited on
p. 29).

[ZT08] Daniel Ziener and Jürgen Teich, “Power Signature Watermarking of IP Cores for
FPGAs”, Journal of Signal Processing Systems 51.1 (2008), pp. 123–136 (cited on
p. 28).

179

BIBLIOGRAPHY

180

Appendices

181

Examples of graphs found in graph

analysis for combinational logic locking

Figure 16 depicts the resulting graph obtained after converting the c2670 benchmark netlist,

which comprises 1117 logic gates.

Figure 16 – Example of the c2670 benchmark, which comprises 1117 logic gates, converted into
a directed acyclic graph.

183

After processing the graph for combinational logic locking (see Chapter 2), the remaining

paths that can propagate a locking value are shown in Figure 18.

Figure 17 – Example of graph after analysis for combinational logic locking.

This graph shows a wide variety of connected components. Some examples are given in

Figure 18. The very large connected component depicted in Figure 18a comprises 75 vertices.

The node to modify for logic locking, in green, is six logic levels away from the two outputs it

locks. Conversely, the connected component shown in Figure 18b has only 3 vertices. This is

a �nal OR gate before the output, where none of its inputs could propagate a locking value.

In that case, the locking gate inserted locks only one output and is very close to it. The last

connected component shown in Figure 18c shows a connected component with �ve outputs.

Only one locking gate is necessary to lock them all, which is interesting from a logic resources

overhead perspective. However, the inserted locking gate is very close to the outputs it locks.

184

(a) Large connected component with a locking gate
inserted very far from the outputs.

(b) Small connected com-
ponent

(c) Locking gate span-
ning �ve outputs but
very close to them.

Figure 18 – Example of connected components found in the �nal graph after analysis for
combinational logic locking.

