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Résumé

L’imagerie de perfusion permet un accès non invasif à la micro-vascularisation

tissulaire. Elle apparaît comme un outil prometteur pour la construction de

biomarqueurs d’imagerie pour le diagnostic, le pronostic ou le suivi de traite-

ment anti-angiogénique du cancer. Cependant, l’analyse quantitative des séries

dynamiques de perfusion souffre d’un faible rapport signal sur bruit (SNR). Le SNR

peut être amélioré en faisant la moyenne de l’information fonctionnelle dans de

grandes régions d’intérêt, qui doivent néanmoins être fonctionnellement homogènes.

Pour ce faire, nous proposons une nouvelle méthode pour la segmentation

automatique des séries dynamiques de perfusion en régions fonctionnellement

homogènes, appelée DCE-HiSET. Au coeur de cette méthode, HiSET (Hierarchi-

cal Segmentation using Equivalence Test ou Segmentation hiérarchique par test

d’équivalence) propose de segmenter des caractéristiques fonctionnelles ou signaux

(indexées par le temps par exemple) observées discrètement et de façon bruité sur un

espace métrique fini, considéré comme un paysage, avec un bruit sur les observations

indépendant Gaussien de variance connue. HiSET est un algorithme de clustering

hiérarchique qui utilise la p-valeur d’un test d’équivalence multiple comme mesure

de dissimilarité et se compose de deux étapes. La première exploite la structure

de voisinage spatial pour préserver les propriétés locales de l’espace métrique, et

la seconde récupère les structures homogènes spatialement déconnectées à une

échelle globale plus grande. Etant donné un écart d’homogénéité δ attendu pour

le test d’équivalence multiple, les deux étapes s’arrêtent automatiquement par

un contrôle de l’erreur de type I, fournissant un choix adaptatif du nombre de

régions. Le paramètre δ apparaît alors comme paramètre de réglage contrôlant la

taille et la complexité de la segmentation. Théoriquement, nous prouvons que, si

le paysage est fonctionnellement constant par morceaux avec des caractéristiques

fonctionnelles bien séparées entre les morceaux, HiSET est capable de retrouver la

partition exacte avec grande probabilité quand le nombre de temps d’observation

est assez grand.

Pour les séries dynamiques de perfusion, les hypothèses, dont dépend HiSET,
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sont obtenues à l’aide d’une modélisation des intensités (signaux) et une stabilisation

de la variance qui dépend d’un paramètre supplémentaire a et est justifiée a

posteriori. Ainsi, DCE-HiSET est la combinaison d’une modélisation adaptée

des séries dynamiques de perfusion avec l’algorithme HiSET. A l’aide de séries

dynamiques de perfusion synthétiques en deux dimensions, nous avons montré que

DCE-HiSET se révèle plus performant que de nombreuses méthodes de pointe de

clustering.

En terme d’application clinique de DCE-HiSET, nous avons proposé une

stratégie pour affiner une région d’intérêt grossièrement délimitée par un clin-

icien sur une série dynamique de perfusion, afin d’améliorer la précision de la

frontière des régions d’intérêt et la robustesse de l’analyse basée sur ces régions

tout en diminuant le temps de délimitation. La stratégie de raffinement automa-

tique proposée est basée sur une segmentation par DCE-HiSET suivie d’une série

d’opérations de type érosion et dilatation. Sa robustesse et son efficacité sont

vérifiées grâce à la comparaison des résultats de classification, réalisée sur la base

des séries dynamiques associées, de 99 tumeurs ovariennes et avec les résultats de

l’anapathologie sur biopsie utilisés comme référence. Finalement, dans le contexte

des séries d’images 3D, nous avons étudié deux stratégies, utilisant des structures de

voisinage des coupes transversales différentes, basée sur DCE-HiSET pour obtenir

la segmentation de séries dynamiques de perfusion en trois dimensions.

Cette thèse de doctorat a été supportée par un contrat CIFRE de l’ANRT

(Association Nationale de la Recherche et de la Technologie) avec la société IN-

TRASENSE qui conçoit, développe et commercialise des solutions de visualisation

et d’analyse d’imagerie médicale, incluant Myrian®. L’outil DCE-HiSET a été

porté sur Myrian® et testé complètement fonctionnel.
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Abstract

Dynamical contrast enhanced (DCE) imaging allows non invasive access to tissue

micro-vascularization. It appears as a promising tool to build imaging biomarker for

diagnostic, prognosis or anti-angiogenesis treatment monitoring of cancer. However,

quantitative analysis of DCE image sequences suffers from low signal to noise ratio

(SNR). SNR may be improved by averaging functional information in large regions

of interest, which however need to be functionally homogeneous.

To achieve SNR improvement, we propose a novel method for automatic seg-

mentation of DCE image sequence into functionally homogeneous regions, called

DCE-HiSET. As the core of the proposed method, HiSET (Hierarchical Segmenta-

tion using Equivalence Test) aims to cluster functional (e.g. with respect to time)

features or signals discretely observed with noise on a finite metric space consid-

ered to be a landscape. HiSET assumes independent Gaussian noise with known

constant level on the observations. It uses the p-value of a multiple equivalence test

as dissimilarity measure and consists of two steps. The first exploits the spatial

neighborhood structure to preserve the local property of the metric space, and the

second recovers (spatially) disconnected homogeneous structures at a larger (global)

scale. Given an expected homogeneity discrepancy δ for the multiple equivalence

test, both steps stop automatically through a control of the type I error, providing

an adaptive choice of the number of clusters. Parameter δ appears as the tuning

parameter controlling the size and the complexity of the segmentation. Assuming

that the landscape is functionally piecewise constant with well separated functional

features, we prove that HiSET will retrieve the exact partition with high probability

when the number of observation times is large enough.

In the application for DCE image sequence, the assumption is achieved by

the modeling of the observed intensity in the sequence through a proper variance

stabilization, which depends only on one additional parameter a. Therefore, DCE-

HiSET is the combination of this DCE imaging modeling step with our statistical

core, HiSET. Through a comparison on synthetic 2D DCE image sequence, DCE-

HiSET has been proven to outperform other state-of-the-art clustering-based
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methods.

As a clinical application of DCE-HiSET, we proposed a strategy to refine a

roughly manually delineated ROI on DCE image sequence, in order to improve

the precision at the border of ROIs and the robustness of DCE analysis based on

ROIs, while decreasing the delineation time. The automatic refinement strategy is

based on the segmentation through DCE-HiSET and a series of erosion-dilation

operations. The robustness and efficiency of the proposed strategy are verified

by the comparaison of the classification of 99 ovarian tumors based on their

associated DCE-MR image sequences with the results of biopsy anapathology used

as benchmark.

Furthermore, DCE-HiSET is also adapted to the segmentation of 3D DCE image

sequence through two different strategies with distinct considerations regarding

the neighborhood structure cross slices.

This PhD thesis has been supported by contract CIFRE of the ANRT (Asso-

ciation Nationale de la Recherche et de la Technologie) with a french company

INTRASENSE, which designs, develops and markets medical imaging visualization

and analysis solutions including Myrian®. DCE-HiSET has been integrated into

Myrian® and tested to be fully functional.
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Chapter 1

Introduction

We start this introduction with a detailed context of cancer, perfusion imaging

and their relationship, in order to help readers to understand the observations and

the statistical challenge which was at the origin of this work. Then we introduce

the statistical core of this thesis, which aims to address this challenge in a general

framework and the several applications we have tackled using our development.

1.1 Medical context

1.1.1 Cancer

Being responsible to 8.2 million deaths and 14.1 million new cases all over the

world in 2012 [Ferlay et al., 2013], cancer has been one of the most mortal and

prevalent diseases in the world during decades. Several different factors such as the

development of new therapeutic methodology and the improvement of detection

and monitoring techniques for therapeutic follow-up provide strong hopes for cancer

treatment. On one hand, more targeted and personalized therapeutic care with

respect to patient’s states can significantly reduce the mortality. On the other

hand, more advanced and comprehensive detection and monitoring tools might help

provide earlier and more accurate diagnosis and detailed feedback about treatment

used.
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In this context, as an indispensable tool for radiologists to detect tumors

and to monitor treatments, recent medical imaging tools, such as DCE-imaging,

should pursue more standardized operation protocol as well as more robust analysis

techniques, in order to more precisely and efficiently characterize the effect of

therapies or drugs on tumors in clinical studies. With currently widely used imaging

modalities, the development of medical imaging analysis techniques capable of

exhibiting subtle functional information in an accurate and robust way plays one

of the principle roles in the fight against cancer.

1.1.1.1 Treatments

In clinical practice, cancer can be treated by surgery, radiotherapy, chemotherapy,

hormonal therapy, and targeted therapy. More recently, studies have shown that

angiogenesis inhibitors controlling for example the VEGF has potential in treatment

to many types of cancer, at least associated with other drugs.

Surgery

Surgery is an effective way to cure cancer showing localized tumors. However, once

the cancer has metastasized to other sites of the body, a complete surgical removal

is usually impossible since single metastatic tumorous cell can potentially grow

into a new tumor. Unfortunately, localized tumors may be invasive cancer.

Radiotherapy

Radiation therapy consists in irradiating tumors with ionizing radiation to kill

tumorous cells or at least stop their division by damaging their genetic material,

and shrink tumors by stopping their growth. As surgery, radiation therapy works

efficiently to localized tumors. Although in practice radiation therapy is provided

in repeated small doses, such that most normal cells can recover from the effects

of radiation, the damage to nearby healthy tissue can not be ignored. Moreover,

radiotherapy is less effective when tumors are hypoxic because oxygen is an efficient

radio-sensitizer.
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Chemotherapy

Chemotherapy consists in destroying tumorous cells with cytotoxic drugs and is

typically applied along with radiotherapy or surgery when tumor metastasis has

occurred. However, due to the complex characteristics of the tumorous vascular

network (Figure 1.1), efficient targeting of the tumor with cytotoxic drugs could be

a very difficult task. Most forms of chemotherapy target rapidly dividing cells and

are not specific to tumorous cells. Therefore, chemotherapy might harm healthy

tissue, especially tissues that have a high replacement rate. Moreover, during

chemotherapy, patients can develop resistance to the cytotoxic drugs, which reduces

the therapeutic effects.

Figure 1.1: Three tumors with their vascular structures: the left one illustrates a

solid tumor with relatively simple vascular structure; the middle one illustrates a

tumor growing from the left one due to tumorous angiogenesis, more capillaries

and small vessels are formed during its growth; the right one illustrates an invasive

tumor with an completely disorganized micro-vascular structure.

Hormonal therapy

Hormonal therapy consists in inhibiting the growth of certain types of tumorous cell

by manipulating levels and activities of certain hormones. During the treatment,

patients may suffer several side effects such as headache, nausea and tiredness, and

increased risk of endometrial cancer, blood clots and stroke.

Targeted therapy

Targeted therapy consists in blocking the cell pathways (proteins or other molecules)
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that can lead to cancers using agents targeting these pathways. Targeted therapy

has to be adapted to issues such as patient’s state and type of tumors to be effective.

However, researches show that cancer cells may become resistant to the drug.

Anti-angiogenic therapy

Angiogenesis is the process through which new blood vessels are generated from

pre-existing ones [Birbrair et al., 2015]. In order to transform from a benign state to

a malignant one, tumors need a dedicated blood supply to provide the oxygen and

other essential nutrients they require. Therefore, tumors undergo an ‘angiogenic

switch’ that breaks the balance between pro and anti-angiogenic factors in tumorous

angiogenesis. Tumor vascular network is extended in a disorganized and inundant

way.

From this perspective, anti-angiogenic therapy has been introduced in recent

decades to regulate tumorous angiogenesis. It reduces the production of pro-

angiogenic factors, prevent them binding to their receptors and block their actions.

New therapeutic strategies have entered trials to combine anti-angiogenic inhibitor

with chemotherapy to enhance delivery of cytotoxic molecules [Jain, 2005]. However,

since many factors are involved in angiogenic phenomena, patients can develop

resistance to anti-angiogenic therapy [Eikesdal and Kalluri, 2009]. With respect to

these issues, indicators of tumorous vascular structure can play a significant role to

personalized anti-angiogenic treatment to monitor their effects and to detect the

development of drug resistance.

1.1.1.2 Detection and Monitoring

The choice of therapy depends upon the location, the grade of the tumor, the stage

of the disease, as well as the general state of the patient. Meanwhile, each option

has its specific targets, limitations and undesirable side effects. Therefore, for each

individual, in order to avoid unnecessary burden brought by inefficient or even

inappropriate therapy, critical decisions must be made based on both accurate
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information obtained at diagnosis and later during the monitoring of the treatment

leading to a personalized treatment. In addition, pre-clinical studies (REMISCAN)

which aim at improving the efficiency of a new drug also require accurate tumor

characterization and monitoring techniques. These techniques are expected to be

able to assess morphological, molecular or functional indicators, which are specific

and predictive, of tumor state.

1.1.1.3 Indicators in cancer therapy

In order to help therapists and doctors in the personalization of the treatment,

several tools are available.

Morphological

In clinical practice, morphological features of tumor, such as tumor size, have

been considered to be indicators of the tumor’s therapeutic sensitivity [Stanley

et al., 1977] and of the metastasis probability [Koscielny et al., 1984]. The RECIST

criteria [Eisenhauer et al., 2009] is currently a clinical standard for the evaluation

of cancer therapy, which classify tumors into three categories: stable, in regression

or in progression. However, by definition, these criteria do not provide functional

information on the tumor. For instance, according to this criteria, a tumor with a

large necrotic core would be identified to be of equal risk as a highly vascularized

tumor of the same size.

Molecular

Since certain specific molecules are produced along with the growth and func-

tional modifications of tumors, monitoring the evolution of the concentration of

those molecules can provide valuable information about the type and the stage of

cancer [Ludwig and Weinstein, 2005]. Therefore, new technologies that can simul-

taneously assess the concentration of thousands proteins has been developed and

achieved a major improvement in diagnosis and tumor classification [Kulasingam

and Diamandis, 2008].
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Functional

As mentioned above, the assessment of tumor angiogenesis is able to reveal massive

informations about functional modification of tumors. Quantification of the blood

circulation inside tumorous vascular network became a proper indicator for cancer

therapy. However, due to the complexity of tumorous vascular network during

tumor growth (Figure 1.1), the blood circulation in the capillaries and small pe-

ripheral vessels, which is defined as the micro-circulation, appear as the target to

evaluate.

A common way to achieve this purpose is to visualize micro-vascular perfusion

in order to characterize micro-vascular properties. The perfusion can be tracked by

an imaging modality that measures the signal changes in the tissue of interest. The

patterns of these changes are connected to the underlying perfusion. According

to pathologists, tumorous tissue differs from normal tissue and usually shows

heterogeneity, leading to similar variations in its micro-vascular properties. However,

due to the growth of the tumor, one can expect the tumor to exhibit homogeneous

sub-regions. Therefore, finding the sub-regions in tumorous tissue with similar

perfusion patterns provides valuable information about tumor structure and its

angiogenesis.

1.1.2 Perfusion Imaging

1.1.2.1 Technique

Among the new techniques, dynamic contrast enhanced (DCE) imaging using

computed tomography (DCE-CT), magnetic resonance imaging (DCE-MRI) or

ultrasonic imaging (DCE-US) is very promising, because it can non-invasively

monitor the local changes in microcirculation secondary to the development of new

vessels (neo-angiogenesis) induced by the growth of cancers. DCE imaging follows

and analyzes the local distribution of a contrast agent in the blood circulation

system after intravenous injection, using a sequential acquisition [Ingrisch and
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Sourbron, 2013]. The imaging modalities (CT, MRI and US) allow to have a 2D or

3D vision of a volume of the body during the acquisition. The DCE images taken

at the same cross-section of patient during the entire acquisition period compose a

DCE image sequence. Since each image in DCE image sequence has a thickness,

every pixel in image has a volume. Therefore, DCE image consists of voxels instead

of pixels as in general image.

1.1.2.2 Modalities

Computed Tomography

The CT scanner is a device that measures the absorption by the tissues of X-rays

emitted by a ray tube that rotates around the patient providing a Radon transform

of the image [Herman, 2009]. After inversion of the Radon transform that is specific

to each brand of device, it is possible to have a 2D or 3D vision reconstruction of a

patient. The scanner allows to observe all areas of the body and all types of tissues

(organs, bone, blood vessels, etc.).

Magnetic Resonance Imaging

With respect to CT, MRI is a less invasive tool based on the principle of nuclear

magnetic resonance and uses some properties of atomic nuclei when exposed to

magnetic fields. This tool is mainly dedicated to the imaging of the central nervous

system, muscles, heart and tumors, it can observe the “soft” tissues with higher

contrast than the scanner. Nevertheless, the CT scanner is not yet possible to be

completely replaced by the MRI since some tissues such as bones are not observable

with MRI, and moreover MRI does not allow precise localization at high time

frequency, which indeed is needed for following the injection of a contrast agent

bolus.

Ultrasonic imaging

Ultrasonic imaging uses high frequency sound waves that are reflected by tissue

to produce images. Ultrasonic imaging is a non-invasive modality, which can be
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brought directly and quickly to the patient in real time with a relatively low cost.

However, it may provide less anatomical detail than CT and MRI. Moreover, it

performs very poorly when there is a gas between the transducer and the organ of

interest [Iftimia et al., 2011], due to the extreme differences in acoustic impedance.

1.1.2.3 Protocol

A contrast agent intravenously injected following the blood circulation is sketched

in Figure 1.2, which illustrates the sequential image acquisition. The imaging

acquisition starts before the injection in order to measure the pre-injection baseline

consisting of non-uniform gray levels across the image without enhancement induced

by contrast agent. The contrast agent is then sequentially followed during and

after injection to monitor the kinetic of the vessel and tissue enhancements over

time. The contrast agent arrives with the oxygenated blood through the aorta

and main arteries. Its concentration within unit volume voxels is measured for the

first time when it passes through the cross-section of the image. This measured

concentration within a unit volume voxel inside the aorta is called the arterial input

function (AIF). Afterwards, the contrast agent is distributed within the arterial

system to enter the microvascular network made of capillaries within the tissues.

The exchange within the tissue of oxygen, nutriments (such as glucose), and wastes

(such as CO2) as well as contrast agent occurs at the microvascular level, and

the concentration of contrast agent during this exchange is measured in all tissue

voxels inside the image cross-section. Later, the contrast agent returns to the

venous system with the deoxygenated blood. Each type of normal and pathological

tissue has its own and specific microvascular architecture and physiology, leading to

specific functional behavior, and therefore different temporal enhancement behavior

after contrast injection.

This course of contrast agent is monitored by CT, MRI or US, which allows

observations and therefore analysis at the voxel level at the same voxel grid for

every image in the sequence. At each voxel of the image sequence, it provides a

time intensity curve (TIC) that is the sum of the “baseline” grey level (before the
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Figure 1.2: DCE-imaging and contrast agent circulation. The patient’s body is

materialized by the mixed arrow.

injection) and the varying effect of the contrast agent related to its concentration

(after the injection). Removing the pre-injection phase and subtracting the baseline

from the time-intensity curve, we can construct a time enhancement curve (TEC)

only for the enhancement induced by contrast agent during the the post-injection

phase. In Figure 1.2, the red curve represents the TEC for a voxel in the aorta,

and the black curve represents TEC for a voxel in the tissue of interest such as

tumor. Two types of curves reveal different characteristics of tissues and both are

of interest of further analysis. In the sequel, without more precision, time curve

(TC) will refer either to TIC or TEC, depending on the study purpose.

1.1.2.4 Perfusion analysis

The TCs from the DCE image sequences can be analyzed using qualitative or

quantitative approaches. In qualitative analysis, descriptive features such as

maximum enhancement (ME), area under the curve (AUC) and time to peak

(TTP) are directly derived from the observed TCs of voxels. These measures are

used either individually [Tuncbilek et al., 2005; Medved et al., 2004; Tuncbilek

et al., 2004] or as a combination [Lavini et al., 2006]. However, they are not
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normalized and are sensitive to the variations of patient’s physiology (stress, blood

pressure, heartbeat, etc.) and the acquisition protocols such as the number of

images in the sequence, the amount of injected contrast agent, and the total

acquisition duration. In quantitative analysis, pharmacokinetic models such as

standard and extended Tofts [Tofts et al., 1995; Tofts, 1997] and Brix models

[Brix and et al., 2004] and blood flow models [Axel, 1980; Fieselmann et al., 2011;

Ostergaard et al., 1996] are commonly used in order to remove dependencies

existing in qualitative analysis. These models describe the diffusion of contrast

agent from blood plasma into the extracellular extravascular space (EES) using

different assumptions and simplifications. Well-defined physiological parameters,

such as tissue blood flow, blood volume and vessel permeability, are extracted by

the deconvolution of the tissue response to the patient’s AIF, through 1) parametric

estimation in pharmacokinetic models [Brochot et al., 2006], 2) semi-parametric

techniques based on adaptive smoothing of each observed TC [Schmid et al., 2009]

and 3) non-parametric estimation based on Laplace deconvolution in the blood

flow model [Comte et al., 2014].

1.2 Issues in DCE imaging

1.2.1 Issues for analysis of DCE image sequences

DCE imaging, however, suffers from several issues, which hamper its large diffusion.

First of all, consensus is lacking for the analysis strategy. Secondly, voluntary and

involuntary movements (such as breathing and cardiac motion, and non-periodic

motions such as bowel peristalsis) limit the quality of the analysis, and can be

addressed by motion correction methods [Glocker et al., 2011; Sotiras et al., 2009].

Finally, low SNR is a common issue in dynamic in vivo imaging due to the short time

allowed to record the signal within the image sequence and affects any quantitative

estimation1. For CT, because of the need to minimize the tissue irradiation during

1any quantitative estimation is aimed to solve an ill-posed deconvolution
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the entire sequence, using low Kvs and MAs to reduce the total X ray dose leads

to very poor quality for individual images. For MRI, high-speed sequences are

obtained with a high cost in signal. The larger resolution we want without changing

magnetic field, fewer protons arrive at the each voxel, therefore, the lower SNR is.

1.2.2 SNR improvement via segmentation

To improve SNR when analyzing DCE images, either large manual regions of

interest (ROI) are drawn by the radiologist or image sequence is denoised by spatial

filtering techniques. However, large ROI could end up with a lack of homogeneity by

mixing different types of TCs, and, filtering techniques could trigger a tricky balance

between information and noise when the TC shows variation of high frequency and

induce a low spatial resolution. This work focus on this last issue.

DCE image sequence reveals tissues (organs, tumors, metastasis, vessels, bones,

muscles, fat, etc.) having homogeneous properties that can be considered from an

image processing point-of-view as objects in a scene. Consequently, one can think

to recover these tissues/objects. It leads to segment the DCE image sequence into

regions (of voxels) showing homogeneous TCs. This provides the opportunity to

improve SNR without loss of spatial and temporal information, by averaging the

TCs in these recovered regions. This alternative is known as DCE image sequence

segmentation. In this context, DCE image sequence is considered as a spatial (2D

or 3D) domain made of voxels. At each voxel, one can observe a TC in time domain.

Hence, one needs a double representation of both spatial structure (voxel) and

time structure (curve). Segmentation in this context is to obtain a partition of the

spatial domain into subsets having their time structure homogeneous.

Depending on the plain positions of the DCE image sequences, the amount

of tissues could potentially vary from only a few to many. These tissues could

be filled, surrounded or interrupted by air, water or pure geometry effects (e.g.

colon) but also appear at several disconnected locations in the image. Therefore,

DCE image segmentation should have the ability in presence of noise to recover an
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unknown number of homogeneous regions that could be numerous and spatially

disconnected. Moreover, DCE image segmentation should take advantage of

functional information embedded in the image sequence in order to preserve as

much as possible the temporal information. From a statistical point-of-view, this is

ensured by the use of adaptive methods (in time domain). However, let us point

out that, as the functional information results from the convolution with the AIF,

one can expect the signals to be smooth enough in Hölder spaces.

