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Abstract

Keywords: damping, dry friction, nonlinear mode, vibration, numer-

ical method

The determination of a component's lifetime under vibrational excitation is one
of the most di�cult challenges in mechanical engineering. In order to provide a
reliable estimation of lifetime, a correct calculation of stress �eld, which depends
on the modal form and its amplitude, is needed. However, the vibrational response
calculation on an assembled structure is not easy, especially with the nonlinear
structural damping induced by frictional contact surface. The research in the current
thesis starts from the phenomenological identi�cation of damping with the help of 3
analytical models, in particular the sandwich plate, rotational joint and von Karman
plate. Structural damping of 1st and 2nd order are identi�ed. The in�uence of
parameters like clamping pressure, thickness ratio and number of welding points
are also analyzed. The second part of the research focuses on problems with �nite
dimensions. The von Karman plate serves as the subject of the study and a hydride
method which combines FDM and FEM is proposed to solve the coupling between
de�ection and in-plane force �eld. A special attention is paid to nonlinear mode
theory, the conditions under which the nonlinear mode is necessary are identi�ed.
The �ctive force �eld proposed in the study of von Kármán plate is then applied
to the sandwich plate model. The slipping's propagation as well as the in�uence
of �ctive force �eld are studied. To verify the existence of the found phenomena
in the previous studies, an experimental setup is designed and mounted for the 1st
order structural damping. In the last part of the research, which is based on the
observations previously obtained from academic models, a calculation method of
friction-induced damping in structures with complex geometries is proposed for the
application in the industrial environment. This methods enables the estimation of
damping for each isolated mode.



Résumé

Mots-clés : amortissement, frottement sec, mode nonlinéaire, vibra-

tion, méthode numérique

Déterminer la durée de vie d'une pièce sous excitation vibratoire est l'un des en-
jeux majeurs dans l'ingénierie mécanique. A�n de donner une estimation �able de
la durée de vie, un calcul correct de champ de contrainte, qui est fortement lié à la
forme et l'amplitude modale est obligatoire. Cependant, le calcul de réponse d'une
structure assemblée est di�cile, surtout avec la présence de frottement sec aux inter-
faces de liaisons qui entraine un amortissement non linéaire. La recherche de la thèse
commence par une identi�cation phénoménologique de l'amortissement induit par
le frottement sec avec 3 modèles analytiques, notamment la plaque sandwich, la ro-
tule frottante et la plaque von Kármán. Après la caractérisation de l'amortissement
structural au 1er et 2ème ordre, les in�uences des paramètres comme la pression de
serrage, le rapport d'épaisseurs ainsi que le nombre de soudures sont analysés. La
deuxième partie des travaux traite les problèmes d'amortissement avec une géométrie
de dimension �nie. La plaque de von Kármán est reprise dans l'étude et une méthode
hybride de di�érences �nies et d'éléments �nis est adopté pour résoudre le couplage
entre la �exion et les e�orts internes. Une attention particulière est portée à la
notion de modes non linéaires dans le cas de la plaque von Kármán. Les condi-
tions nécessitant l'introduction de modes non linéaires sont identi�ées. Le champ
de force �ctif qui est proposé dans l'étude sur la plaque von Kármán est ensuite
introduit dans le cas de la plaque sandwich. Puis la propagation de glissement
et l'in�uence de champ �ctif sont étudiées. A�n de véri�er les phénomènes trou-
vés dans les études théoriques, une installation expérimentale est conçue et montée
pour l'amortissement structural au premier ordre. Dans la dernière partie qui est
basée sur les observations faites dans les études précédentes, une méthode de calcul
de l'amortissement dans un environnement industriel est proposée. Cette méthode
permet de donner un amortissement pour chaque mode isolé.
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General introduction

The vibration behavior of mechanical assemblies is always a subject with the
implication of complex nonlinearity not only for academic researchers but also for
industrial engineers. The current thesis will focus on the aspect of modelization of
dry friction damping on the contact surface. Damping is considered as a key factor
which regulates the vibration amplitude as well as the consequently dependent
property of fatigue resistance. A good and reliable modelization of the damping
value can contribute to a precise estimation of the vibration response. The current
thesis adopts a progressive approach in the study. It starts from a fundamental
phenomenological study of friction damping realized mainly by analytical models,
then a more re�ned model built by FEM is proposed to study the nonlinear aspects
induced by friction damping, at last the retained conclusions in the previous
chapters serve as the basis for the development of a simpli�ed method for industrial
applications. The content of the thesis is divided into 5 chapters, the main idea of
each chapter is presented below.

Chapter 1 gives in the �rst place a general introduction of the notion of damping
in vibration systems. The di�erence between viscous damping and friction damping
is presented by mathematical demonstrations. The metric of damping � logarithmic
decrement or damping ratio, are explained in details and the relationship between
them is established. The literature review presents in a chronological order the
state of the art of damping modelization. The modeling approaches can be divided
into two categories: analytical methods and numerical methods. The concrete
examples and important conclusions are also presented.

Chapter 2 is dedicated to the phenomenological study of friction damping on
the basis of three academic models, the development of which is inspired by the
analytical models that have been used in the literature, namely in�nite sandwich
plate, rotational joint and von Kármán plate. The three models are all analytical
and will enable a parametric study of in�uencing parameters like clamping pressure
and coe�cient of friction. The in�uences of other parameters like thickness ratio,
curvature of contact surface as well as boundary condition are analyzed by FEM on
the in�nite sandwich plate. The phenomenological study gives a preliminary view of
the friction damping and reveals its dependence on modal amplitude. According to
the evolution of damping ratio in terms of the magnitude of displacement, the fric-
tion damping can be categorized into �rst-order damping and second-order damping.

Chapter 3 is a further research based on the discovered phenomena presented in
chapter 2. It mainly deals with the planarization of friction problems in structures
having geometry nonlinearity, namely the von Kármán plate. Considering the
di�culty in analytical solution, FEM and FDM are adopted in the discretized



xvi General introduction

formulation of the problem. The hardening/softening e�ect due to in-plane forces
as well as its in�uence on nonlinear mode coupling will be discussed. The notion of
planarization of contact problems will then be extended to the sandwich plate with
�nite dimensions and the results obtained will show that the planarization will give
a satisfactory estimation of damping ratio compared to analytical method.

Chapter 4 is an experimental veri�cation of the phenomena revealed in the
previous chapters. A partially clamped symmetric sandwich plate is adopted as the
experiment specimen. The advantages of the symmetric structure will be presented
and the design procedure will be explained. The experiment results will show that
frictional damping is sensitive to clamping pressure and model amplitude. The
η − q curves found in the experiment gives the same variation tendency in terms of
displacement as predicted by the numerical and analytical methods.

Chapter 5 will propose an simpli�ed method for damping modelization within
the framework founded on the conclusions from the previous theoretical studies,
i.e. the resonance frequency along with the mode shape cannot be drastically
changed by the presence of frictional contact, the damping is determined only by
the linear mode shape and its corresponding amplitude. This simpli�cation enables
the engineers of PSA to calculate the damping associated with a given mode
shape in a quasi-static way within the commercial FEM softwares. The proposed
method is based on ABAQUSTM subroutine DISP which is capable of imposing
an user-de�ned displacement to the structure according to the directions de�ned
in the mode shape. The mode shape injection method will be applied in the �rst
place on 2D models and then on an industrial-sized 3D model. The results will
show that the proposed method is simple and e�cient in damping estimation.

The current thesis is a complete study on frictional damping in assembled struc-
tures. It starts from the basic notions of frictional damping obtained in academic
models and transits progressively to a simpli�ed method for industrial application.
I hope my work will be useful for scientists and engineers who are interested in the
complexity of friction damping in assembled structures and shed light for the future
research.



Chapter 1

Introduction

In the current industrial design, a key evaluation factor of the product is the fa-
tigue resistance under vibrational solicitation, especially for domains where security
and robustness are primordial criteria for clients, for example in automobile and
aerospace industries. Apart from the security consideration, vibration also plays an
important role for the comfort perceived by the clients. A relatively weak vibra-
tion level will surely give clients a feeling of reliability and high-end quality. The
automobile constructor Groupe PSA spares no e�ort in the permanent perfection
of its products, during the course of which the vibration reduction stays one of the
most important research directions, especially for components like metallic body,
drive train and suspension system. The proposal of the current thesis lies in this
industrial context.

(a) Body (b) Motor (c) Suspension

Figure 1.1: Structures under vibrational solicitation

However the prediction of vibrational behavior during the conception phase is
still a di�cult task, especially in operating conditions near the resonance. The
di�culty is mainly due to the insu�ciently understood damping property which
is determinant for the vibration amplitude. Thus to understand even to correctly
model damping properties is the �nal key to solve vibration problems.

Vibration analysis has already become a common practice in automobile engi-
neering. The numerical tools in the realm of Computer Aided Engineering (CAE)
have already been widely used in virtual conception before passing experiment ver-
i�cation. These tools are of good capacity to give a correct prediction of mass and
inertia, and also a relatively precise estimation of sti�ness, but they are incapable
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of providing a convincing value of damping, notably for automobile structures
with complex geometry and loading conditions. In this case, a bad prediction of
damping will result in an incorrect estimation of amplitude and thus consequently
an erroneous prediction of fatigue endurance, since the fatigue endurance is directly
related to internal stress �eld which is proportional to displacement amplitude. In
order to make up this default in design phase, the current thesis will mainly deal
with the problematic encountered due to damping modelization.

Industrial structures are mostly assembled structures, they are often jointed
together by welded or bolted connections. Damping in these structures can be
roughly classi�ed in two categories: viscous damping and structural or hysteresis
damping. Compared to structural damping, the property of viscous damping
is well understood and there exists already mature industrial applications like
damping enhancement by the insertion of thin viscoelastic �lms or rubber washer,
the damping mechanism in hydraulic damper also falls into the realm of viscous
damping. However, according to di�erent studies in the bibliography, structural
damping is much more elevated than viscous damping in assembled structures,
which is due to the fact that energy is mainly dissipated by relative displacement
under friction between di�erent components.

The objective of the current thesis is to understand the properties of frictional
damping and �nd a proper way to modal energy dissipation in assembled structures.
Based on the knowledge derived from academic models, application methods for
industrial use are then to be developed. Before the research into the notion of
frictional damping, some basic theories about damping and vibration mechanics are
to be reviewed.

1.1 Undamped and damped vibration

Structure vibration can be regarded as an alternative energy transfer between kine-
matic energy and potential energy of deformation. If no energy is lost or dissipated
in friction or other resistance during oscillation, the vibration is known as undamped
vibration, where all the kinematic energy can be transformed into potential energy
in one cycle. The equation which describes the undamped dynamic one-degree-of-
freedom system without external excitation is written as

mẍ+ kx = 0 (1.1)

with m the mass and k the sti�ness. The temporal response of such a system is
illustrated in �gure 1.2.
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Figure 1.2: Response of a 1-DOF undamped system

If any energy is lost during the cycle, however, it is called damped vibration. In
many physical systems, the amount of damping is so small that it can be disregarded
for most engineering purposes. However, consideration of damping is becoming more
and more important in analyzing vibratory systems near resonance. In many prac-
tical damped systems, the vibratory energy is gradually converted to heat or sound.
Due to the reduction in the energy, the response, such as the displacement of the
system, gradually decreases in the case without energy input. In the system with
energy input, the existence of damping prevents the displacement from reaching
in�nity. Although the amount of energy converted into heat or sound is relatively
small, the role that the damping plays is drawing more and more attention of re-
searchers and engineers to have an accurate prediction of the vibration response,
especially near resonance. The damped dynamic system with viscous damping can
be written as

mẍ+ kx+ cẋ = 0 (1.2)

where cẋ is the damping force which signi�es that viscous damping is in terms of
velocity. The response of 1-DOF damped system with di�erent damping coe�cients
is illustrated in 1.3.

Figure 1.3: Response of a 1-DOF damped system

1.2 Damping sources

In real conditions, the undamped system presented in �gure 1.2 doesn't exist, be-
cause the vibration amplitude always decreases with time due to di�erent damping
forces. These forces are in the opposite direction of movement and are thus of
opposition sign to the velocity. As the structure is often exposed to complex envi-
ronment, the attenuated response is the result of multiple damping sources. The
damping sources can be categorized in the way below.
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• External damping

� Damping due to �uid-structure coupling: interaction between the struc-
ture in vibration and the �uid environment, for example air damping.

� Damping due to element connected to the structure: usage of absorbent
viscoelastic material, for example rubber washer and dry rub.

� Damping due to passive, semi-active or active piezoelectric material:
these materials are capable of transforming the deformation energy into
electric energy or in the inverse direction. This reversibility enables to
obtain intelligent systems in which a part of mechanical energy can be
extracted from the system in order to control its vibration amplitude.

• Internal damping

� Material damping: damping in the material is a complex process, it is
believed that the energy dissipation comes from the dislocations of mi-
croscopic crystals and cracks. This dissipative mechanism is sensitive to
temperature and frequency of the vibration. Material damping is rela-
tively weak in metals or in mono-crystal materials.

� Micro-slip damping: damping is generated by frictional micro-slip at the
connection interface between components in assembled structures. The
energy is mainly dissipated in the form of heat.

1.3 Damping categories

In order to model the damping property of vibratory systems, damping elements are
introduced. A damper is assumed to have neither mass nor elasticity, and damping
force exists only if there is relative velocity between the two ends of the damper.
As it is di�cult to include all the damping properties in one element, damping is
modeled as one or more of the following types.

• Viscous damping. Viscous damping is the most commonly used damping
mechanism in vibration analysis. When mechanical systems vibrate in a �uid
medium such as air, gas, water, or oil, the resistance o�ered by the �uid to the
moving body causes energy to be dissipated. In the amount of dissipated en-
ergy depends on many factors, for example the size and shape of the vibrating
body. In viscous damping, the damping force is proportional to the velocity
of the vibrating body. Typical examples of viscous damping include (1) �uid
�lm between sliding surfaces, (2) �uid �ow around a piston in a cylinder, (3)
�uid �ow through an ori�ce, and (4) �uid �lm around the journal of a bearing.
The damping induced by "gaz-pumping" can be can be categorized as viscous
damping.

• Coulomb or dry-friction damping. The damping force is constant in
magnitude but opposite in direction to that of the motion of the vibrating
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body. It is caused by friction between rubbing surfaces that are either dry or
have insu�cient lubrication.

• Material or solid or hysteretic damping. When a material is deformed,
energy is absorbed and dissipated by the friction between the internal planes,
which slip or slide as the deformations take place. When a body having hys-
teretic damping is subjected to vibration, the stress-strain diagram shows a
hysteresis loop as shown in �gure 1.5a. The area of this loop denotes the
energy lost per unit volume of the body per cycle due to damping.

1.4 Energy dissipation in viscoelastic material

A viscoelastic material is characterized by possessing both viscous and elastic be-
havior. From a macroscopic point of view, the damping in viscoelastic material
implies a conversion from mechanical energy to thermal energy due to the succes-
sive rearrangement of molecule chains when the structure is under deformation. In
order to quantify the dissipation capacity of viscoelastic material, the loss factor
η(f) is employed to express its dependency on frequency. The Young's modulus of
viscoelastic material can be expressed by a complex number

E∗(f) = E′(f) + iE′′(f) = E′(f)[1 + ηE(f)]. (1.3)

In the same way, the shear loss factor can be expressed from the shear modulus

G∗(f) = G′(f) + iG′′(f) = G′(f)[1 + ηG(f)]. (1.4)

E′(f) and G′(f) represent the modulus for energy stock while E′′(f) and G′′(f)

are related to energy dissipation in the material. The relation between them is given
by

E∗(f) = 2(1 + ν)G∗f. (1.5)

Some materials have di�erent loss factor for traction-compression and shear,
however for others materials, only one loss factor is able to describe the vibration
behavior. In this case we can write

ηf = ηE = ηG. (1.6)

It should be noted that the energy created on the microscopic level may not be
evacuated on time, which will generate an temperature increase in the material. The
temperature can modify the mechanical behavior of viscoelastic material in terms
of the existence of glassy transition. It is found that the loss factor can reach its
maximum in the transition phase when the rigidity experiences drastic change, as
illustrated in �gure 1.4a. The behavior on frequency is completely the inverse of
that on temperature, as shown in �gure 1.4b. Under low frequencies, the rigidity of
the material is big, with the increase in frequency, the rigidity becomes bigger and
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saturates to an asymptotic value. Between the two zones, there exists a transition
frequency on which the loss factor of the material reaches its maximum [1].

(a) In�uence of temperature on vis-

coelastic material

(b) In�uence of frequency on viscoelas-

tic material

Figure 1.4: Hysteresis loop in terms of stress and strain

1.5 Energy dissipation in hysteretic damping

When a force is applied on a body with frictional hysteretic damping, the loading
and unloading curve don't coincide and forms a hysteresis loop. As the loading force
increases, the stress σ and the strain ε also increase, the area under the σ− ε curve,
given by

E =

∫
σdε, (1.7)

denotes the energy injected in per unit of the volume. When the load on the
body is gradually removed, the elastic energy will be recovered. When the loading
path is di�erent from the unloading path, the area ABC in �gure 1.5b is equivalent
to the energy dissipated per unit volume of the body. The area inside the circle in
�gure 1.5a quanti�es the total energy loss in one loading cycle. The hysteresis loop
can also be formed with the magnitude of the loading force and the displacement
of the excitation point. The damping capacity of di�erent structures can easily be
compared by the size of hysteresis loop under the same level of strain.
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(a) Hysteresis loop (b) Energy in hysteresis loop

Figure 1.5: Hysteresis loop in terms of stress and strain

The quanti�cation of hysteretic damping can start from the modelization of a
spring-viscous-damper system in �gure 1.6.

Figure 1.6: Spring-viscous-damper system

For this system, the force needed to to cause a displacement x(t) is given by

F = kx+ cẋ. (1.8)

For a harmonic motion of of frequency ω and amplitude X,

x(t) = X sinωt. (1.9)

Equation 1.8 and 1.9 yield

F (t) = kX sinωt+ cXω cosωt

= kx± cω
√
X2 − (X sinωt)2

= kx± cω
√
X2 − x2

(1.10)

When F versus x curve plotted, it represents a closed loop, the area of the loop
denotes the energy dissipated by the damper in a cycle of motion and is given by
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∆W =

∮
Fdx =

∫ 2π/ω

0
(kX sinωt+ cXω cosωt) (ωX cosωt) dt = πωcX2. (1.11)

It has been found experimentally that the energy loss in frictional hysteresis
damping is independent of the frequency and proportional to the displacement, in
order to achieve this observed behavior and establish an equivalence on the level
of dissipated energy, we can introduce a hysteresis damping coe�cient ch, which is
inversely proportional to the frequency.

ch =
h

ω
. (1.12)

Replace c by ch in equation 1.11, the hysteretic energy dissipation can thus be
expressed as

∆W = πhX2. (1.13)

1.6 Logarithmic decrement

Logarithmic decrement is a temporal view of damping, it describes the amplitude de-
creasing rate in a direct way. In order to understand the basic meaning of damping,
a clear explanation of logarithmic decrement is necessary. The following derivation
is given by Rao [2]. Consider �rstly the famous Euler limit

ex = lim
n→∞

(1 +
x

n
)n. (1.14)

Replace x by −δ ·n where δ is the amplitude decreasing percentage in one cycle
and n is the number of cycles.

e−δn = lim
n→∞

(1− δ)n. (1.15)

The initial amplitude is denoted asX1, after n cycles of movement, the amplitude
of cycle n+ 1 can be expressed as

Xn+1 = X1(1− δ)n. (1.16)

If the number of cycles is in�nitely big, the Euler limit can be used to establish
the relationship between the initial amplitude and the �nal amplitude.

X1 lim
n→∞

(1− δ)n = Xn+1

X1e
−δn = Xn+1

(1.17)

By applying a logarithmic function to both sides of equation 1.17 and solve for
δ
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δ =
1

n
ln(

X1

Xn+1
). (1.18)

If we take n = 1, the decreasing percentage per cycle, or the so-called logarithmic
decrement can be written as

δ = ln(
X1

X2
) = ln(

Xn

Xn+1
). (1.19)

1.7 Relation to logarithmic decrement

If a spring and a hysteresis damper are connected in parallel, the reaction force can
be expressed in a similar way as used in viscous damping

F = kx+ iωchx = kx+ ihx = k(1 + i
h

k
)x = k(1 + iη)x, (1.20)

where η = h/k and is a constant indicating a dimensionless measure of damping.
We can substitute h in equation 1.8 by ηk.

∆W = πηkX2
m. (1.21)

Under hysteresis damping, the motion can be considered to be nearly harmonic,
and the decrease in amplitude per cycle can be determined by using energy balance.

Figure 1.7: Energy balance in a damped system

The energy balance between point P and point Q can be expressed with the
stocked elastic energy and dissipated energy.

1

2
kX2

j −
1

4
πηkX2

j −
1

4
πηkX2

j+0.5 =
1

2
kX2

j+0.5

Xj

Xj+0.5
=

√
2 + πη

2− πη

(1.22)

From which

Xj

Xj+1
=

2 + πη

2− πη
=

2− πη + 2πη

2− πη
≈ 1 + πη. (1.23)

Substitute equation 1.23 into equation 1.19 and suppose that πη � 1,
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δ = ln(1 + πη) ≈ πη. (1.24)

Another way to express η is to use the ratio between dissipated energy and
maximum stocked energy in one cycle, this ratio is also called speci�c damping
capacity.

∆W

Emax
=
πηkX2

m
1
2kX

2
m

= 2πη (1.25)

η =
1

2π

∆W

Emax
. (1.26)

The η is the damping capacity per radian and is named as loss coe�cient. Sub-
stitute equation 1.23 into equation 1.21, we can express logarithmic decrement in
terms of speci�c damping capacity.

δ =
1

2

∆W

Emax
. (1.27)

For small damping ζ � 1, the logarithmic decrement can also be approximated
in terms of the ratio between damping constant and critical damping constant in
equivalent viscous damped system.

δ = 2πζ = 2π
c

cc
= 2π

c

2mωn
=

πc

mωn
. (1.28)

ζ =
1

4π

∆W

Emax
. (1.29)

Di�erent from Rao [2], Masuko [3] provided another way to express the relation-
ship between logarithmic decrement and damping ratio. The damping ratio Ψ can
be expressed as the ratio between the total energy introduced into the system and
the loss energy,

Ψ =
∆W

∆W + Emax
=

1

1 +
1

2πη

, η =
1

2π

∆W

Emax
. (1.30)

When amplitude of vibration is an, the energy stored in the system is denoted
as En, which is equal to Emax+∆W , and it is easily known that En+1 = En−∆W .
Assuming that the energy stored in the system is a quadratic equation of amplitude
Ca2

n, the relationship between the damping ratio Ψ and the logarithmic decrement
can be written as follows.

δ = ln

(
an
an+1

)
= ln

(
En
En+1

)1/2

=
1

2
ln

(
En

En −∆W

)
=

1

2
ln

(
1

1−Ψ

)
. (1.31)

In case of Ψ� 1, Maclaurin expansion of equation 1.31 is given by
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δ =
1

2
ln

(
Ψ +

1

2
Ψ2

)
(1.32)

where the higher order of terms more than Ψ3 are ignored. By substituting
equation 1.30 into equation 1.32 we can obtain

δ =
1

2
ln (2πη + 1) . (1.33)

1.8 Slip damping mechanism

In the hysteresis damping category, friction in micro-slip is the most commonly ob-
served damping mechanism. Even thought the assemblage structure doesn't have
any kinematic degree of freedom, the relative displacement between di�erent com-
ponents is able to cause energy loss due to frictional contact. Slip damping mainly
takes place in joints and it is experimentally shown that this type of damping is
much larger often by a factor of 10 than material damping [4]. According to the
slipping degree at the interface, two dissipation mechanisms can be de�ned when a
tangential force T is applied on the contact surface.

• Macro-slipping: there is total slipping at the interface, all the points have
relative displacement to their corresponding points on the opposite surface.

• Partial slipping: one part of the interface slips and the other is still sticked
together. According to the description level of the interface (from the level of
the size of asperities to the level of macroscopic shape), two types of partial
slipping can be distinguished.

� Meso-slipping: there is no total slipping between the components, only
one part of the contact zone is in slipping and the other is in sticking. If
the applied force T gradually increases, the slipping zone will propagate
until the whole zone is in slipping.

� Micro-slipping: no macroscopic slipping is observed, the slipping only
takes place at the level of asperities.

Figure 1.8: Slipping categories
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In the majority of assembled structures, the components don't have mobility
between them, thus the energy dissipation is mainly contributed by partial slipping.
During the slipping movement, the kinematic energy is transformed into thermal
energy and then dissipated in the surrounding environment. Under the action of
stress and local heating, the contact surface will endure structural modi�cation
even deterioration. The surface damage caused by this alternative movement takes
often the form of cracking and peeling. This surface wear and fatigue phenomenon
is also called fretting.

The presence of slip damping is always related to bolted joint, which is a com-
monly used connecting method in assembled structures and has been the subject of
damping studies for a long time. Typical values of bolt tension are between 50% and
90% of material yield, however, on the periphery of contacting surfaces interfacial
stress will drop to zero and some slip will occur. This stress distribution makes it
necessary to separate damping in bolted joints into two types:

• Type I is associated with the bolt itself such as the threads, washers, head and
nut, whose damping value is determined from the structure in �gure 1.9a.

• Type II is associated with the interface that the bolt is pressing together, whose
surfaces may extend several bolt diameters aways from the bolts themselves
and or lie between bolt locations. The damping value of this part is evaluated
by the con�guration in �gure 1.9b.

