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C The set of complex numbers
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C(a, b) The space of continuous functions φ : [a, b] → Rn with the
norm ‖φ‖C = maxθ∈[a,b]|φ(θ)|

Cm(a, b) The space of m times continuous functions φ : [a, b] → Rn

with the norm ‖φ‖Cm =‖φ‖C + . . .+
∥∥∥dmφdθm

∥∥∥
C

Lp(a, b) The space of functions φ : [a, b]→ Rn with the norm

‖φ‖Lp = [
∫ b
a
|φ(θ)|pdθ]

1
p , p ∈ N

H1(0, l) The Sobolev space of absolutely continuous functions

φ : [0, l]→ Rn with dφ
dθ
∈ L2(0, l)
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λmax(P ) The maximum eigenvalue of a symmetric matrix P
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min Minimum
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Résumé en français

Les systèmes physiques en automatique et en théorie de commande sont sou-
vent régis par des systèmes d’équations algébriques, équations différentielles
ordinaires (ODE), et des équations aux dérivées partielles (EDP). Plusieurs
modèles mathématiques de systèmes physiques présentent des paramètres à
nature distribuée, c.à.d. des systèmes caractérisés par des variables d’état à
coordonnées multiples, la combinaison temps-espace est celle qu’on retrouve
le plus souvent. Les systèmes à paramètres distribués font référence à des
systèmes contenant des retards temporels ou des équations aux dérivées par-
tielles définies sur un espace à dimension infinie, d’où le terme systèmes à di-
mension infinie. Contrairement aux systèmes à dimension finie pour lesquels
une théorie générale est établie pour l’étude de stabilité, observabilité et ro-
bustesse, le cas des systèmes à dimension infinie est beaucoup plus difficile
à cause de la complexité de leurs modèles mathématiques. De nombreuses
études ont été établies afin de résoudre quelques problèmes concernant ce
type de systèmes [26, 34, 15]. Dans ce travail, on s’intéresse à quelques
classes de systèmes à retard et à un type d’équations aux dérivées partielles.

Le retard temporel est un phénomène naturel qu’on retrouve dans la
plupart des systèmes physiques et dans les applications d’ingénierie. Voici
quelques exemples où on retrouve ce phénomène:

• Systèmes de commande en réseau,

• Procédés chimiques

• Systèmes de forage.

Plusieurs autres exemples peuvent être retrouvés dans les livres [17, 33,
38]. Rajoutons à cela que les composants de commandes tels que les cap-
teurs et les actionneurs peuvent aussi introduire un retard en plus dans les
systèmes de commande. Quand les retards sont relativement petits, ils peu-
vent être ignorés, cependant quand ce n’est pas le cas il a été bien établi que
la négligence de ces retards pourra engendrer l’instabilité de tout le système.
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Quelques notions de base à propos du retard doivent être rappelées. Pre-
mièrement, les systèmes à retard sont des systèmes à dimension infinie, cela
veut dire que l’état n’est pas un vecteur mais une fonction ou alors un vecteur
de fonctions. Un autre défi majeur réside dans l’analyse de stabilité des sys-
tèmes à retard à l’aide des fonctionnels de Krasovskii.Et ce, contrairement
au cas des systèmes ne contenant pas de retard où les fonctions de Lyapunov
sont utilisées.

L’autre sujet qui sera étudié dans ce travail est la notion d’équations
aux dérivées partielles. Une équation aux dérivées partielles est une équa-
tion différentielle qui contient des fonctions multi-variables inconnues et leurs
dérivées à un certain ordre. La différence entre une équation différentielle or-
dinaire et une équation aux dérivées partielles c’est qu’une ODE comprend
une fonction qui dépend d’une variable indépendante, contrairement à une
PDE où la fonction et ses dérivées dépendent de plusieurs variables indépen-
dantes. Cette différence fait que l’analyse des PDEs est beaucoup plus difficile
que celle des ODEs. Une PDE de la fonction multi-variable u(x1, x2, . . . , xn)
est une équation de la forme:

f(x1, x2, . . . , xn, u,
∂u

∂x1

,
∂2u

∂x1∂x1

, . . . , ,
∂2u

∂x1∂xn
, . . .) = 0

Des exemples d’équations aux dérivées partielles sont présentés : Le trans-
fert de chaleur dans une barre métallique peut être modélisé par une PDE
parabolique. Les vibrations le long d’une corde peuvent être modélisées par
une PDE hyperbolique du second ordre. Le mouvement des fluides visqueux
peut être modélisé par les Navier-Stokes équations.

Malgré leur complexité, les systèmes à retard peuvent être représentés
comme une cascade de 2 sous-systèmes, où le premier sous-système est le
système sans retard et le deuxième sous-système est une équation hyper-
bolique du premier ordre qui traduit le comportement du retard, cela veut
dire qu’un système à retard constant y(t) = z(t−D) peut être remplacé par
la PDE suivante:

∂u(x, t)

∂t
=
∂u(x, t)

∂x
, x ∈ [0, D],

z(t) = u(D, t), y(t) = u(0, t).

Ce système est un simple système de dimension infinie dans le monde com-
plexe des PDEs. Le sujet principal de cette étude est la conception d’observateurs
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pour différentes classes de systèmes. Les observateurs d’état sont d’une
grande importance en automatique à cause de leur utilité en matière d’estimation
des variables. La présence de retard rend le problème d’observation plus
complexe. Même si le retard est d’une nature distribuée, comme indiqué
précédemment, la conception d’observateurs en présence du retard a souvent
été traitée en utilisant des outils d’analyse de dimension finie, cela se traduit
par l’étude en ignorant le retard et ensuite modifier l’observateur pour que
la convergence exponentielle est préservée en présence de retard. L’approche
majeure est l’utilisation d’un ou plusieurs prédicteurs de la sortie ou de l’état
du système. Dans les cas complexes de systèmes non linéaires, le retard max-
imal admissible dépend du niveau de non linéarité qui est souvent de nature
Lipchitzienne. Ce résultat a été illustré à l’aide des observateurs à grand
gain où les prédicteurs utilisés ont été très utiles pour compenser l’effet du
retard jusqu’à une certaine limite. Afin d’étendre cette limite le principe
d’observateurs en chaine a été introduit dans [19], et a aussi été utilisé pour
quelques classes de systèmes non linéaires.

En parallèle avec la méthode de dimension finie citée dans le paragraphe
précèdent, la méthode de la transformation en backstepping de dimension
infinie a été développée pour les systèmes linéaires dans [32, 33]. Dans cette
approche, le retard est remplacé par une équation hyperbolique du premier
ordre et connectée en série avec l’équation différentielle qui décrit les dy-
namiques de dimension finie du système, ce qui mène à une représentation
en cascade ODE-PDE du système. Ainsi, le problème d’observation consiste
à établir un observateur qui fournira les estimations en ligne de l’état à di-
mension finie de la partie ODE et l’état de dimension infinie de la partie
PDE.

Le but de ce travail de recherche est la conception d’observateurs pour
différentes classes de systèmes non linéaires. Cette thèse est composée de
trois grands chapitres:

Chapitre 1: Conception d’observateurs échantillonnés pour une classe de
systèmes non linéaires triangulaires. Chapitre 2: Conception d’observateur
pour une classe de systèmes PDE-PDE. Chapitre3: Conception d’observateur
pour une classe de systèmes paraboliques non linéaires.

Dans le premier chapitre, on s’intéresse à la conception d’observateurs
échantillonnés pour des systèmes non linéaires triangulaires où la sortie échan-
tillonnée est affectée par un retard. Une autre difficulté majeure est con-
sidérée, il s’agit de la présence du signal de la sortie non retardée dans la
matrice d’état, ce signal est inaccessible à la mesure, ce qui rend l’utilisation
des observateurs existant dans la littérature inefficace. Dans la première
partie du chapitre, un nouvel observateur est conçu où les effets du retard
et de l’échantillonnage sont compensés à l’aide d’un prédicteur de la sortie.
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L’analyse de stabilité du système engendré par cet observateur est traitée
à l’aide d’une fonctionnelle Lyapunov-Krasovskii. Des conditions suffisantes
pour la convergence exponentielle sont établies en termes de valeurs maxi-
males du retard et de l’intervalle d’échantillonnage. Dans la seconde partie du
chapitre, le concept d’observateur en chaine est invoqué et une nouvelle forme
de l’observateur vu en première partie est présentée, où m sous observateurs
élémentaires sont interconnectés en série. Le concept d’observateur en chaine
fonctionne de la manière suivante: le premier sous observateur reçoit la sortie
échantillonnée, ensuit le jeme sous observateur élémentaire reçoit une donnée
virtuelle générée par le j − 1eme sous observateur. Chaque sous observateur
élémentaire compense l’effet d’une fraction du retard global du système, cela
permet d’obtenir des observations plus exactes de l’état du système pour
des valeurs plus grandes du retard. La nouvelle forme de l’observateur est
analysée à l’aide d’outils similaires à ceux utilisés en première partie. En
revanche, dans les conditions suffisantes on retrouve, en plus du terme de
retard et d’intervalle d’échantillonnage, la présence du nombre de sous obser-
vateurs utilisés. Des résultats de simulation sont présentés, afin de prouver
l’efficacité des observateurs proposés pour différentes valeurs du retard.

Dans le deuxième chapitre, le problème d’observation d’état pour des sys-
tèmes avec des sorties à retard est adressé, en considérant que le retard est
une équation aux dérivées partielles hyperboliques du premier ordre connecté
en série avec une équation différentielle ordinaire qui décrit les dynamiques
du système à dimension finie, ce qui mène à une structure en cascade ODE-
PDE. Le problème d’observation consiste à estimer l’état de dimension finie
de la partie ODE et l’état de dimension infinie de la PDE, en utilisant la
transformation en backstepping infinie. Afin d’obtenir un observateur dont
l’état converge vers l’état du système pour de grandes valeurs du retard, le
concept d’observateur en cascade est utilisé, dans cette approche on élabore
un observateur composé de m sous observateurs à grand gain connectés en
série. Des conditions suffisantes de la convergence exponentielle de l’état de
l’observateur vers l’état du système sont obtenues à l’aide d’une fonctionnelle
de Lyapunov bien définie. Des résultats de simulation sont présentés à la fin
du chapitre pour confirmer les résultats théoriques.

On s’intéresse à un autre type de système dans le troisième chapitre,
en effet une classe de systèmes paraboliques non linéaires est considérée où
des mesures sont prises à des points distincts de l’intervalle. Ce problème a
été traité dans le cas des petits retards dans [18], afin d’obtenir des résultats
satisfaisants dans le cas de retards plus grands le concept de la représentation
en cascade est invoqué. A l’aide d’une fonctionnelle Lyapunov-Krasovskii
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appropriée, des conditions suffisantes en termes de LMIs sont établies pour
que l’observateur en chaine fournisse des estimations qui convergent vers
l’état infini du système réel. Dans ces conditions, on retrouve la présence
d’un nombre minimal de sous observateurs élémentaires: plus le retard est
grand, plus on augmente le nombre de sous observateurs. Une extension vers
le cas échantillonné est présentée, la différence réside dans l’expression de la
sortie réelle du système, ce qui nécessite la modification de la fonctionnelle
Lyapunov-Krasovskii afin d’obtenir la stabilité du système d’erreur. Des
résultats de simulation sont présentés à la fin du chapitre pour confirmer
l’exactitude des résultats théoriques.
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General Introduction

The most widely used mathematical framework for control system studies
consists of systems of algebraic equations, ordinary differential equations
(ODE), and partial differential equations (PDE). Many systems from science
and engineering are of a distributed parameter nature, i.e. systems charac-
terized by state variables in two or more coordinates, time and space are the
most frequent combination of independent variables. Distributed parameter
systems (DPS) refer to systems whose dynamics involve time delay, partial
differential equations, or functional differential equations defined on infinite
dimensional spaces. Thus, they are called the infinite-dimensional systems
(IDS) [37, 48]. Unlike the finite dimensional systems (FDS) for which there
is a quite general control theoretical framework in the study of stability, ob-
servability and robustness [30], infinite dimensional systems are much more
complicated to deal with because of the mathematical complexities of these
models, studies have been conducted for this class of systems in [26, 34, 15].
In this work we focus on some classes of delayed systems and a type of partial
differential equation.

Time-delay (also called dead-time or aftereffect) is a natural phenomenon
in most physical systems and engineering applications. A short list of control
applications in which delays arise includes:

• network controlled systems,

• traffic systems,

• chemical process control,

• drilling systems.

Several other examples can be found in the books [17, 33, 38]. Besides, con-
trol components, sensors and actuators, may also introduce additional delay
in control systems. When these delays are relatively small, they can be safely
ignored, however when this is not the case it is well established that the neg-
ligence of time-delays in control design may cause the instability of control
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systems. ”This puts time-delay systems outside of the scope of standard
methods that are commonly used for systems that have no delays, and it
necessitates developing more reliable methods that can avoid the pitfalls of
using traditional controllers on more complicated time-delay systems” [28].
For this reason, an intensive research activity has been devoted to control
design for delayed systems, leading to thousands of papers and dozens of
books especially over the last 15 years, the most recent significant books and
surveys are [17, 33, 38, 39, 42, 50] see also the book [39] and references therein.

Some basic notions must be stated about time-delay. First, it should
be known that time-delay systems (TDS) are not finite dimensional systems
(FDS), but rather infinite dimensional systems (IDS), this means that the
state is not a vector but a function or a vector of functions. Another major
issue is that the stability analysis for time-delay systems is dealt with using
Krasovskii functionals in comparison with non-delayed systems where Lya-
punov functions are invoked.

Another important subject that will be dealt with during this work is
the notion of partial differential equation (PDE). A partial differential equa-
tion is a differential equation that contains unknown multivariable functions
and their partial derivatives up to a certain order. The main difference be-
tween the theory of PDEs and the theory of Ordinary Differential Equa-
tions (ODEs) is that an ODE involves a function (and its derivatives) of
only one independent variable, while in PDE we deal with a function and
its derivatives in several independent variables, this difference makes PDEs
much harder to solve than ODEs [10, 36, 23]. A PDE for the multivariable
function u(x1, x2, . . . , xn) is an equation of the form

f(x1, x2, . . . , xn, u,
∂u

∂x1

,
∂2u

∂x1∂x1

, . . . , ,
∂2u

∂x1∂xn
, . . .) = 0

Examples of partial differential equations are stated in the following:

• Heat flow in a rod is a system that can be represented by a parabolic
PDE.

• Simply supported beam can be modeled by a second order hyperbolic
PDE.

• The motion of viscous fluid substances is described by Navier–Stokes
equations.
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In spite of their complexity, delayed systems can be represented as a cascade
of 2 sub-systems, where the first sub-system is the un-delayed part of the
system and in the second part we let the delay be captured by a first order
hyperbolic (PDE), this means that any time delayed system y(t) = z(t−D)
can be replaced by

∂u(x, t)

∂t
=
∂u(x, t)

∂x
, x ∈ [0, D],

z(t) = u(D, t), y(t) = u(0, t).

This system is known to be a simple infinite dimensional model in the com-
plex world of PDEs.

The main focus in this study will be the design of observers for different
classes of delayed systems. State observer design is an important aspect of
system control in view of the fact that observers are very useful, not only
when sensing is not sufficient, but also when a better sensing reliability is
needed [16], and the presence of time-delay makes the problem of observer
design much more complex. Although time-delays are fundamentally of dis-
tributed parameter nature, observer design in presence of these elements has
often been dealt with using finite-dimensional design tools. Accordingly, one
starts with exponentially convergent state observers of ordinary differential
equations (ODEs) (not involving time-delay) and modifies them so that ex-
ponential convergence is preserved in the presence of time-delay. The main
approach is using one or several predictors of the output or the state. In the
more challenging case of nonlinear systems, the maximum admissible delay
(MAD) depends on the level of nonlinearity which, typically, is of globally
Lipschitz nature. Roughly, the larger the Lipschitz constant, the smaller the
MAD. This result has been illustrated using high-gain observers where the
involved predictors proved to be useful in compensating the delay effect up to
some upper limit. To get rid of this limitation, the concept of chain observer
has been introduced in [19], and was extended to other cases of nonlinear
systems [11, 6, 12, 25] and others.

In parallel with the above ”finite-dimensional” research activity, the ”in-
finite -dimensional” backstepping transformation design approach for linear
systems has been developed in [32, 33]. It consists in letting the output
sensor delay be captured through a first-order hyperbolic PDE connected in
series with the ODE that describes the system finite-dimensional dynamics,
leading to an ODE–PDE cascade representation of the system. Then, the
observation problem consists in designing an observer that provides online



estimates of both the (finite-dimensional) state of the ODE subsystem and
the (infinite-dimensional) state of the PDE sensor.

Outline of the thesis

The main interest of this thesis is the design of observers for different classes
of nonlinear systems. The present work is organized in three chapters:

• Chapter 1: Sampled-data observer design for a class of triangular de-
layed nonlinear systems,

• Chapter 2: Chain observer design for a class of ODE-PDE systems,

• Chapter 3: Chain observer design for a class of nonlinear parabolic
systems.

Chapter 1 focuses on a class of sampled nonlinear triangular systems
where the sampled output is affected by a delay. Another major difficulty
with the considered nonlinear systems is that the state matrix is dependent
on the ”undelayed output signal” which is not accessible to measurement,
making existing observers inapplicable. In the first part of this chapter, a
new observer is designed where the effects of time-delay and sampling are
compensated for using an output predictor. The analysis of the proposed
observer is treated using a suitable Lyapunov-Krasovskii functional, further
the small gain technique is invoked. Sufficient conditions for the observer to
be exponentially convergent are established in terms of the maximum time-
delay and sampling interval. In the second part, the chain observer concept
is presented, and a new extended form of the observer in part 1 is provided,
this allows accurate observation of the state of the system for larger values
of the delay. The new form of the observer is analysed using similar tools as
in the first part.

Chapter 2 provides another concept for the study of the observation of
triangular nonlinear systems, in this chapter, a new observer design method
is developed for nonlinear systems with large transport delays. The new ob-
server design is a generalization of the PDE-based backstepping-like observer
design approach. First developed for delayed linear systems, this approach
relies on a modelling of the output time-delay by a 1st order hyperbolic
equation, leading to an ODE–PDE representation of the system, and on
coordinate transformations of the innovative system. The major technical
challenge, that is faced in the generalization of the approach to nonlinear
systems, consists in making it applicable in the case of an arbitrarily large
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time-delay D. This issue is presently coped with by redesigning the cascade
chain observer method to fit ODE–PDE cascade systems. A new class of ob-
servers is thus obtained involving a set of cascaded high-gain state observers
and output predictors. The exponential stability of the observer is proved
using a set of Lyapunov functionals.

Chapter 3 investigates the problem of observation for a class of nonlin-
ear parabolic partial differential equations with delayed point measurements.
The designed observer is of a chain form, this allows an accurate observation
of the infinite dimensional state of the system for large delays. A Lyapunov-
Krasovskii method is used for the stability analysis of the resulting error
system, which is based on the application of Wirtinger’s and Halanay’s in-
equalities. Sufficient conditions for the exponential stabilization are derived
in terms of Linear Matrix Inequalities (LMIs). By solving these LMIs, up-
per bounds on the delay and the number of sub-observes used in the chain
that preserve the exponential stability are given. Later, sufficient conditions
are derived for the case of sampled outputs in terms of new linear matrix
inequalities. Solving these LMIs lead to the upper bounds on the delay, the
upper bounds on the sampling intervals and the number of sub-observes used
in the chain that preserve the exponential stability of the error dynamics.

Finally, this thesis is concluded with a summary of the work and directions
for future work.
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Chapter 1

Sampled-Data Observer Design
For a Class of Triangular
Delayed Nonlinear Systems

1.1 Introduction

The problem of designing sampled-output observers for continuous-time non-
linear systems is of prime importance in regard of the fact that nowadays con-
trol systems are implemented using digital means. This problem has been
investigated since the early nineties [8], but it has witnessed a notable re-
newed interest on recent years, e.g. [2], [12], [18] because of the evolution
of the digital field (sensors, actuators, computers,. . .). Just as for the time-
delay case, the main underlying idea in all proposed sampled-data observer
methods is to start the design with an exponentially convergent observer for
ODEs(without output sampling) and modify these observers so that expo-
nential convergence is preserved in presence of output measurement sampling.
In [18] the sampling effect has been accounted for by using a zero-order-hold
(ZOH) sampling of the output estimation error as innovation term in the ob-
server state equation. This approach has proved to work well when applied to
linear observable systems that are disturbed by a globally Lipschitz function
of the state vector. To enlarge the admissible maximum sampling interval,
the observer gain is let to be inter-sample exponentially decaying in [2] where
exponential convergence conditions are expressed in terms of LMIs involving
the sampling interval and other design parameters. The time-varying delay
effect caused by output sampling can also be compensated for by inserting
inter-sample output predictors. This idea has first been introduced and il-
lustrated for triangular Lipschitz systems in [12].
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1.2. CLASS OF SYSTEMS

The problem of dealing simultaneously with both time-delay and output-
sampling in observer design, has recently been investigated in [3], [4], [14].
The sampling and delay effects have been compensated for using inter-sample
output predictors and state predictors. It was shown that the insertion of
these predictors in any continuous-time observer, that is globally exponen-
tially stable and robust with respect to output measurement errors, yields to
an exponentially stable sampled-output observer.

In the first part of this chapter (from Section 1.2 to Section 1.4), sampling
and delay effects are compensated for using only output predictors. Since no
state predictors are involved, the new observer turns out to be much sim-
pler, compared to those proposed in previously discussed works. Using the
small gain method, sufficient conditions are established for the observer to be
exponentially convergent. The sufficient conditions particularly involve the
admissible maximum time-delay and sampling interval.

In the second part (Section 1.5), the previous system will be observed
in the case of larger delays, this time the observer is composed of m ele-
mentary observers connected in series. The observer interconnection is such
that the first elementary observer is directly driven by the output samples.
Then, the jth elementary observer is driven by a virtual output generated
by the (j − 1)th observer. Each elementary observer includes an output pre-
dictor which compensates for the effects of output sampling and a fraction
of the system time-delay. In turn, using the small gain method, sufficient
conditions are established for the observer to be exponentially convergent,
however, in this case the sufficient conditions particularly involve the num-
ber of sub-observers, next to the admissible maximum time-delay and the
sampling interval.

Simulation results will be presented in Section (1.6) in order to show
the effectiveness of the proposed observers for different values of delay. A
conclusion will end the chapter.

1.2 Class of Systems

The first class of systems under study is depicted by the following figure:
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1.2. CLASS OF SYSTEMS

Figure 1.1 – System to be observed

This system is described by the following model:

ẋ(t) = A(v(t), z(t))x(t) + b(v(t), x(t)) (1.1a)

z(t) = Cx(t) (1.1b)

y(t) = z(t− d) = Cx(t− d) (1.1c)

y(tk) = z(tk − d) = Cx(tk − d) (1.1d)

where x(t) ∈ Rnis the state vector; z(t) ∈ R and y(t) ∈ R are respectively
the undelayed and delayed outputs; v(t) ∈ Rm is a known external input; the
integer n and the delay d are respectively known integer and real.

The tk
′s (for k = 0, 1, . . .) denote the sampling instants. The set tk is any

partition of R+ i.e. an increasing sequence such that t0 = 0, tk → ∞ as
k →∞, and 0 < τ <∞ with τ = sup

0≤k≤∞
(tk − tk−1).

The raw vector C ∈ R1×n and the matrices A(v, z) ∈ Rn×n, b(v, x) ∈ Rn

are known and have the following triangular form:

A(v, z) =


0 a1(v, z) 0 ... 0

0 0 a2(v, z)
. . .

...
...

...
. . . . . . 0

0 0 . . . an−1(v, z)
0 0 . . . 0 0

 (1.2a)

b(v, x) =


b1(v, x1)

b2(v, x1, x2)
...

bn(v, x)

 (1.2b)

C =
[
1 0 . . . 0

]
(1.2c)

where a(v, z) ∈ R and bi(v, x1, ..., xi) ∈ R are known functions.
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1.2. CLASS OF SYSTEMS

The observation problem will be dealt with in the next Section under the
following assumptions:

A1. The functions ai(v, z) are class C0 with respect to v and C1 with respect
to z, while the functions bi(v, x1, ..., xi) are globally Lipschitz .

