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RÉSUMÉ

Au cours des dernières années, les fournisseurs de contenu ont connu une forte

augmentation des demandes de contenus vidéo et de services riches en média.

Compte tenu des limites de la mise à l’échelle du réseau et au-delà des réseaux de

diffusion de contenu, les fournisseurs de services Internet développent leurs propres

systèmes de mise en cache pour améliorer la performance du réseau. En effet, la

diffusion de caches dans l’infrastructure permet non seulement d’absorber la conges-

tion du réseau, mais aussi de rapprocher les contenus aux utilisateurs, ce qui con-

tribue à améliorer leur qualité d’expérience. Ces facteurs expliquent l’enthousiasme de

l’industrie et des académiques à l’égard du concept de réseau centré sur le contenu

(Content-Centric Network) et de sa fonction de mise en cache en réseau. La quantifica-

tion analytique de la performance de la mise en cache n’est toutefois pas suffisamment

explorée dans la littérature. De plus, la mise en place d’un système de caching efficace

au sein d’une infrastructure réseau est très complexe et demeure une problématique

ouverte.

Pour traiter ces questions, nous présentons d’abord dans cette thèse un modèle

générique de nœuds de caching nommé MACS (Markov chain-based Approximation

of Caching Systems) qui peut être adapté très facilement pour représenter différents

schémas de mise en cache et qui peut être utilisé pour calculer différentes mesures

de performance des réseaux multi-cache, y compris le cache hit moyen. Les essais

effectués ont démontré la précision de notre modèle et plusieurs conclusions ont été

tirées sur l’efficacité et les limites de la mise en cache. Nous avons ensuite abordé

le problème de l’allocation des ressources de cache dans les réseaux avec capac-

ité de caching. Moyennant notre outil analytique MACS, nous avons proposé une

approche permettant de résoudre le compromis entre différentes mesures de per-

formance en utilisant l’optimisation multi-objectif. Ensuite, une adaptation de la mé-

taheuristic GRASP (Greedy Randomized Adaptive Search Procedure) pour résoudre

le problème a été présentée et nous avons pu en savoir plus sur le placement optimal

des ressources de cache distribuées.
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ABSTRACT

In the last few years, Content Providers (CPs) have experienced a high increase in

number of requests for video contents and rich media services. In view of the network

scaling limitations and beyond Content Delivery Networks (CDNs), Internet Service

Providers (ISPs) are developing their own caching systems to improve the network

performance. Indeed, disseminating caches in the infrastructure not only helps in ab-

sorbing the network’s congestion, but in addition, brings content closer to users, which

helps improving their Quality of Experience (QoE). These factors explain the enthusi-

asm of industry and academics around the Content-Centric Networking (CCN) concept

and its in-network caching feature. The analytical quantification of caching performance

is, however, not sufficiently explored in the literature. Moreover, setting up an efficient

caching system within a network infrastructure is very complex and remains an open

problem.

To address these issues, we provide first in this thesis a fairly generic model of

caching nodes named MACS (Markov chain-based Approximation of Caching Sys-

tems) that can be adapted very easily to represent different caching schemes and

which can be used to compute different performance metrics of multi-cache networks,

including the average cache hit. The conducted tests have shown the accuracy of our

model and several conclusions were drawn on the efficiency and limits of caching. We

tackled after that the problem of cache resources allocation in cache-enabled networks.

By means of our analytical tool MACS, an approach solving the trade-off between dif-

ferent performance metrics was proposed using multi-objective optimization. Then, an

adaptation of the metaheuristic GRASP (Greedy Randomized Adaptive Search Proce-

dure) to solve the optimization problem was presented, and we were able to gain more

insights on the optimal placement of distributed caching resources.

Keywords: Content-Centric Networking, Caching, Markov chains, Cache alloca-

tion, Multi-objective optimization, GRASP.
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Chapter 0 – Résumé étendu

1 L’évolution d’Internet et les motivations d’Information-

Centric Networking

L’usage de l’Internet a radicalement changé depuis ses débuts. Conçu pour établir

des communications point-à-point entre hôtes, l’usage qu’on en fait aujourd’hui, est de

plus en plus centré sur l’accès à des contenus et services, indépendamment des hôtes

qui les fournissent. Ce décalage entre le modèle conversationnel sur lequel il est conçu

et l’usage qui en est fait, résulte en de nombreuses limites et contraintes, en termes

de capacité, de performance et de fiabilité.

Des solutions, sous forme de patchs, ont été proposées et déployées de manière

incrémentale, afin de pallier à ces limites. Comme exemple de ces solutions, on peut

citer les réseaux de diffusion de contenu (Content Delivery Networks ou CDNs) et les

réseaux pair-à-pair déployés pour répondre aux problèmes liés au passage à l’échelle

de la distribution des contenus. Cependant, ces solutions ne prennent souvent pas en

considération les réseaux de transport sous-jacents.

Les réseaux centrés sur l’information (Information-Centric Networks ou ICNs) re-

présentent une alternative à l’architecture actuelle de l’Internet. Ces réseaux ont été

proposés pour répondre à plusieurs problématiques liées aux différentes tendances

actuelles dans l’usage qui en est fait. Le réseau centré sur les contenus (Content Cen-

tric Network ou CCN), proposé par le Palo Alto Research Center, représente une des

architectures ICN qui a suscité un vif intérêt de la part de la communauté de recherche.

Basée, d’une part, sur le déploiement de caches au sein même du réseau (on parle

de “in-network caching”) et d’autre part, sur la séparation du nommage de la localisa-

tion, cette architecture permet de fournir, de par sa nature, un meilleur support pour la

mobilité, le multicast, la gestion des ressource, la sécurité, etc.

L’intégration des caches aux équipements réseau est une fonctionnalité inhérente

aux réseaux centrés sur les contenus. En effet, ce paradigme consiste à placer des

caches dans un plus grand nombre d’équipements réseau tels que des routeurs ou

des boxes. Ces équipements sont certes plus nombreux et plus proches des utilisa-

teurs, mais ils sont également plus limités en ressources, comparés aux caches utilisés

dans les architectures plus traditionnelles telles que les CDNs. De nouvelles stratégies

de gestion de caches prenant en compte ce nouveau contexte de déploiement sont

donc nécessaires afin d’arriver à un compromis entre une meilleure disponibilité des

contenus et une utilisation optimale des ressources réseau.
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2 Content-Centric Networking

FIGURE 1 – Le nommage du contenu en CCN.

Content-Centric Networking a été proposé en 2009 par le Palo Alto Research Cen-

ter (PARC). CCN propose un modèle complet de mise en réseau basé sur le contenu

(nommage du contenu, routage basé sur le contenu, etc.) où un contenu est accédé

par son nom au lieu de l’adresse IP de l’hôte qui le possède. Pour assurer la com-

munication entre les différents nœuds d’un réseau CCN, deux types de paquets sont

utilisés :

— Paquet d’intérêt ou “Interest” : utilisé pour transporter les demandes de l’utilisa-

teur. Il porte les éléments suivants :

� Nom du contenu.

� Sélecteurs : ce sont des éléments optionnels utilisés pour découvrir et sé-

lectionner les données qui correspondent aux besoins de l’application.

� Nonce : il s’agit d’un nombre aléatoire utilisé par un routeur pour détecter si

le paquet d’intérêt est dupliqué ou non.

— Paquet de données : il contient les champs suivants :

� Nom du contenu.

� Signature et infos signées : selon les informations signées, les utilisateurs

peuvent obtenir la clé publique de l’éditeur de contenu pour vérifier les don-

nées reçues avec la règle spécifiée dans le champ signature et décider d’ac-

cepter ou non les données.
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FIGURE 2 – Modèle d’un nœud CCN.

� Données : ce sont les données qui correspondent au nom du contenu dans

le paquet d’intérêt reçu.

Un utilisateur demande un contenu spécifique en diffusant son intérêt dans le ré-

seau. Tout nœud qui reçoit l’intérêt et a les données sollicitées peut répondre avec un

paquet de données et dans ce cas, l’intérêt sera consommé. Comme nous l’avons déjà

mentionné, le nom du contenu dans CCN est le seul identificateur des données et les

échanges d’informations qui reposent sur l’établissement de canaux de communica-

tion sont abandonnés. Les noms sont structurés hiérarchiquement comme le nom de

chemin d’un système de fichiers (voir Figure 1).

La structure arborescente permet d’agréger les contenus et donc de faciliter la dé-

couverte du contenu. Par exemple, comme le montre la Figure 1, tout le contenu fourni

par “parc” peut partager le même préfixe “parc.com/”. Un même objet de contenu dans

CCN peut avoir plusieurs versions et il peut être divisé en plusieurs fragments ap-

pelés “chunks” (ou morceaux) afin d’ajuster la couche de transport. Pour simplifier la

recherche et le transfert de contenu, le nom se termine généralement par la version et

les informations sur les morceaux.
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TABLE 1 – Un exemple d’une table PIT.

Noms des contenus Faces entrantes

ccn :/spotify.com/music1.mp3 301

ccn :/irisa.com/documents/doc1.docx 201,203

ccn :/youtube.com/videos/video1.mp4 102,105

... ...

2.1 Modèle d’un nœud CCN

Dans un réseau CCN, chaque nœud est essentiellement composé de trois struc-

tures de données (voir Figure 2) :

— Le Content Store (CS) : le CS est une mémoire tampon qui fournit la fonction

de mise en cache dans le réseau en sauvegardant des copies des données

qui circulent afin d’optimiser les performances du réseau (minimiser la latence,

réduire la surcharge du réseau, etc.).

— La table PIT (Pending Interest Table) : elle contient deux types d’informations

(voir Table 1) : les noms des contenus dans les messages d’intérêt reçus et

les faces entrantes associées (les faces jouent un rôle similaire aux interfaces

dans le réseau IP). Une table PIT a deux rôles. Le premier consiste à garder

la trace des intérêts transférés en attente d’un paquet de données retourné, en

enregistrant le nom du contenu demandé et la face associée. Le deuxième rôle

est d’éviter de transmettre plusieurs intérêts qui demandent le même contenu ;

lorsqu’un nœud CCN reçoit de la part de différentes interfaces plusieurs mes-

sages d’intérêt qui demandent le même contenu, ces paquets d’intérêt seront

regroupés en une seule entrée dans le PIT et seul le premier sera acheminé.

— La table FIB (Forwarding Information Base) : la FIB est utilisée pour guider les

paquets “Interest” vers les sources potentielles des données demandées en

sauvegardant dans un tableau deux types d’informations (voir Table 2) : le nom

du contenu (ou les préfixes agrégés des noms) et les faces sortantes associées.

Un contenu ayant plusieurs interfaces sortantes signifie qu’une donnée peut

avoir plusieurs sources.
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TABLE 2 – Un exemple d’une table FIB.

Préfixes Faces sortantes

ccn :/spotify.com/ 101

ccn :/irisa.com/documents/ 204,206

ccn :/youtube.com/videos/ 301,302

... ...

2.2 Le routage des paquets d’intérêts/de données dans les CCN

Dans les réseaux CCN, seuls les paquets d’intérêts sont acheminés et lorsqu’ils

remontent vers des sources de données potentielles, ils laissent des traces dans les

nœuds par lesquelles ils sont passés afin que les paquets de données puissent suivre

pour atteindre leurs destinations.

Le traitement et le transfert de paquets dans les nœuds CCN s’effectuent comme

suit :

1. Tout d’abord, un nœud CCN reçoit un paquet d’intérêt où le nom du contenu

porté par ce paquet est vérifié dans le Content Store.

2. S’il y a un paquet de données dans le CS qui correspond à la demande, il est

alors renvoyé par l’interface entrante de l’intérêt traité. Sinon, le nom du contenu

est vérifié dans le PIT.

3. S’il y a une entrée correspondante dans le PIT, alors la requête est rejetée et

sa face entrante est ajoutée à l’entrée PIT existante (agrégation des paquets

Intérêt). Si ce n’est pas le cas, une nouvelle entrée est créée et les intérêts sont

transmis sur la base des informations de la table FIB.

4. Lorsque le contenu de la requête est trouvé, le paquet de données suivra les

traces laissées par les paquets d’intérêt afin d’atteindre la destination.

5. Une fois qu’un noeud reçoit un paquet de données, son nom de contenu est

vérifié dans le CS.

6. S’il y a une correspondance, le paquet de données doit être écarté puisqu’il

existe déjà dans le CS. Sinon, le nom du contenu est recherché dans le PIT.
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FIGURE 3 – Traitement des paquets dans CCN.

7. Si une entrée correspondante est trouvée dans le PIT, le paquet de données

est envoyé par les faces où l’intérêt a été reçu. L’entrée PIT correspondante est

alors supprimée et en fonction de la stratégie de mise en cache, le nœud peut

conserver une copie du contenu dans le CS.

Un exemple de traitement et de transfert de paquets dans un CCN est présenté

dans la Figure 3. Une fois que le paquet d’intérêt est reçu du nœud A (qui demande

l’objet x), le nœud C qui ne trouve pas de correspondance dans son cache ni dans la

table des intérêts, transmet le paquet au nœud source D. Lorsque le nœud C reçoit le

paquet de données de la part de D, il le renvoie au client attaché à A et il peut ensuite

avec sa copie en cache servir la demande provenant du nœud B pour le même contenu

x.

3 Contributions

Comme mentionné précédemment, la fonctionnalité de caching est l’une des carac-

téristiques les plus importantes de CCN. Elle joue un rôle majeur dans l’amélioration

des performances du réseau. C’est pourquoi il est crucial d’utiliser efficacement les

ressources de caches afin d’avoir un meilleur accès aux contenus. L’optimisation de la
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fonctionnalité de caching peut être traitée à différents niveaux :

— Algorithme de remplacement de cache : c’est l’algorithme responsable de la

gestion du cache. Lorsque le cache est plein, un élément est choisi par l’algo-

rithme pour être rejeté. Nous pouvons citer les algorithmes de mise en cache

First In First Out (FIFO), Least Recently Used (LRU), etc.

— Politique de décision de caching : elle détermine quel contenu doit être mis en

cache et dans quel nœud. En d’autres termes, un nœud doit décider quand il

reçoit un contenu et selon la stratégie appliquée, s’il doit mettre les données en

cache ou pas.

— Placement des ressources de caches : la capacité du cache pouvant être al-

louée à un nœud CCN étant limitée, le placement de cache consiste à étudier

la répartition optimale des ressources de stockage entre les nœuds du réseau

(ex : adopter une répartition équitable, donner plus d’espace de stockage aux

routeurs du edge, etc).

Les travaux de cette thèse se sont concentrés sur les problèmes liés à la modéli-

sation du cache et à l’allocation des ressources du cache dans les réseaux CCN et les

réseaux multi-cache en général. Les contributions réalisées et validées peuvent être

résumées comme suit :

— Un modèle analytique basé sur les chaînes de Markov nommé MACS (Markov

chain-based Approximation of Caching Systems) a été proposé. Il permet de

modéliser la gestion des caches dans les réseaux CCN et d’estimer ainsi les

performances du système. Ce travail couvre la technique de mise en cache LCE

(Leave Copy Everywhere) et l’algorithme de remplacement de données dans le

cache LRU.

— Ensuite, une extension du modèle MACS a été développée. Elle nous permet

de modéliser le mécanisme de caching dans le cas général afin de pouvoir

analyser plusieurs stratégies de mise en cache intéressantes. Le modèle a été

validé théoriquement et par simulation. Grâce à cet outil, nous avons pu modé-

liser et analyser deux techniques de caching très intéressantes nommées 2Q

(Two Queue) et LCD (Leave Copy Down) connues pour avoir un bon rapport

efficacité/complexité. Les différents résultats générés ont montré la précision du

modèle proposé sous différentes configurations du réseau et ils nous ont permis

d’en savoir plus sur les stratégies de caching qu’il faudra utiliser pour avoir les

meilleures performances.
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— Après avoir étudié comment placer et utiliser de façon efficace les ressources

limitées de mise en cache de données dans un réseau distribué, nous avons

proposé une modélisation du problème sous forme d’optimisation combinatoire,

où notre outil MACS est utilisé pour évaluer les fonctions objectifs. Une applica-

tion de la métaheuristique GRASP (Greedy randomized adaptive search proce-

dure) sur notre modèle d’optimisation a été ensuite proposée et une analyse a

été faite sur les différents résultats que nous avons obtenus. Cela nous a permis

de mieux comprendre l’impact du placement des ressources du cache sur les

performances du réseau et de voir comment notre solution peut s’adapter aux

différentes contraintes et objectifs établies dans un système de multi-cache.
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1 Context of the work
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Figure 4 – Cisco Visual Networking Index: Global IP traffic evolution and forecast,
2015–2022.

The last few years witnessed a shift on the Internet usage that switched from a

host-centric model to a content-centric approach, especially when dealing with con-

tent retrieval and data dissemination [1]. This evolution is mostly driven by the rapid

growth of media-enriched services, e.g., Peer-to Peer file sharing, Video on Demand,

video/audio streaming and social networks, which has significantly changed the way

that people experience the Internet, making media traffic, and especially video traffic,

one of the main drivers of the Internet Economy. According to the Cisco Visual Net-

working Index [2]-[3], the global IP traffic will reach 396 exabytes (EB) per month in

2022, up from 72 EB per month in 2015 (see Figure 4). Besides, video services and
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Figure 5 – Network architecture with the in-network caching capability.

content continue to be the dominant leader compared with all other applications. In-

ternet video will account for about 80% of global Internet traffic by 2020, up from 63

percent in 2015. Across the globe, the number of devices connected to IP networks will

be more than three times the global population by 2022. There will be 3.6 networked

devices per capita by 2022, up from 2.4 networked devices per capita in 2017 and a

total of 28.5 billion networked devices by 2022, up from 18 billion in 2017 [3].