(a) Inter�cial slip

limited to the edge

of contact patch

(b) Interfacial slip

extends beyond and

between bolt loca-

tions

Figure 1.9: Experimental con�gurations to determine slip damping

Previous work of Goyder, Ind and Brown [5, 6, 7] has shown that damping of
type I is small compared to damping of type II. The energy dissipation is thus
mainly related to the slip on the periphery of contact surfaces. It is in such a way
justi�able to ignore the energy dissipation in the joint itself and only focus on the
slip damping related to the surrounding compressed surfaces.
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1.9 Literature review

People start to pay attention to friction-induced damping when facing fatigue prob-
lems in engineering design. Many present-day assembled structures presenting com-
plex geometries along with �uctuating excitation forces may at times be oscillated
at or near a resonant frequency. These resonant conditions are not always harmful,
but may, particularly in highly stressed components, produce fatigue failures. The
insertion of viscoelastic material is an e�cient way to increase fatigue endurance,
but the disadvantage is that the damping capacity of the substances is dependent
both on frequency and temperature. According to the investigation of Mead and
Eaton [8], even though at low frequencies (around 200 Hz) the frictional damping
of the metallic joint was 3 to 4 times less than for a viscoelastic joint, at higher
frequencies (around 800 Hz) the damping capacity of the two joints were about the
same. The damping capacity of the metallic joint can remain the same while the
damping capacity of the viscoelastic joint may decrease with frequency. In this case,
frictional damping caused by small relative interfacial movements at contact surfaces
turns out to be an e�cient alternative in damping design. The e�ciency of friction
damping has been proven in real applications, for example in civil engineering, the
rocking timber structures can be connected by nailplates or slip friction connections.
The study in [9] showed that under seismic excitation, the systems with nailplates
incurred signi�cant inelastic damages while the systems with friction devices ex-
hibited superior performance in terms of strength degradation and absorbed seismic
energy. Considering the advantages of friction damping, it has always been a subject
under deep research in mechanical engineering. There are mainly two approaches:
analytical modelization and numerical simulation. The study on friction-induced
energy dissipation was �rstly conducted on analytical models and then extended to
numerical models, namely FEM simulations.

1.9.1 Analytical methods

Analytical modelization by simple academic model is the most direct way to study
the mechanism of damping in assembled structures. The majority of the existing
models are composed of beam or plate with frictional contact on the boundary.
Here a brief literature review of the friction damping models that have been
developed is given in chronological order.

The theoretical estimation of frictional damping was initiated by Goodman and
Klumpp [10] in 1956, in which the optimization of frictional damping was proposed
for the design of turbine blades. Four years later, a simpli�ed exploratory analysis
was carried out by Williams [11] on a cantilever beam with frictional �anges at the
encastre, as illustrated in �gure 1.10a. The use of analytical approach for damping
modelization was thus initiated. The key point in this kind of study is to establish
the relationship between energy dissipation and controlling parameters like geometry
of the beam, clamping pressure as well as coe�cient of friction. The existence of
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optimal clamping pressure for a given amplitude was proposed in this study. The
reaching of optimum damping can be considered as the moment when the energy
dissipated W , expressed as a fraction of the total energy (U + W ), is a maximum,
where U is the strain energy at the full tip amplitude. The hysteresis loop was even
traced with the proposed model, as illustrated in �gure 1.10b.

(a) Cantilever beam with frictional

�anges

(b) Hysteresis loop obtained by

Williams

Figure 1.10: Analytical model used by Williams

In 1966, Earles [12] used an analytical overlapping plate model to study the
relationship between the fatigue life of lap joint and the force transference arrange-
ment, as illustrated in �gure 1.11a. The study on the in�uence of uniform and
non-uniform clamping pressure shows that for each clamping pressure distribution
used, the maximum of damping capacity ratio occurs when the clamping force is
such that the total applied force is transfered only by the friction throughout the
joint. This adjustment of clamping pressure can result in a better fatigue life and
a speci�c damping capacity substantially better than that obtained from material
damping and comparable with that of viscoelastic layers. Di�erent from Williams,
the dissipated energy in this study was expressed in terms of maximum possible
force transmitted by friction F .

∆W =
93LF 2

70Ebd
+

9RFL

4Ebd
, (1.34)

where E the modulus of elasticity, L the semi-length of joint overlap, R the
maximum shear force carried by the rivet, b the joint plate breadth and d the joint
plate thickness. The hysteresis loop obtained in �gure 1.11b show that the change
in pressure distribution can modify the form of hysteresis loop.
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(a) Model used by Earles (b) Hysteresis loop obtained by Williams

Figure 1.11: Analytical model used by Earles

The theoretical and experimental study on frictional damping modelization was
then carried out on jointed cantilever beam in 1973 by Masuko et al. [3]. The
relative displacement ∆W between the upper and lower plate can be expressed in
terms of the spatial derivative of bending de�ection y(x, t).

Figure 1.12: Jointed cantilever beam used by Masuko

∆U = ∆U1 + ∆U2 = 2h tan

(
∂y(x, t)

∂x

)
≈ 2h

∂y(x, t)

∂x
. (1.35)

According to the analysis of Masuko, there exists an optimum value of the
interface pressure for a given coe�cient of friction and full tip amplitude.

An experimental veri�cation was then carried out on the same analytical model
by Nishiwaki [13, 14]. The relationships between the frequency and the damping
capacity were studied by the use of an improved band-width method with two kinds
of jointed cantilever beams which are connected with a single bolt and several bolts
respectively.
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(a) Beam connected with single bolt (b) Beam connected with several bolts

Figure 1.13: Experimental veri�cation of jointed beam

It is shown in the experiment that for structures like jointed beam, the dynamic
slip increases with an increase of frequency and amplitude of vibration, and
decreases with an increase of the preload of connecting bolt. The static sti�ness is a
function of clamping pressure, it is constant above a certain value of the connecting
preload. When the number of bolts is large, the static sti�ness of the jointed beam
is nearly equal to that of the equivalent solid beam when its preload is big enough.
However if the number of connecting bolts is small, the theoretical static sti�ness
of the equivalent solid beam cannot be used to calculate the energy stored in a
vibrating system.

The jointed beam stayed as a commonly used model in 1990s. Hansen and Spies
[15] applied Timoshenko beam theory along with an adhesive layer of negligible
thickness to study interface micro-slip damping. However it was found from the
result obtained that the frictional damping resulted in a frequency-proportional
damping pattern in the spectrum, which is di�erent the common understanding that
friction damping is proportional to modal amplitude. During this period, more work
has been done for the re�nement of the jointed beam model. Early investigators,
e.g. Masuko et al. and Nishiwaki et al. all have assumed uniform intensity of
pressure distribution on the contact surface without taking into account the spacing
between bolts, however Gould [16] and Ziada [17] have shown that the pressure
distribution at the interfaces of bolted joint is parabolic in nature and there exists
an in�uence zone in the form of a circle with 3.5 times the diameter of the connecting
bolt. In 1999 the study of Nanda [18] has made up the defects in uniform pressure
due to bolt spacing in the previous studies and extended the jointed beam model
to layered structures. Based on the relationship between clamping pressure and
tightening torque on the bolt given by Shigley [19],

p =
0.671P

3πR2
B

, P =
T

0.2DB
⇒ p =

0.17799T

R2
B

, (1.36)

where RB is bolt's radius, DB is bolt's diameter, T is the torque applied on the
bolt, the uniform pressure can be obtained by a spacing of 2 times the diameter of
connecting bolts.



1.9. Literature review 17

Figure 1.14: Jointed cantilever beam used by Masuko

It was found by Nanda that the natural frequency of �rst mode vibration of
any layered and jointed structure doesn't vary appreciably with an increase in
the tightening torque on the connecting bolts. This observation means that the
clamping pressure cannot modify signi�cantly the mode shape of the vibration.
This experimental veri�cation con�rms the reasonability of the non-changing mode
shape hypothesis that will be adopted in the following chapters.

In the 21st century, the jointed beam has always been a standard benchmark
for friction-induced damping studies, but more re�nements have been brought into
the model. In 2007, Damisa [20] introduced linear pressure variation in the jointed
beam model and applied Fourrier Sine Transform to for a static analysis of slip
damping. It was discovered that the characteristics of the presure distribution can
in�uence or modify the the amount of energy dissipated. This �nding signi�es
that the material cannot be changed for the purpose of minimizing fretting etc.
without consideration of the change in coe�cient of friction. As energy dissipation
is sensitive to pressure distribution, the in�uence of bolt's diameter was given
in [21]. One year later, Damisa [22] attempted to extend the static calculation
of energy dissipation in jointed beam to account for cases of realistic dynamic
loading with non-uniform interfacial pressure pro�le. It was found that the load
frequency could have a signi�cant role to play in de�ning the optimal pressure for
slip damping. The jointed beam model was extended to multi-layered and welded
structures in [23, 24] by Singh. Both static and dynamic analysis were conducted
on the model and it was inferred that damping capacity of layered and welded
structures could be substantially enhanced by fabricating the structures with mul-
tiple interfaces. In addition, the decrease in damping ratio as the modal amplitude
increases was also revealed both by analytical analysis and experimental veri�cation.
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(a) Welded plate with multiple layers (b) Damping ratio in in terms of amplitude

Figure 1.15: Study on multi-layered joined beam

The cantilever beam developed by Williams as well as the joined beam used by
Masuko, Nanda and other researchers is a simple but representative model to study
damping induced by contact friction. At the same time, other simpli�ed friction
models of assembled structures have also been developed. Jézéquel [25] proposed
in 1983 a general formulation for boundary slip damping induced by second-order
bending strain based on von Kármán plate equation. The modelization of friction
damping by quasi-static calculation was �rstly introduced by which the harden-
ing/softening e�ect as well as the damping ratio can be obtained. Due to the
constraint on numerical calculation capacity of the time, the proposed method was
only realized on an analytical circular plate with frictional boundary, as illustrated in
�gure 1.16a. The characteristic of the second-order damping was �rstly revealed by
η− q curve in �gure 1.16b which establishes the evolution of damping ratio in terms
of modal amplitude. It is shown that the damping ratio tends to a constant under
big modal amplitude, which presents a remarkable di�erence from the damping in
jointed beam illustrated in �gure 1.15b.

(a) Circular plate with frictional boundary (b) η − q curve of second-order

damping

Figure 1.16: Damping study on von Kármán plate
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An extended study based on the conclusion of Jézéquel was conducted three years
later in 1986 by Dowell [26]. The model used in the study was a pinned-pinned beam
with a sliding restraint with respect to axial motion at one end.

Figure 1.17: Pinned-pinned beam with sliding constraint

The stress-strain and strain displacement relations of geometrically non-linear
beam theory allows one to write

Nx = Ehb

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

(1.37)

Rearranging equation 1.37 and integrating over the length l of the beam,

u(x = l) +
1

2

∫ l

0

(
∂w

∂x

)2

dx =
Nxl

Ehb
. (1.38)

When slipping occurs, the Coulomb dry friction gives

Nx = −µPsign[u̇(x = l)]. (1.39)

Note that Nx is constant with respect to time except when u̇(x = l) = 0, the
time derivative of equation 1.38 is expressed by

u̇(x = l) +

∫ l

0

∂w

∂x

∂ẇ

∂x
dx = 0. (1.40)

The sign of the two sides of equation 1.40 should be the same,

sign[u̇(x = l)] = −sign
[∫ l

0

∂w

∂x

∂ẇ

∂x
dx

]
. (1.41)

If the displacement �eld is expressed by a single spatial mode w = qφ(x), the
equation 1.41 can also be written as

sign[u̇(x = l)] = −sign
(
q · q̇

∫ l

0

∂φ(x)

∂x

∂φ(x)

∂x
dx

)
= −sign(q · q̇), (1.42)

Substitute equation 1.42 into equation 1.39, the sign of internal force can be
determined as

sign(Nx) = sign(q · q̇). (1.43)

Whiteman [27] studied in 1996 the displacement-dependency of dry friction
damping on a single-degree-of-freedom �exible beam with a displacement depen-
dent dry friction damper, in which the normal force across the friction interface
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increases linearly with the transverse displacement, as illustrated in �gure 1.18a.
The approximate solution used �rst order harmonic balance method and the beam
�exural displacement was represented by a single spatial beam mode,

w(x, t) = z(t)φ(x), (1.44)

where z(t) is the modal amplitude and φ(x) is the shape function. The Galerkin
procedure was then performed and the equilibrium was expressed in the modal
space. According to the curve of equivalent damping ratio versus displacement
at midspan which can be regarded as a scaling factor of modal amplitude, the
equivalent damping is inversely proportional to displacement amplitude, for higher
values of amplitude, the behavior looks more like that of �viscous� damping. Further
insight into the qualitative nature of the dynamic response of this model is gained by
looking at the equivalent damping ratio at resonance. It was shown in the study the
existence of an optimal ramp angle γ to obtain the maximum damping ratio, this
result suggests that it is possible to enhance the vibration suppression properties by
dry friction through the judicious selection of the contact pressure.

(a) Cantilver beam with displacement-

dependent friction damper

(b) Equivalent damping ratio versus dis-

placement amplitude

Figure 1.18: Damping study on von Kármán plate

There are also more recent models that have been developed on friction damping
since 2010. The sectioned beam used by Peyret [28, 29] is one example. The
structure is composed of three successive beams, with lengths l/4, l/2 and l/4. The
beams are linked by two planar joints with contact and friction. The three parts are
linked by an axial load N . This con�guration was derived from a monolithic beam
with a transverse load applied to the middle. At the positions where the beam is
cut, the bending moment is equal to zero, therefore, in those sections, there are only
shear stresses. In this way the normal force is only brought by the axial force N
and a uniform clamping pressure can be guaranteed. The shear stress pro�le on the
cut surface is parabolic, with the increase in transverse load, the shear stress will
be saturated to the value µσn where σn is the normal stress on the contact surface.
The shear stress �eld is expressed in equation 1.38 and illustrated in �gure 1.19a.
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τ(y) = − T

2IGz
y2 +

3

2

T

S
. (1.45)

(a) Sectioned beam with zero bending on the

contact surface

(b) Loss factor versus transverse load

Figure 1.19: Damping study on sectioned beam and its result

The parabolic stress �eld enables the appearance of partial sliding. This
model describes the phenomenon of sticking-slipping transition with a new stress
distribution: the micro-slip originates at the center of the contact region. According
to the relationship between loss factor and transverse load, the clamping pressure
was shown to have a signi�cant in�uence on damping property. Under bigger
pressure, a bigger load is needed to activate slipping and consequently the energy
dissipation. It can also be expressed in terms of displacement and indicates that
friction-induced damping depends on the amplitude of displacement.

The beam model is a commonly employed element in friction-induced damping
studies, especially for analytical analysis. Whether it is used for the modelization
of lap joint or layered structures, all the results have pointed to the conclusion that
friction damping is proportional to displacement amplitude. This conclusion will be
reinforced by the proposed academic models in the second chapter. Even though
analytical analysis is shown to be more direct in revealing damping properties, it is
restricted to models with simple geometry. The next section will present the state
of art in numerical modelization of frictional damping.

1.9.2 Numerical methods

Along with the development of �nite element method, contact modelization has been
a critical issue in the analysis of complex structures held together by mechanical
joints. The current section will present 2 contact modeling methods presented in
[30, 31, 32, 33] for joint modeling with the �nite element method as well as the
relevant applications conducted by other researchers.
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1.9.2.1 Node-to-node contact

In this approach, the contact between linear substructures with small deformations
is considered. Under the assumption of small relative tangential movement in the
contact area, node-to-node elements can be applied to model contact and friction
in a nodal basis. If the discretization of the substructure interfaces is the same, as
illustrated in �gure 1.20, the equations can be formulated directly for each nodal
pair.

[
M1 0

0 M2

](
ẍ1

ẍ2

)
+

[
K1 0

0 K2

](
x1

x2

)
+

[
B1

T

B2
T

]
fT +

[
B1

N

B2
N

]
fN = fext (1.46)

The substructures are coupled by the tangential nodal forces fT and normal
nodal forces fN. The matrices B

(i)
T and B

(i)
N are Boolean matrices that capture

coincide pairs of physical DOFs. The tangential force is a function of relative
displacement xrel = B1

Tx1 −B2
Tx2 and tangential contact sti�ness kT.

Figure 1.20: Node-to-node contact

The system expressed in equation 1.46 can be solved by the Harmonic Balance
Method. The nonlinear friction force fT (one of the discrete component of fT) can
be decomposed into an in-phase part which is proportional to displacement and an
out-of-phase part which is proportional to velocity.

FT (xrel) ≈ kHBMxrel + dHBM ẋrel. (1.47)

If the �rst harmonics are retained, the friction force can be expressed by

FT (xrel) = a0 + ac cos(ωt) + as sin(ωt). (1.48)

where ac and as are the coe�cients of Fourrier series. With the assumption of a
harmonic relative displacement xrel = x̂ cos(ωt) and compare the equation 1.47 and
1.48, the harmonic equivalent sti�ness and damping coe�cients are written as

kHBM =
ω

πx̂

∫ 2π/ω

0
FT cos(ωt)dt, dHBM = − ω

πx̂

∫ 2π/ω

0
FT sin(ωt)dt (1.49)
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Given the linearized frictional force, the response of the system can be obtained
by an iterative solution procedure. The response of a system to a harmonic excita-
tion fext = f̂eiωt is assumed to be harmonic with x = x̂eiωt. Thus the equation of
motion can be transformed into an algebraic equation

[K + KBHM(x̂) + iω(D + DHBM(x̂))− ω2M]x̂ = f̂ . (1.50)

The system of equations can be converted to

x̂ = HHBM
−1f̂ , (1.51)

where HHBM is the dynamic sti�ness matrix with

HHBM = K + KBHM(x̂) + iω(D + DHBM(x̂))− ω2M. (1.52)

This problem can be solved iteratively by Newton-Raphson Method with an
initial value x̂0. The modeling by node-to-node elements o�ers the possibility to
implement various di�erent types of friction models. In addition, nonlinear e�ects
like sticking-slipping and separation of each node pair can be modeled. However,
for large number of contact pairs the numerical calculation for each element will be
very heavy and the e�ciency will decrease.

1.9.2.2 Thin layer elements

The key idea in the application of thin layer elements is to model the joint inter-
face between two substructures by a continuous element with very small but �nite
thickness. The existing thin layer elements are hexahedral or pentahedral elements
formulated with the isoparametric concept and are available in commercial �nite el-
ement programs. The joint parameters used to model with thin elements are �rstly
acquired from a generic joint experiment and then integrated into the �nite ele-
ment modelization. This method allows engineers to estimate the eigenfrequencies
and modal damping factors of an assembly before the physical prototype is avail-
able. Using the model of constant hysteresis, the damping can be incorporated into
the sti�ness matrix in frequency domain by augmenting it with the complex-valued
product of experimentally determined dissipation multipliers αi and βi.

K∗ = K + iωD = K + iω

n∑
j=1

αiK
Material
j + iω

n∑
j=1

βiK
Joints
j . (1.53)
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(a) Experiment on joint to determine energy

dissipation

(b) Insertion of thin layer element between

substructures

Figure 1.21: Application of thin layer element

The shear sti�ness of the joint can be determined from the tangential force in
the experiment and thin element's geometry.

τ = Gγ ≈ Gu
d
, τ =

FT
A

(1.54)

where G is the shear modulus and γ is the shear angle. The shear stress can also
be expressed in terms of tangential load FT and contact area A of the generic joint.
Equating the two expressions of equation 1.54, the shear modulus can be expressed
as

G =
dFt
uA

. (1.55)

In the orthotropic constitutive matrix Cij of σij = Cijεij , only the terms
C55 and C66 are non-zero and equal to G. The coe�cients Cij obtained give a
generalized characterization of joint behavior and can then be used to generate the
element sti�ness matrix KJoints

j .

The advantage of thin layer elements is the ability to predict the damping and
eigenfrequencies of a structure using experimentally determined joint parameters
and this method can be applied to structures with large number of DOFs. The
drawback is that it is a linear method which can only simulate structures with
minimal dissipation in joints and can be used only in frequency domain.

1.9.2.3 Numerical studies on real structures

Numerical modelization by �nite element method allows simulation on full-sized
structures containing contact interface. One of the most studied subjects is bolted
joint, to which many attempts have been made to obtain its mechanical proper-
ties such as contact sti�ness and friction damping [34]. In order to accurately
predict the the physical behavior of the structure with bolted joints, a detailed
three-dimensional bolt model is desirable. But the limitations on model size some-
times make modeling of solid bolts impractical. Therefore, many analysts choose
other methods to model bolts [35, 36, 37]. Kim et al. [38] studied in 2007 four
kinds of �nite element models: solid bolt model, coupled bolt model, spider bolt
model and no-bolt model as illustrated below. The di�erence between the coupled
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bolt model and the spider bolt model is that both the head and the nut of the bolt
are modeled by beam elements in the spider model. In this study, the 3D 8-node
surface-to-surface contact element CONTACT174 of ANSYSTM was used. It was
found that the solid bolt model which models the full-size geometry of bolt could
most accurately predict the physical behavior of the structure compared to static
experiment. The coupled bolt model and the spider bolt model were shown to be
more time-saving in view of e�ectiveness and usefulness. The no-bolt model was
studied by Knight [39] with the ABAQUSTM C3D8I 8-node solid element. The
washer-bearing-surface size was shown to be able to a�ect the the response signi�-
cantly.

(a) Solid bolt model (b) Spider bolt model

(c) Coupled bolt model (d) No-bolt model

Figure 1.22: Four bolt modelization methods

The axial sti�ness of bolted �ange joints was studied by Luan [40] in 2012.
The axial sti�ness could be obtained by full-sized �nite element modelization, and
it was found to be di�erent in tension and compression. Based on this nonlinear
property of bolted joint, a simpli�ed model with bi-linear springs was proposed and
validated for pipe structures with bolted �ange joints. The torsional property of
bolted joint was analyzed by FEM calculation along with analytical modelization
by Shamoto et al. two years later [41] in 2014. The energy dissipation in terms
of displacement was shown to be a quadratic function and the damping coe�cient
presented the characteristic that is similar to second-order damping illustrated in
�gure 1.16b.

Besides the direct or indirect modelization of bolted joint, there has also been
studies by FEM purely on frictional surface, such as the work of Chen and Deng [42]
on the micro-slip phenomenon in the press-�t joint and the lap-shear joint. The two
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joints were both modeled by two-dimensional and three-dimensional elements. The
comparison between the 2D (plane stress and plane strain) and 3D modelization
showed that there wasn't signi�cant di�erence between the two methods in the case
of press-�t joint problem. But as the width of the plate increases, the plane strain
prediction is a better approximation to the 3D solution. This conclusion will justify
the use of 2D plane strain elements to study the damping in sandwich plate in
chapter 2.

1.9.3 Air damping

In addition to the frictional damping induced by micro-slip or macro-slip in the
assembled structures, there is another dominant damping mechanism associated
with �gas-pumping". Air damping is considered to be dependent on frequency and
gas pressure. The energy dissipation is contributed by the gas motion tangential
to the contact plane, resulting from the the relative �exural movement between
the adjacent surfaces. The signi�cant contribution of gas-pumping to the total
damping in riveted structures was discovered by Ungar [34] in 1964. One year later
Scacullo and Stephens [43] conducted the study of air damping in circular and
rectangular plates, the results showed that the magnitude of the air damping might
greatly exceed the structural damping.

The the majority of the existed studies on air damping are based on the following
three assumptions [44]:

• The separation distance between the contact bodies is very small compared
with the linear dimensions of the plate.

• The gas �ow is assumed to be laminar and primarily viscous. This assumption
implies low Reynolds numbers and parabolic velocity distributions across the
gas �lm.

• The relationship between pressure and density at any point in the gas �lm is
assumed described by a polytropic process with exponent n, pρ−n = const.
The �lm is nearly isothermal if the relative velocities are relatively low and
n ≈ 1.

Based on the expression of �uid �ow between two moving plates given by Landau
[45], Maidanik [46] developed in 1967 an analytical model for semi-phenomenological
study of energy dissipation associated with gas-pumping between a beam and a
plate. It illustrates well the basic characteristics of damping induced by gas-
pumping.
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Figure 1.23: Node-to-node contact

The Mach numbers associated with the motion of the gas are assumed small as
compared to unity, then the conservation of momentum can be linearized. The power
dissipated in the region of overlap between the two surfaces may be approximated
by the expression

P∆E ≈
hc2

0Ab
2np0ω

〈‖∇p‖2〉H(θ) (1.56)

where

θ =
h

δ
, δ =

(
2ν

ω

) 1
2

(1.57)

and

H(θ) = (sinh θ − sin θ)[θ(cosh θ) + cos θ]−1. (1.58)

δ represents the the boundary layer thickness, ν the kinematic viscosity of the
gas, ω the angular velocity of the excitation, h the separation distance, p0 the
ambient pressure of the gas, c0 the sound speed and Ab the area under the beam.
The loss factor associated with the the power dissipated by the gas can thus be
obtained as

η ≈ P∆E

Apmp〈‖Vp0‖2〉
=

Abhc
2
0

2Apmpnp0ω

〈‖∇p‖2〉
〈‖Vp0‖2〉

, (1.59)

where Ap is the area of the plate (Ap � Ap), mp represents the plate mass
per unit area, and 〈‖Vp0‖2〉 the mean square velocity �eld on the plate. From the
expression above, the loss factor due to gas-pumping is related to the geometry and
mass of the contact bodies, the frequency, the pressure of ambient pressure as well
as the pressure gradient between the contact surfaces.

For more recent studies who focus mainly on damping mechanism in MEMS
(Microelectromechanical Systems), e.g. micro-sensors. Bao [47] developed in 2002
an energy transfer model with the Boltzmann statistics on molecules velocity. The
energy loss due to the surrounding gas in one oscillation cycle is given by

∆E = 4abmn

√
2kT

πm
A2

0ωπ (1.60)

where m represents the mass of the gas molecules, n the density of the gas
molecules, ab the area of the plate, k the Boltzmann constant, A0 the amplitude
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of vibration and ω the angular velocity. The energy dissipation is shown to be lin-
early proportional both to the area of the squeezed air �lm and excitation frequency.

In 2010 Biçak [48] integrated the mode shape into the plate displacement �eld
and used Green's function to solve Reynolds equation. The use of Green function
can also be found in [49]. The air-pumping force can be decomposed as an in-phase
and an out-of-phase component, the out-of-phase component Fd is directly related
to the damping ratio ζ = Fd/2ωn, as explained by equation 1.49. The numerical
study of air damping by FEM was conducted by De Pasquale [50] on perforated gold
and silicon MEMS plates, but the results showed that the damping factors obtained
were not satisfactory compared to measured results.