A2. All system signals (v, x, y, z) are bounded and an upper bound yM on
the output amplitude |y(t)| is known.

A3. The pair (A(v, z), C) is uniformly observable i.e.∣∣ det(O(v, z))
∣∣ ≥ ε0 > 0, (1.3)

∀v ∈ Rm,∀z ∈ R for some (unknown) real constant ε0, where O(v, z)
denotes the n× n matrix,

O(v, z) =


C

CA(v, z)
...

CAn−1(v, z)

 (1.4)

A4. There is a real constant 0 < lΓ <∞, such that:

sup
v∈Rm,|z|≤yM

|Γ̇(v, z)Γ−1(v, z)| ≤ lΓ (1.5)

where Γ(v, z) ∈ Rn×n is defined as follows:

Γ(v, z) =


1 0 . . . 0

0 a1
. . .

...
...

. . .
. . . 0

0 . . . 0
n−1∏
i=1

ai

 ∈ Rn×n (1.6)

The aim of this study is to design an observer providing online
estimates x̂(t) of the state vector x(t) such that the estimation
error x̂(t) − x(t) converges exponentially to the origin using only
the external input v(t) ∈ Rm and the delayed output samples
y(tk) = z(tk − d) = Cx(tk − d) for k = 0, 1, . . .
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1.2. CLASS OF SYSTEMS

Remark 1.

a) The complexity of this problem lies in:

• The presence of both delay and sampling effects

• The complexity of the model involving the signal z(t) (which is not
accessible to measurements due to output delay) in the state matrix
A(v, z). This makes the first term on the right side of (1.1a) subject to
a double uncertainty induced by the state vector x(t) and the undelayed
output signal z(t).

It turns out that the existing sampled-data observers are inappropriate for
system (1.1a-1.1d).

b) In view of assumption A1, it follows from A2 that the functions
ai(v, z)(i = 1 . . . n) are also Lipschitz in z on the compact set |z(t)| ≤ yM .
Since the input signal v(t) is bounded, there exists a real constant la such that,
for i = 1 . . . n and all real numbers z1, z2 : |ai(v, z1)− ai(v, z2)| ≤ la|z1 − z2|,
where la is only dependent on the functions ai(., .) a and the supremum of
|v(t)|.

c) Similarly, it readily follows from A2 that, there exists a Lipschitz con-
stant lb such that, for z1, z2 : |b(v, z1)− b(v, z2)| ≤ lb|z1 − z2|, for some some
constant lb that is only dependent on b(., .) and on the supremum of |v(t)|.
In this respect, let us note that instead of the globally Lipschitz assumption
on b(., .), one could alternately assume this function to be C1 in x. Since
the state vector trajectory x(t) lies in a known compact domain, say Dx (by
assumption A1), one would conclude that b(.) is Lipschitz on Dx. Then, the
state estimation problem could be solved by replacing b(v(t), x̂(t)) , in the
observer described in Section 1.3, by b(v(t), P (x̂(t))) where P (.) denotes the
orthogonal projection on the domain Dx. This alternative has been illus-
trated (in the absence of output sampling and time-delay) in [46].

d)Assumption A3 is also usual in observer design literature. Presently,
that assumption amounts to assuming that, ∀i, inf

|z|≤yM
|ai(v, z)| ≥ εa > 0,

v ∈ Rm for some real constant εa > 0.

e) Assumption A4 is a technical condition induced by the fact that the
state matrix A(v, z)is presently signal dependent. A similar assumption was
required in the non-delayed non-sampled case dealt with in [43].
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1.3. PROPOSED OBSERVER

f) The class of systems defined by (1.1a)-(1.1d) is much wider than those
in most existing works on sampled- and/or delayed-output based observer
design, see e.g. [41], [27], [1], [2], [3], [12]. Indeed, in those works the state
matrix A(v, z) is either constant or only dependent on the input signal v.
The fact that z is presently inaccessible to measurements entails an extra
difficulty.

1.3 Proposed Observer

Since no existing sampled-output observer is applicable to system (1.1a)-
(1.1d), a new observer will now be constructed. To this end, some rele-
vant expressions are immediately established from the problem formulation
of Section 1.2. In this respect, the following saturation operator, suggested
by assumption A1, will be used in the observer:

σ(ξ) = sgn(ξ)min(yM , |ξ|) (1.7)

where sgn(.) designates the sign function and yM is as in assumption A1. On
the other hand, it follows from equations (1.1a)-(1.1d) that the (delayed and
non-delayed) outputs undergo the following ODEs, respectively:

ẏ(t) = CA(v(t− d), y(t))x(t− d) + Cb(v(t− d), x(t− d)) (1.8)

ż(t) = CA(v(t), z(t))x(t) + Cb(v(t), x(t)) (1.9)

In view of (1.1c), equation (1.9) also rewrites in the integral form:

z(t) = y(t) +

∫ t

t−d
C[A(v(s), z(s))x(s) + b(v(s), x(s))]ds (1.10)

Considering the above observations and inspired from [27],the system model
(1.1a)-(1.1d) suggests the following sampled-output observer:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

˙̂x(t) = A(v(t), σ(wz(t)))x̂(t) + b(v(t), x̂(t))

−Γ−1(v(t), σ(wz(t)))∆
−1K(Cx̂(t)− wz(t)) (1.11a)

ẇy(t) = CA(v(t− d), σ(wy(t))x̂(t− d) + Cb(v(t− d), x̂(t− d))

(1.11b)

wy(tk) = y(tk) (1.11c)

wz(t) = wy(t) +

∫ t

t−d
C[A(v(s), σ(wz(s)))x̂(s) + b(v(s), x̂(s))]ds (1.11d)
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1.3. PROPOSED OBSERVER

where:
∆ = diag

[
1
θ
, . . . , 1

θn

]
∈ Rn×n, for any θ > 1, (1.12)

and the gain K ∈ Rn is chosen such that Ā−KC is Hurwitz with:

Ā =


0 1 0 ... 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
0 0 . . . 0 0

 . (1.13)

A new feature of this observer is the presence of the saturation operator σ(.).
This operator is used to ensure the boundedness of the observed signals wz(t)
and wy(t).

Note that K exists because the pair (A,C) is observable. In (1.11a), the
initial state estimates x̂(s)(−d < s < 0) are arbitrarily chosen. In (1.11d),
one uses the initial conditions w(s) = z(s) = y(s−d), (−d ≤ s < 0). In view
of (1.8)-(1.10), the variables wy(t) and wz(t) are nothing else than estimates
of the delayed and undelayed outputs y(t) and z(t), respectively. In fact,
wy(t) is a prediction of y(t) over the open intervals (tk, tk+1). It is generated
by the predictor (1.11b)-(1.11c) from the output samples y(tk), y(tk−1), . . ..
Finally, the filter (1.11d) is resorted to get the estimate wz(t) of z(t). Since
none of wy(t) and wz(t) are a priori bounded, these signals enter through
their saturated versions in the observer equations (1.11a)-(1.11d). Without
using this saturation, it would not have been possible to ensure the bound-
edness of the various observer signals.

Remark 2.

a) The observer (1.11a)-(1.11d) is inspired by the high-gain observer pro-
posed in [43] for continuous-time systems with no output delay and no output
sampling. The main novelty of the new observer is the inter-sample predic-
tor (1.11b)-(1.11d) providing the estimates wz(t) (of the non-delayed output
z(t)) which is used in the innovation of the state equation (1.11a). Another
new feature of the present observer, compared to [43], is the saturation op-
erator (.). These novel features will prove to be useful in getting rid of the
delay and sampling effects.
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1.4. OBSERVER ANALYSIS

b) Note that expression (1.11d) can be reformulated as follows:

wz(t) = wy(t) + ϑ(t) (1.14)

with ϑ(t) defined by the following ODE:

ϑ̇(t) = CA(v(t), σ(wz(t)))x̂(t) + Cb(v(t), x̂(t))

− CA(v(t− d), σ(wz(t− d)))x̂(t− d)

− Cb(v(t− d), x̂(t− d)) (1.15)

ϑ(0) =

∫ 0

−d
C[A(v(s), σ(wz(s)))x̂(s) + b(v(s), x̂(s))]ds (1.16)

1.4 Observer Analysis

The sampled-output observer defined by equations (1.11a)-(1.11d) is now go-
ing to be analyzed. For analysis purpose, the following errors are introduced:

x̃ = x̂− x, ey = wy − y, ez = wz − z (1.17)

Subtracting system equations (1.1a), (1.8) and (1.10) from the corresponding
observer equations, i.e. (1.11a), (1.11b) and (1.11d), one gets using (1.17)
and rearranging terms the following equations describing the error dynamics:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

˙̃x = [A(v, σ(wz))− Γ−1(v, σ(wz))∆
−1KC]x̃+ [A(v, σ(wz))−A(v, z)]x

+ (b(v, x̂)− b(v, x)) + Γ−1(v, σ(wz))∆
−1Kez] (1.18a)

ėy(t) = C[A(v(t− d), σ(wy(t)))]x̃(t− d) + C[A(v(t− d), σ(wy(t)))

− A(v(t− d), y(t))]x(t− d) + C[b(v(t− d), x̂(t− d))

− b(v(t− d), x(t− d))] (1.18b)

ey(tk) = 0 (1.18c)

ez(t) = ey(t) +

∫ t

t−d
CA(v(s), σ(wz(s)))x̃(s)ds+

∫ t

t−d
C[A(v(s), σ(wz(s)))

− A(v(s), z(s))]x(s)ds

+

∫ t

t−d
C[b(v(s), x̂(s))− b(v(s), x(s))]ds (1.18d)

Note that the argument t has deliberately been omitted in (1.18a) to alleviate
it. The main result is now stated in the following theorem.
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1.4. OBSERVER ANALYSIS

Theorem 1.1: Let the proposed sampled-output observer (1.11a)-(1.11d)
be applied to the system under study (1.1a)-(1.1d), subject to the stated
assumptions A1-A4. Then, there exists a real constant 1 < θ∗ < ∞ such
that if θ > θ∗ then, there exist real constants 0 < τ ∗ < ∞ and 0 < d∗ < ∞
so that, if τ < τ ∗ and d < d∗ then, ∀t ≥ 0 :∥∥x̃(t)

∥∥ ≤ ρxe
−αt/2, |ey(t)| ≤ ρye

−αt/2, |ez(t)| ≤ ρze
−αt/2

for some real constants α > 0, ρx > 0, ρy > 0, ρz > 0.

Proof: The proof is partly inspired by [43], [27] and [25]. For convenience,
the following coordinate change and notation are introduced:

ε = Γ(v, σ(wz))∆x̃ (1.19)

Ã = Ā−KC (1.20)

Then, equation (1.18a) rewrites in term of ε as follows:

ε̇ = Γ(v, σ(wz))∆[A(v, σ(wz))− Γ−1(v, σ(wz))∆
−1KC]x̃

+ Γ(v, σ(wz))∆[A(v, σ(wz))−A(v, z)]x+ Γ(v, σ(wz))∆(b(v, x̂)− b(v, x))

+ Γ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez + Γ̇(v, σ(wz))∆x̃

= Γ(v, σ(wz))∆[A(v, σ(wz))− Γ−1(v, σ(wz))∆
−1KC]∆−1Γ−1(v, σ(wz))Γ(v, σ(wz))∆x̃

+ Γ(v, σ(wz))∆[A(v, σ(wz))−A(v, z)]x+ Γ(v, σ(wz))∆(b(v, x̂)− b(v, x))

+ Γ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez + Γ̇(v, σ(wz))∆x̃

= [Γ(v, σ(wz))∆A(v, σ(wz))∆
−1Γ−1(v, σ(wz))−KC∆−1Γ−1(v, σ(wz))]Γ(v, σ(wz))∆x̃

+ Γ(v, σ(wz))∆[A(v, σ(wz))−A(v, z)]x+ Γ(v, σ(wz))∆(b(v, x̂)− b(v, x))

+ Γ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez + Γ̇(v, σ(wz))∆x̃

= [θĀ− θKC]ε+ Γ(v, σ(wz))∆[A(v, σ(wz))−A(v, z)]x

+Γ(v, σ(wz))∆(b(v, x̂)− b(v, x)) + Γ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez

+Γ̇(v, σ(wz))Γ
−1(v, σ(wz))ε

= θÃε+ Γ(v, σ(wz))∆[A(v, σ(wz))−A(v, z)]x

+ Γ(v, σ(wz))∆(b(v, x̂)− b(v, x))

+ Γ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez + Γ̇(v, σ(wz))Γ
−1(v, σ(wz))ε (1.21)
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1.4. OBSERVER ANALYSIS

where the last equality is obtained using the following structural properties
that one can easily check, using (1.6), (1.12) and (1.13):

Γ∆ = ∆Γ =



1

θ
0 ... ... 0

0
a1

θ2
0

. . .
...

...
. . .

a1a2

θ3

. . .
...

...
...

. . .
. . . 0

0 0 . . . 0

n−1∏
i=1

ai

θn


(1.22)

ΓA = ĀΓ (1.23a)

C∆−1Γ−1 = θC (1.23b)

Γ∆A∆−1Γ−1 = θĀ (1.23c)

For all t ∈ [tk, tk+1), k = 0, 1, . . .

ėy(t) = a1(v(t− d), σ(wy(t)))x̃2(t− d)

+ [a1(v(t− d), σ(wy(t))− a1(v(t− d), y(t))]x2(t− d)

+ [b1(v(t− d), x̂(t− d))− b1(v(t− d), x(t− d))] (1.24a)

ey(tk) = 0 (1.24b)

ez(t) = ey(t) +

∫ t

t−d
a1(v(s), σ(wz(s)))x̃2(s)ds

+

∫ t

t−d
[a1(v(s), σ(wz(s)))− a1(v(s), z(s))]x2(s)ds

+

∫ t

t−d
[b1(v(s), x̂(s))− b1(v(s), x(s))]ds (1.24c)

The proof is divided into two parts:

• Part1: Proof that the mapping ez −→ ε is input to state stable.

• Part2: Proof that the mapping ey −→ ε is also input to state stable.

For this we will show that ‖ε‖ ≤ η( sup
0≤τ≤t

(|ez(τ)|)) in the first part and that

‖ε‖ ≤ η( sup
0≤τ≤t

(|ey(τ)|)). Finally, the small gain theorem will be invoked

to establish the exponential convergence of all estimation errors (x̃, ey, ez)
(appendix A).
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Proof that the mapping ez −→ ε is input to state stable
In order to analyze the system (1.18a)-(1.18d), consider the candidate Lya-
punov function :

V = εTPε (1.25)

where P = P T is the unique positive definite matrix that satisfies :

PÃ+ ÃTP = −µI (1.26)

where I is the identity matrix and µ > 0 is arbitrarily chosen. Note that P
exists because we know that Ã = Ā −KC is Hurwitz. Time-differentiation
of V yields, using (1.25) and (1.21):

V̇ = ε̇TPε+ εTP ε̇

= −µθ‖ε‖2 + 2εTPΓ(v, σ(wz))∆(A(v, σ(wz))− A(v, z))x

+ 2εTPΓ(v, σ(wz))∆(b(v, x̂)− b(v, x))

+ 2εTPΓ(v, σ(wz))∆Γ
−1(v, σ(wz))∆

−1Kez

+ 2εTPΓ̇(v, σ(wz))Γ
−1(v, σ(wz))ε (1.27)

Next, we are going to show that the terms on the right side of (1.27) are
bounded. First, recall that, by assumption A2, all terms ai(v, z) (i =
1, . . . , n − 1) of the matrix A(v, z) are C1 functions. Also, it follows from
assumption A1 and equation (1.7) that:

|σ(wz(t))| ≤ yM and σ(z(t)) = z(t), ∀t ≥ 0 (1.28)

Then, one gets using Remark 1 (Part b):

|ai(v, σ(wz))− ai(v, z)| ≤ la|ez|, i = 1, . . . n− 1 (1.29)

Then, it follows from (1.6) and (1.12) that the second term:∥∥∥2εTPΓ(v, σ(wz))∆(A(v, σ(wz))−A(v, z))x
∥∥∥ ≤ 2laβ1

θ
‖ε‖ |ez|

≤ laβ1

θ
(‖ε‖2 + |ez|2) (1.30)

using assumption A1 and the fact that θ > 1, where β1 is a real constant
depending on P , yM and the suprema of

∥∥v(t)
∥∥ and

∥∥x(t)
∥∥, but is indepen-

dent on θ.
Again, using the triangular form of b(v, x), the fact that the functions bi(v, x)
are globally Lipschitz and the diagonal form of Γ∆, it follows that:∥∥∆(b(v(t), x̂(t))− b(v(t), x(t)))

∥∥ ≤ β2‖ε‖ (1.31)
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where β2 is a real constant independent on θ. Then, making use of (1.6),
assumptions A1-A2, and Remark 1 (Part c), one gets :∥∥∥2εTPΓ(v, σ(wz))∆(b(v, x̂)− b(v, x))

∥∥∥ ≤ 2β3β2‖ε‖2 (1.32)

for some real constant β3, independent on θ, only dependent on yM , P and
the functions ai. The penultimate term on the right side of (1.26) is bounded
as follows, using (1.22):∥∥∥2εTPΓ(v, σ(wz))∆Γ

−1(v, σ(wz))∆
−1Kez

∥∥∥ =
∥∥∥2εTPKez

∥∥∥
≤ β4(‖ε‖2 +‖ez‖2) (1.33)

with β4 = |PK|. Finally, the following bounding from above is readily got
for last term on the right side of (1.26), using (1.5):∥∥∥2εTPΓ̇(v, σ(wz))Γ

−1(v, σ(wz))ε
∥∥∥ ≤ 2lΓβ5‖ε‖2 (1.34)

with‖β5‖ = |P |. Using (1.34), (1.33), (1.32), and (1.30), it follows from (19)
that:

V̇ ≤ −γθ‖ε‖2 + β6|ez|2

V̇ ≤ −αθV + β6|ez|2 (1.35)

with

αθ =
γθ

λmax(P )
=

1

λmax(P )

(
µθ − laβ1

θ
− 2β2β3 − β4 − 2lΓβ5

)
(1.36)

β6 = laβ1 + β4 (1.37)

using (1.24c) and the fact that θ > 1. Clearly, from (1.36) one has:

lim
θ→+∞

αθ =∞ (1.38)

In the sequel, we let θ be sufficiently large so that:

αθ > 1 (1.39)

This is possible because none of the constants on the right side of (1.36) is
dependent on θ . Integrating inequality (1.35) gives, for all t ≥ 0 :

V (t) ≤ e−αθtV (0) + β6

∫ t

0

e−αθ(t−s)e2
z(s)ds (1.40)
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Given any scalar α such that 0 < α < αθ/2, it follows, multiplying both sides
of (1.40) by eαt :

eαtV (t) ≤M0 + β6e
αt

∫ t

0

e−αθ(t−s)e−αseαse2
z(s)ds (1.41)

with M0 = V (0), using the fact that e−αθt < 1, when t > 0. Inequality (1.41)
entails, successively:

eαtV (t) ≤ M0 + β6e
αt

∫ t

0

e−αθ(t−s)e2
z(s)ds

≤ M0 + β6e
(α−αθ)t

∫ t

0

e(αθ−α)seαse2
z(s)ds

≤ M0 + β6e
(α−αθ)t

(∫ t

0

e(αθ−α)sds
)

sup
0≤s≤t

(eαse2
z(s))

≤ M0 +
2β6

αθ
sup

0≤s≤t
(eαse2

z(s)) (1.42)

Taking square root of both sides of (1.42) gives:

e
αt
2

√
V (t) ≤

√
M0 +

√
2β6

αθ
sup

0≤s≤t
(e

αs
2 |ez(s)|) (1.43)

From (1.24c) and (1.19) one has, using (1.22) and Remark 1 (Part c):

V ≥ λmin(P )‖ε‖2 (1.44)

where λmin(P ) denotes the minimal eigenvalue of P (which is clearly is inde-
pendent on θ). Then, it follows from (1.43):

e
αt
2

∥∥ε(t)∥∥ ≤M1 + γ1 sup
0≤s≤t

(e
αs
2 |ez(s)|) (1.45)

with

M1 =

√
M0

λmin(P )
, γ1 =

√
2β6

αθλmin(P )
(1.46)

Since the left side on (1.45) is non-decreasing with t, it follows that:

sup
0≤s≤t

(
e
αt
2

∥∥ε(s)∥∥) ≤M1 + γ1 sup
0≤s≤t

(e
αs
2 |ez(s)|) (1.47)

This last inequality shows that the mapping ez −→ ε is input-to-state stable.
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Proof that the mapping ey −→ ε is also input to state stable
Using (1.19), (1.29) and assumption A1, it follows from (1.24c) the following
upper bounding of |ez| by |ey| and ‖ε‖ :

For all t ∈ [tk, tk+1), k = 0, 1, . . .

|ez(t)| ≤ |ey(t)|+
∫ t

t−d

∥∥a1(v(s), σ(wz(s)))x̃2(s)
∥∥ ds

+

∫ t

t−d

∥∥[a1(v(s), σ(wz(s)))− a1(v(s), z(s))]x2(s)
∥∥ ds

+

∫ t

t−d

∥∥b1(v(s), x̂(s))− b1(v(s), x(s))
∥∥ ds (1.48)

for some real constant β7 (depending on the supremum of ‖x‖, but indepen-
dent on θ), where we have used the fact that

a1(v(s), σ(wz(s)))x̃2(s) = θ2ε2(s) (1.49)

(got from (1.19)):

Γ∆x̃ =



1
θ x̃1
a1

θ2
x̃2

a1a2

θ3
x̃3

. . .
n−1∏
i=1

ai

θn
x̃n


=


ε1

ε2

ε3

. . .
εn

 (1.50)

The last quantity on the right side of (1.48) is handled using the Lipschitz and
triangular nature of the b(v, x) (see (1.2b) and assumption A2). Accordingly,
one has: ∥∥b1(v(t), x̂(t))− b1(v(t), x(t))

∥∥ ≤ lb
∥∥x̃1(t)

∥∥ (1.51)

with lb as in Remark 1 (Part c). From (1.50), it is immediately seen that
x̃1 = θε1 which together with (1.51) gives:∥∥b1(v(t), x̂(t))− b1(v(t), x(t))

∥∥ ≤ θlb
∥∥ε1(t)

∥∥ (1.52)
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which yields, together with (1.48):

|ez(t)| ≤ |ey(t)|+ θ(θ + lb)

∫ t

t−d

∥∥ε1(s)
∥∥ ds+ laβ7

∫ t

t−d
|ez(s)|ds

≤ |ey(t)|+ θ(θ + lb)

∫ t

t−d
e−αs/2eαs/2

∥∥ε(s)∥∥ ds
+ laβ7

∫ t

t−d
e−αs/2eαs/2|ez(s)|ds

≤ |ey(t)|+ θ(θ + lb)

∫ t

t−d
e−αs/2ds

(
sup

t−d≤s≤t
eαs/2

∥∥ε(s)∥∥)
+ laβ7

∫ t

t−d
e−αs/2ds

(
sup

t−d≤s≤t
eαs/2|ez(s)|

)
≤ |ey(t)|+ θ(θ + lb)de

−α(t−d)/2
(

sup
t−d≤s≤t

eαs/2
∥∥ε(s)∥∥)

+ laβ7e
−α(t−d)/2

(
sup

t−d≤s≤t
eαs/2|ez(s)|

)
(1.53)

where the last inequality is obtained applying the mean value theorem to
the integral quantity

∫ t
t−d e

−αs/2ds. Multiplying both sides of (1.53) by eαt/2

yields:

eαt/2|ez(t)| ≤ eαt/2|ey(t)|+ θ(θ + lb)de
αd/2

(
sup

t−d≤s≤t
eαs/2

∥∥ε(s)∥∥)
+ laβ7de

αd/2
(

sup
t−d≤s≤t

eαs/2|ez(s)|
)