1.3 Statistical core of this PhD thesis

We present the statistical core of this PhD thesis in a general context. In this work,

we propose a new method, called Hierarchical Segmentation using Equivalence Test

(HiSET), aiming to cluster functional (e.g. with respect to time) features or signals

discretely observed with noise on a finite metric space considered to be a landscape

and where the noise on the observations is assumed independent Gaussian with

known constant variance. HiSET employs a multiple equivalence test derived

from a multi-resolution comparison test in the time domain, which is known to

be adaptive to the unknown Hölder regularity of signal, in order to compare two

elements in the landscape. Considering the p-value of the multiple equivalence test

as dissimilarity measure, HiSET is a bottom-up hierarchical clustering algorithm

consisting of two steps: one local and one global.

In the local step (region growing), starting from a partition made of all elements

of the metric space, only spatial neighbors may be aggregated into larger clusters.

One can view the resulting partition of this local step as the collection of spatially

adaptive super-elements.

In the global step (region merging), starting from the partition resulting from the

local step, all clusters may be aggregated into larger clusters, regardless of their

disconnectedness.

HiSET depends on two intuitive parameters: δ that controls the expected
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homogeneity discrepancy between two functional features and α the significance

level (upper bound of the Type I error) of the multiple equivalence test, which

controls the probability to stop too late in the iterative process. Given α and

δ, both steps stop automatically through a proper control of the Type I error,

providing an adaptive choice of the number of clusters. Homogeneity discrepancy

is ensured as parameter δ controls whether the difference of two functional features

is close to 0 or not, regardless any modeling of these features. In this spirit, it is a

human interpretable parameter as it is meaningful on noiseless observations.

For a set made of functionally piecewise homogenous subsets, HiSET is proven

to be able to retrieve the true partition with high probability when the number of

observation times is large enough.

In the application for DCE image sequence, the assumption is achieved by

the modeling of the observed intensity in the sequence through a proper variance

stabilization, which depends only on one additional parameter a. Combing this

DCE imaging modeling step with our statistical core, HiSET, provides DCE-HiSET.

1.4 Medical applications

1.4.1 2D and 3D segmentation

We have applied DCE-HiSET on both 2D and 3D DCE image sequence segmentation.

For 3D sequences, we have considered two strategies, a 2D-to-3D strategy and a

direct 3D strategy. The 2D-to-3D strategy aims to propagate 2D-regions obtained

from a first 2D-segmentation of each slice by doing the complete 3D-segmentation

starting from the partition made of all 2D-partitions. The direct 3D strategy

applies DCE-HiSET directly considering neighbors in the 6 directions (4 in the

slice plus 2 to go from slice to slice).
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1.4.2 ROI refinement and tumor classification

We also used DCE-HiSET as a preprocessing step to refine a roughly manually

delineated ROI made by cliniciens. Followed by a series of erosion-dilation process,

DCE-HiSET helps remove the regions only located at or connected to the border

of the manual ROI while preserving the homogeneous regions connected to the

interior of the ROI. We apply the result of this refinement to a series of DCE

image sequences of 99 ovarian tumors graded with respect to their aggressiveness

according to the biology from a biopsy. Using several classification models covering

unsupervised and supervised approaches, we show that the classification with

respect to their grade of these ovarian tumors based on the functional features

observed in the ROI was improved after ROI refinement.

1.5 Reading guide

In Chapter 2, we review the existing clustering methods that have been applied to

DCE image sequence segmentation. In Chapter 3, we describe the statistical model

(§3.1), the multiple equivalence test (§3.2) and the two-step clustering procedure

with its theoretical properties (§3.3). In Chapter 4, we apply and evaluate the

proposed method on 2D DCE image sequence. We compare the proposed method

to other state-of-the-art methods with synthetic DCE image sequence and study

the parameter influence on the segmentation result with real DCE image sequences,

along with the model verification. Additionally, in Chapter 5, an automatic strategy

aiming to refine the manual ROI is described with an evaluation of robustness

and efficiency. In Chapter 6, we evaluate the proposed method on 3D DCE image

sequence. We explore and evaluate several segmentation strategies based on the

proposed method. This work being supported by a CIFRE contract in the company

Intrasense, Chapter 7 is devoted to present shortly the company, its medical imaging

software Myrian®, together with how this work has been implemented in Myrian®

and how the company may benefit from this implementation.
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Previous state of the art

2.1 Previous works related to DCE image sequence

segmentation

Region (object)-based segmentation has been investigated for detecting lesions

[Agner et al., 2013; Chen et al., 2006; Irving et al., 2016; McClymont et al., 2014;

Shi et al., 2009; Shou et al., 2016; Stoutjesdijk et al., 2012; Tartare et al., 2014], or

for retrieving internal structure of organs using a prior knowledge on the number

of tissue in the organ of interest [Abdelmunim et al., 2008; Chevaillier et al.,

2011; Lecoeur et al., 2009; Li et al., 2012a]. With respect to the requirement of

training dataset, we divide all classification methods, which have been used in

these works to classify voxels into classes (regions), into two categories: supervised

and unsupervised. Supervised approaches require training dataset to build the

classifiers that are used to classify new dataset. Unsupervised approaches do not

require training dataset and are referred in this work as clustering-based image

segmentation methods. Supervised approaches are usually used in conjunction with

unsupervised approaches to achieve a more specific objective.

41



42 CHAPTER 2. PREVIOUS STATE OF THE ART

2.1.1 One-stage unsupervised approaches

Chen et al. [2006] used a fuzzy c-means (FCM) clustering to segment a predefined

breast ROI into two classes: lesion and non-lesion. In this work, DCE image

sequence has six acquisition times: one for pre-contrast and five for post-contrast.

FCM takes enhancements at post-contrast times as input. After FCM, the soft

membership map is binarized (two classes) with a empirically chosen threshold.

And hole filling is needed to get a closed lesion.

Shi et al. [2009] also used FCM with two classes to segment suspicious breast

lesion. After the hole filling operation to remove isolated voxels within lesion region,

the level-set (LS) method was used to refine the boundary of lesion. In this work,

each sequence has 10 images: one for pre-contrast and 9 for post-contrast, but only

the standard deviation and maximum enhancement computed for every voxel are

used for FCM.

Lecoeur et al. [2009] investigated the segmentation of lesion and internal struc-

ture in brain for multimodal (multi-channel as RGB) imaging, which is very similar

to DCE imaging in the sense of image sequence. This work introduced a hierar-

chical segmentation method that iteratively uses graph cut (GC) to separate two

classes/tissues (object and background), until expected number of classes/tissues

are segmented. The energy function to be minimized in GC contains region in-

formation and border information. For region information, each class is modelled

by a multivariate (univariate for each channel) Gaussian distribution. Border

information is provided by the spectral gradient.

Chevaillier et al. [2011] proposed a two step method for the segmentation of

internal structure (compartments) in kidney. In the first step, it constructs a graph

structure with automatically determined number of nodes from all voxels, using a

growing neural gas algorithm. In the second step, it merges the nodes into three

classes using two thresholds of qualitative parameters based on time curves, which

have 256 acquisition times.

For the same purpose, Li et al. [2012a] used a wavelet-based k-means clustering
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with k equal to 5. Wavelet coefficients were selected by hard thresholding with

minimizing Stein’s unbiased risk. It used cosine distance of selected wavelet

coefficient as distance for k-means.

Shou et al. [2016] developed soft null hypotheses in testing procedure to classify

(identify) brain lesion voxels with enhancement out of other voxels without, leading

to a binary classification: lesion and non-lesion. Several null hypotheses were

proposed to quantify the qualitative behavior of time series. PCA was used to

reduce the dimension. The third and fourth principle components (PCs) are

considered as the representative of enhancement and are further used in testing. In

this work, soft null hypotheses were compared to the clustering based on a mixture

of k normal distributions with k varying. This work also proposed two points to

argue the failure of clustering: there is a continuous change in intensity from non

enhancement to strong enhancement, and lesion only accounts for a small portion

of voxels that do not have high influence on the estimation of the parameters for

mixture distributions.

For breast lesion segmentation, Agner et al. [2013] proposed to use a spectral

embedding (SE) to represent time intensity curves with only 3 dimensions in order to

have a stronger gradient and to provide more descriptive region statistics for active

contour (AC) model, which is later used to define the boundary of lesion. Regional

information is modelled by a mixture of two multivariate Gaussian distributions,

one for lesion and the other for non-lesion. In this work, the proposed method,

SE-AC, was compared to FCM-AC that uses FCM in conjunction with AC model.

Tartare et al. [2014] used spectral clustering to partition a ROI on prostate into

clusters. Considering a k-nearest neighbor graph, the computed affinity matrix

incorporates the spatial information of image. The number of clusters equals to

the number of eigenvectors used in spectral representation of time curves and

is automatically estimated using a normalized modularity criterion. With this

number, voxels are clustered using k-means. Additionally, clusters were labelled by

comparing the averaged curves to AIF.

McClymont et al. [2014] used a combination of two methods: mean shift (MS)
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clustering and GC for breast lesion detection and delineation. MS clustering is able

to produce spatially contiguous regions by treating spatial coordinates as part of

input along with feature domain and does not need a predefined number of clusters.

After removing clusters corresponding to vessels and non-enhanced tissues, a region

adjacent graph was constructed considering each remaining cluster as a vertex. GC

was made to separate lesion from surroundings. Like some earlier works, DCE

image sequence has only 4 or 5 acquisition times: one for pre-contrast and others

for post-contrast. For each voxel, MS used a feature vector consisting of its spatial

coordinate and its enhancement at post-contrast times. GC used a measure based

on the mean enhancement during post-contrast.

2.1.2 Multi-stage approaches mixing unsupervised and su-

pervised methods

Stoutjesdijk et al. [2007, 2012] proposed a three-step strategy for the segmentation

of lesion and subdivision in breast. Firstly, Otsu thresholding [Otsu, 1979] was

applied on the first enhancement to delineate a lesion in breast. Secondly, mean

shift (MS) clustering was used to subdivide the lesion into contiguous and homo-

geneous clusters using enhancement parameters. Finally, classifiers such as linear

discriminative analysis (LDA) and support vector machine (SVM) were trained on

kinetic parameters to select the most malignant ROI.

Irving et al. [2014, 2016] used a supervoxel over-segmentation to retrieve local

homogenous regions and a parts-based graphical model to include global anatomical

relationships. To get supervoxels, an adapted k-means clustering method, simple

linear iterative clustering (SLIC), was used on the data represented by PCA with

the first three PCs. SLIC is based on a new distance combining the feature distance

and spatial distance. The number of supervoxels and the compactness parameter

are required to be defined. Then supervised classifier LDA was trained to assign

one of three classes (tumor, bladder and lumen) to each supervoxel. Supervoxel

connectivity was represented by a graph and belief propagation was used to identify
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three nodes for three classes from all supervoxel candidates. In addition, these

works pointed out that supervoxels can be produced using methods including SLIC,

MS, normalized cut (NC), etc.

2.1.3 Discussion

In summary, these works focused only on the partial segmentation for lesions

and organs. However, the approaches that have been investigated in [McClymont

et al., 2014; Irving et al., 2014, 2016] revealed a two-step framework that can be

generalized to DCE image sequence segmentation, which, to remind, is a complete

segmentation of the entire spatial domain in image. In this framework, the over-

segmented supervoxels are generated using methods such as MS or SLIC in the

first step, and then fully connected conditional random fields (CRF) or normalized

cut (NC, multi-class version of GC for binary) propagates the supervoxels into a

final partition of the entire spatial domain. In other words, the method according

with this framework will also be a local-global method, as what we expected for

our method. Hence, they appear to be excellent competitors.
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2.2 Clustering methods for DCE image sequence

segmentation

In this section, we will first describe the issues of DCE image sequence segmentation.

Then, considering that DCE image sequence segmentation is a special case of

general image segmentation, we will broaden the survey of literature and review

the clustering methods, mentioned in the works from Section 2.1, in the perspective

of image segmentation. Roughly speaking, we divide these clustering methods into

three categories and discuss about their limitations. Finally, among these methods,

we will introduce the technical details, according to the original problem setting,

about five of them, which will be compared to our method later in Section 4.2.

2.2.1 Issues of DCE image sequence segmentation

In this thesis, we focus only on unsupervised approach that does not require a

training dataset. Clustering-based methods involved in previous works provide

only a partial (or binary) segmentation of the DCE image sequence. Despite being

potentially adaptable to our purpose (complete segmentation of the spatial domain),

these methods have never been used for this objective to our knowledge. Moreover,

we do not expect to have a prior knowledge on the number of regions since we want

to deal with large images potentially covering several organs, tumors or metastasis

that are known to be heterogeneous.

With respect to time structure representation in DCE image sequence, both

parametric and non-parametric approaches have been investigated. Parametric

representations use a fixed number of qualitative descriptors based on curves

(slope, ME, AUC, etc), or, of eigenvectors resulting from a principle component

analysis (PCA) [Irving et al., 2016; Shou et al., 2016] or from a spectral embedding

[Agner et al., 2013; Tartare et al., 2014] for all the curves. By construction, these

approaches can not be adaptive to the curve regularity that may change from

voxel to voxel. Non-parametric representations such as wavelet coefficient [Li et al.,
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2012a] aim to handle this problem, as they are known to be adaptive in Sobolev

spaces.

As mentioned above, segmenting DCE image sequence requires at the same time

to take into account the similarity in the time domain as well as the regularity in the

spatial domain. To get around the complexity of such combined approach, several

works have proposed a direct clustering of the time domain features using k-means

[Kachenoura et al., 2011; Li et al., 2012a] or fuzzy c-means (FCM) [Chen et al., 2006].

However, not taking into account the spatial structure, an extra post-processing

step (e.g. hole-filling) is required to regularize the resulting segmentation [Chen

et al., 2006] due to the presence of noise. To incorporate spatial and time domain

structure in one global procedure, two main types of approaches arising from the

general context of image segmentation have been investigated in the context of

DCE image sequence: 1/ features are obtained by binding spatial information

(voxel coordinates) to the time domain features [Comaniciu and Meer, 2002]; 2/ the

time domain features are represented over the spatial domain as a finite mixture of

simple objects (e.g. Gaussian model) and the regularity condition is incorporated

as Markov random field (MRF) prior [Chatzis and Varvarigou, 2008; Wu et al.,

2006].

2.2.2 Categories of clustering-based method

As mentioned above, the previous works focused only on partial segmentation.

However, other clustering-based techniques that do not deal with DCE image

sequences but only with classical (grey, color, texture) static images have considered

the complete segmentation. We review their main ideas to offer a broader picture to

readers about image segmentation. One can broadly classify clustering methods for

image segmentation into three categories: model-based, graph-based and hybrid.
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2.2.2.1 Model-based methods

Model-based methods aim to describe the feature space as a mixture of models.

For this purpose, k-means [Li et al., 2012a] and FCM [Chen et al., 2006] tend

to minimize an objective function corresponding to the within-cluster distance.

Gaussian mixture models (GMMs) have been used in conjunction with MRF

and formulate the maximum a posterior probability as objective function that

is estimated by expectation-maximization (EM) [Celeux et al., 2003] or gradient

descent/ascent [Chatzis and Varvarigou, 2008], with mean-field-like approximation,

or by Bayesian sampling (MCMC) [Tu and Zhu, 2002]. k-means and FCM tend to

find clusters with comparable shapes while EM in conjunction with GMMs allows

clusters to have different shapes. In common, they all suffer from the choice of

initial partition and from the use of a pre-specified number of clusters. They tend

to fail in presence of clusters having complex and unknown shapes, as previously

mentioned in [Zelnik-Manor and Perona, 2004].

Mean shift (MS) [Comaniciu and Meer, 2002] and quick shift (QS) [Vedaldi and

Soatto, 2008] aim to find the modes of the distribution of feature space, and then

assign each individual pixel to a mode by minimizing a criterion that is computed

on features obtained by binding spatial coordinates and color information. MS and

QS do not need a predefined number of clusters, however do need kernel bandwidths

for both time and spatial domain. The choice of bandwidths is not automatic and

requires domain expertise.

2.2.2.2 Graph-based methods

Graph-based methods treat image segmentation as a graph-partitioning problem.

The weighted graph is constructed from image by considering each pixel as a

node and by connecting each pair of pixels with an edge [Shi and Malik, 2000;

Zelnik-Manor and Perona, 2004]. The weight on the edge reflects the similarity

between two pixels with respect to either features or spatial distance or even both.

Making use of the eigenvalue system of Laplacian matrix, these methods minimize a
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global criterion to get a partition. Graph-based methods are able to handle feature

space with more complex structure. However they do require the knowledge of the

number of clusters and some scale parameters to compute affinity [Shi and Malik,

2000]. Zelnik-Manor and Perona [2004] addressed these two requirements through

a self-tuning local scaling and a maximization of the cost function corresponding

to the number of clusters ranging within a predefined set of values. Such approach

has been used in DCE image sequences for prostate tumor segmentation [Tartare

et al., 2014], with the number of clusters ranging only from 1 to 5. In the context of

tumor segmentation in DCE image sequence, Irving et al. [2016] used a supervised

step to discriminate tumorous tissue.

2.2.2.3 Hybrid methods

Hybrid methods consist of two steps – one local and one global – each derived

from a model- or graph- based method described above [Hedjam and Mignotte,

2009; Tao et al., 2007]. Such hybrid methods have been applied to DCE image

sequence [Irving et al., 2016; McClymont et al., 2014]. The local step over-segments

the image into local homogeneous clusters, also referred as “superpixels” [Achanta

et al., 2010] (or “supervoxel” in the context of DCE image sequence [Irving et al.,

2016]), then the global step merges these superpixels into global clusters. The

use of over-segmented homogeneous regions, instead of pixels, may help reduce

the sensitivity to noise and hence result in better segmentation performance, as

mentioned in [Tao et al., 2007]. However, they share similar defaults with the

methods used in each step as described above.

2.2.3 k-means

k-means is a model-based method and aims to partition n observations into k

clusters in which each observation belongs to the cluster with the nearest mean.

Let (x1,x2, . . . ,xn) denote a set of observations, each of which is a d-dimensional

real vector. k-means clustering aims to partition the n observations into k sets
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P = {C1, C2, . . . , Ck} so as to minimize the within-cluster sum of squares (WCSS),

arg min
P

k∑
i=1

∑
x∈Ci
‖x− µµµi‖2,

where µµµi is the mean of observations included in Ci. Given an initial set of k

means m(0)
1 , . . . ,m

(0)
k , the algorithm proceeds with iterations alternating between

two steps:

Assignment step: Assign each observation to the cluster whose mean yields the

least WCSS.

C
(t)
i = {xp : ‖xp −m(t)

i ‖2 ≤ ‖xp −m(t)
j ‖2, ∀j, 1 ≤ j ≤ k},

where each xp is assigned to only one cluster in P(t), even if it could be assigned to

two or more of them. Since the sum of squares is the squared Euclidean distance,

this is intuitively the “nearest” mean.

Update step: Calculate the new means to be the centroids of the observations in

the new clusters.

m
(t+1)
i = 1

|C(t)
i |

∑
xj∈C

(t)
i

xj,

where |C(t)
i | is the cardinality of set C(t)

i indicating the number of observations

within it. Since the arithmetic mean is a least-squares estimator, this also minimizes

the WCSS objective.

The algorithm has converged when the assignments no longer change. Since

both steps optimize the WCSS objective, and there only exists a finite number of

such partitions, the algorithm must converge to a (local) optimum. However, there

is no guarantee that the global optimum is achieved using this algorithm.

The initialization of k-means clustering is usually in a random fashion. Either

the k means are randomly picked from all observations, or each observation is

randomly assigned to a cluster among k clusters and then the means are calculated.

In practice, several initializations are usually taken in order to have a minimal

WCSS to start with for further iterations. However, due to the randomness, all

clusters resulting from k-means tend to have the compatible sizes.
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2.2.4 Hidden Markov random field with fuzzy c-means clus-

tering (HMRF-FCM)

Hidden Markov random field (HMRF) models have been widely used for image

segmentation, as they appear naturally in problems where a spatially constrained

clustering scheme, taking into account the mutual influences of neighboring sites,

is asked for. As another model-based method, fuzzy c-means (FCM) clustering

has also been successfully applied in several image segmentation applications.

Chatzis and Varvarigou [2008] proposed a novel approach formulated using an

FCM-type algorithm regularized by Kullback-Leibler (KL) divergence information,

and facilitated by employing a mean-field-like approximation of the MRF (prior)

distribution.

Hidden Markov random field Let X = {1, . . . , n} be a finite set of sites. For

every site j ∈ X, its state xj ∈ S where S is a set of all possible states. We denote

a configuration of state values of X as x = (xj)j∈X and its space as the product

space X = Sn. A strictly positive probability distribution p(x), x ∈ X , is called a

random field [Maroquin et al., 1987]. A random field p(x) is considered as a Markov

random field if j ∈ X is only conditionally dependent to its neighbors ∂j ⊂ X

p(xj|xX−{j}) = p(xj|x∂j), ∀j ∈ X.

The joint distribution of a MRF is given by

p(x|β) = exp(−U(x|β))∑
x∈X exp(−U(x|β)) ,

where β is a parameter known as the inverse supercritical temperature and U(x|β)

is the energy function in form of

U(x|β) =
∑
C∈C

VC(x|β).

C is a class of subsets of the sites that contains all neighboring sites

C = {C ⊂ X|∀j, ` ∈ C, j ∈ ∂`, ` ∈ ∂j}.
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C ∈ C is a clique and VC stands for the clique potential associated with the clique

C.

The calculation of p(x|β) involves all x ∈ X , which in general is hardly feasible

in term of computational complexity. A simple yet successful solution is the

pseudo-likelihood approximation of MRF [Besag, 1975]

p(x|β) =
n∏
j=1

p(xj|x∂j ; β),

where

p(xj|x∂j ; β) =
exp(−∑C3j VC(x|β))∑

xj∈S exp(−∑C3j VC(x|β)) .

Let yj ∈ Rd be the observation on each site j ∈ X. With a prior MRF p(x),

p(y,x) = p(y|x)p(x)

is known as a HMRF model [McLachlan and Peel, 2000]. By assuming

p(y|x) =
n∏
j=1

p(yj|xj)

with p(yj|xj) being multivariate Gaussian, we have

p(y|x;θθθ) =
n∏
j=1

p(yj|xj;θθθxj) =
n∏
j=1
N (yj|µµµxj ,ΣΣΣxj), (2.1)

where µµµxj and ΣΣΣxj are the mean and covariance matrix of the emission distribution

of the hidden state at site j of the HMRF model, and θθθxj contains the elements of

the µµµxj and ΣΣΣxj .

In addition, given an estimate x̂ of x, the mean-field-like approximation of MRF

is defined as

p(x|β) =
n∏
j=1

p(xj|x̂∂j ; β), (2.2)

which has been shown to be an interesting alternative to Bayesian sampling (e.g.

Markov-chain Monte Carlo) [Chalmond, 1989] for the computation of the posterior

probabilities.
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Fuzzy c-means clustering Considering the typical problem of clustering n

multivariate data points into k clusters, the standard FCM algorithm defines the

fuzzy objective function, based on the distance between data point and the cluster

center, as

Jφ =
k∑
i=1

n∑
j=1

rφijdij,

where φ ≥ 1 is a weighting exponent on each fuzzy membership function rij to

control their degree of fuzziness, and is called the fuzzifier of the clustering algorithm.