To deal with these new trends of the Internet usage and the important challenges

that have raised with it [4], it is obvious that current IP-based infrastructures should

evolve in a way to optimize the content delivery. Such data consumption context allowed

CDNs (Content Delivery Networks) [5] to be at the center of the content distribution

value chain. Internet Service Providers (ISPs), for their part, are struggling to benefit

from this traffic increase [6]. On the contrary, this trend incurs large expenditures to

meet the increasing demand and satisfy subscribers. Besides, given the adopted flat

rate business models and even though that ISPs are payed by CDNs for hosting their

data centers, the Average Revenues Per User (ARPU) is getting lower. ISPs are, thus,

investigating the possibilities to extend their infrastructure with caching capabilities [7]

as a way to be part of this content distribution value chain (see Figure 5).

The term cache [8] was first employed in computing systems to describe a data

storing technique that provides the ability to access data or files at a higher speed.
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Caches can be implemented both in hardware and software and they are used to serve

as an intermediary component between the primary storage appliance and the recipi-

ent hardware or software device to reduce the latency in data access. The concept of

caching was later adopted by the Internet [9]. By storing popular contents from pre-

vious requests, web caching solutions can help enhancing the content access time

significantly. The rapid growth of Internet traffic has led to the emerging of Content De-

livery Networks, that have become an important layer in the Internet ecosystem. CDNs

are used to enhance the delivery of content by replicating commonly requested files

across a globally distributed set of caching servers. The aim is to reduce the load on

origin servers and to improve the experience of the clients by delivering a local copy of

the content from a nearby cache edge.

More recently, there has been a growing emphasis on the Information-Centric Net-

working paradigm (ICN) [10]-[11]-[4], which is emerging as one of the most interest-

ing alternatives to the existing network architecture. The ICN paradigm consists in re-

designing the future Internet architecture by focusing on named data instead of the

end-to-end principle and the host-centric paradigm. One major feature considered in

ICN to achieve service scalability and performance, is the in-network caching, where

each node equipped with a content store module has the ability to cache the content

that passes by it. The advent of ICNs represents, thus, a real opportunity for ISPs [12].

In fact, ICN networks enable focusing on the content itself and not on its location, which

allows to overcome the limitations of the current Internet network. Thus, end-users’ re-

quests that are routed toward the Content Providers’ servers (CPs), can be satisfied by

intermediate caching nodes, which allows reducing the network traffic and the servers’

loads while shortening the latency for end-users.

2 Motivations and contributions

When content caching is possible, a significant improvement can be achieved, as

shown in several studies [13]-[14]. The analytical quantification of caching performance

is, however, not sufficiently explored in the literature. In fact, several issues need to be

addressed in order to understand the behavior of such a caching network. Indeed, in

addition to the cache hit probability, other metrics deserve a deeper analysis, such as

the average distance to reach a particular content, the content provider load or the

impact of cache size and traffic pattern on performance.
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Moreover, setting up an optimal caching system within a network infrastructure, up

to the edge of the latter at the Multi-access Edge Computing (MEC) level [15], is very

complex and remains an open issue in the literature [16]. In fact, if we want to opti-

mize the use of caches, we will tend to put everything in the same place at the exit

of the network (at Point of Presence level), where users requests will be aggregated.

This allows, indeed, to maximize the hit rate, but has the drawback of overloading the

network. However, if one wants to maximize user satisfaction while at the same time

reducing network load, the ideal would be to put everything on the edge. The problem

here is that there will be more redundancy at the edge because of the multitude of

access networks and the origin server will be more solicited. The performance of dis-

tributed caches is also strongly related to the popularity profile of content that generally

follows a Zipf law [16][17]. In such a distribution, the popularity of a content of rank r

is proportional to 1/rα for some α. The larger the factor α, the smaller the number of

very popular files, with therefore less caching needs. The smaller it is, the larger is the

number of very popular files, with consequently a much greater caching requirement.

The contributions of this thesis work focus on these aforementioned issues related

to caching optimization in multi-cache networks in general and more specifically in

Content-Centric Networks and they can be summarized as follows. We start first by

introducing an analytical model based on Markov chains named MACS (Markov chain-

based Approximation of Caching Systems). This model allows us to estimate the hit

probability of an LRU cache (Least Recently Used) operating under the default caching

scheme where the contents are always saved when received. Then, an extension of

MACS was presented by proposing a methodology that allows modeling the caching

decision process independently from the strategy of caching that will be adopted. We

have shown how the versatility of our cache modeling tool enables to mimic efficient

caching strategies from the state-of-the-art and it can be easily adapted to represent an

interconnection of caches under different schemes. We tackled after that the problem

of cache resources allocation, which consists on studying how limited storage capac-

ities should be distributed across the network’s nodes in order to ensure an effective

use of caches. The proposed approach solves the trade-off between minimizing the hit

rate in the origin server and minimizing the distance between clients and the requested

contents. To do so, the problem was modeled as a multi-objective integer nonlinear pro-

gram and we proposed the use of the Greedy Randomized Adaptive Search Procedure

(GRASP) due to the NP-hardness of the problem.
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3 Thesis outline

The rest of the thesis is organized as follows:

— In chapter one, we start first by giving an overview of the Information-Centric

Networking paradigm to focus after that on Content-Centric Network, which rep-

resents a promising ICN solution for the future Internet. Then, we analyze the

existing works related to the caching feature of ICNs and of multi-cache systems

in general. More specifically, we discuss the issues related to cache modeling

and cache resources allocation in multi-cache networks.

— In chapter two, we present an analytical model named MACS capable of com-

puting the hit ratio of an LRU cache [18]. By proposing a methodology that al-

lows modeling the caching decision process in the general case, we were able

to extend MACS so that it can be used to analyze different caching algorithms

[19]. We aim with our proposal to gain more insights on the efficiency and limits

of CCN caching strategies, with a focus on the schemes having a good perfor-

mance/overhead trade-off through the analysis of different network performance

metrics. We have shown how the versatility of our cache modeling tool enables

to mimic existing efficient caching strategies and it can be easily adapted to rep-

resent an interconnection of caches under different schemes [20]. Even though

our proposal was first used in the context of CCN networks, it can of course be

applied to multi-cache networks in general. In addition to the cache hit, MACS

can be used to compute different performance metrics like the content provider

load and the distance reduction ratio. The conducted tests have shown the ac-

curacy of our model in estimating the cache hit rate of a multi-cache system

under different caching schemes and several conclusions were drawn on the

efficiency and limits of caching that we hope it will help designing optimized

caching strategies.

— In chapter three, the optimal placement of caching resources is investigated. The

cache allocation issue is one of the most important problems to address when

studying multi-cache networks due to the expensive cost of deploying distributed

storage resources along the network. In this context, we propose an approach

that solves the trade-off between minimizing the hit rate in the origin server and

minimizing the distance to retrieve contents. To do so, we modeled the cache

allocation problem as a multi-objective integer nonlinear program where our an-
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alytic tool MACS is used to evaluate the objective functions. Our formulation

of the problem turned out to be an NP-hard problem. Thus, we proposed an

adaptation of the metaheuristic GRASP to solve the problem using different

evaluation functions to generate the solutions [21]. The conducted tests have

showed the closeness of the metaheuristic’s outcomes to the optimal ones. The

aim of the work presented in this chapter is to give a tool capable of efficiently

allocating distributed caching resources that takes into account more than one

performance metric and versatile enough to adapt to specific desired network

performance and constraints.

— Finally, this dissertation closes by summarizing our thesis work and the different

conclusions that were drawn and perspectives on future work are outlined for

the overall thesis.
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Chapter 1 – Background

Introduction

The aim of this chapter is to give first an overview of the Information-Centric Net-

working paradigm. We will start by giving a brief description of ICN and some of its

important features. Then, we will focus on the legacy and state-of-the-art proposals

related to the caching feature of ICNs and of multi-cache systems in general, which

is the core of this thesis work. More specifically, we will discuss the issues related to

cache modeling and cache resources allocation in multi-cache networks.

1 Information-Centric Networking

1.1 Motivations

In the last years, accessing content has become the most important usage of the

Internet. This evolution is mostly driven by the increased popularity of content-oriented

services, e.g., Peer-to Peer file sharing, Video on Demand, video/audio streaming and

social networks where users focus more on contents and not on the physical locations

from which contents can be retrieved. Unlike its usage, the Internet was designed for

host-to-host communications. To overcome this mismatch between usage and design,

many projects have been carried on in order to propose a network infrastructure ca-

pable of providing services better suited to today’s applications requirements. These

studies led to a new paradigm named Information-Centric Networking [10]-[11]-[4].

1.2 ICN description

ICN represents a promising new paradigm for the Internet of the future, where the

communications are no longer depending on named hosts (host-to-host communica-

tions) but relies on named data (see Figure 1.1). Contrarily to IP network where users

before accessing any data or starting any activity should tell the network which location

they want to communicate with (IP addresses), end-users in ICN express only their in-

terests for contents or information objects (IO) that are identified only by their names

[4]. The network entities are in charge of routing the clients requests (based only on the

content names) towards the machines that host an authorized copy of the demanded

items. Once found, the requested contents will be delivered through the reverse paths
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Figure 1.1 – ICN networking Overview.

to the clients, who have no need to know their locations.

ICN aims with this design to simplify the content delivery experience and to optimize

the network performance by including natively into the networking design the following

features:

— Multicast: it consists on aggregating in one ICN node the requests coming from

different end-users who are demanding the same content. When the content is

found, each requester will get a copy of it.

— Multipath: in case where a content object is available in more than one location

within the network, an ICN node can send a request for a specific data through

multiple interfaces in order for example to find out the best container for the

requested content.

— Content security: ICN adopt a content-oriented security model. Unlike IP net-

work where safeness is achieved via securing the communication channels, the

contents in ICN are protected with the content provider’s signatures and only the

authorized users can verify their validity by resolving the signature.

— In-network caching: in order to enhance the network resource usage and data

availability, the ICN architecture exploits the possibility of the in-network caching.

The network nodes, equipped with a local cache store, can save contents or

pieces of them that are flowing in the network and thus, the next requests of the

cached data will be served more rapidly.
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Figure 1.2 – Overview of PSIRP [22].

In the last years, several projects have been put in work by several research teams

with the objective to carry out an ICN concrete solution. Among the most important of

those works results, we can quote:

— Publish Subscribe Internet Routing Paradigm or PSIRP [22].

— Network of Information or NetInf [23].

— Data Oriented Networking Architecture or DONA [24].

— Content Centric Network or CCN [12].

1.3 ICN proposals

1.3.1 Publish Subscribe Internet Routing Paradigm

This approach is based on the publish/subscribe concept where hosts can publish

data or Named Data Object (NDO) in the network and subscribe to any published data.

Publishing content in the network does not imply a data transfer, this transfer only take

place when a node subscribes to an NDO. The network, in this case, looks for the

publication and establishes a delivery path from the publisher to the subscriber [22].

The PSIRP network architecture is basically composed of four modules (Figure 1.2):

— The RendezVous module: which consists on a distributed database that maps

the requested data to the subscriber.
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Figure 1.3 – Routing scheme of NetInf [23].

— The forwarding module: it handles the data delivery from one location to another

based on the labels of the packets.

— The topology module: it manages the forwarding traffic accomplished by the

forwarding module by creating and maintaining delivery trees.

— The Branching module: it provides a routing map for routing the subscriber re-

quests toward the inter-domain or intra-domain content locations by using the

topology maintained by the topology module.

The PSIRP network is divided into Domains and each domain has one RendezVous

Node (RN), one Topology Node (TN), one Branching Node (BN) and one or several

Forwarding Nodes (FN). A subscriber can express its subscription of a content to the

local RN of its domain to get the content container. Then, the BN uses the networking

topology managed by the TN to forward the subscription to the content location. The

FNs finally ensure the returning of the required content to the subscriber.

1.3.2 Network of Information

The Network of Information provides access to Named Data Objects (NDO) that are

independent of the objects’ locations in the network topology. To access and distribute

data in NetInf, three pairs of messages are used:

— Search/Search-Resp: the requester uses the Search message to send a set of

queries. A node receiving the Search message will respond to the requester

using the Search-Resp message if it has the NDO demanded in its cache. Oth-

erwise, it will forward the Search message.
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Figure 1.4 – Routing scheme of DONA [24].

— Publish/Publish-Resp: the publisher can post an NDO with a Publish message

using a Name Resolution Service (NRS). The node that receives the Publish

message will either choose, depending in the local policy adopted and the avail-

ability of resources, to cache the data and returns a Publish-Resp message or

to forward the Publish message to other nodes.

— Get/Get-Resp: a requester, demanding an NDO from the network, will approach

the NRS using the Get message, which will lead him to the information publisher.

A node would send a Get-Resp message to respond to the Get request.

Figure 1.3 shows an example of a routing scheme in NetInf. The name-based rout-

ing (NBR) (steps from A1 to A4) forwards a GET request between the NetInf nodes

until a cached copy of the NDO or a server having the requested data is found. In case

where the router does not have enough routing information to perform an NBR (step

A2), it can perform a name resolution step (steps from A1.1 to A1.2) before forwarding

the request (step A2) based on the retrieved routing hints. The object can be cached

on the return path in intermediate nodes for subsequent demands. Alternatively, the

initial client can query an NRS (steps from B1 to B4) via a GET message to resolve

the object name into a set of routing hints. Subsequently, the routing hints are used to

retrieve the object via the underlying transport network.
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Figure 1.5 – Overview of CCN [12].

1.3.3 Data Oriented Networking Architecture

The DONA relies on a new class of network entities called Resolution Handlers

(RHs). Name resolution is conducted through employing two basic functions:

— Register: Register packets are used by nodes that are approved to act as data

sources to register their Named Data Objects (NDO) within the RHs.

— Find: to locate and access to specific data (identified by NDO), clients use Find

packets.

An example of the routing mechanisms in DONA is showed in Figure 1.4. Each RHs

keeps up a registration table that contains three tuples:

— The content name “P : L”, where P and L represent respectively the content

provider and the content label chosen by its provider.

— The next hop from where the node receives the content name advertisement.

— The distance.

A client, seeking access to certain data, issues a Find packet to the local RHs. Once

receiving the client request and depending on the information provided by the registra-

tion table, the Find packet will be routed hierarchically in order to find the demanded

content that is closest to the user. When a copy of the requested data is found, it will

be returned over the reverse RHs path.
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Figure 1.6 – CCN packet types [12].

1.3.4 Content-Centric Network

To request and retrieve data in CCN (Figure 1.5), two types of packets are used:

— Interest packet: it contains the content name requested by a client.

— Data packet: it is used to deliver data to its destination.

Clients can ask for specific data objects by sending Interest packets, which are

forwarded towards data sources. Then, using the Data packets, data objects will be

routed back to the clients on the reverse path and any node along this path can store

a copy of the data to eventually answer to future requests for the same content.

Among these ICN solutions, we choose for our study the Content Centric Network-

ing, which has quickly gained consensus in the scientific community and represents a

promising architecture in ICN networks for the future Internet.

2 Content-Centric Networking

2.1 CCN naming and message exchange

Content-Centric Networking [12] was proposed in 2009 by Palo Alto Research Cen-

ter (PARC). CCN proposes a complete content-based networking model (content nam-

ing, content-based routing, etc.) where a content is accessed by its name instead of

the IP address of the host possessing it.

The communication and data retrieval in CCN [12] are managed using two types of

packets (Figure 1.6):

— Interest packet: it is used to send the user’s requests. It carries:
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Figure 1.7 – The naming of contents in CCN [12].

� The content name.

� Selectors: which are optional elements used for discovering and selecting

the data that matches best to what the application wants.

� Nonce: it is a sequence of random number by which a router detects whether

the interest is duplicated or not.

— Data packet: it contains the following fields:

� The content name.

� Signature and signed info: according to the signed info, users can get the

public key of the content publisher to verify the received data with the rule

specified in the signature field and decide to accept the data or not.

� Data: which is the data that match the content name in the interest packet.

A user asks for a specific content by broadcasting its interest in the network. Any

node that receives the interest and has the solicited data can respond with a Data

packet and in that case, the interest will be consumed.

As mentioned before, the content name in CCN is the only identifier of data and

the information exchanges that are based on establishing communication channels is

abandoned. Names are hierarchically structured like a path-name of a file system (see

Figure 1.7).
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Figure 1.8 – The node model in CCN [12].

The tree-like structure enables the aggregations of contents and thereby facilitates

the content discovery. For example, as shown in the Figure 1.7, all the content supplied

by “parc” can share the same prefix “parc.com/”. A same content object in CCN can

have many versions, and it can be divided into multiple fragments called “chunks” in

order to adjust the transport layer. To simplify content discovery and forwarding, the

content name generally finishes with the version and the chunk information.

2.2 CCN node model

In a CCN network, each node is basically composed by three data structures (Fig-

ure 1.8):

— Content Store (CS): the CS is a buffer set that provides the in-network caching

feature by caching the data that passes by in order to optimize the network

performance (minimizing the latency, reducing network overload, etc.).

— Pending Interest Table (PIT): it consists on a table that contains two types of in-

formation (see Table 1.1): the contents names within the received Interest mes-

sages and the associated incoming faces (the faces play a similar role of inter-

faces in IP network). The PIT has two roles. The first one consists on keeping
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Table 1.1 – An example of a CCN PIT.

CONTENT NAMES IN FACES

ccn:/spotify.com/music1.mp3 301

ccn:/irisa.com/documents/doc1.docx 201,203

ccn:/youtube.com/videos/video1.mp4 102,105

... ...

Table 1.2 – An example of a CCN FIB.