(1.54)

which implies:

sup
0≤s≤t

(
eαs/2|ez(s)|

)
≤ sup

0≤s≤t

(
eαs/2|ey(s)|

)
+ θ(θ + lb)de

αd/2
(

sup
t−d≤s≤t

eαs/2
∥∥ε(s)∥∥)

+ laβ7de
αd/2

(
sup

t−d≤s≤t
eαs/2|ez(s)|

)
(1.55)

Since deαd/2 −→
d→0

0, we let d be such that:

0 < laβ7de
αd/2 < 1 (1.56)

Then, one gets from (1.56):

sup
0≤s≤t

(
eαs/2|ez(s)|

)
≤ 1

1− laβ7deαd/2
sup

0≤s≤t

(
eαs/2|ey(s)|

)
+
θ(θ + lb)de

αd/2

1− laβ7deαd/2
sup

t−d≤s≤t

(
eαs/2

∥∥ε(s)∥∥) (1.57)
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In order to invoke the small gain theorem (appendix A) we start by integrat-
ing the expressions (1.24a)-(1.24c):

For all t ∈ [tk, tk+1), k = 0, 1, . . .

ey(t) =

∫ t

tk

a1(v(t− d), σ(wy(t)))x̃2(t− d)ds

+

∫ t

tk

[a1(v(t− d), σ(wy(t))− a1(v(t− d), y(t))]x2(t− d)ds

+

∫ t

tk

[b1(v(t− d), x̂(t− d))− b1(v(t− d), x(t− d))]ds (1.58)

ey(tk) = 0 (1.59)

Taking the norms of both sides of (1.24a) gives, using similar arguments as
for (1.48) to (1.53):

For all t ∈ [tk, tk+1), k = 0, 1, . . .

|ey(t)| ≤
∫ t

tk

∥∥∥θ2ε2(s− d)
∥∥∥ ds+ laβ7

∫ t

tk

|ey(s)|ds+

∫ t

tk

θlb
∥∥ε1(s− d)

∥∥ ds
≤ θ(θ + lb)

∫ t

tk

∥∥ε(s− d)
∥∥ ds+ laβ7

∫ t

tk

|ey(s)|ds (1.60)

ey(tk) = 0 (1.61)

where β7 is as in (1.53). Inequality (1.60) develops further as follows:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

|ey(t)| ≤ θ(θ + lb)

∫ t

tk

e−α(s−d)/2eα(s−d)/2
∥∥ε(s− d)

∥∥ ds
+laβ7

∫ t

tk

e−αs/2eαs/2|ey(s)|ds

≤ θ(θ + lb)

∫ t

tk

e−αs/2ds
(

sup
tk≤s≤t

eα(s−d)/2
∥∥ε(s− d)

∥∥)
+ laβ7

∫ t

tk

e−αs/2ds
(

sup
tk≤s≤t

eαs/2|ey(s)|ds
)

≤ θ(θ + lb)e
αd/2τe−αtk/2

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)

+ laβ7τe
−αtk/2

(
sup

0≤s≤t
eαs/2|ey(s)|ds

)
(1.62)

where we have used the double inequality 0 <
∫ t
tk
e−αs/2ds ≤ τe−αtk/2. Mul-

tiplying both sides by eαt/2 yields:
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For all t ∈ [tk, tk+1), k = 0, 1, . . .

eαt/2|ey(t)| ≤ θ(θ + lb)e
αd/2τeατ/2

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)

+ laβ7τe
ατ/2

(
sup

0≤s≤t
eαs/2|ey(s)|ds

)
(1.63)

Since the right side terms are increasing functions of t, it follows that:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

sup
0≤s≤t

eαs/2|ey(s)| ≤ θ(θ + lb)e
αd/2τeατ/2

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)

+ laβ7τe
ατ/2

(
sup

0≤s≤t
eαs/2|ey(s)|ds

)
(1.64)

Since τeατ/2 −→
τ→0

0, we let τ be such that:

0 < laβ7τe
ατ/2 < 1 (1.65)

Then, one gets from (1.64):

sup
0≤s≤t

(e
αs
2 |ey(s)|) ≤

θ(θ + lb)e
αd/2τeατ/2

(1− laβ7τeατ/2)

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)(1.66)

This inequality shows that the mapping ε −→ ey is input-to-state stable.
Using (1.66) it follows from (1.57) that:

sup
0≤s≤t

(e
αs
2 |ez(s)|) ≤

θ(θ + lb)e
αd/2τeατ/2

(1− laβ7deαd/2)(1− laβ7τeατ/2)

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)

+
θ(θ + lb)de

αd/2

(1− laβ7deαd/2)

(
sup

t−d≤s≤t
eαs/2

∥∥ε(s)∥∥) (1.67)

Combining (1.67) and (1.45) one gets:

sup
0≤s≤t

eαs/2
∥∥ε(s)∥∥ ≤ M1 +

γ1θ(θ + lb)e
αd/2τeατ/2

(1− laβ7deαd/2)(1− laβ7τeατ/2)

(
sup

0≤s≤t
eα(s−d)/2

∥∥ε(s− d)
∥∥)

+
γ1θ(θ + lb)de

αd/2

(1− laβ7deαd/2)

(
sup

t−d≤s≤t
eαs/2

∥∥ε(s)∥∥) (1.68)

then,

sup
0≤s≤t

(e
αs
2

∥∥ε(s)∥∥) ≤M2 + γ2 sup
0≤s≤t

(e
αs
2

∥∥ε(s)∥∥) (1.69)
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with

M2 = M1 +
γ1θ(θ + lb)e

αd/2τeατ/2

(1− laβ7deαd/2)(1− laβ7τeατ/2)

(
sup
−d≤s≤0

eα(s−d)/2
∥∥ε(s)∥∥) (1.70)

where

γ2 =
γ1θ(θ + lb)e

αd/2[τeατ/2 + d(1− laβ7τe
ατ/2)]

(1− laβ7deαd/2)(1− laβ7τeατ/2)
(1.71)

Let d and τ be such that:

γ2 < 1 (1.72)

This is not an issue because τeατ/2 −→
τ→0

0 and deαd/2 −→
d→0

0. Then, it follows

from (1.69) that:

sup
0≤s≤t

(e
αs
2

∥∥ε(s)∥∥) ≤ M2

1− γ2

(1.73)

which establishes that ε(t) is exponentially convergent to the origin. Then,
using (1.22) and Remark 1 (Part c), it follows from (1.19) that in turn x̃(t)
is also exponentially convergent to the origin and, by (1.66) and (1.67), the
same result holds for ey and ez. This ends the proof of Theorem 1.1.

Remark 3.
Admissible values of the delay d and the maximum sampling interval τ

are those satisfying conditions (1.56), (1.65) and (1.72). Accordingly, the
maximum admissible values, say dM and τM , depend on the free parameter
α which has been introduced for analysis purpose. The smaller α the larger
the maximum admissible values. It follows that dM and τM are obtained by
letting α = 0 in (1.56), (1.65) and (1.72). Doing so one gets:

dM <
1

laβ7

, τM <
1

laβ7

(1.74)

τM + rM(1− laβ7τM)

(1− laβ7dM)(1− laβ7τM)
<

1

γ1θ(θ + lb)
(1.75)

Then, the sets of admissible delay and sampling interval are respectively
defined by:

0 < d < dM and 0 < τ < τM (1.76)

Inequalities (1.74)-(1.76) show that we are able to give explicit expressions
for the admissible values of the delay d and the maximum sampling interval
τ for which the state of the proposed observer (1.11a)-(1.11d) converges to
the state of the system (1.1a)-(1.1d).
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1.5 Sampled-output chain-observer design

In this part, we deal with the same class of systems (1.1a)-(1.1d) but the
delay in this case is not necessarily small. In order to enlarge the interval
of admissible time-delay values, a set of predictors operating in cascade are
implemented, this technique was introduced by [19]. We start by writing the
system (1.1a)-(1.1d) as a cascade representation. Then we present the pro-
posed chain observer for this class. After that, the observer will be analyzed
and we will see that the observation errors will converge exponentially to the
origin.

1.5.1 System cascade representation

Letting m ≥ 1 be any fixed integer, define the following signals, where
j = 1, ...,m :

For all t ≥ 0,

xj(t) = x
(
t+ j

d

m
− d
)
, (1.77a)

zj(t) = z
(
t+ j

d

m
− d
)

(1.77b)

yj(t) = zj

(
t− d

m

)
= Cxj(t−

d

m
), (1.77c)

vj(t) = v
(
t+ j

d

m
− d
)

(1.77d)

From, (1.77a)-(1.77d), one immediately gets the following useful relations:

xj−1(t) = xj(t−
d

m
), (1.78a)

zj−1(t) = z(t− d

m
) for j = 2, . . . ,m (1.78b)

yj(t) = zj−1(t), for j ≥ 2 (1.78c)

Now, using (1.1a)-(1.1d), it readily follows from (1.77a)-(1.77d) that xj(t)
and zj(t) undergo the following ODEs, where j = 1, . . . ,m :

ẋj(t) = A(vj(t), zj(t))xj(t) + b(vj(t), xj(t)) (1.79a)

ẏj(t) = CA(vj(t− r), yj(t))xj(t− r) + Cb(vj(t− r), xj(t− r)) (1.79b)

żj(t) = CA(vj(t), zj(t))xj(t) + Cb(vj(t), xj(t)) (1.79c)

with

r =
d

m
and vj(t) = v(t+ j

d

m
− d) (1.80)
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In view of (1.78b) and (1.79b), one gets the following useful integral form:

żj(t) = zj−1(t) + C

∫ t

t−r

(
A(vj(s), zj(s))xj(s) + b(vj(s), xj(s))

)
ds

for j = 2 . . .m (1.81)

In view of (1.78c), (1.81) also writes:

żj(t) = yj(t) + C

∫ t

t−r

(
A(vj(s), zj(s))xj(s) + b(vj(s), xj(s))

)
ds

for j = 2 . . .m (1.82)

The link between the initial system representation (1.1a)-(1.1d) and the cas-
cade representation (1.79a) is completed by the following relations:

y1(t) = y(t), xm(t) = x(t) (1.83)

these equations are direct consequences of the equations (1.77a)-(1.77d).

1.5.2 Chain observer design

For a given j = 1, . . . ,m, the expressions in (1.77b)-(1.77c) show that the sig-
nals zj(t) and yj(t) represent respectively the un-delayed and delayed outputs
of the system with state vector xj(t) described by Equation (1.79a). Then,
(1.83) shows that among all output signals, only y1(t) is accessible to mea-
surements (at sampling instants tk). Therefore, it is logical to start the state
estimation process by estimating the state x1(t) and the un-delayed output
z1(t). Doing so, one gets using (1.78c) an estimate of y2(t) = z1(t) making
possible the estimation of x2(t) and z2(t). In turn, the latter entails the pos-
sibility of estimating x3(t) and z3(t), making use of (1.78a)-(1.78c), and so
on. This is the principle of the following sampled-output chain-observer:

The observer for x1(t) takes the form,
For all t ∈ [tk, tk+1), k = 0, 1, . . .

˙̂x1(t) = A(v1(t), σ(z̄1(t)))x̂1(t) + b(v1(t), x̂1(t))

−Γ−1(v1(t), σ(z̄1(t)))∆−1K(Cx̂1(t)− z̄1(t)) (1.84a)

˙̄y1(t) = CA(v1(t− r), σ(ȳ1))x̂1(t− r) + Cb(v1(t− r), x̂1(t− r)) (1.84b)

ȳ1(tk) = y(tk) (1.84c)

z̄1(t) = ȳ1(t) +

∫ t

t−r
[CA(v1(s), σ(z̄1(s)))x̂1(s) + Cb(v1(s), x̂1(s))]ds

(1.84d)
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where the initial conditions x̂j(0) and z̄j(0) (−r < s < 0) for j = 1, ...,m are
arbitrarily chosen and the quantities σ, K, θ and ∆ are as in (1.11a).

The observer for xj(t) with j = 2, ...,m takes the form:

˙̂xj(t) = A(vj(t), σ(z̄j(t)))x̂j(t) + b(vj(t), x̂j(t))

−Γ−1(vj(t), σ(z̄j(t)))∆
−1K(Cx̂j(t)− z̄j(t)) (1.85a)

z̄j(t) = z̄j−1(t) +

∫ t

t−r

[
CA(vj(s), σ(z̄j(s)))x̂j(s) + Cb(vj(s), x̂j(s))

]
ds

(1.85b)

Comparing (1.84a)-(1.84d) and (1.85a)-(1.85b), it is seen that, for j = 1, . . . ,m,
the variable z̄j(t) is an estimate of the signal zj(t), while ȳ1(t) is an estimate
of y1(t). Also, the first observer variables (ȳ1(t), z̄1(t)) are obtained from the
directly measured output samples y(tk); k = 0, 1, 2, . . .. The variable z̄j(t),
for a given j = 2, . . . , n, is obtained using the previously estimated output
z̄j−1(t).

1.5.3 Observer Analysis

The proposed sampled-output chain observer defined by equations (1.84a)
and (1.85a) will now be analysed. For analysis purpose, the following errors
are introduced:

x̃j = x̂j − xj, ỹj = ȳj − yj, z̃j = z̄j − zj, for j = 1, ...,m (1.86)

Theorem 1.2: Let the proposed sampled-output chain observer (1.84a)-
(1.84d) and (1.85a)-(1.85b) be applied to the system (1.1a)-(1.1d), subject
to the stated assumptions A1-A4. Then, there exists a real constant 1 <
θ∗ <∞ such that if θ > θ∗ then, there exist real constants 0 < τ ∗ <∞ and
0 < m∗ <∞ so that, if τ < τ ∗ and m > m∗ then, ∀t ≥ 0 :∥∥x̃j(t)∥∥ ≤ ρxe

−αt/2, |ỹj(t)| ≤ ρye
−αt/2, |z̃j(t)| ≤ ρze

−αt/2

for j = 1..m and some real constants α > 0, ρx > 0, ρy > 0, ρz > 0.

Proof: The proof is divided into five parts. In part 1, the dynamics of
the various estimation errors are established. In part 2, it is shown that the
mapping z̃j −→ εj is ISS with εj = Γ(v, σ(z̃j)∆x̃j. In part 3, we show that
the mapping (ε1, ỹ1) −→ z̃1 and (εj, z̃j−1) −→ z̃j (j ≥ 2) are also ISS. In part
4, the result of the Theorem 1.2 is established for j = 1 and in part 5, it is
established for (j = 2, ...,m)[24, 25]. The Input to state stability analyses of
Parts 2 and 3 are partly inspired by [27].
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Part 1. Estimation errors dynamics.
The dynamics of the state estimation errors x̃j(t), j = 1 . . .m are ob-

tained, for j = 1, by subtracting (1.79a) from (1.84a) and, for j = 2, . . . ,m,
by subtracting (1.79a) from (1.85a). Doing so, one gets using (1.77c):

˙̃xj(t) = [A(vj(t), σ(z̄j))− Γ−1(vj(t), σ(z̄j(t)))∆
−1KC]x̃j(t)

+(A(vj(t), σ(z̄j(t)))− A(vj(t), zj(t)))x̃j(t)

+(b(vj(t), x̂j(t))− b(v(t), xj(t)))

+Γ−1(vj(t), σ(z̄j(t)))∆
−1Kz̃j(t), for j = 1 . . .m (1.87a)

The dynamics of ỹ1(t) is obtained by subtracting (1.79b) from (1.84b):

˙̃y1(t) = CA(v1(t− r), σ(ȳ1(t))x̃1(t− r) + [CA(v1(t− r), σ(ȳ1(t)))

−CA(v1(t− r), y1(t))]x1(t− r) + [Cb(v1(t− r), x̂1(t− r))
−Cb(v1(t− r), x1(t− r))], for tk < t < tk+1 (1.87b)

ỹ1(tk) = 0 (1.87c)

where the last equality is obtained using (1.84c). Similarly, the dynamics of
the estimation error z̃1(t) is obtained by subtracting (1.82) from (1.84d):

z̃1(t) = ỹ1(t) +

∫ t

t−r
CA(v1(s), σ(z̄1(s)))x̃1(s)ds+

∫ t

t−r
C[A(v1(s), σ(z̄1(s)))

−A(v1(s), z1(s))]x1(s)ds+

∫ t

t−r
C[b(v1(s), x̂1(s))− b(v1(s), x1(s))]ds

(1.87d)

The dynamics of the estimation error z̃j(t) for j = 2, . . . ,m are obtained by
subtracting (1.81) from (1.85b). This yields:

z̃j(t) = z̃j−1(t) +

∫ t

t−r
CA(vj(s), σ(z̄j(s)))x̃j(s)ds+

∫ t

t−r
C[A(vj(s), σ(z̄j(s)))

−A(vj(s), zj(s))]xj(s)ds+

∫ t

t−r
C[b(vj(s), x̂j(s))− b(vj(s), xj(s))]ds

for j = 2, . . . ,m (1.87e)

Just as in [43], introduce the following coordinate change:

εj(t) = Γ(vj(t), σ(zj(t)))∆x̃j(t), for j = 1, . . . ,m (1.88)

Then, equation (1.87a), for j = 1, . . .m, rewrites in term of εj as follows,
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where the argument t has been omitted to alleviate expressions:

ε̇j = Γ(vj , σ(z̄j))∆[A(vj , σ(z̄j))− Γ−1(v, σ(z̄j))∆
−1KC]x̃j

+ Γ(vj , σ(z̄j))∆[A(vj , σ(z̄j))−A(vj , zj)]xj + Γ(vj , σ(z̄j))∆(b(vj , x̂j)− b(vj , xj))
+ Γ(vj , σ(z̄j))∆Γ

−1(vj , σ(z̄j))∆
−1Kz̃j + Γ̇(vj , σ(z̄j))∆x̃j

ε̇j = θÃεj + Γ(vj , σ(z̄j))∆[A(vj , σ(z̄j))−A(vj , zj)]xj

+ Γ(vj , σ(z̄j))∆(b(vj , x̂j)− b(vj , xj))
+ Γ(vj , σ(z̄j))∆Γ

−1(vj , σ(z̄j))∆
−1Kz̃j + Γ̇(vj , σ(z̄j))Γ

−1(vj , σ(z̄j))εj (1.89)

where the last equality is obtained as in (1.21) using the following structural
properties that one can easily check, using (1.2a)-(1.2b), (1.6), (1.12), (1.13)
and (1.88):

x̃j,1 = θεj,1, x̃j,1 =
θ

i−1∏
k=1

ak(vj, σ(z̄j))

εj,i, i = 2, . . . , n, j = 1, . . . ,m (1.90)

where the function ai are as in (1.2a). Similarly, in view of (1.2a)-(1.2b),
equations (1.87b)-(1.87e) can be simplified as follows, where x̃j,i(t) denotes
the i-th components of the vector x̃j(t) :

For all t ∈ [tk, tk+1), k = 0, 1, . . .

˙̃y1(t) = a1(v1(t− r), σ(ȳ1(t))x̃1,2(t− r) + [a1(v1(t− r), σ(ȳ1(t)))

−a1(v1(t− r), y1(t))]x1,2(t− r) + [b1(v1(t− r), x̂1(t− r))
−b1(v1(t− r), x1(t− r))], (1.91a)

ỹ1(tk) = 0 (1.91b)

z̃1(t) = ỹ1(t) +

∫ t

t−r
a1(v1(s), σ(z̄1(s)))x̃1,2(s)ds+

∫ t

t−r
[a1(v1(s), σ(z̄1(s)))

−a1(v1(s), z1(s))]x1,2(s)ds+

∫ t

t−r
[b1(v1(s), x̂1(s))− b1(v1(s), x1(s))]ds

(1.91c)

z̃j(t) = z̃j−1(t) +

∫ t

t−r
a1(vj(s), σ(z̄j(s)))x̃j,2(s)ds+

∫ t

t−r
[a1(vj(s), σ(z̄j(s)))

−a1(vj(s), zj(s))]xj,2(s)ds+

∫ t

t−r
[b1(vj(s), x̂j(s))− b1(vj(s), xj(s))]ds

j = 2, . . . ,m (1.91d)
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Part 2. Proof that the mapping z̃j −→ εj is ISS.
The proof is very similar to the proof of the input-to-state stability of the
mapping ez −→ ε in Section 1.4. To analyse system (1.89), consider the
candidate Lyapunov function :

Vj = εTj Pεj (1.92)

with P = P T the unique positive definite matrix that satisfies :

PÃ+ ÃTP = −µI (1.93)

where I is the identity matrix and µ > 0 is arbitrarily chosen. Note that P
exists because we know that Ã = Ā −KC is Hurwitz. Time-differentiation
of Vj yields, using (1.92) and (1.89):

V̇j = ε̇Tj Pεj + εTj P ε̇j

= −µθ
∥∥εj∥∥2

+ 2εTj PΓ(vj, σ(z̄j))∆(A(vj, σ(z̄j))− A(vj, zj))xj

+ 2εTj PΓ(vj, σ(z̄j))∆(b(vj, x̂j)− b(vj, xj))
+ 2εTj PΓ(vj, σ(z̄j))∆Γ

−1(vj, σ(z̄j))∆
−1Kz̃j

+ 2εTj PΓ̇(vj, σ(z̄j))Γ
−1(vj, σ(z̄j))εj (1.94)

The various terms on the right side of (1.94) will successively be bounded
in the next lines. First, recall that, by assumption A2, all terms ai(v, z)(i =
1 . . . n − 1) of the matrix A(v, z) are C1 functions. Also, it follows from
assumption A1 and (1.77b) that:

|σ(z̃j(t))| ≤ yM and σ(z(t)) = z(t), ∀t ≥ 0 (1.95)

Then, one gets using Remark 1 (Part b):

|ai(vj, z̄j)− ai(vj, zj)| ≤ la|z̃j|, i = 1, . . . n− 1 (1.96)

Then, it follows from (1.6) and (2.21) that the second term:∥∥∥2εTj PΓ(vj , σ(z̄j))∆(A(vj , σ(z̄j))−A(vj , zj))x
∥∥∥ ≤ 2laβ1

θ

∥∥εj∥∥ |z̃j |
≤ laβ1

θ
(
∥∥εj∥∥2

+ |z̃j |2)

(1.97)

using assumption A1 and the fact that θ > 1, where β1 is a real constant
depending on P , yM and the suprema of

∥∥v(t)
∥∥ and

∥∥x(t)
∥∥ , but is inde-

pendent on θ.
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Again, using the triangular form of b(v, x) and the diagonal form of Γ∆, it
follows that: ∥∥∆(b(vj(t), x̂j(t))− b(vj(t), xj(t)))

∥∥ ≤ β2

∥∥εj∥∥ (1.98)

where β2 is a real constant independent on θ. Then, one gets making use of
(1.6), assumptions A1-A2, and Remark 1 (Part c):∥∥∥2εTj PΓ(vj, σ(z̄j))∆(b(vj, x̂j)− b(vj, xj))

∥∥∥ ≤ 2β3β2

∥∥εj∥∥2
(1.99)

for some real constant β3, independent on θ, only dependent on yM , P and
the functions ai. The penultimate term on the right side of (1.94) is bounded
as follows, using (1.22):∥∥∥2εTj PΓ(vj, σ(z̄j))∆Γ

−1(vj, σ(z̄j))∆
−1Kz̃j

∥∥∥ =
∥∥∥2εTj PKz̃j

∥∥∥
≤ β4(

∥∥εj∥∥2
+
∥∥z̃j∥∥2

)

(1.100)

with β4 = |PK|. Finally, the following bounding from above is readily got
for last term on the right side of (1.26), using (1.5):∥∥∥2εTj PΓ̇(vj, σ(z̄j))Γ

−1(vj, σ(z̄j))εj

∥∥∥ ≤ 2lΓβ5

∥∥εj∥∥2
(1.101)

with ‖β5‖ = |P |. Using (1.101), (1.100), (1.99), and (1.97), it follows from
(1.90) that:

V̇j ≤ −α1(θ)
∥∥εj∥∥2

+ β6|z̃j|2 ≤ −α1(θ)Vj + β6|z̃j|2 (1.102)

with

α1(θ) =
γθ

λmax(P )
=

1

λmax(P )

(
µθ − laβ1

θ
− 2β2β3 − β4 − 2lΓβ5

)
(1.103)

β6 = laβ1 + β4 (1.104)

using (1.91d) and the fact that θ > 1. Clearly, from (1.103) one has:

lim
θ→+∞

α1(θ) =∞ (1.105)

In the sequel, we let θ be sufficiently large so that:

α1(θ) > 1 (1.106)
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This is possible because none of the constants on the right side of (1.36) is
dependent on θ. Integrating inequality (1.102) gives, for all t ≥ 0 :

Vj(t) ≤ e−α1(θ)tVj(0) + β6

∫ t

0

e−α1(θ)(t−s)z̃2
j (s)ds (1.107)

Letting

α(θ) =
α1(θ)

2
(1.108)

it follows multiplying both sides of (1.107) by eα(θ)t :

eα(θ)tVj(t) ≤M0 + β6e
α(θ)t

∫ t

0

e−α1(θ)(t−s)e2
z(s)ds (1.109)

with M0 = Vj(0), using the fact that e−α1(θ)t < 1. Inequality (1.109) entails,
successively:

eαtVj(t) ≤ M0 + β6e
α(θ)t

∫ t

0

e−α1(θ)(t−s)e−α(θ)seα(θ)sz̃2
j (s)ds

≤ M0 + β6e
(α(θ)−α1(θ))t

∫ t

0

e(α1(θ)−α(θ))seα(θ)sz̃2
j (s)ds

≤ M0 + β6e
(α(θ)−α1(θ))t

(∫ t

0

e(α1(θ)−α(θ))sds
)

sup
0≤s≤t

(eα(θ)sz̃2
j (s))

≤ M0 +
2β6

α1(θ)
sup

0≤s≤t
(eα(θ)sz̃2

j (s))

≤ M0 +
β6

α1(θ)− α(θ)
(1− e(α1(θ)−α(θ))t) sup

0≤s≤t
(eα(θ)sz̃2

j (s))

≤ M0 +
2β6

α1(θ)
sup

0≤s≤t
(eα(θ)sz̃2

j (s))

≤ M0 +
β6

α(θ)
sup

0≤s≤t
(eα(θ)sz̃2

j (s)) (1.110)

Taking square root of both sides of (1.110) gives:

e
α(θ)t

2

√
V1(t) ≤

√
M0 +

√
β6

α(θ)
sup

0≤s≤t
(e

α(θ)s
2 |z̃1(s)|) (1.111)

From (1.24c) and (1.19) one has, using (1.22) and Remark 1 (Part c):

Vj ≥ λmin(P )
∥∥εj∥∥2

(1.112)
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where λmin(P ) denotes the minimal eigenvalue of P (which is clearly is inde-
pendent on θ). Then, it follows from (1.111):

e
α(θ)t

2

∥∥εj(t)∥∥ ≤M1 + γ1 sup
0≤s≤t

(e
α(θ)s

2 |z̃j(s)|) (1.113)

with

M1 =

√
M0

λmin(P )
, γ1 =

√
2β6

α(θ)λmin(P )
(1.114)

Since the left side on (1.113) is increasing with t, it follows that:

sup
0≤s≤t

e
α(θ)s

2

∥∥εj(s)∥∥ ≤M1 + γ1 sup
0≤s≤t

(e
α(θ)s

2 |z̃j(s)|) (1.115)

with the last inequality, we have shown that the mapping z̃j(s) −→ εj(s) is
ISS.