Introducing a regularization term based on entropy, a different objective function

is proposed in [Miyamoto and Mukaidono, 1997]

Jλ =
k∑
i=1

n∑
j=1

rijdij + λ
k∑
i=1

n∑
j=1

rij log rij.

Here, the entropy term works as the fuzzifier and the parameter λ is the model’s

degree of fuzziness for the fuzzy membership values. Another FCM variant proposed

a regularization by KL information [Ichihashi et al., 2001] instead of entropy with

objective function defined as

Jλ =
k∑
i=1

n∑
j=1

rijdij + λ
k∑
i=1

n∑
j=1

rij log
(
rij
πi

)
, (2.3)

where πi is the prior probability of the i-th cluster.

FCM-type treatment of the HMRF model The fuzzy clustering-type treat-

ment is formulated by introducing a HMRF-oriented modification of the regularized-

by-KL-information fuzzy objective function (2.3),

Qλ =
k∑
i=1

n∑
j=1

rijdij + λ
k∑
i=1

n∑
j=1

rij log
(
rij
πij

)
. (2.4)

We define the fuzzy membership function rij in (2.3) as the point-wise posteriors

with mean-field-like approximation (2.2)

p(xj = i|yj) = p(xj = i|yj, x̂∂j).

The distance function dij is defined as the negative log-likelihood of the i-th state

with respect to the j-th observation

dij(θθθi) = − log p(yj|xj = i;θθθi). (2.5)
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πij is the point-wise prior probability also based on the mean-field-like approxima-

tion (2.2)

πij = p(xj = i|x̂∂j ; β) =
exp(−∑C3j VC(x̃ij|β))∑k
h=1 exp(−∑C3j VC(x̃hj|β))

,

where x̃ij = (xj = i, x̂∂j). Eventually, the objective function (2.4) becomes

Qλ(ΨΨΨ) = −
k∑
i=1

n∑
j=1

rij log p(yj|xj = i;θθθi) + λ
k∑
i=1

n∑
j=1

rij log
(
rij
πij

)
. (2.6)

where ΨΨΨ = {R,θθθ, β} and R = {rij}.

HMRF model parameters estimation using the HMRF-FCM algorithm

To obtain an estimate of the HMRF model parameters through the HMRF-FCM

algorithm, given a model fitting dataset, we have to iteratively minimize the fuzzy

objective function Qλ, given by (2.6), over R, θθθ, and β, in a coordinate descent

fashion. From t-th to (t+ 1)-th iteration, HMRF-FCM algorithm, on the basis of a

mean-field-like approximation of the MRF prior, consists of the following steps.

1. Estimate x(t) by assigning each site to the state to maximize its fuzzy mem-

bership function

x
(t)
j = arg kmax

i=1
r

(t)
ij .

2. Compute the point-wise prior probabilities π(t)
ij

π
(t)
ij = p(xj = i|x(t)

∂j
; β(t)) =

exp(−∑C3j VC(x̃(t)
ij |β))∑k

h=1 exp(−∑C3j VC(x̃(t)
hj |β))

,

where x̃(t)
ij = (xj = i, x̂(t)

∂j
) and is the current estimate of the neighborhood of

site j.

3. Compute the distance d(t)
ij by combining (2.1) and (2.5),

d
(t)
ij = w

2 log(2π) + 1
2 log |ΣΣΣ(t)

i |+
1
2(yj − µµµ(t)

i )TΣΣΣ(t)−1

i (yj − µµµ(t)
i ).

4. Compute the fuzzy membership functions r(t+1)
ij from the derivation of (2.2)

r
(t+1)
ij =

π
(t)
ij exp

(
−(1/λ)d(t)

ij

)
∑k
h=1 π

(t)
hj exp

(
−(1/λ)d(t)

hj

) .
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5. Update the estimator µµµ(t+1)
i and ΣΣΣ(t+1)

i from the derivation of (2.2)

µµµ
(t+1)
i =

∑n
j=1 r

(t)
ij yj∑n

j=1 r
(t)
ij

, ΣΣΣ(t+1)
i =

∑n
j=1 r

(t)
ij (yj − µµµ(t)

i )(yj − µµµ(t)
i )T∑n

j=1 r
(t)
ij

.

6. Update the inverse temperature parameter β(t+1) from the derivation of (2.2)

β(t+1) = arg max
β

k∑
i=1

n∑
j=1

log p(xj = i|x(t)
∂j

; β),

which depends the choice of the energy function.

7. In case of convergence,

|Qλ(ΨΨΨ(t+1))−Qλ(ΨΨΨ(t))|/Qλ(ΨΨΨ(t)) < Tc,

where Tc is the convergence threshold, exit; otherwise t← t+ 1 and return

to step 1.

For image segmentation For the application on image segmentation problem,

we impose HMRF on the image with sites standing for pixel and states for segment

labels. Given a neighborhood system (4- or 8-neighbor), the energy function is

defined as

U(x|β) = −β
∑
j∈X

∑
`∈∂j

δ(xj − x`), δ(xj − x`) =


1, if xj = x`

0, otherwise,

leading to a reformulation of MRF prior π(t)
ij as

π
(t)
ij =

exp(β(t)∑
`∈∂j δ(i− x

(t)
` ))∑k

h=1 exp(β(t)∑
`∈∂j δ(h− x

(t)
` ))

.

In practice, given a neighborhood system, user needs to define the regularization

parameter λ in (2.6) and the convergence threshold Tc (or the maximum number

of iterations, considering the computational cost).
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2.2.5 Mean shift (MS) clustering

Comaniciu and Meer [2002] proposed a model-based clustering approach based on

the mean shift procedure, which is an adaptive gradient ascent method widely used

for density estimation problem. This approach is attractive because it produces

spatially contiguous regions and does not require a predefined number of clusters.

Considering {xi ∈ Rd, i = 1, . . . , n} as a set of feature vector in d-dimensional

space, the mode of the density f(x) closest to xi can be located at the maxima of

kernel density estimator

f̂(x) = 1
nhd

n∑
i=1

K
(x− xi

h

)
,

where K(x) is a multivariate kernel with profile function k(x) and h is bandwidth

parameter. We use radially symmetric kernel satisfying

K(x) = ck,dk(‖x2‖),

where ck,d is the normalization constant making K(x) integrate to one and assumed

to be strictly positive. Starting with yi,1 = xi, the maxima is reached at the

stationary point yi,c of an iterative process

yi,j+1 =
∑i=1
n xik(‖yj−xi

h
‖2)∑i=1

n k(‖yj−xi
h ‖2 )

.

For image, a joint-domain kernel Khshr is defined, so as to combine the spatial

and the feature domain, as the product of two radially symmetric kernels and the

Euclidean metric allows a single bandwidth for each domain

Khshr(x) = c

hdss h
dr
r

k

(∥∥∥∥xs
hs

∥∥∥∥2)
k

(∥∥∥∥xr
hr

∥∥∥∥2)
,

where

• xs and xr are the spatial and feature components of x, with respectively ds
and dr dimension;

• ds + dr = d;
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• hs and hr are the bandwidth parameters for the spatial and feature domains

respectively;

• c is the normalization constant.

After finding the associated mode yi for voxel xi, i = 1, . . . , n, we group together

all yi that are closer than hs in spatial domain and hr in the feature domain, to

form the clusters {C`}`=1,...,`∗ . Finally, the label ` is assigned to each xi if xi ∈ C`.

In practice, an Epanechnikov or a (truncated) normal kernel always provides

satisfactory performance, so the user only needs to set the bandwidth parameter

h = (hs, hr), which, by controlling the size of the kernel, determines the resolution

of the mode detection.

2.2.6 Normalized cut (NC)

Shi and Malik [2000] proposed normalized cut for image segmentation by represent-

ing the image as a graph. In graph clustering problem, we seek to partition the set

of vertices into disjoint sets C1, C2, . . . , Ck, where by some measure the similarity

among the vertices in a set Ci is high and, across two different sets Ci and Cj is

low.

From an image grid V = {1, 2, . . . , n}, we construct the graph G = (V , E) by

taking each pixel i ∈ V as a node and define the edge weight wij between node i

and j as the product of a feature similarity term and spatial proximity term:

wij = exp
−‖yi−yj‖

2
2

σy ×


exp

−‖xi−xj‖
2
2

σx if ‖xi − xj‖2 < r

0 otherwise,
(2.7)

where xi is the spatial location of node i, and yi is a d-dimensional feature vector

based on pixel intensity.

Partitioning a graph into two disjoint sets relates to the minimization of the

following objective function

min
e

Ncut(e) = min
e

eT (D −W )e
eTDe , eTD1 = 0,
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where W is an n × n symmetrical matrix with W (i, j) = wij and D is an n × n

diagonal matrix with D(i, i) = ∑
j wij. This is realized by solving the generalized

eigenvalue system of Laplacian matrix D −W

(D −W )e = λDe,

and the eigenvector with the second smallest eigenvalue of the system is the solution

of the bi-partitioning (Ncut) problem.

In order to achieve a k-partition, the proposed algorithm performs a recursive

two-way Ncut. It consists of the following steps:

1. Given a set of features, set up a weighted graph G = (V , E), compute the

weight on each edge, and summarize the information into W and D.

2. Solve (D −W )e = λDe for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the

graph by finding the splitting point along the eigenvector such that Ncut is

minimized.

4. Decide if the current partition should be subdivided by checking the stability

of the cut, and make sure Ncut is below the pre-specified value, or the

expected number of segments is reached.

5. Recursively repartition the segmented parts if necessary.

In practice, user needs to define the number of expected segments, the kernel

window σx and σy, and the radius of neighborhood r in (2.7).

2.2.7 Simple linear iterative clustering (SLIC)

Achanta et al. [2010] proposed a new approach dedicated to produce high quality,

compact and nearly uniform superpixels in an efficient way. For an image grid

with n pixels, an expected number of superpixels k is defined such that each one

consists of approximately n/k pixels and is centered at every s =
√
n/k pixels in
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the grid. Let xi be the spatial location of voxel i and yi be a d-dimensional feature

vector based on pixel intensity. A novel distance measure Ds is defined, in between

voxel i and a superpixel center c, as the sum of feature dissimilarity and the spatial

distance normalized by the grid interval, s, of superpixel centers:

Ds = ‖xc − xi‖2 + m

s
‖yc − yi‖2, (2.8)

where m is a parameter allowing users to control the compactness of a superpixel.

The greater the value of m is, the more spatial proximity is emphasized and the

more compact the superpixel is.

To be specific, the SLIC algorithm consists of the following steps:

1. Sample k regularly spaced cluster centers.

2. Perturb every cluster center in a r × r neighborhood to the position with

lowest gradient that is computed as

G(x, y) = ‖yx+1,y − yx−1,y‖2
2 + ‖yx,y+1 − yx,y−1‖2

2,

where yx,y is the feature vector of the pixel at position (x, y).

3. Assign every pixel to the cluster whose center is the nearest one to it according

to the distance measure Ds defined in (2.8), while the pixel is also within the

2s× 2s squared neighborhood around the cluster center.

4. Compute new cluster centers and residual error E that is the L1 distance

between previous centers and updated centers.

5. If E ≤ threshold, stop; otherwise, repeat step 3 and 4.

6. Reassign the small segments, which have the same label as a large cluster but

disconnected to it, to their largest neighboring cluster, in order to enforce

connectivity.

In practice, user needs to define the number of superpixels k, the compactness

parameterm, the radius of neighborhood r for center perturbation and the threshold

for the convergence.
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Chapter 3

DCE-HiSET

3.1 DCE statistical model and objective

In this section, we take MRI as an example and describe how to adapt a very

simple and general statistical model to intensity observed in MR images. Then,

we propose the independence assumption on this model and state the statistical

objective based on it.

For MRI, at each voxel location x on a finite grid X describing the image

cross-section,

Φx(tj) ∈ R+, j = 1, ..., n

are observed at the n acquisition times, t1, t2, ..., tn. Since the observed intensity, at

time tj , Φx(tj) is proportional to the amount of contrast agent arriving in the voxel

x at time tj (with or without the baseline effect of the tissue), one can imagine

that Φx(tj) follows a Poisson distribution with parameter φx(tj) ∈ R+:

Φx(tj) ∼ P(φx(tj)).

3.1.1 First assumption

In this context, φx(tj) may be considered large due to the injected contrast agent.

61
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Assumption 1 We assume that φx(tj) follows Poisson distribution that can be

approximated by a Gaussian distribution:

Φx(tj) ∼ P(φx(tj)) ≈ N (φx(tj), φx(tj)). (3.1)

According to Assumption 1, we can rewrite Φx(tj) as

Φx(tj) := φx(tj) + σxj ε
x
j , where σxj =

√
φx(tj) and εxj ∼ N (0, 1). (3.2)

Hence, we have an initial heteroscedastic model as (3.2) and the variance of observed

intensity depends on both spatial location of voxel x and time index j.

3.1.2 Variance Stabilization

We use a function f(·) : R → R to transform Φx(tj) such that the variance of the

transformed intensity f(Φx(tj)) always equals to 1 regardless of x and tj,

f(Φx(t)) ∼ N (f(φx(t)), 1). (3.3)

With the first-order Tylor series expansion of function f , we have

f(Φx(t))− f(φx(t)) = (Φx(t)− φx(t)) · f ′(φx(t)) + o(σxt ).

In order to make the right side of last equality has variance as 1,

Var [f(Φx(t))− f(φx(t))] = 1 (3.4)

Var [Φx(t)− φx(t)] · f ′(φx(t))2 = 1

φx(t) · f ′(φx(t))2 = 1

f ′(φx(t)) = [φx(t)]−
1
2 ,

we deduce that

f(φx(t)) = 2 [φx(t)]
1
2 .

In summary, the classical variance stabilization associated to Assumption 1 is

2
√

Φx(tj)− 2
√
φx(tj) ∼ N (0, 1).
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3.1.3 Second (Generalized) assumption

In practice, however, the Poisson model may appear not flexible enough since the

variance of the observed intensity Φx(tj) could be not exactly φx(tj).

Assumption 2 We relax Assumption 1, with respect to the Gaussian distribution,

to

Φx(tj) ∼ N
(
φx(tj), [φx(tj)]1+τ

)
, where − 1 < τ < 1. (3.5)

To make the same variance stabilization as in Assumption 1, we deduce a general

form of f ,

f(ψ) = 2
1− τ ψ

1−τ
2 .

Therefore, by denoting a := (1 − τ)/2, we relax (3.3) such that there exists

0 < a < 1,

Φx(tj) ∼ N
(
φx(tj), [φx(tj)]2−2a

)
, (3.6)

whose variance is stabilized by the following relation:

(Φx(tj))a

a
− (φx(tj))a

a
∼ N (0, 1). (3.7)

3.1.4 Intensity model

Considering a fixed a, we denote

Jx(tj) := (Φx(tj))a

a
and qx(tj) := (φx(tj))a

a
, (3.8)

and link them by the following model

Jx(tj) = qx(tj) + ηxj , j = 1, . . . , n and x ∈ X , (3.9)

where ηxj are standard normal variables independent with respect to time index j

(thanks to the production of one image at each time and to the significant pause in

between the consecutive acquisition times), however not necessarily independent

with respect to the spatial index x (MRI and CT being known to produce spatial

artifacts [Graves and Mitchell, 2013; Herman, 2009] that translate into noise

correlations).
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Because contrast agent is always injected a few seconds after acquisition starts,

we rewrite

qx(t) = bx + qx0 (t),

where qx0 (t) = 0 for t < t∗ and bx to be baseline grey-level at voxel x, and assume

that there exists n0 such that qx0 (tj) = 0 for all j = 1, . . . , n0 at x ∈ X . From

now on, whenever time curve (TC) refers to time intensity curve (resp. time

enhancement curve), we denote qx (resp. qx0 ) by ix and assume that we observe

Ix(tj) = ix(tj) + ηxj , j = 1, . . . , n and x ∈ X . (3.10)

In this model, Ix := (Ix(t1), . . . , Ix(tn)) appears as a discretely observed noisy

version of the unobservable true TC, ix, at time t1, . . . , tn.

For CT, we propose the same model for the enhancement, or even for the

intensity after a linear transformation in order to take into account the possible

non-positive values.

Despite being not able to justify this model from a physical point-of-view,

we obtain from our experiments not only excellent results but also a posteriori

justification of such model (see Section 4.5.1).

In DCE imaging, spatial artifacts that affect a single image are not affecting the

full sequence in the same way. For example, one can think of radial artifacts whose

direction or center may vary from image to image, or of band artifacts that do not

appear at the same coordinate. As a consequence, such spatial artifacts (when they

exist) are not affecting the entire TC and their effects may be strongly reduced

(especially considering the global noise level of such DCE image sequences) or even

(randomly) compensated. Therefore, we will make the following assumption:

Assumption 3 Random variables ηxj in (3.10) are independent with respect to

both spatial location x and time index j.
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3.1.5 Objective

We describe our statistical objective as to build a partition of X made of ` non-

overlapping clusters (regions),

X = C1 ∪ C2 ∪ . . . ∪ C`,

such that x, y ∈ X belong to the same cluster if and only if ix(.) = iy(.). We

propose to achieve this objective by answering the question “are ix(.) and iy(.)

equal or not?” based on their discrete observations Ix and Iy.
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3.2 Equivalence test and dissimilarity measure

In this section, based on the proposed statistical model and assumption of inde-

pendence, we build the multiple equivalence test to compare two observed TCs, in

order to prove their equality. We adopt the p-value of this test as the dissimilarity

measure, which is further used in the proposed clustering algorithm in Section 3.3.

Given a set of voxels X ⊂ X , we denote

ĪX := 1
|X|

∑
x∈X

Ix and īX := 1
|X|

∑
x∈X

ix,

where ix = (ix(t1), . . . , ix(tn)) and |X| is the cardinality of X. It follows Gaussian

distribution

ĪX ∼ N
(
īx,

1
|X|

Idn
)
. (3.11)

Given another set Y such that X ∩ Y = ∅, the difference between two averages

is

ĪX − ĪY ∼ N
(
īX − īY ,

(
1
|X|

+ 1
|Y |

)
Idn

)
. (3.12)

We define the normalized difference as

DXY := ĪX − ĪY

ρ(X, Y ) , (3.13)

which also follows Gaussian distribution under Assumption 3,

DXY ∼ N (dXY , Idn), (3.14)

where

dXY := īX − īY

ρ(X, Y ) and ρ2(X, Y ) := 1
|X|

+ 1
|Y |

. (3.15)

We propose to decide that the average TCs of X and Y are similar if dXY is

not different from the zero vector.

3.2.1 Statistical hypothesis test on equivalence

In statistical hypotheses testing, the research or alternative hypothesis represents

what the study aims to put in evidence. The burden of proof is on the alternative
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in the sense that it is established only if there is enough evidence in its favor. In

conventional (two-sided) comparative study,

H0 : dXY = 0 versus H1 : dXY 6= 0, (3.16)

the research hypothesis is the hypothesis of difference, H1.

However, in order to construct clusters in a merging process, we want to prove

the equivalence between TCs of voxels such that we can merge the voxels together.

This fits the goal of equivalence test [Walker and Nowacki, 2010] that aims to

demonstrate equivalence. Therefore the burden of proof rests on equivalence. In

essence, the null and alternative hypotheses in equivalence test are simply those of

a conventional comparative study reversed,

H0 : dXY 6= 0 versus H1 : dXY = 0. (3.17)

The term “equivalence” recalls that one proves in this context the equality, which

defines an equivalence relation, however equivalence is not defined in the strict

sense, but rather to mean that two random variables are close enough, up to a

given margin, such that their means cannot be distinguishable. This margin is

called ‘equivalence margin’.

3.2.2 Equivalence test

We denote the normalized difference DXY defined in (3.13) and its expectation

dXY in (3.15) as

DXY = {DXY
j , j = 1, 2, . . . , n}, dXY = {dXYj , j = 1, 2, . . . , n}, (3.18)

where

DXY
j =

1
|X|
∑
x∈X I

x(tj)− 1
|Y |
∑
y∈Y I

y(tj)
ρ(X, Y ) , dXYj =

1
|X|
∑
x∈X i

x(tj)− 1
|Y |
∑
y∈Y i

y(tj)
ρ(X, Y ) .

(3.19)
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3.2.2.1 Gaussian case

The construction of equivalence test under Gaussian assumption can be found in

[Wellek, 2010]. Given the equivalence margin δ, the null and alternative hypothesis

of equivalence test for each j = 1, . . . , n are defined as

Hj
0 : dXYj < −δ or dXYj > δ versus Hj

1 : −δ 6 dXYj 6 δ. (3.20)

According to (3.19), we have

DXY
j − dXYj ∼ N (0, 1). (3.21)

Therefore, the confidence interval of dXYj with confidence level α is

[DXY
j −Ψ−1(1− α/2), DXY

j + Ψ−1(1− α/2)], (3.22)

where Ψ(.) is the cumulative distribution function of the standard normal distri-

bution and its inverse function Ψ−1(.) is the quantile function. If the confidence

interval (3.22) is included in [−δ, δ], we will accept the equivalence hypothesis Hj
1,

otherwise we accept the non-equivalence hypothesis Hj
0, as shown in Figure 3.1.

0

H0(-δ) H0(δ)H1
Not Equivalent Not Equivalent

D1

α/2 β/2

cβ/2 cα/2

D2

D3

D4

Equivalent

-δ δ
Decide H1

Refuse H1

Refuse H1
Refuse H1

Figure 3.1: Equivalent test in Gaussian case: if the confidence interval is included

in [−δ, δ], equivalence is accepted. ca = Ψ−1(1− a).

3.2.2.2 Chi-square case

Using equivalence test under Gaussian assumption in our model, we would have

to run n comparisons (one per time index) and face a multiplicity problem, which
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becomes important when n is large. To control this multiplicity, we follow the

works of [Baraud et al., 2005] and [Durot and Rozenholc, 2006], and use dyadic

decomposition of the time indexes to project the DXY onto sub-spaces such that

only blog2 nc tests are needed to perform the comparison.

Denoting K0 := blog2 nc − 1, we first define an almost regular partition T K0 of

the index set {1, . . . , n} into 2K0 sets,

T K0 =
{
Tr, r = 1, . . . , 2K0

}
where Tr =

{
j | r − 1

2K0
<
j

n
6

r

2K0

}
.

Then, we build K0 + 1 partitions of {1, . . . , n}, denoted by T K and of size 2K for

K = 0, . . . , K0, by grouping sets Tr in a pairwise fashion:

T K :=
TKk =

⋃
(k−1)/2K<r/2K06k/2K

Tr, k = 1, . . . , 2K
 .

Regular projection For each K, we consider the projection of DXY , denoted

by ΠKD
XY , onto the vectors with constant component on each TKk of T K :

ΠKD
XY := (mK

1 , . . . ,m
K
1︸ ︷︷ ︸

nK1

,mK
2 , . . . ,m

K
2︸ ︷︷ ︸

nK2

, . . . ,mK
2K , . . . ,m

K
2K︸ ︷︷ ︸

nK
2K

),

where

mK
k = 1

nKk

∑
j∈TK

k

DXY
j , nKk = |TKk |.

Then

‖ΠKD
XY ‖2

n =
2K∑
k=1

nKk (mK
k )2 =

2K∑
k=1

 1√
nKk

∑
j∈TK

k

DXY
j


2

.