PREFIXES OUT FACES

ccn:/spotify.com/ 101

ccn:/irisa.com/documents/ 204,206

ccn:/youtube.com/videos/ 301,302

... ...

track of the forwarded interests that are awaiting for a returned Data packet by

saving the content name of the requested content and the associated face. The

second role is to avoid forwarding multiple Interests that request the same con-

tent; when a CCN node receives from different faces several Interest messages

that are demanding the same content, these Interest packets will be aggregated

in one entry in the PIT and only the first one is routed.

— Forwarding Information Base (FIB): The FIB is used to guide Interest packets

toward potential sources of the requested data by saving in a table two types of

information (see Table 1.2): the content name (or the aggregated prefixes of the

names) and the associated outgoing faces. A content having a list of outgoing

faces means that a data can have multiple sources.

2.3 The Interest/Data packets routing in CCN

In CCN networks, only Interest packets are routed and as they head upstream at

potential data sources, they leave a track of “bread crumbs” so that Data packets can

follow to get to the requester(s) [12].
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Figure 1.9 – Packets processing in CCN [25].

The packet processing and forwarding in CCN nodes is performed as follows:

1. First, a CCN node receives an Interest packet where the content name carried

by this packet is checked in the content store.

2. If there is a Data packet in the CS that matches the request, it is then sent

back through the incoming face of the processed Interest. Otherwise, the content

name is checked in the PIT.

3. If there is a matching entry in the PIT, then the Interest packet is discarded

and his incoming face is added to the existing PIT entry (aggregation of Interest

packets). If not, a new entry is created and the Interest is forwarded based on

the information of the FIB table.

4. When the request content is found, the Data packet will track the traces left by

the Interest packets in order to reach its requester(s).

5. Once a node receives a Data packet, its content name is checked in the CS.

6. If there is a match, the Data packet should be discarded since it already exists

in the CS. Otherwise, the content name is looked up in the PIT.

7. If a matching entry in the PIT is found, then the Data packet is sent out through

the faces where the Interest was received. The corresponding PIT entry is then

deleted and based on the caching strategy, the node can keep a copy of the

content in the CS.
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An example of the packets processing and forwarding in CCN is shown in Fig-

ure 1.9. Once receiving the Interest Packet from node A (who requests the object x),

the node C which doesn’t find a match in its content store nor in the pending interest

table, forwards the packet to the source node D. When the node C receives the Data

packet from D, it forwards it back to the requester A and can thereafter with its cached

copy serve the request coming from node B for the content x.

2.4 Discussion

As mentioned before, the on-path caching functionality is one of the most important

features provided by CCN. It plays a major role on increasing the network performance.

That is why it is crucial to use efficiently the cache resources in order to realize a

suitable content retrieval. The caching optimization can be treated at different levels:

— Cache replacement algorithm: it is the algorithm responsible of managing the

cache. When the cache is full, an item is chosen by the algorithm to be dis-

carded. We can cite from the existing algorithms First In First Out (FIFO), Least

Recently Used (LRU), etc.

— Cache decision policy: it determines which content should be cached and at

which node. In other words, a node should decide when receiving a content and

depending on the applied strategy whether to cache or not the data.

— Cache resources placement: since the cache capacity that can be allowed to a

CCN node is limited, cache placement consists on studying the optimal distri-

bution of storage resources between the network’s nodes (e.g.: adopting a fair

distribution, giving more storage spaces to edge routers, etc.).

The focus on this thesis was on problems related to cache modeling and cache

resources allocation in CCN and multi-cache networks in general. A state-of-the-art

pertaining to these subjects will be presented in the next two sections.

3 Cache modeling in multi-cache networks

3.1 Related work

Many studies have been conducted these last years to deal with the performance

analysis of a single cache and a network of caches using mathematical modeling [26]
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[27] [28]. We limit ourselves to the papers most relevant to our work.

Several works modeled and analyzed the behaviour of a caching system using

Markov Process. The study in [29] was probably the first attempt to evaluate and model

caching systems. The author proposed an exact model for predicting the buffer hit

probability under the LRU and FIFO replacement policies using Markov chains. Flajolet

and co-authors [30] derived a simpler alternate expression of the cache hit rate to the

one presented in [29] using a different approach. Unfortunately and in both cases, the

computational complexity grows exponentially with the cache size N and the number

of data items R. In [31], Dan and Towsley proposed an approximate analysis of the

cache behaviour by exploiting the stack properties of an LRU cache using Markov

chains. They derived an iterative algorithm with a complexity of O(NR) to predict the

hit probability for a cache of size N using the hit rates of a cache of size N + 1 under

the LRU replacement policy. The proposed solution is, however, limited to the case

of a single cache and the tests were done only with very low values of cache size

and catalog capacity. In [32], the authors extended the algorithm of [31] to the case

of a network of caches. Psaras et al. proposed, in [33], a Markov chain-based model

to estimate the proportion of time a given piece of content is cached in the case of

a single router, which then has been extended to cover the case of multiple caching

nodes. However, the assumptions and approximations made by the authors in their

cache model can lead to high error rate in terms of hit ratio accuracy.

One of the most interesting proposals related to cache modeling was presented in

[34] by Che and co-authors. Using a different method compared to the previous men-

tioned works, Che et al. propose a simpler and more efficient approach to estimate

the hit rate of an LRU cache. Their solution, known as the “Che approximation”, allows

identifying a characteristic time approximation for each item in the cache, which was

used to estimate the cache hit rate per content. Their proposal has proved to be very

accurate, with a low complexity (O(R)). Their work was further investigated in [35],

where the authors provided a mathematical explanation for the success of the Che ap-

proximation even in configurations that are more general than those presented in the

original work. In [36], the authors extended the work of [34] and proposed Time-To-Live

(TTL) based caching model that assigns a timer to each content stored in the cache and

redraws it every time the content is requested. Nevertheless, the aforementioned pro-

posals are applicable only when the Leave Copy Everywhere caching strategy (LCE)

is used, where every data packet is always stored once received by a caching node.
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Other studies have been conducted in order analyze the modeling behavior and

performance of caching systems where alternative caching strategies to the LCE are

considered. By means of the “Che approximation”, Laoutaris et al. presented in [37]

an analytical model of their caching algorithm called Leave Copy Down (LCD). Instead

of storing the contents in all intermediate nodes like in LCE, LCD consists on caching

an item only in the immediate downstream cache of the hit location. Their model was

validated only in the case of two-cache LCD/LRU tandem with a small sized catalog

of contents. In [38], the authors extended the work of [34] and proposed a unified

framework to analyze the performance of caches (both isolated and interconnected).

Their model covers various insertion and eviction policies (including LRU and LCE).

They evaluated the accuracy of their proposal through simulation. However, in the case

of interconnected caches, the tests were conducted only in the case of a 6-nodes chain

with fixed network settings. Extending the work presented in [34], the authors in [39]

developed algorithms to approximate the hit probability of the cache replacement policy

LRU-K [40] [41] and variants of it. Nevertheless, their proposal is limited only to the case

of a single cache.

If we look closely at the state of the art and the aforementioned works, we can see

that most of the advanced proposals related to cache modeling are based on the work

presented in [34] by Che et al., which is referred to as the “Che approximation”. A more

in-depth analysis of this work will be presented in the next section.

3.2 Che approximation

In [34], Che et al. proposed a modeling technique to analyze the caching perfor-

mance by estimating the hit rate of a cache where the LRU replacement policy is used.

Their work was investigated further in [35], where a mathematical analysis for the re-

markable accuracy of the approximation is given.

Consider a cache with a capacity size of N items operating under the LRU algorithm

and let C = {c1, . . . , cR} be the set of catalog’s contents available for users and that

can be saved in the cache. Following the IRM model [35], the probability pr to request

an item cr from the set of available contents in the network is constant and follows a

popularity law (e.g. Zipf law), where the contents are ranked decreasingly according to

their popularity from one to R. Let’s define τr as the generic exponentially distributed

inter-request interval for object cr. In other words, it represents a sequence of inde-
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pendent exponential random variables with respective rates (pr). We define now the

following random variables, for t ≥ 0,

Xr(t) =
R

�

i=1,i�=r

1{τi<t},

TC(r) = inf{t > 0 : Xr(t) = N}.

(1.1)

Xr(t) and TC(r) are respectively the number of how much distinct items were requested

up to time t (excluding content cr) and the time at which exactly N different items, other

than cr, have been requested. Therefore, a hit for content cr will occur in the cache if

Xr(τr) < N , which is equivalent to TC(r) > τr. If we denote by h(r) the hit probability in

the cache of an object cr, then we have

h(r) = P (TC(r) > τr) = 1 − e−prTC(r). (1.2)

Since at TC(r), we have exactly N objects in the cache, then

N =
R

�

i=1,i�=r

1{τi<TC(r)} =
R

�

i=1,i�=r

1 − e−prTC(r). (1.3)

In [34], the following two approximations were made:

1. TC(r) is a constant for each item cr (r ∈ {1, 2, . . . , R}).

2. TC(r) is a constant with respect to cr, which will be denoted TC .

The idea behind these two approximations as explained in [34] is based on the fol-

lowing intuition: as the aggregated arrival rate of all the content requests grows and

as long as the cache size is reasonably large, this rate becomes more and more de-

terministic and reaches a constant. These approximations are made not only for the

tractability of the mathematical development, but also for the identification of TC as an

important characteristic time of a given cache. The first approximation implies that the

random variable TC(r) is now a constant that solves

N =
R

�

i=1,i�=r

(1 − e−prt), (1.4)

and the hit rates are approximated by

h(r) = 1 − e−prTC(r). (1.5)
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The second approximation means that TC(r) = TC for r ∈ {1, 2, . . . , R}, where TC is the

unique root of the equation

N =
R

�

i=1

(1 − e−prt). (1.6)

With these approximations techniques, the problem of modeling the hit performance

of an LRU cache is now greatly simplified since the interaction between the caching

process and a content cr and all the other operations is mediated by the “characteristic

time” TC .

To sum up and following the Che approximation, the hit rate h(r) of an item cr

(r ∈ {1, 2, . . . , R}) is equal to

h(r) = 1 − e−prTC , (1.7)

where TC solves

N =
R

�

i=1

(1 − e−prt). (1.8)

3.3 Discussion

We presented and discussed in this section most of the important state-of-the-art

proposals related to cache modeling. As we have seen, the work of Che et al. [34] is

one of the most interesting proposals when dealing with cache modeling and the ma-

jority of the works conducted after the publication of the “Che approximation” were built

upon on it. Their approximation was first intended to deal with LRU caches operating

under the LCE policy and extending it to other caching schemes is not straightforward.

We will present later in chapter two our first contribution in this thesis, which consists on

a Markov chain-based analytic tool capable of modeling the caching decision process

in general in order to be used to model many caching schemes, without being limited

to a specific algorithm.

4 Cache allocation in multi-cache networks

4.1 Related work

Many studies have investigated the problem of cache resources allocation and

placement in the context of multi-cache networks [42] (e.g., CDN, ICN, etc.).
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The work presented in [43] by Krishnan et al. was one of the earliest studies that

tackled the problem of the optimal cache resources placement. They examined the

cache location problem in the case of transparent in-route caches in the context of web

caching. The problem was modeled as a k-median problem, where the objective is to

minimize the network traffic flow, and solutions were proposed based on dynamic pro-

gramming and greedy heuristics. The classic k-median problem consists on finding k

centers (i.e. cache resources) such that the clusters they form are the most compact

(i.e. lower cost). The authors in [44] and [45] studied the storage capacity allocation

in hierarchical content distribution systems through a multi-commodity problem, which

generalizes the single commodity k-median problem. They propose a two-step algo-

rithm capable of solving such problem when tree graphs are considered, which has

been extended through approximations to cover the case of general graphs. They also

provided a greedy algorithm due to the high complexity of the exact solution. The au-

thors in [46] addressed the problem of placing mirrors of Internet content on a restricted

set of hosts through modeling it as a slightly different version of the minimum k-center

problem, considering the latency as the cost function to be optimized. In the minimum

k-center problem, which is an NP-complete one, the objective is to find a placement

of a given number of centers (i.e. content servers) such that the maximum distance

from a node (i.e. end-user) to the nearest center is minimized. They proposed a greedy

algorithm and a heuristic based on nodes degrees to solve the problematic.

Later on and with the proliferation of Content Delivery Networks, many works have

focused on replica server (or cache resources) placement solutions in traditional and

emerging CDN-based paradigms (cloud-based CDN, NFV-based CDN, etc.). In [47],

the authors proposed a solution to the media server placement problem by modeling

it using the uncapacitated facility location problem. To ensure the scalability of their

algorithm, they have considered the case where all the end-users locations can be po-

tential placement of replica servers. In [48], Rodolakis et al. introduce polynomial and

pseudo-polynomial algorithms to solve the replica server placement problem using the

splittable soft capacitated facility location model. Their aim is to find the best location

of replica servers and the number of servers that should be used and assigned to

end-users groups in a way that minimizes the cost and satisfies the Quality of Service

(QoS). In [49], Chen et al. studied the problem of building distribution paths and placing

Web server replicas in cloud CDNs to minimize the cost incurred on the CDN providers

while satisfying QoS requirements for user requests. They provide an ILP formulaion
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of the problem that happened to be NP-hard, and propose offline and online heuristics

to solve it. In [50], the authors presented a CDNaaS platform (CDN as a Service) that

enables the creation of CDN slices across multiple cloud domains and the deployment

of virtual resources (including virtual caches) from multiple IaaS providers (Infrastruc-

ture as a Service), where different VNFs (Virtual Network Functions) are running. They

studied in their work the optimal placement of these VNFs by modeling this problem

as two distinct Linear Integer problems, where the aim is to minimize the incurred cost

of resource placement and maximize the Quality of Experience (QoE) of the virtual

streaming service. By means of the bargaining game theory, they propose a solution

that ensures a fair trade-off between the cost and the QoE.

The study in [51] was probably the first attempt to investigate the cache allocation

problem in CCN. They used in their study different metrics to measure the centrality of

routers like degree, closeness and betweenness in order to decide where the cache

should be distributed along the network’s nodes. They suggest that deploying more

cache resources at the core nodes of the network is better than at the edge. In later

works [52] [53], the authors have concluded the opposite, suggesting that placing larger

caches at the edge is more effective. Wang et al., in their work [54], have studied the

impact of content popularity distribution on caching performance in CCN. They show

that placing caches into the network core is better suited for content requests with

uniform distribution and that in case of highly skewed popularity demands patterns,

pushing cache resources to the edge yields better performance.

4.2 Discussion

Considering a single metric or objective when dealing with the cache allocation

problem clearly reduces the complexity of the problem, but has led many studies to

find results that appear contradictory. There are many aspects in our proposal in this

matter, which will be presented in chapter three, that makes it different from the existing

works. We propose a versatile solution that takes into account at the same time more

than one performance metric to solve the cache allocation problem and it can be tuned

in order to seek some specific results. Moreover, the proposed tool builds a solution by

measuring the contribution of all the nodes by the means of an analytic model capable

of estimating the network performance, which will allow to take into account the impact

of a node’s performance on the others. In addition, more than one solution can be
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generated for the same use case, which gives more flexibility and enables adapting to

additional constraints. We will see later that placing most (or all) of the cache resources

at the edge or in the network core cannot be an absolute solution since it will depend

on what performance metrics we try to optimize and what outcomes we aim to obtain.

5 Conclusion

We started this chapter by exposing a new paradigm in the computer network area

called ICN. We focused after that on one of the ICN solutions, which is the Content-

Centric Networking. We have given the necessary theoretical background to help un-

derstand the functioning of CCN and specifically its in-network caching feature and

how it can improve the network performance. Then, we presented and discussed state-

of-the-art proposals that dealt with cache modeling and cache allocation problem and

what more could be done when studying these two issues. In the next two chapters, we

will present our major contributions related to the different problems that we discussed

earlier.
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Chapter 2 – Modeling multi-cache networks using Markov chains

Introduction

The previous chapter presented the Information-Centric Networking paradigm with

an emphasis on the in-network caching and the different issues related to this fea-

ture. In this chapter, we introduce an analytical model based on Markov chains named

MACS (Markov chain-based Approximation of Caching Systems) [18]. This model al-

lows us to estimate the cache hit probability under the popular Least Recently Used re-

placement scheme for a system with multiple caching nodes, where the default caching

strategy of CCN, called Leave Copy Everywhere (LCE), is used. Then, an extension of

MACS [19] is presented. We proposed a methodology that allows modeling the caching

decision process in a more general way, so that it can be used to analyze different

caching algorithms other than LCE. We will show how its versatility enables it to mimic

efficient caching strategies [20] such as Leave Copy Down (LCD) [37] and Two Queue

(2Q) [40]-[41]. We aim with our model to gain more insights on the efficiency of CCN

caching strategies, with a focus on the schemes having a good performance/overhead

trade-off, by analyzing different network performance metrics like cache hit rate, con-

tent provider load and distance reduction ratio. It has to be noted that, even though our

model MACS was first proposed in the context of CCN networks, it can also be applied

to multi-cache networks in general (e.g., CDN, cloud based CDN, NFV based CDN,

etc.).

1 Motivations

Due to the Internet usage evolution over these last years, the current IP-based

architecture becomes heavier and less efficient for providing some Internet services.

Beyond Content Delivery Networks, Network Operators (NOs) are developing caching

capabilities within their own network infrastructure, in order to face the rise in data con-

sumption and to avoid the potential congestion at peering links. Indeed, disseminating

caches in the infrastructure not only helps in absorbing the network’s congestion, but in

addition, brings content closer to users, which allows a reduced latency. These factors

explain the enthusiasm of industry and academics around the Content-Centric Net-

working concept and its in-network caching feature as a mean to improve network’s

performance and services scalability.
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Section 2 – System description

Table 2.1 – Summary of the notations.