1.10 Conclusion

The present chapter �rstly introduces the industrial context in which the subject of
the current thesis is proposed. Friction-induced damping is shown to play a more
dominant role compared to material damping in determining the vibration response
of the assembled structures. The damping of a structure can be quanti�ed by the
logarithmic decrement δ in a free vibration or by the loss factor η between the en-
ergy dissipation in one oscillation cycle and the maximum elastic energy stocked in
the system. The mathematical relationship between the two factors are derived in
details. In the literature review, the precedent studies on frictional damping and air
damping are summarized in chronological order. The studies on frictional damping
can be divided into two parts: analytical modelization and numerical simulation. All
the analytical models point to the fact that frictional damping is generally a function
of modal amplitude which can also be in�uenced by parameters like clamping pres-
sure and coe�cient of friction. This conclusion will serve as the fundamental idea
for the phenomenological study in chapter 2. Two numerical methods for contact
problems are then introduced, the general method for nonlinear force linearization
by HBM is presented. The current numerical studies on frictional damping focus
mainly on energy dissipation in bolted joints, several modelization methods indicate
that a full-sized modelization of joint can guarantee a better accuracy, but it is
time-costing, so other simpli�ed model by beam elements may replace the solid bolt
model while keeping a good representation of the dynamic properties. The last sec-
tion is dedicated to damping by gas-pumping. Di�erent from the frictional damping,
the energy dissipation in gas-pumping is related to oscillation frequency as well as
ambient pressure. It is an energy dissipation mechanism that can also be dominant
in the overall damping composition of assembled structures. The next section will
only focus on friction-induced damping and give a preliminary phenomenological
study of friction damping in terms of modal amplitude.
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2.1 Introduction

Micro-slip is considered as the most important damping mechanism in assembled
structures. In order to clarify the origin of energy dissipation as well as the in�uence
of di�erent controlling parameters like clamping pressure, coe�cient of friction and
geometry characteristics, three simpli�ed academic models are proposed in the �rst
place to give a preliminary phenomenological insight into dry friction damping.
These three models are respectively:

• First-order interface damping in sandwich beam

• First-order boundary damping in rotational joint

• Second-order boundary damping in von Kármán plate
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Due to the geometrical simplicity of the three models, analytical approach is
thus possible in damping modelization. Mathematical expressions of damping ra-
tio are derived for each model, which enable a fast and comprehensive study of
the in�uencing parameters. Several numerical studies are then conducted on the
sandwich beam model in order to study the in�uence of parameters that cannot be
analytically analyzed, such as welding points number, thickness ratio and contact
geometry defaults.

2.2 First-order interface damping in sandwich beam

2.2.1 Analytical modelization

2.2.1.1 Model for perfect surface

Sandwich beam is a commonly used structure in damping studies. The model used
in this section is illustrated in �gure 2.1 on page 30. Two identical beams are
superimposed one on another with a frictional contact interface between them, on
which the Coulomb's law is used as friction property. A uniform clamping pressure
is applied to both upper and lower surface of the assembled structure.

Figure 2.1: Sketch of jointed sandwich beam

A force equilibrium analysis is conducted in the �rst place to obtain a mathe-
matical description of the sandwich beam, as illustrated in �gure 2.2 on page 31.
The derivation procedure presented here is inspired by the work of Nanda [18].
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Figure 2.2: Free body diagram of the sandwich beam

The moment equilibrium with respect to the point M1 which is denoted by
distance x from the encastre is expressed by equation 2.1. The clamping pressure
doesn't appear in the expression because the e�ect of pressure on the upper and
lower surface are counteracted. It should be noted that the equilibrium established
here describes the slipping stage since the tangential stress is already saturated and
is uniform along all the contact interface, here P designates the exterior loading.

M1 = M2 =
P

2
(l − x)− µpbh

2
(l − x). (2.1)

The relationship between bending moment and de�ection in Euler-Bernoulli
beam is written as

M = −EI d
2w

dx2
where E: Young's modulus, I =

1

12
bh3. (2.2)

If we combine the equation 2.1 with equation 2.2, we can obtain

d2w

dx2
=

6

Ebh3
(P − µpbh)(l − x) (2.3)

dw

dx
=

6

Ebh3
(P − µpbh)

(
lx− 1

2
x2

)
+ C1 (2.4)

w =
3

Ebh3
(P − µpbh)

(
lx2 − x3

3

)
+ C1x+ C2. (2.5)

The two unknown coe�cients can be determined by the boundary condition at
the encastre endpoint w|x=0 = 0 and dw

dx |x=0 = 0, which can give the values of
C1 = 0 and C2 = 0. Thus the expression for the beam's de�ection can be obtained
as

w(x) =
(P − µpbh)l3

Ebh3

[
3
(x
l

)2
−
(x
l

)3
]
. (2.6)
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The de�ection obtained here can be thought of as a result of combined in�uence
from endpoint loading and interface friction shearing. In order to simplify the writing
of equations, we introduce two constants Q and R.

Q = µpbh, R =
Ebh3

l3
. (2.7)

As mentioned before the derivation of de�ection's expression, the equation 2.6
is valid only for slipping. Before the occurrence of slipping, the contact interface
goes through a gradually increasing tangential stress. We adopt the hypothesis
that the transition from sticking to slipping is brutal and that all the points on the
interface slip or stick synchronously.

If we take into account the longitudinal variation due to axial force, the horizontal
displacement of a point which is positioned at distance x from the encastre is given
by equations 2.8 and 2.9. u1 designates the in-plane displacement in the upper beam
and u2 refers to the in-plane displacement in the lower beam.

u1 =
1

E

∫ x

0
σx1dx−

h

2

dw1

dx
(2.8)

u2 =
1

E

∫ x

0
σx2dx+

h

2

dw2

dx
. (2.9)

According to the force equilibrium in the free body diagram in �gure 2.2, average
normal stresses in the two beams can be expressed as

σx1 =
µpb(l − x)

bh
=
µp(l − x)

h
(2.10)

σx2 = −µpb(l − x)

bh
= −µp(l − x)

h
. (2.11)

If we put the relation 2.10 and 2.11 into 2.8 and 2.9 and use the de�ection
expression given by 2.6, the relative displacement at the point x is given by

∆u = u2 − u1 =
3h

Rl

(
P − 4

3
Q

)[
2
(x
l

)
−
(x
l

)2
]

(2.12)

The expression above gives the validity criteria for equation 2.6. The equation
2.12 is positive if and only if P − 4

3Q > 0, which means that the slipping can only
occur under a loading which is superior to 4

3µpbh. This value is denoted as critical
loading Pcri. The critical de�ection at the free point is denoted as qcri. As there is no
slip between the two clamped beams under a loading inferior to Pcri, the two beams
can be regarded as sticked together and behave like a single block with doubled
thickness. The critical amplitude to activate the slip is given by 2.13.

qcri =
Pcril

3

3EIdoubled
=

4
3µpbhl

3

3E · 1
12b(2h)3

=
2µpl3

3Eh2
. (2.13)
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Here we can derive the relationship between the amplitude of de�ection q and
the quantity of energy dissipation. Firstly we need to express the de�ection in the
form of a product between amplitude and normalized shape function, as written in
equation 2.14.

w(x) =
q

2

[
3
(x
l

)2
−
(x
l

)3
]
. (2.14)

According to relations 2.8 and 2.9, the longitudinal displacement in terms of
amplitude q is given by

u1 =
1

E

∫ x

0
σx1dx−

h

2

dw1

dx
=

1

E

(
µpl

h
x− µp

2h
x2

)
− 3hq

4l

[
2
x

l
−
(x
l

)2
]

(2.15)

u2 =
1

E

∫ x

0
σx2dx+

h

2

dw2

dx
= − 1

E

(
µpl

h
x− µp

2h
x2

)
+

3hq

4l

[
2
x

l
−
(x
l

)2
]
. (2.16)

The energy dissipation can thus be obtained as

u2 − u1 = − 2

E

(
µpl

h
x− µp

2h
x2

)
+

3hq

2l

[
2
x

l
−
(x
l

)2
]

(2.17)

Wdissip = 4

∫ l

0
τxy∆u(x)bdx = 4µpb

∫ l

0
(u2 − u1)dx = 4µpbh

(
q − 2µpl3

3Eh2

)
.

(2.18)

The equation 2.18 gives another approach to obtain the critical amplitude by
applying the criteria Wdissip > 0, it will give the same critical amplitude as by
equation 2.13. Here a coe�cient of 4 is multiplied before the integral based on the
hypothesis that dissipated energy in a quarter of loading cycle is a quarter of the
total energy dissipated in a full loading cycle. The next step consists of calculating
the maximum elastic energy that the system can stock. The stocked energy can be
divided into two parts: the energy related to elongation and the energy related to
bending.

The elastic energy related to elongation of the beam can be obtained from the
average normal stresses. It should be noted that the elongation energy obtained
here is only valid for the stage of slipping.

Eelongation =
1

2

∫
v
σ · εdv =

1

2

∫
v
σx ·

σx
E
dv =

1

2E

∫ l

0

µ2p2(l − x)2

h2
bhdx =

µ2p2l3b

6Eh
(2.19)

The elastic energy related to bending of the beam can be obtained from the
de�ection's expression 2.14.



34 Chapter 2. Phenomenological study of friction damping

Ebending =
1

2

∫
v
σ · εdv =

1

2

∫
v
E

(
∂2w

∂x2
z

)2

dv =
E

2

∫
l

(
∂2w

∂x2

)2 ∫
A
z2dAdx

=
E

2

bh3

12

∫ L

0

[
1

2
q

(
6

l2
− 6x

l3

)]2

dx

=
Ebh3

8l3
q2

(2.20)

From the previous deduction, we can establish the relationship between de�ec-
tion amplitude and damping ratio. What's more, the expression for the dissipated
energy is a piecewise function.

Wdissip =

0 if q ≤ qcri
4µpbh

(
q − 2µpl3

3Eh2

)
if q > qcri.

(2.21)

Similarly the damping coe�cient is also a piecewise function and can be obtained
by using the relation Emax = Eelongation + Ebending.

η =


0 if q ≤ qcri
2µpbh

(
q− 2µpl3

3Eh2

)
µ2p2l3b

6Eh
+Ebh3

8l3
q2

if q > qcri.
(2.22)

The expression presented above is only valid for cases where the contact is as-
sumed perfect and guaranteed along the total length of the beam. If the contact
surface is rough or partially clamped, the contact area that contributes to energy
dissipation may be modi�ed. In this case, more detailed models need to be devel-
oped.

2.2.1.2 Model for rough surface

In order to take into account the global plane roughness of the contact surface, a
global contact quality factor β is introduced and can be implemented in equation
2.21.

Wdissp = 4

∫ l

0
τxy∆u(x)bβdx = 4βµpbh

(
q − 2µpl3

3Eh2

)
. (2.23)

The damping coe�cient can thus be expressed by

η =


0 if q ≤ qcri
2µβpbh

(
q− 2µpl3

3Eh2

)
µ2p2l3b

6Eh
+Ebh3

8l3
q2

if q > qcri.
(2.24)
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2.2.1.3 Model for partially clamped surface

Here we consider a case where the two beams are not perfectly clamped, there is only
one zone which is under perfect contact, which means that the global quality factor
β is assumed to be 1 on this area. This particular characteristic can be modeled by
a small modi�cation in the integration's range. The range's length is noted by R
and the center of the contact surface is noted by Xc. As the clamping pressure is
no longer uniform on the contact interface, the expression for the normal stress is
modi�ed to a piecewise function.

Figure 2.3: Partially clamped beam

σ1 =


Rµp
h if 0 ≤ x ≤ Xc − R

2

−µp
h

(
x−Xc − R

2

)
if Xc − R

2 < x ≤ Xc + R
2

0 if Xc + R
2 < x ≤ l.

(2.25)

σ2 =


−Rµp

h if 0 ≤ x ≤ Xc − R
2

µp
h

(
x−Xc − R

2

)
if Xc − R

2 < x ≤ Xc + R
2

0 if Xc + R
2 < x ≤ l.

(2.26)

The expressions for the elongation are thus di�erent from equation 2.8 and 2.9.

u1 =
1

E

[∫ Xc−R2

0

Rµp

h
dx−

∫ x

Xc−R2

µp

h

(
x−X − R

2

)
dx

]
− h

2
w′ (x) (2.27)

u2 =
1

E

[
−
∫ Xc−R2

0

Rµp

h
dx+

∫ x

Xc−R2

µp

h

(
x−X − R

2

)
dx

]
+
h

2
w′ (x) . (2.28)

As the only zone of dissipation is [Xc − R
2 , Xc + R

2 ], the energy dissipation can
be rewritten as

Wdissip = 4µpb

∫ Xc+
R
2

Xc−R2
(u2 − u1)dx

=
bpRµ

6Ehl3
{

8l3µpR (R− 6Xc)− 3qEh2
[
R2 + 12Xc (X − 2l)

]}
.

(2.29)
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It's important to verify whether the critical amplitude will vary in terms of
contact surface's area and position, so for this purpose we need to �nd the amplitude
where Wdissip(qcri) = 0. The qcri can be obtained from equation 2.29.

qcri =
8l3µpR (R− 6Xc)

3Eh2
(
R2 − 24lXc + 12Xc

2
) . (2.30)

Here we set

f (Xc) = R2 − 24lXc + 12Xc
2,

R

2
≤ Xc ≤ l −

R

2
(2.31)

In order to determine the sign of equation 2.30 in the range of Xc, we need to
know its slope and two boundary values.

f ′ (Xc) = 24(Xc − l) < 0 (2.32)

f(
R

2
) = 4R(R− 3l) < 0 (2.33)

f(l − R

2
) = 4R2 − 12l2 < 0 (2.34)

Since f ′ (Xc), f(R2 ) and f(l− R
2 ) as well as R−6Xc are all negative in the range

of Xc, we can con�rm that expression 2.30 is the critical amplitude beyond which
the structure is damped. It's evident that this critical amplitude is a function of
contact surface's area and position. As the normal stress is no more uniform, the
stocked elastic energy should also be modi�ed as

Eelongation =
bµ2p2R2 (6Xc −R)

12Eh
. (2.35)

When we take R = l and Xc = l
2 , we will �nd that equation 2.35 is the same as

equation 2.19. Since the bending energy is only a function of de�ection's form, it's
not in�uenced by the distribution of normal stress. The damping ratio can thus be
expressed by this more detailed model as

η =


0 if q ≤ qcri
bpRµ

6Ehl3
{−3qEh2[R2+12Xc(Xc−2l)]+8l3µpR(R−6Xc)}

2
[
bµ2p2R2(6Xc−R)

12Eh
+Ebh3

8l3
q2
] if q > qcri.

(2.36)

Equation 2.36 is a generalized version of equation 2.24 which enables a com-
prehensive parametric study of di�erent in�uential factors like clamping pressure,
coe�cient of friction even the area and position of clamping forces. It's possible to
implement di�erent thicknesses in the development, but this procedure will compli-
cate too much the expression. The study on thickness ratio will be conducted by
numeric method in the following sections.
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2.2.2 Analytical parametric studies

The beam's dimensions and mechanical properties used for numerical calculations
are listed in table 2.1. The analytical parametric studies focus mainly on the in�u-
ence of clamping pressure, coe�cient of friction, contact area's size as well as it's
position. Since the purpose of the study is to �nd out the relationship between
modal amplitude and friction damping, in each tracing the horizontal axis set to
be the sweeping amplitude and the vertical axis to be the corresponding damping
ratio. The dimensions used in the current study are listed in table 2.1.

Length (mm) Width (mm) Thickness (mm) Young's modulus (MPa) Poisson's ratio
400 30 4 210000 0.3

Table 2.1: Beam dimensions and mechanical properties

2.2.2.1 In�uence of pressure

The study of the in�uence of pressure on damping ratio is conducted by the ana-
lytical model which assumes perfect contact along the whole length of the beam.
The coe�cient of friction is �xed at 0.3. The maximum amplitude is �xed at 8 mm,
which is the total thickness of the assembled structure. The evolutions of damping
ratio under four di�erent pressures are illustrated in �gure 2.4.

Figure 2.4: In�uence of pressure on damping ratio

There are 6 important damping properties that can be summarized:

1. For a given structure, there exists a damping limit whatever the combination of
clamping pressure and modal amplitude, for example the damping is bounded
to 400 % in the current model.
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2. For a given pressure, there exists an optimal modal amplitude under which
the structure can reach its maximal damping capacity.

3. Once the maximum damping capacity is reached, the increase in modal modal
amplitude will cause a decrease in damping capacity.

4. The bigger the clamping pressure is, the later the slipping occurs.

5. Under a given small modal amplitude (q < 2 mm in the current model), bigger
clamping pressure may lead to weaker damping capacity.

6. Under a given big modal amplitude (q > 6 mm in the current model), bigger
clamping pressure surely yield stronger damping capacity.

The fact that the damping capacity for a given structure is limited to a certain
value indicates that the optimization of damping is feasible, for example in industrial
applications the clamping pressure can be used as controlling parameter in adjusting
the modal amplitude for assembled structures in resonance.

2.2.2.2 In�uence of coe�cient of friction

From the product µp both in the numerator and denominator of equation 2.36, the
coe�cient of friction µ and the clamping pressure p can take e�ect simultaneously
on the damping ratio. It's logical to suppose that coe�cient of friction has the
same in�uence as clamping pressure.

Figure 2.5: In�uence of coe�cient of friction on damping ratio

The study on the coe�cient of friction is conducted with a uniform clamping
pressure of 0.3 MPa. The evolutions of damping ratio under di�erent coe�cient of
friction are illustrated in �gure 2.5. The result is exactly the same as the evolutions
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under the in�uence of clamping pressure. This observation con�rms the hypothesis
that the coe�cient of friction plays the same role as the clamping pressure in terms of
in�uence on damping capacity. But due to the di�culty in adjusting the coe�cient of
friction in real applications, clamping pressure is considered as the easiest parameter
to be manipulated in damping control.

2.2.2.3 In�uence of global contact quality

The global contact quality factor β is introduced to study the in�uence of surface's
coarseness on damping capacity. An amplitude sweeping is applied to equation 2.24
and �ve di�erent contact percentages are chosen from 0 to 100 %. The pressure is
�xed at 0.3 MPa and the coe�cient of friction at 0.3. The evolutions of damping
ratio is presented in �gure 2.6.

Figure 2.6: In�uence of global contact quality on damping ratio

The global contact quality is shown to have no in�uence on the slipping acti-
vation point as well as the amplitude to reach the optimal damping. Since β is a
simple linear multiplicator to the dissipated energy, the damping capacity is linearly
proportional to the contact surface percentage.

2.2.2.4 In�uence of contact surface's position

In cases where the contact is not guaranteed on the whole contact interface, the
position of clamp may modify the evolution of amplitude-damping ratio curve. In
the current study, the surface under pressure is supposed to be perfectly clamped
(β = 1). The calculation is based on equation 2.36 where the pressure is �xed at 0.3
MPa and the length of clamp is �xed at 50 mm. A sweeping in modal amplitude
from 0 to 8 mm is conducted. The in�uence of clamping pad's position is illustrated
in �gure 2.7.
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Figure 2.7: In�uence of clamping pad's position on damping ratio

The parametric study shows that the clamping pad's position is a key factor in
controlling the slipping activation point, it can also in�uence the the value of opti-
mal damping as well as the amplitude corresponding to optimal damping. Several
phenomena can be highlighted:

1. The further the clamping pad is situated from the encastre, the bigger the
amplitude needed to activate slipping and logically, the bigger the amplitude
needed to reach maximum damping.

2. For a given structure, some positions may lead to a relatively weak damping
capacity than other positions. But there exists a position where the damping
capacity of the whole structure can be optimized, in the current study this
position is at around Xc = 250 mm.

3. For big modal amplitude (q > 8mm), larger distanceXc between the clamping
pad and the encastre yields stronger damping. But for small modal amplitude
(1 mm < q < 3 mm), there is no concrete correlation between distance Xc

and damping capacity.

2.2.2.5 In�uence of contact surface's area

Besides the contact surface's position, its area can also modify the damping char-
acteristics of the assembled structure. In the current model, the center of clamping
pad is situated at Xc = 200 mm, the clamping pressure is �xed at 0.3 MPa. The
beam's width remains constant, 5 di�erent clamping lengths R are used to modify
the contact area in the study.
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Figure 2.8: In�uence of clamping pad's area on damping ratio

Besides the common characteristics of the �rst-order interface damping, three
other features related to the in�uence of contact area can be found in �gure 2.8.

1. the maximum damping ratio is proportional to the contact surface area. The
bigger the contact area is, the more damped the structure can be at optimal
damping amplitude.

2. The bigger the contact area is, the bigger the amplitude is needed to activate
slipping.

3. The bigger the contact area is, the more damped the structure can be under
large modal amplitude (q > 3 mm in the current model).

2.2.3 Numerical parametric studies

In order to study the in�uence of other complicated parameters like welding points,
geometric defaults, thickness ratio even boundary conditions, analytical modeliza-
tion is no longer capable of taking into account of these factors, in this case numerical
study is necessary to give a qualitative estimation of the damping ratio under the
in�uence of these in�uencing parameters.

2.2.3.1 In�uence of welding point number

Welding is a commonly used �xation method in structure assembly. The struc-
ture's hardening by welding is largely acknowledged in industry but it's in�uence on
damping is still not well investigated. In the current study, the plate is modeled by
2-D plane strain element with which the in�uence in the width's direction can be
ignored. The welding points are uniformly distributed on the contact plan and the
point pairs from the upper and lower contact surface are constrained to have the
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same in-plane displacement. Di�erent welding point numbers are tested and their
in�uence on energies and damping ratio are illustrated as below.

(a) Dissipated energy (b) Stocked energy

Figure 2.9: In�uence of welding points number on dissipated and stocked energy

The dissipated energy is a linear function of modal amplitude, which is in coher-
ence with equation 2.29 that presents a �rst-order relationship with modal ampli-
tude. It reveals that the �rst-order relationship between the modal amplitude and
the dissipated energy is conserved even with the presence of welding points. How-
ever the number of welding points can modify the quantity of dissipated energy.
Due to the blockage of relative displacement, the more the welding points there are,
the less the energy is dissipated. Besides, the slipping activation amplitude is inde-
pendent of welding points number. From the �gure 2.9b, the relationship between
modal amplitude and stocked energy is no longer linear and presents a second-order
characteristic, which is also in coherence with the analytical expression of stocked
energy. The hardening of structure by a growing number of welding points is evi-
dent, but its e�ect is not proportional to the points number from the fact that the
di�erence in stocked energy between 4 weldings and 5 weldings is negligible.
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Figure 2.10: In�uence of welding points number on damping ratio

Since the dissipated energy and stocked energy are respectively a negative and
a positive correlation function of welding number, it can be concluded that less
welding points will lead to a more damped structure.

2.2.3.2 In�uence of thickness ratio

According to equation 2.27 and 2.28, the relative displacement between the upper
and lower beam is a function of beam's thickness h, thus we can assume that the
ratio of upper beam's thickness to lower beam's thickness is another factor that
may in�uence the damping capacity in sandwich-type structures. In the current
numerical study, the contact is assumed to be perfect on the whole interface and the
sum of the two beam's thicknesses remains 8 mm, the only variable is the thickness
ratio between them. The clamping pressure is �xed at 0.1 MPa and the modal
amplitude ranges from 0 to 8 mm.
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(a) Dissipated energy (b) Stocked energy

Figure 2.11: In�uence of thickness ratio on dissipated and stocked energy

Similar to the phenomena presented in the study of welding points number, the
dissipated energy is always a linear function of modal amplitude. However, unlike
the welding number which can in�uence the tangent of the Edissipation−Amplitude
relationship, the straight lines in 2.11a are parallel to each other which signi�es that
the thickness ratio doesn't modify the energy loss rate in terms of modal amplitude,
but only in�uences the slipping activation point. The smaller the damping ratio
is, the later the slipping occurs. Even though the total thickness of the assembled
beam is maintained constant, which ensures a constant volume of the structure, the
stocked energy can be in�uenced by the thickness ratio from the fact that smaller
ratio can lead to a more elevated level of stocked energy.

Figure 2.12: In�uence of thickness ratio on damping ratio

After the slipping occurs, the maximum damping capacity can be reached when
the two beams have the same thickness, the smaller the ratio is, the less damped
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the structure becomes. The thickness ratio can be regarded as having no in�uence
on optimal amplitude required for maximal damping, so that the maximal damping
can only be considered as a function of clamping pressure and coe�cient of friction
in this study.

2.2.3.3 In�uence of protrusion's height

Macroscopic geometric defaults due to machining imperfections cannot be ignored
in damping calculation. The current and the next section are dedicated to the
in�uence of macroscopic geometric default on damping formation. The defaults are
modeled as protrusions only on the lower part of the contact interface as illustrated
in �gure 2.13. The protrusions are de�ned by splines whose curvature can be �xed
by its horizontal interval and height. Given the number of protrusions, the height is
the only variable that modi�es the spline's curvature. In the current study, only one
protrusion is modeled on the lower surface and the in�uence of 6 di�erent heights
are studied. The clamping pressure is �xed at 0.1 MPa.

Figure 2.13: Illustration of protrusions on contact surface

(a) Dissipated energy (b) Stocked energy

Figure 2.14: In�uence of protrusion's height on dissipated and stocked energy

The protrusion's curvature is considered as having no signi�cant in�uence on the
dissipated energy since the energy evolutions in 2.14a are all superimposed together.
However the stocked energy can be in�uenced by the protrusion's height due to the
fact that the volume is linearly proportional to the thickness. The presence of non-
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zero initial stocked energy is caused by the local stress concentration at the contact
point of the protrusion during the pre-loading.

Figure 2.15: In�uence of protrusion's height on damping ratio

The ratio of dissipated energy to the stocked energy is presented in �gure 2.15.
Since the curvature has almost no signi�cant in�uence on dissipated energy, if we
adopt the hypothesis that the changes in volume due to the modi�cations in height is
negligible, the macroscopic protrusions height can be considered to have no in�uence
on damping capacity.