Orthogonal projection Instead of using a test based on ‖ΠKD
XY ‖2

n as in

[Baraud et al., 2005, 2003], we consider orthogonal projections to ensure their

independence, which will be used later to control our clustering procedure. More

precisely, starting from R0 = DXY ,

Π0R0 := (m0
1,m

0
1, ...,m

0
1︸ ︷︷ ︸

n

), m0
1 = 1

n

n∑
j=1

DXY
j ,
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we consider the K-th residual after projection, RK , for K = 1, . . . , K0, as

RK := RK−1 − ΠK−1RK−1 = (DXY
1 −mK−1

1 , DXY
2 −mK−1

1 , ..., DXY
n −mK−1

2K−1).

The projection on the interval set {TKk , k = 1, ..., 2K}, which are the dyadic

decomposition of {TK−1
k , k = 1, ..., 2K−1}, is

ΠKRK := (mK
1 −mK−1

1︸ ︷︷ ︸
nK1

,mK
2 −mK−1

1︸ ︷︷ ︸
nK2

, . . . ,mK
2K −mK−1

2K−1︸ ︷︷ ︸
nK

2K

).

The square norm of the orthogonal projection ΠKRK is therefore

‖ΠKRK‖2
n =

2K∑
k

nKk (mK
k −mK−1

dk/2e)2 =
2K∑
k

(
√
nKk (mK

k −mK−1
dk/2e)︸ ︷︷ ︸

MK
k

)2,

where

MK
k = 1√

nKk

∑
j∈TK

k

DXY
j −

√
nKk

nK−1
dk/2e

∑
j∈TK−1
dk/2e

DXY
j

∼ N

 1√
nKk

∑
j∈TK

k

dXYj −

√
nKk

nK−1
dk/2e

∑
j∈TK−1
dk/2e

dXYj , 1 + nKk
nK−1
dk/2e

 .
Unfortunately, ‖ΠKRK‖2

n does not follow a chi-square distribution since the variance

of MK
k is not equal to 1. In order to get a statistic out of DXY that follows a

chi-square distribution, we normalize MK
k into M̄K

k

M̄K
k :=

√√√√√ nK−1
dk/2e

nK−1
dk/2e + nKk

MK
k ∼ N (· · · , 1),

such that the normalized residual after projection having its Euclidean norm as

‖ΠKR̄K‖2
n :=

2K∑
k=1

(M̄K
k )2 =

2K∑
k=1


√√√√√ nKk n

K−1
dk/2e

nK−1
dk/2e + nKk

(
mK
k −mK−1

dk/2e

)
2

.

In addition, we define

‖Π0R̄0‖2
n := ‖Π0R0‖2

n = ‖Π0D
XY ‖2

n = n(m0
1)2.



3.2. EQUIVALENCE TEST AND DISSIMILARITY MEASURE 71

In this way, for each K, R̄K is orthogonal to R̄K−1, which ensures the indepen-

dence of (R̄0, . . . , R̄K0) under Assumption 3, thanks to Cochran’s theorem. Under

Assumption 3, we have therefore

‖Π0R̄0‖2
n ∼ χ2(1, ‖Π0r̄

XY ‖2
n), ‖ΠKR̄K‖2

n ∼ χ2(2K , ‖ΠK r̄
XY
K ‖2

n)

where

• ‖u‖n denotes the Euclidian norm of vector u,

• χ2(µ, λ) is the non-central chi-squared distribution with µ degrees of freedom

and non-centrality parameter λ,

• r̄XYK denotes the K-th normalized residual after orthogonal projection of dXY

with additional normalization.

From now on, we denote d̄XY0 := dXY . For K = 0, . . . , K0, we expect ideally

that

HK
0 : ‖ΠK d̄

XY
K ‖2

n 6= 0, versus HK
1 : ‖ΠK d̄

XY
K ‖2

n = 0.

Statistically, such hypotheses are not well separated and one has to consider

HK
0 : ‖ΠK d̄

XY
K ‖2

n > nδ2
K , versus HK

1 : ‖ΠK d̄
XY
K ‖2

n 6 nδ2
K . (3.23)

where nδ2
K is equivalence margin. It defines the discrepancy between two unobserv-

able true TCs that we are ready to tolerate. Without prior knowledge of where or

how such discrepancies would appear, we therefore choose δK = δ that does not

depend on K. As
1
n
‖ΠK r̄

XY
K ‖2

n −−−→n→∞

1
T

∫ T

0

(
ΠK r̄

XY
K (t)

)2
dt,

it means that we are looking at any dyadic partition where the projected difference

of the normalized residual shows enough energy in order to decide H0. In other

words, two observations are considered to come from the same signal if one cannot

detect a given level of energy in the residual of their difference on any considered

partition. The use of multiple dyadic partitions ensures that the classical (non

equivalence) version of this test is adaptive to the unknown Hölderian regularity of

the difference between the signals [Baraud et al., 2003].
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3.2.3 Multiple equivalence test

We will accept H1 if and only if all HK
1 are accepted, where K ∈ K and K =

{1, . . . , n} for Gaussian case, and K = {0, . . . , K0} for Chi-sqaure case. Following

the idea of multiple test in [Baraud et al., 2005, 2003], we build a multiple equivalence

test as

H0 =
⋃
K∈K
HK

0 versus H1 =
⋂
K∈K
HK

1 . (3.24)

By definition in [Berger and Hsu, 1996], this multiple test is also an intersection-

union test (IUT).

In order to define the p-value associated to the multiple equivalence test, we

recall the result of Berger and Hsu:

Proposition 1 (Berger and Hsu [1996]) If RK is a rejection region at level α,

the IUT with rejection region R = ⋂
K∈KRK is of level α.

For Gaussian case, given Λ ∼ N (0, δ), the p-value associated with the K-th

equivalence test is

pK(X, Y ) = P
(
Λ 6 |DXY

K |
)
. (3.25)

For Chi-square case, given Λ ∼ χ2(2K , nδ2), the p-value associated with the K-th

equivalence test is

pK(X, Y ) = P
(
Λ 6 ‖ΠKR̄

XY
K ‖2

n

)
, (3.26)

For both cases, the following corollary holds:

Corollary 1 The p-value of the IUT defined by (3.24) with rejection region R =⋂
K∈KRK is

p(X, Y ) := max
K∈K

pK(X, Y ). (3.27)

Proof of Corollary 1: Given an observation, the p-value is the largest significance

level α such that H0 is accepted. Considering the rejection region for the IUT in

form Rα = ⋂
K∈KRα

K , the p-value of the IUT (3.24) becomes
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p(X, Y ) = sup{α | DXY 6∈ Rα}

= sup
{
α | DXY 6∈

⋂
K∈K
Rα
K

}

= sup
{
α |

⋃
K∈K

{
DXY 6∈ Rα

K

}}

= sup

α | ∃K ∈ K with DXY 6∈ Rα
K︸ ︷︷ ︸

pK(X,Y )>α


= sup

{
α | α 6 max

K∈K
(pK(X, Y ))

}
= max

K∈K
pK(X, Y ).

The closer p(X, Y ) is from 0, the more similar the average TCs on X and Y

are. Our hierarchical clustering is based on this observation and uses the p(X, Y )

as dissimilarity measure.
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3.3 HiSET: Clustering using equivalence test

In this section, we will describe the two-step clustering procedure and the corre-

sponding theoretical properties, along with the parameters involved.

A general setup of the clustering problem is to produce a partition of X into `∗

subsets

X = C1 ∪ . . . ∪ C`∗ , Cs ∩ Cs′ = ∅, 1 6 s, s′ 6 `∗. (3.28)

The subsets are called clusters such that elements share similar properties in one

cluster and have different properties from cluster to cluster. In the context of

DCE image sequence, we expect voxels to have the “same” TC in one cluster and

different TCs otherwise. Using the previously introduced equivalence test, here

“same” means that two voxels have the difference of their TCs under H1. Moreover,

we need to take into account the local property, in spatial sense, of DCE image

sequence.

In order to retrieve local homogeneous clusters first, we incorporate hierarchical

clustering with region growing and aggregate voxels in a bottom-up manner where

only neighboring voxels with smallest dissimilarity value of time curves are consid-

ered. In this local clustering process, dissimilarities are computed as p-values only

for spatial neighbors and considered as 1 otherwise. By controlling the type I error

with an user-defined significance level of multiple equivalence test, we provide an

automatic way to stop the local clustering that also determines both the number of

local clusters and the partition. This local clustering step is followed by a global one,

which aims at recovering global (disconnected) homogeneous cluster with several

local homogeneous sub-clusters. To this end, starting with the previous partition

resulting from local clustering, we adapt the same hierarchical clustering to region

merging without consideration of the neighborhood structure while computing

the dissimilarity. Therefore, the local homogeneous clusters are merged again in

a bottom-up way regardless of their disconnectedness. Global clustering is also

stopped by the same significance level of multiple equivalence test and the final

partition with global clusters is produced.
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The complexity of the local clustering is controlled by the spatial localization

while the complexity of the global clustering is controlled thanks to the expected

small size of the partition obtained after the local phase.

3.3.1 Local clustering

Given an image sequence on a grid X , the initial partition

P0 := {{x}, x ∈ X}

is made of N = |X | clusters: each voxel is considered as a singleton cluster. In

this partition, two clusters are neighbors if and only if they are spatially connected

on the 2D or 3D grid X . For each cluster C = {x} in the partition P0, we define

its neighbor set V(C) as the union of the singleton clusters (voxels) around it in

the four directions (north, south, east and west), if they are available on the grid.

Supposing x has a two-dimensional coordinates (x1, x2) on the grid, each direction

is defined as

n = (0, 1), s = (0,−1), e = (1, 0), w = (−1, 0).

Hence,

V(C) := {{x+ n}, {x+ s}, {x+ e}, {x+ w}}. (3.29)

For each pair of clusters Cs and Cs′ in P0, we define indicators as

1
0
s,s′ = 1⇔ Cs ∈ V(Cs′)⇔ Cs′ ∈ V(Cs), (3.30)

and their p-value corresponding to each equivalence test is given as (3.25) for

Gaussian case and as (3.26) for Chi-square case. Then the dissimilarity between

two clusters Cs and Cs′ is defined as

p(Cs, Cs′) := max
K∈K
{pK(Cs, Cs′)}. (3.31)

For each pair of clusters Cs and Cs′ in P0 having 10
s,s′ = 0,

p(Cs, Cs′) := 1. (3.32)
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The minimum dissimilarity value of P0 is therefore denoted as

p(0) := min
{(s,s′)|16s,s′6N and 1

0
s,s′=1}

{p(Cs, Cs′)} (3.33)

= min
{(s,s′)|16s,s′6N and 1

0
s,s′=1}

{
max
K∈K
{pK(Cs, Cs′)}

}
.

At iteration ¯̀, the number of clusters has been decreased by 1 for every past

iteration. Hence, we have at hand a partition P ¯̀ made of ` = N − ¯̀ clusters

P ¯̀ :=
{
C

¯̀
1, C

¯̀
2, . . . , C

¯̀
`

}
, (3.34)

together with indicators defined as

1
¯̀
s,s′ = 1⇔ Cs ∈ V(Cs′)⇔ Cs′ ∈ V(Cs). (3.35)

Then the new partition P ¯̀+1 is obtained by merging the two clusters indexed by s1

and s2 having the minimum dissimilarity in P ¯̀,

(s1, s2) = arg min
{(s,s′)|16s,s′6` and 1

¯̀
s,s′=1}

p
(
C

¯̀
s, C

¯̀
s′

)
. (3.36)

Because the minimum may be achieved on more than one couple (s, s′), one needs

to define a strategy to pick one couple, and we use the smallest lexical order. Once

two clusters Cs and Cs′ satisfying (3.36) are merged into a new cluster C, the

partition is updated accordingly to

P ¯̀+1 = P ¯̀ \ {Cs1 , Cs2} ∪ {C}, (3.37)

and the neighbor set of C is then defined as

V(C) = (V(Cs) ∪ V(Cs′)) \ {C}. (3.38)

Moreover, for every C ′ in P ¯̀+1, if Cs or Cs′ is a neighbor of C ′, then V(C ′) is

updated into

V(C ′) \ {Cs, Cs′} ∪ {C}, (3.39)

meaning that Cs or Cs′ appearing in the neighbor set of C ′ is replaced by the new

cluster C made of their union. In addition, we denote

p(¯̀) := min
{(s,s′)|16s,s′6` and 1

¯̀
s,s′=1}

p
(
C

¯̀
s, C

¯̀
s′

)
(3.40)
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the so-called minimum dissimilarity function at iteration ¯̀. Furthermore, the

dissimilarity values concerning this emerging cluster C and its neighbor clusters in

V(C) are computed as (3.31).

In local clustering, we start from a partition made of all voxels as singletons

and then build successive partitions by merging two clusters having minimum

dissimilarity value at each iteration. During the iterations, a (bottom-up) hierarchy

of partitions with decreasing sizes from N to 1 is provided. Through thresholding

the type I error with the significant level of multiple equivalence test, which will be

introduced in Section 3.3.3, the local clustering phase is stopped at certain iteration
¯̀loc and the number of local clusters `loc is automatically determined. It provides a

preliminary partition made of only spatially connected clusters.

3.3.2 Global clustering

The global step takes the output of the local step as input and uses the same

iteration step as the local one. Following the past iterations of local clustering

phase, global clustering starts with the partition resulting from ¯̀loc-th iteration

and continues the same iteration as in local clustering except that the neighbor set

V(C) of each cluster C is changed.

The reason that we need to change the neighbor set is because we want to

retrieve the global homogeneous clusters which are split into several disconnected

local homogeneous clusters. Due to the way in which we define the neighbor set in

local clustering, disconnected clusters are forbidden to merge together. After local

clustering stops, we can not merge the neighbors anymore. Moving to a global

scale of clustering, in order to still keep a relatively low complexity, we can consider

the new neighbor set of a cluster C as the neighbors of its neighbors, meaning that

V ′(C) :=
⋃

C′∈V(C)
{V(C ′)} \ {C}. (3.41)

Or, since the number of local clusters is expected to be small enough, we can

discard the complexity and consider all other clusters except C as the neighbors of
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C,

V ′(C) := P \ {C}. (3.42)

We start from a partition made of the `loc local clusters and then continue

building successive partitions by merging two clusters having minimum dissimilarity

value at each iteration. During the iterations, the same type of partition hierarchy

is raised while partition size continues decreasing from `loc to 1. With the same

threshold of significance level, the global clustering is stopped at iteration ¯̀∗ and

the number of global clusters `∗ is automatically determined.

3.3.3 Automatic selection of number of clusters

In order to automatically stop the iterations and to select a final partition, we

introduce a so-called “control function”, denoted by cα(`), such that the iterations

stop as soon as p(¯̀) > cα(`). This control function is a direct result from the control

of the probability that the algorithm stops too early. Prior to the theoretical details

regarding the probability control, we first introduce a couple of definitions.

Definition 1

1. Two subsets X and Y of X are called “δ-separated” if their unobservable true

TCs satisfy HK
0 for at least one value K ∈ K.

2. X is a “δ-partition of size `” if there exists a partition of X into ` δ-separated

subsets, C1, . . . , C`.

Theorem 1 - Stopping too late - Under Assumption 3, if X in a δ-partition

of size `0, the probability that `∗ < `0 is lower than α > 0 as soon as

cα(`) =
(

2α
`(`− 1)

) 1
M

, for every 1 < ` 6 |X |, (3.43)

where M = |K| is the number of tests in the multiple equivalence test.

Proof of Theorem 1: We want to control PH0(p(¯̀) 6 cα(`)) the probability of

a false merge at iteration ¯̀with clusters C1, . . . , C`. This is the probability that
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given 1 6 i < j 6 ` there exists K ∈ K for two clusters Ci and Cj such that they

are δ-separated:

PH0(p(¯̀) 6 cα(`)) = PH0

[
min

16i<j6`
{p(Ci, Cj)} 6 cα(`)

]

= PH0

 ⋃
16i<j6`

{p(Ci, Cj) 6 cα(`)}


= PH0

 ⋃
16i<j6`

{
max
K∈K
{pK(Ci, Cj)} 6 cα(`)

}
6

∑
16i<j6`

PH0

[
max
K∈K
{pK(Ci, Cj)} 6 cα(`)

]

=
∑

16i<j6`
PH0

[ ⋂
K∈K
{pK(Ci, Cj) 6 cα(`)}

]
. (3.44)

As DCiCj
K and ΠKR̄

CiCj
K both are independent with respect to K, by assumption

for the former and by construction for the latter (as orthogonal projections of a

Gaussian vector, thanks to Cochran’s theorem), pK(Ci, Cj) are also independent

with respect to K. Moreover they have the same uniform distribution as p-values

coming from absolutely continuous distributions. Hence,

PH0 [p(¯̀) 6 cα(`)] 6 `(`− 1)
2

∏
K∈K

PH0 [pK(C1, C2) 6 cα(`)]

= `(`− 1)
2 (cα(`))M . (3.45)

Controlling the probability of false merge by α leads to

`(`− 1)
2 (cα(`))M = α,

and we deduce thereby

cα(`) =
(

2α
`(`− 1)

) 1
M

.

�

Starting from P0 with p(0) 6 cα(N), the local clustering recursively merges two

clusters at each iteration until p(¯̀) exceeds cα(`), resulting in a partition P loc made

of `loc clusters. Then the global clustering starts with a lower value of the minimum

dissimilarity at iteration N − `loc, thanks to the switch of neighborhood structure
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that involves much more dissimilarities. Again the global clustering recursively

merges two clusters at each iteration until p(¯̀) exceeds cα(`) again, resulting in a

final partition P∗ and producing a final number of clusters `∗.

Having a stop criterion as the control function, we now need to control the

probability of stopping too late. This is obtained in the following theorem.

Theorem 2 - Stopping too early - Under Assumption 3, if X in a δ-partition

of size `0, the probability that `∗ > `0 is lower than βn.

• For Gaussian case: When n is small, βn goes to 0 faster than |X |3ηδ(n)/2,

where ηδ(n) := n (1−Ψ0 (δ/2) + Ψδ (δ/2))n.

• For Chi-square case: When n goes to infinity, βn goes to 0 faster than

|X |3n−ηδ(n)+1 log2 n, where ηδ(n) := min
(

3
2 log 2nδ

2, 1√
2nδ

)
.

The proof of Theorem 2 is a direct consequence of the following lemma that

controls how dissimilarities are organized between subsets δ-separated or sharing

same unobservable true TCs.

Lemma 1 For Gaussian case, the probability, that two δ-separated clusters merge

before two subsets of one cluster do, goes to 0 faster than |X |2ηδ(n)/2. For Chi-

square case, when n goes to infinity, the probability, that two δ-separated clusters

merge before two subsets of one cluster do, goes to 0 faster than |X |2n−ηδ(n)+1 log2 n.

Proof of Lemma 1: Assuming that we have at hand C1, ..., C` δ-separated and at

least one supplementary set C0 such that there exists 1 6 `′ 6 ` with iC0 = iC`′ ,

we want to compute a lower bound of the probability to have

p(C0, C`′) < min
06j<j′6`

(j,j′)6=(0,`′)

p(Cj, Cj′). (3.46)

Hence if a merge occurs, it will happen with high probability between two sets

having same true TC instead of sets δ-separated.

Let us denote by χ2
2K ,nδ2(.) the cumulative distribution function (CDF) of

a χ2(2K , nδ2) random variable. We recall that the dissimilarity pK(Ci, Cj) =
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χ2
2K ,nδ2(‖ΠKR̄

CiCj
K ‖2

n) and that they are independent w.r.t K thanks to orthogonal

projections and Cochran’s theorem. For sake of simplicity, we assume that `′ = 1.

The probability that (3.46) occurs is controlled as following

P
max
K∈K

pK(C0, C1) < min
06j<j′6`

(j,j′)6=(0,1)

max
K′∈K

pK′(Ci, Cj)
 (3.47)

=
∏
K∈K

P
pK(C0, C1) < min

06j<j′6`

(j,j′)6=(0,1)

max
K′∈K

pK′(Ci, Cj)


=
∏
K∈K

1−P
pK(C0, C1) > min

06j<j′6`

(j,j′)6=(0,1)

max
K′∈K

pK′(Ci, Cj)


=
∏
K∈K

1−P

 ⋃
06j<j′6`

(j,j′) 6=(0,1)

{
pK(C0, C1) > max

K′∈K
pK′(Ci, Cj)

}


>
∏
K∈K

{
1−

(
`(`− 1)

2 + `− 1
)

P
[
pK(C0, C1) > max

K′∈K
pK′(Ci, Cj)

]}

=
∏
K∈K

1−
(
`

2 + 1
)

(`− 1)
∏
K′∈K

P [pK(C0, C1) > pK′(Ci, Cj)]
 (3.48)

For Gaussian case, (3.48) equals

∏
K∈K

1−
(
`

2 + 1
)

(`− 1)
∏
K′∈K

P(|DC0C1
K |︸ ︷︷ ︸

∼N (0,1)

> |DCiCj
K′ |︸ ︷︷ ︸

∼N (δ,1)

)

 .

Given X ∼ N (0, 1) and Y ∼ N (δ, 1),

P(X > Y ) = min
y>0

[P(X > Y, Y > y) + P(X > Y, Y < y)]

6 min
y>0

[P(X > y) + P(Y < y)]

= 1−Ψ0 (δ/2) + Ψδ (δ/2) , (3.49)
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where Ψµ(.) is the CDF of normal distribution with mean equal to µ and variance

equal to 1. Therefore, as ` 6 |X |,

P
max
K∈K

pK(C0, C1) < min
06j<j′6`

(j,j′)6=(0,1)

max
K′∈K

pK′(Ci, Cj)


>
∏
K∈K

{
1−

(
`

2 + 1
)

(`− 1) (1−Ψ0 (δ/2) + Ψδ (δ/2))n
}

>
∏
K∈K

{
1− |X |

2

2 (1−Ψ0 (δ/2) + Ψδ (δ/2))n
}

=
(

1− |X |
2

2 (1−Ψ0 (δ/2) + Ψδ (δ/2))n
)n

> 1− n

2 |X |
2 (1−Ψ0 (δ/2) + Ψδ (δ/2))n .

For Chi-square case, (3.48) equals

∏
K∈K

1−
(
`

2 + 1
)

(`− 1)
∏
K′∈K

P(‖ΠKR̄
C0C1
K ‖2

n︸ ︷︷ ︸
∼χ2(2K)

> ‖ΠK′R̄
CiCj
K′ ‖2

n︸ ︷︷ ︸
∼χ2(2K′ ,nδ2)

)

 .
We then consider the following concentration inequalities:

Proposition 2 (Massart [2003]) Let D be a non-central χ2 variable with µ de-

grees of freedom and non-centrality parameter λ > 0, then for all x > 0

P[D > (µ+ λ2) + 2
√

(µ+ 2λ2)x+ 2x] 6 e−x, (3.50)

P[D 6 (µ+ λ2)− 2
√

(µ+ 2λ2)x] 6 e−x. (3.51)

Given X ∼ χ2(J) and Y ∼ χ2(L, nδ2),

P(X > Y ) = min
y>0

[P(X > Y, Y > y) + P(X > Y, Y < y)]

6 min
y>0

[P(X > y) + P(Y < y)]

= P(X > J + 2
√
Jx1 + 2x1︸ ︷︷ ︸
=y

) + P(Y < L+ nδ2 − 2
√

(L+ 2nδ2)x2︸ ︷︷ ︸
=y

)

6 e−x1 + e−x2 , (3.52)
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with x1 and x2 satisfying

J + 2
√
Jx1 + 2x1 = L+ nδ2 − 2

√
(L+ 2nδ2)x2 ⇔ x2 =

(
L− J + nδ2 − 2

√
Jx1 − 2x1

)2

4(L+ 2nδ2) .