Term Desciption
M Number of nodes in the network
R Number of items in the catalog
N Cache size
S State space of an LRU cache model
cr Content with a popularity/rank r
pr Probability to request an item cr

p�
r Probability that a node receives an item cr in a multi-cache network

α Zipf law distribution parameter
β(r) Cache decision probability
γ�

s(r) Probability of a content cr staying at the same position s of the cache
π(r) Steady state distribution of the Markov chain
Phit(r) Hit probability of content cr

Pmiss(r) Miss probability of content cr

MS(r, u) Outgoing miss stream ratio from a node u for a content cr

ηr(v) Incoming miss stream ratio at a node v for a content cr

Dist(i) Distance from where the clients requests were generated to the node vi

2 System description

Let’s recall that in CCN, the content’s name is the only identifier of data. To request

and retrieve data, two types of packets are commonly used [12]: Interest Packet and

Data Packet. Clients can ask for specific data objects by sending Interest packets,

which are forwarded towards the data sources using the Forwarding Information Base.

A record of the forwarded Interests is kept in the Pending Interest Table in order to keep

track of the Interests waiting for a data packet. When a node receives multiple requests

for the same content, the Interest packets will be aggregated in one entry in the PIT

and only the first one is routed. Once the requested content is found, it is automatically

routed back to the clients on the reverse path. All the nodes along this path can store

a copy of data to answer future demands.

Let G = (V, E) be the graph representing a general network of caches, where

V = {v1, . . . , vM} depicts the nodes of the network and E ⊂ V × V is the set of links

connecting the nodes. Each node in the network is equipped with a caching module

used to store contents locally. Let C = {c1, . . . , cR} be the set of the catalog’s contents

available for the users. We assume that all the accessible contents in the system have

an identical size and are divided into small packets or chunks, which are in turn of the
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Chapter 2 – Modeling multi-cache networks using Markov chains

same size. The cache capacity is then expressed in terms of the number of contents or

chunks that can be stored. All the available contents are stored permanently at one or

more servers attached to some nodes within the network. In the rest of the paper and

for the sake of readability, we will use the term node/cache interchangeably as well as

the terms rank/popularity and content/item/object.

Clients, which are attached to the network nodes, send requests into the network

looking for contents. The pattern of these requests is characterized by the Indepen-

dent Reference Model (IRM) [31]. Suiting the IRM model, users generate an indepen-

dent and identically distributed sequence of requests from the catalog C of R objects.

Specifically, the probability pr to request an item cr from the set of available contents in

the network is constant and follows a popularity law, where the contents are ranked de-

creasingly according to their popularity from 1 to R. Since about 80% of Internet traffic

is generated by video related applications [2], we address in our work videos services,

where the contents feature a skewed popularity distribution. As already argued in many

previous studies [55], the latter fits the Zipf law: the probability to request the content

of rank r is: pr = r−α/
�R

i=1 i−α, where α, the skew of the distribution, depends on the

type of the accessible objects [35]. For our approach, we only need to assume that

0 < pr < 1, with R ≥ 2.

We use here the LRU algorithm to manage the node’s content store. Other memory

management algorithms have been studied in the case of cache modeling like First In

First Out (FIFO) and Random Replacement (RR). However, LRU is known to perform

much better than FIFO [56] and the expected long-run performances of both RR and

FIFO replacement policies were shown to be the same [57]. The Least Frequently

Used (LFU) algorithm, which requires a more complex replacement process, is also

interesting. However, it presents several shortcomings related to the insertion of new

popular contents or the purge of older ones [58]. Moreover, the complexity of the LFU

functioning makes it harder to be modeled and analyzed.

3 A single LRU cache model under LCE

3.1 A comprehensive analysis of LRU caches

Let’s consider a single node in a Content-Centric Network operating under the LRU

replacement policy and having clients attached to it. Whenever a user requests a con-
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tent of rank r in the catalog, it will generate either a cache miss if the content is not

present in the cache or a hit otherwise. In the latter case, the object will be sent back

to the user. In the case of a cache miss, the client’s interest is forwarded to the next

nodes in the direction of the nearest content server storing a permanent copy (i.e. origin

server). Once the object located, it is sent on the reverse path and depending on the

caching strategy used in the network, the content will be cached or not at each node

that passes by it. In CCN, a node uses a caching scheme in order to decide whether an

incoming item should be saved or not. In the case where the default caching strategy

LCE is used [37], the contents will always be cached at each node that pass by it.

Consider a cache sized to contain N ≤ R items (the usual case is, of course,

N � R). The position occupied by a content in a cache goes from 1 to N , where block

1 represents the top up position and N is the bottom down one (last block before the

eviction from the cache). Whenever a local cache hit or a caching decision occurs for

a content cr, it will then be placed at the top position in the cache. Consequently, for

any given content cr� occupying position i in the cache, with r� �= r, three actions are

possible when a request for cr is received:

— c�
r� will be moved down if the requested content cr is either not present in the

cache or if it occupies block j with j > i;

— c�
r� will remain at the same position if cr occupies a block j with j < i;

— c�
r� will be evicted from the cache if it occupies the N th and last position.

When analyzing the performance of a caching system, we usually focus on hits

or misses, which means that we consider the system only when requests for content

arrive. This means that in case of a miss, we don’t look at the time needed to get a copy

of that content in the cache; we only consider which contents are in which positions at

arrival times.

Let us call a configuration of the cache any vector �x = (x1, . . . , xN) where xi is the

content present at block or position i. We only consider the case where all positions

are occupied because the cases where the cache is partially filled concern only the

initial transient phase. Let us denote by S the set of all possible configurations; we

have |S| = R!/(R − N)!. For realistic values of N and R, |S| is huge. If we consider the

evolution of the cache’s configuration “just after” the arrival of a request, we define a

discrete time homogeneous Markov chain X = (Xn), where Xn is the configuration just

after the arrival of the nth request at the node. Chain X is clearly irreducible: from any

configuration (x1, . . . , xN), we can move to any other configuration (y1, . . . , yN) after the
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Figure 2.1 – A Markov chain model of an LRU cache where the LCE strategy is adopted
with R = 3 and N = 2.

arrival of a request for content yN , then for content yN−1, etc. (this event has probability

py1
· · · pyN

> 0). Of course, we consider the case here of always deciding to store the

arriving content. It is also aperiodic because if Xn = (x1, . . . , xN), then, with probability

px1
next state is still (x1, . . . , xN). So, X is ergodic.

Knowing the steady-state distribution of X,
�

π�x

�

�x∈S
, allows (in theory) to evaluate

important performance metrics of a caching system such as the hit probability per

content. Assuming the system is in equilibrium, we have that for any cr ∈ C,

Pr(hit for a request of cr) =
�

�x s.t. ∃i∈{1,...,N}|xi=cr

π�x. (2.1)

For illustration purposes, let us consider the case of R = 3 and N = 2, when the

content is always cached when received (see Figure 2.1). The state space is

S = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}.

The stationary distribution π�x satisfies the equations















π(i,j) = pi(π(i,j) + π(j,i) + π(j,k)), k �∈ {i, j},
�

(i,j) ∈ S

π(i,j) = 1. (2.2)
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Solving the equations (2.2), we have that for a generic configuration (i, j) ∈ S,

π(i,j) = pipj(1 − pi)
−1.

If we want to compute for example the hit probability of content c1, we obtain

Pr(hit for a request of c1) = π(1,2) + π(1,3) + π(2,1) + π(3,1) =
p1(1 − p2p3)

(1 − p2)(1 − p3)
.

We can see through this example how the steady-state distribution of the Markov

chain representing the dynamics of an LRU cache can be used to evaluate important

performance metrics of the caching system. By investigating further the exact Markov

chain-based model of on LRU cache, we have found that in the general case (i.e.

2 ≤ N < R),

π�x =
N
�

i=1

�

pi (1 −
i−1
�

j=1

pj)
−1

�

, �x = (x1, . . . , xN). (2.3)

To compute the cache hit probability of any content cr, we use the formula (2.1), which

as we can see is very costly, as it requires a summation over the permutations of all

the subsets of size N containing the content index r of the set {1, . . . , R}.

As we can see, the problem with the exact analysis of an LRU cache’s hit rate is the

huge size of the state space S and the complexity of the model. In the next section, we

describe an efficient way of obtaining an approximation for such a metric (i.e. cache

hit or miss) that is shown to be very accurate by comparing its output to the results of

simulations.

3.2 Markov chain-based approximation of an LRU cache

To reduce the complexity of modeling an LRU cache using Markov chains, the pro-

cess is modeled by considering only one content at a time. Let us consider a Markov

chain X(r) =
�

Xh(r)
�

h≥0
with N + 1 states, as depicted in Figure 2.2. This chain will

represent the evolution in time of the position occupied by content cr in the cache,

where state N + 1 means that content cr is absent, state 1 means that the object is at

the top of the cache and state N where it is at the bottom. Using this approximation,

the size of the state space will then be S = (N + 1) × R. The probability of a content

staying at the same position upon the reception of an item is represented by γs(r).

Assume we know γi(r), i = 1, 2, . . . , N, N + 1, satisfying 0 < γi(r) < 1. This means
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1 - pr - γ2(r) 1 - pr - γs−1(r)1 - γ1(r) 1 - pr - γN−1(r)1 - pr - γs(r)

. . . . . . . . . .1 2 S N

γ1(r) γ2(r) γN(r)γs(r)

N+1

γN+1(r)

pr

pr

pr

pr 1 - pr - γN(r)

Figure 2.2 – Markov chain model for a content cr in an LRU cache.

that X(r) is irreducible and aperiodic. Let us denote by π(r) = (π1(r), π2(r), . . . , πN+1(r))

its equilibrium distribution. Assume now that π(r) is exactly the marginal distribution

corresponding to content cr and that the chains X(1), . . . , X(R) are independent of

each other. The probability that a content of rank r remains in the state s of the chain,

with (s ∈ {1, 2, . . . , N + 1}), upon the arrival of a request is equal to



































γ1(r) = pr,

γs(r) =
R

�

i=1,i�=r

pi(
s−1
�

j=1

πj(i)), 2 ≤ s ≤ N,

γN+1(r) = 1 − pr.

(2.4)

Let’s denote by Ti,j the transition probability from state i to state j. Then, Ti,j is equal to



















































Ti,i = γi(r), 1 ≤ i ≤ N + 1,

Ti,1 = pr, 2 ≤ i ≤ N + 1,

T1,2 = 1 − γ1(r),

Ti,i+1 = 1 − pr − γi(r), 2 ≤ i ≤ N,

Ti,j = 0, j �= {1, i, i + 1}.

(2.5)
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The distribution π(r) satisfies the Chapman-Kolmogorov equations:



























πi(r) =
N+1
�

j=1

πj(r)Tj,i, 1 ≤ i ≤ N + 1,

N+1
�

i=1

πi(r) = 1.

(2.6)

If we develop the system of equations defined in (2.5) and (2.6), we obtain:



























































































π1(r) = γ1(r)π1(r) + pr(π2(r) + . . . + πN+1(r)),

π2(r) = γ2(r)π2(r) + (1 − γ1(r))π1(r),

π3(r) = γ3(r)π3(r) + (1 − pr − γ2(r))π2(r),

. . . . . . = . . . . . .

. . . . . . = . . . . . .

πN(r) = γN(r)πN(r) + (1 − pr − γN−1(r))πN−1(r),

πN+1 = γN+1(r)πN+1 + (1 − pr − γN(r))πN(r),

π1(r) + π2(r) + . . . + πN+1(r) = 1.

(2.7)

The equations derived in (2.7) can be easily solved using (2.4) to finally get:























































π1(r) = pr,

π2(r) =
pr(1 − pr)

1 − γ2(r)
,

πi(r) =
pr(1 − pr)

�i−1
j=2(1 − pr − γj(r))

�i
j=2(1 − γj(r))

, 3 ≤ i ≤ N + 1,

π1(r) + π2(r) + . . . + πN+1(r) = 1.

(2.8)

The closed-form expression πN+1(r) represents the cache miss probability for a content

cr in a single cache. Its computational complexity is O(N) where N represents the

cache capacity (we suppose that the complexity of calculating each πi(r) is a constant).

To get the cache hit rate of a content cr, we simply do

Phit(r) =
N

�

i=1

πi(r) = 1 − πN+1(r).
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4 A general Markov chain model of a single LRU cache

4.1 A comprehensive analysis of generic LRU caches

Let’s recall that in CCN, a node uses a caching scheme in order to decide whether

an incoming item should be saved or not. In the general case, this decision can be

seen as the probability that we denote β(r), with which a received content cr will be

stored in a cache. The value of β(r) will then depend on the caching strategy adopted

by the node. When using the LCE policy, for example, all arriving objects are cached

that is, β(r) = 1 for any content cr. We will see later in more details the values taken by

β(r) when a specific caching strategy is used.

As we did in the previous section, let’s consider a cache sized to contain N ≤ R

items. Now, in the general case and whenever a local cache hit or a caching decision

occurs for a content cr, it will then be placed at the top position in the cache with

probability β(r). Consequently, for any given content cr� occupying position i in the

cache, with r� �= r, three actions are possible when a request for cr is received:

— cr� will be moved down by one position if the requested content cr is either out-

side the cache and it has been decided to cache it (with probability β(r)) or it

occupies the block j with j > i;

— cr� will remain at the same position if cr occupies the block j, with j < i, or if

it is outside the cache and it has been decided to not cache it (with probability

1 − β(r));

— cr� will be evicted from the cache if it occupies the N th position (last block) and it

has been decided to cache cr (with probability β(r)), which is outside the cache.

4.2 A generic model of a single LRU cache

Like the case of an LRU cache under the LCE scheme (i.e. β(r) = 1), we modeled

this process using Markov chain X(r) =
�

Xh(r)
�

h≥0
(Figure 2.3). The major differences

are the transition from state N +1 to 1, which now includes the caching probability β(r),

and the probability of a content staying at the same state s (that we denote by γ�
s(r)).

Assume we know γ�
i(r), i = 1, 2, . . . , N, N + 1, satisfying 0 < γ �

i(r) < 1. This means that

X(r) is irreducible and aperiodic. Let us denote by π(r) = (π1(r), π2(r), . . . , πN+1(r))

its equilibrium distribution. Assume now that π(r) is exactly the marginal distribution

corresponding to content cr and that the chains X(1), . . . , X(R) are independent of

each other. The probability that a content of rank r remains in state s of the chain upon
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1 - pr - γ′2(r) 1 - pr - γ′s−1(r)1 - γ′1(r) 1 - pr - γ′N−1(r)1 - pr - γ′s(r)

. . . . . . . . . .1 2 S N

γ′1(r) γ′2(r) γ′N(r)γ′s(r)

N+1

γ′N+1(r)

pr

pr

pr

1 - pr - γ′N(r)pr × β(r)

Figure 2.3 – General Markov chain model for a content cr in an LRU cache.

the arrival of a request, with s ∈ {1, 2, . . . , N + 1}, is equal to


















γ�
s(r) = γs(r) +

R
�

i=1,i�=r

(1 − β(i))piPmiss(i), 1 ≤ s ≤ N,

γ�
N+1(r) = 1 − prβ(r).

(2.9)

The value of Pmiss(i) used in (2.9) represents the cache miss probability of content ci (its

calculation will be detailed later) and the value of γs(r) is a special case of γ�
s(r) where

β(i) = 1. The first term of the expression of γ �
s(r) (i.e. γs(r)) represents the case where

a content cr remains at the same position i when the received item occupies a position

j, with j < i. The second term of γ�
s(r) (i.e.

�R
i=1,i�=r(1 − β(i))piPmiss(i)) corresponds to

the event where the received content is not in the cache and it has been decided to

discard it. Again, observe that (2.9) is an approximation, but as we will see, its form

makes that it leads to a very accurate approximation algorithm. Let’s denote by Ti,j the

transition probability from state i to j in our model. Then, Ti,j is defined as follows:































































Ti,i = γ�
i(r), 1 ≤ i ≤ N + 1,

Ti,1 = pr, 2 ≤ i ≤ N,

TN+1,1 = pr × β(r),

T1,2 = 1 − γ�
1(r),

Ti,i+1 = 1 − pr − γ�
i(r), 2 ≤ i ≤ N,

Ti,j = 0, j �∈ {1, i, i + 1}.

(2.10)
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The distribution π(r) satisfies the Chapman-Kolmogorov equations:



























πi(r) =
N+1
�

j=1

πj(r)Tj,i, 1 ≤ i ≤ N + 1,

N+1
�

i=1

πi(r) = 1.

(2.11)

If we develop the system of equations defined in (2.10) and (2.11), we obtain























































































π1(r) = γ�
1(r)π1(r) + pr

N
�

i=2

πi(r) + prβ(r)πN+1(r),

π2(r) = γ�
2(r)π2(r) + (1 − γ �

1(r))π1(r),

π3(r) = γ�
3(r)π3(r) + (1 − pr − γ�

2(r))π2(r),

· · · · · · = · · · · · ·

πN(r) = γ�
N(r)πN(r) + (1 − pr − γ�

N−1(r))πN−1(r),

πN+1(r) = γ�
N+1(r)πN+1(r) + (1 − pr − γ�

N(r))πN(r),

π1(r) + π2(r) + . . . + πN+1(r) = 1.

(2.12)

By computing πN+1(r), which represents the cache miss probability, we can obtain

the cache hit rate 1 − πN+1(r). We can see from (2.12) that each πi(r) depends on

πi−1(r) (2 ≤ i ≤ N + 1), and once we get π1(r), we can calculate πN+1(r) and deduce

the cache hit. When β(r) = 1, we have π1(r) = pr. The equations then derived in (2.12)

can be easily solved using (2.4) to finally get
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π1(r) = pr,

π2(r) =
pr(1 − pr)

1 − γ2(r)
,

πi(r) =
pr(1 − pr)

�i−1
j=2(1 − pr − γj(r))

�i
j=2(1 − γj(r))

, 3 ≤ i ≤ N + 1,

π1(r) + π2(r) + . . . + πN+1(r) = 1.

