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The determination of a component's lifetime under vibrational excitation is one of the most dicult challenges in mechanical engineering. In order to provide a reliable estimation of lifetime, a correct calculation of stress eld, which depends on the modal form and its amplitude, is needed. However, the vibrational response calculation on an assembled structure is not easy, especially with the nonlinear structural damping induced by frictional contact surface. The research in the current thesis starts from the phenomenological identication of damping with the help of 3 analytical models, in particular the sandwich plate, rotational joint and von Karman plate. Structural damping of 1st and 2nd order are identied. The inuence of parameters like clamping pressure, thickness ratio and number of welding points are also analyzed. The second part of the research focuses on problems with nite dimensions. The von Karman plate serves as the subject of the study and a hydride method which combines FDM and FEM is proposed to solve the coupling between deection and in-plane force eld. A special attention is paid to nonlinear mode theory, the conditions under which the nonlinear mode is necessary are identied.

The ctive force eld proposed in the study of von Kármán plate is then applied to the sandwich plate model. The slipping's propagation as well as the inuence of ctive force eld are studied. To verify the existence of the found phenomena in the previous studies, an experimental setup is designed and mounted for the 1st order structural damping. In the last part of the research, which is based on the observations previously obtained from academic models, a calculation method of friction-induced damping in structures with complex geometries is proposed for the application in the industrial environment. This methods enables the estimation of damping for each isolated mode. x List of Figures 2.17 Inuence of protrusion's number on damping ratio . . . . . . . . . . 47 2.18 Inuence of endpoint locking on dissipated and stocked energy . . . . 48 2.19 Inuence of endpoint locking on damping ratio . . . . . . . . . . . . 49 2.20 Sketch of rotational damping beam . . . . . . . . . .
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General introduction

The vibration behavior of mechanical assemblies is always a subject with the implication of complex nonlinearity not only for academic researchers but also for industrial engineers. The current thesis will focus on the aspect of modelization of dry friction damping on the contact surface. Damping is considered as a key factor which regulates the vibration amplitude as well as the consequently dependent property of fatigue resistance. A good and reliable modelization of the damping value can contribute to a precise estimation of the vibration response. The current thesis adopts a progressive approach in the study. It starts from a fundamental phenomenological study of friction damping realized mainly by analytical models, then a more rened model built by FEM is proposed to study the nonlinear aspects induced by friction damping, at last the retained conclusions in the previous chapters serve as the basis for the development of a simplied method for industrial applications. The content of the thesis is divided into 5 chapters, the main idea of each chapter is presented below.

Chapter 1 gives in the rst place a general introduction of the notion of damping in vibration systems. The dierence between viscous damping and friction damping is presented by mathematical demonstrations. The metric of damping logarithmic decrement or damping ratio, are explained in details and the relationship between them is established. The literature review presents in a chronological order the state of the art of damping modelization. The modeling approaches can be divided into two categories: analytical methods and numerical methods. The concrete examples and important conclusions are also presented.

Chapter 2 is dedicated to the phenomenological study of friction damping on the basis of three academic models, the development of which is inspired by the analytical models that have been used in the literature, namely innite sandwich plate, rotational joint and von Kármán plate. The three models are all analytical and will enable a parametric study of inuencing parameters like clamping pressure and coecient of friction. The inuences of other parameters like thickness ratio, curvature of contact surface as well as boundary condition are analyzed by FEM on the innite sandwich plate. The phenomenological study gives a preliminary view of the friction damping and reveals its dependence on modal amplitude. According to the evolution of damping ratio in terms of the magnitude of displacement, the friction damping can be categorized into rst-order damping and second-order damping.

Chapter 3 is a further research based on the discovered phenomena presented in chapter 2. It mainly deals with the planarization of friction problems in structures having geometry nonlinearity, namely the von Kármán plate. Considering the diculty in analytical solution, FEM and FDM are adopted in the discretized xvi General introduction formulation of the problem. The hardening/softening eect due to in-plane forces as well as its inuence on nonlinear mode coupling will be discussed. The notion of planarization of contact problems will then be extended to the sandwich plate with nite dimensions and the results obtained will show that the planarization will give a satisfactory estimation of damping ratio compared to analytical method.

Chapter 4 is an experimental verication of the phenomena revealed in the previous chapters. A partially clamped symmetric sandwich plate is adopted as the experiment specimen. The advantages of the symmetric structure will be presented and the design procedure will be explained. The experiment results will show that frictional damping is sensitive to clamping pressure and model amplitude. The η -q curves found in the experiment gives the same variation tendency in terms of displacement as predicted by the numerical and analytical methods.

Chapter 5 will propose an simplied method for damping modelization within the framework founded on the conclusions from the previous theoretical studies, i.e. the resonance frequency along with the mode shape cannot be drastically changed by the presence of frictional contact, the damping is determined only by the linear mode shape and its corresponding amplitude. This simplication enables the engineers of PSA to calculate the damping associated with a given mode shape in a quasi-static way within the commercial FEM softwares. The proposed method is based on ABAQUS TM subroutine DISP which is capable of imposing an user-dened displacement to the structure according to the directions dened in the mode shape. The mode shape injection method will be applied in the rst place on 2D models and then on an industrial-sized 3D model. The results will show that the proposed method is simple and ecient in damping estimation.

The current thesis is a complete study on frictional damping in assembled structures. It starts from the basic notions of frictional damping obtained in academic models and transits progressively to a simplied method for industrial application.

I hope my work will be useful for scientists and engineers who are interested in the complexity of friction damping in assembled structures and shed light for the future research.

Introduction

In the current industrial design, a key evaluation factor of the product is the fatigue resistance under vibrational solicitation, especially for domains where security and robustness are primordial criteria for clients, for example in automobile and aerospace industries. Apart from the security consideration, vibration also plays an important role for the comfort perceived by the clients. A relatively weak vibration level will surely give clients a feeling of reliability and high-end quality. The automobile constructor Groupe PSA spares no eort in the permanent perfection of its products, during the course of which the vibration reduction stays one of the most important research directions, especially for components like metallic body, drive train and suspension system. The proposal of the current thesis lies in this industrial context. Vibration analysis has already become a common practice in automobile engineering. The numerical tools in the realm of Computer Aided Engineering (CAE)

have already been widely used in virtual conception before passing experiment verication. These tools are of good capacity to give a correct prediction of mass and inertia, and also a relatively precise estimation of stiness, but they are incapable 2 Chapter 1. Introduction of providing a convincing value of damping, notably for automobile structures with complex geometry and loading conditions. In this case, a bad prediction of damping will result in an incorrect estimation of amplitude and thus consequently an erroneous prediction of fatigue endurance, since the fatigue endurance is directly related to internal stress eld which is proportional to displacement amplitude. In order to make up this default in design phase, the current thesis will mainly deal with the problematic encountered due to damping modelization.

Industrial structures are mostly assembled structures, they are often jointed together by welded or bolted connections. Damping in these structures can be roughly classied in two categories: viscous damping and structural or hysteresis damping.

Compared to structural damping, the property of viscous damping is well understood and there exists already mature industrial applications like damping enhancement by the insertion of thin viscoelastic lms or rubber washer, the damping mechanism in hydraulic damper also falls into the realm of viscous damping. However, according to dierent studies in the bibliography, structural damping is much more elevated than viscous damping in assembled structures, which is due to the fact that energy is mainly dissipated by relative displacement under friction between dierent components.

The objective of the current thesis is to understand the properties of frictional damping and nd a proper way to modal energy dissipation in assembled structures.

Based on the knowledge derived from academic models, application methods for industrial use are then to be developed. Before the research into the notion of frictional damping, some basic theories about damping and vibration mechanics are to be reviewed.

Undamped and damped vibration

Structure vibration can be regarded as an alternative energy transfer between kinematic energy and potential energy of deformation. If no energy is lost or dissipated in friction or other resistance during oscillation, the vibration is known as undamped vibration, where all the kinematic energy can be transformed into potential energy in one cycle. The equation which describes the undamped dynamic one-degree-offreedom system without external excitation is written as mẍ + kx = 0

(1.1)
with m the mass and k the stiness. The temporal response of such a system is illustrated in gure 1.2. If any energy is lost during the cycle, however, it is called damped vibration. In many physical systems, the amount of damping is so small that it can be disregarded for most engineering purposes. However, consideration of damping is becoming more and more important in analyzing vibratory systems near resonance. In many practical damped systems, the vibratory energy is gradually converted to heat or sound.

Due to the reduction in the energy, the response, such as the displacement of the system, gradually decreases in the case without energy input. In the system with energy input, the existence of damping prevents the displacement from reaching innity. Although the amount of energy converted into heat or sound is relatively small, the role that the damping plays is drawing more and more attention of researchers and engineers to have an accurate prediction of the vibration response, especially near resonance. The damped dynamic system with viscous damping can be written as mẍ + kx + c ẋ = 0

(1.2)
where c ẋ is the damping force which signies that viscous damping is in terms of velocity. The response of 1-DOF damped system with dierent damping coecients is illustrated in 1.3. In real conditions, the undamped system presented in gure 1.2 doesn't exist, because the vibration amplitude always decreases with time due to dierent damping forces. These forces are in the opposite direction of movement and are thus of opposition sign to the velocity. As the structure is often exposed to complex environment, the attenuated response is the result of multiple damping sources. The damping sources can be categorized in the way below.

• External damping

Damping due to uid-structure coupling: interaction between the structure in vibration and the uid environment, for example air damping.

Damping due to element connected to the structure: usage of absorbent viscoelastic material, for example rubber washer and dry rub.

Damping due to passive, semi-active or active piezoelectric material:

these materials are capable of transforming the deformation energy into electric energy or in the inverse direction. This reversibility enables to obtain intelligent systems in which a part of mechanical energy can be extracted from the system in order to control its vibration amplitude.

• Internal damping

Material damping: damping in the material is a complex process, it is believed that the energy dissipation comes from the dislocations of microscopic crystals and cracks. This dissipative mechanism is sensitive to temperature and frequency of the vibration. Material damping is relatively weak in metals or in mono-crystal materials.

Micro-slip damping: damping is generated by frictional micro-slip at the connection interface between components in assembled structures. The energy is mainly dissipated in the form of heat.

Damping categories

In order to model the damping property of vibratory systems, damping elements are introduced. A damper is assumed to have neither mass nor elasticity, and damping force exists only if there is relative velocity between the two ends of the damper.

As it is dicult to include all the damping properties in one element, damping is modeled as one or more of the following types.

• Viscous damping. Viscous damping is the most commonly used damping mechanism in vibration analysis. When mechanical systems vibrate in a uid medium such as air, gas, water, or oil, the resistance oered by the uid to the moving body causes energy to be dissipated. In the amount of dissipated energy depends on many factors, for example the size and shape of the vibrating body. In viscous damping, the damping force is proportional to the velocity of the vibrating body. Typical examples of viscous damping include [START_REF] Merlette | Amortissement des caisses automobiles par des lms minces viscoélastiques pour l'amélioration du confort vibratoire[END_REF] uid lm between sliding surfaces, (2) uid ow around a piston in a cylinder, (3) uid ow through an orice, and (4) uid lm around the journal of a bearing.

The damping induced by "gaz-pumping" can be can be categorized as viscous damping.

• Coulomb or dry-friction damping. The damping force is constant in magnitude but opposite in direction to that of the motion of the vibrating 1.4. Energy dissipation in viscoelastic material 5 body. It is caused by friction between rubbing surfaces that are either dry or have insucient lubrication.

• Material or solid or hysteretic damping. When a material is deformed, energy is absorbed and dissipated by the friction between the internal planes, which slip or slide as the deformations take place. When a body having hysteretic damping is subjected to vibration, the stress-strain diagram shows a hysteresis loop as shown in gure 1.5a. The area of this loop denotes the energy lost per unit volume of the body per cycle due to damping.

Energy dissipation in viscoelastic material

A viscoelastic material is characterized by possessing both viscous and elastic behavior. From a macroscopic point of view, the damping in viscoelastic material implies a conversion from mechanical energy to thermal energy due to the successive rearrangement of molecule chains when the structure is under deformation. In order to quantify the dissipation capacity of viscoelastic material, the loss factor η(f ) is employed to express its dependency on frequency. The Young's modulus of viscoelastic material can be expressed by a complex number

E * (f ) = E (f ) + iE (f ) = E (f )[1 + η E (f )]. (1.3) 
In the same way, the shear loss factor can be expressed from the shear modulus

G * (f ) = G (f ) + iG (f ) = G (f )[1 + η G (f )].
(1.4) E (f ) and G (f ) represent the modulus for energy stock while E (f ) and G (f )

are related to energy dissipation in the material. The relation between them is given by

E * (f ) = 2(1 + ν)G * f.
(1.5) Some materials have dierent loss factor for traction-compression and shear, however for others materials, only one loss factor is able to describe the vibration behavior. In this case we can write

η f = η E = η G . (1.6)
It should be noted that the energy created on the microscopic level may not be evacuated on time, which will generate an temperature increase in the material. The temperature can modify the mechanical behavior of viscoelastic material in terms of the existence of glassy transition. It is found that the loss factor can reach its maximum in the transition phase when the rigidity experiences drastic change, as illustrated in gure 1.4a. The behavior on frequency is completely the inverse of that on temperature, as shown in gure 1.4b. Under low frequencies, the rigidity of the material is big, with the increase in frequency, the rigidity becomes bigger and saturates to an asymptotic value. Between the two zones, there exists a transition frequency on which the loss factor of the material reaches its maximum [START_REF] Merlette | Amortissement des caisses automobiles par des lms minces viscoélastiques pour l'amélioration du confort vibratoire[END_REF].

(a) Inuence of temperature on viscoelastic material (b) Inuence of frequency on viscoelastic material 

Energy dissipation in hysteretic damping

When a force is applied on a body with frictional hysteretic damping, the loading and unloading curve don't coincide and forms a hysteresis loop. As the loading force increases, the stress σ and the strain ε also increase, the area under the σ -ε curve,

given by

E = σdε, (1.7) 
denotes the energy injected in per unit of the volume. When the load on the body is gradually removed, the elastic energy will be recovered. When the loading path is dierent from the unloading path, the area ABC in gure 1.5b is equivalent to the energy dissipated per unit volume of the body. The area inside the circle in gure 1.5a quanties the total energy loss in one loading cycle. The hysteresis loop can also be formed with the magnitude of the loading force and the displacement of the excitation point. The damping capacity of dierent structures can easily be compared by the size of hysteresis loop under the same level of strain. The quantication of hysteretic damping can start from the modelization of a spring-viscous-damper system in gure 1.6.

Figure 1.6: Spring-viscous-damper system

For this system, the force needed to to cause a displacement x(t) is given by

F = kx + c ẋ. (1.8)
For a harmonic motion of of frequency ω and amplitude X, x(t) = X sin ωt.

(1.9) Equation 1.8 and 1.9 yield It has been found experimentally that the energy loss in frictional hysteresis damping is independent of the frequency and proportional to the displacement, in order to achieve this observed behavior and establish an equivalence on the level of dissipated energy, we can introduce a hysteresis damping coecient c h , which is inversely proportional to the frequency.

F (t) = kX sin ωt + cXω cos ωt = kx ± cω X 2 -(X sin ωt) 2 = kx ± cω X 2 -x 2
c h = h ω .
(1.12)

Replace c by c h in equation 1.11, the hysteretic energy dissipation can thus be expressed as ∆W = πhX 2 .

(1.13)

Logarithmic decrement

Logarithmic decrement is a temporal view of damping, it describes the amplitude decreasing rate in a direct way. In order to understand the basic meaning of damping, a clear explanation of logarithmic decrement is necessary. The following derivation is given by Rao [2]. Consider rstly the famous Euler limit

e x = lim n→∞ (1 + x n ) n .
(1.14)

Replace x by -δ • n where δ is the amplitude decreasing percentage in one cycle and n is the number of cycles.

e -δn = lim n→∞ (1 -δ) n . (1.15)
The initial amplitude is denoted as X 1 , after n cycles of movement, the amplitude of cycle n + 1 can be expressed as

X n+1 = X 1 (1 -δ) n . (1.16)
If the number of cycles is innitely big, the Euler limit can be used to establish the relationship between the initial amplitude and the nal amplitude.

X 1 lim n→∞ (1 -δ) n = X n+1 X 1 e -δn = X n+1 (1.17)
By applying a logarithmic function to both sides of equation 1.17 and solve for δ 1.7. Relation to logarithmic decrement

δ = 1 n ln( X 1 X n+1
).

(1.18)

If we take n = 1, the decreasing percentage per cycle, or the so-called logarithmic decrement can be written as

δ = ln( X 1 X 2 ) = ln( X n X n+1
).

(1.19)

Relation to logarithmic decrement

If a spring and a hysteresis damper are connected in parallel, the reaction force can be expressed in a similar way as used in viscous damping

F = kx + iωc h x = kx + ihx = k(1 + i h k )x = k(1 + iη)x, (1.20) 
where η = h/k and is a constant indicating a dimensionless measure of damping. We can substitute h in equation 1.8 by ηk.

∆W = πηkX 2 m .
(1.21)

Under hysteresis damping, the motion can be considered to be nearly harmonic, and the decrease in amplitude per cycle can be determined by using energy balance. The energy balance between point P and point Q can be expressed with the stocked elastic energy and dissipated energy.

1 2 kX 2 j - 1 4 πηkX 2 j - 1 4 πηkX 2 j+0.5 = 1 2 kX 2 j+0.5 X j X j+0.5 = 2 + πη 2 -πη (1.22)
From which (1.24)

X j X j+1 = 2 + πη 2 -πη = 2 -πη + 2πη 2 -πη ≈ 1 + πη.
Another way to express η is to use the ratio between dissipated energy and maximum stocked energy in one cycle, this ratio is also called specic damping capacity.

∆W

E max = πηkX 2 m 1 2 kX 2 m = 2πη (1.25) η = 1 2π ∆W E max . (1.26)
The η is the damping capacity per radian and is named as loss coecient. Substitute equation 1. (1.27)

For small damping ζ 1, the logarithmic decrement can also be approximated in terms of the ratio between damping constant and critical damping constant in equivalent viscous damped system.

δ = 2πζ = 2π c c c = 2π c 2mω n = πc mω n .
(1.28)

ζ = 1 4π ∆W E max .
(1.29) Dierent from Rao [2], Masuko [3] provided another way to express the relationship between logarithmic decrement and damping ratio. The damping ratio Ψ can be expressed as the ratio between the total energy introduced into the system and the loss energy,

Ψ = ∆W ∆W + E max = 1 1 + 1 2πη , η = 1 2π ∆W E max . (1.30)
When amplitude of vibration is a n , the energy stored in the system is denoted as E n , which is equal to E max + ∆W , and it is easily known that E n+1 = E n -∆W .

Assuming that the energy stored in the system is a quadratic equation of amplitude

Ca 2

n , the relationship between the damping ratio Ψ and the logarithmic decrement can be written as follows.

δ = ln a n a n+1 = ln E n E n+1 1/2 = 1 2 ln E n E n -∆W = 1 2 ln 1 1 -Ψ . (1.31)
In case of Ψ 1, Maclaurin expansion of equation 1.31 is given by

δ = 1 2 ln Ψ + 1 2 Ψ 2 (1.32)
where the higher order of terms more than Ψ 3 are ignored. By substituting equation 1.30 into equation 1.32 we can obtain δ = 1 2 ln (2πη + 1) .

(1.33)

Slip damping mechanism

In the hysteresis damping category, friction in micro-slip is the most commonly observed damping mechanism. Even thought the assemblage structure doesn't have any kinematic degree of freedom, the relative displacement between dierent components is able to cause energy loss due to frictional contact. Slip damping mainly takes place in joints and it is experimentally shown that this type of damping is much larger often by a factor of 10 than material damping [4]. According to the slipping degree at the interface, two dissipation mechanisms can be dened when a tangential force T is applied on the contact surface.

• Macro-slipping: there is total slipping at the interface, all the points have relative displacement to their corresponding points on the opposite surface.

• Partial slipping: one part of the interface slips and the other is still sticked together. According to the description level of the interface (from the level of the size of asperities to the level of macroscopic shape), two types of partial slipping can be distinguished.

Meso-slipping: there is no total slipping between the components, only one part of the contact zone is in slipping and the other is in sticking. If the applied force T gradually increases, the slipping zone will propagate until the whole zone is in slipping.

Micro-slipping: no macroscopic slipping is observed, the slipping only takes place at the level of asperities.

Figure 1.8: Slipping categories

In the majority of assembled structures, the components don't have mobility between them, thus the energy dissipation is mainly contributed by partial slipping.

During the slipping movement, the kinematic energy is transformed into thermal energy and then dissipated in the surrounding environment. Under the action of stress and local heating, the contact surface will endure structural modication even deterioration. The surface damage caused by this alternative movement takes often the form of cracking and peeling. This surface wear and fatigue phenomenon is also called fretting.

The presence of slip damping is always related to bolted joint, which is a commonly used connecting method in assembled structures and has been the subject of damping studies for a long time. Typical values of bolt tension are between 50% and 90% of material yield, however, on the periphery of contacting surfaces interfacial stress will drop to zero and some slip will occur. This stress distribution makes it necessary to separate damping in bolted joints into two types:

• Type I is associated with the bolt itself such as the threads, washers, head and nut, whose damping value is determined from the structure in gure 1.9a.

• Type II is associated with the interface that the bolt is pressing together, whose surfaces may extend several bolt diameters aways from the bolts themselves and or lie between bolt locations. The damping value of this part is evaluated by the conguration in gure 1.9b. Eaton [START_REF] Mead | Interfacial damping of riveted joints[END_REF], even though at low frequencies (around 200 Hz) the frictional damping of the metallic joint was 3 to 4 times less than for a viscoelastic joint, at higher frequencies (around 800 Hz) the damping capacity of the two joints were about the same. The damping capacity of the metallic joint can remain the same while the damping capacity of the viscoelastic joint may decrease with frequency. In this case, frictional damping caused by small relative interfacial movements at contact surfaces turns out to be an ecient alternative in damping design. The eciency of friction damping has been proven in real applications, for example in civil engineering, the rocking timber structures can be connected by nailplates or slip friction connections.

