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Introduction générale

L'étude de la propagation d'ondes non-linéaires suscite un intérêt, en particulier à cause de récentes applications à l'imagerie ultrason (i.e. HIFU) ou des applications techniques et médicales comme la lithotripsie ou la thermothérapie. Ces nouvelles techniques reposent fortement sur la capacité à modéliser avec précision la propagation non-linéaire d'une pulsation sonore d'amplitude finie dans un milieu élastique thermo-visqueux. Les modèles les plus connus d'acoustique non linéaire, que nous considérerons dans cette thèse sont 1. l'équation de Kuznetsov qui se lit pour α = γ-1 c 2 , β = 2 comme

u tt -c 2 ∆u - ν ρ 0 ε∆u t = αεu t u tt + βε∇u ∇u t , x ∈ R n , (1) 
où c, ρ 0 , γ, ν sont la vitesse du son, la densité, le ratio des chaleurs spécifiques et la viscosité du milieu respectivement. Le coefficient ε représente un petit paramètre sans dimension apparaissant dans la dérivation de l'équation. Dans ce qui suit, nous pouvons juste supposer que α et β sont des constantes positives. C'est en fait une équation d'onde quasi-linéaire (amortie), initialement introduite par Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] pour le potentiel de vitesse, voir aussi les Réfs. [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part i. analytical comparison[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF] pour d'autres variations de sa dérivation;

2. l'équation de Khokhlov-Zabolotskaya-Kuznetsov (KZK)

c∂ 2 τ z I - (γ + 1) 4ρ 0 ∂ 2 τ I 2 - ν 2c 2 ρ 0 ∂ 3 τ I - c 2 2 ∆ y I = 0, (2) 
qui peut être écrite pour les perturbations de la densité ou de la pression (voir les études physiques systématiques dans le livre [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] par Bakhvalov, Zhileȋkin, et Zabolotskaya);

3. l'Équation d'onde Non-linéaire Progressive (NPE)

∂ 2 τ z ξ + (γ + 1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] - ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0, (3) 
dérivée par McDonald et Kuperman dans la Réf. [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF];

4. l'équation de Westervelt

∂ 2 t Π -c 2 ∆Π = ε∂ t ν ρ 0 ∆Π + γ + 1 2c 2 (∂ t Π) 2 , ( 4 
)
qui est similaire à l'équation de Kuznetsov avec seulement un de ses deux termes nonlinéaires, dérivée initialement par Westervelt [START_REF] Westervelt | Parametric acoustic array[END_REF] et plus tard par d'autres auteurs [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF][START_REF] Tjøtta | Nonlinear equations of acoustics, with application to parametric acoustic arrays[END_REF].

xii Chapter 0. Introduction générale L'équation de Kuznetsov (1) décrit l'évolution du potentiel de vitesse, c'est une équation d'onde quasi linéaire amortie, qui décrit la propagation d'une onde de grande amplitude dans un fluide. Elle est un des modèles dérivés du système de Navier-Stokes, et elle est appropriée pour les ondes planes, cylindriques et sphériques dans un fluide (voir [START_REF] Hamilton | Nonlinear Acoustics[END_REF] de Hamilton et Blackstock). La plupart des travaux sur l'équation de Kuznetsov (1) sont traités dans une dimension d'espace [START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF] ou dans un domaine borné de R n [START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part i. analytical comparison[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF].

Pour le cas visqueux, Kaltenbacher et Lasiecka [START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF] ont considéré le problème avec conditions de Dirichlet au bord et prouvé, pour des données initiales suffisamment petites, le caractère bien posé global pour n ≤ 3. Meyer et Wilke [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] l'ont prouvé pour tout n. Dans [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF], Kaltenbacher et Lasiecka ont prouvé le caractère bien posé local du problème avec conditions au bord de Neumann pour n ≤ 3. Le travail des Réf. [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF] utilise des estimations d'énergie a priori, et la Réf. [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] la notion de régularité maximale. L'équation de Westervelt (4) est aussi une approximation de l'équation de Kuznetsov, mais cette fois par une perturbation non-linéaire. De fait la seule différence entre ces deux modèles est que l'équation de Westervelt ne conserve qu'un des deux termes non-linéaires de l'équation de Kuznetsov, produisant des effets cumulatifs dans une propagation d'onde progressive selon Aanonsen, Barkve, Tjøtta et Tjøtta [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF].

L'équation NPE (3) est habituellement utilisée pour décrire les vibrations en temps court et la propagation sur de longues distances, par exemple dans un guide d'onde océanique, où les phénomènes de réfractions sont importants, alors que l'équation de KZK (2) modélise typiquement la propagation d'ultrasons avec de forts phénomènes de diffraction, combinée avec des effets d'amplitude finie (voir Rozanova-Pierrat avec la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] et les références utilisées). Bien que le contexte et l'utilisation physique des équations de KZK et NPE soient différents, il y a une bijection entre les variables de ces deux modèles et ils peuvent être représentés par le même type d'opérateur différentiel avec des coefficients constants positifs:

Lu = 0, L = ∂ 2 tx -c 1 ∂ x (∂ x •) 2 -c 2 ∂ 3 x ± c 3 ∆ y , pour t ∈ R + , x ∈ R, y ∈ R n-1 .
Ainsi, les résultats de la Réf. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] sur les solutions de l'équation de KZK sont valides pour l'équation NPE. Voir aussi la Réf. [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] par Ito pour la décroissance exponentielle des solutions de ces modèles dans le cas visqueux. Tous les modèles de Kuznetsov, KZK, NPE et Westervelt ont été dérivés jusqu'à de petits termes négligeables à partir de systèmes non-linéaires de Navier-Stokes (pour le milieu visqueux) et d'Euler (pour le cas non visqueux) compressibles et isentropiques. Mais toutes les dérivations physiques citées de ces modèles ne permettent pas de dire que leurs solutions approchent la solution du système de Navier-Stokes ou d'Euler. Les résultats sur le caractère bien posé des équations de KZK et NPE sont déjà connus, le premier travail l'expliquant pour l'équation de KZK est la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] par Rozanova-Pierrat.

Nous nous sommes dès lors focalisés dans le Chapitre 1 sur le caractère bien posé du problème de Cauchy associé à l'équation de Kuznetsov dans R n pour les cas visqueux et non visqueux avec des données initiales suffisamment petites. Ces résultats correspondent à notre article [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] proposé avec Rozanova-Pierrat.

Dans le Chapitre 2, nous commençons à présenter le contexte initial du système de Navier-Stokes isentropique

∂ t ρ + div(ρv) = 0 , ( 5 
)
ρ[∂ t v + (v • ∇) v] = -∇p(ρ) + εν∆v , (6) 
xiii (en fait, c'est aussi une approximation du système de Navier-Stokes compressible), qui décrit le mouvement d'une onde acoustique dans un milieu thermo-élastique homogène [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF]. Nous systématisons dans le Chapitre 2 la dérivation de tous ces modèles en utilisant les idées de Rozanova-Pierrat dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consistant à utiliser des correcteurs dans les expansions de type Hilbert des ansatzs physiques correspondants. Plus précisément, nous montrons que tous ces modèles sont des approximations du système de Navier-Stokes ou d'Euler jusqu'aux termes d'ordre trois en un petit paramètre sans dimension ǫ > 0 mesurant la taille des perturbations de la pression, de la densité et de la vitesse par rapport à leur état constant (p 0 , ρ 0 , 0) (voir Fig. 1). A l'aide des résultats connus sur le caractère bien posé des modèles, nous validons ensuite dans le Chapitre 2 ces approximations en obtenant des estimations en norme L 2 entre les solutions des modèles exacts et approchés considérés en étudiant d'abord l'approximation du système de Navier-Stokes puis l'approximation de l'équation de Kuznetsov. Il est à noter que pour le modèle exact nous pouvons considérer une solution faible peu régulière qui sera approchée par la solution régulière du modèle approché.

Ainsi nous avons été amenés dans la Partie II à étudier les solutions faibles d'équations d'ondes sur des domaines à bords fractals afin de considérer les domaines les plus généraux possibles sur lesquels de telles solutions faibles existent.

Pour en revenir au Chapitre 1 nous étudions le caractère bien posé du problème de Cauchy associé à l'équation [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF]. Dans le cas non visqueux pour ν = 0, le problème de Cauchy pour l'équation de Kuznetsov est un cas particulier du système général quasi linéaire hyperbolique du second ordre considéré par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. Le résultat de caractère bien posé local, prouvé dans [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], n'utilise pas des techniques d'estimations a priori xiv Chapter 0. Introduction générale et est fondé sur la théorie des semi-groupes. Alors, grâce à [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], nous avons le caractère bien posé de (1) dans l'espace de Sobolev H s avec un réel s > n 2 + 1. De plus, pour étendre le caractère bien posé local au cas global (pour n ≥ 4) et pour estimer l'intervalle de temps maximal sur lequel il existe une solution régulière, John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] a développé des estimations a priori pour le problème de Cauchy associé à une équation d'onde quasi linéaire générale à l'aide d'une énergie de la forme

E m [u](t) = ∇u(t) 2 H m (R n ) + m+1 i=1 ∂ i t u(t) 2 H m+1-i (R n ) .
Cette fois, à cause des non linéarités u t u tt et ∇u ∇u t incluant les dérivées en temps, pour avoir une estimation a priori pour l'équation de Kuznetsov nous avons besoin de travailler avec les espaces de Sobolev H s caractérisés par un entier s. Si nous appliquons directement les résultats généraux par John de la Réf. [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] à notre cas pour l'équation de Kuznetsov, nous obtenons le caractère bien posé pour des données initiales très régulières. Nous améliorons ce résultat et obtenons les résultats de John pour l'équation de Kuznetsov avec une régularité minimale des données initiales correspondant à la régularité obtenue par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. Les estimations d'énergie nous permettent d'évaluer le temps d'existence maximal. Dans R 2 et R 3 l'optimalité des estimations obtenues pour le temps d'existence maximal est assurée par les résultats d'Alinhac [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]. Dans la Réf. [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] un blow-up géométrique pour les données petites est prouvé pour ∂ 2 t u et ∆u en temps fini et pour le même ordre que prédit par les estimations a priori.

Pour n ≥ 4 et ν = 0, nous améliorons aussi les résultats de John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF]. La petitesse des données initiales assure directement l'hyperbolicité de l'équation de Kuznetsov pour tout temps, i.e. elle assure que 1 -αεu t est strictement positif et borné pour tout temps. La preuve utilise les dérivées généralisées pour les équations d'ondes [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] et une estimation a priori de Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF][START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF].

En présence du terme ∆u t pour le cas visqueux ν > 0, la régularité des dérivées en temps d'ordre supérieur de u est différente (en comparaison au cas non visqueux), et la manière de contrôler les non linéarités change. Comme il a été montré dans [START_REF] Shibata | On the rate of decay of solutions to linear viscoelastic equation[END_REF] par Shibata, ce terme dissipatif change une vitesse finie de propagation pour l'équation d'onde en une vitesse infinie. En effet, la partie linéaire de l'équation (1) peut être vue comme deux compositions de l'opérateur de la chaleur ∂ t -∆ de la manière suivante:

u tt -c 2 ∆u -νε∆u t = ∂ t (∂ t u -ǫν∆u) -c 2 ∆u.
Pour le cas visqueux nous prouvons les résultats sur le caractère bien posé global dans R n pour les données initiales suffisamment petites, dont nous spécifions la taille. Pour n ≥ 3 nous établissons une estimation a priori qui nous donne aussi une condition suffisante pour l'existence de solutions globales avec une énergie initiale suffisamment petite. En considérant les espaces de Sobolev H s caractérisés par un entier s = m pair on contrôle l'énergie

E m 2 [u](t) = ∇u(t) 2 H m (R n ) + m 2 +1 i=1 ∂ i t u(t) 2 H m-2(i-1) (R n ) .
Les mêmes résultats sont vrais dans (R/LZ) × R n-1 pour n ≥ 2 avec la périodicité et la valeur moyenne nulle selon une variable. Intéressons nous dès lors au Chapitre 2. Comme il est montré dans la Fig. 1, l'équation de Kuznetsov vient du système de Navier-Stokes ou d'Euler seulement par de petites perturbations, mais pour obtenir les équations KZK et NPE nous avons besoin d'utiliser un xv changement de variables paraxial en plus des petites perturbations. En outre, les équations de KZK et NPE peuvent aussi être obtenues à partir de l'équation de Kuznetsov juste en pratiquant le changement de variable paraxial correspondant. Nous pouvons noter que l'équation de Kuznetsov est une équation d'onde non-linéaire contenant des termes d?ordres différents en ǫ. Mais les approximations paraxiales pour KZK et NPE permettent d'avoir les équations approchées avec tous les termes de même ordre, i.e. les équations de KZK et NPE.

Portons notre attention sur le fait que l'ansatz, proposé initialement par Bakhvalov, Zhileȋkin, et Zabolotskaya dans la Réf. [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] et utilisé par Rozanova-Pierrat dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] pour obtenir l'équation de KZK à partir des systèmes de Navier-Stokes ou d'Euler, est différent de l'ansatz que nous utilisons. De plus, cette nouvelle approximation des systèmes de Navier-Stokes et d'Euler est une amélioration en comparaison à la dérivation développée dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], car dans cette référence le système de Navier-Stokes/Euler pouvait seulement être approchées jusqu'aux termes d'ordre O(ε 52 ) (comparé à l'ordre O(ǫ 3 ) dans notre cas).

Les hypothèses principales pour la dérivation de tous ces modèles sont les suivantes:

• le mouvement est potentiel;

• l'état constant du milieu donné par (p 0 , ρ 0 , 0) (0 pour la vitesse) est perturbé proportionnellement à un paramètre sans dimension ǫ > 0 (par exemple, égal à 10 -5 dans l'eau avec une puissance initiale de l'ordre de 0.3 W/cm 2 );

• toutes les viscosités sont petites (d'ordre ǫ).

Pour garder le sens physique des problèmes d'approximation, nous considérerons particulièrement les cas bidimensionnel et tridimensionnel, i.e. R n avec n = 2 ou 3, et dans la suite nous utiliserons la notation x = (x 1 , x ′ ) ∈ R n avec un axe x 1 ∈ R et la variable transversale x ′ ∈ R n-1 . Nous validons ainsi les approximations du système de Navier-Stokes compressible par les différents modèles : par l'équation de Kuznetsov, l'équation de KZK et l'équation NPE.

Puis nous faisons de même pour le système d'Euler dans le cas non visqueux. Les différences principales entre les cas visqueux et non visqueux sont le temps d'existence et la régularité des solutions. Typiquement dans le cas non visqueux, les solutions des modèles et aussi du système d'Euler lui-même (solutions fortes) peuvent entraîner la formation de fronts de choc en temps finis à cause de leurs non-linéarités [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF]. Ainsi, elles sont seulement localement bien posées, alors que dans le cas visqueux tous les modèles d'approximations sont globalement bien posés pour des données initiales suffisamment petites [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF].

Nous notons par U ε une solution du système de Navier-Stokes/Euler "exact" (voir l'Eq. (2.31))

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0,
et par U ε une solution approchée, construite par l'ansatz de dérivation à partir d'une solution régulière de l'un des modèles approchés (typiquement les équations de Kuznetsov, KZK et NPE), i.e. une fonction qui résout le système de Navier-Stokes/Euler jusqu'aux termes d'ordre ǫ 3 , désignés par ǫ 3 R (voir l'Eq. (2.32)):

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ǫ 3 R.
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Pour avoir le terme de reste R ∈ C([0, T ], L 2 (Ω)) nous devons assurer que le terme de gauche de cette équation est dans C([0, T ], L 2 (Ω)), i.e. nous avons besoin d'une solution U ε suffisamment régulière. La régularité minimale des données initiales pour avoir un tel U ε est donnée dans le Tableau 2.1 (voir aussi le Tableau 2.2 pour l'approximation de l'équation de Kuznetsov).

En choisissant pour le système exact les même données initiales et au bord trouvées par l'ansatz pour U ε (le cas régulier) ou les données initiales prises dans un petit voisinage L 2 , i.e.

U ε (0) -U ε (0) L 2 (Ω) ≤ δ ≤ ǫ, avec U ε (0) non nécessairement régulier, mais assurant l'existence d'une solution faible admissible d'énergie bornée, nous prouvons l?existence de constantes C > 0 et K > 0 indépendantes de ε, δ et du temps t telles que

pour tout 0 ≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ǫ 3 t + δ 2 )e Kεt ≤ 9ε 2
avec Ω un domaine où les deux solutions U ε et U ε existent. Il devient ainsi possible d'approcher une solution faible exacte peu régulière par une solution approchée régulière. Comme les équations de KZK et NPE peuvent être vues comme des approximations de l'équation de Kuznetsov au vu de leur dérivation (voir la Figure 1), nous validons aussi l'approximation de l'équation de Kuznetsov par les équations de KZK et NPE, et aussi par l'équation de Westervelt (voir le Tableau 2.2).

Pour être capable de considérer l'approximation de l'équation de Kuznetsov par l'équation de KZK, nous établissons d'abord des résultats sur le caractère globalement bien posé de l'équation de Kuznetsov dans le demi espace, similaires au cadre précédent pour l'équation de KZK et le système de Navier-Stokes. Nous étudions deux cas : le problème périodique en temps purement aux bords dans les variables (z, τ, y) se déplaçant avec l'onde et le problème avec conditions initiales et au bord pour l'équation de Kuznetsov dans les variables initiales (t, x 1 , x ′ ) avec des données venant de la solution de l'équation de KZK. Nous validons ces deux types d'approximations pour les cas visqueux et non visqueux.

Finalement nous validons l'approximation entre les équations de Kuznetsov et NPE et les équations de Kuznetsov et Westervelt respectivement (voir le Tableau 2.2). Nous pouvons les résumer de la manière suivante: si u est une solution de l'équation de Kuznetsov et u est une solution de l'équation de NPE ou de KZK (pour le problème avec conditions initiales et aux bords) ou de Westervelt trouvée pour des données initiales assez proches ∇ t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ǫ, alors il existe K > 0, C 1 > 0, C 2 > 0 et C > 0 constantes indépendantes de ǫ, δ et du temps, telles que pour tout t ≤ C ǫ il est vérifié

∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ǫ 2 t + δ)e C 2 ǫt ≤ Kǫ.
Comme les estimations de la stabilité obtenues sont valables entre une solution régulière et une solution faible de Kuznetsov nous pouvons de nouveau approcher une solution moins régulière d'un modèle exact par la solution régulière d'un modèle approché. Dans la Partie II, nous nous intéressons à la question des solutions faibles d'équation d'ondes. On se place dans le contexte des domaines bornés et on cherche la classe des bords la plus large pour que le problème soit bien posé faiblement. Ces équations incluent: xvii • l'équation des ondes avec des conditions de Dirichlet homogène en utilisant Evans [START_REF] Evans | Partial differential equations[END_REF],

• l'équation des ondes fortement amortie avec des conditions de Dirichlet homogènes et non homogènes ou des conditions de Robin homogènes,

• l'équation non-linéaire de Westervelt avec des conditions de Dirichlet homogènes et non homogènes ou des conditions de Robin homogènes.

La régularité des solutions de ces équations sur des domaines réguliers, typiquement avec un bord C 2 est bien connue, notamment le fait que, plus les données initiales sont régulières, plus la solution est régulière et ce jusqu'au bord. Nous pouvons citer Evans et la Réf. [START_REF] Evans | Partial differential equations[END_REF] pour l'équation des ondes ou les Réfs. [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] pour l'équation des ondes fortement amortie ou l'équation de Westervelt ainsi que leurs références utilisées. Nous pouvons nous demander si, sur des domaines moins réguliers, on peut avoir une solution faible continue ou C 1 jusqu'au bord. Les exemples de Arendt et Elst dans la Réf. [START_REF] Arendt | The Dirichlet-to-Neumann operator on rough domains[END_REF] montrent l'apparition de problèmes pour la définition de la trace dès que le bord n'est plus C 1 . De plus si, pour un domaine au bord C 1 ou lipschitzien, on peut définir une normale intérieure presque partout, la question des conditions de Neumann ou Robin sur un bord moins régulier est plus délicate. Par ailleurs le fait de considérer un bord régulier C 2 comme dans [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] est une conséquence de ce que les dérivées spatiales sont au plus d'ordre 2 et peuvent ainsi être plus naturellement définies au bord. Dans le passé, les mathématiques se sont largement focalisées sur des domaines réguliers. Des ensembles comme celui de Von Koch ont principalement été considérés comme "pathologiques" et utilisés seulement pour produire des contre-exemples. Néanmoins, il y a eu un changement d'attitude lorsque les mathématiciens et les physiciens ont découvert que des structures semblable à celle de Von Koch apparaissaient dans la nature, comme par exemple la micro-structure des électrodes ou les côtes de l'Angleterre. Un point clé pour résoudre les équations que nous étudierons sur des domaines à bords fractals est la compréhension du problème de Poisson sur ces domaines avec des conditions aux bords de Dirichlet -∆u = f sur Ω, u| Ω = g sur ∂Ω [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] ou des conditions de Robin homogènes -∆u = f sur Ω, ∂ ∂n u + au = 0 avec a > 0 sur ∂Ω. [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF] Pour le système [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] une approche générale passe par la formulation faible du problème de Dirichlet. Si u et ∂Ω sont suffisamment régulières on peut multiplier l'équation de Poisson dans le problème [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] par v ∈ C ∞ 0 (Ω) et utiliser la formule de Green pour obtenir

   Ω ∇u∇v dx = Ω f v dx for all v ∈ C ∞ 0 (Ω), u| ∂Ω = g,
qui est appelée une formulation faible du problème de Dirichlet. En introduisant les espaces de Sobolev H 1 (Ω) et H 1 0 (Ω) et en supposant qu'il existe g * ∈ H 1 (Ω) tel que la trace de g * sur ∂Ω est g (une attention particulière doit être portée à la définition de la trace), on peut prouver, à l'aide du théorème de représentation de Riesz, qu'étant donné f ∈ L 2 (Ω), g * ∈ H 1 (Ω), il existe un unique u ∈ H 1 (Ω) tel que -∆u = f au sens des distributions et u -g * ∈ H 1 0 (Ω). Ceci soulève plusieurs questions: xviii Chapter 0. Introduction générale

• Comment définir la trace, habituellement définie pour des fonctions continues?

• Comment définir une extension g * vérifiant u = g au bord?

La réponse aux deux premières questions est connue si ∂Ω est assez régulier, on peut citer par exemple Raviart-Thomas [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF], ou même lipschitzien avec le travail de Marschall [START_REF] Marschall | The trace of sobolev-slobodeckij spaces on lipschitz domains[END_REF].

• Peut-on utiliser la formule de Green? Dans le cas lipschitzien on a Ω v∆u dx = u, v (H -1/2 (∂Ω),H 1/2 (∂Ω)) -Ω ∇u∇v dx.

• Est ce que u dépend uniquement ou continûment de f et g? Dans la Réf. [START_REF] Jonsson | Boundary value problems and Brownian motion on fractals[END_REF] Jonsson et Wallin ont pu répondre à ces questions dans le cas où Ω est un (ǫ, δ)-domaine avec un bord ∂Ω qui est un d-ensemble pour la mesure de Hausdorff préservant l'inégalité de Markov. En se basant sur le travail de Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] on trouve un équivalent de la formule de Green faisant intervenir les espaces de Besov pour le terme de bord. Les résultats de Jonsson et Wallin sont à notre connaissance les premiers de ce type établis sur des domaines fractals. Les résultats de Jones [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] sur les d-ensembles et les domaines admettant des extensions W k p permettent de dire qu'en dimension 2 les (ǫ, δ)-domaines sont les domaines les plus généraux sur lesquels on peut définir des traces et des extensions des espaces de Sobolev et ainsi résoudre le problème de Poisson. Dans la Réf. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF], Arfi et Rozanova-Pierrat ont introduit un nouveau type de domaine à bords fractals dits les domaines admissibles. Ces domaines contiennent les (ǫ, δ)-domaines et sont plus généraux, ils forment la classe la plus large des domaines sur lesquels on peut définir des traces et des extensions aux espaces de Sobolev pour Ω ⊂ R n avec n ≥ 2, et ainsi trouver une solution faible au problème de Poisson dépendant de manière unique et continue des données initiales.

En conséquence nous travaillerons principalement sur les domaines admissibles et résumons les résultats connus sur ces domaines. Il est à noter que le travail de la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous fournit les propriétés spectrales ainsi que la régularité intérieure de la solution du problème de Poisson [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF], i.e. le fait que pour un sous ensemble V inclus de manière compacte dans Ω, V ⊂⊂ Ω, la solution sur Ω a sur V la même régularité que pour un domaine aux bords réguliers. La Réf. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] par Arfi et Rozanova-Pierrat permet de donner des résultats similaires pour le problème de Poisson (8) et la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous fournit encore les propriétés spectrales.

Une autre question importante est de savoir si les solutions des problèmes de Poisson ( 7) et [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF] appartiennent à C(Ω) avec une estimation de la forme:

u L ∞ (Ω) ≤ C f L p (Ω) .
Pour le problème de Poisson [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] avec des conditions au bord de Dirichlet homogènes les travaux des Réfs. [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF] par Nyström et [START_REF] Xie | A sharp pointwise bound for functions with L 2 -Laplacians and zero boundary values of arbitrary three-dimensional domains[END_REF] par Xie permettent de donner une réponse positive à cette questions en dimension n = 2 et 3 respectivement pour p = 2. Le travail de Daners dans la Réf. [START_REF] Daners | Robin boundary value problems on arbitrary domains[END_REF] nous donne aussi une réponse positive pour le problème de Poisson [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF] si p > n. Ces estimations sont essentielles pour montrer que les solutions de nos modèles de type ondulatoires étudiés sont dans C(Ω) mais aussi pour traiter la non-linéarité de l'équation de Westervelt. xix En utilisant une méthode de Galerkin comme dans la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous obtenons la régularité de l'équation des ondes et de l'équation des ondes fortement amortie avec des conditions de Dirichlet homogènes avec l'aide d'une base de fonctions propres de -∆. Avec ces résultats de régularité nous traitons le caractère bien posé de l'équation de Westervelt avec des conditions de Dirichlet de la même façon que dans la preuve dans le Chapitre 1 du caractère bien posé global de l'équation de Kuznetsov sur R n . Les propriétés de la trace et de l'extension pour les domaines admissibles rappelées nous ont permis de traiter le cas des conditions de Dirichlet non homogènes. Ces résultats reposent sur des estimations dans des espaces où la solution et certaines de ses dérivées sont dans L 2 . Notons que nous avons utilisé une méthode similaire pour les problèmes avec conditions de Robin homogènes et obtenu le caractère bien posé et des estimations L 2 pour l'équation des ondes fortement amortie sur un domaine admissible, avec une méthode de Galerkin fondée sur une base de fonctions propres de -∆, ou pour l'équation de Westervelt sur un domaine lipschitzien de la même façon que dans la preuve dans le Chapitre 1 du caractère bien posé global de l'équation de Kuznetsov sur R n . Le cas de l'équation de Westervelt sur un domaine admissible avec des conditions de Robin homogènes a été traité à l'aide d'estimations L p avec p > n de la même manière.

En conclusion de cette Partie II, nous considérons un ensemble à bord fractal de type mixture de Koch, construit par récurrence à l'aide de familles de similitudes contractantes induisant ainsi une famille de domaines à bords pré-fractals et lipschitziens convergeant vers le domaine à bords fractals. En utilisant différents travaux par Capitanelli [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], Capitanelli et Vivaldi [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] ou Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] nous avons pu considérer la convergence asymptotique de type Mosco des solutions de l'équation de Westervelt avec conditions de Robin sur les domaines à bords pré-fractals qui approximent la solution sur le domaine à bords fractal de type mixture de Koch, une démarche souvent utilisée dans le cadre de l'optimisation de forme.

General introduction

There is a renewed interest in the study of nonlinear wave propagation, in particular because of recent applications to ultrasound imaging (i.e. HIFU) or technical and medical applications such as lithotripsy or thermotherapy. Such new techniques rely heavily on the ability to model accurately the nonlinear propagation of a finite-amplitude sound pulse in thermo-viscous elastic media. The most known nonlinear acoustic models, which we consider in this thesis, are :

1. the Kuznetsov equation (see Eq. ( 1)). It is actually a quasi-linear (damped) wave equation, initially introduced by Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] for the velocity potential, see also Refs. [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part i. analytical comparison[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF] for other different variations of its derivation;

2. the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (see Eq. ( 2)), which can be written for the perturbations of the density or of the pressure (see the systematic physical studies in the book [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] by Bakhvalov, Zhileȋkin, et Zabolotskaya);

3. the Nonlinear Progressive wave Equation (NPE) (see Eq. ( 3)) derived by McDonald and Kuperman in Ref. [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF];

4. the Westervelt equation (see Eq. ( 4)), which is similar to the Kuznetsov equation with only one of two nonlinear terms, derived initially by Westervelt [START_REF] Westervelt | Parametric acoustic array[END_REF] and later by other authors [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF][START_REF] Tjøtta | Nonlinear equations of acoustics, with application to parametric acoustic arrays[END_REF].

The Kuznetsov equation 1 describes the evolution of the velocity potential, it is a weakly quasi-linear damped wave equation, that describes a propagation of a high amplitude wave in fluids. It is one of the models derived from the Navier-Stokes system, and it is well suited for the plane, cylindrical and spherical waves in a fluid(see [START_REF] Hamilton | Nonlinear Acoustics[END_REF] from Hamilton and Blackstock). Most of the works on the Kuznetsov equation [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF] are treated in the one dimensional space [START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF] or in a bounded spatial domain of R n [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Fundamental models in nonlinear acoustics part i. analytical comparison[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF]. For the viscous case Kaltenbacher and Lasiecka [START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF] have considered the Dirichlet boundary valued problem and proved for sufficiently small initial data the global well-posedness for n ≤ 3. Meyer and Wilke [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] have proved it for all n. In [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF] Kaltenbacher and Lasiecka have proved the local well-posedness of the Neumann boundary valued problem for n ≤ 3. The work in Refs [START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF] use a priori energy estimates and in Ref [START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] the notion of maximal regularity. The Westervelt equation ( 4) is also an approximation of the Kuznetsov equation, but this time by a nonlinear perturbation. Actually the only difference between these two models is that the Westervelt equation keeps only one of two non-linear terms of the Kuznetsov equation, producing cumulative effects in a progressive wave propagation according to Aanonsen, Barkve, Tjøtta et Tjøtta in [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF].

The NPE equation is usually used to describe short-time pulses and a long-range propagation, for instance, in an ocean wave-guide, where the refraction phenomena are important, xxii Chapter 0. General introduction while the KZK equation typically models the ultrasonic propagation with strong diffraction phenomena, combining with finite amplitude effects (see Rozanova-Pierrat with Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and the references therein). Although the physical context and the physical use of the KZK and the NPE equations are different, there is a bijection between the variables of these two models and they can be presented by the same type of differential operator with constant positive coefficients:

Lu = 0, L = ∂ 2 tx -c 1 ∂ x (∂ x •) 2 -c 2 ∂ 3 x ± c 3 ∆ y , for t ∈ R + , x ∈ R, y ∈ R n-1 .
Therefore, the results on the solutions of the KZK equation from Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] are valid for the NPE equation. See also Ref. [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] by Ito for the exponential decay of the solutions of these models in the viscous case.

All the models of Kuznetsov, KZK, NPE, and Westervelt were derived from a compressible nonlinear isentropic Navier-Stokes (for viscous media) and Euler (for the inviscid case) systems up to some small negligible terms. But all cited physical derivations of these models don't allow to say that their solutions approximate the solution of the Navier-Stokes or Euler system. The results on the well-posedness of the KZK and NPE equations are already known, the first work explaining it for the KZK equation is Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] by Rozanova-Pierrat.

Therefore in Chapter 1 we have studied the well-posedness of the Cauchy problem associated to the Kuznetsov equation in R n in the viscous and inviscid cases for small enough initial data. This results correspond to our article [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] proposed with Rozanova-Pierrat.

In Chapter 2, we start to present the initial context of the isentropic Navier-Stokes system ( 5)-( 6) (actually, it is also an approximation of the compressible Navier-Stokes system), which describes the acoustic wave motion in an homogeneous thermo-elastic medium [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF]. We systematize in Chapter 2 the derivation of all these models using the ideas of Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consisting to use correctors in the Hilbert type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic Navier-Stokes or Euler system up to third order terms of a small dimensionless parameter ǫ > 0 measuring the size of the perturbations of the pressure, the density and the velocity to compare to their constant state (p 0 , ρ 0 , 0) (see Fig 1).

With the known results on the well-posedness of these models, we validate in Chapter 2 these approximations obtaining L 2 -estimates between the solutions of the exact and approximated models considered by studying first the approximation of the Navier-Stokes system and then the approximation of the Kuznetsov equation. It is to be noted that we can consider for the exact model a weak solution with less regularity which will be approximated by the regular solution of the approximated model.

Therefore in Part II we have studied the weak solutions of waves equations on domains with fractal boundaries in order to consider the most general domains on which such weak solutions exist.

To come back to Chapter 1 we study the well-posedness of the Cauchy problem associated to Eq. (1). In the inviscid case for ν = 0, the Cauchy problem for the Kuznetsov equation is a particular case of a general quasi-linear hyperbolic system of the second order considered by Hughes, Kato and Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. The local well-posedness result, proved in [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], does not use a priori estimate techniques and is based on the semi-group theory. Hence, thanks to [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], we have the well-posedness of (1) in the Sobolev spaces H s with a real s > n 2 + 1. Actually, to extend the local well-posedness to a global one (for n ≥ 4) and xxiii to estimate the maximal time interval on which there exists a regular solution, John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] has developed a priori estimates for the Cauchy problem for a general quasi-linear wave equation with an energy of the form

E m [u](t) = ∇u(t) 2 H m (R n ) + m+1 i=1 ∂ i t u(t) 2 H m+1-i (R n ) .
This time, due to the non-linearities u t u tt and ∇u ∇u t including the time derivatives, to have an a priori estimate for the Kuznetsov equation we need to work with Sobolev spaces H s for a natural s. If we directly apply general results of John in Ref. [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] to our case of the Kuznetsov equation, we obtain a well-posedness result with a high regularity of the initial data. We improve this result and show John's results for the Kuznetsov equation with the minimal regularity on the initial data corresponding to the regularity obtained by Hughes, Kato and Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. The energy estimates allow us to evaluate the maximal existence time interval. In R 2 and R 3 the optimality of the obtained estimations for the maximal existence time is ensured by the results of Alinhac [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]. In Ref. [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] a geometric blow-up for small data is proved for ∂ 2 t u and ∆u at a finite time of the same order as predicted by our a priori estimates.

For n ≥ 4 and ν = 0, we also improve the results of John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF]. The smallness of the initial data here directly ensures the hyperbolicity of the Kuznetsov equation for all time, i.e. it ensures that 1 -αεu t is strictly positive and bounded for all time. The proof uses the generalized derivatives for the wave type equations [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] and a priori estimate of Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF][START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF].

In the presence of the term ∆u t for the viscous case ν > 0, the regularity of the higher order time derivatives of u is different (compared to the inviscid case), and the way to control the non-linearities in the a priori estimates becomes different. As it was shown in [START_REF] Shibata | On the rate of decay of solutions to linear viscoelastic equation[END_REF] by Shibata, this dissipative term changes a finite speed of propagation of the wave equation to the infinite one. Indeed, the linear part of Eq. ( 1) can be viewed as two compositions of the heat operator ∂ t -∆ in the following way:

u tt -c 2 ∆u -νε∆u t = ∂ t (∂ t u -ǫν∆u) -c 2 ∆u.
For the viscous case we prove the global in time well-posedness results in R n for small enough initial data, the size of which we specify. For n ≥ 3 we establish an a priori estimate which gives also a sufficient condition of the existence of a global solution for a sufficiently small initial energy. Considering the Sobolev spaces H s given with an integer s = m we control the energy

E m 2 [u](t) = ∇u(t) 2 H m (R n ) + m 2 +1 i=1 ∂ i t u(t) 2 H m-2(i-1) (R n ) .
The same results hold in (R/LZ) × R n-1 for n ≥ 2 with a periodicity and mean value zero on one variable. Therefore, let us pay attention to Chapter 2. As it is shown in Fig. 1, the Kuznetsov equation comes from the Navier-Stokes or Euler system only by small perturbations, but to obtain the KZK and the NPE equations we also need to perform in addition to the small perturbations a paraxial change of variables. Moreover, the KZK and the NPE equations can be also obtained from the Kuznetsov equation just performing the corresponding paraxial change of variables. We can notice that the Kuznetsov equation is a non-linear wave equation containing the terms of different order on ǫ. But the KZK-and NPE-paraxial xxiv Chapter 0. General introduction approximations allow to have the approximate equations with all terms of the same order, i.e. the KZK and NPE equations.

Let us pay attention that the ansatz, proposed initially by Bakhvalov, Zhileȋkin, and Zabolotskaya in Ref. [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] and used in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] by Rozanova-Pierrat to obtain the KZK equation from the Navier-Stokes or Euler systems, is different from the ansatz that we use. Moreover, this new approximation of the Navier-Stokes and the Euler systems is an improvement compared to the derivation developed in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], as in this reference the Navier-Stokes/Euler system could be only approximated up to O(ε 5 2 )-terms (instead of O(ǫ 3 ) in our case).

The main hypothesis for the derivation of all these models are the following

• the motion is potential;

• the constant state of the medium given by (p 0 , ρ 0 , 0) (0 for the velocity) is perturbed proportionally to an dimensionless parameter ǫ > 0 (for instance, equal to 10 -5 in water with an initial power of the order of 0.3 W/cm 2 );

• all viscosities are small (of order ǫ).

To keep a physical sense of the approximation problems, we consider especially the two or three dimensional cases, i.e. R n with n = 2 or 3, and in the following we use the notation

x = (x 1 , x ′ ) ∈ R n with one axis x 1 ∈ R and the transversal variable x ′ ∈ R n-1 .
Hence, we validate the approximations of the compressible isentropic Navier-Stokes system by the different models: by the Kuznetsov, the KZK and the NPE equations.

Then we do the same for the Euler system in the inviscid case. The main difference between the viscous and the inviscid case is the time existence and regularity of the solutions. Typically in the inviscid case, the solutions of the models and also of the Euler system itself (actually strong solutions), due to their non-linearity, can provide shock front formations at a finite time [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF]. Thus, they are only locally well-posed, while in the viscous media all approximative models are globally well-posed for small enough initial data [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF].

We note by U ε a solution of the "exact" Navier-Stokes/Euler system (see Eq. (2.31))

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0,
and by U ε an approximated solution, constructed by the derivation ansatz from a regular solution of one of the approximate models (typically of the Kuznetsov, the KZK or the NPE equations), i.e. a function which solves the Navier-Stokes/Euler system up to ǫ 3 terms, denoted by ǫ 3 R (see Eq. (2.32)):

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ǫ 3 R.
To have the remainder term R ∈ C([0, T ], L 2 (Ω)) we ensure that the left hand side in this equation is in C([0, T ], L 2 (Ω)), i.e. we need a sufficiently regular solution U ε . The minimal regularity of the initial data to have a such U ε is given in Table 2.1 (see also Table 2.2 for the approximations of the Kuznetsov equation).

Choosing for the exact system the same initial-boundary data found by the ansatz for U ε (the regular case) or the initial data taken in their small L 2 -neighbourhood, i.e.

U ε (0) -U ε (0) L 2 (Ω) ≤ δ ≤ ǫ, xxv
with U ε (0) not necessarily smooth, but ensuring the existence of an admissible weak solution of a bounded energy, we prove the existence of constants C > 0 and K > 0 independent of ε, δ and the time t such that for all 0

≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ǫ 3 t + δ 2 )e Kεt ≤ 9ε 2
with Ω a domain where both solutions U ε and U ε exist. Thus it is possible to approximate an exact weak solution with few regularities by a regular approximated solution.

As the KZK and NPE equations can be seen as approximations of the Kuznetsov equation due to their derivation (see Fig. 1), we also validate the approximation of the Kuznetsov equation by the KZK and NPE equations, and also by the Westervelt equation (see Table 2.2).

To be able to consider the approximation of the Kuznetsov equation by the KZK equation, we firstly establish global well-posedness results for the Kuznetsov equation in the half space similar to the previous framework for the KZK and the Navier-Stokes system. We study two cases: the purely time periodic boundary problem in the ansatz variables (z, τ, y) moving with the wave and the initial boundary-value problem for the Kuznetsov equation in the initial variables (t, x 1 , x ′ ) with data coming from the solution of the KZK equation. We validate these two types of approximations for the viscous and inviscid cases.

Finally we validate the approximation between the Kuznetsov and NPE equation and the Kuznetsov and Westervelt equations respectively (see Table 2.2). We can summarize them in the following way: if u is a solution of the Kuznetsov equation and u is a solution of the NPE or of the KZK (for the initial boundary value problem) or of the Westervelt equations found for rather closed initial data

∇ t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ǫ,
then there exist constants K > 0, C 1 > 0, C 2 > 0 and C > 0 independent on ǫ, δ and on time, such that for all t ≤ C ǫ it holds

∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ǫ 2 t + δ)e C 2 ǫt ≤ Kǫ.
As the obtained stability estimates are true between a regular solution and a weak solution of Kuznetsov we can again approximate a solution with few regularities of an exact model by the regular solution of an approximated model.

In Part II we study the question of weak solutions of wave equations. We put ourselves in the context of bounded domains and look for the largest class of domain where the problem is well-posed in a weak sense. These equations include:

• the wave equation with homogeneous Dirichlet boundary conditions using Evans [START_REF] Evans | Partial differential equations[END_REF],

• the strongly damped wave equation with Dirichlet boundary conditions or homogeneous Robin boundary conditions,

• the non-linear Westervelt equation with Dirichlet boundary conditions or homogeneous Robin boundary conditions.

The regularity of the solutions of these equations on regular domains, typically with a C 2 boundary is well known, with the fact that more the initial data are regular, the more the solution is regular up to the boundary. We can cite Evans in Ref. [START_REF] Evans | Partial differential equations[END_REF] for the wave equation xxvi Chapter 0. General introduction and Refs. [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] and the references therein for the strongly damped wave equation and the Westervelt equation. The question is whether on less regular domains we can have a weak solution which is continuous or C 1 up to the boundary. The examples of Arendt and Elst in Ref. [START_REF] Arendt | The Dirichlet-to-Neumann operator on rough domains[END_REF] show that problems appear for the definition of the trace as soon as the boundary is not C 1 . Moreover, if on a domain with a C 1 or Lipschitz boundary we can define an incoming normal vector almost everywhere, the question of Neumann or Robin boundary conditions is more complicated. We can add the fact that considering a C 2 boundary as in Refs. [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] is a consequence that the spatial derivatives are at most of order 2, in this case they can be defined naturally on the the boundary. In the past, mathematics has been concerned largely with regular domains. Domains like for example the Von Koch snowflake have mainly been considered as "pathological" and used only to produce counterexamples. Nevertheless, there has been a change of attitude as mathematicians and physicists have discovered that such Von Koch-like structures appear in nature with for example the English coasts or the microstructure of electrodes.

A key point to solve the equations that we will study on domains with fractal boundary is the understanding of the Poisson problem on domains with fractal boundary with Dirichlet boundary conditions [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] or homogeneous Robin boundary conditions [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF]. For system (7) a general approach is through the weak formulation of the Dirichlet problem. If u and ∂Ω are sufficiently smooth one may multiply the Poisson equation in [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] by v ∈ C ∞ 0 (Ω) and use Green formula to end up with

   Ω ∇u∇v dx = Ω f v dx for all v ∈ C ∞ 0 (Ω) u| ∂Ω = g,
which is called a weak formulation of the Dirichlet problem. Introducing the Sobolev spaces H 1 (Ω) and H 1 0 (Ω) and assuming that there exists g * ∈ H 1 (Ω) such that the trace of g * to ∂Ω is g (attention must be paid to the definition of the trace), one may prove with the Riesz representation theorem that given f ∈ L 2 (Ω), g * ∈ H 1 (Ω), there exits a unique u ∈ H 1 (Ω) such that -∆u = f in the sense of distributions and u -g * ∈ H 1 0 (Ω). This of course raises several questions:

• How is the trace defined as it is usually defined for continuous functions?

• When does there exist such an extension g * satisfying u = g on the boundary?

The answer to these two questions is already known if ∂Ω is regular enough, see for example Raviart-Thomas [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF]) or even Lipschitz with the work of Marschall [START_REF] Marschall | The trace of sobolev-slobodeckij spaces on lipschitz domains[END_REF].

• Can we use the Green formula? In the Lipschitz case we have

Ω v∆u dx = u, v (H -1/2 (∂Ω),H 1/2 (∂Ω)) - Ω ∇u∇v dx.
• Does u depend uniquely and continuously on f and g? In Ref. [START_REF] Jonsson | Boundary value problems and Brownian motion on fractals[END_REF] Jonsson and Wallin were able to answer this questions in the case where Ω is an (ǫ, δ)-domain with a boundary ∂Ω which is a so called d-set preserving Markov's inequality. With the work of Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] we find an equivalent of the Green formula using the Besov spaces for the boundary terms. To our knowledge, the results of Jonsson and Wallin are the first of this kind established on fractal domains. The results of Jones [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] on xxvii d-sets and domains admitting W k,p extensions permit to say that, in dimension 2, (ǫ, δ)domains are the most general domains on which we can define traces and extensions of the Sobolev spaces and then solve the Poisson problem. In Ref. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF], Arfi and Rozanova-Pierrat introduced a new type of domain with a fractal boundary called the admissible domains. These domains contained the (ǫ, δ)-domains and are more general, they are the largest class of domains on which we can define traces and extensions to the Sobolev spaces for Ω ⊂ R n with n ≥ 2, and then find a weak solution to the Poisson problem depending uniquely and continuously of the initial data.

As a consequence we will work mainly on admissible domains and resume the known results for these domains. It is to be noted that the work in Ref. [START_REF] Evans | Partial differential equations[END_REF] by Evans gives us the spectral properties as well as the interior regularity of the solution of the Poisson problem [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF],i.e., the fact that for a subset V compactly included in Ω, V ⊂⊂ Ω, the solution on Ω has on V the same regularity than for a domain with regular boundaries. The work in Ref. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] by Arfi and Rozanova-Pierrat permits to give similar results for the Poisson problem [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF] and Ref. [START_REF] Evans | Partial differential equations[END_REF] by Evans gives us spectral properties again.

An other important question is whether the solutions of the Poisson problem ( 7) and ( 8) belong to C(Ω) with an estimate of the form:

u L ∞ (Ω) ≤ C f L p (Ω) .
For the Poisson problem [START_REF] Arendt | Maximal regularity for evolution equations governed by non-autonomous forms[END_REF] with homogeneous Dirichlet boundary condition the works in Ref. [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF] by Nyström and [92] by Xie permit to give a positive answer in dimension n = 2 and 3 respectively for p = 2. The work of Daners in Ref. [START_REF] Daners | Robin boundary value problems on arbitrary domains[END_REF] gives us also a positive answer for the Poisson problem (8) if p > n. These estimates are a key point to show that the solutions studied of our wave type models are in C(Ω) but also to treat the nonlinear term in the Westervelt equation.

Using a Galerkin method as in Ref. [START_REF] Evans | Partial differential equations[END_REF] by Evans we get the regularity of solutions of the wave equation and the strongly damped wave equation with homogeneous Dirichlet boundary conditions with the help of a basis of eigenfunctions of -∆. With these results on regularity we treat the well-posedness of the Westervelt equation with homogeneous Dirichlet boundary conditions in the same way than in the proof in Chapter 1 for the global well posedness for the Kuznetsov equation on R n . The recalled properties of the trace and extension in admissible domains permit us to treat the case of non homogeneous Dirichlet boundary conditions. These results rely on estimations in spaces where the solution and some of its derivatives are in L 2 . Note that we use a similar method for the problems with homogeneous Robin boundary conditions and obtain L 2 -estimate for the strongly damped wave equation on admissible domains, with again a Galerkin method with a basis of eigenfunctions of -∆, or the Westervelt equation on Lipschitz domain in the same way than the proof in Chapter 1 for the global well posedness for the Kuznetsov equation on R n . The case of the Westervelt equation on admissible domains with Robin boundary conditions has been shown using L p estimates with p > n in the same way.

We will conclude this Part II considering a domain with a fractal boundary of Koch mixture type constructed by induction with the help of families of contractive similitudes inducing a family of domains with prefractal and Lipschitz boundaries approximating the domain with fractal boundaries. Using different works by Capitanelli [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], Capitanelli and Vivaldi [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] or Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] we consider the asymptotic convergence of Mosco type of the solutions of the Westervelt equation with Robin boundary conditions on domains with a prefractal boundary, which approach the solution on the domain with a fractal boundary of Koch mixture type, an often used method in the case of shape optimization.

Introduction française

L'équation de Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] modélise la propagation d'ondes acoustiques non linéaires dans des milieux élastiques thermo-visqueux. Le problème de Cauchy pour l'équation de Kuznetsov se lit pour

α = γ-1 c 2 , β = 2 et ν = δ ρ 0 comme u tt -c 2 ∆u -νε∆u t = αεu t u tt + βε∇u ∇u t , x ∈ R n , (1.1) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ R n , ( 1.2) 
où c, ρ 0 , γ, δ sont la vitesse du son, la densité, le ratio des chaleurs spécifiques et la viscosité du milieu respectivement. Nous pouvons nous référer à l'introduction générale. Dans ce chapitre nous étudions le caractère bien posé du problème de Cauchy (1.1)-(1.2). Dans le cas non visqueux pour ν = 0, le problème de Cauchy pour l'équation de Kuznetsov est un cas particulier du système général quasi linéaire hyperbolique du second ordre considéré par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF] (voir Théorème 1.2.1 points 1 et 2 pour l'application de leurs résultats à l'équation de Kuznetsov). Le résultat de caractère bien posé local, prouvé dans [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], n'utilise pas des techniques d'estimations a priori et est basé sur la théorie des semi-groupes. Alors, grâce à [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], nous avons le caractère bien posé de (1.1)-(1.2) dans l'espace de Sobolev H s avec un réel s > n 2 + 1. De plus, pour étendre le caractère bien posé local au cas global (pour n ≥ 4) et pour estimer l'intervalle de temps maximal sur lequel il existe une solution régulière, John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] a développé des estimations a priori pour le problème de Cauchy associé à une équation d'onde quasi linéaire générale. Cette fois, à cause des non linéarités u t u tt et ∇u ∇u t incluant les dérivées en temps, pour avoir une estimation a priori pour l'équation de Kuznetsov, nous avons besoin de travailler avec les espaces de Sobolev caractérisés par un entier s, dès lors dénoté dans ce qui suit par m. Si nous appliquons directement les résultats généraux de la référence [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] à notre cas pour l'équation de Kuznetsov, nous obtenons le caractère bien posé pour une grande régularité des données initiales. Nous améliorons ce résultat dans le Théorème 1.4.1 et montrons les résultats de John pour l'équation de Kuznetsov avec une régularité minimale des données initiales correspondant à la régularité obtenue par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF] 

T * 0 u tt L ∞ (R n ) + ∆u L ∞ (R n ) dl = +∞.
(1.3)

Pour n ≥ 4 et ν = 0, nous améliorons aussi les résultats de John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] et montrons l'existence globale pour des données suffisamment petites

u 0 ∈ H m+1 (R n ) et u 1 ∈ H m (R n ) pour m ≥ n + 2 au lieu de m ≥ 3
2 n + 7 (voir la Proposition 1.4.4 et le Théorème 1.4.2). La petitesse des données initiales assure directement l'hyperbolicité de l'équation de Kuznetsov pour tout temps, i.e. elle assure que 1 -αεu t est strictement positif et borné pour tout temps. La preuve utilise les dérivées généralisées pour les équations d'ondes [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] et une estimation a priori de Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF][START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF] (voir Section 1.4.2).

Formulons à présent notre résultat principal sur le caractère bien posé dans le cas non visqueux avec le Théorème 1. En analysant la structure de l'équation de Kuznetsov et les difficultés entraînées par ses termes non linéaires, nous commençons dans la Section 1.3 par des remarques préliminaires sur les propriétés d'énergie L 2 de l'équation de Kuznetsov à comparer avec ses versions simplifiées. Néanmoins en développant les estimations d'énergie dans les espaces de Sobolev, nous reconnaissons la structure de l'énergie L 2 de l'équation d'onde qui demeure inchangée.

En présence du terme ∆u t pour le cas visqueux ν > 0, la régularité des dérivées en temps d'ordre supérieur de u est différente (en comparaison au cas non visqueux), et la manière de contrôler les non linéarités change.

Pour le cas visqueux, nous prouvons les résultats sur le caractère bien posé global dans R n (voir Section 1.5) pour les données initiales suffisamment petites, dont nous spécifions la taille (voir le Point 1 du Théorème 1.2.2 et la Sous-section 1.5.1 pour la preuve). Dans la Sous-section 1.5.2 pour n ≥ 3 (voir le Point 2 du Théorème 1.2.2) nous établissons une estimation a priori qui nous donne aussi une condition suffisante pour l'existence de solutions globales avec une énergie initiale suffisamment petite du même ordre en ǫ que dans le Point 1 du Théorème 1.2.2. Les même résultats sont vrais dans (R/LZ) × R n-1 pour n ≥ 2 avec la périodicité et la valeur moyenne nulle selon une variable (voir le Point 3 du Théorème1.2.2).

Notons aussi que la condition d'hyperbolicité (1.9) est aussi satisfaite si nous requérons les conditions (1.13) et (1.15). Pour ν > 0, le Point 4 du Théorème 1.2.1 est vérifié pour tout n ∈ N * . Le Point 1 du Théorème 1.2.2 est prouvé dans la Sous-section 1.5.1 en utilisant un théorème de l'analyse non linéaire [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF] (voir le Théorème 1.5.2) et des résultats de régularité pour l'équation d'onde fortement amortie suivant [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF], qui peuvent aussi être utilisés pour Ω = (R/LZ) × R n-1 dans le Point 3. Le Point 2 du Théorème 1.2.2 est prouvé dans la Sous-section 1.5.2, en utilisant les estimations a priori données par la Proposition 1.5.1, voir aussi le Théorème 1.5.3. Le dernier point du Théorème 1.2.2 est un corollaire direct de l'inégalité de Poincaré

u L 2 ((R/LZ)×R n-1 ) ≤ C ∂ x u L 2 ((R/LZ)×R n-1 ) , ( 1.4) 
vérifiée dans la classe des fonctions périodiques de moyenne nulle. L'estimation (1.4) permet d'avoir les même estimations que dans le Lemme 1.5.1 (voir Section 1.5) pour n = 2, qui ne peuvent être vérifiées dans R 2 . Ainsi, cela nous donne aussi l'existence globale pour les données initiales petites détaillée au Point 2.

Introduction

The Kuznetsov equation [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] models the propagation of non-linear acoustic waves in thermoviscous elastic media. The Cauchy problem for the Kuznetsov equation reads for α = γ-1 c 2 , β = 2 and ν = δ ρ 0 as

u tt -c 2 ∆u -νε∆u t = αεu t u tt + βε∇u ∇u t , x ∈ R n , (1.5) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ R n , ( 1.6) 
where c, ρ 0 , γ, δ are the velocity of the sound, the density, the ratio of the specific heats and the viscosity of the medium respectively. We can refer to the general introduction.

In this chapter we study the well-posedness properties of the Cauchy problem (1.5)-(1.6). In the inviscid case for ν = 0, the Cauchy problem for the Kuznetsov equation is a particular case of a general quasi-linear hyperbolic system of the second order considered by Hughes, Kato and Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF] (see Theorem 1.2.1 Points 1 and 2 for the application of their results to the Kuznetsov equation). The local well-posedness result, proved in [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], does not use a priori estimate techniques and is based on the semi-group theory. Hence, thanks to [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], we have the well-posedness of (1.5)- (1.6) in the Sobolev spaces H s with a real s > n 2 + 1. Therefore, actually, to extend the local well-posedness to a global one (for n ≥ 4) and to estimate the maximal time interval on which there exists a regular solution, John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] has developed a priori estimates for the Cauchy problem for a general quasilinear wave equation. This time, due to the non-linearities u t u tt and ∇u ∇u t including the time derivatives, to have an a priori estimate for the Kuznetsov equation we need to work with Sobolev spaces with a natural s, denoted in what follows by m. If we directly apply the general results of Ref. [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] to our case of the Kuznetsov equation, we obtain a wellposedness result with a high regularity of the initial data. We improve it in Theorem 1.4.1 and show John's results for the Kuznetsov equation with the minimal regularity on the initial data corresponding to the regularity obtained by Hughes, Kato and Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. For instance, we prove the analogous energy estimates in . In R 2 and R 3 the optimality of obtained estimations for the maximal existence time is ensured by the results of Alinhac [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]. In Ref. [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] a geometric blow-up for small data is proved for ∂ 2 t u and ∆u at a finite time of the same order as predicted by our a priori estimates (see Theorem 1.2.1 Point 5, our estimates of the minimum existence time correspond to Alinhac's maximum existence time results). On the other hand, the blow-up of ∂ 2 t u and ∆u is also confirmed by the stability estimate (1.12) in Theorem 1.2.1: if the maximal existence time interval is finite and limited by T * , by Eq. (1.12), we have the divergence

H m with m ≥ [ n 2 + 2] instead of John's m ≥
T * 0 u tt L ∞ (R n ) + ∆u L ∞ (R n ) dl = +∞.
(1.7)

For n ≥ 4 and ν = 0, we also improve the results of John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] and show the global existence for sufficiently small initial data

u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n ) with m ≥ n + 2 instead of m ≥ 3 2 n + 7 (see Proposition 1.
4.4 and Theorem 1.4.2). The smallness of the initial data here directly ensures the hyperbolicity of the Kuznetsov equation for all time, i.e. it ensures that 1 -αεu t is strictly positive and bounded for all time. The proof uses the generalized derivatives for the wave type equations [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] and a priori estimate of Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF][START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF] (see Section 1.4.2).

Let us now formulate our main well-posedness result for the inviscid case:

Theorem 1.2.1. (Inviscid case) Let ν = 0, n ∈ N * and s > n 2 +1. For all u 0 ∈ H s+1 (R n ) and u 1 ∈ H s (R n ) such that u 1 L ∞ (R n ) < 1 2αε , u 0 L ∞ (R n ) < M 1 , ∇u 0 L ∞ (R n ) < M 2 , with M 1 and M 2 in R *
+ the following results hold: 1. For all T > 0, there exists T ′ > 0, T ′ ≤ T , such that there exists a unique solution u of (1.5)- (1.6) with the following regularity

u ∈ C r ([0, T ′ ]; H s+1-r (R n )) for 0 ≤ r ≤ s, (1.8) ∀t ∈ [0, T ′ ], u t (t) L ∞ (R n ) < 1 2αε , u L ∞ (R n ) < M 1 , ∇u L ∞ (R n ) < M 2 .
(1.9)

2. The map (u 0 , u 1 ) → (u(t, .), ∂ t u(t, .)) is continuous in the topology of

H s+1 × H s uniformly in t ∈ [0, T ′ ].
3. Let T * be the largest time on which such a solution is defined, and in addition

s ∈ N, i.e. s = m ≥ m 0 = [ n 2 + 2]. With the notation E m [u](t) = ∇u(t) 2 H m (R n ) + m+1 i=1 ∂ i t u(t) 2 H m+1-i (R n ) , (1.10 
)

there exist constants C(n, c, α) > 0 and Ĉ(n, c, α, β) > 0 (see Theorem 1.4.1) such that if the initial data satisfies E m 0 [u](0) ≤ 1 C(n,c,α)ǫ , then T * ≥ 1 ǫ Ĉ(n, c, α, β) E m 0 [u](0)
, such that it holds (1.7).

(1.11)

4.

For two solutions u and v of the Kuznetsov equation for ν = 0 defined on [0, T * [ assume that u be regular as in (1.8)

-(1.9), i.e. u ∈ L ∞ ([0, T * [; H m+1 (R n )), u t ∈ L ∞ ([0, T * [; H m (R n )) (s = m as in Point 3), and v ∈ L ∞ ([0, T * [; H 1 (R n )), v t ∈ L ∞ ([0, T * [; L 2 (R n )) with v L ∞ (R n ) < 1 2αε
and with a bounded ∇v t L ∞ (R n ) norm on [0, T * [. Then it holds the following stability uniqueness result: there exist constants C 1 > 0 and C 2 > 0, independent on time, such that Analysing the structure of the Kuznetsov equation and the difficulties involved by its non-linear terms, we start in Section 1.3 with preliminary remarks on the L 2 -energy properties for the Kuznetsov equation compared to its simplified versions. However when developing the energy estimates in the Sobolev spaces, we recognize the structure of the L 2 -energy of the wave equation which remains unchanged.

( (u -v) t 2 L 2 + ∇(u -v) 2 L 2 )(t) ≤ C 1 exp C 2 ε t 0 sup( u tt L ∞ (R n ) , ∆u L ∞ (R n ) )dl .( u 1 -v 1 2 L 2 + ∇(u 0 -v 0 ) 2 L 2 ). ( 1 
In the presence of the term ∆u t for the viscous case ν > 0, the regularity of the higher order time derivatives of u is different (compared to the inviscid case), and the way to control the non-linearities in the a priori estimates becomes different.

For the viscous case we prove the global-in-time well-posedness results in R n (see Section 1.5) for small enough initial data, the size of which we specify (see Point 1 of Theorem 1.2.2 and Subsection 1.5.1 for its proof). In Subsection 1.5.2 for n ≥ 3 (see Point 2 of Theorem 1.2.2) we establish an a priori estimate which gives also a sufficient condition of the existence of a global solution for a sufficiently small initial energy of the same order on ǫ as in Point 1 of Theorem 1.2.2. The same results (see Point 3 of Theorem 1.2.2) hold in (R/LZ) × R n-1 for n ≥ 2 (with a periodicity and mean value zero on one variable).

Theorem 1.2.2. (Viscous case)

Let ν > 0, n ∈ N * , s > n
2 and R + = [0, +∞[. Considering the Cauchy problem for the Kuznetsov equation (1.5)- (1.6), the following results hold:

1. Let X := H 2 (R + ; H s (R n )) ∩ H 1 (R + ; H s+2 (R n )), the initial data u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ), r * = O(1)
be the positive constant defined in Eq. (1.59) and C 1 = O(1) be the minimal constant such that the solution u * of the corresponding linear Cauchy problem (1.56) satisfies

u * X ≤ C 1 √ νǫ ( u 0 H s+2 (R n ) + u 1 H s+1 (R n ) ).
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Then for all r ∈ [0, r * [ and all initial data satisfying

u 0 H s+2 (R n ) + u 1 H s+1 (R n ) ≤ √ νǫ C 1 r, (1.13)
there exists the unique solution u ∈ X of the Cauchy problem for the Kuznetsov equation and u X ≤ 2r.

Let

n ≥ 3, s = m ∈ N be even and m ≥ [ n 2 + 3]. With the notation E m 2 [u](t) = ∇u(t) 2 H m (R n ) + m 2 +1 i=1 ∂ i t u(t) 2 H m-2(i-1) (R n ) , (1.14)
there exists a constant ρ = O(1) > 0 (see Theorem 1.5.3 Point 2), independent on time, such that for all initial data

u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R m ) satisfying E m 2 [u](0) < ρǫ, (1.15)
there exists a unique u Let us notice that the hyperbolicity condition (1.9) is also satisfied if we require conditions (1.13) and (1.15). For ν > 0 Point 4 of Theorem 1.2.1 obviously holds for all n ∈ N * . Point 1 of Theorem 1.2.2 is proved in Subsection 1.5.1 using a theorem of a non-linear analysis [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF] (see Theorem 1.5.2) and regularity results for the strongly damped wave equation following [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF], which can also be used for Ω = (R/LZ) × R n-1 in point 3. Point 2 of Theorem 1.2.2 is proved in Subsection 1.5.2, using a priori estimates given in Proposition 1.5.1, see also Theorem 1.5.3. The last point of Theorem 1.2.2 is a direct corollary of the Poincaré inequality

∈ C 0 (R + ; H m+1 (R n ))∩C i (R + ; H m+2-2i (R n )), for i = 1, .., m 2 +1 with the bounded energy ∀t ∈ R + , E m 2 [u](t) ≤ O 1 ǫ E m 2 [u](0) = O(1). 3. For n ∈ N * in Ω = (R/LZ) × R n-1 with s = m ∈ N even and m ≥ [ n 2 + 3] there hold Points 1

and 2 in the class of periodic in one direction functions with the mean value zero

u L 2 ((R/LZ)×R n-1 ) ≤ C ∂ x u L 2 ((R/LZ)×R n-1 ) , (1.17)
which holds in the class of periodic functions with the mean value zero. Estimate (1.17) allows to have the same estimate as in Lemma 1.5.1 (see Section 1.5) for n = 2, which fails in R 2 . Thus, it also gives the global existence for rather small initial data detailed in Point 2.