(2.13)

In the general case (0 ≤ β(r) ≤ 1), π1(r) cannot be computed directly, and it de-

pends on all the other values of πi(r) (for 2 ≤ i ≤ N + 1). One way to resolve this

problem is to modify the expression of π1(r) in order to reduce its dependency on the

other variables. To do so, we first add and subtract in the initial expression of π1(r) in
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(2.12) the values prπ1(r) and prπN+1(r). Then, using the expression of γ�
1(r) and since

�N+1
i=1 πi(r) = 1 and γ1(r) = pr, we get a new expression of π1(r) as follows:

π1(r) = γ�
1(r)π1(r) + pr

N
�

i=2

πi(r) + prβ(r)πN+1(r),

= γ�
1(r)π1(r) + pr

N
�

i=2

πi(r) + prβ(r)πN+1(r) + pr(πN+1(r) − πN+1(r) + π1(r) − π1(r)),

= pr(
N+1
�

i=1

πi(r)) + (γ �
1(r) − γ1(r))π1(r) + prβ(r)πN+1(r) − prπN+1(r),

= pr + (γ�
1(r) − γ1(r))π1(r) + pr(β(r) − 1)πN+1(r).

(2.14)

The expression of π1(r) can be rewritten as

π1(r) =
pr(1 + (β(r) − 1)πN+1(r))

1 − (γ�
1(r) − γ1(r))

. (2.15)

Now, π1(r) depends only on πN+1(r). The idea then is to use a fixed-point iteration in

order to generate successive approximations of the solution, which consists on finding

πN+1(r), by starting from an initial guess. To do so, we start by considering an approx-

imate value of πN+1(r) (that we denote by π�
N+1(r)) by using the one obtained when

β(r) = 1, to compute π1(r). Once we have π1(r), we can calculate πi(r) (2 ≤ i ≤ N + 1)

to finally obtain a new value of πN+1(r).
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π1(r) =
pr(1 + (β(r) − 1)π�

N+1(r))

1 − (γ�
1(r) − γ1(r))

,

π2(r) = γ�
2(r)π2(r) + (1 − γ �

1(r))π1(r),

πi(r) =
(1 − pr − γ�

i−1(r))πi−1(r)

1 − γ�
i(r)

, 3 ≤ i ≤ N + 1,

N+1
�

i=1

πi(r) = 1.

(2.16)

The value of π�
N+1(r) is also used to calculate γ�

s(r) (s ∈ 1, . . . , N ) by replacing Pmiss(r)

with π�
N+1(r). These steps are repeated until we converge to the final solution by replac-

ing in each step π�
N+1(r) by the new computed value πN+1(r) (see Algorithm 1). As for

the computational complexity of our model, let’s recall first that the state space contains

N + 1 elements. The complexity of computing the cache hit of one content cr is then

O(N) (we suppose here that the complexity of calculating each πi(r), 1 ≤ i ≤ N + 1,
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Algorithm 1 Cache hit rate of a content with popularity r and caching decision β(r)

1: function GET_CACHE_HIT(r, β(r))
2: π�

N+1(r) ← Get_cache_miss(r, 1) //Starting point of the iterative procedure (β(r) = 1)

3: πN+1(r) ← Get_cache_miss(r, β(r))
4: � : Arbitrarily small positive quantity
5: while |πN+1(r) − π�

N+1(r)| ≥ � do
6: π�

N+1(r) ← πN+1(r)
7: πN+1(r) ← Get_cache_miss(r, β(r))
8: end while
9: return 1 − πN+1(r)

10: end function

is a constant). To compute the total cache hit, we have to apply MACS to each content

of the catalog. Since we have R available items in the catalog, then the complexity of

computing the average hit of a single cache is O(NR). Now, in case where we have

a multi-cache system containing M nodes and if we want to compute the average hit

ratio of all the caches, we obtain a complexity of O(NRM).

4.3 Single cache model for 2Q

In [40], the authors proposed LRU-K, a page replacement algorithm for database

disk buffering. The proposal is an enhancement of the classical LRU replacement policy

in the sense that a history of requests is maintained for the elements of the cache.

Indeed, LRU-K keeps track of the timing of the K last occurrences, which allows having

a better idea of the contents’ popularity. Thus, the element whose Kth most recent

access was furthest in the past will be evicted when the cache is full. When K is

equal to one (LRU-1), the approach is equivalent to the classical LRU. Note that, most

of the LRU-K method gain is achieved when K = 2 (LRU-2) [40]. However, LRU-2

suffers from a high complexity, as each element access requires log(N) operations to

manipulate a priority queue (N being the cache size).

Johnson et al. proposed the Two Queue scheme (2Q) [41], which is similar and

performs as well as LRU-2 algorithm, but having a constant time overhead. Instead

of cleaning cold elements from the main buffer like LRU-2, 2Q admits only the hot

ones to the cache. When a request is received by a cache using 2Q, the requested

object’s hash is first placed in a virtual cache (called A1), which is managed as a FIFO.

If an item is requested during its A1 residency, it is then promoted to the main cache
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Figure 2.4 – Cache hit ratio of contents with various popularities vs iterations number
of the 2Q fixed-point solution under a single node (catalog = 20000, cache size = 200).

(called Am). The authors, then, proposed another version of 2Q in which the A1 queue

is partitioned into A1in and A1out. The A1in queue along with Am form the physical

cache and A1out is a virtual cache, which will contain only items hashes. The most

recent first accesses will be stored in A1in, which will be managed as a FIFO queue.

When objects are evicted from A1in, they will be remembered in A1out. Upon arrival of

a request and if it is present in the A1out queue, then it is cached in Am. The item to be

discarded in 2Q is chosen either from A1in or Am. However, the sizes of the different

queues (A1in, A1out and Am) are sensitive to the requests patterns and should be

tuned carefully.

In our work, we considered a caching scheme similar to the first version of 2Q

where the virtual buffer and the main cache are both managed using LRU. If we apply

the model MACS presented previously to the 2Q scheme, β(r) will then be equal to the

hit probability in the virtual cache of the received content cr. Since the virtual cache is

managed as a classic LRU (i.e. each received item is always cached), β(r) of a node v

is obtained using equations (2.13):

β(r, v) = 1 − πN+1(r, VC(v)). (2.17)

The value of πN+1(r, VC(v)) represents the miss probability of content cr in the virtual

cache of node v (i.e. VC(v)). We can see from Figure 2.4 that the solutions of our algo-

rithm converge quickly in the different tested configurations. The convergence speed

depends on the content popularity and the network settings, but in general, it takes

about 8-10 iterations for all the contents to converge.
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Figure 2.5 – Cache hit ratio of contents with various popularities vs iterations number of
the LCD fixed-point solution under a single node (catalog = 20000, cache size = 200).

4.4 Single cache model for LCD

The authors in [37] proposed a caching scheme called Leave Copy down. Under

the LCD scheme, a new copy of the requested object is cached only on the node that

resides immediately below the location of the hit on the path to the requesting client.

Compared to LCE, LCD moves the requested contents progressively from the origin

server towards the clients, with each request advancing a new copy of the document

one hop closer to the client. LCD aims to reduce the redundancy of the same items at

multiple nodes by caching an object at one node at a time and to avoid the amplification

of replacement errors. The conducted experiments in [37] had shown the efficiency and

good performance of LCD under different configurations and in addition, it is an easy

scheme to implement that does not need additional overhead.

If we model the LCD caching strategy using MACS, the value of β(r) in this case

will be the hit probability of content cr in the next-hop cache. Using equations (2.16),

the β(r) of a node v is equal to:

β(r, v) = 1 − πN+1(r, NH(v)). (2.18)

The value of πN+1(r, NH(v)) depicts the miss probability of cr in the next-hop or parent

cache of v (i.e. NH(v)). We can see from Figure 2.5 that the solutions of our algorithm

converge quickly in the different tested configurations (it takes about 8-10 iterations for

all the contents to converge).
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5 Multiple caches systems

Following common practice [31]-[34], we assume in this work that after a cache

miss and when a content is decided to be cached by a node, it will be downloaded

instantaneously. Let’s consider a system of multiple CCN nodes where the contents

are forwarded according to the Shortest Path Routing (SPR) algorithm [59]. With SPR,

when a client’s interest cannot be satisfied by a node, it is forwarded along the shortest

path to the closest permanent copy of the requested content. In this case, each node

has to take into account, in addition to the local requests, the interests that come from

other nodes due to a cache miss (we denote this stream of interests by “miss stream”

or MS). The outgoing miss stream rate from a node u of a content cr is equal to

MSr(u) = req(r, u) × πN+1(r, u), (2.19)

where req(r, u) is the total proportion of requests for cr received by u and πN+1(r, u)

is the miss probability of content cr at u. In CCNs, the interests for the same object

received by a node will be aggregated and only the first one is sent to the next nodes.

This feature should be considered when computing the total miss stream received by

a node having more than one child node. The incoming miss stream ratio for an object

with a rank r at a node v, that we denote by ηr(v), is equal to

ηr(v) =
�

u:NH(u)=v

�

MSr(u)
�

w �=u:NH(w)=v

(1 − MSr(w))
�

. (2.20)

The set {u : NH(u) = v} represents the nodes having v as the next hop in the shortest

path toward the source. The value 1 − MSr(w) represents the case where an interest

sent from the node w is discarded because it was already received by another node.

If we consider a multi-cache network where the requests aggregation feature is not

present, ηr(v) in this case will be simply equal to

ηr(v) =
�

u:NH(u)=v

MS(r, u). (2.21)

Now, when dealing with an interconnected network of caching nodes, the probability

that a node v will receive a request for cr will no longer be pr, but another value that we

denote as p�
r, which will take into account in addition to the local requests, the interests
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due to a cache miss from previous nodes. For each node v, this value is equal to

p�
r =

pr + ηr(v)
�R

k=1(pk + ηk(v))
=

pr + ηr(v)

1 +
�R

k=1 ηk(v)
. (2.22)

In other words, p�
r represents here the proportion of requests received for cr coming

either from clients directly attached to the node (i.e. pr) or from previous nodes (i.e.

ηr(v)) over the total requests received by the node v for all the items. In the case where

a CCN node does not have local requests, p�
r will be then equal to

p�
r =

ηr(v)
�R

k=1 ηk(v)
. (2.23)

Consider again the Markov chain of a generic single LRU cache that we presented

previously (see Figure 2.3). For every node v, we can compute the stationary state

probabilities as we did in the case of a single node by replacing pr with p�
r:
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π1(r) =
p�

r(1 + (β(r) − 1)π�
N+1(r))

1 − (γ�
1(r) − γ1(r))

,

π2(r) = γ�
2(r)π2(r) + (1 − γ �

1(r))π1(r),

πi(r) =
(1 − p�

r − γ�
i−1(r))πi−1(r)

1 − γ�
i(r)

, 3 ≤ i ≤ N + 1,

N+1
�

i=1

πi(r) = 1.

(2.24)

As we mentioned in the previous section, the cache hit probability of a content

with popularity r is equal to 1 − πN+1(r). To compute the cache hit performance of a

multi-cache system operating under LCE or 2Q, we start by treating the leaf nodes of

the network since in our model each node needs to know all the incoming stream of

requests, including those received due to a cache miss from a previous node. Starting

from the leaves where there is no miss stream requests, we go through the core nodes

of the network until arriving at the source (or root) node where the permanent copies

of the catalog’s objects are attached.

When a multi-cache system is operating under the LCD strategy, we cannot produce

the steady-state hit rates in a bottom up way, like we did with the previous schemes.

This is due to the bidirectional dependency a cache’s state has with its upstream or

downstream node (and vice versa). When modeling LCD and to compute the cache
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hit, each node in the network needs to have the incoming stream of requests received

from previous nodes due to cache misses. At the same time, it is necessary for each

node to know the cache hit rate of the upstream node in order to decide whether the

object should be cached or not. To resolve these dependencies, we use a fixed-point

iteration method. As a start, we compute the different incoming streams of all nodes

assuming that the network operates under the LCE strategy. Since the root node rep-

resents the origin server containing all the available contents in the network, its cache

hit probability is then equal to one for all the items. Therefore, we can in a top down

manner compute the hit ratio of the different caches starting from the root node and

going down to the rest of the network using the request streams obtained with LCE.

Then, we can repeat these steps using, each time, the new obtained values of equilib-

rium hit probabilities to recalculate the request streams and then, deduce the different

hit ratios until their convergence. The operations needed to compute the hit rates of the

different nodes forming a network when the LCD scheme is used are summarized in

the iterative procedure below:

1. Calculate the incoming stream of requests of all the nodes starting from the

leaves of the network assuming that the network operates under the LCE strat-

egy (i.e., β(r) = 1, r ∈ {1, . . . , R}).

2. Compute the hit ratio of each node starting from the network’s root where per-

manent copies of the available contents are attached using the LCD scheme.

3. Recalculate the incoming stream of requests of the network nodes using the

new obtained cache hit rates.

4. Update the network’s hit rate using the last obtained values of the incoming

stream of requests received by each node.

5. Repeat step three and four until convergence of the cache hit values.

6 Model Evaluation

6.1 Tests environment

In order to evaluate the accuracy of our proposals, we compared the analytical mod-

els presented, in the previous section, with the results of simulations under ccnSim [60],

which is a discrete-event and a chunk-level simulator for CCN networks. The accuracy
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of MACS, compared to the simulation results, can be affected by many parameters.

Our focus on the conducted experiments was on the following key settings: cache size

and Zipf law’s skew distribution value. As for the network topology, a complete binary

tree of 31 nodes was chosen to validate our model where the distance and the latency

between each two adjacent nodes are the same 1.

We measured during the tests three metrics: cache hit rate, content provider load

and distance reduction ratio. The cache hit rate metric represents the ratio of requests

that were served by the caches over the total number of requests sent in the network.

The content providers load is defined as the proportion of requests not served by the

intermediate caches of the network and thus, retrieved from the main source of con-

tents. The distance reduction ratio represents the average gain obtained in terms of

distance that an interest travels before finding a copy of the requested object. The con-

tent provider load and the distance reduction ratio (denoted respectively as CPL and

DRR) are both expressed as a percentage and are computed as follows:

CPL =
s

�

i=1

Pmiss(i) × 100,

DRR =
Dist(s) −

�s
i=1

�

�

�i−1
j=1 Pmiss(j)

�

× Phit(i) × Dist(i)
�

Dist(s)
× 100.

In the definition of CPL and DRR and for sake of clarity, we supposed that the network

is formed by a line of s nodes numbered from 1 to s where the clients are attached to

node 1 and the content repository is located just after node s. It should be noted that

of course, we can compute these metrics in any type of network topology. The values

Pmiss(i) and Phit(i) used here represent respectively the cache hit and cache miss of

a network’s node vi. The expression Dist(i) is the distance from where the clients

requests were generated to the node vi (we could also consider the delay between

nodes instead of distance and thus calculate the average network delay.). The index

s represents the nearest node vs to the clients to which a content provider is attached

(i.e. where a permanent copy of the accessible contents is available).

In the simulation settings, we considered a catalog of contents containing 20, 000

1-chunk sized objects whose popularity distribution follows the Zipf’s law. Permanent

copies of the available contents are hosted on one repository attached to the root node

of the network. We set a uniform cache store capacity on the CCN nodes, which was

1. Realistic network topologies can be also used as we did in [18].
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Figure 2.6 – Comparison of MACS and Che approximation in the case of a single
cache.

defined as a proportion of the catalog size. Different simulations were conducted with

a cache store size varying from 0.1% to 1.0% of the catalog capacity. The clients,

attached to the network’s leaves, generate requests according to a Poisson process

with a rate per client corresponding to one request per second (each client representing

an aggregate of users). We tested also different values of the Zipf law’s skew parameter

α going from 0.8 to 1.2. As shown in many studies [55], these two values correspond to

the Zipf popularity exponent in the case of User Generated Content (UGC) and Video

on Demand (VoD), respectively. The Least Recently Used (LRU) scheme is used as

a cache replacement policy and the virtual buffer capacity used in the 2Q algorithm is

equal to the main cache size, to see the model accuracy with different values of the

virtual cache size. Next, we will expose and compare the cache hit results obtained

with our analytical model and with the ccnSim simulation tool. The simulation results

of ccnSim, shown in the graphs, depict the mean values taken over 30 runs, where 106

requests are sent in the network after it reaches its stability (i.e., all the caches become

full). The error bars represent 99% confidence intervals.

6.2 Model results and analysis

Before we proceed further and go through the different results obtained with our

model in the case of multi-cache networks, we evaluate in Figure 2.6 the accuracy of

79



Chapter 2 – Modeling multi-cache networks using Markov chains

Table 2.2 – Hit ratio accuracy comparison (in %) between different models of a 2Q sin-
gle cache under the IRM model with a Zipf’s distribution parameter α = 0.8. Simulations
are based on 10 runs of 103 × R requests with a warm-up period of 33 %.

Cache/Catalog MACS (e1/e2) Eq.(13) of [39] (e1/e2) Eq.(10) of [38] (e1/e2)

100/1000 47.533 (1.312/0.161) 47.641 (1.543/0.064) 47.808 (1.899/0.415)

100/10000 27.215 (0.665/0.391) 27.352 (1.172/0.109) 27.404 (1.364/0.302)

1000/10000 52.720 (1.497/0.248) 52.596 (1.288/0.013) 52.746 (1.577/0.300)

MACS and CHE in terms of hit ratio of a single cache by comparing their outcomes to

those obtained with the simulation tool ccnSim where the LCE scheme is used. The dif-

ferent plots exposed in Figure 2.6 represent the hit ratio as a function of the cache size

(Figures 2.6(a)-2.6(b)-2.6(c)) and Zipf’s parameter α (Figures 2.6(d)-2.6(e)-2.6(f)). We

can see from the graphs how MACS has the same precision as the Che approximation

and that both models are very accurate. As mentioned in Chapter 1, many models from

the state-of-the-art proposed 2Q models based on the approximation of Che [38]-[39].