The study in [START_REF] Hashemi | A numerical study of coupled timber walls with slip friction damping devices[END_REF] showed that under seismic excitation, the systems with nailplates incurred signicant inelastic damages while the systems with friction devices exhibited superior performance in terms of strength degradation and absorbed seismic energy. Considering the advantages of friction damping, it has always been a subject under deep research in mechanical engineering. There are mainly two approaches:

analytical modelization and numerical simulation. The study on friction-induced energy dissipation was rstly conducted on analytical models and then extended to numerical models, namely FEM simulations.

Analytical methods

Analytical modelization by simple academic model is the most direct way to study the mechanism of damping in assembled structures. The majority of the existing models are composed of beam or plate with frictional contact on the boundary.

Here a brief literature review of the friction damping models that have been developed is given in chronological order.

The theoretical estimation of frictional damping was initiated by Goodman and Klumpp [START_REF] Le Goodman | Analysis of slip damping with reference to turbine blade vibration[END_REF] in 1956, in which the optimization of frictional damping was proposed for the design of turbine blades. Four years later, a simplied exploratory analysis was carried out by Williams [START_REF] Williams | Method of damping out bending vibrations of beam-like structures by dry (or coulomb) friction[END_REF] on a cantilever beam with frictional anges at the encastre, as illustrated in gure 1.10a. The use of analytical approach for damping modelization was thus initiated. The key point in this kind of study is to establish the relationship between energy dissipation and controlling parameters like geometry of the beam, clamping pressure as well as coecient of friction. The existence of Chapter 1. Introduction optimal clamping pressure for a given amplitude was proposed in this study. The reaching of optimum damping can be considered as the moment when the energy dissipated W , expressed as a fraction of the total energy (U + W ), is a maximum, where U is the strain energy at the full tip amplitude. The hysteresis loop was even traced with the proposed model, as illustrated in gure 1.10b.

(a) Cantilever beam with frictional anges (b) Hysteresis loop obtained by Williams The theoretical and experimental study on frictional damping modelization was then carried out on jointed cantilever beam in 1973 by Masuko et al. [3]. The relative displacement ∆W between the upper and lower plate can be expressed in terms of the spatial derivative of bending deection y(x, t). (1.35)

According to the analysis of Masuko, there exists an optimum value of the interface pressure for a given coecient of friction and full tip amplitude.

An experimental verication was then carried out on the same analytical model by Nishiwaki [START_REF] Nishiwaki | A study on damping capacity of a jointed cantilever beam: 1st report; experimental results[END_REF][START_REF] Nishiwaki | A study on damping capacity of a jointed cantilever beam: 2nd report, comparison between theoretical and experimental values[END_REF]. The relationships between the frequency and the damping capacity were studied by the use of an improved band-width method with two kinds of jointed cantilever beams which are connected with a single bolt and several bolts respectively. decreases with an increase of the preload of connecting bolt. The static stiness is a function of clamping pressure, it is constant above a certain value of the connecting preload. When the number of bolts is large, the static stiness of the jointed beam is nearly equal to that of the equivalent solid beam when its preload is big enough.

However if the number of connecting bolts is small, the theoretical static stiness of the equivalent solid beam cannot be used to calculate the energy stored in a vibrating system.

The jointed beam stayed as a commonly used model in 1990s. Hansen and Spies [START_REF] Scott | Structural damping in laminated beams due to interfacial slip[END_REF] applied Timoshenko beam theory along with an adhesive layer of negligible thickness to study interface micro-slip damping. However it was found from the result obtained that the frictional damping resulted in a frequency-proportional damping pattern in the spectrum, which is dierent the common understanding that friction damping is proportional to modal amplitude. During this period, more work has been done for the renement of the jointed beam model. Early investigators, e.g. Masuko et al. and Nishiwaki et al. all have assumed uniform intensity of pressure distribution on the contact surface without taking into account the spacing between bolts, however Gould [START_REF] Hirsch | Areas of contact and pressure distribution in bolted joints[END_REF] and Ziada [START_REF] Hh Ziada | Load, pressure distribution and contact area in bolted joints[END_REF] have shown that the pressure distribution at the interfaces of bolted joint is parabolic in nature and there exists an inuence zone in the form of a circle with 3.5 times the diameter of the connecting bolt. In 1999 the study of Nanda [START_REF] Bk Nanda | Study on damping in layered and jointed structures with uniform pressure distribution at the interfaces[END_REF] has made up the defects in uniform pressure due to bolt spacing in the previous studies and extended the jointed beam model to layered structures. Based on the relationship between clamping pressure and tightening torque on the bolt given by Shigley [START_REF] Shigley | Machine design[END_REF],

p = 0.671P 3πR 2 B , P = T 0.2D B ⇒ p = 0.17799T R 2 B , (1.36) 
where R B is bolt's radius, D B is bolt's diameter, T is the torque applied on the bolt, the uniform pressure can be obtained by a spacing of 2 times the diameter of connecting bolts. This experimental verication conrms the reasonability of the non-changing mode shape hypothesis that will be adopted in the following chapters.

In the 21st century, the jointed beam has always been a standard benchmark for friction-induced damping studies, but more renements have been brought into the model. In 2007, Damisa [START_REF] Damisa | Static analysis of slip damping with clamped laminated beams[END_REF] introduced linear pressure variation in the jointed beam model and applied Fourrier Sine Transform to for a static analysis of slip damping. It was discovered that the characteristics of the presure distribution can inuence or modify the the amount of energy dissipated. This nding signies that the material cannot be changed for the purpose of minimizing fretting etc.

without consideration of the change in coecient of friction. As energy dissipation is sensitive to pressure distribution, the inuence of bolt's diameter was given in [START_REF] Bk Nanda | Study of the eect of bolt diameter and washer on damping in layered and jointed structures[END_REF]. One year later, Damisa [START_REF] Damisa | Dynamic analysis of slip damping in clamped layered beams with non-uniform pressure distribution at the interface[END_REF] attempted to extend the static calculation of energy dissipation in jointed beam to account for cases of realistic dynamic loading with non-uniform interfacial pressure prole. It was found that the load frequency could have a signicant role to play in dening the optimal pressure for slip damping. The jointed beam model was extended to multi-layered and welded structures in [START_REF] Singh | Identication of damping mechanism in layered and welded structures[END_REF][START_REF] Singh | Dynamic analysis of damping mechanism in welded multilayered mild steel beams[END_REF] by Singh. Both static and dynamic analysis were conducted on the model and it was inferred that damping capacity of layered and welded structures could be substantially enhanced by fabricating the structures with multiple interfaces. In addition, the decrease in damping ratio as the modal amplitude increases was also revealed both by analytical analysis and experimental verication. The stress-strain and strain displacement relations of geometrically non-linear beam theory allows one to write

N x = Ehb ∂u ∂x + 1 2 ∂w ∂x 2 (1.37)
Rearranging equation 1.37 and integrating over the length l of the beam,

u(x = l) + 1 2 l 0 ∂w ∂x 2 dx = N x l Ehb . (1.38) 
When slipping occurs, the Coulomb dry friction gives (1.41)

N x = -µP sign[ u(x = l)].
If the displacement eld is expressed by a single spatial mode w = qφ(x), the equation 1.41 can also be written as

sign[ u(x = l)] = -sign q • q l 0 ∂φ(x) ∂x ∂φ(x) ∂x dx = -sign(q • q), (1.42) 
Substitute equation 1.42 into equation 1.39, the sign of internal force can be determined as sign(N x ) = sign(q • q).

(1.43)

Whiteman [START_REF] We Whiteman | Displacement-dependent dry friction damping of a beam-like structure[END_REF] studied in 1996 the displacement-dependency of dry friction damping on a single-degree-of-freedom exible beam with a displacement dependent dry friction damper, in which the normal force across the friction interface 20 Chapter 1. Introduction increases linearly with the transverse displacement, as illustrated in gure 1.18a.

The approximate solution used rst order harmonic balance method and the beam exural displacement was represented by a single spatial beam mode, w(x, t) = z(t)φ(x), (1.44) where z(t) is the modal amplitude and φ(x) is the shape function. The Galerkin procedure was then performed and the equilibrium was expressed in the modal space. According to the curve of equivalent damping ratio versus displacement at midspan which can be regarded as a scaling factor of modal amplitude, the equivalent damping is inversely proportional to displacement amplitude, for higher values of amplitude, the behavior looks more like that of viscous damping. Further There are also more recent models that have been developed on friction damping since 2010. The sectioned beam used by Peyret [START_REF] Peyret | Micro-slip induced damping in planar contact under constant and uniform normal stress[END_REF][START_REF] Peyret | Dissipation de l'énergie mécanique dans les assemblages: eet du frottement en sollicitation dynamique[END_REF] is one example. The structure is composed of three successive beams, with lengths l/4, l/2 and l/4. The beams are linked by two planar joints with contact and friction. The three parts are linked by an axial load N . This conguration was derived from a monolithic beam with a transverse load applied to the middle. At the positions where the beam is cut, the bending moment is equal to zero, therefore, in those sections, there are only shear stresses. In this way the normal force is only brought by the axial force N and a uniform clamping pressure can be guaranteed. The shear stress prole on the cut surface is parabolic, with the increase in transverse load, the shear stress will be saturated to the value µσ n where σ n is the normal stress on the contact surface.

The shear stress eld is expressed in equation 1.38 and illustrated in gure 1.19a. The beam model is a commonly employed element in friction-induced damping studies, especially for analytical analysis. Whether it is used for the modelization of lap joint or layered structures, all the results have pointed to the conclusion that friction damping is proportional to displacement amplitude. This conclusion will be reinforced by the proposed academic models in the second chapter. Even though analytical analysis is shown to be more direct in revealing damping properties, it is restricted to models with simple geometry. The next section will present the state of art in numerical modelization of frictional damping.

Numerical methods

Along with the development of nite element method, contact modelization has been a critical issue in the analysis of complex structures held together by mechanical joints. The current section will present 2 contact modeling methods presented in [START_REF] Bograd | Modeling the dynamics of mechanical joints[END_REF][START_REF] Ehrlich | Microslip joint damping prediction using thin-layer elements[END_REF][START_REF] Gaul | Nonlinear dynamics of structures assembled by bolted joints[END_REF][START_REF] Bograd | Joint damping prediction by thin layer elements[END_REF] for joint modeling with the nite element method as well as the relevant applications conducted by other researchers.

Chapter 1. Introduction 1.9.2.1 Node-to-node contact

In this approach, the contact between linear substructures with small deformations is considered. Under the assumption of small relative tangential movement in the contact area, node-to-node elements can be applied to model contact and friction in a nodal basis. If the discretization of the substructure interfaces is the same, as illustrated in gure 1.20, the equations can be formulated directly for each nodal pair.

M 1 0 0 M 2 ẍ1 ẍ2 + K 1 0 0 K 2 x 1 x 2 + B 1 T B 2 T f T + B 1 N B 2 N f N = f ext (1.46)
The substructures are coupled by the tangential nodal forces f T and normal nodal forces f N . The matrices B F T (x rel ) ≈ k HBM x rel + d HBM ẋrel .

(1.47)

If the rst harmonics are retained, the friction force can be expressed by F T (x rel ) = a 0 + a c cos(ωt) + a s sin(ωt).

(1.48)

where a c and a s are the coecients of Fourrier series. With the assumption of a harmonic relative displacement x rel = x cos(ωt) and compare the equation 1.47 and 1.48, the harmonic equivalent stiness and damping coecients are written as

k HBM = ω πx 2π/ω 0 F T cos(ωt)dt, d HBM = - ω πx 2π/ω 0 F T sin(ωt)dt (1.49)
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Given the linearized frictional force, the response of the system can be obtained by an iterative solution procedure. The response of a system to a harmonic excitation f ext = f e iωt is assumed to be harmonic with x = xe iωt . Thus the equation of motion can be transformed into an algebraic equation

[K + K BHM (x) + iω(D + D HBM (x)) -ω 2 M]x = f .
(1.50)

The system of equations can be converted to

x = H HBM -1 f , (1.51) 
where H HBM is the dynamic stiness matrix with

H HBM = K + K BHM (x) + iω(D + D HBM (x)) -ω 2 M. (1.52)
This problem can be solved iteratively by Newton-Raphson Method with an initial value x0 . The modeling by node-to-node elements oers the possibility to implement various dierent types of friction models. In addition, nonlinear eects like sticking-slipping and separation of each node pair can be modeled. However, for large number of contact pairs the numerical calculation for each element will be very heavy and the eciency will decrease.

Thin layer elements

The key idea in the application of thin layer elements is to model the joint interface between two substructures by a continuous element with very small but nite thickness. The existing thin layer elements are hexahedral or pentahedral elements formulated with the isoparametric concept and are available in commercial nite element programs. The joint parameters used to model with thin elements are rstly acquired from a generic joint experiment and then integrated into the nite element modelization. This method allows engineers to estimate the eigenfrequencies and modal damping factors of an assembly before the physical prototype is available. Using the model of constant hysteresis, the damping can be incorporated into the stiness matrix in frequency domain by augmenting it with the complex-valued product of experimentally determined dissipation multipliers α i and β i . The shear stiness of the joint can be determined from the tangential force in the experiment and thin element's geometry.

K * = K + iωD = K + iω n j=1 α i K Material j + iω n j=1 β i K Joints j . ( 1 
τ = Gγ ≈ G u d , τ = F T A (1.54)
where G is the shear modulus and γ is the shear angle. The shear stress can also be expressed in terms of tangential load F T and contact area A of the generic joint.

Equating the two expressions of equation 1.54, the shear modulus can be expressed as G = dF t uA .

(1.55)

In the orthotropic constitutive matrix C ij of σ ij = C ij ε ij , only the terms C 55 and C 66 are non-zero and equal to G. The coecients C ij obtained give a generalized characterization of joint behavior and can then be used to generate the element stiness matrix K Joints j .

The advantage of thin layer elements is the ability to predict the damping and eigenfrequencies of a structure using experimentally determined joint parameters and this method can be applied to structures with large number of DOFs. The drawback is that it is a linear method which can only simulate structures with minimal dissipation in joints and can be used only in frequency domain.

Numerical studies on real structures

Numerical modelization by nite element method allows simulation on full-sized structures containing contact interface. One of the most studied subjects is bolted joint, to which many attempts have been made to obtain its mechanical properties such as contact stiness and friction damping [START_REF] Ungar | Energy dissipation at structural joints; mechanisms and magnitudes[END_REF]. In order to accurately predict the the physical behavior of the structure with bolted joints, a detailed three-dimensional bolt model is desirable. But the limitations on model size sometimes make modeling of solid bolts impractical. Therefore, many analysts choose other methods to model bolts [START_REF] Montgomery | Methods for modeling bolts in the bolted joint[END_REF][START_REF] Korolija | Fe modeling of bolted joints in structures[END_REF][START_REF] Oldeld | Simplied models of bolted joints under harmonic loading[END_REF]. Kim et al. [START_REF] Kim | Finite element analysis and modeling of structure with bolted joints[END_REF] The axial stiness of bolted ange joints was studied by Luan [START_REF] Luan | A simplied nonlinear dynamic model for the analysis of pipe structures with bolted ange joints[END_REF] in 2012.

The axial stiness could be obtained by full-sized nite element modelization, and it was found to be dierent in tension and compression. Based on this nonlinear property of bolted joint, a simplied model with bi-linear springs was proposed and validated for pipe structures with bolted ange joints. The torsional property of bolted joint was analyzed by FEM calculation along with analytical modelization by Shamoto et al. two years later [START_REF] Shamoto | Analytical prediction of contact stiness and friction damping in bolted connection[END_REF] in 2014. The energy dissipation in terms of displacement was shown to be a quadratic function and the damping coecient presented the characteristic that is similar to second-order damping illustrated in gure 1.16b.

Besides the direct or indirect modelization of bolted joint, there has also been studies by FEM purely on frictional surface, such as the work of Chen and Deng [START_REF] Chen | Structural damping caused by micro-slip along frictional interfaces[END_REF] on the micro-slip phenomenon in the press-t joint and the lap-shear joint. The two joints were both modeled by two-dimensional and three-dimensional elements. The comparison between the 2D (plane stress and plane strain) and 3D modelization showed that there wasn't signicant dierence between the two methods in the case of press-t joint problem. But as the width of the plate increases, the plane strain prediction is a better approximation to the 3D solution. This conclusion will justify the use of 2D plane strain elements to study the damping in sandwich plate in chapter 2.

Air damping

In addition to the frictional damping induced by micro-slip or macro-slip in the assembled structures, there is another dominant damping mechanism associated with gas-pumping". Air damping is considered to be dependent on frequency and gas pressure. The energy dissipation is contributed by the gas motion tangential to the contact plane, resulting from the the relative exural movement between the adjacent surfaces. The signicant contribution of gas-pumping to the total damping in riveted structures was discovered by Ungar [START_REF] Ungar | Energy dissipation at structural joints; mechanisms and magnitudes[END_REF] in 1964. One year later Scacullo and Stephens [START_REF] Scavullo | Investigation of air damping of circular and rectangular plates, a cylinder, and a sphere[END_REF] conducted the study of air damping in circular and rectangular plates, the results showed that the magnitude of the air damping might greatly exceed the structural damping.

The the majority of the existed studies on air damping are based on the following three assumptions [START_REF] Ws Grin | A study of uid squeezelm damping[END_REF]:

• The separation distance between the contact bodies is very small compared with the linear dimensions of the plate.

• The gas ow is assumed to be laminar and primarily viscous. This assumption implies low Reynolds numbers and parabolic velocity distributions across the gas lm.

• The relationship between pressure and density at any point in the gas lm is assumed described by a polytropic process with exponent n, pρ -n = const.

The lm is nearly isothermal if the relative velocities are relatively low and n ≈ 1.

Based on the expression of uid ow between two moving plates given by Landau [START_REF] Ld Landau | Fluid Mechanics[END_REF], Maidanik [START_REF] Maidanik | Energy dissipation associated with gas-pumping in structural joints[END_REF] developed in 1967 an analytical model for semi-phenomenological study of energy dissipation associated with gas-pumping between a beam and a plate.

It illustrates well the basic characteristics of damping induced by gaspumping. The Mach numbers associated with the motion of the gas are assumed small as compared to unity, then the conservation of momentum can be linearized. The power dissipated in the region of overlap between the two surfaces may be approximated by the expression

P ∆E ≈ hc 2 0 A b 2np 0 ω ∇p 2 H(θ) (1.56) where θ = h δ , δ = 2ν ω 1 2
(1.57) and

H(θ) = (sinh θ -sin θ)[θ(cosh θ) + cos θ] -1 .
(1.58)

δ represents the the boundary layer thickness, ν the kinematic viscosity of the gas, ω the angular velocity of the excitation, h the separation distance, p 0 the ambient pressure of the gas, c 0 the sound speed and A b the area under the beam.

The loss factor associated with the the power dissipated by the gas can thus be obtained as

η ≈ P ∆E A p m p V p0 2 = A b hc 2 0 2A p m p np 0 ω ∇p 2 V p0 2 , (1.59) 
where A p is the area of the plate (A p A p ), m p represents the plate mass per unit area, and

V p0
2 the mean square velocity eld on the plate. From the expression above, the loss factor due to gas-pumping is related to the geometry and mass of the contact bodies, the frequency, the pressure of ambient pressure as well as the pressure gradient between the contact surfaces.

For more recent studies who focus mainly on damping mechanism in MEMS (Microelectromechanical Systems), e.g. micro-sensors. Bao [START_REF] Bao | Energy transfer model for squeeze-lm air damping in low vacuum[END_REF] developed in 2002 an energy transfer model with the Boltzmann statistics on molecules velocity. The energy loss due to the surrounding gas in one oscillation cycle is given by

∆E = 4abmn 2kT πm A 2 0 ωπ (1.60)
where m represents the mass of the gas molecules, n the density of the gas molecules, ab the area of the plate, k the Boltzmann constant, A 0 the amplitude Chapter 1. Introduction of vibration and ω the angular velocity. The energy dissipation is shown to be linearly proportional both to the area of the squeezed air lm and excitation frequency.

In 2010 Biçak [START_REF] Altu | Analytical modeling of squeeze lm damping for rectangular elastic plates using green's functions[END_REF] integrated the mode shape into the plate displacement eld and used Green's function to solve Reynolds equation. The use of Green function can also be found in [START_REF] Robert B Darling | Compact analytical modeling of squeeze lm damping with arbitrary venting conditions using a green's function approach[END_REF]. The air-pumping force can be decomposed as an in-phase and an out-of-phase component, the out-of-phase component F d is directly related to the damping ratio ζ = F d /2ω n , as explained by equation 1.49. The numerical study of air damping by FEM was conducted by De Pasquale [START_REF] De | Modelling and validation of air damping in perforated gold and silicon mems plates[END_REF] on perforated gold and silicon MEMS plates, but the results showed that the damping factors obtained were not satisfactory compared to measured results.

Conclusion

The present chapter rstly introduces the industrial context in which the subject of the current thesis is proposed. Friction-induced damping is shown to play a more dominant role compared to material damping in determining the vibration response of the assembled structures. The damping of a structure can be quantied by the logarithmic decrement δ in a free vibration or by the loss factor η between the energy dissipation in one oscillation cycle and the maximum elastic energy stocked in the system. The mathematical relationship between the two factors are derived in details. In the literature review, the precedent studies on frictional damping and air damping are summarized in chronological order. The studies on frictional damping can be divided into two parts: analytical modelization and numerical simulation. All the analytical models point to the fact that frictional damping is generally a function of modal amplitude which can also be inuenced by parameters like clamping pressure and coecient of friction. This conclusion will serve as the fundamental idea for the phenomenological study in chapter 2. Two numerical methods for contact problems are then introduced, the general method for nonlinear force linearization by HBM is presented. The current numerical studies on frictional damping focus mainly on energy dissipation in bolted joints, several modelization methods indicate that a full-sized modelization of joint can guarantee a better accuracy, but it is time-costing, so other simplied model by beam elements may replace the solid bolt model while keeping a good representation of the dynamic properties. The last section is dedicated to damping by gas-pumping. Dierent from the frictional damping, the energy dissipation in gas-pumping is related to oscillation frequency as well as ambient pressure. It is an energy dissipation mechanism that can also be dominant in the overall damping composition of assembled structures. The next section will only focus on friction-induced damping and give a preliminary phenomenological study of friction damping in terms of modal amplitude. 