2.2.3.4 In�uence of protrusion's number

Based on the property of the previous section that the frictional damping doesn't
depend on protrusion's curvature, the curvature's change due to horizontal inter-
val's variation can be neglected and it is thus possible to isolate the in�uence of
protrusion's number on damping ratio. In the current study, the protrusion's height
is �xed at 0.5 mm and the clamping pressure is maintained at 0.1 MPa.
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(a) Dissipated energy (b) Stocked energy

Figure 2.16: In�uence of protrusion's number on dissipated and stocked energy

Based on the intuition that the contact area is directly related to the number
of protrusions, the dissipated energy is surely sensitive to the change in protrusions
number, which is also veri�ed by the results in �gure 2.16a. However there is
no regular pattern in the relationship between dissipated energy and protrusions'
number. This irregularity may be related to the fact that un in�nite increase in
protrusions' number is bound to lead to a limited value of contact surface, which
in turn surely yields a limited damping capacity. As for the relationship in �gure
2.16b, more protrusions seem to yield weaker stocked energy but the order between
only 1 protrusion and 3 protrusions is inverse, which makes it di�cult to �nd a
linear relationship between the number of protrusions and the stocked energy.

Figure 2.17: In�uence of protrusion's number on damping ratio

According to the �gure 2.17, 4 or 5 protrusions yield a behavior which is similar to
a typical �rst-order damping where it's easy to locate an optimal modal amplitude,



48 Chapter 2. Phenomenological study of friction damping

however for 1 to 3 protrusions, the damping-amplitude relationship is more similar
to an asymptote who cannot be optimized by simply �nding an optimized amplitude,
this phenomenon is present in second-order damping structures as will be detailed
in the following sections. If we neglect the unusual behavior of 2 and 3 protrusions,
more protrusions will in general lead to more damped system since more protrusions
will result in a bigger contact surface.

2.2.3.5 In�uence of endpoint locking

The previous sections show that the frictional damping is intrinsically a matter of
energy dissipation on the contact surface, so that not only contact properties but
also slipping distance can contribute to damping modi�cations. Since boundary con-
ditions can have in�uence on slipping distance, the changes in boundary conditions
at the free endpoint will inevitably modify the damping characteristics. Compared
to the original free endpoint control con�guration, an endpoint locking which im-
plements a displacement equivalence at the endpoint is applied as the treatment
con�guration. The dissipated and stocked energy are respectively illustrated in
�gure 2.18a and in �gure 2.18b.

(a) Dissipated energy (b) Stocked energy

Figure 2.18: In�uence of endpoint locking on dissipated and stocked energy

The �gure 2.18a shows that more energy is dissipated without the presence of
endpoint locking, which implies that endpoint locking is able to constrain the relative
displacement at the contact surface. But the fact that the slipping takes place at
the same amplitude indicates that the endpoint locking has no in�uence on slipping
activation point. The �gure on stocked energy points out that the endpoint locking
can lead to a hardening which in consequence will lower the damping capacity of
the structure.
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Figure 2.19: In�uence of endpoint locking on damping ratio

The �gure 2.19 illustrates clearly that the endpoint locking has signi�cant in�u-
ence on damping formation, since the application of endpoint locking is able to lower
tremendously the damping capacity. This discovery also indicates that all methods
that are apt to constrain the potential slipping should be avoided if the �nal goal is
to make a more damped structure.

2.3 First-order boundary damping in rotational joint

2.3.1 Analytical modelization

In some �exural structures, even though translational displacement is restrained
at �xed boundary borders, small rotational displacement can take place and the
energy dissipation associated with them cannot be neglected. In order to study
the characteristics of this damping mechanism, a simple academic cantilever beam
model with one dissipative rotational boundary is employed and an analytical
damping ratio expression is developed.

As is illustrated in �gure 2.20, attached to the beam's left end point is a circular
frictional damping pad, where the rotational displacement ∆θ can be triggered by
large modal amplitude. The coe�cient of friction is designated as µ and the clamping
pressure on the frictional pad as p.
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Figure 2.20: Sketch of rotational damping beam

The alternative sticking and slipping mechanism can be divided into two parts:
For small modal amplitude, the clamp is �rm enough to hold the end point to its
original position, thus the clamping point can be regarded as encastre. Once the
slipping is triggered, the end point switches to rotation and can be equivalent to a
pinned connection under a friction-induced moment, as illustrated in �gure 2.21.

Figure 2.21: Decomposition of slipping state in rotational damping

The choice of imposed form is based on this interpretation: the �rst mode
shape chosen is assimilated to the de�ection under a mid-span concentrated load.
In order to take into account the in�uence of end point friction, the second mode
shape related to an endpoint moment should be superimposed on the �rst mode.
According to this decomposition of mode shape, the deduction of damping ratio
can be developed as follows.

The expression for a pinned-encastre beam under midspan concentrated load is

w0(x) =

{
Px

96EI (3l2 − 5x2) if 0 ≤ x < l
2

P
96EI (x− l)2(11x− 2l) if l

2 ≤ x < l.
(2.37)

The imposed mode shape can thus be formulated as a product of modal am-
plitude q with the normalized de�ection with respect to the midspan displacement.
The origin of x starts from the left end of the beam.

w(x) = qw̄(x) = q
w0(x)

w0(L2 )
=

{
8qx
7l3

(3l2 − 5x2) if 0 ≤ x < l
2

8q
7l3

(x− l)2(11x− 2l) if l
2 ≤ x ≤ l.

(2.38)
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From the expression 2.38, the rotational angle θ1 can be derived by a di�erenti-
ation with respect to x

θ1

∣∣∣∣x=0 =
∂w

∂x

∣∣∣∣∣x=0 =
24q

(
l2 − 5x2

)
7l3

|x=0 =
24q

7l
. (2.39)

The pinned endpoint rotation under a moment M is

θ2 =
Ml

4EI
. (2.40)

So the rotational displacement in a quarter of cycle at the clamped end point
can be written as

∆θ = θ1 − θ2 =
24q

7l
− Ml

4EI
. (2.41)

The moment resulting from the shear stress on the contact surface can be ex-
pressed as

M =

∫ 2π

0

∫ R

0
µpr2drdθ =

2

3
µpπR3. (2.42)

Once we have the rotational displacement and the corresponding moment, the
energy dissipation in one cycle can easily be obtained.

Wdissip = 4M

(
24q

7l
− Ml

4EI

)
. (2.43)

The second step is to express the stocked elastic energy in terms of modal am-
plitude q.

Emax =
1

2

∫
v
σ · εdv =

1

2

∫
v
E

(
∂2w

∂x2
z

)2

dv =
E

2

∫
l

(
∂2w

∂x2

)2 ∫
A
z2dAdx

=
EI

2

[∫ l
2

0

(
−240qx

7l3

)2

dx+

∫ l

l
2

(
−48q (8l − 11x)

7l3

)2

dx

]

=
384EIq2

7l3
.

(2.44)

The critical amplitude beyond which the slipping will occur can be obtained by
equating the formula 2.43 to zero.

4M

(
24q

7l
− Ml

4EI

)
= 0⇒ qcri =

7Ml2

96EI
(2.45)

The expression for damping ratio is thus divided into two parts: one corresponds
to sticking where there is no energy dissipation, another describes the state where
slipping takes place and the damping ratio is no longer zero.
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η =

0 if q ≤ qcri
4M( 24q

7l
− Ml

4EI )
384EIq2

7l3

if q > qcri.
(2.46)

We can note from equation 2.46 that dissipated energy is a linear function of
modal amplitude, however the in�uence of amplitude on stocked energy is quadratic.

2.3.2 Analytical parametric studies

In order to illustrate the in�uence of controlling parameters on rotational friction
damping, two parametric studies are conducted on clamping pressure p and radius
of the frictional pad R. As the coe�cient of friction has the same in�uence as that
of clamping pressure, its study is neglected in this section. The dimensions of the
beam are the same as those in table 2.1. The coe�cient of friction µ is set to be 0.3
and the amplitude range of interest q is from 0 to 5 mm.

2.3.2.1 In�uence of pressure

The in�uence of pressure on rotational damping is presented in �gure 2.22 on page
53. Five important conclusions can be drawn from the evolution of damping ratio:

1. Like the sandwich beam, there exists a damping limitation for a given struc-
ture, once the limit is reached, the damping capacity decreases with an increase
in modal amplitude.

2. Larger amplitude is required under bigger clamping pressure to reach the
damping limit.

3. The bigger the clamping pressure is, the later the slipping occurs.

4. For a given small modal amplitude (q<1 mm), bigger clamping pressure may
lead to weaker damping capacity.

5. For a given big modal amplitude (q>2 mm), bigger clamping pressure surely
yields stronger damping capacity.
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Figure 2.22: In�uence of pressure on rotational damping

2.3.2.2 In�uence of clamping pad's radius

The in�uence of clamping pad's radius is represented directly by variations in the
frictional moment M . It can be observed from �gure 2.23 that the evolution of
damping ratio in terms of pad's radius is very similar to that of clamping pressure.
The only di�erence is that the damping ratio is more sensitive to radius variations,
this phenomenon can be explained by the fact that the dissipated energy is a function
of R6, as formulated in equation 2.42 and 2.43.

Figure 2.23: In�uence of clamping pad's radius on rotational damping
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2.4 Second-order boundary damping in von Kármán

plate

Plates are viewed in engineering as three-dimensional components with one dimen-
sion, usually denoted by �thickness�, much smaller compared to the other two dimen-
sions [51]. Traditional plate models such as the model of Kirchho�-Love is developed
based on small strain assumption, this model is incapable of taking into account the
in-plane displacement that may be caused by large transverse de�ections, e.g. the
transverse de�ection is of the same order of magnitude as the plate thickness. In this
case, in order to study the frictional damping caused by boundary slipping under
large de�ections, the von Kármán plate model is thus adopted.

2.4.1 Geometric derivation of simpli�ed Green strain

Figure 2.24 illustrates a plate under large de�ection. The surface CAB de�nes the
undeformed position and the surface C ′A′B′ denotes the deformed state. When the
plate is deformed from position CAB to position C ′A′B′, the in�nitesimal segment
AB = dx in the middle surface will move to A′B′. If the strain is truncated to the
second order, the strain ε′′x produced by large de�ection in the x direction can be
written as

Figure 2.24: Geometric illustration of Green strain

ε′′x =
A′B′ −AB

AB
=

[
dx2 −

(
∂w

∂x
dx

)2
] 1

2

− dx

dx

=

[
1 +

(
∂w

∂x

)2
] 1

2

− 1.

(2.47)

If we consider that
∂w

∂x
is small and according to the approximation (1 + x)n ≈

1 + nx, the equation 2.47 can be written as

ε′′x =
1

2

(
∂w

∂x

)2

. (2.48)
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Similarly the second order strain induced by w in the y direction ε′′y can be
written as

ε′′y =
1

2

(
∂w

∂y

)2

. (2.49)

Here we de�ne the directional cosines of segment A′B′ as l1, m1 and n1 re-
spectively to the x, y and z axis. If small quantities of third order and above are
neglected

m1 = 0, n1 = cos∠B′A′D = sin∠B′A′B′′ =
∂w

∂x
. (2.50)

Similarly, we designate the directional cosines of A′C ′ as l2, m2 and n2 where

l2 = 0, n2 = cos∠C ′A′D = sin∠C ′A′C ′′ =
∂w

∂y
. (2.51)

The angle α between A′B′ and A′C ′ can thus be expressed as

cosα = l1l2 +m1m2 + n1n2 =
∂w

∂x

∂w

∂y
. (2.52)

According to the de�nition of sheer strain γxy = π
2 − α, if we neglect the small

quantities of third order and above,

γxy = sinγxy = sin
(π

2
− α

)
= cosα =

∂w

∂x

∂w

∂y
. (2.53)

The total strain can thus be obtained by superimposing the middle-plane strain
due to in-plane displacement with the strain induced by large de�ection.

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

(2.54)

εy =
∂v

∂y
+

1

2

(
∂w

∂y

)2

(2.55)

εxy =
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y
. (2.56)

2.4.2 Analytical modelization

The model to be used in this section is illustrated in �gure 2.25, the left boundary
is an encastre and the right boundary is under a uniform pressure p which ensures
a perfect frictional contact with the support. Once the plate is under a certain
cyclic excitation, the corresponding vibration mode in the transverse direction will
trigger an in-plane retract at the frictional bord, which in turn produces a relative
displacement and accordingly an energy dissipation, this is where the damping oc-
curs. The large strain theory implies that in-plane strain is a function of transverse
displacement w, it is thus logical to suppose that the damping is also a function of
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deformed shape and it's worthwhile to establish a relationship between mode shape
and damping capacity. The solution to the in-plane displacement problem on von
Kármán plate can follow the previously introduced method based on imposed de-
�ection. To simplify the problem, the plate is considered to be in�nitely long in the
width and the in�uence in the y direction can be neglected.

Figure 2.25: Sketch of boundary friction model

The normalized imposed form is a cosine function of x.

wn(x) =
1

2

(
cos

2π

L
x− 1

)
. (2.57)

The imposed displacement with an ampli�er q as variable can thus be expressed
as

w(x) =
q

2
(cosαx− 1) , α =

2π

L
. (2.58)

The �rst and second derivatives of the shape function with respect to x are

∂w

∂x
= −1

2
qα sinαx,

∂2w

∂x2
= −1

2
qα2 cosαx. (2.59)

According to the in-plane strain under large de�ection in equation 2.54 and the
Hooke's law

σij =
E

1− ν2
[(1− ν)εij + εkkδij ], δij : Kronecker δ. (2.60)

The normal and sheer stress can be written as

σx =
E

1− ν2
(εx + νεy), σxy =

E

2(1 + ν)
εxy. (2.61)

The plate deformation can be divided into two stages. The �rst stage corre-
sponds to sticking where the traverse de�ection is not big enough to produce a
traction force that surpasses friction force limit, so there is no energy dissipation
in this stage. Once the de�ection is big enough to trigger slipping, the reaction
shear pressure at the slipping boundary is saturated to µp and the system enters a
damping stage.

According to the stress equilibrium relationship σij,j = 0 and the hypothesis
that the in�uence from y direction is neglected, the equilibrium equation is thus
simpli�ed to
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∂σx
∂x

= 0 =⇒ E

1− ν2

(
∂2u

∂x2
+
∂w

∂x

∂2w

∂x2

)
= 0. (2.62)

We can integrate equation 2.60 to obtain the expression for in-plane displacement

∂2u

∂x2
+
(
−q

2
α sinαx

)(
−q

2
α2 cosαx

)
= 0

u(x) =
1

32
q2α sin 2αx+ C1x+ C2.

(2.63)

Before the slipping occurs, the plate's friction point can be treated as an encastre,
the rotations and translations are blocked. Here we use the translation boundary
conditions to calculate the unknown coe�cients.

u(0) = 0, u(L) = 0 =⇒ C1 = 0, C2 = 0. (2.64)

The expression for in-plane displacement before slipping is

u(x) =
1

32
q2α sin 2αx. (2.65)

At this moment the strain on the cross section can be written as

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

=
q2α2

16
cos 2αx+

q2α2

8
sin2 αx =

1

16
q2α2. (2.66)

It should be noted that the strain on the cross section is homogeneous along the
length of the plate, thus we can assert that the plate is iso-stress in the longitudinal
direction.

N(x) = EAεx =
1

16
EAq2α2. (2.67)

Equation 2.65 is important for the derivation of critical amplitude of displace-
ment beyond which the slipping can be activated. Here the frictional contact area
is de�ned as S, the clamping pressure as p and the coe�cient of friction as µ.

1

16
EAq2α2 = µpS =⇒ qcri =

4

α

√
µpS

EA
. (2.68)

After the slipping occurs, the normal force in the plate is saturated to the value
µpS.

N(x) = EAεx = EA

(
∂u

∂x
+

1

8
q2α2 sin2 αx

)
= µpS

∂u

∂x
=
µpS

EA
− 1

16
q2α2 +

1

16
q2α2 cos 2αx

u(x) =

(
µpS

EA
− 1

16
q2α2

)
x+

1

32
q2α sin 2αx+ C.

(2.69)
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Since there is only one unknown coe�cient, the boundary condition at the en-
castre is su�cient to determine it.

u(0) = 0 =⇒ C = 0. (2.70)

In this way the in-plane displacement expression after slipping is given by

u(x) =

(
µpS

EA
− 1

16
q2α2

)
x+

1

32
q2α sin 2αx. (2.71)

The displacement at the slipping boundary can be written as

u(L) =

(
µpS

EA
− 1

16
q2α2

)
L. (2.72)

Even though the slipping may occur under certain de�ection amplitude, energy
dissipation may not take place due to compression e�ect during the releasing process,
so it's necessary to determine the validity criteria in terms of amplitude for energy
dissipation calculation. The e�ective amplitude beyond which energy dissipation
can continue is designated as qe. During the releasing, the frictional force is in
the opposite direction until the moment when the de�ection changes direction, this
implies that when the plate recovers to its original position, there is a compressing
force directing to the encastre on the slipping boundary. The slipping boundary's
displacement under this pure frictional force is called critical displacement ucri.

ucri =
µpS

EA
L. (2.73)

The displacement at the slipping boundary must be superior to ucri to enable a
continuous energy dissipation.

u(L) =

(
µpS

EA
− 1

16
q2α2

)
L >

µpS

EA
L

qe =
4

α

√
2µpS

EA
.

(2.74)

We can see that qe is independent of plate's length. Another important relation-
ship to be extracted is

qe
qcri

=
√

2. (2.75)

The previous derivation describes only the behavior of a quarter cycle. Here
we adopt the hypothesis that the dissipated energy is 4 times the dissipated in a
quarter cycle, the total energy dissipation can thus be expressed as follows

∆E =

0 if q < qe

4µpSL

(
1

16
q2α2 − 2µpS

EA

)
if q ≥ qe.

(2.76)
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The stocked elastic energy can be divided into two parts: energy due to elon-
gation and energy due to bending. The elongation elastic energy will be saturated
when the normal force reaches µpS.

Eelongation =
1

2

∫
v
σ · εdv =

1

2
EAL

(
q2α2

16

)2

=
1

512
EALq4α4 =

µ2p2S2L

2EA
. (2.77)

The bending energy is a function of plate's curvature, so the bending strain can
still increase regardless of normal force saturation, thus the bending stocked energy
is a function of maximum shape amplitude q.

Ebending =
1

2

∫
v
σ · εdv =

1

2

∫
v
E

(
∂2w

∂x2
z

)2

dv =
E

2

∫
l

(
∂2w

∂x2

)2 ∫
A
z2dAdx

=
E

2

bh3

12

∫ L

0

(
−q

2
α2 cosαx

)2
dx

=
Ebh3q2α4L

192
.

(2.78)

The damping ratio can thus be expressed as

η =


0 if q < qe

4µpS

(
1

16
q2α2− 2µpS

EA

)

µ2p2S2

2EA
+
Ebh3q2α4

192

if q ≥ qe.
(2.79)

It can be seen that the damping ratio is independent of the plate's length and
the dissipated energy on the numerator is a quadratic equation of shape amplitude
q, where the name second-order damping comes from.

2.4.3 Analytical expression of slipping boundary's trajectory

When the plate is under transverse de�ection, the slipping boundary is in a cyclic
shrinking movement. Di�erent from the kinetics in the sandwich plate, where every
slipping point can return to its original position in one cycle, the slipping boundary
in von Kármán plate cannot be restored to its starting point, this is one of the main
features of the current second-order damping model. The temporal behavior of the
slipping point can be expressed by analytical method. The boundary movement in
the stable state can be divided into four phases: sticking-slipping-sticking-slipping.

Figure 2.26: The position of phase 1
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In the �rst sticking phase, the slipping point is blocked by the friction force and
stays in its compressed position. The in-plane displacement can be described by
equation 2.63 with the boundary condition u(0) = 0 and u(L) = −µpSL/EA. The
in-plane displacement can thus be written as

u(x) =
1

32
q2α sin 2αx− µpSL

EA
. (2.80)

The strain corresponding to this displacement �eld is expressed as

εx =
1

16
q2α2 − µpS

EA
. (2.81)

The maximum amplitude under which the structure can sustain its current po-
sition can be obtained by the force criteria,

N < µpS,

EA

(
1

16
q2α2 − µpS

EA

)
< µpS,

q <
4

α

√
2µpS

EA
.

(2.82)

which is identical to expression 2.74. It signi�es that in the range of

q ∈

[
0,

4

α

√
2µpS

EA

]
, the boundary displacement u(L) = −µpSL

EA
.

If the modal amplitude continues to increase, the tangential frictional force will
reach the maximum value µPS that the clamping pressure can provide, in this case
the tangential force is saturated to the maximum friction force and the clamped
point starts to slip. During this slipping phase, the friction force is maintained in
its previous direction and points to the right.

Figure 2.27: The position of phase 2

The force boundary condition should be used in the second phase to de-
rive the slipping distance. Exactly the same with the derivation method in
expression 2.69, the in-plane force is saturated to µPS. With the encastre bound-
ary condition, the slipping point's displacement can be expressed by expression 2.72.

It means that during the second phase with slipping, if modal amplitude q in

within the range of q ∈

[
4

α

√
2µpS

EA
, qmax

]
, the boundary displacement is written
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as u(L) =

(
µpS

EA
− 1

16
q2α2

)
L.

Once the maximum modal amplitude is reached, the deformed plate starts to
return to its original position, the clamped point re-enters the sticking phase. The
frictional force changes direction and points to the encastre point.

Figure 2.28: The position of phase 3

The clamped point is blocked in its previous position of phase 2, which is(
µpS

EA
− 1

16
q2
maxα

2

)
L. The key information to be extracted in phase 3 is to deter-

mine until which amplitude level the structure can stay within the sticking phase.
To this end, the constant C1 in expression 2.64 needs to be re-evaluated.

u(L) =

(
µpS

EA
− 1

16
q2
maxα

2

)
L = C1L =⇒ C1 =

µpS

EA
− 1

16
q2
maxα

2. (2.83)

Substitute coe�cient C1 obtained in 2.83 into expression 2.63 and write the
in-plane force in the condition of sticking compression,

N = EA

(
1

16
q2α2 +

µpS

EA
− 1

16
q2
maxα

2

)
, (2.84)

the switching amplitude can be derived by equating the in-plane force to −µpS.

EA

(
1

16
q2α2 +

µpS

EA
− 1

16
q2
maxα

2

)
= −µpS

q =

√
q2
max −

32µpS

EAα2
.

(2.85)

From the development above, the amplitude boundary for sticking phase can

be determined. When q is within the range of q ∈

[√
q2
max −

32µpS

EAα2
, qmax

]
, the

clamped end stays in its sticking position u(L) =

(
µpS

EA
− 1

16
q2
maxα

2

)
L.

The forth phase corresponds to the re-entry into the slipping phase. The
deformed plate continues to go back to its original position while the saturated
friction force points always to the encastre. When the plate regains its �atness, the
plate is in compression due to the remaining left-pointing friction force, so that it is
impossible to be restored to its starting position, where the plate is in a zero-stress
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state.

Figure 2.29: The position of phase 4

Since the internal force is known in the fourth phase, force boundary condition
can be used to derive the expression of boundary point's displacement. By using
equation 2.69, the internal force can be expressed as

N(x) = EA

(
∂u

∂x
+

1

8
q2α2 sin2 αx

)
= −µpS. (2.86)

Apply the encastre boundary condition u(0) = 0 and solve for u(x), the in-plane
displacement �eld can be written as

u(x) =

(
−µpS
EA
− 1

16
q2α2

)
x+

1

32
q2α sin 2αx. (2.87)

Substitue x = L into equation 2.87, we can get the expression for slipping
point's displacement during the recovery process when q is in the range of q ∈[

0,

√
q2
max −

32µpS

EAα2

]
.

u(L) =

(
−µpS
EA
− 1

16
q2α2

)
L. (2.88)

In a half cycle of vibration, the sticking and slipping transitions can be divided
into four phases. To illustrate the boundary's trajectory in full cycles and analyze
the in�uence that the pressure can have on the trajectory, the same modal amplitude
is imposed on the structure in a sinusoidal way q = qmax sinωt for each of the three
di�erent pressures applied. The dimensions of the plate are listed in table 2.1 on
page 37.

Figure 2.30: Slipping boundary trajectories under 3 di�erent pressures
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As mentioned above, the slipping end cannot return to its origin as in the fol-
lowing cycles the restarting point where q = 0 is always in a pre-compressed state.
So that in the following sections dealing with damping quanti�cation, the energy
dissipation is evaluated from the second cycle. Regarding the in�uence of clamping
pressure, a smaller pressure is shown to enable an earlier slipping and and a longer
slipping distance. If the pressure increases, the slipping will be activated under a
bigger modal amplitude. For the reason that the compression e�ect in the course of
releasing has a positive relation with the clamping pressure, the end point is more
likely to be blocked farther from the encastre under a bigger pressure. Another
phenomenon to be noted is that the slipping end point enters sticking at the same
time regardless of the clamping pressure, however to reactivate slipping, a bigger
pressure will postpone the reactivation to a bigger amplitude. Due to the property
that slipping-sticking transition can be in�uenced by clamping pressure, it's natural
to assume that friction damping is sensitive to pressure on the contact surface. This
assumption is to be veri�ed in the following sections with an energetic approach.

2.4.4 Analytical parametric studies

Similar to the parametric studies in the �rst-order interface damping, the in�uence
of clamping pressure, coe�cient of friction as well as contact surface area are to be
analyzed in this section. The dimensions of the plate are listed in table 2.1 on page
37.

2.4.4.1 In�uence of clamping pressure

In the parametric study on clamping pressure, the coe�cient of friction µ is �xed at
0.3 and the contact surface area is 300 mm2, which corresponds to a contact band
width of 10 mm. An amplitude sweeping from 0 to 3 mm is conducted on the model
to trace the evolution of damping ratio in terms of displacement amplitude.

Figure 2.31: In�uence of clamping pressure on damping ratio
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Figure 2.31 illustrates the evolution of second-order damping ratio under 4 di�er-
ent clamping pressures. There are 6 characteristics to be highlighted in comparison
with the �rst-order damping.

1. The bigger the pressure is, the later the slipping occurs.

2. For a given structure, there is no damping limit since bigger clamping pressure
can surely yield a higher damping capacity limit.