A quick comparison of these proposals with MACS is shown in Table 2.2, where e1 and

e2 represent respectively the percent errors in terms of hit ratio relatively to ccnSim and

the simulator used in [39] and the virtual cache has the same size as the cache itself.

The results in Table 2.2 show a good accuracy of the different tested models without

a clear difference between them. Compared to MACS, the Che approximation has a

lower complexity, but as we discussed earlier in the previous sections and as we will

see in the next results, our proposal is a more general model that can be used not only

with a specific caching scheme, but covers various caching strategies.

Figures 2.7-2.8-2.9 compare LCE, 2Q and LCD models (i.e. MACS), respectively,

with the simulations conducted under different scenarios within ccnSim, in terms of

average cache hit ratio as a function of content popularity. For the sake of clarity, we

considered in the graphs only the objects whose popularity goes from 1 to 500. We can

see from the charts that our analytical model give in average an accurate hit rate for the

whole range of item population with different network settings. When the cache size is

set to a low value (0.1% of the catalog), the model performs better even with distinct val-

ues of α and for different types of content popularity (see Figures 2.7(a)-2.7(b)-2.7(c)-

2.8(a)-2.8(b)-2.8(c)-2.9(a)-2.9(b)-2.9(c)). A slight accuracy reduction in the cache hit

ratio per content is observed when the cache capacity is set to 1% of the catalog size
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Figure 2.7 – Average hit rate vs content popularity with different parameters and using
the LCE scheme.
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Figure 2.8 – Average hit rate vs content popularity with different parameters and using
the 2Q scheme.
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Figure 2.9 – Average hit rate vs content popularity with different parameters and using
the LCD scheme.
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Figure 2.10 – Total hit rate of the network vs different configurations using the LCE
scheme.
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Figure 2.11 – Total hit rate of the network vs different configurations using the 2Q
scheme.

(see Figures 2.7(d)-2.7(e)-2.7(f)-2.8(d)-2.8(e)-2.8(f)-2.9(d)-2.9(e)-2.9(f)). An increase

of the cache size means more states to be considered in MACS for each content,

which makes it harder to estimate the hit ratio of each item in the whole network.

In Figures 2.10-2.11-2.12, we plot the network’s total hit rate as a function of the

cache size and the Zipf’s law skew parameter α of LCE, 2Q and LCD models along with

ccnSim. Our aim here is to try a large range of values in the network configurations and

see the model’s performance in terms of accuracy. The results from the charts show

a good accuracy in estimating the overall cache hit performance of the network with

various settings. Compared to 2Q and LCE, the error rate in LCD model is a little higher.

Let’s recall that the complexity of modeling LCD with MACS is higher, as it requires the

addition of a fixed-point iteration method to compute the cache hit performance of a

multi-cache system, as explained previously, which may increase the error rate.

Figures 2.13-2.14-2.15 display the cache hit accuracy at different levels of the net-

work topology using LCE, 2Q and LCD. Level one represents the leaf caches and level

five being the root node. The models accuracy is slightly reduced at higher levels within

the network, especially with the LCD model. The main cause of this inaccuracy is re-

lated to the estimation of the request streams due to cache miss. Indeed, at the leaf
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Figure 2.12 – Total hit rate of the network vs different configurations using the LCD
scheme.
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Figure 2.13 – Cache hit ratio at different layers of the network using the LCE scheme.
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Figure 2.14 – Cache hit ratio at different layers of the network using the 2Q scheme.

nodes, the requests received contain only those generated by the clients, which can be

easily estimated. However, the incoming miss streams of the nodes located at the core

of the network are more difficult to estimate since they are computed using the cache

hit rate of previous nodes.

6.3 Caching algorithms comparison

We compare, in the following, the performance of the different caching strategies

that we have modeled and analyzed previously: LCE, LCD, 2Q and Opt (only analytical

results are shown). Opt represents the maximum cache hit ratio that we can achieve

when the objective is to reduce the distance travelled to retrieve contents. More specif-

ically, if we consider a network where the caches have the same size N (in terms of

number of items that can be stored) and the contents popularities are known in ad-

vance, then Opt consists on caching in the nodes located at 1-hop from the clients the

most N popular contents of the catalog (c1, . . . , cN ). Then, the second N most popular

items (cN+1, . . . , c2N ) will be cached at the 2-hop nodes, etc. The results of Opt shown

in the graphs were obtained using MACS by fixing to one the value of β(r) for the con-

tents that should be cached at each node and β(r) is set to zero for the other items.
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Figure 2.15 – Cache hit ratio at different layers of the network using the LCD scheme.

The cache hit metric is an indicator of caching efficiency in multi-cache networks and

generally, as the cache hit of each node increases, the network performance becomes

better. Particularly, in traditional network topologies, we have many access caches and

fewer core caches (a tree topology is a good example of this type of network). In this

type of topology, access caches are linked to clients and often have similar content in

the same region and the total cache hit is calculated as the average hit of the different

caches in the network. As there is more caches at the access layer level, improving

the overall cache hit would first require improving the hit of the access caches. This

approach seems to be appropriate since it consists on bringing content closer to users

and thus improving their quality of experience. This also has the advantage of reduc-

ing traffic in the operator’s network. This strategy represents the main objective behind

LCD and 2Q. For this reason, and when we made the comparison in terms of cache hit

ratio, the target of Opt was to maximize the hop saving in order to cope with the aim of

the caching schemes used in the state-of-the-art.

In Figure 2.16, we display the total hit rate of the network as a function of the α value

(the Zipf law skew parameter) and the cache size using different caching schemes. The

virtual cache size in 2Q was set to 20, which represents approximately the best tuning
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Figure 2.16 – Total hit rate of the network with different parameters and various caching
strategies.

in the different use cases that were evaluated. We can see from the charts that LCD

outperforms LCE, as it reduces the content redundancy in the network nodes and thus,

more distinct objects are available in the caches. Each time a content is requested in

LCD, it gets one-hop closer to the leaf nodes, which is an efficient way to detect and

keep the popular items as closest as possible to the clients and to let the unpopular

ones on higher levels of the network. Despite the efficiency of LCD, the results show

the superiority of 2Q compared to the other caching schemes. Thanks to an effective

filtering effect by means of a virtual buffer, 2Q admits more popular contents into the

cache than the other techniques.

As the cache size increases (Figures 2.16(a)-2.16(b)-2.16(c)), the performance dif-

ference between the evaluated caching schemes is reduced and gets closer to the op-

timal values. Increasing the storage capacity will diminish the impact of caching unpop-

ular items, and the cache will become less affected by the adopted caching scheme.

However, a limited cache size will increase the probability of discarding valuable con-

tents to the benefit of the unpopular ones. In this case, the efficiency of the decision

caching strategy in accepting only the most popular items is crucial. For example, when

α is set to 1.0 and the cache size is equal to 0.1% of the catalog, LCE achieves 53% of
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Figure 2.17 – Total hit rate at different layers of the network with different parameters
and various caching strategies.

the optimal performance. However, if we set the cache size value to 1.0% of the catalog

and we keep the same value of α, LCE performance reaches 63% of the optimal one.

The results also show a clear impact of the contents popularity distribution on

the caching efficiency (Figures 2.16(d)-2.16(e)-2.16(f)). A high value of α (above one)

means that fewer contents will receive most of the requests and, thus, decreasing the

probability of caching many distinct unpopular items independently from the caching

strategy. However, when α is set to a low value (below one), the contents popularity

becomes more uniform, which makes it harder for the caching scheme to anticipate

the most demanded items. For example, when the cache size is set 0.5% of the catalog

and α is equal to 0.8, LCE achieves 47% of the optimal performance. In case where the

α is set to 1.2 and without changing the cache size value, LCE performance reaches

%71 of the optimal one.

Figure 2.17 displays the cache hit ratio at different layers of the networks with dif-

ferent settings and using different caching schemes. We can see from the different

graphs that the cache hit performance is much higher at the first level than the other

ones, independently from the used caching scheme. The nodes at level one will be the

first to receive the clients’ requests, which increases their probability to serve the most
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Figure 2.18 – Cache hit ratio vs content popularity at different layers of the network
with different parameters and various caching strategies.

popular contents demanded by the users. This will result in nodes at higher levels to

cache less popular contents and thus, decreasing their performance. Compared to the

total cache hit ratio of the network, it is clear that the first level nodes achieve most of

it. The storage capacities located at higher levels of the network cannot be used effi-

ciently and can be considered as wasted resources. As we have highlighted previously

during the analysis of the results depicted in Figure 2.16, the cache size and the Zipf

law parameter α values have a significant impact on the caching efficiency, as it can be

seen from the performance of the nodes at the first level of the network (Figure 2.17).

As the cache size and α increase, caching the most popular objects and keeping them

in the cache becomes easier, which will result in low performance difference between

the considered caching schemes.

Figure 2.18 gives an idea about the contents getting the most hits at each level of

the network, for different parameters and caching schemes. For the sake of clarity, the

objects having a very low cache hit rate are not shown on the graphs. These results

clearly confirm the superiority of LCD and especially, 2Q over the other ones. Indeed,

the graphs show clearly that 2Q succeeds in keeping at the nodes of level one more

popular items than the other techniques. In LCD or LCE, the top most requested objects
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Figure 2.19 – Average distance reduction ratio of the network with different parameters
and various caching strategies.

are not served exclusively by the first level nodes, which will increase the average

distance to get contents. We can also see from the graphs how the popularity of cached

contents and their hit ratio decrease as we go up on higher levels of the network. This

can be explained by the fact that caching contents that already exists on previous

nodes makes them useless, which increases the replacement errors of items in the

cache and, thus, decreases the nodes performance.

In Figures 2.19-2.20, we display the distance reduction ratio and the content

provider’s load using different caching schemes. The results of Opt presented in Fig-

ure 2.19 are obtained by setting as its objective the reduction of distance to retrieve

contents, as we explained it previously. In Figure 2.20, Opt was configured to mini-

mize the usage of the content provider, which is achieved by caching the most popular

items as near as possible to it. In other words, Opt, in this case, consists on caching

in the nodes located at 1-hop from the content provider the most N popular contents

of the catalog (c1, . . . , cN ). Then, the second N most popular items (cN+1, . . . , c2N ) will

be cached at the 2-hop nodes, etc. The graphs in Figures 2.19-2.20 confirm what

we have obtained in the previous results. The performance of 2Q and LCD are very

close, but 2Q remains always slightly better than LCD. Besides, the results indicate
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Figure 2.20 – Content provider load of the network with different parameters and vari-
ous caching strategies.

that increasing the cache size improves, of course, the network performance, but not

in a uniform manner. In fact, doubling the cache size does not necessarily double the

caching scheme efficiency. Now, if we compare the results of LCD and especially, 2Q

to Opt (see Figures 2.16-2.17-2.19-2.20), we can see that there is no much room left

for improvement. In addition, a caching scheme that can reach or get closer to the

theoretical optimal outcomes, in terms of network performance (i.e., cache hit ratio,

content provider load, etc.), will necessarily increase the network operations overhead.

The efficiency of the 2Q algorithm and its performance/overhead trade-off makes it a

good candidate to be used as a caching strategy in CCN networks.

7 Conclusion

The Content-Centric Networking (CCN) paradigm is one of the most promising ar-

chitectures for the future Internet. The in-network caching feature provided by CCN has

a direct impact on the system performance, and it is important to analyze and evaluate

the caching behavior in order to gain insights for optimized CCN caching schemes. We
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presented in this chapter MACS, a Markov chain-based Approximation of Caching Sys-

tems to estimate the cache hit probability under the popular LRU replacement policy.

The model can be applied to different caching systems, not only to CCN, and can be

used to compute different performance metrics in addition to the cache hit, such as the

content provider load and the distance reduction ratio. The versatility of MACS enables

us to model and analyze different caching schemes like LCE, LCD and 2Q. The con-

ducted experiments clearly show the accuracy of our model in estimating the cache hit

rate of a multi-cache system and also indicate the efficiency of 2Q in terms of network

performance, which makes it a good candidate to be used as a caching strategy.

In the next chapter, we will investigate the impact of cache resources placement in

CCN and in multi-cache systems in general. By means of our analytic tool MACS, a

new approach is proposed to tackle this problem, and we will see how it can improve

significantly the network performance.
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Introduction

After presenting our model MACS in the previous chapter, we investigate in this

chapter the optimal placement of caching resources. When studying multi-cache net-

works, the cache allocation problem is one of the most important issues to address,

especially due to the very expensive cost of deploying distributed storage capacities

along the network. More specifically, it consists on finding how a limited storage bud-

get should be distributed across the network’s nodes in order to ensure an effective

use of caches. The proposed approach in this chapter [21], which is based on joint

cache management between ISPs and CPs, solves the trade-off between minimizing

the hit rate in the origin server (with the risk of degrading the quality of experience)

and minimizing the distance between clients and the requested contents (with the risk

of ineffective caching for the same amount of cache). We model the cache allocation

problem as a multi-objective integer nonlinear program (the nonlinearity is confined to

the objective functions). Since it is an NP-hard problem [61], we propose the use of

the Greedy Randomized Adaptive Search Procedure (GRASP) [62], which has shown

its effectiveness in solving combinatorial optimization problems. Moreover, unlike other

metaheuristics like evolutionary algorithms, GRASP requires fewer parameters (only

one parameter in its basic version).

1 Motivations

During the last decade, ISPs and CPs infrastructures underwent a major meta-

morphosis driven by new networking paradigms, namely: Software Defined Networks

(SDN) [63] and Network Function Virtualization (NFV) [64]. The upcoming advent of

5G will certainly represent the most important achievement of this evolution [65]. In

this context, static (planning) or dynamic (on-demand) network resources placement,

especially caching, remains an open issue. Indeed, co-locating caching resources at

the core of the network optimizes caches, but not the network. Distributing caches op-

timizes network resources, but reduces the efficiency of caches, due to the existing

redundancy at the edge. The optimal placement of caching resources is one of the

most important issues to address in multi-cache networks in general, especially due to

the very expensive cost of deploying distributed storage capacities along the network.

In previous works that addressed the cache allocation problem, only one perfor-
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mance gain metric is generally considered (e.g. access latency, cache hit, etc.) to find

a storage distribution solution or to compare between different possibilities. In this work,

we use jointly the following two performance metrics to evaluate the cache gain: con-

tent provider load and average distance ratio. The first metric represents the amount of

contents that were served by the origin server over all the requests sent in the network.

The second one depicts the average distance travelled to get contents in the network

over the obtained distance without caching. We chose these two metrics for their im-

portance in representing the cost and gain obtained from the use of the in-network

caching. A high content provider load means most of the requested contents are not

served by the intermediate caches, and thus retrieved from their original location. Ac-

cessing the main source of contents is very expensive for network operators, and this

is why it is important for them to keep the content provider load as low as possible.

On the other hand, a low average distance to get contents means a better Quality of

Experience for users (QoE). Hence, a good cache allocation strategy should find the

best trade-off between these two metrics.

2 Multi-objective cache placement strategy

2.1 System assumptions

Let G = (V, E) be the graph representing a general network of caches, where

V = {v1, ..., vM} depicts the nodes of the network and E ⊂ V × V is the set of links

connecting the nodes. Each node in the network is equipped with a caching module

used to store contents locally. Let C = {c1, ..., cR} be the set of the catalog’s contents

available for the users. We assume that all the accessible contents in the system have

an identical size and are divided into small packets or chunks, which are in turn of the

same size. The cache capacity is then expressed in terms of the number of contents

or chunks that can be stored. All the available contents are stored permanently at one

or more servers attached to some nodes within the network. In the rest of the chapter

and for the sake of readability, we will use the term node/cache interchangeably as well

as the terms rank/popularity and content/item/object.

Clients, which are attached to the network nodes, send requests into the network

looking for contents. The pattern of these requests is characterized by the Independent

Reference Model (IRM) [31]. Suiting the IRM model, users generate an independent

and identically distributed sequence of requests from the catalog C of R objects. As it
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was described in the previous chapter, the probability pr to request an item cr from the

set of available contents in the network is constant and follows a popularity law (i.e. Zipf

law), where the contents are ranked decreasingly according to their popularity from 1 to

R. In the present work, the LRU algorithm is used to manage the node’s content store

and two caching schemes will be considered: LCE and 2Q.

2.2 Problem formulation

A cache allocation solution (taken for example by an NFV orchestrator), can be de-

fined by a vector X = (x1, . . . , xM), where xi represents the amount of storage capacity

placed in node vi. To compute the content provider load or the average distance ratio

of a configuration of caches X, we use our model MACS (Markov chain-based Ap-

proximation of Caching Systems), which we presented in the previous chapter. MACS

is an analytic tool that allows us to estimate the cache hit ratio of an interconnection

of caches, which can be used to compute other performance metrics like the content

provider load and the average distance ratio. By using MACS and for each cache al-

location configuration X, we can evaluate the performance of the whole system in its

steady-state and not just during a transient phase.

Since in this work the caching capacity is expressed in terms of the number of con-

tents that can be stored, then we have xi ∈ N. As we measure the caching gain through

evaluating the content provider load and the average distance ratio in the network, our

objective is to find a cache distribution solution such that the evaluation metrics that we

have chosen are optimized (i.e. minimized). The cache placement is then formulated

as a multi-objective optimization problem as follows:

minimize
X=(x1,...,xM )

f1(X), f2(X)

subject to
M
�

i=1

xi ≤ Tc, i = 1, . . . , M,

xi ∈ N, i = 1, . . . , M.