Introduction

Micro-slip is considered as the most important damping mechanism in assembled structures. In order to clarify the origin of energy dissipation as well as the inuence of dierent controlling parameters like clamping pressure, coecient of friction and geometry characteristics, three simplied academic models are proposed in the rst place to give a preliminary phenomenological insight into dry friction damping.

These three models are respectively:

• First-order interface damping in sandwich beam

• First-order boundary damping in rotational joint

• Second-order boundary damping in von Kármán plate Chapter 2. Phenomenological study of friction damping Due to the geometrical simplicity of the three models, analytical approach is thus possible in damping modelization. Mathematical expressions of damping ratio are derived for each model, which enable a fast and comprehensive study of the inuencing parameters. Several numerical studies are then conducted on the sandwich beam model in order to study the inuence of parameters that cannot be analytically analyzed, such as welding points number, thickness ratio and contact geometry defaults. The derivation procedure presented here is inspired by the work of Nanda [START_REF] Bk Nanda | Study on damping in layered and jointed structures with uniform pressure distribution at the interfaces[END_REF]. The moment equilibrium with respect to the point M 1 which is denoted by distance x from the encastre is expressed by equation 2.1. The clamping pressure doesn't appear in the expression because the eect of pressure on the upper and lower surface are counteracted. It should be noted that the equilibrium established here describes the slipping stage since the tangential stress is already saturated and is uniform along all the contact interface, here P designates the exterior loading.

First-order interface damping in sandwich beam

M 1 = M 2 = P 2 (l -x) -µpb h 2 (l -x).
(2.1)

The relationship between bending moment and deection in Euler-Bernoulli beam is written as

M = -EI d 2 w dx 2 where E: Young's modulus, I = 1 12 bh 3 . (2.2)
If we combine the equation 2.1 with equation 2.2, we can obtain

d 2 w dx 2 = 6 Ebh 3 (P -µpbh)(l -x) (2.3) dw dx = 6 Ebh 3 (P -µpbh) lx - 1 2 x 2 + C 1 (2.4) w = 3 Ebh 3 (P -µpbh) lx 2 - x 3 3 + C 1 x + C 2 .
(2.5)

The two unknown coecients can be determined by the boundary condition at the encastre endpoint w| x=0 = 0 and dw dx | x=0 = 0, which can give the values of C 1 = 0 and C 2 = 0. Thus the expression for the beam's deection can be obtained as

w(x) = (P -µpbh)l 3 Ebh 3 3 x l 2 - x l 3 .
(2.6)

Chapter 2. Phenomenological study of friction damping

The deection obtained here can be thought of as a result of combined inuence from endpoint loading and interface friction shearing. In order to simplify the writing of equations, we introduce two constants Q and R.

Q = µpbh, R = Ebh 3 l 3 .
(2.7)

As mentioned before the derivation of deection's expression, the equation 2.6 is valid only for slipping. Before the occurrence of slipping, the contact interface goes through a gradually increasing tangential stress. We adopt the hypothesis that the transition from sticking to slipping is brutal and that all the points on the interface slip or stick synchronously.

If we take into account the longitudinal variation due to axial force, the horizontal displacement of a point which is positioned at distance x from the encastre is given by equations 2.8 and 2.9. u 1 designates the in-plane displacement in the upper beam and u 2 refers to the in-plane displacement in the lower beam.

u 1 = 1 E x 0 σ x 1 dx - h 2 dw 1 dx (2.8) u 2 = 1 E x 0 σ x 2 dx + h 2 dw 2 dx .
(2.9)

According to the force equilibrium in the free body diagram in gure 2.2, average normal stresses in the two beams can be expressed as

σ x 1 = µpb(l -x) bh = µp(l -x) h (2.10) σ x 2 = - µpb(l -x) bh = - µp(l -x) h .
(2.11)

If we put the relation 2.10 and 2.11 into 2.8 and 2.9 and use the deection expression given by 2.6, the relative displacement at the point x is given by

∆u = u 2 -u 1 = 3h Rl P - 4 3 Q 2 x l - x l 2 (2.
12)

The expression above gives the validity criteria for equation 2.6. The equation 2.12 is positive if and only if P -4 3 Q > 0, which means that the slipping can only occur under a loading which is superior to 4 3 µpbh. This value is denoted as critical loading P cri . The critical deection at the free point is denoted as q cri . As there is no slip between the two clamped beams under a loading inferior to P cri , the two beams can be regarded as sticked together and behave like a single block with doubled thickness. The critical amplitude to activate the slip is given by 2.13.

q cri = P cri l 3 3EI doubled = 4 3 µpbhl 3 3E • 1 12 b(2h) 3 = 2µpl 3 3Eh 2 .
(2.13)
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Here we can derive the relationship between the amplitude of deection q and the quantity of energy dissipation. Firstly we need to express the deection in the form of a product between amplitude and normalized shape function, as written in equation 2.14.

w(x) = q 2 3 x l 2 - x l 3 . (2.14)
According to relations 2.8 and 2.9, the longitudinal displacement in terms of amplitude q is given by

u 1 = 1 E x 0 σ x 1 dx - h 2 
dw 1 dx = 1 E µpl h x - µp 2h x 2 - 3hq 4l 2 x l - x l 2 (2.15) u 2 = 1 E x 0 σ x 2 dx + h 2 dw 2 dx = - 1 E µpl h x - µp 2h x 2 + 3hq 4l 2 x l - x l 2 . (2.16)
The energy dissipation can thus be obtained as

u 2 -u 1 = - 2 E µpl h x - µp 2h x 2 + 3hq 2l 2 x l - x l 2 
(2.17)

W dissip = 4 l 0 τ xy ∆u(x)bdx = 4µpb l 0 (u 2 -u 1 )dx = 4µpbh q - 2µpl 3 3Eh 2 .
(2.18)

The equation 2.18 gives another approach to obtain the critical amplitude by applying the criteria W dissip > 0, it will give the same critical amplitude as by equation 2.13. Here a coecient of 4 is multiplied before the integral based on the hypothesis that dissipated energy in a quarter of loading cycle is a quarter of the total energy dissipated in a full loading cycle. The next step consists of calculating the maximum elastic energy that the system can stock. The stocked energy can be divided into two parts: the energy related to elongation and the energy related to bending.

The elastic energy related to elongation of the beam can be obtained from the average normal stresses. It should be noted that the elongation energy obtained here is only valid for the stage of slipping.

E elongation = 1 2 v σ • εdv = 1 2 v σ x • σ x E dv = 1 2E l 0 µ 2 p 2 (l -x) 2 h 2 bhdx = µ 2 p 2 l 3 b 6Eh (2.19)
The elastic energy related to bending of the beam can be obtained from the deection's expression 2.14.

E bending = 1 2 v σ • εdv = 1 2 v E ∂ 2 w ∂x 2 z 2 dv = E 2 l ∂ 2 w ∂x 2 2 A z 2 dAdx = E 2 bh 3 12 L 0 1 2 q 6 l 2 - 6x l 3 2 dx = Ebh 3 8l 3 q 2 (2.20)
From the previous deduction, we can establish the relationship between deection amplitude and damping ratio. What's more, the expression for the dissipated energy is a piecewise function.

W dissip =    0 if q ≤ q cri 4µpbh q -2µpl 3 3Eh 2 if q > q cri . (2.21)
Similarly the damping coecient is also a piecewise function and can be obtained by using the relation

E max = E elongation + E bending . η =        0 if q ≤ q cri 2µpbh q-2µpl 3 3Eh 2 µ 2 p 2 l 3 b 6Eh + Ebh 3 8l 3 q 2 if q > q cri .
(

The expression presented above is only valid for cases where the contact is assumed perfect and guaranteed along the total length of the beam. If the contact surface is rough or partially clamped, the contact area that contributes to energy dissipation may be modied. In this case, more detailed models need to be developed.

Model for rough surface

In order to take into account the global plane roughness of the contact surface, a global contact quality factor β is introduced and can be implemented in equation 2.21.

W dissp = 4 l 0 τ xy ∆u(x)bβdx = 4βµpbh q - 2µpl 3 3Eh 2 .
(2.23)

The damping coecient can thus be expressed by

η =        0 if q ≤ q cri 2µβpbh q-2µpl 3 3Eh 2 µ 2 p 2 l 3 b 6Eh + Ebh 3 8l 3 q 2 if q > q cri .
(2.24)

2.2. First-order interface damping in sandwich beam 35

Model for partially clamped surface

Here we consider a case where the two beams are not perfectly clamped, there is only one zone which is under perfect contact, which means that the global quality factor β is assumed to be 1 on this area. This particular characteristic can be modeled by a small modication in the integration's range. The range's length is noted by R and the center of the contact surface is noted by X c . As the clamping pressure is no longer uniform on the contact interface, the expression for the normal stress is modied to a piecewise function. 

σ 1 =        Rµp h if 0 ≤ x ≤ X c -R 2 -µp h x -X c -R 2 if X c -R 2 < x ≤ X c + R 2 0 if X c + R 2 < x ≤ l.
(2.25)

σ 2 =        -Rµp h if 0 ≤ x ≤ X c -R 2 µp h x -X c -R 2 if X c -R 2 < x ≤ X c + R 2 0 if X c + R 2 < x ≤ l.
(2.26)

The expressions for the elongation are thus dierent from equation 2.8 and 2.9.

u 1 = 1 E Xc-R 2 0 Rµp h dx - x Xc-R 2 µp h x -X - R 2 dx - h 2 w (x) (2.27) u 2 = 1 E - Xc-R 2 0 Rµp h dx + x Xc-R 2 µp h x -X - R 2 dx + h 2 w (x) . (2.28) As the only zone of dissipation is [X c -R 2 , X c + R 2 ]
, the energy dissipation can be rewritten as

W dissip = 4µpb Xc+ R 2 Xc-R 2 (u 2 -u 1 )dx = bpRµ 6Ehl 3 8l 3 µpR (R -6X c ) -3qEh 2 R 2 + 12X c (X -2l) .
(2.29)

Chapter 2. Phenomenological study of friction damping

It's important to verify whether the critical amplitude will vary in terms of contact surface's area and position, so for this purpose we need to nd the amplitude where W dissip (q cri ) = 0. The q cri can be obtained from equation 2.29.

q cri = 8l 3 µpR (R -6X c ) 3Eh 2 R 2 -24lX c + 12X c 2 .
(2.30)

Here we set

f (X c ) = R 2 -24lX c + 12X c 2 , R 2 ≤ X c ≤ l - R 2 (2.31)
In order to determine the sign of equation 2.30 in the range of X c , we need to know its slope and two boundary values.

f (X c ) = 24(X c -l) < 0 (2.32) f ( R 2 ) = 4R(R -3l) < 0 (2.33) f (l - R 2 ) = 4R 2 -12l 2 < 0 (2.34) Since f (X c ), f ( R 2 ) and f (l -R 2 )
as well as R -6X c are all negative in the range of X c , we can conrm that expression 2.30 is the critical amplitude beyond which the structure is damped. It's evident that this critical amplitude is a function of contact surface's area and position. As the normal stress is no more uniform, the stocked elastic energy should also be modied as

E elongation = bµ 2 p 2 R 2 (6X c -R) 12Eh . (2.35) 
When we take R = l and X c = l 2 , we will nd that equation 2. The study of the inuence of pressure on damping ratio is conducted by the analytical model which assumes perfect contact along the whole length of the beam.

η =      0 if q ≤ q cri bpRµ 6Ehl 3 {-3qEh 2 [R 2 +12Xc(Xc-2l)]+8l 3 µpR(R-6Xc)} 2 bµ 2 p 2 R 2 (6Xc-R) 12Eh + Ebh 3 8l 3 q 2 if q > q cri . ( 2 
The coecient of friction is xed at 0.3. The maximum amplitude is xed at 8 mm, which is the total thickness of the assembled structure. The evolutions of damping ratio under four dierent pressures are illustrated in gure 2.4.

Figure 2.4: Inuence of pressure on damping ratio

There are 6 important damping properties that can be summarized:

1. For a given structure, there exists a damping limit whatever the combination of clamping pressure and modal amplitude, for example the damping is bounded to 400 % in the current model.

Chapter 2. Phenomenological study of friction damping 2. For a given pressure, there exists an optimal modal amplitude under which the structure can reach its maximal damping capacity.

3. Once the maximum damping capacity is reached, the increase in modal modal amplitude will cause a decrease in damping capacity.

4. The bigger the clamping pressure is, the later the slipping occurs.

5. Under a given small modal amplitude (q < 2 mm in the current model), bigger clamping pressure may lead to weaker damping capacity.

6. Under a given big modal amplitude (q > 6 mm in the current model), bigger clamping pressure surely yield stronger damping capacity.

The fact that the damping capacity for a given structure is limited to a certain value indicates that the optimization of damping is feasible, for example in industrial applications the clamping pressure can be used as controlling parameter in adjusting the modal amplitude for assembled structures in resonance.

Inuence of coecient of friction

From the product µp both in the numerator and denominator of equation 2.36, the coecient of friction µ and the clamping pressure p can take eect simultaneously on the damping ratio. It's logical to suppose that coecient of friction has the same inuence as clamping pressure. The study on the coecient of friction is conducted with a uniform clamping pressure of 0.3 MPa. The evolutions of damping ratio under dierent coecient of friction are illustrated in gure 2.5. The result is exactly the same as the evolutions under the inuence of clamping pressure. This observation conrms the hypothesis that the coecient of friction plays the same role as the clamping pressure in terms of inuence on damping capacity. But due to the diculty in adjusting the coecient of friction in real applications, clamping pressure is considered as the easiest parameter to be manipulated in damping control.

Inuence of global contact quality

The global contact quality factor β is introduced to study the inuence of surface's coarseness on damping capacity. An amplitude sweeping is applied to equation 2.24 and ve dierent contact percentages are chosen from 0 to 100 %. The pressure is xed at 0.3 MPa and the coecient of friction at 0.3. The evolutions of damping ratio is presented in gure 2.6.

Figure 2.6: Inuence of global contact quality on damping ratio

The global contact quality is shown to have no inuence on the slipping activation point as well as the amplitude to reach the optimal damping. Since β is a simple linear multiplicator to the dissipated energy, the damping capacity is linearly proportional to the contact surface percentage.

Inuence of contact surface's position

In cases where the contact is not guaranteed on the whole contact interface, the position of clamp may modify the evolution of amplitude-damping ratio curve. In the current study, the surface under pressure is supposed to be perfectly clamped The parametric study shows that the clamping pad's position is a key factor in controlling the slipping activation point, it can also inuence the the value of optimal damping as well as the amplitude corresponding to optimal damping. Several phenomena can be highlighted:

(β = 1).
1. The further the clamping pad is situated from the encastre, the bigger the amplitude needed to activate slipping and logically, the bigger the amplitude needed to reach maximum damping.

2. For a given structure, some positions may lead to a relatively weak damping capacity than other positions. But there exists a position where the damping capacity of the whole structure can be optimized, in the current study this position is at around X c = 250 mm.

3. For big modal amplitude (q > 8 mm), larger distance X c between the clamping pad and the encastre yields stronger damping. But for small modal amplitude (1 mm < q < 3 mm), there is no concrete correlation between distance X c and damping capacity.

Inuence of contact surface's area

Besides the contact surface's position, its area can also modify the damping characteristics of the assembled structure. In the current model, the center of clamping pad is situated at X c = 200 mm, the clamping pressure is xed at 0.3 MPa. The beam's width remains constant, 5 dierent clamping lengths R are used to modify the contact area in the study. 1. the maximum damping ratio is proportional to the contact surface area. The bigger the contact area is, the more damped the structure can be at optimal damping amplitude.

2. The bigger the contact area is, the bigger the amplitude is needed to activate slipping.

3. The bigger the contact area is, the more damped the structure can be under large modal amplitude (q > 3 mm in the current model).

Numerical parametric studies

In order to study the inuence of other complicated parameters like welding points, geometric defaults, thickness ratio even boundary conditions, analytical modelization is no longer capable of taking into account of these factors, in this case numerical study is necessary to give a qualitative estimation of the damping ratio under the inuence of these inuencing parameters.

Inuence of welding point number

Welding is a commonly used xation method in structure assembly. The structure's hardening by welding is largely acknowledged in industry but it's inuence on damping is still not well investigated. In the current study, the plate is modeled by The dissipated energy is a linear function of modal amplitude, which is in coherence with equation 2.29 that presents a rst-order relationship with modal amplitude. It reveals that the rst-order relationship between the modal amplitude and the dissipated energy is conserved even with the presence of welding points. However the number of welding points can modify the quantity of dissipated energy.

Due to the blockage of relative displacement, the more the welding points there are, the less the energy is dissipated. Besides, the slipping activation amplitude is independent of welding points number. From the gure 2.9b, the relationship between modal amplitude and stocked energy is no longer linear and presents a second-order characteristic, which is also in coherence with the analytical expression of stocked energy. The hardening of structure by a growing number of welding points is evident, but its eect is not proportional to the points number from the fact that the dierence in stocked energy between 4 weldings and 5 weldings is negligible. Since the dissipated energy and stocked energy are respectively a negative and a positive correlation function of welding number, it can be concluded that less welding points will lead to a more damped structure.

Inuence of thickness ratio

According to equation 2.27 and 2.28, the relative displacement between the upper and lower beam is a function of beam's thickness h, thus we can assume that the ratio of upper beam's thickness to lower beam's thickness is another factor that may inuence the damping capacity in sandwich-type structures. In the current numerical study, the contact is assumed to be perfect on the whole interface and the sum of the two beam's thicknesses remains 8 mm, the only variable is the thickness ratio between them. The clamping pressure is xed at 0.1 MPa and the modal amplitude ranges from 0 to 8 mm. After the slipping occurs, the maximum damping capacity can be reached when the two beams have the same thickness, the smaller the ratio is, the less damped 2.2. First-order interface damping in sandwich beam 45 the structure becomes. The thickness ratio can be regarded as having no inuence on optimal amplitude required for maximal damping, so that the maximal damping can only be considered as a function of clamping pressure and coecient of friction in this study. The ratio of dissipated energy to the stocked energy is presented in gure 2.15.

Inuence of protrusion's height

Since the curvature has almost no signicant inuence on dissipated energy, if we adopt the hypothesis that the changes in volume due to the modications in height is negligible, the macroscopic protrusions height can be considered to have no inuence on damping capacity.

Inuence of protrusion's number

Based on the property of the previous section that the frictional damping doesn't depend on protrusion's curvature, the curvature's change due to horizontal interval's variation can be neglected and it is thus possible to isolate the inuence of protrusion's number on damping ratio. In the current study, the protrusion's height is xed at 0.5 mm and the clamping pressure is maintained at 0.1 MPa. Based on the intuition that the contact area is directly related to the number of protrusions, the dissipated energy is surely sensitive to the change in protrusions number, which is also veried by the results in gure 2.16a. However there is no regular pattern in the relationship between dissipated energy and protrusions' number. This irregularity may be related to the fact that un innite increase in protrusions' number is bound to lead to a limited value of contact surface, which in turn surely yields a limited damping capacity. As for the relationship in gure 2.16b, more protrusions seem to yield weaker stocked energy but the order between only 1 protrusion and 3 protrusions is inverse, which makes it dicult to nd a linear relationship between the number of protrusions and the stocked energy.

Figure 2.17: Inuence of protrusion's number on damping ratio According to the gure 2.17, 4 or 5 protrusions yield a behavior which is similar to a typical rst-order damping where it's easy to locate an optimal modal amplitude, Chapter 2. Phenomenological study of friction damping however for 1 to 3 protrusions, the damping-amplitude relationship is more similar to an asymptote who cannot be optimized by simply nding an optimized amplitude, this phenomenon is present in second-order damping structures as will be detailed in the following sections. If we neglect the unusual behavior of 2 and 3 protrusions, more protrusions will in general lead to more damped system since more protrusions will result in a bigger contact surface.

Inuence of endpoint locking

The previous sections show that the frictional damping is intrinsically a matter of energy dissipation on the contact surface, so that not only contact properties but that are apt to constrain the potential slipping should be avoided if the nal goal is to make a more damped structure.

First-order boundary damping in rotational joint

Analytical modelization

In some exural structures, even though translational displacement is restrained at xed boundary borders, small rotational displacement can take place and the energy dissipation associated with them cannot be neglected. In order to study the characteristics of this damping mechanism, a simple academic cantilever beam model with one dissipative rotational boundary is employed and an analytical damping ratio expression is developed.

As is illustrated in gure 2.20, attached to the beam's left end point is a circular frictional damping pad, where the rotational displacement ∆θ can be triggered by large modal amplitude. The coecient of friction is designated as µ and the clamping pressure on the frictional pad as p. The choice of imposed form is based on this interpretation: the rst mode shape chosen is assimilated to the deection under a mid-span concentrated load.

In order to take into account the inuence of end point friction, the second mode shape related to an endpoint moment should be superimposed on the rst mode.

According to this decomposition of mode shape, the deduction of damping ratio can be developed as follows.