Preliminary remarks on L 2 -energies

We can notice that Eq. (1. 

u tt -c 2 ∆u = 0. (1.18)
The semi-group theory permits in the usual way to show that for u 0 ∈ H 1 (R n ) and u 1 ∈ L 2 (R n ) there exists a unique solution of the Cauchy problem (1.18), (1.6)

u ∈ C 0 (R + ; H 1 (R n )) ∩ C 1 (R + ; L 2 (R n )).
So the energy of the wave equation (1.18)

E(t) = R n [(u t ) 2 + c 2 (∇u) 2 ](t, x)dx, ( 1.19) 
is well defined and conserved

d dt E(t) = 0.
For ν > 0 and without non-linear terms, the Kuznetsov equation (1.5) becomes the well-known strongly damped wave equation:

u tt -c 2 ∆u -νε∆u t = 0, (1.20)
which is well-posed [START_REF] Ikehata | Wave equations with strong damping in Hilbert spaces[END_REF]:

for m ∈ N, u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n
) there exists a unique solution of the Cauchy problem (1.20), (1.6)

u ∈ C 0 (R + ; H m+1 (R n )) ∩ C 1 (R + ; H m (R n )).
Multiplying Eq. (1.20) by u t in L 2 (R n ), we obtain for the energy of the wave equation (1. [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF])

d dt E(t) = -2νε R n (∇u t ) 2 (t, x)dx ≤ 0,
which means that the energy E(t) decreases in time, thanks to the viscosity term with ν > 0. The decrease rate is found for more regular energies in [START_REF] Shibata | On the rate of decay of solutions to linear viscoelastic equation[END_REF] in accordance to the regularity of the initial conditions. Without the term ∇u∇u t (local non-linear effects), the Kuznetsov equation becomes similar to the Westervelt equation, initially derived by Westervelt [START_REF] Westervelt | Parametric acoustic array[END_REF] before Kuznetsov. The Westervelt equation, historically derived [START_REF] Westervelt | Parametric acoustic array[END_REF] for the acoustic pressure fluctuation, has the following form

p tt -c 2 ∆p -νε∆p t = γ + 1 c 2 εp t p tt , (1.21) 
and can also be seen as an approximation of an isentropic Navier-Stokes system.

In the sequel we conveniently denote p by u. We multiply Eq. (1.21) by u t and integrate over R n to obtain 1 2

d dt R n [(u t ) 2 + c 2 (∇u) 2 ] dx + νε R n (∇u t ) 2 dx = 1 3 γ + 1 c 2 ε d dt R n (u t ) 3 dx .
Then we have 1 2

d dt R n 1 - 2 3 γ + 1 c 2 εu t (u t ) 2 + c 2 (∇u) 2 dx + νε R n (∇u t ) 2 dx = 0.
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For α = 2 3 γ+1 c 2 we consider the energy

E nonl (t) = R n (1 -αεu t ) (u t ) 2 + c 2 (∇u) 2 dx, (1.22)
which is monotonous decreasing for ν > 0 and is conserved for ν = 0. Let us also notice that, taking the same initial data for ν = 0 and ν > 0, we have: for all ν > 0 and t > 0 E nonl (t, ν = 0) > E nonl (t, ν) ≥ 0, in the assumption that 1 -αεu t ≥ 0 almost everywhere.

While

1 2 ≤ 1 -αεu t ≤ 3 2 , that is to say u t (t) L ∞ (R n )
remains small enough in time, then we can compare E nonl to the energy of the wave equation

1 2 E(t) ≤ E nonl (t) ≤ 3 2 E(t).
Then a sufficiently regular solution of the Cauchy problem for the Westervelt equation has the energy E controlled by a decreasing in time function: 

E(t) ≤ 3E(0) -4νε t 0 R n (∇u t (τ, x))
d dt R n 1 - 2 3 γ -1 c 2 εu t (u t ) 2 + (c 2 -2ǫu t )(∇u) 2 dx + 2ǫ t 0 R n u tt |∇u| 2 dx dl + νε R n (∇u t ) 2 dx = 0. (1.23) Thus, for α = 2 3 γ-1 c 2 , the function F ν (t) = R n (1 -αεu t ) (u t ) 2 + (c 2 -2ǫu t )(∇u) 2 dx + 2ǫ t 0 R n u tt |∇u| 2 dx dl is constant if ν = 0 and decreases if ν > 0.
Let us notice that while 1 2 ≤ 1 -αεu t ≤ 3 2 , the coefficient c 2 -2ǫu t is always positive (since c is the sound speed in the chosen medium, c 2 ≫ 1), hence the first integral in F ν (t) is positive, but a priori we don't know the sign of the second integral, i.e. the sign of u tt . However, for ν = 0, F ν=0 (t) is positive, as soon as 0 ≤ 1 -αεu 1 :

F ν=0 (t) = F ν=0 (0) = R n (1 -αεu 1 ) (u 1 ) 2 + (c 2 -2ǫu 1 )(∇u 0 ) 2 dx ≥ 0, 1.4.
Well-posedness for the inviscid case 11 and, if we take the same initial data for the Cauchy problems with ν = 0 and ν > 0, for all t > 0 (for all time where F ν=0 exists) it holds F ν=0 (t) = F ν=0 (0) > F ν>0 (t).

For n ≥ 3, we can control the term 2ε R n ∇u∇u t u t dx using the Hölder inequality and the Sobolev embeddings (which fails in R 2 ):

R n ∇u ∇u t u t dx ≤ ∇u L n ∇u t L 2 u t L 2n n-2 ≤ C ∇u L n ∇u t 2 L 2 .
Indeed, in R 2 we don't have any estimates of the form Let us give an estimation of the maximum existence time for a solution of problem (1.5)-(1.6) with ν = 0. For this we follow the work of John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] with the use of a priori estimates. However we don't directly apply the general results of John, but we improve them for our specific problem as we can take less regular initial conditions in order to have suitable a priori estimates. For t ∈ [0, T ] we have for E m [u](t), defined in Eq. (1.10), with constants B = (3+2c 2 ) min(1/2,c 2 ) > 0, depending only on c, and C m > 0, depending only on m, on the dimension n and on c (only if min(1/2, c 2 ) = c 2 ). Proof. Following [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF], let us consider

u L p (R 2 ) ≤ ∇u L 2 (R 2 ) , with p > 2.
E m [u](t) ≤ B E m [u](0) + C m max(α, β)ε t 0 E m [u](τ )
L u v = v tt -c 2 ∆v -αεu t v tt -βε∇u ∇v t , (1.25)
where u is a local solution on [0, T ] of problem (1.5)-(1.6) with ν = 0, satisfying (1.8) and (1.9) for s = m. We multiply Eq. (1.25) by v t and integrate over R n

R n L u v v t dx = 1 2 d dt R n v 2 t + c 2 (∇v) 2 dx -αε R n u t v tt v t dx -βε R n ∇u∇v t v t dx = 1 2 d dt R n v 2 t + c 2 (∇v) 2 dx - α 2 ε d dt R n u t v 2 t dx - R n u tt v 2 t dx + β 2 ε R n ∆u (v t ) 2 dx.
Hence, denoting by

I[v] = v 2 t + c 2 (∇v) 2 -αεu t v 2 t , (1.26 
)

J[v] = 2L u v v t -[αεu tt + βε∆u] (v t ) 2 , (1.27)
we have the following equation

d dt R n I[v](t, x)dx = R n J[v](t, x)dx.
(1.28)

Let A = (A 0 , A 1 , ..., A n ) be a multi-index, and

D A = ∂ A 0 t ∂ A 1 x 1 ...∂ An xn . To prove estimate (1.24), we study | R n J[v](t, x)dx| for v = D A u with |A| = A 0 + ... + A n ≤ m.
For m ≥ n 2 + 2 and a multi-index A with |A| ≤ m we estimate, thanks to the definition of E m [u] by Eq. (1.10), 

R n |u tt (D A u t ) 2 |dx ≤ u tt L ∞ (R n ) D A u t 2 L 2 (R n ) ≤C u tt H [ n 2 +1] (R n ) E m [u] ≤ C E m [u]
H s (R n ) ֒→ L ∞ (R n ) for s > n 2 .
(1.30)

In the same way, using the Sobolev embedding (1.30), we obtain

R n |∆u(D A u t ) 2 |dx ≤ ∆u L ∞ (R n ) D A u t 2 L 2 (R n ) ≤ C ∆u H [ n 2 +1] (R n ) E m [u] ≤C ∇u H m (R n ) E m [u] ≤ C E m [u] 3 2 . (1.31)
To calculate L u D A u we apply the chain rule of differentiation to

D A L u u = 0. As L u u = 0 we suppose |A| ≥ 1. By developing D A (∇u∇u t ) = n i=1 D A (∂ x i u∂ x i u t ) with D A (u t u tt ), we have L u D A u = ε j C j αD A j1 u t D A j2 u t + n i=1 E ij βD A j1 ∂ x i u D A j2 ∂ x i u , (1.32)
where j is a finite sum, with C j and E ij depending only on |A| ≤ m, and A j1 and A j2 are multi-index such that

     |A j1 | + |A j2 | = |A| + 1, |A j1 | ≥ 1, |A j2 | ≥ 1, A j1 0 + A j2 0 = A 0 + 1, A j1 i + A j2 i = A i for 1 ≤ i ≤ n.
(1.33) 

R n |D A 1 ∂ x i u D A 2 ∂ x i u D A u t |dx secondly.
As for each part the proof is very similar, we give the details only for the first one.

To estimate R n |D A 1 u t D A 2 u t D A u t |dx, we consider three cases:

Case 1 1 < |A 1 | < m and 1 < |A 2 | < m, Case 2 |A 1 | ≤ m and |A 2 | = 1, Case 3 |A 2 | ≤ m and |A 1 | = 1.
Let us detail Case 1 (other cases can be treated in a similar way).

For 2 ≤ |A 1 | ≤ m -1 and 2 ≤ |A 2 | ≤ m -1, it holds R n |D A 1 u t D A 2 u t D A u t |dx ≤ D A 1 u t L p (R n ) D A 2 u t L q (R n ) D A u t L 2 (R n ) ,
with 1 p + 1 q = 1 2 by the general Hölder inequality [START_REF] Brezis | Analyse fonctionnelle : Théorie et applications[END_REF]. Hence, using the Sobolev embedding [2]

H m 1 (R n ) ֒→ L p (R n ) with 1 p = 1 2 - m 1 n and 0 < m 1 < n 2 , ( 1.35) 
we find

R n |D A 1 u t D A 2 u t D A u t |dx ≤ C D A 1 u t H m 1 (R n ) D A 2 u t H n 2 -m 1 (R n ) D A u t L 2 (R n ) .
In what follows by C > 0 is denoted as an arbitrary constant depending only on m and on n.

We have

D A 1 u t H m 1 (R n ) ≤ ∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 (R n ) , D A 2 u t H n 2 -m 1 (R n ) ≤ ∂ A 2 0 t u t H n 2 -m 1 +|A 2 |-A 2 0 (R n )
.

We need to find m for which there exists m 1 with 0 < m 1 < n 2 , such that

m 1 + |A 1 | -A 1 0 ≤ m + 1 -(A 1 0 + 1), n 2 -m 1 + |A 2 | -A 2 0 ≤ m + 1 -(A 2 0 + 1), (1.36) 
or equivalently, by (1.33)

|A 2 | = |A| + 1 -|A 1 |, m 1 + |A 1 | ≤ m, n 2 -m 1 + |A| + 1 -|A 1 | ≤ m. As m -|A| ≥ 0 it is sufficient to find m 1 , such that n 2 + 1 ≤ m 1 + |A 1 | ≤ m with 2 ≤ |A 1 | ≤ m -1 and 0 < m 1 < n 2 .
In particular, the last three inequalities imply that m ≥ [2 + n 2 ]. For the existence of m 1 , we see that, for instance, Chapter 1. Cauchy Problem for the Kuznetsov Equation

if |A 1 | = 2 we can take m 1 = n 2 -1 4 , if 2 < |A 1 | < n 2 + 1 we can take m 1 = n 2 + 1 -|A 1 |, if n 2 + 1 ≤ |A 1 | ≤ m -1 we can take m 1 = 1 4 . Moreover, D A u t L 2 (R n ) ≤ ∂ A 0 t u t H |A|-A 0 (R n ) ≤ ∂ A 0 t u t H m-A 0 (R n ) .
Then, thanks to relations (1.36), we conclude

R n |D A 1 u t D A 2 u t D A u t |dx ≤C ∂ A 1 0 t u t H m-A 1 0 (R n ) ∂ A 2 0 t u t H m-A 2 0 (R n ) ∂ A 0 t u t H m-A 0 (R n ) ≤C E m [u] 3 2 .
Consequently, for m ≥ n 2 + 2 , and A 1 and A 2 , satisfying properties (1.33), it holds

R n |D A 1 u t D A 2 u t D A u t |dx ≤ C E m [u] 3 2 .
(1.37)

By the same argument, for m ≥ n 2 + 2 and A 1 and A 2 , satisfying properties (1.33), we control the terms of the form

R n |D A 1 ∂ x i u D A 2 ∂ x i u D A u t |dx: R n |D A 1 ∂ x i u D A 2 ∂ x i u D A u t |dx ≤ CE m [u] 3 2 .
( 

R n J[D A u](t, x)dx ≤ C max(α, β)εE m [u](t) 3 2 .
(1.39)

With the hypothesis that u is a local solution of the inviscid Kuznetsov equation, u satisfies Eq. (1.9), i.e. u t (t) L ∞ ≤ 1 2αε on [0, T ], which implies the equivalence of energies

R n 1 2 (D A u t ) 2 + c 2 (∇D A u) 2 dx ≤ R n I[D A u]dx ≤ R n 3 2 (D A u t ) 2 + c 2 (∇D A u) 2 dx.
We integrate relation (1.28) over [0, t] with t ≤ T to obtain

D A u t (t) 2 L 2 (R n ) + ∇D A u(t) 2 L 2 (R n ) ≤ ( 3 2 + c 2 ) min(1/2, c 2 ) ( D A u t (0) 2 L 2 (R n ) + ∇D A u(0) 2 L 2 (R n )v ) + 1 min(1/2, c 2 ) t 0 R n J(τ, x)dx dτ.
Then, using estimate (1.39), we find 

D A u t (t) 2 L 2 (R n ) + ∇D A u(t) 2 L 2 (R n ) ≤ ( 3 2 + c 2 ) min(1/2, c 2 ) ( D A u t (0) 2 L 2 (R n ) + ∇D A u(0) 2 L 2 (R n ) ) + 1 min(1/2, c 2 ) C max(α, β)ε t 0 E m [u](τ )
E m [u](t) ≤ (3 + 2c 2 ) min(1/2, c 2 ) E m [u](0) + C max(α, β) min(1/2, c 2 ) ε t 0 E m [u](τ ) 3 2 dτ
with a constant C > 0, depending only on n and m. This gives the estimate (1.24).

Inequality (1.24), proved in Proposition 1.4.1, gives us an a priori estimate in order to have, with the help of the Gronwall Lemma, an estimation of the maximum existence time T * . However, when m increases, C m increases, and the maximum existence time, given by estimate (1.24), decreases whereas the initial conditions become more regular. Therefore, we prove the second a priori estimate (see Eq. (1.40)), playing a key role in order to avoid this problem: Proposition 1.4.2. Let conditions of Proposition 1.4.1 be satisfied. Then for t ∈ [0, T ] and m ≥ n 2 + 3 we have 

E m [u](t) ≤ B E m [u](0) + D m max(α, β)ε t 0 E m-1 [u](τ ) 1 2 E m [u](τ ) dτ, ( 1 
R n J[D A u](s, x)dx ≤ Cε E m-1 [u]E m [u].
Indeed, for m ≥ n 2 + 3 and a multi-indexes A with |A| ≤ m we have

R n |u tt (D A u t ) 2 |dx ≤ u tt L ∞ D A u t 2 L 2 ≤ C u tt H m-2 E m [u] ≤ C E m-1 [u]E m [u],
and

R n |∆u(D A u t ) 2 |dx ≤ ∆u L ∞ D A u t 2 L 2 ≤ C ∇u H m-1 E m [u] ≤ C E m-1 [u]E m [u].
Now we consider two multi-indexes A 1 and A 2 with properties (1.33). As previously, we have to distinguish three cases:

Case 1: 1 < |A 1 | < m and 1 < |A 2 | < m, Case 2: |A 1 | ≤ m and |A 2 | = 1, Case 3: |A 2 | ≤ m and |A 1 | = 1. First, if 1 < |A 1 | < m and 1 < |A 2 | < m, in Case 1 we have R n |D A 1 u t D A 2 u t D A u t |dx ≤C ∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 ∂ A 2 0 t u t H n 2 -m 1 +|A 2 |-A 2 0 D A u t L 2 ≤ ∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 ∂ A 2 0 t u t H n 2 -m 1 +|A 2 |-A 2 0 E m [u].
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By symmetry of their roles we can take

|A 1 | ≤ m+1 2 ≤ |A 2 |.
We look for m for which there exists m 1 , such that

m 1 + |A 1 | -A 1 0 ≤ m -(A 1 0 + 1), n 2 -m 1 + |A 2 | -A 2 0 ≤ m + 1 -(A 2 0 + 1), in order to have ∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 ≤ E m-1 [u] and ∂ A 2 0 t u t H n 2 -m 1 +|A 2 |-A 2 0 ≤ E m [u]. As |A 2 | = |A| + 1 -|A 1 | and m ≥ |A|, it is sufficient to find m 1 , such that n 2 + 1 ≤ m 1 + |A 1 | ≤ m -1, with 2 ≤ |A 1 | ≤ m -1, |A 1 | ≤ m+1 2 and 0 < m 1 < n 2 . This directly implies that m ≥ [ n 2 + 3]. In addition, this also implies, except if m ≤ 3, that |A 1 | ≤ m -2.
Thus the existence of a required m 1 is justified in Case 1 of the proof of estimate (1.24). If m ≤ 3, as m ≥ n 2 + 3 , we have only the case m = 3, n = 1 and

|A 1 | = |A 2 | = 2, for which it holds R n |D A 1 u t D A 2 u t D A u t |dx ≤ D A 1 u t L 2 D A 2 u t L ∞ D A u t L 2 ≤C D A 1 u t L 2 D A 2 u t H 1 D A u t L 2 ≤ C E m-1 [u]E m [u],
by the Sobolev embedding (1.30).

For

|A 1 | ≤ m and |A 2 | = 1, in Case 2, we find R n |D A 1 u t D A 2 u t D A u t |dx ≤ D A 1 u t L 2 D A 2 u t L ∞ D A u t L 2 ,
where the two L 2 -norms are controlled by E m [u]:

D A 1 u t L 2 ≤ ∂ A 1 0 t u t H m-A 1 0 ≤ E m [u], D A u t L 2 ≤ ∂ A 0 t u t H m-A 0 ≤ E m [u].
As A 2 0 ≤ 1, for the L ∞ -norm, for m ≥ n 2 + 3 , we have

D A 2 u t L ∞ ≤C D A 2 u t H [ n 2 +1] ≤ C ∂ A 2 0 t u t H [ n 2 +2]-A 2 0 ≤ C E m-1 [u]. Case 3, i.e. for |A 2 | ≤ m and |A 1 | = 1,
can be treated in the same way.

So, if m ≥ n 2 + 3 , and A 1 and A 2 satisfy properties (1.33), we obtain

R n |D A 1 u t D A 2 u t D A u t |dx ≤ C E m-1 [u]E m [u].
Using similar arguments, we can show with the same restrictions on m, A 1 and A 2 that

R n |D A 1 ∂ x i u D A 2 ∂ x i u D A u t |dx ≤ C E m-1 [u]E m [u].
Consequently,

R n |L u D A u D A u t |dx ≤ C max(α, β) E m-1 [u]E m [u],
from where follows the estimate (1.40). 

u 0 ∈ H m+1 (R n ), u 1 ∈ H m (R n ) and u 1 L ∞ (R n ) < 1 2αε
.

If E m 0 [u](0) ≤ 1 4 √ BC∞αε , then T * > T 0 = 1 C m 0 max(α, β)ε √ BE m 0 [u](0) (1.41) and u ∈ C r ([0, T 0 ]; H m+1-r ) for 0 ≤ r ≤ m + 1, with ∀t ∈ [0, T 0 ], E m [u](t) ≤ C < +∞.
Here B and C m 0 are the constants from estimate (1.24) and C ∞ is the embedding constant from the embedding of the Sobolev space

H [ n 2 +1] (R n ) in L ∞ (R n ). Proof. Thanks to Point 1 of Theorem 1.2.1, for u 0 ∈ H m+1 (R n ), u 1 ∈ H m (R n ) and u 1 L ∞ (R n ) < 1
2αε there exists a unique solution u on a sufficiently small interval [0, T ] of problem (1.5)-(1.6) with ν = 0, satisfying (1.8) and (1.9) for s = m. Moreover it implies that E m [u](0) is finite. Hence, we can add the hypothesis

E m 0 [u](0) ≤ 1 4 √ BC ∞ αε
without adding further conditions of regularity on u 0 and u 1 as it can be reduced on a smallness condition on u 0

H m+1 (R n ) + u 1 H m (R n ) .
Let us take T 0 , as defined in Eq. (1.41), and show by induction on j ∈ N with

m 0 ≤ j ≤ m that ∀j ∈ N, with m 0 ≤ j ≤ m sup t∈[0,T 0 ] E j [u](t) < ∞. For j = m 0 , u 0 ∈ H m+1 (R n ) ⊆ H m 0 +1 (R n ) and u 1 ∈ H m (R n ) ⊆ H m 0 (R n ),
and consequently

E m 0 [u](0) ≤ E m [u](0) < ∞. For t ≥ 0, while u t (t) L ∞ (R n ) ≤ 1 2αε
, it holds the estimate (1.24) with m = m 0 . According to the Gronwall Lemma, applied to (1.24) with m = m 0 , we have

E m 0 [u](t) ≤ z(t),
where z(t) is the solution of the Cauchy problem for an ordinary differential equation

z(t) = z 0 + C m 0 max(α, β)ε t 0 (z(τ )) 3/2 dl with z 0 = B E m 0 [u](0).
This problem can be solved explicitly:

z(t) = z 0 (1 -1 2 z 1/2 0 C m 0 max(α, β)εt) 2
.

Chapter 1. Cauchy Problem for the Kuznetsov Equation

We can see that, as long as 0 ≤ t ≤ T 0 , the function z(t) has the finite upper bound z(t) ≤ 4z 0 . It implies the upper boundness of E m 0 [u]:

E m 0 [u](t) ≤ 4B E m 0 [u](0). (1.42)
Moreover, thanks to our notations,

u t (t) L ∞ (R n ) C ∞ ≤ u t (t) H [ n 2 +1] ≤ E m 0 [u](t),
from where, using inequality (1.42), we find

u t (t) L ∞ (R n ) ≤ 2C ∞ B E m 0 [u](0) ≤ 1 2αε
,

since E m 0 [u](0) ≤ 1 4 √
BC∞αε . Thus Eq. (1.9) holds on all interval [0, T 0 ] and sup t∈[

0,T 0 ] E m 0 [u](t) is finite. Let j ∈ N, m 0 ≤ j ≤ m -1 be such that sup t∈[0,T 0 ] E j [u](t) < ∞.
Since Eq. (1.9) holds on all interval [0, T 0 ], we can use the a priori estimate (1.40) and write that for all t ∈ [0, T 0 ]

E j+1 [u](t) ≤ B E j+1 [u](0) + D j+1 max(α, β)ε t 0 E j [u](τ )E j+1 [u](τ ) dτ.
By the induction hypothesis sup t∈[0,T 0 ] E j [u](t) is bounded by a constant, denoted here by E 2 , and hence on [0, T 0 ] it holds

E j+1 [u](t) ≤ BE j+1 [u](0) + D j+1 max(α, β) Eε t 0 E j+1 [u](τ )dl.
Applying the Gronwall Lemma, we obtain for t ∈ [0, T 0 ] (taken in this order) are denoted respectively by Γ 0 , . . . , Γ µ with µ = 1 2 (n 2 + 3n + 2). For a multi-index A = (A 0 , . . . , A µ ) we write in the usual way

E j+1 [u](t) ≤ BE j+1 [u](0)e D j+1 max(α,β) Eεt ≤ BE j+1 [u](0)e D j+1 max(α,β) EεT 0 . This means, as E j+1 [u](0) ≤ E m [u](0) < +∞, that sup t∈[0,T 0 ] E j+1 [u](t) < ∞
L 0 = t∂ t + i x i ∂ x i , L i = x i ∂ t + t∂ x i for i = 1, ..., n, Ω ik = x i ∂ x k -x k ∂ x i for 1 ≤ i < k ≤ n,
|A| = A 0 + . . . + A µ , Γ A = (Γ 0 ) A 0 (Γ 1 ) A 1 . . . (Γ µ ) Aµ .
Therefore, in the framework of the general derivatives, we define for m ∈ N

E ∞,m [u](t) = sup x sup |A|≤m (Γ A ∂ t u(t, x)) 2 + (Γ A ∇u(x, t)) 2 ,
(1.43)

E 1,m [u](t) = |A|≤m ( Γ A ∂ t u 2 L 2 (R n ) + Γ A ∇u 2 L 2 (R n ) )(t). (1.44)
We give a remarkable estimate proved in Ref. [START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF] by Klainerman:

Proposition 1.4.3. (Klainerman 1987) For n * = [ n 2 + 1], m ∈ N, and t > 0, as soon as u is such that E 1,m+n * [u](t) is finite, it holds E ∞,m [u](t) ≤ C n (1 + t) 1-n 2 E 1,m+n * [u](t).
(1.45)

Thanks to Proposition 1.4.3, we improve the results of John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] for the case of the Kuznetsov equation and state: Proposition 1.4.4. For n and m in N * , m ≥ n + 2, let u be a local solution on an interval [0, T ] of problem (1.5)- (1.6) with ν = 0, satisfying (1.8) and (1.9) with s = m. Then for all t ∈ [0, T ], it holds

E 1,m [u](t) ≤ B E 1,m [u](0) + C m max(α, β)ε t 0 (1 + τ ) (1-n)/2 E 1,m [u](τ ) 3 2 dτ, (1.46)
with a positive constant B > 0, depending only on c, on α and on β, and with a positive constant C m > 0, depending only on m, on n and on c.

Proof. The proof follows identically the proof of Proposition 1.4.1 up to Eq. (1.32) replacing everywhere D A by Γ A . This time Eq. (1.32) becomes

L u Γ A u = ε µ j=0 αC j Γ A j1 u t Γ A j2 u t + n i=1 βE ij Γ A j1 ∂ x i u Γ A j2 ∂ x i u , (1.47)
where µ is defined in Definition 1.4.1, C j and E ij depend only on |A| ≤ m, and A j1 and A j2 are multi-indexes, such that

|A j1 | + |A j2 | ≤ m + 1. It follows that |A j1 | ≤ [ m+1 2 ] or |A j2 | ≤ [ m+1 2 ]. Therefore, if we set m ′ = m+1 2
, we obtain

|J[Γ A u](τ, x)| ≤C m max(α, β)ε sup |B|≤m ′ (Γ B ∂ t u(τ, x)) 2 + (Γ B ∇u(τ, x)) 2 ) • • sup |B|≤m (Γ B ∂ t u(τ, x)) 2 + (Γ B ∇u(τ, x)) 2 ) ≤C m max(α, β)ε E ∞,m ′ [u](τ ) |B|≤m (Γ B ∂ t u(τ, x)) 2 + (Γ B ∇u(τ, x)) 2 ) ,
and thus

R n J[Γ A u](τ, x)dx ≤ C m max(α, β)ε E ∞,m ′ [u](τ )E 1,m [u](τ ).
By hypothesis on u,

u t (t) L ∞ (R n ) ≤ 1 2αε on [0, T ],
and then, by integrating of Eq. (1.28) on [0, t] with t ∈ [0, T ], we have

1 2 ∂ t Γ A u(t) 2 L 2 (R n ) + c 2 ∇Γ A u(t) 2 L 2 (R n ) ≤ 3 2 ∂ t Γ A u(0) 2 L 2 (R n ) + c 2 ∇Γ A u(0) 2 L 2 (R n ) + C m max(α, β)ε t 0 E ∞,m ′ [u](τ )E 1,m [u](τ ) dτ.
By summing for |A| ≤ m, we obtain

E 1,m [u](t) ≤ B E 1,m [u](0) + C m max(α, β)ε t 0 E ∞,m ′ [u](τ )E 1,m [u](τ ) dτ.
Now we use the Klainerman inequality (1.45), noticing that, if we take m ≥ n + 2, we have

m ′ + n * = m + 1 2 + n 2 + 1 ≤ m.
This finishes the proof.

We use the a priori estimate (1.46) to improve our estimation of the lifespan T * as a function of n.

Theorem 1.4.2. Let m ≥ n + 2. For u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n ) with u 1 L ∞ (R n ) ≤ 1 2αε
we consider the local solution u of problem (1.5)- (1.6) with ν = 0 on an interval [0, T ], satisfying (1.8) and (1.9) 

for s = m as in Point 1 of Theorem 1.2.1. If E 1,m [u](0) ≤ 1 4 √ BC∞αε , then E 1,m [u](t) ≤ 4B E 1,m [u](0),
as long as

t ≤ 2C m max(α, β)ε B E 1,m [u](0) -2 for n = 2, t ≤ 2 exp 1 C m max(α, β)ε B E 1,m [u](0) for n = 3, 1 ≤ 2C m max(α, β)ε B E 1,m [u](0) -1
for n ≥ 4. Proof. This is a direct consequence of the Gronwall lemma, used with the a priori estimate (1.46), as done by John in [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF].

Remark 1.4.1. The estimations, given for T * in the case n = 1, 2, 3, are optimal, as soon as, thanks to Alinhac [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF], they give the existence time of a smooth solution of the same order as Alinhac's blow-up time, i.e. up to the time of a geometrical blow-up formation.

Proof of Point 4 of Theorem 1.2.1. Stability and uniqueness result

By definition of u and v we have

(u -v) tt -c 2 ∆(u -v) = αε(u t u tt -v t v tt ) + βε(∇u∇u t -∇v∇v t ). (1.48)
We multiply this equation by (u -v) t and integrate on R n . By integration by parts we obtain

1 2 d dt (u -v) t 2 L 2 +c 2 ∇(u -v) 2 L 2 = αε R n (u t u tt -v t v tt )(u -v) t dx + βε R n (∇u∇u t -∇v∇v t )(u -v) t dx. (1.49)
For the first right hand side term in Eq. (1.49) we find

R n (u t u tt -v t v tt )(u -v) t dx = R n u tt (u -v) 2 t dx + R n v t (u -v) tt (u -v) t dx = R n u tt (u -v) 2 t dx + R n v t 1 2 d dt (u -v) 2 t dx = R n u tt (u -v) 2 t dx + 1 2 d dt R n v t (u -v) 2 t dx - 1 2 R n v tt (u -v) 2 t dx = R n u tt (u -v) 2 t dx + 1 2 d dt R n v t (u -v) 2 t dx + 1 2 R n (u tt -v tt )(u -v) 2 t dx - 1 2 R n u tt (u -v) 2 t dx = 1 2 R n u tt (u -v) 2 t dx + 1 2 d dt R n v t (u -v) 2 t dx + 1 6 d dt R n (u -v) 3 t dx = 1 2 R n u tt (u -v) 2 t dx + d dt R n ( 1 6 u t + 1 3 v t )(u -v) 2 t dx .
On one hand,

R n u tt (u -v) 2 t dx ≤ u tt L ∞ (u -v) t 2
L 2 , and on the other hand, we can put the term

αε d dt [ R n ( 1 6 u t + 1 3 v t )(u -v) 2
t dx] on the left hand side of Eq. (1.48) and combine it with

1 2 d dt ( (u -v) t 2 L 2 )
, so that we obtain the term 1 2

d dt R n A(u -v) 2 t dx, with A = 1 -αε 1 3 u t + 2 3 v t .
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We notice that with condition (1.9) on u t and v t (which keeps our model hyperbolic) we have 1 2 ≤ A(t) ≤ 3 2 for t < T * . Therefore, for the second term at the right hand side we find

R n (∇u∇u t -∇v∇v t )(u -v) t dx = R n ∇v t (∇u -∇v)(u -v) t dx + R n ∇u(∇u -∇v) t (u -v) t dx = R n ∇v t (∇u -∇v)(u -v) t dx - 1 2 R n ∆u(u -v) 2 t dx.
We estimate the obtained two terms:

R n ∇v t (∇u -∇v)(u -v) t dx ≤ C ∇v t L ∞ ( ∇(u -v) 2 L 2 + (u -v) t 2 L 2 , | R n ∆u(u -v) 2 t dx| ≤ ∆u L ∞ (u -v) t 2 L 2 .
Thus, we find the following estimate

1 2 d dt ( R n A(u -v) 2 t + c 2 ∇(u -v) 2 L 2 dx) ≤ Cε sup( u tt L ∞ , ∆u L ∞ , ∇v t L ∞ ) ( (u -v) t 2 L 2 + ∇(u -v) 2 L 2
). Applying the Gronwall Lemma, as 1 2 ≤ A(t) ≤ 3 2 for t < T * , from the last estimate we have

( (u -v) t 2 L 2 + ∇(u -v) 2 L 2 )(t) ≤ C 1 exp(C 2 ε t 0 sup( u tt L ∞ , ∆u L ∞ , ∇v t L ∞ )ds)• • ( u 1 -v 1 2 L 2 + ∇(u 0 -v 0 ) 2 L 2
). With the hypothesis that ∇v t L ∞ is bounded on [0, T * [, we obtain the result of Point 4 in Theorem 1.2.1 for all t < T * . Remark 1.4.2. It is easy to verify that the same stability estimate also holds for ν > 0: by the adding of the term -ν∆(u -v) t to the equation, it gives a positive therm +ν t 0 |∇(uv) t | 2 dx in the right hand side of the estimate and can be simply omitted. We start with the study of the linear problem, associated to the Kuznetsov equation. Theorem 1.5.1. Let s ≥ 0 and X be the space defined in Point 1 of Theorem 1.2.2. Then the system

Well-posedness for the viscous case

   u tt -c 2 ∆u -νε∆u t = f, u(0) = u 0 , u t (0) = u 1 (1.50) has a unique solution u ∈ X, if and only if f ∈ L 2 (R + ; H s (R n )), u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ).
Moreover it holds the following a priori estimate

u X ≤ C f L 2 (R + ;H s (R n )) + u 0 H s+2 (R n ) + u 1 H s+1 (R n ) (1.51) with u X := u H 2 (R + ;H s ) + u L 2 (R + ;H s+2 ) + u t L 2 (R + ;H s+2 ) .
1.5. Well-posedness for the viscous case

23 Proof. First we take f ∈ L 2 (R + ; H s (R n )), u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ).
We use the ideas of [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF] (see Eq. (4.26)). For the sake of clarity, let us take s = 0. We take the inner product in L 2 (R n ) of the equation with -∆u t and integrate by parts:

1 2 d dt ∇u t 2 L 2 (R n ) + c 2 ∆u 2 L 2 (R n ) + νǫ ∆u t 2 L 2 (R n ) = - R n f ∆u t dx.
Using Young's inequality and integrating over [0, t], we find

1 2 ∇u t 2 L 2 (R n ) + c 2 ∆u 2 L 2 (R n ) + νǫ 2 t 0 ∆u τ 2 L 2 (R n ) dl ≤ 1 2 ∇u 1 2 L 2 (R n ) + 1 2 ∆u 0 2 L 2 (R n ) + 1 2νǫ t 0 R n |f | 2 dxdl. (1.52) Since f ∈ L 2 (R + × R n ) and (u 0 , u 1 ) ∈ H 2 (R n ) × H 1 (R n ), the last estimate implies that +∞ 0 R n |∆u τ | 2 dxdl < +∞.
Since the domain of -∆ is H 2 , we obtain that

u, u t ∈ L 2 (R + ; H 2 (R n )), and 
u tt ∈ L 2 (R + × R n ),
and hence, u ∈ X for s = 0. For s > 0, as the equation is linear, we perform the same proof, using the fact that, the operator Λ = (1 -∆) 

Λ s = (1 -∆) s 2 , u H s (R n ) = Λ s u L 2 (R n ) . (1.53)
The uniqueness of u follows from the linearity of the operator and the uniqueness of the solution of system (1.50) in the case f = 0 [START_REF] Ikehata | Wave equations with strong damping in Hilbert spaces[END_REF]. Conversely, if u ∈ X is a solution of system (1.50), this implies that

u ∈ C(R + ; H s+2 (R n )) and u t ∈ H 1 (R + ; H s (R n )) ∩ L 2 (R + ; H s+2 (R n )).
Thanks to Theorem III.4.10.2 in [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF], it follows that

u t ∈ C(R + ; H s+1 (R n )). Then we have u(0) ∈ H s+2 (R n ) and u t (0) ∈ H s+1 (R n ). Moreover, it reads directly from the definition of X, that f ∈ L 2 (R + ; H s (R n )) for u ∈ X.
The a priori estimate follows from the closed graph theorem.

Let us notice that Theorem 1.5.1 states that problem (1.50) has L 2 -maximal regularity (see [START_REF] Chill | L p -maximal regularity for second order Cauchy problems[END_REF] Definition 2.1) on R + .

To be able to give a sharp estimate of the smallness of the initial data and in the same time to estimate the bound of the corresponding solution of the Kuznetsov equation (see Point 1 of Theorem 1.2.2), we use the following theorem from [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF], which allows us to establish our main result of the global well-posedness of the Cauchy problem for the Kuznetsov equation: Theorem 1.5.2. (Sukhinin) Let X be a Banach space, let Y be a separable topological vector space, let L : X → Y be a linear continuous operator, let U be the open unit ball in X, let P LU : LX → [0, ∞[ be the Minkowski functional of the set LU, and let Φ : X → LX be a mapping satisfying the condition

P LU Φ(x) -Φ(x) ≤ Θ(r) x -x for x -x 0 r, x -x 0 ≤ r Chapter 1. Cauchy Problem for the Kuznetsov Equation for some x 0 ∈ X, where Θ : [0, ∞[→ [0, ∞[ is a monotone non-decreasing function. Set b(r) = max 1 -Θ(r), 0 for r ≥ 0. Suppose that w = ∞ 0 b(r) dr ∈]0, ∞], r * = sup{r ≥ 0| b(r) > 0}, w(r) = r 0 b(t)dt (r ≥ 0) and f (x) = Lx + Φ(x) for x ∈ X.
Then for any r ∈ [0, r * [ and y ∈ f (x 0 ) + w(r)LU, there exists an

x ∈ x 0 + rU such that f (x) = y. Remark 1.5.1. If either L is injective or Ker(L) has a topological complement E in X such that L(E ∩ U) = LU,
then the assertion of Theorem 1.5.2 follows from the contraction mapping principle [START_REF] Sukhinin | On the solvability of the nonlinear stationary transport equation[END_REF]. In particular, if L is injective, then the solution is unique.

Now, we have all elements to prove Point 1 of Theorem 1.2.2: for all r ∈ [0, r * [ with r * = O(ǫ 0 ) = O(1) (to be defined), as soon as the initial data are small as

u 0 H s+2 (R n ) + u 1 H s+1 (R n ) ≤ C √ ǫr with C = O(1), (1.54)
then the unique solution u ∈ X satisfies u X ≤ 2r (r = O( 1)).

Remark 1.5.2. It is very important to notice that here all physical coefficients of the

Cauchy problem for the Kuznetsov equation are expressed in function of the powers of ǫ (ǫ is the dimensionless parameter characterising the medium perturbation as explained in [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and [START_REF] Rozanova-Pierrat | Approximation of a compressible Navier-Stokes system by nonlinear acoustical models[END_REF]). In particular, if we take into account in Point 3 of Theorem 1.2.1 that c 2 = O( 1 ǫ ), we obtain the same types of smallness of the initial energy for the inviscid case as in Point 2 of Theorem 1.2.2:

E m 0 [u](0) ≤ O( √ ǫ). But,

if we want to understand the smallness of the initial data by their norms without the calculus of the initial energy, the results of Point 1 of Theorem 1.2.2 can be useful. The sharp character of Point 1 of Theorem 1.2.2 can be illustrated by the following direct energy estimation approach, presented in Section 1.6.

Let suppose that Point 2 of Theorem 1.2.2 holds (see also Eq. (1.14)). Thus,

for n ≥ 3, m ≥ n 2 + 3 if E m 2 [u](0) = ∇u(0) 2 H m (R n ) + m 2 +1 i=1 ∂ i t u(0) 2 H m-2(i-1) (R n ) ≤ O( √ ǫ),
then it follows in a sufficient way (see Section 1.6 for more details) that for

u 0 ∈ H m+1 (R n ) and for u 1 ∈ H m (R n ) it holds ∇u 0 H m (R n ) + u 1 H m (R n ) ≤ O( √ ǫ m+1 ), (1.55 
)

which implies the existence of a unique global solution u ∈ C 0 (R + ; H m+1 (R n ))∩C 1 (R + ; H m (R n )) of problem (1.5)-(1.6) such that for all t ∈ R + E m 2 [u](t) ≤ O 1 ǫ E m 2 [u](0) = O(1)
. Thus we see that by this approach the sufficient condition to have for all t ≥ 0, E m 2 [u](t) bounded by a constant of order zero on ǫ is given by Eq. (1.55) and depends on the smooth properties of the initial data (the more they are regular, the smaller they should be). Hence, it is much more restrictive to compare to (1.54).

Well-posedness for the viscous case

25 Proof. For u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) let us denote by u * ∈ X the unique solution of the linear problem    u * tt -c 2 ∆u * -νε∆u * t = 0, u * (0) = u 0 ∈ H s+2 (R n ), u * t (0) = u 1 ∈ H s+1 (R n ).
(1.56)

In addition, according to Theorem 1.5.1, we take

X := H 2 (R + ; H s (R n )) ∩ H 1 (R + ; H s+2 (R n )),
this time for s > n 2 (we need it to control the non-linear terms), and introduce the Banach spaces

X 0 := {u ∈ X| u(0) = u t (0) = 0} (1.57) and Y = L 2 (R + ; H s (R n )).
Then by Theorem 1.5.1, the linear operator

L : X 0 → Y, u ∈ X 0 → L(u) := u tt -c 2 ∆u -νε∆u t ∈ Y, is a bi-continuous isomorphism.
Let us now notice that if v is the unique solution of the non-linear Cauchy problem

   v tt -c 2 ∆v -νε∆v t -αε(v + u * ) t (v + u * ) tt -βε∇(v + u * ).∇(v + u * ) t = 0, v(0) = 0, v t (0) = 0, (1.58) 
then u = v + u * is the unique solution of the Cauchy problem for the Kuznetsov equation (1.5)-(1.6). Let us prove the existence of such a v, using Theorem 1.5.2. We suppose that u * X ≤ r and define for v ∈ X 0

Φ(v) := αε(v + u * ) t (v + u * ) tt + βε∇(v + u * ).∇(v + u * ) t .
For w and z in X 0 such that w X ≤ r and z X ≤ r, we estimate

Φ(w) -Φ(z) Y = αε(u * t (w -z) tt + (w -z) t u * tt + w t w tt -z t z tt ) + βε(∇u * ∇(w -z) t + ∇(w -z)∇u * t + ∇w∇w t -∇z∇z t ) Y = αε(u * t (w -z) tt + (w -z) t u * tt + w t (w -z) tt + (w -z) t z tt ) + βε(∇u * ∇(w -z) t + ∇(w -z)∇u * t + ∇w∇(w -z) t + ∇(w -z)∇z t ) Y by applying the triangular inequality Φ(w) -Φ(z) Y ≤ αε u * t (w -z) tt Y + (w -z) t u * tt Y + w t (w -z) tt Y + (w -z) t z tt Y + βε ∇u * ∇(w -z) t Y + ∇(w -z)∇u * t Y + ∇w∇(w -z) t Y + ∇(w -z)∇z t Y . Now, for all a and b in X with s ≥ s 0 > n 2 it holds a t b tt Y ≤ a t L ∞ (R + ×R n ) b tt Y ≤C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) a t H 1 (R + ;H s (R n )) b X ≤C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) a X b X ,
where

C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) is the embedding constant of H 1 (R + ; H s 0 ) into the space L ∞ (R + × R n
), independent on s, but depending only on the dimension n. In the same way, for all a and b in X it holds

∇a∇b t Y ≤ C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) a X b X .
Taking a and b equal to u * , w, z or w -z, as u * X ≤ r, w X ≤ r and z X ≤ r, we obtain

Φ(w) -Φ(z) Y ≤ 4(α + β)C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) εr w -z X .
By the fact that L is a bi-continuous isomorphism, there exists a minimal constant

C ǫ = O 1 ǫν > 0 (coming from the inequality C 0 ǫν u 2 X ≤ f Y u X for u, a solution of the lin- ear problem (1.50) with homogeneous initial data [for a constant C 0 = O(1) > 0 maximal]) such that ∀u ∈ X 0 u X ≤ C ǫ Lu Y . Hence, for all f ∈ Y P LU X 0 (f ) ≤ C ǫ P U Y (f ) = C ǫ f Y .
Then we find for w and z in X 0 , such that w X ≤ r, z X ≤ r, and also with u

* X ≤ r, that P LU X 0 (Φ(w) -Φ(z)) ≤ Θ(r) w -z X ,
where

Θ(r) := 4C ǫ (α + β)C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) εr. Thus we apply Theorem 1.5.2 for f (x) = L(x) -Φ(x) and x 0 = 0. Therefore, knowing that C ǫ = C 0 ǫν , we have that for all r ∈ [0, r * [ with r * = ν 4C 0 (α + β)C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) = O(1), (1.59) for all y ∈ Φ(0) + w(r)LU X 0 ⊂ Y with w(r) = r -2 C 0 ν C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) (α + β)r 2 ,
there exists a unique v ∈ 0 + rU X 0 such that L(v) -Φ(v) = y. But, if we want that v be the solution of the non-linear Cauchy problem (1.58), then we need to impose y = 0, and thus to ensure that 0 ∈ Φ(0

) + w(r)LU X 0 . Since -1 w(r) Φ(0) is an element of Y and LX 0 = Y , there exists a unique z ∈ X 0 such that Lz = - 1 w(r) Φ(0). (1.60) Let us show that z X ≤ 1, what will implies that 0 ∈ Φ(0) + w(r)LU X 0 . Noticing that by definition of Φ Φ(0) Y ≤ αε u * t u * tt Y + αε u * t u * t Y ≤ B 4 αε u * 2 X ≤ B 4 αεr 2
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z X ≤ C ǫ Lz Y = C ǫ Φ(0) Y w(r) ≤ C ǫ C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) (α + β)εr (1 -2C ǫ C H 1 (R + ;H s 0 )→L ∞ (R + ×R n ) (α + β)εr) < 1 2 ,
as soon as r < r * . Consequently, z ∈ U X 0 and Φ(0) + w(r)Lz = 0.

Then we conclude that for all r ∈ [0, r * [, if u * X ≤ r, there exists a unique v ∈ rU X 0 such that L(v)-Φ(v) = 0, i.e. the solution of the non-linear Cauchy problem (1.58). Thanks to the maximal regularity and the a priori estimate following from inequality (1.52) with f = 0, there exists a constant

C 1 = O(ǫ 0 ) > 0, such that u * X ≤ C 1 √ νǫ ( u 0 H s+2 (R n ) + u 1 H s+1 (R n ) ).
Thus, for all r ∈ [0, r * [ and

u 0 H s+2 (R n ) + u 1 H s+1 (R n ) ≤ √ νǫ C 1 r, the function u = u * + v ∈ X
is the unique solution of the Cauchy problem for the Kuznetsov equation and u X ≤ 2r.

Proof of Point 2 of Theorem 1.2.2: Case n ≥ 3

Knowing the existence of a solution u of the Kuznetsov equation in

X = H 2 (R + ; H s (R n )) ∩ H 1 (R + ; H s+2 (R n )),
we notice that this directly implies that

u ∈ C(R + ; H s+2 (R n )) and u t ∈ H 1 (R + ; H s (R n )) ∩ L 2 (R + ; H s+2 (R n )).
By Theorem III.4.10.2 in [START_REF] Amann | Linear and quasilinear parabolic problems[END_REF], it implies that

u t ∈ C(R + ; H s+1 (R n )), which gives that u ∈ C 1 (R + ; H s+1 (R n )) ∩ C(R + ; H s+2 (R n ))
and, this time with the help of the Kuznetsov equation,

u tt ∈ C(R + ; H s-1 (R n )).
Consequently, in the viscous case, the regularity of the time derivatives of the order greater than two of the solutions differs from the regularity, obtained in Section 1.4 for the inviscid case. Thus we have to consider estimates with different energies: the energy E m 2 [u](t), defined in Eq. (1.14), and the energy

S m 2 [u](t) = m 2 +1 i=1 ∇∂ i t u(t) 2 H m-2(i-1) (R n ) , (1.61) defined, as E m 2 [u](t)
, for m ∈ N and m even, which respect to the obtained regularity of u and its derivatives. 

|A| -A 0 ≤ m -2A 0 it holds d dt R n ((1 -αεu t )(D A u t ) 2 + c 2 (∇D A u) 2 ))(τ, x) dx + 2νε R n (∇D A u t ) 2 (τ, x) dx ≤ C m max(α, β)ε E m 2 [u](τ )S m 2 [u](τ ) (1.62)
with a constant C m > 0, depending only on m and on the dimension n.

Proof. Following notations of the proof of Proposition 1.4.1, we redefine

L u v := v tt -c 2 ∆v -νε∆v t -αεu t v tt -βε∇u ∇v t ,
where u is the solution of problem (1.5). For this new L u v with the additional term νε∆v t , we have a modified version of relation (1.28)

d dt R n I[v](t, x)dx + 2νε R n (∇v t ) 2 dx = R n J[v](t, x)dx, ( 1.63) 
where

I[v] and J[v] are defined in Eqs. (1.26)-(1.27). We still take v = D A u with A = (A 0 , A 1 , ..., A n ), but this time |A| -A 0 ≤ m -2A 0 and m is even. Then we just need to show R n J[D A u](t, x)dx ≤ εC m max(α, β) E m 2 [u](t)S m 2 [u](t). (1.64) 
For n ≥ 3, m ≥ n 2 + 3 and m even, we have, thanks to the Hölder inequality,

R n |u tt (D A u t ) 2 |dx ≤ u tt L n 2 (R n ) D A u t 2 L 2n n-2 (R n ) .
Noticing, that, thanks to Ref. [2] Theorem 7.57 p. 228, for s > n 2 there hold the continuous embeddings

H s (R n ) ⊂ C 0 B (R n ) ⊂ L n 2 (R n ) (where C 0 B
is the Banach space of bounded continuous functions equal to zero at the infinity), we can write for m ≥ n 2 + 3

u tt L n 2 (R n ) ≤ C u tt H [ n 2 +1] (R n ) ≤ C u tt H m-2 (R n ) ≤ C E m 2 [u]. (1.65) 
In addition, with the help of the Gagliardo-Nirenberg-Sobolev inequality

v L 2n n-2 (R n ) ≤ C ∇v L 2 (R n ) , (1.66) 
we also have

D A u t L 2n n-2 (R n ) ≤ C ∇D A u t L 2 (R n ) ≤ C ∇D A 0 +1 t u H |A|-A 0 (R n ) .
With the hypothesis that |A| -A 0 ≤ m -2A 0 , there hold 2A 0 ≤ m and

∇D A 0 +1 t u H |A|-A 0 (R n ) ≤ ∇D A 0 +1 t u H m-2A 0 (R n ) .
Therefore, all norms

∇D A 0 +1 t u 2 H m-2A 0 (R n )
, for the chosen n, m and A 0 , are present in S m 2 . Hence, we find

R n |u tt (D A u t ) 2 |dx ≤ C u tt H m-2 (R n ) ∇D A u t 2 L 2 (R n ) ≤ C E m 2 [u]S m 2 [u], (1.67) 
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R n |∆u(D A u t ) 2 |dx ≤ ∆u L n 2 (R n ) D A u t 2 L 2n n-2 (R n ) ≤ C ∆u H [ n 2 +1] (R n ) ∇D A u t 2 L 2 (R n ) ≤C E m 2 [u]S m 2 [u].
To calculate L u D A u we use expression (1.32) with multi-indexes A j1 and A j2 satisfying (1.33). As in the proof of Proposition 1.4.1, without loss of generality, we consider two multi-indexes A 1 and A 2 with the same properties (1.33). We perform two steps:

Step 1 we prove

R n |D A 1 u t D A 2 u t D A u t |dx ≤ C E m 2 [u]S m 2 [u], (1.68) 
Step 2 we prove

R n |D A 1 ∂ x i u D A 2 ∂ x i u D A u t |dx ≤ C E m 2 [u]S m 2 [u].
(1.69)

Step 1. Thanks to properties (1.33) of A 1 and A 2 and to the symmetry of the general case

R n |(D A 1 0 t D (A 1 1 ,...,A 1 n ) x u t )(D A 2 0 t D (A 2 1 ,...,A 2 n ) x u t )(D A u t )|dx,
we divide our proof on three typical cases:

Case 1 |A 1 | -A 1 0 ≥ 0, A 1 0 ≥ 0, |A 2 | -A 2 0 > 0 and A 2 0 > 0, i.e. a non trivial presence of D A 2 0 t and D (A 2 1 ,...,A 2 n ) x is imposed, Case 2 |A 1 | -A 1 0 = 0, A 1 0 > 0, |A 2 | -A 2 0 > 0 and A 2 0 = 0, i.e. we consider the integrals of the form R n |(D A 1 0 t u t )(D (A 2 1 ,...,A 2 n ) x u t )(D A u t )|dx, Case 3 |A 1 | -A 1 0 = 0, A 1 0 > 0, |A 2 | -A 2 0 = 0 and A 2 0 > 0, i.e. we consider only non-trivial time derivatives R n |(D A 1 0 t u t )(D A 2 0 t u t )(D A u t )|dx.
Step 1, Case 1. By the generalized Hölder inequality with 1 p + 1 q = n+2 2n , we have

R n |D A 1 u t D A 2 u t D A u t |dx ≤ D A 1 u t L p (R n ) D A 2 u t L q (R n ) D A u t L 2n n-2 (R n )
.

By the Sobolev embeddings (1.35) of H m 1 ⊂ L p and H m 2 ⊂ L q with m 1 + m 2 = n 2 -1 and 0 < m 1 < n 2 -1, we find R n |D A 1 u t D A 2 u t D A u t |dx ≤C D A 1 u t H m 1 (R n ) D A 2 u t H m 2 (R n ) ∇D A u t L 2 (R n ) ,
where we have also applied the Gagliardo-Nirenberg-Sobolev inequality (1.66). Hence,

R n |D A 1 u t D A 2 u t D A u t |dx ≤C ∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 (R n ) ∇∂ A 2 0 t u t H m 2 +|A 2 |-A 2 0 -1 (R n ) S m 2 [u] 1 2 . (1.70) Now we are looking for 0 < m 1 < n 2 -1, such that    m 1 + |A 1 | -A 1 0 ≤ m -2A 1 0 , m 2 + |A 2 | -A 2 0 -1 ≤ m -2A 2 0 ,
(1.71)
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in order to have

∂ A 1 0 t u t H m 1 +|A 1 |-A 1 0 (R n ) ≤ E m 2 [u] and ∇∂ A 2 0 t u t H m 2 +|A 2 |-A 2 0 -1 (R n ) ≤ S m 2 [u]. (1.72) Since m 2 = n 2 -1 -m 1 , and by (1.33), |A 2 | = |A| + 1 -|A 1 | and A 2 0 = A 0 + 1 -A 1 0 , system (1.71) is equivalent to    m 1 + |A 1 | + A 1 0 ≤ m, n 2 -1 -m 1 + |A| + 1 -|A 1 | + A 0 + 1 -A 1 0 -1 ≤ m.
The last system, thanks to |A| + A 0 ≤ m, corresponding to the assumptions of the Proposition, is satisfied if [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we find that

n 2 ≤ m 1 + |A 1 | + A 1 0 ≤ m. Using (1.
|A 1 | + A 1 0 = |A| + A 0 + 2 -(|A 2 | + A 2 0 ).
Therefore, since for Case 1

|A 2 | ≥ 2 and A 2 0 ≥ 1, recalling that (again by (1.33)) |A| + A 0 ≤ m, we obtain 1 ≤ |A 1 | + A 1 0 ≤ m -1.
Thus, we distinguish three sub-cases:

For n ≥ 3, n 2 ≤ |A 1 | + A 1 0 ≤ m -1 taking m 1 = 1 4 , we obtain (1.72). For n ≥ 5, 2 ≤ |A 1 | + A 1 0 < n 2 as m ≥ n 2 + 3 , it is sufficient to take m 1 = n 2 -(|A 1 | + A 1 0 ).
For n ≥ 3, |A 1 | + A 1 0 = 1 instead of finding m 1 , we notice, that we have only two possibility: either D A 1 = ∂ t and A 2 = A, which gives estimate (1.67), or

D A 1 = ∂ x i with A 2 0 = A 0 + 1 and |A 2 | -A 2 0 = |A| -A 0 -1 > 0.
For the last case, by the generalized Hölder inequality, we have

R n |∂ x i u t D A 2 u t D A u t |dx ≤ ∂ x i u t L n (R n ) D A 2 u t L 2 (R n ) D A u t L 2n n-2 (R n )
.

(1.73)

For m ≥ n 2 + 3 the first norm in Eq. (1.73) can be estimated using the continuous embedding

H s (R n ) ⊂ L n (R n ) holding for s > n 2 : ∂ x i u t L n (R n ) ≤ C ∂ x i u t H [ n 2 +1] (R n ) ≤ C u t H m-1 (R n ) ≤ C E m 2 [u].
With the help of the Gagliardo-Nirenberg-Sobolev inequality (1.66), we also estimate the second norm in (1.73)

D A u t L 2n n-2 (R n ) ≤ C ∇D A u t L 2 (R n ) ≤ C S m 2 [u], (1.74) 
and for the last one we directly have

D A 2 u t L 2 (R n ) ≤ ∇∂ A 0 +2 t u H |A|-A 0 -2 (R n ) ≤ ∇∂ A 0 +2 t u H m-2A 0 -2 (R n ) ≤ S m 2 [u].
Thus we obtain as previously estimate (1.68) of Step 1.
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This permits to conclude Case 1 of Step 1.

Step 1, Case 2. We have

|A 1 | -A 1 0 = 0, A 1 0 > 0, |A 2 | -A 2 0 > 0 and A 2 0 = 0.
Therefore, by (1.33), A 1 0 = 1 + A 0 , and, updating (1.70), we directly have

R n |D A 1 0 t u t D (A 2 1 ,...,A 2 n ) x u t D A u t |dx ≤C ∂ A 0 +1 t u t H m 1 (R n ) ∇u t H m 2 +|A 2 |-1 (R n ) S m 2 [u] 1 2 with m 1 + m 2 = n 2 -1, 0 < m 1 < n 2 -1. Now we need to find m 1 , belonging to ]0, n 2 -1[, such that    m 1 ≤ m -2(A 0 + 1), m 2 + |A 2 | -1 ≤ m, (1.75)
in order to have

∂ A 0 +1 t u t H m 1 (R n ) ≤ E m 2 [u] and ∇u t H m 2 +|A 2 |-1 (R n ) ≤ S m 2 [u]. From 1 + |A| = |A 1 | + |A 2 |, by (1.33), with the relation |A 1 | = A 1 0 = 1 + A 0 it follows that |A 2 | = |A| -A 0 . (1.76)
Therefore, as

m 2 = n 2 -m 1 -1, system (1.75) is equivalent to    m 1 + 2A 0 ≤ m -2, n 2 -2 ≤ m 1 + m -|A| + A 0 .
By the assumption of the proposition

m -|A| + A 0 ≥ 2A 0 , (1.77) hence the last system is satisfied if we have m 1 such that n 2 -2 ≤ m 1 + 2A 0 ≤ m -2.
Knowing that |A 2 | > 0 (by the assumption of Case 2), Eq. (1.76) implies that |A| -A 0 > 0. Thus, relation (1.77) gives 2A 0 ≤ m -1, or more precisely

2A 0 ≤ m -2, since m is even. So, a m 1 with 0 < m 1 < n 2 -1 exists if m -2A 0 > 2. Indeed, if 2A 0 < n 2 -2 we can take m 1 = n 2 -2 -2A 0 , and if m -3 ≥ 2A 0 ≥ n 2 -2 we can take m 1 = 1 2 . Let us now consider the limit case 2A 0 = m-2. Then we have |A 1 | = A 1 0 = m 2 . Moreover, from (1.77) viewed, thanks to Eq. (1.76), as |A 2 | + 2A 0 ≤ m, follows that 1 ≤ |A 2 | ≤ 2.
We apply the generalized Hölder inequality and estimate (1.66) to obtain

R n |∂ m 2 t u t D (A 2 1 ,...,A 2 n ) x u t D A u t |dx ≤ ∂ m 2 t u t L 2 (R n ) D (A 2 1 ,...,A 2 n ) x u t L n (R n ) D A u t L 2n n-2 (R n ) ≤C ∂ m 2 t u t L 2 (R n ) D (A 2 1 ,...,A 2 n ) x u t L n (R n ) S m 2 [u]. Moreover, ∂ m 2 t u t L 2 (R n ) ≤ E m 2 [u].
32
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Using the continuity of the embedding

H s (R n ) ⊂ L n (R n ) for s > n 2 , we also find for m ≥ n 2 + 3 D A 2 u t L n (R n ) ≤C D A 2 u t H [ n 2 +1] (R n ) ≤ C ∇u t H [ n 2 +2] (R n ) ≤C ∇u t H m (R n ) ≤ C S m 2 [u]. Hence, estimate (1.68) of Step 1 is also proved for Case 2.
Step 1, Case 3. Let us notice that thanks to relations (1.33), from

|A 1 | = A 1 0 and |A 2 | = A 2 0 it follows |A| = A 0 .
We start as usual with the generalized Hölder inequality

R n |D A 1 0 t u t D A 2 0 t u t D A 0 t u t |dx ≤ D A 1 0 t u t L p (R n ) D A 2 0 t u t L q (R n ) D A 0 t u t L 2n n-2 (R n ) with 1 p + 1 q = n+2 2n .
Then we apply the Gagliardo-Nirenberg-Sobolev inequality (1.66) and its more general version, which can be viewed as the embedding of the Sobolev space

W 1 q * (R n ) in the Lebesgue space L q (R n ) with 1 q = 1 q * -1 n and 1 ≤ q * < n: R n |D A 1 0 t u t D A 2 0 t u t D A 0 t u t |dx ≤C D A 1 0 t u t L p (R n ) ∇D A 2 0 t u t L q * (R n ) ∇D A 0 t u t L 2 (R n ) with 1 p + 1 q * = n+4 2n .
We notice that if we want to use the Sobolev embeddings (1.35) to L p and to L q * , it is only possible if 1 p and 1 q * are smaller then 1 2 , or equivalently, if

1 p + 1 q * = n+4 2n < 1.

Knowing that n+4

2n < 1 for n ≥ 5, n+4 2n > 1 for n = 3 and n+4 2n = 1 for n = 4, we treat separately two cases: n ≥ 5 and n = 3 or 4.