Part 3. Proof that the mappings (ε1, ỹ1) −→ z̃1 and (εj, z̃j−1) −→ z̃j
(j ≥ 2) are ISS.
To keep compact the subsequent development, let us introduce the notation,

wj =

{
|ỹ1| if j = 1

|z̃j−1| if j ≥ 2
(1.116)

Then, using (1.88), (1.100) and assumption A1, it follows from (1.91c)-(1.91d)
that |z̃j| is upper bounded by |wj| and

∥∥εj∥∥ as follows:

|z̃j(t)| ≤ |wj(t)|+
∫ t

t−r

∥∥a1(vj(s), σ(z̄j(s)))x̃j,2(s)
∥∥ ds

+

∫ t

t−r

∥∥a1(vj(s), σ(z̄j(s)))− a1(vj(s), zj(s))
∥∥xj,2(s)ds

+

∫ t

t−r

∥∥b1(vj(s), x̂j(s))− b1(vj(s), xj(s))
∥∥ ds

j = 2, . . . ,m

≤ |wj(t)|+ θ2

∫ t

t−r

∥∥εj,2(s)
∥∥ ds+ laβ7

∫ t

t−r
|z̃j(s)|ds

+

∫ t

t−r

∥∥b1(vj(s), x̂j(s))− b1(vj(s), xj(s))
∥∥ ds (1.117)

for j = 1 . . .m and some real constant β7 depending on the supremum of∥∥xj∥∥ (which is the same as that of ‖x‖ due to (1.77a), but independent on
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θ, where we have used (1.90). The last quantity on the right side of (1.117)
is handled using the Lipschitz and the triangular nature of the b(v, x) (see
(1.2b) and assumption A2). Accordingly, one has:∥∥b1(vj(t), x̂j(t))− b1(vj(t), xj(t))

∥∥ ≤ lb
∥∥x̃j,1(t)

∥∥ (1.118)

with lb as in Remark 1 (Part b). Using (1.90), (1.118) gives:∥∥b1(vj(t), x̂j(t))− b1(vj(t), xj(t))
∥∥ ≤ θlb

∥∥εj,1(t)
∥∥ (1.119)

which yields, together with (1.117):

|z̃j(t)| ≤ |wj(t)|+ θ(θ + lb)

∫ t

t−r

∥∥εj,2(s)
∥∥ ds+ laβ7

∫ t

t−r
|z̃j(s)|ds

≤ |wj(t)|+ θ(θ + lb)

∫ t

t−r
e−α(θ)seα(θ)s

∥∥εj(s)∥∥ ds
+ laβ7

∫ t

t−r
e−α(θ)seα(θ)s|z̃j(s)|ds

≤ |wj(t)|+ θ(θ + lb)

∫ t

t−r
e−α(θ)sds

(
sup

t−r≤s≤t
(e

α(θ)s
2

∥∥εj(s)∥∥)
)

+ laβ7

∫ t

t−r
e−

α(θ)s
2 |z̃j(s)|ds

(
sup

t−r≤s≤t
e
α(θ)s

2 |z̃j(s)|
)

≤ |wj(t)|+ θ(θ + lb)re
−α(θ)(t−r)/2

(
sup

t−r≤s≤t
(e

α(θ)s
2

∥∥εj(s)∥∥)
)

+ laβ7re
−α(θ)(t−r)/2

(
sup

t−r≤s≤t
e
α(θ)s

2 |z̃j(s)|
)

(1.120)

where the last inequality is obtained applying the mean value theorem to the
integral quantity

∫ t
t−r e

−α(θ)s/2ds. Multiplying both sides of (1.120) by eαt/2

yields:

eα(θ)t/2|z̃j(t)| ≤ eα(θ)t/2|wj(t)|+ θ(θ + lb)re
α(θ)r/2

(
sup

t−r≤s≤t
(e

α(θ)s
2

∥∥εj(s)∥∥)
)

+laβ7re
α(θ)r/2

(
sup

t−r≤s≤t
e
α(θ)s

2 |z̃j(s)|
)

(1.121)

which implies:

sup
0≤s≤t

(
eα(θ)s/2|z̃j(s)|

)
≤ sup

0≤s≤t

(
eα(θ)s/2|wj(s)|

)
+ θ(θ + lb)re

α(θ)r/2
(

sup
0≤s≤t

eα(θ)s/2
∥∥εj(s)∥∥)

+ laβ7re
α(θ)r/2

(
sup

0≤s≤t
eα(θ)s/2|z̃j(s)|

)
(1.122)

+θ(θ + lb)re
α(θ)r/2

(
sup
−r≤s≤0

eα(θ)s/2
∥∥εj(s)∥∥)

+ laβ7re
α(θ)r/2

(
sup
−r≤s≤0

eα(θ)s/2|z̃j(s)|
)

(1.123)
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Since reαr/2 −→
r→0

0, we let r be such that:

0 < laβ7re
α(θ)r/2 < 1 (1.124)

Then, one gets from (1.124):

sup
0≤s≤t

(
eα(θ)s/2|z̃j(s)|

)
≤ 1

1− laβ7reα(θ)r/2
sup

0≤s≤t

(
eα(θ)s/2|wj(s)|

)
+
θ(θ + lb)re

α(θ)r/2

1− laβ7reα(θ)r/2
sup

0≤s≤t

(
eα(θ)s/2

∥∥εj(s)∥∥)
(1.125)

This proves the mappings (ε1, ỹ1) −→ z̃1 and (εj, z̃j−1) −→ z̃j (j ≥ 2) are
ISS.

Part 4. Proof of the theorem result for j = 1.
Integrating (1.91a) gives:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

ỹ1(t) =

∫ t

tk

a1(v1(s− r), σ(ȳ1(s))x̃1,2(s− r)ds+

∫ t

tk

[a1(v1(s− r), σ(ȳ1(s)))

−a1(v1(s− r), y1(t))]x1,2(s− r)ds+

∫ t

tk

[b1(v1(s− r), x̂1(s− r))

−b1(v1(s− r), x1(s− r))]ds, (1.126)

Taking the norms of both sides of (1.126) gives, using similar arguments as
for (1.117) to (1.125):

For all t ∈ [tk, tk+1), k = 0, 1, . . .

|ỹ1(t)| ≤
∫ t

tk

∥∥∥θ2ε1,2(s− r)
∥∥∥ ds+ laβ7

∫ t

tk

|ȳ1(s)|ds+

∫ t

tk

θlb
∥∥ε1,1(s− r)

∥∥ ds
+
∥∥y1(tk)

∥∥
≤ θ(θ + lb)

∫ t

tk

∥∥ε1(s− r)
∥∥ ds+ laβ7

∫ t

tk

|ỹ1(s)|ds (1.127)
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where β7 is as in (1.125). Inequality (1.126) develops further as follows:

|ỹ1(t)| ≤ θ(θ + lb)

∫ t

tk

e−α(s−r)/2eα(s−r)/2∥∥ε1(s− r)
∥∥ ds

+laβ7

∫ t

tk

e−αs/2eαs/2|ỹ1(s)|ds

≤ θ(θ + lb)

∫ t

tk

e−α(s−r)/2ds
(

sup
tk≤s<t

eα(θ)(s−r)/2∥∥ε1(s− r)
∥∥)

+laβ7

∫ t

tk

e−αs/2ds
(

sup
tk≤s<t

eαs/2|ỹ1(s)|
)

≤ θ(θ + lb)e
αr/2τe−αtk/2

(
sup

tk≤s<t
eα(θ)(s−r)/2∥∥ε1(s− r)

∥∥)
+ laβ7τe

−αtk/2
(

sup
0≤s≤t

eαs/2|ỹ1(s)|ds
)
for tk < t < tk+1 (1.128)

where we have used the double inequality 0 <
∫ t
tk
e−αs/2ds ≤ τe−αtk/2. Mul-

tiplying both sides by eαt/2 yields:

For all t ∈ [tk, tk+1), k = 0, 1, . . .

eαt/2|ỹ1(t)| ≤ θ(θ + lb)e
αr/2τeατ/2

(
sup

0≤s≤t
eα(s−r)/2∥∥ε1(s− r)

∥∥)
+ laβ7τe

ατ/2
(

sup
0≤s≤t

eαs/2|ỹ1(s)|ds
)

(1.129)

Since the right side terms are non-decreasing functions of t, it follows that:

sup
0≤s≤t

eαs/2|ỹ1(s)| ≤ θ(θ + lb)e
αr/2τeατ/2

(
sup

0≤s≤t
eα(s−r)/2∥∥ε1(s− r)

∥∥)
+ laβ7τe

ατ/2
(

sup
0≤s≤t

eαs/2|ỹ1(s)|
)

≤ θ(θ + lb)e
αr/2τeατ/2

(
sup

0≤s≤t
eα(s)/2

∥∥ε1(s)
∥∥)

+θ(θ + lb)e
αr/2τeατ/2

(
sup
−r≤s≤0

eα(s)/2
∥∥ε1(s)

∥∥)
+laβ7τe

ατ/2
(

sup
0≤s≤t

eαs/2|ỹ1(s)|
)

(1.130)

Since τeατ/2 −→
τ→0

0, we let τ be such that:

0 < laβ7τe
ατ/2 < 1 (1.131)
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Then, one gets from (1.130):

sup
0≤s≤t

(e
αs
2 |ỹ1(s)|) ≤ θ(θ + lb)e

αr/2τeατ/2

(1− laβ7τeατ/2)

(
sup

0≤s≤t
eαs/2

∥∥ε1(s)
∥∥)

+M2 (1.132)

with

M2 =
θ(θ + lb)e

αr/2τeατ/2

(1− laβ7τeατ/2)

(
sup
−r≤s≤0

eαs/2
∥∥ε1(s)

∥∥) (1.133)

Using (1.132) it follows from (1.123) that:

sup
0≤s≤t

(e
αs
2 |z̃1(s)|) ≤ θ(θ + lb)e

αr/2τeατ/2

(1− laβ7reαr/2)(1− laβ7τeατ/2)

(
sup

0≤s≤t
eαs/2

∥∥ε1(s)
∥∥)

+
θ(θ + lb)re

αr/2

1− laβ7reαr/2

(
sup

0≤s≤t
eαs/2

∥∥ε1(s)
∥∥)

+
M2

1− laβ7reαr/2
(1.134)

Combining (1.134) and (1.115), one gets:

sup
0≤s≤t

e
αs
2

∥∥ε1(s)
∥∥ ≤ γ1θ(θ + lb)e

αr/2τeατ/2

(1− laβ7reαr/2)(1− laβ7τeατ/2)
sup

0≤s≤t
e
αs
2

∥∥ε1(s)
∥∥

+
γ1θ(θ + lb)re

αr/2

1− laβ7reαr/2
sup

0≤s≤t
e
αs
2

∥∥ε1(s)
∥∥+M3

≤ γ2

(
sup

0≤s≤t
e
αs
2

∥∥ε1(s)
∥∥)+M3 (1.135)

with

M3 = M1 +
M2γ1

1− laβ7reαr/2
(1.136)

Let r and τ be such that:

γ2 < 1 (1.137)

This is not an issue because τeατ/2 −→
τ→0

0 and reαr/2 −→
r→0

0. Then, it follows

from (1.69) that:

sup
0≤s≤t

(e
αs
2

∥∥ε1(s)
∥∥) ≤ Nε,1 with Nε,1 =

M3

1− γ2

(1.138)
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Then, (1.132) yields,

sup
0≤s≤t

(e
αs
2 |ỹ1(s)|) ≤ Ny,1 (1.139)

with

Ny,1 =
θ(θ + lb)e

αr/2τeατ/2

1− laβ7τeατ/2
M3

1− γ2

+M2 (1.140)

Using (1.138), (1.139) and (1.116), it follows from (1.123) that:

sup
0≤s≤t

(e
αs
2 |z̃1(s)|) ≤ Nz,1 (1.141)

with

Nz,1 =
1

1− laβ7τeατ/2

(θ(θ + lb)e
αr/2τeατ/2

1− laβ7τeατ/2
M3

1− γ2
+M2

)
+
θ(θ + lb)re

αr/2

1− laβ7reαr/2
M3

1− γ2
(1.142)

Clearly, (1.138)–(1.142) imply that the three signals (ε1(t), ỹ1(t), z̃1(t)) are
exponentially convergent to the origin and the inequalities

|z̃1(t)| ≤ ρz(θ)e
−α(θ)t/2, |ỹ1(t)| ≤ ρy(θ)e

−α(θ)t/2, ∀t ≥ 0 (1.143)

hold with any

ρz(θ) ≥ Nz,1, ρy(θ) ≥
θ(θ + lb)e

αr/2τeατ/2

1− laβ7τeατ/2
M3

1− γ2

+M2 (1.144)

Then, using (1.90) and Remark 1 (Part d), it follows that x̃1(t) is also expo-
nentially convergent to the origin and the inequality

∥∥x̃1(t)
∥∥ ≤ ρx(θ)e

−α(θ)t/2,
∀t ≥ 0, holds with any ρx(θ) ≥ θn

εn
Nε,1. A quick inspection of the expressions

of Ny,1, Nz,1, Nε,1 shows that ρx(θ), ρy(θ), ρz(θ) are increasing functions of
θ. On the other hand, conditions (1.124), (1.131) and (1.137) show that the
sampling interval τ and the fractional delay r are decreasing functions of
α(θ) which, by (1.103) and (1.108), is an increasing function of θ. These
observations end Part 4, and so establishes Theorem 1.2, for j = 1.

Part 5. Proof of the theorem result for 2 ≤ j < m.
In this part, we will first show by induction that the following inequalities
hold, for all ∀t ≥ 0 and 1 ≤ j ≤ m :

sup
0≤s≤t

(e
αs
2 |z̃j(s)|) ≤ Nz,j (1.145)

sup
0≤s≤t

(e
αs
2

∥∥εj(s)∥∥) ≤ Nε,j (1.146)
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for some constants Nz,j, Nε,j. We have already shown, in Part 4 of this proof,
that inequalities (1.145) and (1.146) hold for j = 1 (see (1.138)-(1.142)). So,
assume that the inequalities hold for some 2 ≤ j < m. The rest of the proof
will consist in showing that the inequalities also hold for j + 1 i.e. with
(εj+1(t), z̃j+1(t)). To this end, (1.123) is rewritten for j + 1 as follows, using
(1.116):

sup
0≤s≤t

(e
αs
2 |z̃j+1(s)|) ≤ 1

1− laβ7reαr/2

(
sup

0≤s≤t
eαs/2|z̃j(s)|

)
+
θ(θ + lb)re

αr/2

1− laβ7reαr/2

(
sup

0≤s≤t
eαs/2

∥∥ε1(s)
∥∥)

≤ 1

1− laβ7reαr/2

(
sup

0≤s≤t
eαs/2|z̃j(s)|

)
+
θ(θ + lb)re

αr/2

1− laβ7reαr/2

(
M1 + γ1 sup

0≤s≤t
eαs/2

∥∥z̃j+1(s)
∥∥)
(1.147)

where the last inequality is obtained using (1.115). Again, because reαr/2 −→
r→0

0, we let r be such that:

γ1 < 1, with γ3 =
θ(θ + lb)re

αr/2

1− laβ7reαr/2
γ1 (1.148)

Then, (1.147) implies:

sup
0≤s≤t

(e
αs
2 |z̃j+1(s)|) ≤ 1

(1− γ3)(1− laβ7reαr/2)

(
sup

0≤s≤t
eαs/2|z̃j(s)|

)
+M4

(1.149)

with

M4 =
θ(θ + lb)re

αr/2M1

(1− γ3)(1− laβ7reαr/2)
(1.150)

Using (1.146), inequality (1.149) yields:

sup
0≤s≤t

(e
αs
2 |z̃j+1(s)|) ≤ Nz,j+1 (1.151)

with

M4 =
Nz,j

(1− γ3)(1− laβ7reαr/2)
(1.152)

Then, using (1.151), one gets writing (1.113) for j + 1 :

sup
0≤s≤t

(e
αs
2

∥∥εj+1(s)
∥∥) ≤ Nε,j+1 (1.153)
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with Nε,j+1 = M1 + γ1Nz,j+1. Inequalities (1.151)–(1.153) show that (1.145)
and (1.146) also hold for j+1. We have thus proved that inequalities (1.145)
and (1.146) hold for all 1 ≤ j ≤ m. Then, it immediately follows that the
signals (εj(t), z̃j(t)), (j = 1 . . .m) are exponentially convergent to the origin
and the inequalities

|z̃j(t)| ≤ ρz(θ)e
−α(θ)t/2, (j = 2 . . .m), ∀t ≥ 0, (1.154)

hold with

ρz(θ) = max(Nz,1, . . . , Nz,m). (1.155)

Also, using (1.90) and Remark 1 (Part d), it follows from (1.146) that x̃1(t)
is also exponentially convergent to the origin and the inequality

∥∥x̃j(t)∥∥ ≤
ρx(θ)e

−α(θ)t/2, ∀t ≥ 0, holds with

ρx(θ) =
θn

εna
max(Nε,1, . . . , Nε,m) (1.156)

Just as in Part 4, it is readily checked that ρx(θ), ρy(θ), ρz(θ) are all increas-
ing functions of θ. This completes the proof of Theorem 1.2.

Remark 4: The maximal admissible values of the (fractional) delay r and the
maximum sampling interval τ are those satisfying conditions (1.124), (1.131)
and (1.137). As pointed out in Theorem 1.2, the larger θ the smaller the
admissible values. Therefore, upper bounds rM and τM of these maximal
admissible values are obtained by letting α(θ) = 0 in (1.124), (1.131) and
(1.137). Doing so, one gets:

rM <
1

laβ7

, τM <
1

laβ7

(1.157)

τM + rM(1− laβ7τM)

(1− laβ7rM)(1− laβ7τM)
<

1

γ1θ(θ + lb)
(1.158)

Then, the sets of admissible delay and sampling interval are respectively
defined by:

0 < r < rM and 0 < τ < τM (1.159)

Noting that r = d/m with m the number of observers in (1.84a)–(1.85b), it
turns out that the condition 0 < r < rM can always be met (by increasing
the number of observers).
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1.6 Simulation Results

1.6.1 Observer application to a system satisfying all
theoretical assumptions

To illustrate the performances of the chain observer (1.84a)-(1.84d) and
(1.85a)-(1.85b), we consider the following second order system of the form
(1.1a)-(1.1d) with the values,

A(v, z) =

[
0 1
0 0

]

b(v, x) =

[
cos(x1)

−sin(x2)− sin(x1) + 3sin(v)

]
C =

[
1 0

]
, d = 4s

This system belongs to the class of systems defined in Section 1.2 to which
the chain observer (1.84a)-(1.84d) and (1.85a)-(1.85b) applies whatever the
initial conditions. The system is excited with the T-periodic input signal,

v(t) =

{
1 for 0 ≤ t ≤ 0.4T

0 for 0.4T ≤ t ≤ T

with T = 1s. The resulting output y(t) is periodically sampled with period
τ = 0.5s and its states are given the initial values x1(0) = x2(0) = 0. The
chain observer is defined by Equations (1.84a)-(1.84d) and (1.85a)-(1.85b)
with initial values x̃1(0) = x̃2(0) = 0.7. It is characterised, on one hand, by
the gains θ and K and, on the other hand, by the number m of underlying
estimators. The latter is a measure of the observer complexity: the smaller m
the simpler the observer. As a matter of fact, one seeks the simplest observer
that converges rapidly. We consider this is the case when the convergence
time is (nearly) three times the time-delay.

Simplest observer selection for given gains. Here, the observer

gains are a priori set to θ = 1.1 and K =
[
2 1

]T
; the latter is selected so

that the matrix Ā − KC has its eigenvalues both placed at −1. Then, the
number m is increased until one gets satisfactory convergence properties. It
turns out that the simpler chain observer is that composed of m = 4 estima-
tors. The resulting state estimates are shown, along with their true values,
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in Figure 1.2 and 1.3 which actually show satisfactory convergence.

Simplest observer selection for different system delays. To fur-
ther illustrate the result of Theorem 1.2, the above simulation is repeated
with different values of the system delay d. The observer parameters θ and
K are kept unchanged. As previously, for each delay value, the number m of
estimators is increased until a satisfactory convergence quality is observed.
Table 1.1 shows the couples (d,m) thus obtained.

d 0.5 1 2 5 10
m 1 1 2 4 8

Table 1.1 – Dependence of number m (characterising the simpler
satisfactory observer) on system delay d. Case θ = 1.1, K = [2 1]T

Observer complexity dependence on observer gain. For a given
system with delay, the complexity of the simpler satisfactory observer de-
pends on the observer gains. To illustrate this dependence for the gain θ,
the above system with constant delay d = 4s is considered again. The chain

observer is given a fixed gain K =
[
2 1

]T
but the parameter θ is given

different values. For each value, the number m for the simpler satisfactory
observer is determined by simulation. The couples (θ,m) thus obtained are
shown in Table 1.2. Accordingly, the larger θ, the larger m.