The expression for a pinned-encastre beam under midspan concentrated load is

w 0 (x) = P x 96EI (3l 2 -5x 2 ) if 0 ≤ x < l 2 P 96EI (x -l) 2 (11x -2l) if l 2 ≤ x < l.
(2.37)

The imposed mode shape can thus be formulated as a product of modal amplitude q with the normalized deection with respect to the midspan displacement. The origin of x starts from the left end of the beam.

w(x) = q w(x) = q w 0 (x)

w 0 ( L 2 ) = 8qx 7l 3 (3l 2 -5x 2 ) if 0 ≤ x < l 2 8q 7l 3 (x -l) 2 (11x -2l) if l 2 ≤ x ≤ l.
(2.38)
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From the expression 2.38, the rotational angle θ 1 can be derived by a dierentiation with respect to x

θ 1 x=0 = ∂w ∂x x=0 = 24q l 2 -5x 2 7l 3 | x=0 = 24q 7l .
(2.39)

The pinned endpoint rotation under a moment M is

θ 2 = M l 4EI .
(2.40)

So the rotational displacement in a quarter of cycle at the clamped end point can be written as

∆θ = θ 1 -θ 2 = 24q 7l - M l 4EI .
(2.41)

The moment resulting from the shear stress on the contact surface can be expressed as

M = 2π 0 R 0 µpr 2 drdθ = 2 3 µpπR 3 .
(2.42)

Once we have the rotational displacement and the corresponding moment, the energy dissipation in one cycle can easily be obtained.

W dissip = 4M 24q 7l - M l 4EI .
(2.43)

The second step is to express the stocked elastic energy in terms of modal amplitude q.

E max = 1 2 v σ • εdv = 1 2 v E ∂ 2 w ∂x 2 z 2 dv = E 2 l ∂ 2 w ∂x 2 2 A z 2 dAdx = EI 2 l 2 0 - 240qx 7l 3 2 dx + l l 2 - 48q (8l -11x) 7l 3 2 dx = 384EIq 2 7l 3 .
(2.44)

The critical amplitude beyond which the slipping will occur can be obtained by equating the formula 2.43 to zero.

4M 24q 7l - M l 4EI = 0 ⇒ q cri = 7M l 2 96EI
(2.45)

The expression for damping ratio is thus divided into two parts: one corresponds to sticking where there is no energy dissipation, another describes the state where slipping takes place and the damping ratio is no longer zero.
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η =    0 if q ≤ q cri 4M ( 24q 7l -M l 4EI ) 384EIq 2 7l 3 if q > q cri .
(2.46)

We can note from equation 2.46 that dissipated energy is a linear function of modal amplitude, however the inuence of amplitude on stocked energy is quadratic.

Analytical parametric studies

In order to illustrate the inuence of controlling parameters on rotational friction damping, two parametric studies are conducted on clamping pressure p and radius of the frictional pad R. As the coecient of friction has the same inuence as that of clamping pressure, its study is neglected in this section. The dimensions of the beam are the same as those in table 2.1. The coecient of friction µ is set to be 0.3 and the amplitude range of interest q is from 0 to 5 mm.

Inuence of pressure

The inuence of pressure on rotational damping is presented in gure 2.22 on page 53. Five important conclusions can be drawn from the evolution of damping ratio:

1. Like the sandwich beam, there exists a damping limitation for a given structure, once the limit is reached, the damping capacity decreases with an increase in modal amplitude.

2. Larger amplitude is required under bigger clamping pressure to reach the damping limit.

3. The bigger the clamping pressure is, the later the slipping occurs.

4. For a given small modal amplitude (q<1 mm), bigger clamping pressure may lead to weaker damping capacity.

5. For a given big modal amplitude (q>2 mm), bigger clamping pressure surely yields stronger damping capacity. Plates are viewed in engineering as three-dimensional components with one dimension, usually denoted by thickness, much smaller compared to the other two dimensions [START_REF] Kirby | Solution of von-kármán dynamic non-linear plate equations using a pseudo-spectral method[END_REF]. Traditional plate models such as the model of Kirchho-Love is developed based on small strain assumption, this model is incapable of taking into account the in-plane displacement that may be caused by large transverse deections, e.g. the transverse deection is of the same order of magnitude as the plate thickness. In this case, in order to study the frictional damping caused by boundary slipping under large deections, the von Kármán plate model is thus adopted. 

Geometric derivation of simplied Green strain

ε x = A B -AB AB = dx 2 - ∂w ∂x dx 2 1 2 -dx dx = 1 + ∂w ∂x 2 1 2 -1. 
(2.47)

If we consider that ∂w ∂x is small and according to the approximation (1 + x) n ≈ 1 + nx, the equation 2.47 can be written as

ε x = 1 2 ∂w ∂x 2 .
(2.48)
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Similarly the second order strain induced by w in the y direction ε y can be written as

ε y = 1 2 ∂w ∂y 2 .
(2.49)

Here we dene the directional cosines of segment A B as l 1 , m 1 and n 1 respectively to the x, y and z axis. If small quantities of third order and above are neglected

m 1 = 0, n 1 = cos∠B A D = sin∠B A B = ∂w ∂x .
(2.50)

Similarly, we designate the directional cosines of A C as l 2 , m 2 and n 2 where

l 2 = 0, n 2 = cos∠C A D = sin∠C A C = ∂w ∂y .
(2.51)

The angle α between A B and A C can thus be expressed as

cosα = l 1 l 2 + m 1 m 2 + n 1 n 2 = ∂w ∂x ∂w ∂y . (2.52) 
According to the denition of sheer strain γ xy = π 2 -α, if we neglect the small quantities of third order and above,

γ xy = sinγ xy = sin π 2 -α = cosα = ∂w ∂x ∂w ∂y .
(2.53)

The total strain can thus be obtained by superimposing the middle-plane strain due to in-plane displacement with the strain induced by large deection. (2.56)

ε x = ∂u ∂x + 1 

Analytical modelization

The model to be used in this section is illustrated in gure 2.25, the left boundary is an encastre and the right boundary is under a uniform pressure p which ensures a perfect frictional contact with the support. Once the plate is under a certain cyclic excitation, the corresponding vibration mode in the transverse direction will trigger an in-plane retract at the frictional bord, which in turn produces a relative displacement and accordingly an energy dissipation, this is where the damping occurs. The large strain theory implies that in-plane strain is a function of transverse displacement w, it is thus logical to suppose that the damping is also a function of 56 Chapter 2. Phenomenological study of friction damping deformed shape and it's worthwhile to establish a relationship between mode shape and damping capacity. The solution to the in-plane displacement problem on von Kármán plate can follow the previously introduced method based on imposed deection. To simplify the problem, the plate is considered to be innitely long in the width and the inuence in the y direction can be neglected. (2.57)

The imposed displacement with an amplier q as variable can thus be expressed as

w(x) = q 2 (cos αx -1) , α = 2π L .
(2.58)

The rst and second derivatives of the shape function with respect to x are

∂w ∂x = - 1 2 qα sin αx, ∂ 2 w ∂x 2 = - 1 2 qα 2 cos αx.
(2.59)

According to the in-plane strain under large deection in equation 2.54 and the Hooke's law

σ ij = E 1 -ν 2 [(1 -ν)ε ij + ε kk δ ij ], δ ij : Kronecker δ.
(2.60)

The normal and sheer stress can be written as

σ x = E 1 -ν 2 (ε x + νε y ), σ xy = E 2(1 + ν) ε xy .
(2.61)

The plate deformation can be divided into two stages. The rst stage corresponds to sticking where the traverse deection is not big enough to produce a traction force that surpasses friction force limit, so there is no energy dissipation in this stage. Once the deection is big enough to trigger slipping, the reaction shear pressure at the slipping boundary is saturated to µp and the system enters a damping stage.

According to the stress equilibrium relationship σ ij,j = 0 and the hypothesis that the inuence from y direction is neglected, the equilibrium equation is thus simplied to 2.4. Second-order boundary damping in von Kármán plate 57

∂σ x ∂x = 0 =⇒ E 1 -ν 2 ∂ 2 u ∂x 2 + ∂w ∂x ∂ 2 w ∂x 2 = 0. (2.62)
We can integrate equation 2.60 to obtain the expression for in-plane displacement

∂ 2 u ∂x 2 + - q 2 α sin αx - q 2 α 2 cos αx = 0 u(x) = 1 32 q 2 α sin 2αx + C 1 x + C 2 .
(2.63)

Before the slipping occurs, the plate's friction point can be treated as an encastre, the rotations and translations are blocked. Here we use the translation boundary conditions to calculate the unknown coecients.

u(0) = 0, u(L) = 0 =⇒ C 1 = 0, C 2 = 0.
(2.64)

The expression for in-plane displacement before slipping is u(x) = 1 32 q 2 α sin 2αx.

(2.65)

At this moment the strain on the cross section can be written as

ε x = ∂u ∂x + 1 2 ∂w ∂x 2 = q 2 α 2 16 cos 2αx + q 2 α 2 8 sin 2 αx = 1 16 q 2 α 2 .
(2.66)

It should be noted that the strain on the cross section is homogeneous along the length of the plate, thus we can assert that the plate is iso-stress in the longitudinal direction.

N (x) = EAε x = 1 16
EAq 2 α 2 .

(2.67) Equation 2.65 is important for the derivation of critical amplitude of displacement beyond which the slipping can be activated. Here the frictional contact area is dened as S, the clamping pressure as p and the coecient of friction as µ.

1 16 EAq 2 α 2 = µpS =⇒ q cri = 4 α µpS EA .
(2.68)

After the slipping occurs, the normal force in the plate is saturated to the value µpS.

N (x) = EAε x = EA ∂u ∂x + 1 8 q 2 α 2 sin 2 αx = µpS ∂u ∂x = µpS EA - 1 16 
q 2 α 2 + 1 16 q 2 α 2 cos 2αx u(x) = µpS EA - 1 16 q 2 α 2 x + 1 32 q 2 α sin 2αx + C. (2.69)
Since there is only one unknown coecient, the boundary condition at the encastre is sucient to determine it.

u(0) = 0 =⇒ C = 0.

(2.70)

In this way the in-plane displacement expression after slipping is given by

u(x) = µpS EA - 1 16 
q 2 α 2 x + 1 32
q 2 α sin 2αx.

(2.71)

The displacement at the slipping boundary can be written as

u(L) = µpS EA - 1 16 q 2 α 2 L.
(2.72)

Even though the slipping may occur under certain deection amplitude, energy dissipation may not take place due to compression eect during the releasing process, so it's necessary to determine the validity criteria in terms of amplitude for energy dissipation calculation. The eective amplitude beyond which energy dissipation can continue is designated as q e . During the releasing, the frictional force is in the opposite direction until the moment when the deection changes direction, this implies that when the plate recovers to its original position, there is a compressing force directing to the encastre on the slipping boundary. The slipping boundary's displacement under this pure frictional force is called critical displacement u cri .

u cri = µpS EA L.

(2.73)

The displacement at the slipping boundary must be superior to u cri to enable a continuous energy dissipation.

u(L) = µpS EA - 1 16 q 2 α 2 L > µpS EA L q e = 4 α 2µpS 
EA .

(2.74)

We can see that q e is independent of plate's length. Another important relationship to be extracted is

q e q cri = √ 2.
(2.75)

The previous derivation describes only the behavior of a quarter cycle. Here we adopt the hypothesis that the dissipated energy is 4 times the dissipated in a quarter cycle, the total energy dissipation can thus be expressed as follows

∆E =    0 if q < q e 4µpSL 1 16 
q 2 α 2 -2µpS EA if q ≥ q e .
(2.76)
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The stocked elastic energy can be divided into two parts: energy due to elongation and energy due to bending. The elongation elastic energy will be saturated when the normal force reaches µpS.

E elongation = 1 2 v σ • εdv = 1 2 EAL q 2 α 2 16 2 = 1 512 EALq 4 α 4 = µ 2 p 2 S 2 L 2EA . (2.77)
The bending energy is a function of plate's curvature, so the bending strain can still increase regardless of normal force saturation, thus the bending stocked energy is a function of maximum shape amplitude q.

E bending = 1 2 v σ • εdv = 1 2 v E ∂ 2 w ∂x 2 z 2 dv = E 2 l ∂ 2 w ∂x 2 2 A z 2 dAdx = E 2 bh 3 12 L 0 - q 2 α 2 cos αx 2 dx = Ebh 3 q 2 α 4 L 192 .
(2.78)

The damping ratio can thus be expressed as

η =            0 if q < q e 4µpS 1 16 
q 2 α 2 -2µpS EA µ 2 p 2 S 2 2EA + Ebh 3 q 2 α 4 192 if q ≥ q e .
(2.79)

It can be seen that the damping ratio is independent of the plate's length and the dissipated energy on the numerator is a quadratic equation of shape amplitude q, where the name second-order damping comes from.

Analytical expression of slipping boundary's trajectory

When the plate is under transverse deection, the slipping boundary is in a cyclic (2.80)

The strain corresponding to this displacement eld is expressed as

ε x = 1 16 q 2 α 2 - µpS EA .
(2.81)

The maximum amplitude under which the structure can sustain its current position can be obtained by the force criteria, It means that during the second phase with slipping, if modal amplitude q in within the range of q ∈ 4 α 2µpS EA , q max , the boundary displacement is written

N < µpS, EA 1 16 q 2 α 2 - µpS EA < µpS, q < 4 α 2µpS EA .
as u(L) = µpS EA - 1 16 q 2 α 2 L.
Once the maximum modal amplitude is reached, the deformed plate starts to return to its original position, the clamped point re-enters the sticking phase. The frictional force changes direction and points to the encastre point. The clamped point is blocked in its previous position of phase 2, which is

µpS EA - 1 16 q 2 max α 2 L.
The key information to be extracted in phase 3 is to determine until which amplitude level the structure can stay within the sticking phase.

To this end, the constant C 1 in expression 2.64 needs to be re-evaluated.

u(L) = µpS EA - 1 16 q 2 max α 2 L = C 1 L =⇒ C 1 = µpS EA - 1 16 q 2 max α 2 . (2.83)
Substitute coecient C 1 obtained in 2.83 into expression 2.63 and write the in-plane force in the condition of sticking compression,

N = EA 1 16 q 2 α 2 + µpS EA - 1 16 q 2 max α 2 ,
(2.84) the switching amplitude can be derived by equating the in-plane force to -µpS.

EA 1 16 q 2 α 2 + µpS EA - 1 16 q 2 max α 2 = -µpS q = q 2 max - 32µpS EAα 2 .
(2.85)

From the development above, the amplitude boundary for sticking phase can be determined. When q is within the range of q ∈ q 2 max -32µpS EAα 2 , q max , the clamped end stays in its sticking position u(L) = µpS EA -1 16 q 2 max α 2 L.

The forth phase corresponds to the re-entry into the slipping phase. The deformed plate continues to go back to its original position while the saturated friction force points always to the encastre. When the plate regains its atness, the plate is in compression due to the remaining left-pointing friction force, so that it is impossible to be restored to its starting position, where the plate is in a zero-stress state. (2.86)

Apply the encastre boundary condition u(0) = 0 and solve for u(x), the in-plane displacement eld can be written as

u(x) = - µpS EA - 1 16 q 2 α 2 x + 1 32 q 2 α sin 2αx.
(2.87) Substitue x = L into equation 2.87, we can get the expression for slipping point's displacement during the recovery process when q is in the range of q ∈ 0, q 2 max -

32µpS EAα 2 . u(L) = - µpS EA - 1 16 q 2 α 2 L.
(2.88)

In a half cycle of vibration, the sticking and slipping transitions can be divided into four phases. To illustrate the boundary's trajectory in full cycles and analyze the inuence that the pressure can have on the trajectory, the same modal amplitude is imposed on the structure in a sinusoidal way q = q max sin ωt for each of the three dierent pressures applied. The dimensions of the plate are listed in table 2.1 on page 37. As mentioned above, the slipping end cannot return to its origin as in the following cycles the restarting point where q = 0 is always in a pre-compressed state.

So that in the following sections dealing with damping quantication, the energy dissipation is evaluated from the second cycle. Regarding the inuence of clamping pressure, a smaller pressure is shown to enable an earlier slipping and and a longer slipping distance. If the pressure increases, the slipping will be activated under a bigger modal amplitude. For the reason that the compression eect in the course of releasing has a positive relation with the clamping pressure, the end point is more likely to be blocked farther from the encastre under a bigger pressure. Another phenomenon to be noted is that the slipping end point enters sticking at the same time regardless of the clamping pressure, however to reactivate slipping, a bigger pressure will postpone the reactivation to a bigger amplitude. Due to the property that slipping-sticking transition can be inuenced by clamping pressure, it's natural to assume that friction damping is sensitive to pressure on the contact surface. This assumption is to be veried in the following sections with an energetic approach.

Analytical parametric studies

Similar to the parametric studies in the rst-order interface damping, the inuence of clamping pressure, coecient of friction as well as contact surface area are to be analyzed in this section. The dimensions of the plate are listed in table 2.1 on page 37.

Inuence of clamping pressure

In the parametric study on clamping pressure, the coecient of friction µ is xed at 0.3 and the contact surface area is 300 mm 2 , which corresponds to a contact band width of 10 mm. An amplitude sweeping from 0 to 3 mm is conducted on the model to trace the evolution of damping ratio in terms of displacement amplitude. 1. The bigger the pressure is, the later the slipping occurs.

2. For a given structure, there is no damping limit since bigger clamping pressure can surely yield a higher damping capacity limit.

3. For a given clamping pressure, the bigger the amplitude is, the more damped the structure becomes.

4. The increase in damping capacity is not proportional to vibration amplitude, as the damping ratio converges asymptotically to a limited value under big amplitude.

5. For small amplitude (0.5 mm to 1 mm), there exists a zone where smaller pressure may produce bigger damping.

6. For big amplitudes (1 mm to 3 mm), bigger pressure does produce more damping.

The asymptotic behavior of damping ratio can be attributed to the fact that dissipated and stocked energy are both quadratic functions of mode amplitude, which is dierent from the rst-order damping whose dissipated energy is a linear function of amplitude.

Inuence of coecient of friction

As is already studied in the rst-order damping mechanism, the coecient of friction has the same inuence as clamping pressure. The damping coecient approaches to saturation at big amplitude of transverse deection, and there exists always a zone where smaller coecient of friction can yield bigger damping. 

Conclusion

Distinct from viscous damping which is present throughout the entire structure and proportional to speed, friction damping is localized and considered to be proportional to displacement. Due to the fact that in assembled structures frictional damping is 10 to 100 times bigger than viscous damping, it is not only important to have a qualitative view of damping evolution pattern, but also an accurate estimation of energy dissipation. For these purposes, three simplied academic models constituted of beam and friction contact zone are proposed in this chapter, a quasi-static approach is adopted in the modelization.

Two types of damping patterns are identied: rst-order damping and second order damping. The order of damping is determined by the order of modal amplitude in the expression for energy dissipation. The relationship between modal amplitude and energy dissipation is linear in rst order damping models, whose characteristics can be revealed by sandwich beam model and rotational joint model.

The main characteristic of rst order damping is that there exists a maximum damping capacity that the structure cannot surpass, whatever optimization method is used. It is an intrinsic property of the structure. Once the maximum damping is reached, an increase in amplitude will result in a decrease in damping. In a similar way, the second order damping signies that amplitude is quadratic in energy dissipation expression. In this case, the structure doesn't posses maxima in the amplitude range. The structure just becomes more damped with an increase in modal amplitude. Its evolution follows asymptotic curve and saturates under big modal amplitude.

The main inuencing parameters in friction damping are coecient of friction, clamping pressure and contact area. The way they modify damping can be dierent in rst and second order models, but they share some common points.

Clamping pressure and coecient of friction comes always in a product, an amplifying/minifying ratio multiplied to either of them will give the same result. An increase in contact area will always postpone the occurrence of slipping and increase energy dissipation under big modal amplitude. Other inuencing parameters like thickness ratio and kinematic boundary condition are also analyzed, but are restrained to the sandwich beam model and are conducted with nite element method in the software ABAQUS TM . It can be deduced that all measures facilitate interface slipping will result in an increase in damping capacity potential.

Friction damping is shown to be complex in terms of its sensitivity to geometry, friction properties as well as its dependency on modal amplitude. It can be for the moment classied into two categories, but there may exist other damping patterns.

The phenomenological study in the current chapter sheds light on damping forming mechanism and shows the possibility of damping optimization. The next chapter will deal with the design of an experiment installation as well as the results obtained 

Introduction

The analytical and numerical results presented in the previous chapter show that friction damping is generally a function of modal amplitude. According to the order of displacement in the expression of energy dissipation, frictional damping can be categorized into rst-order damping and second-order damping. Determined by the intrinsic characteristic of the rst-order sandwich model used in the study, in which the relative displacement is a function of cross section's rotation, the rst-order damping is shown to have a limited damping capacity ad there exists an optimized modal amplitude at which the assembled structure can reach its most damped state. Unlike the rst-order damping, the second-order damping is induced by second-order bending strain and doesn't have a maximum damping capacity in the modal amplitude range. The damping ratio increases with the deformation level, but the growth rate is decreasing which make it similar to an asymptote.

The current chapter will continue to deepen the understanding of the two damping categories, notably the rst-order damping in sandwich plate and the second-order damping in von Kármán plate. However the study will be conducted in a more subtle manner based on a semi-analytical method. In order to overcome the limitations of the analytical method which can only deal with one-dimensional structures, nite element method is employed in complement with nite dierence method to enable a two-dimensional analysis of the interface slipping.

This chapter will rstly deal with the second-order damping mechanism in von Kármán plate with one slipping boundary. The notion of ctive force eld will be rstly demonstrated, which enables a facilitated solution of the discretized von Kármán plate's formulation. Based on the quasi-static numerical methods that will be developed, the second-order damping phenomenon can be revealed, the hardening/softening eect induced by in-plane stress eld as well as the mode shape change due to internal force coupling can also be analyzed. The second part will explain the mechanism of partial slipping in the sandwich plate model from an in-plane point of view. The results will show that the presence of partial slipping can modify the structure's damping property, if compared to the analytical model which assumes an immediate total slipping on the contact surface. In the current chapter, the comparison with analytical models is conducted in parallel with the proposed numerical method for the purpose of verication.