For n = 3 or 4, we choose p = n 2 and q = 2n n-2 , implying q * = 2. Thus, for n = 3 we use the continuous embedding

H 2 (R 3 ) ⊂ L 3 2 (R 3 ) [2] (since 2 > 3
2 ) and for n = 4 we use

H 2 (R 4 ) ⊂ L 2 (R 4 ) to obtain R n |D A 1 0 t u t D A 2 0 t u t D A 0 t u t |dx ≤ D A 1 0 t u t L n 2 (R n ) ∇D A 2 0 t u t L 2 (R n ) ∇D A 0 t u t L 2 (R n ) ≤C D A 1 0 t u t H 2 (R n ) S m 2 [u]. If m -2A 1 0 ≥ 2, then we directly have D A 1 0 u t H 2 (R n ) ≤ D A 1 0 u t H m-2A 1 0 (R n ) ≤ E m 2 [u].
Recalling that m is even, and, by our assumption

|A 1 | + A 1 0 ≤ m, 2A 1 0 ≤ m, there is only one additional possibility: m -2A 1 0 = 0, i.e. A 1 0 = m 2 . For A 1 0 = m 2 , thanks to (1.33
) and the assumption 2A 0 ≤ m, we necessary have |A 2 0 | = 1, and consequently, by (1.74),

R n |∂ m 2 t u t u tt ∂ m 2 t u t |dx ≤ C u tt H 2 (R n ) ∂ m 2 t u t 2 L 2n n-2 (R n ) ≤ E m 2 [u]S m 2 [u].
Thus for n = 3 and n = 4 we find estimate (1.68). Now, for n ≥ 5, when

1 p + 1 q * = n+4 2n < 1, we have R n |D A 1 0 t u t D A 2 0 t u t D A 0 t u t |dx ≤C D A 1 0 t u t L p (R n ) ∇D A 2 0 t u t L q * (R n ) ∇D A 0 t u t L 2 (R n ) ≤C D A 1 0 t u t H m 1 (R n ) ∇D A 2 0 t u t H m 2 (R n ) S m 2 [u] with m 1 + m 2 = n 2 -2 and 0 < m 1 < n 2 -2 by the Sobolev embeddings (1.35) which give us H m 1 ⊂ L p and H m 2 ⊂ L q * . We look for m 1 such that m 1 ≤ m -2A 1 0 , m 2 ≤ m -2A 2 0 (1.78)
in order to have

D A 1 0 t u t H m 1 ≤ E m 2 [u] and ∇D A 2 0 t u t H m 2 ≤ S m 2 [u]. As m 2 = n 2 -2 -m 1 and A 2 0 = A 0 + 1 -A 1 0 , system (1.78) is equivalent to    m 1 + 2A 1 0 ≤ m, n 2 -2 ≤ m -2A 0 + m 1 + 2A 1 0 -2. As m -2A 0 ≥ 0, it is sufficient to have m 1 such that n 2 ≤ m 1 + 2A 1 0 ≤ m with 0 < m 1 < n 2 -2 and 1 ≤ A 1 0 ≤ m 2 . If 2 ≤ A 1 0 < n 4 we can take m 1 = n 2 -2A 1 0 . And if n 4 ≤ A 1 0 ≤ m 2 -1 we can take m 1 = 1 4 . If A 1 0 = 1, then necessary A 2 0 = A 0 ,
and using estimates (1.65) and (1.74) we directly find

R n |u tt (D A 0 t u t ) 2 |dx ≤C u tt L n 2 (R n ) D A 2 0 t u t 2 L 2n n-2 (R n ) ≤ C E m 2 [u]S m 2 [u].
If A 1 0 = m 2 we are in a symmetric case as A 2 0 = 1. This conclude the proof of Case 3 and of Step 1, i.e. of estimate (1.68).

Step 2. Let us show estimate (1.69). Thanks to properties (1.33) of A 1 and A 2 and to the symmetry of the general case

R n |(D A 1 0 t D (A 1 1 ,...,A 1 n ) x u x i )(D A 2 0 t D (A 2 1 ,...,A 2 n ) x u x i )(D A u t )|dx,
we divide our proof on two typical cases:

Case 1 |A 1 | -A 1 0 ≥ 0, A 1 0 > 0, |A 2 | -A 2 0 ≥ 0 and A 2 0 > 0, i.e. a non trivial presence of D A 1 0 t and D A 2 0 t is imposed, Case 2 |A 1 | -A 1 0 > 0, A 1 0 = 0, |A 2 | -A 2 0 ≥ 0 and A 2 0 > 0, i.e. we consider the integrals of the form R n |(D A 1 1 +...+A 1 n x u x i )(D A 2 0 t D A 2 1 +...+A 2 n x u x i )(D A u t )|dx with a non-trivial D A 2 0 t . Case 1. Using estimate D A u t L 2 ≤ E m 2 [u], we have R n |(D A 1 0 t D (A 1 1 ,...,A 1 n ) x u x i )(D A 2 0 t D (A 2 1 ,...,A 2 n ) x u x i )(D A u t )|dx ≤ C ∇∂ A 1 0 t u H m 1 +|A 1 |-A 1 0 (R n ) ∇∂ A 2 0 t u H m 2 +|A 2 |-A 2 0 (R n ) E m 2 [u] with m 1 + m 2 = n 2 and 0 < m 1 < n 2 .
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Let us find

m 1 with 0 < m 1 < n 2 such that    m 1 + |A 1 | -A 1 0 ≤ m -2(A 1 0 -1), m 2 + |A 2 | -A 2 0 ≤ N -2(A 2 0 -1) (1.79)
in order to have

∇∂ A 1 0 t u H m 1 +|A 1 |-A 1 0 (R n ) ≤ S m 2 [u] and ∇∂ A 2 0 t u H m 2 +|A 2 |-A 2 0 (R n ) ≤ S m 2 [u].
As

m 2 = n 2 -m 1 , |A 1 | + |A 2 | = |A| + 1, and A 1 0 + A 2 0 = A 0 + 1, system (1.79) is equivalent to    m 1 + |A 1 | + A 1 0 ≤ m + 2, n 2 + |A| + A 0 + 2 ≤ m + 2 + m 1 + |A 1 | + A 1 0 . By our assumption |A| + A 0 ≤ m, and hence the last system is satisfied if m 1 verifies n 2 ≤ m 1 + |A 1 | + A 1 0 ≤ m + 2.
In our case

A 1 0 > 0, thus 2 ≤ |A 1 | + A 1 0 ≤ m, which implies the existence of such a m 1 with 0 < m 1 < n 2 . Indeed, if m ≥ |A 1 | + A 1 0 ≥ n 2 we can take m 1 = 1, else if 2 ≤ |A 1 | + A 1 0 < n 2 it is possible to take m 1 = n 2 -(|A 1 | + A 1 0 ). This concludes Case 1 of Step 2. Case 2. Thanks to (1.33), the conditions |A 1 | > 0 with A 1 0 = 0 imply that |A| -A 0 > 0. Consequently, with m 1 + m 2 = n
2 and 0 < m 1 < n 2 as in the previous case, we obtain

R n |D A 1 x ∂ x i u D A 2 ∂ x i u D A u t |dx ≤C ∇u H m 1 +|A 1 | (R n ) ∇∂ A 2 0 t u H m 2 +|A 2 |-A 2 0 (R n ) ∇∂ A 0 t u t H |A|-A 0 -1 (R n ) ≤C ∇u H m 1 +|A 1 | (R n ) ∇∂ A 2 0 t u H m 2 +|A 2 |-A 2 0 (R n ) S m 2 [u].
In the aim to have

∇u H m 1 +|A 1 | (R n ) ≤ E m 2 [u] and ∇∂ A 2 0 t u H m 2 +|A 2 |-A 2 0 (R n ) ≤ S m 2 [u],
we need to find

m 1 with 0 < m 1 < n 2 , such that    m 1 + |A 1 | ≤ m, m 2 + |A 2 | -A 2 0 ≤ m -2(A 2 0 -1).
As 

m 2 = n 2 -m 1 , |A 2 | = |A| + 1 -|A 1 | and A 2 0 = A 0 + 1 it is equivalent to solve    m 1 + |A 1 | ≤ m, n 2 -m 1 + |A| + 1 -|A 1 | + A 0 + 1 -2 ≤ m. As m -|A| -A 0 ≥ 0, the last system is satisfied if m 1 verifies n 2 ≤ m 1 + |A 1 | ≤ m.
m 1 with 0 < m 1 < n 2 . Indeed, if 1 ≤ |A 1 | < n 2 , then we can take m 1 = n 2 -|A 1 |, and if n 2 ≤ |A 1 | ≤ m -1, then we can take m 1 = 1 2 . In the case |A 1 | = m, corresponding to D A 2 = ∂ t , we directly obtain R n |D A 1 x ∂ x i u ∂ x i u t D A u t |dx ≤ C D A 1 x ∂ x i u L 2 (R n ) ∂ x i u t L n (R n ) D A u t L 2n n-2 (R n ) ≤ C ∇u H m ∇u t H m (R n ) ∇D A u t L 2 (R n ) ≤ C E m 2 [u]S m 2 [u]
. This completes the proof of Step 2 and hence the proof of estimate (1.69).

Thus, estimates (1.68) and (1.69) imply

R n L u D A uD A u t dx ≤ C max(α, β)ε E m 2 [u]S m 2 [u],
from where follows (1.64).

Thanks to Lemma 1.5.1, we have the following energy decay result:

Theorem 1.5.3. Let n ≥ 3, m ∈ N be even and m ≥ n 2 + 3 . For u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n ),

satisfying the smallness condition according to Point 1 of Theorem 1.2.2, there exists a unique global solution

u ∈ C 1 (R + ; H m-1 (R n )) ∩ C(R + ; H m (R n )) of problem (1.5)-(1.6) and the energy E m 2 [u](0) < ∞ is well-defined. Then 1. it holds the a priori estimate d dt E(t) + √ 2εS m 2 [u](t) √ 2ν -C m max(α, β) E(t) ≤ 0, (1.80) 
where, denoting by V the set of all multi-indexes A

= (A 0 , A 1 , ..., A n ) with |A| -A 0 ≤ m -2A 0 , E(t) = A∈V R n (1 -αεu t )(D A u t ) 2 + c 2 (∇D A u) 2 )(t, x) dx.

if in addition E

m 2 [u](0) ≤ √ 2ν √ 3 2 +c 2 Cm max(α,β) = O( √ ǫ), then ∀t ∈ R + , E m 2 [u](t) ≤ (3 + 2c 2 )E m 2 [u](0) = O(1). (1.81)
Proof. We sum (1.62) on all A ∈ V to obtain

d dt E(t) + 2νεS m 2 [u] ≤ C m max(α, β)ε E m 2 [u]S m 2 [u]. While u t (t) L ∞ (R n ) ≤ 1 2αε it holds 1 2 E m 2 [u](t) ≤ E(t) ≤ ( 3 2 + c 2 )E m 2 [u](t),
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and consequently,

d dt E(t) + 2νεS m 2 [u](t) ≤ √ 2C m max(α, β)ε E(t)S m 2 [u](t).

Thus, if for all time E(t) <

√ 2ν max(α,β)Cm , and in particular,

E(0) ≤ 3 2 + c 2 E m 2 [u](0) < 2 ν C m max(α, β) 2 ,
(1.82)

then we have the decreasing of E in time:

d dt E(t) < 0 and E(t) ≤ E(0).
Moreover, for all time t ≥ 0

u t (t) L ∞ (R n ) ≤C ∞ E m 2 [u](t) ≤ C ∞ √ 2 E(t) ≤ C ∞ √ 2 E(0) <2C ∞ ν C m max(α, β) < 1 2αε
.

To be able to write

2C ∞ ν Cm max(α,β) < 1 2αε , we recall that, using the physical values of coefficients, ǫ ≪ 1, c 2 = O( 1 ǫ ), α = γ-1 c 2 < β = 2, and consequently, as ν = O(1), the last inequality becomes C ∞ C m ν < 1 2αǫ
, which is obviously true in the case of ǫ ≪ 1 (and, for instance, taking C m = 2C ∞ ). Hence, if Eq. (1.82) holds, then for all time u t (t) L ∞ < 1 2αε and the well-posedness of the Cauchy problem is ensured with the following energy estimate

E m 2 [u](t) ≤ 2E(0) ≤ (3 + 2c 2 )E m 2 [u](0).

Illustration of the sharp behaviour of Point 1 in The

- orem 1.2.2 Theorem 1.6.1. Let n ≥ 3, m ∈ N be even, m ≥ [ n 2 + 3]. For u 0 ∈ H m+1 (R n ) and u 1 ∈ H m (R n ) if ∇u 0 H m (R n ) + u 1 H m (R n ) ≤ 1 1 + (2c 2 +2) m+2 -1 (2c 2 +2) 2 -1 2ν 2 ( 3 2 + c 2 )C 2 m max(α 2 , β 2 ) = O( √ ǫ m+1 ), (1.83 
)

then E m 2 [u](0) ≤ √ 2ν √ 3 2 +c 2 Cm max(α,β) = O( √ ǫ), so that by Theorem 1.5.3 Point 2 there exists a unique global solution u ∈ C 0 (R + ; H m+1 (R n )) ∩ C 1 (R + ; H m (R n )) of

the Cauchy problem associated to the Kuznetsov equation such that for all

t ∈ R + E m 2 [u](t) ≤ ( 3 2 + c 2 ) 1 + (2c 2 + 2) m+2 -1 (2c 2 + 2) 2 -1 ( ∇u 0 H m (R n ) + u 1 H m (R n ) ).
(1.84)

1.6. Illustration of the sharp behaviour of Point 1 in Theorem 1.2.2
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Proof. We want to show (1.83). To do it, we perform the induction on i ∈ {0; 1; ...; m 2 } proving that the time derivatives of the solution of the Cauchy problem (1.5)-(1.6) u at t = 0 satisfy for all i ∈ {0; 1; ...; m 2 } and for k ∈ N, 0 ≤ k ≤ i the following estimate

∂ k t u t (0) H m-2k (R n ) ≤ a k ( ∇u 0 H m (R n ) + u 1 H m (R n ) ), (1.85) 
with a 0 = 1, a 1 = 2c 2 + 2 and

a k+1 = a k + 2c 2 a k-1 + 2 k i=0 a i + 1 for 1 ≤ k ≤ m 2 -1.
For i = 0 the proof is direct. For i = 1 from the Kuznetsov equation we have

u tt (0) = 1 1 -αεu 1 (c 2 ∆u 0 + νε∆u 1 + βε∇u 0 ∇u 1 ).
As for a small enough ǫ it holds

1 1-αεu 1 ∞ ≤ 2, taking the . H m-2 (R n ) -norm of the last equality we obtain u tt (0) H m-2 (R n ) ≤ 2(c 2 ∆u 0 H m-2 (R n ) + νε ∆u 1 H m-2 (R n ) + βε ∇u 0 ∇u 1 H m-2 (R n ) ). (1.86)
Thanks to [2] we have for all l ∈ N and for all k ∈ N, 0 ≤ l ≤ m and 0 ≤ k ≤ m -l the continuous embedding of the product

H m-l (R n ) × H k+l (R n ) ֒→ H k (R n ). (1.87) 
Thus we can write for (1.86)

u tt (0) H m-2 (R n ) ≤ 2(c 2 ∇u 0 H m (R n ) + νε u 1 H m (R n ) + βεK ∇u 0 H m-1 (R n ) ∇u 1 H m-1 (R n ) ),
and by Young's inequality we find

u tt (0) H m-2 (R n ) ≤ 2 c 2 ∇u 0 H m (R n ) + νε u 1 H m (R n ) + 1 2 βεK ∇u 0 2 H m (R n ) + u 1 2 H m (R n ) . (1.88)
Choosing ǫ small enough such that

βεK ∇u 0 H m (R n ) ≤ 1, βεK u 1 H m (R n ) ≤ 1, νε ≤ 1 2 , from (1.88) it follows u tt (0) H m-2 (R n ) ≤2 c 2 + 1 2 ∇u 0 H m (R n ) + 1 2 + 1 2 u 1 H m (R n ) ≤(2c 2 + 2)( ∇u 0 H m (R n ) + u 1 H m (R n ) ).
Let define now the induction hypothesis: (1.85). Now we want to show it for i + 1, by the induction hypothesis we just need to show

for i ∈ {0; 1; ...; m 2 -1} for k ∈ N, 0 ≤ k ≤ i it holds estimate
∂ i+1 t u t (0) H m-2(i+1) (R n ) ≤ a i+1 ( ∇u 0 H m (R n ) + u 1 H m (R n ) ).
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Deriving i-times on time the Kuznetsov equation, for i ≥ 1 we obtain

∂ i t u tt (0) = 1 1 -αu 1 c 2 ∆∂ i t u(0) + νε∆∂ i t u t (0) + αε i-1 k=0 C k i ∂ i-k t u t (0)∂ k t u tt (0) + βε i k=0 C k i ∇∂ i-k t u(0)∇∂ k t u t (0) .
We take the . H m-2(i+1) -norm of this equation and in the same way as for i = 1 we show that

∂ i+1 t u t (0) H m-2(i+1) (R n ) ≤ 2c 2 a i-1 + a i + 2 i k=0 a k + 1 ( ∇u 0 H m (R n ) + u 1 H m (R n ) ) ≤a i+1 ( ∇u 0 H m (R n ) + u 1 H m (R n ) ).
This concludes the induction.

With the induction result we have for

k ∈ N, 0 ≤ k ≤ m 2 ∂ k t u t (0) H m-2k (R n ) ≤ a k ( ∇u 0 H m (R n ) + u 1 H m (R n ) ),
where

a k ≤ (2c 2 + 2) k .
Therefore we can write

E m 2 [u](0) ≤   1 + m 2 i=0 a 2 i   ( ∇u 0 H m (R n ) + u 1 H m (R n ) ) 2 ≤ 1 + (2c 2 + 2) m+2 -1 (2c 2 + 2) 2 -1 ( ∇u 0 H m (R n ) + u 1 H m (R n ) ) 2 .
Hence, taking the initial data satisfying estimate (1.83) we have the following estimate for the initial energy

E m 2 [u](0) ≤ 2ν 2 ( 3 2 + c 2 )C 2 m max(α 2 , β 2 )
. 

Consequently
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sans dimension ǫ > 0 mesurant la taille des perturbations de la pression, la densité et la vitesse par rapport à leur état constant (p 0 , ρ 0 , 0) (voir Fig. 1). Dans la Section 2.4, nous validons les approximations du système de Navier-Stokes compressible par les différents modèles: l'équation de Kuznetsov (Sous-section 2.4.1), l'équation de KZK (Sous-section 2.4.2)et l'équation NPE (Sous-section 2.4.3).

Dans la Section 2.5, nous faisons de même pour le système d'Euler dans le cas non visqueux. Les différences principales entre les cas visqueux et non visqueux sont le temps d'existence et la régularité des solutions. Typiquement, dans le cas non visqueux, les solutions des modèles et aussi du système d'Euler lui-même ( solutions fortes) peuvent entraîner la formation de fronts de choc en temps finis à cause de leurs non-linéarités [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF], ou comme dans le Théorème 1.2.1 du Chapitre 1 pour le cas de Kuznetsov non visqueux. Ainsi, elles sont seulement localement bien posées, alors que dans le cas visqueux tous les modèles d'approximations sont globalement bien posés pour des données initiales suffisamment petites [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF], ou encore comme dans les Théorèmes 1. 

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0,
et par U ε une solution approchée, construite par l'ansatz de dérivation à partir d'une solution régulière de l'un des modèles approchés (typiquement les équations de Kuznetsov, KZK et NPE), i.e. une fonction qui résout le système de Navier-Stokes/Euler jusqu'aux termes d'ordre ǫ 3 , dénotés par ǫ 3 R (voir l'Eq. (2.32)): 

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ǫ 3 R.
pour tout 0 ≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ǫ 3 t + δ 2 )e Kεt ≤
à R n , T x 1 × R n-1 et R + × R n-1
pour l'équation de Kuznetsov, l'équation NPE et l'équation de KZK respectivement. Si nous prenons des données initiales régulières U ε (0) = U ε (0), la même chose est vraie pour le système de Navier-Stokes avec la même régularité pour les solutions [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], à l'exception du cas du demi espace pour l'approximation entre le système de Navier-Stokes et l'équation de KZK, d'abord considérée dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], où, dû aux conditions de bords périodiques, venant des conditions initiales pour l'équation de KZK, nous prouvons seulement l'existence locale. Pour l'obtenir, nous utilisons la Réf. [ Comme les équations de KZK et NPE peuvent être vues comme des approximations de l'équation de Kuznetsov au vu de leur dérivation (voir la Figure 1), nous validons aussi l'approximation de l'équation de Kuznetsov par les équations de KZK et NPE, et aussi par l'équation de Westervelt, dans les Sections 2.6, 2.7 et 2.8 (voir le Tableau 2.2).

Pour pouvoir considérer l'approximation de l'équation de Kuznetsov par l'équation de KZK (voir la Section 2.6), nous établissons d'abord des résultats sur le caractère globalement bien posé de l'équation de Kuznetsov dans le demi espace, similaires au cadre précédent pour l'équation de KZK et le système de Navier-Stokes dans la Sous-Section 2.4.2. Nous étudions deux cas : le problème périodique en temps purement aux bords dans les variables (z, τ, y) se déplaçant avec l'onde et le problème avec conditions initiales et au bord pour l'équation de Kuznetsov dans les variables initiales (t, x 1 , x ′ ) avec des données venant de la solution de l'équation de KZK. Nous validons ces deux types d'approximations en Sous-Section 2.6.3 pour les cas visqueux et non visqueux.

Finalement dans les Section 2.7 et 2.8 nous validons l'approximation entre les équations de Kuznetsov et NPE et les équations de Kuznetsov et Westervelt respectivement (voir le Tableau 2.2). Nous pouvons les résumer de la manière suivante: si u est une solution de l'équation de Kuznetsov et u est une solution de l'équation de NPE ou de KZK (pour le problème avec conditions initiales et aux bords) ou de Westervelt trouvée pour des données initiales assez proches 

∇ t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ǫ, alors il existe des constantes K > 0, C 1 > 0, C 2 > 0 et C > 0 indépendantes de ǫ,
∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ǫ 2 t + δ)e C 2 ǫt ≤ Kǫ.

Introduction

There is a renewed interest in the study of nonlinear wave propagation, in particular because of recent applications to ultrasound imaging (e.g. HIFU) or technical and medical applications such as lithotripsy or thermotherapy. Such new techniques rely heavily on the ability to model accurately the nonlinear propagation of a finite-amplitude sound pulse in thermo-viscous elastic media. The most known nonlinear acoustic models, which we consider in this chapter, are We can refer to the general introduction for the physical analysis of these models. All these models were derived from a compressible nonlinear isentropic Navier-Stokes (for viscous media) and Euler (for the inviscid case) systems up to some small negligible terms. But all cited physical derivations of these models don't allow to say that their solutions approximate the solution of the Navier-Stokes or Euler system. The first work explaining it for the KZK equation is Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. We start in Section 2.3 to present the initial context of the isentropic Navier-Stokes system (actually, it is also an approximation of the compressible Navier-Stokes system (2.5)-(2.8)), which describes the acoustic wave motion in an homogeneous thermo-elastic medium [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF]. In this chapter, we systematize the derivation of all these models using the ideas of Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consisting to use correctors in the Hilbert type expansions of corresponding physical ansatzs.

More precisely, we show that all these models are approximations of the isentropic Navier-Stokes or Euler system up to third order terms of a small dimensionless parameter ǫ > 0 measuring the size of the perturbations of the pressure, the density and the velocity to compare to their constant state (p 0 , ρ 0 , 0) (see Fig. 1).

In Section 2.4, we validate the approximations of the compressible isentropic Navier-Stokes system by the different models: by the Kuznetsov (Subsection 2.4.1), the KZK (Subsection 2.4.2) and the NPE equations (Subsection 2.4.3).

In Section 2.5 we do the same for the Euler system in the inviscid case. The main difference between the viscous and the inviscid case is the time existence and regularity of the solutions. Typically in the inviscid case, the solutions of the models and also of the Euler system itself (actually strong solutions), due to their non-linearity, can provide shock front formations at a finite time [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF], or see Theorem 1.2.1 in Chapter 1 for the inviscid Kuznetsov equation. Thus, they are only locally well-posed, while in the viscous media all approximative models are globally well-posed for small enough initial data [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF], for the Kuznetsov equation we have the results of Theorems 1.2.1 and 1.2.2 in Chapter 1. These existence properties of solutions for the viscous and the inviscid cases may also imply the differences in the definition of the domain where the approximations hold:

for example [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], for the approximation between the KZK equation and the Navier-Stokes system the approximation domain is a half-space, but for the analogous inviscid case of the KZK and the Euler system it is a cone (see also the concluding Table 2.1).

In Sections 2.4 and 2.5 we denote by U ε a solution of the "exact" Navier-Stokes/Euler system (see Eq. (2.31))

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0,
and by U ε an approximate solution, constructed by the derivation ansatz from a regular solution of one of the approximate models (typically of the Kuznetsov, the KZK or the NPE equations), i.e. a function which solves the Navier-Stokes/Euler system up to ǫ 3 terms, denoted by ǫ 3 R (see Eq. (2.32)):

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ǫ 3 R.
To have the remainder term R ∈ C([0, T ], L 2 (Ω)) we ensure that the left hand side term in this is in C([0, T ], L 2 (Ω)), i.e. we need a regular enough solution U ε . The minimal regularity of the initial data to have such a U ε is given in Table 2.1 (see also Table 2.2 for the approximations of the Kuznetsov equation).

Choosing for the exact system the same initial-boundary data found by the ansatz for U ε (the regular case) or the initial data taken in their small L 2 -neighbourhood, i.e.

U ε (0) -U ε (0) L 2 (Ω) ≤ δ ≤ ǫ, ( 2.3) 
with U ε (0) not necessarily smooth, but ensuring the existence of an admissible weak solution of a bounded energy (see Definition 2.4.1), we prove the existence of constants C > 0 and K > 0 independent of ε, δ and the time t such that

for all 0 ≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ǫ 3 t + δ 2 )e Kεt ≤ 9ε 2 (2.4)
with Ω a domain where both the solutions U ε and U ε exist (see Theorems 2.4.3, 2.4.6 and 2.4.10).

In the viscous case, all approximative models have a global existence of classical solutions for small enough initial data in its approximative domain Ω, which is various for different models (see Table 2.1): it is equal to R n , T x 1 × R n-1 and R + × R n-1 for the Kuznetsov equation, the NPE equation and the KZK equation respectively. If we take regular initial data U ε (0) = U ε (0), the same thing is true for the Navier-Stokes system with the same regularity for the solutions [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF], except for the case of the half-space for the approximation between the Navier-Stokes system and the KZK equation, firstly considered in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], when, due to the time periodic boundary conditions, coming from the initial conditions for the KZK equation, we only prove a local existence. To obtain it we use Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Theorem 5.5. We updated it in the framework of the new ansatz (2.64)-(2.65) and corrected several misleading in its proof (see Subsection 2.4.2 Theorem 2.4.5), what allows us in Theorem 2.4.6 of Subsection 2.4.2 to establish the approximation result between the KZK equation and the Navier-Stokes system following Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Theorem 5.7 just updating the stability approximation estimate.
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To obtain estimate (2.4) we don't need the regularity of the classical solution of the Navier-Stokes (or Euler) system, it can be a weak solution (in the sense of Hoff [START_REF] Hoff | Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[END_REF] for the Navier-Stokes system or one of solutions in the sense of Luo and al. [START_REF] Luo | Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms[END_REF] for the Euler system) satisfying the admissible conditions given in Definition 2.4.1 (see also Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] p.52 and Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Definition 5.9).

For the inviscid case, given in Section 2.5, we verify that the existence time of (strong) solutions of all models is not less than O( 1 ǫ ) and estimate (2.4) still holds. As the KZK and NPE equations can be seen as approximations of the Kuznetsov equation due to their derivation (see Figure 1), we also validate the approximation of the Kuznetsov equation by the KZK and NPE equations, and also by the Westervelt equation, in Section 2.6, 2.7 and 2.8 (see Table 2.2).

To be able to consider the approximation of the Kuznetsov equation by the KZK equation (see Section 2.6), we firstly establish global well-posedness results for the Kuznetsov equation in the half space similar to the previous framework for the KZK and the Navier-Stokes system in Subsection 2.4.2. We study two cases: the purely time periodic boundary problem in the ansatz variables (z, τ, y) moving with the wave and the initial boundaryvalue problem for the Kuznetsov equation in the initial variables (t, x 1 , x ′ ) with data coming from the solution of the KZK equation. We validate these two types approximations in Subsection 2.6.3 for the viscous and inviscid cases.

Finally in Sections 2.7 and 2.8 we validate the approximation between the Kuznetsov and NPE equation and the Kuznetsov and Westervelt equations respectively (see Table 2.2). We can summarize them in the following way: if u is a solution of the Kuznetsov equation and u is a solution of the NPE or of the the KZK (for the initial boundary value problem) or of the Westervelt equations found for rather closed initial data

∇ t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ǫ,
then there exist K > 0, C 1 > 0, C 2 > 0 and C > 0 independent on ǫ, δ and on time, such that for all t ≤ C ǫ it holds

∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ǫ 2 t + δ)e C 2 ǫt ≤ Kǫ.

Isentropic Navier-Stokes system for a subsonic potential motion

To describe the acoustic wave motion in an homogeneous thermo-elastic medium, we start from the Navier-Stokes system in R n

∂ t ρ + div(ρv) = 0, (2.5 
)

ρ[∂ t v + (v.∇)v] = -∇p + η∆v + ζ + η 3 ∇. div(v), (2.6 
)

ρT [∂ t S + (v.∇)S] = κ∆T + ζ(div v) 2 + η 2 ∂ x k v i + ∂ x i v k - 2 3 δ ik ∂ x i v i 2 , (2.7) p = p(ρ, S), (2.8)
where the pressure p is given by the state law p = p(ρ, S). The density ρ, the velocity v, the temperature T and the entropy S are unknown functions in system (2.5)-(2.8). The coefficients β, κ and η are constant viscosity coefficients. The wave motion is supposed to be potential and the viscosity coefficients are supposed to be small in terms of a dimensionless small parameter ǫ > 0:

η∆v + ζ + η 3 ∇. div(v) = ζ + 4 3 η ∆v := β∆v, with β = ε β.
Any constant state (ρ 0 , v 0 , S 0 , T 0 ) is a stationary solution of system (2.5)-(2.8). Further we always take v 0 = 0 using a Galilean transformation. Perturbation near this constant state (ρ 0 , 0, S 0 , T 0 ) introduces small increments in terms of the same dimensionless small parameter ǫ > 0:

T (x, t) = T 0 + ε T (x, t) and S(x, t) = S 0 + ε 2 S(x, t), ρ ε (x, t) = ρ 0 + ερ ε (x, t) and v ε (x, t) = εṽ ε (x, t),
where the perturbation of the entropy is of order O(ǫ 2 ), since it is the smallest size on ǫ of right hand terms in Eq (2.7), due to the smallness of the viscosities (see Eq. (2.9)). Actually, ǫ is the Mach number, which is supposed to be small [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] (ǫ = 10 -5 for the propagation in water with an initial power of the order of 0.3 W/cm 2 ):

ρ -ρ 0 ρ 0 ∼ T -T 0 T 0 ∼ |v| c 0 ∼ ǫ,
where c 0 = p ′ (ρ 0 ) is the speed of sound in the unperturbed media.

Using the transport heat equation (2.7) up to the terms of the order of ε 3

ε 2 ρ 0 T 0 ∂ t S = ε 2 κ∆ T + O(ε 3 ), (2.9) 
the approximate state equation

p = p 0 + c 2 ερ ε + 1 2 (∂ 2 ρ p) S ε 2 ρ2 ε + (∂ S p) ρ ε 2 S + O(ε 3
) (where the notation (.) S means that the expression in brackets is constant in S), can be replaced [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF] by

p = p 0 + c 2 ερ ε + (γ -1)c 2 2ρ 0 ε 2 ρ2 ε -εκ 1 C V - 1 C p ∇.v ε + O(ε 3 ),
using T = p ρR from the theory of ideal gaze and taking

p(ρ, S) = Rρ γ e S -S 0 C V .
Here γ = C p /C V denotes the ratio of the heat capacities at constant pressure and at constant volume respectively. Hence, system (2.5)-(2.8) becomes an isentropic Navier-Stokes system

∂ t ρ ε + div(ρ ε v ε ) = 0 , (2.10) ρ ε [∂ t v ε + (v ε • ∇) v ε ] = -∇p(ρ ε ) + εν∆v ε , (2.11)
with the approximate state equation p(ρ, S) = p(ρ ǫ ) + O(ǫ 3 ):

p(ρ ε ) = p 0 + c 2 (ρ ε -ρ 0 ) + (γ -1)c 2 2ρ 0 (ρ ε -ρ 0 ) 2 , (2.12)
and with a small enough and positive viscosity coefficient:

εν = β + κ 1 C V - 1 C p .
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Approximation of the Navier-Stokes system 2.4.1 Navier-Stokes system and the Kuznetsov equation

We consider system (2.10)-(2.12) as the exact model. The state law (2.12) is a Taylor expansion of the pressure up to the terms of the third order on ǫ. Therefore an approximation of system (2.10)-(2.12) for v ε and ρ ǫ up to terms O(ǫ 3 ) would be optimal. In the framework of the nonlinear acoustic between the known approximative models derived from system (2.10)-(2.12) are the Kuznetsov, the KZK and the NPE equations. In this section we focus on the first of these models, i.e. on the Kuznetsov equation. Initially the Kuznetsov equation was derived by Kuznetsov [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] from the isentropic Navier-Stokes system (2.10)-(2.12) for the small velocity potential

v ε (x, t) = -∇ũ(x, t), x ∈ R n , t ∈ R + : ∂ 2 t ũ -c 2 △ũ = ∂ t (∇ũ) 2 + γ -1 2c 2 (∂ t ũ) 2 + εν ρ 0 ∆ũ . (2.13)
The derivation was latter discussed by a lot of authors [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Jordan | An analytical study of Kuznetsov's equation: diffusive solitons, shock formation, and solution bifurcation[END_REF][START_REF] Lesser | The structure of a weak shock wave undergoing reflexion from a wall[END_REF].

Unlike in these physical derivations we introduce a Hilbert expansion type construction with a corrector ε 2 ρ 2 (x, t) for the density perturbation, considering the following ansatz

ρ ε (x, t) = ρ 0 + ερ 1 (x, t) + ε 2 ρ 2 (x, t), (2.14) v ε (x, t) = -ε∇u(x, t).
(2.15)

The use of the second order corrector in (2.14) allows to ensure the approximation of (2.11) up to terms of order ǫ 3 (see Subsection 2.4.1) and to open the question about the approximation between the exact solution of the isentropic Navier-Stokes system (2.10)-(2.12) and its approximation given by the solution of the Kuznetsov equation, as it was done for the KZK equation [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].

Derivation of the Kuznetsov equation from an isentropic Navier-Stokes system

Putting expressions for the density and velocity (2.14)-(2.15) into the isentropic Navier-Stokes system (2.10)-(2.12), we obtain for the momentum conservation (2.11)

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) + ε 2 -ρ 1 ∇(∂ t u) + ρ 0 2 ∇((∇u) 2 ) + c 2 ∇ρ 2 + (γ -1)c 2 2ρ 0 ∇(ρ 2 1 ) + ν∇∆u + O(ε 3 ). (2.16)
In order to have an approximation up to the terms O(ε 3 ) we put the terms of order one and two in ε equal to 0, what allows us to find the expressions for the density correctors:

ρ 1 (x, t) = ρ 0 c 2 ∂ t u(x, t),
(2.17)

ρ 2 (x, t) = - ρ 0 (γ -2) 2c 4 (∂ t u) 2 - ρ 0 2c 2 (∇u) 2 - ν c 2 ∆u. (2.18)
Indeed, we start by making ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) = 0 and find the first order perturbation of the density ρ 1 given by Eq. (2.17). Consequently, if ρ 1 satisfies (2.17), then Eq. (2.16) becomes

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇(-ρ 0 ∂ t u + c 2 ρ 1 ) ε 2 ∇ - ρ 0 2c 2 (∂ t u) 2 + ρ 0 2 (∇u) 2 + c 2 ρ 2 + (γ -1)ρ 0 2c 2 (∂ t u) 2 + ν∆u + O(ε 3 ). (2.19)
Thus, taking the corrector ρ 2 by formula (2.18), we ensure that 

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ε 3 ). ( 2 
∂ t ρ ε + div(ρ ε v ε ) = ε ρ 0 c 2 ∂ 2 t u -c 2 ∆u- ε∂ t (∇u) 2 + γ -2 2c 2 (∂ t u) 2 + ν ρ 0 ∆u -εu t ∆u + O(ε 3 ). (2.21)
Then we notice that the right hand term of the order ǫ in Eq. (2.21) is actually the linear wave equation up to smaller on ǫ therms:

∂ 2 t u -c 2 ∆u = O(ε). Hence, we express εu t ∆u = ε 1 c 2 u t u tt + O(ε 2 ) = ε 1 2c 2 ∂ t ((u t ) 2 ) + O(ε 2 ),
and putting it in Eq. (2.21), we finally have

∂ t ρ ε + div(ρ ε v ε ) = ε ρ 0 c 2 ∂ 2 t u -c 2 ∆u- ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u + O(ε 3 ). (2.22)
The right hand side of Eq. (2.22) gives us the Kuznetsov equation

∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u , (2.23)
which is the first order approximation of the isentropic Navier-Stokes system up to the terms O(ε 3 ). Moreover, if u is a solution of the Kuznetsov equation, then with the relations for the density perturbations (2.17) and (2.18) and with ansatz (2.14)-(2.15) we have

∂ t ρ ε + div(ρ ε v ε ) = O(ǫ 3 ) , (2.24) ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ǫ 3 ). (2.25)
Hence, it is clear that the standard physical perturbative approach without the corrector ρ 2 (it is sufficient to take ρ 2 = 0 in our calculus) can't ensure (2. 

ε 3 R N S-Kuz 1 and ε 3 R N S-Kuz 2 : ε 3 R N S-Kuz 1 = ε 3 1 c 2 ∂ t u ρ 0 (γ -2) 2c 4 ∂ t [(∂ t u) 2 ] + ρ 0 c 2 ∂ t [(∇u) 2 ] + ν c 2 ∂ t ∆u - ρ 0 c 2 ∂ t u ∆u -∇ρ 2 .∇u -ρ 2 ∆u + ε 4 1 c 2 ∂ t u (∇ρ 2 .∇u + ρ 2 ∆u) , (2.26) ε 3 R N S-Kuz 2 = ε 3 ρ 1 2 ∇[(∇u) 2 ] -ρ 2 ∇∂ t u + ε 4 ρ 2 2 ∇ (∇u) 2 . (2.27)
If u is a sufficiently regular solution of the Cauchy problem for the Kuznetsov equation in 

R n ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u , u(0) = u 0 , u t (0) = u 1 , ( 2 
∂ t ρ ε + div(ρ ε v ε ) = ε 3 R N S-Kuz 1 , (2.29) ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε 3 R N S-Kuz 2 (2.30)
with p(ρ ε ) from the state law (2.12). With notations

U ε = (ρ ε , ρ ε v ε ) t and U ε = (ρ ε , ρ ε v ε ) t , the exact (2.10)-(2.11
) and the approximated (2.29)-(2.30) Navier-Stokes systems can be respectively rewritten in the following forms [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]:

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = 0, (2.31) 
∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν 0 ∆v ε = ǫ 3 R N S-Kuz (2.32) with R N S-Kuz = R N S-Kuz 1 R N S-Kuz 2 from (2.26)-(2.27) and G i (U ε ) = ρ ε v i ρ ε v i v ε + p(ρ ε )e i , ∂ x i G i (U ε ) = DG i (U ε )∂ x i U ε . (2.33)
The well-posedness results for the Cauchy problems (2.10)-(2.12) [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] and (2.28) [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] or see Theorem 1.2.2 from Chapter 1, allow us to establish the global existence and the unicity of the classical solutions U ε and U ε , considered in the Kuznetsov approximation framework: Theorem 2.4.1. There exists a constant k > 0 such that if the initial data u 0 ∈ H 5 (R 3 ) and u 1 ∈ H 4 (R 3 ) for the Cauchy problem for the Kuznetsov equation (2.28) are small enough

u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) < k,
then there exist global in time solutions U ǫ = (ρ ε , ρ ε v ε ) t of the approximate Navier-Stokes system (2.32) and U ǫ = (ρ ε , ρ ε v ε ) t of the exact Navier-Stokes system (2.31) respectively, with the same regularity corresponding to

ρ ε -ρ 0 , ρ ε -ρ 0 ∈ C([0, +∞[; H 3 (R 3 )) ∩ C 1 ([0, +∞[; H 2 (R 3 )) (2.34) and v ε , v ε ∈ C([0, +∞[; H 3 (R 3 )) ∩ C 1 ([0, +∞[; H 1 (R 3 )), (2.35) 
both considered with the state law (2.12) and with the same initial data 

(ρ ǫ -ρ ǫ )| t=0 = 0, (v ǫ -v ǫ )| t=0 = 0, ( 2 
ρǫ | t=0 = ρ 0 + ǫ ρ 0 c 2 u 1 -ǫ 2 ρ 0 (γ -2) 2c 4 u 2 1 + ρ 0 2c 2 (∇u 0 ) 2 + ν c 2 ∆u 0 , (2.37) vǫ | t=0 = -ǫ∇u 0 . (2.38)
Proof. On one hand, Theorem 1.2 in Ref. [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] or Theorem 1.2.2 in Chapter 1 applied for n = 3 with m = 4 ensures that for u 0 ∈ H 5 (R 3 ) and u 1 ∈ H 4 (R 3 ) there exists a constant

k 2 > 0 such that if u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) < k 2 , (2.39)
then the Cauchy problem for the Kuznetsov equation (2.28) has a unique global in time solution

u ∈ C([0, +∞[, H 5 (R 3 )) ∩ C 1 ([0, +∞[, H 4 (R 3 )) ∩ C 2 ([0, +∞[, H 2 (R 3 )). (2.40)
On the other hand, the Cauchy problem for the Navier-Stokes system is also globally well-posed in R 3 for sufficiently small initial data (see Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] Theorem 7.1, p. 100): there exists a constant k 1 > 0 such that if the initial data

ρ ε (0) -ρ 0 ∈ H 3 (R 3 ), v ε (0) ∈ H 3 (R 3 ) (2.41) satisfy ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) < k 1 ,
then the Cauchy problem (2.10)-(2.12) with the initial data (2.41) has a unique solution (ρ ε , v ε ) globally in time satisfying (2.34) and (2.35). Thus, for the initial solutions of the Kuznetsov equation we need to impose u 0 ∈ H 5 (R 3 ) to have ∆u 0 ∈ H 3 (R 3 ) to be able to ensure that ρ ǫ -ρ 0 | t=0 ∈ H 3 (R 3 ). The regularity u 1 ∈ H 4 (R 3 ) comes from the well-posedness of the Kuznetsov problem and obviously ensures

v ǫ | t=0 ∈ H 3 (R 3 )
, what is necessary [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] to have a global solution of the exact Navier-Stokes system (2.31).

As ρ ε and v ε are defined by ansatz (2.14)-(2.15) with ρ 1 and ρ 2 given in (2.17) and (2.18) respectively, the regularity of u ensures for ρ ε -ρ 0 and v ε at least the same regularity as given in (2.34) and (2.35). To find it we use the following Sobolev embedding for the multiplication (see for example Ref. [START_REF] Bers | Partial differential equations[END_REF] or [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF]): 

H s (R n ) × H s (R n ) ֒→ H s (R n ) for s > n 2 , ( 2 
R N S-Kuz 1 ∈ C([0, +∞[, H 2 (R 3 )) and R N S-Kuz 2 ∈ C([0, +∞[, H 2 (R 3 )).
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Hence, the L 2 (R 3 ) and L ∞ (R 3 ) norms of the remainder terms R N S-Kuz

1 (t) and R N S-Kuz 2 (t) are bounded for t ∈ [0, +∞[. Finally, it is important to notice that, as U ε (0) = U ε (0), ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) = ρ ε (0) -ρ 0 H 3 (R 3 ) + v ε (0) H 3 (R 3 ) ≤C( u 0 H 5 (R 3 ) + u 1 H 4 (R 3 ) ).
Thus, there exists k > 0 (necessarily k ≤ k 2 ) such that u 0 H 5 + u 1 H 4 < k implies the global existences of U ε and U ε .

The stability estimate which we obtain between the exact solution of the Navier-Stokes system U ε and the solution of the Kuznetsov equation presented by U ε does not require for U ε to have the regularity of a classical solution and allows to approximate less regular solutions of the Navier-Stokes system with initial data in a small L 2 neighbourhood of U ε (0). To define the minimal regularity property of U ε for which stability estimate (2.4) holds, we introduce admissible weak solutions of a bounded energy using the entropy of the Euler system (system (2.31) with ν = 0)

η(U ε ) = ρ ε h(ρ ε ) + ρ ε v 2 ε 2 = H(ρ ε ) + 1 ρ ε m 2 2 , (2.43) which is convex [23] with h ′ (ρ ε ) = p(ρε) ρ 2 ε , v ε = m ρε .
Thus, the first and second derivatives of η are [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] 

η ′ (U ε ) =   H ′ (ρ ε ) -1 ρ 2 ε m 2 2 m ρε   t = H ′ (ρ ε ) -v 2 ε 2 v ε t , (2.44) 
η ′′ (U ε ) =   H ′′ (ρ ε ) + m 2 ρ 3 ε -m ρ 2 ε -m ρ 2 ε 1 ρε   =   H ′′ (ρ ε ) + v 2 ε ρε -vε ρε -vε ρε 1 ρε   , ( 2 
∂ t η(U ǫ ) + ∇.q(U ǫ ) -ǫνv ǫ △v ǫ ≤ 0, where q(U ǫ ) = v ǫ (η(U ǫ ) + p(ρ ǫ )), (2.46) 
or equivalently, for any positive test function 

ψ in D(R n × [0, ∞[) the function U ǫ satisfies T 0 R n ∂ t ψη(U ǫ ) + ∇ψ.q(U ǫ ) + ǫν|∇.v ǫ | 2 ψ + ǫνv ǫ .[∇.v ǫ ∇ψ] dxdt + R n ψ(x, 0)η(U ǫ (0))dx ≥ 0.
v ǫ = (v 1 , . . . , v n )) - R n U 2 ǫ (t) 2 dx + t 0 R n n i=1 G i (U ε )∂ x i U ǫ -ǫν∇(ρ ǫ v i ).∇v i dxds + R n U 2 ǫ (0) 2 dx = 0.
Let us notice that any classical solution of (2.31), for instance the solution defined in Theorem 2.4.1, satisfies the entropy condition (2.46) by the equality and obviously it is regular enough to perform the integration by parts resulting in the relation of point 3. For existence results of global weak solutions of the Cauchy problem for the Navier-Stokes system (2.31) with sufficiently small initial data around the constant state (ρ 0 , 0) (actually, ρ 0 -ρ(0) is small in L ∞ , v(0) is small in L 2 and bounded in L 2 n ) and with the pressure p(ρ) = Kρ γ with γ ≥ 1, we refer to results of D. Hoff [START_REF] Hoff | Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[END_REF][START_REF] Hoff | Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids[END_REF]. For fixing the idea of the regularity of a global weak solution we summarize the results of Hoff in the following theorem: Theorem 2.4.2. [START_REF] Hoff | Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data[END_REF] Let for n = 3 β = 0 and for n = 2 β be arbitrary small, N be a given arbitrary large constant. There exists a constant C 0 > 0 such that if the initial data of (2.31) with p(ρ) = Kρ γ (γ ≥ 1) satisfy the following smallness condition

ρ 0 -ρ(0) 2 L ∞ (R n ) + R n (ρ 0 -ρ(0)) 2 + |v(0)| 2 (1 + |x| 2 ) β dx ≤ C 0 , v(0) L 2 n (R n ) ≤ N,
then there exists a global weak solution (ρ, v) (in the distributional sense) such that

1. ρ -ρ 0 ∈ L ∞ (R n × [0, ∞[), 2. v ∈ H 1 (R n ) for all t > 0, 3. for all t ≥ τ > 0 v(•, t) ∈ L ∞ (R n ), 4. for all τ > 0 v ∈ C α, α 2α+2 (R n ×[τ, ∞[) for all α ∈]0, 1[ when n = 2 and v ∈ C 1 2 , 1 8 (R n × [τ, ∞[) when n = 3, 5. ǫν div v + p(ρ) -p(ρ 0 ) ∈ H 1 (R n ) ∩ C α (R n ) for almost all t > 0 with α = 1
2 for n = 2 and α = 1 10 when n = 3. In addition, (ρ, v) → (ρ 0 , 0) as t → +∞ in the sense that for all q ∈]2, +∞[ lim

T →∞ ρ -ρ 0 L ∞ (R n ×[T,∞[) + v(•, T ) L q (R n ) = 0.
Therefore, from Theorem 2.4.2 it follows that a weak solution of the isentropic compressible Navier-Stokes system (2.10)-(2.12) is also an admissible weak solution of a bounded energy in the sense of Definition 2.4.1. But in the following we only consider the question of the validity of the stability estimate (2.4) for initial data closed to U ε (0) in L 2 norm (thus for initial data not necessarily satisfying Theorem 2.4.2) and we don't consider the existence question of an admissible weak solution of a bounded energy of the Cauchy problem for the Navier-Stokes system. Thanks to Theorem 2.4.1 for classical solutions of two models and to Definition 2.4.1 containing the minimal conditions on U ε necessary for saying that it is in a small L 2 -neighbourhood of the regular solution of the Kuznetsov equation, we validate the approximation of U ε by U ε following the ideas of Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].
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Navier-Stokes and Euler compressible isentropic systems Theorem 2.4.3. Let ν > 0 and ǫ > 0 be fixed and all assumptions of Theorem 2.4.1 hold. Then there exist constants C > 0 and K > 0, independent on ǫ and the time t, such that

1. for all t ≤ C ε (U ε -U ε )(t) 2 L 2 (R 3 ) ≤ Kε 3 te Kεt ≤ 4ε 2 ; 2. for all b ∈]0, 1[ during all time t ≤ C ε ln( 1 ε ) it holds (U ε -U ε )(t) L 2 (R 3 ) ≤ 2ε b .
Moreover, if the initial conditions for the Kuznetsov equation are such that

u 0 ∈ H s+2 (R n ), u 1 ∈ H s+1 (R n ) for s > n 2 , n ≥ 2
and sufficiently small (in the sense of Ref. [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] Theorem 1.2 or Theorem 1.2.2in Chapter1), then there exists the unique global in time solution of the Cauchy problem for the Kuznetsov equation

ρ ε -ρ 0 ∈ C([0, +∞[; H s (R n )) ∩ C 1 ([0, +∞[; H s-1 (R n )), (2.47 
)

v ε ∈ C([0, +∞[; H s+1 (R n )) ∩ C 1 ([0, +∞[; H s (R n )) (2.48)
and the remainder terms (R N S-Kuz

1 , R N S-Kuz 2 ), defined in Eqs. (2.26)-(2.27), belong to C([0, +∞[, H s-1 (R n )).
If in addition there exists an admissible weak solution of a bounded energy of the Cauchy problem for the Navier-Stokes system (2.31) (for instance if U ε (0) satisfies conditions of Theorem 2.4.2 there is a global such weak solution) on a time interval [0, T N S [ for the initial data

U ε (0) -U ε (0) L 2 (R n ) ≤ δ ≤ ǫ,
then it holds for all t < min{ C ε , T N S } the stability estimate (2.4):

(U ε -U ε )(t) 2 L 2 (R n ) ≤ K(ε 3 t + δ 2 )e Kεt ≤ 9ε 2 .
Proof. In terms of entropy, system (2.32), having by the assumption the unique classical solution U ε , can be rewritten as follows

∂ t η(U ε ) + ∇.q(U ε ) -ενv ε .∆v ε = ε 3 η(U ε ) + p(ρ ε ) ρ ε R N S-Kuz 1 + v ε .R N S-Kuz 2 , (2.49) with R N S-Kuz = (R N S-Kuz 1 , R N S-Kuz 2
) defined in Eq. (2.26)-(2.27). To abbreviate the notations, we denote the remainder term of the entropy equation in system (2.49) by

R N S-Kuz = η(U ε ) + p(ρ ε ) ρ ε R N S-Kuz 1 + v ε .R N S-Kuz 2 .
In the same time, it is assumed that for U ε it holds (2.46) in the sense of distributions. Let us estimate in the sense of distributions 

∂ ∂t η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε ) . ( 2 
∂ ∂t (η(U ε ) -η(U ε )) ≤ -∇.(q(U ε ) -q(U ε )) + εν(v ε .∆v ε -v ε .∆v ε ) -ε 3 R N S-Kuz = -∇.(q(U ε ) -q(U ε )) + εν n i=1 ∂ x i (v ε ∂ x i v ε -v ε ∂ x i v ε ) -εν n i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε ) -ε 3 R N S-Kuz .
Then we notice that

- ∂ ∂t (η ′ (U ε )(U ε -U ε )) = -∂ t U t ε η ′′ (U ε )(U ε -U ε ) -η ′ (U ε )(∂ t U ε -∂ t U ε ),
where in the sense of distributions

-∂ t U t ε η ′′ (U ε )(U ε -U ε ) = -- n i=1 DG i (U ε )∂ x i U ε t η ′′ (U ε )(U ε -U ε ) - 0 εν∆v ε + ε 3 R N S-Kuz t η ′′ (U ε )(U ε -U ε ),
and

-η ′ (U ε )(∂ t U ε -∂ t U ε ) = -η ′ (U ε )(- n i=1 ∂ x i (G i (U ε ) -G i (U ε ))) -η ′ (U ε )εν 0 ∆v ε -∆v ε + ε 3 η ′ (U ε )R N S-Kuz = n i=1 ∂ x i (η ′ (U ε )(G i (U ε ) -G i (U ε )) - n i=1 ∂ x i U t η ′′ (U ε )(G i (U ε ) -G i (U ε )) -η ′ (U ε )εν 0 ∆v ε -∆v ε + ε 3 η ′ (U ε )R N S-Kuz .
Thanks to the convex property of the entropy we have

η ′′ (U)DG i (U) = (DG i (U)) t η ′′ (U),
and consequently

(DG i (U ε )∂ x i U ε ) t η ′′ (U ε )(U ε -U ε ) =∂ x i U t ε (DG i (U ε )) t η ′′ (U ε )(U ε -U ε ) =∂ x i U t ε η ′′ (U ε )DG i (U ε )(U ε -U ε ).
Moreover, we compute in the sense of distributions

- 0 εν∆v ε t η ′′ (U ε )(U ε -U ε ) = -εν∆v ε (v ε -v ε ) -εν∆v ε ρ ε -ρ ε ρ ε (v ε -v ε ) = -εν n i=1 ∂ x i (∂ x i v ε (v ε -v ε )) + εν n i=1 ∂ x i v ε ∂ x i (v ε -v ε ) -εν∆v ε ρ ε -ρ ε ρ ε (v ε -v ε ),
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-η ′ (U ε )εν 0 ∆v ε -∆v ε = -ενv ε .(∆v ε -∆v ε ) = -εν n i=1 ∂ x i (v ε ∂ x i (v ε -v ε )) + εν n i=1 ∂ x i v ε ∂ x i (v ε -v ε ).
We integrate expression (2.50) over R n and notice that the integrals of the terms in divergence form in the development of (2.50) 

H s (R n ) ֒→ C 0 (R n ) := {f ∈ C(R n )| |f (x)| → 0 as x → +∞} for s > n 2 , ( 2.51) 
which allows us to use the fact that

∀f ∈ C 0 (R n ), R n ∇.f (x) dx = 0.
In the case of a weak admissible solution U ε it follows from its bounded energy property (see Definition 2.4.1 point 3) which implies that ρ ǫ -ρ 0 and v ǫ tend to 0 for |x| → +∞ and also implies the existence of the integrals over R n . Therefore, we obtain the following estimate in which each term is well-defined in the sense of distributions on

[0, +∞[∩[0, T N S ] d dt R 3 η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε )dx ≤ - 3 i=1 R 3 ∂ x i U t η ′′ (U ε )(G i (U ε ) -G i (U ε ) -DG i (U ε )(U ε -U ε ))dx -εν R 3 3 i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε )dx (2.52) + 2εν R 3 3 i=1 ∂ x i v ε ∂ x i (v ε -v ε )dx + εν R 3 ∆v ε ρ ε -ρ ε ρ ε (v ε -v ε )dx -ε 3 R 3 (R N S-Kuz -η ′ (U ε )R N S-Kuz )dx -ε 3 R 3 [R N S-Kuz ] t η ′′ (U ε )(U ε -U ε )dx.
Now we study lower bounds of the left hand side and upper bounds of the right hand side of (2.52) in order to obtain a suitable estimate. For the right hand side of Eq. (2.52) we notice that

-εν R 3 3 i=1 (∂ x i v ε ∂ x i v ε -∂ x i v ε ∂ x i v ε )dx + 2εν R 3 3 i=1 ∂ x i v ε ∂ x i (v ε -v ε )dx = -εν R 3 3 i=1 (∂ x i (v ε -v ε )) 2 dx ≤ 0,
hence this term can be passed in the left hand side of Eq.(2.52) and omitted in the estimation. As the entropy is convex it holds

∃δ 0 > 0 : η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε ) ≥ δ 0 |U ε -U ε | 2 .
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Then using also its continuity, we find

δ 0 R 3 |U ε -U ε | 2 (t)dx ≤ t 0 d ds R 3 η(U ε ) -η(U ε ) -η ′ (U ε )(U ε -U ε )dx ds +C 0 R 3 |U ε -U ε | 2 (0)dx.
On the right hand side of (2.52), by the Taylor expansion we also have

G i (U ε ) -G i (U ε ) -DG i (U ε )(U ε -U ε ) ≤ C|U ε -U ε | 2 .
With 

R 3 ∆v ε ρ ε -ρ ε ρ ε (v ε -v ε )dx ≤ Kε U ε -U ε 2 L 2 (R 3 ) , -ε 3 R 3 (R N S-Kuz -η ′ (U ε )R N S-Kuz )dx ≤ Kε 3 , -ε 3 R 3 [R N S-Kuz ] t η ′′ (U ε )(U ε -U ε )dx ≤ ε 3 η ′′ (U ε ) L ∞ (R 3 ) R N S-Kuz L 2 (R 3 ) U ε -U ε L 2 (R 3 ) ≤ Kε 3 U ε -U ε L 2 (R 3 ) .
Now, by integrating on [0, t], we obtain from (2.52) the following inequality

R 3 |U ε -U ε | 2 (t)dx ≤ t 0 (C ∇U ε L ∞ + Kε) U ε -U ε 2 L 2 (R 3 ) + Kε 3 + Kε 3 U ε -U ε L 2 (R 3 ) ds + C 1 R 3 |U ε -U ε | 2 (0)dx.
Here K, C and C 1 are generic constants of order O(ǫ 0 ) which do not depend on time.

Using once more the regularity properties (2.34) and (2.35), we have the boundness of ∇U ε L ∞ . But knowing that ρ ε and v ε are defined by ansatz (2.14)-(2.15), we deduce that ∇U ε L ∞ ≤ Cε. Therefore,

U ε -U ε 2 L 2 ≤ t 0 K ε U ε -U ε 2 L 2 (R 3 ) + ε 3 + ε 3 U ε -U ε L 2 (R 3 ) ds + C 1 R 3 |U ε -U ε | 2 (0)dx.
Then applying the Gronwall Lemma we have directly

(U ε -U ε )(t) 2 L 2 (R 3 ) ≤ K(ε 3 t + δ 2 )e
Kεt , since Kǫt is a non-decreasing in time function and ε 3 √ v < Kǫv for all v ∈ R + . In addition, to find the estimate of Point 2 for the regular case U ε (0) = U ε (0), we notice that

U ε -U ε L 2 (R 3 ) ≤ v,
where v is the solution of the following Cauchy problem

(v 2 ) ′ = K(ε 3 + ε 3 v + εv 2 ), v(0) = 0.
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The study of this problem gives us

1 Kε ln 1 + v(t) + 1 ε 2 v(t) 2 - 1 K 2 √ 4 -ε 2 arctan 2 √ 4ε 2 -ε 4 v(t) + ε 2 2 -arctan ε √ 4 -ε 2 = t.
The boundness of the function arctan x implies

1 + v(t) + 1 ε 2 v(t) 2 ≤e 2ε √ 4-ε 2 e arctan 2 √ 4ε 2 -ε 4 v(t)+ ε 2 2 -arctan ε √ 4-ε 2 e Kεt ≤e 2ε √ 4-ε 2 e π 2 e Kεt ≤ c 2 0 e Kεt with c 2 0 = e 2 √
3 e π 2 which for instance is less than 3.5 . Therefore, the estimate

U ε -U ε L 2 (R 3 ) ≤ c 0 εe Kεt
gives the result as soon as c 0 εe εKt ≤ 2ε b , with b ≤ 1, i.e. for t ≤ C ε when b = 1, and for t ≤ C ε ln( 1 ε ) in the case b < 1. We finish the proof with the remark on the minimal regularity of the initial data for the Kuznetsov equation such that the approximation is possible, i.e. the remainder terms R N S-Kuz

1 and R N S-Kuz 2 keep bounded for a finite time interval. Indeed, if u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) with s > n 2 then u ∈ C([0, +∞[; H s+2 (R n ))
and

u t ∈ C([0, +∞[; H s+1 (R n )), u tt ∈ C([0, +∞[; H s-1 (R n )).
Since ρ ε is defined by (2.14) with (2.17) and (2.18) and v ε by (2.15) respectively, we exactly find the regularity (2.47) and (2.48). Thus by the regularity of the left-hand side part for the approximated Navier-Stokes system (2.29)-(2.30) we obtain the desired regularity for the right-hand side.

Navier-Stokes system and the KZK equation

Derivation of the KZK equation from an isentropic Navier-Stokes system

In the present section we focus on the derivation from the isentropic Navier-Stokes system of the Khokhlov-Zabolotskaya-Kuznetsov equation (KZK) in non-linear media using the following acoustical properties of beam's propagation 1. The beams are concentrated near the x 1 -axis ;

2. The beams propagate along the x 1 -direction;

3. The beams are generated either by an initial condition or by a forcing term on the boundary x 1 = 0.

The different type of derivations of the KZK equation are discussed in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. This time we perform it in two steps:

2.4. Approximation of the Navier-Stokes system 57 1. We introduce small perturbations around a constant state of the compressible isentropic Navier-Stokes system according to the Kuznetsov ansatz (2.14)-(2.15):

∂ t ρ ε + ∇.(ρ ε v ε ) =ε[∂ t ρ 1 -ρ 0 ∆u] + ε 2 [∂ t ρ 2 -∇ρ 1 ∇u -ρ 1 ∆u] + O(ε 3 ), (2.53) 
and we have again (2.16) for the conservation of momentum.

2. We perform the paraxial change of variable [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] (see Fig. 2.1):

τ = t - x 1 c , z = εx 1 , y = √ εx ′ .
(2.54)

x 1 x ′ t Navier-Stokes/ Euler (x 1 , x ′ , t) z = ǫx 1 y = √ ǫx ′ τ = t -x 1 c KZK(τ, z, y) Figure 2.1 -Paraxial change of variables for the profiles U (t -x 1 /c, ǫx 1 , √ ǫx ′ ).
Since the gradient ∇ in the coordinates (τ, z, y) becomes depending on ǫ

∇ = ε∂ z - 1 c ∂ τ , √ ε∇ y t , if we denote u(x, t) = Φ(t -x 1 /c, ǫx 1 , √ ǫx ′ ) = Φ(τ, z, y), ( 2.55) 
we need to take attention to have the paraxial correctors of the order O(1):

ρ 1 (x, t) = I(τ, z, y), ρ 2 (x, t) = H(τ, z, y) = J(τ, z, y) + O(ǫ),
where actually H(τ, z, y) is the profile function obtained from ρ 2 (see Appendix A Eq. (A.1)) containing not only the terms of the order O(1) but also terms up to ǫ 2 . Hence, we denote by J all terms of H of order 0 on ǫ which are significant in order to have an approximation up to the terms O(ε 3 ).

In new variables (τ, z, y) Eq. (2.16) becomes

ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] (2.56) + ε 2 -I ∇(∂ τ Φ) + ρ 0 2 ∇ 1 c 2 (∂ τ Φ) 2 +c 2 ∇J + γ -1 2ρ 0 c 2 ∇(I 2 ) + ν ∇ 1 c 2 ∂ 2 τ Φ + O(ε 3 ).
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Consequently, we find the correctors of the density as functions of Φ:

I(τ, z, y) = ρ 0 c 2 ∂ τ Φ(τ, z, y), (2.57) J(τ, z, y) = - ρ 0 (γ -1) 2c 4 (∂ τ Φ) 2 - ν c 4 ∂ 2 τ Φ. (2.58)
Indeed, we start by making ε ∇[-ρ 0 ∂ τ Φ + c 2 I] = 0 and find the first order perturbation of the density I given by Eq. (2.57). Moreover, if ρ 1 satisfies (2.57), then Eq. (2.56) becomes

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] ε 2 ∇ - ρ 0 2c 2 (∂ τ Φ) 2 + ρ 0 2c 2 (∂ τ Φ) 2 + c 2 J + (γ -1)ρ 0 2c 2 (∂ τ Φ) 2 + ν c 2 ∂ 2 τ Φ + O(ε 3 ). (2.59)
Thus, taking the corrector J in the expansion of ρ ǫ

ρ ε (x, t) = ρ 0 + εI(τ, z, y) + ε 2 J(τ, z, y), (2.60) 
by formula (2.58), we ensure that

ρ ε [∂ t v ε + (v ε • ∇) v ε ] + ∇p(ρ ε ) -εν∆v ε = O(ε 3 ). (2.61)
Now we put these expressions of I from (2.57) and J from (2.58) with the paraxial approximation in Eq. (2.53) of the mass conservation to obtain

∂ t ρ ε + ∇.(ρ ε v ε ) =ε 2 ρ 0 c 2 (2c∂ 2 zτ Φ -c 2 ∆ y Φ) - ρ 0 2c 4 (γ + 1)∂ τ [(∂ τ Φ) 2 ] - ν c 4 ∂ 3 τ Φ + O(ε 3 ).
(2.62)

All terms of the second order on ǫ in relation (2.62) give us the equation on Φ, which is the KZK equation. If we use relation (2.57), we obtain the usual form of the KZK equation often written [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] for the first perturbation I of the density ρ ǫ :

c∂ 2 τ z I - (γ + 1) 4ρ 0 ∂ 2 τ I 2 - ν 2c 2 ρ 0 ∂ 3 τ I - c 2 2 ∆ y I = 0. (2.63) 
We notice that, as the Kuznetsov equation, this model still contains terms describing the wave propagation ∂ 2 τ z I, the non-linearity ∂ 2 τ I 2 and the viscosity effects ∂ 3 τ I of the medium but also adds a diffraction effects by the transversal Laplacian ∆ y I. This corresponds to the description of the quasi-one-dimensional propagation of a signal in a homogeneous nonlinear isentropic medium. By our derivation (see also (2.80)-(2.81)) we obtain that the KZK equation is the second order approximation of the isentropic Navier-Stokes system up to term of O(ε 3 ). In this sense, since the entropy and the pressure in Section 2.3 are approximated up to terms of the order of ε 3 , the ansatz (2.60)-(2.68) (for the KZK equations) is optimal, as the equations of the Navier-Stokes system are approximated up to O(ε 3 )-terms.