Hence, right side term of (3.52) is minimized to 2e−x1 if

x1 =

(
L− J + nδ2 − 2

√
Jx1 − 2x1

)2

4(L+ 2nδ2) .

Solving this equation and choosing the largest root provide that

x1 =
(
L+ 3nδ2

2

)
+
√
J(L+ 2nδ2)

+ 1
2

(
3L2 − J2 + 6JL+ 10(J + L)nδ2 + 8n2δ4 + 4

√
J√

L+ 2nδ2
(2L2 + 7Lnδ2 + 6n2δ4)

)1/2

.

As P(X > Y ) is the largest when J is maximum (J = 2K0 > n/4) and L is

minimum (L = 20 = 1), we have that P(X > Y ) 6 2e−x with

x =
(

1 + 3nδ2

2

)
+
√

2K0(1 + 2nδ2)

+ 1
2

(
3− 22K0 + 6 · 2K0 + 10(2K0 + 1)nδ2 + 8n2δ4 + 2K0/2+2

√
1 + 2nδ2

(2 + 7nδ2 + 6n2δ4)
)1/2

> min
(

3
2nδ

2,
1√
2
nδ

)
. (3.53)

Therefore, as ` 6 |X |,

P
max
K∈K

pK(C0, C1) < min
06j<j′6`

(j,j′)6=(0,1)

max
K′∈K

pK′(Ci, Cj)


>
∏
K∈K

{
1− 2K0+1

(
`

2 + 1
)

(`− 1)e−x(K0+1)
}

>
∏
K∈K

{
1− 2K0|X |2e−x(K0+1)

}
=
(
1− 2K0 |X |2e−x(K0+1)

)K0+1

>
(

1− n

2 |X |
2e−x log2 n

)log2 n

> 1− n log2 n

2 |X |2e−x log2 n

= 1− |X |2 log2 n

2 n1−x/ ln 2

> 1− |X |2 log2 n

2 n
1−min( 3

2nδ
2, 1√

2
nδ)/ ln 2

.
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The last inequality is deduced by (3.53). As |X | does not depend on n, the

right-hand term goes to 1 at a rate faster than |X |2n−ηδ(n)+1 log2 n. �

Proof of Theorem 2: We denote the final δ-separated clusters as C1, C2, . . . , C`∗ .

Let us assume that, at iteration ¯̀= |X |−`∗−1, we have clusters C ¯̀
0, C

¯̀
1, C

¯̀
2, . . . , C

¯̀
`∗

such that the unobservable true TCs on C ¯̀
0 and on C ¯̀

1 are equal while C
¯̀
1, C

¯̀
2, . . . , C

¯̀
`∗

are δ-separated. In such context, C ¯̀
0 and C ¯̀

1 should be merged into one to get the

final partition into `∗ δ-separated clusters C1, C2, . . . , C`∗ , where C1 = C
¯̀
0 ∪C

¯̀
1 and

Ci = C
¯̀
i for i = 2, . . . , `∗. According to the definition of control function in (3.43),

we should not have

min
06i,j6`∗

p(C ¯̀
i , C

¯̀
j ) > cα(`∗ + 1)

to ensure that the iterations do not stop.

Let us consider `, 1 < ` 6 `∗, such that p(C ¯̀
0, C

¯̀
`) is the largest. Then we

introduce a phantom cluster C ¯̀
`∗+1, δ-separated from C

¯̀
1, C

¯̀
2, . . . , C

¯̀
`∗ , such that

p(C ¯̀
` , C

¯̀
`∗+1) = cα(`∗+ 1) together with p(C ¯̀

0, C
¯̀
`∗+1) > p(C ¯̀

0, C
¯̀
` ). This construction

is always possible by adding one voxel to X with a TC satisfying both conditions.

It ensures that C ¯̀
`∗+1 cannot merge with C ¯̀

0 or C ¯̀
1 and has no effect in the coming

iteration. Thereby, according to Lemma 1,

p(C ¯̀
0, C

¯̀
1) < min

16i,j6`∗+1
p(C ¯̀

i , C
¯̀
j ) = cα(`∗ + 1)

with probability larger than 1−|X |2ηδ(n)/2 for Gaussian case and 1−|X |2n−ηδ(n)+1 log2 n

for Chi-square case.

Similar construction can be repeated for previous iterations. First, we consider

the two subsets C0, C1 of the current partitions having same unobservable true TC

and the minimal dissimilarity (such that they should merge first). Second, for other

subsets having same unobservable true TC, we keep the original TC of one of these

subsets and change the TCs of the other subsets to be δ-separated. Using again

a phantom cluster having its dissimilarity with C1 equals to the control function

at the given iteration, p(C ¯̀
0, C

¯̀
1) is smaller than the dissimilarity in question with

probability larger than 1−|X |2ηδ(n)/2 for Gaussian case and 1−|X |2n−ηδ(n)+1 log2 n

for Chi-square case.
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Finally, as ` 6 |X |, a Bonferroni control ensures that all subsets with similar

unobservable true TCs merge before the minimum dissimilarity reaches the control

function with probability larger than

1− |X |3ηδ(n)/2 for Gaussian case, (3.54)

1− |X |3n−ηδ(n)+1 log2 n for Chi-square case, (3.55)

which ends the proof of Theorem 2. �

A direct consequence of Theorems 1 and 2 together with Lemma 1 is the

following result.

Corollary 2 Under Assumption 3, if X is a δ-partition, it will be exactly recovered

with probability larger than 1− α− βn with βn defined in Theorem 2.

To give an understanding of how negligible βn is, assuming that X is a 2D-image

made of 1000 by 1000 voxels or equivalently a 3D-volume of 25 slices made of 200

by 200 voxels for each slice, then for n = 5 (in Gaussian case), βn 6 10−9 as soon

as δ > 8; for n = 15 (in Chi-square case), βn 6 10−19 as soon as δ > 1. To be

noticed, δ is defined in different way for two cases.

These two theorems are not providing an understanding of the benefit to use

two steps in our algorithm. However, one can easily understand that the local step

does not suffer from the combinatorial complexity of the global step, thanks to the

neighborhood structure. Moreover, by aggregating only neighbors, the local step

also offers the opportunity to take into account a possible regularity existing over

the domain of X between TCs.

3.3.4 Adaptation to hierarchical clustering

Both local and global clustering behave like a bottom-up hierarchical clustering,

which starts from a finest partition and merges one pair of clusters while moving up

the hierarchy step by step. There are two major aspects in hierarchical clustering

[Ackerman and Ben-David, 2011]: metric and linkage function. Metric is a measure

of dissimilarity between pairs of voxels. Linkage function defines the dissimilarity
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of sets of voxels based on the dissimilarities of all pairs of voxels. Therefore,

in hierarchical clustering, one needs to compute the dissimilarity of every pair

of elements at the beginning to get a dissimilarity matrix. At each iteration of

merging, the two clusters C1 and C2 with minimum dissimilarity among all are

merged together and the dissimilarity between the emerging cluster C = C1 ∪ C2

and every other cluster C ′ are compute with linkage function using the same

dissimilarity matrix. Above all, linkage function guarantees that the dissimilarity

between C and C ′ is larger than the ones between C1 (or C2) and C ′, leading to

an increasing minimum dissimilarity of iteration while moving up the hierarchy.

Comparing hierarchical clustering with our local clustering, the main difference

is that we do not need compute all the dissimilarities between every pair of voxels

at the beginning since we only consider the neighbors. As a consequence, we do

not have the linkage function that is based on the full dissimilarity matrix from the

beginning. For both voxels and clusters, we use the same multiple equivalence test

to compute the dissimilarity as the p-value of the test. Moreover, at each iteration,

we add some new dissimilarities concerning the emerging cluster and its neighbors.

Therefore, we cannot guarantee that the minimum dissimilarity of iteration p(¯̀)

defined in (3.40) is increasing with respect to ¯̀, as with the linkage function in

hierarchical clustering.

However, this may be fixed by considering the corrected dissimilarity p̄(., .)

defined as following. Assuming C1 and C2 have been merged into C, then for C ′ in

V(C),

p̄(C,C ′) :=



max{p̄(C1, C
′), p(C,C ′)} if C ′ ∈ V(C1) \ V(C2);

max{p̄(C2, C
′), p(C,C ′)} if C ′ ∈ V(C2) \ V(C1);

max {min{p̄(C1, C
′), p̄(C2, C

′)}, p(C,C ′)} otherwise.
(3.56)

Consequently, the minimum dissimilarity function (with correction) becomes

p̄(¯̀) := min
{(s,s′)|16s,s′6` and 1

¯̀
s,s′=1}

p̄
(
C

¯̀
s, C

¯̀
s′

)
. (3.57)
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These corrections only occur when the minimum dissimilarity decreases after

merging, thereby we use the same control function defined in (3.43). The selection

of number of clusters for both local and global clustering with corrected minimum

dissimilarity function is illustrated in Figure 3.2.

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

2255 2275 2295 2315 2335 2355 2375 2395 2415 2435 2455 2475 2495 

Control with Type I error α = 0.05

Local dissimilarity function 

Global dissimilarity function   

Iterations

p-
va

lu
es

ℓloc ℓ*

Figure 3.2: Selection of number of clusters for both local and global clustering:

The solid curve is the control function defined in (3.43). The dotted (resp. dashed)

curve is the minimum dissimilarity function (with correction) defined in (3.57)

for the local (resp. global) clustering step. When the dotted curve reaches the

solid one, `loc is defined and the local clustering stops. The global clustering starts

from `loc with the dashed curve. When the dashed curve reaches the solid one, `∗

is defined and the algorithm stops, providing the final partition. Both local and

global minimum dissimilarity functions are shown even after they reach the control

function to illustrate their typical behavior.

3.3.5 Parameter interpretation

So far, we have introduced three parameters: 1/ the “model” factor a in the

variance stabilization transformation; 2/ the homogeneity discrepancy δ defining

the equivalence margin and 3/ the significance level α of the multiple equivalence

test. Parameter a plays a role before the clustering starts, while δ and α are used

during the clustering and respectively involved in the definition of the minimum

dissimilarity function (3.57) and the control function (3.43). To be more specific,
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parameter α controls whether p-values are considered small or not, regardless

how the data are normalized. In this spirit, unlike the thresholds used in regions-

growing and -merging methods [Tilton et al., 2012; Tremeau and Borel, 1997],

it appears as a meta-parameter in the sense that its choice is not data-driven.

Homogeneity discrepancy is ensured as parameter δ controls whether the difference

of two unobservable true TCs is close to 0 or not, regardless any modelling of these

signals. In this spirit, it is a human interpretable parameter as it is meaningful on

noiseless signals.

3.3.6 Algorithm

The algorithm consists of two steps: local clustering and global clustering. After

distinct definitions of the initial partition P and of the neighborhood structure

N , two steps share the same main loop to iteratively merge clusters and the same

control procedure to stop and to select the number of clusters.

Input P , α and δ.

Initialization p̄ = 0, ` = |P|, N := {V(C), C ∈ P} and p(X, Y ) for ∀X, Y ∈ P .

Iterations

while p̄(¯̀) < cα(`) do

Find (s1, s2) satisfying (3.36);

New cluster: C ← Cs1 ∪ Cs2 ;

Update partition: P ¯̀+1 ← P ¯̀ \ {Cs1 , Cs2} ∪ {C};

Update N as (3.38) and (3.39);

Compute new dissimilarities as in (3.56) if C ′ ∈ V(C), 1 otherwise;
¯̀← ¯̀+ 1;

Update p̄(¯̀) as in (3.57).

end while

Number of clusters: `∗ ← N − ¯̀.
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Return P ¯̀

3.3.7 Generalization

HiSET is not only for DCE image sequences, but also can be applied on any finite

metric space, considered as a landscape, which functional features are discretely

observed on and can be modeled by (3.10) as soon as Assumption 3 is fulfilled. By

only adapting the multiple equivalence test, HiSET may be applied in various types

of models where a signal is observed on a landscape such as multimodality images,

vector-valued graphs and consumption (electricity, water, etc.) using geographical

information or user types.
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3.4 Illustration of DCE-HiSET

In this section, the procedure of HiSET is described in a graphical way. Given a

very small image sequence with only 5 by 5 voxel grid for each image, we build

a 25 by 25 matrix reserved for dissimilarities between voxels. However, not the

dissimilarity of every pair of voxels has to be computed since we only consider

the neighbors in local clustering step. Therefore, we only need to compute less

than 100 (25x4) dissimilarities and put them at the corresponding positions in the

matrix. Among all dissimilarities available in the matrix, we choose the minimal

one and then merge the corresponding pair of voxels together to have a cluster, for

instance, voxel 13 and 18 in Figure 3.3. As for the matrix, we remove the (13th and

18th) rows and columns related to the two voxels. For the emerging cluster (C),

we locate its neighbors (8, 12, 14, 17, 19 and 23) and compute the dissimilarities

between them and C. In the matrix, we add a new column and a new row for C

and put the new dissimilarities at the right positions (black dots). This is the first

iteration that is followed by others in the same way.

We simulate a Chessboard image sequence (see Figure 3.4) with 2 clusters, 100

times and Gaussian noise of level σ = 1. The true TCs are simply defined as the

straight lines: from 1 to -1 for the black cluster and from -1 to 1 for the red one.

First, we run local clustering with δ = 1. The reason why we use a such

equivalence margin δ is that the largest difference between two true TCs is only 2

considering the noise level is already 1. Controlling the Type I error α < 0.001 (see

Figure 3.5-a), we stop local clustering with 100 local clusters exactly as expected

(see Figure 3.5-b,c). Then we run global clustering from these local clusters and

control the type I error in the same way. At the end, only 2 global clusters are left

(see Figure 3.5-e,f).

From this example, HiSET shows the ability to handle the variation in time

dimension coming from the noise and the homogeneity in spatial dimensions with

both local and global scales. However, there is a great chance that this perfect

result may only come from the significant separation between two clusters at the
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starting and end times. In order to reduce this possibility and explore the limitation

of this method, we remove the most separated parts of both clusters and use only

the images between t = 25 and t = 75.

From the observed TCs in Figure 3.6-a, we can tell two clusters are totally

mixed up with respect to noise level σ = 1. After the local clustering (Figure 3.6-b)

using same parameter setting as before, we find fewer local clusters due to the

mistakes made at the border of clusters. These mistakes lead to the connections

between two or more local clusters from same global cluster. At the end of global

clustering (Figure 3.6-c), we manage to almost recover one cluster and split the

other one into two clusters. In this much more difficult situation, the underlying

information in image sequence is heavily disrupted by lower SNR since the largest

difference between two true time curves is only 1, which also equals the noise level.
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Figure 3.3: Illustration of one iteration in clustering process: (a) build the dissim-

ilarity matrix; (b) compute the dissimilarities between neighbors; (c) locate the

minimum dissimilarity; (d) merge the voxels and shrink the matrix; (e) compute

and add new dissimilarities.
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Figure 3.4: Chessboard image sequence with 50 by 50 voxels and only two clusters:

(a) the red one and the black one; (b,c,e,f) the image at t = 1, t = 10, t = 20 and

t = 50 among 100 times; (d) the straight lines are the true TCs for two clusters

and the noisy ones are the observations randomly picked from the sequence.
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Figure 3.5: Local and global segmentation of Chessboard image sequence: (a) the

selection of number of local clusters: the red curve is the the control function in

term of iteration and the green is the dissimilarity function during local clustering;

(b) the color map of 100 local clusters from local clustering; (c) the averaged

(estimated) TCs of local clusters in (b); (d) selection of number of global clusters:

the purple curve, additional to (a), is the dissimilarity function during global

clustering. (e) the color map of 2 global clusters from global clustering; (f) the

average (estimated) TCs of global clusters.
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Figure 3.6: Local and global segmentation of shrunken Chessboard image sequence:

(a) the shrunken true and observed observed TCs; (b) local clustering of shrunken

chessboard with 2 clusters: the color map of 89 local clusters from local clustering;

(c) global clustering of shrunken chessboard with 2 global clusters: the color map

of 3 global clusters from global clustering.
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Chapter 4

Segmentation of 2D DCE-MR

image sequence

In this chapter, we evaluate the proposed method on 2D DCE-MR image sequence.

We compare the proposed method to other state-of-the-art methods with synthetic

DCE image sequence and study the parameter influence on the segmentation result

with real DCE image sequences, along with the model verification.

4.1 Materials: DCE image sequences and ROIs

We have retrospectively analyzed 99 DCE-MR image sequences obtained from

female patients having ovarian masses between 1st January 2008 and 28th February

2010 and described in a previous study [Thomassin-Naggara et al., ress]. Our

institutional ethics committee approved this retrospective study and granted a

waiver of informed consent.

All images were obtained at a single institution on the same 1.5 T scanner

(Sonata, Siemens, Erlangen, Germany). In addition to the conventional high-

resolution T1 and T2 weighted images, an axial or axial oblique DCE T1-weighted

gradient-echo sequence (2D FLASH) was obtained (TR = 27, TE = 2.24, flip angle

= 80◦, slice thickness = 5 mm, interslice gap = 1 mm, FOV = 400× 200, matrix

= 256 × 128, NEX = 1, number of slices = 3) through the tumour at the level

97
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where “solid tissue” was observed on non-enhanced MR images. Saturation bands

were placed superior and inferior to eliminate in-flow artefacts. Gadolinium chelate

(DOTAREM®, Guerbet, Aulnay, France) was given at a dose of 0.2 ml · kg−1 via a

Power Injector at a rate of 2 ml · s−1 and flushed by 20 ml of saline. Images were

obtained at 2.4 s intervals beginning 10 s before the bolus injection, for a total of

312 s and a total of 130 time frames.

DCE-HiSET has been implemented using C++ code wrapped in R and costs

computation time for our examples ranging from few seconds to few dozens of

seconds, while δ is decreasing. We evaluate it, first, on one synthetic DCE image

sequence, and second, on two real DCE-MR image sequences.

The synthetic sequence consists of 120 images on a grid X of 112x112 voxels. It

was made, by radiologists, of eleven clusters having various size and shape, aiming

to represent real anatomical structures and their complexity, see Figure 4.1. A

random Gaussian noise with variance equal to 1 is added on every voxel at each

time.
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Figure 4.1: Synthetic DCE image sequence: (left) The ground-truth segmentation

of X ; (right) The true enhancement curves, ix(t), associated to the 11 clusters

using corresponding colors.

The two real DCE-MR image sequences on female pelvis with ovarian tumors

[Thomassin-Naggara et al., 2012] consist of respectively 130 and 107 images on a

grid X of 192x128 voxels and are obtained during 305 seconds, see Figure 4.2. The

contrast agent is injected with a delay ensuring that the first n0 images show, up
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to the noise level, only the grey level baseline without any enhancement induced by

the contrast agent. The value of n0 is respectively 12 and 10 for the two sequences.

Moreover, in both sequences, a ROI around the tumor has been manually drawn

by an experienced radiologist after the acquisition of the sequences.
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Figure 4.2: Two DCE-MRI image sequences on female pelvis with ovarian tumors -

each column shows one sequence. Up: image obtained at time t30 (after arterial

phase) with the tumor ROI (green) together with four 4x4 squared neighborhoods

(red, cyan, orange and blue), the red ones covering the iliac artery identified

by the radiologist. Bottom (with corresponding colors): the sets of 16 time

enhancement curves, Ix(tj), observed in the four squares after variance stabilization

using a = 0.45.

Each real DCE-MR image sequence is handled in following steps:

1. The sequence is transformed with function f(ψ) = ψa/a (see §4.5.1 for the

choice of a) providing the Jx(tj), defined in (3.8), for j = 1, ..., n and x ∈ X .

2. The baseline bx of each voxel x ∈ X is estimated by averaging the Jx(tj), for

j = 1, ..., n0, providing b̂x.

3. For x ∈ X and j = n0 + 1, ..., n, Ix(tj) := Jx(tj)−b̂x√
1+1/n0

are the enhancements.
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They are Gaussians with variance equal to 1 and are independent as soon as

Assumption 3 holds for Jx(tj).

4. The image sequence is segmented using the Ix(tj) for j = n0 + 1, . . . , n and

x ∈ X .

5. After segmentation, normalized residuals are defined as

ξ̂xj := Ix(tj)− ĪC(tj)√
1− 1/|C|

,

for all x in cluster C and j = n0 + 1, ..., n. They follow Gaussian distribution

N (0, 1) as soon as Assumption 3 holds for Jx(tj).

The synthetic sequence provides directly the Ix(tj) defined at the third step

with n0 = 0. Only the fourth and fifth steps are applied to this sequence.

4.2 Competitors

To compare with DCE-HiSET, we considered the following 6 clustering competitors

from the 3 categories previously discussed in Section 2.2:

• model-based: k-means, HMRF-FCM [Chatzis and Varvarigou, 2008] and mean

shift (MS) [Comaniciu and Meer, 2002];

• graph-based: normalized cut (NC) [Shi and Malik, 2000];

• hybrid: MS followed by normalized cut (MS-NC) [Tao et al., 2007], SLIC

[Achanta et al., 2010] followed by normalized cut (SLIC-NC).

Due to the noisy nature of image sequence, we employed NC only as the second

step of hybrid method such that the noise level has been already reduced by the

first step.

Competitor details All competitors, except for MS, require as input parameter

the number of clusters.

k-means was using Euclidean distance between TCs. A decomposition on

the first PCA-eigenvectors in the feature space (of the TCs) was used for other
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competitors. For sake of fairness, we used three and six eigenvectors. Three was

chosen as the number of eigenvectors needed to cover 95% variance explanation

and six as the number of tests used in our multiple equivalence test. We observe

no significant difference between two choices and report further the results using

six eigenvectors.

It is well known that k-means is highly sensitive to initialization, hence, for

each value of k, we ran k-means with 250 different initializations and picked among

these runs the one with best value regarding the objective function1.

HMRF-FCM requires an input partition and is highly sensitive to this choice.

It used the k-means result as input and then optimized a regularized objective

function of a FCM-type rather than a EM-type [Celeux et al., 2003], which has

been proven to be effective for vector-valued image [Chatzis and Varvarigou, 2008].

In MS-NC, NC uses the output of MS as input and can only reduce the number

of clusters from the MS step to the required number.

By construction SLIC provides an over-segmentation which is used as the

initialization of NC in SLIC-NC.

Tuning parameters of competitors We used value from 7 to 15 for the number

of clusters when it was required by a competitor. Other input parameters were

• for HMRF-FCM, a multiplicative constant ε for the entropy penalty controlling

the fuzziness. We used ε from 0.2 to 4.

• for MS and MS-NC, the temporal and the spatial bandwidth, bwt and bws.

We used bwt from 0.03 to 0.1 and rts := bwt/bws from 3 to 15.

• for SLIC-NC, the size and the compactness of supervoxels, svs and svc, required

by SLIC. We used svs from 3 to 10 and svc from 0 to 0.05.

1For the synthetic image sequence, due to the cluster size varying from thousands to only

dozens of voxels, the probability that one and only one initial center is chosen in each cluster,

ensuring a proper convergence of k-means, can be computed using multinomial distribution and

is smaller than 2 · 10−9.
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Competitor implementations We used the kmeans implementation for k-

means in R2. Depending on the number of clusters, the computation time ranges

from 10 to 90 minutes for the 250 runs.

We were not able to find available code for HMRF-FCM and used a C-

implementation wrapped in R with computational time varying from 1.5 to 10

minutes given the initial partition, depending on both the convergence rate (the

number of iterations needed to reach convergence) and the number of clusters.