185

186

List of Figures

1 Semiconductor companies and their respective positions in the integrated circuit

design process. 3

2 Entreprises de la micro-électronique et leur position respective dans le processus

de conception d’un circuit intégré. 9

1.1 Design data transfer in the semiconductor IP business 17

1.2 Speci�c threats to design data in the semiconductor IP business. Trusted and

untrusted parties are from the IP designer point of view 21

1.3 Hierarchy of design data protection methods classi�ed according to their e�-

ciency at protecting design data. 25

1.4 Methods for identifying an IP core itself or the individual instances. 26

1.5 Di�erent types of mask ROM . 26

1.6 Examples of integrated circuits embedding an electrically erasable ROM that

can be erased by shining UV light through the quartz window 30

1.7 Basic protocol for IP authentication using a PUF 32

1.8 Arbiter PUF with challenge “011...1” applied, comparing the blue and red

path . 34

1.9 Ring oscillator cell and PUF. 35

1.10 Transient e�ect ring oscillator cell. 36

1.11 Typical initialisation pattern observed in an SRAM array 36

1.12 Front end of line and back end of line layers in the CMOS manufacturing process2. 40

1.13 Active layer of Syphermedia gates [Coc+14]. 41

1.14 Logic obfuscation of a boolean function . 42

1.14 Logic obfuscation of a boolean function. 43

1.15 An example of VHDL design �les obfuscation. 44

1.16 Original and masked nodes depending on the associated activation bit. 46

1.17 Boosted FSM . 50

1.18 Example of public-key cryptography usage in the EDA tool for a secure key

exchange and IP block transmission (adapted from [Gua+09]). 53

1.19 Example of the implication of a trusted third party (MA) in the transactions

between an FPGA vendor (FV), a system integrator (SYS) and two IP core

designers (CV) (from [MSV12]). 54

187

1.20 Overview of the IP protection module designed in the framework of the SAL-

WARE project . 58

2.1 Modi�cation of an output logic gate . 62

2.2 Two examples of logic functions and the inputs that can lock their output . . . 64

2.3 Propagation of a locking value through a sequence of nodes (in thick red) . . . 65

2.4 Conversion of a netlist to a directed acyclic graph 66

2.5 Deletion of the incoming edges of vertices that do not satisfy Vforced ∈ Vlocks and

removal of connected components that do not contain any output. 67

2.6 Di�erent types of connected components that are found in the �nal graph. The

node(s) select to be modi�ed for logic locking are highlighted in orange. 68

2.7 Vertices selected for logic locking. 69

2.8 Original and locked vertices depending on the associated activation bit 70

2.9 Locking vertices and edges added to the graph 70

2.10 Lockable version of the netlist . 70

2.11 Area overhead as the percentage of extra logic gates required to implement

logic locking . 72

2.12 Computation time required to process a netlist for logic locking and for fault

analysis-based logic masking . 72

2.13 Maximum logic locking of a netlist portion that can propagate a locking value 76

2.14 Minimum and maximum overhead values for logic locking strength tuning . . 76

2.15 Interleaving the AW bits to strengthen logic locking 77

2.16 OR locking gate (in dark grey) obfuscated by two extra gates (in light grey)

with logic values shown in red and blue depending on the value of the AW bit 79

3.1 Degree centrality values for the vertices of a random graph 91

3.2 Boolean function G5 = G1 ⋅ G2 ⋅ G3 ⋅ G4 synthesised using a 4-input AND gate

(a) or three 2-input AND gates (b). The resulting graphs (c) and (d) lead to

di�erent degree centrality values for the vertex G5. 91

3.3 Closeness centrality values for the vertices of a random graph 92

3.4 Betweenness centrality values for the vertices of a random graph 93

3.5 Current-�ow betweenness centrality computation on a graph and equivalent

electrical network . 94

3.6 Current-�ow betweenness centrality values for the vertices of a random graph 94

3.7 Current-�ow closeness centrality values for the vertices of a random graph . . 95

3.8 Em values obtained for several logic resources overhead 98

3.9 Computation time required for the centrality indicators considered for di�erent

benchmark sizes. 101

3.10 Trade-o� between masking e�ciency and computation time for di�erent node

selection heuristics at 5% logic resources overhead. 102

188

3.11 Graph for which selecting the vertices with the highest centrality does not alter

the outputs optimally . 104

4.1 Illustration of the similarities between key reconciliation and reliable shared

key generation from a PUF response . 111

4.2 CONFIRM applied on 16-bit blocks . 112

4.3 Spreading a burst of errors among multiple blocks 114

4.4 Example of executing the BINARY protocol on 16-bit responses with one error. 115

4.5 Example of executing the CASCADE protocol on 16-bit responses with �ve

errors. 118

4.6 Implementation of the parity computation module using one large multiplexer 122

4.7 Implementation of the parity computation module by making an existing shift

register circular . 123

4.8 Implementation of the parity computation module when the response is stored

in RAM . 124

4.9 Leakage values (in bits) obtained with di�erent error rates, initial block sizes

and number of passes. 125

4.10 Failure rate values obtained with di�erent error rates, initial block sizes and

number of passes. 127

4.11 Changes in the number of bits in the response at di�erent steps. 135

5.1 IP protection module . 137

5.2 Module de protection des données de conception 138

5.3 Part of the design �ow augmented for logic locking or logic masking 140

5.4 Position of the AW decoder . 142

5.5 TERO cell with 8 delay elements per branch (7 bu�ers and 1 NAND gate) . . . 145

5.6 BFSK transmitter from [BBF15] . 146

5.7 HECTOR motherboard . 147

5.8 HECTOR daughterboards . 147

5.9 Logic modi�er tab of the graphical user interface 149

5.10 HECTOR board management tab of the graphical user interface 150

5.11 Enrolment tab of the graphical user interface 150

5.12 Activation tab of the graphical user interface 150

5.13 Graphical user interface to the hardware multiplier with input 500×2 151

5.14 Graphical user interface to the hardware multiplier with input 25×4 151

5.15 Simpli�ed design �ow with steps implementing secure remote activation high-

lighted. 152

16 Example of the c2670 benchmark, which comprises 1117 logic gates, converted

into a directed acyclic graph. 183

189

17 Example of graph after analysis for combinational logic locking. 184

18 Example of connected components found in the �nal graph after analysis for

combinational logic locking. 185

190

List of Tables

1.1 Threats on design data. 24

1.2 Advantages and drawbacks of the considered PUF architectures 37

1.3 Sketch (SS) and recover (Rec) procedures for code-o�set and syndrome con-

structions of secure sketches. 38

1.4 Logic resources required by the presented error-correction schemes on FPGA. 39

1.5 Masking e�ciency opposed to computational complexity for existing nodes

selection heuristics. The symbol× means that the property is not ful�lled, the

symbol✔ means that the property is ful�lled. 49

1.6 Knowledge of the keys and encrypted data among parties (✔: known, ×:

unknown). 54

1.7 Association of solutions to achieve complete IP protection 56

1.8 Suitability of IP protection solutions at addressing di�erent threats 56

2.1 Controlling value of non-linear logic gates and the associated forced output value 62

2.2 Vforced and Vlocks values for the internal nodes of the netlist in Figure 2.4a . . . 67

2.3 Experimental results obtained when applying combinational logic locking on

ITC’99 benchmarks. 73

2.4 Logic resources required to implement a hardware point function for di�erent

input and output widths . 78

3.1 Contingency table of the binary variables y[i] and ymasked[i]. 86

3.2 Masking e�ciency evaluation by di�erent metrics. ✔ stands for the masking

e�ciency being evaluated as good by the metric. × stands for the masking

e�ciency being evaluated as bad by the metric. 87

3.3 Controllability values of the output of usual 1 and 2-input logic gates. Their

logic equation is of the form Y = F(A) if F is a unary boolean function or

Y = F(A, B) if F is a binary boolean function. 88

3.4 Observability values of the input(s) of usual 1 and 2-input logic gates. 89

3.5 Time complexity of centrality indicators . 97

3.6 Em values obtained with other selection heuristics at 5% logic resources overhead 98

3.7 Experimental results obtained when applying logic masking on ITC’99 and

EPFL benchmarks for di�erent centrality indicators. 99

191

3.7 Experimental results obtained when applying logic masking on ITC’99 and

EPFL benchmarks for di�erent centrality indicators. 100

3.8 Distance from the inserted logic masking gates to the inputs/outputs when

using di�erent centrality indicators . 103

4.1 Block sizes used for the �rst passes and after 120

4.2 Examples of parameters to achieve failure-rates of 10−4, 10−6 and 10−8 for di�er-
ent PUF architectures, aiming at keeping at least 128 bits secret. 121

4.3 Distribution of operations between device and server. 122

4.4 Leakage values (in bits) obtained with di�erent error rates, initial block sizes

and number of passes . 125

4.5 Order of magnitude of the failure rate values obtained with di�erent error rates,

initial block sizes and number of passes . 127

4.6 Logic resources required for three implementation options of the parity compu-

tation module and three response sizes. 128

4.7 Device-side execution time in clock cycles of di�erent codes with di�erent

constructions. 131

5.1 Logic resources required to implement a lightweight block cipher (from [Mar16;

MBG17]) . 141

5.2 AW decoder architectures . 143

5.3 Logic resources required to implement the AW decoder 144

5.4 Device-side implementation results for the whole design data protection module 148

192