3. For a given clamping pressure, the bigger the amplitude is, the more damped
the structure becomes.

4. The increase in damping capacity is not proportional to vibration amplitude,
as the damping ratio converges asymptotically to a limited value under big
amplitude.

5. For small amplitude (0.5 mm to 1 mm), there exists a zone where smaller
pressure may produce bigger damping.

6. For big amplitudes (1 mm to 3 mm), bigger pressure does produce more damp-
ing.

The asymptotic behavior of damping ratio can be attributed to the fact that
dissipated and stocked energy are both quadratic functions of mode amplitude,
which is di�erent from the �rst-order damping whose dissipated energy is a linear
function of amplitude.

2.4.4.2 In�uence of coe�cient of friction

As is already studied in the �rst-order damping mechanism, the coe�cient of friction
has the same in�uence as clamping pressure. The damping coe�cient approaches to
saturation at big amplitude of transverse de�ection, and there exists always a zone
where smaller coe�cient of friction can yield bigger damping.
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Figure 2.32: In�uence of coe�cient of friction on damping ratio

2.4.4.3 In�uence of contact area

The contact area is adjustable by varying the parameter S in equation 2.77. Four
lengths are used to give four di�erent contact areas. Bigger area is shown to be able
to postpone the occurrence of slipping and bring more damping to the structure for
a given contact property in condition of big amplitude. Similar to the coe�cient
of friction and clamping pressure, there is an amplitude interval (0.5 mm to 1mm
in the current case) where bigger contact area may result in smaller damping, even
though the slipping is already present during the cyclic movement.

Figure 2.33: In�uence of contact area on damping ratio
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2.5 Conclusion

Distinct from viscous damping which is present throughout the entire structure
and proportional to speed, friction damping is localized and considered to be pro-
portional to displacement. Due to the fact that in assembled structures frictional
damping is 10 to 100 times bigger than viscous damping, it is not only important
to have a qualitative view of damping evolution pattern, but also an accurate
estimation of energy dissipation. For these purposes, three simpli�ed academic
models constituted of beam and friction contact zone are proposed in this chapter,
a quasi-static approach is adopted in the modelization.

Two types of damping patterns are identi�ed: �rst-order damping and second
order damping. The order of damping is determined by the order of modal
amplitude in the expression for energy dissipation. The relationship between modal
amplitude and energy dissipation is linear in �rst order damping models, whose
characteristics can be revealed by sandwich beam model and rotational joint model.
The main characteristic of �rst order damping is that there exists a maximum
damping capacity that the structure cannot surpass, whatever optimization method
is used. It is an intrinsic property of the structure. Once the maximum damping
is reached, an increase in amplitude will result in a decrease in damping. In a
similar way, the second order damping signi�es that amplitude is quadratic in
energy dissipation expression. In this case, the structure doesn't posses maxima in
the amplitude range. The structure just becomes more damped with an increase in
modal amplitude. Its evolution follows asymptotic curve and saturates under big
modal amplitude.

The main in�uencing parameters in friction damping are coe�cient of friction,
clamping pressure and contact area. The way they modify damping can be
di�erent in �rst and second order models, but they share some common points.
Clamping pressure and coe�cient of friction comes always in a product, an am-
plifying/minifying ratio multiplied to either of them will give the same result. An
increase in contact area will always postpone the occurrence of slipping and increase
energy dissipation under big modal amplitude. Other in�uencing parameters like
thickness ratio and kinematic boundary condition are also analyzed, but are
restrained to the sandwich beam model and are conducted with �nite element
method in the software ABAQUSTM. It can be deduced that all measures facilitate
interface slipping will result in an increase in damping capacity potential.

Friction damping is shown to be complex in terms of its sensitivity to geometry,
friction properties as well as its dependency on modal amplitude. It can be for the
moment classi�ed into two categories, but there may exist other damping patterns.
The phenomenological study in the current chapter sheds light on damping forming
mechanism and shows the possibility of damping optimization. The next chapter
will deal with the design of an experiment installation as well as the results obtained
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to verify the exactitude of the theory proposed.





Chapter 3

Semi-analytical methods of

damping modelization

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 First-order interface damping in sandwich beam . . . . . . . 30

2.2.1 Analytical modelization . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Analytical parametric studies . . . . . . . . . . . . . . . . . . 37

2.2.3 Numerical parametric studies . . . . . . . . . . . . . . . . . . 41

2.3 First-order boundary damping in rotational joint . . . . . . 49

2.3.1 Analytical modelization . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Analytical parametric studies . . . . . . . . . . . . . . . . . . 52

2.4 Second-order boundary damping in von Kármán plate . . . 54

2.4.1 Geometric derivation of simpli�ed Green strain . . . . . . . . 54

2.4.2 Analytical modelization . . . . . . . . . . . . . . . . . . . . . 55

2.4.3 Analytical expression of slipping boundary's trajectory . . . . 59

2.4.4 Analytical parametric studies . . . . . . . . . . . . . . . . . . 63

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Introduction

The analytical and numerical results presented in the previous chapter show that
friction damping is generally a function of modal amplitude. According to the
order of displacement in the expression of energy dissipation, frictional damping
can be categorized into �rst-order damping and second-order damping. Determined
by the intrinsic characteristic of the �rst-order sandwich model used in the study,
in which the relative displacement is a function of cross section's rotation, the
�rst-order damping is shown to have a limited damping capacity ad there exists an
optimized modal amplitude at which the assembled structure can reach its most
damped state. Unlike the �rst-order damping, the second-order damping is induced
by second-order bending strain and doesn't have a maximum damping capacity
in the modal amplitude range. The damping ratio increases with the deformation
level, but the growth rate is decreasing which make it similar to an asymptote.
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The current chapter will continue to deepen the understanding of the two
damping categories, notably the �rst-order damping in sandwich plate and the
second-order damping in von Kármán plate. However the study will be conducted
in a more subtle manner based on a semi-analytical method. In order to overcome
the limitations of the analytical method which can only deal with one-dimensional
structures, �nite element method is employed in complement with �nite di�erence
method to enable a two-dimensional analysis of the interface slipping.

This chapter will �rstly deal with the second-order damping mechanism in von
Kármán plate with one slipping boundary. The notion of �ctive force �eld will
be �rstly demonstrated, which enables a facilitated solution of the discretized von
Kármán plate's formulation. Based on the quasi-static numerical methods that will
be developed, the second-order damping phenomenon can be revealed, the harden-
ing/softening e�ect induced by in-plane stress �eld as well as the mode shape change
due to internal force coupling can also be analyzed. The second part will explain the
mechanism of partial slipping in the sandwich plate model from an in-plane point
of view. The results will show that the presence of partial slipping can modify the
structure's damping property, if compared to the analytical model which assumes
an immediate total slipping on the contact surface. In the current chapter, the com-
parison with analytical models is conducted in parallel with the proposed numerical
method for the purpose of veri�cation.

3.2 Damping induced by second-order bending strain in

von Kármán plate

3.2.1 Formulation of �ctive force �eld

Apart from laminated beams, there are also a large number of structures in the
form of plate whose tangential displacement in the joint is induced by transverse
de�ection, as analytically demonstrated in section 2.4.1. The second-order strain
ε′′x, ε

′′
y and ε′′xy induced by spacial derivatives of displacement w can be regarded as

an external body force �eld applied to the structure if substituted into the dynamic
equilibrium equation. This new mechanical view of plate bending is presented in
the demonstration below.

The components of the three-dimensional Lagrangian Green strain tensor are
de�ned as

Eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

+
∂uk
∂xi

∂uk
∂xj

)
, k = 1, 2, 3. (3.1)

The von Kármán plate theory takes into account the non-linear second-order
strain components that are contributed by transverse de�ection, the contributions
from the in-plane directions x and y are neglected and the index k is only valued at
3. The strains can thus be expressed as
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εx =
∂u

∂x
+ z

∂2w

∂x2
+

1

2

(
∂w

∂x

)2

(3.2a)

εy =
∂v

∂y
+ z

∂2w

∂y2
+

1

2

(
∂w

∂y

)2

(3.2b)

εxy =
1

2

(
∂u

∂y
+
∂v

∂x
+ z

∂2w

∂x∂y
+
∂w

∂x

∂w

∂y

)
. (3.2c)

By using Hooke's law which establishes the relationship between stresses and
strains

σij =
E

1− ν2
[(1− ν)εij + νεkkδij ] , δij : Kronecker δ (3.3)

and substitute the strain components into equation 3.3, the in-plane stresses can
be calculated by �rstly integrating the stress components along the thickness of the
plate and secondly averaging them by Nij/h. The in-plane stress components are
expressed as

σx =
E

1− ν2

{[∂u
∂x

+
1

2

(
∂w

∂x

)2
]

+ ν

[
∂v

∂y
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1

2

(
∂w
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)2
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(3.4a)

σy =
E

1− ν2

{[∂v
∂y

+
1

2

(
∂w

∂y

)2
]

+ ν

[
∂u

∂x
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1

2

(
∂w

∂x

)2
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(3.4b)

σxy =
E

2(1 + ν)

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
. (3.4c)

These components can be divided into two parts: one part is a function of
in-plane displacements u and v and another is a function of transverse displacement
w.

Substituting the stress components into the in�nitesimal equilibrium equation

σij,j + fi = 0, (3.5)

the local equilibrium equation in terms of displacements u, v and w can be
obtained. Take the equilibrium in x direction as an example

E

1− ν2

∂

∂x

{[∂u
∂x

+
1

2

(
∂w

∂x

)2
]

+ ν

[
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∂y
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1

2

(
∂w

∂y

)2
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+
E

2(1 + ν)

∂

∂y

(
∂u

∂y
+
∂v

∂x
+
∂w

∂x

∂w

∂y

)
= 0.

(3.6)

Separate the components induced by transverse de�ection from the those related
to in-plane displacements
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E
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(3.7)

Since the body force fi doesn't exist, the current problem can be regarded as
being transformed into a plane stress equilibrium problem expressed in �rst order
linear strains, the excitation results from a �ctive body force �eld which is induced
by transverse de�ection. The �ctive body force in the x and y direction can thus be
written as

fx =
E

1− v2

(
∂w

∂x

∂2w

∂x2
+ ν

∂w

∂y

∂2w
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E
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(3.8a)
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The �ctive body force �eld is a function of transverse displacement's spatial �rst
and second derivatives and they can be calculated by �nite di�erence method. This
�ctive �eld enables the solution of in-plane displacements u and v with a given w
which originates from a known mode shape. Once u and v are known, they can be
substituted in equation 3.4 to yield the superimposed in-plane stress �eld.

3.2.2 Discrete method of derivatives' evaluation

The �ctive body force is a continuous 2-dimensional �eld. However in �nite element
method, the only known parameter is the nodal transverse displacement w. In order
to calculate the equivalent force vector of every node in the continuous �eld, it is
necessary to evaluate the spatial partial derivatives in equation 3.8. Once these
values are known, the equivalent force vector can be determined by integration with
Gauss points whose values are interpolated from nodal values. The mesh used for
�nite element method is illustrated in �gure below. The plate is of length 600 mm
and width 400 mm. Each element is a square of side length 50 mm, so that there
are in total 12 elements in the x direction and 8 elements in the y direction.

Figure 3.1: Mesh for �nite element method and derivatives calculation
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The left boundary of the plate is encastered and the right boundary can be
regarded as a pin but with blocked rotation to the y axis, it is due to the fact
that the clamp can limit the rotation of the nodes under pressure. The spatial
derivatives can be expressed by neighboring nodal values with �nite di�erence
schemes.

The nodal derivatives with di�erent boundary conditions can be expressed by
the schemes in table below. The schemes for second order derivatives are presented
in Appendix A. The upper and lower free nodes are respectively designated by red
and blue line, the nodes under friction contact are marked by yellow line.

∂w

∂x

∂w

∂y
Encastre 0 0
Friction 0 0

Upper free nodes
wi+1,j − wi−1,j

2dx

wi,j − wi,j−1

dy

Lower free nodes
wi+1,j − wi−1,j

2dx

wi,j+1 − wi,j
dy

Other nodes
wi+1,j − wi−1,j

2dx

wi,j+1 − wi,j−1

2dy

Table 3.1: Fist derivatives schemes

To test the precision of the �nite di�erence schemes, the nodal derivatives are
evaluated on an analytical imposed mode shape w(x) which is only in terms of x,
i.e. there is no curvature in the y direction.

w(x) =
1

2

(
cos

2π

L
x− 1

)
. (3.9)

The derivatives obtained by �nite di�erence schemes are compared to the ana-
lytical �rst and second derivatives with the imposed form, who are evaluated at the
center of each element.
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(a) First derivative comparison (b) Second derivative comparison

Figure 3.2: Derivatives comparison between FDM and analytical expression

The �rst and second derivative comparisons show that �nite di�erence schemes
adopted in the current study are able to provide a precise evaluation of the spatial
derivatives required in the �ctive force �eld calculation.

3.2.3 Friction properties

The contact property used in the current study is a two-dimensional Coulomb's
friction law. The shear stress components on the contact surface are designated as
τx and τy and normal stress as σn. When the boundary is in sticking phase, the
static frictional force is in the opposite direction of reaction force. However once
the shear stress resultant is bigger than the maximum frictional stress limit, the
slipping occurs and the direction of frictional force is in the opposite direction of
the relative movement speed. The di�culty in the integration of Coulomb's law in
dynamic calculation is that the friction force's direction is not only a function of
current step's stress state, but also of relative displacement.

In case of sticking, the shear stress resultant is inferior to the maximum shear
stress that the contact friction can provide.

(
τ2
x + τ2

y

) 1
2 < µσn. (3.10)

Once the shear stress exceeds the friction limit, the stress resultant is saturated
to the value of maximum shear stress µσn and the friction's direction is determined
by the direction of the relative displacement's speed. The speed can be replaced
by in�nitesimal displacement increment du/dt and dv/dt. As the frictional force is
always in the opposite direction of speed, a negative sign is added to the component
du and dv.
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(
τ2
x + τ2

y

) 1
2 = µσn (3.11a)

τx = µσn ·
−du√

du2 + dv2
(3.11b)

τy = µσn ·
−dv√

du2 + dv2
. (3.11c)

The frictional property at the contact interface can be combined to the �ctive
force �eld to establish the in-plane equilibrium, from which the slipping displacement
can be cumulated to calculate the total energy dissipation during one cycle in the
periodic movement. The next section will present the solution procedure which is
based on Ritz-Galerkin method.

3.2.4 Solution procedure

The in-plane problem can be solved by �nite element method. Plane stress elements
are used for discretization. By using the shape function of iso-parametric 4-node
element, the equivalent nodal forces of a given element m can be expressed as

(fm) =

∫ 1

−1

∫ 1

−1
[R]T

(
fx
fy

)
h
∣∣J∣∣ dsdt. (3.12)

Where [R] is a (8 × 2) matrix of shape functions,
∣∣J∣∣ is the determinant of

Jacobian matrix and h is the thickness of the plate. The body force fx and fy
are evaluated at 4 Gauss points in each element, the integral in the local coordinate
system is thus transformed into a sum of Gauss point values. The global equilibrium
equation can be written as[

KII KIB

KBI KBB

](
UI

UB

)
=

(
FI

FB

)
+

(
0

NB

)
, (3.13)

where index I and B corresponds respectively to inner and boundary DOFs. The
vector F, assembled from the equivalent nodal forces (fm) of each element, contains
the discretized �ctive body force �eld. The vector N is the frictional force at the
boundary which respects the friction law presented in the previous section. Since
there is no frictional force on inner DOFs, the corresponding components in N are
0, and the model can be condensed to boundary DOFs, which results in a smaller
model with less DOFs. The condensed form is

[Kc](UB) = (Fc) + (NB). (3.14)

where the condensed sti�ness matrix [Kc] and �ctive force vector (Fc) are re-
spectively written as

[Kc] = [KBB]− [KBI][KII]
−1[KIB] (3.15a)

(Fc) = (FB)− [KBI][KII]
−1(FI). (3.15b)
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At the initialization step of the calculation, all boundary DOFs who have
potential to slip are blocked. The trial reaction friction forces (NB) of step t + 1

are evaluated from the previous step's displacement.

w = qφ(x, y). (3.16)

According to the single mode shape representation in equation 3.16 and the
expressions of �ctive force �eld given in equation 3.8, the �ctive force is a quadratic
function of modal amplitude f = f(q2), so that the boundary friction force vector
at step t+ 1 can be written as

(NB)t+1 = [Kc](UB)t − q2
t+1(Fc), (3.17)

where (Fc) is the condensed reference body force �eld obtained from the
normalized mode shape φ(x, y).

The obtained (NB)t+1 should satisfy the sticking-slipping criteria in equation
3.10 and 3.11. The updated friction force (NB)newt+1 can then be carried into the
equilibrium of step t+ 1 to calculate the real boundary displacement

(UB)t+1 = [Kc]−1
(
q2
t+1(Fc) + (NB)newt+1

)
. (3.18)

The displacement of other DOFs at each step t can be obtained by reversing the
condensation procedure with the known boundary displacement

(UI)t = [KII]
−1
(
q2
t (FI)t − [KIB](UB)t

)
. (3.19)

Since u and v are all known, the superimposed in-plane stress �eld can thus be
obtained with equation 3.4 and the solution of dynamic von Kármán equation 3.20
is possible.

ρ
∂2w

∂t2
+D∆4w −

(
Nx

∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2

)
= f(x, y, t) (3.20)

By applying the notion of modal synthesis, the transverse de�ection of the plate
can be approximated by a linear combination of n �rst normal modes w =

∑n
i=1 qiφi.

The normal modes are a solution of eigenvalue problem de�ned in linear plate theory

D∇4φi = ω2
i ρφi. (3.21)

Since the linear combination of φi is only an approximation, the error expression
of equation 3.20 can be written as

e =
n∑
i=1

d2qi
dt2

ρφi +

n∑
i=1

qiD∇4φi −
n∑
i=1

qiR(N,φi)− f(x, y, t) (3.22)
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where the non-linear term is abbreviated as R(N,φi) where

R(Ni, φi) = Nx
∂2φi
∂x2

+ 2Nxy
∂2φi
∂x∂y

+Ny
∂2φi
∂y2

. (3.23)

Ni is the corresponding internal force of mode shape φi.

For the moment we are only interested in mono-mode response of the structure
excited in the neighborhood of its resonance frequency ωi, therefore the mode shape
φi is dominant in the response and we consider in the �rst place that the shape of
mode i doesn't change with amplitude. Thus only the mode shape φi is retained
in equation 3.22. The Ritz-Galerkin method can be used to minimize the error
function e

∫
v

d2q

dt2
ρφiφidv +

∫
v
qD∇4φiφidv −

∫
v
qR(N,φi)φidv =

∫
v
f(x, y, t)φidv. (3.24)

Since the mode shape φi is normalized in the way∫
v
ρφiφidv = 1, (3.25)

the error function can be written in scalar form as

d2q

dt2
+ ω2

i q − ψ(t)q = f (3.26)

where

ψ(t) =

∫
v
R(N,φi)φidv. (3.27)

The Nix, Niy and Nixy are valued at the center of each element m for mode
i and are assumed to be homogeneous within the given element. The spatial �rst
and second derivatives are obtained by �nite di�erence method. The discretized
expression of ψii takes the form

ψii(t) =
N∑
m=1

(
Nm
x

∂2φmi
∂x2

+ 2Nm
xy

∂2φmi
∂x∂y

+Nm
y

∂2φmi
∂y2

)
φmi S

m (3.28)

with Sm the surface area of element m, N the total number of elements.

The steady state solution for q under harmonic excitation of angular frequency
ω is assumed in the form of a harmonic function of time. The excitation force's
phase is taken as reference, and the phase angle is represented by a complex number
q̂.

q = q̂eiωt, f = feiωt (3.29)
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Equation 3.26 becomes

− ω2q̂eiωt + ω2
i q̂e

iωt − ψii(t)q̂eiωt = feiωt. (3.30)

By equating the imaginary part of equation 3.30

− ω2q̂ sinωt+ ω2
i q̂ sinωt− ψii(t)q̂ sinωt = f sinωt. (3.31)

Since ψ(t) is also a function of time t, the sinωt cannot be eliminated from
equation 3.31 directly. The use of Harmonic Balance Method requires decomposition
of the term ψ(t) sinωt into two harmonic components,

− ψii(t) sinωt = ψiic cosωt+ ψiis sinωt, (3.32)

where

θ = ωt (3.33a)

ψiic =
1

π

∫ 2π

0
−ψii(t) sin θ cos θdθ =

1

2π

∫ 2π

0
−ψii(t) sin 2θdθ (3.33b)

ψiis =
1

π

∫ 2π

0
−ψii(t) sin θ sin θdθ =

1

2π

∫ 2π

0
−ψii(t)(1− cos 2θ)dθ (3.33c)

In this way equation 3.31 can be written as

− ω2q̂ + ω2
i q̂ sinωt+ q̂ψiic cosωt+ q̂ψiis sinωt = f sinωt (3.34)

In order to have the same harmonic base, the rotational vector q̂ with cosωt has
to be multiplied by i so as to rotate 90 degrees.

(−ω2 + ω2
i + iψc + ψs)q̂ sinωt = f sinωt (3.35a)

[−ω2 + ω2
i (1 + λ+ iη)]q̂ = f (3.35b)

where

η =
ψc
ω2
i

, λ =
ψs
ω2
i

(3.36)

The structure's hardening is proportional to the coe�cient λ and damping is
represented by η. The structural damping factor can be determined with greater
precision by using the ratio between energy dissipation per cycle and maximum
stocked elastic energy [52]. In the following calculation, the damping factor can also
be de�ned as a function of energy dissipation.

η =
1

2π

∆W

Emax
(3.37)

with
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∆W =
T∑
t=2

| (UB
t −UB

t−1)T (NB
t) |, Emax =

1

2
| q̂ |2 ω2

i . (3.38)

The solution of equation 3.35 can be achieved by applying an iterative Newton
method with an initial q as static displacement f/w2

i .

3.2.5 Analytical solution of clamped-clamped plate

One of the main features in the von Kármán plate theory is its capacity to reveal
the hardening/softening e�ect due to internal stress �eld. This phenomenon can
be demonstrated by analytical method in the case of clamped-clamped plate, as
illustrated in �gure 3.3.

Figure 3.3: Clamped-clamped plate model

The mode shape of the �rst resonance is assumed in the form of cosine function,
as expressed in equation 3.9, however due to the requirement that the mode shape
is normalized to the mass, a coe�cient k should be multiplied to equation 3.9.∫ L

0
ρ

[
k

2
(cosαx− 1)

]2

dx = 1 =⇒ k =

√
8

3ρL
=

√
8

3m
. (3.39)

According to the expression 2.67 of constant internal force �eld in case of
clamped-clamped boundary condition, the in-plane force per unit of width is

Ni = Eh
q2α2

16
·

(√
8

3m

)2

= Eh
q2α2

6m
. (3.40)

The non-linear term R(Ni, φi) in equation 3.23 can be written as

R(Ni, φi) = Eh
q2α2

6m
·
√

8

3m
· ∂

∂x2

[
1

2
(cosαx− 1)

]
= −Ehq

2α4

6m
·
√

2

3m
cosαx.

(3.41)
As indicated in the solution procedure based on Ritz-Galerkin method, the non-

linear term is weighted on the entire calculation domain with the normalized mode
shape, as expressed in equation 3.27.
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ψii(R(Ni), φi) = −Ehq
2α4

6m
·
∫ L

0

√
2

3m
cosαx·1

2

√
8

3m
(cosαx−1)bdx =

−EbhLq2α4

18m2

(3.42)
where b is the width of the plate. The non-linear term ψii in this case is a

negative-de�nite value.

It is assumed that the modal amplitude varies in the sinusoidal way q = qm sin θ.
The hardening factor λ and the damping ratio µ can thus be written as

λ =
1

2πω2
i

· Ebhaq
2
mα

4L

18m2

∫ 2π

0
sin2 θ(1− cos 2θ)dθ =

Ebhq2
mα

4L

24ω2
im

2
(3.43a)

µ =
1

2πω2
i

· Ebhaq
2
mα

4L

18m2

∫ 2π

0
sin2 θ sin 2θdθ = 0 (3.43b)

The clamped-clamped boundary condition infers that there is no energy dissi-
pation, which can be con�rmed by the zero damping ratio. The hardening factor
is shown to be a quadratic function of modal amplitude and is positive-de�nite,
which means that the plate is always under hardening e�ect.

3.2.6 Analytical solution of clamped-slipping plate

In the case of slipping, the internal force Ni is saturated to µpS/b, where S is the
total contact surface and b is the width of the plate. Here we consider that the
clamped side slips immediately with the imposed modal amplitude, so there is no
sticking phase. The non-linear term R(Ni, φi) in this condition takes the following
form

R(Ni, φi) =
µpS

b

∂

∂2x

[√
2

3m
(cosαx− 1)

]
= −µpS

b

√
2

3m
· α2 cosαx (3.44)

The updated direct controlling parameter ψii is thus written as

ψii(R(Ni), φi) =

∫ L

0
R(Ni, φi)φibdx =

∫ L

0

µpS

b

√
2

3m
(−α2 cosαx)

√
2

3m
(cosαx− 1)bdx

= −µpSα
2L

3m
.

(3.45)

It is worth noting that the internal force takes alternative directions during one
vibration cycle, that's to say
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ψii =



−µpSα
2L

3m
if 0 < q ≤ π

2
µpSα2L

3m
if
π

2
< q ≤ π

−µpSα
2L

3m
if π < q ≤ 3π

2
µpSα2L

3m
if

3π

2
< q ≤ 2π.

(3.46)

In this case, the calculation of hardening factor and damping ratio is a piece-wise
function.

λ =
1

2πω2
i

∫ 2π

0
(−ψii)(1− cos 2θ)dθ

=

∫ π/2

0
−µpSα

2L

3m
(1− cos 2θ)dθ +

∫ π

π/2

µpSα2L

3m
(1− cos 2θ)dθ

+

∫ 3π/2

π
−µpSα

2L

3m
(1− cos 2θ)dθ +

∫ 2π

3π/2

µpSα2L

3m
(1− cos 2θ)dθ

= 0,

(3.47)

µ =
1

2πω2
i

∫ 2π

0
(−ψii) sin 2θdθ

=

∫ π/2

0
−µpSα

2L

3m
sin 2θdθ +

∫ π

π/2

µpSα2L

3m
sin 2θdθ

+

∫ 3π/2

π
−µpSα

2L

3m
sin 2θdθ +

∫ 2π

3π/2

µpSα2L

3m
sin 2θdθ

=
2µpSα2L

3πω2
im

.