θ 1.1 1.5 2 2.5
m 2 2 4 5

Table 1.2 – Dependence of number m (characterising the simpler
satisfactory observer) on parameter θ. Case d = 4s,K = [2 1]T
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Figure 1.2 – x1(t) and it’s estimate x̂1(t) with m = 4 and a delay d = 4s

Figure 1.3 – x2(t) and it’s estimate x̂2(t) with m = 4 and a delay d = 4s
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1.6.2 Observer application to a system not satisfying
all theoretical assumptions

Theorem 1.2 states that the observer (1.84a)-(1.84d) and (1.85a)-(1.85b),
when applied to the class of systems defined in Section 1.2, ensures global
convergence of the estimates to their true values, provided the design pa-
rameters are appropriately selected. In this subsection, it checked that the
observer still works well when applied to some systems not belonging to the
class of Section 1.2, but then the globality feature might be lost. This is
illustrated by considering the following Lotka–Volterra type system:

ż1(t) = z1(t)− z1(t)z2(t) + v(t)

ż2(t) = −z2(t) + z1(t)z2(t)

y(t) = z2(t− d)

For the purpose of simulation, we let d = 4s. Using the variable change
x1 = z2, x2 = z1, the above system is rewritten as follows:

ẋ1(t) = −x1(t) + x1(t)x2(t)

ẋ2(t) = x2(t)− x1(t)x2(t) + v(t)

y(t) = x1(t− d)

which fits the vector form (1.1a-1.1d) with:

A(v, x) =

[
0 x1

0 0

]

b(v, x) =

[
−x1

x2 − x1x2 + v

]
C =

[
1 0

]
, d = 2s

Clearly, system observability (guaranteed by assumption A3) is lost whenever
the variable x1 is zero (see also Remark 1 (Part d)). Bearing in mind this
consideration, the system is excited with the input signal v(t) = 1 + 0.5sin(t)
(which stays always positive) and the initial conditions are let to be positive.
In these operating conditions, it is readily checked that all assumptions (A1
to A4) hold because all system state variables turn out to be periodic and
positive. The output y(t) is sampled with a fixed period τ = 0.5s and its
states are given the initial values x1(0) = x2(0) = 0.1. The chain observer,
defined by Equations (1.84a)-(1.84d) and (1.85a)-(1.85b), is initialised with
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x̂1(0) = x̂2(0) = 0.02. The observer design parameters θ,K and m are se-
lected following a similar procedure as in Subsection 1.6.1.

Simplest observer selection for given gains

Here, the observer gains are a priori set to θ = 1.1 and K =
[
2 1

]T
so that

the matrix Ā−KC has its eigenvalues both placed at −1. Then, the number
m is increased until one gets satisfactory convergence properties. The sim-
pler chain observer thus obtained is that composed of m = 3 estimators. The
resulting state estimates are shown, along with their true values, in Figures
1.4-1.5 which actually show a satisfactory estimation quality.

Figure 1.4 – x1(t) and it’s estimate x̂1(t) with m = 4 and a delay d = 2s
Lotka–Volterra
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Figure 1.5 – x2(t) and it’s estimate x̂2(t) with m = 4 and a delay d = 2s
Lotka–Volterra

Simplest observer selection for different system delays

The above simulation is repeated with different values of the delay d, while
the observer parameters θ and K are kept unchanged. As previously, for
each delay value, the number m of estimators is increased until a satisfactory
convergence quality is observed. Table 1.3 shows the couples (d,m) thus ob-
tained.

d 0.5 1 2 5 8
m 1 1 2 6 8

Table 1.3 – Dependence of number m (characterising the simpler
satisfactory observer) on system delay d. Case θ = 1.1, K = [2 1]T

Observer complexity dependence on observer gain

Considering again the above system with constant delay d = 2s and the

observer gain K =
[
2 1

]T
, we let the parameter θ take different values

and we seek the smallest number m that yields the best performances. The
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couples (θ,m) thus obtained are shown in Table 1.4. Again, it is checked
that m grows with θ.

θ 1.1 1.5 2 2.5
m 4 4 6 6

Table 1.4 – Dependence of number m (characterising the simpler
satisfactory observer) on parameter θ. Case d = 4s,K = [2 1]T

1.7 Conclusion

In this chapter we addressed the problem of state estimation for a class
of triangular nonlinear systems (1.1a)-(1.1d) using sampled delayed output
measurements. In addition to the fact that the delay is not necessarily small,
the complexity of the problem lies in the interference of the delay and sam-
pling and in the injection of the undelayed output (which is not accessible to
measurements) in the state matrix A(v(t), z(t)).

The first proposed observer (1.1a)-(1.1d) features a simpler output predictor
defined by two ODEs (while previous observers involved output and state
predictors defined by several ODEs). The maximum sampling interval and
time-delay for the observer to be exponentially convergent are well defined
by inequalities (1.74) and (1.75).

The second part of the chapter was dedicated to present a new form of
the first observer in order to be able to observe the states of the system
(1.1a)-(1.1d) with larger delays, this new form is analytically described by
equations (1.84a)-(1.84d) and (1.85a)-(1.85b), where this observer is com-
posed of m sub-observers, we increase m until we get satisfactory results in
other words the larger the delay d the bigger is the number of sub-observers
m necessary to estimate the states of the system. Estimates of the maximum
sampling interval and the minimal number of state estimators are provided in
terms of inequalities (1.157)-(1.158). These results were published in [24, 25].
Possible future extensions of the present study include e.g. (1) removal of
the requirement on the system state to be bounded and the prior knowledge
of the output upper bound; and (2) enlargement of the class of systems to
non-triangular form systems or to systems with nonlinear output function
and non-constant delay.
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Chapter 2

Chain Observer Design For a
Class of ODE-PDE Systems

2.1 Introduction

In this chapter, the problem of state observation for systems with output de-
lay (Fig. 2.1) is addressed by letting the time delay be what it is: a distributed
parameter phenomenon. Accordingly, time delay is captured through a first-
order hyperbolic PDE connected in series with the ODE that describes the
system finite-dimensional dynamics, leading to an ODE–PDE cascade repre-
sentation of the system. Then, the observation problem consists in designing
an observer that provides online estimates of both the (finite-dimensional)
state of the ODE subsystem and the (infinite-dimensional) state of the PDE
sensor. This formulation of the observer design problem has been introduced
in [31] and [32] where the ability of the backstepping design approach, to
yield full-order observers with feedback-predictors, has been demonstrated
for linear systems. Then, arbitrary time-delay sizes can be compensated for,
due to the system linearity. This concept was developed for parabolic and
second-order hyperbolic PDEs, as well as for several challenging physical
problems such as turbulent flows and magneto-hydrodynamics [49]

This chapter aims at generalizing the PDE-based backstepping-like ob-
server design approach of [32] and [33] to nonlinear systems. Specifically,
the latter is described by an ODE of strict-feedback form with a globally
Lipschitz nonlinearity. To cope with the system nonlinearity, we invoke the
principle of high-gain observer design as in [4]. In the latter, we showed that
high-gain observers, for cascade systems with parabolic PDEs, can be made
exponentially convergent provided that the PDE domain length is sufficiently
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small. A similar result can be obtained in the case of (first-order) hyperbolic
PDEs.

A more challenging problem is one of designing exponentially convergent
observers for ODE–PDE systems with nonlinear ODEs and PDEs of arbi-
trarily large domain length. This problem has yet to be solved both in the
case of hyperbolic PDEs (of any order) and in the case of heat PDEs. In
this chapter, we develop a solution in the case of first-order hyperbolic PDEs
using the PDE-based backstepping-like observer design approach. One key
idea is to redesign within the ODE–PDE framework the cascade observer
concept, so far only developed in an ODE framework. Accordingly, we re-
express the initial ODE–PDE system representation in the form of m ≥ 2
fictitious ODE–PDE subsystems involving first-order hyperbolic PDEs with
domain length D/m (D being the arbitrarily-large time-delay) and appro-
priate boundary conditions defining the interaction between the subsystems.
Then, we design an observer for each ODE–PDE subsystem using the high-
gain observer principle backstepping-like design technique. It turns out that
the global observer is composed of m (high-gain) observers connected in se-
ries. The interconnection is such that the first partial observer is directly
driven by the physical system output. Then, the jth partial observer is
driven by a virtual output generated by the (j − 1)th observer. Each partial
observer includes an output predictor which compensates for the effects of the
fractional time-delay D/m. The predictors are defined by simple first-order
hyperbolic PDEs that are much simpler compared to some previous works
which involved output and state predictors. We then use a backstepping-like
transformation of the estimation error system and construct an appropriate
Lyapunov stability functional to analyse the transformed system. Doing so,
we obtain sufficient conditions for the cascade observer to be exponentially
convergent. The sufficient conditions involve the minimal number m of par-
tial observers: the larger the system delay, the larger the number m.

Compared with ODE-based delay-compensating observers (e.g. [19, 25]),
the present observer is full-order in the sense that it estimates both the
system (finite-dimensional) state and the sensor (infinite-dimensional) state.
Also, the present output predictors feature a feedback structure, while those
involved in ODE-based observers are open-loop.

In this chapter, we start by introducing the system under study and we
put it under a cascade representation in Sections 2.2 and 2.3, we then present
the proposed chain observer for this system in Section 2.4, this system is after
that in Section 2.5 we analyse the error system using the backstepping-like
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transformation in order to get sufficient conditions for the convergence of the
observer to the state of the system in terms of time delay D and the number
of sub-observers m. Simulation results are presented in Section 2.6 and a
conclusion ends this chapter.

2.2 System description

The class of systems under study in this chapter is depicted by the following
figure :

Figure 2.1 – ODE-PDE cascade system to be observed

This system consists of a finite-dimensional nonlinear subsystem connected in
series with a time delay. Analytically, the considered output delayed system
is described as follows:

Ẋ(t) = AX(t) + f(X(t), v(t)) (2.1a)

y(t) = CX(t−D) (2.1b)

where

A =


0 1 0 ... 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
0 0 . . . 0 0

 ∈ Rn×n, (2.2a)

C =
[
1 0 . . . 0

]
∈ R1×n (2.2b)

where X(t) ∈ Rn is the system state vector, y(t) ∈ R is the system output,
v ∈ C0([0,∞) : Ωv) is an external signal (control input) taking values in some
known subset Ωv ⊂ R, f ∈ C2([0,∞) : Rn×n) is a known bounded vector field
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with the triangular form:

f(X, v) =


f1(X1, v)

f2(X1, X2, v)
...

fn(X1, . . . , Xn, v)

 (2.2c)

where fi : Ri → R. It is supposed that f(.) is globally Lipschitz with respect
to X, uniformly in v ∈ Ωv. That is, the following property holds:

∃β0 > 0,∀X ∈ Rn, ∀v ∈ Ωv :
∥∥fX(X)

∥∥ ≤ β0 (2.3)

The positive real constant D denotes a time-delay that is arbitrarily large,
but known. Both the input v and output y are accessible to measurements,
but the state vector X(t) is not. Following the approach developed in [32]
and [33], the output equation (2.1b) is given an equivalent representation in
the form of a first-order hyperbolic equation. Accordingly, the system model
(2.1a-2.2b) rewrites as follows:

Ẋ(t) = AX(t) + f(X(t), v(t)) (2.4a)

u(D, t) = CX(t) (2.4b)

ut(x, t) = ux(x, t), 0 ≤ x < D, t > 0 (2.4c)

y(t) = u(0, t) (2.4d)

The solution of (2.4b)–(2.4c) is well known to be:

u(x, t) = CX(t+ x−D), 0 ≤ x < D, t ≥ 0 (2.5)

That is, the boundary measurement (2.4d) gives the delayed output y(t) =
CX(t−D), which is identical to (2.1b).
We seek the design of an observer that provides accurate online estimates of
the finite-dimensional state X(t) and the distributed state u(x, t)(0 ≤ x <
D). The observer must only make use of the measurements of y(t), v(t).

Remark 1.

a) In the case of a zero function f(.) (i.e. case of linear systems), expo-
nentially convergent observers have been designed in [32] and [33] using the
(infinite-dimensional) backstepping transformation approach. In such a lin-
ear context, there is no limitation on the delay size.
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b) In the case of nonlinear systems (nonzero function f (.)) and a parabolic
PDE (instead of (2.4c)), an exponentially convergent observer has been de-
signed in [4] combining the backstepping transformation and the high-gain
observer design technique (this motivated the triangular structure (2.2c) of
the nonlinear function f (.)). The exponential convergence of the observer
in [4] was established under the condition that the PDE domain length
(presently, equivalent to the delay D) is sufficiently small.

c) The present class of systems, described by (2.4a)–(2.4d), differs from that
[4] in that the PDE is hyperbolic type and the domain length D is of arbi-
trary size which, together with the nonlinear function f(.), entails an extra
difficulty. To get rid of this difficulty, a chain observer will be developed that
is of quite different nature compared to those in [32]-[4].

2.3 Cascade observer design

The cascade observer design is performed in three steps. First, the initial
system model (2.1a)–(2.2c) is given a cascade representation. Then, a set
of backstepping transformations is introduced and a new cascade system
representation is established in the transformed coordinates. Finally, the
cascade observer is constructed on the basis of the new system representation.

2.3.1 System cascade representation

Lettingm ≥ 1 be any integer, define the following signals where j = 1, . . . ,m :

Xj(t) = X
(
t+ j

D

m
−D

)
, t ≥ 0 (2.6a)

uj(x, t) = u
(
x+ (j − 1)

D

m
, t
)
, for 0 ≤ x ≤ D

m
; t ≥ 0 (2.6b)

vj(t) = v
(
t+ j

D

m
−D

)
(2.6c)

65



2.3. CASCADE OBSERVER DESIGN

The following useful expressions are immediately obtained from (2.6a)–(2.6c)
and (2.5):

uj(x, t) = CX
(
t+ x+ (j − 1)

D

m
−D

)
,

for j = 1, . . . ,m; 0 ≤ x ≤ D

m
(2.7a)

uj+1(0, t) = uj
(D
m
, t
)

= CXj(t), j = 2, . . . ,m; t ≥ 0 (2.7b)

Xm(t) = X(t) (2.7c)

vm(t) = v(t) (2.7d)

um
(D
m
, t
)

= CXm(t) = u(D, t) (2.7e)

u1(x, t) = u(x, t), (2.7f)

u1(0, t) = u(0, t) = CX(t−D) = y(t), t ≥ 0 (2.7g)

In view of these relations, and equations (2.4a)–(2.4c), time-differentiation of
(2.6a) and (2.6b) yields the following set of subsystems, with state functions
(uj(x, t), Xj(t))(j = 1, ...,m) :

Subsystem m :

Ẋm(t) = AXm(t) + f(Xm(t), v(t)), t ≥ 0 (2.8a)

um
(D
m
, t
)

= CXm(t), t ≥ 0 (2.8b)

um,t(x, t) = um,x(x, t), 0 ≤ x ≤ D

m
, t ≥ 0 (2.8c)

Subsystem j, (j = 2, . . . ,m− 1) :

Ẋj(t) = AXj(t) + f(Xj(t), vj(t)), t ≥ 0 (2.9a)

uj
(D
m
, t
)

= CXj(t) = uj+1(0, t), t ≥ 0 (2.9b)

uj,t(x, t) = uj,x(x, t), 0 ≤ x ≤ D

m
, t ≥ 0 (2.9c)

Subsystem 1 :

Ẋ1(t) = AX1(t) + f(X1(t), v1(t)), t ≥ 0 (2.10a)

u1

(D
m
, t
)

= CX1(t), t ≥ 0 (2.10b)

u1,t(x, t) = u1,x(x, t), 0 ≤ x ≤ D

m
, t ≥ 0 (2.10c)
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Equations (2.8a) to (2.10c) constitute an equivalent representation of the
system in the form of m cascaded ODE–PDE subsystems. A key feature of
this representation is that all subsystems are of equal time-delay D/m. The
larger m, the smaller this time-delay.

2.3.2 System coordinate transformation

Inspired by [32] and [4], we introduce the following m backstepping-like trans-
formations :

pj(x, t) = uj(x, t)− CM(x)M−1
(D
m

)
Xj(t);

j = 1, . . . ,m; 0 ≤ x ≤ D

m
, t ≥ 0 (2.11)

where M(x) ∈ Rn×n is defined by the ODE:

dM

dx
(x) = AM(x), M(0) = I (2.12)

which simply solves by:

M(x) = eAx (2.13)

Presently, this simplifies further as follows:

M(x) = I +
n−1∑
k=1

Akxk

k!
, M−1(x) = I +

n−1∑
k=1

(−1)kAkxk

k!
(2.14)

using the fact that An = 0, which is a property of (2.2a). Additional prop-
erties are:

AM(x) = M(x)A, AM−1(x) = M−1(x)A (2.15)

Using these properties and equations (2.8c), (2.9c) and (2.10c), it follows
from (2.11) that the new state functions pj(x, t)(j = 1, . . . ,m) are governed
by the following PDEs, for j = 1, . . . ,m; 0 ≤ x ≤ D

m
; t ≥ 0 :

pj,t(x, t) = pj,x(x, t)− CM(x)M−1
(D
m

)
f(Xj(t), vj(t)) (2.16a)

pj

(D
m
, t
)

= 0 (2.16b)

where the boundary conditions (2.16b) are immediately obtained from (2.11),
using (2.12), (2.8b), (2.9b) and (2.10b). For convenience, the transformed
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system cascade representation, is rewritten in terms of the state functions
(Xj(t), pj(x, t)), for j = 1, . . . ,m, 0 ≤ x < D

m
and t ≥ 0 :

Ẋj(t) = AXj(t) + f(Xj(t), vj(t)), t ≥ 0 (2.17a)

pj,t(x, t) = pj,x(x, t)− CM(x)M−1
(D
m

)
f(Xj(t), vj(t)) (2.17b)

pj(
D

m
, t) = 0 (2.17c)

uj(x, t) = pj(x, t) + CM(x)M−1
(D
m

)
Xj(t); (2.17d)

2.4 Proposed Observer

Inspired by [25] and [4], we propose the following high-gain type chain observer:
Observer for (X1(t), p1(x, t)), with 0 ≤ x ≤ D

m
; t ≥ 0 :

˙̂
X1(t) = AX̂1(t) + f(X̂1(t), v1(t))

−M
(D
m

)
L(û1(0, t)− u1(0, t)) (2.18a)

p̂1,t(x, t) = p̂1,x(x, t)− CM(x)M−1
(D
m

)
f(X̂1(t), v1(t)) (2.18b)

p̂1(
D

m
, t) = 0 (2.18c)

û1(x, t) = p̂1(x, t) + CM(x)M−1
(D
m

)
X̂1(t), (2.18d)

with L ∈ Rn is a gain to be chosen later, where u1(0, t) = u(0, t) (by (2.7g))
is accessible to measurements, and X̂1(0) is arbitrary.

Observer for (Xj(t), pj(x, t)), with j = 2, . . . ,m and t ≥ 0 :

˙̂
Xj(t) = AX̂j(t) + f(X̂j(t), vj(t))

−M
(D
m

)
L(ûj(0, t)− ûj−1(

D

m
, t)) (2.19a)

p̂j,t(x, t) = p̂j,x(x, t)− CM(x)M−1
(D
m

)
f(X̂j(t), vj(t)) (2.19b)

p̂j(
D

m
, t) = 0 (2.19c)

ûj(x, t) = p̂j(x, t) + CM(x)M−1
(D
m

)
X̂j(t),

0 ≤ x ≤ D

m
, t ≥ 0, (2.19d)

where X̂j(0) is arbitrary and all other observer parameters are as in (2.18a)–
(2.18d). Note that equations (2.19a)–(2.19d) define a set of sub-observers
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that must be run in order, starting with the sub-observer indexed by j =
2. Accordingly, when the jth sub-observer is being executed, the quantity

ûj−1

(
D
m
, t
)

, has already been computed by the sub-observer of index j − 1.

Then, in view of (2.7b), it makes a sense to use ûj−1(D
m
, t) as output mea-

surement for sub-observer indexed by j.
Remark 2.

a) As already noticed, cascade observers can directly be designed on the basis
of the initial system representation (2.1a)–(2.2c), using ODE-based tools, see
e.g. [19]-[25].

b) The cascade observers obtained with the ODE-based observer design in-
volve point-wise output predictors which are fully defined by ODEs aiming at
estimating the system output only at times t−D+ jD

m
, for j = 1, . . . ,m and

all t, where D denotes the system time delay. The present ODE–PDE-based
observer design approach also provides cascade observers that involve output
predictors. But, the latter are presently distributed parameter, defined by the
PDEs (2.18b)–(2.18d) and (2.19b)–(2.19d). Accordingly, the system output
y(t+ x−D) = u(x, t) is estimated, for all 0 ≤ x ≤ D and t ≥ 0, whereas the
point-wise predictors only estimate the outputs y(t + x −D) = u(x, t) with
x = jD

m
, j = 1, . . . ,m. Furthermore, as pointed out in e.g. [33], the ODE-

based observers essentially estimate the past state from D
m

seconds back, and
then advance it in an open-loop manner D

m
seconds in the future. In contrast,

the state estimation with the present PDE-based observer is performed all
the time in closed-loop.

2.5 Observer Analysis

For analysis purpose, the following error notations are introduced:

X̃j = X̂j −Xj, p̃j = p̂j − pj, ũj = ûj − uj, for j = 1, ...,m (2.20)

∆ = diag
[
1, 1

θ
, . . . , 1

θn−1

]
∈ Rn×n, for any θ > 1, (2.21)

Also, the following properties are easily checked, using (2.2a), (2.2b) and
(2.13):

∆A∆−1 = θA, C∆ = C, C∆−1 = C. (2.22a)

∆M(x)∆−1 = e∆A∆−1
x = eθAx (2.22b)

∆M(x)−1∆−1 = e−∆A∆−1
x = e−θAx (2.22c)
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Now, differentiating the errors X̃j = X̂j −Xj and p̃j with respect to t, yields
using (2.18b)–(2.18d) and (2.19b)–(2.19d):

˙̃X1(t) = AX̃1(t) + f(X̂1(t), v1(t))− f(X1(t), v1(t))

−M
(D
m

)
Lũ1(0, t) (2.23a)

p̃1,t(x, t) = p̃1,x(x, t)− CM(x)M−1
(D
m

)
×(

f(X̂1(t), v1(t))− f(X1(t), v1(t))
)

(2.23b)

p̃1(
D

m
, t) = 0 (2.23c)

and, for j = 2, . . . ,m :

˙̃Xj(t) = AX̃j(t) + f(X̂j(t), vj(t))− f(Xj(t), vj(t))

−M
(D
m

)
L
(
ûj(0, t)− uj(0, t) + ûj−1(

D

m
, t)− uj−1(

D

m
, t)
)

= AX̃j(t) + f(X̂j(t), vj(t))− f(Xj(t), vj(t))

−M
(D
m

)
L
(
ũj(0, t) + ũj−1(

D

m
, t)
)

(2.24)

Using the equality 0 = −uj(0, t) + uj−1

(
D
m
, t
)

which is a consequence of

(2.9b). Also, one gets from (2.19a)-(2.19d) that

ûj−1

(D
m
, t
)

= CX̂j−1(t) (2.25)

which together with (2.9b) gives

ũj−1(
D

m
, t) = CX̃j−1(t) (2.26)

Then, (2.24) writes for 0 ≤ x < D
m

; t ≥ 0 :

˙̃Xj(t) = AX̃j(t) + f(X̂j(t), vj(t))− f(Xj(t), vj(t))

−M
(D
m

)
L
(
ũj(0, t) +M

(D
m

)
LCX̃j−1(t) (2.27a)

p̃j,t(x, t) = p̃j,x(x, t)− CM(x)M−1
(D
m

)(
f(X̂j(t), vj(t))

−f(Xj(t), vj(t))
)

(2.27b)

p̃j(
D

m
, t) = 0 (2.27c)

Then, the main analysis result is stated in the following theorem, where the
notation z[t] designates the function [0, D

m
)→ R, x→ z[t](x) = z(x, t) :
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Theorem 2.1: Let the proposed chain observer (2.18a)–(2.18d) and (2.19a)–
(2.19d) be applied to the ODE-PDE system (2.1a)-(2.2c), and denote L =
θ∆−1L0 where L0 ∈ Rn is any vector gain such that the matrix A − L0C is
Hurwitz. Then, there exist a scalar θ∗ > 0 and an integer m∗ > 0 such that,
for all θ > θ∗ and all m > m∗, the chain observer is globally exponentially
convergent in the sense that ||X̂j(t)|| and

∫ D
0
û(x, t)2dx are exponentially

converging to ||Xj(t)|| and
∫ D

0
u(x, t)2dx respectively as t → ∞ for all ini-

tial conditions Xj(0), X̂j(0) ∈ Rn, uj[0], ûj[0], pj[0], p̂j[0] ∈ H1(0, D
m

), with
(p̂j[0])(D

m
) = 0, (uj[0])(D

m
) = CXj(0).