Let us compare our ansatz

u(x 1 , x ′ , t) = Φ(t -x 1 /c, ǫx 1 , √ ǫx ′ ), (2.64 
)

ρ ε (x 1 , x ′ , t) = ρ 0 + εI(t -x 1 /c, ǫx 1 , √ ǫx ′ ) + ε 2 J(t -x 1 /c, ǫx 1 , √ ǫx ′ ) (2.65)
to the ansatz introduced in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] by defining a corrector ǫ 2 v 2 for the velocity perturbation along the propagation axis in the initial ansatz, proposed by Khokhlov and Zabolotskaya [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF]:

ρ ǫ (x 1 , x ′ , t) = ρ 0 + ǫI(t - x 1 c , ǫx 1 , √ ǫx ′ ) , (2.66) v ǫ (x 1 , x ′ , t) = ǫ(v 1 + ǫv 2 ; √ ǫw)(t - x 1 c , ǫx 1 , √ ǫx ′ ). (2.67)
This time, the assumption to work directly with the velocity potential (2.64) immediately implies the following velocity expansion

v ε (x, t) = -ε - 1 c ∂ τ Φ + ε∂ z Φ; √ ε∇ y Φ (τ, z, y), (2.68) 
where we recognize the velocity ansatz of Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] with

v 1 = 1 c ∂ τ Φ = c ρ 0 I, w = ∇ y Φ = c 2 ρ 0 ∂ -1 τ ∇ y I,
but for the corrector v 2 this time

v 2 = -∂ z Φ = - c 2 ρ 0 ∂ -1 τ ∂ z I
instead of (see Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and formula (2.71) for definition of the operator

∂ -1 τ ) v Rozanova 2 = - c 2 ρ 0 ∂ -1 τ ∂ z I + (γ -1) 2ρ 2 0 cI 2 + ν cρ 2 0 ∂ τ I.
If we add the second order correctors v 2 for the velocity to J for the density, we obtain exactly all terms of the corrector v Rozanova

2

. But the ansatz (2.66)-(2.67) is not optimal since the equation of momentum in transverse direction keeps the non-zero terms [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] of the order of ǫ 

Well posedness of the KZK equation

We use Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] to give results on the well posedness of the Cauchy problem:

c∂ 2 τ z I -(γ+1) 4ρ 0 ∂ 2 τ I 2 -ν 2c 2 ρ 0 ∂ 3 τ I -c 2 2 ∆ y I = 0 on T τ × R + × R n-1 , I(τ, 0, y) = I 0 (τ, y) on T τ × R n-1 (2.69)
in the class of L-periodic functions with respect to the variable τ and with mean value zero

L 0 I(ℓ, z, y)dℓ = 0. (2.70)
The introduction of the operator ∂ -1 τ , defined by formula

∂ -1 τ I(τ, z, y) := τ 0 I(ℓ, z, y)dℓ + L 0 ℓ L I(ℓ, z, y)dℓ, ( 2.71) 
allows us to consider instead of Eq. (2.63) the following equivalent equation

c∂ z I - (γ + 1) 4ρ 0 ∂ τ I 2 - ν 2c 2 ρ 0 ∂ 2 τ I - c 2 2 ∂ -1 τ ∆ y I = 0 on T τ × R + × R n-1 ,
for which it holds the following theorem [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]:

Chapter 2. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems Theorem 2.4.4. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] Consider the Cauchy problem for the KZK equation:

c∂ z I -(γ+1) 4ρ 0 ∂ τ I 2 -ν 2c 2 ρ 0 ∂ 2 τ I -c 2 2 ∂ -1 τ ∆ y I = 0 on T τ × R + × R n-1 , I(τ, 0, y) = I 0 (τ, y) on T τ × R n-1 , (2.72)
with the operator ∂ -1 τ defined by formula (2.71), ν ≥ 0, and L 0 I 0 (ℓ, y)dℓ = 0, the following results hold true 1. (Local existence) For s > n 2 + 1 there exists a constant C(s, L) such that for any initial data

I 0 ∈ H s (T τ × R n-1 ) on an interval [0, T [ with T ≥ 1 C(s, L) I 0 H s (Tτ ×R n-1 )
problem (2.72) has a unique solution I such that

I ∈ C([0, T [, H s (T τ × R n-1 )) ∩ C 1 ([0, T [, H s-2 (T τ × R n-1 )),
which satisfies the zero mean value condition (2.70).

(Shock formation)

Let T * be the largest time on which such a solution is defined, then we have

T * 0 sup τ,y (|∂ τ I(τ, t, y)| + |∇ y I(τ, t, y)|) dt = +∞.

(Global existence)

If ν > 0 we have the global existence for small enough data: there exists a constant C 1 > 0 such that [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] If ν > 0, s ∈ N and s ≥ n+1 2 , then there exists a constant

I 0 H s (Tτ ×R n-1 ) ≤ C 1 ⇒ T * = +∞.

(Exponential decay)

C 2 > 0 such that I 0 H s (Tτ ×R n-1 ) ≤ C 2 implies for all z ≥ 0 I(z) H s (Tτ ×R n-1 ) ≤ C I 0 H s (Tτ ×R n-1 ) e -ℓz ,
where C > 0 and ℓ ∈]0, 1[ are constants.

Remark 2.4.1. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] We note that when ν = 0, all the corresponding statements of Theorem 2.4.4 remain valid for 0 > t > -C with a suitable C.

Remark 2.4.2. In the study of the well-posedness of the KZK equation we reverse the usual role of the time with the main space variable along the propagation axis

z: for ν > 0 the solution I(τ, z, y) = I(t -x 1 c , ǫx 1 , √ ǫx ′ ) is defined for x 1 > 0, as it is global on z ∈ R + .
Hence if we want to compare the KZK equation to other models such as the Kuznetsov equation or the Navier-Stokes system we need the well posedness results for these models on the half space

{x 1 > 0, t > 0, x ′ ∈ R n-1 }, (2.73) 
taking into account the fact that the boundary conditions for the exact system come from the initial condition I 0 of the Cauchy problem (2.72) associated to the KZK equation.

Entropy estimate for the isentropic Navier-Stokes equation on the half space and the associated existence result

We follow now Section 5.2 in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] updating it for the new ansatz and correct the proof of Theorem 5.5. See Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] for more details.

We consider the Cauchy problem for the KZK equation (2.72) for an initial data

I(t, 0, y) = I 0 (t, y) (τ = t for x 1 = 0)
L-periodic in t with mean value zero. Theorem 2.4.4 ensures that for any initial data I 0 , defined in T t × R n-1 with small enough H s (s > [ n 2 ] + 1) norm (with respect to ν), there exists a unique solution of the KZK equation (2.63) I, which as a function of (τ, z, y) is global on z ∈ R + , periodic in τ of period L and mean value zero, and decays for z → ∞ [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF].

Therefore, see Remark 2.4.2, we consider our approximation problem between the isentropic Navier-Stokes system (2.10)-(2.11) and the KZK equation in the half space (2.73).

By I 0 we find I and thus also Φ and J, using Eq. (2.57)- (2.58). This allows us to construct the density and velocities ρ ε and v ε in accordance with the ansatz (2.60) and (2.68). Thus, by I we construct the function

U ε = (ρ ε , ρ ε v ε ) t .
In particular, for t = 0 we have functions defined for x 1 > 0 because I is well-defined for any z > 0

ρ ǫ (0, x 1 , x ′ ) = ρ 0 + ǫI(- x 1 c , ǫx 1 , √ ǫx ′ ) + ε 2 J(- x 1 c , ǫx 1 , √ ǫx ′ ), v ǫ (0, x 1 , x ′ ) = (v 1 , v ′ ǫ )(- x 1 c , ǫx 1 , √ ǫx ′ ),
where

v 1 = ǫ c ρ 0 I + ǫ 2 c 2 ρ 0 ∂ z ∂ -1 τ I, v ′ ǫ = √ ε c 2 ρ 0 ∇ y ∂ -1 τ I
and for x 1 = 0 we have L-periodic functions with mean value zero

ρ ǫ (t, 0, x ′ ) = ρ 0 + ǫI(t, 0, √ ǫx ′ ) + ε 2 J(t, 0, √ ǫx ′ ), (2.74) v ǫ (t, 0, x ′ ) = (v 1 , v ′ ǫ )(t, 0, √ ǫx ′ ). (2.75) 
It is important to notice that the solution v ǫ in system (2.10)-(2.11) is small on the boundary:

v ǫ | x 1 =0 = ǫṽ ǫ | x 1 =0
. Therefore, we have |v ǫ | x 1 =0 | < c, which corresponds to the "subsonic" boundary case. More precisely, when the first velocity component is positive v 1 | x 1 =0 > 0, we have a subsonic inflow boundary condition, and when it is negative v 1 | x 1 =0 < 0, we have a subsonic outflow boundary condition, see Fig. 2.2. We also notice that, due to Eq. (2.68), the first component of the velocity v 1 on the boundary has the following form

v 1 | x 1 =0 = ǫ c ρ 0 I + ǫ 2 G(I) (t, 0, √ ǫx ′ ) = ǫ c ρ 0 I + ǫ 2 G(I) z=0 = ǫ c ρ 0 I 0 (t, y) + ǫ 2 G(I 0 )(t, y),
where

G(I) = c 2 ρ 0 ∂ z ∂ -1 τ I = c 2 ρ 0 ∂ -1 τ (γ + 1) 4cρ 0 ∂ τ I 2 + ν 2c 3 ρ 0 ∂ 2 τ I + c 2 ∂ -1 τ ∆ y I . (2.76)
Therefore, the boundary conditions for v 1 are defined by the initial conditions for KZK equation and are L-periodic in t and have mean value zero. In addition, the sign of

v 1 | x 1 =0
is the same as the sign of I 0 (because the term G(I 0 ) is of a higher order of smallness on ǫ).

Chapter 2. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems Remark 2.4.3. As the viscosity term ǫνv ε , where ǫ is a fixed small enough parameter, ν is a constant, and in our case v ε is of the order of ǫ, the boundary layer phenomenon can be excluded. Theorem 2.4.5. Let n ≤ 3. Suppose that the initial data of the KZK Cauchy problem I 0 (t, y) = I 0 (t, √ ǫx ′ ) is such that 1. I 0 is L-periodic in t and with mean value zero, 2. for fixed t, I 0 has the same sign for all y ∈ R n-1 , and for t ∈]0, L[ the sign changes, i.e. I 0 = 0, only for a finite number of times,

0 x 1 > 0 x ′ v 1 | x 1 =0 < 0 v 1 | x 1 =0 < 0 v 1 | x 1 =0 > 0 v 1 | x 1 =0 > 0 (v -v)| x 1 =0 = 0 (v -v)| x 1 =0 = 0 (ρ -ρ)| x 1 =0 = 0 t
3. I 0 (t, y) ∈ H s (T t × R n-1 ) for s ≥ 10,
4. I 0 is sufficiently small in the sense of Theorem 2.4.4 such that [80, p.20]

I 0 H s < ν 2c 2 ρ 0 C 1 (L) C 2 (s)
.

Consequently, there exists a unique global solution in time I(τ, z, y) of (2.72) for z = ǫx 1 > 0, moreover, the functions ρǫ , 

v ε = (v 1 , v ′ ǫ ),
Ω = T t × R n-1 y : ρǫ ∈ C [0, ∞[, H s-4 (Ω) ∩ C 1 [0, ∞[; H s-6 (Ω) , (2.77) vǫ ∈ C [0, ∞[; H s-4 (Ω) ∩ C 1 [0, ∞[; H s-6 (Ω) . ( 2 

.78)

The Navier-Stokes system (2.10)- (2.11) in the half space with initial data (2.36) and following boundary conditions

(v ǫ -v ǫ )| x 1 =0 = 0,
with positive first component of the velocity v 1 | x 1 =0 > 0 (i.e. at points where the fluid enters the domain) has the additional boundary condition

(ρ ǫ -ρ ǫ )| x 1 =0 = 0. When v 1 | x 1 =0
≤ 0 there is no any boundary condition for ρ ǫ .
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Then, for all finite times T > 0 there exists a unique solution U ǫ = (ρ ǫ , ρ ε u ǫ ) of the Navier-Stokes system (2.10)- (2.11) with the following smoothness on [0, T ]

ρ ǫ ∈ C [0, T ] , H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ] , H 2 {x 1 > 0} × R n-1 and u ǫ ∈ C [0, T ] , H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ] , H 1 {x 1 > 0} × R n-1 .
Remark 2.4.4. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] The restriction to have the same sign for I 0 for all fixed time avoids a change in the type of the boundary condition applied to the tangential variables for the Navier-Stokes system. Moreover, Zabolotskaya [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] takes as the initial conditions for the KZK equation (which correspond to the boundary condition for v 1 ) the expression I(τ, 0, y) = -F (y) sin τ with an amplitude distribution F (y) ≥ 0. Especially, for a Gaussian beam [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] F (y) = e -y 2 , while for a beam with a polynomial amplitude [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] 

F (y) = (1 -y 2 ) 2 , y ≤ 1, 0, y > 1.
Proof. As previously, we use the fact that the entropy for the isentropic Euler system η(U ǫ ), defined by Eq. (2.43) is a convex function [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF].

Let us multiply the Navier-Stokes system (2.31), from the left, by

2U T ǫ η ′′ (U ǫ ) 2U T ǫ η ′′ (U ǫ )∂ t U ǫ + n i=1 2U T ǫ η ′′ (U ǫ )DG i (U ε )∂ x i U ε -ǫν2U T ǫ η ′′ (U ǫ ) 0 △v ǫ = 0.
We notice that

U T ǫ η ′′ (U ǫ ) 0 △v ǫ = 0,
and, therefore, we have

2U T ǫ η ′′ (U ǫ )∂ t U ǫ = ∂ t [U T ǫ η ′′ (U ǫ )U ǫ ] -U T ǫ ∂ t η ′′ (U ǫ )U ǫ .
Moreover, by virtue of η ′′ (U)DG i (U) = (DG i (U)) T η ′′ (U) we find

2U T ǫ η ′′ (U ǫ )DG i (U ǫ )∂ x i U ǫ = ∂ x i [U T ǫ η ′′ (U ǫ )DG i (U ǫ )U ǫ ] -U T ǫ ∂ x i [η ′′ (U ǫ )DG i (U ǫ )]U ǫ . Integrating over [0, t] × {x 1 > 0} (x ′ ∈ R n-1 ), we obtain t 0 x 1 >0 ∂ t [U T ǫ η ′′ (U ǫ )U ǫ ]dxds + t 0 x 1 >0 n i=1 ∂ x i [U T ǫ η ′′ (U ǫ )DG i (U ǫ )U ǫ ]dxds - t 0 x 1 >0 U T ǫ ∂ t η ′′ (U ǫ )U ǫ dxds - t 0 x 1 >0 n i=1 U T ǫ ∂ x i [η ′′ (U ǫ )DG i (U ǫ )]U ǫ dxds = 0.
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Integrating by parts we result in

x 1 >0 U T ǫ η ′′ (U ǫ )U ǫ dx - x 1 >0 U T ǫ η ′′ (U ǫ )U ǫ | t=0 dx - t 0 x 1 >0 U T ǫ ∂ t η ′′ (U ǫ ) + n i=1 ∂ x i [η ′′ (U ǫ )DG i (U ǫ )] U ǫ dxds - t 0 R n-1 U T ǫ η ′′ (U ǫ )DG 1 (U ǫ )U ǫ | x 1 =0 dx ′ ds = 0.
We recall that η ′′ (U ǫ ) is positive definite, consequently for some C > 0 and δ 0 > 0

C|U ǫ | 2 ≥ U T ǫ η ′′ (U ǫ )U ǫ ≥ δ 0 |U ǫ | 2 .
Therefore, we obtain for the initial data

U 0 = ρ 0 + ǫI + ε 2 J ǫ (ρ 0 + ǫI + ε 2 J) c ρ 0 I + ǫG(I), √ ǫ w - x 1 c , ǫx 1 , √ ǫx ′ (2.79)
and the relation

δ 0 x 1 >0 U 2 ǫ dx -C x 1 >0 U 2 0 dx- t 0 R n-1 U T ǫ η ′′ (U ǫ )DG 1 (U ǫ )U ǫ | x 1 =0 dx ′ ds ≤C 1 t 0 x 1 >0 U 2 ǫ dx ds.
As in Ref. [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF], C 1 is an upper bound for the eigenvalues of the symmetric matrix

∂ t η ′′ (U ǫ ) + n i=1 ∂ x i [η ′′ (U ǫ )DG i (U ǫ )].
Let us now consider the integral on the boundary. With notation v ε = (v 1 , v ′ ε ) t for the velocity and H ′′ (ρ) = p ′ (ρ) ρ , we see with DG 1 (U ε ) coming from (2.33) that

U T ǫ η ′′ (U ǫ )DG 1 (U ǫ )U ǫ = (ρ ǫ , ρ ǫ v ε ) T     H ′′ (ρ ǫ ) + v 2 ǫ ρǫ -vε ρǫ -vε ρǫ 1 ρǫ Id n        0 1 0 -v 2 1 + p ′ (ρ ǫ ) 2v 1 0 -v 1 v ′ ε v ′ ε v 1 Id n-1    ρ ǫ ρ ǫ v ε = (ρ ǫ , ρ ǫ v 1 , ρ ǫ v ′ ε ) T      v 1 v 2 ε ρε -p ′ (ρε) ρε -v 2 1 ρε + p ′ (ρε) ρε -v 1 v ′ ε ρε -v 2 1 ρε + p ′ (ρε) ρε v 1 ρε 0 -v 1 v ′ ε ρε 0 v 1 ρε Id n-1         ρ ǫ ρ ǫ v 1 ρ ǫ v ′ ε    = ρ ε p ′ (ρ ε )v 1 .
Let us consider the initial condition I 0 (t, y) for the KZK equation of the type described in Remark 2.4.4. We suppose (without loss of generality) that I 0 = 0 for t ∈]0, L[ only once. More precisely, we suppose that the sign of v 1 is changing in the following way:

• v 1 ≤ 0 for t ∈ [0 + (k -1)L, L 2 + (k -1)L] (k = 1, 2, 3, ...), • v 1 > 0 for t ∈] L 2 + (k -1)L, kL[ (k = 1, 2, 3, ...).
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65 If t ∈ [0, L 2 ] (for k = 1)
, the first component of the velocity v 1 | x 1 =0 < 0 is negative, and thus we have

ρ ε p ′ (ρ ε )v 1 < 0. If t ∈] L 2 , L[, the first component of velocity is positive v 1 | x 1 =0
> 0, then we also impose ρ ǫ | x 1 =0 = ρ 0 + ǫI 0 (t, y) + ε 2 J, where I 0 (t, y) is the initial condition for the KZK equation and J coming from Eq. (2.58). For the term

ρ ε p ′ (ρ ε )v 1 > 0
we see that on the boundary it has the form

ρ ε p ′ (ρ ε )v 1 =ε c ρ 0 I 0 + c 2 ρ 0 ∂ z ∂ -1 τ I 0 (ρ 0 + ǫI 0 (t, y) + ε 2 J)p ′ (ρ 0 + ǫI 0 (t, y) + ε 2 J) ≤C 0 εI 0 for some constant C 0 > 0 independent on ε. Consequently, for k ≥ 1 kL 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ k j=1 ] L 2 +(j-1)L,jL[ R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ k j=1 ] L 2 +(j-1)L,jL[ R n-1 C 0 εI 0 ≤ Kkε I 0 H s , where K = O(1) is a positive constant independent of k. However for t > 0 we have k ≥ 1 such that t ∈ [(k -1)L, kL[ and it implies on one hand if t ∈ (k -1)L, (k -1)L + L 2 t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ (k-1)L 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds and on the other hand if t ∈ (k -1)L + L 2 , kL t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ kL 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds.
As a consequence, we obtain for all t > 0

t 0 R n-1 ρ ε p ′ (ρ ε )v 1 | x 1 =0 dx ′ ds ≤ K t L + 1 ε I 0 H s .
Therefore we deduce the estimate, as δ 0 > 0

x 1 >0 U 2 ǫ dx ≤ C δ 0 x 1 >0 U 2 0 dx + ǫ K δ 0 t L + 1 I 0 H s + C 1 δ 0 t 0 x 1 >0 U 2 ǫ dx ds.
By the Gronwall lemma we find

U ǫ 2 L 2 (t) ≤ C δ 0 U 0 2 L 2 + ǫ K C t L + 1 I 0 H s e C 1 δ 0 t
remaining bounded for all finite times.
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Thus, for all T < +∞ we obtain that

U ǫ ∈ L ∞ [0, T ], L 2 {x 1 > 0} × R n-1 .
If I 0 = 0 for t ∈]0, L[ a finite number of times m, we obtain the same result for U ǫ . Hence, by Ref. [START_REF] Gustafsson | Incompletely parabolic problems in fluid dynamics[END_REF] we have proved that the chosen boundary conditions ensure the local well-posedness for the Navier-Stokes system in the half space, which can be viewed as a symmetrizable incompletely parabolic system. We apply now the theory of incompletely parabolic problems [35, p. 352] with the result of global well-posedness of the Navier-Stokes system in the half space with the Dirichlet boundary conditions [START_REF] Matsumura | Initial-boundary value problems for the equations of compressible viscous and heat-conductive fluid[END_REF] for the velocity and with the initial data ρ ε (0

) -ρ 0 ∈ H 3 ({x 1 > 0} × R n-1 )) and v ε (0) ∈ H 3 ({x 1 > 0} × R n-1 ) small enough. Hence, for sufficient regular initial data U 0 ∈ H 3 ({x 1 > 0} × R n-1 ) (n ≤ 3)
for all finite time T < ∞, we obtain by the energy method that

U ǫ ∈ L ∞ ([0, T ], H 3 ({x 1 > 0} × R n-1 )).
To ensure that U 0 defined in Eq. (2.79) belongs

H 3 ({x 1 > 0} × R n-1
) we need to take

I 0 ∈ H s (T t × R n-1 ) such that ρ ε ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ), v ε ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ). By Theorem 2.4.4, I 0 ∈ H s (T t × R n-1 ) implies while s -2k ≥ 0 that I(τ, z, y) ∈ C k ({x 1 > 0}; H s-2k (T τ × R n-1 )),
but we can also say [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF], thanks to Point 4 of Theorem 2.4.4, that

∂ k z I(τ, z, y) ∈ L 2 ({x 1 > 0}; H s-2k (T τ × R n-1 )). Considering the expressions of ρ ε and v ε ρ ε = ρ 0 + ǫI - ǫ 2 ρ 0 γ -1 2 I 2 - ν c 2 ∂ τ I , v ε = c 2 ρ 0 ǫ c I -ǫ 2 ∂ -1 τ ∂ z I; ǫ 3 2 ∂ -1 τ ∇ y I ,
the least regular term is ∂ -1 τ ∂ z I. Thus we need to ensure

∂ z I ∈ C([0, +∞[; H 3 ({x 1 > 0} × R n-1 ),
which leads us to take s ≥ 10 in order to have

∂ k z I(τ, z, y) ∈ L 2 ({x 1 > 0}; H s-2k (T τ × R n-1
)) for k ≤ 4 with s -2k ≥ 2 as we want to have the continuity on time. This choice of the regularity for I 0 allows us to control the boundary terms appearing from the integration by parts in the energy method. Indeed, we can perform analogous computations as in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] p.103 to control the spatial derivative of U ǫ of the order less or equal to 3 and directly verify that all boundary terms are controlled by t I 0 H s , what is actually is a consequence of the well-posedness [START_REF] Matsumura | Initial-boundary value problems for the equations of compressible viscous and heat-conductive fluid[END_REF] in H 3 .

Thus, we obtain the existence of the unique local solution of the Navier-Stokes system with

ρ ǫ ∈ C [0, T ], H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ], H 2 {x 1 > 0} × R n-1 and u ǫ ∈ C [0, T ], H 3 {x 1 > 0} × R n-1 ∩ C 1 [0, T ], H 1 {x 1 > 0} × R n-1 .
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Approximation of the solutions of the isentropic Navier-Stokes system with the solutions of the KZK equation Knowing from Subsection 2.4.2 that the KZK equation can be derived from the compressible isentropic Navier-Stokes system (2.10)-(2.11) using the ansatz (2.64)-(2.65) with I and J given by (2.57) and (2.58) respectively, we obtain the following expansion of the Navier-Stokes equations and, as previously, with p(ρ ε ) from the state law (2.12) :

∂ t ρ ε + ∇.(ρ ε v ε ) =ε 2 [ ρ 0 c 2 (2c∂ 2 zτ Φ -c 2 ∆ y Φ) - ρ 0 2c 4 (γ + 1)∂ τ [(∂ τ Φ) 2 ] - ν c 4 ∂ 3 τ Φ] + ε 3 R N S-KZK 1 (2.80) and ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε ∇[-ρ 0 ∂ τ Φ + c 2 I] + ε 2 ∇ c 2 J + (γ -1)ρ 0 2c 2 (∂ τ Φ) 2 + ν c 2 ∂ 2 τ Φ + ε 3 R N S-KZK 2 , ( 2 
∂ t ρ ε + div(ρ ε v ε ) = ε 3 R N S-KZK 1 ,
(2.82)

ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε 3 R N S-KZK 2 .
(2.83)

As usual, we denote by U ε = (ρ ε , ρ ε v ε ) t the solution of the exact Navier-Stokes system and by U ε = (ρ ε , ρ ε v ε ) t the solution of (2.82)-(2.83).

We work on R + × R n-1 (n = 2 or 3) due to the domain of the well-posedness for the KZK equation. In this case the Navier-Stokes system is locally well-posed with non homogeneous boundary conditions of U ε , as they are directly determined by the initial condition I 0 of the KZK equation (2.72) according to Theorem 2.4.5. Knowing the existence results for two problems, we validate the approximation of U ε by U ε following Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] and Subsection 2.4.1: Theorem 2.4.6. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Let n = 2 or 3, s ≥ 10 and Theorem 2.4.5 hold. Then there exist constants C > 0 and K > 0 such that we have the following stability estimate

0 ≤ t ≤ C ε , U ε -U ε 2 L 2 (R + ×R n-1 ) (t) ≤ Kǫ 3 te Kεt ≤ 9ε 2 .
Remark 2.4.5. The regularity of

I 0 ∈ H s (T t × R n-1 ) with s > 8 (see Table 2.1) is minimal to ensure that R N S-KZK 1 and R N S-KZK 2 , see Appendix A, belongs to C([0, +∞[; L 2 (R + × R n-1 )). Indeed, if I 0 ∈ H s (T t × R n-1 ) with s > max{8, n 2 }, then for 0 ≤ k ≤ 4 I(τ, z, y) ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )).
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Let us denote Ω = T τ × R n-1 . Given the equations for ρ ε by (2.60) with (2.57) and (2.58) and for v ε by (2.68) respectively, we have for 0 ≤ k ≤ 2

∂ k z ρ ε (τ, z, y) ∈ C({z > 0}; H s-1-2k (Ω)), ∂ k z v ε (τ, z, y) ∈ C({z > 0}; H s-2-2k (Ω)),
but we can also say [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] thanks to Point 4 of Theorem 2.4.4 that

∂ k z ρ ε (τ, z, y) ∈ L 2 ({z > 0}; H s-1-2k (Ω)), ∂ k z v ε (τ, z, y) ∈ L 2 ({z > 0}; H s-2-2k (Ω)).
This implies for 0 ≤ k ≤ 2 (as s > 8) that s -2 -2k > 2 and

∂ k z ρ ε (τ, z, y) ∈C(T τ ; L 2 ({z > 0}; H s-1-2k (R n-1 ))), ∂ k z v ε (τ, z, y) ∈C(T τ ; L 2 ({z > 0}; H s-2-2k (R n-1 ))).
Hence we find

ρ ε (t, x 1 , x ′ ), v ε (t, x 1 , x ′ ) ∈C([0, +∞[; H 2 ({x 1 > 0} × R n-1 ).
As in addition for 0 ≤ k ≤ 1, considering ρ ε and v ε as functions of (τ, z, y),

∂ k z ∂ τ ρ ε ∈ C({z > 0}; H s-2-2k (Ω)), ∂ k z ∂ τ v ε ∈ C({z > 0}; H s-3-2k (Ω)),
we deduce in the same way that

∂ t ρ ε (t, x 1 , x ′ ), ∂ t v ε (t, x 1 , x ′ ) ∈C([0, +∞[; H 1 ({x 1 > 0} × R n-1 )).
These regularities of ρ ε and v ε viewed as functions of (t, x 1 , x ′ ) allow to have all left-hand terms in the approximated Navier-Stokes system (2.82)-(2.83) of the regularity C([0, T ]; L 2 ({x 1 > 0} × R n-1 )) and the remainder terms in the right-hand side inherit it.

Navier-Stokes system and the NPE equation

Derivation of the NPE equation

The NPE equation (Nonlinear Progressive wave Equation), initially derived by McDonald and Kuperman [START_REF] Mcdonald | Time-domain solution of the parabolic equation including nonlinearity[END_REF], is an example of a paraxial approximation aiming to describe shorttime pulses and a long-range propagation, for instance, in an ocean wave-guide, where the refraction phenomena are important. To compare to the KZK equation we use the following paraxial change of variables

u(t, x 1 , x ′ ) = Ψ(εt, x 1 -ct, √ εx ′ ) = Ψ(τ, z, y), (2.84) with τ = εt, z = x 1 -ct, y = √ εx ′ . (2.85)
For the velocity we have χ for ρ 2 and taking the term of order 0 in ε as it was done in the case of the KZKapproximation. This time the paraxial change of variables (2.85) for ρ 1 and ρ 2 defined in (2.17)-(2.18) gives

v ε (t, x 1 , x ′ ) = -ε∇u(t, x 1 , x ′ ) = -ε(∂ z Ψ, √ ε∇ y Ψ)(τ, z, y). ( 2 
z = x 1 -ct y = √ ǫx ′ τ = ǫt NPE (τ, z, y)
ρ 1 = - ρ 0 c ∂ z Ψ + ε ρ 0 c 2 ∂ τ Ψ, ρ 2 = - ρ 0 (γ -2) 2c 2 (∂ z Ψ) 2 - ρ 0 2c 2 (∂ z Ψ) 2 - ν ρ 0 ∂ 2 z Ψ + ε ρ 0 (γ -2) 2c 3 ∂ z Ψ∂ τ Ψ - ρ 0 2c 2 (∇ y Ψ) 2 - ν c 2 ∆ y Ψ + ε 2 - ρ 0 (γ -2) 2c 4 (∂ τ Ψ) 2 .
Thus one of the terms in the ρ 1 -extension takes part of the second order corrector of ρ ε :

ρ ε (t, x 1 , x ′ ) = ρ 0 + εξ(τ, z, y) + ε 2 χ(τ, z, y), (2.87) with ξ(τ, z, y) = - ρ 0 c ∂ z Ψ, (2.88 
)

χ(τ, z, y) = ρ 0 c 2 ∂ τ Ψ - ρ 0 (γ -1) 2c 2 (∂ z Ψ) 2 - ν c 2 ∂ 2 z Ψ. (2.89) 
The obtained ansatz (2.86)-(2.87) applied to the Navier-Stokes system gives

∂ t ρ ε + div(ρ ε v ε ) =ε 2 (- 2ρ 0 c ) ∂ 2 τ z Ψ - (γ + 1) 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ + ε 3 R N S-N P E 1 , ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) -εν∆v ε = ε∇ ξ + ρ 0 c ∂ z Ψ + c 2 ε 2 ∇ χ - ρ 0 c 2 ∂ τ Ψ + ρ 0 (γ -1) 2c 2 (∂ z Ψ) 2 + ν c 2 ∂ 2 z Ψ + ε 3 R N S-N P E 2 .
The remainder term in the conservation of mass is given by

ε 3 R N S-N P E 1 =ε 3 ∂ τ χ -∇ y ξ ∇ y Ψ -ξ ∆ y Ψ -∂ z χ ∂ z Ψ -χ ∂ 2 z Ψ) + ε 4 (-∇ y χ ∇ y Ψ -χ ∆ y Ψ), (2.90) 
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ε 3 R N S-N P E 2 . -→ e 1 = ε 3 - ρ 0 c ∂ z Ψ ∂ 2 τ z Ψ + ρ 0 2 ∂ z (∇ y Ψ) 2 + ν∂ z ∆ y Ψ + ξ 2 ∂ z (∂ z Ψ) 2 + cχ∂ 2 z Ψ + ε 4 ξ 2 ∂ z (∇ y Ψ) 2 -χ∂ 2 τ z Ψ + χ 2 ∂ z (∂ z Ψ) 2 + ε 5 χ 2 ∂ z (∇ y Ψ) 2 , ( 2.91) 
and along all transversal direction x j to the propagation x 1 -axis

ε 3 R N S-N P E 2 . -→ e j = ε 7 2 - ρ 0 c ∂ z Ψ ∂ 2 τ y j Ψ + ρ 0 2 ∂ y j (∇ y Ψ) 2 + ν∂ y j ∆ y Ψ + ξ 2 ∂ y j (∂ z Ψ) 2 + cχ∂ 2 zy j Ψ + ε 9 2 ξ 2 ∂ y j (∇ y Ψ) 2 -χ∂ 2 τ y j Ψ + χ 2 ∂ y j (∂ z Ψ) 2 + ε 11 2 χ 2 ∂ y j (∇ y Ψ) 2 . (2.92)
As all previous models, for this ansatz, the NPE equation

∂ 2 τ z Ψ - (γ + 1) 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ = 0 (2.93)
appears as the second order approximation of the isentropic Navier-Stokes system up to the terms of the order of O(ε 3 ). In the sequel we work with the NPE equation satisfied by ξ (see Eq. (2.88) for the definition) 

∂ 2 τ z ξ + (γ + 1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] - ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0. ( 2 
∂ τ NP E = c∂ z KZK and ∂ z NP E = - 1 c ∂ τ KZK .
Thus, as it was mentioned in Introduction, the known mathematical results for the KZK equation can be directly applied for the NPE equation.

Well posedness of the NPE equation

We consider the Cauchy problem: 

∂ 2 τ z ξ + (γ+1)c 4ρ 0 ∂ 2 z [(ξ) 2 ] -ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0 on R + × T z × R n-1 , ξ(0, z, y) = ξ 0 (z, y) on T z × R n-1 , ( 2 
∂ τ ξ + (γ + 1)c 4ρ 0 ∂ z [(ξ) 2 ] - ν 2ρ 0 ∂ 2 z ξ + c 2 ∆ y ∂ -1 z ξ = 0 on R + × T z × R n-1 .
As a consequence we can use the results of Subsection 2.4.2 if we replace τ by z. In the same time for the viscous case it holds the following theorem:

Theorem 2.4.7. Let n ≥ 2, ν > 0, s > max 4, n 2 + 1 and ξ 0 ∈ H s (T z × R n-1
) with zero mean value along z. Then there exists a constant k 2 > 0 such that if

ξ 0 H s (Tz ×R 2 ) < k 2 ,
(2.97)

then the Cauchy problem for the NPE equation (2.96) has a unique global in time solution

ξ ∈ 2 i=0 C i ([0, +∞[, H s-2i (T z × R 2 )) (2.98)
satisfying the zero mean value condition along z. Moreover for Ψ according with Eq. ( 2.88) we have

Ψ := - c ρ 0 ∂ -1 z ξ ∈ 2 i=0 C i ([0, +∞[, H s-2i (T z × R 2 ))
and it also satisfies the zero mean value condition along z, i.e. L 0 Ψ(τ, l, y)dl = 0. Proof. For ξ 0 ∈ H s (T z × R n-1 ) small enough, the existence of a global in time solution

ξ ∈ 1 i=0 C i ([0, +∞[, H s-2i (T z × R n-1 ))
of the Cauchy problem for the NPE equation (2.96) comes from Theorem 2.4.4. We also have the desired regularity by a simple bootstrap argument. Moreover the formula for ∂ -1 z (see the equivalent definition of ∂ -1 τ in Eq. (2.71)) implies for s ≥ 1 by the Poincaré inequality

∂ -1 z ξ H s (Tz×R n-1 ) ≤ C ∂ z ∂ -1 z ξ H s (Tz ×R n-1 ) ≤ C ξ H s (Tz ×R n-1 ) ,
which gives us the same regularity for Ψ.

Approximation of the solutions of the isentropic Navier-Stokes system by the solutions of the NPE equation

By Subsection 2.4.2, this time the approximation domain is T x 1 × R n-1 . Let ξ be a sufficiently regular solution of the Cauchy problem (2.96) for the NPE equation in T z × R n-1 . Then, taking ξ and χ according to formulas (2.88)-(2.89), with Ψ defined using the operator ∂ -1 z equivalent to ∂ -1 τ (see Eq. (2.71)), we define ρ ε and v ε by formulas (2.86)-(2.87). For ρ ε and v ε we obtain a solution of the approximate system (2.29)-(2.30) defined on R + × T x 1 × R n-1 with p(ρ ε ) from the state law (2.12), but with the remainder terms R N S-N P E In what follows we consider the three dimensional case, knowing, thanks to the energy method used in Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] on R 3 , that the Cauchy problem for the Navier-Stokes system is globally well-posed in T x 1 × R 2 for sufficiency small initial data (see Ref. [START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF] Theorem 7.1, p. 100 or Ref. [START_REF] Cao | Large time asymptotic behavior of the compressible Navier-Stokes equations in partial space-periodic domains[END_REF]): Theorem 2.4.8. There exists a constant k 1 > 0 such that if the initial data

ρ ε (0) -ρ 0 ∈ H 3 (T x 1 × R 2 ), v ε (0) ∈ H 3 (T x 1 × R 2 ) (2.99)
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satisfy ρ ε (0) -ρ 0 H 3 (Tx 1 ×R 2 ) + v ε (0) H 3 (Tx 1 ×R 2 ) < k 1 ,
and ρ ε (0) -ρ 0 and v ε (0) have a zero mean value among x 1 then the Cauchy problem (2.10)-(2.12) on T x 1 × R 2 with the initial data (2.99) has a unique global in time solution

(ρ ε , v ε ) such that ρ ε -ρ 0 ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 2 (T x 1 × R 2 )), (2.100 
)

which implies ρ ε -ρ 0 ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 1 (T x 1 × R 2 )) (2.101) and v ε ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 1 (T x 1 × R 2 )). ( 2 

.102)

Moreover for all time for ρ ε -ρ 0 and v ε have a zero mean value along x 1 .

The existence results for the Cauchy problems of the Navier-Stokes system (2.10)-(2.12) and the NPE equation (2.96) allow us to establish the global existence of U ε and U ε , considered in the NPE approximation framework: Theorem 2.4.9. Let n = 3. There exists a constant k > 0 such that if the initial datum ξ 0 ∈ H 5 (T z × R 2 ) for the Cauchy problem for the NPE equation (2.96) (necessarily k ≤ k 2 , see Theorem 2.4.7) is sufficiently small ξ 0 H 5 (Tz×R n-1 ) < k, and has a zero mean value then there exist global in time solutions U ǫ = (ρ ε , ρ ε v ε ) t of the approximate Navier-Stokes system (2.32) and U ǫ = (ρ ε , ρ ε v ε ) t of the exact Navier-Stokes system (2.31) respectively, with the same regularity corresponding to (2.101) and (2.102) and a zero mean value in the x 1 -direction, both considered with the state law (2.12) and with the same initial data

(ρ ǫ -ρ ǫ )| t=0 = 0, (v ǫ -v ǫ )| t=0 = 0, (2.103) 
where ρǫ | t=0 and vǫ | t=0 are constructed as the functions of the initial datum for NPE equation ξ 0 according to formulas (2.86)-(2.89).

Proof. The proof is essentially the same as for Theorem 2.4.1. According to Theorem 2.4.7 with s = 5, the datum ξ 0 is regular enough so that 

ρ ε -ρ 0 | t=0 ∈ H 3 (T x 1 × R 2 ) and v ε | t=0 ∈ [H 3 (T x 1 × R 2 )]
(T x 1 × R 2 ).
The proof being the same as in Theorem 2.4.3 is omitted. In fact it is due to the same Eqs. (2.31) and (2.32) with just different remainders terms of the same order on ε.

It is also easy to see using the previous arguments that the minimum regularity of the initial data (see Table 2.1) to have the remainder terms

R N S-N P E 1 and R N S-N P E 2 ∈ C([0, +∞[; L 2 (T x 1 × R 2 )) corresponds to ξ 0 ∈ H s (T x 1 × R 2 ) with s ≥ 4 since then for 0 ≤ k ≤ 2 ξ(τ, z, y) ∈ C k ([0, +∞[}; H s-2k (T z × R 2 )),
which finally implies with formulas (2.86)-(2.89) that

ρ ε (t, x 1 , x ′ ) ∈ C([0, +∞[; H 2 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; L 2 (T x 1 × R 2 )), v ε (t, x 1 , x ′ ) ∈ C([0, +∞[; H 3 (T x 1 × R 2 )) ∩ C 1 ([0, +∞[; H 1 (T x 1 × R 2 )).

Approximation of the Euler system

Let us consider the following isentropic Euler system:

∂ t ρ ε + div(ρ ε v ε ) = 0, (2.104) ρ ε [∂ t v ε + (v ε .∇)v ε ] + ∇p(ρ ε ) = 0 (2.105)
with p(ρ ε ) given in Eq. (2.12). We use all notations of Section 2.4 just taking ν = 0.

Let us consider two and three dimensional cases. The entropy η of the isentropic Euler system, defined in Eq. (2.43), is of class C 3 and in addition η ′′ (U ε ) is positive definite for ρ ε > 0. Moreover, from (2.31) we see that G i ∈ C ∞ with respect to U ε for ρ ε > 0. Then we can apply Theorem 5.1.1 p. 98 in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] which gives us the local well-posedness of the Euler system: Theorem 2.5.1. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] In R n for n = 2 or 3, suppose the initial data U ε (0) be continuously differentiable on R n , take value in some compact set with ρ ε (0) > 0, and

for i = 1, ..., n, ∂ x i U ε (0) ∈ [H s (R n )] n+1 with s > n/2.
Then there exists 0 < T ∞ ≤ +∞, and a unique continuously differentiable function U ε on R 3 × [0, T ∞ [ taking value with ρ ε > 0, which is a classical solution of the Cauchy problem associated to (2.31) with ν = 0. Furthermore for i = 1, ..., n

∂ x i U ε (t) ∈ s k=0 C k ([0, T ∞ [; [H s-k (R n )] n+1 ). The interval [0, T ∞ [ is maximal in that if T ∞ < +∞ then T∞ 0 sup i=1,...,n ∂ x i U ε [L ∞ (R n )] n+1 dt = +∞,
and/or the range of U ε (t) escapes from every compact subsets of R * + × R n as t → T ∞ . Remark 2.5.1. A sufficient condition for the initial data to apply Theorem 2.5.1 is to have

ρ ε (0) -ρ 0 ∈ H 3 (R n ) and v ε (0) ∈ (H 3 (R n )) n with ρ ε (0) > 0.
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To approximate the solutions of the Euler system and the Kuznetsov, the NPE or the KZK equations, we need to know for which time (how long) they exist. In the difference to the viscous case, the inviscid models can provide blow-up phenomena as indicated in Theorem 2.5.1 for the Euler system, in Theorem 1.4.2 for the Kuznetsov equation and for the KZK and the NPE equations see Theorem 1.3 in Ref. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF]. Let us start by summarizing what is known on the blow-up time for the Euler system [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF] Sideris | The lifespan of 3D compressible flow[END_REF][START_REF] Sideris | Delayed singularity formation in 2D compressible flow[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF].

Due to our framework of the non-linear acoustic, it is important for us to have a potential motion (the irrotational case) and to consider the compressible isentropic Euler system (2.104)-(2.105) with initial data defining a perturbation of order ε around the constant state (ρ 0 , 0):

Theorem 2.5.2. (Existence time for the Euler system)

1. In R n for n = 2 or 3, suppose the initial data

U ε (0) = (ρ ε,0 , ρ ε,0 v ε,0 ) t
be a perturbation of order ε around the constant state (ρ 0 , 0) (see Eq. (2.106)) and take value such that for i = 1, ..., n, ∂

x i U ε (0) ∈ [H s (R n )] n+1 with s > n/2.
Then according to Theorem 2.5.1 there exists a unique classical solution of the Cauchy problem associated to (2.31) with ν = 0 with a regularity given in Theorem 2.5.1. Moreover considering a generic constant C > 0 independent on ε, the existence time [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF] Sideris | The lifespan of 3D compressible flow[END_REF][START_REF] Sideris | Delayed singularity formation in 2D compressible flow[END_REF] 

T ε is estimated by T ε ≥ C ε . 2.
If ∇ × v ε,0 = 0 and if ρ ε,0 ρ 0 γ-1 2
-1 and v ε,0 belong to the energy space X m a dense subspaces of H m (R n ) with m ≥ 4 (for instance they can belong to D(R n ), see p.7-8 in Ref. [START_REF] Sideris | The lifespan of 3D compressible flow[END_REF] for the exact definition of X m ) then

T ε ≥ C ε 2 for n = 2, and T ε ≥ exp C ε -1 for n = 3.
The regularity is given by energy estimates on X m which implies at least the same regularity as in Theorem 2.5.

1 if for i = 1, ..., n, ∂ x i U ε (0) ∈ [H m-1 (R n )] n+1 .
Proof. The first point is a direct consequence of the proof of Theorem 5.1.1 p. 98 in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF].

For the second point we refer to Refs. [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF] Sideris | The lifespan of 3D compressible flow[END_REF][START_REF] Sideris | Delayed singularity formation in 2D compressible flow[END_REF] in order to have estimations of T ε with the help of energy estimates in the considered energy spaces which are dense subspaces of the usual Sobolev spaces.

Let us pay attention to the optimality of the lifespan in the previous results for two [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF] and three dimensional cases [START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF]. The following theorem tells us that the lower bound for the lifespan of the compressible Euler system in the irrotational case found in Theorem 2.5.2 is optimal: Theorem 2.5.

(Blow-up for the Euler system)

1. [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF] In R 2 , we consider the initial data given by ρ ε (0) = ρ 0 + ερ ε,0 and v ε (0) = εv ε,0 , (2.106) with ρ ε,0 and v ε,0 of regularity C ∞ with a compact support. Moreover 

v ε,0 (x) = v r |x| 2 -→ e r + v θ |x| 2 -→ e θ , with ρ ε,0 , v r , v θ ∈ D(R 2 ) depending only on r = |x| 2 = x 2 1 + x 2 2 for x = (x 1 , x 2 ) t .
ε 2 T ε = C > 0.
2. [START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF] In R 3 , we consider the initial data given by (2.106) with ρ ε,0 and v ε,0 of regularity C ∞ with a compact support. Moreover 

v ε,0 (x) = v r |x| 3 -→ e r , with ρ ε,0 and v r ∈ D(R 3 ) depending only on r = |x| 3 = x 2 1 + x 2 2 + x 2 3 for x = (x 1 , x 2 , x 3 ) t .
= γ-1 c 2 ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + α 2 (∂ t u) 2 , u(0) = u 0 , u t (0) = u 1 .
(2.107) 

u 0 H 4 (R n ) + u 1 H 3 (R n ) ≤ l
with l small enough, there exists T * ε > 0 and C > 0, independent on ε, satisfying

T * ε ≥ C ε such that there exist local in time solutions U ǫ = (ρ ε , ρ ε v ε ) t and U ǫ = (ρ ε , ρ ε v ε ) t on [0, T *
ε [ of the approximate Euler system given by (2.32) and of the exact Euler system given by (2.31) with ν = 0, both considered with the state law (2.12) and with the same initial data (2.36). In addition, the solutions have the same regularity corresponding to 

U ε -(ρ 0 , 0) t ∈ 3 k=0 C k ([0, T * ε [; [H 3-k (R n )] n+1 ). ( 2 
Proof. Taking u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ) with u 0 H 4 (R n ) + u 1 H 3 (R n ) ≤ l
C k ([0, T ε,1 [; H 4-k (R n )) with T ε,1 ≥ C 1 ε and C 1 > 0 independent of ε. As u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ), it ensures that ρ ǫ -ρ 0 | t=0 ∈ H 3 (R n ) and v ǫ | t=0 ∈ [H 3 (R n )] 3 .
Therefore ρ ǫ | t=0 > 0 if u 0 and u 1 small enough. By Theorem 2.5.2 it is sufficient to have a local solution U ε on [0, T ε,2 [ of the exact Euler system (see (2.31) 

with ν = 0) verifying (2.108) with T * ε corresponding to T ε,2 , T ε,2 ≥ C 2 ε with C 2 > 0 independent on ε. Now we consider T * ε = min(T ε,1 , T ε,2
), and we have T * ε ≥ C ε with C > 0 independent on ε. As ρ ε and v ε are defined by ansatz (2.14)-(2.15) with ρ 1 and ρ 2 given in Eqs. (2.17)-(2.18), the regularity of u implies for U ε at least the same regularity as given in (2.108). To find it we use the Sobolev embedding (2.42) for the multiplication.

Knowing the existence results for the two problems, we validate the approximation of U ε by the solution of the Kuznetsov equation, i.e. by U ε , following Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF].

Theorem 2.5.5. (Approximation of the Euler system by the Kuznetsov equation)

Let n = 2 or 3 and u 0 ∈ H 4 (R n ), u 1 ∈ H 3 (R n ) be the initial data for the Kuznetsov equation and U ε (0) = U ε (0) for the Euler energy respectively. For

u 0 H 4 (R n ) + u 1 H 3 (R n ) ≤ l
with l small enough, there is the local existence of U ε and U ε for t ∈ [0, T * ε [ with T * ε given by Theorem 2.5.4 and the same regularity (2.108). Moreover there exist constants C > 0 and K > 0 independent on ε and on the time t, such that

∀t ≤ C ε (U ε -U ε )(t) 2 L 2 (R 3 ) ≤ Ktε 3 e Kεt ≤ 4ε 2 .
(2.109)

Proof. The local existence of U ε and U ε comes from Theorem 2.5.4. We make use of the convex entropy as in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] for the isentropic Euler equation and the rest follows exactly as in the proof of Theorem 2.4.3 except that ν = 0.

We finish the proof with the remark on the minimal regularity of the initial data for the Kuznetsov equation such that the approximation is possible, i.e. the remainder terms R N S-Kuz 1 and R N S-Kuz 2 keep bounded for a finite time interval. Indeed, if

u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) with s > n 2 then u ∈ C([0, T * ε [; H s+2 (R n )) and u t ∈ C([0, T * ε [; H s+1 (R n )), u tt ∈ C([0, T * ε [; H s (R n ))
. Since ρ ε is defined by (2.14) with (2.17)-(2.18) and v ε by (2.15), with ν = 0, respectively, we exactly find the regularity

ρ ε ∈ C([0, T * ε [; H s+1 (R n )) ∩ C 1 ([0, T * ε [; H s (R n )), v ε ∈ C([0, T * ε [; H s+1 (R n )) ∩ C 1 ([0, T * ε [; H s (R n )).
Thus by the regularity of the left-hand side part for the approximated Navier-Stokes system (2.29)-(2.30) we obtain the desired regularity for the right-hand side.

Theorem 2.5.6. (Approximation of the Euler system by the NPE equation)

Let n = 2 or 3. There exists a constant k > 0 such that if the initial datum ξ 0 ∈ H 5 (T z × R 2 ) for the Cauchy problem for the NPE equation (2.96) with ν = 0 is sufficiently small ξ 0 H 5 (Tz×R n-1 ) < kε, and has a zero mean value then there exist local in time solutions U ǫ of the approximate Euler system (2.32) and U ǫ of the exact Euler system (2.31) with ν = 0 respectively, with the same regularity corresponding to (2.101) 

× R n-1 .
Proof. The work of Dafermos in Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] can always be applied on T x 1 × R n-1 for n = 2 or 3 instead of R n so we have an equivalent of Theorem 2.5.1 and we also have the same equivalent of Theorem 2.5.2. This is due to the fact that the energy estimate in the articles of Sideris [START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Sideris | The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit[END_REF][START_REF] Sideris | The lifespan of 3D compressible flow[END_REF][START_REF] Sideris | Delayed singularity formation in 2D compressible flow[END_REF] are always true on T x 1 ×R and T x 1 ×R 2 . In all this cases we must also suppose that we have a mean value equal to zero in the direction x 1 . As by Theorem 2.4.4 the NPE equation is locally well posed on [0,

T ε [ with T ε ≥ C ε if ξ 0 H 5 (Tz×R n-1 )
< kε, we have an equivalent of Theorems 2.5.4 and 2.5.5 for the exact compressible isentropic Euler system and its approximation by the NPE equation on

T x 1 × R n-1 for n = 2 or 3 as ξ 0 ∈ H 5 (T z × R n-1 ) also implies ρǫ | t=0 and vǫ | t=0 in H 3 (T x 1 × R n-1 ).
It is also easy to see using the previous arguments that the minimum regularity of the initial data (see Table 2.1) to have the remainder terms 

R N S-N P E 1 and R N S-N P E 2 ∈ C([0, T * ε [; L 2 (T x 1 × R n-1 )) corresponds to ξ 0 ∈ H s (T x 1 × R n-1 ) with s ≥ 4 since then for 0 ≤ k ≤ 2 ξ(τ, z, y) ∈ C k ([0, T * ε [}; H s-2k (T z × R n-1 )), Chapter 
ρ ε (t, x 1 , x ′ ) ∈ C([0, T * ε [; H 2 (T x 1 × R n-1 )) ∩ C 1 ([0, T * ε [; L 2 (T x 1 × R n-1 )), v ε (t, x 1 , x ′ ) ∈ C([0, T * ε [; H 3 (T x 1 × R n-1 )) ∩ C 1 ([0, T * ε [; H 1 (T x 1 × R n-1 )).
Remark 2.5.3. If we allow the Euler system to have not the classical, but an admissible weak solution with the bounded energy (see Definition 2.4.1 and take ν = 0) taking the initial data in a small on ǫ L 2 -neighbourhood of U ε (0), then we also formally have estimate (2.4). But, thanks to Ref. [START_REF] Luo | Non-uniqueness of admissible weak solutions to compressible Euler systems with source terms[END_REF] it is known that the Euler system can provide infinitely many admissible weak solutions, and thus there are no sense to approximate them.

For the approximation by the KZK equation the inviscid case has already been studied in Ref. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF]. The key point is that we must restrict our spatial domain to a cone in order to take into account the fact that the KZK equation is only locally well posed. Theorem 2.5.7. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] Suppose that there exists the solution I of the KZK Cauchy problem (2.72) with I 0 ∈ H s (T τ × R n-1 ) for s > max{10, n 2 + 1}, and ν = 0 such that I(τ, z, y) is L-periodic with respect to τ and defined for |z| ≤ R and y ∈ R n-1 y . Also we assume

z → I(τ, z, y) ∈ C(] -R, R[; H s (T τ × R n-1 y )) ∩ C 1 (] -R, R[; H s-2 (T τ × R n-1 y ))

(the uniqueness and the existence of such a solution is proved by Theorem 2.4.4).

Let U ε = (ρ ε , ρ ε v ε ) t be the approximate solution of the isentropic Euler system (2.82)-(2.83) with ν = 0 deduced from a solution of the KZK equation. Then the function

U ε (t, x 1 , x ′ ) is defined in T t × (Ω ε = {x 1 |x 1 < R ε -ct} × R n-1 x ′ )
and is smooth enough according to the regularity of I.

Let us now consider the solution U ε of the Euler System (2.31) with ν = 0 in a cone

C(t) = {0 < s < t} × Q ε (s) = {x = (x 1 , x ′ ) : |x 1 | ≤ R ε -Ms, M ≥ c, x ′ ∈ R n-1 } with the initial data (ρ ε -ρ ε )| t=0 = 0, (v ε -v ε )| t=0 = 0.
Consequently, (see Ref. [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften[END_REF] p. 62) there exists T 0 such that for the time interval 0 ≤ t ≤ T 0 ε there exists the classical solution

U ε = (ρ ε , ρ ε v ε ) of the Euler system (2.31) with ν = 0 in a cone C(T ) = {0 < t < T |T < T 0 ε } × Q ε (t) with ∇U ε L ∞ ([0, T 0 ε [;H s-1 (Qε)) < εC for s > n 2 + 1.
Moreover, there exists K > 0 such that for any ε small enough, the solutions U ε and U ε which where determined as above in cone C(T ) with the same initial data, satisfy the estimate for

0 < t < T 0 ε (U ε -U ε )(t) 2 L 2 (Qε(t)) ≤ c 2 0 ε 3 te 2Kεt ≤ 4ε 2 with c 2 0 > 0.
Remark 2.5.4. The regularity of I 0 ∈ H s (T t × R n-1 ) with s > 8 (see Table 2.1) is minimal to ensure that R N S-KZK

1 and R N S-KZK 2 , see Appendix A, are in C([0, T 0 ε [; L 2 (Q ε )). I(τ, z, y) ∈ C k (] -R, R[; H s-2k (T τ × R n-1 )).
Let us denote Ω = T τ × R n-1 . Given the equations for ρ ε by (2.60) with (2.57) and (2.58) and for v ε by (2.68) with ν = 0 respectively, we have for 0 ≤ k ≤ 2

∂ k z ρ ε (τ, z, y) ∈ C(] -R, R[; H s-2k (Ω)), ∂ k z v ε (τ, z, y) ∈ C(] -R, R[; H s-2-2k (Ω)),
but we can also say that

∂ k z ρ ε (τ, z, y) ∈ L 2 (] -R, R[; H s-2k (Ω)), ∂ k z v ε (τ, z, y) ∈ L 2 (] -R, R[; H s-2-2k (Ω)).
This implies for 0 ≤ k ≤ 2 (as s > 8) that s -2 -2k > 2 and

∂ k z ρ ε (τ, z, y) ∈C(T τ ; L 2 ({x 1 |x 1 < R ε -ct}; H s-2k (R n-1 ))), ∂ k z v ε (τ, z, y) ∈C(T τ ; L 2 ({x 1 |x 1 < R ε -ct}; H s-2-2k (R n-1 ))).
Hence we find

ρ ε (t, x 1 , x ′ ), v ε (t, x 1 , x ′ ) ∈C([0, T 0 ε [; H 2 (Q ε )).
As in addition for 0 ≤ k ≤ 1, considering ρ ε and v ε as functions of (τ, z, y),

∂ k z ∂ τ ρ ε ∈ C(] -R, R[; H s-1-2k (Ω)), ∂ k z ∂ τ v ε ∈ C(] -R, R[; H s-3-2k (Ω)),
we deduce in the same way that

∂ t ρ ε (t, x 1 , x ′ ), ∂ t v ε (t, x 1 , x ′ ) ∈C([0, T 0 ε [; H 1 (Q ε )).
These regularities of ρ ε and v ε viewed as functions of (t, x 1 , x ′ ) allow to have all lefthand terms in the approximated Euler system (2.82)-(2.83) with ν = 0 of the regularity

C([0, T 0 ε [; L 2 (Q ε )
) and the remainder terms in the right-hand side inherit it.

The Kuznetsov equation and the KZK equation 2.6.1 Derivation of the KZK equation from the Kuznetsov equation

If the velocity potential is given [START_REF] Kuznetsov | Equations of nonlinear acoustics[END_REF] by Eq. (2.55), we directly obtain from the Kuznetsov equation (2.23) with the paraxial change of variable (2.54) that

∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε 2c∂ 2 τ z Φ - γ + 1 2c 2 ∂ τ (∂ τ Φ) 2 - ν ρ 0 c 2 ∂ 3 τ Φ -c 2 ∆ y Φ + ε 2 R Kuz-KZK (2.110)
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ε 2 R Kuz-KZK =ε 2 -c 2 ∂ 2 z Φ + 2 c ∂ τ (∂ τ Φ∂ z Φ) -∂ τ (∇ y Φ) 2 + 2ν cρ 0 ∂ 2 τ ∂ z Φ - ν ρ 0 ∂ τ ∆ y Φ + ε 3 -∂ τ (∂ z Φ) 2 - ν ρ 0 ∂ τ ∂ 2 z Φ . (2.111)
Therefore, we find that the right-hand side ǫ-order term in Eq. (2.110) is exactly the KZK equation (2.63). Due to its well posedness domain, to validate the approximation between the solutions of the KZK and the Kuznetsov equations, we need to study the well posedness of the Kuznetsov equation on the half space with boundary conditions coming from the initial condition for the KZK equation.

Well posedness of the models Well posedness of the Kuznetsov equation in the half space with periodic boundary conditions

Let us consider the following periodic in time problem for the Kuznetsov equation in the half space R + × R n-1 with periodic in time Dirichlet boundary conditions:

u tt -c 2 ∆u -νε∆u t = αεu t u tt + βε∇u ∇u t on T t × R + × R n-1 , u| x 1 =0 = g on T t × R n-1 , (2.112)
where g is a L-periodic in time and of mean value zero function. For this we use Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] and thus we directly obtain the following result of maximal regularity: 

u tt -c 2 ∆u -νε∆u t = f on T t × Ω, u = g on T t × ∂Ω (2.114)
if and only if the functions

f ∈ L p (T t ; L p (Ω)) with g ∈ W 2-1 2p p (T t ; L p (∂Ω)) ∩ W 1 p (T t ; W 2-1 p p (∂Ω)) (2.115)
and they are of mean value zero:

∀x ∈ Ω Tt f (l, x) dl = 0 and ∀x ′ ∈ ∂Ω Tt g(l, x ′ ) dl = 0. (2.116)
Moreover, we have the following stability estimate

u W 2 p (Tt;L p (Ω))∩W 1 p (Tt;W 2 p (Ω)) ≤ C f L p (Tt;L p (Ω)) + g W 2-1 2p p (Tt;L p (∂Ω))∩W 1 p (Tt;W 2-1 p p (∂Ω))
.

Proof. On one hand, if f and g satisfy (2.115)-(2.116), the necessity of the conditions is shown in Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF]. On the other hand, the conditions (2.115)-(2.116) are sufficient by a direct application of the trace theorems recalled in Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] and proved in Ref. [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF] for example.

The results of Ref. [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] allow to see that Theorem 2.6.1 does not depend on n, moreover if we look at the case p = 2 the linearity of the operator ∂ 2 t -c 2 ∆ -ν∆∂ t from (2.114) implies that we can work with H s (Ω) instead of L 2 (Ω) : 

Lemma 2.6.1. Let n ∈ N * , Ω = R + × R n-1 , s ≥ 0 then there exists a unique solution u ∈ X = u ∈ H 2 (T t ; H s (Ω)) ∩ H 1 (T t ; H s+2 (Ω))|∀x ∈ Ω Tt u(s, x) ds = 0 (2.
u X ≤ C( f L 2 (Tt;H s (Ω)) + g F T )
.

Here H 2 (T t ; H s (Ω)) ∩ H 1 (T t ; H s+2 (Ω)
) is endowed with its usual norm denoted here and in the sequel by . X .

Now we can use the maximal regularity result for system (2.114) with Theorem 1.5.2 in Chapter 1 and the same method as for the Cauchy problem associated with the Kuznetsov equation used in our previous work [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] or in Subsection1.5.1 of Chapter 1. We will just have to use the boundary conditions of problem (2.112) as the initial condition of the corresponding Cauchy problem in R n . Theorem 2.6.2.