(3.48)

The zero hardening factor indicates that under immediate slipping boundary
condition, the hardening and softening e�ect are counteracted in one cycle, so that
the average sti�ness doesn't change. However the damping e�ect can be cumulated
in every quarter-cycle and results in a constant damping ratio. Contrary to the
intuition that the damping ratio is a function of modal amplitude, the current result
is due to the constant internal force hypothesis that is adopted before the derivation.

3.2.7 Numerical solution of clamped-clamped plate

A rectangular plate of uniform thickness 2 mm is chosen to illustrate the hardening
e�ect as well as the damping characteristics in von Kármán plate. The length is 600
mm and the width is 400 mm. The plate is clamped at the boundary x = 0 and
x = 600 mm and is excited by a cyclic force f at it �rst resonance frequency, which
is 30.860 Hz. Since the �rst mode is dominant in the shape composition, according
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to the theory of single mode method, only the �rst linear mode is retained for the
calculation of �ctive force �eld. The clamped boundary condition can be assimilated
to an in�nite coe�cient of friction.

Figure 3.4: Finite element model of clamped-clamped plate

In order to verify the exactitude of the proposed numerical method, a comparison
with the analytical method is necessary. Since the analytical method can only deal
with simple expressions, the imposed mode shape takes the normalized form

φi(x, y) = q

√
2

3m
(cosαx− 1), (3.49)

where q the modal amplitude, m the mass of the plate, α = 2π/L.

The analytical mode shape's in-plane �ctive force �eld obtained from equation
3.8 is presented in �gure 3.5. The DOFs on the middle line x = 300 mm is in
equilibrium from the left and the right force �eld. However the DOFs on the line
x = 150 mm and x = 450 mm are in compression. The non-dependence of the
y direction results in a �eld that is exactly parallel to the x axis. The in-plane
�ctive force �eld engenders a non-uniform stress �eld in the plate, which generates
a di�erent ψ at each modal amplitude increment. After the temporal integral in
equation 3.33, the hardening factor λ can be obtained. The damping factor is
calculated from energy dissipation in equation 3.37.

Figure 3.5: Fictive force �eld from the �rst mode

As demonstrated in the previous section, the hardening/softening factor λ is
a function of ψii, who depends on internal stress state of the plate Ni. Before
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undertaking the comparison of λ obtained in two methods, a study on the nonlinear
term R(Ni, φi) distribution in the calculation domain may give a preliminary view
of the resemblance between the two solutions. As there is no variance in the y
direction in the analytical method, only the distribution in terms of x is presented
in �gure 3.6b. The distribution obtained corresponds to a modal amplitude of 0.2.

(a) R distribution in numerical method (b) R distribution in analytical method

Figure 3.6: Comparison of nonlinear term R(Ni, φi) between analytical and numer-
ical method

The distribution of the nonlinear term resembles the form of cosine function,
which is due to the cosine-form mode shape imposed on the structure. The two
methods give the same evaluation of R(Ni, φi) at the same modal amplitude, the
only di�erence takes place at the longer side of the numerical model, this can be
ascribed to the intrinsic error of the �rst-order �nite di�erence scheme used in the
�ctive force �eld calculation. The good correlation of R(Ni, φi) implies that the
nonlinear terms ψii(t) in the time domaine obtained respectively by the two methods
matche also well.

Figure 3.7: Psiii obtained by analytical and numerical method
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As illustrated in �gure 3.7, the nonlinear temporal term ψii is a periodic function
under the clamped-clamped condition, as with the modal amplitude, ψii varies sinu-
soidally, but it stays negative-de�nite, which in turn guarantees a positive-de�nite
λ and the structure is always under the hardening e�ect.

Figure 3.8: λ obtained from analytical and numerical solution

Both the spatial distribution of R(Ni, φi) and the temporal variation of ψii
are in good correlation, the hardening factor in this way logically shows no sign
of separation between the two methods, as shown in �gure 3.8. Therefore the
exactitude of the numerical method is veri�ed and it can be applied to cases with
more complicated mode shapes.

Even though the previously imposed mode shape is similar to the real �rst reso-
nance mode shape, its mono-dimensional property prohibits it to take into account
the curvature in the y direction, which we believe may also modify the hardening
e�ect as well as the damping property of the structure. By the same operation com-
posed of �nite di�erence schemes, the �ctive force �eld can be obtained in �gure
3.9.

Figure 3.9: Fictive force �eld of the �rst mode shape

Regardless the similarity with the �ctive force �eld obtained by analytical
method, it should be noted that the non-zero derivatives in the y direction can
result in a �eld that is not exactly parallel to the x axis, especially for the points on
the boundary y = 0 mm and y = 400 mm. From the λ obtained in �gure 3.10a, the
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hardening e�ect is weaker in real mode shape than analytical approximation. Due to
the absence of dissipative mechanism, the damping ratio is zero in clamped-clamped
plate.

(a) λ evolution (b) η evolution

Figure 3.10: λ and η versus modal amplitude

The hardening factor increases with the increase in modal amplitude, which
signi�es that the structure becomes sti�er under bigger displacement.

Figure 3.11: Frequency response curve under three di�erent modal forces

The resonance moves towards higher frequencies owing to the hardening e�ect.
For any given frequency, bigger excitation forces result in larger displacement.

3.2.8 Numerical solution of clamped-slipping plate

In the case with one slipping boundary, the left boundary is still clamped but the
right boundary is subjected to a frictional clamp where the edge is supposed to slip
under large modal amplitude. The contact area of 4000 mm2 under the frictional
clamp is considered to stay constant, the coe�cient of friction is �xed at 0.3.
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Figure 3.12: Rectangular plate with one slipping boundary

In order to verify the in�uence of friction when slipping is activated, a comparison
of the slipping boundary's trajectory with the analytical method, which is expressed
in section 2.4.3, is made. To guarantee the coherence with the analytical method,
the cosine function mode shape is used for the �ctive force �eld in the numerical
solution.

Figure 3.13: Trajectories comparison

The comparison with the analytical expression in �gure 3.13 con�rms the cor-
rectness of the friction property applied in the numerical solution. So that it is
eligible to be used for calculations with the real mode shape. A �ctive force �eld
which corresponds to a maximum modal amplitude of 0.2 is applied to the in-plane
problem, the frictional property used is presented in section 3.4, the clamping pres-
sure is of 0.5 MPa. The alternative sticking and slipping phases can be observed
under two charging cycles. The frictional force increases during the sticking period
and is saturated when the slipping occurs. The compression's e�ect can also be
observed from the fact that the right boundary can no longer return to is original
position, this phenomenon is produced in the relaxing phase by the frictional force
which points to the clamped edge.
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Figure 3.14: Average frictional force and displacement on the slipping eda

Here it is worth noting that the alternative sticking-slipping transition is able
to change the internal stress distribution pattern under di�erent modal amplitude,
which will surely in�uence the hardening and damping behavior, therefore we need
to analyze the nonlinear term distribution with slipping and without slipping sepa-
rately.

(a) R(Ni, φi) distribution in sticking at q = 0.01 (b) R(Ni, φi) distribution in slipping at q = 0.2

Figure 3.15: Comparison of nonlinear term R(Ni, φi) between sticking and slipping
phase

When the modal amplitude reaches q = 0.01, the friction force is still able to hold
the slipping boundary at its original position, the internal R(Ni, φi) distribution is
similar to that in �gure 3.6a. Once the clamped boundary is released under bigger
amplitude, for example if q reaches 0.2, the internal stress distribution is more
complicated and its pattern resembles that of sin 2αx function. This observation
con�rms that the internal stress-dependent term R(Ni, φi) is sensitive to boundary
condition changes, which will in consequence in�uence the ψii variation in the time
domain.
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(a) R distribution in sticking at q = 0.01 (b) R distribution in slipping

Figure 3.16: Comparison of nonlinear term ψii between sticking and slipping phase

When the modal amplitude is not big enough to activate slipping, the plate
can be regarded as under clamped-clamped boundary condition. The variation of
ψii is negative-de�nite, which leads to a positive λ and signi�es a hardening e�ect.
However as the amplitude increases, the structure enters an alternative transition
between sticking and slipping. As illustrated in �gure 3.16b, the average ψii is a
positive value, this will result in a negative λ and the structure is thus softened.

In order to analyze the in�uence of clamping force, the hardening and damping
factors are calculated under 3 di�erent pressures 0.5 MPa, 1 MPa and 2 MPa.

(a) λ evolution (b) η evolution

Figure 3.17: λ and η versus modal amplitude

By comparing the �gure 3.17a and 3.17b, the softening e�ect is shown to appear
earlier than the occurring of slipping. The hardening e�ect is gradually counteracted
as the slipping phase becomes more and more dominant in one vibration cycle. In
the modal range which contains slipping, bigger modal amplitude will lead to a more
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softened structure.

Figure 3.18: Frequency response curve with one slipping boundary

The presence of slipping boundary changes the frequency-response property of
the structure. In the range of the current excitation force, the structure becomes
softer with a decreasing resonance frequency under bigger modal force, which corre-
sponds to the monotone negative value range in �gure 3.17a. The slipping boundary
also results in a bigger modal response under the same excitation force compared to
clamp-clamp boundary condition in �gure 3.11. Compared to the e�ect of in-plane
coupling, the in�uence of boundary slipping is shown to be more dominant in the
response under big excitation force.

3.2.9 Extension to non-linear mode

The single mode method presented in the previous sections discounts the coupling
between modes by non-linear terms. This coupling can be taken into account by
using the notion of non-linear mode. The non-linear mode is de�ned by a linear
superposition of linear modes

φ̃i =
n∑
j=1

bij(q)φj (3.50)

where φj is the jth linear mode and bij(q) are participation factors of each mode
with bii = 1, n is number of retained linear modes. This normalization is valid
only in cases where the structure is excited at its ith natural frequency and it's
the ith mode that is dominant in the shape composition. The participation factor
is considered as a function of modal amplitude q and satis�es the initial condition
bij(q = 0) = 0. The non-linear mode notion presented here is always in the realm
of mono-mode response calculation, the only di�erence compared to single mode
method is that the mode chosen retains no longer its shape, but changes in function
of modal amplitude.
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The values of bij are solutions of the following eigenfunction system which is
derived from equation 3.22 and 3.24.

− ω̃i2(bij) + ([Ω2] + [λij])(bij) = 0 (3.51)

with

λij =
1

2π

∫ 2π

0
−ψij(t)(1− cos 2θ)dθ. (3.52)

The ω̃i is the non-linear natural frequency corresponding to non-linear mode φ̃i,
and it is also a function of modal amplitude q.

Similar to expression 3.28 in the single mode method, the discretized form of ψij
can be written as

ψij =
N∑
m=1

(
Nm
jx

∂2φmj
∂x2

+ 2Nm
jxy

∂2φmj
∂x∂y

+Nm
jy

∂2φmj
∂y2

)
φmi S

m. (3.53)

The coupling e�ect can be quanti�ed by the participation factor bij , this non-
linear mode approach is called multi-mode method in the following sections. The
response of forced vibration in multi-mode method is given by complex amplitude
q̂, which is the solution of the following equation

[M̃(q)ω2 + ω̃i
2(q)(1 + iη(q))]q̂ = f̃(q) (3.54)

where M̃(q) is the non-linear modal mass and f̃(q) is the non-linear modal force,
η(q) is calculated with the non-linear mode shape φ̃i.

M̃(q) =

n∑
j=1

b2ij(q), f̃(q) =

n∑
j=1

bij(q)fj (3.55)

3.2.10 Multi-mode method with complete slipping boundary

In order to explain the notion of non-linear mode, a rectangular plate with one
complete slipping boundary, as illustrated in �gure 3.12, is used for explanation
with three linear modes. Since the eigenvalue problem is a (3×3) system which has
three eigenvalues, the one which is the closest to the linear resonance is retained as
the non-linear resonance, the corresponding vector is the participation factors (bij).

In the �rst place we consider that both the excitation and boundary conditions
are symmetric, in this case anti-symmetric modes don't contribute to the response
composition. The three linear modes retained here are all symmetric and are listed
in �gure below. The corresponding frequencies are respectively 30.86 Hz, 88.45 Hz
and 98.19 Hz. The second and third mode are very close together.
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(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 3.19: The three retained linear modes

The coupling variable ψij is valued at each time step in quasi-static calculation.
The coupling e�ect in the frequency domain is directly related to the λij obtained
from temporal integral. After the normalization of the �rst mode participation
factor to 1, the evolution of (bij) in terms of modal amplitude q shows that b11

remains 1 while b12 and b13 stay 0 for all the amplitude range. This observation
signi�es that the second and third mode are not coupled with the �rst mode under
symmetric boundary conditions. This phenomenon also justi�es the application of
single mode method.

In order to study the participation of anti-symmetric modes, it's necessary to
break the symmetry by either applying an asymmetric pressure distribution or
changing the kinematic boundary conditions. The in�uence of di�erent clamping
pressures is �rstly presented in the following section.

3.2.11 Multi mode method with non-uniform clamping pressure

Based on the fact that the coupling coe�cient ψij is a function of internal stress
�eld which is intrinsically sensitive to boundary pressures, it's necessary to clarify its
in�uence on inter-mode coupling. Here a non-uniform clamping pressure is applied
on the clamping pad. The pressure on the lower part is twice smaller than that on
the upper part. Since the rotation of the boundary DOFs are always restrained by
the clamp, the boundary conditions for both upper and lower nodes can be regarded
as encastre. The parametric study in terms of modal amplitude shows that force
boundary conditions have no signi�cant in�uence on the evolution of participation
factors. The second and third mode participation factors b12 and b13 stays 0 for all
the amplitude range, which means that they are not coupled with the �rst mode
and their participations can be neglected. It is thus reasonable to infer that the
participation factor is only sensitive to linear mode shapes. This deduction is to be
veri�ed in the next section.
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Figure 3.20: Rectangular plate with non-uniform clamping pressure

Even though the clamping pressures are not able to change the shape compo-
sition, the hardening and damping property are closely related to boundary forces.
As the second and third mode are neglected, the �ctive force �eld is generated only
with the �rst mode shape. The comparison of coe�cient λ and η under uniform
and non-uniform clamping pressures are illustrated in �gure below. The pressure is
maintained at 2 MPa for the case with uniform clamping pressure.

(a) λ evolution (b) η evolution

Figure 3.21: In�uence of clamping pressure distribution of λ and η evolution

The structure is shown to be more solidi�ed and damped with an uniform clamp-
ing pressure along the slipping boundary. The non-uniform clamp yields a smaller
average pressure which enables earlier slipping, but the maximum damping capacity
is weakened.

3.2.12 Multi mode method with half slipping boundary

A drastic way to break boundary condition symmetry is to completely remove the
lower part of the clamping pad. This modi�cation changes not only force conditions,
but also liberates the lower part DOFs in the linear mode calculation. The clamping
pressure in this example is �xed at 2 MPa.
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Figure 3.22: Rectangular plate with half slipping boundary

The �rst three modes retained for non-linear mode calculation as well as the
corresponding �ctive force �elds are respectively illustrated in �gure 3.23 and �gure
3.24.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 3.23: The three retained linear modes

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 3.24: Fictive force �elds of the three linear modes

The non-symmetric mode shapes will result in non-symmetric force �elds, which
in consequence lead to stress �elds that can be coupled together. The participation
factor evolution in this case is presented in �gure 3.25.
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Figure 3.25: Participation factors with half slipping boundary

The second mode starts to participate in shape composition from modal am-
plitude of 0.05 and continues to be saturated at a constant level from 0.1. The
participation of the third mode stays weak in all the range of modal amplitude.
This result shows that for small modal amplitude, only one mode is su�cient to
represent the overall vibration behavior of the structure, but for big modal ampli-
tude, it's necessary to take into account the participation of other modes. In the
current study, a modal amplitude of 0.05 corresponds to a physical displacement
of 2 mm, which is the thickness of the plate, this de�ection is already within the
realm of large displacement and it is not likely to happen in vibration mechanics.
Therefore the single mode method is su�cient for analysis with small displacement,
even though the boundary conditions may yield inter-mode coupling, however for
large modal amplitude, the participation of other modes cannot be neglected. The
comparison of hardening factor λ and damping coe�cient η obtained from single
mode method and multi-mode method are illustrated in �gure 3.26a and 3.26b.

(a) λ evolution (b) η evolution

Figure 3.26: In�uence of mode shape change on λ and η evolution

The comparison shows that hardening and damping are both sensitive to mode
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shape changes. The participation of second mode stops the on-going softening ten-
dency and prohibits the damping capacity to grow. For small modal amplitude, it's
acceptable to use only one mode shape to represent the vibration behavior since λ
and η given by single and multi-mode method are almost the same, but for big modal
amplitude, it's necessary to take into account the inter-mode coupling. An example
of forced response is given with an oscillating excitation force applied at point A,
as illustrated in �gure 3.27. The excitation force amplitudes are respectively 10 N
and 50 N for two di�erent load cases.

Figure 3.27: Excitation force position on the plate

The frequency-response curves in �gure 3.28a and 3.28b demonstrate that for
excitation forces who result in small modal amplitude, the coupling between modes
is weak, so that single mode and multi-mode method provide very similar responses,
however when the force is big enough to produce inter-mode coupling, the di�er-
ence in response is no longer negligible. By comparing the response amplitude at
resonance, the single mode method always over-estimates the damping capacity
compared to multi-mode method, but for frequencies outside the resonance zone,
the amplitude is relatively small and the two methods give almost the same response
level, which is in consistency with the λ and η curves.
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(a) Frequency response under f = 10 N (b) Frequency response under f = 50 N

Figure 3.28: In�uence of mode shape change on frequency response

3.3 Damping induced by �rst-order cross section's rota-

tion in sandwich plate

3.3.1 Model description

As demonstrated in the phenomenological study of damping in sandwich plate in
chapter 2, the dissipated and stocked energy are able to be expressed in analyti-
cal formulations, however this formulation is only valid when we suppose that the
propagation of slipping is instantaneous, this hypothesis facilitates the derivation
but neglect the possible partial slipping in real conditions. In order to make up
this intrinsic de�ciency in the analytical method, a numerical solution based on a
2-dimensional �nite element method will be developed in this section. We are not
only interested in the total energy dissipation, but also the slipping propagation
during the increase in modal amplitude.

Figure 3.29: 3D sandwich model

Di�erent from the one-layered clamped-slipping von Kármán plate, in which
the slipping criteria is based on in-plane force, the slipping in sandwich plate is
determined by interface stress, which depends on the rotation of the cross section.
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As for the in�uence of the second-order �ctive force �eld, due to the fact that
the mode shape is the same for upper and lower plate, the in-plane excitation is
identical for the two layers, which implies that there is no relative displacement
and thus no induced frictional force. Even though the �ctive force �eld doesn't
in�uence the sticking-slipping transition, it can modify the in-plane displacement
�eld, which will in turn reshape the contact interface's form.

3.3.2 Shear force �eld formulation

When the two plates of thickness h are pressed together by the clamping force,
before the slipping occurs, they can be regarded as one plate of thickness 2h. The
shear force at the mid-plane can be obtained by the moment equilibrium on the
in�nitesimal element, which yields

τxz = τzx = τx, τyz = τzy = τy. (3.56)

Figure 3.30: Shear stress on contact interface

As illustrated in �gure 3.30, all the shear components who have the same mag-
nitude are marked by the same color. According to Kirchho�-Love plate theory, the
shear stress at the contact interface can be expressed by

τx =
D

h

∂

∂x
∇2w, τy =

D

h

∂

∂y
∇2w, (3.57)

where D is the bending rigidity of the plate which takes the expression
Eh3/(12(1− ν2)), ∇2w is written as

∇2w =
∂2w

∂x2
+
∂2w

∂y2
. (3.58)

It should be noted that the shear stress is zero on the free boundary, that is

τy|y=0 = 0, τy|y=b = 0, τx|x=L = 0, (3.59)

where b is the width and L the total length. The spatial derivatives in equation
3.58 and 3.59 can be approximated by the �nite di�erence schemes proposed in the
previous �ctive force �eld calculation.
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In this way the shear force �eld on the middle plane can be obtained for sticking-
slipping veri�cation. In the current step, the shear stress is only expressed on each
node, the stress on other points should be interpolated by nodal values. As we are
for the moment interested in the �rst resonance response, the shear stress �eld of
the �rst mode is illustrated in �gure below. The shear stress vector is in constant
transition between two opposite directions, the current representation corresponds
to the stress �eld on the upper surface of the lower plate with the deformation form
in �gure 3.29.

Figure 3.31: Shear stress �eld on contact interface

The force �eld reveals that the distribution of shear stress is not uniform under
the deformation of the �rst mode. The shear stresses that are adjacent to the
encastre is bigger than those in the neighboring of the free boundary on the right.
When the stress reaches its maximum µP , the friction force can no longer retain
the node at its original position and thus the slipping occurs. This observation
implies that as the amplitude increases, the slipping starts from the �xed boundary
and propagates to the free edge.

3.3.3 Solution procedure and displacement kinematics

In order to facilitate the estimation of energy dissipation, the slipping-sticking
veri�cation is element-based, which requires that the stress components valued at
each node should be interpolated to the center of each element so as to be regarded
as the average stress state for comparison with the friction limit. Take the modal
amplitude as q, the reference nodal stress �eld under the normalized mode as τn,
the reference element stress �eld as τm.

τm =
1

4

4∑
i=1

τ in, i = node number of each element (3.60)

The incremental approach is adopted in the slipping-sticking veri�cation. The
initial stress �eld is zero. The stress state of step t+ 1 can be expressed as
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τ t+1
m = τ t

m + dq · τm, (3.61)

where dq is the modal amplitude increment.

The resultant stress τmr for a given element is written as

τmr =
√
τ2
mx + τ2

my. (3.62)

If the stress resultant is still within the friction cone de�ned by contact proper-
ties,

τmr < µP, (3.63)

the considered element is in sticking phase. The corresponding in-plane DOFs
on the upper and lower plate can be treated as being sticked together and keep
the same in-plane displacement as the precedent step, moreover the friction force
doesn't change its direction.

Ut+1
lower,rotation = Ut

lower,rotation, Ut+1
upper,rotation = Ut

upper,rotation. (3.64)

After several increments, the stress resultant will reach the friction limit and the
element enters the slipping phase. Regardless the increase in modal amplitude, the
stress resultant will be saturated to the value µP until the moment when the modal
amplitude starts to decrease. In the slipping phase, the locking on the upper and
lower DOFs is removed and the relative displacement follows the kinematic of the
Kirchho�-Love plate theory, where in-plane displacements are linearly proportional
to cross-section's rotation,

Uupperx,rotation = −h
4
θy, Uuppery,rotation =

h

4
θx, U lowerx,rotation =

h

4
θy, U lowery,rotation = −h

4
θx,

(3.65)

where h is the total thickness of the upper and lower plate, the direction of
rotation follows the right hand rule.

After the slipping occurs, the friction force points to the opposite direction of the
relative speed, which can be expressed by the relative displacement in quasi-static
formulation.
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Figure 3.32: Displacement components

The friction direction for the upper plate can thus be expressed as

cos θ = − θy√
θ2
x + θ2

y

, sin θ =
θx√
θ2
x + θ2

y

. (3.66)

The friction force is thus updated with the new amplitude and direction. The al-
ternative transition of direction can be realized by function sign(q · q̇), the derivation
of which is given from equation 1.37 to 1.43.

fupperx = −sign(q · q̇) · cos θ · µP
fuppery = −sign(q · q̇) · sin θ · µP

(3.67)

Since the upper and lower plate are in a relation of action-reaction, the friction
force at step t on the lower part is of the same amplitude as the upper part but of
opposite direction.

f t
upper = −f t

lower. (3.68)

The renewed friction force cannot be directly superimposed with the second-
order strain induced �ctive force �eld, since it is an element-based vector in which
the friction force is assumed to be constant for every point on a given element. This
generated friction force �eld needs to be transformed into an equivalent nodal force
vector, which can then be substituted in the in-plane displacement calculation along
with the �ctive force �eld, the change in contact surface's form can in such a way
be taken into account.

[Kplane](Ut
lower,plane) = (f t

lower) + (f t
fictive) (3.69)

[Kplane](Ut
upper,plane) = (f t

upper) + (f t
fictive) (3.70)

The �ctive force �eld of the �rst mode is illustrated in �gure 3.33. The force
intensity at the encastre and free boundary are shown to be weaker than that in the
middle of the plate. Given the curvature of the �rst mode shape, di�erent from the
frictional force �eld whose e�ect is in permanent transition between traction and
compression, the e�ect of the �ctive force �eld is always stretching on the upper and
lower plate.
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Figure 3.33: Fictive force �eld of �rst mode in sandwich plate

The relative displacement between two plates is hence divided into two parts,
one is expressed in equation 3.65 where the displacement is created by cross section's
rotation, another is induced by in-plane body force.

Figure 3.34: Displacement components

Here we assume that when there is no rotation-induced displacement, the in-
plane displacement due to body force should be neglected since it doesn't contribute
to energy dissipation. If the slipping occurs, the in-plane force induced nodal dis-
placements are interpolated to the center of each element and superimposed with
the rotation-induced movement. The displacement vector of both plates at step t is
thus expressed as

Ut = Ut
plane + Ut

rotation. (3.71)

3.3.4 Sticking-slipping evolution

According to the shear stress �eld obtained from Kirchho�-Love plate theory, the
stress �eld is not uniform which implies that the slipping doesn't occur simulta-
neously on the contact surface. This inference can be veri�ed by the visualized
representation of the shear stress �eld during the modal amplitude increase. A
maximum modal amplitude of 1 is applied on the structure, which corresponds to
a physical displacement of 32 mm. The sticking-slipping state is illustrated under
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di�erent amplitudes. The yellow means that the element is in slipping and dark
blue indicates sticking.