We used the implementation of MS3 in Matlab4 with computation time varying

from 0.3 seconds to 33 seconds, depending on the values of bandwidths. The

C-implementation of NC5 wrapped in Matlab costs computation time always less

than 1 second. Same held for SLIC6 using its C-implementation wrapped in Matlab

with computation time only depending on the supervoxel size. For MS-NC, the

computation time depends on the gap between the number of clusters resulting

from MS and the one expected by NC.

4.3 Evaluation on the synthetic sequence

For the synthetic sequence, segmentation results accuracy is measured by Fowlkes-

Mallows Index (FM) [Fowlkes and Mallows, 1983],

FM = N11√
(N11 +N10)(N11 +N01)

,

where N·· is the number of voxel pairs that are classified into: one same cluster

in both partitions (N11); the same cluster in the first partition but two different

clusters in the second partition (N10); two different clusters in the first partition

but the same cluster in the second partition (N01).The value of this index is in

between 0 and 1. The closer it is to 1, the more similar the segmentations are.
2https://cran.r-project.org/
3http://a-asvadi.ir/
4http://www.mathworks.com
5http://www.timotheecour.com/
6http://www.vlfeat.org/

https://cran.r-project.org/
http://a-asvadi.ir/
http://www.mathworks.com
http://www.timotheecour.com/
http://www.vlfeat.org/
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To take into account the effect of cluster size on the accuracy measure, we also

consider a weighted version, wFM. For wFM, a pair of voxels (x1, x2) is counted for

w1 · w2 instead of 1, where wi = |X |
|Ci| with Ci being the cluster to which xi belongs

in the first partition, for i = 1, 2.

In order to provide a representation of the difference between two partitions

(C1, . . . , C`) and (D1, . . . , D`′), we also compute the so-called error-map as the

indicator function of the set

⋃̀
i=1

(Ci \Dji) ∪
`′⋃
j=1

(
Dj \ Cij

)

where ij = arg maxi |Dj ∩ Ci| and ji = arg maxj |Ci ∩Dj|.

We used DCE-HiSET with α = 0.001 and various values of δ to segment the

synthetic image sequence. The effect of the latter on the segmentation accuracy

and on the number of clusters is illustrated in Figure 4.3. We observed that the

FM and wFM indexes remain stable and higher than 0.8 in a large δ-range from 0.5

to 2. Clearly small values of δ result in over-segmentation (`∗ too large) while large

values enforce under-segmentation. Nevertheless, as one can expect when thinking

of bias-variance tradeoff, it is clearly more risky to use too small values than too

large ones. Following the slope heuristic [Baudry et al., 2012; Birgé and Massart,

2007], the fast decrease of the number of clusters when δ increases may provide an

automatic choice of δ: one can detect the value δ0 of δ where the relative slope,

defined as (`∗(δ−)− `∗(δ+))/`∗(δ−), is less than a fixed value and then define the

optimal δ as δ∗ = 2δ0.

Figure 4.4 shows the segmentation results with 3 values of δ, including δ∗. From

this figure, we observe clearly that when δ is chosen too small large homogeneous

regions are split into large sub-regions having irregular borders. As expected when

δ is too large, true clusters start to merge, however the geometry of the borders is

not changed, ensuring a good recognition of most of the structures.

In order to study the effect of TC separations on the segmentation results and

the stability of DCE-HiSET with respect to the parameter δ, we have multiplied
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Figure 4.3: Synthetic image sequence segmentation using DCE-HiSET when δ

varies: (Left) Fowlkes-Mallows Index (black stars) and its weighted version (red

crosses) - (Right) number of clusters. Result with best indexes is achieved at

δ = 0.6 (green dashed line).

FM= 0.829 wFM= 0.965  l*= 15 FM= 0.999 wFM= 0.983  l*= 11 FM= 0.979 wFM= 0.801  l*= 9

Figure 4.4: Segmentation results of DCE-HiSET of synthetic image sequence with

δ equals to 0.5 (left), δ∗ = 0.6 (middle) and 2.0 (right) when α = 0.001.

the true enhancement curves by 2/3 and 4/3. The noise level was kept at the same

value with standard deviation equal to 1 in order to change the SNR. Figure 4.5

shows that both FM and wFM indexes, when δ varies, are stable on a large δ-range.

Moreover, the higher the SNR is, the larger this δ-range is. Surprisingly only the

maximum of wFM is affected by the SNR. The error maps corresponding to the

best wFM are given in Figure 4.6.

We now provide a comparison with the competitors on the synthetic sequence.

Information and performance of all competitors together with DCE-HiSET are

summarized in Table 4.1. More details of each competitor follow.

For k-means, we present in Figure 4.7 the result when k = `∗ = 11 that is the
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Figure 4.5: FM index (left) and weighted FM index (right) when true enhancement

curves, ix(t) (Fig. 4.1), are multiplied by 1 (solid), 2/3 (dashed) and 4/3 (dotted).

Figure 4.6: Error maps when the SNR decreases by multiplying the true enhance-

ments by 4/3 (left), 1 (middle) and 2/3 (right).

true number of clusters, together with the best FM and wFM values achieved when

k varies. From these results, one can clearly see the default of k-means. On one

hand, having two or more initial centers in one true cluster (see `∗ = 10 or 11 in

Fig. 4.7) leads resulting clusters to be pulverized (so-called pepper and salt effect).

On the other hand, when no center reaches small clusters, the latter are artificially

merged, leading to a high FM but low wFM (see `∗ = 8 in Fig. 4.7). We did not

use any automatic choice of k since the best results, with respect to both FM and

wFM indexes, achieved by k-means are already worse than DCE-HiSET.

If the initial partition given by k-means has no pulverized cluster, HMRF-FCM

barely improves the segmentation of k-means. Otherwise, HMRF-FCM regularized

the pulverized clusters by grouping their voxels up to some kind of “panther texture”

when ε becomes large enough (see Fig. 4.7). However, if one cluster has been
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Method Parameter Range Highest FM Highest wFM

k-means k 7 – 15 0.993 (k = 8) 0.827 (k = 10)

HMRF-FCM
k 7 – 15

0.993 (k = 8, ε = 0.5) 0.827 (k = 10, ε = 1)
ε 0.2 – 4

MS
bwt 0.03 – 0.1 0.994 0.919

rts 3 – 14 (bwt = 0.06, rts = 11)

MS-NC

k 7 – 15 0.993 0.852

bwt 0.03 – 0.1 (k = 10, bwt = 0.06, rts = 11)

rts 3 – 14

SLIC-NC

k 7 – 15 0.983 0.821

svs 3 – 10 (k = 12, svs = 3, svc = 0)

svc 0 – 0.05

DCE-HiSET δ 0.2 – 4 0.999 (δ = 0.6) 0.983 (δ = 0.6)

Table 4.1: The parameter information and the performance of all competitors and

of DCE-HiSET.

already split in the initial partition provided by k-means, HMRF-FCM is unable

to fix it. As a consequence, the increase of FM and wFM induced by HMRF-FCM

is very small for given k. Moreover, the best FM and wFM indexes, when k and ε

vary, have kept unchanged with respect to k-means.

For each of MS, MS-NC and SLIC-NC, like for DCE-HiSET, the best results

for both indexes are achieved at a same parameter set.

For MS, the best result has been achieved at bwt = 0.06 and rts = 11. With

these values, MS recovered the right number of clusters, as shown in Figure 4.8.

High FM (0.994) and relatively low wFM (0.916) indicate that mistakes have

been made in small clusters, for instance, two voxels (one red and one orange) are

spatially disconnected from their clusters. This reveals the sensibility of MS to

noise artifacts.

For MS-NC, the best result has been achieved also at bwt = 0.06 and rts = 11.

It leads to only 10 clusters with worse indexes (see Fig. 4.8) than for MS alone.

Indeed, two clusters resulting from the best result of MS have merged during the
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FM = 0.714 wFM = 0.802 l* = 11 FM = 0.993 wFM = 0.759 l* = 8 FM = 0.855 wFM = 0.827 l* = 10

lda=0.2: FM=0.714 wFM =0.803 l*=11 lda=0.5: FM=0.72 wFM =0.806 l*=11 lda=2: FM=0.723 wFM =0.805 l*=11

Figure 4.7: Competitors’ best results on synthetic sequence. Top: Best result of

k-means among 250 runs given the true number of clusters k = 11 (left); with

highest FM index (middle) and with highest wFM index (right). Bottom: Results

of HMRF-FCM, initialized by the result of k-means with k = 11 and using ε = 0.2

(left), ε = 0.5 (middle) and ε = 2 (right).

NC step while others remain unchanged.

For SLIC-NC, the best result has been achieved at svs = 3 and svc = 0 with 12

clusters, providing FM=0.983 and wFM=0.821 (see Fig. 4.8). It has neither the

pulverized issue like k-means nor the noise sensitive issue in MS, thanks to the first

step with SLIC. However, due to the supervoxel size limitation in the SLIC step,

voxels in the clusters of small size may be spread in the surrounding large clusters

and/or narrow parts of clusters tend to have thicker shapes (see Fig. 4.8).

Despite their weakness in term of indexes, as DCE-HiSET, MS, MS-NC and

SLIC-NC show the ability to recover regions highly consistent to the ground-truth

segmentation.
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(0.06,11): FM = 0.994 wFM = 0.916 l* = 11 (0.06,11): FM = 0.993 wFM = 0.852 l* = 10 (3,0): FM = 0.983 wFM = 0.821 l* = 12

Figure 4.8: Competitors’ best results on synthetic sequence. Left: MS

(bwt,rts)=(0.06,11). Middle: MS-NC (bwt,rts,`∗)=(0.06,11,11). Right: SLIC-NC

(svs,svc,`∗)=(3,0,12).

Figure 4.9 shows the error maps of best results achieved by each competitor in

order to compare their behaviors in term of locations of the segmentation errors

(misclassified voxels).

From this study of the synthetic sequence, we see clearly that DCE-HiSET

Figure 4.9: Error maps on synthetic sequence. From left to right, (Top) k-means

with highest FM, HMRF-FCM with the highest FM, k-means with highest wFM,

HMRF-FCM with highest wFM, (Bottom) best (FM- and wFM) results for MS,

MS-NC, SLIC-NC and DCE-HiSET.
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outperforms all others with respect to both FM and wFM indexes with only a

single parameter having a very stable behavior. The error maps show clearly that

all competitors have trouble with small and/or complex clusters while DCE-HiSET

makes much fewer errors in these areas, thanks to the multi-resolution comparison.

Moreover, when the SNR decreases the segmentation errors of DCE-HiSET expand

regularly all over the image.

4.4 Comparison of the robustness with respect

to SNR

In this section, the effect of noise level on segmentation result is investigated for

all competitors. In the same way than the study on the stability of HiSET in

last section, we have multiplied the true enhancement curves of the synthetic

image sequence by different ratios varing from 1/2 to 7/3, while the noise level is

remained at the same value with standard deviation equal to 1, such that the SNR

is decreasing. For each ratio, the best segmentation result with the highest FM

index of six methods are compared with each other along with the corresponding

error map (Figure 4.10-4.14). For HiSET, δ is fixed at 1 and α is fixed at 0.001

for all ratios. For all other five methods, the parameters are freely tuned (within

a reasonable range) such that the highest FM index is achieved, except that the

true number of clusters is given for k-means and HMRFFCM. Apparently, HiSET

results fewer mistakes, even for the smaller ratios (lower SNR).

Additionally, the values of FM and weighed FM index are given, respectively,

in Table 4.2 and 4.3. In term of FM index, MS, MSNC, SLICNC and HiSET show

much more stability than k-means and HMRFFCM with respect to SNR. The

accuracies of the former four methods are also much superior to the latter two and

all are close to 1 (Figure 4.15). Considering also the weighed FM index, HiSET

shows a more stable and better performance than other methods.
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ratio k-means HMRFFCM MS MSNC SLICNC HiSET

*1/2 0.566 0.581 0.961 0.961 0.969 0.972

*2/3 0.655 0.674 0.990 0.989 0.983 0.990

*1 0.714 0.722 0.994 0.994 0.988 0.998

*4/3 0.881 0.882 0.994 0.994 0.988 1.000

*5/3 0.882 0.808 0.994 0.994 0.989 1.000

*2 0.855 0.855 1.000 1.000 0.985 1.000

*7/3 0.657 0.660 1.000 1.000 0.985 1.000

Table 4.2: FM index of the best result of each method given the true enhancements

are multiplied by different ratios.

ratio k-means HMRFFCM MS MSNC SLICNC HiSET

*1/2 0.636 0.649 0.703 0.703 0.803 0.788

*2/3 0.689 0.699 0.820 0.805 0.861 0.852

*1 0.802 0.806 0.916 0.914 0.879 0.915

*4/3 0.889 0.895 0.894 0.858 0.883 0.958

*5/3 0.895 0.823 0.919 0.919 0.865 0.977

*2 0.805 0.814 0.962 0.916 0.901 0.998

*7/3 0.701 0.701 0.986 0.918 0.900 1.000

Table 4.3: Weighted FM index of the best result of each method given the true

enhancements are multiplied by different ratios.

4.5 Experiment on real sequences

Figure 4.16 shows the influence of parameters α and δ on the segmentation. Clearly

α has a neglectable effect on the number of clusters while δ has a strong influence

on it during both the local and global steps. Hence, we fixed α = 0.001 for the rest

of this study. Let us point out that we observed that the cluster shape is not much

influenced by α neither.

4.5.1 Model justification and parameter a selection

In order to justify our modelling given by equations (3.6-3.9), we studied the

distribution of the normalized residuals ξ̂xj when δ and a vary (see Fig. 4.17). We

observed that, while δ varies, the ξ̂xj -distribution tails are heavier than the Gaussian

when a is large (Poisson’s case: a = 0.5) and are lighter when a is too small

(a = 0.4), showing a proper behavior for intermediate values (e.g. a = 0.45). In
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this last case, δ becomes the right tuning parameter controlling the discrepancy

between TCs. Clearly, the residuals do not have a perfect Gaussian behavior as

their distribution is, even for intermediate values, more concentrated than Gaussian.

However, first, thanks to the use of tests, only tails are of interest, second, our

construction may be extended to the sub-Gaussian case (only the independence of

the tests being a concern). Yet such generalization would require more theoretical

developments that are beyond the scope of this paper. Similarly, adaptation with

respect to a or improving the model for variance stabilization would be of interest

for future works. Nevertheless, the quality of our empirical experiments shows that

the benefit will be probably small.

We continue this study fixing a = 0.45.

4.5.2 Segmentation results

The two real DCE-MR image sequences have been fully segmented into homogeneous

regions that are highly consistent to the anatomical structure as shown in Figure 4.18.

The smaller δ is, the more details in anatomical structures can be observed in image

sequence. This is highlighted inside the squares (in black on Figure 4.18) that

contain the manually segmented ROIs (see Fig. 4.2). The corresponding estimated

TCs inside each cluster within the ROI together with their corresponding size are

shown in Figure 4.20. Thanks to the opportunity to segment a full DCE sequence,

these estimated TCs are obtained by averaging TCs which do not necessarily belong

to the ROI but to the same homogeneous cluster. As a benefit, the SNR observed for

these estimated TCs is strongly improved, providing a true opportunity for further

analysis and comparisons. From these figures, one can clearly understand what

DCE-HiSET is doing. It is indeed providing a piecewise constant representation of

the DCE image sequence in functionally homogeneous regions, where δ controls

the size of the pieces and functional “step” between them.
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FM = 0.566 wFM = 0.636 l* = 11 lda=1: FM=0.581 wFM =0.649 l*=11 (0.08,13): FM = 0.961 wFM = 0.703 l* = 15

k-means HMRFFCM MS

(0.08,13): FM = 0.961 wFM = 0.703 l* = 14 (3,0): FM = 0.969 wFM = 0.803 l* = 15 FM= 0.972 wFM= 0.788  l*= 9

MSNC SLICNC HiSET

k-means HMRFFCM MS

MSNC SLICNC HiSET

Figure 4.10: Segmentation results (the first two rows) and error maps (the last

two rows) of six methods when the true enhancements are multiplied by 1/2. The

result with highest FM index is given for each method except HiSET. The right

number of clusters is given for k-means and HMRFFCM. For HiSET, δ = 1 and

α = 0.001.
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FM = 0.655 wFM = 0.689 l* = 11 lda=1: FM=0.674 wFM =0.699 l*=11 (0.055,13): FM = 0.99 wFM = 0.82 l* = 58

k-means HMRFFCM MS

(0.055,13): FM = 0.989 wFM = 0.805 l* = 15 (3,0): FM = 0.983 wFM = 0.861 l* = 14 FM= 0.99 wFM= 0.852  l*= 10

MSNC SLICNC HiSET

k-means HMRFFCM MS

MSNC SLICNC HiSET

Figure 4.11: Segmentation results (the first two rows) and error maps (the last

two rows) of six methods when the true enhancements are multiplied by 2/3. The

result with highest FM index is given for each method except HiSET. The right

number of clusters is given for k-means and HMRFFCM. For HiSET, δ = 1 and

α = 0.001.
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FM = 0.881 wFM = 0.889 l* = 11 lda=1: FM=0.882 wFM =0.895 l*=11 (0.05,12): FM = 0.994 wFM = 0.894 l* = 12

k-means HMRFFCM MS

(0.05,12): FM = 0.994 wFM = 0.858 l* = 11 (3,0): FM = 0.988 wFM = 0.883 l* = 14 FM= 1 wFM= 0.958  l*= 11

MSNC SLICNC HiSET

k-means HMRFFCM MS

MSNC SLICNC HiSET

Figure 4.12: Segmentation results (the first two rows) and error maps (the last

two rows) of six methods when the true enhancements are multiplied by 4/3. The

result with highest FM index is given for each method except HiSET. The right

number of clusters is given for k-means and HMRFFCM. For HiSET, δ = 1 and

α = 0.001.
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FM = 0.882 wFM = 0.895 l* = 11 lda=1: FM=0.808 wFM =0.823 l*=11 (0.055,14): FM = 0.994 wFM = 0.919 l* = 10

k-means HMRFFCM MS

(0.055,14): FM = 0.994 wFM = 0.919 l* = 9 (3,0): FM = 0.989 wFM = 0.865 l* = 14 FM= 1 wFM= 0.977  l*= 11

MSNC SLICNC HiSET

k-means HMRFFCM MS

MSNC SLICNC HiSET

Figure 4.13: Segmentation results (the first two rows) and error maps (the last

two rows) of six methods when the true enhancements are multiplied by 5/3. The

result with highest FM index is given for each method except HiSET. The right

number of clusters is given for k-means and HMRFFCM. For HiSET, δ = 1 and

α = 0.001.
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FM = 0.855 wFM = 0.805 l* = 11 lda=1: FM=0.855 wFM =0.814 l*=11 (0.04,14): FM = 1 wFM = 0.962 l* = 14

k-means HMRFFCM MS

(0.04,14): FM = 1 wFM = 0.916 l* = 13 (3,0): FM = 0.985 wFM = 0.901 l* = 13 FM= 1 wFM= 0.998  l*= 11

MSNC SLICNC HiSET

k-means HMRFFCM MS

MSNC SLICNC HiSET

Figure 4.14: Segmentation results (the first two rows) and error maps (the last two

rows) of six methods when the true enhancements are multiplied by 2. The result

with highest FM index is given for each method except HiSET. The right number

of clusters is given for k-means and HMRFFCM. For HiSET, δ = 1 and α = 0.001.
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Figure 4.15: FM index (left) and weighted FM index (right) of best result of each

method when true enhancement curves are multiplied by ratios from 1/2 to 7/3.

Only four methods (MS, MSNC, SLICNC and HiSET) are shown for FM and all

methods are shown for weighted FM index.
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global steps.
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each) and normal distribution density (black and dashed) with a=0.5/0.45/0.4 of

variance stabilization.
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Figure 4.18: Segmentation results of the two real DCE-MR image sequences using

δ = 3.
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Figure 4.19: Squared zoom for the DCE-MR image sequence with δ equals 2 (left),

3 (middle) and 4 (right). Manually segmented ROI appears in black and clusters

inside are numbered. The first sequence shows from 9 to 6 clusters (top). The

second from 18 to 6 (bottom).
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Figure 4.20: Average TCs (after variance stabilisation) of the clusters inside the

manually segmented ROIs (see Fig. 4.19) with δ=2, 3 and 4 from left to right.

Size of the corresponding clusters are given at the top of each subfigure with

corresponding colors.
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Chapter 5

Automatic refinement of manual

ROI

In this chapter, we propose an automatic strategy to refine the manually delineated

ROI based on DCE image sequence segmentation. As an application of the proposed

clustering method, the strategy is described with an evaluation of robustness and

efficiency through classification of ovarian tumors.

In medical imaging, regions of interest (ROIs) are often manually drawn by

defining their boundary on one image such that qualitative or quantitative analysis

can be performed, in order to retrieve information regarding the tissues of interest.

The boundary of ROI should be drawn along the significant boundaries between

the tissues. However, the identification of the precise expected boundary of ROI

by only visual inspection can be a very challenging and time-consuming task.

For analysis of the image sequence obtained from DCE imaging, ROIs are

manually delineated either on one of the images of the dynamic sequence (often an

image during the injection phase giving high contrast between tissues), or on an

image of high anatomical quality coming from a different sequence (high-resolution

T1 or T2 weighted images) and then pasted to all other images in the DCE image

sequence. Comparing to individual image, the precision issue is amplified for image

sequence. Instead of an intensity value, each voxel has functional information

121
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varying along the acquisition time. Information contained in two voxels could

be homogeneous at one time but not at another time. Hence, the ROI that is

delineated on the reference image to contain all desired information could include

undesired information on other images. In addition, the ROI may also shift away

from the intended region (tissue) due to movements occurring during the image

acquisition period or due to registration errors between the high-resolution image

and the dynamic sequence. Therefore, semi-automatic techniques are required to

decrease the delineation time as well as to improve the robustness of analysis based

on ROI.

Substantial efforts have been made on the topics regarding (semi-)automatic

ROI delineation (or selection). Craciunescu et al. [2012] and Heye et al. [2013]

evaluated the impact of tumor ROI selection on the assessment of intra- and inter-

patient variability. Ortiz et al. [2014], Górriza et al. [2009] and Liu et al. [2014]

proposed ROI selection methods for diagnosis purpose. Zöllner et al. [2009], Li et al.

[2012b] and Stoutjesdijk et al. [2007] applied clustering-based methods on ROI

segmentation in order to improve the perfusion analysis based on the segmented

ROIs. Forbes et al. [2006] investigated the ROI selection for both diagnosis and

perfusion analysis.

We propose a new method to automatically refine and to improve the efficiency

of ROI selection in DCE image sequences. Instead of considering each image in the

sequence individually and choosing the potential optimal reference, we take into

account the homogeneity of functional information.

Through DCE-HiSET, we can recover all functionally homogenous regions in

the image grid. Manipulating the ROI with an automatic pipeline of erosion and

dilation, we preserve the homogeneous regions connected to the interior of the ROI

as the refined ROI and remove the regions only located at or connected to the border

of manual ROI. In consequence, refined ROI has a very optimized boundary and is

highly consistent to the tissue expected with respect to the functional information

relating to its perfusion or diffusion behavior. In addition, we automatically filter

the TC with non physiological behavior which are mostly generated by motion.
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Finally, to evaluate the efficiency of this new semi-automated ROI selection

method, we tested it on a set of DCE-MRI sequences of 99 ovarian tumors assuming

that a better ROI selection will help in differentiating benign, borderline and

malignant tumor when analyzing the TC of the voxels found within the ROI.
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5.1 Materials

For every dynamic sequence, experienced radiologist (IT) manually delinea- ted a

ROI of suspicious tumor tissue by drawing coarsely and rapidly the limits vertices of

a polygon on a single image of the series. Several examples of manually delineated

ROI are shown in the first column of Figure 5.7.