Let ν > 0, n ∈ N * , Ω = R + × R n-1 , s > n 2 .
Let X be defined by (2.117) and the boundary condition g ∈ F T be defined by (2.118) and in addition, let g be of the mean value zero (see Eq. (2.116)). Then there exist r * = O(1) and

C 1 = O(1) such that for all r ∈ [0, r * [, if g F T ≤ √ νε C 1 r,
there exists a unique solution u ∈ X of the periodic problem (2.112) satisfying (2.113) and such that u X ≤ 2r.

Proof. For g ∈ F T defined in (2.118) and satisfying (2.116), let us denote by u * ∈ X the unique solution of the linear problem (2.114) with f = 0 and g ∈ F T .

In addition, according to Theorem 2.6.1, we take X defined in (2.117), this time for s > n 2 (we need it to control the non-linear terms), and introduce the Banach spaces

X 0 := {u ∈ X| u| ∂Ω = 0 on T t × ∂Ω} (2.119) and Y = f ∈ L 2 (T t ; H s (Ω))| ∀x ∈ Ω Tt f (s, x) ds = 0 .
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Then by Lemma 2.6.1, the linear operator

L : X 0 → Y, u ∈ X 0 → L(u) := u tt -c 2 ∆u -νε∆u t ∈ Y,
is a bi-continuous isomorphism.

Let us now notice that if v is the unique solution of the non-linear Dirichlet problem

     v tt -c 2 ∆v -νε∆v t = αε(v + u * ) t (v + u * ) tt on T t × Ω, +βε∇(v + u * ).∇(v + u * ) t v = 0 on T t × ∂Ω,
(2.120) then u = v + u * is the unique solution of the periodic problem (2.112). Let us prove the existence of a such v, using Theorem 1.5.2 in Chapter 1.

We suppose that u * X ≤ r and define for v ∈ X 0

Φ(v) := αε(v + u * ) t (v + u * ) tt + βε∇(v + u * ).∇(v + u * ) t .
For w and z in X 0 such that w X ≤ r and z X ≤ r, we estimate Φ(w) -Φ(z) Y . By applying the triangular inequality we have

Φ(w) -Φ(z) Y ≤ αε u * t (w -z) tt Y + (w -z) t u * tt Y + w t (w -z) tt Y + (w -z) t z tt Y + βε ∇u * ∇(w -z) t Y + ∇(w -z)∇u * t Y + ∇w∇(w -z) t Y + ∇(w -z)∇z t Y .
Now, for all a and b in X with s ≥ s 0 > n 2 it holds

a t b tt Y ≤ a t L ∞ (Tt×Ω) b tt Y ≤C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a t H 1 (Tt;H s 0 (Ω)) b X ≤C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a X b X ,
where

C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) is the embedding constant of H 1 (T t ; H s 0 (Ω)) in L ∞ (T t × Ω),
independent on s, but depending only on the dimension n. In the same way, for all a and b in X it holds

∇a∇b t Y ≤ C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) a X b X .
Taking a and b equal to u * , w, z or w -z, as u * X ≤ r, w X ≤ r and z X ≤ r, we obtain

Φ(w) -Φ(z) Y ≤ 4(α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) εr w -z X .
By the fact that L is a bi-continuous isomorphism, there exists a minimal constant C ǫ = O 1 ǫν > 0, coming from the inequality C 0 ǫν u 2 X ≤ f Y u X for u, a solution of the linear problem (2.114) with homogeneous boundary data (for a maximal constant

C 0 = O(1) > 0) such that ∀u ∈ X 0 u X ≤ C ǫ Lu Y .
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Hence, for all f

∈ Y P LU X 0 (f ) ≤ C ǫ P U Y (f ) = C ǫ f Y .
Then we find for w and z in X 0 , such that w X ≤ r, z X ≤ r, and also with u * X ≤ r, that with Θ(r) := 4C ǫ (α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) εr it holds

P LU X 0 (Φ(w) -Φ(z)) ≤ Θ(r) w -z X .
Thus we apply Theorem 1.5.2 in Chapter 1 with f (x) = L(x)-Φ(x) and x 0 = 0. Therefore, knowing that C ǫ = C 0 ǫν , we have, that for all r ∈ [0, r * [ with

r * = ν 4C 0 (α + β)C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) = O(1), (2.121) for all y ∈ Φ(0) + w(r)LU X 0 ⊂ Y with w(r) = r -2 C 0 ν C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)r 2 ,
there exists a unique v ∈ 0 + rU X 0 such that L(v) -Φ(v) = y. But, if we want that v be the solution of the non-linear problem (2.120), then we need to impose y = 0 and thus, to ensure that 0 ∈ Φ(0) + w(r)LU X 0 . Since -1 w(r) Φ( 0) is an element of Y and LX 0 = Y , there exists a unique z ∈ X 0 such that

Lz = - 1 w(r) Φ(0). (2.122) Let us show that z X ≤ 1, what will implies that 0 ∈ Φ(0) + w(r)LU X 0 . Noticing that Φ(0) Y ≤ αε v t v tt Y + βε ∇v∇v t Y ≤ (α + β)εC H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) v 2 X ≤ (α + β)εC H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) r 2
and using (2.122), we find

z X ≤ C ǫ Lz Y = C ǫ Φ(0) Y w(r) ≤ C ǫ C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)εr (1 -2C ǫ C H 1 (Tt;H s 0 (Ω))→L ∞ (Tt×Ω) (α + β)εr) < 1 2 ,
as soon as r < r * . Consequently, z ∈ U X 0 and Φ(0) + w(r)Lz = 0. Then we conclude that for all r ∈ [0, r * [, if u * X ≤ r, there exists a unique v ∈ rU X 0 such that L(v) -Φ(v) = 0, i.e. the solution of the non-linear problem (2.120). Thanks to the maximal regularity and a priori estimate following from Theorem 2.6.1 with f = 0, there exists a constant

C 1 = O(ǫ 0 ) > 0, such that u * X ≤ C 1 √ νǫ g F T .
Thus, for all r ∈ [0, r * [ and g F T ≤

√ νǫ C 1 r, the function u = u * + v ∈ X is the unique solution of the time periodic problem for the Kuznetsov equation and u X ≤ 2r.

Proof. First we prove the sufficiency. By assumption (2.125), we have

∂ t g ∈ H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)).
Thanks to § 3 p. 288 in Ref. [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF], we obtain a unique solution

v ∈ H 1 (R + ; H s (Ω)) ∩ L 2 (R + ; H s+2 (Ω))
of the parabolic problem

v t -νε∆v = 0 in R + × Ω, v = ∂ t g on R + × ∂Ω, v(0) = 0 in Ω.
Next we define for t ∈ R + and x ∈ Ω the function

w(t, x) := t 0 v(l, x)dl.
We have w(0) = 0 and w t (0) = 0. Moreover, it satisfies

w tt -νε∆w t = 0, w(t)| ∂Ω = t 0 g t (l) dl = g(t),
as g(0) = 0. Therefore, w is a solution of problem (2.126).The necessity follows from the spatial trace theorem ensuring that the trace operator T r ∂Ω : u → u| ∂Ω , considering as a map

H 1 (R + ; H s (Ω)) ∩ L 2 (R + ; H s+2 (Ω)) → H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)), (2.127)
is bounded and surjective by Lemma 3.5 in Ref. [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]. For the compatibility condition, thanks to Lemma 11 in Ref. [START_REF] Blasio | Linear parabolic evolution equations in L p -spaces[END_REF], we also know that the temporal trace T r t=0 : g → g| t=0 , considered as a map

H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)) → H s+1/2 (∂Ω) (2.128)
is well defined and bounded. Moreover, the spatial trace

H s+1/2 (Ω) → H s (∂Ω) (2.129)
is bounded by Theorem 1.5.1.1 from Ref. [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF].

To obtain uniqueness, let w be a solution to (2.126) with g = 0. Since w t solve a heat problem with homogeneous data, we obtain w t = 0 and therefore also w = 0 by the initial condition w(0) = 0. The stability estimate follows from the closed graph theorem.

Let us prove Lemma 2.6.2:

Proof. We obtain the uniqueness for (2.124) from the fact that in the case g = 0 we can consider -∆ as a self-adjoint and non negative operator with homogeneous Dirichlet boundary conditions and we can use Ref. [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF]. To verify the necessity of the conditions on the data, we suppose that u ∈ E defined in (2.123) is a solution of (2.124). Then

u, u t ∈ H 1 (R + ; H s (Ω)) ∩ L 2 (R + ; H s+2 (Ω)) and thus f ∈ L 2 (R + ; H s (Ω)).
Taking as in the previous proof the spatial trace T r ∂Ω as in (2.127) we have

g, g t ∈ H 3/4 (R + ; H s (∂Ω)) ∩ L 2 (R + ; H s+3/2 (∂Ω)), which implies g ∈ F R + . and such that for r ∈ [0, r * [ u 0 H s+2 (Ω) + u 1 H s+1 (Ω) + g F [0,T ] ≤ νε C 1 r,
there exists a unique solution of problem (2.130)

u ∈ H 2 ([0, ∞[; H s (Ω)) ∩ H 1 ([0, ∞[; H s+2 (Ω)), such that u H 2 ([0,∞[;H s (Ω))∩H 1 ([0,∞[;H s+2 (Ω)) ≤ 2r.

Approximation of the solutions of the Kuznetsov equation by the solutions of the KZK equation

Given Theorem 2.6.2 for the viscous case, we consider the Cauchy problem associated to the KZK equation (2.72) for small enough initial data in order to have a time periodic solution I defined on R + × R n-1 . If ν > 0, to compare the solutions of the Kuznetsov and the KZK equations we consider two cases. The first case is considered in Sub-subsection 2.6.3, when the Kuznetsov equation can be considered as a time periodic boundary problem coming just from the initial condition I 0 of problem (2.72). In Sub-subsection 2.6.3 we study the second case, when the solution of the KZK equation taken for τ = 0 gives I(0, z, y) defined on R + × R n-1 from which we deduce according to the derivation ansatz both an initial condition for the Kuznetsov equation at t = 0 and a corresponding boundary condition. In this second situation, it also makes sense to consider the inviscid case, briefly commented in the end of Sub-subsection 2.6.3.

Approximation problem for the Kuznetsov equation with periodic boundary conditions

Let Ω 1 = T τ × R n-1 and s ≥ n 2 + 1. Suppose that a function I 0 (t, y) = I 0 (t, √ εx ′ ) is such that I 0 ∈ H s (Ω 1 ) small enough and Tτ I 0 (s, y)ds = 0. Then by Theorem 2.4.4 there is a unique solution I(τ, z, y) of the Cauchy problem for the KZK equation (2.72) such that

z → I(τ, z, y) ∈ C([0, ∞[, H s (Ω 1 )) (2.131)
with Tτ I(l, z, y)dl = 0. We use the operator ∂ -1 τ defined in (2.71). Formula (2.71), which implies that ∂ -1 τ I is L-periodic in τ and of mean value zero, gives us the estimate

∂ -1 τ I H s (Ω 1 ) ≤ C ∂ τ ∂ -1 τ I H s (Ω 1 ) = C I H s (Ω 1 ) . So ∂ -1 τ I| z=0 ∈ H s (Ω 1 )
, and hence by (2.131)

z → ∂ -1 τ I(τ, z, y) ∈ C([0, ∞[, H s (Ω 1 )),
with Tτ ∂ -1 τ I(s, z, y)ds = 0. We define on 

T t × R + × R n-1 u(t, x 1 , x ′ ) := c 2 ρ 0 ∂ -1 τ I(τ, z, y) = c 2 ρ 0 ∂ -1 τ I t - x 1 c , εx 1 , √ εx ′ (2.
g(t, x ′ ) := u(t, 0, x ′ ) = c 2 ρ 0 ∂ -1 τ I 0 (τ, y).
(2.133)

Taking Ĩ := ρ 0 c 2 ∂ τ Φ (see Eq. (2.57)), let Ĩ be the solution of the Kuznetsov equation written in the following form with the remainder R Kuz-KZK defined in Eq. (2.111): 

c∂ z Ĩ -(γ+1) 4ρ 0 ∂ τ Ĩ2 -ν 2c 2 ρ 0 ∂ 2 τ Ĩ -c 2 2 ∆ y ∂ -1 τ Ĩ + ε ρ 0 2c 2 R Kuz-KZK = 0, Ĩ| z=0 = I 0 , ( 2 
z → I(τ, z, y) ∈ C([0, ∞[, H s+ 3 2 (T τ × R n-1
)).

In addition, there exists a unique global solution Ĩ of the Kuznetsov problem (2.134), in the sense

Ĩ := ρ 0 c 2 ∂ τ Φ, with Φ(τ, z, y) := u(t, x 1 , x ′ ) with the paraxial change of variable (2.54) and u ∈ H 2 (T t ; H s (R + × R n-1 )) ∩ H 1 (T t ; H s+2 (R + × R n-1 )),
is the global solution of the periodic problem (2.112) for the Kuznetsov equation with g defined by I 0 as in Eq. (2.133). Moreover there exist C 1 > 0 and C 2 > 0 such that

1 2 d dz I -Ĩ 2 L 2 (Tτ ×R n-1 ) ≤ C 1 I -Ĩ 2 L 2 (Tτ ×R n-1 ) + C 2 ε I -Ĩ L 2 (Tτ ×R n-1 ) ,
which implies

I -Ĩ L 2 (Tτ ×R n-1 ) (z) ≤ C 2 2 ǫze C 1 2 z ≤ C 2 C 1 ε(e C 1 2 z -1)
and

I -Ĩ L 2 (Tτ ×R n-1 ) (z) ≤ Kε while z ≤ C with K > 0, and C > 0 independent of ε. Proof. For s > n 2 + 2, the global well-posedness of I comes from Theorem 2.4.4 if I 0 ∈ H s+ 3 2 (T τ × R n-1
) is small enough. Moreover, since g is given by Eq. ( 2.133), thanks to the definition of ∂ -1 τ in (2.71) and the fact that

I 0 ∈ H s+ 3 2 (T τ × R n-1 ), we have g ∈ H s+ 3 2 (T t × R n-1 ) and ∂ t g ∈ H s+ 3 2 (T t × R n-1 ).

And thus

g ∈ H 7 4 (T t ; H s (R n-1 )) ∩ H 1 (T t ; H s+2-1 2 (R n-1
)). Therefore we can use Theorem 2.6.2 which implies the global existence of the periodic in time solution

u ∈ H 2 (T t ; H s (R + × R n-1 )) ∩ H 1 (T t ; H s+2 (R + × R n-1 )),
of the Kuznetsov periodic boundary value problem (2.112) as I 0 is small enough in H s+ 3 2 (T τ × R n-1 ). Therefore, it also implies the global existence of Ĩ defined in (2.57) which is the solution of the exact Kuznetsov system (2.134). Now we subtract the equations in systems (2.72) and (2.134):

c∂ z (I -Ĩ) - γ + 1 2ρ 0 (I -Ĩ)∂ τ I - γ + 1 2ρ 0 Ĩ∂ τ (I -Ĩ) - ν 2c 2 ρ 0 ∂ 2 τ (I -Ĩ) - c 2 2 ∂ -1 τ ∆ y (I -Ĩ) = ε ρ 0 2c 2 R Kuz-KZK .
Denoting

Ω 1 = T τ × R n-1
, we multiply this equation by (I -Ĩ), integrate over T τ × R n-1 and perform a standard integration by parts which gives c 2

d dz I -Ĩ 2 L 2 (Ω 1 ) - γ + 1 2ρ 0 Ω 1 ∂ τ I(I -Ĩ) 2 dτ dy - γ + 1 2ρ 0 Ω 1 Ĩ(I -Ĩ)∂ τ (I -Ĩ)dτ dy + ν 2c 2 ρ 0 Ω 1 (∂ τ (I -Ĩ)) 2 dτ dy = ε ρ 0 2c 2 Ω 1 R Kuz-KZK (I -Ĩ)dτ dy.
Let us notice that

Ω 1 Ĩ(I -Ĩ)∂ τ (I -Ĩ)dτ dy = Ω 1 [( Ĩ -I) + I)] 1 2 ∂ τ (I -Ĩ) 2 dτ dy = = - 1 2 Ω 1 ∂ τ I(I -Ĩ) 2 dτ dy,
and as for s > n 2 + 2 and u ∈ H 2 (T t ; H s (Ω)) ∩ H 1 (T t ; H s+2 (Ω)) we also have

R Kuz-KZK ∈ C(R + ; L 2 (T τ × R n-1 )). ( 2 

.135)

This comes from the fact that in system (2.134) the worst term outside the remainder is ∂ 2 τ Ĩ with Ĩ given by Eq. (2.57). As

∂ 3 t u ∈ L 2 (T t ; H s-2 (Ω)), we need to take s > n 2 + 2 to have ∂ 2 τ Ĩ in L ∞ (R + ; L 2 (T τ × R n-1 )).
Therefore

Ω 1 R Kuz-KZK (I -Ĩ)dτ dy ≤ R Kuz-KZK L 2 (Ω 1 ) I -Ĩ L 2 (Ω 1 ) ≤ C I -Ĩ L 2 (Ω 1 )
with a constant C > 0 independent on z thanks to (2.135). It leads to the estimate

1 2 d dz I -Ĩ 2 L 2 (Ω 1 ) ≤ K sup Ω 1 |∂ τ I(τ, z, y)| I -Ĩ 2 L 2 (Ω 1 ) + Cε I -Ĩ L 2 (Ω 1 ) ,
in which, due to the regularity of I for s and I 0 (see also Point 1 and 3 of Theorem 2.4.4) the term sup Ω 1 |∂ τ I(τ, z, y)| is bounded by a constant C > 0 independent on z. With this we have the desired estimate and the other results follow from Gronwall's Lemma.

Remark 2.6.1. Here the regularity I 0 ∈ H s+ 3 2 (T τ × R n-1 ) for s > n 2 + 2 is the minimal regularity to ensure (2.135).
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Approximation problem for the Kuznetsov equation with initial-boundary conditions

Let as previously

Ω 1 = T τ × R n-1 , but s ≥ n+1 2 . Suppose that a function I 0 (t, y) = I 0 (t, √ εx ′ ) is such that I 0 ∈ H s (Ω 1 )
and Tτ I 0 (s, y)ds = 0. Then by Theorem 2.4.4 there is a unique solution I(τ, z, y) of the Cauchy problem (2.72) for the KZK equation such that

z → I(τ, z, y) ∈ C([0, ∞[, H s (Ω 1 )).
We define u and g as in Eqs. (2.132) and (2.133) respectively. Thus, for R Kuz-KZK defined in Eq. (2.111), u is the solution of the following system

∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε 2 R Kuz-KZK in T t × Ω, u = g on T t × ∂Ω.
(2.136)

We study for T > 0 the solution u of the Dirichlet boundary-value problem (2.130) for the Kuznetsov equation on [0, T ] × R + × R n-1 , taking u 0 := u(0) and u 1 := u t (0) and considering the time periodic function g defined by Eq. ( 2.133) as a function on [0, T ]. Now we have the following stability result. Theorem 2.6.5. 

Let T > 0, ν > 0, n ≥ 2, Ω = R + × R n-1 and I 0 ∈ H s (T τ × R n-1 ), s ∈ R + . Let I
I ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )), thus u ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )), ∂ t u ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )), or again u ∈ H 2 (T t , H [ s 2 ]-1 (Ω)) ∩ H 1 (T t , H [ s 2 ] (Ω)). ( 2 

.137)

The regularity of 

I 0 ∈ H s (T t × R n-1 ) (see Table 2.2) is minimal to ensure that R Kuz-KZK , see Eq. (2.111), is in C([0, +∞[; L 2 (R + × R n-1 )).

If

u(0) = u(0) = c 2 ρ 0 ∂ -1 τ I(- x 1 c , εx 1 , √ εx ′ ) ∈ H [ s 2 ] (Ω), u t (0) = u t (0) = c 2 ρ 0 ∂ τ I(- x 1 c , εx 1 , √ εx ′ ) ∈ H [ s 2 ] -1 (Ω),
there exists k > 0 such that I 0 H s < k implies the well-posedness of the exact Kuznetsov equation ( 2.130) considered with Dirichlet boundary condition

g = c 2 ρ 0 ∂ -1 τ I 0 ∈ H s (T t × R n-1 ) ⊂ H 7/4 ([0, T ]; H [ s 2 ] -2 (∂Ω)) ∩ H 1 ([0, T ]; H [ s 2 ]-2+3/2 (∂Ω))
and the regularity

u ∈ H 2 ([0, T ], H [ s 2 ]-1 (Ω)) ∩ H 1 ([0, T ], H [ s 2 ] (Ω)).
(2.138)

Moreover, there exists constants K > 0, and C > 0 independent of ε such that for all t ≤ C ε we have 

C 1 > 0 and C 2 > 0 with (u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤ C 1 ǫ 2 te C 2 ǫt ≤ Kε. ( 2 
∈ H m+2 (Ω), u 1 ∈ H m+1 (Ω) with m > n 2 and (u -u) t (0) 2 L 2 (Ω) + ∇(u -u)(0) 2 L 2 (Ω) ≤ δ 2 ≤ ε 2 .
(

2.140)

There exists K > 0 and C > 0 independent of ε such that for all t ≤ C ε we have 

C 1 > 0 and C 2 > 0 with (u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤ C 1 (ǫ 2 t + δ 2 )e C 2 ǫt ≤ Kǫ. ( 2 
∈ H s (T t × R n-1 ) with the chosen s, then for 0 ≤ k ≤ s 2 I(τ, z, y) ∈ C k ({z > 0}; H s-2k (T τ × R n-1 )).
Let us denote Ω 1 = T τ × R n-1 . Given the equation for u by (2.132), we have u(τ, z, y) and∂ τ u(τ, z, y

) ∈C k ({z > 0}; H s-2k (Ω 1 )), if 0 ≤ k ≤ s 2 , ∂ 2 τ u(τ, z, y) ∈C k ({z > 0}; H s-1-2k (Ω 1 )), if 0 ≤ k ≤ s 2 -1,
but we can also say [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] thanks to Point 4 of Theorem 2.4.4 that u(τ, z, y) and

∂ τ u(τ, z, y) ∈H k ({z > 0}; H s-2k (Ω 1 )), ∂ 2 τ u(τ, z, y) ∈H k ({z > 0}; H s-1-2k (Ω 1 )
). This implies as for the chosen s that

u(t, x 1 , x ′ ) and ∂ t u(t, x 1 , x ′ ) ∈ L 2 (T t ; H [ s 2 ] (Ω) ∩ H 2 (T t ; H [ s 2 ] -1 (Ω), ∂ 2 t u(t, x 1 , x ′ ) ∈ L 2 (T t ; H [ s 2 ]-1 (Ω) ∩ H 2 (T t ; H [ s 2 ]-2 (Ω).
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This implies

u(t, x 1 , x ′ ) ∈C 1 ([0, +∞[; H [ s 2 ]-1 (Ω), ∂ 2 t u(t, x 1 , x ′ ) ∈C([0, +∞[; H [ s 2 ]-2 (Ω).
With the chosen s, these regularities of u(t, x 1 , x ′ ) give us the regularity (2.137) and allow to have all left-hand terms in the approximated Kuznetsov system (2.136) of the desired regularity, i.e in C([0, +∞[; L 2 (Ω)). In addition for s 2 > n 2 +2 with the chosen g, u 0 = u(0) and u 1 = u t (0) in the conditions of the theorem we have

u 0 ∈ H [ s 2 ] (Ω), u 1 ∈ H [ s 2 ]-1 (Ω) with g ∈ H s (T t × R n-1 ) and ∂ t g ∈ H s (T t × R n-1 ), which implies g ∈ H 7/4 (]0, T [; H [ s 2 ]-2 (∂Ω)) ∩ H 1 (]0, T [; H [ s 2 ]-2+3/2 (∂Ω))
with s 2 -2 > n 2 as required by Theorem 2.6.3 to have the local well-posedness of u, the solution of the Kuznetsov equation associated to system (2.130). This completes the local well-posedness results and we deduce that u has the desired regularity (2.138) announced in the Theorem. Moreover, we have

R Kuz-KZK in C([0, +∞[, L 2 (Ω)).
To validate the approximation we will only demonstrate the estimate in point (3) as it directly implies the estimate in point (2). We take again

I 0 ∈ H s (T t × R n-1 ) with s 2 > n
2 + 2 to define u and g and consider u to be a solution of the Dirichlet boundaryvalue problem (2.130) for the Kuznetsov equation under the conditions u 0 ∈ H m+2 (Ω), u 1 ∈ H m+1 (Ω) with m > n 2 satisfying (2.140). Now we subtract the Kuznetsov equation from the approximated Kuznetsov equation (see system (2.136)), multiply by (u -u) t and integrate over Ω to obtain as in Ref. [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] the following stability estimation:

1 2 d dt Ω A(t, x) (u -u) 2 t +c 2 (∇(u -u)) 2 dx ≤ Cε sup( u tt L ∞ (Ω) ; ∆u L ∞ (Ω) ; ∇u t L ∞ (Ω) ) • (u -u) t 2 L 2 (Ω) + ∇(u -u) 2 L 2 (Ω) + ε 2 Ω R Kuz-KZK (u -u) t dx where 1 2 ≤ A(t, x) ≤ 3 2 for 0 ≤ t ≤ T and x ∈ Ω. By regularity of the solutions sup( u tt L ∞ (Ω) ; ∆u L ∞ (Ω) ; ∇u t L ∞ (Ω) ) is bounded in time on [0, T ]. Moreover, we have R Kuz-KZK (t) L 2 (Ω) bounded for t ∈ [0, T ]
by the regularity of u where R Kuz-KZK is defined in (2.111). Then after integration on [0, t], we can write

(u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤3( (u -u) t (0) 2 L 2 (Ω) + ∇(u -u)(0) 2 L 2 (Ω) ) C 1 ε t 0 (u -u) t (s) 2 L 2 (Ω) + ∇(u -u)(s) 2 L 2 (Ω) ds + C 2 ε 2 t 0 (u -u) t (s) 2 L 2 (Ω) + ∇(u -u)(s) 2 L 2 (Ω) ds.
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As

(u-u) t (0) 2 L 2 (Ω) + ∇(u-u)(0) 2 L 2 (Ω) ≤ δ 2 ≤ ε 2
, we finally find by the Gronwall Lemma

(u -u) t (t) 2 L 2 (Ω) + ∇(u -u)(t) 2 L 2 (Ω) ≤ C 1 (ǫ 2 t + δ 2 )e C 2 ǫt ≤ Kǫ for t ≤ C
ε what allows us to conclude. For the inviscid media we use (2.4) on the cone C(t) defined in Theorem 2.5.7 instead of R n when we compare the Euler system and the inviscid Kuznetsov equation. Therefore the triangular inequality permits us to validate the approximation between the Kuznetsov and KZK equations in the inviscid case as their respective approximations with the Euler system are validated by (2.4) in the cone. 

Approximation of the solutions of the Kuznetsov equation with the solutions of the NPE equation

∂ 2 t u -c 2 ∆u -ε∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u = ε -2c∂ 2 τ z Ψ -c 2 ∆ y Ψ + ν ρ 0 c∂ 3 z Ψ + γ + 1 2 c∂ z (∂ z Ψ) 2 + ε 2 R Kuz-N P E with ε 2 R Kuz-N P E =ε 2 ∂ 2 τ Ψ - ν ρ 0 ∂ 2 z ∂ τ Ψ + ν ρ 0 c∆ y ∂ z Ψ -(γ -1)∂ τ Ψ ∂ 2 z Ψ (2.142) -2(γ -1)∂ z Ψ ∂ 2 τ z Ψ -2∂ z Ψ ∂ 2 τ z Ψ + 2c∇ y Ψ ∇ y ∂ z Ψ + ε 3 - ν ρ 0 ∆ y ∂ τ Ψ + 2 γ -1 c ∂ τ Ψ ∂ 2 τ z Ψ + γ -1 c ∂ z Ψ ∂ 2 τ Ψ -2∇ y Ψ ∇ y ∂ τ Ψ + ε 4 (- γ -1 c 2 ∂ τ Ψ∂ 2 τ Ψ).
We obtain the NPE equation satisfied by ∂ z Ψ modulo a multiplicative constant:

∂ 2 τ z Ψ - γ + 1 4 ∂ z (∂ z Ψ) 2 - ν 2ρ 0 ∂ 3 z Ψ + c 2 ∆ y Ψ = 0.
In the sequel we will work with ξ defined by (2.88) which satisfies the Cauchy problem (2.96) for the NPE equation. This time in relation with the KZK equation we used the bijection (2.95). We also update our notation for

Ω 1 = T z × R n-1 y and s > n 2 + 1. Suppose that ξ 0 ∈ H s+2 (T z × R n-1 y
) and Tz ξ 0 (z, y) dz = 0. Then there is a constant r > 0 such that if ξ 0 H s+2 (Tz×R n-1 y ) < r, then, by Theorem 2.4.4, there is a unique solution

ξ ∈ C([0, ∞[; H s+2 (T z × R n-1 y
)) of the NPE Cauchy problem (2.96) satisfying Tz ξ(τ, z, y) dz = 0 for any τ ≥ 0, y ∈ R n-1 .
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We define ∂ x 1 u(t, x 1 , x ′ ) := -c ρ 0 ξ(τ, z, y) with the change of variable (2.85) and

u(t, x 1 , x ′ ) = - c ρ 0 ∂ -1 z ξ(τ, z, y) = - c ρ 0 z 0 ξ(τ, s, y)ds + L 0 s L ξ(τ, s, y)ds .
We notice u 1 (x 1 , x ′ ) := ∂ t u(0, x 1 , x ′ ) and u 0 (x 1 , x ′ ) := -c ρ 0 ∂ -1 z ξ 0 (z, y) and consequently we have

u 0 ∈ H s+2 (T x 1 × R n-1 x ′ ), u 1 ∈ H s (T x 1 × R n-1 x ′ ).
Thus for these initial data there exists

u ∈ C([0, ∞[; H s+1 (T x 1 × R n-1 x ′ )) ∩ C 1 ([0, ∞[; H s (T x 1 × R n-1 x ′ )) the unique solution on T x 1 × R n-1 x ′
of the approximated Kuznetsov system

u tt -c 2 ∆u -νε∆u t -αεu t u tt -βε∇u∇u t = ε 2 R Kuz-N P E , u(0) = u 0 ∈ H s+2 (T x 1 × R n-1 x ′ ), u t (0) = u 1 ∈ H s+1 (T x 1 × R n-1 x ′ ) (2.143)
with R Kuz-N P E defined in (2.142). If we consider the Cauchy problem (2.28) for the Kuznetsov equation on

T x 1 × R n-1 x ′
with u 0 and u 1 derived from ξ 0 we have

u 0 H s+2 (Tx 1 ×R n-1 x ′ ) + u 1 H s (Tx 1 ×R n-1 x ′ ) ≤ C ξ 0 H s+2 (Tz ×R n-1 y ) . Hence, if ξ 0 H s+2 (Tz×R n-1 y
) is small enough [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF], we have a unique solution

u ∈ C([0, ∞[; H s+1 (Ω)) ∩ C 1 ([0, ∞[; H s (Ω))
bounded in time of the Kuznetsov equation.

Theorem 2.7.1. For the defined above solutions u of the exact Cauchy problem (2.28) and u of the approximated Cauchy problem (2.143) for the Kuznetsov equation on

Ω = T x 1 ×R n-1
x ′ . Then there exist constants K > 0, C > 0, C 1 > 0 and C 2 > 0 such that for all t < C ε we have estimate (2.139) and in addition Point 3 of Theorem 2.6.5.

Proof. The global existence of u and u has already been shown. The proof of the approximation estimate follows exactly as in Theorem 2.6.5 and is thus omitted. Remark 2.7.2. We can see for n = 2 or 3, using the previous arguments that the minimum regularity of the initial data (see Table 2.2) to have the remainder terms

R Kuz-N P E ∈ C([0, +∞[; L 2 (T x 1 × R n-1 )) corresponds to ξ 0 ∈ H s (T x 1 × R n-1 ) with s ≥ 4 since then for 0 ≤ k ≤ 2 ξ(τ, z, y) ∈ C k ([0, +∞[}; H s-2k (T z × R n-2 )), which finally implies with formula u = -c ρ 0 ∂ -1 z ξ that with Ω = T x 1 × R n-1 u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 4 (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H 2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; L 2 (Ω)
). In the same way for n ≥ 4 we can take ξ 0 ∈ H s (Ω) with s > n 2 +2 for the minimal regularity as it implies

u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s (Ω)), ∂ t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-2 (Ω)), ∂ 2 t u(t, x 1 , x ′ ) ∈ C([0, +∞[; H s-4 (Ω)).

The Kuznetsov equation and the Westervelt equation
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The Kuznetsov equation and the Westervelt equation 2.8.1 Derivation of the Westervelt equation from the Kuznetsov equation

We consider the Kuznetsov equation (2.23). Similarly as in Ref. [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF] we set

Π = u + 1 2c 2 ε∂ t [u 2 ] (2.144)
and obtain

∂ 2 t Π -c 2 ∆Π = ε∂ t ∆u + γ + 1 2c 2 (∂ t u) 2 + 1 c 2 u(∂ 2 t -c 2 ∆u) . By Definition (2.144) of Π we have ∂ 2 t Π -c 2 ∆Π = ε∂ t ∆Π + γ + 1 2c 2 (∂ t Π) 2 + ε 2 R Kuz-W es
, where

ε 2 R Kuz-W es =ε 2 ∂ t - 1 2c 2 ∆(u∂ t u) - γ + 1 2c 4 ∂ t u∂ 2 t (u 2 ) + 1 c 2 u∂ t (∇u) 2 + γ -1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u + ε 3 ∂ t - γ + 1 8c 6 [∂ 2 t (u 2 )] 2 .
(2.145)

We recognize the Westervelt equation

∂ 2 t Π -c 2 ∆Π = ε∂ t ∆Π + γ + 1 2c 2 (∂ t Π) 2 .
(2.146)

Approximation of the solutions of the Kuznetsov equation by the solutions of the Westervelt equation

For the well-posedness of the Westervelt equation we refer to our work [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] on the Kuznetsov equation where our results can be directly applied. For u solution of the Cauchy problem (2.28) for the Kuznetsov equation we set

Π = u + 1 2c 2 ε∂ t [u 2
], and we have Π solution of the Cauchy problem

∂ 2 t Π -c 2 ∆Π = ε∂ t ∆Π + γ+1 2c 2 (∂ t Π) 2 + ε 2 R Kuz-W es , Π(0) = Π 0 , ∂ t Π(0) = Π 1 (2.147)
with R Kuz-W es defined by (2.145) and in accordance with the definition of Π 

Π 0 =u 0 + 1 c 2 εu 0 u 1 , (2.148) Π 1 =u 1 + 1 c 2 εu 2 1 + 1 c 2 εu 0 ∂ 2 t u(0) (2.149) =u 1 + 1 c 2 εu 2 1 + 1 c 2 εu 0 1 1 -γ-1 c 2 εu 1 c 2 ∆u 0 + ν ρ 0 ε∆u 1 + 2ε∇u 0 ∇u
∈ H s+4 (R n ) and u 1 ∈ H s+3 (R 3 ), we have Π 0 ∈ H s+3 (R n ) ⊂ H s+2 (R n ) and Π 1 ∈ H s+1 (R n ) with Π 0 H s+2 (R n ) + Π 1 H s+1 (R n ) ≤ C( u 0 H s+4 (R n ) + u 1 H s+3 (R n ) ),
so similarly to our previous work [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] we obtain

Theorem 2.8.1. Let n ≥ 1, s > n 2 , u 0 ∈ H s+4 (R n ) and u 1 ∈ H s+3 (R n ). Then there exists a constant k 2 > 0 such that if u 0 H s+4 (R n ) + u 1 H s+3 (R n ) < k 3 , (2.150)
then the Cauchy problem for the Westervelt equation 

∂ 2 t Π -c 2 ∆Π = ε∂ t ∆Π + γ+1 2c 2 (∂ t Π) 2 , Π(0) = Π 0 , ∂ t Π(0) = Π 1 (2.
Π ∈ H 2 ([0, +∞[, H s (R n )) ∩ H 1 ([0, +∞[, H s+2 (R n )) (2.152) and if s ≥ 1 Π ∈ C([0, +∞[, H s+2 (R n )) ∩ C 1 ([0, +∞[, H s+1 (R n )) ∩ C 2 ([0, +∞[, H s-1 (R n )) (2.153)

Moreover we have Π global in time solution of the approximated Cauchy problem (2.147) with the same regularity.

For Π solution of the Cauchy problem (2.151) we set u such that Π = u + ε c 2 u∂ t u and we obtain

∂ 2 t u -c 2 ∆u -ε ν ρ 0 ∆∂ t u -ε γ -1 c 2 ∂ t u∂ 2 t u -2ε∇u.∇∂ t u +ε 1 c 2 ∂ t u∂ 2 t u -∂ t u∆u + 1 c 2 u∂ 3 t u -u∆∂ t u = ε 2 R W es-Kuz 1 with R W es-Kuz 1 = ν ρ 0 c 2 (2∂ t u∆∂ t u + 2(∇∂ t u) 2 + ∂ 2 t u∆u + u∆∂ 2 t + 2∇u.∇∂ 2 t u) + γ + 1 c 4 ((∂ t u) 2 + u∂ 2 t u)∂ 2 t u + γ + 1 c 4 (3∂ t u∂ 2 t u + u∂ 3 t u)∂ t u +ε γ + 1 c 6 ((∂ t u) 2 + u∂ 2 t u)(3∂ t u∂ 2 t u + u∂ 3 t u).
And as 

∂ 2 t u -c 2 ∆u = O(ε) if we inject this in the term 1 c 2 ∂ t u∂ 2 t u -∂ t u∆u + 1 c 2 u∂ 3 t u -εu∆∂ t u we have ∂ 2 t u -c 2 ∆u -ε ν ρ 0 ∆∂ t u -ε γ -1 c 2 ∂ t u∂ 2 t u -2ε∇u.∇∂ t u = ε 2 R W es-Kuz . ( 2 
> 0, n ≥ 2, s > n 2 with s ≥ 1, u 0 ∈ H s+4 (R n ) and u 1 ∈ H s+3 (R n ), there exists k > 0 such that u 0 H s+4 (R n ) + u 1 H s+3 (R n ) < k
(0) = u 0 , ∂ t u(0) = u 1 , u(0) = u 0 , ∂ t u(0) = u 1 , there exists constants K > 0 and C > 0 independent of ε such that for all t ≤ C ε we have C 1 > 0 and C 2 > 0 with estimate (2.141).
Proof. The existence of u and u has already been shown. The proof of the approximation estimate follows exactly the proof of Theorem 2.6.5 and hence it is omitted. Remark 2.8.1. For the minimal regularity (see Table 2.2) of u 0 and u 1 to ensure that R Kuz-W es , see Eq. (2.145)

, is in C([0, +∞[; L 2 (R + × R n-1 )), if u 0 ∈ H s+2 (R 3 ) and u 1 ∈ H s+1 (R 3 ) for s ≥ 3 then u ∈C([0, +∞[; H 5 (R 3 )), ∂ t u ∈ C([0, +∞[; H 4 (R 3 )), ∂ 2 t u ∈C([0, +∞[; H 2 (R 3 )), ∂ 3 t u ∈ C([0, +∞[; L 2 (R 3 )).
Taking Π as in (2.144) we obtain

Π ∈ C([0, +∞[; H 4 (R 3 )), ∂ t Π ∈ C([0, +∞[; H 2 (R 3 )), ∂ 2 t Π ∈ C([0, +∞[; L 2 (R 3 )).
Injecting this result in the approximated Westervelt equation in system (2.147) we obtain R Kuz-W es ∈ C([0, +∞[; L 2 (R 3 )). In the same way if n ≥ 4 we take u 0 ∈ H s+2 (R n ) and

u 1 ∈ H s+1 (R n ) with s > n 2 + 1.

Summary

We summarize all obtained approximation results in two comparative tables: Table 2.1 for the approximations of the Navier-Stokes and Euler systems and Table 2.2 for the approximations of the Kuznetsov equation. Ansatz 
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ρ ε = ρ 0 + ερ 1 + ε 2 ρ 2 , v ε = -ε∇u, ρ 1 = ρ 0 c 2 ∂ t u, ρ 2 from (2.18) paraxial approximation u = Φ(t -x 1 c , εx 1 , √ εx ′ ) ρ ε = ρ 0 + εI + ε 2 J, v ε from (2.68), I = ρ 0 c 2 ∂ τ Φ, J from (2.58) paraxial approximation u = Ψ(εt, x 1 -ct, √ εx ′ ) ρ ε = ρ 0 + εξ + ε 2 χ, v ε from (2.86), ξ = -ρ 0 c ∂ z Ψ, χ from (2.89) Models ∂ 2 t u -c 2 ∆u = ε∂ t (∇u) 2 + γ-1 2c 2 (∂ t u) 2 + ν ρ 0 ∆u c∂ 2 τ z I -(γ+1) 4ρ 0 ∂ 2 τ I 2 -ν 2c 2 ρ 0 ∂ 3 τ I -c 2 2 ∆ y I = 0 ∂ 2 τ z ξ + (γ+1)c 4ρ 0 ∂ 2 z (ξ 2 ) -ν 2ρ 0 ∂ 3 z ξ + c 2 ∆ y ξ = 0 Approxi- mation Order O(ε 3 ) Domain Ω R 3 the half space {x 1 > 0, x ′ ∈ R n-1 } the cone {|x 1 | < R ǫ -ct} ×R n-1 x ′ T x 1 × R 2 Approxi- mation U ε -U ε L 2 ≤ ε for t ≤ T ε Initial data regularity u 0 ∈ H 5 (Ω) u 1 ∈ H 4 (Ω) u 0 ∈ H 4 (Ω) u 1 ∈ H 3 (Ω) I 0 ∈ H 10 (Ω) I 0 ∈ H 10 (Ω) ξ 0 ∈ H 5 (Ω) ξ 0 ∈ H 5 (Ω) Data regularity for remainder boundness u 0 ∈ H s+2 (Ω) u 1 ∈ H s+1 (Ω) s > n 2 u 0 ∈ H s+2 (Ω) u 1 ∈ H s+1 (Ω) s > n 2 I 0 ∈ H 8 (Ω) I 0 ∈ H 8 (Ω) ξ 0 ∈ H 4 (Ω) ξ 0 ∈ H 4 (Ω)
= Φ(t -x 1 c , εx 1 , √ εx ′ ) paraxial approximation u = Ψ(εt, x 1 -ct, √ εx ′ ) Π = u + 1 c 2 εu∂ t u Approxi- mation domain the half space {x 1 > 0, x ′ ∈ R n-1 } T x 1 × R 2 R 3 Approxi- mation order O(ε) O(ε) O(ε 2 ) Estimation I -I aprox L 2 (Tt×R n-1 ) ≤ ε z ≤ K (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε. t < T ε (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε t < T ε (u -u) t (t) L 2 + ∇(u -u)(t) L 2 ≤ Kε t < T ε Initial data regularity I 0 ∈ H s+ 3 2 (T t × R n-1 x ′ ) for s ≥ n 2 + 2 I 0 ∈ H s (T t × R n-1 x ′ ) for s 2 > n 2 + 2 ξ 0 ∈ H s+2 (T x 1 × R n-1 x ′ ) for s > n 2 + 1 u 0 ∈ H s+4 (R n ) u 1 ∈ H s+3 (R 3 ) for s > n 2 Data regularity for remainder boundness I 0 ∈ H s+ 3 2 (T t × R n-1 x ′ ) for s ≥ n 2 + 2 I 0 ∈ H 6 (T t × R n-1 x ′ ) for n = 2, 3, I 0 ∈ H s (T t × R n-1 x ′ ) for s 2 > n 2 + 1, n ≥ 4 ξ 0 ∈ H 4 (T x 1 × R n-1 x ′ ) for n = 2, 3. ξ 0 ∈ H s (T x 1 × R n-1 x ′ ) for s > n 2 + 2, n ≥ 4. u 0 ∈ H s+2 (R n ) u 1 ∈ H s+1 (R n ) for s ≥ 3, n = 2, 3. u 0 ∈ H s+2 (R n ) u 1 ∈ H s+1 (R n ) for s ≥ n 2 + 1, n ≥ 4.

Part II Propagation of linear and nonlinear waves in domains with fractal boundaries

Chapter 3 

Introduction to Part II

Introduction française

         -∆u = f sur Ω, u| Ω = g sur ∂Ω, (3.1) 
ou de Robin homogène

         -∆u = f sur Ω, ∂ ∂n u + au = 0 avec a > 0 sur ∂Ω, (3.2) 
notamment concernant les estimations de la forme

u L ∞ (Ω) ≤ C ∆u L p (Ω) . ( 3.3) 
Les Sections 4.2 et 4.3 sont dédiées respectivement à l'équation des ondes et à l'équation des ondes fortement amorties et à la régularité des solutions au sens faible de ces équations pour des conditions de Dirichlet homogènes en se basant sur une méthode de Galerkin comme chez Evans [START_REF] Evans | Partial differential equations[END_REF]. Il est à noter que pour de telles conditions aux bords le domaine considéré a juste besoin d'être un ouvert borné quelconque, le point clé étant l'inégalité de Poincaré. La Section 4.4 est dédiée au caractère bien posé de l'équation des ondes fortement amortie avec des conditions de Robin homogènes. Avec les résultats de la Section 4.3 sur l'équation des ondes fortement amorties nous avons traité le caractère bien posé au sens faible de l'équation de Westervelt avec des conditions de Dirichlet homogène dans la Section 5.1 de la même façon que dans la preuve du Point 1 du Théorème 1.2.2 dans le Chapitre 1 Section 1.5.1 pour le caractère bien posé global de l'équation de Kuznetsov sur R n en utilisant le Théorème 1.5.2. Si nous pouvons encore considérer un domaine borné quelconque en dimension n = 3, la nécessité d'un contrôle de la norme L ∞ de la solution de l'équation de Poisson avec une estimation du type (3.3) nous a amenés à nous restreindre à des domaines dits admissibles (voir la Définition 4.1.5) en dimension n = 2 par Nyström [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF]. En Section 5.2 à l'aide des résultats sur les traces et les extensions de la Section 4.1 en nous plaçant sur les domaines admissibles, nous avons pu traiter le cas de l'équation de Westervelt avec des conditions de Dirichlet non homogènes.

La Section 5.3 est dédiée à l'étude de l'équation de Westervelt avec des conditions de Robin homogènes. Les résultats de régularité concernant l'inégalité (3.3) connus par la Section 4.1 pour l'équation de Poisson avec conditions de Robin homogènes nous ont amené à nous placer dans les espaces H s sur un domaine à bords lipschitziens et sur les espaces W s,p avec p > n sur un domaine admissible pour traiter du caractère bien posé au sens faible de l'équation de Westervelt.

Dans la Section 5.4, nous finissons cette Partie en considérant un ensemble à bord fractal de type mixture de Koch construit par récurrence à l'aide de familles de similitudes contractantes induisant ainsi une famille de domaines à bords préfractals et lipschitziens convergeant vers le domaine à bords fractals. En utilisant différents travaux de Capitanelli [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], Capitanelli et Vivaldi [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] ou Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF], nous avons pu considérer la convergence asymptotique de type Mosco des solutions de l'équation de Westervelt avec conditions de Robin sur les domaines à bords préfractals qui approximent la solution sur le domaine à bords fractal de type mixture de Koch, une démarche souvent utilisée dans le cadre de l'optimisation de forme. De fait dans la Sous-section 5.4.3, nous montrons la convergence asymptotique de type Mosco des formes variationnelles associées à l'équation de Westervelt en considérant un bord purement fractal et des conditions de Robin aux bords partout. Néanmoins la nécessité d'un contrôle uniforme des normes des solutions sur le préfractal, indépendant de la génération du préfractal, nous a amené à imposer une condition de Dirichlet homogène sur une partie du bord du domaine pour pouvoir utiliser l'inégalité de Poincaré. L'utilisation de l'inégalité de Poincaré est essentielle pour faire apparaître dans les estimations des constantes ne dépendant que des aires des domaines qui, dans notre cas, sont bornées uniformément.

Introduction

The main topic of this Part is the study of the regularity properties of the weak solutions of equations on Ω of a bounded open set of R n , n ≥ 2 with a fractal boundary. We can refer to the general introduction.

We begin in Section 4.1 by giving the known properties of admissible domains (see Definition 4.1.5) which are the most general class as soon as we want to define a trace or an extension on the domain Ω (see Theorem 4.1.1) or Sobolev embeddings (see Theorem 4.1.2). In the sequel with Subsections 4.1.2 and 4.1.3 we give the known properties of the Poisson problem with the Dirichlet boundary conditions (3.1) or the homogeneous Robin boundary conditions (3.2), also giving estimates of form (3.3). Sections 4.2 and 4.3 are dedicated respectively to the wave equation and the strongly damped wave equation and to the well-posedness of these equations in a weak sense for the homogeneous Dirichlet boundary conditions basing ourselves on a Galerkin method as in Evans [START_REF] Evans | Partial differential equations[END_REF]. Let us note that for such boundary conditions the considered domain only needs to be any bounded open domain, the key point being the Poincaré inequality.

With the results in Section 4.3 on the strongly damped wave equation we have treated in Section 5.1 the well-posedness in a weak sense of the Westervelt equation with the homogeneous Dirichlet boundary conditions in the same way that in the proof of Point 1 of Theorem 1.2.2 in Chapter 1 Section 1.5.1 for the global well-posedness of the Westervelt equation on R n using Theorem 1.5.2. If we can again considerer any bounded open domain in dimension n = 3, the necessity to controm the L ∞ -norm of the solution with an estimate of the form (3.3) leads us to restrict ourselves on the admissible domains in dimension n = 2 by [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF]. In Section 5.2 with the help of results on traces and extensions in Section 4.1 using the admissible domains we can treat the case of the Westervelt equation with non homogeneous boundary conditions. Section 4.4 is used to show the well-posedness of the strongly damped wave equation with the homogeneous Robin boundary conditions. Section 5.3 is dedicated to the study of the Westervelt equation with homogeneous Robin boundary conditions. The regularity results concerning estimate (3.3) known by Section 4.1 for the Poisson equation lead us to work with spaces of type H s on bounded Lipschitz domains and on spaces W s,p with p > n on an admissible domain to treat the well-posedness in a weak sense of the Westervelt equation. In Section 5.4, we will conclude this Part considering a domain with a fractal boundary of Koch mixture type constructed by induction with the help of families of contractive similitudes inducing a family of domains with prefractal and Lipshitz boundaries approximating the domain with fractal boundaries. Using different works by Capitanelli [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], Capitanelli and Vivaldi [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] or Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF], we consider the asymptotic convergence of Mosco type of the solutions of the Westervelt equation with the Robin boundary conditions on domains with a prefractal boundary which approach the solution on the domain with a fractal boundary of Koch mixture type, a method often used in the case of the shape optimisation. In fact in Subsection 5.4.3 we show the convergence of Mosco type of the variational form associated to the Westervelt equation considering a fractal boundary everywhere with the Robin boundary condition. Nevertheless the necessity of a uniform control of the norms of the solutions on the prefractal , independent of the generation of the prefractal, leads us to impose an homogeneous Dirichlet boundary condition on a part of the domain's boundary in order to use the Poincaré inequality. In the estimates, the use of the Poincaré inequality is essential to make appear constants depending only of the areas of our domains which in our case are uniformly bounded.

Chapter 4

Regularity of linear models on domains with fractal boundaries

In this Chapter, we study linear equations such as the Poisson equation, the wave equations and the strongly damped wave equation.

First results and notations

Admissible domains

Thanks to article [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] and the references therein we introduce the following definitions :

Definition 4.1.1. (d-set) Let F be a Borel subset of R n and m d be the d-dimensional Hausdorff measure, 0 < d ≤ n. The set F is called a d-set, if there exists positive constants c 1 , c 2 > 0, c 1 r d ≤ m d (F ∩ B r (x)) ≤ c 2 r d , f or ∀x ∈ F, 0 < r ≤ 1 where B r (x) ⊂ R n
denotes the Euclidean ball of radius r and centered at x.

• In R n , Lipschitz domains and regular domains are n-sets whith (n -1)-sets as boundaries.

• [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] In R n , the (ε, δ) domains are n-sets with a possibly fractal d-set boundary.

Definition 4.1.2. (Markov's local inequality

) A closed subset V in R n preserves Markov's local inequality if for every fixed k ∈ N * , there exists a constant c = c(V, n, k) > 0, such that max V ∩Br(x) |∇P | ≤ c r max V ∩Br(x)
|P | for all polynomials P ∈ P k and all closed balls B r (x), x ∈ V and 0 < r ≤ 1.

The Markov's inequality means geometrically that the sets considered are not too "flat" everywhere [START_REF] Jonsson | Hardy and Lipschitz spaces on subsets of R n[END_REF] for example it is not contained in a plane of R 4 . 

C k p (Ω) = f ∈ L p (Ω) | f ♯ k,Ω (x) = sup r>0 r -k inf P ∈P k-1 1 µ(B r (x)) Br(x)∩Ω |f -P |dy ∈ L p (Ω) with the norm f C k p = f L p + f ♯ k,Ω L p .
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This spaces have been introduced in [START_REF] Hajłasz | Measure density and extendability of Sobolev functions[END_REF] in order to treat the extendability of Sobolev functions on optimal spaces. 

u ∈ L 1 loc (Ω) by Tru(x) = lim r→0 1 λ(Ω ∩ B r (x)) Ω∩Br(x) u(y) dλ,
where λ is the Lebesgue measure. The trace operator Tr is considered for all x ∈ Ω for which the limit exists.

Introduced for example in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], this local definition of the trace permits to extend the notion of trace employed for continuous functions.

Definition 4.1.5. (Admissible domain)

A domain Ω ⊂ R n is called admissible if it is an n-set such that for 1 < p < ∞ and k ∈ N * W k,p (Ω) = C k p (Ω)
as set with equivalent norms, with a closed d-set boundary ∂Ω, 0 < d < n, preserving local Markov's inequality. Now, we can give the trace theorem as in [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF].

Theorem 4.1.1. Let 1 < p < +∞, k ∈ N * be fixed. Let Ω be an admissible domain in R n . Then for β = k -n-d p > 0, the following trace operators 1. Tr : W k,p (R n ) → B p,p β (∂Ω), 2. Tr Ω : W k,p (R n ) → W k,p (Ω),

Tr

∂Ω : W k,p (Ω) → B p,p β (

∂Ω) are linear continuous and surjective with linear bounded right inverse, i.e. extension, operators

E : B p,p β (∂Ω) → W k,p (R n ), E Ω : W k,p (Ω) → W k,p (R n ), E ∂Ω : B p,p β (∂Ω) → W k,p (Ω).
The definition of the Besov space B p,p β (∂Ω) on a close d-set ∂Ω can be found, for instance, in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] p.135. The next proposition was shown in [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] with the help of [START_REF] Lancia | A transmission problem with a fractal interface[END_REF].

Proposition 4.1.1. (Green formula) Let Ω be an admissible domain in R n (n ≥ 2) with a d-set boundary ∂Ω such that n -2 < d < n. Then for all u, v ∈ H 1 (Ω) with ∆u ∈ L 2 (Ω) it holds the Green formula Ω v∆u dx = ∂u ∂n , T rv ((B 2,2 β (∂Ω)) ′ ,B 2,2 β (∂Ω)) - Ω ∇u∇v dx, where β = 1 -n-d 2 > 0 and the Besov space B 2,2 β (∂Ω) and dual Besov space (B 2,2 β (∂Ω)) ′ = B 2,2 -β (∂Ω).
Article [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] also tells us that the Sobolev's embeddings stay true for a bounded admissible domain.

Theorem 4.1.2. (Sobolev's embeddings) Let

Ω ⊂ R n be a bounded n-set with W k p (Ω) = C k p (Ω), 1 < p < +∞, k, l ∈ N * .
Then there hold the following compact embeddings 1. W k+l,p (Ω) ⊂⊂ W l,p (Ω),

2. W k,p (Ω) ⊂⊂ L q (Ω),
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with q ∈ [1, +∞[ if kp = n, q ∈ [1, +∞] if kp > n,
and with q ∈ 1, pn n-kp if kp < n. Moreover if kp < n we have the continuous embedding

W k,p (Ω) ֒→ L pn n-kp (Ω).
In addition, the Poincaré inequality stays true on bounded admissible domains: Theorem 4.1.3. (the Poincaré inequality) Let Ω ⊂ R n with n ≥ 2 be a bounded connected admissible domain. For all u ∈ W 1,p 0 (Ω) with 1 ≤ p < +∞, there exists C > 0 depending only on Ω, p and n such that

u L p (Ω) ≤ C ∇u L p (Ω) .
Therefore the semi-norm . W 1,p 0 (Ω) , defined by u W 1,p 0 (Ω) := ∇u L p (Ω) , is a norm which is equivalent to . W 1,p (Ω) on W 1,p 0 (Ω). Moreover for all u ∈ W 1,p (Ω) there exists C > 0 depending only on Ω, p and n such that

u - 1 λ(Ω) Ω u dλ L p (Ω) ≤ C ∇u L p (Ω) .
Proof. The result for u ∈ W 1,p 0 (Ω) comes from the boundness of Ω. The result for u ∈ W 1,p (Ω) comes from the compactness of the embedding W 1,p (Ω) ⊂⊂ L p (Ω) from Theorem 4.1.2 and following for instance the proof in [START_REF] Evans | Partial differential equations[END_REF] (see section 5.8.1 Theorem 1).

We also have by [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] the following theorem for the Dirichlet-to-Neumann operator.

Theorem 4.1.4. Let Ω be a bounded admissible domain in R n (n ≥ 2) with a d-set boundary ∂Ω such that n -2 < d < n. Then for β = 1 -n-d 2 > 0 the Poincaré-Steklov operator A : B 2,2 β (∂Ω) → B 2,2
-β (∂Ω) mapping u| ∂Ω to ∂ ν u| ∂Ω is a linear bounded self adjoint operator with ker A = 0.

The Poisson equation with Dirichlet boundary conditions

In a way, the theorems coming from [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] show that the function spaces on admissible domain share a lot of properties with the same function spaces considered on regular domains or domains with Lipschitz boundary. Nevertheless differences in the regularity of solutions occur (see Theorems 4.1.8 and 4.1.9) when we consider partial differential equations even as simple as the Poisson equation on admissible domains. Using the results from [START_REF] Jonsson | Boundary value problems and Brownian motion on fractals[END_REF] and [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] we have the following well-posedness result for the Laplace equation.

Theorem 4.1.5. Let Ω be a bounded admissible domain in R n (n ≥ 2) with a d-set boundary ∂Ω such that n -2 < d < n. For β = 1 -n-d 2 > 0, given f ∈ L 2 (Ω) and g ∈ B 2,2 β (∂Ω) the Poisson problem (3.1) has a unique weak solution u ∈ H 1 (Ω) in the sense that ∀v ∈ H 1 0 (Ω), Ω ∇u∇v = Ω f v,
and T r ∂Ω u = g. Furthermore, the mapping {f, g} → u is a bounded linear operator from L 2 (Ω) × B 2,2 β (∂Ω) to H 1 (Ω).
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Proof. First we use the operator E ∂Ω defined in Theorem 4.1.2 to obtain g ∈ H 1 (Ω) such that T r ∂Ω g = g and g H 1 (Ω) ≤ C g B 2,2 β (∂Ω) with C > 0. Then the researched solution u of the Poisson problem (3.1) is defined as u = w + g where w ∈ H 1 0 (Ω) is given as a function such that ∀v ∈ H 1 0 (Ω)

Ω ∇w∇v = Ω f v - Ω ∇g∇v.
Applying the Lax-Milgram theorem with the Poincaré inequality such a function w exists and is unique and we can easily deduce the boundness of the mapping {f, g} → u as the Lax-Milgram theorem and the Poincaré inequality give us the estimate

w H 1 (Ω) ≤ C 1 ∇w L 2 (Ω) ≤ C 2 f L 2 (Ω) + ∇g L 2 (Ω) , with C 1 > 0 and C 2 > 0.
The following theorem can be shown using [START_REF] Evans | Partial differential equations[END_REF] section 6.3.1 page 309.

Theorem 4.1.6. [START_REF] Evans | Partial differential equations[END_REF] Let Ω be an arbitrary bounded domain in

R n (n ≥ 2). Assume f ∈ L 2 (Ω). Suppose furthermore that u ∈ H 1 0 (Ω) is the weak solution of the Poisson problem (3.1) with g = 0. Then 1. u ∈ H 2 loc (Ω)
and for each open subset V ⊂⊂ Ω we have the estimate

u H 2 (V ) ≤ C f L 2 (Ω) ,
where the constant C > 0 depends only on the open subset V and on the domain Ω itself.

Assume f ∈ H m (Ω).

Then u ∈ H m+2 loc (Ω) and for each open subset V ⊂⊂ Ω we have the estimate

u H m+2 (V ) ≤ C f H m (Ω) ,
with a constant C > 0 depending only on V and Ω.

Assume

f ∈ C ∞ (Ω). Then u ∈ C ∞ (Ω).

Remark 4.1.1. We see that for u solution of the Poisson problem (3.1) with homogeneous Dirichlet boundary conditions the interior regularity on V ⊂⊂ Ω does not depend on the geometry of Ω. Nevertheless if we take non homogeneous Dirichlet boundary conditions the solution can only be defined if we have appropriate trace and extensions theorems according to the proof of Theorem 4.1.5, which implies that we need to consider at least a bounded admissible domain.

Let us also notice that as -∆ with homogeneous Dirichlet data is a symmetric elliptic operator we have by [START_REF] Evans | Partial differential equations[END_REF] (Section 6.5.1 p. 334): Theorem 4.1.7. [START_REF] Evans | Partial differential equations[END_REF] Let Ω be a bounded arbitrary connected domain in R n (n ≥ 2). We consider the symmetric elliptic operator -∆ with homogeneous Dirichlet data on Ω. Then 1. The eigenvalues of -∆ are at most countable, of finite multiplicity and real.
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2. If we repeat each eigenvalue according to its multiplicity, we have

{λ k } ∞ k=1 , where 0 < λ 1 ≤ λ 2 ≤ λ 3 ≤ • • • and λ k → +∞ for k → +∞.

There exists an orthonormal basis {w

k } ∞ k=1 of L 2 (Ω), where w k ∈ H 1 0 (Ω) ∩ C ∞ (Ω) is an eigenfunction corresponding to λ k : for k = 1, 2, . . . in a weak sense          -∆w k = λ k w k in Ω, w k = 0 on ∂Ω. Remark 4.1.2.
The key point to work on arbitrary domain is the compactness of the embedding of H 1 0 (Ω) into L 2 (Ω) which is necessary with respect to the proof presented in Ref. [START_REF] Evans | Partial differential equations[END_REF]. By the weak formulation, {w k } ∞ k=1 is an orthogonal basis of H 1 0 (Ω). The results in Theorems 4.1.1-4.1.7 permit to see that the regularity of the datum f in the Poisson problem (3.1) with the homogeneous Dirichlet boundary conditions ensures the regularity of the solution in the interior of the domain even if Ω has a fractal boundary. As we only have local regularity results we have to consider in which case we can expand these results. For this we recall the result from [START_REF] Evans | Partial differential equations[END_REF] for regular domains. 

∂Ω is of class C m+2 . Then u ∈ H m+2 (Ω)
and we have the estimate

u H m+2 (Ω) ≤ C f H m (Ω) ,
with a constant C > 0 depending only on m, Ω.

Remark 4.1.3. The work of Grisvard [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF] tells us that in dimension n = 2 this result is also true for convex polygonal domains.

As a consequence, in a bounded domain Ω with a smooth boundary if f ∈ L 2 (Ω) and u ∈ H 1 0 (Ω) is a weak solution of the Poisson problem (3.1) with g = 0 then u ∈ H 2 (Ω). This is no longer true for domains with a fractal boundary even if the source term f is very regular. For example we have: Theorem 4.1.9. [START_REF] Nyström | Smoothness properties of solutions to dirichlet problems in domains with a fractal boundary[END_REF] Let Ω ⊂ R 2 be von Koch's snowflake. Let f ∈ D(Ω) be non negative and non identically zero. Let u ∈ H 1 0 (Ω) be the weak solution of the Poisson problem (3.1) with g = 0. Then u / ∈ H 2 (Ω).