Proof: First note that the selection of L ∈ Rn so that A − LC is Hur-
witz is not an issue because the pair (A,C) is observable. Also, introduce
the following coordinate change:

Zj(t) = ∆M−1
(D
m

)
X̃j(t), j = 1, ...,m (2.28a)

or, equivalently,

X̃j(t) = M
(D
m

)
∆−1Zj(t), j = 1, ...,m (2.28b)

Then it readily follows from (2.18d) and (2.19d) and (2.20) the following
relation:

ũj(x, t) = p̃j(x, t) + CM(x)M−1
(D
m

)
X̃j(t)

= p̃j(x, t) + CM(x)∆−1Zj(t), for j = 1, . . . ,m;

0 ≤ x ≤ D

m
; t ≥ 0 (2.29)

The rest of the proof is divided into two parts. First, we show that for j = 1,∥∥Zj(t)∥∥ and
∫ D

0
exp̃j(x, t)

2dx are exponentially vanishing, in the second part
of the proof we show that the same result holds for j = 2, ...,m.

Step 1. Proof of the theorem results for j = 1. From (21a) one gets using
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(22) and (24)–(25), for 0 < x < D
m

;

Ż1(t) = ∆M−1
(D
m

)(
AX̃1(t) + f(X̂1(t), v1(t))− f(X1(t), v1(t))

)
−∆M−1

(D
m

)(
M
(D
m

)
L(p̃1(0, t) + C∆−1Z1(t))

)
= ∆M−1

(D
m

)(
AM

(D
m

)
∆−1Z1(t) + f(X̂1(t), v1(t))− f(X1(t), v1(t))

)
−∆M−1

(D
m

)(
M
(D
m

)
L(p̃1(0, t) + C∆−1Z1(t))

)
= (∆A∆−1 −∆LC∆−1)Z1(t)

+∆M−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t)−∆Lp̃1(0, t) (2.30)

where the last equality is obtained using the mean value theorem and the
property M(0) = I. Using (2.22a)-(2.22b), (2.23a)-(2.23c) and the equality
L = θ∆−1L0, equation (2.30) develops as follows, for 0 ≤ x ≤ D

m
; t ≥ 0 :

Ż1(t) = θ(A− L0C)Z1(t) +∆M−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t)− θL0p̃1(0, t) (2.31a)

Similarly, (2.23b) rewrites using (2.28b):

p̃1,t(x, t) = p̃1,x(x, t)− CM(x)M−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t) (2.31b)

p̃1

(D
m
, t
)

= 0 (2.31c)

where the last equality is identical to (2.23c). To analyse the system (2.31a)-
(2.31c), consider the Lyapunov function candidate:

V1 = Z1(t)TPZ1(t) +
a1

2

∫ D
m

0

exp̃1(x, t)2dx (2.32)

where a1 > 0 is any real constant and P = P T is the solution of this equation:

(A− L0C)TP + P (A− L0C) = −µI (2.33)

where µ > 0 is any real scalar and I ∈ Rn×n denotes the identity matrix.
Time differentiation of (2.32) gives, using (2.31a)-(2.31c) and (2.33):
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V̇1 = ŻT1 PZ1 + ZT1 PŻ1 + a1

∫ D
m

0
exp̃1(x, t) ˜p1,t(x, t)dx (2.34)

= −µθ‖Z1‖2 + 2ZT1 P∆M
−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1 − 2θZT1 (t)PL0p̃1(0, t)

+a1

∫ D
m

0
exp̃1(x, t)p̃1,x(x, t)dx− a1

∫ D
m

0

[
exp̃1(x, t)CM(x)M−1

(D
m

)
×
(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
M
(D
m

)
∆−1Z1(t)

]
dx

= −µθ‖Z1‖2 + 2ZT1 P∆M
−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1 − 2θZT1 (t)PL0p̃1(0, t)− a1

p̃2
1(0, t)

2
− a1

2

∫ D
m

0
exp̃2

1(x, t)dx

−a1

∫ D
m

0
exp̃1(x, t)CM(x)M−1

(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t)dx (2.35)

where we have used an integration by parts and boundary condition (2.23c).
The second term on the right side of (2.35) is worked out as follows:

∆M−1
(D
m

)
∆−1∆

(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
∆−1∆M

(D
m

)
∆−1

=
(
∆M−1

(D
m

)
∆−1

)[
∆
(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
∆−1

]
∆M

(D
m

)
∆−1 (2.36)

Using the triangular structure (2.2c) of the function f(.) and the diagonal
structure of the matrix ∆, it is readily checked that, there exists a scalar
β1 > 0 such that for all θ > 1 :∥∥∥∥∥∆(

∫ 1

0

fX(X(t) + sX̃(t), v1(t))ds
)
∆−1

∥∥∥∥∥ ≤ β1 (2.37)

Note that β1 depends on the Lipschitz constant of f(.), but is independent
on θ. Also, using the fact that

∥∥Ak∥∥ ≤ 1, for k = 1, . . . n − 1, which is a
consequence of (2.2a), it follows from (2.22c) that, for all θ > 1, all D ∈ [0, m

θ
)

and all x ∈ [0, D
m

] : ∥∥∆M(x)−1∆−1
∥∥ ≤ β2 (2.38)
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for some β2 > 0 independent on θ. Using (2.36)-(2.38), one gets:∥∥∥∥∥2ZT1 (t)P∆M−1
(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
M
(D
m

)
∆−1Z1(t)

∥∥∥∥∥
≤ 2β1β

2
2

∥∥Z1(t)
∥∥2

(2.39)

In turn, the third term on the right side of (2.35) is bounded from above as
follows, using Young’s inequality (Appendix C):

|2θZT1 (t)PL0p̃0(0, t)| ≤ θ

ξ1

∥∥Z1(t)
∥∥2

+ θξ1‖P‖2‖L0‖2 p̃2
1(0, t) (2.40)

For any ξ1 > 0. Finally, the last term on the right side of (2.35) is bounded
from above as follows, using Schwartz inequality (Appendix C):

∣∣∣a1

∫ D
m

0
exp̃1(x, t)CM(x)M−1

(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t)dx

∣∣∣ ≤ a1

(∫ D
m

0
exp̃1(x, t)dx

)1/2

×
[ ∫ D

m

0

(
ex/2CM(x)M−1

(D
m

)(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
×M

(D
m

)
∆−1Z1(t)

)2
dx
]1/2

≤ a1ν1

2

∫ D
m

0
exp̃2

1(x, t)dx+
a1

2ν1

∫ D
m

0

[
ex/2CM(x)M−1

(D
m

)
×
(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
M
(D
m

)
∆−1Z1(t)

]2
dx (2.41)

whatever ν1 > 0, where the last inequality is obtained applying Young’s
inequality. In turn, the last term on the right side of (2.41) is worked out as
follows, using (2.13):

a1

2ν1

∫ D
m

0

[
ex/2CM(x)M−1

(D
m

)
×
(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
M
(D
m

)
∆−1Z1(t)

]2
dx

=
a1

2ν1

∫ D
m

0

[
ex/2C∆−1

[
∆M−1

(D
m
− x
)
∆−1

](
∆
(∫ 1

0
fX(X(t)

+sX̃(t), v1(t))ds
)
∆−1

)(
∆M−1

(D
m

)
∆−1

)
Z1(t)

]2
dx (2.42)
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Then, using (2.37) and (2.38) and the fact that ‖C‖ = 1 and C∆−1 = C, it
follows that, for θ > 1, D ∈ [0, m

θ
) :

a1

2ν1

∫ D
m

0

[
ex/2CM(x)M−1

(D
m

)
×
(∫ 1

0
fX(X(t) + sX̃(t), v1(t))ds

)
M
(D
m

)
∆−1Z1(t)

]2
dx

≤ a1β1β
2
2

2ν1
(e

D
m − 1)

∥∥Z1(t)
∥∥2

≤ a1β1β
2
2

2ν1
(e

1
θ − 1)

∥∥Z1(t)
∥∥2

(2.43)

Using (2.43), (2.41), (2.40) and (2.39), one gets from (2.35):

V̇1 ≤ −
(
µθ − 2β1β

2
2 −

θ

ξ1
− a1β1β

2
2

2ν1
(e

1
θ − 1)

)∥∥Z1(t)
∥∥2

−a1

2
(1− ν1)

∫ D
m

0
exp̃2

1(x, t)dx−
(a1

2
− θξ1‖P‖2‖L0‖2

)
p̃1(0, t)(2.44)

Let the free parameters a1, ξ1, ν1 be set as follows:

a1

2
= θξ1‖P‖2‖L0‖2 ,

1

ξ1
=
µ

2
, ν1 =

1

2
(2.45)

Then, inequality (2.44) simplifies as follows:

V̇1 ≤ −θ
(µ

2
− 2β1β

2
2

θ
− 4

µ
‖P‖‖L0‖2 β1β

2
2(e

1
θ − 1)

)∥∥Z1(t)
∥∥2

−a1

4

∫ D
m

0
exp̃2

1(x, t)dx (2.46)

Clearly, (2β1β
2
2

θ
− 4

µ
‖P‖2‖L0‖2 β1β

2
2(e

1
θ − 1)

)
−→
θ→∞

0 (2.47)

Then, there exists a θ∗ > 0, such that for all θ > θ∗ and all D ∈ [0, m
θ

) :

µ

2
− 2β1β

2
2

θ
− 4

µ
‖P‖2‖L0‖2 β1β

2
2(e

1
θ − 1) ≥ µ

4
(2.48)

Then, (2.46) yields for all θ > θ∗ and all D ∈ [0, m
θ

) :

V̇1 ≤ −θµ
4

∥∥Z1(t)
∥∥2 − a1

4

∫ D
m

0
exp̃2

1(x, t)dx (2.49)
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which immediately gives, using (2.32):

V̇1 ≤ −θ µ

4λmax(P )
Z1(t)TPZ1(t)− a1

4

∫ D
m

0
exp̃2

1(x, t)dx

≤ −min
( µθ

4λmax(P )
,
1

2

)
V1 (2.50)

with λmax(P ) the largest eigenvalue value of P . Inequality (2.50), together

with (2.32), immediately implies that
∥∥Z1(t)

∥∥2
and

∫ D
m

0
exp̃2

1(x, t)dx are ex-
ponentially vanishing as t→∞. By (2.28b) and (2.29), the same properties

hold with
∥∥X1(t)

∥∥2
and

∫ D
m

0
ũ2

1(x, t)dx, respectively, which proves the stated
Theorem 2.1 for j = 1 and ends Step 1.

Step 2. Proof of the theorem results for j = 2, ...,m.
Just as for (2.23a), equation (2.27a) is first rewritten in terms of the state

vector Zj, defined by (2.28a), as follows:

Żj(t) = ∆M−1
(D
m

)(
AX̃j(t) + f(X̂j(t), vj(t))− f(Xj(t), vj(t))

)
−∆M−1

(D
m

)(
M
(D
m

)
L
(
ũj(0, t) + ũj−1(

D

m
, t)
))

Żj(t) = ∆M−1
(D
m

)(
AX̃j(t) + f(X̂j(t), vj(t))− f(Xj(t), vj(t))

)
−∆L

(
ũj(0, t) + ũj−1(

D

m
, t)
)

(2.51)

Using (2.22a)-(2.22b), (2.23a)-(2.23c) and the equality L = θ∆−1L0, equation
(2.51) develops as follows, for 0 ≤ x ≤ D

m
; t ≥ 0 :

Żj(t) = θ(A− L0C)Zj(t) +∆M−1
(D
m

)(∫ 1

0
fX(Xj(t) + sX̃j(t), vj(t))ds

)
×M

(D
m

)
∆−1Zj(t)− θL0p̃j(0, t) + θL0CM

(D
m

)
∆−1Zj−1(t)

for j = 2, ...,m, t > 0 (2.52a)

This is completed by equations (2.27b)-(2.27c), which are rewritten as follows
(using the mean value theorem and (2.28a):

p̃j,t(x, t) = p̃j,x(x, t)− CM(x)M−1
(D
m

)(∫ 1

0
fX(Xj(t) + sX̃j(t), vj(t))ds

)
×M

(D
m

)
∆−1Zj(t) for j = 2, ...,m, t ≥ 0 (2.52b)

p̃j

(D
m
, t
)

= 0 for j = 2, ...,m, t ≥ 0 (2.52c)
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In fact, the system (2.52a)-(2.52c) is similar to the system (2.31a)-(2.31c),
except for the last term on the right side of (2.52a) which stands as an
external input in the system (2.52a)(2.52c). Consider the Lyapunov function
candidate,

Vj = ZT
j PZj +

aj
2

∫ D
m

0

exp̃j(x, t)
2dx (2.53)

where aj > 0 is arbitrary and P is as in (2.33). Following mutatis-mutandis
equations (2.35) through (2.49), one gets for all j = 2, . . . ,m :

V̇j ≤ −θµ
4

∥∥Zj(t)∥∥2 − aj
4

∫ D
m

0
exp̃2

j (x, t)dx+ 2θZTj L0CM
(D
m

)
∆−1Zj−1(t)

≤ −θµ
4

∥∥Zj(t)∥∥2 − aj
4

∫ D
m

0
exp̃2

j (x, t)dx+ ξ
∥∥Zj(t)∥∥2

+
1

ξ

∥∥∥∥θL0CM
(D
m

)
∆−1Zj−1(t)

∥∥∥∥2

(2.54)

whatever ξ > 0, where the last inequality is obtained using Young’s inequal-
ity. Letting ξ = θµ

8
, inequality (2.54) yields, for all j = 2, ...,m :

V̇j ≤ −θ µ

8λmax(P )
ZTj (t)PZj(t)−

aj
4

∫ D
m

0
exp̃2

j (x, t)dx

+
8

µ

∥∥∥∥θL0CM
(D
m

)
∆−1Zj−1(t)

∥∥∥∥2

≤ −min
( µθ

8λmax(P )
,
1

2

)
Vj +

8

µ

∥∥∥∥L0CM
(D
m

)
∆−1

∥∥∥∥2∥∥Zj−1(t)
∥∥2

(2.55)

By Step 1,
∥∥Z1(t)

∥∥2
is exponentially vanishing as t → ∞. Then, using

the comparison Lemma (e.g. [29], p. 102), it follows from (2.55) that V2

exponentially converges to zero as t→∞ and, due to (2.53), so do
∥∥Z2(t)

∥∥2

and
∫ D

0
exp̃2(x, t)2dx. Then, proceeding with a mathematical induction, one

shows that for j = 2, ...,m, Vj exponentially converges to zero as t → ∞
which, due to (2.53), implies that so do

∥∥Zj(t)∥∥2
and

∫ D
0
exp̃j(x, t)

2dx. By

(2.28b) and (2.29), the same properties hold with
∥∥Xj(t)

∥∥2
and

∫ D
0
ũj(x, t)

2dx
respectively, for j = 2, . . . ,m. This proves Step 2 and completes the proof
of the Theorem 2.1.

2.6 Simulation Results

To illustrate the observer design of the previous Sections, we consider the
mass-spring system which is a classic example of nonlinear mechanical sys-
tem. This is composed of body of mass M0 that is connected to a fixed
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point via a spring. One possible model of this system is the following Duffing
equation:

M0z̈(t) + cvż(t) + κrz(t) + κra
2
rz(t)3 = F (2.56)

where z denotes the body displacement, -cvż represents the viscous force,
κrz(t)+κra

2
rz(t)3 the restoring force of the spring and F an external force ap-

plied to the body of mass M0. Introducing the state vector X = [z(t) ż(t)]T

and the delayed output y(t) = z(t−D) and denoting the input signal v(t) =
F (t)
M0

, equation (2.56) can be rewritten in the state space form (2.1a)(2.1b)
with:

A =

[
0 1
0 0

]
(2.57)

f(X, v) =

[
0

− κr
M0
x1 − κr

M0
x3

1 − cv
M0
x2 + v

]
(2.58)

It is shown (see e.g. [29], pp. 172–174) that if v(t) is bounded (which cur-
rently is the case) then so is the state vector X(t). Let ΩX denotes any
compact where X(t) takes its values. Then, the function f(X, v) is Lipschitz
within the set ΩX (outside this set, f(X, v) can be extended by any C∞ glob-
ally Lipschitz function). Hence, the observer design of the previous sections
can be applied to the system defined by (2.56). For the purpose of simulation,
the system parameters are given the values ar = cv = κr = M0 = 1. The
delay D will be given different values and the external force F (t) = cos(t).
The cascade observer defined by equations (2.18a)-(2.18d) and (2.19a)-(2.19d)
is first considered with the following values of the delay and the design
parameters: D = 0.5, m = 1, L0 = [2 1]T , θ = 1.1. The estimation
errors X̃(t) and ũ(x, t) are shown by the following figures.
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Figure 2.2 – Observation error on u(x, t) with m = 1 and a delay D = 0.5s

Figure 2.3 – Observation error on X(t) with m = 1 and a delay D = 0.5s
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Figure 2.4 – Observation error on u(x, t) with m = 2 and a delay D = 0.5s

Figure 2.5 – Observation error on X(t) with m = 2 and a delay D = 0.5s

Clearly, the errors diverge, proving that a simple observer (involving a
single predictor) is not enough to compensate for the delay D = 0.5 (Figs. 2.2
and 2.3). Then, a cascade observer involving m = 2 predictors is considered.
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The resulting estimation errors are plotted in Figs. 2.4 and 2.5 which show a
rapid convergence of the errors to zero, confirming the result of the previous
Theorem 2.1.
In the following, we test the cascade observer (2.18a)-(2.18d) and (2.19a)-
(2.19d) to the mass-spring system (2.56) with a larger delay D = 1s. We
start the simulations with two sub-observers m = 2 :

Figure 2.6 – Observation error on u(x, t) with m = 2 and a delay D = 1s

Figure 2.7 – Observation error on X(t) with m = 2 and a delay D = 1s
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Figure 2.8 – Observation error on u(x, t) with m = 4 and a delay D = 1s

Figure 2.9 – Observation error on X(t) with m = 4 and a delay D = 1s

It is obvious that the cascade chain observer composed of two chain sub-
observers m = 2 is unable to achieve satisfactory results since both the finite
dimensional estimation error X̃(t) and the infinite dimensional estimation
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ũ(x, t) are diverging, this is shown in Figs. 2.6 and 2.7. On the other hand
when a chain observer containing four sub-observers m = 4 was invoked, the
convergence of both X̃(t) and ũ(x, t) to the origin was obtained. These re-
sults could be summarized in the following statement: any undersized chain
observer (with m = 1, 2 or m = 3) is unable to achieve satisfactory perfor-
mances for a delay D = 1s.

2.7 Conclusion

In this part of our study, we presented a chain observer (2.18a)-(2.18d)
and (2.19a)-(2.19d) for the class of systems depicted by Figure 2.1, ana-
lytically modeled by (2.1a)-(2.1b), that can be presented as an ODE-PDE
cascade (2.4a)-(2.4d). The goal was to get online estimate of both the finite-
dimensional state X(t) and the infinite-dimensional state u(x, t) over the x-
domain (0, D), where D > 0 is allowed to be arbitrarily large. We have dealt
with this observation problem by invoking the high-gain observer method,
the backstepping-like design approach and the chain observer principle. The
matrix function M(x), which plays an instrumental role in the achievement of
the observer exponential convergence, materializes the difference of the PDE-
based observers and the standard ODE-based high-gain observers [25]. The
current study can be pursued toward the extension of the proposed observer
design approach to the case of sampled output measurement [5].
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Chapter 3

Chain Observer Design For a
Class of Nonlinear Parabolic
Systems

3.1 Introduction

The problem of observer design for nonlinear PDEs with arbitrary delays
measurements has yet to be solved. In this chapter, the problem is addressed
for a class of parabolic PDEs (Fig. 3.1) under point measurements as in [18].
In the latter paper the results were confined to small delays. To compensate
for the effect of the arbitrary-size delay, the concept of chain-observer is ex-
tended to fit this class of systems. Accordingly, the initial delay PDE system
representation is re-expressed in the form of fictive delayed subsystems. The
observer is composed of elementary observers connected in series. The inter-
connection is such that the first elementary observer is directly driven by the
physical system output. Then, the elementary observer is driven by a virtual
output generated by the previous observer. Each elementary observer can
be viewed as a predictor which compensates for the effects of the fractional
time-delay.

As in [18], using an appropriate Lyapunov-Krasovskii functional, suffi-
cient conditions are established in terms of LMIs for the chain observer to
be exponentially convergent. The sufficient conditions involve the minimal
number of elementary observers: the larger the delay the larger the number
of observers. Extension to sampled data delayed measurements is presented.

The chapter is organized as follows: first, the system under study is pre-
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sented in Section 3.2, then the proposed observer for this class of systems is
presented in Section 3.3, in Section 3.4 we study the well-posedness of the
error system, the observer analysis and an extension to the sampled-data
case are dealt with in Section 3.5; simulation results are presented in Section
3.6, a conclusion ends the chapter.

3.2 System description

In this chapter the system under study is a delayed semi-linear diffusion
equation, depicted by the following:

Figure 3.1 – Delayed semi-linear diffusion equation to be observed

It is represented mathematically by the following partial differential equation:

ut(x, t) = uxx(x, t) + f(u(x, t), x, t) (3.1)

with Dirichlet conditions u(0, 0) = u(l, 0) = 0. The system output is, yj(t) =
u(x̄j, t − D) where x̄j =

xj+1+xj
2

(j = 0, . . . , N − 1) and the points xj divide
the interval [0, l] such that 0 = x0 < . . . < xN = l. It is supposed that
xj+1 − xj ≤ ∆. The constant D represents an arbitrary delay and N is the
number of distributed sensors. It is also supposed that the function f is
known, of class C1, and satisfying mf ≤ fu ≤ Mf , for some scalar constants
mf and Mf .