After surgery, the tumors have been characterized on pathology as benign,

borderline or malignant. Borderline is an intermediate state in between benign and

malignant. Among all, 49 are categorized as benign, 9 borderline and 41 malignant.

All the image and ROI processing have been made on R software (https://www.r-

project.org/), after an import of original DICOM images. All statistical analyses

have also been made on R software. No motion correction has been used for any

DCE image sequence.
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5.2 Filtration of average TCs

For every resulting cluster from DCE-HiSET, we compute the average TC from the

observed TCs (after variance stabilization) of all voxels within. While keeping all

observed TCs in the cluster functionally homogeneous, the SNR of the average TC

is significantly improved (Figure 5.1). Therefore, the average TC can be considered

as a denoised version of every observed TC in the cluster.

50 100 150 200 250 300

−
2

0
2

4
6

8

in
te

ns
ity

times

50 100 150 200 250 300

−
2

0
2

4
6

8

in
te

ns
ity

times

Figure 5.1: The improvement of SNR induced by HiSET. Left: Enhancement TCs

of three randomly selected voxels. Right: Average enhancement TCs of clusters, to

which the voxels belong, segmented by HiSET.
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Figure 5.2: Average enhancement TCs of clusters segmented by HiSET in a DCE

image sequence. (a) ones of clusters in the entire DCE image sequence; (b) ones of

clusters intersecting with manual ROI; (c) ones remained after filtration. Colors

are assigned to clusters according to the AUC of the corresponding average TC.

Red relates to the large AUCs and blue to the low ones. k stands for the total

number of clusters. The size of each cluster (scaled by the size of image) is given

as the length of its color bar on the color scale on the right.

In order to get ride of clusters of voxels having aberrant behavior after injection,

mostly due to motion artifacts, and adding noise to the analysis, a set of temporal
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filters have been used (Figure 5.3). Since after contrast injection the tissues can not

have a negative enhancement as compare to the pre-injection baseline (as opposed

to Dynamic Susceptibility Contrast MR perfusion where the first pass of contrast

agent induces a signal drop), negative enhancing clusters have been filtered. Since

after the first pass where rapid rise and drop in signal can be observed, the signal

changes are very slow, clusters with bumps, spikes of pits (with signal going down

and then up again) have been filtered. Additionally, clusters of very small size

(less than 5 voxels within) have also been filtered, as well as the ones with typical

arterial behavior.
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Figure 5.3: The filters remove from Figure 5.2 the average TCs showing (a) no

enhancement, (b) negative enhancement, (c) arterial behavior, and (d) bumps or

spikes, where (b) and (d) being due to motion artifacts.

After the filtration, only the average TCs having meaningful enhancement are

automatically preserved for further qualitative analysis. For some studies, especially

the ones with large manual ROI (for instance in Figure 5.2), the number of average

TCs is significantly reduced, so is the amount of artifacts.
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5.3 Automatic refinement of ROI

Given a roughly drawn manual ROI on a DCE-MR image sequence, following

processes are done to obtain an automatically refined ROI:

1. segment the full image sequence into local clusters using HiSET (only local

clustering step) with the parameter setting;

2. erode the ROI by two voxels in both horizontal and vertical directions, to get

eroded ROI;

3. retrieve all the local clusters intersecting the eroded ROI and fuse these clusters

to have the initial refined ROI;

4. erode again the initial refined ROI by one voxel in both directions, to get

refined-eroded ROI;

5. identify disconnected segments of refined-eroded ROI induced by erosion and

discard the small ones (pruning);

6. dilate the remaining segments of refined-eroded ROI by one voxel in both

directions, to get final refined ROI.

Given a DCE image sequence and a manual ROI, the evolution of the ROI

along the process pipeline is illustrated in Figure 5.4. Within the refined ROI, the

filtration of average TCs is illustrated in Figure 5.5.
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DCE image
sequence

1. HiSET

Clusters

Manual ROI

2. Erosion

Eroded ROI

3. Fusion of clusters
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eroded ROI

4. Second erosion

5. Pruning

6. Dilation

Refined ROI
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Figure 5.4: The evolution of ROI during refinement process. From top to bottom:

(a) manually delineated ROI by locating vertices of a polygon; (b) erosion of manual

ROI by two voxels; (c) aggregate all clusters resulting from the segmentation by

HiSET and intersecting eroded ROI; (d) a second erosion of previous ROI; (e)

discard the small segments disconnected with the main one of previous ROI; (f)

dilation of previous ROI to have final refined ROI. Left: binary mask of each ROI.

Right: transparent mask of each ROI on color map of segmentation result. Colors

are assigned to clusters according to the AUC of the corresponding average TC.

Red relates to the large AUCs and blue to the low ones.
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Figure 5.5: Filtration of average TCs within the refined ROI. Left: all average TCs;

Right: filtered average TCs. Colors are consistent to Figure 5.2. k stands for the

number of average TCs. The size of each cluster is given as the length of its color

on the color bar on the right.

5.4 Test of the automatic ROI refinement on ovar-

ian tumors

To test the effectiveness of auto-refinement of ROI on DCE-imaging analysis, we

investigate on clinical data whether the classification of the ovarian tumors of our

sequences will be improved from crude manual ROI to refined ROI. We tested this

strategy taking into account that Thomassin et al. have previously shown that

analyzing DCE TCs of ovarian tumors can help in differentiating benign, borderline

and malignant tumors [Thomassin-Naggara et al., 2008, 2011].

5.4.1 Extraction of features from average TCs

For the automatic refinement of ROI, segmentation has to be implemented with

time intensity curves to distinguish different tissues having the same enhancement

but different baselines. To study the vascular properties of tissue, however, we are

only interested in the enhancement induced by contrast agent. Therefore, a second

segmentation based on time enhancement curves is required for perfusion analysis,

which is based on the qualitative characteristics extracted from the resulting average

TCs.

For every average TC, the qualitative characteristics that we consider to per-

form and automatic classification include the maximum enhancement (ME) and



130 CHAPTER 5. AUTOMATIC REFINEMENT OF MANUAL ROI

enhancement amplitude (EA) normalized by the peak of AIF (which is identified as

the average TC with highest enhancement in Figure 5.2-a), and the angle of slope

during the early (wash-in) or the late (washout) phase (Figure 5.6-a). To obtain

the measurements of these parameters, we smooth the average TC, ĪC , of each

cluster C with local polynomial regression fitting [Cleveland et al., 1991] to have

ĨC . ME is naturally defined as the normalization of the largest enhancement of

the smoothed TC during the entire acquisition time

MEC := max
j
ĨC(tj)

/
max
j

AIF(tj).

Then, we fit a piecewise linear model (one piece for the early phase and the other

for the late one) on the average TC

ÎC(tj) :=


aC1 + bC1 ∗ tj if tj ≤ tj0 ,

aC2 + bC2 ∗ tj if tj > tj0 ,

where tj0 is the end of the time interval for the first linear model. The interception

of two phases is then defined as the moment where the piecewise linear model has

the least square error

t̂Cj0 := arg min
tj0

∑
j

(ĪC(tj)− ÎC(tj))2.

EA is then defined as the normalization of the enhancement at the interception on

the smooth TC

EAC := ĨC(t̂t0).

The slope angle during the early phase, SAe is defined as the angle in between the

fitted line of this phase and the horizontal axis

SAC
e := arctan(bC1 ) ∗ 180/π,

and the slope angle during the late phase, SAl, is defined as the angle in between

the fitted line of this phase and the vertical axis

SAC
l := arctan(bC2 ) ∗ 180/π + 90.
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For the TCs corresponding to malignant tissue, the enhancement is expected

to arrive more quickly with higher amplitude, hence the slope angle during the

early phase is expected to be larger. The slope during the late phase is downside,

thereby larger than 90 degree. For the TCs corresponding to benign tissue, the

enhancement is expected to arrive rather slowly with lower amplitude, hence the

slope angle during the early phase is expected to be smaller. The slope during the

late phase is upside, thereby smaller than 90 degree. Unifying the contrary effects

of the slope angles during the early and the late phase, we define the composite

angle (CA) as the angle between two slopes

CAC := 90− SAC
e + SAC

l = (arctan(bC2 )− arctan(bC1 )) ∗ 180/π,

such that it is larger for normal tissue and smaller for tumorous tissue.

In an image sequence, the (manual or refined) ROI usually covers several tissues

having heterogeneous enhancement behaviors. And the number of tissues is usually

varying from sequence to sequence. Therefore, we consider the statistics of the

qualitative characteristics of average TCs as the representative features of ROI

for further classification. For each ROI, we consider four features: the weighted

(by the size of cluster) mean of, respectively, ME (wmME), EA (wmEA) and CA

(wmCA),

wmME :=
∑
C N

CMEC

N roi
, wmEA :=

∑
C N

CEAC

N roi
, wmCA :=

∑
C N

CCAC

N roi
,

where N roi is the number of voxels in ROI and NC = |C ∩ N roi|; as well as the

span of smoothed average TCs during the late phase (SP),

SP = max
C

ĨC(tn)−min
C
ĨC(tn),

which can be regarded as a measure of heterogeneity (Figure 5.6-b).

5.4.2 Classification of the ovarian tumors

Finally, we apply, on these extracted features from all 99 DCE-MRI sequences, both

unsupervised and supervised classification methods, including k-means [Hartigan
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Figure 5.6: Qualitative features extracted from average TCs include (a) maximum

enhancement (ME), enhancement amplitude (EA), and the slope angle during early

and late phase made on one smoothed TC, and (b) Span/heterogeneity (SP) at

the end of late phase based on the smoothed version (colored) of the average TCs

(gray).

and Wong, 1979], linear discriminative analysis (LDA) [Ripley, 1996] and support

vector machine (SVM) [Hsu and Lin, 2002] in order to separate the different

types of ovarian tumors. For all three methods, we perform a binary classification

(potentially benign vs. potentially malignant). Additionally, we also classify all

cases into three classes (potentially benign, borderline and malignant) with k-means

and SVM. Therefore, we investigate in total five classification models: k-means

with 2 classes, k-means with 3 classes, LDA with 2 classes, SVM with 2 classes and

SVM with 3 classes. For each model, the results from three cases: 1) manual ROI,

2) manual ROI with filtration of average TCs and 3) refined ROI with filtration, are

compared with each other in term of classification interpretation and performance.

5.4.3 Quality evaluation of classification

For binary classification, we count true positive (TP) for correctly classified benign

tumors and true negative (TN) for correctly classified malignant ones. Based on

TP and TN, receiver operating characteristic (ROC) curve is reported to illustrate

the specificity and sensitivity of classification. Naturally, the area under the ROC

curve (ROCauc) is considered as a measure of classification performance with its
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confidence interval (ROCci)

Alternatively, we define another measure, the classification accuracy (ACC),

as the percentage of correctly classified tumors, with the sum of TP and TN as

numerator and by the size of population classified as dominator. Unlike ROCauc,

ACC can be generalized to the case of classification with three classes, where the

numerator is the amount of correctly classified tumors for all classes.

To evaluate the classification method, we also perform the leave-one-out (loo)

cross-validation. Again, ACC, ROCauc and ROCci are reported as, respectively,

ACCloo, ROCloo
auc and ROCloo

ci for leave-one-out cross-validation.
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5.5 Results

5.5.1 Auto-refinement of ROI

In the implementation of the proposed auto-refinement strategy, the full segmenta-

tion of DCE image sequence using HiSET takes the most of the processing time,

which is about 45 s in our experiments. This time is only slightly affected by the

parameter settings, but, significantly affected by the size of image grid, or of the

sub-grid (containing the manual ROI with enough margin for each side) chosen to

be segmented. In this work, HiSET is directly implemented on the entire image

grid for all DCE image sequences, with the same parameter setting: a = 0.45, δ = 3

and α = 0.0001. Other steps of the strategy take less than 1 s all combined, which

is negligible with respect to HiSET.

As an example, Figure 5.7 shows the results of ROI auto-refinement for 6 DCE

image sequences, which are selected to have various size of corresponding manual

ROIs. Both manual ROI and refined ROI are shown in a binary way such that one

can observe the difference between two at the boundary. A transparent mask of

refined ROI is also shown on top of the color map of the segmentation such that

the heterogeneity within the ROI is highlighted.

As a reflection of the heterogeneity within the tissue covered by ROI, the

number of clusters resulted from the segmentation and intersected with the ROI

is investigated in Figure 5.8. From the 17 DCE image sequences in Figure 5.8,

one can observe that the manual ROI intersects a relatively large amount of

clusters having different enhancement behaviors. However, from one third to half

of them correspond to non-anatomical features, movements, or arteries, which are

considered to be artifacts for quantitative analysis of perfusion behaviors of tissue

of interest. Therefore, they are excluded through the filtration of average TCs.

Additionally, for some cases, the auto-refinement also removes a small amount

(relative to filtration) of clusters that intersect the manual ROI with small overlaps

at the boundary. These clusters are considered to be included by mistake during
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the manual delineation.

Through the filtration for all 99 DCE image sequences, the number of the

average TCs within the manual ROI is reduced from 25.7 in average (ranging from

7 to 66) to 14.2 in average (ranging from 3 to 44), leading to a 44.5% decrease. After

the auto-refinement, this number is further reduced to 11.8 in average (ranging

from 2 to 39), which represents a 9.7% decrease additional to the filtration.

5.5.2 Classification of the ovarian tumors using ROIs

Figure 5.9 and Figure 5.11 illustrate the classification results of the ovarian tumors

covered by ROIs in three cases using all five classification models based on two

features introduced above: wmME and wmCA.

For binary classification models (Figure 5.9), only potential benign and malig-

nant tumors are considered, leading to a population of size 90. In the manual ROI,

even after filtration, benign and malignant tumors are heavily mixed, especially for

the ones having large wmCA and small wmME (left-top corner of Figure 5.9-a,b),

leading to a tough separation. This phenomenon is significantly improved in refined

ROI (Figure 5.9-c), such that much fewer tumors are classified into the wrong

decision area.For refined ROI with filtration, the separations between two classes

identified by three methods align much better than the ones from the other two

types of ROI.

The performance of binary classification using each method for three ROIs is

also compared in term of ROC (Figure 5.10), illustrating a significant improvement

induced by the refinement of ROI. Figure 5.12 illustrates another comparison of

classification performance, in term of ACC, of the bivariate classification introduced

above, along with a trivariate one based on three features: wmEA, wmCA and

SP. From both bivariate and trivariate classifications, one can observe significant

improvements of ACC induced by the filtration of average TCs and the ROI

refinement. Complete result of classification performance in term of different

metrics, for different models, combinations of features and ROIs are summarized in
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Figure 5.7: The results of auto-refinement of ROIs, for 6 DCE image sequence,

with various size. Each row shows the results for one DCE image sequence and

its patient number is given at the beginning of the row. From left to right, (a)

cropped binary masks of manual ROIs; (b) transparent masks on color maps of

segmentation results of manual ROIs; (c) cropped binary masks of refined ROIs; (d)

transparent masks on color maps of segmentation results of refined ROIs. Colors

are assigned to clusters according to the AUC of the corresponding average TC.

Red relates to the large AUCs and blue to the low ones.

Table 5.1 and Table 5.2. The improvement of the classification performance induced

by ROI refinement is consistent in term of different metrics and classification models.
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Figure 5.8: Number of clusters resulted from manual ROI, manual ROI with

filtration of average TCs and refined ROI with filtration, in 17 DCE image sequences.

Among three classification methods, SVM outperforms the other two. In binary

case of SVM, ACC is improved from 71.1% for manual ROIs to 78.9% by filtration,

and then to 84.4% by ROI refinement. Similarly, ROCauc is improved from 0.78

(95% ROCci = 0.69-0.88) for manual ROIs to 0.94 (95% ROCci = 0.89-0.99) for

refined ROI. Additionally, in case of three classes, ACC is improved from 67.7% for

manual ROIs to 72.7% by filtration, and then to 79.8% by ROI refinement.

5.6 Discussion

The proposed strategy aims to automatically refine the manually and roughly

delineated ROI, based on an automatic segmentation of DCE image sequence using

HiSET, to ease the process of ROI selection in a robust way. In our experiments,

the auto-refinement takes about 45 s per DCE image sequence, most of which is

cost by the HiSET while other steps of the strategy take less than 1 s all combined.

The segmentation time is significantly affected by the size of image grid. Therefore,
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Model ROI type ACC(%) ACCloo(%) ROCauc ROCci ROCloo ROClooci

k-means_2

Manual ROI 64.4 64.4 0.69 0.58-0.8 0.69 0.58-0.8

Manual ROI + Filtration 67.8 67.8 0.72 0.61-0.83 0.72 0.61-0.83

Refined ROI + Filtration 75.6 75.6 0.82 0.73-0.9 0.82 0.73-0.9

LDA_2

Manual ROI 66.7 66.7 0.73 0.63-0.84 0.71 0.6-0.82

Manual ROI + Filtration 67.8 67.8 0.74 0.63-0.84 0.71 0.59-0.82

Refined ROI + Filtration 77.8 76.7 0.83 0.75-0.92 0.81 0.72-0.91

SVM_2

Manual ROI 67.8 72.2 0.78 0.68-0.88 0.76 0.66-0.86

Manual ROI + Filtration 71.1 72.2 0.75 0.64-0.86 0.8 0.71-0.9

Refined ROI + Filtration 82.2 82.2 0.92 0.86-0.98 0.85 0.76-0.94

k-means_3

Manual ROI 45.5 45.5

Manual ROI + Filtration 50.5 50.5

Refined ROI + Filtration 53.5 53.5

SVM_3

Manual ROI 62.6 71.7

Manual ROI + Filtration 65.7 70.7

Refined ROI + Filtration 72.7 71.7

Table 5.1: Performance of classifications based on two features: wmME and wmCA.

Model ROI type ACC(%) ACCloo(%) ROCauc ROCci ROCloo ROClooci

k-means_2

Manual ROI 72.2 71.1 0.73 0.62-0.83 0.73 0.62-0.83

Manual ROI + Filtration 73.3 73.3 0.75 0.65-0.86 0.75 0.65-0.86

Refined ROI + Filtration 75.6 75.6 0.8 0.7-0.89 0.8 0.7-0.89

LDA_2

Manual ROI 71.1 65.6 0.74 0.64-0.85 0.7 0.59-0.82

Manual ROI + Filtration 74.4 74.4 0.78 0.69-0.88 0.75 0.65-0.86

Refined ROI + Filtration 77.8 76.7 0.86 0.79-0.94 0.83 0.75-0.92

SVM_2

Manual ROI 71.1 77.8 0.78 0.69-0.88 0.88 0.81-0.95

Manual ROI + Filtration 78.9 82.2 0.82 0.73-0.92 0.84 0.75-0.93

Refined ROI + Filtration 84.4 82.2 0.94 0.89-0.99 0.93 0.88-0.98

k-means_2

Manual ROI 49.5 48.5

Manual ROI + Filtration 51.5 51.5

Refined ROI + Filtration 52.5 51.5

SVM_3

Manual ROI 67.7 67.7

Manual ROI + Filtration 72.7 74.7

Refined ROI + Filtration 79.8 73.7

Table 5.2: Performance of classifications based on three features: wmEA, wmCA

and SP.
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(a) Manuel ROI (b) Manuel ROI + Filteration (c) Refined ROI + Filteration

Figure 5.9: Binary classifications of ovarian tumor (potentially benign and malig-

nant) based on two features: wmME and wmCA. From left to right, classification

is based on (a) manual ROI, (b) manual ROI with filtration of average TCs and (c)

refined ROI with filtration. From top to bottom, three classification method are

used: k-means, LDA and SVM. Each type of tumor is represented with a shape,

which is filled if the tumor is correctly classified (with ‘+’ in legend) by the model,

otherwise (‘-’) is left unfilled. Decision area of each class is covered by dots in green

for benign, blue for borderline and red for malignant.

it is natural to segment a sub-grid containing the manual ROI with enough margin

on each side, in order to reduce the processing time. However, a direct segmentation

on the entire image grid is more convenient and the segmentation result can be
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(a) k-means (b) LDA (c) SVM

Figure 5.10: Performance of binary classification of ovarian tumor (potentially

benign and malignant), based on two features: wmME and wmCA. From left to

right, three classification methods are used: (a) k-means, (b) LDA and (c) SVM.

For each method, ROCs of both the classification (solid thinner line) and the

leave-one-out cross-validation (dashed thicker line) are shown for three ROIs (black

for manual ROI, red for manual ROI with filtration and green for refined ROI with

filtration). Specially, for k-means, the ROC of the classification and the one of

cross-validation are overlapped for each ROI.

always reused for other manual ROIs concerning other tissues in the same DCE

image sequence.

The number of clusters resulted from the segmentation and intersected with

the ROI corresponds to the heterogeneity within the tissue covered by the ROI.

In average, nearly half of the clusters in the manual ROI correspond to non-

anatomical features, movements, or arteries, which are considered to be artifacts for

quantitative analysis of perfusion behaviors of tissue of interest. Therefore, they are

excluded through the filtration of average TCs. Additionally, the auto-refinement

also removes a small amount (relative to filtration) of clusters that intersect the

manual ROI with small overlaps at the boundary. These clusters are considered

to be included by mistake during the manual delineation, mostly due to drawing

errors or even more unmanageably due to displacement of the delineated area due

to motion effects during the imaging time. Despite that the most of reduction on

the number of clusters comes from the filtration, the ROI refinement plays a more
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Figure 5.11: Classifications of ovarian tumor with three classes (benign, borderline

and malignant), based on two features: wmME and wmCA. From left to right,

classification is based on (a) manual ROI, (b) manual ROI with filtration of average

TCs and (c) refined ROI with filtration. Two classification methods are used:

k-means (top) and SVM (bottom). Each type of tumor is represented with a shape,

which is filled if the tumor is correctly classified (with ‘+’ in legend) by the model,

otherwise (‘-’) is left unfilled. Decision area of each class is covered by dots in green

for benign, blue for borderline and red for malignant.

important role for improving the tumor classification.

Conventionally, the evaluation of (semi-)automatic ROI construction strategy

based on image segmentation usually involves a comparison against the ground-

truth, which is a ROI delineated manually and carefully by experienced radiologist

[Liu et al., 2014; Stoutjesdijk et al., 2007]. In this way, a quantitative index such

as DICE [Taha and Hanbury, 2015] can be used to measure the robustness and the

effectiveness of the strategy. However, in this work, the proposed strategy takes

a roughly delineated ROI as an input and aims to refine it only at the boundary,
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(a) wmME + wmCA (b) wmEA + wmCA + SP

Figure 5.12: The classification accuracy (ACC) in percentage. The classifications

are based on (a) two features: wmME and wmCA; (b) three features: wmEA,

wmCA and SP. Each group of bars corresponds to one of five classification models,

including k-means with 2 classes, k-means with 3 classes, LDA with 2 classes, SVM

with 2 classes and SVM with 3 classes. In each group, classifications are made

individually on manual ROI, manual ROI with filtration of average TCs and refined

ROI with filtration.

in order to include the homogeneous regions extended from the center of ROI to

outside and also to exclude the regions corresponding to movements and features

not interested. Therefore, the resulting conventional measures will only vary in a

small range corresponding to the inclusion and the exclusion of the voxels only

around the boundary, while the center part of ROI always remains unchanged,

especially for the large ROIs. Alternatively, we evaluate the effectiveness of the

proposed strategy on DCE-imaging analysis through the classification of the ovarian

tumors, as in [Ortiz et al., 2014; Górriza et al., 2009; Liu et al., 2014; Forbes et al.,

2006].