(3.1)

The value of Tc represents the total cache resources to be distributed in the network.

The expressions f1(X) and f2(X) are both expressed as a percentage and represent,

respectively, the content provider load and the average distance ratio of a cache place-

ment configuration X using MACS. The primary function of MACS is to calculate the

cache hit ratio of the network’s nodes. Then, we can compute f1(X) and f2(X) as
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follows:

f1(X) =
�

s
�

i=1

Pmiss(i)
�

× 100,

f2(X) =

�s
i=1

�

�

�i−1
j=1 Pmiss(j)

�

× Phit(i) × Distance(i)
�

Distance(s)
× 100.

(3.2)

The values Pmiss(i) and Phit(i) represent, respectively, the cache hit and cache miss of

a network’s node vi. The expression Distance(i) is the distance from where the clients

requests were generated to the node vi. The index s represents the nearest node vs

to the clients to which a content provider is attached (i.e. where a permanent copy of

the contents is available). In the definition of f1(X) and f2(X) and for sake of clarity,

we supposed that the network is formed by a line of s nodes numbered from 1 to s

where the clients are attached to node v1 and the content repository is located just

after node vs. It has to be noted that of course, we can compute these metrics in any

type of network topology and that we could consider the delay between nodes instead

of distance and thus calculate the average network delay.

Since here we are dealing with a multi-objective optimization problem, in which

we want to minimize f1(X) and f2(X), the solutions will be a set of efficient points

usually called the Pareto frontier. Pareto efficiency or optimality implies that a solution

to a multi-objective problem is such that no single objective can be improved without

deteriorating another one. In our case, a solution X∗ is said to be efficient if there is

no other solution X such that f1(X) < f1(X
∗) and f2(X) ≤ f2(X

∗) at the same time,

or f2(X) < f2(X
∗) and f1(X) ≤ f1(X

∗). Given that integer nonlinear programming is

an NP-hard problem, solving the cache allocation problem as we modeled below will

come at a very high computational cost. More specifically and due to the nonlinearity

of the objective functions, we need to perform an exhaustive search method in order

to enumerate all possible candidates that respect the problem constraints and find the

set of optimal cache distributions. If we look closely to our formulation of the problem,

the task of enumerating all possible candidates comes down to computing the weak

composition of an integer n into k parts, i.e., writing n as the sum of a sequence of

non-negative integers. A weak composition Cn,k [66] has a cardinality of

|Cn,k| =





n + k − 1

k − 1



 =
(n + k − 1)!

n!(k − 1)!
. (3.3)
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Algorithm 2 Application of GRASP to the cache allocation problem

1: function GRASP(Max_Iterations, λ)
2: Solution ← Greedy_Randomized_Construction(λ);
3: Solution ← Local_Search(Solution);
4: Best_Solution ← Solution;
5: for k = 1, . . . , Max_Iterations − 1 do
6: Solution ← Greedy_Randomized_Construction(λ);
7: Solution ← Local_Search(Solution);
8: if f(Solution) < f(Best_Solution) then
9: Best_Solution ← Solution;

10: end if
11: end for
12: return Best_Solution;
13: end function

In our case, n = Tc and k = M , where the set of M non-negative integers has a sum

equal to Tc and represents the cache resources allocated to each node of the network.

It is clear that |Cn,k| is huge for high values of n and k. Therefore, we propose the use

of the meta-heuristic GRASP to solve the cache placement problem (see the model

(3.1)).

2.3 Solving cache allocation problem using GRASP

2.3.1 Mono-objective GRASP

The Greedy Randomized Adaptive Search Procedure or GRASP [62] is an iterative

process, where each iteration consists basically of two steps: construction and local

search. The construction phase seeks to build a feasible solution using a greedy ran-

domized approach, whose neighborhood will be investigated during the local search

in order to find a local optimum. The pseudo-code of Algorithm 2 depicts the main

blocks of a mono-objective GRASP procedure, where Max_Iterations is the number

of iterations that are performed (we will see later the role of the parameter λ and

the case of multi-objective GRASP). The best overall solution is, then, kept as the

final result. The construction phase operations are shown in Algorithm 3. Let’s recall

first that the solution S to be built during the construction phase is defined by a vec-

tor X = (x1, . . . , xM), where xi represents the amount of storage capacity placed in

node vi. Initially, no cache resources is allocated to the nodes, so at the beginning,
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Algorithm 3 Construction phase

1: function Greedy_Randomized_Construction(λ)
2: for i = 1, . . . , M do
3: xi ← 0; // Cache allocated for each node vi

4: end for
5: S ← (x1, . . . , xM); // Current solution
6: CS ← ∅; // Initial candidate set CS
7: while Tc �= 0 do // Construction of the solution S
8: Tc ← Tc − Pc

9: for i = 1, . . . , M do // Create candidate set CS
10: xi ← xi + Pc;
11: X ← (x1, . . . , xM);
12: CS ← CS ∪ {X};
13: xi ← xi − Pc;
14: end for
15: Evaluate the incremental costs f(X) ∀X ∈ CS;
16: fmin ← min{f(X) | X ∈ CS};
17: fmax ← max{f(X) | X ∈ CS};
18: RCL ← {X ∈ CS|f(X) ≤ fmin + λ(fmax − fmin)};
19: Select an element X∗ from the RCL at random;
20: S ← {X∗ = (x∗

1, . . . , x∗
M)}; // S gets the partial solution X∗

21: for i = 1, . . . , M do
22: xi ← x∗

i ;
23: end for
24: end while
25: return S;
26: end function

S = (0, . . . , 0). The set CS will contain the candidate elements, which will be used for

the solution S. In our case and at each step, CS will contain a set of cache placement

configurations Xi where a partial resource that we denote Pc, is taken from the total

available cache Tc and allocated to one of the network’s nodes. If we have, for example,

a network with three nodes, Tc = 100 and Pc = 10, the initial candidate set will then be:

CS = {(10, 0, 0), (0, 10, 0), (0, 0, 10)}.

Each candidate is then evaluated with a greedy function in order to build a restricted

candidate list RCL, which will contain some of the candidate set who have the best eval-

uation values (e.g., RCL = {(10, 0, 0), (0, 10, 0)}). The limitation criteria of the list cardi-

nality can be either based on the number of elements or based on their quality, as we

did in Algorithm 3 (line 18). The elements added to the RCL list will then be those hav-
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Algorithm 4 Local search phase

1: function Local_Search(S)
2: do
3: (x1, . . . , xM) ← S;
4: for i = 1, . . . , M do
5: xi ← xi − Pc;
6: for j = 1, . . . , i − 1 do // Cache resources transfer between nodes to improve the current solution

7: xj ← xj + Pc;
8: if f(x1, . . . , xM) < f(S) then
9: S ← (x1, . . . , xM)

10: end if
11: xj ← xj − Pc;
12: end for
13: for j = i+1, . . . , M do // Cache resources transfer between nodes to improve the current solution

14: xj ← xj + Pc;
15: if f(x1, . . . , xM) < f(S) then
16: S ← (x1, . . . , xM)
17: end if
18: xj ← xj − Pc;
19: end for
20: end for
21: while Solution S is not locally optimal

22: return S;
23: end function

ing an evaluation value inferior to the threshold (i.e., f(X) ∈ [fmin, fmin+λ(fmax−fmin)]).

The value of λ will control the insertion condition of candidate elements to RCL (λ ∈

[0, 1]). The case λ = 1 is equivalent to a random construction, while λ = 0 corresponds

to a pure greedy algorithm. Once RCL is built, one element is randomly selected and

added to the solution S being built. The candidate list CS and the evaluation function

f(CS) are then updated and the construction is repeated (line 7 to 24) until the total

use of the cache budget Tc. If we consider for example that the second element from

RCL has been chosen, the current partial solution will then be S = (0, 10, 0) and the

new candidate list will contain: CS = {(10, 10, 0), (0, 20, 0), (0, 10, 10)}.

Once the cache budget Tc is distributed, the local search will seek to improve the

generated solution (e.g., S = (20, 40, 40)) by evaluating its neighborhood (Algorithm 4).

The efficiency of a local search method depends on many aspects, such as the neigh-

borhood structure of the considered solution, the neighbors search technique and the
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starting solution itself. Two methods can be used for the neighborhood search: the best-

improving strategy or the first-improving one. The best-improving strategy consists on

investigating all the neighbors and the current solution will then be replaced by the best

neighbor found. In the case when a first-improving method is used, the current solution

will be replaced by the first neighbor whose evaluation value is better. In our case, we

used for the neighborhood search a best-improving strategy as follows: starting from

the solution generated by the greedy randomized construction, we transfer an amount

of cache Pc from one node to another and explore all the possible cases looking for

a cache configuration whose evaluation function value is better than the current one

(e.g., Neighbor(S) = {(10, 50, 40), (30, 30, 40), etc.}). We repeat these steps until the

current solution can no longer be improved, which then will be returned as the output

of the local search procedure of GRASP.

As for the complexity of GRASP algorithms (i.e. construction and local search)

applied to our formulation of the cache allocation problem, we have a complexity of

O(Tc M) for the construction phase and O(M2) for the local search phase.

2.3.2 Multi-objective GRASP

In single-objective GRASP, only one greedy function is used to evaluate the can-

didate solutions during the construction and local search phases. In multi-objective

GRASP [67], we have in the general case k functions (f1(X), . . . , fk(X)) to evaluate a

candidate element X and the objective functions can be used mainly in two ways:

— Pure construction/local search: this method consists on using one single ob-

jective during each phase of the solution generation. The selection of which

evaluation function to be used in each iteration can be done using the following

approaches:

� Pure-random approach: using this method means that the entire construction

or local search is guided by only one single evaluation function that we select

randomly from the set of the objective functions (f1(X), . . . , fk(X)).

� Pure-ordered approach: when this method is adopted, we select the greedy

function in an ordered way and one at a time and use it in all the steps of

the construction phase or the local search. In other words, the candidate

elements are evaluated with f1(X) during the first iteration. Then, we use

f2(X) in the second iteration, and so on until we reach the k + 1-th iteration,

in which we go back again to f1(X).
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— Combined construction/local search: this method consists on using more than

one greedy function in each iteration by means of one of the following ap-

proaches:

� Sequential combined approach: by using this process, each step of the con-

struction or local search is guided by a different evaluation function. The

choice of which objective to choose between each construction step can be

done either randomly or in an ordered way.

� Weighted combined approach: with this method, a weighted combination

of the objective functions is used in each step of the construction or local

search 1. We can either change the weights between the steps of each phase

or keep them the same during the whole process. It has to be noted that

the weights can help us scale evaluations functions having significantly var-

ied magnitudes into similar and comparable ones. In addition, some greedy

functions in multi-objective optimization can be minimized while others max-

imized. In this case, the weights can take positive and negative values in

order to take into account this fact.

In our case, we have two evaluation functions to be used in the multi-objective

GRASP: f1(X) and f2(X) and there are many methods that can be used to com-

pute the outcome of each configuration in the construction and local search phases.

For example, one can use f1(X) in the construction phase and f2(X) during the lo-

cal search and vice versa, or choose randomly between the objective functions during

each GRASP iteration. We can also consider a weighted combined method (f(X) =

w1f1(X)+w2f2(X)). The choice of which method to be used to evaluate a candidate so-

lution (or partial solution) can depend on some desired results that should be achieved

or some constraints that should be respected.

In our work, we considered two methods to generate the solutions based on the

defined objective functions f1(X) and f2(X). In the first method, which matches a pure-

ordered approach, we use in each iteration one objective function (f1(X) or f2(X))

during the construction phase. The other one is then used during the local search.

Then, we alternate between the selected functions for each phase in the next iteration.

For example, if we chose in the first iteration respectively f1(X) and f2(X) for the

construction and local search phases then, in the second iteration, we will use f1(X)

1. Weighted combined construction: f(X) =
�

k

i=1
wifi(X), where wi is the weight of the evaluation

function fi(X).
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in the local search and f2(X) in the construction phase, etc. This approach will allow

us to produce diversified solutions of good quality. In the second method, we used a

weighted combination of the evaluation functions as follows:

f(X) =
�

0.5 ×
|f1(X) − 100|

|Opt(f1(X)) − 100|
+ 0.5 ×

|f2(X) − 100|

|Opt(f2(X)) − 100|

�

× 100. (3.4)

The expressions Opt(f1(X)) and Opt(f2(X)) represent respectively the theoretical

optimal values of the metrics f1(X) and f2(X) for a fixed cache resources budget Tc.

More specifically, Opt(f1(X)) is obtained by allocating all the available cache resources

at the root node and then, computing the content provider load. As for Opt(f2(X)), it

is obtained by computing the average distance ratio metric where all the total cache

resources are placed at one-hop from the clients. Since here we want to minimize

f1(X) and f2(X) (expressed as percentages), then the range of values taken by these

functions is: [Opt(fi(X)), 100] (i = 1, 2). The value 100 represents the worst case, i.e.,

where no cache resources were allocated and thus, all the contents are retrieved from

the main source and the average distance to get objects is not reduced. So, what we did

is to compute how much improvement can be achieved in each of these performance

metrics relatively to the optimal values that can be reached. For example, and for a

certain configuration X = (x1, . . . , xM), if we have f1(X) = 40% and Opt(f1(X)) = 20%,

then (|40 − 100|/|20 − 100|) × 100 = 75%. This value means that we have achieved 75%

of the optimal outcome of the content provider load.

The evaluation function f(X) can be seen as a ratio of efficiency and it can be

used in a case scenario where the aim is to improve as much as possible the network’s

overall performance. It is also a mean to scale the evaluation functions f1(X) and f2(X)

into similar and comparable magnitudes. In addition, the weighting coefficients (fixed to

0.5 in our case) can be tuned in order to give more importance to one metric over the

other. In the case where the weighted combined approach defined by f(X) is adopted,

the cache placement is then formulated as the following optimization problem:

maximize
X=(x1,...,xM )

f(X)

subject to
M
�

i=1

xi ≤ Tc, i = 1, . . . , M,

xi ∈ N, i = 1, . . . , M.

(3.5)
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Equipments

Level 1
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Server
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Figure 3.1 – An example of a network architecture for content delivery with cache-
enabled nodes.

3 Performance evaluation

In this section, we present the evaluation results of the cache allocation problem

using the methods presented previously. We will expose at first different results com-

paring the outcomes of the metaheuristic to the optimal solutions (i.e. obtained using

an exhaustive search approach). Then, we will display some of the results obtained

using our application of GRASP to the problem that we have formulated, to have an

idea about the solutions that can be proposed by our approaches.

3.1 Model configuration

The different tests were conducted on a typical three-level network that contains

21 nodes forming a perfect 4-ary tree topology where the distance and the latency

between each two adjacent nodes are the same (see Figure 3.1). We considered in

our experiments a catalog of contents containing 20, 000 1-chunk sized objects whose

popularity distribution follows the Zipf’s law. Permanent copies of the available contents

are hosted on one repository attached to the root node of the network, and the users

are attached to the network’s leaves (i.e. level 1 of the network). We tested different
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Figure 3.2 – Comparison between the Pareto front and GRASP solutions under the
LCE scheme.

values of the Zipf law’s skew parameter α going from 0.8 to 1.2. The parameter λ that

controls the amounts of greediness and randomness in GRASP was set to 0.5 and the

total cache Tc is expressed as a ratio of the catalog size. Two caching strategies were

used during the experiments: LCE and 2Q. The 2Q policy is of course more efficient

than LCE as it was shown in the previous chapter but the aim here to see the behaviour

of our model where different caching strategies are used. As we mentioned previously,

the network performance is evaluated using the content provider load and average

distance ratio metrics. For sake of simplicity, the cache resources are allocated in a

way that the nodes located on the same level of the network have the same cache

size. Since there are 16 nodes on the first level of the network, Pc should be a multiple

of 16 and in our case, it was set to 16. Thus, a cache resource placement can be

described as X = (x1, x2, x3), where xi represents the total cache allocated at level i

of the network.

3.2 Model results and analysis

In Figures 3.2-3.3, we compare the network’s performance metrics of the differ-

ent cache distribution solutions generated by GRASP (20 iterations) with the Pareto
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Figure 3.3 – Comparison between the Pareto front and GRASP solutions under the 2Q
scheme.

front using the separate evaluation functions approach (content provider load and av-

erage distance ratio metrics). We can see from the plots how the solutions produced

by GRASP, independently from the used caching scheme, are very close to the set of

dominant points in the different tested scenarios, which reflects the good quality of the

metaheuristic outcomes.

In Figure 3.4-3.5, we compare the solutions obtained using the weighted com-

bined approach with the optimal values (only the best solution obtained with GRASP

is shown). The results in these graphs also show the efficiency of the metaheuristic in

giving solutions close to the optimal ones. When the Zipf’s parameter α is set to 0.8, we

observe that the solutions generated by GRASP are not as close to the optimal values

as the results obtained in the other cases. Having a low value of α (α < 1) means a

lower difference in popularity between the different contents, which makes it more dif-

ficult to construct cache distribution solutions using GRASP that approach the optimal

performance.

In Tables 3.1-3.2, we display the cache allocation solutions generated by GRASP

(only the results of four iterations of GRASP are shown) using separate evaluation
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Figure 3.4 – Performance optimization vs total cache size using GRASP compared to
the optimal values under the LCE scheme.
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Figure 3.5 – Performance optimization vs total cache size using GRASP compared to
the optimal values under the 2Q scheme.
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Table 3.1 – Cache allocation solutions using GRASP with two separate evaluation func-
tions when LCE is used.