3.2 Damping induced by second-order bending strain in von Kármán plate

Formulation of ctive force eld

Apart from laminated beams, there are also a large number of structures in the form of plate whose tangential displacement in the joint is induced by transverse deection, as analytically demonstrated in section 2.4.1. The second-order strain ε x , ε y and ε xy induced by spacial derivatives of displacement w can be regarded as an external body force eld applied to the structure if substituted into the dynamic equilibrium equation. This new mechanical view of plate bending is presented in the demonstration below.

The components of the three-dimensional Lagrangian Green strain tensor are dened as

E ij = 1 2 ∂u i ∂x j + ∂u j ∂x i + ∂u k ∂x i ∂u k ∂x j , k = 1, 2, 3. (3.1)
The von Kármán plate theory takes into account the non-linear second-order strain components that are contributed by transverse deection, the contributions from the in-plane directions x and y are neglected and the index k is only valued at 3. The strains can thus be expressed as 

σ ij = E 1 -ν 2 [(1 -ν)ε ij + νε kk δ ij ] , δ ij : Kronecker δ (3.3)
and substitute the strain components into equation 3.3, the in-plane stresses can be calculated by rstly integrating the stress components along the thickness of the plate and secondly averaging them by N ij /h. The in-plane stress components are expressed as (3.4c)

σ x = E 1 -ν 2 ∂u ∂x +
These components can be divided into two parts: one part is a function of in-plane displacements u and v and another is a function of transverse displacement w.

Substituting the stress components into the innitesimal equilibrium equation

σ ij,j + f i = 0, (3.5) 
the local equilibrium equation in terms of displacements u, v and w can be obtained. Take the equilibrium in x direction as an example 

E 1 -ν 2 ∂ ∂x ∂u ∂x + 1 
f x = E 1 -v 2 ∂w ∂x ∂ 2 w ∂x 2 + ν ∂w ∂y ∂ 2 w ∂x∂y + E 2(1 + ν) ∂ 2 w ∂x∂y ∂w ∂y + ∂w ∂x ∂ 2 w ∂y 2 (3.8a) f y = E 1 -v 2 ∂w ∂y ∂ 2 w ∂y 2 + ν ∂w ∂x ∂ 2 w ∂x∂y + E 2(1 + ν) ∂ 2 w ∂x∂y ∂w ∂x + ∂w ∂y ∂ 2 w ∂x 2 . (3.8b)
The ctive body force eld is a function of transverse displacement's spatial rst and second derivatives and they can be calculated by nite dierence method. This ctive eld enables the solution of in-plane displacements u and v with a given w which originates from a known mode shape. Once u and v are known, they can be substituted in equation 3.4 to yield the superimposed in-plane stress eld.

Discrete method of derivatives' evaluation

The ctive body force is a continuous 2-dimensional eld. However in nite element method, the only known parameter is the nodal transverse displacement w. In order to calculate the equivalent force vector of every node in the continuous eld, it is necessary to evaluate the spatial partial derivatives in equation 3.8. Once these values are known, the equivalent force vector can be determined by integration with Gauss points whose values are interpolated from nodal values. The mesh used for nite element method is illustrated in gure below. The plate is of length 600 mm and width 400 mm. Each element is a square of side length 50 mm, so that there are in total 12 elements in the x direction and 8 elements in the y direction. 

w i+1,j -w i-1,j 2dx 
w i,j -w i,j-1 dy

Lower free nodes w i+1,j -w i-1,j 2dx w i,j+1 -w i,j dy

Other nodes w i+1,j -w i-1,j 2dx w i,j+1 -w i,j-1 2dy

Table 3.

1: Fist derivatives schemes

To test the precision of the nite dierence schemes, the nodal derivatives are evaluated on an analytical imposed mode shape w(x) which is only in terms of x, i.e. there is no curvature in the y direction.

w(x) = 1 2 cos 2π L x -1 .
(3.9)

The derivatives obtained by nite dierence schemes are compared to the analytical rst and second derivatives with the imposed form, who are evaluated at the center of each element. The rst and second derivative comparisons show that nite dierence schemes adopted in the current study are able to provide a precise evaluation of the spatial derivatives required in the ctive force eld calculation.

Friction properties

The contact property used in the current study is a two-dimensional Coulomb's friction law. The shear stress components on the contact surface are designated as τ x and τ y and normal stress as σ n . When the boundary is in sticking phase, the static frictional force is in the opposite direction of reaction force. However once the shear stress resultant is bigger than the maximum frictional stress limit, the slipping occurs and the direction of frictional force is in the opposite direction of the relative movement speed. The diculty in the integration of Coulomb's law in dynamic calculation is that the friction force's direction is not only a function of current step's stress state, but also of relative displacement.

In case of sticking, the shear stress resultant is inferior to the maximum shear stress that the contact friction can provide.

τ 2 x + τ 2 y 1 2 < µσ n . (3.10)
Once the shear stress exceeds the friction limit, the stress resultant is saturated to the value of maximum shear stress µσ n and the friction's direction is determined by the direction of the relative displacement's speed. The speed can be replaced by innitesimal displacement increment du/dt and dv/dt. As the frictional force is always in the opposite direction of speed, a negative sign is added to the component du and dv.
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τ 2 x + τ 2 y 1 2 = µσ n (3.11a) τ x = µσ n • -du √ du 2 + dv 2 (3.11b) τ y = µσ n • -dv √ du 2 + dv 2 .
(3.11c)

The frictional property at the contact interface can be combined to the ctive force eld to establish the in-plane equilibrium, from which the slipping displacement can be cumulated to calculate the total energy dissipation during one cycle in the periodic movement. The next section will present the solution procedure which is based on Ritz-Galerkin method.

Solution procedure

The in-plane problem can be solved by nite element method. Plane stress elements are used for discretization. By using the shape function of iso-parametric 4-node element, the equivalent nodal forces of a given element m can be expressed as

(f m ) = 1 -1 1 -1 [R] T f x f y h J dsdt. (3.12)
Where [R] is a (8 × 2) matrix of shape functions, J is the determinant of Jacobian matrix and h is the thickness of the plate. The body force f x and f y are evaluated at 4 Gauss points in each element, the integral in the local coordinate system is thus transformed into a sum of Gauss point values. The global equilibrium equation can be written as

K II K IB K BI K BB U I U B = F I F B + 0 N B , (3.13) 
where index I and B corresponds respectively to inner and boundary DOFs. The vector F, assembled from the equivalent nodal forces (f m ) of each element, contains the discretized ctive body force eld. The vector N is the frictional force at the boundary which respects the friction law presented in the previous section. Since there is no frictional force on inner DOFs, the corresponding components in N are 0, and the model can be condensed to boundary DOFs, which results in a smaller model with less DOFs. The condensed form is

[K c ](U B ) = (F c ) + (N B ). (3.14)
where the condensed stiness matrix [K c ] and ctive force vector (F c ) are respectively written as According to the single mode shape representation in equation 3.16 and the expressions of ctive force eld given in equation 3.8, the ctive force is a quadratic function of modal amplitude f = f (q 2 ), so that the boundary friction force vector at step t + 1 can be written as

[Kc] = [K BB ] -[K BI ][K II ] -1 [K IB ] (3.15a) (F c ) = (F B ) -[K BI ][K II ] -1 (F I ).
(N B ) t+1 = [K c ](U B ) t -q 2 t+1 (F c ), (3.17) 
where (F c ) is the condensed reference body force eld obtained from the normalized mode shape φ(x, y).

The obtained (N B ) t+1 should satisfy the sticking-slipping criteria in equation 3.10 and 3.11. The updated friction force (N B ) new t+1 can then be carried into the equilibrium of step t + 1 to calculate the real boundary displacement

(U B ) t+1 = [K c ] -1 q 2 t+1 (F c ) + (N B ) new t+1 . (3.18) 
The displacement of other DOFs at each step t can be obtained by reversing the condensation procedure with the known boundary displacement

(U I ) t = [K II ] -1 q 2 t (F I ) t -[K IB ](U B ) t . (3.19)
Since u and v are all known, the superimposed in-plane stress eld can thus be obtained with equation 3.4 and the solution of dynamic von Kármán equation 3.20

is possible. ρ ∂ 2 w ∂t 2 + D∆ 4 w -N x ∂ 2 w ∂x 2 + 2N xy ∂ 2 w ∂x∂y + N y ∂ 2 w ∂y 2 = f (x, y, t) (3.20)
By applying the notion of modal synthesis, the transverse deection of the plate can be approximated by a linear combination of n rst normal modes w = n i=1 q i φ i .

The normal modes are a solution of eigenvalue problem dened in linear plate theory

D∇ 4 φ i = ω 2 i ρφ i . (3.21)
Since the linear combination of φ i is only an approximation, the error expression of equation 3.20 can be written as

e = n i=1 d 2 q i dt 2 ρφ i + n i=1 q i D∇ 4 φ i - n i=1 q i R(N, φ i ) -f (x, y, t) (3.22)
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where the non-linear term is abbreviated as R(N, φ i ) where

R(N i , φ i ) = N x ∂ 2 φ i ∂x 2 + 2N xy ∂ 2 φ i ∂x∂y + N y ∂ 2 φ i ∂y 2 .
(3.23)

N i is the corresponding internal force of mode shape φ i .

For the moment we are only interested in mono-mode response of the structure excited in the neighborhood of its resonance frequency ω i , therefore the mode shape φ i is dominant in the response and we consider in the rst place that the shape of mode i doesn't change with amplitude. Thus only the mode shape φ i is retained in equation 3.22. The Ritz-Galerkin method can be used to minimize the error

function e v d 2 q dt 2 ρφ i φ i dv + v qD∇ 4 φ i φ i dv - v qR(N, φ i )φ i dv = v f (x, y, t)φ i dv. (3.24)
Since the mode shape φ i is normalized in the way

v ρφ i φ i dv = 1, (3.25) 
the error function can be written in scalar form as

d 2 q dt 2 + ω 2 i q -ψ(t)q = f (3.26)
where

ψ(t) = v R(N, φ i )φ i dv.
(3.27)

The N ix , N iy and N ixy are valued at the center of each element m for mode i and are assumed to be homogeneous within the given element. The spatial rst and second derivatives are obtained by nite dierence method. The discretized expression of ψ ii takes the form

ψ ii (t) = N m=1 N m x ∂ 2 φ m i ∂x 2 + 2N m xy ∂ 2 φ m i ∂x∂y + N m y ∂ 2 φ m i ∂y 2 φ m i S m (3.28)
with S m the surface area of element m, N the total number of elements.

The steady state solution for q under harmonic excitation of angular frequency ω is assumed in the form of a harmonic function of time. The excitation force's phase is taken as reference, and the phase angle is represented by a complex number q. q = qe iωt , f = f e iωt -ω 2 q sin ωt + ω 2 i q sin ωt -ψ ii (t)q sin ωt = f sin ωt.

( 

ψ iic = 1 π 2π 0 -ψ ii (t) sin θ cos θdθ = 1 2π 2π 0 -ψ ii (t) sin 2θdθ (3.33b) ψ iis = 1 π 2π 0 -ψ ii (t) sin θ sin θdθ = 1 2π 2π 0 -ψ ii (t)(1 -cos 2θ)dθ (3.33c)
In this way equation 3.31 can be written as -ω 2 q + ω 2 i q sin ωt + qψ iic cos ωt + qψ iis sin ωt = f sin ωt

(3.34)
In order to have the same harmonic base, the rotational vector q with cos ωt has to be multiplied by i so as to rotate 90 degrees.

(-ω 2 + ω 2 i + iψ c + ψ s )q sin ωt = f sin ωt (3.35a) [-ω 2 + ω 2 i (1 + λ + iη)]q = f (3.35b) where η = ψ c ω 2 i , λ = ψ s ω 2 i (3.36)
The structure's hardening is proportional to the coecient λ and damping is represented by η. The structural damping factor can be determined with greater precision by using the ratio between energy dissipation per cycle and maximum stocked elastic energy [START_REF] Huang | Optimization of dynamic behavior of assembled structures based on generalized modal synthesis[END_REF]. In the following calculation, the damping factor can also be dened as a function of energy dissipation. 

∆W = T t=2 | (U B t -U B t-1 ) T (N B t ) |, E max = 1 2 | q | 2 ω 2 i . (3.38)
The solution of equation 3.35 can be achieved by applying an iterative Newton method with an initial q as static displacement f /w 2 i .

Analytical solution of clamped-clamped plate

One of the main features in the von Kármán plate theory is its capacity to reveal the hardening/softening eect due to internal stress eld. This phenomenon can be demonstrated by analytical method in the case of clamped-clamped plate, as illustrated in gure 3.3. The mode shape of the rst resonance is assumed in the form of cosine function, as expressed in equation 3.9, however due to the requirement that the mode shape is normalized to the mass, a coecient k should be multiplied to equation 3.9.

L 0 ρ k 2 (cos αx -1) 2 dx = 1 =⇒ k = 8 3ρL = 8 3m . (3.39)
According to the expression 2.67 of constant internal force eld in case of clamped-clamped boundary condition, the in-plane force per unit of width is

N i = Eh q 2 α 2 16 • 8 3m 2 = Eh q 2 α 2 6m . (3.40)
The non-linear term R(N i , φ i ) in equation 3.23 can be written as

R(N i , φ i ) = Eh q 2 α 2 6m • 8 3m • ∂ ∂x 2 1 2 (cos αx -1) = -Eh q 2 α 4 6m • 2 3m cos αx. (3.41)
As indicated in the solution procedure based on Ritz-Galerkin method, the nonlinear term is weighted on the entire calculation domain with the normalized mode shape, as expressed in equation 3.27.
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ψ ii (R(N i ), φ i ) = -Eh q 2 α 4 6m • L 0 2 3m cos αx• 1 2 8 3m (cos αx-1)bdx = -EbhLq 2 α 4 18m 2 (3.42)
where b is the width of the plate. The non-linear term ψ ii in this case is a negative-denite value.

It is assumed that the modal amplitude varies in the sinusoidal way q = q m sin θ. The hardening factor λ and the damping ratio µ can thus be written as

λ = 1 2πω 2 i • Ebhaq 2 m α 4 L 18m 2 2π 0 sin 2 θ(1 -cos 2θ)dθ = Ebhq 2 m α 4 L 24ω 2 i m 2 (3.43a) µ = 1 2πω 2 i • Ebhaq 2 m α 4 L 18m 2 2π 0 sin 2 θ sin 2θdθ = 0 (3.43b)
The clamped-clamped boundary condition infers that there is no energy dissipation, which can be conrmed by the zero damping ratio. The hardening factor is shown to be a quadratic function of modal amplitude and is positive-denite, which means that the plate is always under hardening eect.

Analytical solution of clamped-slipping plate

In the case of slipping, the internal force N i is saturated to µpS/b, where S is the total contact surface and b is the width of the plate. Here we consider that the clamped side slips immediately with the imposed modal amplitude, so there is no sticking phase. The non-linear term R(N i , φ i ) in this condition takes the following form

R(N i , φ i ) = µpS b ∂ ∂ 2 x 2 3m (cos αx -1) = - µpS b 2 3m • α 2 cos αx (3.44)
The updated direct controlling parameter ψ ii is thus written as

ψ ii (R(N i ), φ i ) = L 0 R(N i , φ i )φ i bdx = L 0 µpS b 2 3m (-α 2 cos αx) 2 3m (cos αx -1)bdx = - µpSα 2 L 3m . (3.45)
It is worth noting that the internal force takes alternative directions during one vibration cycle, that's to say 3.2. Damping induced by second-order bending strain in von Kármán plate 81

ψ ii =                    - µpSα 2 L 3m if 0 < q ≤ π 2 µpSα 2 L 3m if π 2 < q ≤ π - µpSα 2 L 3m if π < q ≤ 3π 2 µpSα 2 L 3m if 3π 2 < q ≤ 2π. (3.46)
In this case, the calculation of hardening factor and damping ratio is a piece-wise function.

λ = 1 2πω 2 i 2π 0 (-ψ ii )(1 -cos 2θ)dθ = π/2 0 - µpSα 2 L 3m (1 -cos 2θ)dθ + π π/2 µpSα 2 L 3m (1 -cos 2θ)dθ + 3π/2 π - µpSα 2 L 3m (1 -cos 2θ)dθ + 2π 3π/2 µpSα 2 L 3m (1 -cos 2θ)dθ = 0, (3.47) µ = 1 2πω 2 i 2π 0 (-ψ ii ) sin 2θdθ = π/2 0 - µpSα 2 L 3m sin 2θdθ + π π/2 µpSα 2 L 3m sin 2θdθ + 3π/2 π - µpSα 2 L 3m sin 2θdθ + 2π 3π/2 µpSα 2 L 3m sin 2θdθ = 2µpSα 2 L 3πω 2 i m . (3.48)
The zero hardening factor indicates that under immediate slipping boundary condition, the hardening and softening eect are counteracted in one cycle, so that the average stiness doesn't change. However the damping eect can be cumulated in every quarter-cycle and results in a constant damping ratio. Contrary to the intuition that the damping ratio is a function of modal amplitude, the current result is due to the constant internal force hypothesis that is adopted before the derivation.

Numerical solution of clamped-clamped plate

A rectangular plate of uniform thickness 2 mm is chosen to illustrate the hardening eect as well as the damping characteristics in von Kármán plate. The length is 600 mm and the width is 400 mm. The plate is clamped at the boundary x = 0 and x = 600 mm and is excited by a cyclic force f at it rst resonance frequency, which is 30.860 Hz. Since the rst mode is dominant in the shape composition, according In order to verify the exactitude of the proposed numerical method, a comparison with the analytical method is necessary. Since the analytical method can only deal with simple expressions, the imposed mode shape takes the normalized form

φ i (x, y) = q 2 3m (cos αx -1), (3.49) 
where q the modal amplitude, m the mass of the plate, α = 2π/L. As demonstrated in the previous section, the hardening/softening factor λ is a function of ψ ii , who depends on internal stress state of the plate N i . Before 3.2. Damping induced by second-order bending strain in von Kármán plate 83 undertaking the comparison of λ obtained in two methods, a study on the nonlinear term R(N i , φ i ) distribution in the calculation domain may give a preliminary view of the resemblance between the two solutions. As there is no variance in the y direction in the analytical method, only the distribution in terms of x is presented in gure 3.6b. The distribution obtained corresponds to a modal amplitude of 0.2.

(a) R distribution in numerical method (b) R distribution in analytical method As illustrated in gure 3.7, the nonlinear temporal term ψ ii is a periodic function under the clamped-clamped condition, as with the modal amplitude, ψ ii varies sinusoidally, but it stays negative-denite, which in turn guarantees a positive-denite λ and the structure is always under the hardening eect. Even though the previously imposed mode shape is similar to the real rst resonance mode shape, its mono-dimensional property prohibits it to take into account the curvature in the y direction, which we believe may also modify the hardening eect as well as the damping property of the structure. By the same operation composed of nite dierence schemes, the ctive force eld can be obtained in gure 3.9. The resonance moves towards higher frequencies owing to the hardening eect.

For any given frequency, bigger excitation forces result in larger displacement.

Numerical solution of clamped-slipping plate

In the case with one slipping boundary, the left boundary is still clamped but the right boundary is subjected to a frictional clamp where the edge is supposed to slip under large modal amplitude. The contact area of 4000 mm 2 under the frictional clamp is considered to stay constant, the coecient of friction is xed at 0.3. (a) R(Ni, φi) distribution in sticking at q = 0.01 (b) R(Ni, φi) distribution in slipping at q = 0.2 When the modal amplitude reaches q = 0.01, the friction force is still able to hold the slipping boundary at its original position, the internal R(N i , φ i ) distribution is similar to that in gure 3.6a. Once the clamped boundary is released under bigger amplitude, for example if q reaches 0.2, the internal stress distribution is more complicated and its pattern resembles that of sin 2αx function. This observation conrms that the internal stress-dependent term R(N i , φ i ) is sensitive to boundary condition changes, which will in consequence inuence the ψ ii variation in the time domain.

(a) R distribution in sticking at q = 0.01 (b) R distribution in slipping 

Extension to non-linear mode

The single mode method presented in the previous sections discounts the coupling between modes by non-linear terms. This coupling can be taken into account by using the notion of non-linear mode. The non-linear mode is dened by a linear superposition of linear modes

φi = n j=1 b ij (q)φ j (3.50)
where φ j is the jth linear mode and b ij (q) are participation factors of each mode with b ii = 1, n is number of retained linear modes. This normalization is valid only in cases where the structure is excited at its ith natural frequency and it's the ith mode that is dominant in the shape composition. The participation factor is considered as a function of modal amplitude q and satises the initial condition b ij (q = 0) = 0. The non-linear mode notion presented here is always in the realm of mono-mode response calculation, the only dierence compared to single mode method is that the mode chosen retains no longer its shape, but changes in function of modal amplitude.
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The values of b ij are solutions of the following eigenfunction system which is derived from equation 3.22 and 3.24.

-ωi

2 (b ij ) + ([Ω 2 ] + [λ ij ])(b ij ) = 0 (3.51) 
with

λ ij = 1 2π 2π 0 -ψ ij (t)(1 -cos 2θ)dθ. (3.52)
The ωi is the non-linear natural frequency corresponding to non-linear mode φi , and it is also a function of modal amplitude q.

Similar to expression 3.28 in the single mode method, the discretized form of ψ ij can be written as

ψ ij = N m=1 N m jx ∂ 2 φ m j ∂x 2 + 2N m jxy ∂ 2 φ m j ∂x∂y + N m jy ∂ 2 φ m j ∂y 2 φ m i S m . (3.53) 
The coupling eect can be quantied by the participation factor b ij , this nonlinear mode approach is called multi-mode method in the following sections. The response of forced vibration in multi-mode method is given by complex amplitude q, which is the solution of the following equation

[ M (q)ω 2 + ωi 2 (q)(1 + iη(q))]q = f (q) (3.54)
where M (q) is the non-linear modal mass and f (q) is the non-linear modal force, η(q) is calculated with the non-linear mode shape φi .