3.3 Observer design

We will present an observer, which ensures exponential convergence for an
arbitrarily delay D. This chain is constituted by m sub-observers in cascade.
Each sub-observer will estimate the state u(x, t + k

m
D − D) by using the

estimation provided by the previous one in the chain. The last sub-observer
in the chain provides the estimation of the u(x, t). As we will see below,
by using a suitable Lyapunov functional , we will derive sufficient conditions
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involving both delay D, and the number of sub-observers in the chain m.
As in [19] we introduce the following notations for the delayed states:

u0(x, t) = u(x, t−D), (3.2a)

uk(x, t) = u(x, t+
k

m
D −D), k = 1 . . . , (3.2b)

Using these notations we easily check that:

uk+1(x, t) = uk(x, t− D

m
) (3.3a)

um(x, t) = u(x, t) (3.3b)

where m is the number of sub-observers in the considered chain.
We propose the following observer structure:

for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)− L(û1(x̄j, t−
D

m
)− yj(t)),

∀x ∈ [xj, xj+1), (3.4a)

for k = 2, . . . ,m :

ûkt (x, t) = ûkxx(x, t) + f(ûk(x, t), x, t)− L(ûk(x̄j, t−
D

m
)− ûk−1(x̄j, t)),

∀x ∈ [xj, xj+1), (3.4b)

It is readily checked that the observation error systems ek(x, t) = ûk(x, t) −
uk(x, t) undergoes the following equations:

for k = 1 :

e1
t (x, t) = e1

xx(x, t) + f(û1(x, t), x, t)− f(u1(x, t), x, t)− Le1(x̄j , t−
D

m
),

∀x ∈ [xj , xj+1), (3.5a)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + f(ûk(x, t), x, t)− f(uk(x, t), x, t)

− L(ûk(x̄j , t−
D

m
)− ûk−1(x̄j , t)),

∀x ∈ [xj , xj+1), (3.5b)
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Using the fact that

uk(x, t− D

m
) = uk−1(x, t)

then, for k = 1 :

e1
t (x, t) = e1

xx(x, t) + f(û1(x, t), x, t)− f(u1(x, t), x, t) − Le1(x̄j , t−
D

m
),

∀x ∈ [xj , xj+1),

e1(l, t) = e1(0, t) = 0, (3.6a)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + f(ûk(x, t), x, t)− f(uk(x, t), x, t)

− Lek(x̄j , t−
D

m
) + Lek−1(x̄j , t),

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (3.6b)

which leads to:

for k = 1 :

e1
t (x, t) = e1

xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u1(x, t))− Le1(x̄j , t−
D

m
),

x ∈ [xj , xj+1),

e1(l, t) = e1(0, t) = 0, (3.7a)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + Ψ(x, t, ek)(ûk(x, t)− uk(x, t))

− Lek(x̄j , t−
D

m
) + Lek−1(x̄j , t),

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (3.7b)

where

Ψ(x, t, ek) =

∫ 1

0

fu(û
k + θek, x, t)dθ. (3.8)

3.4 Well-posedness of the error system

Definition

A boundary value problem is well-posed in the sense of Hadamard if three
conditions are met [9]:
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• existence: the solution must exist within a certain class of functions
from which the solution is chosen,

• uniqueness: the solution must be unique within a certain class of func-
tions from which the solution is chosen,

• continuous dependence of the solution on the data of the problem: if
a small change occurs in the boundary conditions, initial conditions,
coefficients of the equation, etc, then a small change will affect the
solution as well.

A problem that violates any of the three properties of well-posedness is called
an ill-posed problem.

Example of well-posed problem

Consider the second order hyperbolic (wave) partial differential equation:

utt = uxx, x ∈ R, t > 0

with the conditions:

u(x, 0) = 0

ut(x, 0) = 0

The solution of this problem exists and it is unique:

u1(x, t) = 0

We still have to check whether a small change in the initial data leads to a
small change in the solution. For this, we replace one of the initial conditions
to become:

u(x, 0) = 0

ut(x, 0) = ε sin
(x
ε

)
The solution becomes:

u2(x, t) = ε2 sin
(x
ε

)
sin
( t
ε

)
hence, ∥∥u1(t)− u2(t)

∥∥ ≤ ε2
∣∣∣sin( t

ε

)∣∣∣ ≤ ε2

Thus the small change in the initial data leads a small change in the solution
at any positive time. This proves that this wave problem is well-posed.

88



3.4. WELL-POSEDNESS OF THE ERROR SYSTEM

Example of ill-posed problem

Consider now the Laplace equation:

utt + uxx = 0 x ∈ R, t > 0

with the conditions:

u(x, 0) = 0

ut(x, 0) = 0

The solution of this problem exists and it is unique:

u1(x, t) = 0

Now consider the same problem but with a different initial condition (a small
change in the second initial condition)

u(x, 0) = 0

ut(x, 0) = ε sin
(x
ε

)
this time the solution becomes:

u(x, t) = ε2 sin
(x
ε

)
sinh

( t
ε

)
The small change in the initial condition is described by:∥∥u1t(0)− u2t(0)

∥∥ = ε

and the change in the solution is described by:∥∥u1(t)− u2(t)
∥∥ ≤ ε2

∣∣∣sinh
( t
ε

)∣∣∣
the term ε2

∣∣∣sinh
(
t
ε

)∣∣∣ is exponentially large since ε is small. Thus a very small

change in the initial conditions results in a large change in the solution for
positive time. This proves that this problem is ill-posed due to the fact that
the third condition of well-posedness is not satisfied.

Well-posedness problem of the error system under study

In this part we will establish the well-posedness of the error system (3.7a)
for k = 1 with Dirichlet boundary conditions: e1(l, t) = e1(0, t) = 0. First
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We write the system (3.7a) in the following form:

e1
t (x, t) = e1

xx(x, t) + Ψ(x, t, e1)e1(x, t)− Le1(x, t− D

m
)

+L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξ,

∀x ∈ [xj, xj+1),

e1(l, t) = e1(0, t) = 0, (3.9)

Introduce the Hilbert space H = L2(0, l) with the norm ‖.‖L2
and with the

scalar product 〈 ·, ·〉. The boundary-value problem (3.9) can be rewritten as
a differential equation [18]:

ẇ(t) = Aw(t) + F (t, w(t)), t ≥ 0 (3.10)

in H where the operator A is defined by:

A =
∂2

∂x2
(3.11)

and has the dense domain:

D(A) = {w ∈ H2(0, l) : w(0) = w(l) = 0}, (3.12)

and the nonlinear term F : R×H2(0, l)→ L2(0, l) is defined as:

F (t, w(t)) = Ψ(x, t, e1)e1(x, t)− Le1(x, t− D

m
) + L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξ (3.13)

So what we have done for our error system (3.7a) is to formulate it as an
abstract differential equation (3.10) on the infinite-dimensional state space
H = L2(0, l), where A is the unbounded operator on H defined by (3.11)-
(3.12) and F is the nonlinear function on H defined by (3.13).
It is well-known that A generates a strongly continuous exponentially stable
semigroup T , which satisfies the inequality

∥∥T (t)
∥∥ ≤ κe−δt with some con-

stant κ ≥ 1 and decay rate δ > 0 [14]. The domain H1 = D(A) = A−1H
forms another Hilbert space with the graph inner product 〈x, y〉1 = 〈Ax,Ay〉,
x, y ∈ H1. The domain D(A) is dense in H and the inequality ‖Aw‖L2

≥
µ‖w‖L2

holds for all w ∈ D(A) and some constant µ > 0. Operator −A is

positive, so that its square root(−A)
1
2 is well defined with:

H 1
2

= D((−A)
1
2 ) = {w ∈ H1(0, l) : w(0) = w(l) = 0}
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Moreover, H 1
2

is a Hilbert space with the scalar product:

〈u, v〉 1
2

= 〈(−A)
1
2u, (−A)

1
2v〉

Denote by H(−A) 1
2

the dual of H 1
2

with respect to the pivot space H. Then
A has an extension to a bounded operator A : H 1

2
→ H− 1

2
. We have H1 ⊂

H 1
2
⊂ H with continuous embedding and the following inequality:∥∥∥−(A)

1
2w
∥∥∥
L2

≥ µ‖w‖L2
for all w ∈ H 1

2

holds. All relevant material on fractional operator degrees can be found in
[47].
A function w : [t0, T )→ H 1

2
is called a strong solution of (3.10) if

w(t)− w(t0) =

∫ t

t0

[Aw(s) + F (s, w(s))]ds (3.14)

holds for all t ∈ [t0, T ). Here, the integral is computed in H− 1
2
.

Since the function Ψ is of class C1, the following Lipschitz condition:∥∥F (t1, w1)− F (t2, w2)
∥∥
L2
≤ C[|t1 − t2|+

∥∥∥(−A)
1
2 (w1 − w2)

∥∥∥
L2

]

with some constant C > 0 holds locally in (ti, wi) ∈ R×H 1
2
, i = 1, 2. Thus,

Theorem 3.3.3 of [21] is applicable to (3.10) and by applying this theorem, a
unique strong solution w(t) ∈ H 1

2
of (3.10), initialized with z(0) ∈ H 1

2
, exists

locally. Since φ is bounded, there exists C1 > 0 such that∥∥F (t, w)
∥∥
L2
≤ C1

∥∥∥(−A)
1
2w
∥∥∥
L2

, ∀w ∈ H 1
2
, ∀ t ≥ 0.

Hence, the strong solution initialized with z(0) ∈ H 1
2

exists for all t ≥ t0 [21].

3.5 Observer analysis

Theorem 3.1: Given D and m, consider the system (3.1) and the observer
(3.4a)-(3.4b). Given positive constants ∆, δ, L > Mf− π2

l2
, R and δ1 such that

2δ > δ1, if there exist positive scalars p1, p2, p3, r and g such that :

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (3.15)

and
Φmf < 0 ; ΦMf

< 0 (3.16)
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where

Φφ =

 Φ11 − λ Φ12 Φ13

Φ12 Φ22 Φ23

Φ13 Φ23 Φ33

 (3.17)

with

Φ11 = 2δp1 + g − re−2δD
m + 2p2(φ+

∆

2π
LR)

Φ12 = −p2 + p1 + p3φ

Φ13 = re−2δD
m − p2L

Φ22 =
∆LRp3

π
− 2p3 + r

(
D

m

)2

Φ23 = −Lp3

Φ33 = −(r + g)e−2δD
m

λ =
2π2

l2
(p2 − δp3), (3.18)

then all the observation errors
∫ 1

0

(
ek(x, t)

)2

dx and
∫ 1

0

(
ekx(x, t)

)2

dx (k =

1, ..,m) globally exponentially decay to zero as t → +∞ . The above LMIs
are always feasible for large enough m.

Proof :
The proof of the above theorem, will be performed by induction.
For k = 1 consider the first observation error:

e1
t (x, t) = e1

xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u1(x, t))− Le1(x̄j, t−
D

m
),

∀x ∈ [xj, xj+1),

e1(l, t) = e1(0, t) = 0, (3.19)

and the following Lyapunov-Krasovskii functional as in [18]

V 1(t) = p1

∫ l

0

(
e1(x, t)

)2
dx+ p3

∫ l

0

(
e1
x(x, t)

)2
dx

+ g

∫ l

0

[∫ t

t−D
m

e2δ(s−t)
(
e1(x, s)

)2
ds

]
dx

+
D

m
r

∫ l

0

[∫ 0

−D
m

∫ t

t+θ
e2δ(s−t)

(
e1
s(x, s)

)2
dsdθ

]
dx (3.20)
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As in [18], differentiating the above functional we find:

V̇ 1(t) + 2δV 1(t) = 2p1

∫ l

0
e1(x, t)e1

t (x, t)dx+ 2p3

∫ l

0
e1
x(x, t)e1

xt(x, t)dx

− D

m
r

∫ l

0

∫ t

t−D
m

e2δ(s−t)e1
s(x, s)

2dsdx

+

∫ l

0

[(D
m

)2
r(e1

t (x, t)
2 + g(e1(x, t))2

− ge−2δD
m
(
e1(x, t− D

m
)
)2]

dx+ 2δp1

∫ l

0
(e1(x, t))2dx

+ 2δp3

∫ l

0
(e1
x(x, t))2dx (3.21)

using the descriptor method [17] for each j and by summing these expressions
for all j = 0, .., N − 1, this leads to:

0 = 2

∫ l

0

[
p2e

1(x, t) + p3e
1
t (x, t)

]
[−e1

t (x, t) + e1
xx(x, t)

+ Ψ(x, t, e1)e1(x, t)− Le1(x, t− D

m
)]dx

+ 2
N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx (3.22)

Here p2 and p3 are free parameters. Using integration by parts:

2p3

∫ l

0

e1
x(x, t)e

1
xt(x, t)dx = 2p3[e1

x(x, t)e
1
t (x, t)]|l0 − 2p3

∫ l

0

e1
xx(x, t)e

1
t (x, t)dx

(3.23)
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Combining (3.21) with (3.22) we get:

V̇ 1(t) + 2δV 1(t) =

∫ l

0
(2δp1 + g + 2p2φ)(e1(x, t))2dx

+

∫ l

0
2(p1 − p2 + p3φ)e1(x, t)e1

t (x, t)dx

−
∫ l

0
2p2Le

1(x, t)e1(x, t− D

m
)dx

+

∫ l

0
((
D

m
)2r − 2p3)(e1

t (x, t))
2dx

−
∫ l

0
2p3Le

1
t (x, t)e

1(x, t− D

m
)dx

−
∫ l

0
ge−2δD

m (e1(x, t− D

m
))2dx

− D

m
r

∫ l

0

∫ t

t−D
m

e2δ(s−t)e1
s(x, s)

2dsdx

+ 2δp3

∫ l

0
(e1
x(x, t))2dx+ 2p2

∫ l

0
e1(x, t)e1

xx(x, t)dx

+ 2
N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx

(3.24)

Using Jensen inequality:

−D
m
r

∫ l

0

∫ t

t−D
m

e2δ(s−t)e1
s(x, s)dsdx ≤ −r

∫ l

0
e−2δD

m

(∫ t

t−D
m

e2δ(s−t)e1
s(x, s)ds

)2
dx

≤ −re−2δD
m

∫ l

0

(
e1(x, t)− e1(x, t− D

m
)
)2
dx

(3.25)

−re−2δD
m

∫ l

0

(
e1(x, t)− e1(x, t− D

m
)
)2
dx = −re−2δD

m

∫ l

0
(e1(x, t))2dx

+2re−2δD
m

∫ l

0
e1(x, t)e1(x, t− D

m
)dx

− re−2δD
m

∫ l

0

(
e1(x, t− D

m
)
)2
dx

(3.26)
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2p2

∫ l

0
e1(x, t)e1

xx(x, t)dx = 2p2(e1(x, t)e1
x(x, t))|l0 − 2p2

∫ l

0
(e1
x(x, t))2dx (3.27)

2δp3

∫ l

0
(e1
x(x, t))2dx+ 2p2

∫ l

0
e1(x, t)e1

xx(x, t)dx = −2(p2 − δp3)

∫ l

0
(e1
x(x, t))2dx

(3.28)

Using Wirtinger inequality [45]:

2δp3

∫ l

0
(e1
x(x, t))2dx+ 2p2

∫ l

0
e1(x, t)e1

xx(x, t)dx ≤ −2π2

l2
(p2 − δp3)

∫ l

0
(e1
x(x, t))2dx

(3.29)

2
N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx

= 2

N−1∑
j=0

∫ xj+1

xj

p2e
1(x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx

+ 2
N−1∑
j=0

∫ xj+1

xj

p3e
1
t (x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx (3.30)

Using Young inequality:

2
N−1∑
j=0

∫ xj+1

xj

p2e
1(x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx ≤ Lp2R̄

N−1∑
j=0

∫ xj+1

xj

(e1(x, t))2dx

+ Lp2R̄
−1

N−1∑
j=0

∫ xj+1

xj

(
e1
ξ(ξ, t−

D

m
)
)2
dξ (3.31)

Using the fact that:

N−1∑
j=0

∫ xj+1

xj

(e1(x, t))2dx =

∫ l

0

(e1(x, t))2dx (3.32)

we get:

2
N−1∑
j=0

∫ xj+1

xj

p2e
1(x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx ≤ Lp2R̄

∫ l

0
(e1(x, t))2dx

+ Lp2R̄
−1

N−1∑
j=0

∫ xj+1

xj

(
e1
ξ(ξ, t−

D

m
)
)2
dξ (3.33)
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we apply Wirtinger inequality to the last term (3.33):

Lp2R̄
−1

N−1∑
j=0

∫ xj+1

xj

(
e1
ξ(ξ, t−

D

m
)
)2
dξ ≤ Lp2R̄

−1
N−1∑
j=0

∆2

π2

∫ xj+1

xj

(
e1
x(x, t− D

m
)
)2
dx

≤ Lp2R̄
−1∆

2

π2

∫ l

0

(
e1
x(x, t− D

m
)
)2
dx

(3.34)

choosing R̄ = ∆
π
R, we get:

2

N−1∑
j=0

∫ xj+1

xj

p2e
1(x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx ≤ ∆

π
RLp2

∫ l

0
(e1(x, t))2dx

+
∆

π
R−1Lp2

∫ l

0

(
e1
x(x, t− D

m
)
)2
dx (3.35)

2
N−1∑
j=0

∫ xj+1

xj

p3e
1
t (x, t)L

∫ x

x̄j

e1
ξ(ξ, t−

D

m
)dξdx ≤ ∆

π
RLp3

∫ l

0

(e1
t (x, t))

2dx

+
∆

π
R−1Lp3

∫ l

0

(
e1
x(x, t−

D

m
)
)2

dx (3.36)

Combining (3.21)-(3.36) leads to:

V̇ 1(t) + 2δV 1(t) ≤
(

2δp1 + g − re−2δD
m + 2p2(φ+

∆

2π
LR)− 2π2

l2
(p2 − δp3)

)
×
∫ l

0
(e1(x, t))2dx+ 2

(
− p2 + p1 + p3φ

)∫ l

0
e1(x, t)e1

t (x, t)dx

+2
(
re−2δD

m − p2L
)∫ l

0
e1(x, t)e1(x, t− D

m
)dx

+
(∆LRp3

π
− 2p3 + r

(
D

m

)2)∫ l

0
(e1
t (x, t))

2dx

+2
(
− Lp3

)∫ l

0
e1
t (x, t)e

1(x, t− D

m
)dx

+
(
− (r + g)e−2δD

m

)∫ l

0
(e1(x, t− D

m
))2dx (3.37)

Set η = col{e1(x, t), e1
t (x, t), e

1(x, t− D
m

)}. Then (3.37) becomes:

V̇ 1(t) + 2δV 1(t) ≤
∫ l

0
ηTΦφηdx+

∆

π
LR−1(p3 + p2)

∫ l

0

(
e1
x(x, t− D

m
)
)2
dx

(3.38)
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Since Φφ is affine in φ, then under (3.16):∫ l

0

ηTΦφηdx ≤ 0. (3.39)

From this we also deduce

V̇ 1(t) + 2δV 1(t)− δ1V
1(t− D

m
) ≤

∫ l

0
ηTΦφηdx+ (

∆

π
LR−1(p3 + p2)− δ1)

×
∫ l

0

(
e1
x(x, t− D

m
)
)2
dx. (3.40)

Then we conclude under conditions of Theorem 3.1, that

V̇ 1(t) + 2δV 1(t)− δ1V
1(t− D

m
) ≤ 0. (3.41)

By using Halanay’s type Inequalities (Appendix C) V 1(t) is exponentially
vanishing to zero.

Now by induction, let us suppose that the exponential convergence is guaran-
teed for k−1, and consider the observation for k. For this case the observation
error is described by the following equation:

ekt (x, t) = ekxx(x, t) + Ψ(x, t, ek)ek(x, t)− Lek(x̄j , t−
D

m
) + L

∫ x̄j

0
ek−1
x (x, t)dx,

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (3.42)

The only difference between the above system and the one of the case k = 1 is
in the disturbing term

∫ x̄j
0
ek−1
x (x, t)dx which is supposed by induction to be

exponentially vanishing to zero. By using the following Lyapunov-Krasovskii
functional:

V k(t) = p1

∫ l

0

(
ek(x, t)

)2
dx+ p3

∫ l

0

(
ekx(x, t)

)2
dx

+g

∫ l

0

[∫ t

t−D
m

e2δ(s−t)
(
ek(x, s)

)2
ds

]
dx

+
D

m
r

∫ l

0

[∫ 0

−D
m

∫ t

t+θ
e2δ(s−t)

(
eks(x, s)

)2
dsdθ

]
dx (3.43)

and similar arguments as for the case k = 1, one can easily deduce that both∫ l
0

(
ek(x, t)

)2

dx and
∫ l

0

(
ekx(x, t)

)2

dx converge exponentially to zero.
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Remark: The LMIs in Theorem 3.1 depend on the fraction D/m. If they
are feasible for Hmax = D/m, then choosing m ≥ D/Hmax we have always a
feasible LMI. Then for each delay D, we can find a sufficiently large m such
that the LMIs of the Theorem 3.1 are verified.

3.5.1 Extension to sampled-data case

In this part, we present briefly the extension of the above observer to sampled-
measurements case. In this case the output is available only at sampling
instants tk

0 = t0 < t1 < ... < tk < ..., lim
k→∞

tk =∞.

We assume that the sampling intervals may be variable, but upper-bounded
by a known bound h :

tk+1 − tk ≤ h ∀k = 0, 1, ...

The proposed observer has the following form:
for k = 1 :

û1
t (x, t) = û1

xx(x, t) + f(û1(x, t), x, t)− L(û1(x̄j, tk −
D

m
)− yj(tk)),

∀t ∈ [tk, tk+1), ∀x ∈ [xj, xj+1), (3.44a)

for k = 2, . . . ,m :

ûkt (x, t) = ûkxx(x, t) + f(ûk(x, t), x, t)− L(ûk(x̄j, t−
D

m
)− ûk−1(x̄j, t)),

∀t ∈ [tk, tk+1), ∀x ∈ [xj, xj+1). (3.44b)

Then the observation error is described by the following equations:
for k = 1 :

e1
t (x, t) = e1

xx(x, t) + Ψ(x, t, e1)(û1(x, t)− u1(x, t))− Le1(x̄j , tk −
D

m
),

∀t ∈ [tk, tk+1), ∀x ∈ [xj , xj+1)

e1(l, t) = e1(0, t) = 0, (3.45a)

for k = 2, . . . ,m :

ekt (x, t) = ekxx(x, t) + Ψ(x, t, ek)(ûk(x, t)− uk(x, t))

− Lek(x̄j , t−
D

m
) + Lek−1(x̄j , t),

∀x ∈ [xj , xj+1),

ek(l, t) = ek(0, t) = 0, (3.45b)
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3.5. OBSERVER ANALYSIS

As we can easily see, the unique difference with the observer without sam-
pling measurements is for the first sub-observer (k = 1). In order to study
the convergence of the case k = 1, we use the following modified Lyapunov-
Krasvoskii functional inspired from [35, 44]:

V 1(t) = p1

∫ l

0

(
e1(x, t)

)2
dx+ p3

∫ l

0

(
e1
x(x, t)

)2
dx

+ g

∫ l

0

[∫ t

t−D
m

e2δ(s−t)
(
e1(x, s)

)2
ds

]
dx

+
D

m
r

∫ l

0

[∫ 0

−D
m

∫ t

t+θ
e2δ(s−t)

(
e1
s(x, s)

)2
dsdθ

]
dx

+ Wh2e2δh

∫ l

0

∫ t

tk−Dm
e2δ(s−t)

(
e1
s(x, s)

)2
dsdx

− π2

4
W

∫ l

0

∫ t−D
m

tk−Dm
e2δ(s−t)

[
e1(x, s)− e1(x, tk −

D

m
)

]2

dsdx (3.46)

By generalized Wirtinger’s inequality [44], the W-terms expression in V 1,

h2e2δh

∫ l

0

∫ t

tk−Dm
e2δ(s−t)

(
e1
s(x, s)

)2
dsdx

− π2

4

∫ l

0

∫ t−D
m

tk−Dm
e2δ(s−t)

[
e1(x, s)− e1(x, tk −

D

m
)

]2

dsdx (3.47)

is nonnegative and does not grow in the jumps [44]. By differentiating it, we
obtain:

h2e2δh

∫ l

0

(
e1
t (x, s)

)2
dx

− 2δh2e2δh

∫ l

0

∫ t

tk−Dm
e2δ(s−t)

(
e1
s(x, s)

)2
dsdx

− π2

4

∫ l

0

[
e1(x, t− D

m
)− e1(x, tk −

D

m
)

]2

dx

+
π2

2
δ

∫ l

0

∫ t−D
m

tk−Dm
e2δ(s−t)

[
e1(x, s)− e1(x, tk −

D

m
)

]2

dsdx. (3.48)
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3.5. OBSERVER ANALYSIS

Using the following descriptor equation [17]:

0 = 2

∫ l

0

[
p2e

1(x, t) + p3e
1
t (x, t)

]
[−e1

t (x, t) + e1
xx(x, t)

+ Ψ(x, t, e1)e1(x, t)− Le1(x, tk −
D

m
)]dx

+ 2

N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, tk −

D

m
)dξdx.(3.49)

By adding and subtracting the term Le(x, t− D
m

) in (3.50), we get:

0 = 2

∫ l

0

[
p2e

1(x, t) + p3e
1
t (x, t)

]
[−e1

t (x, t) + e1
xx(x, t)

+ Ψ(x, t, e1)e1(x, t)− Le1(x, t− D

m
)]dx

+ L

∫ l

0

[
p2e

1(x, t) + p3e
1
t (x, t)

]
(e1(x, tk −

D

m
)− e1(x, t− D

m
))dx

+ 2
N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, tk −

D

m
)dξdx. (3.50)

Differentiating V (t) and using the descriptor equation (3.50), we get:
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3.5. OBSERVER ANALYSIS

V̇ 1(t) + 2δV 1(t) =

∫ l

0
(2δp1 + g + 2p2φ)(e1(x, t))2dx

+

∫ l

0
(p1 − p2 + p3φ)e1(x, t)e1

t (x, t)dx

+

∫ l

0
(−2p2L)e1(x, t)e1(x, t− D

m
)dx

+

(
(
D

m
)2r +Wh2e2δh

)∫ l

0
e1
t (x, t)dx

− (2p3L)

∫ l

0
(e1
t (x, t)e

1(x, t− D

m
))dx

− ge−2δD
m

∫ l

0
(e1(x, t− D

m
))2dx

− π2

4
W

∫
(e1(x, tk −

D

m
)− e1(x, t− D

m
))2dx

+ 2p2L

∫ l

0
e(x, t)((e1(x, tk −

D

m
)− e1(x, t− D

m
))dx

− 2p3L

∫ l

0
et(x, t)((e

1(x, tk −
D

m
)− e1(x, t− D

m
))dx

+ 2p2

∫ l

0
(e1(x, t)e1

xx(x, t)dx+ 2δp3

∫ l

0
(e1
x(x, t))2dx

− D

m
r

∫ l

0

∫ l

0
e2δ(s−t)es(x, s)dsdx

+ 2

N−1∑
j=0

∫ xj+1

xj

[
p2e

1(x, t) + p3e
1
t (x, t)

]
L

∫ x

x̄j

e1
ξ(ξ, tk −

D

m
)dξdx

(3.51)

Using the same computation as in the continuous case and by considering
η = col{e1(x, t), e1

t (x, t), e
1(x, t − D

m
), e1(x, tk − D

m
) − e1(x, t − D

m
)}, we can

easily derive the following theorem:

Theorem 3.2: Given D, h and m, consider the system (3.1) and the ob-
server (3.44a)-(3.44b). Given positive constants scalars ∆, δ, L > Mf − π2

l2
, R

and δ1 such that 2δ > δ1, if there exist positive scalars p1, p2, p3, r, W and g
such that:

δp3 < p2 ;
∆

π
LR−1(p3 + p2) < δ1p3 (3.52)

and
Φmf < 0 ΦMf

< 0 (3.53)
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where

Φφ =


Φ11 − λ Φ12 Φ13 p2L
Φ12 Φ22 +Wh2e2δh Φ23 p3L
Φ13 Φ23 Φ33 0

p2L p3L 0 −W π2

4

 (3.54)

with Φ11, Φ12, Φ13, Φ22, Φ23 and Φ33 given by (3.18).