This theorem implies that for von Koch's snowflake as u / ∈ H 2 (Ω), we have not proved that the solution u ∈ C(Ω), a fact observed in reality for example in the case of a drum membrane. In dimension n = 3 we can use the next theorem: Theorem 4.1.10. [START_REF] Xie | A sharp pointwise bound for functions with L 2 -Laplacians and zero boundary values of arbitrary three-dimensional domains[END_REF] Let Ω be an arbitrary open set in R

3 . If u ∈ H 1 0 (Ω) and ∆u ∈ L 2 (Ω), then u L ∞ (Ω) ≤ 1 √ 2π ∇u 1/2 L 2 (Ω) ∆u 1/2 L 2 (Ω) .
The constant 1 √ 2π is the best possible for all Ω. Using Theorems 4.1.5, 4.1.6 and 4.1.10 we can deduce the result:

Corollary 4.1.1. Let Ω be a bounded arbitrary domain in R 3 . Assume f ∈ L 2 (Ω). Suppose furthermore that u ∈ H 1 0 (Ω) is the weak solution of the Poisson problem (3.1) with g = 0. Then u ∈ C(Ω)
and we have the estimate

u L ∞ (Ω) ≤ C f L 2 (Ω)
with a constant C > 0 depending only on Ω.

Proof. On Ω a bounded arbitrary domain we have, by the Lax-Milgram theorem for u ∈ H 1 0 (Ω) the weak solution of the Poisson problem (3.1) with g = 0, the estimate with C > 0

∇u L 2 (Ω) ≤ C f L 2 (Ω) = C ∆u L 2 (Ω) .
Then we use the estimate of Theorem 4.1.10 to conclude.

For a similar result in dimension n = 2 we use again [START_REF] Nyström | Smoothness properties of solutions to dirichlet problems in domains with a fractal boundary[END_REF]. The domain used are the Non Tangentially Accessible (NTA) domains introduced in [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] with the help of the notion of Harnack chain : Definition 4.1.6. [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF](Harnack chain) An M non-tangential ball in a domain Ω is a ball B(A, r) in Ω whose distance from ∂Ω is comparable to its radius:

Mr > d(B(A, r), ∂Ω) > M -1 r.
For P 1 , P 2 in Ω, a Harnack chain from P 1 to P 2 in Ω is a sequence of M non-tangential balls such that the first ball contains P 1 , the last contains P 2 , and such that consecutive balls have non empty intersections. Definition 4.1.7. [START_REF] Jerison | Boundary behavior of harmonic functions in nontangentially accessible domains[END_REF] (NTA domain) A bounded domain Ω ⊂ R n is called NTA when there exist constants M and r 0 such that:

1. Corkscrew condition: For any Q ∈ ∂Ω, r < r 0 , there exists

A = A r (Q) ∈ Ω such that M -1 r < |A -Q| < r and d(A, ∂Ω) > M -1 r.
2. R n \ Ω satisfies the Corkscrew condition.

3. Harnack chain condition: If ǫ > 0 and P 1 and P 2 belong to Ω, d(P j ; ∂Ω) > ǫ and |P 1 -P 2 | < Cǫ, then there exists a Harnack chain from P 1 to P 2 whose length depends on C and not on ǫ.

The work in [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF] and [START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF] on the well-posedness of the Westervelt equation need estimates that are true for bounded domains with a regular C 2 -boundary. We present their analogous versions, which are necessary to obtain the similar results of well-posedness for admissible domains.

Proposition 4.1.2. Let Ω be a bounded connected admissible domain in R n for n = 2 or 3 with a d-set boundary ∂Ω such that n -2 < d < n. Let

β 1 = 1 - n -d 2 and β 2 = 2 - n -d 2 . For w ∈ H 1 (Ω) with ∆w ∈ L 2 (Ω) and T r ∂Ω w ∈ B 2,2 β 2 (∂Ω) we have H 1 (Ω) ⊂ L 2 (Ω) with w L 2 (Ω) ≤ C0 ( ∇w L 2 (Ω) + T r ∂Ω w B 2,2 β 1 (∂Ω) ), (4.1) 
∇w L 2 (Ω) ≤ C 0 ( ∆w L 2 (Ω) + T r ∂Ω w B 2,2 β 2 (∂Ω) ), (4.2) 
H 1 (Ω) ⊂ L 6 (Ω) with w L 6 (Ω) ≤ C1 ( ∇w L 2 (Ω) + T r ∂Ω w B 2,2 β 1 (∂Ω) ), (4.3) 
w L ∞ (Ω) ≤ C2 ( ∆w L 2 (Ω) + T r ∂Ω w B 2,2 β 2 (∂Ω) ), (4.4) 
L 6 5 (Ω) ⊂ H -1 (Ω), with w H -1 (Ω) ≤ C3 w L 6 5 (Ω) . (4.5)
Moreover for n = 2 we fix p 1 > 2 and p ′ 1 > 2 such that 2 < p 1 < q 0 + ǫ (see Theorem 4.1.12) and 1

p 1 + 1 p ′ 1 = 1 2 and note C p 1 > 0, C p ′ 1 > 0 such that ∇w L p 1 (Ω) ≤ C p 1 ( ∆w L 2 (Ω) + T r ∂Ω w B 2,2 β 2 (∂Ω) ), (4.6) 
w L p ′ 1 (Ω) ≤ C p ′ 1 ( ∇w L 2 (Ω) + T r ∂Ω w B 2,2 β 1 (∂Ω) ). (4.7) 
Proof. The estimates (4.1) and (4.3) are a direct consequence of Proposition 3 in Ref. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] as the norm

∇. 2 L 2 (Ω) + T r ∂Ω . 2 L 2 (∂Ω)
is equivalent to the H 1 -norm and by Ref. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] for instance B 2,2 β 1 (∂Ω) ⊂⊂ L 2 (∂Ω). Estimate (4.5) comes from Theorem 4.1.2 and duality. In dimension n = 2 we have by Theorem 4.1.1

E ∂Ω (T r ∂Ω w) ∈ H 2 (Ω) with E ∂Ω (T r ∂Ω w) H 2 (Ω) ≤ C T r ∂Ω w B 2,2 β 2 (∂Ω) and T r ∂Ω [w -E ∂Ω (T r ∂Ω w)] = 0. Then it implies w -E ∂Ω (T r ∂Ω w) ∈ H 1 0 (Ω) and ∆[w -E ∂Ω (T r ∂Ω w)] ∈ L 2 (Ω).
So by Theorem 4.1.12 we take p 1 > 2 such that 2 < p 1 < q 0 + ǫ to obtain

∇[w -E ∂Ω (T r ∂Ω w)] L p 1 (Ω) ≤ C(p 1 , Ω) ∆[w -E ∂Ω (T r ∂Ω w)] L 2p 1 2+p 1 (Ω) . But 1 < 2p 1 2+p 1 < 2 and Ω bounded so L 2 (Ω) ֒→ L 2p 1
2+p 1 (Ω) so we can obtain estimate (4.6) by the fact that

∇w L p 1 (Ω) ≤ ∇[w -E ∂Ω (T r ∂Ω w)] L p 1 (Ω) + ∇E ∂Ω (T r ∂Ω w) L p 1 (Ω) ≤C ∆[w -E ∂Ω (T r ∂Ω w)] L 2p 1 2+p 1 (Ω) + C E ∂Ω (T r ∂Ω w) H 2 (Ω) ≤C ∆w L 2 (Ω) + C ∆E ∂Ω (T r ∂Ω w) L 2 (Ω) + C E ∂Ω (T r ∂Ω w) H 2 (Ω) ≤C ∆w L 2 (Ω) + C E ∂Ω (T r ∂Ω w) H 2 (Ω) ≤C ∆w L 2 (Ω) + C T r ∂Ω w B 2,2 β 2 
(∂Ω) .
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We can deduce estimate (4.2) in the same way but also estimate (4.4) as W 1,p 1 0 (Ω) ⊂ L ∞ (Ω) by Theorem 4.1.2. In dimension n = 3 we use again E ∂Ω (T r ∂Ω w) with Corollary 4.1.1 and Theorem 4.1.1 to obtain estimate (4.4).

The proof of estimate (4.7) is not different from the proof of estimate (4.3) as p ′ 1 > 2 and we are in dimension n = 2. Remark 4.1.5. Estimates (4.1)- (4.5) are very similar to those used in [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF] and [START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF] for a regular domain, with the Besov spaces replacing H 3/2 (∂Ω) and H 1/2 (Ω)

w L 2 (Ω) ≤ C0 ( ∇w L 2 (Ω) + T r ∂Ω w H 1/2 (∂Ω) ), ∇w L 2 (Ω) ≤ C 0 ( ∆w L 2 (Ω) + T r ∂Ω w H 3/2 (∂Ω) ), w L 6 (Ω) ≤ C1 ( ∇w L 2 (Ω) + T r ∂Ω w H 1/2 (∂Ω) ), ∇w L 6 (Ω) ≤ C 1 ( ∆w L 2 (Ω) + T r ∂Ω w H 3/2 (∂Ω) ), w L ∞ (Ω) ≤ C2 ( ∆w L 2 (Ω) + T r ∂Ω w H 3/2 (∂Ω) ), w H -1 (Ω) ≤ C3 w L 6 5 (Ω) .
Nevertheless the Theorem 4.1.12 tells us that, in a general NTA-domain or Lipschitz domain, we do not have the estimate

∇w L 6 (Ω) ≤ C( ∆w L 2 (Ω) + T r ∂Ω w B 2,2 β 2 (∂Ω) ),
which implies to make a sly modification in the proof of [START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF]. In dimension n = 2 this estimate stays true for convex polygonal domains by the work of [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF], which allows to extend the results of well-posedness in [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF] found initially for a regular C 2 boundary.

The Poisson equation with homogeneous Robin boundary conditions

Definition 4.1.9. For a > 0, we define the norm . H1 (Ω) in H 1 (Ω) by

u H1 (Ω) = Ω |∇u| 2 dx + a ∂Ω |T r ∂Ω u| 2 dm d . (4.8) For f ∈ L 2 (Ω), we say that u ∈ H 1 (Ω) is a weak solution of the Poisson problem (3.2) provided for all v ∈ H 1 (Ω) (u, v) H1 (Ω) = Ω ∇u∇v dx + a ∂Ω T r ∂Ω uT r ∂Ω v dm d = Ω f v dx = (f, v) L 2 (Ω) .
Proposition 3 in [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] tells us that . H1 (Ω) is equivalent to the usual norm on H 1 (Ω) if Ω is a bounded admissible domain so the Lax-Milgram Theorem gives us: Theorem 4.1.13. Let Ω be a bounded admissible domain in R n . For all f ∈ L 2 (Ω) and a > 0 there exists a unique weak solution u ∈ H 1 (Ω) of the Poisson problem (3.2) and we have the estimate

u H1 (Ω) ≤ C f L 2 (Ω) .
Now we give a result on eigenvalues that will be very useful:

To construct our weak solution of problem (4.9) for an arbitrary domain Ω, we use Galerkin's method. We select smooth functions

w k = w k (x), (k ≥ 1) such that {w k } ∞ k=1 is an orthogonal basis of H 1 0 (Ω) (4.10) 
and

{w k } ∞ k=1 is an orthonormal basis of L 2 (Ω). (4.11) 
We use the normalized eigenfunctions of the operator -∆ on Ω with homogeneous Dirichlet boundary conditions, defined in Theorem 4.1.7, that is to say

-∆w k = λ k w k in the weak sense, i.e. ∀v ∈ H 1 0 (Ω) (∇w k , ∇v) L 2 (Ω) = λ k (w k , v) L 2 (Ω) .
(4.12) We fix a positive integer m and write

u m (t) := m i=1 d k m (t)w k , ( 4.13) 
where we intend to select the coefficients d k m (t) (0 ≤ t ≤ T, k = 1, ..., m) to satisfy using the initial conditions

d k m (0) = (u 0 , w k ) L 2 (Ω) (k = 1, ..., m) (4.14) ∂ t d k m (0) = (u 1 , w k ) L 2 (Ω) (k = 1, ..., m) (4.15) 
and Our plan is hereafter to make m → ∞, and so we need some estimates uniform on m.

(∂ 2 t u m , w k ) L 2 (Ω) + c 2 (∇u m , ∇w k ) L 2 (Ω) = (f, w k ) L 2 (Ω) (0 ≤ t ≤ T, k = 1, ..., m). ( 4 

Theorem 4.2.2. ([30] p. 381)

There exists a constant C > 0, depending only on the domain Ω and the final time T , such that

max 0≤t≤T ( u m (t) 2 H 1 0 (Ω) + ∂ t u m (t) 2 L 2 (Ω) ) + ∂ 2 t u m 2 L 2 ((0;T );H -1 (Ω)) ≤ C( f 2 L 2 ((0,T );L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) ) (4.17) 
for m = 1, 2, ... 

Now

Regularity results

Theorems 4.1.6 and 4.1.9 tell us that when we take higher regularity for the data of the wave equation problem (4.9) on an arbitrary bounded domain Ω in R n (n ≥ 2) we can not have the same regularity results presented in [START_REF] Evans | Partial differential equations[END_REF] for regular domains. For example we can not have in general u ∈ L ∞ ([0, T ]; H 2 (Ω)) for a weak solution u of problem (4.9). Nevertheless we have the following result which improves [START_REF] Evans | Partial differential equations[END_REF] concerning the interior regularity:

Theorem 4.2.5. Let Ω be an arbitrary bounded domain in R n (n ≥ 2):

(i) Assume u 0 ∈ H 1 0 (Ω), u 1 ∈ L 2 (Ω), f ∈ L 2 ([0, T ]; L 2 (Ω)), and suppose also u ∈ L 2 ([0, T ]; H 1 0 (Ω)) with ∂ t u ∈ L 2 ([0, T ]; L 2 (Ω)) and ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)
is the weak solution of the wave equation problem (4.9). Then in

fact u ∈ L ∞ ([0, T ]; H 1 0 (Ω)), ∂ t u ∈ L ∞ ([0, T ]; L 2 (Ω)
), and we have the estimate

ess sup 0≤t≤T ( u(t) H 1 0 (Ω) + ∂ t u(t) L 2 (Ω) ) + ∂ 2 t u L 2 ([0,T ];H -1 (Ω) ≤ C( f L 2 ([0,T ];L 2 (Ω)) + u 0 H 1 0 (Ω) + u 1 L 2 (Ω) ). (ii) If, in addition u 0 ∈ H 2 (Ω), u 1 ∈ H 1 0 (Ω), ∂ t f ∈ L 2 ([0, T ]; L 2 (Ω)), then u ∈ L ∞ ([0, T ]; H 2 loc (Ω)) ∩ L ∞ ([0, T ]; H 1 0 (Ω)), ∂ t u ∈ L ∞ ([0, T ]; H 1 0 (Ω)), ∂ 2 t u ∈ L ∞ ([0, T ]; L 2 (Ω)), ∂ 3 t u ∈ L 2 ([0, T ]; H -1 (Ω)),
with the following estimate for each open subset

V ⊂⊂ Ω ess sup 0≤t≤T ( u(t) H 2 (V ) + u(t) H 1 0 (Ω) + ∂ t u(t) H 1 0 (Ω) + ∂ 2 t u(t) L 2 (Ω) ) + ∂ 3 t u L 2 ([0,T ];H -1 (Ω)) ≤C( f H 1 ([0,T ];L 2 (Ω)) + u 0 H 2 (Ω) + u 1 H 1 (Ω) ) (4.18) 
with a constant C > 0 depending of V , Ω and T .

Proof. In the previous section we have proved for u m of form (4.13) satisfying (4.14)-(4.16) the energy estimate (4.17). The unique weak solution u of the wave equation problem (4.9) is constructed in [START_REF] Evans | Partial differential equations[END_REF] (see p. 384) as the weak limit of a subsequence {u

m l } ∞ l=1 ⊂ {u m } ∞ m=1 with                    u m l ⇀ u weakly in L 2 ([0, T ]; H 1 0 (Ω)), ∂ t u m l ⇀ ∂ t u weakly in L 2 ([0, T ]; L 2 (Ω)), ∂ 2 t u m l ⇀ ∂ 2 t u weakly in L 2 ([0, T ]; H -1 (Ω)). (4.19) 
Passing to limits in estimate (4.17) for m = m l → ∞, we deduce (i).
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Assume now the hypothesis of assertion (ii). We consider again u m of form (4.13) satisfying (4.14)- (4.16). We also suppose m = m l , where m l is defined for the convergence result (4.19). Fix a positive integer m and next differentiate identity (4.16) with respect to t. Writing ũm := ∂ t u m we obtain

(∂ t ũm , w k ) L 2 (Ω) + c 2 (∇ũ m , ∇w k ) L 2 (Ω) = (∂ t f, w k ) L 2 (Ω) (0 ≤ t ≤ T, k = 1, ..., m). We have ũm (0) = ∂ t u m (0) = m i=1 (u 1 , w i ) L 2 (Ω) w i and ∂ t ũm (0) = m k=0 ∂ 2 t d k m (0)w k , then we use identities (4.16) ∂ 2 t d k m (0) =(f (0), w k ) L 2 (Ω) - m l=1 c 2 (∇w k , ∇w l ) L 2 (Ω) d l m (0) =(f (0), w k ) L 2 (Ω) -c 2 ∇w k 2 L 2 (Ω) (u 0 , w k ) L 2 (Ω) =(f (0), w k ) L 2 (Ω) -c 2 λ k (u 0 , w k ) L 2 (Ω) =(f (0) + c 2 ∆u 0 , w k )
with (4.12). We have

∂ t f ∈ L 2 ([0, T ]; L 2 (Ω)), u 1 ∈ H 1 0 (Ω) and f (0) + c 2 ∆u 0 ∈ L 2 (Ω) as u 0 ∈ H 2 (Ω) and f ∈ H 1 ([0, T ]; L 2 (Ω)) ⊂ C([0, T ]; L 2 (Ω))
. It implies by [START_REF] Evans | Partial differential equations[END_REF] (see Section 7.2.2 p. 980) with the results of the last section that a subsequence of ũm weakly converges to ũ unique weak solution of the wave equation problem

                   ũtt -c 2 ∆ũ = ∂ t f on ]0, T ] × Ω, ũ| ∂Ω = 0 on [0; T ] × ∂Ω, ũ(0) = u 0 , ũt (0) = f (0) -∆u 0 .
As ũm = ∂ t u m and ∂ t u m weakly converge to ∂ t u by (4.19) the unicity of the limit implies

ũ = ∂ t u.
Then we have u the weak solution of the Dirichlet initial-valued problem for the linear wave equation (4.9) with

u ∈ L ∞ ([0, T ]; H 1 0 (Ω), ∂ t u ∈ L ∞ ([0, T ]; H 1 0 (Ω)), ∂ 2 t u ∈ L ∞ ([0, T ]; L 2 (Ω)), ∂ 3 t u ∈ L 2 ([0, T ]; H -1 (Ω))
and, by point (i) of this theorem applied to u and u t , we deduce

sup 0≤t≤T ( u(t) 2 H 1 0 (Ω) + ∂ t u(t) 2 H 1 0 (Ω) + ∂ 2 t u(t) 2 L 2 (Ω) ) + ∂ 3 t u 2 L 2 ([0,T ];H -1 (Ω)) ≤C( f 2 H 1 ([0,T ];L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 H 1 0 (Ω) + f (0) 2 L 2 (Ω) + ∆u 0 2 L 2 (Ω) ) (4.20) ≤C( f 2 H 1 ([0,T ];L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 H 1 0 (Ω) + ∆u 0 2 L 2 (Ω) ).
Set an open subset V ⊂⊂ Ω by Theorem 4.1.6 we have

u 2 H 2 (V ) ≤C ∆u 2 L 2 (Ω) ≤ C 1 c 2 u tt -f 2 L 2 (Ω)
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as u solution of the linear problem (4.9) and by the Poincaré inequality, so

u 2 H 2 (V ) ≤C( u tt 2 L 2 (Ω) + f 2 L 2 (Ω) ) ≤C( u tt 2 L 2 (Ω) + f 2 H 1 ([0,T ];L 2 (Ω)) ) ≤C( f 2 H 1 ([0,T ];L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 H 1 0 (Ω) + ∆u 0 2 L 2 (Ω) ),
by (4.20), and this allows to conclude point (ii) using estimate (4.20).

Remark 4.2.1. The analysis of the proof shows that the condition u 0 ∈ H 2 (Ω) ∩ H 1 0 (Ω) can be taken instead as u 0 ∈ H 1 0 (Ω) and ∆u 0 ∈ L 2 (Ω) which is less regular.

Theorem 4.2.6. Let Ω be an arbitrary bounded domain in R n (n ≥ 2). Set m ∈ N * . Assume

u 0 ∈ H m+1 (Ω), u 1 ∈ H m (Ω), and d k dt k f ∈ L 2 ([0, T ]; H m-k (Ω)) (k = 0, ..., m).
Suppose also the following m th -order compatibility conditions holds

                   g 0 := u 0 ∈ H 1 0 (Ω), h 1 := u 1 ∈ H 1 0 (Ω), f or l ∈ N * , g 2l := d 2l-2 dt 2l-2 f (0) + c 2 ∆g 2l-2 ∈ H 1 0 (Ω) if 2l ≤ m, h 2l+1 := d 2l-1 dt 2l-1 f (0) + c 2 ∆g 2l-1 ∈ H 1 0 (Ω) if 2l + 1 ≤ m. (4.21)
Then the weak solution u of problem (4.9) satisfies

d k dt k u ∈ L ∞ ([0, T ]; H m-1-k loc (Ω)) ∩ L ∞ ([0, T ]; H 1 0 (Ω)) k = 0, ..., m, d m+1 dt m+1 u ∈ L ∞ ([0, T ]; L 2 (Ω)
), and we have the following estimate for

V ⊂⊂ Ω ess sup 0≤t≤T   m k=0   d k dt k u H m+1-k (V ) + d k dt k u H 1 0 (Ω)   + d m+1 dt m+1 u L 2 (Ω)   ≤ C   m k=0 d k dt k f L 2 ([0,T ];H m-k (Ω)) + u 0 H m+1 (Ω) + u 1 H m (Ω)   .
Remark 4.2.2. This result of regularity on arbitrary bounded domains is new compared to [START_REF] Evans | Partial differential equations[END_REF] where regular domains were considered.

Proof. We prove it by an induction, the case m = 1 following from Theorem 4.2.5 above.

Next assume the theorem is valid for some positive integer m and suppose u 0 ∈ H m+2 (Ω), u 1 ∈ H m+1 (Ω), and 

d k f dt k ∈ L 2 ([0, T ]; H m+1-k (Ω)) (k = 0, ...,
                   ũtt -c 2 ∆ũ = ∂ t f in [0, T ] × Ω, ũ = 0 on ∂U × [0, T ], ũ(0) = u 1 , ũt (0) = f (0) + ∆u 0 .
In particular, for m = 1, we rely upon Theorem 4.2.5 to obtain the regularity of ũ. Since u 0 , u 1 and f satisfy the (m + 1) th -order compatibility conditions, u 1 , f (0) + ∆u 0 and ∂ t f satisfy the m th -order compatibility conditions. Thus applying the induction assumption, we see

d k dt k ũ ∈ L ∞ ([0, T ]; H m-1-k loc (Ω)) ∩ L ∞ ([0, T ]; H 1 0 (Ω)) k = 0, ..., m, d m+1 dt m+1 ũ ∈ L ∞ ([0, T ]; L 2 (Ω)),
and we have the following estimate for

V ⊂⊂ Ω ess sup 0≤t≤T   m k=0   d k dt k ũ H m+1-k (V ) + d k dt k ũ H 1 0 (Ω)   + d m+1 dt m+1 ũ L 2 (Ω)   ≤ C   m k=0 d k dt k f t L 2 ([0,T ];H m-k (Ω)) + u 1 H m+1 (Ω) + f (0) + ∆u 0 H m (Ω)   .
Since ũ = ∂ t u, we can rewrite

ess sup 0≤t≤T   m+1 k=1   d k dt k u H m+2-k (V ) + d k dt k u H 1 0 (Ω)   + d m+2 dt m+2 u L 2 (Ω)   (4.22) ≤ C   m+1 k=1 d k dt k f L 2 ([0,T ];H m+1-k (Ω)) + u 1 H m+1 (Ω) + f (0) H m (Ω) + ∆u 0 H m (Ω)   ≤ C   m+1 k=0 d k dt k f L 2 ([0,T ];H m+1-k (Ω)) + u 1 H m+1 (Ω) + u 0 H m+2 (Ω)   , using the inequality f C([0,T ];H m (Ω)) ≤ C( f L 2 ([0,T ];H m (Ω)) + ∂ t f L 2 ([0,T ];H m (Ω)) ).
Moreover, Theorem 4.2.5 ensures u ∈ L ∞ ([0, T ]; H 1 0 (Ω)) with an estimate that we can add to (4.22). We can also write for

V ⊂⊂ W ⊂⊂ Ω that -c 2 ∆u = f -∂ 2 t u. So, by Theorem 4.1.6 we have u H m+2 (V ) ≤C( 1 c 2 f -∂ 2 t u H m (W ) ) ≤C( f H m (W ) + ∂ 2 t u H m (W ) ) ≤C( f L 2 ([0,T ];H m (Ω)) + ∂ t f L 2 ([0,T ];H m (Ω)) + ∂ 2 t u H m (W ) + ∇u H 1 0 (Ω)
). Taking the essential supremum with respect to t, adding this inequality to (4.22) and making estimates as in Theorem 4.2.5 the theorem follows. 

u ∈ L 2 ([0, T ]; H 1 0 (Ω)) with ∂ t u ∈ L 2 ([0, T ]; H 1 0 (Ω)) and ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)
) is a weak solution of the hyperbolic initial/boundary value problem

                   u tt -c 2 ∆u -ν∆u t = f on ]0, T ] × Ω, u| ∂Ω = 0 on [0; T ] × ∂Ω, u(0) = u 0 , u t (0) = u 1 , (4.23) provided u tt , v (H -1 (Ω),H 1 0 (Ω)) + c 2 (∇u, ∇v) L 2 (Ω) + ν(∇u t , ∇v) L 2 (Ω) = (f, v) L 2 (Ω) , (4.24) 
for each v ∈ H 1 0 (Ω) and a.e. time 0 ≤ t ≤ T , with u(0) = u 0 , u t (0) = u 1 .

Galerkin approximations

As for the linear wave equation we employ Galerkin's method by selecting smooth functions w k , k ≥ 1, satisfying (4.10)-(4.12) as the normalized eigenfunctions of the operator -∆ on Ω with homogeneous Dirichlet boundary conditions. We fix a positive integer m and define u m as in (4.13) such that the coefficients d k m (t) defined in (4.13) satisfy (4.14), (4.15) and for (0 Proof. Let u m be given by (4.13) the finite decomposition over the eigenfunctions of the Dirichlet-laplacian. Furthermore, we have e kl := (∇w l , ∇w k ) L 2 (Ω) . We also write f k = (f, w k ) L 2 (Ω) . Consequently system (4.25) becomes the linear system of ordinary differential equations 

≤ t ≤ T, k = 1, ..., m) (∂ 2 t u m , w k ) L 2 (Ω) + c 2 (∇u m , ∇w k ) L 2 (Ω) + ν(∇∂ t u m , ∇w k ) L 2 (Ω) = (f, w k ) L 2 (Ω) . ( 4 
∂ 2 t d k m (t) + m l=1 c 2 e kl d l m (t) + m l=1 νe kl ∂ t d l m (t) = f k (t) (0 ≤ t ≤ T, k = 1, ...,

Energy estimates

Our plan is hereafter to pass to the limit for m → ∞, and so we need some uniform estimates in m. Theorem 4.3.2. For T = +∞, let u m be of form (4.13) the finite decomposition over the eigenfunctions of the Dirichlet-laplacian satisfying (4.14), (4.15) and (4.25). Then there exists a constant C > 0, depending only on Ω, such that for m = 1, 2, .. 

max 0≤t ( u m (t) 2 H 1 0 (Ω) + ∂ t u m (t) 2 L 2 (Ω) ) + ∇∂ t u m 2 L 2 ([0,+∞[;L 2 (Ω)) + ∇u m 2 L 2 ([0,+∞[;L 2 (Ω)) + ∂ 2 t u m 2 L 2 ((0;+∞[;H -1 (Ω)) ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) ). ( 4 
(∂ 2 t u m , ∂ t u m ) L 2 (Ω) + c 2 (∇u m , ∇∂ t u m ) L 2 (Ω) + ν(∇∂ t u m , ∇∂ t u m ) L 2 (Ω) = (f, ∂ t u m ) L 2 (Ω)
for a.e. t ≥ 0. Using successively Cauchy-Schwarz's, Poincaré's and Young's inequalities we observe

(f, ∂ t u m ) L 2 (Ω) ≤ f L 2 (Ω) ∂ t u m L 2 (Ω) ≤K f L 2 (Ω) ∇∂ t u m L 2 (Ω) ≤ K 2 2ν f 2 L 2 (Ω) + ν 2 ∇∂ t u m 2 L 2 (Ω) .
Thus we obtain that for t ≥ 0 after integration in time

∂ t u m (t) 2 L 2 (Ω) + c 2 u m (t) 2 H 1 0 (Ω) +ν t 0 ∇∂ t u m (s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + c 2 u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) )
with C > 0 independent on t. Since t ≥ 0 was arbitrary, we deduce from this estimate that max 0≤t 

( ∂ t u m (t) 2 L 2 (Ω) + u m (t) 2 H 1 0 (Ω) ) + +∞ 0 ∇∂ t u m (s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) ). ( 4 
(∂ 2 t u m , u m ) L 2 (Ω) + c 2 (∇u m , ∇u m ) L 2 (Ω) + ν(∇∂ t u m , ∇u m ) L 2 (Ω) = (f, u m ) L 2 (Ω) .
We can write using successively Cauchy-Schwarz's, Poincaré's and Young's inequalities

(f, u m ) L 2 (Ω) ≤ f L 2 (Ω) u m L 2 (Ω) ≤K f L 2 (Ω) ∇u m L 2 (Ω) ≤ K 2 2c 2 f 2 L 2 (Ω) + c 2 2 ∇∂ t u m 2 L 2 (Ω)

4.3.
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d dt ν 2 ∇u m (t) 2 L 2 (Ω) + c 2 2 ∇u m (s) 2 L 2 (Ω) ds ≤ K 2 2c 2 f 2 L 2 (Ω) - Ω ∂ 2 t u m u m dx.
Integrating over [0, t] we obtain

ν 2 ∇u m (t) 2 L 2 (Ω) + c 2 2 t 0 ∆u m (s) 2 L 2 (Ω) ds ≤ ν 2 ∇u 0 2 L 2 (Ω) + K 2 2c 2 f 2 L 2 ([0,+∞[;L 2 (Ω)) - t 0 Ω ∂ 2 t u m u m dx ds.
We have

- t 0 Ω ∂ 2 t u m u m dx = t 0 - d dt Ω ∂ t u m u m dx + Ω (∂ t u m ) 2 dx ds = - Ω ∂ t u m u m dx + Ω ∂ t u m (0)u m (0) dx + ∂ t u m 2 L 2 ([0,t];L 2 (Ω)) ,
so by Young's inequality

- t 0 Ω ∂ 2 t u m u m dx ≤ 1 2 ∂ t u m 2 L ∞ ([0,t];L 2 (Ω)) + 1 2 u m 2 L ∞ ([0,t];L 2 (Ω)) + 1 2 ∂ t u m (0) L 2 (Ω) + 1 2 u m (0) L 2 (Ω) + ∂ t u m 2 L 2 ([0,t];L 2 (Ω)) ,
then by the Poincaré inequality and using the initial conditions involved in (4.14)-(4.15)

- t 0 Ω ∂ 2 t u m u m dx ≤ 1 2 ∂ t u m 2 L ∞ ([0,+∞[;L 2 (Ω)) + K 2 2 u m 2 L ∞ ([0,+∞[;H 1 0 (Ω)) + 1 2 u 1 2 L 2 (Ω) + K 2 2 ∇u 0 2 L 2 (Ω) + K 2 ∂ t u m 2 L 2 ([0,+∞[;H 1 0 (Ω))
with a constant K > 0 depending only on Ω and by estimate (4.28) we obtain

- t 0 Ω ∂ 2 t u m u m dx ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∇u 0 2 L 2 (Ω) + u 1 2 L 2 (Ω) )
with C > 0 independent on t. We can deduce the existence of C > 0 such that

+∞ 0 ∇u m (s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∇u 0 2 L 2 (Ω) + u 1 2 L 2 (Ω) ) (4.29) Fix any v ∈ H 1 0 (Ω), v H 1 0 (Ω) ≤ 1, we consider the decomposition v = v 1 + v 2 , where v 1 ∈ span{w k } m k=1 and (v 2 , w k ) L 2 (Ω) = 0 (k = 1, .., m). Note v 1 H 1 0 (Ω) ≤ 1.
Then the decomposition (4.13) and identities (4.25) imply 

∂ 2 t u m , v (H -1 (Ω),H 1 0 (Ω)) = (∂ 2 t u m , v) L 2 (Ω) = (∂ 2 t u m , v 1 ) L 2 (Ω) = (f, v 1 ) L 2 (Ω) -c 2 (∇u m , ∇v 1 ) L 2 (Ω) -ν(∇∂ t u m , ∇v 1 ) L 2 (Ω) .
| ∂ 2 t u m , v (H -1 (Ω),H 1 0 (Ω)) | ≤ f L 2 (Ω) v 1 L 2 (Ω) + c 2 Ω |∇u m ∇v 1 | dx + ν Ω |∇∂ t u m ∇v 1 | dx ≤C f L 2 (Ω) v 1 H 1 0 (Ω) + u m H 1 0 (Ω) v 1 H 1 0 (Ω) + ∂ t u m H 1 0 (Ω) v 1 H 1 0 (Ω) , then | ∂ 2 t u m , v (H -1 (Ω),H 1 0 (Ω)) | ≤C( f L 2 (Ω) + u m H 1 0 (Ω) + ∂ t u m H 1 0 (Ω) ), since v 1 H 1 0 (Ω) ≤ 1.
Consequently, by the estimates (4.28) and (4.29),

+∞ 0 ∂ 2 t u m 2 H -1 (Ω) dt ≤C +∞ 0 ( f 2 L 2 (Ω) + u m 2 H 1 0 (Ω) + ∂ t u m H 1 0 (Ω) ) dt ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + u 0 2 H 1 0 (Ω) + u 1 2 L 2 (Ω) )
and combining with the estimates (4.28) and (4.29) we obtain estimate (4.27).

Existence and uniqueness

Now we pass to limits in our Galerkin approximations. Proof. According to the energy estimates (4.27), we see that

• the sequence {u m } ∞ m=1 is bounded in L 2 ([0, T ]; H 1 0 (Ω)), • {∂ t u m } ∞ m=1 is bounded in L 2 ([0, T ]; H 1 0 (Ω)), • {∂ 2 t u m } ∞ m=1 is bounded in L 2 ([0, T ]; H -1 (Ω)). Then there exits a subsequence {u m l } ∞ l=1 ⊂ {u m } ∞ m=1 and u ∈ L 2 ([0, T ]; H 1 0 (Ω)), with ∂ t u ∈ L 2 ([0, T ]; H 1 0 (Ω)), ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)) such that                    u m l ⇀ u weakly in L 2 ([0, T ]; H 1 0 (Ω)), ∂ t u m l ⇀ ∂ t u weakly in L 2 ([0, T ]; H 1 0 (Ω)), ∂ 2 t u m l ⇀ ∂ 2 t u weakly in L 2 ([0, T ]; H -1 (Ω)).
(4.30)

In the same way that for the wave equation problem (see [START_REF] Evans | Partial differential equations[END_REF] p. 384) we show that u is a weak solution of the damped wave equation problem (4.23). Proof. It suffices to show that the only weak solution of (4.23) with f ≡ 0 and u 0 ≡ u 1 ≡ 0 is u ≡ 0.
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For this we take ∂ t u ∈ L 2 ([0, T ]; H 1 0 (Ω)) and so by definition of u as a weak solution of the damped wave equation problem (4.23)

T 0 ∂ 2 t u, ∂ t u (H -1 (Ω),H 1 0 (Ω)) + c 2 (∇u, ∇∂ t u) L 2 (Ω) + ν(∇∂ t u, ∇∂ t u) L 2 (Ω) dt = 0. Then 1 2 ∂ t u(T ) 2 L 2 (Ω) + c 2 2 ∇u(T ) 2 L 2 (Ω) + T 0 ∇u t (s) L 2 (Ω) ds = 0,
which implies ∇u t ≡ 0 and so ∇u ≡ 0 as ∇u 0 = 0 and so u ≡ 0 as u ∈ H 1 0 (Ω) as a weak solution.

Regularity results

Theorem 4.3.5. Let Ω be an arbitrary bounded domain in R n (n ≥ 2).

Then, (i) Assume

u 0 ∈ H 1 0 (Ω), u 1 ∈ L 2 (Ω), f ∈ L 2 ([0, T ]; L 2 (Ω)) and suppose also u ∈ L 2 ([0, T ]; H 1 0 (Ω)) with ∂ t u ∈ L 2 ([0, T ]; H 1 0 (Ω)) and ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)
) is a weak solution of the damped wave equation problem (4.23) in the sense of (4.24). Then we also have

u ∈ L ∞ ([0, T ]; H 1 0 (Ω)), ∂ t u ∈ L ∞ ([0, T ]; L 2 (Ω)
) and we have the estimate

ess sup 0≤t≤T ( u(t) H 1 0 (Ω) + ∂ t u(t) L 2 (Ω) ) + T 0 ∇∂ t u(s) L 2 (Ω) ds + ∂ 2 t u L 2 ([0,T ];H -1 (Ω)) ≤ C( f L 2 ([0,T ];L 2 (Ω)) + u 0 H 1 0 (Ω) + u 1 L 2 (Ω)
). Moreover we can take T = +∞ (ii) If, in addition

∆u 0 ∈ L 2 (Ω), u 1 ∈ H 1 0 (Ω), f ∈ L 2 ([0, +∞[; L 2 (Ω)), then we have u ∈ L ∞ ([0, +∞[; H 1 0 (Ω)) ∩ L 2 ([0, +∞[; H 1 0 (Ω)) ∩ L 2 ([0, +∞[; H 2 loc (Ω)), ∂ t u ∈ L ∞ ([0, +∞[; H 1 0 (Ω)) ∩ L 2 ([0, +∞[; H 1 0 (Ω)) ∩ L 2 ([0, +∞[; H 2 loc (Ω)), ∂ 2 t u ∈ L 2 ([0, +∞[; L 2 (Ω)), ∆u ∈ L ∞ ([0, +∞[; L 2 (Ω)) ∩ L 2 ([0, +∞[; L 2 (Ω)), ∆∂ t u ∈ L 2 ([0, +∞[; L 2 (Ω))
with the estimates 

ess sup 0≤t ( ∆u(t) 2 L 2 (Ω) + ∇∂ t u(t) 2 L 2 (Ω) ) + ∞ 0 ∆∂ t u(s) 2 L 2 (Ω) ds ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ) (4 
-∂ 2 t u m ∆∂ t u m -c 2 ∇u m ∇∆∂ t u m -ν∇∂ t u m ∇∆∂ t u m dx = -(f, ∆∂ t u m ) L 2 (Ω) .
But by Definition (4.13) of u m as a linear combination of Laplacian's eigenfunctions w k , which satisfy (4.10)-(4.12), we have ∂ 2 t u m ∈ H 1 0 (Ω) and ∆∂ t u m ∈ H 1 0 (Ω) so by the Green formula we have

Ω ∇∂ 2 t u m ∇∂ t u m + c 2 ∆u m ∆∂ t u m + ν∆∂ t u m ∆∂ t u m dx = -(f, ∆∂ t u m ) L 2 (Ω) .
We can write by Young's inequality

|(f, ∆∂ t u m ) L 2 (Ω) | ≤ 2 ν f 2 L 2 (Ω) + ν 2 ∆∂ t u m 2 L 2 (Ω) .
Then we have d dt

1 2 ∇∂ t u m (t) 2 L 2 (Ω) + c 2 2 ∆u m (t) L 2 (Ω) + ν 2 t 0 ∆∂ t u m (s) L 2 (Ω) ds ≤ 2 ν f 2 L 2 (Ω) .
Integrating over [0, t] we obtain

1 2 ∇∂ t u m (t) 2 L 2 (Ω) + c 2 2 ∆u m (t) L 2 (Ω) + ν 2 t 0 ∆∂ t u m (s) L 2 (Ω) ds (4.33) ≤ 2 ν t 0 f (s) 2 L 2 (Ω) ds + 1 2 ∇∂ t u m (0) 2 L 2 (Ω) + 1 2 ∆u m (0) L 2 (Ω) ≤ 2 ν f 2 L 2 ([0,+∞[;L 2 (Ω)) + 1 2 ∇u 1 2 L 2 (Ω) + 1 2 ∆u 0 L 2 (Ω) ,
so we have (4.31) taking the weak limit of a subsequence. Then

∂ t u ∈ L ∞ ([0, +∞[; H 1 0 (Ω)), ∆u ∈ L ∞ ([0, +∞[; L 2 (Ω)), ∆∂ t u ∈ L 2 ([0, +∞[; L 2 (Ω)).
The linearity of the equation implies for all T ≥ 0

∂ 2 t u ∈ L 2 ([0, T ]; L 2 (Ω)), as ∆u ∈ L ∞ ([0, +∞[; L 2 (Ω)) ⊂ L 2 ([0, T ]; L 2 (Ω)) for all T ≥ 0.
Moreover as ∂ t u m ∈ H 

∇∂ t u m L 2 ([0,+∞[;L 2 (Ω)) ≤C ∆∂ t u m L 2 ([0,+∞[;L 2 (Ω)) ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ),
and taking the weak limit of a subsequence

∂ t u L 2 ([0,+∞[;H 1 0 (Ω)) ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ). (4.34) 
By Proposition 4.1.2 we also have

∇u m L 2 (Ω) ≤ C ∆u m L 2 (Ω) ,
which implies in the same way as estimate (4.34)

u L ∞ ([0,+∞[;H 1 0 (Ω)) ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ). (4.35) 
We multiply equations (4.25) by -λ k d k m (t) and sum over k = 1, ..., m. By definition (4.13) of u m and (4.12) of λ k we have

Ω -∂ 2 t u m ∆u m -c 2 ∇u m ∇∆u m -ν∇∂ t u m ∇∆u m dx = -(f, ∆u m ) L 2 (Ω) .
But by definition (4.13) of u m as the w k satisfy (4.10)-(4.12), we have ∂ 2 t u m ∈ H 1 0 (Ω) and ∆∂ t u m ∈ H 1 0 (Ω) so by the Green formula we have

Ω ∇∂ 2 t u m ∇u m + c 2 ∆u m ∆u m + ν∆∂ t u m ∆u m dx = -(f, ∆u m ) L 2 (Ω) .
We can write by Young's inequality

|(f, ∆∂ t u m ) L 2 (Ω) ≤ 2 c 2 f 2 L 2 (Ω) + c 2 2 ∆∂ t u m 2 L 2 (Ω) .
Then we have

d dt ν 2 ∆u m (t) 2 L 2 (Ω) + c 2 2 t 0 ∆u m (s) 2 L 2 (Ω) ds ≤ 2 c 2 f 2 L 2 (Ω) - Ω ∇∂ 2 t u m ∇u m dx.
Integrating over [0, t] we obtain

ν 2 ∆u m (t) 2 L 2 (Ω) + c 2 2 t 0 ∆u m (s) 2 L 2 (Ω) ds ≤ ν 2 ∆u 0 2 L 2 (Ω) + 2 c 2 f 2 L 2 ([0,+∞[;L 2 (Ω)) - t 0 Ω ∇∂ 2 t u m ∇u m dx ds.
We have

- t 0 Ω ∇∂ 2 t u m ∇u m dx = t 0 - d dt Ω ∇∂ t u m ∇u m dx + Ω (∇∂ t u m ) 2 dx ds = - Ω ∇∂ t u m ∇u m dx + Ω ∇∂ t u m (0)∇u m (0) dx + ∂ t u m 2 L 2 ([0,t];H 1 0 (Ω)) , 130
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- t 0 Ω ∇∂ 2 t u m ∇u m dx ≤ 1 2 ∂ t u m 2 L ∞ ([0,t];H 1 0 (Ω)) + 1 2 u m 2 L ∞ ([0,t];H 1 0 (Ω)) + 1 2 ∇∂ t u m (0) L 2 (Ω) + 1 2 ∇u m (0) L 2 (Ω) + ∂ t u m 2 L 2 ([0,t];H 1 0 (Ω)) ≤ 1 2 ∂ t u m 2 L ∞ ([0,+∞[;H 1 0 (Ω)) + 1 2 u m 2 L ∞ ([0,+∞[;H 1 0 (Ω)) + 1 2 ∇u 1 L 2 (Ω) + 1 2 ∇u 0 L 2 (Ω) + ∂ t u m 2 L 2 ([0,+∞[;H 1 0 (Ω))
and by estimates (4.33), (4.34) and (4.35) we obtain

- t 0 Ω ∇∂ 2 t u m ∇u m dx ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) )
with C > 0 independent on t. We can deduce

+∞ 0 ∆u m (s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) )
and taking a convergent subsequence

+∞ 0 ∆u(s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ).
The linearity of the equation gives us

∂ 2 t u ∈ L 2 ([0, +∞[; L 2 (Ω)) as ∂ 2 t u L 2 ([0,+∞[;L 2 (Ω)) ≤ C( f L 2 ([0,+∞[;L 2 (Ω)) + ∆u L 2 ([0,+∞[;L 2 (Ω)) + ∆∂u L 2 ([0,+∞[;L 2 (Ω)) ).
By Theorem 4.1.6 we can also deduce

∂ t u ∈ L 2 ([0, +∞[; H 2 loc (Ω)),
with the estimate for V ⊂⊂ Ω

∂ t u L 2 ([0;+∞[;H 2 (V )) ≤ C ∆∂ t u L 2 ([0;+∞[;L 2 (Ω)) ,
which implies

∂ t u 2 L 2 ((0;+∞);H 2 (V )) ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + ∇u 1 2 L 2 (Ω) ).
The same type of arguments permits to deduce For a > 0 we take H 1 (Ω) endowed with the norm . H1 (Ω) defined in (4.8). For f ∈ L 2 ([0, T ]; L 2 (Ω)), u 0 ∈ H 1 (Ω), and u 1 ∈ L 2 (Ω), we say a function

u ∈ L ∞ ([0, +∞[; H 2 loc (Ω)) ∩ L 2 ([0, +∞[; H 2 loc (Ω)), as ∆u ∈ L ∞ ([0, +∞[; L 2 (Ω)) ∩ L 2 ([0, +∞[; L 2 (Ω)).
u ∈ L 2 ([0, T ]; H 1 (Ω)) with ∂ t u ∈ L 2 ([0, T ]; H 1 (Ω)) and ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)
) is a weak solution of the hyperbolic initial/boundary value problem

                   u tt -c 2 ∆u -ν∆u t = f on ]0, T ] × Ω, ∂ ∂n u + au = 0 on [0, T ] × ∂Ω, u(0) = u 0 , u t (0) = u 1 , (4.36) provided u tt , v (H -1 (Ω),H 1 (Ω)) + c 2 (u, v) H1 (Ω) + ν(u t , v) H1 (Ω) = (f, v) L 2 (Ω) , (4.37) 
for each v ∈ H 1 (Ω) and a.e. time 0 ≤ t ≤ T , with

∂ ∂n u + au = 0 on [0; T ] × ∂Ω and u(0) = u 0 , u t (0) = u 1 .
Now we can give the following theorem on the existence of weak solution.

Theorem 4.4.1. Set a > 0. For every f ∈ L 2 ([0, T ]; L 2 (Ω)), u 0 ∈ H 1 (Ω), and u 1 ∈ L 2 (Ω) there exists a unique weak solution of the hyperbolic initial/boundary value problem (4.36) in the sense of formulation (4.37).

Proof. The proof is essentially the same as for homogeneous boundary conditions in Subsection 4.3.1 using the Galerkin method replacing H 1 0 (Ω) by H 1 (Ω) with the scalar products associated to . H1 (Ω) . The basis of L 2 (Ω) chosen for the Galerkin approximation is the basis of eigenvalues for the Poisson equation with homogeneous Robin boundary conditions defined in Theorem 4.1.14. By construction it is also an orthogonal basis of H 1 (Ω) with the scalar product associated to . H1 (Ω) as for u and v in H1 (Ω) with -∆u ∈ L 2 (Ω) and ∂ ∂n u + au = 0 in the weak sense of Definition 4.1.9

(-∆u, v) L 2 (Ω) = (u, v) H1 (Ω) .
Then we have the higher regularity result. 

u 0 ∈ H 1 (Ω), u 1 ∈ L 2 (Ω), f ∈ L 2 ([0, T ]; L 2 (Ω)),
and suppose also u ∈ L 2 ([0, T ];

H 1 (Ω)) with ∂ t u ∈ L 2 ([0, T ]; H 1 (Ω)) and ∂ 2 t u ∈ L 2 ([0, T ]; H -1 (Ω)
) is a weak solution of the damped wave equation problem (4.36) in the sense of formulation (4.37). Then we also have

u ∈ L ∞ ([0, T ]; H 1 (Ω)), ∂ t u ∈ L ∞ ([0, T ]; L 2 (Ω)),
and we have the estimate

ess sup 0≤t≤T ( u(t) H1 (Ω) + ∂ t u(t) L 2 (Ω) ) + T 0 ∂ t u(s) H1 (Ω) ds + ∂ 2 t u L 2 ([0,T ];H -1 (Ω) ≤ C( f L 2 ([0,T ];L 2 (Ω)) + u 0 H1 (Ω) + u 1 L 2 (Ω) ).
(ii) If in addition

∆u 0 ∈ L 2 (Ω), u 1 ∈ H 1 (Ω), f ∈ L 2 ([0, +∞[; L 2 (Ω)),
where in the sense of Definition 4.1.9

∀v ∈ H 1 (Ω) (u 0 , v) H1 (Ω) = (g, v) L 2 (Ω) for an arbitrary g ∈ L 2 (Ω), then we have u ∈ L ∞ ([0, +∞[; H 1 (Ω)) ∩ L 2 ([0, +∞[; H 1 (Ω)), ∂ t u ∈ L ∞ ([0, +∞[; H 1 (Ω)) ∩ L 2 ([0, +∞[; H 1 (Ω)), ∂ 2 t u ∈ L 2 ([0, +∞[; L 2 (Ω)), ∆u ∈ L ∞ ([0, +∞[; L 2 (Ω)) ∩ L 2 ([0, +∞[; L 2 (Ω)), ∆∂ t u ∈ L 2 ([0, +∞[; L 2 (Ω))
with the estimates

ess sup 0≤t ( ∆u(t) 2 L 2 (Ω) + ∂ t u(t) 2 H1 (Ω) ) + ∞ 0 ∆∂ t u(s) 2 L 2 (Ω) ds ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + u 1 2 H1 (Ω) ) (4.38)
and

+∞ 0 ∆u(s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0 2 L 2 (Ω) + u 1 2 H1 (Ω) ). (4.39)
Proof. The proof is similar to Theorem 4.3.5 and thus is omitted.
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We will use Theorem 1.5.2 to prove the following global well-posedness result on the nonlinear Westervelt equation whose form slightly differs from the Westevelt equation studied in Chapter 2 due to the fact that it has been derivated in time. We found again this form in the study of the Westervelt equation on regular domains [START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF].

Theorem 5.1.2. Let Ω be an arbitrary bounded domain in R 3 or a bounded admissible domain in R 2 . In addition let ν > 0, R + = [0, +∞[ and X be the Hilbert space defined in (5.1). Taking 1) the minimal constant such that the weak solution, in the sense of (4.24), u * ∈ X of the corresponding non homogeneous linear boundary-valued problem (5.2) 

u 0 ∈ D(A), u 1 ∈ H 1 0 (Ω) and f ∈ L 2 (R + ; L 2 (Ω)), there exists C 1 = O(
satisfies u * X ≤ C 1 νǫ ( f L 2 (R + ;L 2 (Ω)) + u 0 D(A) + u 1 H 1 0 (Ω)
). Then there exists r * > 0 with r * = O [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF] such that for all r ∈ [0, r * [ and all data satisfying

f L 2 (R + ;L 2 (Ω)) + u 0 D(A) + u 1 H 1 0 (Ω) ≤ νǫ C 1 r,
there exists the unique weak solution u ∈ X of the boundary valued problem for the Westervelt equation

                   ∂ 2 t u + c 2 Au + νεA∂ t u = αεu∂ 2 t u + αε(∂ t u) 2 + f on [0, +∞[×Ω, u = 0 on [0, +∞[×∂Ω, u(0) = u 0 , ∂ t u(0) = u 1 .
(5.

3)

It is a weak solution in the sense where u = u * + v where u * is defined as a weak solution in the sense of (4.24) and v ∈ X is the solution of an homogeneous non linear initial-boundary valued problem depending on u * and determined with Theorem 1.5.2. That is to say ∀w ∈ L 2 ([0, +∞[,

H 1 0 (Ω)) +∞ 0 (∂ 2 t v, w) L 2 (Ω) + c 2 (∇v, ∇w) L 2 (Ω) + νε(∇∂ t v, ∇w) L 2 (Ω) dt = = +∞ 0 (αε(v + u * )∂ 2 t (v + u * ) + αε[∂ t (v + u * )] 2 , w) L 2 (Ω) dt, with (v(0), ∂ t v(0)) = (0, 0).

Moreover

u X ≤ 2r.

Proof. For u 0 ∈ D(A) and u 1 ∈ H 1 0 (Ω) and f ∈ L 2 (R + ; L 2 (Ω)) let us denote, by Theorem 5.1.1, u * ∈ X is the unique weak solution of the linear problem

       u * tt + c 2 Au * + νεAu * t = f on [0, +∞[×Ω, u = 0 on [0, +∞[×∂Ω, u * (0) = u 0 ∈ D(A), u * t (0) = u 1 ∈ H 1 0 (Ω), 136 
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X 0 := {u ∈ X| u(0) = u t (0) = 0}
and Y = L 2 (R + ; L 2 (Ω)). Then by Theorem 5.1.1, the linear operator

L : X 0 → Y, u ∈ X 0 → L(u) := u tt + c 2 Au + νεAu t ∈ Y,
is a bi-continuous isomorphism.

Let us now notice that if v is the unique weak solution of the non-linear boundary valued problem

       v tt + c 2 Av + νεAv t -αε(v + u * )(v + u * ) tt -αε[(v + u * ) t ] 2 = 0 on [0, +∞[×Ω, v = 0 on [0, +∞[×∂Ω, v(0) = 0, v t (0) = 0,
(5.4) then u = v + u * is the unique weak solution of the boundary valued problem for the Westervelt equation (5.3). Let us prove the existence of a such v, using Theorem 1.5.2.

We suppose that u * X ≤ r and define for v ∈ X 0

Φ(v) := αε(v + u * )(v + u * ) tt + αε[(v + u * ) t ] 2 .
For w and z in X 0 such that w X ≤ r and z X ≤ r, we estimate

Φ(w) -Φ(z) Y ,
by applying the triangular inequality. The key point is that it appears terms of the form ab tt Y and a t b t Y with a and b in X and we have the estimate

ab tt Y ≤ a L ∞ (R + ×Ω) b tt Y .
By Corollary 4.1.1 in R 3 and Proposition 4.1.2 for admissible domains in R 2 we have

ab tt Y ≤C a L ∞ (R + ;D(A)) b X
and the Sobolev embedding implies

ab tt Y ≤C a H 1 (R + ;D(A)) b X ≤B 1 a X b X ,
with a constant B 1 > 0 depending only on Ω. Moreover we have

a t b t Y ≤ +∞ 0 a t L ∞ (Ω) b t L 2 (Ω) ds.
Therefore, by Corollary 4.1.1 in R 3 and Proposition 4.1.2 for admissible domains in R 2 we have

a t b t Y ≤C +∞ 0 a t D(A) b t L 2 (Ω) ds ≤C a t L 2 (R + ;D(A)) b t L ∞ (R + ;L 2 (Ω)) ≤C a X b t H 1 (R + ;L 2 (Ω))

5.2.
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a t b t Y ≤ B 2 a X b X ,
with a constant B 2 > 0 depending only on Ω. Taking a and b equal to u * , w, z or w -z, as u * X ≤ r, w X ≤ r and z X ≤ r, we obtain

Φ(w) -Φ(z) Y ≤ αBεr w -z X ,
with a constant B > 0 depending only on Ω. The final result follows as in the proof of Point 1 of Theorem 1.2.2 in Chapter 1 Subsection 1.5.1 for the global well posedness for the Kuznetsov equation on R n using Theorem 1.5.2 at the difference that here we add a non homogeneous term, which implies

u * X ≤ C 1 νε ( f Y + u 0 D(A) + u 1 H 1 0 (Ω) ). Whereas when f = 0 we have u * X ≤ C ′ 1 √ νε ( u 0 D(A) + u 1 H 1 0 (Ω) ).

Well posedness of the Westervelt equation with non homogeneous Dirichlet boundary conditions

In this section Ω is an admissible domain in R n (5.5)

For u 0 ∈ H 2 (Ω), u 1 ∈ H 1 (Ω), g ∈ F and f ∈ L 2 ([0, +∞[; L 2 (Ω)) with the compatibility conditions g(0) = T r ∂Ω u 0 , ∂ t g(0) = T r ∂Ω u 1
there exists a unique weak solution ũ of the problem

                   ∂ 2 t ũ -c 2 ∆ũ -νε∆∂ t ũ = f in [0, +∞[×Ω, ũ = g on ∂Ω, ũ(0) = u 0 , ∂ t ũ(0) = u 1 .
(5.6)

It is a weak solution in the way where ũ = u * + g with 

g ∈ X 1 := H 2 ([0, +∞[; L 2 (Ω)) ∩ H 1 ([0, +∞[; H 2 (Ω)), (5.7 
                   ∂ 2 t u + c 2 Au + νεA∂ t u = αεu∂ 2 t u + αε(∂ t u) 2 + f on [0, +∞[×Ω, ∂ ∂n u + au = 0 on [0, +∞[×∂Ω, u(0) = u 0 , ∂ t u(0) = u 1 .
(5.13)

It is a weak solution in the sense where u = u * + v with u * is defined as a weak solution in the sense of (4.37) 

(∂ 2 t v, w) L 2 (Ω) + c 2 (v, w) H1 (Ω) + νε(∂ t v, w) H1 (Ω) dt = = +∞ 0 (αε(v + u * )∂ 2 t (v + u * ) + αε[∂ t (v + u * )] 2 , w) L 2 (Ω) dt, with (v(0), ∂ t v(0)) = (0, 0). Moreover u X ≤ 2r.
Proof. For u 0 ∈ D(-∆), u 1 ∈ H 1 (Ω) and f ∈ L 2 (R + ; L 2 (Ω)) let us denote, by Theorem 4.4.2, u * ∈ X, where X defined in (5.12), the unique weak solution, in the sense of formulation (4.37) of the linear problem

       u * tt -c 2 ∆u * -νε∆u * t = f, ∂ ∂n u * + au * = 0, u * (0) = u 0 ∈ D(-∆), u * t (0) = u 1 ∈ H 1 (Ω).
By Theorem 4.4.2 ∂ 2 t u * , ∆u * and ∆∂ t u * are in L 2 (R + ; L 2 (Ω)) so u * ∈ X and the estimates (4.38) and (4.39) give us the estimate on u * X . In addition we introduce the Banach spaces

X 0 := {u ∈ X| u(0) = u t (0) = 0} and Y = L 2 (R + ; L 2 (Ω)).
Then by Theorem 4.4.2, the linear operator

L : X 0 → Y, u ∈ X 0 → L(u) := ∂ 2 t u -c 2 ∆u -νε∂ t ∆u ∈ Y is a bi-continuous isomorphism.
Let us now notice that if v ∈ X 0 is the unique solution of the non-linear Cauchy problem

       v tt -c 2 ∆v -νε∆v t -αε(v + u * )(v + u * ) tt -αε[(v + u * ) t ] 2 = 0, ∂ ∂n v + av = 0, v(0) = 0, v t (0) = 0, (5.14) 
then u = v + u * is the unique solution of the Cauchy problem for the Westervelt equation (5.3). Let us prove the existence of a such v, using Theorem 1.5.2.
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We suppose that u * X ≤ r and define for v

∈ X 0 Φ(v) := αε(v + u * )(v + u * ) tt + αε[(v + u * ) t ] 2 .
For w and z in X 0 such that w X ≤ r and z X ≤ r, we estimate Φ(w) -Φ(z) Y , by applying the triangular inequality. The key point is that it appears terms of the form ab tt Y and a t b t Y with a and b in X. We have the estimate

ab tt Y ≤ a L ∞ (R + ×Ω) b tt Y .
By Theorem 5.3.1 we have

ab tt Y ≤C a L ∞ (R + ;D(-∆)) b X ,
and the Sobolev's embedding implies

ab tt Y ≤C a H 1 (R + ;D(-∆)) b X ≤B 1 a X b X
with a constant B 1 > 0 depending only on Ω. Moreover we have

a t b t Y ≤ +∞ 0 a t 2 L ∞ (Ω) b t 2 L 2 (Ω) ds,
and hence, by Theorem 5.3.1 we find

a t b t Y ≤C +∞ 0 a t 2 D(-∆) b t 2 L 2 (Ω) ds ≤C a t L 2 (R + ;D(-∆)) b t L ∞ (R + ;L 2 (Ω)) .
The Sobolev's embedding implies 

a t b t Y ≤C a t X b t H 1 (R + ;L 2 (Ω)) , which gives us a t b t Y ≤ B 2 a X b X with a constant B 2 > 0 depending only on Ω.
* X ≤ C 1 νε ( f Y + u 0 D(-∆) + u 1 H1 (Ω) ).
Whereas for f = 0 we have 

u * X ≤ C ′ 1 √ νε ( u 0 D(-∆) + u 1 H1 (Ω)
-∆ : D(-∆) ⊂ H 1 (Ω) → L p (Ω) u → -∆u.
For p ≥ 2 we have L p (Ω) ⊂ L 2 (Ω) and by Theorem 4.1.14 the spectrum of -∆ in L p (Ω) is contained in R * + as it is contained in the spectrum of -∆ in L 2 (Ω). We need a result on maximal L p regularity which is a direct application of Theorem 4.1 in [START_REF] Chill | L p -maximal regularity for second order Cauchy problems[END_REF] to the linear system for the strongly damped wave equation with Robin boundary conditions and homogenaous initial data:

                   ∂ 2 t u -c 2 ∆u -ν∆∂ t u = f on [0, T ] × Ω, ∂ ∂n u + au = 0 on [0, T ] × ∂Ω, u(0) = ∂ t u(0) = 0 in Ω.
(5.15)

Theorem 5.3.3. [START_REF] Chill | L p -maximal regularity for second order Cauchy problems[END_REF] For p ≥ 2, let -∆ be defined on L p (Ω) in accordance with Definition 4.1.9, which defines the weak solution of the Poisson problem with homogeneous Robin boundary conditions . If -∆ is a sectorial operator on L p (Ω) which admits a bounded RH ∞ functional calculus of angle β with 0 < β < π 2 then system (5.15) has L p -maximal regularity. Remark 5.3.2. It is an application of a general theorem using UMD spaces. UMD spaces have been introduced in Ref. [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF]. By Ref. [START_REF] Kalton | The H ∞ -calculus and sums of closed operators[END_REF], if A is a sectorial operator on an UMD spaces X with property (α) and admits a bounded H ∞ calculus of angle β, then A already admits a RH ∞ calculus of angle β. For the definition of Banach spaces having property (α) see Ref. [START_REF] Pisier | Some results on Banach spaces without local unconditional structure[END_REF]. For p > 1, L p (Ω) is an UMD space having property (α) according to Ref. [START_REF] Chill | L p -maximal regularity for second order Cauchy problems[END_REF] before Theorem 4.1.

As a consequence we have: Theorem 5.3.4. For p ≥ 2 and T > 0, there exits a unique weak solution u ∈ X p with

X p := W 1,p ([0, T ]; D(-∆)) ∩ W 2,p ([0, T ]; L p (Ω)) (5.16)
of the homogeneous boundary-valued problem (5.15) if and only if f ∈ L p ([0, T ]; L p (Ω)). Moreover we have the estimate

u X p ≤ C f L p ([0,T ];L p (Ω)) .
It is a weak solution in the sense that the operator -∆ is defined in accordance with Definition 4.1.9, which defines the weak solution of the Poisson problem with homogeneous Robin boundary conditions. 

Well posedness of the

(L p (Ω), D(-∆)) p = {(u 0 , u 1 ) ∈ L p (Ω) × L p (Ω)| ∃u ∈ X p with u(0) = u 0 , u t (0) = u 1 }.
(5.17) There exits a unique weak solution u ∈ X p of the damped wave equation problem (4.36) 

if and only if

f ∈ L p ([0, T ]; L p (Ω)) and (u 0 , u 1 ) ∈ (L p (Ω), D(-∆)) p . Moreover we have the estimate u X p ≤ C( f L p ([0,T ];L p (Ω)) + (u 0 , u 1 ) (L p (Ω),D(-∆))p ).
Proof. For (u 0 , u 1 ) ∈ (L p (Ω), D(-∆)) p , we have by definition w ∈ X p such that w(0) = u 0 and w t (0) = u 1 .