M (q) = n j=1 b 2 ij (q), f (q) = n j=1 b ij (q)f j (3.55)

Multi-mode method with complete slipping boundary

In order to explain the notion of non-linear mode, a rectangular plate with one complete slipping boundary, as illustrated in gure 3.12, is used for explanation with three linear modes. Since the eigenvalue problem is a (3 × 3) system which has three eigenvalues, the one which is the closest to the linear resonance is retained as the non-linear resonance, the corresponding vector is the participation factors (b ij ).

In the rst place we consider that both the excitation and boundary conditions are symmetric, in this case anti-symmetric modes don't contribute to the response The coupling variable ψ ij is valued at each time step in quasi-static calculation. The coupling eect in the frequency domain is directly related to the λ ij obtained from temporal integral. After the normalization of the rst mode participation factor to 1, the evolution of (b ij ) in terms of modal amplitude q shows that b 11 remains 1 while b 12 and b 13 stay 0 for all the amplitude range. This observation signies that the second and third mode are not coupled with the rst mode under symmetric boundary conditions. This phenomenon also justies the application of single mode method.

In order to study the participation of anti-symmetric modes, it's necessary to break the symmetry by either applying an asymmetric pressure distribution or changing the kinematic boundary conditions. The inuence of dierent clamping pressures is rstly presented in the following section.

Multi mode method with non-uniform clamping pressure

Based on the fact that the coupling coecient ψ ij is a function of internal stress eld which is intrinsically sensitive to boundary pressures, it's necessary to clarify its inuence on inter-mode coupling. Here a non-uniform clamping pressure is applied on the clamping pad. The pressure on the lower part is twice smaller than that on the upper part. Since the rotation of the boundary DOFs are always restrained by the clamp, the boundary conditions for both upper and lower nodes can be regarded as encastre. The parametric study in terms of modal amplitude shows that force boundary conditions have no signicant inuence on the evolution of participation factors. The second and third mode participation factors b 12 and b 13 stays 0 for all the amplitude range, which means that they are not coupled with the rst mode and their participations can be neglected. It is thus reasonable to infer that the participation factor is only sensitive to linear mode shapes. This deduction is to be veried in the next section. This result shows that for small modal amplitude, only one mode is sucient to represent the overall vibration behavior of the structure, but for big modal amplitude, it's necessary to take into account the participation of other modes. In the current study, a modal amplitude of 0.05 corresponds to a physical displacement of 2 mm, which is the thickness of the plate, this deection is already within the realm of large displacement and it is not likely to happen in vibration mechanics.

Therefore the single mode method is sucient for analysis with small displacement, even though the boundary conditions may yield inter-mode coupling, however for large modal amplitude, the participation of other modes cannot be neglected. The comparison of hardening factor λ and damping coecient η obtained from single mode method and multi-mode method are illustrated in gure 3.26a and 3.26b.

(a) λ evolution (b) η evolution The comparison shows that hardening and damping are both sensitive to mode 3.2. Damping induced by second-order bending strain in von Kármán plate 95 shape changes. The participation of second mode stops the on-going softening tendency and prohibits the damping capacity to grow. For small modal amplitude, it's acceptable to use only one mode shape to represent the vibration behavior since λ and η given by single and multi-mode method are almost the same, but for big modal amplitude, it's necessary to take into account the inter-mode coupling. An example of forced response is given with an oscillating excitation force applied at point A, as illustrated in gure 3.27. The excitation force amplitudes are respectively 10 N and 50 N for two dierent load cases. The frequency-response curves in gure 3.28a and 3.28b demonstrate that for excitation forces who result in small modal amplitude, the coupling between modes is weak, so that single mode and multi-mode method provide very similar responses, however when the force is big enough to produce inter-mode coupling, the dierence in response is no longer negligible. By comparing the response amplitude at resonance, the single mode method always over-estimates the damping capacity compared to multi-mode method, but for frequencies outside the resonance zone, the amplitude is relatively small and the two methods give almost the same response level, which is in consistency with the λ and η curves. As demonstrated in the phenomenological study of damping in sandwich plate in chapter 2, the dissipated and stocked energy are able to be expressed in analytical formulations, however this formulation is only valid when we suppose that the propagation of slipping is instantaneous, this hypothesis facilitates the derivation but neglect the possible partial slipping in real conditions. In order to make up this intrinsic deciency in the analytical method, a numerical solution based on a 2-dimensional nite element method will be developed in this section. We are not only interested in the total energy dissipation, but also the slipping propagation during the increase in modal amplitude. 
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As for the inuence of the second-order ctive force eld, due to the fact that the mode shape is the same for upper and lower plate, the in-plane excitation is identical for the two layers, which implies that there is no relative displacement and thus no induced frictional force. Even though the ctive force eld doesn't inuence the sticking-slipping transition, it can modify the in-plane displacement eld, which will in turn reshape the contact interface's form.

Shear force eld formulation

When the two plates of thickness h are pressed together by the clamping force, before the slipping occurs, they can be regarded as one plate of thickness 2h. The shear force at the mid-plane can be obtained by the moment equilibrium on the innitesimal element, which yields 

τ xz = τ zx = τ x , τ yz = τ zy = τ y .
τ x = D h ∂ ∂x ∇ 2 w, τ y = D h ∂ ∂y ∇ 2 w, (3.57) 
where D is the bending rigidity of the plate which takes the expression Eh 3 /(12(1 -ν 2 )), ∇ 2 w is written as

∇ 2 w = ∂ 2 w ∂x 2 + ∂ 2 w ∂y 2 . (3.58)
It should be noted that the shear stress is zero on the free boundary, that is

τ y | y=0 = 0, τ y | y=b = 0, τ x | x=L = 0, (3.59) 
where b is the width and L the total length. The spatial derivatives in equation 3.58 and 3.59 can be approximated by the nite dierence schemes proposed in the previous ctive force eld calculation.
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In this way the shear force eld on the middle plane can be obtained for stickingslipping verication. In the current step, the shear stress is only expressed on each node, the stress on other points should be interpolated by nodal values. As we are for the moment interested in the rst resonance response, the shear stress eld of the rst mode is illustrated in gure below. The shear stress vector is in constant transition between two opposite directions, the current representation corresponds to the stress eld on the upper surface of the lower plate with the deformation form in gure 3.29. The force eld reveals that the distribution of shear stress is not uniform under the deformation of the rst mode. The shear stresses that are adjacent to the encastre is bigger than those in the neighboring of the free boundary on the right.

When the stress reaches its maximum µP , the friction force can no longer retain the node at its original position and thus the slipping occurs. This observation implies that as the amplitude increases, the slipping starts from the xed boundary and propagates to the free edge.

Solution procedure and displacement kinematics

In order to facilitate the estimation of energy dissipation, the slipping-sticking verication is element-based, which requires that the stress components valued at each node should be interpolated to the center of each element so as to be regarded as the average stress state for comparison with the friction limit. Take the modal amplitude as q, the reference nodal stress eld under the normalized mode as τ n , the reference element stress eld as τ m .

τ m = 1 4 4 i=1 τ i n , i = node number of each element (3.60)
The incremental approach is adopted in the slipping-sticking verication. The initial stress eld is zero. The stress state of step t + 1 can be expressed as 3.3. Damping induced by rst-order cross section's rotation in sandwich plate 99

τ t+1 m = τ t m + dq • τ m , (3.61) 
where dq is the modal amplitude increment.

The resultant stress τ mr for a given element is written as

τ mr = τ 2 mx + τ 2 my . (3.62) 
If the stress resultant is still within the friction cone dened by contact properties,

τ mr < µP, (3.63) 
the considered element is in sticking phase. The corresponding in-plane DOFs on the upper and lower plate can be treated as being sticked together and keep the same in-plane displacement as the precedent step, moreover the friction force doesn't change its direction.

U t+1 lower,rotation = U t lower,rotation , U t+1 upper,rotation = U t upper,rotation .

(3.64)

After several increments, the stress resultant will reach the friction limit and the element enters the slipping phase. Regardless the increase in modal amplitude, the stress resultant will be saturated to the value µP until the moment when the modal amplitude starts to decrease. In the slipping phase, the locking on the upper and lower DOFs is removed and the relative displacement follows the kinematic of the Kirchho-Love plate theory, where in-plane displacements are linearly proportional to cross-section's rotation,

U upper x,rotation = - h 4 θ y , U upper y,rotation = h 4 θ x , U lower x,rotation = h 4 θ y , U lower y,rotation = - h 4 θ x , (3.65) 
where h is the total thickness of the upper and lower plate, the direction of rotation follows the right hand rule.

After the slipping occurs, the friction force points to the opposite direction of the relative speed, which can be expressed by the relative displacement in quasi-static formulation. (3.66)

The friction force is thus updated with the new amplitude and direction. The alternative transition of direction can be realized by function sign(q • q), the derivation of which is given from equation 1.37 to 1.43.

f upper x = -sign(q • q) • cos θ • µP f upper y = -sign(q • q) • sin θ • µP (3.67)
Since the upper and lower plate are in a relation of action-reaction, the friction force at step t on the lower part is of the same amplitude as the upper part but of opposite direction.

f t upper = -f t lower .

(3.68)

The renewed friction force cannot be directly superimposed with the secondorder strain induced ctive force eld, since it is an element-based vector in which the friction force is assumed to be constant for every point on a given element. This generated friction force eld needs to be transformed into an equivalent nodal force vector, which can then be substituted in the in-plane displacement calculation along with the ctive force eld, the change in contact surface's form can in such a way be taken into account.

[K plane ](U t lower,plane ) = (f t lower ) + (f t fictive )

(3.69) [K plane ](U t upper,plane ) = (f t upper ) + (f t fictive ) (3.70)
The ctive force eld of the rst mode is illustrated in gure 3.33. The force intensity at the encastre and free boundary are shown to be weaker than that in the middle of the plate. Given the curvature of the rst mode shape, dierent from the frictional force eld whose eect is in permanent transition between traction and compression, the eect of the ctive force eld is always stretching on the upper and lower plate. (a) q = 0.42 (b) q = 0.56 The evolution of shear stress distribution reveals that slipping starts from the encastre boundary and propagates to the free edge. At the beginning of the slipping, the frontier between the sticking and slipping area is similar to a parabola, as the modal amplitude increases, the frontier gradually changes to a straight line and maintains its form until the maximum amplitude. It should be noted that the free edge can never enters the slipping phase based on the shear stress distribution expression in the currently proposed method. If the modal amplitude continues to increase until it reaches 5, almost all the points on the contact surface is in slipping phase, but this modal amplitude corresponds to a physical displacement of 162 mm, on which level the material's yielding stress is already reached and is unachievable in real conditions.

(c) q = 0.8 (d) q = 1

Calculation of damping ratio

The dissipated energy can be estimated from the relative displacement between the two plates U relative = U upper -U lower .

(3.72)

As incremental calculation is adopted in the current analysis, the total dissipated energy in one cycle is the accumulation of ∆W of all the steps.

∆W = n t=2 (τ t ) T |(U t relative ) -(U t-1 relative )|S, (3.73) 
where (τ t ) is the vector which contains the average shear stress in each element at step t, S is element's area, as the elements in the current study are of the same size, the area is a constant for everyone of them.

The maximum elastic energy can be expressed in the same ways as in equation 3.38. However the elastic energy expressed in the form of resonance frequency has its own limitation, since the resonance frequency of the assembled structure changes as the clamping pressure is modied. Here we can in the rst place consider two extreme cases: zero and innite coecient of friction. In the case of zero friction, the two plates are regarded as independent, thus the maximum elastic energy is the sum of the energy relatively stocked in each plate. In the case of innite coecient, the friction force blocks completely the points on the contact surface, thus the two Chapter 3. Semi-analytical methods of damping modelization sticked plates forms one plate of thickness 2h. The resonance frequency of the two cases follows the relation ω µ=∞ = 2ω µ=0 . The stocked energy is thus expressed as

E max,µ=0 = 2 • 1 2 ω 2 µ=0 q 2 , E max,µ=∞ = 1 2 ω 2 µ=∞ q 2 .
(3.74)

The case with innite coecient of friction can stock two times more energy than the case with zero friction, E max,µ=∞ /E max,µ=0 = 2. On the one hand it is impossible to block all the points on the contact interface, on the other hand there must be a certain slipping that occurs, so that here we consider that the resonance frequency of the assembled structure is closer to ω µ=0 and is weakly inuenced by the friction. The stocked energy can thus be approximated by E max,µ=0 and the damping coecient is written as

η = 1 2π ∆W E max,µ=0
.

(

In order to fully illustrate the evolution of damping coecient in terms of modal amplitude, an amplitude q = 5 is necessary to reveal the maximum damping capacity even though it is unrealistic. The reliability of the proposed in-plane friction model for sandwich structure can be veried in the comparison with the analytical model in chapter 2. The applied analytic mode shape in the numerical approach, as expressed in 2.14 should be normalized to the mass to be in coherence with the von Kármán model, the normalizing coecient α is calculated in equation 3.76.

ρbh l 0 α 2 4 3 x l 2 - x l 3 2 = 1, α = 140 33ρbhl = 140 33m , (3.76) 
where m is the total mass of the plate. The comparison with the analytical model is presented in gure 3.37. Both models show that there exists an optimal amplitude for maximum damping coecient under a given clamping pressure, and the damping capacity decreases as the modal amplitude continues to increase after passing the optimal point. However, the numeric model gives a later slipping activation and the change in damping coecient is more brutal compared to the analytic solution.

The dierence between the two models can be ascribed to the dierence in elastic stocked energy calculation. The numerical model's elastic energy is approximated by the rst mode elastic energy, whereas the stocked energy in the analytic model is derived directly from the strain and stress relationship under the imposed mode shape. The damping ratio is thought to be a function of mode shape, even though the analytical mode shape can approximate and facilitate the derivation, the slight dierence with the real numerical mode can result in a signicant distinctness between them. The comparison of damping ratio obtained relatively obtained with the approximated analytical and real numerical mode shape is illustrated below. The evolution of η under the real numerical mode is smoother than that of analytical mode, this is due to the fact that the slipping-sticking transition under the real mode shape is progressive, where points closer to the encastre starts to slip in the rst place and other points follow later. However in the case of approximated analytical mode shape, the deection's expression is obtained from a concentrated loading on the free edge, which results in a uniform shear stress along the length of the plate, therefore the shear stress on the contact surface is thus uniform which implies that all the contact nodes will slip and stick at the same time. In this way, a brutal change in dissipated energy is inevitable. Due to the similarity between the two mode shapes, the maximum damping capacity as well as the damping evolution under bigger amplitude are in good correlation. The two curves are perfectly superimposed, it signies that the ctive force eld is shown to have no inuence on the evolution of damping coecient. This is because the ctive force eld applied on the upper and lower plate is the same, which results in a synchronous movement in the two layers, and thus there is no relative displacement between them. In other words, the ctive force eld doesn't contribute to energy dissipation. However according to the theory in the previous section on the von Kármán plate, the hardening/softening eect due to the in-plane stress cannot be neglected.

Conclusion

Being complementary to chapter 1 which provides a preliminary introduction to analytical 1D frictional damping, the current chapter mainly deals with the diculty encountered during the calculation of friction on a 2D plane, notably the sticking-slipping transition mechanism in numerical formulation. Just like the previous chapter, the proposed method is applied on the sandwich plate and von Kármán plate in an academic context. The challenge resides in the extension of friction force from an innite dimension in the width direction to a limited dimension on a 2D plan, it requires that more attention should be paid to the determination of frictional force's direction during the variation of modal amplitude.

Besides, the second-order in-plane force is also an inuential factor in both cases In terms of mode shape approximation, the single mode method is then extended to the multi-mode method which incarnates the notion of nonlinear mode shape.

The participation factor of higher order modes is also a function of the coupling term ψ ij in which the internal force eld as well as the mode shape are embedded.

According to the variation of the participation factors, the nonlinear mode at resonance is thought to be only composed of the rst mode shape when the modal amplitude is relatively small, as the modal amplitude increases, the participation of other modes can be taken into account. As the modal amplitude in industrial applications are all in the linear range of the material, the nonlinear mode shape evolution justies the use of single mode method for damping calculation in real conditions.

The planarization of friction problems by the use of in-plane forces can also be transplanted to the sandwich plate model. Here the initial state of the clamped plate can be considered as one whole piece, at the middle plane of which there exists a ctive friction contact surface. The stress eld on the ctive plane can be obtained by the kinematic of Kirchho-Love plate theory, in this way the variation together with the saturation of the frictional force component in the x and y direction can be expressed as a function of modal amplitude. Due to the non-uniform distribution of the frictional stress eld, the slipping-sticking transition under the rst mode shape is a gradual process. The slipping starts from the encastred edge and propagates to the free boundary. This slipping pattern results in a higher maximum damping capacity, compared to the approximative mode shape used in the analytical model.

In general, the damping obtained from the numerical method are in good correlation with the analytical approach both in terms of magnitude and variation trend. As for the inuence of second-order bending-induced ctive force eld, both plates are under the same excitation eld, so that there is no induced relative displacement and supplementary energy dissipation, the second-order ctive force eld doesn't aect the formation of damping, but its inuence on internal stress eld associated with the assembled structure's stiness cannot be neglected.

The semi-analytical methods on two academic models in the current chapter 108 Chapter 3. Semi-analytical methods of damping modelization deepen the understanding of the formation of friction damping. They not only provide a theoretical framework of the 2D sticking-slipping mechanism, but also justies the feasibility of damping modelization in a quasi-static calculation. Additionally, the study on nonlinear mode conrms the theoretical justication for the use of single mode method in damping calculation at resonance. Nevertheless, we should be aware of the intrinsic limitations in the proposed methods. The nite dierence scheme requires that the calculation domain is structured, even of a rectangular form, which prohibits it to be applied on structures with more complex geometries. Even though the softening-hardening eect is shown for the moment to be just present in von Kármán plate, the same phenomenon must exist in shell structures, where the coupled term ψ ij will be more dicult to be expressed, so as the hardening/softening eect. The extension of the current method to cases with general shapes is the path for future improvement and development. 

The natural frequency of the subsystem can thus be expressed as The natural frequencies of the two systems are far from each other, so there is no interference between them. The amplitude can thus be written as

f n = 1 2π 2k m = 1 2π 2 × 2.

Measurement system

q = 1 ω 2 γ A -γ B . (4.6) 
The vectorial subtraction can be easily achieved by analogous signal operation from channel A and channel B in the numeric oscilloscope, as the peak-to-peak value is extracted automatically. A frequency sweeping is applied to the structure under dierent clamping pressures and shaking intensity, the evolution of displacement obtained will give a clear view of the inuence that the pressure and the modal amplitude has on damping.

Rubber washer's stiness measurement

In order to estimate the damping property, the clamping pressure on the contact interface must be a known parameter. Since the direct measurement of pressure in such a system is a dicult task, an indirect way to assess the compression force is developed. The measured stiness also justies the previous interference verication, the actual stiness is two times bigger than the assumed stiness, which guarantees that the clamping system moves simultaneously with the vibrating plate and maintains the applied pressure.

Clamping pressure's calculation

In order to identify the inuence of clamping pressure, the application of three dierent pressures is planned for the experiment. The total length of the clamping system with zero pressure is the sum of all the components, which gives 18.48 mm. Since the parallelity between the two washers cannot be guaranteed under the tightened bolt, the distance for pressure calculation is the averaged value of three dierent points equally positioned on the washer. Three clamping pressures are applied in the experiment. As the structure has two symmetric clamping pads, the pressure nally adopted is the average value of the two clamps.

The pressures on the left clamp is listed in table 4.4. The movement of the encastre is denoted as U (t) and this motion is uniform for all the points on the plate. The vibration in the local coordinate system is expressed by the product of the rst resonance mode shape and the modal coordinate q i (t)φ i (x, y). The dynamic equilibrium of a plate can be written as ρ ẅ(x, y, t) + D∆ 2 w(x, y, t) = q(x, y, t)

(4.9)
where ∆ is Laplacian operator whose dierential operation is equivalent to ∆ = ∇ 2 . D is bending rigidity of the plate given by D = Eh 3 /12(1 -ν 2 ).

Write the displacement eld in the modal synthesis form w(x, y, t) = n i=1 q i (t)φ i (x, y) + U (t). The modal force in this case can be regarded as the inertia force introduced into the system by the moving encastre. In order to trace the frequency-response curve, the modal force should remain constant. The expression 4.13 indicates that the acceleration of point B should remain constant for all the sweeping frequencies.

n i=1 qi (t)φ i (x, y) + D n i=1 q i (t)∆ 2 φ i (x, y) = -ρ Ü (t).

Alternative method for damping identication

An alternative calculation method of damping value is proposed in the current section. It is based on a curve-tting method with a simplied mass-spring dynamic model, as illustrated in gure 4.11. The bolted clamps are assimilated to two lumped masses m A , the stiness of the plate is simplied as k A . The mass and stiness of the shaker is denoted as m B and k B . The mass and stiness matrix of the system can be respectively written as

M =   m A 0 0 0 m B 0 0 0 m A   , (4.14) 
and

K =   k A -k A 0 -k A 2k A + k B -k A 0 -k A k A   , (4.15) 
with k 1 = 12EI/l 3 , l is the distance from the clamp to the excitation point, I is the rotation inertia of the rectangular cross section expressed by bh 3 /12. The known mass m 1 = 50 g. The parameters m 2 and k 2 are still unknown. If hysteresis damping is taken into account by the complex stiness coecient iη, we can express the displacement vector in modal coordinates with mode shapes normalized to the mass matrix. The modal coordinates can thus be solved as

q i = f i -ω 2 + ω 2 i (1 + iη) . ( 4 

.16)

Since the model amplitude is obtained in a dierential system as expressed by equation 4.6, special attention should to paid to the modal force when tracing the frequency-response curve. The dynamic equilibrium of the mass m A can be written in the following way.

m A üA + k A (u A -u B ) = 0 (4.17) Since the displacement dierence u A -u B is the studied parameter, it is possible to rewrite equation 4.10 in terms of Y = u A -u B . m A ( üA -üB ) + k A (u A -u B ) = -m A üB m A Ÿ + k A Y = -m A üB (4.18)
In order to maintain a constant excitation force with an unchangeable m A , the acceleration on mass m B should remain constant, i.e. the acceleration of point B in gure 4.5 is constant for all frequencies in the sweeping. The inertia force -m A üB can be regarded as a constant ctive excitation force applied on the lumped mass A in the dierential system, which gives the same requirement on excitation force as in equation 4.13.