Tc = 20% α = 1.0

α X f1(X) f2(X) Tc X f1(X) f2(X)

0.8

(320,1696,2080) 53.47% 81.78%

5%

(224,208,592) 44.63% 75.42%

(768,1376,1952) 54.80% 81.15% (288,208,528) 45.94% 75.04%

(736,1280,2080) 53.84% 81.14% (352,224,448) 47.81% 74.72%

(16,2288,1792) 55.38% 81.89% (400,240,384) 49.56% 74.59%

1.0

(1536,1168,1392) 34.39% 62.92%

15%

(736,688,1648) 32.50% 65.99%

(944,880,2272) 28.57% 63.65% (864,640,1568) 33.09% 65.83%

(1136,864,2096) 29.54% 63.38% (992,672,1408) 34.36% 65.59%

(1280,928,1888) 30.80% 63.14% (1168,832,1072) 37.54% 65.38%

1.2

(1952,1040,1104) 15.62% 44.00%

25%

(1264,1184,2672) 26.54% 61.52%

(1760,2176,160) 19.88% 44.00% (1392,1168,2560) 27.06% 61.39%

(1456,720,1920) 12.02% 44.67% (1568,1152,2400) 27.84% 61.25%

(1088,800,2208) 11.17% 45.24% (1904,1488,1728) 31.75% 61.00%

functions approach and testing two different caching schemes: LCE (Table 3.1) and

2Q (Table 3.2). Depending on the Zipf law’s parameter α, the total cache resources

available Tc and the adopted caching strategy, different solutions will be generated by

GRASP. The choice of the final solutions between the different proposed ones can

be based on some constraints that should be respected. For example, and under the

LCE policy, if Tc = 20% and α = 1.2 (Table 3.1) and if the priority is to minimize the

content provider load (f1(X)), then the allocation X = (1088, 800, 2208) is the best one.

In case when the 2Q scheme is used, if α = 1.0 and Tc = 15% (Table 3.2) and one

wants to minimize first the average distance ratio (f2(X)), then the allocation X =

(1408, 768, 896) is the one to choose.

In Tables 3.3-3.4, we expose the cache allocation solutions generated by GRASP

using a weighted combined evaluation approach. In this case scenario, the objective is

to optimize the overall network performance without considering separately the evalua-

tion metrics. The proposed solution will be the cache allocation that gives the best out-

come. For example, and under the LCE strategy, if Tc = 20% and α = 1.0 (Table 3.3),

the solution X = (1056, 816, 2224) is the best one. In case when the 2Q scheme is

used and if we have for example α = 1.0 and Tc = 25% then, the cache distribution

X = (1328, 1056, 2736) is the best solution generated by GRASP.
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Table 3.2 – Cache allocation solutions using GRASP with two separate evaluation func-
tions when 2Q is used.

Tc = 20% α = 1.0

α X f1(X) f2(X) Tc X f1(X) f2(X)

0.8

(64,2240,1792) 52.90% 79.29%

5%

(320,384,320) 44.59% 66.92%

(1216,832,2048) 52.56% 76.51% (512,256,256) 46.35% 66.49%

(1344,896,1856) 53.72% 76.55% (192,512,320) 43.84% 67.75%

(1472,1216,1408) 56.35% 76.73% (64,448,512) 41.70% 70.12%

1.0

(64,2048,1984) 28.60% 64.23%

15%

(64,1280,1728) 30.42% 65.60%

(64,1984,2048) 30.44% 58.13% (1152,704,1216) 34.27% 59.88%

(1600,768,1728) 30.83% 58.11% (1216,704,1152) 34.70% 59.85%

(1792,1024,1280) 33.13% 58.12% (1408,768,896) 36.40% 59.81%

1.2

(448,2432,1216) 12.34% 47.39%

25%

(64,3200,1856) 28.40% 63.17%

(1728,960,1408) 13.41% 41.78% (1920,960,2240) 27.99% 56.74%

(1984,896,1216) 14.13% 41.05% (1984,1024,2112) 28.53% 56.73%

(2176,1024,896) 15.31% 41.07% (2112,1152,1856) 29.66% 56.75%

Table 3.3 – Cache allocation solutions using GRASP with weighted combined evalua-
tion function when LCE is used.

Tc = 20% α = 1.0

α X f(X) Tc X f(X)

0.8

(592,1248,2256) 62.41%

5%

(176,176,672) 71.92%

(512,1600,1984) 60.70% (208,192,624) 71.69%

(464,1824,1808) 59.55% (272,176,576) 71.31%

(432,1904,1760) 59.23% (352,208,464) 69.91%

1.0

(1056,816,2224) 76.12%

15%

(672,512,1888) 75.76%

(1152,864,2080) 75.77% (768,592,1712) 75.40%

(1232,896,1968) 75.46% (912,624,1536) 74.85%

(1328,912,1856) 75.10% (1040,688,1344) 74.02%

1.2

(1712,176,2208) 87.83%

25%

(1328,1056,2736) 76.61%

(1824,96,2176) 87.72% (1408,1088,2624) 76.40%

(1968,80,2048) 87.70% (1520,1136,2464) 76.06%

(2240,16,1840) 87.59% (1648,1184,2288) 75.62%
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Table 3.4 – Cache allocation solutions using GRASP with weighted combined evalua-
tion function when 2Q is used.

Tc = 20% α = 1.0

α X f(X) Tc X f(X)

0.8

(704,832,2560) 72.03%

5%

(192,128,704) 81.51%

(768,1088,2240) 70.36% (192,256,576) 81.44%

(768,1344,1984) 68.92% (192,448,384) 80.49%

(704,1600,1792) 67.79% (256,448,320) 80.21%

1.0

(1024,576,2496) 82.77%

15%

(640,384,2048) 83.06%

(1088,896,2112) 81.79% (704,512,1856) 82.60%

(1216,1216,1664) 80.35% (768,640,1664) 82.05%

(1152,1408,1536) 79.88% (832,896,1344) 80.89%

1.2

(1152,384,2560) 91.36%

25%

(1152,576,3392) 83.29 %

(1280,512,2304) 91.21% (1280,768,3072) 82.72%

(1408,832,1856) 90.72% (1344,1088,2688) 81.88%

(1536,1152,1408) 89.99% (1472,1344,2304) 80.88%

If we compare between LCE and 2Q in terms of network performance when differ-

ent cache allocation solutions are used, the 2Q policy generally has better outcomes

than LCE. However, it can be possible that LCE has better results in certain cases. For

example, if we look at Tables 3.1-3.2 and in the case where α = 1.0 and Tc = 25%,

the cache allocation X = (1264, 1184, 2672) when LCE is used achieves better perfor-

mance than the cache allocation X = (64, 3200, 1856) when 2Q is applied. This result

reinforces the importance of placing the cache resources in distributed networks and

how it can affect drastically the network performance.

We can see from the exposed different results that there is no absolute solution for

the cache allocation problem and it is not a question about whether to cache at the

edge or in the core. Depending on the network’s configuration and the objectives that

one wants to achieve, multiple solutions can be adopted. Other metrics can be used as

evaluation functions during the building of the solutions instead of those that we used

in this work like, for example, the financial cost of cache resources deployment. The

aim of our proposal is to give a tool capable of efficiently allocating distributed caching

resources and versatile enough to adapt to specific desired network performance and

constraints.
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4 Conclusion

We addressed in this chapter the problem of how to efficiently allocate cache re-

sources in multi-cache networks. We first model it as a multi-objective optimization

problem where our analytic tool MACS is used to evaluate the objective functions. Our

formulation of the problem turned out to be an NP-hard problem and finding the opti-

mal solutions in this case is not always practical. Thus, we propose an adaptation of

the GRASP metaheuristic to solve the problem using different evaluation methods to

generate the solutions. The experimental results have showed how the outcomes of

our algorithm are very close to the optimal ones and how the proposed solutions de-

pend on different parameters like the total cache budget. The versatility of our proposal

allows it to be applied to any arbitrary network topology, and it can include other cost

functions to be used as objective functions.
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1 Overview

Over the past few years, the Internet usage has switched from a host-centric model

to a content-centric approach, especially when dealing with content retrieval and data

dissemination. This evolution is mostly driven by the increased popularity of content-

oriented services, e.g., Peer-to-Peer file sharing, Video on Demand, video/audio stream-

ing and social networks where users focus more on contents and not on the physical

locations from which contents can be retrieved. These new trends in the Internet usage

have raised important challenges in the current IP-based infrastructures, especially in

terms of content delivery.

To address these challenges, the Content-Centric Networking has been proposed

and emerged as one of the most interesting alternatives to the existing network archi-

tecture. Instead of the end-to-end principle, the CCN paradigm consists in redesigning

the future Internet architecture by focusing on named data and leveraging new fea-

tures, such as in-network caching, multipath connectivity and multicast data delivery.

The content name in CCN is the only identifier of data, and the information exchanges

based on establishing communication channels are abandoned.

The ubiquitous in-network caching certainly represents one of the most important

features, which impacts directly the content delivery performance. In fact, CCN nodes

are equipped with content store modules and have the ability to cache the data that

passes by them. Therefore, the end-users’ requests (known as interests in CCN), that

are routed toward the Content Providers’ servers, can be satisfied by the cached data

at the intermediate nodes.

In-network caching as provided by CCN has brought a renewed interest in devel-

oping efficient tools to study the caching performance of interconnected systems of

caches. This will help, indeed, in giving guidance and offering insights about the be-

haviour of a network of caches. Besides, this can be used to optimize the caching

efficiency while increasing the overall system performance, which was the aim of this

thesis work where the focus was on cache modeling and cache resources allocation in
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CCN and multi-cache networks in general.

In chapter one, we start first by giving an overview of the Information-Centric Net-

working paradigm to focus after that on Content-Centric Network, which represents

a promising ICN solution for the future Internet. Then, we analyze the existing works

related to the caching feature of ICNs and of multi-cache systems in general. More

specifically, we discuss the issues related to cache modeling and cache resources al-

location in multi-cache networks, which represent the core of this thesis work.

The second chapter starts by introducing an analytical model based on Markov

chains named MACS (Markov chain-based Approximation of Caching Systems). This

model allows us to compute the hit probability of an LRU cache operating under the de-

fault caching scheme called LCE where the contents are always saved when received.

By proposing a methodology that allows modeling the caching decision process in the

general case, we were able to extend MACS so that it can be used to analyze different

caching algorithms different from LCE. We aim with our proposal to gain more insights

on the efficiency and limits of CCN caching strategies, with a focus on the schemes

having a good performance/overhead trade-off through the analysis of different net-

work performance metrics. We have shown how the versatility of our cache modeling

tool enables to mimic efficient caching strategies such as LCD and 2Q and it can be

easily adapted to represent an interconnection of caches under different schemes.

Even though our proposal was first used in the context of CCN networks, it can of

course be applied to multi-cache networks in general. In addition to the cache hit,

MACS can be used to compute different performance metrics like the content provider

load and the distance reduction ratio. The conducted tests have shown the accuracy

of our model in estimating the cache hit rate of a multi-cache system under different

caching schemes. The obtained results also indicate the efficiency of the 2Q algorithm

and its performance/overhead trade-off makes it a good candidate to be used as a

caching strategy.

In the third chapter, the optimal placement of caching resources is investigated.

The cache allocation issue is one of the most important problems to address when

studying multi-cache networks because of the expensive cost of deploying distributed

storage resources along the network. In this context, we propose an approach that

solves the trade-off between minimizing the hit rate in the origin server and minimizing

the distance to retrieve contents. To do so, we modelled the cache allocation problem

as a multi-objective integer nonlinear program where our analytic tool MACS is used
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to evaluate the objective functions. Our formulation of the problem turned out to be an

NP-hard problem. Thus, we proposed an adaptation of the metaheuristic GRASP to

solve the problem using different evaluation functions to generate the solutions. The

conducted tests have showed the closeness of the metaheuristic’s outcomes to the

optimal ones. By analyzing the different obtained results, we have shown that there

is no absolute solution for the cache allocation problem and in contrast to the conclu-

sions made in previous works, it is not a question about whether to cache at the edge

or in the core of the network. The distribution of cache resources will depend on the

network’s configuration and the objectives that one wants to achieve. The aim of the

work presented in the third chapter is to give a tool capable of efficiently allocation dis-

tributed caching resources that takes into account more than one performance metric

and versatile enough to adapt to specific desired network performance and constraints.

2 Perspectives

The state-of-the-art presented in chapter one shows the extent of an active research

domain in the areas of cache modeling and cache optimization in Content-Centric

Networks and multi-cache systems in general. With the proliferation of CDN-based

paradigms and the upcoming advent of 5G, this domain is rapidly evolving and multiple

research opportunities that were not addressed in this thesis and related to our work

deserve in our opinion to be looked at.

2.1 Dynamic content popularity

Understanding the evolution of content popularity plays a key role on the cache opti-

mization. It has a direct effect on how caching resources are distributed within networks

and on the design of efficient caching strategies and thus, impacting the overall per-

formance of networks. A large amount of existing works in the literature (including our

work) that studied caching uses the well-known Independent Reference Model (IRM)

along with the Zipf law to shape the content popularity. Under the IRM model, the re-

quests for contents occur in an independent and identically distributed (i.i.d.) sequence.

In other words, the probability to request an item cr from the set of available contents

in the network is proportional to a popularity law pr and does not evolve in time. How-

ever, the popularity and the catalog of contents in reality and in many cases can be far
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from being stationary, as they are more likely to evolve quickly [68]. Proposing a model

to capture the popularity of contents with non-stationary behaviour remains an open

issue.

2.2 Caching from an economic point of view

The endless race of content providers towards even more content and even more

quality is increasing data consumption as never before. This growth is such that it is

undermining the infrastructures of Internet Service Providers, which require to be con-

stantly upgraded in order to relieve the load on the ISPs networks [69] with huge capital

investments. This led to the proliferation of Content Delivery Networks, which has be-

come an essential part of the Internet ecosystem and has been a reliable solution

for Content Providers to deliver their content. The advent of NFV [64] and ICN-based

paradigms, especially caching, as well as the dynamic orchestration of resources bring

much more flexibility to cache-based infrastructures and their management. These fea-

tures will be, therefore, major drivers that will certainly accelerate these developments

and make them available to Content Providers [70]. These recent developments repre-

sent a great opportunity for ISPs by allowing them to easily develop caching capabilities

within their infrastructures, in order to offer services with better Quality of Experience

(QoE) for end-users as well as the reduction of traffic at peering levels, transport and

core networks. In addition, they will be able to share their infrastructure by offering

these caching capabilities to third parties, which makes it possible to multiply sources

of revenues. The study of caching along with the cooperation of CDNs and multi-cache

networks with ISPs from an economic point of view is becoming a more interesting

area to look at due to the enhancement of flexibility in managing cache resources and

it is in our opinion a hot topic to investigate.

2.3 Caching in wireless networks

During these last years, there is growing consensus that caching is placed to play a

key role in future communication systems and networks, especially with the upcoming

advent of 5G [14]. In the different proposals that we have presented in this thesis, the

focus was basically on static networks where the system configuration does not evolve

much in time, which is not the case in cache-enabled wireless networks. Studying
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caching in this type of networks has already started in the literature [71]-[72] and many

different research directions have been not sufficiently explored yet. One interesting

subject that we did not have the opportunity to investigate in this thesis and that in our

opinion needs to be addressed is the analytic modelisation and performance evalua-

tion of cache-enabled wireless networks. In chapter two of this thesis, we proposed a

generic model of static multi-cache networks and it is not straightforward to apply it to

multi-cache wireless networks. In these latter, features like users mobility and hetero-

geneity of cache resources (caching at users devices, caching at base stations, etc.)

impose additional difficulties and should be taken into account when studying such

systems. Designing analytical models of cache-enabled wireless networks remains an

open issue.
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demandes de contenus vidéo et de services riches en média. Compte tenu des limites de la mise à l’échelle

du réseau et au-delà des réseaux de diffusion de contenu, les fournisseurs de services Internet développent

leurs propres systèmes de mise en cache afin d’améliorer la performance du réseau. Ces facteurs expliquent

l’enthousiasme à l’égard du concept de réseau centré sur le contenu et de sa fonction de mise en cache en

réseau. La quantification analytique de la performance de la mise en cache n’est toutefois pas suffisamment

explorée dans la littérature. De plus, la mise en place d’un système de caching efficace au sein d’une infrastruc-
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tons d’abord dans cette thèse un modèle générique et précis de cache nommé MACS (Markov chain-based

Approximation of Caching Systems) qui peut être adapté très facilement pour représenter différents schémas

de mise en cache et qui peut être utilisé pour calculer différentes mesures de performance des réseaux multi-
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Title: On models for performance evaluation and cache resources placement in multi-

cache networks.

Abstract: In the last few years, Content Providers (CPs) have experienced a high increase in requests for

video contents and rich media services. In view of the network scaling limitations and beyond Content Delivery

Networks (CDNs), Internet Service Providers (ISPs) are developing their own caching systems in order to im-

prove the network performance. These factors explain the enthusiasm around the Content-Centric Networking

(CCN) concept and its in-network caching feature. The analytical quantification of caching performance is, how-

ever, not sufficiently explored in the literature. Moreover, setting up an efficient caching system within a network

infrastructure is very complex and remains an open problem. To address these issues, we provide first in this

thesis a fairly generic and accurate model of caching nodes named MACS (Markov chain-based Approximation

of Caching Systems) that can be adapted very easily to represent different caching schemes and which can

be used to compute different performance metrics of multi-cache networks. We tackled after that the problem

of cache resources allocation in cache-enabled networks. By means of our analytical tool MACS, we present
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and we propose an adaptation of the metaheuristic GRASP to solve the optimization problem.
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