In particular, ∂ 2 t w -c 2 ∆w -ν∆∂ t w ∈ L p ([0, T ]; L p (Ω)). So in the sense of Theorem 5.3.4 if we take w the unique weak solution in X p of Let Ω be an admissible domain in R n (n = 2 or 3) with a d-set boundary ∂Ω such that n -2 < d < n. We define X p as in (5.16). Let ν > 0, p > n and T > 0. We consider the problem for the Westervelt equation with the homogeneous Robin boundary conditions (5.13). Let the initial data u 0 ∈ D(-∆) and u 1 ∈ D(-∆) with the non homogeneous datum f ∈ L p ([0, T ]; L p (Ω)), C 1 > 0 be the minimal constant such that the solution u * ∈ X p of the corresponding non homogeneous linear Cauchy problem (4.36) satisfies

                   ∂ 2 t w -c 2 ∆ w -ν∆∂ t w = f -(∂ 2 t w -c 2 ∆w -ν∆∂ t w) on [0, T ] × Ω, ∂ ∂n w + a w = 0 on [0, T ] × ∂Ω, w(0) = ∂ t w(0) = 0 in Ω,
u * X p ≤ C 1 ( f L p ([0,T ];L 2 (Ω)) + u 0 D(-∆) + u 1 D(-∆) ).
Then there exists r * > 0 such that for all r ∈ [0, r * [ and all data satisfying

f L 2 ([0,T ];L 2 (Ω)) + u 0 D(-∆) + u 1 D(-∆) ≤ 1 C 1 r, ( 5.18) 
there exists a unique weak solution u ∈ X p of problem (5.13) for the Westervelt equation and u X p ≤ 2r.

Proof. The proof is essentially the same as in Theorem 5.3.2 and thus is omitted. We just replace L 2 ([0, +∞[; L 2 (Ω)) by L p ([0, T ]; L p (Ω)) and the space X defined in (5.12) by the space X p defined in (5.1). We also use the Theorems 5.3.5 and 4.1.15 to have the required estimates.

Prefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions

Now let us fix a type of fractal boundaries of our domain, choosing Koch mixtures, as defined in [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF]. The advantage of a fixed fractal geometry is to be able to consider the approximations questions of how the solutions on the prefractal domain converge to the solution on a fractal one. This kind of convergence is named Mosco-convergence.

Scale irregular Koch curves

We recall briefly some notations introduced in Section 2 page 1223 of [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] for scale irregular Koch curves built on two families of contractive similitudes. Let B = {1, 2}: for a ∈ B let 2 < l a < 4, and for each a ∈ B let

Ψ (a) = {ψ (a) 1 , . . . , ψ (a) 4 }
be the family of contractive similitudes ψ (a) i : C → C, i = 1, . . . , 4, with contraction factor l -1 a defined in [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF].
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Let Ξ = B N ; we call ξ ∈ Ξ an environment. We define the usual left shift S on Ξ. For O ⊂ R 2 , we set

Φ (a) (O) = 4 i=1 ψ (a) i (O) and Φ (ξ) m (O) = Φ (ξ 1 ) • • • • • Φ (ξm) (O).
Let K be the line segment of unit length with A = (0, 0) and B = (1, 0) as endpoints. We set, for each m in N, K (ξ),m = Φ (ξ) m (K). K (ξ),m is the so-called m-th prefractal curve. The fractal K (ξ) associated with the environment sequence ξ is defined by

K (ξ) = +∞ m=1 Φ (ξ) m (Γ),
where Γ = {A, B}. For ξ ∈ Ξ, we set i|m = (i 1 , . . . , i m ) and ψ i|m = ψ

(ξ 1 ) i 1 • • • • • ψ (ξm)
im . We define the volume measure µ (ξ) as the unique Radon measure on K (ξ) such that

µ (ξ) (ψ i|m (K (S m ξ) )) = 1 4 n
(see Section 2 in [START_REF] Barlow | Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets[END_REF]) as, for each a ∈ B, the family Φ (a) has 4 contractive similitudes.

The fractal set K (ξ) and the volume measure µ (ξ) depend on the oscillations in the environment sequence ξ. We denote by h (ξ) a (m) the frequency of the occurrence of a in the finite sequence ξ|m, m ≥ 1:

h (ξ) a (m) = 1 m m i=1 1 {ξ i =a} , a = 1, 2.
Let p a be a probability distribution on B, and suppose that ξ satisfies

h (ξ) a (m) -→ m→+∞ p a ,
(where 0 ≤ p a ≤ 1, p 1 + p 2 = 1) and

|h (ξ) a (m) -p a | ≤ C 0 m , a = 1, 2, (n ≥ 1),
with some constant C 0 ≥ 1, that is, we consider the case of the fastest convergence of the occurrence factors. Under these conditions, the measure µ (ξ) has the property that there exist two positive constants C 1 , C 2 , such that (see [START_REF] Mosco | Harnack inequalities on scale irregular Sierpinski gaskets[END_REF] and [START_REF] Mosco | Gauged Sobolev inequalities[END_REF]),

C 1 r d (ξ) ≤ µ (ξ) (K (ξ) ∩ B r (x)) ≤ C 2 r d (ξ) for all x ∈ K (ξ) , 0 < r ≤ 1,
where B r (x) ⊂ R 2 denotes the Euclidean ball of radius r and centered at x with

d (ξ) = ln 4 p 1 ln p 1 + p 2 ln p 2 .
According to Definition 4.1.1 we can say that K (ξ) is a d (ξ) set with respect to the d (ξ)dimensional Hausdorff measure m d (ξ) . Thus, the measure µ (ξ) is also d (ξ) -dimensional and equivalent to m d (ξ) .

Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

For φ ∈ C 1 ([0, T ] × D(Ω * )) and u ∈ H(Ω * ) we define F m [u, φ] := T 0 Ω m -∂ t u∂ t φ + c 2 ∇u∇φ -νε∇u∇∂ t φ + αε(u∂ t u)∂ t φ dλ dt + T 0 ∂Ω m c 2 a T r ∂Ω m u T r ∂Ω m φ -νε a m T r ∂Ω m u T r ∂Ω m ∂ t φ -c 2 b m T r ∂Ω m φ ds dt + Ω m ∂ t u(T )φ(T ) dλ - Ω m ∂ t u(0)φ(0) dλ + νε Ω m ∇u(T )∇φ(T ) dλ -νε Ω m ∇u(0)∇φ(0) dλ (5.29) -αε Ω m (u∂ t u)(T )φ(T ) dλ + αε Ω m (u∂ t u)(0)φ(0) dλ + νε ∂Ω m a m T r ∂Ω m u(T ) T r ∂Ω m φ(T ) ds -νε ∂Ω m a m T r ∂Ω m u(0) T r ∂Ω m φ(0) ds
with a m ≥ 0 and b m ∈ R, and for a ≥ 0 and b ∈ R

F [u, φ] := T 0 Ω -∂ t u∂ t φ + c 2 ∇u∇φ -νε∇u∇∂ t φ + αε(u∂ t u)∂ t φ dλ dt + T 0 ∂Ω c 2 a T r ∂Ω u T r ∂Ω φ -νε a T r ∂Ω u T r ∂Ω ∂ t φ -c 2 b T r ∂Ω φ dµ dt + Ω ∂ t u(T )φ(T ) dλ - Ω ∂ t u(0)φ(0) dλ + νε Ω ∇u(T )∇φ(T ) dλ -νε Ω ∇u(0)∇φ(0) dλ (5.30) -αε Ω (u∂ t u)(T )φ(T ) dλ + αε Ω (u∂ t u)(0)φ(0) dλ + νε ∂Ω aT r ∂Ω u(T ) T r ∂Ω φ(T ) dµ -νε ∂Ω aT r ∂Ω u(0) T r ∂Ω φ(0) dµ
where T r ∂Ω m and T r ∂Ω denotes the trace of u on the boundaries of Ω m and Ω respectively.

Definition 5.4.2. We shall say that u is a weak solution of the Westervelt problem (5.27) on [0, T ] × Ω if

• u ∈ H(Ω) defined in (5.28).

• For every φ ∈ C 1 ([0, T ] × D(Ω)) F [u, φ] = 0,
where F defined in (5.30).

• u(0) = u 0 and u t (0) = u 1 on Ω.

The expression F [u, φ] = 0 can be obtained multiplying the Westervelt equation from system (5.27) by φ ∈ C 1 ([0, T ] × D(Ω)) integrating on [0, T ] × Ω and doing integration by parts. In the same way for F m [u, φ], defined in equation (5.29),

∀φ ∈ C 1 ([0, T ] × D(Ω)) F m [u, φ] = 0,
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is the weak solution of the following problem

                   ∂ 2 t u -c 2 ∆u -νε∆∂ t u = αε∂ t [u∂ t u] on ]0, T ] × Ω m , ∂ n u + a m u = b m on ]0, T ] × ∂Ω m , u(0) = u 0 | Ω m , u t (0) = u 1 | Ω m on Ω m (5.31)
with the compatibility condition

b m = (∂ n u 0 + a m u 0 )| ∂Ω m 0 = (∂ n u 1 + a m u 1 )| ∂Ω m .
In order to state our main result, we also need to recall the notion of M -convergence of functionals introduced in [START_REF] Mosco | Convergence of convex sets and of solutions of variational inequalities[END_REF].

Definition 5.4.3. A sequence of functionals G

m : H → (-∞, +∞] is said to M-converge to a functional G : H → (-∞, +∞] in a Hilbert space H, if 1. (lim sup condition) For every u ∈ H there exists u m converging strongly in H such that limG m [u m ] ≤ G[u], as m → +∞.
(5.32)

(lim inf condition) For every v m converging weakly to u in

H limG m [v m ] ≥ G[u], as m → +∞. (5.33) 
Our main result is the following theorem. 

(Ω * ) ∀φ ∈ C 1 ([0, T ]; D(Ω * )) F m [v m , φ] → F [u, φ] as m → +∞. Proof. We consider φ ∈ C 1 ([0, T ]; D(Ω * )), a m = aσ m , b m = bσ m ,
Ω m [∂ t u(T )φ(T ) -∂ t u(0)φ(0) + νε(∇u(T )∇φ(T ) -∇u(0)∇φ(0))] dλ → Ω [∂ t u(T )φ(T ) -∂ t u(0)φ(0) + νε(∇u(T )∇φ(T ) -∇u(0)∇φ(0))] dλ (5.35)
and 

Ω m -αε[(u∂ t u)(T )φ(T ) -(u∂ t u)(0)φ(0)]dλ → Ω -αε[(u∂ t u)(T )φ(T ) -(u∂ t u)(0)φ(0)]dλ. ( 5 
∈ C 1 ([0, T ]; D(Ω * )), for m → +∞ ∂Ω m -c 2 b m T r ∂Ω m φ ds → ∂Ω -c 2 bT r ∂Ω φ dµ. But ∂Ω m -c 2 b m T r ∂Ω m φ ds ≤ C φ H 1 (Ω)
uniformly in n on [0, T ] by Theorems 5.4.1 and 5.4.4. So by the dominated convergence theorem, as the time interval

[0, T ] is compact, for m → +∞ T 0 ∂Ω m -c 2 b m T r ∂Ω m φ ds dt → T 0 ∂Ω -c 2 bT r ∂Ω φ dµ dt. ( 5.37) 
As u belongs to H(Ω * ), there exists a sequence

u m ∈ C([0, T ] × Ω * ) ∩ H(Ω * ) such that u m → u in H(Ω * ).
Then in the same way as in the proof of Theorem 5.4.5 (see [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF])

σ m ∂Ω m T r ∂Ω m uT r ∂Ω m φ ds- ∂Ω T r ∂Ω uT r ∂Ω φ dµ ≤ σ m ∂Ω m T r ∂Ω m uT r ∂Ω m φ ds -σ m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds + σ m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds - ∂Ω T r ∂Ω u m T r ∂Ω φ dµ + ∂Ω T r ∂Ω u m T r ∂Ω φ dµ - ∂Ω T r ∂Ω uT r ∂Ω φ dµ .
(5.38)

The first term on the right-hand side in (5.38) can be estimated by using Theorems 5.4.1 and 5.4.4

σ m ∂Ω m T r ∂Ω m uT r ∂Ω m φ ds -σ m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds ≤ C * u -u m H 1 (Ω * ) φ L ∞ , (5.39) with C * > 0 independent of n, which implies by definition of u m , for all δ > 0 if m big enough for all n ∈ N as u -u m H(Ω * ) → 0 when m → +∞ T 0 σ m ∂Ω m T r ∂Ω m uT r ∂Ω m φ ds -σ m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds dt ≤ δ 2 .
(5.40)

The third term on the right-hand side in (5.38) can be estimated by using Theorems 5.4.2 and 5.4.4 

∂Ω T r ∂Ω u m T r ∂Ω φ dµ - ∂Ω T r ∂Ω uT r ∂Ω φ dµ ≤ C * * u -u m H 1 (Ω * ) φ L ∞ . ( 5 
m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds → ∂Ω T r ∂Ω u m T r ∂Ω φ dµ.
(5.43)

Then, by using (5.38), (5.39), (5.41) and (5.43), we have 

∂Ω m σ m T r ∂Ω m u(T ) T r ∂Ω m φ(T ) -σ m T r ∂Ω m u(0) T r ∂Ω m φ(0) ds → ∂Ω T r ∂Ω u(T ) T r ∂Ω φ(T ) -T r ∂Ω u(0) T r ∂Ω φ(0) ds. ( 5 
m T r ∂Ω m u m T r ∂Ω m φ ds - ∂Ω T r ∂Ω u m T r ∂Ω φ dµ ≤ C u m H 1 (Ω * )
independently of n, and with (5.43) we obtain by the dominated convergence theorem for m → +∞ that 

T 0 σ m ∂Ω m T r ∂Ω m u m T r ∂Ω m φ ds - ∂Ω T r ∂Ω u m T r ∂Ω φ dµ dt → 0. ( 5 
F m [u, φ] → F [u, φ].
This proves the "lim sup" condition. Proof of the "lim inf" condition. Now, let v m be a sequence such that

v m ⇀ u in H(Ω * ),
with H(Ω * ) defined by (5.28). Then we have 

∂ t v m ⇀ ∂ t u in L 2 ([0, T ]; L 2 (Ω * )), (5.48 
v m ⇀ u, ∇v m ⇀ ∇u in L 2 ([0, T ]; L 2 (Ω * )). (5.49) Moreover, as L 2 ([0, T ]; H 1 (Ω * )) ⊂⊂ L 2 ([0, T ]; L 2 (Ω * )), v m → u, ∂ t v m → ∂ t u in L 2 ([0, T ]; L 2 (Ω * )).
(5.50)

We also have as

H 1 ([0, T ]; H 1 (Ω * )) ⊂⊂ C([0, T ]; H 1 (Ω * )) that v m (0) → u(0), v m (T ) → u(T ) in H 1 (Ω * ) (5.51) and ∂ t v m (0) ⇀ ∂ t u(0), ∂ t v m (T ) ⇀ ∂ t u(T ) in L 2 (Ω * ). (5.52) Let φ ∈ C 1 ([0, T ]; D(Ω *
)), we will show that our goal is to prove that

F m [v m , φ] -→ m→+∞ F [u, φ].
First we study the convergence of the terms with

T 0 Ω m T 0 Ω m ∂ t v m ∂ t φ dλ ds - T 0 Ω ∂ t u∂ t φ dλ ds ≤ T 0 Ω * ∂ t v m ½ Ω m ∂ t φ dλ ds - T 0 Ω * ∂ t v m ½ Ω ∂ t φ dλ ds + T 0 Ω * ∂ t v m ½ Ω ∂ t φ dλ ds - T 0 Ω * ∂ t u½ Ω ∂ t φ dλ ds .
By ½ Ω is denoted the caracteristic function of the set Ω.

The second term on the right hand side tends to zero as m → +∞ by (5.48) as

½ Ω ∂ t φ ∈ L 2 ([0, T ]; L 2 (Ω * )) = L 2 ([0, T ]; L 2 (Ω * )) ′ .
For the first term

T 0 Ω * ∂ t v m (½ Ω m -½ Ω )∂ t φ dλ ds ≤ (½ Ω m -½ Ω )φ L 2 ([0,T ]×Ω * ) ∂ t v m L 2 ([0,T ]×Ω * ) , but ∂ t v m L 2 ([0,T ]×Ω *
) is bounded by (5.48) and by the dominated convergence theorem

(½ Ω m -½ Ω )φ L 2 ([0,T ]×Ω * ) -→ m→+∞ 0. Then when m → +∞ T 0 Ω m ∂ t v m ∂ t φ dλ ds → T 0 Ω ∂ t u∂ t φ dλ ds.
Using (5.49) we can deduce in the same way

T 0 Ω m -∂ t v m ∂ t φ + c 2 ∇v m ∇φ -νε∇v m ∇∂ t φ dλ dt -→ m→+∞ T 0 Ω -∂ t u∂ t φ + c 2 ∇u∇φ -νε∇u∇∂ t φ dλ dt.
(5.53)
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For the quadratic term we have

T 0 Ω m (v m ∂ t v m )∂ t φdλdt - T 0 Ω (u∂ t u)∂ t φdλdt ≤ T 0 Ω m (v m ∂ t v m )∂ t φdλdt - T 0 Ω m (u∂ t u)∂ t φdλdt + T 0 Ω m (u∂ t u)∂ t φdλdt - T 0 Ω (u∂ t u)∂ t φdλdt .
As by the prefractal construction of the sequence

(Ω m ) m∈N * ½ Ω m → ½ Ω and (u∂ t u)∂ t φ ∈ L 1 ([0, T ] × Ω *
), the dominated convergence theorem implies that the second term in the right hand side tends to 0 when m → +∞. For the first term on the right hand side we use the fact that

(v m ∂ t v m ) -(u∂ t u) = v m (∂ t v m -∂ t u) + (v m -u)∂ t u,
so we obtain by the Cauchy-Schwartz inequality as

∂ t φ is bounded on [0, T ] × Ω * T 0 Ω m [(v m ∂ t v m ) -(u∂ t u)]∂ t φdλdt ≤ T 0 Ω m |v m (∂ t v m -∂ t u)∂ t φ|dλdt + T 0 Ω m |(v m -u)∂ t u∂ t φ|dλdt ≤C ∂ t v m -∂ t u L 2 ([0,T ]×Ω * ) v m L 2 ([0,T ]×Ω * ) + C v m -u L 2 ([0,T ]×Ω * ) u L 2 ([0,T ]×Ω * ) .
But by (5.50) the right hand side term tens to zero when n goes to infinity. Then we deduce 

T 0 Ω m αε(v m ∂ t v m )∂ t φ dλ dt → m→+∞ T 0 Ω αε(u∂ t u)∂ t φ dλ dt. ( 5 
T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m φ ds dt - T 0 ∂Ω T r ∂Ω uT r ∂Ω φ dµ dt ≤ T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m φ ds dt - T 0 ∂Ω m σ m T r ∂Ω m uT r ∂Ω m φ ds dt + T 0 ∂Ω m σ m T r ∂Ω m uT r ∂Ω m φ ds dt - T 0 ∂Ω
T r ∂Ω uT r ∂Ω φ dµ dt .

(5.55)

The second term on the right hand side in (5.55) tends to zero as m → +∞ by (5.46). For the first term on the right hand side in (5.55) we have .57) and in the same way

T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m φ ds dt - T 0 ∂Ω m σ m T r ∂Ω m uT r ∂Ω m φ ds dt ≤ σ m T r ∂Ω m v m -T r ∂Ω m u L 2 ([0,T ];L 2 (∂Ω m )) T r ∂Ω m φ L 2 ([0,T ];L 2 (∂Ω m )) . ( 5 
σ m T r ∂Ω m v m -T r ∂Ω m u 2 L 2 ([0,T ];L 2 (∂Ω m )) ≤C E Ω * (v m -u) L 2 ([0,T ];H p (R 2 )) ≤C (v m -u) L 2 ([0,T ];H p (Ω * )) , ( 5 
σ m T r ∂Ω m φ 2 L 2 ([0,T ];L 2 (∂Ω m )) ≤ C φ L 2 ([0,T ];H 1 (Ω * )) (5.58) with C > 0 independent of n. As v m ⇀ u in L 2 ([0, T ]; H 1 (Ω * ))
and

H 1 (Ω * ) ⊂⊂ H q (Ω * ) for 1 2 < q < 1,
we have v m → u strongly in L 2 ([0, T ]; H q (Ω * )).

(5.59) By (5.56), (5.57), (5.58), (5.59)

T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m φ ds dt - T 0 ∂Ω m σ m T r ∂Ω m uT r ∂Ω m φ ds dt -→ m→+∞ 0.
Then the analysis of (5.55) gives us when m → +∞

T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m φ ds dt → T 0 ∂Ω T r ∂Ω uT r ∂Ω φ dµ dt. ( 5.60) 
In the same way that for (5.60) we have when m → +∞

T 0 ∂Ω m σ m T r ∂Ω m v m T r ∂Ω m ∂ t φ ds dt → T 0 ∂Ω T r ∂Ω uT r ∂Ω ∂ t φ dµ dt.
(5.61)

The same type of arguments with (5.51) permits to say when m → +∞ νε

∂Ω m a m T r ∂Ω m v m (T ) T r ∂Ω m φ(T ) ds -νε ∂Ω m a m T r ∂Ω m v m (0) T r ∂Ω m φ(0) ds → νε ∂Ω aT r ∂Ω u(T ) T r ∂Ω φ(T ) dµ -νε ∂Ω aT r ∂Ω u(0) T r ∂Ω φ(0) dµ. (5.62)
The key point is that as H 1 (Ω * ) ⊂⊂ H q (Ω * ) for 1 2 < q < 1 the weak convergence in H 1 (Ω * ) implies the strong convergence in H q (Ω * ).

For the time boundary terms we have

Ω m ∂ t v m (T )φ(T ) dλ - Ω ∂ t u(T )φ(T ) dλ -→ m→+∞ 0 as when m → +∞ ∂ t v m (T ) ⇀ ∂ t u(T ) in L 2 (Ω * ) and ½ Ω m φ(T ) → ½ Ω φ(T ) in L 2 (Ω * ).
In the same way when m → +∞ we have ½ Ω m v m (l)φ(l) → ½ Ω u(l)φ(l) in L 2 (Ω * ) by (5.51) and by (5.52) to obtain when m → +∞

Ω m ∂ t v m (T )φ(T ) -∂ t v m (0)φ(0) d + νε∇v m (T )∇φ(T ) dλ -νε∇v m (0)∇φ(0) dλ → Ω ∂ t u(T )φ(T ) -∂ t u(0)φ(0) + νε∇u(T )∇φ(T ) -νε∇u(0)∇φ(0) dλ. ( 5 
Ω m -αε(v m ∂ t v m )(T )φ(T ) + αε(v m ∂ t v m )(0)φ(0) dλ → Ω -αε(u∂ t u)(T )φ(T ) + αε(u∂ t u)(0)φ(0) dλ.
(5.64)

So by (5.53), (5.54), (5.60), (5.61), (5.62), (5.63), (5.64) and (5.37) we have

∀φ ∈ C 1 ([0, T ]; D(Ω * )) F m [v m , φ] → F [u, φ],
as m → +∞ and this concludes the proof.

Linear and Nonlinear problems with mixed boundary condition

Let Ω 0 be as previously in Subsection 5.4.2 the square {(x, y) : 0 < x < 1, -1 < y < 0} with vertices A = (0, 0), B = (1, 0), C = (1, -1), and D = (0, -1). On the side between A and B we construct either a scale irregular Koch curve or the corresponding approximating prefractal curve. This time only others points are related by straight lines. More precisely, we consider the set Ω (ξ) bounded by a scale irregular Koch curves K (ξ) , with endpoints A and B, and segments

Γ 1 = [B, C], Γ 0 = [C, D] and Γ 3 = [D, A]
. Moreover, we consider the set Ω (ξ),m bounded by an approximating prefractal curves K (ξ),m , starting from the segments with endpoints A and B, and segments

Γ 1 = [B, C], Γ 0 = [C, D] and Γ 3 = [D, A].
From now on, when it does not give rise to misunderstanding, in the notation we suppress the super index (ξ) by writing simply Ω, Ω m . We start by considering the Poisson mixed boundary problem with the Robin boundary conditions on a fractal boundary

K                                        -∆u = f in Ω, u = 0 on Γ 0 , ∂ ∂n u = 0 on Γ 1 , ∂ ∂n u + au = 0 on K, ∂ ∂n u = 0 on Γ 3 , (5.65) 
and the analogous prefractal problem

                                       -∆u = f in Ω m , u = 0 on Γ 0 , ∂ ∂n u = 0 on Γ 1 , ∂ ∂n u + a m u = 0 on K m , ∂ ∂n u = 0 on Γ 3 .
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According to [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], the interest in mixed Dirichlet-Robin problems for the operator -∆ arises, for example, from the study of current flowing through an electrochemical cell, where the working electrode K presents an irregular geometry or in the study of reactive molecules toward catalytic surfaces.

We have again the equivalent of Theorems 5.4.1, 5.4.2, 5.4.3, 5.4.4 and 5.4.6 replacing ∂Ω (ξ),m by K m and ∂Ω (ξ) by K. As we are in a particular case of Theorem 4.1 in [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] we can write Theorem 5.4.8. [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] For all f ∈ L 2 (Ω m ), for every a m ≥ 0 there exists one and only one solution u m of the following problem

         Find u m ∈ V (Ω m ) := {u m ∈ H 1 (Ω m ) : u m = 0 on Γ 0 } such that ∀v ∈ V (Ω m ), Ω m ∇u m ∇v dx + a m K m T r K m u m T r K m v ds = Ω m f v dx.
(5.67)

For any f ∈ L 2 (Ω m ), for every n ∈ N, the weak solution u m of the prefractal problem (5.67) solves the following problem

                                       -∆u = f in L 2 (Ω m ), u = 0 in C(Γ 0 ), ∂ ∂n u = 0 in L 2 (Γ 1 ), ∂ ∂n u + a m u = 0 in L 2 (K m ), ∂ ∂n u = 0 in L 2 (Γ 3 ).
(5.68) Using these results we can treat the case of the strongly damped wave equation on Ω m with the same boundary conditions. This time an acoustic wave propagates in a thermoelastic medium, bounded by boundaries of different physical natures (in a part reflexive (Robin boundary condition), isolated (the Neumann boundary condition) and fixed (Dirichlet boundary condition)). Definition 5.4.4. On Ω m , for a m > 0 we take V (Ω m ) defined in (5.67). For

Moreover, u m H 1 (Ω m ) ≤ C f L 2 (Ω m ) , ( 5 
f ∈ L 2 ([0, T ]; L 2 (Ω m )), u 0 ∈ V (Ω m ) and u 1 ∈ L 2 (Ω),
we say that a function with the regularities 

u m ∈ L 2 ([0, T ]; V (Ω m )), ∂ t u m ∈ L 2 ([0, T ]; V (Ω m )) and ∂ 2 t u m ∈ L 2 ([0, T ]; H -1 (Ω)) 5 
                                                 ∂ 2 t u m -c 2 ∆u m -ν∆∂ t u m = f on ]0, T ] × Ω m , ∂ ∂n u + a m u = 0 on [0, T ] × K m , u = 0 on [0, T ] × Γ 0 , ∂ ∂n u = 0 on [0, T ] × Γ 1 , ∂ ∂n u = 0 on [0, T ] × Γ 3 , u(0) = u 0 , u t (0) = u 1 , (5.70) if it satisfies for all v ∈ V (Ω m ) and a.e. time 0 ≤ t ≤ T u tt , v (H -1 (Ω m ),V (Ω m )) +c 2 Ω m ∇u m ∇v dx + a m K m T r K m u m T r K m v ds (5.71) + ν Ω m ∇∂ t u m ∇v dx + a m K m T r K m ∂ t u m T r K m v ds = (f, v) L 2 (Ω m )
with u m satisfying the desired initial boundary conditions.

In the same way as in Theorem 4.3.5 we have the following theorem. The main tool is a Galerkin method that we can apply on Ω m as we have an equivalent of Theorem 4.1.14 hence its proof is omitted. Theorem 5.4.9. Let us consider Ω m , for a m > 0 we take V (Ω m ) defined in (5.67), then assume

u 0 ∈ V (Ω m ), u 1 ∈ V (Ω m ), f ∈ L 2 ([0, +∞[; L 2 (Ω m )) with ∆u 0 ∈ L 2 (Ω m
) in the weak sense (5.67) of the Poisson problem (5.66), then we have a unique weak solution u m of the linear problem (5.70) in the sense of the formulation (5.71) 

u m ∈ L ∞ ([0, +∞[; V (Ω m )) ∩ L 2 ([0, +∞[; V (Ω m )), ∂ t u m ∈ L ∞ ([0, +∞[; V (Ω m )) ∩ L 2 ([0, +∞[; V (Ω m )), ∂ 2 t u m ∈ L 2 ([0, +∞[; L 2 (Ω m )), ∆u m ∈ L ∞ ([0, +∞[; L 2 (Ω m )) ∩ L 2 ([0, +∞[; L 2 (Ω m )), ∆∂ t u m ∈ L 2 ([0, +∞[; L 2 (Ω m ))
with the estimates 

ess sup 0≤t ( ∆u(t) 2 L 2 (Ω m ) + ∇∂ t u(t) 2 L 2 (Ω m ) ) + ∞ 0 ∆∂ t u(s) 2 L 2 (Ω m ) ds ≤C( f 2 L 2 ([0,+∞[;L 2 (Ω m )) + ∆u 0 2 L 2 (Ω m ) + ∇u 1 2 L 2 (Ω m ) ) (5.72) and +∞ 0 ∆u(s) 2 L 2 (Ω m ) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω m )) + ∆u 0 2 L 2 (Ω m ) + ∇u 1 2 L 2 (Ω m ) ), ( 5 
u m L ∞ (Ω m ) ≤ C f L 2 (Ω m ) , (5.74)
where C > 0 is a constant independent of m.

Proof. The proof is essentially based on the method used in [START_REF] Nittka | Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains[END_REF] on Lipschitz domains with only Neumann or Robin boundary conditions. First we consider the case a m = 0. For n ∈ N, Ω m is a Lipschitz domain in R 2 . By definition for every z ∈ ∂Ω m we can choose an orthogonal matrix O, a radius r > 0, a Lipschitz continuous function ψ : R → R, and

G = {(y, ψ(y) + s) : y ∈] -r, r[, s ∈] -r, r[}, such that O(Ω m -z) ∩ {(y, ψ(y) + s) : y ∈] -r, r[, s ∈]0, r[}.
For local consideration we assume O = Id and z = 0. We define T (y, s) := (y, ψ(y) + s) and the reflection S : G → G at the boundary ∂Ω by S(T (y, s)) = T (y, -s).

We write

U = G ∩ Ω m and V = S(U) = G \ Ω m .
For a function w on U, we define w (almost everywhere) on G by

w(x) :=          w(x), x ∈ U, w(S(x)), x ∈ V.
Considering u m | U we show as in [START_REF] Nittka | Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains[END_REF] that ũm solves a strictly elliptic type problem on G.

Using the properties of interior regularity as in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] with Theorem 8.24 we have for G 0 ⊂⊂ G an estimate of the kind

ũm L ∞ (G 0 ) ≤ C f L 2 (Ω m )
with C > 0 depending only on λ(G). Thus u m is in C(Ω m ∩ G 0 ) and satisfies an estimate

u m L ∞ (Ω m ∩G 0 ) ≤ C f L 2 (Ω m )
with C > 0 depending only on λ(G).

Since ∂Ω is compact, we can cover ∂Ω by finitely many such sets. Thus u is continuous in an interior neighborhood of ∂Ω and its L ∞ norm can be controlled as in (5.74). Finally, we use the result about interior regularity once again to control u m in the interior of Ω m . As a result we have u m ∈ C(Ω m ) with an estimate similar to (5.74), where the constant C > 0 depends only on λ(Ω m ) and as it is bounded it can be chosen independent on n.

The key point in the fact that the constants in the estimates depend only on the surface is the Poincaré inequality that we can apply on Ω m considered with an homogeneous Dirichlet boundary condition on one side of Ω m . We have considered the case a m = 0, but the case K ≥ a m ≥ 0 independently of n can be treated in the same way using [START_REF] Nittka | Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains[END_REF] what implies the desired result. 

≤ C 1 νǫ ( f L 2 (R + ;L 2 (Ω m )) + ∆u 0 L 2 (Ω m ) + u 1 V (Ω m ) ).
Then there exists r * > 0 independent of m with r * = O(1) such that for all r ∈ [0, r * [ and all data satisfying

f L 2 (R + ;L 2 (Ω m )) + ∆u 0 L 2 (Ω m ) + u 1 V (Ω m ) ≤ νǫ C 1 r,
there exists the unique weak solution u m of problem (5.75) for the Westervelt equation and

∂ 2 t u m L 2 (R + ;L 2 (Ω m )) + ∆∂ t u m L 2 (R + ;L 2 (Ω m )) + ∆u m L 2 (R + ;L 2 (Ω m )) ≤ 2r.
Proof. The proof is essentially the same as for Theorem 5. (5.76)

For any f ∈ L 2 (Ω), for every n ∈ N, the weak solution u of the fractal problem (5.76) solves the Poisson problem (5.65). Moreover, (5.65) on the fractal domain Ω we have (see Theorem 5.3 in [19])

u H 1 (Ω) ≤ C f L 2 (Ω) . ( 5 
(E R 2 u m )| Ω → u, in H 1 (Ω)
and u ∈ C(Ω) with the following estimate u L ∞ (Ω) ≤ C f L 2 (Ω) .

(5.78)

Proof. The convergence comes from Theorem 5.3 in [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] and the L ∞ -estimate is a consequence of the convergence and of estimate (5.74) on u m which is independent on m.

As a result we have an equivalent of Theorem 5.4.11 replacing Ω m by Ω and a m by a as we have an equivalent of Theorem 5.4.9 on Ω and the estimate (5.78). Hence its proof is omitted.

Theorem 5.4.14. Let us take take Ω, domain with the fractal boundary K and a ≥ 0. Let ν > 0, and R + = [0, +∞[. Considering the problem for the Westervelt equation 

                                                 ∂ 2 t u -c 2 ∆u -νε∆∂ t u = αεu∂ 2 t u + αε(∂ t u) 2 + f in [0, T ] × Ω,
∂ 2 t u * L 2 (R + ;L 2 (Ω)) + ∆∂ t u * L 2 (R + ;L 2 (Ω)) + ∆u * L 2 (R + ;L 2 (Ω)) ≤ C 1 νǫ ( f L 2 (R + ;L 2 (Ω)) + ∆u 0 L 2 (Ω) + u 1 V (Ω) ).
Then there exists r * > 0 with r * = O(1) such that for all r ∈ [0, r * [ and all data satisfying

f L 2 (R + ;L 2 (Ω)) + ∆u 0 L 2 (Ω) + u 1 V (Ω) ≤ νǫ C 1 r,
there exists the unique weak solution u of problem (5.75) for the Westervelt equation and

∂ 2 t u L 2 (R + ;L 2 (Ω)) + ∆∂ t u L 2 (R + ;L 2 (Ω)) + ∆u L 2 (R + ;L 2 (Ω)) ≤ 2r.
We consider the problem (5. Chapter A. Expressions of the remainder terms Among the x 1 axis

ε 3 R N S-KZK 2 . -→ e 1 = ε 3 - ρ 0 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] - ν c ∂ τ [- 2 c ∂ 2 τ z Φ + ∆ y Φ] - I 2c ∂ τ [ 1 c 2 (∂ τ Φ) 2 ] + J c ∂ 2 τ Φ + ε 4 ρ 0 2 ∂ z [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ν∂ z [- 2 c ∂ 2 τ z Φ + ∆ y Φ] - I 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + I 2 ∂ z [ 1 c 2 (∂ τ Φ) 2 ] -J∂ 2 τ z Φ - J 2c ∂ τ [ 1 c 2 (∂ τ Φ) 2 ] - ρ 0 2c ∂ τ [(∂ z Φ) 2 ] - ν c ∂ τ ∂ 2 z Φ + ε 5 - I 2c ∂ τ [(∂ z Φ) 2 ] + I 2 ∂ z [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + J 2 ∂ z [ 1 c 2 (∂ τ Φ) 2 ] - J 2c ∂ τ [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ρ 0 2 ∂ z [(∂ z Φ) 2 ] + ν∂ 3 z Φ + ε 6 I 2 ∂ z [(∂ z Φ) 2 ] - J 2c ∂ τ [(∂ z Φ) 2 ] + J 2 [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ε 7 J 2 ∂ z [(∂ z Φ) 2 ]
and in the hyperplane orthogonal to the x 1 axis L'équation de Westervelt (B.4) est aussi une approximation de l'équation de Kuznetsov, mais cette fois par une perturbation non-linéaire. De fait la seule différence entre ces deux modèles est que l'équation de Westervelt ne conserve qu'un des deux termes non-linéaires de l'équation de Kuznetsov, produisant des effets cumulatifs dans une propagation d'onde progressive selon Aanonsen, Barkve, Tjøtta et Tjøtta [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF].

+ I 2 ∇ y [ 1 c 2 (∂ τ Φ) 2 ] -J∇ y [∂ τ Φ] + ε 9 2 I 2 ∇ y [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + J 2 ∇ y [ 1 c 2 (∂ τ Φ) 2 ] + ρ 0 2 ∇ y [(∂ z Φ) 2 ] + ν∇ y [∂ 2 z Φ] + ε 11 2 I 2 ∇ y [(∂ z Φ) 2 ] + J 2 ∇ y [- 2 c ∂ z Φ∂ τ Φ + (∇ y Φ) 2 ] + ε 13 2 J 2 ∇ y [(∂ z Φ)
L'équation NPE (B.3) est habituellement utilisée pour décrire les vibrations en temps court et la propagation sur de longues distances, par exemple dans un guide d'onde océanique, où les phénomènes de réfractions sont importants, alors que l'équation de KZK (B.2) modélise typiquement la propagation d'ultrasons avec de forts phénomènes de diffraction, combinée avec des effets d'amplitude finie (voir Rozanova-Pierrat avec la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] et les références utilisées). Bien que le contexte et l'utilisation physique des équations de KZK et NPE soient différents, il y a une bijection entre les variables de ces deux modèles et ils peuvent être représentés par le même type d'opérateur différentiel avec des coefficients constants positifs:

Lu = 0, L = ∂ 2 tx -c 1 ∂ x (∂ x •) 2 -c 2 ∂ 3 x ± c 3 ∆ y , pour t ∈ R + , x ∈ R, y ∈ R n-1 .
Ainsi, les résultats de la Réf. [START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF] sur les solutions de l'équation de KZK sont valides pour l'équation NPE. Voir aussi la Réf. [START_REF] Ito | Smooth global solutions of the two-dimensional Burgers equation[END_REF] par Ito pour la décroissance exponentielle des solutions de ces modèles dans le cas visqueux. Tous les modèles de Kuznetsov, KZK, NPE et Westervelt ont été dérivés jusqu'à de petits termes négligeables à partir de systèmes non-linéaires de Navier-Stokes (pour le milieu visqueux) et d'Euler (pour le cas non visqueux) compressibles et isentropiques. Mais toutes les dérivations physiques citées de ces modèles ne permettent pas de dire que leurs solutions approchent la solution du système de Navier-Stokes ou d'Euler. Les résultats sur le caractère bien posé des équations de KZK et NPE sont déjà connus, le premier travail l'expliquant pour l'équation de KZK est la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] par Rozanova-Pierrat.

Nous nous sommes dès lors focalisés dans le Chapitre 1 sur le caractère bien posé du problème de Cauchy associé à l'équation de Kuznetsov dans R n pour les cas visqueux et non visqueux avec des données initiales suffisamment petites. Ces résultats correspondent à notre article [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] proposé avec Rozanova-Pierrat.

Dans le Chapitre 2, nous commençons à présenter le contexte initial du système de (en fait, c'est aussi une approximation du système de Navier-Stokes compressible), qui décrit le mouvement d'une onde acoustique dans un milieu thermo-élastique homogène [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF]. Nous systématisons dans le Chapitre 2 la dérivation de tous ces modèles en utilisant les idées de Rozanova-Pierrat dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consistant à utiliser des correcteurs dans les expansions de type Hilbert des ansatzs physiques correspondants. Plus précisément, nous montrons que tous ces modèles sont des approximations du système de Navier-Stokes ou d'Euler jusqu'aux termes d'ordre trois en un petit paramètre sans dimension ǫ > 0 mesurant la taille des perturbations de la pression, de la densité et de la vitesse par rapport à leur état constant (p 0 , ρ 0 , 0) (voir Fig. 1).

A l'aide des résultats connus sur le caractère bien posé des modèles, nous validons ensuite dans le Chapitre 2 ces approximations en obtenant des estimations en norme L 2 entre les solutions des modèles exacts et approchés considérés en étudiant d'abord l'approximation du système de Navier-Stokes puis l'approximation de l'équation de Kuznetsov. Il est à noter que pour le modèle exact nous pouvons considérer une solution faible peu régulière qui sera approchée par la solution régulière du modèle approché.

Ainsi nous avons été amenés dans la Partie II à étudier les solutions faibles d'équations d'ondes sur des domaines à bords fractals afin de considérer les domaines les plus généraux possibles sur lesquels de telles solutions faibles existent.

Pour en revenir au Chapitre 1 nous étudions le caractère bien posé du problème de Cauchy associé à l'équation (B.1). Dans le cas non visqueux pour ν = 0, le problème de Cauchy pour l'équation de Kuznetsov est un cas particulier du système général quasi linéaire hyperbolique du second ordre considéré par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. Le résultat de caractère bien posé local, prouvé dans [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], n'utilise pas des techniques d'estimations a priori et est fondé sur la théorie des semi-groupes. Alors, grâce à [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF], nous avons le caractère bien posé de (B.1) dans l'espace de Sobolev H s avec un réel s > n 2 + 1. De plus, pour étendre le caractère bien posé local au cas global (pour n ≥ 4) et pour estimer l'intervalle de temps maximal sur lequel il existe une solution régulière, John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] a développé des estimations a priori pour le problème de Cauchy associé à une équation d'onde quasi linéaire générale à l'aide d'une énergie de la forme

E m [u](t) = ∇u(t) 2 H m (R n ) + m+1 i=1 ∂ i t u(t) 2 H m+1-i (R n ) .
Cette fois, à cause des non linéarités u t u tt et ∇u ∇u t incluant les dérivées en temps, pour avoir une estimation a priori pour l'équation de Kuznetsov nous avons besoin de travailler avec les espaces de Sobolev H s caractérisés par un entier s. Si nous appliquons directement les résultats généraux par John de la Réf. [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] à notre cas pour l'équation de Kuznetsov, nous obtenons le caractère bien posé pour des données initiales très régulières. Nous améliorons ce résultat et obtenons les résultats de John pour l'équation de Kuznetsov avec une régularité minimale des données initiales correspondant à la régularité obtenue par Hughes, Kato et Marsden [START_REF] Hughes | Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity[END_REF]. Les estimations d'énergie nous permettent d'évaluer le temps d'existence maximal. Dans R 2 et R 3 l'optimalité des estimations obtenues pour le temps d'existence maximal est assurée par les résultats d'Alinhac [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]. Dans la Réf. [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] un Chapter B. Résumé français blow-up géométrique pour les données petites est prouvé pour ∂ 2 t u et ∆u en temps fini et pour le même ordre que prédit par les estimations a priori.

Pour n ≥ 4 et ν = 0, nous améliorons aussi les résultats de John [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF]. La petitesse des données initiales assure directement l'hyperbolicité de l'équation de Kuznetsov pour tout temps, i.e. elle assure que 1 -αεu t est strictement positif et borné pour tout temps. La preuve utilise les dérivées généralisées pour les équations d'ondes [START_REF] John | Nonlinear wave equations, formation of singularities[END_REF] et une estimation a priori de Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF][START_REF] Klainerman | Remarks on the global Sobolev inequalities in the Minkowski space R n+1[END_REF].

En présence du terme ∆u t pour le cas visqueux ν > 0, la régularité des dérivées en temps d'ordre supérieur de u est différente (en comparaison au cas non visqueux), et la manière de contrôler les non linéarités change. Comme il a été montré dans [START_REF] Shibata | On the rate of decay of solutions to linear viscoelastic equation[END_REF] par Shibata, ce terme dissipatif change une vitesse finie de propagation pour l'équation d'onde en une vitesse infinie. En effet, la partie linéaire de l'équation (B.1) peut être vue comme deux compositions de l'opérateur de la chaleur ∂ t -∆ de la manière suivante:

u tt -c 2 ∆u -νε∆u t = ∂ t (∂ t u -ǫν∆u) -c 2 ∆u.
Pour le cas visqueux nous prouvons les résultats sur le caractère bien posé global dans R n pour les données initiales suffisamment petites, dont nous spécifions la taille. Pour n ≥ 3 nous établissons une estimation a priori qui nous donne aussi une condition suffisante pour l'existence de solutions globales avec une énergie initiale suffisamment petite. En considérant les espaces de Sobolev H s caractérisés par un entier s = m pair on contrôle l'énergie

E m 2 [u](t) = ∇u(t) 2 H m (R n ) + m 2 +1 i=1 ∂ i t u(t) 2 H m-2(i-1) (R n ) .
Les mêmes résultats sont vrais dans (R/LZ) × R n-1 pour n ≥ 2 avec la périodicité et la valeur moyenne nulle selon une variable. Intéressons nous dès lors au Chapitre 2. Comme il est montré dans la Fig. 1, l'équation de Kuznetsov vient du système de Navier-Stokes ou d'Euler seulement par de petites perturbations, mais pour obtenir les équations KZK et NPE nous avons besoin d'utiliser un changement de variables paraxial en plus des petites perturbations. En outre, les équations de KZK et NPE peuvent aussi être obtenues à partir de l'équation de Kuznetsov juste en pratiquant le changement de variable paraxial correspondant. Nous pouvons noter que l'équation de Kuznetsov est une équation d'onde non-linéaire contenant des termes d?ordres différents en ǫ. Mais les approximations paraxiales pour KZK et NPE permettent d'avoir les équations approchées avec tous les termes de même ordre, i.e. les équations de KZK et NPE.

Portons notre attention sur le fait que l'ansatz, proposé initialement par Bakhvalov, Zhileȋkin, et Zabolotskaya dans la Réf. [START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF] et utilisé par Rozanova-Pierrat dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF] pour obtenir l'équation de KZK à partir des systèmes de Navier-Stokes ou d'Euler, est différent de l'ansatz que nous utilisons. De plus, cette nouvelle approximation des systèmes de Navier-Stokes et d'Euler est une amélioration en comparaison à la dérivation développée dans la Réf. [START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], car dans cette référence le système de Navier-Stokes/Euler pouvait seulement être approchées jusqu'aux termes d'ordre O(ε 52 ) (comparé à l'ordre O(ǫ 3 ) dans notre cas).

Les hypothèses principales pour la dérivation de tous ces modèles sont les suivantes:

• le mouvement est potentiel;

• l'état constant du milieu donné par (p 0 , ρ 0 , 0) (0 pour la vitesse) est perturbé proportionnellement à un paramètre sans dimension ǫ > 0 (par exemple, égal à 10 -5 dans l'eau avec une puissance initiale de l'ordre de 0.3 W/cm 2 );

• toutes les viscosités sont petites (d'ordre ǫ). Pour garder le sens physique des problèmes d'approximation, nous considérerons particulièrement les cas bidimensionnel et tridimensionnel, i.e. R n avec n = 2 ou 3, et dans la suite nous utiliserons la notation x = (x 1 , x ′ ) ∈ R n avec un axe x 1 ∈ R et la variable transversale x ′ ∈ R n-1 .

Nous validons ainsi les approximations du système de Navier-Stokes compressible par les différents modèles : par l'équation de Kuznetsov, l'équation de KZK et l'équation NPE.

Puis nous faisons de même pour le système d'Euler dans le cas non visqueux. Les différences principales entre les cas visqueux et non visqueux sont le temps d'existence et la régularité des solutions. Typiquement dans le cas non visqueux, les solutions des modèles et aussi du système d'Euler lui-même (solutions fortes) peuvent entraîner la formation de fronts de choc en temps finis à cause de leurs non-linéarités [START_REF] Alinhac | Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux[END_REF][START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF][START_REF] Sideris | Formation of singularities in three-dimensional compressible fluids[END_REF][START_REF] Yin | The lifespan for 3-D spherically symmetric compressible Euler equations[END_REF]. Ainsi, elles sont seulement localement bien posées, alors que dans le cas visqueux tous les modèles d'approximations sont globalement bien posés pour des données initiales suffisamment petites [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF][START_REF] Matsumura | The initial value problem for the equations of motion of viscous and heat-conductive gases[END_REF][START_REF] Rozanova-Pierrat | Qualitative analysis of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation[END_REF].

Nous notons par U ε une solution du système de Navier-Stokes/Euler "exact" (voir l'Eq. (2.31))

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν      0 ∆v ε      = 0,
et par U ε une solution approchée, construite par l'ansatz de dérivation à partir d'une solution régulière de l'un des modèles approchés (typiquement les équations de Kuznetsov, KZK et NPE), i.e. une fonction qui résout le système de Navier-Stokes/Euler jusqu'aux termes d'ordre ǫ 3 , désignés par ǫ 3 R (voir l'Eq. (2.32)):

∂ t U ε + n i=1 ∂ x i G i (U ε ) -εν      0 ∆v ε      = ǫ 3 R.
Pour avoir le terme de reste R ∈ C([0, T ], L 2 (Ω)) nous devons assurer que le terme de gauche de cette équation est dans C([0, T ], L 2 (Ω)), i.e. nous avons besoin d'une solution U ε suffisamment régulière. La régularité minimale des données initiales pour avoir un tel U ε est donnée dans le Tableau 2.1 (voir aussi le Tableau 2.2 pour l'approximation de l'équation de Kuznetsov).

En choisissant pour le système exact les même données initiales et au bord trouvées par l'ansatz pour U ε (le cas régulier) ou les données initiales prises dans un petit voisinage L 2 , i.e.

U ε (0) -U ε (0) L 2 (Ω) ≤ δ ≤ ǫ, avec U ε (0) non nécessairement régulier, mais assurant l'existence d'une solution faible admissible d'énergie bornée, nous prouvons l?existence de constantes C > 0 et K > 0 indépendantes de ε, δ et du temps t telles que

pour tout 0 ≤ t ≤ C ε (U ε -U ε )(t) 2 L 2 (Ω) ≤ K(ǫ 3 t + δ 2 )e Kεt ≤ 9ε 2
avec Ω un domaine où les deux solutions U ε et U ε existent. Il devient ainsi possible d'approcher une solution faible exacte peu régulière par une solution approchée régulière. Comme les équations de KZK et NPE peuvent être vues comme des approximations de l'équation de Kuznetsov au vu de leur dérivation (voir la Figure 1), nous validons aussi l'approximation de l'équation de Kuznetsov par les équations de KZK et NPE, et aussi par l'équation de Westervelt (voir le Tableau 2.2).

Pour être capable de considérer l'approximation de l'équation de Kuznetsov par l'équation de KZK, nous établissons d'abord des résultats sur le caractère globalement bien posé de l'équation de Kuznetsov dans le demi espace, similaires au cadre précédent pour l'équation de KZK et le système de Navier-Stokes. Nous étudions deux cas : le problème périodique en temps purement aux bords dans les variables (z, τ, y) se déplaçant avec l'onde et le problème avec conditions initiales et au bord pour l'équation de Kuznetsov dans les variables initiales (t, x 1 , x ′ ) avec des données venant de la solution de l'équation de KZK. Nous validons ces deux types d'approximations pour les cas visqueux et non visqueux.

Finalement nous validons l'approximation entre les équations de Kuznetsov et NPE et les équations de Kuznetsov et Westervelt respectivement (voir le Tableau 2.2). Nous pouvons les résumer de la manière suivante: si u est une solution de l'équation de Kuznetsov et u est une solution de l'équation de NPE ou de KZK (pour le problème avec conditions initiales et aux bords) ou de Westervelt trouvée pour des données initiales assez proches • l'équation des ondes avec des conditions de Dirichlet homogène en utilisant Evans [START_REF] Evans | Partial differential equations[END_REF],

• l'équation des ondes fortement amortie avec des conditions de Dirichlet homogènes et non homogènes ou des conditions de Robin homogènes,

• l'équation non-linéaire de Westervelt avec des conditions de Dirichlet homogènes et non homogènes ou des conditions de Robin homogènes.

La régularité des solutions de ces équations sur des domaines réguliers, typiquement avec un bord C 2 est bien connue, notamment le fait que, plus les données initiales sont régulières, plus la solution est régulière et ce jusqu'au bord. Nous pouvons citer Evans et la Réf. [START_REF] Evans | Partial differential equations[END_REF] pour l'équation des ondes ou les Réfs. [START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] u| ∂Ω = g, qui est appelée une formulation faible du problème de Dirichlet. En introduisant les espaces de Sobolev H 1 (Ω) et H 1 0 (Ω) et en supposant qu'il existe g * ∈ H 1 (Ω) tel que la trace de g * sur ∂Ω est g (une attention particulière doit être portée à la définition de la trace), on peut prouver, à l'aide du théorème de représentation de Riesz, qu'étant donné f ∈ L 2 (Ω), g * ∈ H 1 (Ω), il existe un unique u ∈ H 1 (Ω) tel que -∆u = f au sens des distributions et u -g * ∈ H 1 0 (Ω). Ceci soulève plusieurs questions:

• Comment définir la trace, habituellement définie pour des fonctions continues?

• Comment définir une extension g * vérifiant u = g au bord?

La réponse aux deux premières questions est connue si ∂Ω est assez régulier, on peut citer par exemple Raviart-Thomas [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF], ou même lipschitzien avec le travail de Marschall [START_REF] Marschall | The trace of sobolev-slobodeckij spaces on lipschitz domains[END_REF].

des conditions de Dirichlet non homogènes. Ces résultats reposent sur des estimations dans des espaces où la solution et certaines de ses dérivées sont dans L 2 . Notons que nous avons utilisé une méthode similaire pour les problèmes avec conditions de Robin homogènes et obtenu le caractère bien posé et des estimations L 2 pour l'équation des ondes fortement amortie sur un domaine admissible, avec une méthode de Galerkin fondée sur une base de fonctions propres de -∆, ou pour l'équation de Westervelt sur un domaine lipschitzien de la même façon que dans la preuve dans le Chapitre 1 du caractère bien posé global de l'équation de Kuznetsov sur R n . Le cas de l'équation de Westervelt sur un domaine admissible avec des conditions de Robin homogènes a été traité à l'aide d'estimations L p avec p > n de la même manière.

En conclusion de cette Partie II, nous considérons un ensemble à bord fractal de type mixture de Koch, construit par récurrence à l'aide de familles de similitudes contractantes induisant ainsi une famille de domaines à bords pré-fractals et lipschitziens convergeant vers le domaine à bords fractals. En utilisant différents travaux par Capitanelli [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF], Capitanelli et Vivaldi [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] ou Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] nous avons pu considérer la convergence asymptotique de type Mosco des solutions de l'équation de Westervelt avec conditions de Robin sur les domaines à bords pré-fractals qui approximent la solution sur le domaine à bords fractal de type mixture de Koch, une démarche souvent utilisée dans le cadre de l'optimisation de forme. Keys words : Nonlinear acoustic, Navier-Stokes system, Kuznetsov equation, approximation, fractals boundaries Abstract : In the framework of acoustic we systematize the derivation of nonlinear models (the Kuznetsov equation, the KZK equation and the NPE). We estimate the time for which the regular solutions of these models stay close of the solutions of the compressible isentropic Navier-Stokes/Euler systems (pointing out their weakest regularity) and establish similar results between the solutions of the KZK, NPE and Westervelt equations with respect to the solutions of the Kuznetsov equation. To do so, we study the Kuznetsov equation beginning by the Cauchy problem in the viscous case (stability, gobal well posedness of regular solutions) and inviscid case (well posedness with optimal estimations of the maximal existence time for regular solutions) and also in the half space with time periodic boundary conditions or in a periodic in one direction space. We also obtain the existence and unicity of weak solutions for the strongly damped wave equation and the Westervelt equation in the largest class of domains with irregular boundaries, along with the asymptotic convergence of the solutions of the Westervelt equation with Robin boundary conditions on prefractal boundaries approximating a Koch mixture as fractal boundary.
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 1 Figure 1 -Schéma de dérivation des modèles de l'acoustique non linéaire. Tous les modèles, les équations de Kuznetsov, KZK et NPE sont des approximations jusqu'aux termes d'ordre ǫ 3 du système isentropique de Navier-Stokes ou d'Euler.

2 . 1 .

 21 Le Théorème 1.2.1 se fonde principalement sur les estimations a priori données dans les Sous-sections 1.4.1 (pour le Point 3) et 1.4.2 (pour le Point 5) et sur le résultat d'existence locale tiré de la référence [40](Points 1 et 2). Le Point 4, prouvé dans la Sous-section 1.4.3, utilise les idées classiques de stabilité faible et forte, prouvées par exemple en détails pour l'équation de KZK dans [80] Théorème 1.1 Point 4 p. 785.

.12) 5 .

 5 If s = m ≥ n + 2, then for sufficiently small initial data (see Theorem 1.4.2 in Section 1.4.2) (a) lim inf ε→0 ε 2 T * > 0 for n = 2, (b) lim inf ε→0 ε log(T * ) > 0 for n = 3, (c) T * = +∞ for n ≥ 4. Theorem 1.2.1 is principally based on the a priori estimates given in Sections 1.4.1 (for Point 3) and 1.4.2 (for Point 5) and on the local existence result updated from Ref. [40] (Points 1 and 2). Point 4, proved in Section 1.4.3, uses the classical ideas of the weak-strong stability, for instance proved in details for the KZK equation in [80] Theorem 1.1 Point 4 p. 785.

Proposition 1 . 4 . 1 .

 141 For a fixed m ∈ N with m ≥ m 0 = n 2 + 2 , let u be a local solution of problem (1.5)-(1.6) with ν = 0 on [0, T ] satisfying (1.8) and (1.9) for s = m.

  C > 0, depending only on n by the Sobolev embedding [2] Theorem 7.57 p. 228

1. 4 .Theorem 1 . 4 . 1 .

 4141 Well-posedness for the inviscid case Now let us give a first estimation of the lifespan T * of a local solution of problem (1.5)-(1.6) with ν = 0. Let m ≥ m 0 = n 2 + 2 and let u be the unique solution on [0, T * [ of problem (1.5)-(1.6) with ν = 0 for

1. 4 . 21 Consequently, lim inf ε→0 ε 2 T

 4212 Well-posedness for the inviscid case * > 0 for n = 2, lim inf ε→0 ε log(T * ) > 0 for n = 3, and, for a small enough ε, T * = +∞ for n ≥ 4, i.e. the solution u is global.

1. 5 . 1 2

 512 Proof of Point 1 of Theorem 1.2.Let us show the global well-posedness, of the solution of the Cauchy problem (1.5)-(1.6).

1 2 , 1 2

 21 defined by its Fourier transform by the formula (Λu)(ζ) = (1 + |ζ| 2 ) û(ζ), relies the norm of H s with the L 2 -norm:

Lemma 1 . 5 . 1 . 1 .

 1511 Let n ∈ N * , n ≥ 3, m ∈ N, and u be the solution of problem (1.5)-(1.6). Then for m ≥ n 2 + 3 , m even, and all multi-index A = (A 0 , A 1 , ..., A n ) with Chapter Cauchy Problem for the Kuznetsov Equation

1. 5 .

 5 Well-posedness for the viscous case 35 By assumptions of this case it told 1 ≤ |A 1 | ≤ m, what guarantees the existence of such

2. 4 . 3 .

 43 Approximation of the Navier-Stokes system 51 The function U ǫ satisfies the equality (with the notation

Figure 2 . 2 -

 22 Figure 2.2 -Periodic subsonic inflow-outflow boundary conditions for the Navier-Stokes system.

  .81) where R N S-KZK 1 and R N S-KZK 2 are the remainder terms given in Appendix A. So, as it was previously explained for the approximation of the Navier-Stokes by the Kuznetsov equation in Subsection 2.4.1, if we consider a solution of the KZK equation I and define by it the functions Φ and J, then we define according to ansatz (2.64)-(2.65) ρ ε and v ε (see Eq. (2.68)), which solve the approximate system (2.29)-(2.30) with the remainder terms R N S-KZK 1 and R N S-KZK 2

Figure 2 . 3 -

 23 Figure 2.3 -Paraxial change of variables for the profiles U (ǫt, x 1 -ct, √ ǫx ′ ).

1 z defined similarly to ∂ - 1 τ

 11 .96) in the class of L-periodic functions with respect to the variable z and with mean value zero along z. The introduction of the operator ∂ -in Eq. (2.71) allows us to consider instead of Eq. (2.94) the following equivalent equation

1 andR

 1 N S-N P E 2 defined respectively in Eqs. (2.90)-(2.92) instead of R N S-Kuz 1 and R N S-Kuz 2 .

lim ε→0 ε

 ε→0 ln(T ε ) = C > 0. Now let us consider the derivation of the Kuznetsov equation of Subsection 2.4.1 in the assumption ν = 0. Taking ansatz (2.14)-(2.15) for ρ ε and v ε and imposing (2.17)-(2.18) for ρ 1 and ρ 2 with ν = 0, we derive as in Subsection 2.4.1 the inviscid Kuznetsov equation with the notation α

Theorem 2 . 6 . 1 .

 261 [START_REF] Celik | Nonlinear wave equation with damping: Periodic forcing and non-resonant solutions to the Kuznetsov equation[END_REF] Let n = 3, Ω = R + × R n-1 and p ∈]1, +∞[. Then there exits a unique solution u ∈ W 2 p (T t ; L p (Ω)) ∩ W 1 p (T t ; W 2 p (Ω)) with the mean value zero ∀x ∈ Ω Tt u(s, x) ds = 0 (2.113) of the following system

Remark 2 . 7 . 1 .

 271 The case ν = 0 implies the same approximation result except that u and u are only locally well posed on an interval [0, T ].

Definition 4 . 1 . 3 .

 413 (Space C k p (Ω)) For a set Ω ⊂ R n of positive Lebesgue measure,

Definition 4 . 1 . 4 .

 414 (Trace) For an arbitrary open set Ω of R n the trace operator Tr is defined for

Theorem 4 . 1 . 8 .

 418 [START_REF] Evans | Partial differential equations[END_REF] Let Ω be a bounded open set. Assume f ∈ H m (Ω) for m ∈ N and u ∈ H 1 0 (Ω) is the weak solution of the Poisson problem (3.1) with g = 0. Assume finally

. 16 ) 4 . 2 . 1 .

 16421 Theorem([30] p. 380) For each integer m = 1, 2, ..., there exists a unique function u m of form (4.13) satisfying (4.14)-(4.16).

4. 3 . 4 . 3 Well posedness of the damped linear wave equation with homogeneous Dirichlet boundary conditions 4 . 3 . 1 Definition 4 . 3 . 1 .

 343431431 Well posedness of the damped linear wave equation with homogeneous Dirichlet boundary conditions 123 Existence of weak solutionIn this subsection for 0 < T ≤ +∞, we consider Ω an arbitrary bounded domain in R n . For f ∈ L 2 ([0, T ]; L 2 (Ω)), u 0 ∈ H 1 0 (Ω), and u 1 ∈ L 2 (Ω), we say a function

. 25 ) 4 . 3 . 1 .

 25431 Theorem For each integer m = 1, 2, ..., there exists a unique function u m of the form (4.13) satisfying(4.14),(4.15) and(4.25).

. 28 )

 28 We multiply equations(4.25) by d k m (t) and sum over k = 1, ..., m. By definition (4.13) of u m we have for a.e. t ≥ 0

126 Chapter 4 .

 4 Regularity of linear models on domains with fractal boundariesThus by the Cauchy-Schwartz inequality and the Poincare inequality

Theorem 4 . 3 . 3 .

 433 There exists a weak solution of the damped wave equation problem(4.23) in the sense ofDefinition 4.3.1. 

Theorem 4 . 3 . 4 .

 434 A weak solution of the damped wave equation problem (4.23) is unique.

4. 4 . 4 . 4

 444 Well posedness of the damped linear wave equation with homogeneous Robin boundary conditions 131 Well posedness of the damped linear wave equation with homogeneous Robin boundary conditions In this section Ω is an admissible domain in R n (n = 2 or 3) with a d-set boundary ∂Ω such that n -2 < d < n. We denote by m d the d-dimensional Hausdorff measure. Definition 4.4.1.