Experiment results

In order to trace the frequency-response curve, a frequency sweeping from 20 Hz to 70 Hz with an increment of 1 Hz was applied on the structure. To maintain the constant modal force, the acceleration on the excitation point was adjusted to the same level for each frequency. The objective of the current study is to reveal the relationship between modal amplitude and hysteresis damping, to this end the structure was excited under 7 accelerations from 20 to 80 m/s 2 with an increment of 10 m/s 2 .

The response curve for the case of 4.35 MPa is illustrated in gure 4.12. The resonance frequency is within the realm between 40 Hz and 50 Hz, which is in correlation with the preliminary numerical simulation with zero friction and innite friction in table 4.2. The curves show that the resonance frequency decreases with an increase in modal amplitude, this phenomenon can be explained by the intuition that under small modal amplitude, the sticking phase is dominant during one complete cycle, so that the participation of stiness under the conguration of two sticked plates is bigger, the overall stiness is thus higher. However under big amplitude, the slipping phase is more dominant, the whole structure behaves more as two separate plates whose stiness is much lower, in this way the resonance frequency will decrease. This can be explained by the fact that under the real working condition, dierent from the hypothesis used in the theoretical model, all the points on the contact interface don't slip simultaneously. Some points slip earlier than other points and thus create the partial-slip working condition. Even though not all the points are in the slipping phase, the energy dissipated by the slipping points cannot be neglected, so that the damping appears with a smaller amplitude.

The analytical model requires that slipping takes place when the tangential stress reaches saturation for all the contact points, this naturally leads to a bigger amplitude to trigger damping.

However, due to the limited power of shaker and the security concern to keep the specimen within the range of rupture, the sandwich plate was not excited to reach the maximum damping, nevertheless, the damping evolution presented by the experiment is in good correlation with the theoretical model: before achieving the damping saturation amplitude, the damping value grows as the amplitude increases. the damping is activated. The amplitude required for maximum damping is also logically increased, so that it can be concluded that bigger clamping pressure will result in a later damping activation, and make the reaching of maximum damping more dicult.

Even though the general damping variation presents the same tendency in both 124 Chapter 4. Experiment experiment and analytical derivation, the gap between the two demonstrations are still very large. This error can be contributed by multiple uncertain and uncontrollable parameters. In the real condition, the pressure on the plate is not uniform under the clamping pad, the coecient of friction is not well measured, and the inuence of contact roughness and atness is not taken into account in the analytical development. All these parameters can cause huge dierent between experimental verication and theoretical calculation.

Conclusion

The current section is the experimental verication of the previously developed theories. An academic set-up was designed to quantify the st-order frictional damping in sandwich plate. In order to minimize the inuence of encastre xation, a symmetric structure whose excitation point is situated in the middle was adopted.

Since the structure can be assimilated to a seismic system, a constant modal force was guaranteed by maintaining a constant acceleration on the excitation point.

Due to the vibrating encastre boundary condition, the absolute modal amplitude in the moving coordinate system was expressed by a subtraction of the two temporal acceleration signals. Three clamping pressures were applied on the sandwich plate to identify its inuence on damping activation point. The clamping pressure was derived in an indirect way from the squeezed distance of rubber washer and the measured stiness in the compression test. The error due to the non-atness was compensated by an averaging of three points on the washer. For each clamping pressure, dierent excitation levels were tested to illustrate the variation of damping ratio as a function of modal amplitude.

The frequency-response curves obtained show that the vibration behavior of sandwich plate is strongly nonlinear, the compounded stiness is sensitive to modal amplitude. For small modal amplitude, the sandwich plate behaves like two stickedtogether plates, as the amplitude increases, the stiness decreases by reason of a more dominant role that the slipping phase plays during the vibration. The experimental results also indicate that the optimal clamping pressure to reach the most damped state depends on the excitation level applied on the structure, the optimal clamping pressure under one modal force may not work for the other. By comparing the experimental results and the analytical models, two frictional damping properties can be conrmed:

• Before reaching the maximum damping value, the damping value increases with the modal amplitude.

• Bigger clamping pressure requires bigger deformation to activate damping and to reach maximum damping capacity.
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Even though there presents a certain correlation between experiments and theoretical predictions, the gap separating them cannot be neglected. This is due to the accumulated error in the evaluation of coecient of friction, clamping pressure and contact surface area. The gap can be minimized if a more sophisticated and feasible measurement method for those parameters is introduced into the test.

Introduction

The design of fatigue endurance is a critical step in product development, especially for automobile and aeronautical industry. A key parameter in fatigue calculation is the stress eld in the component, which depends on the displacement's amplitude in vibration, so that an accurate vibrational analysis is the prerequisite for a reliable fatigue design. In the current industrial vibration analysis, the empirical modal damping property is assumed viscous and dependent on speed. For certain cases with the presence of assembled structures, the obtained response with viscous damping doesn't match the experiment. According to the study in chapter 1 and 2, this inconsistency can be explained by the biased understanding of damping property.

In assembled structures, there is no only viscous material damping which depends on speed, but also friction-induced damping from the contact surfaces which depends on displacement, the latter may even be 10 to 100 times more dominant. In this section, the modelization method for friction damping in industrial context will be developed from the concept expressed by academic methods, its application method and limitations will be explained.

Mode shape injection method

Frictional damping is thought to be sensitive to mode shape and modal amplitude.

As previously demonstrated on the model of von Kármán plate, the single mode description of the displacement qφ(x, y) can be transformed into a in-plane ctive force eld as external excitation and it is thus possible to establish the dependency between mode shape and damping ratio.

In the case of sandwich plate, the displacement eld is transformed into a mid-plane stress eld which is then used for the determination of sticking-slipping transition, the relationship between the modal amplitude and the damping ratio can also be obtained by this procedure, hence it is justiable to infer that the key method to be extracted from the two academic examples is that the modal displacement eld should be transformed into some kind of external excitation to generate relative displacement on the contact surface. The induced dissipated energy can be regarded as the damping property of the chosen mode shape.

In real industrial applications, it is dicult to apply the notion of in-plane ctive force eld since the contact surface may not be at and of regular form, so in this case, we propose that the mode shape could be used as an imposed displacement eld to generate interface slipping. The clamping pressure can be applied in the prestress step and maintained in the following steps. The illustration of this general idea is presented in gure 5.1. It should be noted that the clamping pressure on the upper plate has no contribution to the contact pressure, since its inuence is canceled by the imposed displacement on lower adjacent nodes, the contact pressure is only provided by the lower clamping pressure and is transmitted to the contact surface via the lower plate. Before presenting the solution procedure, two hypothesis are adopted in the industrial application. Firstly, as demonstrated in the experiment, the presence of friction and change in modal amplitude will not result in a drastic modication in resonance frequency and mode shape, accordingly it is reasonable to consider that the mode shape stays constant for all clamping pressures and modal amplitudes, in this way the implementation of single linear mode method is justied. Secondly, the vibration amplitude are considered small compared to the feature size of the 5.2. Mode shape injection method 129 structure, thus the normal vector on the contact surface can be regarded as anchored and unmovable to the initial conguration.

(a) Mode shape applied on contact nodes (b) Mode shape applied on internal nodes (

There are two methods for mode shape injection:

1. The mode shape is only projected on the normal direction of contact surface and imposed on contact nodes, as illustrated in gure 5.2a, the mode shape displacement of point A AA is projected in the direction of n A .

2. The mode shape is directly applied as imposed displacement on all nodes except those on contact surface and xed by encastre boundary condition, as illustrated in gure 5.2b.

According to the requirements of the two proposed methods, the imposed displacement is applied to the corresponding DOF by ABAQUS TM subroutine DISP.

U i = U mode .

(5.

2)

The reaction force f t at a given instant t on the contact nodes can be used for obtaining modal force.

qU i T f t = qf modal =⇒ f modal = U i T f t , (5.3) 
where the modal force obtained corresponds to the modal amplitude q. The objective of the current section is to nd the relationship between the mode shape and the energy dissipation, as well as its graphical illustration the form of hysteresis loop. For the convenience of uniform amplication, the mode shape is normalized to displacement, i.e. the biggest value in a mode shape is normalized to 1.

(a) Mode 1 of at plate (b) Mode 2 of at plate On the subject of friction property, the coecient of friction is 0.3, a hard contact is used in the normal direction. As the Coulomb friction law is to be adopted in the current study, the contact elastic slip is suppressed by imposing an admitted elastic sticking distance which is equivalent to 1e-5 of the characteristic element dimension. In addition, the separation after contact is allowed. Similar to the previous chapters, the calculation is quasi-static with nonlinear geometry. Two loading cycles are applied on the structure, as expressed in equation 5.4, in order to reveal the dierence in response between the rst loading and the second loading, q = q max sin(2πt), t ∈ [START_REF] Merlette | Amortissement des caisses automobiles par des lms minces viscoélastiques pour l'amélioration du confort vibratoire[END_REF]3] (5.4) where t is the step time.
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Before studying the hysteresis property in at plate, it is necessary to compare the two mode shape injection methods with regards to dissipated energy. If the obtained dissipated energies are of the same magnitude, the two methods can be considered as equivalent. The comparison of the two proposed methods are presented in gure 5.5, the red line corresponds to the method in which the mode shape is imposed on all non-contact nodes in the x and y direction. The blue line corresponds to the case where the mode shape is only projected in the normal direction of the contact surface and applied only on the contact nodes. As indicated in the gure, the case with loading on non-contact nodes has more energy dissipation, but the two methods can be regarded as having the same eect on damping generation. Considering the diculty in normal vector calculation in case of curved contact surface, the mode injection on non-contact nodes has less limitations and is easier to be applied on complex geometries. In the following study cases, the mode shape is only applied on internal nodes. The hysteresis loop in gure 5.6a shows that global stiness is a function of modal amplitude. When the two plates are sticked together under small modal amplitude, the stiness is bigger with a steeper slope on the hysteresis curve. As the modal amplitude reaches 0.2, we can notice a signicant stiness drop which implies the beginning of slipping. From the gure 5.6b, we can notice that the slipping arrives later under a bigger clamping pressure, this observation is in correlation with the previous analytical studies. This reduced stiness will be maintained until the turning point of modal amplitude, on which the structure reenters into the sticking phase and the stiness regains its value at the beginning of the loading.

When the modal amplitude reaches the end of one loading cycle, structure will not reenters into sticking, but keeps the stiness of slipping phase and starts a new cycle.

The hysteresis loops of second mode are illustrated in gure 5.7a and 5.7b. The much bigger modal force compared to the rst mode squeezes the hysteresis loop to a curved line, however it doesn't mean that there is no energy dissipation. ing and slipping makes that the evolution is stepwise. In addition, by comparison between the two gures, it is evident that the sticking phase takes a bigger proportion in one cycle under the rst mode shape, however its resulting modal force is smaller than that of the second mode under the same modal amplitude. The evolution of dissipated energy also reveals that bigger clamping pressure will result in more dissipated energy and a later slipping activation, but for transition from slipping to sticking during the shift from loading to releasing, both gures show that clamping pressure has no inuence on this transition moment, the slipping always stops at the same amplitude whatever pressure is applied. This observation is valid for both mode shapes. 

∆W =

T 0 f (q)dq ≈ 2

T /2 0 f (q)dq.

(5.5) Figure 5.9: Energy dissipation on hysteresis loop

The mode shape injection method is tested with success on the at innite plate, the impose of mode shape on non-contact nodes is shown to be able trigger slipping and sticking transition on the contact surface as well as its subsequent energy dissipation. This transformation of linear mode shape into contact nodes' excitation is an applicative embodiment of damping formation from a modal view. The energy dissipation, or the corresponding damping property, is directly associated with the mode shape together with its amplitude, from which the modal nonlinear friction damping can be established. The next section will deal with the damping property of a structure with a slightly more complex geometry.

Application on innite curved plate

One of the diculties in damping modelization is the involvement of complex geometries, curved surface may suggest non-convergence of the calculation. This section will test the robustness of mode shape injection on an innite plate with an arbitrary curvature. The same with the at plate, the mesh in the thickness direction also has three layers of elements. The plane strain thickness stays 30 mm. The hysteresis loops under the excitation of rst and second mode shape are respectively traced in gure 5.12a and 5.12b. The same with the at plate, the resulting modal force associated with the second mode is much bigger, so that the hysteresis loop is squeezed to a curved line. We also notice that clearance may be created during the loading when the clamping pressure is not big enough. As regards the accumulation of dissipated energy, the stepwise evolution can also be noted on curved plate in gure 5.13a and 5.13b. Similar to the case of at plate, the dissipated energy induced by second mode shape is bigger than that of the rst mode. The sticking-slipping transition under the pressure of 0.2 MPa is not obvious in both mode shapes, especially in the second mode, this may be caused by the contact separation due to weak clamping pressure. Based on the test in the current section, the mode shape projection method is shown to be operational on 2D structure with curved contact interface. It is thus prepared to be extended to a 3D structure with more complex mode shapes and contact conditions.

Application on 3D structure

In order to approximate the geometry in real industrial applications, the mode shape injection method should be tested on 3D structures meshed by hexahedral elements.

The geometry of the test model is illustrated in gure 5.14a and 5.14b. The structure is created by extrusion of the cross section to a length of 100 mm. The blue surface is an analytical rigid plane for contact with the green deformable body. In the ABAQUS TM modeling, the rigid surface must be dened as master surface in the contact modelization. The mode shape to be injected is illustrated in gure and it is only applied on the upper skin for the purposed of calculation time reduction. In the current analysis, the mode shape is normalized to displacement for convenience, but for the response calculation in the frequency domain, the mode shape should be normalized to mass matrix. A sweeping of maximum physical displacement from 0 to 2 mm is applied on the structure, the energy dissipation versus physical amplitude presents the characteristic of rst order damping. By the use of curve tting, the expression of energy dissipation in terms of q can be expressed with 95% condence bounds as ∆W = f (q 2 , q) = aq 2 + bq = 0.05873q 2 -0.1725q.

(5.6)

The damping ratio can thus be written as η(q) = 1 2π ∆W E max ≈ 0.05873q 2 -0.1725q πω 2 (q/q max ) 2 .

(5.7)

where q max is the coecient between the mode shape normalized to mass and the mode shape normalized to displacement.

φ(x, y, z) mass = q max φ(x, y, z) displacement . The equation 5.7 indicates that the damping pressure is not only a function of modal amplitude, but can also be inuenced by resonance frequency ω. The weak damping ratio in the current case is due to a very high st resonance frequency which is 255.09 Hz. The η -q curve in gure 5.16b shows that damping ratio will converge to a constant for big modal amplitude.

Conclusion

The current chapter has proposed an operational method for damping modelization in the industrial context. The method is based on the assumption that the mode shape doesn't encounter signicant change compared to linear mode shape with the presence of friction contact. According to the conclusion in Chapter 3 that friction damping is associated with the mode shape and modal amplitude, the mode shape is thus regarded as external excitation to generate contact slipping. The structure is deformed under the pressing of the imposed displacement in the direction of mode shape, the induced energy dissipation on the contact surface implies the damping property associated with the chosen mode shape. From the numerical experiment on 2D sandwich plate, it is found that the choice of DOFs on which the displacements are imposed can inuence the energy dissipation. It is recommended to apply the mode shape on internal DOFs in order to avoid the interference with the applied clamping pressure on contact DOFs. The results on 3D structures presents a second-order damping behavior under the excitation of the rst mode shape, the energy dissipation can be expressed in an semi-analytical way based on the energy dissipation in the FEM calculations. For complex structures, it is not possible to determine the order number of energy dissipation beforehand, a modal amplitude sweeping is necessary to trace the η -q curve.
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 515 Figure 1.5: Hysteresis loop in terms of stress and strain
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 108 When F versus x curve plotted, it represents a closed loop, the area of the loop denotes the energy dissipated by the damper in a cycle of motion and is given by ωt + cXω cos ωt) (ωX cos ωt) dt = πωcX 2 .(1.11) 
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 17 Figure 1.7: Energy balance in a damped system
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 23101 Substitute equation 1.23 into equation 1.19 and suppose that πη 1, Introduction δ = ln(1 + πη) ≈ πη.
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 117 Figure 1.17: Pinned-pinned beam with sliding constraint
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 39 Note that N x is constant with respect to time except when u(x = l) = 0, the time derivative of equation 1.38 is expressed by u(x = l) +

(1. 40 )

 40 The sign of the two sides of equation 1.40 should be the same, sign[ u(x = l)] = -sign
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 118 Figure 1.18: Damping study on von Kármán plate
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 119 Figure 1.19: Damping study on sectioned beam and its result

  N are Boolean matrices that capture coincide pairs of physical DOFs. The tangential force is a function of relative displacement x rel = B 1 T x 1 -B 2 T x 2 and tangential contact stiness k T .
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 21 Analytical modelization 2.2.1.1 Model for perfect surface Sandwich beam is a commonly used structure in damping studies. The model used in this section is illustrated in gure 2.1 on page 30. Two identical beams are superimposed one on another with a frictional contact interface between them, on which the Coulomb's law is used as friction property. A uniform clamping pressure is applied to both upper and lower surface of the assembled structure.
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 21 Figure 2.1: Sketch of jointed sandwich beam
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 22 Figure 2.2: Free body diagram of the sandwich beam
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 23 Figure 2.3: Partially clamped beam
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 25 Figure 2.5: Inuence of coecient of friction on damping ratio
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 27 Figure 2.7: Inuence of clamping pad's position on damping ratio
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 28 Figure 2.8: Inuence of clamping pad's area on damping ratio
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 2422 D plane strain element with which the inuence in the width's direction can be ignored. The welding points are uniformly distributed on the contact plan and the point pairs from the upper and lower contact surface are constrained to have the Phenomenological study of friction damping same in-plane displacement. Dierent welding point numbers are tested and their inuence on energies and damping ratio are illustrated as below. (a) Dissipated energy (b) Stocked energy
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 29 Figure 2.9: Inuence of welding points number on dissipated and stocked energy
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 210 Figure 2.10: Inuence of welding points number on damping ratio

  (a) Dissipated energy (b) Stocked energy
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 211 Figure 2.11: Inuence of thickness ratio on dissipated and stocked energy
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 212 Figure 2.12: Inuence of thickness ratio on damping ratio

  Macroscopic geometric defaults due to machining imperfections cannot be ignored in damping calculation. The current and the next section are dedicated to the inuence of macroscopic geometric default on damping formation. The defaults are modeled as protrusions only on the lower part of the contact interface as illustrated in gure 2.13. The protrusions are dened by splines whose curvature can be xed by its horizontal interval and height. Given the number of protrusions, the height is the only variable that modies the spline's curvature. In the current study, only one protrusion is modeled on the lower surface and the inuence of 6 dierent heights are studied. The clamping pressure is xed at 0.1 MPa.
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 213 Figure 2.13: Illustration of protrusions on contact surface
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 214 Figure 2.14: Inuence of protrusion's height on dissipated and stocked energy
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 215 Figure 2.15: Inuence of protrusion's height on damping ratio

  (a) Dissipated energy (b) Stocked energy
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 216 Figure 2.16: Inuence of protrusion's number on dissipated and stocked energy

  also slipping distance can contribute to damping modications. Since boundary conditions can have inuence on slipping distance, the changes in boundary conditions at the free endpoint will inevitably modify the damping characteristics. Compared to the original free endpoint control conguration, an endpoint locking which implements a displacement equivalence at the endpoint is applied as the treatment conguration. The dissipated and stocked energy are respectively illustrated in gure 2.18a and in gure 2.18b.(a) Dissipated energy (b) Stocked energy
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 218 Figure 2.18: Inuence of endpoint locking on dissipated and stocked energy
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 219 Figure 2.19: Inuence of endpoint locking on damping ratio
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 220 Figure 2.20: Sketch of rotational damping beam

Figure 2 . 21 :

 221 Figure 2.21: Decomposition of slipping state in rotational damping
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 3222 Figure 2.22: Inuence of pressure on rotational damping
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 223 Figure 2.23: Inuence of clamping pad's radius on rotational damping
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 2224 Figure 2.24 illustrates a plate under large deection. The surface CAB denes the undeformed position and the surface C A B denotes the deformed state. When the plate is deformed from position CAB to position C A B , the innitesimal segment AB = dx in the middle surface will move to A B . If the strain is truncated to the second order, the strain ε x produced by large deection in the x direction can be written as
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 225 Figure 2.25: Sketch of boundary friction model

  shrinking movement. Dierent from the kinetics in the sandwich plate, where every slipping point can return to its original position in one cycle, the slipping boundary in von Kármán plate cannot be restored to its starting point, this is one of the main features of the current second-order damping model. The temporal behavior of the slipping point can be expressed by analytical method. The boundary movement in the stable state can be divided into four phases: sticking-slipping-sticking-slipping.
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 2262322 Figure 2.26: The position of phase 1

  displacement u(L) = -µpSL EA .If the modal amplitude continues to increase, the tangential frictional force will reach the maximum value µP S that the clamping pressure can provide, in this case the tangential force is saturated to the maximum friction force and the clamped point starts to slip. During this slipping phase, the friction force is maintained in its previous direction and points to the right.
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 227 Figure 2.27: The position of phase 2
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 228 Figure 2.28: The position of phase 3
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 229 Figure 2.29: The position of phase 4

Figure 2 . 30 :

 230 Figure 2.30: Slipping boundary trajectories under 3 dierent pressures
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 23122 Figure 2.31: Inuence of clamping pressure on damping ratio
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 4232 Figure 2.32: Inuence of coecient of friction on damping ratio
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 233 Figure 2.33: Inuence of contact area on damping ratio
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 31 Figure 3.1: Mesh for nite element method and derivatives calculation
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 32 Figure 3.2: Derivatives comparison between FDM and analytical expression
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 3 15b) At the initialization step of the calculation, all boundary DOFs who have potential to slip are blocked. The trial reaction friction forces (N B ) of step t + 1 are evaluated from the previous step's displacement. w = qφ(x, y).