Then all the observation errors
∫ 1

0

(
ek(x, t)

)2

dx and
∫ 1

0

(
ekx(x, t)

)2

dx (k =

1, ...,m) globally exponentially decay to zero as t→ +∞.

3.6 Example

Let us consider the following example:

ut = uxx(x, t) + 1.02π2cos(u(x, t)) (3.55)

with u(x, 0) = sin(x) and let yj = u(x̄j, t−D), j = 1, ..., N − 1, where D is
an arbitrarily delay and û(x, 0) = 0.

Continuous case

We choose L = 1, ∆ = 1
50

, δ = 0.21 and δ1 = 0.1. The following table shows
the value of the delay D and the corresponding number of sub-observers m
for which the LMIs of Theorem 3.1 are feasible:

D 0.42 0.85 1.2 1.70 2.13
m 1 2 3 4 5

Table 3.1 – The maximum delay D for a given number of sub-observers m
for the continuous case.

Numerical simulations of the above example are presented in the following.
These figures show the state u(x, t) of the system (3.55) and its estimates
at the points x = 0.1 and x = 0.6 . These results show that the state
of the designed observer û(x, t) converges to u(x, t) when D = 1s using
only 1 sub-observer m = 1. However, when D = 2s, 2 sub-observers m =
2 are required to get satisfactory results. Further simulations show that
the observer (3.4a)-(3.4b) estimates the state of the system (3.55) for larger
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delays than those presented in the previous table. Future works will be
dedicated to the improvement of the sufficient conditions presented here by
the LMIs (3.15) and (3.16).

Figure 3.2 – The state u(x, t) and its observations for m = 1 and m = 2 at
x = 0.1 and x = 0.6 for a delay D = 1s
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3.6. EXAMPLE

Figure 3.3 – The state u(x, t) and its observations for m = 1 and m = 2 at
x = 0.1 and x = 0.6 for a delay D = 2s

Sampled Data Case

We consider the case where the outputs yj, j = 1, ..., N − 1, are periodically
sampled with period h. We use the same values of the parameters as for
the continuous case. The following tables show, for different values of the
delay D, the value of the sampling period h and the corresponding number
of sub-observers m for which the LMIs of Theorem 3.2 are feasible.

for D = 0.4 :

h 0.05 0.37 0.47 0.51
m 1 2 3 4

Table 3.2 – The maximum sampling period h for a given number of
sub-observers m, with D = 0.4s

for D = 0.8 :
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h 0.05 0.1 0.37 0.5
m 2 3 4 8

Table 3.3 – The maximum sampling period h for a given number of
sub-observers m, with D = 0.8s

for D = 1.5 :

h 0.05 0.1 0.3 0.5
m 4 5 7 14

Table 3.4 – The maximum sampling period h for a given number of
sub-observers m, with D = 1.5s

3.7 Conclusion

In this chapter, a novel observer is proposed for a class of parabolic systems.
The main advantage of the proposed algorithm is that it can handle arbi-
trary delay and sampled measurements. This result can be easily extended
to classes of cascade ODE-parabolic PDE. The disadvantage of the above
algorithm is that it needs a chain of PDEs, which can lead to some imple-
mentation issues. The simplification of this observer is under investigation.
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General Conclusion

This final chapter describes the concluding remarks drawn from this thesis
and some of the future perspectives.

Conclusions

The main interest of the present study is the design of various observers in
order to estimate the state of different classes of nonlinear systems, where
the outputs of these systems were delayed. In some of the cases, the problem
of sampled output was treated as well.

Two major approaches were used in this thesis, the first one relies on
”finite-dimensional” research tools, i.e. starting with exponentially conver-
gent state observers of ordinary differential equations (ODEs) (not involving
time-delay), then modifying them so that exponential convergence is pre-
served in the presence of time-delay. Mainly, one or several predictors of the
output or the state are used in order to get satisfactory results. On the other
hand, we have the ”infinite -dimensional” design tools. This concept relies
on the fact that the delay is modeled by a first order hyperbolic PDE, this
leads to an ODE-PDE cascade representation of the original system. In or-
der to observe this type of cascade systems, the PDE-based backstepping-like
transformation was invoked.

Another important subject that was dealt with in this work was the chain
observer structure. This design was used in order to give the different pro-
posed observers the ability to give accurate observations in the case of arbi-
trary large pointwise delays.

The first chapter was dedicated to the study of state estimation for a class
of nonlinear triangular systems using sampled delayed output measurement.
The problem complexity lies, on one hand, in the interference of the output
time-delay and sampling effects and, on the other hand, in the injection of
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the undelayed output (which is not accessible to measurements) in the state
matrix. In the first part, a new observer was designed for this system that
features a simple output predictor defined by two ODEs. The maximum sam-
pling interval and time-delay for the observer to be exponentially convergent
were obtained using an appropriate Lyapunov function in the analysis of the
resulted error system, the input-to-state stability and the small gain theorem
were invoked in the proof. A cascade chain representation of this observer
was presented in the second part of this chapter. This new form will allow
us to estimate the state of the system when delays are not necessarily small.
This chain observer is composed of m sub-observers in series, when d is large
we increase m until we get satisfactory results. In this part, we presented
the estimates of the delay, the maximum sampling interval and the minimal
number of state sub-observers to get accurate observations.

In the second chapter, the problem of state observation was addressed for
another class of triangular nonlinear systems with delayed output, where the
delay was captured by a first order hyperbolic partial differential equation,
this led to the ODE-PDE cascade representation of the original system. The
aim was to get online estimates of both the finite-dimensional state and the
infinite-dimensional state where the delay is allowed to be large. This prob-
lem was dealt with using the high-gain chain observer defined by a set of
ODE and PDE. Using a backstepping-like transformation on the estimation
error system and a Lyapunov stability analysis on the transformed system,
sufficient conditions were established for the chain observer to be exponen-
tially convergent. The sufficient conditions involve the minimal number m
of sub-observers: the larger the system delay the larger the number of sub-
observers m.

The third chapter dealt with the observation of a class of nonlinear
parabolic PDEs with output delay, where the measurements of the state
were taken in a finite number of fixed sampling spatial points. The nov-
elty of this new observer lies in the fact that the delay size is arbitrary, this
was guaranteed using a cascade chain representation. Using an appropri-
ate Lyapunov-Krasovskii functional, sufficient conditions were established in
terms of LMIs for the chain observer to be exponentially convergent. The
sufficient conditions involve the minimal number of elementary observers: the
larger the delay the larger the number of observers. Extension to sampled
data delayed measurements is presented as well.

Simulation results were presented in the three chapters in order to confirm
the theoretical results.
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Perspectives

Even if the time-delay systems subject is extensively exploited in the litera-
ture, there are several points that have not been dealt with yet. Some of the
problems that can be treated in future works are:

• Improvement and extension of the methods presented to various classes
of nonlinear parabolic and hyperbolic systems.

• Observer design for an ODE-PDE cascade system where the PDE is of
type nonlinear heat equation.

• Observer design for an ODE-PDE cascade system where the PDE is of
type nonlinear wave equation.

• The study of the two previous cascade systems under delay measure-
ments.
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Appendix A

Control Theory Review

Class K and class KL functions [29]

• A scalar continuous function α(r), defined for r ∈ [0, a), belongs to
class K if it is strictly increasing and α(0) = 0.

• scalar continuous function β(r, s), defined for r ∈ [0, a) and s ∈ [0,∞),
belongs to class KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r the mapping β(r, s) is
decreasing with respect to s and β(r, s)→ 0 as s→ 0

Input to State Stability

Consider the system

ẋ = f(x, u) (A.1)

where f : Rn ×Rm → Rn is locally Lipschitz in x and u. The input u(t) is a
piecewise continuous, bounded function of t for all t ≥ 0.
The system ẋ = f(x, u) is said to be input-to-state stable if there exist a
class KL function β and a class K function γ such that for any t0 ≥ 0, any
initial state x(to), and any bounded input u(t), the solution x(t) exists for
all t ≥ to and satisfies [30]∥∥x(t)

∥∥ ≤ max
{
β(
∥∥x(t0)

∥∥ , t− t0), γ
(

sup
t0≤τ≤t

∥∥u(τ)
∥∥)}, ∀ t ≥ t0 (A.2)

Input-to-state stability of ẋ = f(x, u) implies the following properties:

• For any bounded input u(t), the state x(t) is bounded;
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• x(t) is ultimately bounded by γ
(

sup
t0≤τ≤∞

∥∥u(τ)
∥∥);

• if u(t) converges to zero as t→∞, so does x(t);

• The origin of the unforced system ẋ = f(x, 0) is globally asymptotically
stable.

Small Gain theorem

Figure A.1 – Feedback connection

Consider the feedback connection of figure A.1 where H1 : Lm
e → Lq

e and
H2 : Lq

e → Lm
e . Suppose both systems are finite-gain L stable; that is,

‖y1τ‖L ≤ γ1‖e1τ‖L + β1, ∀e1 ∈ Lm
e , ∀τ ∈ [0,∞) (A.3)

‖y2τ‖L ≤ γ2‖e2τ‖L + β2, ∀e2 ∈ Lq
e, ∀τ ∈ [0,∞) (A.4)

Suppose further that the feedback system is well defined in the sense that
for every pair of inputs u1 ∈ Lm

e and u2 ∈ Lq
e, there exist unique outputs

e1, y2 ∈ Lm
e and e2, y1 ∈ Lq

e. If H1 and H2 are represented by state models,
we assume that the feedback connection has a well-defined state model. De-
fine u = col(u1, u2), y = col(y1, y2), and e = (e1, e2). The next (small-gain)
gives a sufficient condition for the feedback connection to be finite-gain L

stable; that is the gain the mapping from u to e, or equivalently from u to y,
is finite-gain L stable [29].

Theorem: Under the preceding assumptions, the feedback connection is
finite-gain L stable if γ1γ2 < 1
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Appendix B

Mathematical Review

Mean value theorem
Assume that f : Rn → R is continuously differentiable at each point x of an
open set S ⊂ Rn. Let x and y be two points of S such that the line segment
L(x, y) ⊂ S. Then there is a point z of L(x, y) such that

f(y)− f(x) =
∂f

∂x

∣∣∣∣∣
x=z

(y − x) (B.1)

When f : Rn → Rn, a multidimensional version of the mean value theorem
is given by

f(y)− f(x) =

∫ 1

0

∂f

∂x
(x+ σ(y − x))dσ(y − x) (B.2)

which can be seen by setting J(x) =
[
∂f
∂x

]
(x), and h(σ) = f(x + σ(y − x))

for 0 ≤ σ ≤ 1. By the chain rule, h′(σ) = J(x+ σ(y − x))(y − x). Using

f(y)− f(x) = h(1)− h(0) =

∫ 1

0

h′(σ)dσ (B.3)

Comparison Lemma
Consider the scalar differential equation

u̇ = f(t, u), u(t0) = u0 (B.4)

where f(t, u) is continuous in t and locally Lipschitz in u, for all u ∈ J ⊂ R.
Let [t0, T ) (T could be infinity) be the maximal interval of existence of the
solution u(t), and suppose u(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a continuous
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function whose upper right-hand derivative D+v(t) satisfies the differential
inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ u0 (B.5)

with v(t) ∈ J for all t ∈ [t0, T ). Then

v(t) ≤ u(t) (B.6)

for all t ∈ [t0, T ).

112



Appendix C

Basic Inequalities

Young’s inequality
a and b are nonnegative real numbers

ab ≤ γ

2
a2 +

1

2γ
b2, ∀γ > 0 (C.1)

Cauchy–Schwartz inequality∫ 1

0

u(x)w(x)dx ≤
(∫ 1

0

u(x)2dx
)1/2(∫ 1

0

w(x)2dx
)1/2

(C.2)

Poincaré inequality
For any w, continuously differentiable on [0, 1],∫ 1

0

w(x)2dx ≤ 2w2(1) + 4

∫ 1

0

wx(x)2dx (C.3)∫ 1

0

w(x)2dx ≤ 2w2(0) + 4

∫ 1

0

wx(x)2dx (C.4)

Wirtinger’s inequality [45]
Let w ∈ H1(0, l), be a scalar function with w(0) = 0 or w(1) = 0.∫ 1

0

w(x)2dx ≤ 4

π2

∫ 1

0

wx(x)2dx (C.5)

Moreover,

max
x∈[0,1]

w(x)2 ≤
∫ 1

0

wx(x)2dx (C.6)
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Halanay’s type Inequalities [20]
Let 0 < δ1 < 2δ and let V : [t0−h,∞)→ [0,∞) be an absolutely continuous
function which satisfies

V̇ (t) ≤ −2δV (t) + δ1 sup
−h≤s≤0

V (t+ s) (C.7)

Then
V (t) ≤ e−2α(t−t0) sup

−h≤s≤0
V (t+ s) (C.8)

where α is the unique positive solution of the equation

α = δ − δ1e
2αh

2
(C.9)
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Appendix D

Finite Differences

D.1 Finite differences approximations

In the third chapter, simulation results were given for parabolic equations, in
the following the method used to achieve these simulations will be explained.
The finite difference method (FDM) is one of the approaches for the numerical
solution of PDEs. It proceeds by replacing those derivatives in the governing
equations by finite differences. In general, a finite difference approximation
to the value of some derivative of a scalar function u(x, t) at a point x0 in
its domain, say ux(x0, t) or uxx(x0, t), relies on a suitable combination of
sampled function values at nearby points. Different types of approximation
of the first derivative in x of u(x, t) are given [22]:

ux(x, t) =
u(x+ h, t)− u(x, t)

h
+O(h) forward (D.1)

=
u(x+ h, t)− u(x− h, t)

2h
+O(h2) central (D.2)

=
u(x, t)− u(x− h, t)

2h
+O(h) backward (D.3)

The second derivative approximation of u(x, t) is:

uxx(x, t) =
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
+O(h4) (D.4)

Similarly for ut and utt.
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D.2. NUMERICAL ALGORITHMS FOR PARABOLIC
EQUATIONS

D.2 Numerical algorithms for parabolic equa-

tions

Consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
, 0 < x < D, t > 0 (D.5)

on an interval of length D, with constant γ > 0. We impose time-dependent
Dirichlet boundary conditions

u(t, 0) = α(t), u(t,D) = β(t), t > 0 (D.6)

and let the initial conditions be

u(0, x) = f(x), 0 ≤ x ≤ D (D.7)

In order to effect a numerical approximation to the solution to this initial-
boundary value problem, we begin by introducing a rectangular mesh con-
sisting of nodes (tj, xm) ∈ R2 with

0 = t0 < t1 < t2 < . . . and 0 = x0 < x1 < . . . < xn = D (D.8)

For simplicity, we maintain a uniform mesh spacing in both directions, with

∆t = tj+1 − tj, and xm+1 − xm =
D

n
(D.9)

representing, respectively, the time step size and the spatial mesh size. We
will adopt the following notation

uj,m = u(tj, xm), where tj = j∆t, xm = m∆x (D.10)

to denote the numerical approximation to the solution value at the indicated
node [40],[13].
Numerous finite difference schemes for the heat equation exist such as: For-
ward Euler, Lax-Friedrichs, Lax-Wendroff . . ., however not all of them are
convergent and stable numerically. In our study we chose a scheme called
Crank-Nicolson algorithm, this method is unconditionally stable (one that
does not restrict the time step).
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D.2. NUMERICAL ALGORITHMS FOR PARABOLIC
EQUATIONS

Crank-Nicolson Method

In this algorithm we approximate the first derivative of time ut(x, t) by the
backwards difference formula

∂u(tj, xm)

∂t
=

u(tj, xm)− u(tj−1, xm)

∆t
+O(∆t) (D.11)

=
uj,m − uj−1,m

∆t
+O(∆t) (D.12)

The second-order space derivative is approximated by the centered difference
formula , and hence

∂2u

∂x2
=

u(tj, xm+1)− 2u(tj, xm) + u(tj, xm−1)

(∆x)2
+O((∆x)2) (D.13)

=
uj,m+1 − 2uj,m + uj,m−1

(∆x)2
+O((∆x)2) (D.14)

Combining these equations leads to the following formula that was imple-
mented in MATLAB.

uj,m = −µuj+1,m+1 + (1 + 2µ)uj+1,m − µuj+1,m − µuj+1,m−1, (D.15)

j = 0, 1, 2, . . . (D.16)

m = 1, . . . , n− 1. (D.17)

in which the parameter

µ =
γ∆t

(∆x)2
(D.18)
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[50] Zhong, Q.-C. (2006). Robust Control of Time-delay Systems, Springer-
Verlag London.

122



 

Université Paris-Saclay           

Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

      

 

 

Titre : Conception d'observateurs pour différentes classes de systèmes à retards non linéaires. 

Mots clés : Systèmes à retards, Observateurs échantillonnés et retardés, Equations aux dérivées 

partielles, Méthode de Lyapunov, Inégalités matricielles linéaires. 

Résumé : Le retard est un phénomène naturel 
présent dans la majorité des systèmes 
physiques et dans les applications d’ingénierie, 
ainsi, les systèmes à retard ont été un domaine 
de recherche très actif en automatique durant 
les 60 dernières années. La conception 
d’observateur est un des sujets les plus 
importants qui a été étudié, ceci est dû à 
l’importance des observateurs en automatique 
et dans les systèmes de commande en absence 
de capteur pour mesurer une variable. Dans ce 
travail, l’objectif principal est de concevoir des 
observateurs pour différentes classes de 
systèmes à retard avec un retard arbitrairement 
grand, et ce en utilisant différentes approches. 
Dans la première partie de cette thèse, la 
conception d’un observateur a été réalisée pour 
une classe de systèmes non linéaires 
triangulaires avec une sortie échantillonnée et 
un retard arbitraire, l’autre difficulté majeure 
avec cette classe de systèmes est le fait que la 
matrice d’état dépend du signal de sortie non-
retardé qui est immesurable. Un nouvel 
observateur en chaine, composé de sous-
observateurs en série est conçu pour 
compenser les retards arbitrairement grands.  
 
. 

Dans la seconde partie de ce travail, un  nouvel  
observateur a été conçu pour un autre type de 
systèmes non linéaires triangulaires, où le retard 
a été considéré, cette fois-ci, comme une 
équation aux dérivées partielles de type 
hyperbolique du premier ordre. La 
transformation inverse en backstepping et le 
concept de l’observateur en chaine ont  été 
utilisés lors de la conception de cet observateur 
afin d’assurer son efficacité en cas de grands 
retads. Dans la dernière partie de cette thèse, la 
conception d’un nouvel observateur a été 
réalisée pour un type de système modélisé par 
des équations paraboliques nonlinéaires où les 
mesures sont issues d’un nombre fini de points 
du domaine spatial. Cet observateur est 
constitué d’une série de sous-observateurs en 
chaine. Chaque sous-observateur compense 
une fraction du retard global. L'analyse de la 
stabilité des systèmes d’erreur a été fondée sur 
différentes fonctionnelles Lyapunov-Krasovskii. 
Par ailleurs, différents instruments 
mathématiques ont été employés au cours des 
différentes preuves présentées. Les résultats de 
simulation ont été présentés dans le but de 
confirmer l'exactitude des résultats théoriques 

 



 

Université Paris-Saclay           

Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Title  : Observer design for different classes of nonlinear delayed systems. 

Keywords : Delayed systems, Sample data and delayed observers, Partial differential equations, 

Lyapunov method, Linear matrix inequalities. 

Abstract : Time-delay is a natural phenomenon 
that is present in most physical systems and 
engineering applications, thus, delay systems 
have been an active area of research in control 
engineering for more than 60 years. Observer 
design is one of the most important subject that 
has been dealt with, this is due to the 
importance of observers in control engineering 
systems not only when sensing is not sufficient 
but also when a sensing reliability is needed. In 
this work, the main goal was to design 
observers for different classes of nonlinear 
delayed systems with an arbitrary large delay, 
using different approaches. In the first part, the 
problem of observer design is addressed for a 
class of triangular nonlinear systems with not 
necessarily small delay and sampled output 
measurements. Another major difficulty with 
this class of systems is the fact that the state 
matrix is dependent on the un-delayed output 
signal which is not accessible to measurement.  
A new chain observer, composed of sub-
observers in series,  is designed  to compensate 

for output sampling and arbitrary large delays. 
In the second part of this work, another kind of 
triangular nonlinear delayed systems was 
considered, where this time the delay was 
considered as a first order hyperbolic partial 
differential equation. The inverse backstepping 
transformation was invoked and a chain 
observer was developed to ensure its 
effectiveness in case of large delays. Finally, a 
new observer was designed for a class of 
nonlinear parabolic partial differential 
equations under point measurements, in the 
case of large delays. The observer was 
composed of several chained sub-observers. 
Each sub-observer compensates a fraction of 
the global delay. The stability analysis of the 
error systems were based on different 
Lyapunov-Krasovskii functionals. Also different 
mathematical tools have been used in order to 
prove the results. Simulation results were 
presented to confirm the accuracy of the 
theoretical results. 
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