(a) q = 0.42 (b) q = 0.56

(c) q = 0.8 (d) q = 1

Figure 3.35: The evolution of slipping state with the increase in modal amplitude

The evolution of shear stress distribution reveals that slipping starts from
the encastre boundary and propagates to the free edge. At the beginning of the
slipping, the frontier between the sticking and slipping area is similar to a parabola,
as the modal amplitude increases, the frontier gradually changes to a straight line
and maintains its form until the maximum amplitude. It should be noted that the
free edge can never enters the slipping phase based on the shear stress distribution
expression in the currently proposed method.
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Figure 3.36: Slipping state at q = 5

If the modal amplitude continues to increase until it reaches 5, almost all
the points on the contact surface is in slipping phase, but this modal amplitude
corresponds to a physical displacement of 162 mm, on which level the material's
yielding stress is already reached and is unachievable in real conditions.

3.3.5 Calculation of damping ratio

The dissipated energy can be estimated from the relative displacement between the
two plates

Urelative = Uupper −Ulower. (3.72)

As incremental calculation is adopted in the current analysis, the total dissipated
energy in one cycle is the accumulation of ∆W of all the steps.

∆W =
n∑
t=2

(τ t)T |(Ut
relative)− (Ut−1

relative)|S, (3.73)

where (τ t) is the vector which contains the average shear stress in each element
at step t, S is element's area, as the elements in the current study are of the same
size, the area is a constant for everyone of them.

The maximum elastic energy can be expressed in the same ways as in equation
3.38. However the elastic energy expressed in the form of resonance frequency has
its own limitation, since the resonance frequency of the assembled structure changes
as the clamping pressure is modi�ed. Here we can in the �rst place consider two
extreme cases: zero and in�nite coe�cient of friction. In the case of zero friction,
the two plates are regarded as independent, thus the maximum elastic energy is the
sum of the energy relatively stocked in each plate. In the case of in�nite coe�cient,
the friction force blocks completely the points on the contact surface, thus the two
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sticked plates forms one plate of thickness 2h. The resonance frequency of the two
cases follows the relation ωµ=∞ = 2ωµ=0. The stocked energy is thus expressed as

Emax,µ=0 = 2 · 1

2
ω2
µ=0q

2,

Emax,µ=∞ =
1

2
ω2
µ=∞q

2.

(3.74)

The case with in�nite coe�cient of friction can stock two times more energy
than the case with zero friction, Emax,µ=∞/Emax,µ=0 = 2. On the one hand it is
impossible to block all the points on the contact interface, on the other hand there
must be a certain slipping that occurs, so that here we consider that the resonance
frequency of the assembled structure is closer to ωµ=0 and is weakly in�uenced by
the friction. The stocked energy can thus be approximated by Emax,µ=0 and the
damping coe�cient is written as

η =
1

2π

∆W

Emax,µ=0
. (3.75)

In order to fully illustrate the evolution of damping coe�cient in terms of modal
amplitude, an amplitude q = 5 is necessary to reveal the maximum damping capacity
even though it is unrealistic. The reliability of the proposed in-plane friction model
for sandwich structure can be veri�ed in the comparison with the analytical model in
chapter 2. The applied analytic mode shape in the numerical approach, as expressed
in 2.14 should be normalized to the mass to be in coherence with the von Kármán
model, the normalizing coe�cient α is calculated in equation 3.76.

ρbh

∫ l

0

α2

4

[
3
(x
l

)2
−
(x
l

)3
]2

= 1, α =

√
140

33ρbhl
=

√
140

33m
, (3.76)

wherem is the total mass of the plate. The comparison with the analytical model
is presented in �gure 3.37. Both models show that there exists an optimal amplitude
for maximum damping coe�cient under a given clamping pressure, and the damping
capacity decreases as the modal amplitude continues to increase after passing the
optimal point. However, the numeric model gives a later slipping activation and
the change in damping coe�cient is more brutal compared to the analytic solution.
The di�erence between the two models can be ascribed to the di�erence in elastic
stocked energy calculation. The numerical model's elastic energy is approximated
by the �rst mode elastic energy, whereas the stocked energy in the analytic model
is derived directly from the strain and stress relationship under the imposed mode
shape.
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Figure 3.37: η evolution obtained by numerical and analytical methods

The damping ratio is thought to be a function of mode shape, even though
the analytical mode shape can approximate and facilitate the derivation, the slight
di�erence with the real numerical mode can result in a signi�cant distinctness be-
tween them. The comparison of damping ratio obtained relatively obtained with
the approximated analytical and real numerical mode shape is illustrated below.

Figure 3.38: η evolution under real numerical and approximated analytical mode
shape

The evolution of η under the real numerical mode is smoother than that of
analytical mode, this is due to the fact that the slipping-sticking transition under
the real mode shape is progressive, where points closer to the encastre starts to slip
in the �rst place and other points follow later. However in the case of approximated
analytical mode shape, the de�ection's expression is obtained from a concentrated
loading on the free edge, which results in a uniform shear stress along the length of
the plate, therefore the shear stress on the contact surface is thus uniform which
implies that all the contact nodes will slip and stick at the same time. In this way,
a brutal change in dissipated energy is inevitable. Due to the similarity between
the two mode shapes, the maximum damping capacity as well as the damping
evolution under bigger amplitude are in good correlation.
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3.3.6 In�uence of second-order �ctive force �eld

Like in any plate in bending, the in-plane force induced by transverse displace-
ment can be regarded as an exterior excitation force, even though its in�uence is
of second-order. Two calculation cases with and without second-order force �eld
are superimposed in �gure 3.39 to analyze the role of �ctive force �eld on sandwich
plate.

Figure 3.39: η evolution with and without second-order �ctive force �eld

The two curves are perfectly superimposed, it signi�es that the �ctive force
�eld is shown to have no in�uence on the evolution of damping coe�cient. This
is because the �ctive force �eld applied on the upper and lower plate is the same,
which results in a synchronous movement in the two layers, and thus there is no
relative displacement between them. In other words, the �ctive force �eld doesn't
contribute to energy dissipation. However according to the theory in the previous
section on the von Kármán plate, the hardening/softening e�ect due to the in-plane
stress cannot be neglected.

3.4 Conclusion

Being complementary to chapter 1 which provides a preliminary introduction
to analytical 1D frictional damping, the current chapter mainly deals with the
di�culty encountered during the calculation of friction on a 2D plane, notably
the sticking-slipping transition mechanism in numerical formulation. Just like the
previous chapter, the proposed method is applied on the sandwich plate and von
Kármán plate in an academic context. The challenge resides in the extension
of friction force from an in�nite dimension in the width direction to a limited
dimension on a 2D plan, it requires that more attention should be paid to the
determination of frictional force's direction during the variation of modal amplitude.
Besides, the second-order in-plane force is also an in�uential factor in both cases
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and is analyzed in the current study.

The second-order damping induced by �ctive force �eld is treated in the �rst
place. It is shown that the �ctive force �eld is a function of spatial derivatives
of the transverse displacement w. Due to the discretized form of the calculation
domain, the derivatives are evaluated by �nite di�erence method. The non-linear
term in the von Kármán plate equation couples together the in-plane force and the
mode shape, its in�uence can be re�ected by the change in sti�ness and damping
property after the transformation to the frequency domain and the treatment of the
HBM method. Since the internal stress �eld is sensitive to boundary conditions,
a small modi�cation on the boundary nodes can result in a drastic change in
hardening/softening e�ect as well as the damping property of the whole structure.
In terms of mode shape approximation, the single mode method is then extended
to the multi-mode method which incarnates the notion of nonlinear mode shape.
The participation factor of higher order modes is also a function of the coupling
term ψij in which the internal force �eld as well as the mode shape are embedded.
According to the variation of the participation factors, the nonlinear mode at
resonance is thought to be only composed of the �rst mode shape when the modal
amplitude is relatively small, as the modal amplitude increases, the participation
of other modes can be taken into account. As the modal amplitude in industrial
applications are all in the linear range of the material, the nonlinear mode shape
evolution justi�es the use of single mode method for damping calculation in real
conditions.

The planarization of friction problems by the use of in-plane forces can also be
transplanted to the sandwich plate model. Here the initial state of the clamped
plate can be considered as one whole piece, at the middle plane of which there exists
a �ctive friction contact surface. The stress �eld on the �ctive plane can be obtained
by the kinematic of Kirchho�-Love plate theory, in this way the variation together
with the saturation of the frictional force component in the x and y direction can be
expressed as a function of modal amplitude. Due to the non-uniform distribution of
the frictional stress �eld, the slipping-sticking transition under the �rst mode shape
is a gradual process. The slipping starts from the encastred edge and propagates
to the free boundary. This slipping pattern results in a higher maximum damping
capacity, compared to the approximative mode shape used in the analytical model.
In general, the damping obtained from the numerical method are in good correlation
with the analytical approach both in terms of magnitude and variation trend. As
for the in�uence of second-order bending-induced �ctive force �eld, both plates are
under the same excitation �eld, so that there is no induced relative displacement
and supplementary energy dissipation, the second-order �ctive force �eld doesn't
a�ect the formation of damping, but its in�uence on internal stress �eld associated
with the assembled structure's sti�ness cannot be neglected.

The semi-analytical methods on two academic models in the current chapter
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deepen the understanding of the formation of friction damping. They not only
provide a theoretical framework of the 2D sticking-slipping mechanism, but also
justi�es the feasibility of damping modelization in a quasi-static calculation. Addi-
tionally, the study on nonlinear mode con�rms the theoretical justi�cation for the
use of single mode method in damping calculation at resonance. Nevertheless, we
should be aware of the intrinsic limitations in the proposed methods. The �nite
di�erence scheme requires that the calculation domain is structured, even of a rect-
angular form, which prohibits it to be applied on structures with more complex
geometries. Even though the softening-hardening e�ect is shown for the moment
to be just present in von Kármán plate, the same phenomenon must exist in shell
structures, where the coupled term ψij will be more di�cult to be expressed, so as
the hardening/softening e�ect. The extension of the current method to cases with
general shapes is the path for future improvement and development.
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4.1 Introduction

In order to verify the exactitude of the theory proposed in the phenomenological
study, a partially clamped sandwich beam with symmetric geometry is adopted
in the experimental study. The design of the specimen is based on the analytical
modelization in equation 2.36. Modal amplitude is measured by two captors in a
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di�erential system. The frequency response curve is drawn with di�erent clamping
pressures and excitation levels. The damping parameters are then found by the
half-power bandwidth method.

4.2 Specimen design

The main di�culty in damping set-up design is to limit the extra energy dissipation
which takes place mainly at the interface between specimen and �xation. The
supplementary dissipation in the clamp may in�uence the damping level of the
structure and consequently modify the frequency-response curve. The cantilever
sandwich beam model requires that one end of the beam is encastred. The majority
of the set-ups in the bibliography use clamp to build rigid �xation, but the presence
of clamp will surely bring in more contact surface, and therefore more extra energy
dissipation. The solution proposed here is to build a symmetric structure who
is excited at its symmetry point, the suppression of extra dissipated energy can
be realized by imposing an anti-resonance excitation frequency, the mode shape
corresponded will automatically grantee a natural encastre in the middle with
relatively weak energy dissipation. In this way, the energy dissipation can be
restrained to the controlled area under the bolted clamp.

Figure 4.1: Cantilever sandwich beam specimen

The specimen designed is shown in �gure 4.1. Two metallic plates are super-
imposed one on another. Two bolts are positioned with equal distance from the
center. Rubber washers are inserted between the metallic washer and the plate for
the purpose of a better contact pressure uniformity. Based on the dimensions and
properties listed in table 4.1, it is necessary in the �rst place to �nd the position of
bolted clamp for optimal damping capacity, then obtained position will be brought
into the veri�cation for non-interference between the resonance frequency of the
whole structure and of the subsystem of bolted clamp.
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Total length (mm) 400
Width (mm) 30

Plate thickness (mm) 2
Rubber washer thickness (mm) 5.5
Length of rubber washer (mm) 50
Coe�cient of friction (mm) 0.3

Young's modulus of steel (MPa) 210000
Young's modulus of rubber (MPa) 10

Clamp mass (g) 50

Table 4.1: Beam dimensions and mechanical properties

In order to �nd the optimum position of bolted clamp under a given pressure, it
is necessary to determine the maximum force that the rubber washer can support.
Rubber is an elastoplastic material whose plastic deformation may cause supplemen-
tary energy dissipation, so a strain limit of 10 % is respected in the design. Here
we set that the force applied corresponds to a rubber's deformation of 5 %. The
pressure on the washer is given by

p = Eε = 0.5MPa. (4.1)

The amplitude at which the structure reaches its maximum damping can be
obtained by deriving equation 2.36 with respect to modal amplitude q, η′(q) = 0.
The optimal amplitude can thus be written as

qηmax =
8Eh2l3pR2µ− 48Eh2l3pRXcµ

3E2h4[R2 + 12Xc(Xc − 2l)]

−
√
−2E2h4l3p2µ2R2(R− 6Xc)[−32l3(R− 6Xc) + 1728l2X2

c − 144lXc(R2 + 12X2
c ) + 3(R2 + 12X2

c )2]

3E2h4[R2 + 12Xc(Xc − 2l)]
.

(4.2)

We impose that the maximum damping takes place when the amplitude reaches
1 mm. By equating the qηmax to 1 in equation 4.2 and solve for Xc, we can obtain
two positions

Xc1 = 0.52mm, Xc2 = 134.7mm. (4.3)

The bolt cannot be placed at Xc1 since it is too close to the �ctive encastre.
Xc2 is chosen to be the optimal position. A parametric study is conducted with the
parameters above and the amplitude-damping curve is illustrated in �gure 4.2. The
position 134.7 mm corresponding to purple curve provides maximum damping at
amplitude 1 mm.
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Figure 4.2: Optimal position for maximum damping at q = 1 mm

The second part in the set-up design is to verify if there is interference between
the whole structure and the subsystem of bolted clamp at resonance frequency,
e.g. the resonance of these two systems should not be too close together. The whole
system is analyzed by �nite element method with a point mass of 50 g at the position
of bolt, which is situated at 134.7 mm from the encastre.

Figure 4.3: Finite element analysis of specimen

Two cases should be taken into account in the frequency analysis: in the �rst
case there is no friction between two plates (the coe�cient of friction is zero), they
vibrate independently and the point mass is equally shared by the upper and lower
part, e.g. the point mass for each plate is 25 g; the second case considers that
the coe�cient of friction is in�nite, the plates can be regarded as perfectly sticked
together and the point mass is supported by a plate of doubled thickness. The �rst
resonance frequency with �nite coe�cient of friction should be within the range
de�ned by these two extreme values.

fµ=0 fµ=∞
36.487 Hz 72.878 Hz

Table 4.2: Resonance frequencies under µ = 0 and µ =∞

The subsystem of bolted clamp can be simpli�ed to a spring-mass system as
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illustrated in �gure 4.4.

Figure 4.4: Mechanical model of subsystem

The sti�ness of the rubber washer can be calculated with the Young's modulus
of 10 MPa and the imposed deformation of 5 %.

k =
εES

εh
=

0.05× 10MPa× 50mm× 30mm
0.05× 5.5mm

= 2727N/mm = 2.7× 106 N/m.

(4.4)
The natural frequency of the subsystem can thus be expressed as

fn =
1

2π

√
2k

m
=

1

2π

√
2× 2.7× 106 N/m

0.05 kg
= 1654Hz. (4.5)

The natural frequencies of the two systems are far from each other, so there is
no interference between them.

4.3 Measurement system

Figure 4.5: Measurement system set-up

The measurement system is illustrated in �gure 4.5. Seeing that the �ctive encastre
is in constant movement under the sinusoidal excitation of shaker, the displacement
cannot be simply measured by the accelerometer at position A. In this case, the
displacement at point B should be taken into account and the relative displacement
between point A and point B is the actual amplitude that we look for. The acceler-
ation at point A and B are respectively noted as two rotational vectors γA and γB,
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we assume that they are both sinusoidal and that the displacement can be obtained
by dividing the acceleration by ω2. The vectorial subtraction can give the vector of
relative displacement. The maximum projection of the relative displacement vector
on x axis is the maximum amplitude for damping calculation.

Figure 4.6: Measurement system set-up

The amplitude can thus be written as

q =
1

ω2
‖γA − γB‖ . (4.6)

The vectorial subtraction can be easily achieved by analogous signal operation
from channel A and channel B in the numeric oscilloscope, as the peak-to-peak value
is extracted automatically. A frequency sweeping is applied to the structure under
di�erent clamping pressures and shaking intensity, the evolution of displacement
obtained will give a clear view of the in�uence that the pressure and the modal
amplitude has on damping.

4.4 Rubber washer's sti�ness measurement

In order to estimate the damping property, the clamping pressure on the contact
interface must be a known parameter. Since the direct measurement of pressure in
such a system is a di�cult task, an indirect way to assess the compression force is
developed.
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(a) Test machine (b) Rubber being compressed

Figure 4.7: Rubber washer's sti�ness measurement

Figure 4.8: Rubber sti�ness calculation

Even though the direct measurement of pressure seems unachievable, the
compressed distance of the rubber washer can be easily obtained. Once we know
the sti�ness of the rubber washer, the force applied on the plate can be calculated
indirectly by multiplying the compressed distance. The sti�ness test was conducted
on a traction-compression machine INSTRONTM5582, a maximum compression
displacement is �xed at 3 mm. The force-displacement curve obtained is illustrated
in �gure 4.8. At the beginning of the test, the reaction force is zero due to the
existence of gear clearance. The force-displacement curve presents two phases, the
�rst phase is linear which ends at 2 mm, the second phase is in the realm of large
displacement and appears to be nonlinear. In the current study, the compression
displacement is within the linear phase, whose sti�ness can be represented by the
slope of the curve.

By picking up two points on the linear part of the curve, the sti�ness of the
rubber washer is
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k =
3700− 1540

1.221− 0.7667
= 4754N/mm. (4.7)

The measured sti�ness also justi�es the previous interference veri�cation, the
actual sti�ness is two times bigger than the assumed sti�ness, which guarantees that
the clamping system moves simultaneously with the vibrating plate and maintains
the applied pressure.

4.5 Clamping pressure's calculation

In order to identify the in�uence of clamping pressure, the application of three
di�erent pressures is planned for the experiment. The distance between the two
washers is measured by a micrometer. The thickness of each component is listed in
the table 4.3.

Two plates Metallic washer Rubber washer
Thickness (mm) 3.98 1.86 5.39

Table 4.3: Components' thickness

(a) Thickness measurement (b) Measure points

Figure 4.9: Rubber washer's sti�ness measurement

The total length of the clamping system with zero pressure is the sum of all
the components, which gives 18.48 mm. Since the parallelity between the two
washers cannot be guaranteed under the tightened bolt, the distance for pressure
calculation is the averaged value of three di�erent points equally positioned on the
washer. Three clamping pressures are applied in the experiment. As the structure
has two symmetric clamping pads, the pressure �nally adopted is the average value
of the two clamps.

The pressures on the left clamp is listed in table 4.4.
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Case H1 (mm) H2 (mm) H3 (mm) Aver.H (mm) Force (N) Pressure (MPa)
1 17.710 17.685 17.739 17.710 3661 4.06
2 17.996 17.960 17.920 17.960 2472 2.75
3 18.391 18.407 18.460 18.420 285 0.30

Table 4.4: Pressures on the left clamp

The pressures on the right clamp is listed in table 4.5.

Case H1 (mm) H2 (mm) H3 (mm) Aver.H (mm) Force (N) Pressure (MPa)
1 17.719 17.501 17.576 17.600 4184 4.64
2 18.02 17.99 17.879 17.963 2458 2.73
3 18.458 18.204 18.166 18.280 950 1.05

Table 4.5: Pressures on the right clamp

The three di�erent clamping pressures adopted are the average value of the right
and the left clamp.

Case 1 (MPa) Case 2 (MPa) Case 3 (MPa)
Pressure 4.35 2.74 0.67

Table 4.6: Pressures chosen

4.6 Dynamic model of seismic system

Since the encastre point B is connected to the shaker and is in constant vibration,
the system in �gure 4.5 can be interpreted by a dynamic seismic model.

Figure 4.10: Seismic system

The movement of the encastre is denoted as U(t) and this motion is uniform
for all the points on the plate. The vibration in the local coordinate system is
expressed by the product of the �rst resonance mode shape and the modal coordinate
qi(t)φi(x, y). The displacement in the �xed coordinate system is written as the
superposition of the two movements.
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w(x, y, t) = U(t) + V (x, y, t). (4.8)

The dynamic equilibrium of a plate can be written as

ρẅ(x, y, t) +D∆2w(x, y, t) = q(x, y, t) (4.9)

where ∆ is Laplacian operator whose di�erential operation is equivalent to
∆ = ∇2. D is bending rigidity of the plate given by D = Eh3/12(1− ν2).

Write the displacement �eld in the modal synthesis form

w(x, y, t) =

n∑
i=1

qi(t)φi(x, y) + U(t). (4.10)

Substitute equation 4.10 into equation 4.9 with zero exterior force, we can get

ρ

n∑
i=1

q̈i(t)φi(x, y) +D

n∑
i=1

qi(t)∆
2φi(x, y) = −ρÜ(t). (4.11)

By using Ritz-Galerkin method with the normalized orthogonal mode shape to
the mass, multiply equation 4.11 with mode shape φi(x, y) and integrate over the
whole calculation domain, the minimized error function can be expressed as

∫
Ω
D∆2φi(x, y)φi(x, y)dsqi(t) +

∫
Ω
φi(x, y)ρφi(x, y)dsq̈i(t) = −

∫
Ω
ρφi(x, y)Ü(t)ds

(4.12)
or

¨qi(t) + ω2qi(t) = −
∫

Ω
ρÜ(t)φi(x, y)ds. (4.13)

The modal force in this case can be regarded as the inertia force introduced into
the system by the moving encastre. In order to trace the frequency-response curve,
the modal force should remain constant. The expression 4.13 indicates that the
acceleration of point B should remain constant for all the sweeping frequencies.

4.7 Alternative method for damping identi�cation

An alternative calculation method of damping value is proposed in the current
section. It is based on a curve-�tting method with a simpli�ed mass-spring dynamic
model, as illustrated in �gure 4.11. The bolted clamps are assimilated to two lumped
masses mA, the sti�ness of the plate is simpli�ed as kA. The mass and sti�ness of
the shaker is denoted as mB and kB.



4.7. Alternative method for damping identi�cation 119

Figure 4.11: Dynamic mass-spring model

The mass and sti�ness matrix of the system can be respectively written as

M =

mA 0 0

0 mB 0

0 0 mA

 , (4.14)

and

K =

 kA −kA 0

−kA 2kA + kB −kA
0 −kA kA

 , (4.15)

with k1 = 12EI/l3, l is the distance from the clamp to the excitation point,
I is the rotation inertia of the rectangular cross section expressed by bh3/12. The
known mass m1 = 50 g. The parameters m2 and k2 are still unknown. If hysteresis
damping is taken into account by the complex sti�ness coe�cient iη, we can express
the displacement vector in modal coordinates with mode shapes normalized to the
mass matrix. The modal coordinates can thus be solved as

qi =
fi

−ω2 + ω2
i (1 + iη)

. (4.16)

Since the model amplitude is obtained in a di�erential system as expressed by
equation 4.6, special attention should to paid to the modal force when tracing the
frequency-response curve. The dynamic equilibrium of the mass mA can be written
in the following way.

mAüA + kA(uA − uB) = 0 (4.17)

Since the displacement di�erence uA−uB is the studied parameter, it is possible
to rewrite equation 4.10 in terms of Y = uA − uB.

mA(üA − üB) + kA(uA − uB) = −mAüB

mAŸ + kAY = −mAüB
(4.18)

In order to maintain a constant excitation force with an unchangeable mA, the
acceleration on mass mB should remain constant, i.e. the acceleration of point B in
�gure 4.5 is constant for all frequencies in the sweeping. The inertia force −mAüB
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can be regarded as a constant �ctive excitation force applied on the lumped mass
A in the di�erential system, which gives the same requirement on excitation force
as in equation 4.13.

4.8 Experiment results

In order to trace the frequency-response curve, a frequency sweeping from 20 Hz
to 70 Hz with an increment of 1 Hz was applied on the structure. To maintain
the constant modal force, the acceleration on the excitation point was adjusted to
the same level for each frequency. The objective of the current study is to reveal
the relationship between modal amplitude and hysteresis damping, to this end the
structure was excited under 7 accelerations from 20 to 80 m/s2 with an increment
of 10 m/s2.

The response curve for the case of 4.35 MPa is illustrated in �gure 4.12. The
resonance frequency is within the realm between 40 Hz and 50 Hz, which is in
correlation with the preliminary numerical simulation with zero friction and in�nite
friction in table 4.2. The curves show that the resonance frequency decreases with an
increase in modal amplitude, this phenomenon can be explained by the intuition that
under small modal amplitude, the sticking phase is dominant during one complete
cycle, so that the participation of sti�ness under the con�guration of two sticked
plates is bigger, the overall sti�ness is thus higher. However under big amplitude,
the slipping phase is more dominant, the whole structure behaves more as two
separate plates whose sti�ness is much lower, in this way the resonance frequency
will decrease.

Figure 4.12: Frequency response curve under 4.35 MPa

The same phenomena can be observed in the experiment case with 2.74 MPa
and 0.67 MPa. In the case of 0.67 MPa, the maximum acceleration was stopped at
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70 m/s2 in order not to damage the structure, since under this pressure the damping
is very weak.

(a) Test machine (b) Rubber being compressed

Figure 4.13: Frequency response curve under 2.74 MPa and 0.67 MPa

The the frequency-response curve under 0.67 MPa clearly shows that the
vibration behavior of the structure is very similar to that of two separate plates,
since the resonance frequency is close enough to fµ=0 in table 4.2, especially under
the excitation acceleration of 70 m/s2. The preliminary qualitative interpretation
of experimental results indicate that the vibration behavior of assembled structures
is sensitive to contact friction conditions, the sticking-slipping transition can not
only in�uence the resonance frequency, but also modify the damping property of
the structure.