Chapter 4 . 4 . 4 . 2 .

 4442 Regularity of linear models on domains with fractal boundariesTheorem Let Ω be an admissible domain in R n (n ≥ 2) with a d-set boundary ∂Ω such that n -2 < d < n. Then, (i) Assume

(n = 2 or 3 )Theorem 5 . 2 . 1 . 7 4

 35217 with a d-set boundary ∂Ω such that n -2 < d < n and A designates again the Laplace operator -∆ on Ω in a weak sense with homogeneous Dirichlet boundary conditions. The fact to have non homogeneous Dirichlet boundary conditions implies the use of traces and extensions operators which leads us to leave the field of arbitrary domains. Let β 2 = 2 -n-d 2 and F := H 1 ([0, +∞[; B 2,2 β 2 (∂Ω)) ∩ H ([0, +∞[; L 2 (∂Ω)).

  Taking a and b equal to u * , w, z or w -z, as u * X ≤ r, w X ≤ r and z X ≤ r, we obtainΦ(w) -Φ(z) Y ≤ αBεr w -z Xwith a constant B > 0 depending only on Ω. The final result follows as in the proof of Point 1 of Theorem 1.2.2 in Chapter 1 Subsection 1.5.1 for the global well posedness for the Kuznetsov equation on R n using Theorem 1.5.2 at the difference that here we add a non homogeneous term f , which implies u

Remark 5 . 3 . 3 .Chapter 5 .

 5335 we have by the linearity u = w + w which is the weak solution of the damped wave equation problem(4.36). The unicity comes from the unicity of the solution when u 0 = u 1 = 0 by Theorem 5.3.4. The other side of the equivalence comes directly from the definition of X p and (L p (Ω), D(-∆)) p . The estimate is a consequence of the close graph theorem. Since D(-∆) × D(-∆) ֒→ (L p (Ω), D(-∆)) p we have a similar estimate in Theorem 5.3.5 for the solutions of the damped wave equation problem (4.36), when (u 0 , u 1 ) ∈ D(-∆) × D(-∆) replacing (u 0 , u 1 ) (L p (Ω),D(-∆))p ) by u 0 D(-∆) + u 1 D(-∆) . 146 Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries Therefore we can treat the Westervelt equation with the homogeneous Robin boundary conditions on admissible domains. Theorem 5.3.6.

Theorem 5 . 4 . 7 .

 547 For φ ∈ C 1 ([0, T ]; D(Ω * )), a m = aσ m , b m = bσ m , with σ m defined by equation(5.24), the sequence of functionals u → F m [u, φ] defined in(5.29), M-converges in H(Ω * ) defined in(5.28) to the following functional u → F [u, φ] defined in(5.30) as m → +∞. More precisely in our case if v m converges weakly to u in H

. 36 )

 36 Moreover by Theorem 5.4.5, as φ

. 45 )

 45 So, by the convergence results (5.38), (5.40), (5.42), (5.45) for m → +∞ ∂Ω m uT r ∂Ω m φ ds dt → T 0 ∂Ω T r ∂Ω uT r ∂Ω φ dµ dt. (5.46) In the same way we have for m → +∞ T 0 σ m ∂Ω m T r ∂Ω m uT r ∂Ω m ∂ t φ ds dt → T 0 ∂Ω T r ∂Ω uT r ∂Ω ∂ t φ dµ dt. (5.47) By making together (5.34), (5.35), (5.36) (5.37), (5.44), (5.46) and (5.47), we conclude that for m → +∞ for all φ ∈ C 1 ([0, T ]; D(Ω * ))

. 73 )Chapter 5 .Theorem 5 . 4 . 10 .

 7355410 where in the estimates(5.72) and(5.73) C > 0 is a constant independent of m.160 Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundariesNow we give a result on the well-posedness in C(Ω m ) of the Poisson problem (5.68) in a prefractal domain. For all f ∈ L 2 (Ω m ), for every n ∈ N and 0 ≤ a m ≤ C with C fixed, the weak solution u m of the prefractal problem(5.67) solves the Poisson problem(5.68) in the prefractal domain Ω m with u m ∈ C(Ω m ) and we have the estimate

5. 4 .Theorem 5 . 4 . 11 .

 45411 Prefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions 161Let us come back to the well posedness of the non linear Westervelt equation on Ω m . We take Ω m our prefractal domain for all n ∈ N with a m ≥ 0 bounded. Let ν > 0 and R + = [0, +∞[. Considering the problem for the Westervelt equation                                                 ∂ 2 t u -c 2 ∆u -νε∆∂ t u = αεu∂ 2 t u + αε(∂ t u) 2 + f in [0, T ] × Ω m , ∂ ∂n u + a m u = 0 on [0, T ] × K m , u = 0 on [0, T ] × Γ 0 , ∂ ∂n u = 0 on [0, T ] × Γ 1 , ∂ ∂n u = 0 on [0, T ] × Γ 3 , u(0) = u 0 , ∂ t u(0) = u 1 , (5.75)where the Laplacian is considered in the weak sense of the Poisson problem(5.68), the following result holds: let the initial datau 0 ∈ V (Ω m ) and u 1 ∈ V (Ω m ) be such that ∆u 0 ∈ L 2 (Ω m ), with the non homogeneous datum f ∈ L 2 (R + ; L 2 (Ω m )), let C 1 = O(1)be the minimal constant such that the weak solution u * m of the corresponding non homogeneous linear Cauchy problem (5.70) satisfies ∂ 2 t u * m L 2 (R + ;L 2 (Ω m )) + ∆∂ t u * m L 2 (R + ;L 2 (Ω m )) + ∆u * m L 2 (R + ;L 2 (Ω m ))

1 . 2 Chapter 5 .

 125 and is thus omitted. The independence on m of r * comes from the independence on m in the estimates (5.72), (5.73) and(5.74). Now, we return to the problem with a fractal boundary on Ω and recall a direct consequence of Theorem 4.2 in[START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF]: Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries Theorem 5.4.12.[START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] For any f ∈ L 2 (Ω), for every a ≥ 0 there exists one and only one solution u of the following problem         Find u ∈ V (Ω) := {u ∈ H 1 (Ω) : u = 0 on Γ 0 } such that ∀v ∈ V (Ω), Ω ∇u∇v dx + a K T r K u T r K v ds = Ω f v dx.

. 77 )

 77 As a consequence we have an equivalent of Theorem 5.4.9 replacing Ω m by Ω and a m by a. Then let us treat the convergence of the solution u m of the Poisson problem (5.68) on prefractal domain Ω m to the solution u of the Poisson problem (5.68) on the fractal Ω. Theorem 5.4.13. Let f ∈ L 2 (Ω) and a ≥ 0 with for n ∈ N a m = aσ m , where σ m defined in (5.24) associated to Ω m . For u m the solution of the Poisson problem (5.68) on prefractal domain Ω m and u the solution of the Poisson problem

∂ 1 ( 5 . 79 ) 5 . 4 .

 157954 ∂n u + au = 0 on [0, T ] × K, u = 0 on [0, T ] × Γ 0 , ∂ ∂n u = 0 on [0, T ] × Γ 1 , ∂ ∂n u = 0 on [0, T ] × Γ 3 , u(0) = u 0 , ∂ t u(0) = uPrefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions 163 with the Laplacian considered in the weak sense of the Poisson problem (5.65) the following result holds: let the initial datau 0 ∈ V (Ω) and u 1 ∈ V (Ω), such that ∆u 0 ∈ L 2 (Ω)with the source term f ∈ L 2 (R + ; L 2 (Ω)), C 1 = O(1) be the minimal constant such that the weak solution u * of the corresponding non homogeneous linear Cauchy problem satisfies

Definition 5 . 4 . 5 .Definition 5 . 4 . 6 .

 545546 [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF] on Ω associated to the Westervelt equation with the compatibility condition( ∂ ∂n u 0 + au 0 )| K = 0, ( ∂ ∂n u 1 + au 1 )| K = 0, ( ∂ ∂n u 0 )| Γ 1 ∪Γ 3 = 0, ( ∂ ∂n u 1 )| Γ 1 ∪Γ 3 = 0, (u 0 )| Γ 0 = 0, (u 1 )| Γ 0 = 0.Let Ω * be a bounded possibly regular open set such that Ω m ⊂ Ω * for all n and Ω ⊂ Ω * . For an open set U and T > 0 we define the Hilbert spaceH(U) = {u ∈ H 1 ([0, T ]; V (U))| ∂ t u(0) and ∂ t u(T ) ∈ L 2 (U)}.(5.80)For φ ∈ C 1 ([0, T ] × D(Ω * )) and u ∈ H(Ω * ) we define F m [u, φ] as F m [u, φ] in (5.29) replacing ∂Ω m by K m with a m ≥ 0 and b m = 0. In the same way, for a ≥ 0 and b = 0 we define F [u, φ] as F [u, φ] in (5.30) replacing ∂Ω by K. We shall say that u is a weak solution of problem(5.79) for the Westervelt equation on [0, T ] × Ω if • u ∈ H(Ω) defined in(5.80) with u| Γ 0 = 0.• for every φ ∈ C 1 ([0, T ] × D(Ω)) with φ| Γ 0 = 0 F [u, φ] = 0.

2 .

 2 -→ e i ) -→ e i = Φ∂ τ Φ + (∇ y Φ) 2 ] + ν∇ y [-2 c ∂ 2 τ z Φ + ∆ y Φ]

  Navier-Stokes isentropique∂ t ρ + div(ρv) = 0 , (B.5) ρ[∂ t v + (v • ∇) v] = -∇p(ρ) + εν∆v , (B.6)

∇

  t,x (u(0) -u(0)) L 2 (Ω) ≤ δ ≤ ǫ, alors il existe K > 0, C 1 > 0, C 2 > 0 et C > 0 constantes indépendantes de ǫ, δ et du temps, telles que pour tout t ≤ C ǫ il est vérifié ∇ t,x (u -u) L 2 (Ω) ≤ C 1 (ǫ 2 t + δ)e C 2 ǫt ≤ Kǫ.Comme les estimations de la stabilité obtenues sont valables entre une solution régulière et une solution faible de Kuznetsov nous pouvons de nouveau approcher une solution moins régulière d'un modèle exact par la solution régulière d'un modèle approché. Dans la Partie II, nous nous intéressons à la question des solutions faibles d'équation d'ondes. On se place dans le contexte des domaines bornés et on cherche la classe des bords la plus large pour que le problème soit bien posé faiblement. Ces équations incluent:

  -∆u = f sur Ω, u| Ω = g sur ∂Ω (B.7) ou des conditions de Robin homogènes          -∆u = f sur Ω, ∂ ∂n u + au = 0 avec a > 0 sur ∂Ω. (B.8) Pour le système (B.7) une approche générale passe par la formulation faible du problème de Dirichlet. Si u et ∂Ω sont suffisamment régulières on peut multiplier l'équation de Poisson dans le problème (B.7) par v ∈ C ∞ 0 (Ω) et utiliser la formule de Green pour obtenir for all v ∈ C ∞ 0 (Ω),

Titre:

  Analyse mathématique de l'équation de Kuznetsov: problème de Cauchy, questions d'approximations et problèmes aux bords fractals.Mots Clefs : acoustique non linéaire, système de Navier-Stokes, équation de Kuznetsov, approximation, bords fractals Résumé : Dans le contexte de l'acoustique on a systématisé la dérivation de modèles nonlinéaires (l'équation de Kuznetsov, l'équation KZK et la NPE). On a estimé le temps pour lequel des solutions régulières de ces modèles restent proches des solutions des systèmes de Navier-Stokes/Euler compressibles isentropiques (en précisant leur plus faible régularité) et établi les résultats analogues entre les solutions des équations de KZK, NPE et Westervelt par rapport à la solution de l'équation de Kuznetsov. Pour ce faire, on a étudié l'équation de Kuznetsov en commençant par le problème de Cauchy dans les cas visqueux (stabilité, unicité et existence globale des solutions régulières) et non-visqueux (caractère bien posé avec les estimations optimales du temps d'existence maximale des solutions régulières) et également dans un demi espace avec des conditions au limites périodiques en temps ou dans un espace périodique dans une direction. On a aussi obtenu l'existence et l'unicité des solutions faibles pour l'équation des ondes fortement amortie et l'équation de Westervelt sur la plus large classe de domaines aux bords irréguliers, ainsi que la convergence asymptotique des solutions de l'équation de Westervelt avec conditions de Robin sur les bords préfractals approximant un bord fractal de type mixture de Koch.Title : Mathematical analysis of the Kuznetsov equation: Cauchy problem, approximation questions and problems with fractal boundaries.

  Point 5 et le Théorème 1.4.2 pour plus de détails). Dans R 2 et R 3 l'optimalité des estimations obtenues pour le temps d'existence maximal est assurée par les résultats d'Alinhac[START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]. Dans la référence[START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF] un blow-up géométrique pour les données petites est prouvé pour ∂ 2 t u et ∆u en temps fini et pour le même ordre que prédit par nos estimations a priori (voir le Théorème 1.2.1 Point 5, nos estimations du temps d'existence minimal correspondent aux résultats d'Alinhac sur les temps d'existence maximaux). D'autre part, le blow-up de ∂ 2 t u et ∆u est aussi confirmé par l'estimation de stabilité (1.12) dans le Théorème 1.2.1: si l'intervalle de temps d'existence maximal est fini et limité par T * , l'équation (1.12) nous donne la divergence

. Par exemple, nous prouvons une estimation d'énergie analogue dans H m avec m ≥ [ n 2 + 2] au lieu de m ≥ 3 2 n + 4 dans le cas de John (voir l'équation (1.24) dans la Proposition 1.4.1) et pour la version légèrement modifiée de l'estimation nous trouvons m ≥ [ n 2 + 3] au lieu de m ≥ 3 2 n + 7 (voir l'équation (1.40) dans la Proposition 1.4.2). Les estimations d'énergie nous permettent d'évaluer le temps d'existence maximal (voir le Théorème 1.2.1

  [START_REF] Alinhac | A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations[END_REF]) is a wave equation containing a dissipative term ∆u t and two non-linear terms: ∇u∇u t describing local non-linear effects and u t u tt describing global or

	1.3. Preliminary remarks on L 2 -energies	9
	cumulative effects. Actually, the linear wave equation appears from Eq. (1.5) if we consider
	only the terms of the zero order on ε:	

  2 dx dl.

	Now, let us consider the Kuznetsov equation (1.5). We multiply it by u t and integrate on R n to obtain
		1 2	d dt	E nonl (t) + νε	R n	(∇u t ) 2 dx = 2ε	R n	∇u ∇u t u t dx,
	where E nonl (t) is given by Eq. (1.22) with α = 2 3	γ-1 c 2 . As
	2ǫ	R n	∇u ∇u t u t dx = ǫ	d dt R n	u t (∇u) 2 dx -ǫ	R n	u tt (∇u) 2 dx,
	we find						
	1						
	2						

  But such an estimate is essential to control the nonlinear term. Then, instead of Eq. (1.23) for F ν , we have the relation for E nonl :

	1 2	d dt	E nonl (t) + (νε -2εC ∇u L n )	R n	(∇u t ) 2 dx ≤ 0.
	So, if a solution of the Kuznetsov equation u is such that ∇u(t) L n and u t (t) L ∞ stay small enough for all time, then E nonl decreases in time and, as previously for the Westervelt equation, thanks to 1 2 E(t) ≤ E nonl (t) ≤ 3 2 E(t), the energy E has a decreasing function for upper bound.
	This fact leads us to look for global well-posedness results for the Cauchy problem for
	the Kuznetsov equation in the viscous case.		

  Without loss of generality, we consider two multi-indexes A 1 and A 2 satisfying (1.33) and divide the proof of(1.34) in two parts: we estimate R n |D A 1 u t D A 2 u t D A u t |dx first, and

	1.4. Well-posedness for the inviscid case		13
	Let us show for m ≥ n 2 + 2 the estimate		
	R n	L u D A u D A u t dx ≤ Cε max(α, β)E m [u]	3 2 .	(1.34)

1.4.2 Proof of Point 5 of Theorem 1.2.1. Optimal estimations of the existence time

  

		and this
	finishes the proof.	
	Theorem 1.4.1 estimates the lifespan T * as at least of the order 1 ε , or more precisely, implies that
	lim inf ε→0	εT * > 0.
	This result is independent on the dimension n. However, much better estimations for the
	lifespan can be obtained, if we use an inequality that takes into account the time decay of
	the solutions for n > 1, what we do in the next section.
	In [44] John uses the group of linear transformations preserving the equation u tt -∆u = 0. The generators of this group (the derivatives with respect to group parameters taken at
	the identity), here called generalized derivatives, include in addition to the derivatives
	∂	

t , ∂ x 1 , . . . , ∂ xn , first-order differential operators L α with α = 0, . . . , n and Ω ik with 1 ≤ i < k ≤ n:

Definition 1.4.1. (Generalized derivatives [44]) The following operators

  

  and ∂ t , ∂ x i for i = 1, ..., n are called the generalized derivatives. The operators L 0 , . . . , L n , Ω 12 , Ω 13 , . . . , Ω n-1n , ∂ t , ∂ x 1 , . . . , ∂ xn ,

Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems 2.1 Introduction française

  

	Chapter 2

, by Theorem 1.5.3 Point 2 for all t ∈ R + we obtain estimate (1.84). L'étude de la propagation d'ondes non-linéaires suscite un renouveau d'intérêt, en particulier à cause de récentes applications à l'imagerie ultrason (par exemple HIFU) ou des applications techniques et médicales comme la lithotripsie ou la thermothérapie. Ces techniques nouvelles reposent fortement sur la capacité à modéliser précisément la propagation nonlinéaire d'une pulsation sonore d'amplitude finie dans un milieu élastique thermo-visqueux. Les modèles les plus connus d'acoustique non linéaire, que nous considérons dans ce chapitre, sont 1. l'équation de Kuznetsov (voir Eq. (2.13) et Eq. (2.23)); 2. l'équation de Khokhlov-Zabolotskaya-Kuznetsov (KZK) (voir Eq. (2.63)); 3. l'Équation d'onde Non-linéaire Progressive (NPE); 4. l'équation de Westervelt (voir Eq. (2.146)).

  2.1 et 1.2.2 du Chapitre 1. Ces propriétés d'existence des solutions pour les cas visqueux et non visqueux peuvent aussi impliquer des différences dans la définition du domaine sur lequel les approximations ont lieu: par exemple[81], pour l'approximation entre l'équation de KZK et le système de Navier-Stokes le domaine d'approximation est le demi-espace, mais pour le cas non visqueux analogue de l'équation de KZK et du système d'Euler c'est un cône (voir aussi en conclusion le Tableau 2.1).

Dans les Sections 2.4 et 2.5 nous notons par U ε une solution du système de Navier-Stokes/Euler "exact" (voir l'Eq. (2.31)):

  9ε 2 (2.2) avec Ω un domaine où les deux solutions U ε et U ε existent (voir les Théorèmes 2.4.3, 2.4.6 et 2.4.10). Dans le cas visqueux tous les modèles d'approximation vérifient l'existence globale de solutions classiques pour les données initiales suffisamment petites sur leur domaine d'approximation Ω, qui varie selon les différents modèles (voir Tableau 2.1): il correspond

  81] Théorème 5.5. Nous l'adaptons au cadre du nouvel ansatz (2.64)-(2.65)et corrigeons plusieurs ambiguïtés dans sa preuve (voir la Sous-Section 2.4.2 Théorème 2.4.5), qui nous permet dans le Théorème 2.4.6 de la Sous-Section 2.4.2 d'établir le résultat d'approximation entre l'équation de KZK et le système de Navier-Stokes en suivant la Réf. [81] Théorème 5.7 en adaptant juste les estimations de stabilité de l'approximation. Pour obtenir l'estimation (2.2) nous n'avons pas besoin de la régularité d'une solution classique du système de Navier-Stokes (ou d'Euler), ce peut être une solution faible (au sens de Hoff [38] pour le système de Navier-Stokes ou une des solutions au sens de Luo et al. [64] pour le système d'Euler) satisfaisant les conditions d'admissibilité données dans la Définition 2.4.1 (voir aussi la Réf. [23] p.52 et la Réf. [81] Définition 5.9).

Pour le cas non visqueux, donné en Section 2.5, nous vérifions que le temps d'existence des solutions (fortes) pour tous les modèles n'est pas plus petit que O( 1 ǫ ) et que l'estimation (2.2) est toujours vérifiée.

  Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems temps, telles que pour tout t ≤ C ǫ il est vérifié

δ et du Chapter 2.

Approximation of the solutions of the isentropic Navier-Stokes system by the solutions of the Kuznetsov equation

  Kuznetsov equation (2.23) contains terms of different orders, and hence, it is a wave equation with small size non-linear perturbations ∂ t (∇u) 2 , ∂ t (∂ t u) 2 and the viscosity term ∂ t ∆u. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems Let us calculate the remainder terms in (2.24)-(2.25), which are denoted respectively by

	Chapter 2.

[START_REF] Dahlberg | L q -estimates for Green potentials in Lipschitz domains[END_REF]

)-

(2.25)

. Let us also notice, as it was originally mentioned by Kuznetsov, that the

  .36) where ρǫ | t=0 and vǫ | t=0 are constructed as the functions of the initial data for the Kuznetsov equation u 0 and u 1 according to formulas(2.14)-(2.15) and (2.17)-(2.18):

  Approximation of the Navier-Stokes system 53 First we find from systems (2.46) and (2.49) that in the sense of distributions

.50)

2.4.

  are equal to zero. For the regular case in the framework of Theorem 2.4.1 it is due to the regularity given by (2.34) and (2.35) and the following Sobolev embedding[2] 

  the boundness on [0; +∞[ of R 1 (t) and R 2 (t) in the L 2 and L ∞ norms, and thanks to the regularity of U ε defined in (2.47) and (2.48) (see also(2.34) and (2.35) for the case U ε (0) = U ε (0)) and the energy boundedness of U ε , we estimate the other terms in Eq. (2.52) in the following way εν

  defined by the ansatz (2.60)-(2.68) and Eq. (2.57)-(2.58) in the half space (2.73) are smooth with

  Thanks to Theorem 1.1 in Ref.[START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF], or Theorem 1.2.1 in Chapter 1 we have a local well posedness result for the inviscid Kuznetsov equation. Ref.[START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] or Theorem 1.2.1 in Chapter 1 allow us to give a result on the lower bound of the lifespan T ε of the Kuznetsov equation. The method is similar to the case of the Euler system (2.104)-(2.105). It is based on the use of a group of linear transformations preserving the equation u tt -∆u = 0, initially proposed by John[START_REF] John | Nonlinear wave equations, formation of singularities[END_REF]. We formulate the lifespan and blow-up time results for the inviscid Kuznetsov equation in Theorem 1.4.2 in Chapter 1 If the initial data u 0 ∈ H 4 (R n ) and u 1 ∈ H 3 (R n ) for the Cauchy problem for the inviscid Kuznetsov equation (2.107) satisfy

	Remark 2.5.2. In R 2 and R 3 we see that the lifespan of the inviscid Kuznetsov equation
	corresponds to the blow-up time estimation for the compressible isentropic Euler system in
	Theorems 2.

5.2 and 2.5.3, a result in accordance with the fact that the inviscid Kuznetsov equation is an approximation of the Euler system.We also notice that in the two cases (for the Euler system and the Kuznetsov equation) having a longer existence time requires more regularity on the initial data. Chapter 2. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems Theorem 2.5.4. Let n = 2 or 3.

2 .

 2 Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems which finally implies with formulas (2.87), (2.86), (2.88) and (2.89) with ν = 0 that

  Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systemswith the paraxial change of variable (2.54) associated to the KZK equation. Thus u is Lperiodic in time and of mean value zero. Now we consider the Kuznetsov problem (2.112) associated to the following boundary condition, imposed by the initial condition for the KZK equation:

132)

Chapter 2.

  Let ν > 0. For s > n 2 + 2 and I 0 ∈ H s+ 3 2 (T τ × R n-1 ) small enough in H s+ 3 2 (T τ ×R n-1 ), there exists a unique global solution I of the Cauchy problem for the KZK equation (2.72) such that

	.134)
	where we can recognize the system associated to the KZK equation (2.72).
	Now we can formulate the following approximation result
	Theorem 2.6.4.

  be the solution of the KZK equation. By I the solution u of the approximated Kuznetsov problem (2.136) is constructed using(2.132) and with g defined in(2.133).

	Then there hold
	1. If s ≥ 6 for n = 2, 3, or else s 2 > n 2 + 1, there exists k > 0 such that I 0 H s < k implies the global well-posedness of the Cauchy problem for the KZK equation. Its
	solution is denoted for 0 ≤ k ≤ s 2 by

  In this case, u is the global solution of the approximated Kuznetsov system (2.136), what is a direct consequence of Theorem 2.4.4. If I 0

.141) Proof. Let u and g be defined by (2.132) and (2.133) by the solution I of the Cauchy problem (2.72) for the KZK equation with I| z=0 = I 0 ∈ H s (T t ×R n-1 ) and s ≥ 6 for n = 2, 3, or else s 2 > n 2 + 1.

  Now let us go back to the NPE equation introduced in Section 2.4.3 and consider its ansatz (2.86)-(2.89). As previously we start with the viscous case ν > 0. Then we can rewrite the Kuznetsov equation

  Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systemswith u 0 and u 1 initial data of the the Cauchy problem (2.28) for the Kuznetsov equation.For s > n 2 , if we take u 0

1 96 Chapter 2.

  implies the global existence of Π with the regularities (2.152) and (2.153) which is the solution of the Cauchy problem (2.151) with Π 0 and Π 1 defined by Eqs. (2.148) and (2.149). Moreover for u 0 ∈ H s+2 (R n ) and u 1 ∈ H s+1 (R n ) we have u exact solution of the Cauchy problem (2.28) for the Kuznetsov equation. Let u such that

	Π = u +	ε c 2 u∂ t u,
	as a consequence u is a solution of the approximated Kuznetsov equation (2.154) and if u
	and u satisfy (2.140) with u	

Table 2 .

 2 1 -Approximation results for models derived from Navier-Stokes and Euler systems

		Kuznetsov		KZK		NPE
		Navier-Stokes	Euler	Navier-Stokes	Euler	Navier-Stokes	Euler
	Theorem	Theorem 2.4.3 Theorem 2.5.5	Theorem 2.4.6	Theorem 2.5.7 Theorem 2.4.10 Theorem 2.5.5

Table 2 .

 2 2 -Approximation results for models derived from the Kuznetsov equation

		KZK		NPE	Westervelt
		periodic boundary condition problem	initial boundary value problem		
	Theorem	Theorem 2.6.4	Theorem 2.6.5	Theorem 2.7.1	Theorem 2.8.2
		paraxial approximation		
	Derivation	u			

  Cette partie porte principalement sur l'étude des propriétés de régularité des solutions faibles d'équations sur Ω un domaine ouvert borné de R n , n ≥ 2 avec un bord fractal. Nous pouvons nous référer à l'introduction générale. Nous commençons dans la Section 4.1 par donner les propriétés connues des domaines admissibles (voir la Définition 4.1.5) qui sont la classe la plus générale dès lors que l'on veut définir une trace ou une extension sur le domaine Ω (voir Théorème 4.1.1) ainsi qu'une injection de Sobolev (voir Théorème 4.1.2). Nous poursuivons dans les sous Sections 4.1.2 et 4.1.3 en donnant les propriétés connues du problème de Poisson avec des conditions de Dirichlet

  we pass to limits in our Galerkin approximations.

	Theorem 4.2.3. ([30] p. 384) For Ω an arbitrary bounded domain, there exists a weak

solution of the wave equation problem

(4.9) 

in the sense of Definition 4.2.1. Theorem 4.2.4. ([30] p. 385) For Ω an arbitrary bounded domain, a weak solution of the wave equation problem (4.9) is unique. 4.2. Well posedness of the linear wave equation with homogeneous Dirichlet boundary conditions 119

  Regularity of linear models on domains with fractal boundaries(m + 1) th -order compatibility conditions obtained. Now set ũ := ∂ t u. Differentiating the wave equation with respect to t, we check that ũ is the unique, weak solution of

m + 1). Suppose also the 122 Chapter 4.

  We multiply by -λ k ∂ t d k m (t) and sum over k = 1, ..., m. By definition (4.13) of u m and (4.12) of λ k we have

	128		Chapter 4. Regularity of linear models on domains with fractal boundaries
	Proof. In the previous section we have proved, for		
			m			
			u m (t) =	d k m (t)w k ,		
			i=1			
	of the form (4.13) satisfying (4.14)-(4.16), estimate (4.27) and also the convergence re-
	sult (4.30) with u unique weak solution of problem (4.23). Passing to limits in (4.27) as
	m = m l → ∞, we deduce (i). Assume now the hypothesis of assertion (ii). We consider again u m of the form (4.13) satisfying (4.14), (4.15) and (4.25). Ω
							.31)
	and					
	0	+∞	∆u(s) 2 L 2 (Ω) ds ≤ C( f 2 L 2 ([0,+∞[;L 2 (Ω)) + ∆u 0	2 L 2 (Ω) + ∇u 1	2 L 2 (Ω) ).	(4.32)

  1 0 (Ω) and ∆∂ t u m ∈ L 2 (Ω) by Proposition 4.1.2 we have∇∂ t u m L 2 (Ω) ≤ C ∆∂ t u m L 2 (Ω) ,

	4.3. Well posedness of the damped linear wave equation with homogeneous Dirichlet	
	boundary conditions	129
	which implies by estimate (4.33)	

)

  Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries there exists the unique weak solution u ∈ X of the boundary valued problem for the Westervelt equation

  and v is the solution of an homogeneous non linear initial-boundary valued problem depending on u * and determined with Theorem 1.5.2.That is to say ∀w ∈ L 2 ([0, +∞[; H 1 (Ω))

	+∞
	0

2 Well posedness of the Westervelt equation with homoge- neous Robin boundary conditions on admissible domains

  ).Here Ω is an admissible bounded domain in R n (n = 2 or 3) with a d-set boundary ∂Ω such that n -2 < d < n. For p ≥ 2, we denote by D(-∆) ⊂ H 1 (Ω) the domain in L p (Ω) of the operator -∆ on Ω in a weak sense with homogeneous Robin boundary conditions in accordance with Theorem 4.1.13 and Definition 4.1.10:

	Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on
	144	domains with fractal boundaries
	5.3.	

  Westervelt equation with homogeneous Robin boundary conditions 145 Proof. The equivalence is a direct consequence of Theorem 5.3.3. If we want to prove Theorem 5.3.4, by Remark 5.3.2 we only need to ensure that -∆ is a sectorial operator on L p (Ω) which admits a bounded H ∞ calculus of angle β with β < π 2 . With the work in [9], particularly Theorem 5.6, this is true. The key point according to Theorem 4.1.14, which is true on admissible domain, is that we have for z∈ C such that |arg(z)| < π →L 2 ≤ e -λ 1 |z|with λ 1 > 0. The estimate in Theorem 5.3.4 is a consequence of the closed graph theorem. For p ≥ 2 and T > 0, we define X p as in Definition(5.16) and moreover we define

	2
	e z∆ L 2 Now we consider the non-homogeneous damped wave problem (4.36):
	Theorem 5.3.5.

  with σ m defined by equation(5.24).Proof of "lim sup" condition. We take a given function u ∈ H(Ω * ) defined by (5.28) so that F [u, φ] is well defined and we are going to consider F m [u, φ]. As Ω m → Ω in the sense that Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

		λ(Ω\Ω m ∪ Ω m \Ω) → 0
	and u ∈ H(Ω * ) defined in equation (5.28) the dominated convergence theorem gives directly for m → +∞
	T	
	0	Ω m

-∂ t u∂ t φ + c 2 ∇u∇φ -νε∇u∇∂ t φ + αε(u∂ t u)∂ t φ dλ dt → T 0 Ω -∂ t u∂ t φ + c 2 ∇u∇φ -νε∇u∇∂ t φ + αε(u∂ t u)∂ t φ dλ dt, (

5

.34) 152 Chapter 5.

  Prefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions 153 with a constant C * * > 0 independent of m. This implies by definition of u m that, for all δ > 0 if m big enough, ∂Ω u m T r ∂Ω φ dµ -

	0	T	∂Ω	T r ∂Ω	T r ∂Ω uT r ∂Ω φ dµ dt ≤	δ 2	.	(5.42)
	Finally, for the second term on the right-hand side in (5.38) we use Theorem 5.4.6: so
	we obtain for m → +∞					
	σ						

.41) 5.4.

  Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundariesFrom Theorems 5.4.1 and 5.4.4 for 1 2 < p < 1 denoting by E Ω * the extension of H p (Ω * ) on H p (R 2 ) we have

.56) Chapter 5.

  Prefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions 157For l ∈ {0, T } we use the fact that when m → +∞ ∂ t v m (l) ⇀ ∂ t u(l) in L 2 (Ω

.63) 5.4. * ) and

  .4. Prefractal and fractal problem for the Westervelt equation on Koch Mixtures with Robin boundary conditions 159 is a weak solution of the hyperbolic initial/boundary value problem with ν > 0

  2 ] 'étude de la propagation d'ondes non-linéaires suscite un intérêt, en particulier à cause de récentes applications à l'imagerie ultrason (i.e. HIFU) ou des applications techniques et médicales comme la lithotripsie ou la thermothérapie. Ces nouvelles techniques reposent fortement sur la capacité à modéliser avec précision la propagation non-linéaire d'une pulsation sonore d'amplitude finie dans un milieu élastique thermo-visqueux. Les modèles les plus connus d'acoustique non linéaire, que nous considérerons dans cette thèse sont 1. l'équation de Kuznetsov qui se lit pourα = γ-1 c 2 , β = 2 comme u tt -c 2 ∆u -ν ρ 0 ε∆u t = αεu t u tt + βε∇u ∇u t , x ∈ R n , (B.1) où c, ρ 0 , γ, ν sont la vitesse du son, la densité, le ratio des chaleurs spécifiques et la viscosité du milieu respectivement. Le coefficient ε représente un petit paramètre sans dimension apparaissant dans la dérivation de l'équation. Dans ce qui suit, nous pouvons juste supposer que α et β sont des constantes positives. C'est en fait une équation d'onde quasi-linéaire (amortie), initialement introduite par Kuznetsov [60] pour le potentiel de vitesse, voir aussi les Réfs. [37, 50, 55, 63] pour d'autres variations de sa dérivation; 2. l'équation de Khokhlov-Zabolotskaya-Kuznetsov (KZK) qui peut être écrite pour les perturbations de la densité ou de la pression (voir les études physiques systématiques dans le livre [13] par Bakhvalov, Zhileȋkin, et Zabolotskaya); 3. l'Équation d'onde Non-linéaire Progressive (NPE) (∂ t Π) 2 , (B.4) qui est similaire à l'équation de Kuznetsov avec seulement un de ses deux termes nonlinéaires, dérivée initialement par Westervelt [91] et plus tard par d'autres auteurs [1, 89]. L'équation de Kuznetsov (B.1) décrit l'évolution du potentiel de vitesse, c'est une équation d'onde quasi linéaire amortie, qui décrit la propagation d'une onde de grande amplitude dans un fluide. Elle est un des modèles dérivés du système de Navier-Stokes, et elle est appropriée pour les ondes planes, cylindriques et sphériques dans un fluide (voir [37] de Hamilton et Blackstock). La plupart des travaux sur l'équation de Kuznetsov (B.1) sont traités dans une dimension d'espace [50] ou dans un domaine borné de R n [55, 52, 53, 71]. Pour le cas visqueux, Kaltenbacher et Lasiecka [53] ont considéré le problème avec conditions de Dirichlet au bord et prouvé, pour des données initiales suffisamment petites, le caractère bien posé global pour n ≤ 3. Meyer et Wilke [71] l'ont prouvé pour tout n. Dans [52], Kaltenbacher et Lasiecka ont prouvé le caractère bien posé local du problème avec conditions au bord de Neumann pour n ≤ 3. Le travail des Réf. [52, 53] utilise des estimations d'énergie a priori, et la Réf. [71] la notion de régularité maximale.

	Appendix B							
	Résumé français					
	c∂ 2 τ z I -	(γ + 1) 4ρ 0	∂ 2 τ I 2 -	ν 2c 2 ρ 0	∂ 3 τ I -	c 2 2	∆ y I = 0,	(B.2)
	∂ 2 τ z ξ +	(γ + 1)c 4ρ 0	∂ 2 z [(ξ) 2 ] -	ν 2ρ 0	∂ 3 z ξ +	c 2	∆ y ξ = 0,	(B.3)
	dérivée par McDonald et Kuperman dans la Réf. [70];
	4. l'équation de Westervelt							
	∂ 2 t Π -c 2 ∆Π = ε∂ t	ν ρ 0	∆Π +	γ + 1 2c 2

L

  pour l'équation des ondes fortement amortie ou l'équation de Westervelt ainsi que leurs références utilisées. Nous pouvons nous demander si, sur des domaines moins réguliers, on peut avoir une solution faible continue ou C 1 jusqu'au bord. Les exemples de Arendt et Elst dans la Réf.[START_REF] Arendt | The Dirichlet-to-Neumann operator on rough domains[END_REF] montrent l'apparition de problèmes pour la définition de la trace dès que le bord n'est plus C 1 . De plus si, pour un domaine au bord C 1 ou lipschitzien, on peut définir une normale intérieure presque partout, la question des conditions de Neumann ou Robin sur un bord moins régulier est plus délicate. Par ailleurs le fait de considérer un bord régulier C 2 comme dans[START_REF] Kaltenbacher | Global existence and exponential decay rates for the Westervelt equation[END_REF][START_REF] Kaltenbacher | Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions[END_REF][START_REF] Kaltenbacher | An analysis of nonhomogeneous Kuznetsov's equation: local and global well-posedness; exponential decay[END_REF][START_REF] Kaltenbacher | Well-posedness and exponential decay for the Westervelt equation with inhomogeneous Dirichlet boundary data[END_REF][START_REF] Meyer | Global well-posedness and exponential stability for Kuznetsov's equation in L p -spaces[END_REF] est une conséquence de ce que les dérivées spatiales sont au plus d'ordre 2 et peuvent ainsi être plus naturellement définies au bord. Dans le passé, les mathématiques se sont largement focalisées sur des domaines réguliers. Des ensembles comme celui de Von Koch ont principalement été considérés comme "pathologiques" et utilisés seulement pour produire des contre-exemples. Néanmoins, il y a eu un changement d'attitude lorsque les mathématiciens et les physiciens ont découvert que des structures semblable à celle de Von Koch apparaissaient dans la nature, comme par exemple la micro-structure des électrodes ou les côtes de l'Angleterre.Un point clé pour résoudre les équations que nous étudierons sur des domaines à bords fractals est la compréhension du problème de Poisson sur ces domaines avec des conditions aux bords de Dirichlet

Nous pouvons nous référer à l'introduction générale pour l'analyse physique de ces modèles. Ils ont tous été dérivés jusqu'à de petits termes négligeables à partir de systèmes nonlinéaires de Naviers-Stokes (pour le milieu visqueux) et d'Euler (pour le cas non visqueux) compressibles et isentropiques. Mais toutes les dérivations physiques de ces modèles citées ne permettent pas de dire que leurs solutions approchent la solution du système de Navier-Stokes ou d'Euler. Nous commençons dans la Section 2.3 à présenter le contexte initial du système de Navier-Stokes isentropique (en fait, c'est aussi une approximation du système de Navier-Stokes compressible (2.5)-(2.8)), qui décrit le mouvement d'une onde acoustique dans un milieu thermo-élastique homogène[START_REF] Bakhvalov | Nonlinear theory of sound beams[END_REF][START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Makarov | Nonlinear and thermoviscous phenomena in acoustics, part ii[END_REF]. Nous systématisons dans ce chapitre la dérivation de tous ces modèles en utilisant les idées de la Réf.[START_REF] Rozanova-Pierrat | On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media[END_REF], consistant à utiliser des correcteurs des ansatzs physiques correspondants dans les expansions de type Hilbert.Plus précisément, nous montrons que tous ces modèles sont des approximations du système de Navier-Stokes ou d'Euler jusqu'aux termes d'ordre trois en un petit paramètre

Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

Remerciements

Chapter 2. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems

Well posedness of the initial boundary value problem in the half space for the Kuznetsov equation

We work on Ω = R + ×R n-1 and we are going to study the initial boundary value problem for the Kuznetsov equation on this space, i.e. the perturbation of an imposed initial condition by a source on the boundary, which will later be determined by the solution of the KZK equation.

Lemma 2.6.2. Let s ≥ 0, n ∈ N. There exists a unique solution

of the linear problem

if and only if the data satisfy the following conditions

• for the boundary condition

(2.125)

• u 0 ∈ H s+2 (Ω) and u 1 ∈ H s+1 (Ω);

• g(0) = u 0 and g t (0) = u 1 on ∂Ω in the trace sense.

In addition, the solution satisfies the stability estimate

In order to prove this result we will use the subsequent lemma to remove the inhomogeneity g. Lemma 2.6.3. Let s ≥ 0, n ∈ N. There exists a unique solution w ∈ E defined by (2.123) of the following linear problem

if and only if the data satisfy the following conditions (2.125),

• for the compatibility: for all x ∈ ∂Ω, g(0) = 0 and g t (0) = 0.

Moreover, the solution w satisfies the stability estimate

Chapter 2. Models of nonlinear acoustics viewed as an approximation of the Navier-Stokes and Euler compressible isentropic systems

By the Sobolev embedding H 1 (R + ; H s+2 (Ω)) ֒→ C(R + ; H s+2 (Ω)), it follows that u 0 ∈ H s+2 (Ω) and we also have the temporal trace

by Lemma 3.7 in Ref. [START_REF] Denk | Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data[END_REF]. For the compatibility condition we use (2.128) and (2.129) as in the proof of Lemma 2.6.3. It remains to prove the sufficiency of the conditions. We extend u 0 , u 1 and f in odd functions among x 1 on R n so that we have ũ0 ∈ H s+2 (R n ), ũ1 ∈ H s+1 (R n ) and f ∈ L 2 (R + ; H s (R n )). We consider the problem

By Theorem 4.1 in Ref. [START_REF] Dekkers | Cauchy problem for the kuznetsov equation[END_REF] or Theorem 1.5.1 in Chapter 1 we obtain the existence of its unique solution

Let u ∈ E, defined in (2.123), denote the restriction of ũ to Ω and let g := g -u| ∂Ω . By the spatial trace theorem u| ∂Ω ∈ F R + , and hence g ∈ F R + . Then the solution u of the non homogeneous linear problem (2.124) is given by u = v + u, where v solves problem (2.124) with f = u 0 = u 1 = 0 and g = g. From Lemma 2.6.3 we have a unique solution v ∈ E u of the problem (2.126) with g = g. Then the function w := v -v solves the following system

which thanks to Theorem 2.6 in Ref. [START_REF] Ghisi | Local and global smoothing effects for some linear hyperbolic equations with a strong dissipation[END_REF] has a unique solution w ∈ E defined in (2.123).

The function u := w + v + u is the desired solution of (2.124) and the stability estimate follows from the closed graph theorem. This concludes the proof of Lemma 2.6.2.

The next theorem follows from the maximal regularity result and Theorem 1.5.2 in Chapter 1. Its proof is similar to the proof of Theorem 2.6.2 and hence is omitted.

Considering the initial boundary value problem for the Kuznetsov equation in the half space with the Dirichlet boundary condition

the following results hold: there exists constants r * = O(1) and C 1 = O [START_REF] Aanonsen | Distortion and harmonic generation in the nearfield of a finite amplitude sound beam[END_REF], such that for all initial data satisfying

The Kuznetsov equation and the KZK equation

Let us describe the geometry of NTA domains in the plane. There is a close connection between NTA domains and the theory of quasi-conformal mappings. By a quasicircle is meant the image of a circle by a quasi conformal mapping. A domain bounded by a quasicircle is called a quasidisc. For the theory on quasi-conformal mappings we can refer to [START_REF] Gehring | Characteristic properties of quasidisks[END_REF] and [START_REF]Lectures on n-dimensional quasiconformal mappings[END_REF] for example. Definition 4.1.8. A simple closed curve in the plane is said to satisfy Ahlfors' three point condition if for any points z 1 , z 2 of the curve and any z 3 on the arc between z 1 and z 2 of smaller diameter the distance between z 1 and z 3 is bounded by a constant times the distance between z 1 and z 2 .

With this comes the next theorem: Theorem 4.1.11. [START_REF] Ahlfors | Quasiconformal reflections[END_REF][START_REF] Jones | Extension theorems for BMO[END_REF] Let Ω be a bounded simply connected subset of the plane. Then the following statements are equivalent:

2. ∂Ω satisfies the Ahlfors' three point condition. [START_REF] Ahlfors | Quasiconformal reflections[END_REF]. Ω is an NTA domain.

Proof. (1) ⇔ (2) is due to [START_REF] Ahlfors | Quasiconformal reflections[END_REF] and (1) ⇔ (3) is due to [START_REF] Jones | Extension theorems for BMO[END_REF].

With the work of [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] on quasiconformal mappings Theorem 4.1.1 implies: Corollary 4.1.2. Let Ω ⊂ R 2 be a bounded simply connected set. Then Ω is an admissible domain if and only if it is an NTA domain.

the Green potential solution of the Poisson problem (3.1) with g = 0. The work in [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF] gives us the following theorem Theorem 4.1.12. Let Ω ⊂ R n with n ≥ 2 be a bounded simply connected NTA-domain. Let q 0 = 1 + 1 1-β(M ) > 2, where β(M) > 0 is a constant describing the behavior of the Green function near the boundary (see Lemma 4.1.1 below) and M is a constant which appears in the Definition 4.1.7 of Ω. Then there exists constants ǫ = ǫ(Ω) and C = C(Ω, q) such that if n n-1 < q < q 0 + ε, 1 q = 1 p -1 n , then the following inequality is valid for all f ∈ L p (Ω),

Remark 4.1.4. The same results hold true for Lipschitz's domain but the work of Dahlberg [START_REF] Dahlberg | L q -estimates for Green potentials in Lipschitz domains[END_REF] permits to ensure q 0 ≥ 4 in dimension n = 2 and q 0 ≥ 3 in dimension n ≥ 3.

The β = β(M) > 0 in the statement of Theorem 4.1.12 is the β described in the following lemma.

denotes the harmonic measure on Ω and d(y, ∂Ω) denotes the Euclidean distance from y to ∂Ω.

Then there exists a constant C = C(n) such that if

then the following estimate is valid with

where G is the Green potential associated to Ω for the Poisson problem (3.1) 

We have the following assertions:

1. Each eigenvalue is real.

If we repeat each eigenvalue according to its finite multiplicity the set of all eigenvalues

{λ i } is countable and we can write

There exists an orthonormal basis {w

Proof. If we consider the unique solution u of the Poisson Problem (3.2) then the operator S : f → u is a bounded, linear operator mapping f ∈ L 2 (Ω) into H 1 (Ω) by Theorem 4.1.13.

But Theorem 4.1.2 implies the compactness of the embedding Λ : H 1 (Ω) → L 2 (Ω), so S = Λ • S is a bounded, linear, compact operator mapping L 2 (Ω) into itself.

We also have that S is symmetric positive in L 2 (Ω). The theory of compact, symmetric operators that we can find in [START_REF] Brezis | Analyse fonctionnelle : Théorie et applications[END_REF][START_REF] Evans | Partial differential equations[END_REF] for example permits to obtain the theorem as Sw = 1 λ w if and only if -∆w = λw and moreover by definition of S and S we have w = λ Sw ∈ H 1 (Ω). Remark 4.1.6. As the solutions space is H 1 (Ω) we need to use admissible domains in order to have the compactness of the embedding of H 1 (Ω) into L 2 (Ω) which is different to the case of homogeneous Dirichlet boundary conditions where we could use arbitrary domains. Definition 4.1.10. For Ω an admissible bounded domain in R n (n = 2 or 3),

with p ≥ 2 and a > 0, we take the norm . H1 (Ω) on H 1 (Ω) defined in (4.8) and we define

as a weak solution of the Poisson problem (3.2) 
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Given this definition we have the equivalent of Theorem 4.1.13 for f ∈ L p (Ω) as for Ω a bounded domain we have

Definition 4.1.11. For Ω a bounded admissible domain and p ≥ 2, we will denote by D(-∆) ⊂ H 1 (Ω) the domain in L p (Ω) of operator -∆ on Ω in a weak sense with the homogeneous Robin boundary conditions in accordance with Theorem 4.1.13:

For the continuity of the solution of the Poisson problem (3.2) we have the following result coming directly from [START_REF] Daners | Robin boundary value problems on arbitrary domains[END_REF] with just a generalization to the class of admissible domains coming from the trace, extension and embedding results of Theorems 4.1.1 and 4.1.2. 

Well posedness of the linear wave equation with homogeneous Dirichlet boundary conditions 4.2.1 Existence of weak solution

In this subsection we recall the results of Evans [START_REF] Evans | Partial differential equations[END_REF] for the weak well-posedness of the linear wave equation holding on all arbitrary bounded domains in R n (n ≥ 2).

Definition 4.2.1. [START_REF] Evans | Partial differential equations[END_REF] For f ∈ L 2 ((0, T ); L 2 (Ω)), u 0 ∈ H 1 0 (Ω), and

Here ., . (H -1 (Ω),H 1 0 (Ω)) means the duality product in H 1 0 (Ω) and (., .) L 2 (Ω) is the inner product.

Chapter 5

Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

Now we will treat the well-posedness of the non linear Westervelt equation.

Well-posedness of the Westervelt equation with homogeneous Dirichlet boundary conditions

In this section Ω is an arbitrary bounded domain in R 3 or a bounded admissible domain in R 2 and A designates the operator -∆ on Ω in a weak sense with homogeneous Dirichlet boundary conditions

Here D(A) is the domain of A, u ∈ D(A) if and only if u ∈ H 1 0 (Ω) and -∆u ∈ L 2 (Ω). The operator A is linear self-adjoint and coercive in the sense where for u ∈ D(A)

and we will note for u ∈ D(A)

there exists a unique weak solution, in the sense of formulation (4.24), 

of the Cauchy problem (5.2) for the strongly damped wave equation. By linearity u is unique and by definition of u we have

and u 0 ∈ D(A).

Now if we look at u t and consider the semi group generated by -A as u t satisfies a parabolic type problem

we can write

Then the theory of L p maximal regularity in [START_REF] Arendt | Maximal L p -regularity for parabolic and elliptic equations on the line[END_REF] for parabolic problems tells us for all T > 0

By definition for all T > 0

As we can write for A with v ∈ D(A) and w ∈ H 1 0 (Ω)

Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries such that T r ∂Ω g = g and for X defined in (5.1)

is the unique weak solution of the system

in the sense of formulation (4.24). Moreover we have the estimate

Proof. As g ∈ F defined in (5.5) the existence of g ∈ X 1 defined in (5.7), with T r ∂Ω w = g comes from the extension operator E ∂Ω introduced in Theorem 4.1.1 along with the fact that by Lemma 3.5 in [28]

with a bounded right inverse. Moreover the boundness of E ∂Ω implies

(5.9)

Let us define u * as a solution of system (5.8).

The regularity of g implies

The compatibility conditions also allow to have

Then we can apply Theorem 5.1.1 to obtain the existence of a unique weak solution u * of system (5.8) with the desired regularity. The regularity of u 0 , u 1 and g with the estimate in Theorem 5.1.1 allows to give the desired estimate.
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If we consider the problem for the Westervelt equation with non homogeneous Dirichlet boundary data:

we are looking for solution of the form u = v + ũ, where ũ solves the strongly damped system (5.6) in a weak sense in the conditions of Theorem 5.2.1. It lead us to v solution of the following system

the well posedness of which is determined in the following theorem using Theorem 1.5.2.

Theorem 5.2.2. Let X and X 1 be defined by (5.1) and (5.7) respectively. For u * ∈ X and g ∈ X 1 , there exists r * > 0 with r * = O(1) such that for r ∈ [0, r * [ and all data satisfying

there exists the unique weak solution v ∈ X of problem (5.11) with ũ = u * +g and v X ≤ r.

Proof. As in the proof of Theorem 5.1.2 we introduce the Banach spaces

and Y = L 2 (R + ; L 2 (Ω)). Then by Theorem 5.1.1, the linear operator

The properties of X and X 1 allow to show for w and z in X with w X ≤ r and z X ≤ r 

There exist r * > 0 and C > 0 such that for r ∈ [0, r * [

implies that there exists a unique weak solution u of the Westervelt system (5.10) with non homogeneous Dirichlet boundary conditions in the way where u = v + u * + g. We have u * ∈ X, g ∈ X 1 defined in (5.1) and ( 5.7) such that ũ = u * + g unique weak solution of the strongly damped problem (5.6) and v ∈ X unique solution of the system (5.11) in the sense where ∀w ∈ L 2 ([0, +∞[;

Moreover, we have the estimates

Proof. According to Theorem 5.2.2 we have v ∈ X with v X ≤ r solution of system (5.11) as soon as u * X ≤ r 2 and g X 1 ≤ r 2 for r ∈ [0, r * [ with r * > 0. But according to Theorem 5.2.1, if ũ = u * +g is a unique weak solution of the strongly damped problem (5.6), then we have the estimates

So there exists a constant C > 0 such that

which permits to conclude.

Well posedness of the Westervelt equation with homogeneous Robin boundary conditions

In this section Ω is an admissible domain in R n (n = 2 or 3) with a d-set boundary ∂Ω such that n -2 < d < n. We note m d the d-dimensional Hausdorff measure.

5.3.
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Well posedness of the Westervelt equation with homogeneous Robin boundary condition on Lipschitz domains

In this subsection only Ω is a Lipschitz domain in R n (n = 2 or 3) with a (n -1)-set boundary ∂Ω. We denote by D(-∆) ⊂ H 1 (Ω) the domain in L 2 (Ω) of the operator -∆ on Ω in a weak sense with homogeneous Robin boundary conditions in accordance with Definition 4.1.9 and Theorem 4.1.13:

We say that u ∈ D(-∆) if and only if u ∈ H 1 (Ω), u satisfies homogeneous Robin boundary condition and -∆u ∈ L 2 (Ω). The operator -∆ is linear self-adjoint and coercive in the sense where for all u ∈ D(-∆)

and we will use the notation

To show the well-posedness of the Westervelt equation on Lipschitz domain we will use the following result coming from Theorem 3.14 in [START_REF] Nittka | Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains[END_REF]. Let Ω be an arbitrary bounded Lipschitz domain in R n , n = 2 or 3. Let ν > 0, R + = [0, +∞[ and X be the Hilbert space defined in (5.1) by X defined by

(5.12)

there exists C 1 = O(1) the minimal constant such that the weak solution u * ∈ X of the corresponding boundary Cauchy problem (4.36), in the sense of formulation (4.37), satisfies

Then there exists r * > 0 with r * = O( 1) such that for all r ∈ [0, r * [ and all data satisfying

Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

Trace and extension theorems

As in [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF], we collect some preliminary results: in particular, we state trace theorems for the specific geometry of the prefractal and fractal problem. We will use Definition 4.1.4 to define the trace operator.

Let Ω 0 be the square {(x, y) : 0 < x < 1, -1 < y < 0} with vertices A = (0, 0), B = (1, 0), C = (1, -1), and D = (0, -1). On each of the 4 sides we construct either a scale irregular Koch curve or the corresponding approximating prefractal curve. More precisely, we consider the set Ω (ξ) bounded by four scale irregular Koch curves K (ξ) j , j = 1, 2, 3, 4 with endpoints A and B, B and C, C and D, D and A respectively. Moreover, we consider the set Ω (ξ),m bounded by 4 approximating prefractal curves K (ξ),m j , j = 1, 2, 3, 4 starting from the segments K j with endpoints A and B, B and C, C and D, D and A respectively.

While the fractal boundary ∂Ω (ξ) is irregular, the prefractal boundary ∂Ω (ξ),m is polygonal, so we can easily give well posedness results for partial differential equations with domains having such boundary and use the classic Lebesgue measure on such a boundary. In this way we are going to give well-posedness results on the solution u of the Westervelt equation on a domain Ω (ξ) by a convergence argument on the functions u m solutions of the Westervelt equation on a domain Ω (ξ),m .

The following theorem characterizes the trace to the set ∂Ω (ξ),m of Sobolev spaces H σ (R 2 ). It is proved in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]. Set

(5.19)

) and l (ξ) (m) as in (5.19). Then, for

where C σ is independent of m.

The following theorem characterizes the trace to the set ∂Ω (ξ) of Sobolev spaces H σ (R 2 ) (for the proof, see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]).

The following Theorem extends functions of H 1 (Ω (ξ),m ) to the space H 1 (R 2 ) by an operator whose norm is independent of the (increasing) number of sides. It is a particular case of the extension theorem due to Jones (Theorem 1 in [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF]) as the domains Ω (ξ),m are (ε, ∞)-domains with ε independent of m (for the proof, see [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF]).

Theorem 5.4.3. For any m ∈ N, there exists a bounded linear extension operator

with C J independent of m.

We also use another extension result (for the proof, see [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF]).
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Theorem 5.4.4. There exists a bounded linear extension operator E Ω (ξ) :

(5.23)

We conclude this section with the following approximation results for the measure µ ξ proved in [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] and [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF].

Theorem 5.4.5. [START_REF] Capitanelli | Insulating layers and Robin problems on Koch mixtures[END_REF] Let

with l (ξ) (m) as in (5.19). For any function g ∈ H 1 (Ω (ξ) )

T r ∂Ω (ξ) g dµ (ξ) for m → +∞.

(5.25)

Theorem 5.4.6. [START_REF] Capitanelli | Robin boundary condition on scale irregular fractals[END_REF] Let σ m defined by equation (5.24). For any function g ∈ C(Ω (ξ) )

T r ∂Ω (ξ) g dµ (ξ) for m → +∞.

(

Asymptotic analysis

From now on, when it does not give rise to misunderstanding, in the notation we suppress the super index (ξ) by writing simply Ω, Ω m , l(m) and similar expressions. We consider the problem with Robin boundary conditions on an open set Ω associated to the Westervelt equation

Let Ω * be a bounded possibly regular open set such that Ω m ⊂ Ω * for all n and Ω ⊂ Ω * .

Definition 5.4.1.

For an open set U and T > 0 we define the Hilbert space

(5.28)

Chapter 5. Well-posedness and regularity of the non linear Westervelt equation on domains with fractal boundaries

• u(0) = u 0 and u t (0) = u 1 on Ω.

The expression F [u, φ] = 0 can be obtained multiplying the Westervelt equation from system (5.79) by φ ∈ C 1 ([0, T ] × D(Ω)) with φ| Γ 0 = 0 integrating on [0, T ] × Ω and doing integration by parts. In the same way with F m [u, φ] we can define the weak solution of the Westervelt problem (5.75). We have an equivalent of Theorem ( 5 For the weak solution u m of the problem (5.75) on Ω m in the sense of Theorem 5.4.11 and the weak solution u of problem (5.79) on Ω in the sense of Theorem 5.4.14, we have that u and u m are also weak solutions in the sense of Definition 5.4.6. Moreover

where H(Ω) is defined in (5.80). 

with a constant C > 0 independent of m. But we also have by the independence on m of r * in Theorem 5. 4.11 u m H(Ω m ) ≤ K with a constant K > 0 independent on m. Therefore, there exists a subsequence still denoted (E R 2 u m )| Ω that weakly converges to u * in H(Ω). And in the same way that in Theorem 5.4.7 we have for all φ ∈ C 1 ([0, T ]×D(Ω))

with φ| Γ 0 = 0. Thus we deduce u * = u which allows to conclude.

Remark 5.4.3. The results presented in this Subsection can be generalized to a domain with boundaries of Koch mixtures type everywhere on the condition that we impose an homogeneous Dirichlet boundary condition on a part of the boundary.

We will conclude with a few remarks on the case of Robin boundary conditions everywhere. Westervelt In the case p = 2 the dependence on m of this constant can be determined. It relies on the dependence on m the constant C in the estimate

Prefractal and fractal problem for the

where ∆ is the Laplacian operator with homogeneous Robin boundary conditions. The work of [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF] Theorem 3.6.3 leads us to a constant which if it should be optimal would also depend on

The fact is that compared to the case with the mixed boundary conditions we do not have the Poincaré inequality as we do not have an homogeneous Dirichlet boundary condition on one side and have to take into account the boundary terms in the expression of the variational form

Applying the Lax-Milgram theorem, constants depending of the Robin constant a could appear in the proof of continuity or coerciveness. Therefore, we can not prove that in Theorem 5.3.6, r * does not tend to 0 when m → +∞ if we consider the solution u m on Ω m .

Appendix A

Expressions of the remainder terms

The expression of H, the profile of ρ 2 , in the paraxial variables of the KZK ansatz is: are written with the terms I and J defined by (2.57) and (2.58) respectively.

Chapter B. Résumé français

• Peut-on utiliser la formule de Green? Dans le cas lipschitzien on a

• Est ce que u dépend uniquement ou continûment de f et g?

Dans la

Réf. [START_REF] Jonsson | Boundary value problems and Brownian motion on fractals[END_REF] Jonsson et Wallin ont pu répondre à ces questions dans le cas où Ω est un (ǫ, δ)-domaine avec un bord ∂Ω qui est un d-ensemble pour la mesure de Hausdorff préservant l'inégalité de Markov. En se basant sur le travail de Lancia [START_REF] Lancia | A transmission problem with a fractal interface[END_REF] on trouve un équivalent de la formule de Green faisant intervenir les espaces de Besov pour le terme de bord. Les résultats de Jonsson et Wallin sont à notre connaissance les premiers de ce type établis sur des domaines fractals. Les résultats de Jones [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] sur les d-ensembles et les domaines admettant des extensions W k p permettent de dire qu'en dimension 2 les (ǫ, δ)-domaines sont les domaines les plus généraux sur lesquels on peut définir des traces et des extensions des espaces de Sobolev et ainsi résoudre le problème de Poisson. Dans la Réf. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF], Arfi et Rozanova-Pierrat ont introduit un nouveau type de domaine à bords fractals dits les domaines admissibles. Ces domaines contiennent les (ǫ, δ)-domaines et sont plus généraux, ils forment la classe la plus large des domaines sur lesquels on peut définir des traces et des extensions aux espaces de Sobolev pour Ω ⊂ R n avec n ≥ 2, et ainsi trouver une solution faible au problème de Poisson dépendant de manière unique et continue des données initiales.

En conséquence nous travaillerons principalement sur les domaines admissibles et résumons les résultats connus sur ces domaines. Il est à noter que le travail de la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous fournit les propriétés spectrales ainsi que la régularité intérieure de la solution du problème de Poisson (B.7), i.e. le fait que pour un sous ensemble V inclus de manière compacte dans Ω, V ⊂⊂ Ω, la solution sur Ω a sur V la même régularité que pour un domaine aux bords réguliers. La Réf. [START_REF] Arfi | Dirichlet-to-neumann or poincaré-steklov operator on fractals described by d-sets[END_REF] par Arfi et Rozanova-Pierrat permet de donner des résultats similaires pour le problème de Poisson (B.8) et la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous fournit encore les propriétés spectrales.

Une autre question importante est de savoir si les solutions des problèmes de Poisson (B.7) et (B.8) appartiennent à C(Ω) avec une estimation de la forme:

Pour le problème de Poisson (B.7) avec des conditions au bord de Dirichlet homogènes les travaux des Réfs. [START_REF] Nyström | Integrability of Green potentials in fractal domains[END_REF] par Nyström et [START_REF] Xie | A sharp pointwise bound for functions with L 2 -Laplacians and zero boundary values of arbitrary three-dimensional domains[END_REF] par Xie permettent de donner une réponse positive à cette questions en dimension n = 2 et 3 respectivement pour p = 2. Le travail de Daners dans la Réf. [START_REF] Daners | Robin boundary value problems on arbitrary domains[END_REF] nous donne aussi une réponse positive pour le problème de Poisson (B.8) si p > n. Ces estimations sont essentielles pour montrer que les solutions de nos modèles de type ondulatoires étudiés sont dans C(Ω) mais aussi pour traiter la non-linéarité de l'équation de Westervelt.

En utilisant une méthode de Galerkin comme dans la Réf. [START_REF] Evans | Partial differential equations[END_REF] par Evans nous obtenons la régularité de l'équation des ondes et de l'équation des ondes fortement amortie avec des conditions de Dirichlet homogènes avec l'aide d'une base de fonctions propres de -∆. Avec ces résultats de régularité nous traitons le caractère bien posé de l'équation de Westervelt avec des conditions de Dirichlet de la même façon que dans la preuve dans le Chapitre 1 du caractère bien posé global de l'équation de Kuznetsov sur R n . Les propriétés de la trace et de l'extension pour les domaines admissibles rappelées nous ont permis de traiter le cas