Using different combinations of features and models, the classification perfor-

mance is significantly improved from manual ROI to refined ROI. Using the same

method, such as k-means or SVM, the binary classification performs better than

the one with 3 classes. Being the intermediate state between benign and malignant,

borderline could be classified into either of other two classes in practice, leading

to a source of uncertainty of classification with 3 classes. Additionally, due to the
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unbalance between the size of borderline classes and others, k-means with 3 classes

performs significantly worse than with only 2 classes since it tends to identify

clusters with compatible sizes. Moreover, the supervised methods such as LDA and

SVM should be carefully tuned to avoid underfitting or overfitting the model. In

brief, the presence of borderline tumors and the lack of more training/testing data

are the limitations for this work. Therefore, we focus more on proving that the

refined ROI improves the classification in different models, instead of the model

selection problem.
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Chapter 6

Segmentation on 3D DCE-MR

image sequence

In this chapter, we evaluate the proposed method on 3D DCE-MR image sequence,

also referred as DCE volume. We explore and evaluate several segmentation

strategies based on the proposed method.

6.1 Materials

We have two 3D DCE image sequences, with 5 phases for each, from two differ-

ent patients. Unlike the DCE image sequences that we have used in previous

experiments, each one of these two has the following characteristics:

• consists of 5 time points, one time for each phase among 5 phases:

– Baseline phase: before the injection of contrast agent;

– Arterial phase 1: after the injection of contrast agent and before the

observed intensity within the main arterial reaches the maximum;

– Arterial phase 2: after the observed intensity within the main arterial

reaches the maximum and before the contrast agent arrives in portal

vein;

145
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– Portal phase: during the arrival of contrast agent in portal vein;

– Late phase: after the contrast agent passing through the portal vein.

• consists of 132 slices on a grid of 512×512 voxels for each, covering the whole

abdominal area. Hence, it has three dimensions in space.

• Voxel size is 0.66 x 0.66 x 3.4 mm for the first and 0.78 x 0.78 x 3.4 mm for

the second.

• Inter-slice space is 1.7mm for both.

This kind of DCE volumes, with only a few time points (one for each phase), is

more common in clinical practice than the one with higher acquisition frequency,

since it provides higher resolution, produces higher SNR and requires less operational

time. From two DCE volumes, we select three sub-volumes (see Figure 6.1) for

further experiment. The information regarding sub-volumes are detailed in Table

6.1.

Sub-volume Patient Target area Size (in voxel)

# 1 Patient 1 Liver 280× 210× 70

# 2 Patient 1 Kidney 100× 100× 40

# 3 Patient 2 Upper abdomen 400× 320× 80

Table 6.1: Summary information of sub-volumes.

6.2 Segmentation strategies

Due to the small number of times, we use Gaussian test instead of Chi-square

test, leading to a small enough probability (3.55) of having a wrong clustering. All

strategies require the same transformation to stabilize the variance, which has been

previously defined in Section 3.1 and verified for 2D case in Section 4.5.1. The SNR

is consistent cross slices, thereby, we can choose parameter a using only one slice.
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Figure 6.1: Multi-view of two DCE volumes at portal phase: axial plane (left

column), coronal plane (middle column), sagittal plane (right column). For both

patients, sub-volumes are selected (surrounded by color frames in three plans) for

further evaluation.

Figure 6.2: Multi-view of 3D DCE image sequence: axial plane (top row), coronal

plane (middle row), sagittal plane (bottom row). From left to right, each column

corresponds to a phase.

As shown in Figure 6.3, the residual densities of segmentations on different slices

with the same combination of a and δ (while α is fixed) behave very similarly.
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Figure 6.3: Residual densities after segmentations of different slices using the same

sets of values of a and δ. Each column corresponds to one slice. The first row

shows the segmentations based on a variance stabilization transform with a = 0.3

while the second with a = 0.25. For both values of a, two values of δ, 20 and 30,

are used in HiSET.

6.2.1 2D-to-3D strategy

Considering that the thickness of slice is much larger than the size of voxel in image,

we give priority to the neighborhood structure appearing within each slice, and

then deal with the neighborhood structure appearing cross slices. In this spirit, we

apply HiSET individually for every slice and then recover 3D segmentation by the

propagation of all regions resulting from 2D segmentations of all slices.

The 2D-to-3D strategy consists of the following steps:

1. Run 2D HiSET for every slice. A set of clusters of voxel are obtained for each

slice.

2. Define the neighborhood structure within the same slice: For one cluster,

its neighbors are all the clusters which the neighboring voxels of its member

voxels belong to except itself.
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3. Define the neighborhood structure cross slices: two clusters coming from

adjacent slices and overlapping (for at least one voxel) on the grid are

neighbors of each other.

4. 3D propagation of all clusters of all slices with new neighborhood structures

defined in step 2 and 3.

3D propagation of clusters in slices is essentially equivalent to HiSET that we

have described in Section 3.3, except that the input is a set of clusters, instead

of voxels, but still with a neighborhood structure. The same routine of local and

global clustering is proceeded.

6.2.2 Direct 3D strategy

We equally treat the neighborhood structure within slice and cross slices, meaning

that every voxel in volume has its adjacent voxels as its neighbors. HiSET is

directly applied on all voxels available in DCE volume with a 3D neighborhood

structure.

6.2.3 From intensity-based to enhancement-based segmen-

tation

For every cluster resulting from segmentation based on intensity, the averaged

intensity at the first phase is subtracted from the averaged intensity at the other

phases, to have the averaged enhancements induced by the contrast agent. An ad-

ditional clustering of the clusters based on their averaged enhancements can reduce

the complexity of anatomical features by merging ones having same enhancement

but different baselines, such as the different parts of livers. This phenomena can

be observed from Figure 6.4: on the top left, the liver is split into several parts

(with colors varying from dark red to orange), but on the top right, these parts are

merged into only a couple of clusters (blue). In addition, two segmentations offer

an hierarchical (with only two levels) representation of clusters.
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In Figure 6.4, one can also observe that the clusters, from intensity-based

segmentation, having the same enhancement could have quite different baselines.

In practice, by simply aggregating them all as proposed above could result a mixture

of different features, especially for poorly enhanced ones such as fat, muscle, water

and air. Therefore, a compromise of intensity-based and enhancement-based

segmentation has been taken, called intermediate segmentation. In intermediate

segmentation, only the clusters having same enhancement, which is defined by

enhancement-based segmentation, and close enough baselines, which is defined by

a given threshold, are merged together. To be specific, for all the clusters labelled

in the same vertical line in Figure 6.4-d, a hierarchical clustering based on baseline

is conducted such that the clusters having their averaged baselines closer than h

are considered to be one cluster in intermediate segmentation. The aggregations of

clusters are highlighted by ellipses surrounding the cluster labels in Figure 6.4-d,f,h,

given different values of h. The corresponding intermediate segmentation results

are respectively shown in Figure 6.4-c,e,h. One can observe that, as h increases,

more and more clusters from intensity-based segmentation are aggregated and the

intermediate segmentation approaches to enhancement-based segmentation (i.e.

red/orange regions in liver).

Enhancement-based segmentation can be incorporated into volume segmentation

strategy at one of the following three stages:

• at voxel level - the enhancement is computed for every voxel prior to clustering;

• at slice level - the average enhancement is computed for every cluster resulted

in every slice after slice segmentation, prior to 3D propagation;

• at volume level - the average enhancement is computed for every cluster

resulted in volume after 3D propagation.

In practice, the last two stages are preferred since the enhancement is already

averaged within homogeneous cluster, leading to a significant improvement of SNR

with respect to individual voxels. On the other hand, intermediate segmentation
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can be only combined at the last two stages since it requires intensity-based and

enhancement-base enhancement.

6.2.4 Tuning of parameter δ

One can use different values of δ for each step of segmentation strategy, in order

to have a trade-off between homogeneity and details of anatomical features. We

discriminate them with distinct notation, as in Figure 6.6:

• δl: local clustering,

• δg: global clustering,

• δ3D: 3D propagation,

• δenh: enhancement clustering.

Commonly, the following relations are respected during the parameter tuning

δl ≤ δg ≤ δ3D ≤ δenh.

For 2D-to-3D strategy, δl and δg are used (equally or not) for 2D segmentation,

based on intensity, of all slices, and then δ3D is used for 3D propagation of all

clusters in slices. The enhancement clustering using δenh can be combined either

after 2D segmentation for all slices, or after 3D propagation for the volume, in order

to have clusters with homogeneous enhancement. For 3D strategy, δl and δg are

used (equally or not) for 3D segmentation of the entire volume based on intensity,

and then the enhancement clustering is followed if necessary by specifying δ3D.

Finally, two volume segmentation strategies are summarized as the diagram

shown in Figure 6.6.

6.3 Results

The 2D-to-3D strategy is implemented on DCE volume #1 and #3 while the 3D

strategy is implemented on DCE volume #2. In all instances of implementation,
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a = 0.3 and α = 0.001 are used. Figure 6.7 includes three segmentation results,

one for each volume, and the δ-parameters are set to:

• for volume #1, δl = 10, δg = 20, δ3D = 20 and δenh = 40;

• for volume #2, δl = δg = 20 and δenh = 40;

• for volume #3, δl = δg = 20, δ3D = 20 and δenh = 40.

Clearly, one can observe that, from coronal and sagittal planes, the 2D-to-3D

strategy is not able to always capture the regular shape of cluster crossing slices. It

is due to the fact that, in this strategy, the neighborhood structure is only defined

within slice but not cross slices. Therefore, the border of a cluster in one slice

would not match the border in adjacent slices in a continuous fashion, leading to

the appearance of “horizontal lines” in coronal and sagittal planes.

On the other hand, by defining neighborhood structure in all three spatial

dimensions equally, the 3D strategy constructs clusters having regular shapes

within and cross slices. However, its computational cost is more important than

the alternative strategy.

As in 2D segmentation of DCE image sequence, the larger δ is, the fewer

homogeneous regions are resulted, meaning that the fewer anatomical features are

segmented from DCE volume.

As shown in Figure 6.9, δl and δg significantly effect the small local features

(clusters) in slices (axial plan). With a larger δl (or δg) value, these features are more

likely to be merged into surrounding large features, which happens, for instance,

on the the vessels passing through the liver. Due to the irreversible nature of

the segmentation strategy, these small features are drastically omitted and can

not be recovered in the following steps. Therefore, it is highly recommended to

start the strategy with a small value of δl, if the small features are also interested.

Additionally, by doing so, the result of this step (local clustering) is always reusable

as an input for further tuning of other δs, leading to a great benefit of computational

time by avoiding to repeat this step that is the most time-consuming one among

all steps.
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On the other hand, δ3D and δenh focus more on cluster propagation in volume.

Most of the clusters in volume consist of only a small amount of clusters in slices,

and by using larger δenh (equivalent for δ3D), this amount increases slowly and

uniformly within the volume, as shown in Figure 6.8. For every cluster among

hundreds are segmented in volume, its sub-clusters in slices could be distributed in

a scattered way within the volume made of millions of voxels and, however, have

the shapes already determined in 2D segmentation step. This explains the hardly

visible distinction among the segmentation results in Figure 6.10 and Figure 6.11.

6.4 Discussion

In this work, the segmentation strategies are only evaluated with three sub-volumes.

To be noticed, they can surely be used directly on the entire DCE volume, in which

case, one can expect an improvement in term of SNR as the amount of equivalent

observations may increase in a given cluster.
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Figure 6.4: For one slice given a = 0.3 and α = 0.001: (a) intensity-based

segmentation using δl = δg = 20; (b) enhancement-based segmentation based on

average enhancement of clusters from last segmentation using δenh = 40; (c-d)

intermediate segmentation using h = 0.5; (e-f) intermediate segmentation using

h = 1; (h-g) intermediate segmentation using h = 2. In (a-c,e,h), colors are

arranged according to AUC of average intensity/enhancement curves from red

(high AUC) to blue (low AUC), and the number of clusters in each segmentation

is given on the left. In (d,f,g), same scatter is shown with every solid triangle

standing for a cluster from intensity-based segmentation and ellipses highlight the

cluster aggregations in intermediate segmentation.
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Figure 6.5: For one slice given a = 0.3 and α = 0.001: (a) intensity-based

segmentation using δl = δg = 20; (b) enhancement-based segmentation based on

average enhancement of clusters from last segmentation using δenh = 40; (c-d)

intermediate segmentation using h = 0.5; (e-f) intermediate segmentation using

h = 1; (h-g) intermediate segmentation using h = 2. In (a-c,e,h), colors are

arranged according to AUC of average intensity/enhancement curves from red

(high AUC) to blue (low AUC), and the number of clusters in each segmentation

is given on the left. In (d,f,g), same scatter is shown with every solid triangle

standing for a cluster from intensity-based segmentation and ellipses highlight the

cluster aggregations in intermediate segmentation.
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Figure 6.7: Multi-view of 3D segmentations of three DCE volumes with a = 0.3

and α = 0.001. Left column: sub-volume #1, δl = 10, δg = 20, δ3D = 20 and

δenh = 40; Middle column: sub-volume #3, δl = δg = 20, δ3D = 20 and δenh = 40;

Right column: sub-volume #2, δl = δg = 20 and δenh = 40.
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Figure 6.8: The number of clusters in slices of which every cluster in volume

consists, after volume segmentation of DCE volume #1 with a = 0.3, α = 0.001,

δl = 10, δg = 20, δ3D = 20 and different δenh for enhancement clustering at the end.

The width of box is proportional to the number of clusters in volume.
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Figure 6.9: Effect of δl and δg: multi-view of 2D-to-3D segmentations of DCE

volume #1 with a = 0.3, α = 0.001, δ3D = 40 for volume segmentation based on

intensity of slice segmentation, δenh = 60 for enhancement clustering at the end,

and different δl and δg for slice segmentation.
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Figure 6.10: Effect of δ3D: multi-view of 2D-to-3D segmentations of DCE volume

#1 with a = 0.3, α = 0.001, δl = 10, δg = 20 for slice segmentation, δenh = 40 for

enhancement clustering at the end, and different values of δ3D.
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Figure 6.11: Effect of δenh: multi-view of 2D-to-3D segmentations of DCE volume

#1 with a = 0.3, α = 0.001, δl = 10, δg = 20 for slice segmentation, δ3D = 20 for

volume segmentation based on intensity of slice segmentation, and different values

of δenh.
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axial plane coronal plane sagittal plane

Figure 6.12: Multi-view of 2D-to-3D segmentations of DCE volume #1 with a = 0.3

and α = 0.001. Top row: δl = 10, δg = 20, δ3D = 20 and δenh = 40; Middle row:

δl = δg = 20, δ3D = 30 and δenh = 50; Bottom row: δl = δg = 30, δ3D = 40 and

δenh = 60.
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axial plane coronal plane sagittal plane

Figure 6.13: Multi-view of 2D-to-3D segmentations of DCE volume #3 with a = 0.2

and α = 0.001. Top row: δl = 10, δg = δ3D = 20 and δenh = 40; Middle row:

δl = δg = 20, δ3D = 30 and δenh = 50; Bottom row: δl = δg = 30, δ3D = 40 and

δenh = 60.
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axial plane coronal plane sagittal plane

Figure 6.14: Multi-view of direct 3D segmentation of DCE volume #2 with a = 0.3

and α = 0.001. Top row: δl = 10, δg = δ3D = 20 and δenh = 40; Middle row:

δl = δg = 20, δ3D = 30 and δenh = 50; Bottom row: δl = δg = 30, δ3D = 40 and

δenh = 60.
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Chapter 7

Implementation in Myrian®

Intrasense helps healthcare organizations enhance their medical imaging visual-

ization and analysis in more than 40 countries. Founded in 2004, Intrasense is

the specialist of medical imaging software for advanced visualization, quantitative

analysis, workflow and qualitative clinical evidence on multi-modal medical images.

The company designs, develops and markets Myrian®, a unique vendor-neutral

viewer, advanced imaging layer for the visualization and advanced processing of

multimodal medical images such as MRI, CT scans, PET, X-rays, and more. Over

the last 10 years the company has gained an unrivalled know how to develop and

support innovative and user friendly medical imaging software solutions. Devel-

oped with leading academic and industrial research partners, Myrian® solutions

(platform, SDK and clinical modules) combine agility, innovation and customer

experience focus, servicing healthcare professional for an improved patient’s care.

With over 800 Customer sites around the world, Myrian® is certified as a medical

device in over 40 countries in Canada, the United States (FDA), Europe (CE) and

Asia. Intrasense SA is listed on NYSE Alternext (FR0011179886-ALINS).

Myrian® combines and uses the various medical images to extract information

that is vital to the patient’s care, to the rapid appraisal of the efficiency of treatment

and to the assessment of drug candidates in oncology, chronic diseases and other

pathologies. It is a new-generation workstation for the interpretation of results
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and the advanced 3D/4D post processing. It can be adapted to every modality,

every organ and every pathology. Myrian® solution is enriched by advanced

clinical modules each targeting one organ or one pathology with tools such as

segmentation engines, specific measurement algorithms, simulation or examination

tools, optimized user interface and more.

Myrian® provides also its own software development kit (SDK), which is a set

of C++ interfaces and libraries that allow third-party developers to extend the

possibilities of the platform by the mean of binary add-ons (DLL). Using add-ons,

one can create viewports, toolboxes, tools, viewport overlays, volume processors,

detection engines to generate ROI or annotations. Within the SDK, the SDK

Library provides more than 100 C++ classes to help developers create their own

add-ons. Those classes address various fields: user interface, algorithms for medical

imaging, mathematics, file I/O, interaction with the operating system, localization

and many more.

DCE-HiSET is integrated using SDK as a volume operator (VOP) into Myrian®.

This operator is defined as a segmentation tool for DCE image sequence that can

be used for different modules. The operator can deal with DCE image sequence

with both large and small number of times. For small number of times (<8), the

multiple equivalence test used for computing the dissimilarity between two TCs is

based on Gaussian test. On the other hand, for large number of times, the multiple

equivalence test is based on Chi-square test. Thereby, the choice of test has been

made in automatic way depending on the number of times in the sequence.

For parameters, α is fixed to 0.0001 since its minor influence on the segmentation

result. a and δ are left to users to define and tune. In addition to the parameters

defined in Chapter 3, the interface of this VOP also requires other two parameters:

the last time index of baseline phase and the slices to be processed in parallel. The

former defines the baseline phase and the latter refers to a specific slice if the input

is a positive integer, to all slices otherwise.

For a DCE image sequence of spatial dimensions 256× 256, the VOP of DCE-

HiSET takes approximately 20 seconds to produce a segmentation map and an
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averaged (denoised) version of sequence. For a DCE volume of spatial dimensions

256 × 256 × 40, 3D segmentation can proceed in parallel with four threads for

example, one per slice. In this way, the VOP takes approximately 3 minutes

(10 times 20 seconds) to produce segmentation maps for all slices. Then the 3D

propagation takes about a dozen seconds. Apparently, the total time can be further

reduced with more threads running in parallel for 3D segmentation. For larger

spatial dimension, the resampling technique can be used before segmentation with

DCE-HiSET such that the total amount of voxels is reduced while the information is

mostly preserved. Additionally, the interactive visualization tools are also developed

using SDK to illustrate the segmentation results, including the average TCs in

segmented regions and the selection of ROIs.
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Conclusion

In this work, we proposed a new method, DCE-HiSET, to segment the DCE image

sequence into homogeneous regions with respect to the TC observed in each voxel.

In this way, the low SNR of DCE image sequence is significantly improved by

averaging the TCs of voxels in homogeneous regions.

Using a dissimilarity measure based on multiple equivalence test, the homogene-

ity of TC is directly controlled by the equivalence margin that is the discrepancy

tolerance between true but unobservable TCs. The number of regions is automat-

ically determined by this equivalence margin and by the significant level of the

testing procedure, the latter having a much smaller influence. At least for synthetic

DCE image sequence made of functionally piecewise homogeneous regions, our

algorithm is proven to be able to retrieve the unknown true partition with high

probability as soon as the number of images is large enough.

Consisting of a local and a global clustering step, DCE-HiSET can retrieve

the homogeneous regions, which are highly consistent to real anatomy, regardless

of their shape, size and disconnectedness. The total computation complexity is

controlled during the local step by the small number of neighbors concerned while

during the global step by the small size of the partition.

Through comparison on a synthetic DCE image sequence with a relatively small

number of regions, DCE-HiSET outperforms other clustering-based methods with

respect to Fowlkes-Mallows indexes. Moreover, our implementation in C++ code

wrapped in R is comparable to the best competitors in term of computation time.

DCE-HiSET can be used for both 2D and 3D DCE image sequences. However,
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in 3D, slice thickness and/or inter-slice distance can be very different from voxel

size in the imaging cross-section. Out of this concern, we proposed two strategies

having different neighborhood structure cross slices, but both based on HiSET.

As an application, this work also proposed a strategy to refine the ROI manually

delineated by clinicians in DCE image sequence, to improve the precision at the

border of ROI. Based on a hierarchical segmentation (HiSET) of image sequence,

the strategy consists of a series of erosion and dilation to remove the regions

corresponding to movements, artifacts and unexpected tissues initially covered by

the manual ROI. To evaluate the effect of the proposed strategy on the robustness

of perfusion analysis, we apply it to the classification of ovarian tumors from 99

studies of female patients. With different classification models, the result shows a

consistent improvement of classification accuracy induced by the ROI refinement.

DCE-HiSET may be extended to take into account such difference by weighting

the p-values with respect to the direction of the neighbors. Other extensions of

DCE-HiSET include the automatic tuning of parameters a and δ by the opti-

mization of a simple criterion, which may provide a fully automatic procedure for

each DCE image sequence. DCE-HiSET may be the proper segmentation part

in conjunction with a proper registration tool [Glocker et al., 2011; Sotiras et al.,

2009] of an iterative registration process for DCE image sequence, in which along

the iterations both the signals and the registration on those signals are learned.

Moreover, by only adapting the multiple equivalence test, HiSET may be applied

in various types of models where a signal is observed on a landscape such as

multimodality images, vector-valued graphs and consumption (electricity, water,

etc.) using geographical information or user types.

Due to the multidisciplinary nature of this PhD project, I am working closely

with radiologists, mathematicians and software engineers, to cover the vast scope

of the project. During the development and the application of DCE-HiSET, I

manage to achieve different tasks sequentially and simultaneously. Through the

interaction with radiologists, I was able to understand the clinical challenges
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and reformulate them into mathematic problems. After defining properly the

problems, I investigated the literature of different disciplines for the state-of-the-art

approaches to address the problems. At the same time, I collected image data from

various heterogeneous sources and kept detailed records regarding the image data,

for further experiments and tests. Proposing our own theory and assumptions,

I developped the prototype of the segmentation algorithm and its variations in

different programming languages, as well as extensive tools for image processing,

visualisation, analysis, classification and interactive illustration of results. The

algorithm has been validated through both mathematical proofs and intensive

experiments on heterogeneous image datasets. Meanwhile, I managed to transform

the prototype into compatible module to integrate into company’s software platform

Myrian®. I also spent tremendous amount of effort to prepare, present and discuss

the work in laboratory seminars, company meetings, as well as national and

international conferences. I also produced annual research reports and wrote papers

for the publications regarding the progress of this work.

During three years of CIFRE PhD, I have not only built strong skills to

communicate with collaborators from different backgrounds and the ability to

adapt initiatively the dialogue for more efficient presentation and discussion, but

also developed deep knowledge of machine learning algorithms and the ability of

autonomous learning and research. Working closely with Research and Development

team of Intrasense, I have gained a strong knowledge about software development,

learnt about the structure of the company and also appreciated the culture of the

company and the spirit of teamwork. All these will be valuable assets for my future

professional career.
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