  Semi-analytical methods of damping modelization Equation 3.26 becomes-ω 2 qe iωt + ω 2 i qe iωt -ψ ii (t)qe iωt = f e iωt .(3.30)By equating the imaginary part of equation 3.30
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 33 Figure 3.3: Clamped-clamped plate model
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 3 Semi-analytical methods of damping modelization to the theory of single mode method, only the rst linear mode is retained for the calculation of ctive force eld. The clamped boundary condition can be assimilated to an innite coecient of friction.

Figure 3 . 4 :

 34 Figure 3.4: Finite element model of clamped-clamped plate

  The analytical mode shape's in-plane ctive force eld obtained from equation 3.8 is presented in gure 3.5. The DOFs on the middle line x = 300 mm is in equilibrium from the left and the right force eld. However the DOFs on the line x = 150 mm and x = 450 mm are in compression. The non-dependence of the y direction results in a eld that is exactly parallel to the x axis. The in-plane ctive force eld engenders a non-uniform stress eld in the plate, which generates a dierent ψ at each modal amplitude increment. After the temporal integral in equation 3.33, the hardening factor λ can be obtained. The damping factor is calculated from energy dissipation in equation 3.37.
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 35 Figure 3.5: Fictive force eld from the rst mode
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 36 Figure 3.6: Comparison of nonlinear term R(N i , φ i ) between analytical and numerical method
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 37 Figure 3.7: P si ii obtained by analytical and numerical method
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 38 Figure 3.8: λ obtained from analytical and numerical solution
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 39 Figure 3.9: Fictive force eld of the rst mode shape
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 311 Figure 3.11: Frequency response curve under three dierent modal forces
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 312 Figure 3.12: Rectangular plate with one slipping boundary
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 3 Figure 3.13: Trajectories comparison
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 2314 Figure 3.14: Average frictional force and displacement on the slipping eda
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 315 Figure 3.15: Comparison of nonlinear term R(N i , φ i ) between sticking and slipping phase
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 316 Figure 3.16: Comparison of nonlinear term ψ ii between sticking and slipping phase
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 317 Figure 3.17: λ and η versus modal amplitude
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 318 Figure 3.18: Frequency response curve with one slipping boundary

  composition. The three linear modes retained here are all symmetric and are listed in gure below. The corresponding frequencies are respectively 30.86 Hz, 88.45 Hz and 98.19 Hz. The second and third mode are very close together.
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 2319 Figure 3.19: The three retained linear modes
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 3320321 Figure 3.20: Rectangular plate with non-uniform clamping pressure
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 2 [START_REF] Earles | Theoretical estimation of the frictional energy dissipation in a simple lap joint[END_REF] Multi mode method with half slipping boundary A drastic way to break boundary condition symmetry is to completely remove the lower part of the clamping pad. This modication changes not only force conditions, but also liberates the lower part DOFs in the linear mode calculation. The clamping pressure in this example is xed at 2 MPa.
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 2322323324 Figure 3.22: Rectangular plate with half slipping boundary
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 325 Figure 3.25: Participation factors with half slipping boundary
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 326 Figure 3.26: Inuence of mode shape change on λ and η evolution
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 327 Figure 3.27: Excitation force position on the plate
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 328 Figure 3.28: Inuence of mode shape change on frequency response
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 329 Figure 3.29: 3D sandwich model
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 330 Figure 3.30: Shear stress on contact interface
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 331 Figure 3.31: Shear stress eld on contact interface
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 3222 Figure 3.32: Displacement components
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 3333 Figure 3.33: Fictive force eld of rst mode in sandwich plate
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 34 Figure 3.34: Displacement components
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 335 Figure 3.35: The evolution of slipping state with the increase in modal amplitude
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 3336 Figure 3.36: Slipping state at q = 5
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 3337 Figure 3.37: η evolution obtained by numerical and analytical methods
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 3 Figure 3.38: η evolution under real numerical and approximated analytical mode shape
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 3 Semi-analytical methods of damping modelization 3.3.6 Inuence of second-order ctive force eld Like in any plate in bending, the in-plane force induced by transverse displacement can be regarded as an exterior excitation force, even though its inuence is of second-order. Two calculation cases with and without second-order force eld are superimposed in gure 3.39 to analyze the role of ctive force eld on sandwich plate.

Figure 3 .

 3 Figure 3.39: η evolution with and without second-order ctive force eld

3. 4 .

 4 Conclusion 107 and is analyzed in the current study. The second-order damping induced by ctive force eld is treated in the rst place. It is shown that the ctive force eld is a function of spatial derivatives of the transverse displacement w. Due to the discretized form of the calculation domain, the derivatives are evaluated by nite dierence method. The non-linear term in the von Kármán plate equation couples together the in-plane force and the mode shape, its inuence can be reected by the change in stiness and damping property after the transformation to the frequency domain and the treatment of the HBM method. Since the internal stress eld is sensitive to boundary conditions, a small modication on the boundary nodes can result in a drastic change in hardening/softening eect as well as the damping property of the whole structure.
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 42 Figure 4.2: Optimal position for maximum damping at q = 1 mm
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 432 Figure 4.3: Finite element analysis of specimen
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 44 Figure 4.4: Mechanical model of subsystem

7 ×

 7 106 N/m 0.05 kg = 1654 Hz.

Figure 4 . 5 :

 45 Figure 4.5: Measurement system set-up
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 46 Figure 4.6: Measurement system set-up
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 4 Rubber washer's stiness measurement 115 (a) Test machine (b) Rubber being compressed
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 4748 Figure 4.7: Rubber washer's stiness measurement
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 49 Figure 4.9: Rubber washer's stiness measurement
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 6 Dynamic model of seismic systemSince the encastre point B is connected to the shaker and is in constant vibration, the system in gure 4.5 can be interpreted by a dynamic seismic model.
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 4 Figure 4.10: Seismic system
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 410 Substitute equation 4.10 into equation 4.9 with zero exterior force, we can get

  ρ

( 4 . 11 )

 411 By using Ritz-Galerkin method with the normalized orthogonal mode shape to the mass, multiply equation 4.11 with mode shape φ i (x, y) and integrate over the whole calculation domain, the minimized error function can be expressed as Ω D∆ 2 φ i (x, y)φ i (x, y)dsq i (t) + Ω φ i (x, y)ρφ i (x, y)ds qi (t) = -Ω ρφ i (x, y) Ü (t)ds

  ) + ω 2 q i (t) = -Ω ρ Ü (t)φ i (x, y)ds.
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 411 Figure 4.11: Dynamic mass-spring model
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 412 Figure 4.12: Frequency response curve under 4.35 MPa
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 4132 Figure 4.13: Frequency response curve under 2.74 MPa and 0.67 MPa

  (a) Responses under α = 20 m/s 2 (b) Responses under α = 60 m/s 2
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 414 Figure 4.14: Frequency response curve under 2.74 MPa and 0.67 MPa

  If the damping value variations under the three dierent pressures are superimposed on the same gure, the evolution tendency revealed by the analytical model are proved to be reected by experimental results.(a) Experimental results (b) Analytical results
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 416 Figure 4.16: Theory-experiment comparison under three dierent pressures
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 51 Figure 5.1: Illustration of the load case for industrial application
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 52 Figure 5.2: Mode shape injection methods
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 5 Methods for industrial application5.3 Application on innite at plateIn order to test the feasibility of the proposed method while keeping a short calculation time, the mode shape injection is in the rst place applied on an innite at plate. The dimension in the width direction is considered innite and only the dimension in the length and thickness direction is modeled. The plate is 200 mm in length and 5 mm in thickness, three layers of elements are meshed in thickness direction for a better precision of clamping pressure. The plane strain thickness is xed at 30 mm.
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 57 Figure 5.7: Hysteresis loops of second mode
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 1258 Figure 5.8: Accumulated energy dissipation of mode 1 and mode 2
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 510 Figure 5.10: Mesh on curved plate
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 4511 Figure 5.11: Mode shapes of curved innite plate
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 2513 Figure 5.13: Accumulated energy dissipation in curved plate

  (a) Sketch of the model's cross section (b) 3D representation of the modal
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 514 Figure 5.14: Geometry of the 3D model
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 5515 Figure 5.15: Mode shape and imposed displacement region
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 8 Figure 5.16: Mode shape and imposed displacement region
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Table 2 .

 2 .2.2 Analytical parametric studiesThe beam's dimensions and mechanical properties used for numerical calculations are listed in table 2.1. The analytical parametric studies focus mainly on the inuence of clamping pressure, coecient of friction, contact area's size as well as it's position. Since the purpose of the study is to nd out the relationship between modal amplitude and friction damping, in each tracing the horizontal axis set to be the sweeping amplitude and the vertical axis to be the corresponding damping ratio. The dimensions used in the current study are listed in table 2.1.

	.36)

cate too much the expression. The study on thickness ratio will be conducted by numeric method in the following sections. 21: Beam dimensions and mechanical properties 2.2.2.1 Inuence of pressure

  The calculation is based on equation 2.36 where the pressure is xed at 0.3 MPa and the length of clamp is xed at 50 mm. A sweeping in modal amplitude

from 0 to 8 mm is conducted. The inuence of clamping pad's position is illustrated in gure 2.7.
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	ε x =	∂u ∂x	+ z	∂ 2 w ∂x 2 +	1 2	∂w ∂x	2				(3.2a)
	ε y =	∂v ∂y	+ z	∂ 2 w ∂y 2 +	1 2	∂w ∂y	2				(3.2b)
	ε xy =	1 2	∂u ∂y	+	∂v ∂x	+ z	∂ 2 w ∂x∂y	+	∂w ∂x	∂w ∂y	.	(3.2c)
	By using Hooke's law which establishes the relationship between stresses and
	strains											

  3.2. Damping induced by second-order bending strain in von Kármán plate 73The left boundary of the plate is encastered and the right boundary can be regarded as a pin but with blocked rotation to the y axis, it is due to the fact that the clamp can limit the rotation of the nodes under pressure. The spatial

	derivatives can be expressed by neighboring nodal values with nite dierence
	schemes.		
	The nodal derivatives with dierent boundary conditions can be expressed by
	the schemes in table below. The schemes for second order derivatives are presented
	in Appendix A. The upper and lower free nodes are respectively designated by red
	and blue line, the nodes under friction contact are marked by yellow line.
		∂w	∂w
		∂x	∂y
	Encastre	0	0
	Friction	0	0
	Upper free nodes		

  .31) Since ψ(t) is also a function of time t, the sin ωt cannot be eliminated from equation 3.31 directly. The use of Harmonic Balance Method requires decomposition of the term ψ(t) sin ωt into two harmonic components, -ψ ii (t) sin ωt = ψ iic cos ωt + ψ iis sin ωt,

		(3.32)
	where	
	θ = ωt	(3.33a)
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	Chapter 4
	Experiment
	Contents
	3.1 4.1 Introduction
	In order to verify the exactitude of the theory proposed in the phenomenological
	study, a partially clamped sandwich beam with symmetric geometry is adopted
	in the experimental study. The design of the specimen is based on the analytical
	modelization in equation 2.36. Modal amplitude is measured by two captors in a

Table 4 .

 4 The distance between the two washers is measured by a micrometer. The thickness of each component is listed in the table 4.3.

		Two plates	Metallic washer	Rubber washer
	Thickness (mm)	3.98	1.86	5.39

3: Components' thickness

Table 4 .

 4 4: Pressures on the left clampThe pressures on the right clamp is listed in table 4.5.
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	Case	H 1 (mm) H 2 (mm) H 3 (mm) Aver.H (mm) Force (N) Pressure (MPa)
	1	17.710	17.685	17.739	17.710	3661	4.06
	2	17.996	17.960	17.920	17.960	2472	2.75
	3	18.391	18.407	18.460	18.420	285	0.30
	Case	H 1 (mm) H 2 (mm) H 3 (mm) Aver.H (mm) Force (N) Pressure (MPa)
	1	17.719	17.501	17.576	17.600	4184	4.64
	2	18.02	17.99	17.879	17.963	2458	2.73
	3	18.458	18.204	18.166	18.280	950	1.05

Table 4 .

 4 5: Pressures on the right clampThe three dierent clamping pressures adopted are the average value of the right and the left clamp.

		Case 1 (MPa)	Case 2 (MPa)	Case 3 (MPa)
	Pressure	4.35	2.74	0.67
		Table 4.6: Pressures chosen	

Déterminer la durée de vie d'une pièce sous excitation vibratoire est l'un des enjeux majeurs dans l'ingénierie mécanique. An de donner une estimation able de la durée de vie, un calcul correct de champ de contrainte, qui est fortement lié à la forme et l'amplitude modale est obligatoire. Cependant, le calcul de réponse d'une structure assemblée est dicile, surtout avec la présence de frottement sec aux interfaces de liaisons qui entraine un amortissement non linéaire. La recherche de la thèse commence par une identication phénoménologique de l'amortissement induit par le frottement sec avec 3 modèles analytiques, notamment la plaque sandwich, la rotule frottante et la plaque von Kármán. Après la caractérisation de l'amortissement structural au 1er et 2ème ordre, les inuences des paramètres comme la pression de serrage, le rapport d'épaisseurs ainsi que le nombre de soudures sont analysés. La deuxième partie des travaux traite les problèmes d'amortissement avec une géométrie de dimension nie. La plaque de von Kármán est reprise dans l'étude et une méthode hybride de diérences nies et d'éléments nis est adopté pour résoudre le couplage entre la exion et les eorts internes. Une attention particulière est portée à la notion de modes non linéaires dans le cas de la plaque von Kármán. Les conditions nécessitant l'introduction de modes non linéaires sont identiées. Le champ de force ctif qui est proposé dans l'étude sur la plaque von Kármán est ensuite introduit dans le cas de la plaque sandwich. Puis la propagation de glissement et l'inuence de champ ctif sont étudiées. An de vérier les phénomènes trouvés dans les études théoriques, une installation expérimentale est conçue et montée pour l'amortissement structural au premier ordre. Dans la dernière partie qui est basée sur les observations faites dans les études précédentes, une méthode de calcul de l'amortissement dans un environnement industriel est proposée. Cette méthode permet de donner un amortissement pour chaque mode isolé.

2.14 Inuence of protrusion's height on dissipated and stocked energy . .

2.15 Inuence of protrusion's height on damping ratio . . . . . . . . . . .

2.16 Inuence of protrusion's number on dissipated and stocked energy . .

are elucidated and a simplied method is proposed for industrial usage. I hope my work can contribute to the understanding of dynamic complexity of dry friction damping and inspire more in-depth research in this domain.

Chapter 4. Experiment dierential system. The frequency response curve is drawn with dierent clamping pressures and excitation levels. The damping parameters are then found by the half-power bandwidth method.

Specimen design

The main diculty in damping set-up design is to limit the extra energy dissipation which takes place mainly at the interface between specimen and xation. The supplementary dissipation in the clamp may inuence the damping level of the structure and consequently modify the frequency-response curve. The cantilever sandwich beam model requires that one end of the beam is encastred. The majority of the set-ups in the bibliography use clamp to build rigid xation, but the presence of clamp will surely bring in more contact surface, and therefore more extra energy dissipation. The solution proposed here is to build a symmetric structure who is excited at its symmetry point, the suppression of extra dissipated energy can be realized by imposing an anti-resonance excitation frequency, the mode shape corresponded will automatically grantee a natural encastre in the middle with relatively weak energy dissipation.

In this way, the energy dissipation can be restrained to the controlled area under the bolted clamp. In order to nd the optimum position of bolted clamp under a given pressure, it is necessary to determine the maximum force that the rubber washer can support.

Rubber is an elastoplastic material whose plastic deformation may cause supplementary energy dissipation, so a strain limit of 10 % is respected in the design. Here we set that the force applied corresponds to a rubber's deformation of 5 %. The pressure on the washer is given by p = Eε = 0.5 MPa.

(

The amplitude at which the structure reaches its maximum damping can be obtained by deriving equation 2.36 with respect to modal amplitude q, η (q) = 0.

The optimal amplitude can thus be written as

We impose that the maximum damping takes place when the amplitude reaches 1 mm. By equating the q ηmax to 1 in equation 4.2 and solve for X c , we can obtain two positions

3)

The bolt cannot be placed at X c1 since it is too close to the ctive encastre. X c2 is chosen to be the optimal position. A parametric study is conducted with the parameters above and the amplitude-damping curve is illustrated in gure 4.2. The position 134.7 mm corresponding to purple curve provides maximum damping at amplitude 1 mm. Chapter 6

General conclusion

The modelization of friction damping in assembled structures is one of the major diculties in vibration mechanics. It has perplexed the automobile engineers of Groupe PSA in terms of fatigue resistance design, since damping is the key factor which regulates the amplitude of vibration with which the fatigue behavior is directly associated. As have been veried by many previous researches, friction damping is more dominant than material damping with an order of 10 to 100 times.

So that a reliable estimation of friction damping is critical for a correct vibration calculation and subsequently a competitive design on the market.

In order to overcome this engineering problem, a scientic research project has been launched

and constitutes the subject of the current thesis.

Friction-induced damping is considered to be independent of frequency but dependent on displacement, which dierentiates it from viscous damping. The studies on friction damping can be divided into two categories: analytical modelization and numerical simulation. The analytical modeling is more direct in revealing the basic quantity relationship between controlling parameters, but it is limited to simple structures. Numerical simulation can on the contrary deal with omplex geometries but the calculation is time-costing. The previous works based on these two methods have both pointed out the displacement dependency of friction damping and that it is sensitive to parameters like clamping pressure or internal stress eld. The studies in the current research have followed the two modeling methods in the literature and have applied them to more complex phenomena.

Three analytical models have been proposed for the purpose of the elucidation of energy dissipation mechanism in simple jointed structures. Based on the order of modal amplitude q in the expression of energy dissipation, the frictional damping is categorized into rst-order damping and second-order damping. The rst-order damping is present in the model of sandwich plate and rotational joint, the second-order damping exists only in the von Kármán plate. The order of damping implies the possibility of damping optimization. For example in the rst-order damping, there exists an optimal modal amplitude under a given pressure to achieve the maximum damping value. There are also interesting discoveries like the optimal bolt position for a partially clamped plate or the optimum thickness ratio in a sandwich structure. However, there is no optimal displacement in the second-order damping model, since the damping value will increase monotonically with the modal amplitude.

All the phenomenological studies have unied the dierent 140 Chapter 6. General conclusion damping models under the same objective functionthe η -q curve and have laid a theoretical foundation for numerical studies as well as industrial applications.

Another important part of the current thesis is dedicated to the numerical solution of von Kármán plate with friction boundary. Due to the diculty of nonlinearity in the continuous formulation, FEM and FDM are employed to discretize the calculation domain. With the introduction of ctive-force eld, a 3D problem is planarized and the response of the plate can be solved in a quasi-static way.

The in-plane force eld is shown to play a critical role in the hardening/softening of the structure. It is found that if the two opposite boundaries are encastred, the structure is under a hardening eect with an increase in modal amplitude, however if one boundary is subjected to dry friction, the stiness decreases if the clamped boundary is released for slipping. Furthermore, the nonlinear mode coupling is analyzed with the help of multi-mode method. The participation factor of higher order modes is shown to be a function of modal amplitude. For small amplitude, the participation of other modes is weak and the main mode shape can be considered as unchanged. This conclusion justies the use of single mode method for industrial applications.

The experimental verication is also conducted in the current study. A symmetric sandwich beam is used for damping measurement under dierent clamping pressure. Even though there is no perfect correlation with the theoretical estimation, the experimental results have shown the same damping evolution tendency with the analytical model, i.e. the optimal damping can be inuenced by the clamping pressure and bigger clamping pressure requires a bigger modal amplitude to reach maximum damping.

The methods for industrial application is developed in the ABAQUS TM environment. The simplied single mode method is realized by the subroutine DISP which imposes the mode shape on internal DOFs to generate relative slip on the contact surface. The displacement imposing is shown simple and ecient for a coarse-grained estimation of energy dissipation associated with a given mode shape.

But there are still potential improvements that can be expected. The calculation time on 3D structures is still very long, if the model size continues to increase, the time spend by the current method will be unbearable. The optimization in the reading of the mode shape le can be a future direction. In addition, the interference between the displacement imposing and the application clamping pressure is not well understood, for the purpose of a faster and more reliable estimation of energy dissipation, the search for optimal displacement-imposing DOFs can be the subject for future research.

The current thesis gives a complete study on dry friction damping in assembled structures from literature review to real applications by passing through analytical modelings and numerical simulations. The basic properties of dry friction damping Appendix A

Second order derivatives schemes

Upper free nodes w i+1,j -2w i,j + w i-1,j dx 2 0 ∂ y w i+1,j -∂ y w i-1,j 2dx

Lower free nodes w i+1,j -2w i,j + w i-1,j dx 2 0 ∂ y w i+1,j -∂ y w i-1,j 2dx

Other nodes w i+1,j -2w i,j + w i-1,j dx 2 w i,j+1 -2w i,j + w i,j-1 dy 2 w i+1,j+1 -w i+1,j-1 -w i-1,j+1 + w i-1,j-1 4dxdy