To have a more clari�ed view on the in�uence of pressure in the sandwich plate,
the next comparison is conducted with the same excitation level but di�erent clamp-
ing pressures.
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(a) Responses under α = 20 m/s2 (b) Responses under α = 60 m/s2

Figure 4.14: Frequency response curve under 2.74 MPa and 0.67 MPa

By comparing �gure 4.14a and �gure 4.14b, the compounded sti�ness is shown
to be in positive correlation with the clamping pressure, the structure becomes
sti�er with a higher resonance frequency as the clamping force increases. However
as to damping capacity, the vibration behaviors suggest that for di�erent excitation
forces, there exists di�erent optimal clamping pressures to obtain the most damped
response, for example in the case of α = 20 m/s2, the pressure 0.67 MPa is proved
to be more e�cient for energy dissipation, while the pressure 2.47 MPa is quali�ed
as the optimized pressure to reach the highest damping under the excitation of
α = 60 m/s2. This experimental observation justi�es the theoretical deduction that
frictional damping is sensitive to clamping pressure.

The damping ratio is calculated by half-power bandwidth method. The ampli-
tude corresponding to a speci�c damping value is the maximum displacement on
the frequency-response curve under a given modal force.

(a) η evolution under p=4.35 MPa (b) η evolution under p=0.67 MPa

Figure 4.15: Theory-experiment comparison under 4.35 MPa and 0.67 MPa
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The comparison between the experimental results and the theory developed
in chapter 2 are illustrated in �gure 4.15a and �gure 4.15b. The comparison case
under 4.35 MPa shows that slipping takes place earlier than the theoretical model.
This can be explained by the fact that under the real working condition, di�erent
from the hypothesis used in the theoretical model, all the points on the contact
interface don't slip simultaneously. Some points slip earlier than other points and
thus create the partial-slip working condition. Even though not all the points are in
the slipping phase, the energy dissipated by the slipping points cannot be neglected,
so that the damping appears with a smaller amplitude. The analytical model
requires that slipping takes place when the tangential stress reaches saturation for
all the contact points, this naturally leads to a bigger amplitude to trigger damping.
However, due to the limited power of shaker and the security concern to keep the
specimen within the range of rupture, the sandwich plate was not excited to reach
the maximum damping, nevertheless, the damping evolution presented by the
experiment is in good correlation with the theoretical model: before achieving the
damping saturation amplitude, the damping value grows as the amplitude increases.

If the damping value variations under the three di�erent pressures are superim-
posed on the same �gure, the evolution tendency revealed by the analytical model
are proved to be re�ected by experimental results.

(a) Experimental results (b) Analytical results

Figure 4.16: Theory-experiment comparison under three di�erent pressures

The experimental results in �gure 4.16a justify the analytical predictions. In
the �rst-order damping model, pressure can in�uence the amplitude beyond which
the damping is activated. The amplitude required for maximum damping is also
logically increased, so that it can be concluded that bigger clamping pressure will
result in a later damping activation, and make the reaching of maximum damping
more di�cult.

Even though the general damping variation presents the same tendency in both
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experiment and analytical derivation, the gap between the two demonstrations are
still very large. This error can be contributed by multiple uncertain and uncontrol-
lable parameters. In the real condition, the pressure on the plate is not uniform
under the clamping pad, the coe�cient of friction is not well measured, and the in-
�uence of contact roughness and �atness is not taken into account in the analytical
development. All these parameters can cause huge di�erent between experimental
veri�cation and theoretical calculation.

4.9 Conclusion

The current section is the experimental veri�cation of the previously developed
theories. An academic set-up was designed to quantify the �st-order frictional
damping in sandwich plate. In order to minimize the in�uence of encastre �xation,
a symmetric structure whose excitation point is situated in the middle was adopted.
Since the structure can be assimilated to a seismic system, a constant modal force
was guaranteed by maintaining a constant acceleration on the excitation point.
Due to the vibrating encastre boundary condition, the absolute modal amplitude in
the moving coordinate system was expressed by a subtraction of the two temporal
acceleration signals. Three clamping pressures were applied on the sandwich plate
to identify its in�uence on damping activation point. The clamping pressure was
derived in an indirect way from the squeezed distance of rubber washer and the
measured sti�ness in the compression test. The error due to the non-�atness was
compensated by an averaging of three points on the washer. For each clamping
pressure, di�erent excitation levels were tested to illustrate the variation of damping
ratio as a function of modal amplitude.

The frequency-response curves obtained show that the vibration behavior of
sandwich plate is strongly nonlinear, the compounded sti�ness is sensitive to modal
amplitude. For small modal amplitude, the sandwich plate behaves like two sticked-
together plates, as the amplitude increases, the sti�ness decreases by reason of a
more dominant role that the slipping phase plays during the vibration. The exper-
imental results also indicate that the optimal clamping pressure to reach the most
damped state depends on the excitation level applied on the structure, the optimal
clamping pressure under one modal force may not work for the other. By com-
paring the experimental results and the analytical models, two frictional damping
properties can be con�rmed:

• Before reaching the maximum damping value, the damping value increases
with the modal amplitude.

• Bigger clamping pressure requires bigger deformation to activate damping
and to reach maximum damping capacity.
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Even though there presents a certain correlation between experiments and theo-
retical predictions, the gap separating them cannot be neglected. This is due to the
accumulated error in the evaluation of coe�cient of friction, clamping pressure and
contact surface area. The gap can be minimized if a more sophisticated and feasible
measurement method for those parameters is introduced into the test.
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Methods for industrial application
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5.1 Introduction

The design of fatigue endurance is a critical step in product development, especially
for automobile and aeronautical industry. A key parameter in fatigue calculation is
the stress �eld in the component, which depends on the displacement's amplitude in
vibration, so that an accurate vibrational analysis is the prerequisite for a reliable
fatigue design. In the current industrial vibration analysis, the empirical modal
damping property is assumed viscous and dependent on speed. For certain cases with
the presence of assembled structures, the obtained response with viscous damping
doesn't match the experiment. According to the study in chapter 1 and 2, this
inconsistency can be explained by the biased understanding of damping property.
In assembled structures, there is no only viscous material damping which depends on
speed, but also friction-induced damping from the contact surfaces which depends
on displacement, the latter may even be 10 to 100 times more dominant. In this
section, the modelization method for friction damping in industrial context will be
developed from the concept expressed by academic methods, its application method
and limitations will be explained.

5.2 Mode shape injection method

Frictional damping is thought to be sensitive to mode shape and modal amplitude.
As previously demonstrated on the model of von Kármán plate, the single mode
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description of the displacement qφ(x, y) can be transformed into a in-plane �ctive
force �eld as external excitation and it is thus possible to establish the dependency
between mode shape and damping ratio. In the case of sandwich plate, the
displacement �eld is transformed into a mid-plane stress �eld which is then used
for the determination of sticking-slipping transition, the relationship between the
modal amplitude and the damping ratio can also be obtained by this procedure,
hence it is justi�able to infer that the key method to be extracted from the two
academic examples is that the modal displacement �eld should be transformed into
some kind of external excitation to generate relative displacement on the contact
surface. The induced dissipated energy can be regarded as the damping property
of the chosen mode shape.

In real industrial applications, it is di�cult to apply the notion of in-plane �ctive
force �eld since the contact surface may not be �at and of regular form, so in this
case, we propose that the mode shape could be used as an imposed displacement
�eld to generate interface slipping. The clamping pressure can be applied in the
prestress step and maintained in the following steps. The illustration of this general
idea is presented in �gure 5.1. It should be noted that the clamping pressure on
the upper plate has no contribution to the contact pressure, since its in�uence is
canceled by the imposed displacement on lower adjacent nodes, the contact pressure
is only provided by the lower clamping pressure and is transmitted to the contact
surface via the lower plate.

Figure 5.1: Illustration of the load case for industrial application

The imposed displacement �eld can force the structure to deform in the direction
of the mode shape, while the maintained pressure guarantees the contact frictional
force, in this way the induced interface relative displacement can contribute to
energy dissipation of the whole structure.

Before presenting the solution procedure, two hypothesis are adopted in the
industrial application. Firstly, as demonstrated in the experiment, the presence of
friction and change in modal amplitude will not result in a drastic modi�cation in
resonance frequency and mode shape, accordingly it is reasonable to consider that
the mode shape stays constant for all clamping pressures and modal amplitudes, in
this way the implementation of single linear mode method is justi�ed. Secondly,
the vibration amplitude are considered small compared to the feature size of the
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structure, thus the normal vector on the contact surface can be regarded as anchored
and unmovable to the initial con�guration.

(a) Mode shape applied on contact nodes (b) Mode shape applied on internal nodes

Figure 5.2: Mode shape injection methods

The normal vector of a given contact element can be calculated by the cross
product of two non-collinear in-plane vectors. For a contact node that is shared by
more than one element, its normal vector is the average of those on surrounding
elements, as written by equation 5.1.

nm =
1

n

n∑
i=1

ni. (5.1)

There are two methods for mode shape injection:

1. The mode shape is only projected on the normal direction of contact surface
and imposed on contact nodes, as illustrated in �gure 5.2a, the mode shape
displacement of point A AA′ is projected in the direction of nA.

2. The mode shape is directly applied as imposed displacement on all nodes
except those on contact surface and �xed by encastre boundary condition, as
illustrated in �gure 5.2b.

According to the requirements of the two proposed methods, the imposed dis-
placement is applied to the corresponding DOF by ABAQUSTM subroutine DISP.

Ui = Umode. (5.2)

The reaction force ft at a given instant t on the contact nodes can be used for
obtaining modal force.

qUi
T ft = qfmodal =⇒ fmodal = Ui

T ft, (5.3)

where the modal force obtained corresponds to the modal amplitude q.
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5.3 Application on in�nite �at plate

In order to test the feasibility of the proposed method while keeping a short cal-
culation time, the mode shape injection is in the �rst place applied on an in�nite
�at plate. The dimension in the width direction is considered in�nite and only the
dimension in the length and thickness direction is modeled. The plate is 200 mm
in length and 5 mm in thickness, three layers of elements are meshed in thickness
direction for a better precision of clamping pressure. The plane strain thickness is
�xed at 30 mm.

Figure 5.3: Mesh on �at plate

The objective of the current section is to �nd the relationship between the mode
shape and the energy dissipation, as well as its graphical illustration � the form of
hysteresis loop. For the convenience of uniform ampli�cation, the mode shape is
normalized to displacement, i.e. the biggest value in a mode shape is normalized to
1.

(a) Mode 1 of �at plate (b) Mode 2 of �at plate

Figure 5.4: Normalized mode shapes to generate interface damping

On the subject of friction property, the coe�cient of friction is 0.3, a hard
contact is used in the normal direction. As the Coulomb friction law is to be
adopted in the current study, the contact elastic slip is suppressed by imposing an
admitted elastic sticking distance which is equivalent to 1e-5 of the characteristic
element dimension. In addition, the separation after contact is allowed. Similar to
the previous chapters, the calculation is quasi-static with nonlinear geometry. Two
loading cycles are applied on the structure, as expressed in equation 5.4, in order to
reveal the di�erence in response between the �rst loading and the second loading,

q = qmax sin(2πt), t ∈ [1, 3] (5.4)

where t is the step time.
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Before studying the hysteresis property in �at plate, it is necessary to compare
the two mode shape injection methods with regards to dissipated energy. If the
obtained dissipated energies are of the same magnitude, the two methods can be
considered as equivalent. The comparison of the two proposed methods are pre-
sented in �gure 5.5, the red line corresponds to the method in which the mode
shape is imposed on all non-contact nodes in the x and y direction. The blue line
corresponds to the case where the mode shape is only projected in the normal di-
rection of the contact surface and applied only on the contact nodes. As indicated
in the �gure, the case with loading on non-contact nodes has more energy dissipa-
tion, but the two methods can be regarded as having the same e�ect on damping
generation. Considering the di�culty in normal vector calculation in case of curved
contact surface, the mode injection on non-contact nodes has less limitations and is
easier to be applied on complex geometries. In the following study cases, the mode
shape is only applied on internal nodes.

Figure 5.5: Mesh on �at plate

The hysteresis loop is drawn in modal space, with modal amplitude on x axis and
modal force on y axis. The modal force is calculated by non-contact node injection
method proposed in equation 5.3. The hysteresis loop of the �rst mode as well as
its variation under di�erent pressures are illustrated in �gure 5.6a and 5.6b.
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(a) Hysteresis loop of �rst mode under 0.6

MPa

(b) Hysteresis loop of �rst mode under 3

pressures

Figure 5.6: Hysteresis loops of �rst mode

The hysteresis loop in �gure 5.6a shows that global sti�ness is a function of
modal amplitude. When the two plates are sticked together under small modal
amplitude, the sti�ness is bigger with a steeper slope on the hysteresis curve. As the
modal amplitude reaches 0.2, we can notice a signi�cant sti�ness drop which implies
the beginning of slipping. From the �gure 5.6b, we can notice that the slipping
arrives later under a bigger clamping pressure, this observation is in correlation
with the previous analytical studies. This reduced sti�ness will be maintained until
the turning point of modal amplitude, on which the structure reenters into the
sticking phase and the sti�ness regains its value at the beginning of the loading.
When the modal amplitude reaches the end of one loading cycle, structure will not
reenters into sticking, but keeps the sti�ness of slipping phase and starts a new cycle.

The hysteresis loops of second mode are illustrated in �gure 5.7a and 5.7b. The
much bigger modal force compared to the �rst mode squeezes the hysteresis loop to
a curved line, however it doesn't mean that there is no energy dissipation.

(a) Hysteresis of mode 2 under 0.6 MPa (b) Hysteresis of mode 2 under 3 pressures

Figure 5.7: Hysteresis loops of second mode
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The accumulated energy dissipation can be extracted from the ABAQUSTM .odb
�le. The evolution of the frictional dissipation for mode 1 and mode 2 under 3 di�er-
ent pressures are illustrated in �gure 5.8a and 5.8b. The evolution of accumulated
energy dissipation follows the same pattern, the alternative transition between stick-
ing and slipping makes that the evolution is stepwise. In addition, by comparison
between the two �gures, it is evident that the sticking phase takes a bigger propor-
tion in one cycle under the �rst mode shape, however its resulting modal force is
smaller than that of the second mode under the same modal amplitude. The evo-
lution of dissipated energy also reveals that bigger clamping pressure will result in
more dissipated energy and a later slipping activation, but for transition from slip-
ping to sticking during the shift from loading to releasing, both �gures show that
clamping pressure has no in�uence on this transition moment, the slipping always
stops at the same amplitude whatever pressure is applied. This observation is valid
for both mode shapes.

(a) Accumulated energy dissipation of mode

1

(b) Accumulated energy dissipation of mode

2

Figure 5.8: Accumulated energy dissipation of mode 1 and mode 2

Another way to estimate dissipated energy is to calculate the area encircled
by the hysteresis loop in the modal space. Similar to �gure 1.5b, the input and
recovered energy can be represented by the loading and unloading curve. For the
purpose of calculation time reduction, it is possible to perform only a half cycle of
loading, as illustrated in �gure 5.9 and the dissipated energy is approximately 50 %
of the dissipation in one full cycle, as expressed in equation 5.5.

∆W =

∫ T

0
f(q)dq ≈ 2

∫ T/2

0
f(q)dq. (5.5)
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Figure 5.9: Energy dissipation on hysteresis loop

The mode shape injection method is tested with success on the �at in�nite plate,
the impose of mode shape on non-contact nodes is shown to be able trigger slipping
and sticking transition on the contact surface as well as its subsequent energy dissi-
pation. This transformation of linear mode shape into contact nodes' excitation is
an applicative embodiment of damping formation from a modal view. The energy
dissipation, or the corresponding damping property, is directly associated with the
mode shape together with its amplitude, from which the modal nonlinear friction
damping can be established. The next section will deal with the damping property
of a structure with a slightly more complex geometry.

5.4 Application on in�nite curved plate

One of the di�culties in damping modelization is the involvement of complex geome-
tries, curved surface may suggest non-convergence of the calculation. This section
will test the robustness of mode shape injection on an in�nite plate with an arbi-
trary curvature. The same with the �at plate, the mesh in the thickness direction
also has three layers of elements. The plane strain thickness stays 30 mm.

Figure 5.10: Mesh on curved plate

The same with the previous section, the �rst two linear modes are retained for
damping calculation. The mode shapes are illustrated in �gure 5.11a and 5.11b.
The projected mode shape is only applied on the upper plate.
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(a) Mode 1 of curved plate (b) Mode 2 of curved plate

Figure 5.11: Mode shapes of curved in�nite plate

The hysteresis loops under the excitation of �rst and second mode shape are
respectively traced in �gure 5.12a and 5.12b. The same with the �at plate, the
resulting modal force associated with the second mode is much bigger, so that the
hysteresis loop is squeezed to a curved line. We also notice that clearance may be
created during the loading when the clamping pressure is not big enough.

(a) Accumulated energy dissipation of mode

1

(b) Accumulated energy dissipation of mode

2

Figure 5.12: Hysteresis loops of curved plate

As regards the accumulation of dissipated energy, the stepwise evolution can
also be noted on curved plate in �gure 5.13a and 5.13b. Similar to the case of �at
plate, the dissipated energy induced by second mode shape is bigger than that of
the �rst mode. The sticking-slipping transition under the pressure of 0.2 MPa is not
obvious in both mode shapes, especially in the second mode, this may be caused by
the contact separation due to weak clamping pressure.
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(a) Hysteresis of curved plate under mode 1 (b) Hysteresis of curved plate under mode 2

Figure 5.13: Accumulated energy dissipation in curved plate

Based on the test in the current section, the mode shape projection method is
shown to be operational on 2D structure with curved contact interface. It is thus
prepared to be extended to a 3D structure with more complex mode shapes and
contact conditions.

5.5 Application on 3D structure

In order to approximate the geometry in real industrial applications, the mode shape
injection method should be tested on 3D structures meshed by hexahedral elements.
The geometry of the test model is illustrated in �gure 5.14a and 5.14b. The structure
is created by extrusion of the cross section to a length of 100 mm.

(a) Sketch of the model's cross section (b) 3D representation of the modal

Figure 5.14: Geometry of the 3D model

The blue surface is an analytical rigid plane for contact with the green deformable
body. In the ABAQUSTM modeling, the rigid surface must be de�ned as master
surface in the contact modelization. The mode shape to be injected is illustrated in
�gure and it is only applied on the upper skin for the purposed of calculation time
reduction.
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(a) Diplacement applied on the upper skin (b) Mode shape injected to the structure

Figure 5.15: Mode shape and imposed displacement region

In the current analysis, the mode shape is normalized to displacement for con-
venience, but for the response calculation in the frequency domain, the mode shape
should be normalized to mass matrix. A sweeping of maximum physical displace-
ment from 0 to 2 mm is applied on the structure, the energy dissipation versus
physical amplitude presents the characteristic of �rst order damping. By the use
of curve �tting, the expression of energy dissipation in terms of q can be expressed
with 95% con�dence bounds as

∆W = f(q2, q) = aq2 + bq = 0.05873q2 − 0.1725q. (5.6)

The damping ratio can thus be written as

η(q) =
1

2π

∆W

Emax
≈ 0.05873q2 − 0.1725q

πω2(q/qmax)2
. (5.7)

where qmax is the coe�cient between the mode shape normalized to mass and
the mode shape normalized to displacement.

φ(x, y, z)mass = qmaxφ(x, y, z)displacement. (5.8)
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(a) Diplacement applied on the upper skin (b) Mode shape injected to the structure

Figure 5.16: Mode shape and imposed displacement region

The equation 5.7 indicates that the damping pressure is not only a function of
modal amplitude, but can also be in�uenced by resonance frequency ω. The weak
damping ratio in the current case is due to a very high �st resonance frequency
which is 255.09 Hz. The η − q curve in �gure 5.16b shows that damping ratio will
converge to a constant for big modal amplitude.

5.6 Conclusion

The current chapter has proposed an operational method for damping modelization
in the industrial context. The method is based on the assumption that the mode
shape doesn't encounter signi�cant change compared to linear mode shape with
the presence of friction contact. According to the conclusion in Chapter 3 that
friction damping is associated with the mode shape and modal amplitude, the mode
shape is thus regarded as external excitation to generate contact slipping. The
structure is deformed under the pressing of the imposed displacement in the direction
of mode shape, the induced energy dissipation on the contact surface implies the
damping property associated with the chosen mode shape. From the numerical
experiment on 2D sandwich plate, it is found that the choice of DOFs on which the
displacements are imposed can in�uence the energy dissipation. It is recommended
to apply the mode shape on internal DOFs in order to avoid the interference with the
applied clamping pressure on contact DOFs. The results on 3D structures presents
a second-order damping behavior under the excitation of the �rst mode shape, the
energy dissipation can be expressed in an semi-analytical way based on the energy
dissipation in the FEM calculations. For complex structures, it is not possible to
determine the order number of energy dissipation beforehand, a modal amplitude
sweeping is necessary to trace the η − q curve.
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General conclusion

The modelization of friction damping in assembled structures is one of the major
di�culties in vibration mechanics. It has perplexed the automobile engineers of
Groupe PSA in terms of fatigue resistance design, since damping is the key factor
which regulates the amplitude of vibration with which the fatigue behavior is
directly associated. As have been veri�ed by many previous researches, friction
damping is more dominant than material damping with an order of 10 to 100 times.
So that a reliable estimation of friction damping is critical for a correct vibration
calculation and subsequently a competitive design on the market. In order to
overcome this engineering problem, a scienti�c research project has been launched
and constitutes the subject of the current thesis.

Friction-induced damping is considered to be independent of frequency but de-
pendent on displacement, which di�erentiates it from viscous damping. The studies
on friction damping can be divided into two categories: analytical modelization and
numerical simulation. The analytical modeling is more direct in revealing the basic
quantity relationship between controlling parameters, but it is limited to simple
structures. Numerical simulation can on the contrary deal with omplex geometries
but the calculation is time-costing. The previous works based on these two methods
have both pointed out the displacement dependency of friction damping and that it
is sensitive to parameters like clamping pressure or internal stress �eld. The studies
in the current research have followed the two modeling methods in the literature
and have applied them to more complex phenomena.

Three analytical models have been proposed for the purpose of the elucidation
of energy dissipation mechanism in simple jointed structures. Based on the order of
modal amplitude q in the expression of energy dissipation, the frictional damping
is categorized into �rst-order damping and second-order damping. The �rst-order
damping is present in the model of sandwich plate and rotational joint, the
second-order damping exists only in the von Kármán plate. The order of damping
implies the possibility of damping optimization. For example in the �rst-order
damping, there exists an optimal modal amplitude under a given pressure to achieve
the maximum damping value. There are also interesting discoveries like the optimal
bolt position for a partially clamped plate or the optimum thickness ratio in a
sandwich structure. However, there is no optimal displacement in the second-order
damping model, since the damping value will increase monotonically with the
modal amplitude. All the phenomenological studies have uni�ed the di�erent
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damping models under the same objective function�the η− q curve and have laid a
theoretical foundation for numerical studies as well as industrial applications.

Another important part of the current thesis is dedicated to the numerical
solution of von Kármán plate with friction boundary. Due to the di�culty of non-
linearity in the continuous formulation, FEM and FDM are employed to discretize
the calculation domain. With the introduction of �ctive-force �eld, a 3D problem
is planarized and the response of the plate can be solved in a quasi-static way.
The in-plane force �eld is shown to play a critical role in the hardening/softening
of the structure. It is found that if the two opposite boundaries are encastred,
the structure is under a hardening e�ect with an increase in modal amplitude,
however if one boundary is subjected to dry friction, the sti�ness decreases if
the clamped boundary is released for slipping. Furthermore, the nonlinear mode
coupling is analyzed with the help of multi-mode method. The participation factor
of higher order modes is shown to be a function of modal amplitude. For small
amplitude, the participation of other modes is weak and the main mode shape
can be considered as unchanged. This conclusion justi�es the use of single mode
method for industrial applications.

The experimental veri�cation is also conducted in the current study. A
symmetric sandwich beam is used for damping measurement under di�erent
clamping pressure. Even though there is no perfect correlation with the theoretical
estimation, the experimental results have shown the same damping evolution
tendency with the analytical model, i.e. the optimal damping can be in�uenced
by the clamping pressure and bigger clamping pressure requires a bigger modal
amplitude to reach maximum damping.

The methods for industrial application is developed in the ABAQUSTM

environment. The simpli�ed single mode method is realized by the subroutine
DISP which imposes the mode shape on internal DOFs to generate relative slip on
the contact surface. The displacement imposing is shown simple and e�cient for a
coarse-grained estimation of energy dissipation associated with a given mode shape.
But there are still potential improvements that can be expected. The calculation
time on 3D structures is still very long, if the model size continues to increase,
the time spend by the current method will be unbearable. The optimization in
the reading of the mode shape �le can be a future direction. In addition, the
interference between the displacement imposing and the application clamping
pressure is not well understood, for the purpose of a faster and more reliable
estimation of energy dissipation, the search for optimal displacement-imposing
DOFs can be the subject for future research.

The current thesis gives a complete study on dry friction damping in assembled
structures from literature review to real applications by passing through analytical
modelings and numerical simulations. The basic properties of dry friction damping
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are elucidated and a simpli�ed method is proposed for industrial usage. I hope my
work can contribute to the understanding of dynamic complexity of dry friction
damping and inspire more in-depth research in this domain.





Appendix A

Second order derivatives schemes

∂2w

∂x2

∂2w

∂y2

∂2w

∂x∂y

Encastre
w2
i+1,j

dx2
0 0

Friction
w2
i−1,j

dx2
0 0

Upper free nodes
wi+1,j − 2wi,j + wi−1,j

dx2
0

∂ywi+1,j − ∂ywi−1,j

2dx

Lower free nodes
wi+1,j − 2wi,j + wi−1,j

dx2
0

∂ywi+1,j − ∂ywi−1,j

2dx

Other nodes
wi+1,j − 2wi,j + wi−1,j

dx2

wi,j+1 − 2wi,j + wi,j−1

dy2

wi+1,j+1 − wi+1,j−1 − wi−1,j+1 + wi−1,j−1

4dxdy

Table A.1: Second order derivatives schemes
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